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ABSTRACT 

Accurate data on the incidence of foodborne illness and food histories for affected 

individuals represent two important barriers to enteric outbreak surveillance and response. 

Innovative tools to collect and analyze this type of public health intelligence will play an 

important role in research efforts to improve understanding of the extent, impact of and risk 

factors for foodborne disease in Canada and around the world. Ethica, a smartphone based 

application used to acquire, store, and analyze data on human behaviour, provided an opportunity 

to gather information on the occurrence of enteric illness and the food consumption behaviour of 

96 university students over a 10-week period. Nausea or vomiting were reported by 34% of 

participants, and 29% reported diarrhea at least once during the study using at least one of the 

available reporting options, but only 7% reported they sought medical care. Real-time data 

collected through digital images, meal descriptions, and microsurveys were used as a reference 

to measure the sensitivity and specificity of traditional food history questionnaires administered 

through an email link after 7 or 18 days (2.5 weeks). The validity of food history data collected 

after 7 days was found to be consequentially low with sensitivities ranging from 14.3% for 

sprouts to 100% for leafy greens and specificities ranging from 30.4% for beef to 80.4% for 

peanuts. Similarly, the sensitivities of questions administered after 18 days ranged from 15.8% 

for sprouts to 77.8% for tomatoes, with specificities ranging from 21.2% for leafy greens to 

92.1% for melons. The impact of recall bias on the accuracy of food history data was found to 

vary with food type. Bayesian latent class analysis was conducted to determine the sensitivities 

and specificities in the absence of a true gold standard – the results support those of frequentist 

approach. These findings serve as a first step in measuring the occurrence of self-reported 

foodborne illness and the implications of recall bias on outbreak investigations so that these 

biases can be accounted for research and public health practice.
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CHAPTER 1 – INTRODUCTION 

 

1.1 Background 

Foodborne illness is a preventable problem. Caused by the ingestion of contaminated 

foods, most foodborne illnesses are characterized by enteric symptoms including vomiting and 

diarrhea lasting anywhere from a few hours to several weeks. Contaminants that have been 

linked to foodborne illness include bacteria, parasites, viruses, metals, toxins and prions (Thomas 

et al., 2013). While mild cases often resolve on their own, severe cases may result in a variety of 

life threatening consequence including, but not limited to: electrolyte imbalances, dehydration, 

septicemia, renal failure, and permanent neurological damage (Thomas et al., 2013). The 

incubation period – the time between consumption of the contaminated food and the onset of 

illness – ranges from hours to days, depending on the pathogen involved (CIFOR, 2014), but can 

be weeks for infectious agents such as listeriosis. These delays often make it difficult to link an 

episode of illness with the consumption of a particular food. 

The global burden of food borne illness is significant in terms of the occurrence of 

disease and mortality as well as the economic burden associated with costs of treatment and lost 

days from work. The World Health Organization estimated 600 million cases of foodborne 

illness in 2010 alone (WHO, 2015b). The Public Health Agency of Canada (PHAC) has 

estimated that each year there are 4.0 million occurrences of domestically acquired foodborne 

illness in Canada with 1.6 million (40%) of these related to 30 known pathogens (Thomas et al., 

2013). Of the total cases of foodborne illness in Canada, 11,600 are estimated to result in 

hospitalizations and 238 in death with 4000 (34%) of the hospitalizations and 105 (44%) of the 

deaths associated with domestically acquired illness due to the 30 known pathogens (Thomas et 

al., 2015). In an earlier study, the frequency of gastroenteritis had been described for Hamilton, 
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Ontario where there were estimated to be 126,300 cases per year per 100,000 people  (Majowicz 

et al., 2006). The mean annual cost associated with each of these episodes was estimated to be 

$1089 CAN resulting in an annual economic burden of $115 CAN per capita in the community 

(Majowicz et al., 2006).  

  It should be noted that the definition of foodborne illness varies across studies – an issue 

that has been widely acknowledged (de Wit et al., 2001; Majowicz et al., 2004; Wheeler et al., 

1999). In a study on the prevalence of foodborne illness in Canada, Thomas et al. (2013) defined 

acute cases of foodborne illness as having >3 loose stools in 24h with duration lasting >1 day. In 

a similar study in the US, Scallan et al. (2011) had used a slightly expanded case definition of >3 

loose stools in 24 hours lasting >1 day or resulting in restricted daily activities. Other studies, 

such as Majowicz et al. (2004), defined foodborne illness broadly as diarrhea (loose stool or 

stool that is unusually liquid) or vomiting within the past 28 days. The variability in the 

definition of foodborne illness creates challenges in making accurate inferences about the 

occurrence of foodborne illness and in comparing incidence over time and differences among 

regions and countries. 

 

1.1.1 Foodborne Illness Surveillance 

A number of surveillance systems exist to collect information on foodborne illness in 

Canada. The Canadian Notifiable Disease Surveillance System (CNDSS) aggregates and 

summarizes data on laboratory confirmed cases that have been reported to provincial public 

health authorities (Government of Canada, 2012). The National Enteric Surveillance Program 

collects data on subtype and species of select bacteria, parasites and viruses on a weekly basis 

(Government of Canada, 2012). FoodNet Canada collects data on foodborne illness occurrence 
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and tests for pathogens in retail foods, water sources and agricultural operations in three sentinel 

sites – Middlesex-London Health Unit (Ontario), Fraser Health Region (BC), and Alberta Health 

Services: Calgary and Central Zones (Alberta) (Huang et al., 2015). National Studies on Acute 

Gastrointestinal Illness (NSAGI) have conducted population surveys on the occurrence of 

diarrhea and vomiting (Thomas et al., 2008). Pathogen specific surveillance programs also exist 

such as the Enhanced National Listeriosis Surveillance system which collects data specific to the 

occurrence and spread of invasive listeriosis (Government of Canada, 2016). Communication 

between laboratories regarding molecular diagnostics is facilitated by PulseNet Canada, an 

electronic database of pulsed-field gel electrophoresis (PFGE) results for E. coli 0157:H7, 

Salmonella, Listeria monoctogenes, Campylobacter, Shigella and Vibrio (Government of 

Canada, 2015). This network allows public health practitioners to quickly match cases infected 

with the same outbreak strain, regardless of where the cases were reported. Data on foodborne 

illness is also collected by the Canadian Integrated Program for Antimicrobial Resistance 

Surveillance (CIPARS) which assesses trends in antimicrobial resistance in bacterial pathogens 

such as Salmonella (Nesbitt et al., 2012). Although there are many different programs to collect 

data related to foodborne illness in Canada, limitations to surveillance still exist. Certain 

subgroups of the Canadian population including rural (Herikstad et al., 2002), Indigenous 

(Clarke, 2016; O'Neil et al., 1998), and immigrant populations (Clarke, 2016; Sanmartin and 

Ross, 2006) have been found to be under-represented by most surveillance initiatives. 

Furthermore, there is a lack of mechanisms in place to capture information on cases who do not 

seek medical care (Tam et al., 2003). 

Due to the nature of the illness, most mild or moderate cases do not visit a health care 

provider creating serious challenges for the surveillance of foodborne disease (Flint et al., 2004). 
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In order for cases to be captured in national surveillance systems, the patient must visit a 

healthcare provider and submit a biological specimen (usually a sample of stool or vomit). 

Furthermore, a pathogen must be identified and the laboratory results must be reported to the 

local health department and then the provincial health authority (Flint et al., 2004). Examples of 

important pathogens resulting in illness that are not typically captured by routine surveillance 

include agents such as: norovirus, rotavirus, C. perfringens, B. cereus, Y. enterocolitica, and S. 

aureus. Since data on these pathogens are incomplete for Canada, national estimates often rely 

on data from other countries such as the UK and USA and individual provinces with enhanced 

surveillance or research initiatives (Thomas et al., 2013).  

 Some types of foodborne illness are more successfully captured by existing surveillance 

systems. Illnesses caused by pathogens that are considered to be severe, such as Vibrio 

culnificus, E. coli O157:H7 and L. monocytogenes, as well as pathogens that are well 

understood, are more likely to be recognized and reported (Thomas et al., 2015). Pathogens that 

are included in existing surveillance systems, such as Campylobacter spp., and nontyphoidal 

Salmonella spp., are also more likely to be captured (Thomas et al., 2015). Differences exist 

between laboratories in regards to which pathogens are included in routine diagnostic panels. A 

study involving 87% of laboratories in Canada found that 67% routinely tested stool samples for 

enteric bacteria, 31% tested for parasites, and only 10% tested for viruses (Flint et al., 2004). 

Pathogens that were tested for by at least 95% of laboratories included Salmonella spp., Shigella 

spp., Camplobacter spp., E. coli and Yersinia spp. Differences in the severity of symptoms, 

laboratory testing practices and reporting policies create challenges for surveillance systems and 

make it difficult to obtain complete estimates of the occurrence of foodborne illness in Canada. 
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1.1.2 Surveillance of Food Choices 

In 2014, the Public Health Agency of Canada conducted the national survey known as 

Foodbook to assess food, water and animal exposures in the Canadian population (MacDonald, 

2016). The objective of the Foodbook study was to fill gaps in data on these exposures in a 

Canadian context. Interviews were administered over the phone to 11,016 participants with a 

strong focus on food exposures (MacDonald, 2016). This data was used to provide a reference 

for the frequency of food exposures in the Canadian population. If an outbreak investigation 

indicates that the proportion of cases exposed to a particular food item is considerably higher 

than the Canadian average, the food is flagged as a possible source of infection. The results 

provide practical information on frequency of exposure to high-risk foods across different 

provinces/territories and demographics in Canada and continues to inform outbreak investigation 

and response.  

 

1.1.3 Foodborne Illness Outbreak Detection and Investigation in Canada 

  When surveillance systems detect unusual cases of illness, or a greater number of 

illnesses than is expected, a food-related outbreak may be suspected (Vik and Hexemer, 2014). A 

foodborne outbreak refers to an incident that involves 2 or more individuals becoming ill due to 

the consumption of a common food (Lukacsovics et al., 2014). When an outbreak is confined 

within the borders of health region or a province, local and provincial epidemiologists may 

conduct an investigation to identify the source of illness. Although epidemiologists aim to collect 

food history data by the end of the first week after the onset of illness, in practice this timeframe 

is often extended considerably. Findings by Fong et al. (2017) indicate that the median time to 

initiate an outbreak investigation at a provincial level is 36 days. When outbreaks span multiple 
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provinces, these timeframes may be further extended to several weeks. To help mitigate 

challenges in communication and coordination, the Public Health Agency of Canada may 

activate an Outbreak Investigation Coordination Committee (Vik and Hexemer, 2014). This 

coordination committee facilitates collaboration and information sharing among jurisdictions. 

Canada’s Food-borne Illness Outbreak Response Protocol (FIORP) was developed to maximize 

the efficiency and effectiveness of national enteric outbreak investigation by outlining the roles 

and responsibilities of federal, provincial and territorial partners and outline protocols to guide 

public health action (Vik and Hexemer, 2014).  

  Public health decisions during outbreak investigations are informed by a combination of 

epidemiological, laboratory and food safety evidence (Vik et al., 2014). The type and quality of 

evidence that is available differs from one outbreak to the next. If samples of suspect foods are 

available, laboratory molecular-typing techniques can be used to match the genetic fingerprint of 

the outbreak strain isolated from cases to the pathogen in the food. However, if no food samples 

are available, investigators must rely on the accounts of affected individuals to identify the 

source of the outbreak (Vik et al., 2014). This data is collected through a food history 

questionnaire, which typically prompts cases to recall foods that were consumed before the onset 

of the illness.  

Current methods of collecting food histories typically involve questionnaires being 

administered in-person or via telephone. These traditional methods require considerable time 

commitment by staff, cases, and controls. During case-control studies, controls are interviewed 

in a similar manner, increasing the resources and time required to collect information. Studies 

that administer similar questionnaires over the phone have shown relatively low response rates 

(MacDonald, 2016). Possible challenges in contacting participants for interviews may include 
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decreasing numbers of geographically referenced landlines, lack of time, suspicion of 

telemarketers, and the option to refuse calls based on call display.  

The number of households that have mobile phones has surpassed the number that have 

landlines (Radio-television and Commission, 2015). Including mobile phones into food exposure 

studies has been used to increase coverage of younger Canadians (MacDonald, 2016). This 

strategy is appropriate considering that the Millennial Generation (aged 18-35) represents a large 

portion of smartphone users (Poushter, 2016). University students in particular have shown to be 

among the most frequent users of these new technologies; they have been found to spend an 

average of 5-6 hours per day interacting with their smartphones (Lepp et al., 2015). 

 

1.1.4 Emerging Methods to Collect Enteric Illness and Food Histories 

New technologies have provided opportunities for innovation in methods to collect food 

histories. As an alternative to in-person and telephone interview strategies, several studies have 

begun to assess the feasibility of web-based food surveys as well as digital image food diaries 

(Arab et al., 2011; Kikunaga et al., 2007; Six et al., 2010; Wang et al., 2010). Online data 

collection techniques were found to aid the recall of food consumption, and digital images have 

provided an efficient means by which to capture detailed information about food consumption 

(Arab et al., 2011). Web-based surveys have been implemented in a number of outbreaks 

(Beatty et al., 2009; Srikantiah, 2005) and have been shown to reduce investigation time 

without affecting response rates (Ghosh, 2008). However, retrospective dietary histories are 

only as accurate as an individual’s memory of the meal in question, regardless of the method of 

administration.  
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The wide range of capabilities of smartphones has proven useful to the investigation of 

human behaviours and administration of online surveys which includes the potential for real-

time collection of high resolution digital images, text and audio files tagged with time and 

geographic location (Hashemain et al., 2012). The Ethica smartphone app provides a tool for 

the practical collection of data regarding enteric illness and food history. The Ethica Survey 

Tool allows researchers to administer app-triggered and user-triggered surveys throughout the 

study period to collect illness and risk factors. Various other features of this app serve as a user-

friendly interfaces through which participants can record data on food consumption behaviour 

(Features - Ethica Data, 2017). For example, the PhotoFoodDiary feature of the application 

allows participants to capture digital images of foods and meal descriptions in real-time.  

 

1.1.5 Emerging Methods to Detect Foodborne Outbreaks  

Innovative uses of big data from a variety of sources including news reports, internet 

forums and social media have been utilized to detect disease outbreaks. Systems of particular 

relevance to foodborne illness detection include Yelp, the HealthMap Food Dashboard, and 

nEmesis. For example, restaurant reviews such as those on Yelp, were used to identify 

unreported cases of foodborne illness in New York City in 2012-13. The potential of this strategy 

is illustrated in a study by which data from Yelp reviews was used to identify three previously 

unreported restaurant-linked outbreaks over a course of nine months (Harris et al., 2014).  

HealthMap Food Dashboard identifies Tweets that pertain to foodborne illness by 

searching for references to food poisoning (Harris et al., 2017). This system can identify 

potential cases at a global level or can be focused on any specific location. Taking this concept a 

step further, an adaptive algorithm based system known as nEmesis applies a more complex 
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machine learning algorithm to the recognition of posts on Twitter describing foodborne illness 

and links them to food service establishments visited in the previous five days by the person 

making the post (Sadilek et al., 2016). By matching each flagged location with a control site, 

researchers conducted a double blind trial and identified a 64% improvement in inspection 

efficiency over existing methods.  

While all of these methods have provided important insights into foodborne illness 

distribution, they share limitations including self-reporting and misinformation, low specificity 

of signals, and a disproportional sensitivity to external forces such as the media, selection biases, 

poor specificity of syndromic definitions, and problems associated with inconsistent participation 

(Brownstein et al., 2009; Wójcik et al., 2014).  

 

1.2 The Problem 

Collecting accurate food histories and mitigating recall bias have been recognized by 

PHAC (Thomas et al., 2013) and the US CDC (Scallan et al., 2011) as key challenges in the area 

of foodborne illness investigation. Few studies have attempted to measure the effect of recall 

bias on the validity of data collected during outbreak investigations or more specifically how 

recall bias is affected by time since exposure. Decker et al. (1986) investigated the accuracy of 

dietary recall 2 to 3 days after a buffet meal that was videotaped. Sensitivities were found to 

range from 81.2% to 95.2% and specificities ranged from 93.1% to 98.5% for 5 different food 

groups. Mann (1981) assessed the accuracy of dietary recall to potato salad and quiche five days 

after a work luncheon where nurses observed and tracked which participants consumed the two 

foods. The sensitivity of the food history questionnaire was found to be 88% for both foods; the 

specificity for potato salad was 75% and for quiche was 93%. In the context of past outbreak 

investigation in Canada, outbreak reports indicate that even cases infected with the same 
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outbreak strain that was isolated from the contaminated food source – as confirmed with 

laboratory serotyping methods such as PFGE, MLVA and WGS – often misclassify their 

exposure status on food history questionnaires (Angelo et al., 2015; Calder et al., 2003; Gupta et 

al., 2007; Slayton et al., 2013). These misclassifications limit the power to detect meaningful 

associations between certain food exposures and the onset of illness. Considering the findings of  

Decker et al. (1986) and Mann (1981) and the fact that the median time to start an outbreak 

investigation in British Columbia is 36 days (Fong et al., 2017), it is reasonable to predict that 

recall bias will have an important impact on the validity of data collected during outbreak 

investigations. 

Addressing the challenges of recall bias in a feasible and effective way would increase 

the efficiency of foodborne illness surveillance systems as well as inform investigative strategies 

to stop outbreaks in a timely manner and prevent further illness. As the food distribution network 

in Canada and the US continues to grow in size and complexity, so do the potential 

consequences of incomplete reporting. The development of innovative methods and tools for 

self-reporting food exposures and illness is both timely and necessary.  

 

1.3 Need for an Interdisciplinary Approach 

Addressing the issues of incomplete reporting of foodborne illness and recall bias 

resulting from delays in collecting food histories will require a multidisciplinary approach. The 

issue of recall bias, for example, encompasses aspects of psychology and epidemiology. Insights 

gained into the mechanisms underlying psychological processes such as memory encoding, 

storage and retrieval have guided strategies used to collect data for epidemiological studies. Of 

particular relevance to this study is progress made in understanding how memory decay occurs 

(Jenkins et al., 2002) and which types of memory are most susceptible. Studies by Janssen et al. 
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(2006) suggest that the length of time that passes between an event and when the memory is 

retrieved may impact the validity of data that is obtained. More specifically, the more time that 

passes between exposure and recall, the more likely it is that the event is to be misattributed to an 

earlier or later date. In the context of food consumption, it has been shown that strategies used to 

retrieve details about meals eaten in the past differ depending on food type (Johnson-Kozlow et 

al., 2006). The methods that participants used to remember exposures to different food types 

were each characterized by a distinct pattern of strategies such as using time and location cues, 

knowledge of habitual dietary routines and external influences (associations with holidays, 

activities, friends and family) (Johnson-Kozlow et al., 2006).  

 

1.4 The Research Opportunity 

There is a need for research on foodborne consumption behaviour and the occurrence of 

foodborne illness. Gaps in data are particularly evident in the demographic of university students 

and for the province of Saskatchewan. Conducting a study to address this gap would require 

considerable collaboration and resources including access to university students in 

Saskatchewan, access to appropriate data collection tools, and funding support. The Social 

Science and Research Laboratories (SSRL) at the University of Saskatchewan is a research 

support unit that provides the infrastructure, research space and resources to support research 

projects. During this study, the SSRL provided an effective way to recruit and interact with 

student volunteers at the university and supported the data collection process. Data were 

collected using the Ethica app developed by Drs. Nathaniel Osgood, Kevin Stanley, Mohammad 

Hashemian and colleagues at the University of Saskatchewan. Collaboration with the developers 

of the app provided the access, support and expertise needed to apply this new technology to the 
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field of foodborne illness. Funding for the project was received from the Saskatchewan Health 

Research Foundation through the Collaborative Innovation Development Grant. 

 

1.5 Objectives 

1.5.1 Assessing the Feasibility of New Technologies for the Collection of Food Histories 

By providing a convenient method of triggering foodborne illness surveys whenever an episode 

of enteric illness occurs, the prevalence and underreporting associated with such illness can be 

more completely measured. The objective of Chapter 2 was to assess the feasibility of new 

smartphone technology known as Ethica to report symptoms of enteric illness and to collect 

comprehensive accounts of what each participant consumed. Different features of the application 

were utilized including the PhotoFoodDiary and the Survey Tool to allow participants to capture 

digital images of foods, describe meals in written text or through audio voice recordings and to 

complete microsurveys.  

 

1.5.2 Quantifying Recall Bias of Retrospective Food History Questionnaires Through 

Comparison to Data Collected using the Ethica App 

The objective of Chapter 3 was to quantify recall bias by assessing the accuracy of food 

history data collected using traditional retrospective questionnaires. The questionnaire was 

administered at time intervals designed to resemble a range of plausible local, provincial and 

national enteric outbreak investigations conducted by public health officials in Canada. Data 

collected from digital images, meal descriptions and microsurveys collected using the Ethica app 

were used as a reference standard. The results of the food history questionnaire were compared 

to this smartphone-based reference standard using a traditional, frequentist approach. The effect 
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of factors, such as differences in time delays from exposure to recall, experiencing symptoms of 

enteric illness, and repeated assessments, were assessed on the accuracy of dietary recall. The 

prevalences of food exposures in the sample population were then compared to the general 

Canadian population. These results will allow for a better understanding of how recall bias 

affects the validity of data collected during foodborne outbreak investigation and whether this 

effect is consistent across food types. 

 

1.5.3 Assessing the Sensitivity and Specificity of Different Data Collection Methods through 

Bayesian Latent Class Modelling 

The purpose of the third research chapter was to apply an alternative approach – Bayesian 

latent class modelling – to determine the sensitivity and specificity of test 1 (digital images/meal 

descriptions), test 2 (microsurveys) and test 3 (food history questionnaire) for five food items 

including tomatoes, cucumbers, lettuce and leafy greens, nuts, and berries. This approach 

allowed for previous knowledge regarding the measures of recall uncertainty to be considered in 

the model and reduced the need to assume there was a gold standard test for comparison. The 

results obtained from the Bayesian approach for the retrospective food history questionnaire 

were compared to the results of the more traditional, frequentist approach applied in the second 

research chapter. 

 

1.6 Implications 

This study has important theoretical practical implications for foodborne illness detection 

and investigation. Since the time periods and questionnaires used were designed to resemble 

those currently being used, the findings of these studies will be directly applicable to current 

public health practice in Canada. Measures of the sensitivity and specificity of these 
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questionnaires will allow outbreak investigators to account for recall bias when evaluating data 

from outbreak investigations and to generate more informed hypothesis about the source of 

illness. Results on the feasibility of different data collection methods, including new and 

innovative technologies, will allow national surveillance systems to further develop strategies to 

collect in-depth data from target groups of interest. These investigations will contribute to a 

better understanding of the extent, risk factors and impact of foodborne illnesses in Canada.  

From a methodological perspective, this study also explored new applications of 

Bayesian latent class modelling; this is the first identified example where Bayesian Latent Class 

modelling was used to investigate the accuracy of food history questionnaires. By utilizing both 

frequentist and Bayesian methods, direct comparisons can be drawn between the two methods. 

The innovative combination of data collection methods, analysis techniques and investigation 

strategies may foster further interdisciplinary collaborations to address the problem of foodborne 

illness. 
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CHAPTER 2 – FEASIBILITY OF SMARTPHONE-BASED TECHNOLOGY TO SUPPORT 

FOODBORNE DISEASE SURVEILLANCE 

 

2.1 Abstract 

Accurate data on the incidence of enteric illness is crucial to understanding the extent, 

impact of and risk factors for foodborne disease in Canada. Traditional surveillance methods rely 

on data collected from health practitioners, yet only a fraction of cases seek medical care for 

enteric illnesses. Self-reported enteric illness data are required to better quantify and develop 

interventions to reduce the burden of illness in Canada. Previous studies have been limited by the 

availability and feasibility of data collection tools. Ethica, a smartphone based application used 

to acquire, store, and analyze data on human behaviour has been proposed as a supplement to 

current collection strategies. The purpose of this study was to assess the feasibility of new 

technologies and strategies within the Ethica app for gathering data on the occurrence of 

symptoms consistent with illness and risk factors for foodborne disease in Canada. By way of 

user-triggered and prompted microsurveys, meal descriptions and PhotoFoodDiaries, the 

occurrence of enteric symptoms and food consumption behavior in 96 university students was 

collected over a period of 10 weeks. Approximately 34% of participants reported at least one 

episode of vomiting or nausea during this period using at least one of the reporting features and 

29% reported at least one episode of diarrhea; only 7% sought medical care. During the first 10 

days of the study, food consumption history features on the app were used an average of at least 

2 times per day by 95% of participants for the time-triggered microsurveys and by 51% of 

participants for digital images. Ethica served as an effective tool for collecting data on enteric 

symptoms, typically seen with many foodborne illnesses, as well as uniquely detailed food 

history data. 
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2.2 Introduction 

Foodborne illness is a ubiquitous problem, affecting individuals of all demographic 

groups and across all regions of Canada and the world. Symptoms of foodborne illness range 

from vomiting and diarrhea to severe neurological conditions and can be life threatening 

(Thomas et al., 2013). Severe cases may last for several days to several weeks and often require 

medical attention. Such cases are documented primarily through physician and hospital records 

as well as laboratory test results. National surveillance programs utilize these data sources to 

monitor disease rates, detect outbreaks and plan interventions efforts (Keusch, 2013). Many mild 

cases do not require medical attention and therefore go unreported (Tam et al., 2003). Particular 

subgroups of the Canadian population are less likely to utilize healthcare services and are 

therefore further under-represented by traditional surveillance methods. These subgroups include 

those that identify as Indigenous (Clarke, 2016; O'Neil et al., 1998), immigrant (Clarke, 2016; 

Sanmartin and Ross, 2006) and those living in rural areas (Herikstad et al., 2002). Furthermore, 

one of the primary sources of information on foodborne disease in Canada is based on a sentinel 

site surveillance system with FoodNet sites located in Ontario (Middlesex-London Health Unit), 

British Columbia (Fraser Health Region), and Alberta (Calgary). Traditional surveillance 

strategies are limited in their ability to provide an accurate representation of the risks influencing 

foodborne illness in all regions and populations across Canada.  

The nature of foodborne illness creates inherent barriers to data collection and reporting. 

Lack of specificity with respect to the signs and symptoms of foodborne illness make it difficult 

for health care practitioners to correctly classify the origin of disease without laboratory and 

epidemiologic support. The short duration of many foodborne illnesses further limits the 

timeframe in which a diagnosis can be made. Finally, the limited severity of symptoms may 
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influence an individual’s choice as to whether to seek medical attention or just to wait out the 

illness.  

Discrepancies exist among reports of the prevalence of foodborne illness in Canada – 

ranging from 4 million (Thomas et al., 2013) to 6.8 million per year (Munro et al., 2012). The 

Public Health Agency of Canada (PHAC) estimates that 4 million – 1 in 8 - Canadians suffer 

from domestically acquired foodborne illness every year (Thomas et al., 2013). This estimate is 

based on the assumption that 14% of acute cases (>3 loose stools in 24h with duration lasting >1 

day) and 44% of severe cases (acute diarrheal illness and bloody diarrhea or diarrhea lasting >7 

days) seek medical care. These approximations are based on results from National Studies on 

Acute Gastrointestinal Illness (NSAGI) population surveys completed in 2001–2002, 2002–

2003, and 2005–2006 (Majowicz et al., 2004; Sargeant et al., 2008; Thomas et al., 2006). The 

US Centers for Disease Control (US CDC) and Prevention estimates that 18% of mild cases (>3 

loose stools in 24 hours lasting >1 day) and 35% of severe cases (>3 loose stools in 24 hours 

lasting >1 day and bloody diarrhea) seek medical care (Scallan et al., 2011). These 

approximations are based on findings from the FoodNet Population Surveys in 2000–2001, 

2002–2003 (Jones et al., 2007) and 2006–2007 (Centers for Disease Control and Prevention, 

2006). Based on multiplying factors suggested by the US CDC, the Conference Board of Canada 

estimates that 6.8 million cases of foodborne illness occur in Canada each year (Munro et al., 

2012). The need for estimates and extrapolation bring uncertainty to the extent of the burden of 

illness and make it difficult to measure the progress of interventions aimed to reduce the burden. 

More precise estimates of domestically acquired foodborne illness are essential for developing 

new practices and policies in industry, and for encouraging best food safety practices by 

consumers (Centres for Disease Control and Prevention, 2017). 
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Alternative methods of gathering large amounts of data on outbreaks of enteric illness 

include mining big data from sources such as news reports and social media. Examples of such 

systems include the Global Public Health Intelligence Network that queries relevant public 

health information from online news articles from across the globe (Mawudeku and Blench, 

2006) and HealthMap, which monitors, summarizes, and maps information from Prom-Med-

mail, WHO and various national and international agencies (Bahk et al., 2015). In a review of 

web/based disease surveillance strategies Brownstein et al. (2009) noted that although internet-

based systems provide high quantities of data in a timely manner, these methods suffer from a 

wide range of limitations including misinformation, minimal specificity of signals, information 

overload and a disproportional sensitivity to external forces such as the media.  

Other systems to monitor and analyze big data have also contributed to the detection of 

foodborne illness. The system nEmesis uses an adaptive algorithm to improve its own ability to 

recognize Twitter posts that are of relevance to foodborne illness (Sadilek et al., 2016). New 

York City restaurant reviews on Yelp were used to identify three new restaurant-linked 

outbreaks over a course of none months (Harris et al., 2014). It is unlikely that these outbreaks 

would have been detected by traditional surveillance systems because only 3% of reviews of 

foodborne illness were also reported to local public health authorities.  

An alternative to analysis of data passively reported on other platforms is the creation of 

sites for active reporting of disease information by volunteers. Examples of participatory systems 

that request information on nausea/vomiting and diarrhea include Influezanet, Reporta, and Flu 

Near You (Wójcik et al., 2014). Participatory web-based surveillance systems for infectious 

disease have high degree of sensitivity and timeliness and are independent from health seeking 

behaviors, but may suffer from selection biases due to who choose to participate, difficulty in 
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adjusting for confounders, limited specificity of syndromic definitions, and issues with 

inconsistent participation (Wójcik et al., 2014). Participation in this type of system could be 

limited especially in rural and remote areas by regular access to the internet.  

A practical tool for self-reporting illness is urgently needed to better quantify the burden 

of foodborne illness particularly in groups not captured by the existing systems. The capacity to 

detect illnesses where the case does not seek medical advice, and therefore are not reported to 

public health, would allow for more accurate estimates of the burden of disease and provide a 

basis to measure progress in food safety interventions. By providing volunteers from the general 

public or target groups at-risk with a convenient, user-friendly and efficient method by which to 

report illness, greater rates of participation and compliance might be obtained. The development 

and implementation of such a tool would be an important step in filling gaps in our 

understanding of the extent, impact and risk factors for emerging foodborne illnesses in Canada.  

Limitations also exist in current options for collection of food history data. Current 

strategies involve in-person and telephone interviews or questionnaires administered several days 

to several weeks after the onset of symptoms. The delay period between the onset of symptoms 

and the collection of data will introduce recall bias. These strategies also involve a substantial 

time commitment by the public health practitioner administering the interview as well as the 

affected individuals and those selected as part of a reference or control group. Finally, the limited 

coverage and participation by the general public in traditional surveillance strategies results in 

incomplete estimates of domestically acquired foodborne illness and a limited picture of food 

consumption patterns. 

Several studies have begun to assess the feasibility of innovative tools for data collection. 

As an alternative to in-person and telephone interview strategies, Arab et al. (2011) investigated 
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the feasibility of web-based food surveys. This online data collection technique was found to 

improve dietary recall. The collection of high-resolution images of foods has also been 

implemented to aid the dietary recall (Arab et al., 2011; Kikunaga et al., 2007; Six et al., 2010; 

Wang et al., 2010). These high-resolution images have provided detailed accounts of food intake 

in real-time and with minimal burden on the participants. Arab et al. (2011) described limitations 

of this strategy including difficulty interpreting images and the potential for reporting bias 

associated with under-reporting of less socially desired foods. These studies utilized a variety of 

devices and platforms to carry out the specific objectives of the study.  

Smartphone technology has been proposed as one platform through which to collect 

data on self-reported illness. The Millennial Generation (aged 18-35) represent some of the 

most frequent users of smartphone technology. The wide range of capabilities of smartphones 

including the ability to capture high resolution digital images, record and securely store text 

and audio files, and administer online surveys has proven useful to the investigation of human 

behaviours (Hashemian et al., 2012). The wide range of capabilities of these devices may be 

harnessed to facilitate research of food consumption behaviours. The purpose of this study is 

to assess the feasibility of new technologies and strategies within the Ethica app for gathering 

data on the extent and risk factors for foodborne illness and food consumption patterns in a 

group of university students. Although Ethica had not previously been used to study 

foodborne illness, the application had proven useful in collecting related food consumption 

data (Hashemian et al., 2012). 
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2.3 Methods 

2.3.1 Participant recruitment 

Recruitment was coordinated through the Social Sciences Research Laboratory at the 

University of Saskatchewan, Saskatoon, Saskatchewan who advertised the study to their pool of 

research volunteers. Announcements regarding information on the study were also made in 

classrooms across the University of Saskatchewan as well as distributed on the campus-wide 

Personalized Access to Web Services (PAWS) platform. All interested participants with access 

to an Android phone version 4.0 or greater were included in the study. A briefing session was 

held to inform potential participants of the purpose of the study and data collection process the 

week before the study began. Participants were instructed on how to download the Ethica app 

from the Google Play store and how to use the various data collection features. The weekend 

following the orientation session was provided as a test period so participants could become 

familiar with the process of recording images, text and audio files through the application.  

Ethica (www.ethicadata.com) is a smartphone application used to acquire, store, and 

analyze data. Developed by Drs. Nathaniel Osgood, Kevin Stanley, Mohammad Hashemian 

and colleagues at the University of Saskatchewan, this application provides a user friendly 

interface through which to collect real-time data on human behaviour (Hashemian et al., 

2012). Participants were given the option to pause or discontinue data collection at any time 

during the study and were shown how to delete or discontinue responses they did not wish to 

submit.  

Upon completion of the study, each participant received compensation of up to $100 

CAD depending on the proportion of the study they completed. Informed consent was obtained 

from each participant at the time of enrollment. The protocol was approval by the University of 

Saskatchewan Behavioural Ethics Review Committee (BEH #15-187). 

../AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/FZPP3QNX/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/wlm350/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/seitzingerp/Downloads/www.ethicadata.com
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Three cohorts of participants were recruited to the study. Seventeen students were 

initially recruited to participate in a pilot study from September 14 to November 29, 2015. The 

initial pilot study was followed by a larger group which was divided into two staggered cohorts 

for ease of enrollment and management. The first cohort consisted of 40 participants that 

completed the study between January 15 and March 27, 2016. The second cohort consisted of 39 

participants that completed data collection between January 22 and April 4, 2016. 

 

2.3.2 Data Collection Protocol 

For each cohort, the 10-week study began on a Monday with a demographic survey and a 

10-day period of intensive data collection (Figure 2.1).  

 
Figure 2.1: Timeline of data collection for the 70-day study period. P1 and P2 were practice 

microsurveys. M1 represents Microsurvey Type 1 and M2 represents Microsurvey Type 2. 

Microsurveys administered on days 1, 2, 3 and day 10 assessed food exposures for one day. The 

remainder of the microsurveys assessed specific food exposures of interest from the 2 previous 

days. Days 2 through 8 were a period of intensive focus for a concurrent survey on food 

exposure recall bias. Diamonds () indicate the target for food intake data collection.  

On the first day of the study a link to an online survey (Qualtrics Survey Software, 

Washington, DC) was emailed to participants to collect basic demographic information from 

participants. A link to a second follow up online survey requesting additional background 
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information on study participants was sent after day 10 of the study. Questions assessing enteric 

illnesses within the past week were administered together with Food Safety Surveys 2 and 4 

(Figure 2.1). 

 

2.3.2.1 User-triggered illness surveys  

Throughout the study participants were asked to report anytime they felt ill by pressing a 

button on the app labeled “I’m feeling sick”. This button was accessible any time that the app 

was open. These surveys allowed participants to select from a list of symptoms that might be 

associated with their illness such as diarrhea, vomiting, abdominal pain and cramps, nausea, 

fever and other. Note that participants were simply asked to self-report the occurrence of these 

symptoms – details on frequency, duration, and severity were not requested. This user-triggered 

interface also contained the questions “Did you consult a health-care professional regarding this 

illness?” and “Did you suspect your illness might be related to consumption of alcoholic 

beverages?”  

 

2.3.2.2 User-triggered self-reported eating behavior 

Also throughout the study participants were asked to report when they were eating and 

the source of the food using a button followed by a multiple choice question. Participants were 

asked if they were eating food prepared at home, eating at a restaurant, eating ready-to-eat food 

purchased off campus, and each food purchased on campus.  

The self-report screen contained an option to take pictures of each meal or snack using 

the PhotoFoodDiary feature. Each image was digitally stamped with the time and geographical 

coordinates at which the picture was taken. All participants had the option to record a voice 

description of the meal or snack that was stored in the app database as an audio file. Based on 
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feedback from the pilot study, participants in the latter two cohorts were also given the option to 

accompany images with a written description in a text box directly under the image. This option 

enabled participants to provide relevant information on ingredients and other pertinent details 

that might not have been conveyed through pictures alone.  

 

2.3.2.3 Initial 10-Day Period Focusing on Food Consumption  

The Ethica Survey Tool allowed researchers to automatically administer surveys at 

predetermined times. Microsurveys were administered each day over the course of the initial 10 

days of the study. Each microsurvey consisted of up to four multiple answer questions that 

assessed food exposures that may have taken place on the previous day or the day before the 

previous. To minimize the burden on participants, a limited number of foods were targeted with 

this data collection option. Foods identified as relevant to foodborne illness were given 

precedence. Participants were given a timeframe of four hours to complete each microsurvey to 

encourage prompt responses and minimize recall bias. Practice microsurveys were administered 

on day one (P1) and day two (P2) to give participants a chance to practice filling out surveys 

within the Ethica Survey feature of the application app before the start of the surveys focusing on 

food exposures for the 1-week period of greatest interest from day 2 to 8 (Figure 2.1).  

Microsurvey 1 (MS 1) was administered on days 3, 5, 7 and 9 of the study (Figure 2.1). 

The survey consisted of three parts, each pertaining to a different group of foods released at 

08:00, 12:45 and 18:30. This survey included questions such as ‘On Friday or Saturday, Did you 

eat any servings of fresh fruit? Please check all that apply.’ Other food groups assessed on 

Microsurvey 1 included nutrition bars, snacks, nuts, salads, sprouts and fish (see Appendix 1).  

Microsurvey 2 (MS 2) was administered on days 4, 6, 8 and 10 of the study (Figure 2.1). 

Again, the survey consisted of three parts which were administered at 08:00, 12:45 and 18:30 
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each day. Microsurvey 2 assessed exposures to nutritional supplements, cereals, eggs and dairy 

products, cheese, nut butters, noodle mixes, tofu, poultry and vegetables (see Appendix 1).  

 

2.3.2.4 Data Collection from Day 11 to Day 70  

Participants were encouraged to continue tracking illnesses and eating behavior and food 

exposures through the PhotoFoodDiary feature of the app for the duration of the study. The 

second portion of the study differed from the first in that microsurveys were no longer 

administered to prompt recall of previous food exposures. Rather, five different food safety and 

eating behavior and preference surveys were introduced and were administered every 4 days on a 

rotating schedule. Food safety surveys were always administered at 18:30 and consisted of three 

to four multiple choice questions that assessed the participant’s food preferences and knowledge 

about food safety and proper food handling processes.  

Food safety survey 1 was administered on days 14, 34 and 54 of the study (Figure 2.1) 

and asked participants to self-report whether they had eaten in a restaurant or eaten take-out or 

ready to eat food. If ready to eat foods were purchased, participants were asked if were the food 

was stored at room temperature for more than 1 hour before eating. Participants were also asked 

if left overs taken home from a restaurant to eat later. See Appendix 3 for complete list of 

questions for food safety survey 1. 

Food safety survey 2 was administered on days 18, 38, and 58 of the study (Figure 2.1) 

and assessed preferences such as organic, local, antibiotic-free and steroid/hormone free 

(Appendix 4). Food Safety Survey 3 was administered on days 22, 42 and 62 of the study and 

contained question such as “Are organic foods safer than foods from conventional production 

system?” and “Are locally grown foods safer…?” (Appendix 5).  



 

30 

 

Food safety survey 4 was administered on days 26, 46 and 66 of the study (Figure 2.1) 

and contained true or false questions such as `Washing the kitchen sponge with soap will get rid 

of all the bacteria” (Appendix 6). Food safety survey 5 was administered on days 30, 50 and 70 

of the study (Figure 2.1) and contained additional true of false questions such as: “It is important 

to use a thermometer to check the temperature of meat before serving, but you don’t need a 

thermometer for precooked leftovers” (Appendix 7). 

 To cross-validate a portion of the data that was collected from user-triggered illness 

surveys, additional illness surveys were administered at six predetermined times throughout the 

study period. Time-triggered enteric illness questions were administered at on days 18, 26, 38, 

46, 58, and 66 of the study (Figure 2.1). These questionnaires asked questions such as “Did you 

feel nauseous or vomit in the last week?” and “Did you have diarrhea in the last week?” as well 

as assessing if medical care was sought for the illness and whether or not the user suspected that 

the illness might have been alcohol related. The enteric illness questions on the six microsurveys 

requested information for 42 of the 70 total study days (Figure 2.1). 

 

2.3.2.5 Study Conclusion and Debriefing and Focus Groups  

Debriefing sessions were held at the end of the study to answer any participant questions, 

assist in removal of the app and data from phones as necessary and to pay participant incentives. 

Focus groups were also held at the end of the study to collect qualitative data on the user-

friendliness and feasibility of the Ethica app with a subset of participants. Participants were 

recruited for focus groups through announcements directed to study participants by the Social 

Sciences Research Laboratory at the University of Saskatchewan. Focus groups were held on 

March 28, 2016 (n=15) and April 5, 2016 (n=13). Informed consent was given by all focus group 
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participants. Questions centered on challenges to compliance and the potential utility of the tool 

for monitoring enteric illness. Focus group discussions were recorded using audio recorder and 

manually transcribed to text by trained research assistants. Additional compensation was 

provided to participants in the form of $25 CAD for taking part in focus groups. Faculty 

investigators involved in developing the research project and app did not attend the focus groups 

to encourage open discussion. Rather the groups were facilitated by trained staff from the Social 

Sciences Research Laboratory and a faculty member experienced with qualitative research. 

 

2.3.3 Data Extraction/Management 

Data were encrypted and stored on the phones until a network connection became 

available. Once a Wi-Fi connection was available the encrypted data were transmitted to secure 

servers at the University of Saskatchewan (Figure 2.2).  

At the end of the study, data were downloaded by researchers from the secure Ethica 

website as CSV files and transformed as necessary for further analysis in Microsoft Excel. 

 

2.3.3.1 Enteric illness data – user triggered and time-triggered 

All individual symptoms of enteric illness reported on the app and combinations of the 

symptoms consistent with enteric illness were summarized. However in this study, enteric illness 

was operationally defined as experiencing an episode of vomiting or nausea or diarrhea where 

symptoms were not associated with the consumption of alcohol to allow comparison of the self-

reported data to that collected later in the study from prompted microsurveys. Any false positives 

in which the survey was triggered but not completed were removed. Any illnesses that were 

related to the consumption of alcohol were excluded from the analysis.  
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2.3.3.2 User-triggered self-reported food histories 

Digital images collected between day two and day eight of the study were manually 

analyzed for relevance (i.e. the presence of clearly visible foods). Images in which foods were 

missing, partially eaten or unrecognizable were flagged. The remaining images were considered 

to have complete data and to be relevant to the analysis of food consumption. Audio files were 

manually transcribed to text. Term extraction was conducted for text descriptions and transcribed 

audio files (Figure 2). 

 

 

Figure 2.2:  Overview of information flow and data extraction. 
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2.3.4 Data Analysis 

2.3.4.1 Enteric illness data 

The relative frequency of participants that reported each recorded symptom was 

summarized for the entire study period based on data provided by the user-triggered surveys. The 

data were then summarized based on important combinations of symptoms and whether or not 

cases were reported to health care practitioners. 

Data on user-triggered illness surveys were then compared to the data collected from 

prompted time-triggered illness surveys. The relative frequency of participants that reported 

nausea or vomiting as well as those that reported diarrhea was assessed specifically for the 42-

day period covered by the time-triggered questions. Similarly, the user-triggered enteric illness 

data was summarized specifically for each 1-week observation period where the time-triggered 

survey data were also available together with the number of individuals who reported seeking 

medical care.  

Exact McNemar chi square tests for paired data were used to determine whether there 

was a significant difference in the odds of reporting any enteric illness, diarrhea, or vomiting or 

nausea between the user-triggered and timed-survey options. Kappa statistics were also used to 

summarize the agreement in reporting between the two options. All statistical analyses were 

completed with a commercial software program (Stata/SE 14.1 for Windows, StataCorp LP, 

College Station, TX). 

To optimize the sensitivity of reported enteric symptoms, the data from the user-triggered 

surveys was combined with that from the time-triggered surveys and summarized for diarrhea, 

nausea or vomiting, and for enteric illness defined by reporting any of the three symptoms.  

Because illness was not a rare outcome in this study, a Poisson model with a robust 

variance estimate rather than logistic regression was used to estimate the relative risk of enteric 
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illness for women as compared to men, those under 25 years of age compared to those greater 

than 25, and undergraduate students as compared to graduate students. 

 

2.3.4.2 Food history data 

The percentage of participants that took part in each data collection method – pictures, 

food descriptions and microsurveys – was summarized. In regards to capturing digital images of 

meals, compliance was defined as the number of images reported by the participant divided by 

the total number of images that were expected during that time period (i.e. an estimated three 

meals per day multiplied by the number of days). Excellent compliance was defined as capturing 

three images per day (breakfast, lunch and dinner) for each day of the study. The percentage of 

participants that collected an average of 1, 2 and 3 images per day was computed for the initial 

10 days of the study as well as for the full 70-day study period. 

Compliance for the reporting of food descriptions were calculated in a similar manner for 

participants in the second and third cohorts. Excellent compliance for the collection of food 

descriptions was defined as three descriptions per day (i.e. breakfast lunch and dinner). The 

number of descriptions collected were divided by the expected number of responses for the 10-

day and 70-day study periods. The percentage of participants that reported an average of 1, 2, 

and 3 food meal description per day was determined for each respective time period.  

Compliance on microsurveys was calculated for the initial ten days of the study. Again, 

excellent compliance was defined as having completed all microsurveys that were administered 

during this time period (i.e. one microsurvey per day, each consisting of three segments). The 

percentage of participants that completed an average of one segment per day (33.3% compliant) 
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was computed along with an average of 2 per day (66.7% compliant) and an average of three per 

day (100% compliant).  

In the context of this study, good compliance was defined for each respective data 

collection method as having completed at least two thirds of required tasks – having submitted at 

least two images per day, two written meal descriptions per day, or as having completed at least 

two of the three microsurveys that were administered each day. This value was selected as not all 

students would be expected to eat three meals per day. Adequate compliance was defined as 

having completed one third of the required tasks. Linear regression was used to assess whether 

compliance, measured as a percentage, varied based on gender, age, student status, or history of 

illness during the study. 

Finally, compliance was calculated for surveys administered between day 11 and day 70 

of the study. These included five food safety questionnaires. Excellent compliance was defined 

as having completed all 15 surveys (five food safety questionnaires, each administered three 

times). The percentage of participants that filled out each survey at least once (33.3% compliant) 

was calculated along with the percentage that completed each survey at least twice (66.6% 

compliant) and the percentage that completed all 15 surveys (100% compliant).  

Thematic analysis was conducted on data gathered from focus groups pertaining to the 

advantages, disadvantages and recommendations for improvement of the data collection 

strategies and the Ethica app. Databases were created and managed using Microsoft Access 2016 

and Microsoft Excel 2016.  
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2.4 Results 

2.4.1 Study Population 

A total of 96 individuals participated in the study. There was a high proportion of both 

women as well as newcomers to Canada (Table 2.1). The initial online demographic survey was 

completed by 95.8% (92/96) of the study participants and a second follow up online survey after 

day 10 was completed by 91.7% (88/96) of participants. 

Table 2.1: Demographic and other background characteristics of the study population 

 

Participant attributes Relative frequency 

Gender identified as female (%) 67.8% (61/90) 

Age less than 25 years (%) 50.0% (46/92) 

Undergraduate students (%) 44.6% (41/92) 

Recently moved from rural area to the city (%)  8.0% (7/88) 

Newcomer to Canada (%) 39.8% (33/88)  

Had used a food diary before (%) 26.1% (24/92) 

Reported being very concerned about privacy (%) 6.5% (6/92) 

Had access to facilities to prepare meals and lives 

independently (%) 

59.1% (52/88) 

 

2.4.2 User-triggered Enteric Illness Data  

 Episodes of vomiting, not related to alcohol consumption, were reported by 6.3% (6/96) 

of study participants and diarrhea was reported by 30.2% (29/96) of study participants with the 

user-triggered reporting feature on the app during the 70-day study period. Only 2.1% (2/96) of 

the individuals reported either vomiting or diarrhea to a health care professional (Table 2.2). 
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Table 2.2: The number of participants who reported illness through user-triggered surveys during 

the 70-day study period (n=96). 
 List of symptoms provided to participants 

 
Vomiting Diarrhea 

Abdominal pain 

and cramps 
Nausea Fever Other 

Reports of illness 6 (6.3%) 29 (30.2%) 32 (33.3%) 32 (33.3%) 15 (15.6%) 43 (44.8%) 

Sought medical care 

 

2 (2.1%) 2 (2.1%) 1 (1.0%) 1 (1.0%) 2 (2.1%) 5 (5.2%) 

 

 

During the 70-day study period, 46 (47.9%) of participants reported diarrhea, vomiting or 

nausea; 33 (34.4%) reported vomiting or diarrhea; and 33 (34.4%) reported vomiting or nausea 

through user-triggered illness surveys. Abdominal pain and nausea were more commonly 

reported than diarrhea or vomiting. Only 3 (3.2%) of the study participants who reported 

diarrhea, vomiting or nausea indicated that they sought medical care for their condition during 

the 70-day study period using the user-reporting feature of the app. There was no obvious time 

trend in the reporting of symptoms with user-triggered option during the study period (data not 

shown). 

 

2.4.3 Time-triggered Enteric Illness Data 

Twenty participants (20.8%) reported experiencing vomiting or nausea through the time-

based enteric illness questions with the number for each of the weeks examined being relatively 

consistent over the course of the study. Similarly, the responses from the 20 participants (20.8%) 

reporting diarrhea were fairly uniformly distributed across the 6 weeks where specific questions 

were sent to participants’ phones (Table 2.3).  
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Table 2.3: Number of participants who reported illness during the 42 days of the 70-day study 

period where time-triggered surveys requested illness data – a comparison of responses using the 

time-triggered and user-triggered options. 

 Time-triggered survey User-triggered survey 

Time period Vomiting or nausea Diarrhea Vomiting or nausea Diarrhea 

Days 11-18 4 (4.2%) 6 (6.3%) 4 (4.2%) 3 (3.1%) 

Days 19-26 6 (6.3%) 6 (6.3%) 4 (4.2%) 0 (0.0%) 

Days 31-38 3 (3.1%) 3 (3.1%) 6 (6.3%) 6 (6.3%) 

Days 39-46 5 (5.2%) 9 (9.4%) 5 (5.2%) 2 (2.1%) 

Days 51-58 3 (3.1%) 8 (8.3%) 4 (4.2%) 2 (2.1%) 

Days 59-66 5 (5.2%) 6 (6.3%) 6 (6.3%) 1 (1.0%) 

At least one report 

during the 42-day 

portion of the 

observation period 

20 (20.8%) 20 (20.8%) 23 (24.0%) 11 (11.5%) 

 

Participants were not significantly more likely to report diarrhea (p=0.08), vomiting or 

nausea (p=0.66) (Table 2.3), any enteric illnesses (p=0.71) or seeking medical care (p=0.13) 

(Table 2.4) using the time-triggered prompted surveys than the self-reported surveys. The 

individual agreement in reported illness history based on user- and time-triggered surveys, 

however, was only fair to poor (based on the categorization suggested by Dohoo et al. (2012)) 

for:  diarrhea (=0.21), vomiting or nausea (=0.37), any enteric illnesses (=0.29) or sought 

medical care (<0.01). 
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Table 2.4: Number of participants who reported vomiting, nausea or diarrhea (not-associated 

with alcohol) through user-triggered or time-triggered surveys and those who sought medical 

care during the 42 days of the 70-day study period where time-triggered surveys requested illness 

data. 
 

 Time-triggered surveys User-triggered surveys 

Time Period Enteric illness Sought medical care Enteric illness Sought medical care 

Days 11-18 9 (9.4%) 1 (1.0%) 6 (6.3%) 0 (0.0%) 

Days 19-26 12 (12.5%) 0 (0.0%) 4 (4.2%) 0 (0.0%) 

Days 31-38 5 (5.2%) 2 (2.1%) 9 (9.4%) 0 (0.0%) 

Days 39-46 9 (9.4%) 2 (2.1%) 6 (6.3%) 0 (0.0%) 

Days 51-58 10 (10.4%) 1 (1.0%) 5 (5.2%) 0 (0.0%) 

Days 59-66 8 (8.3%) 0 (0.0%) 6 (6.3%) 0 (0.0%) 

At least one report 

during the 42-day 

portion of the 

observation period 31 (32.3%) 4 (4.2%) 28 (29.2%) 0 (0.0%) 

 

When the self-reported illness data were combined from both the user-triggered and time-

triggered sources, 34.4% (33/96) reported nausea or vomiting, 29.2% (28/96) reported diarrhea, 

and 55.2% (53/96) reported at least one of nausea, vomiting or diarrhea during the 10-week 

study period. Four individuals sought medical care for their illnesses during the 42-day period. 

Three individuals sought care for symptoms that occurred beyond the 42-day observational 

study. In total, 7 individuals (7.3%) sought medical care for the occurrence of nausea or 

vomiting. 

Undergraduate students were 1.8 times (95%CI 1.1 to 2.7, p=0.01) more likely than 

graduate students to report enteric illness using either the user-triggered or time-triggered 

features of the app during the 70-day study period. After accounting for student status, there was 

no significant association between age (less than 25 years: RR 0.89, 95%CI 0.59 to 1.3, p=0.56) 

or identified gender (men compared to women: RR 1.2, 95%CI 0.61 to 2.2, p=0.65). 
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2.4.4 Food History Data 

Participant compliance varied among the different data collection methods (Table 2.5). 

Only 115 audio descriptions were collected over the entire 70-day study period. These audio 

recordings were submitted by 11.5% (11/96) of participants who were given this option. None 

(0/96) of participants met the criteria for adequate compliance in recording food histories 

through audio recordings. Seven of the 11 participants saved an audio file < 10 times. 

The highest participation was observed in food microsurveys (Table 2.5); during the 

initial 10 days of the study, 95% of participants submitted at least two microsurveys per day. 

Slightly lower compliance was observed for the PhotoFoodDiary option in which 51% of 

participants took an average of at least two photos per day for the first 10 days of the study. In 

contrast, only 21% of participants with access to this feature completed an average of at least two 

written meal description per day during the first ten days of the study.  

When compared to the initial 10 days of the study, compliance in capturing digital 

images and meal descriptions over the entire 70-day study period was much lower (Table 2.5). 

The percentages of participants who collected an average of at least two digital images per day 

was 15%, and 13% reported at least two meal descriptions per day. Note that food microsurveys 

were not administered after day 10. Instead, food safety surveys were administered every four 

days for the remainder of the study. Of the 96 participants, 93 (96.9%) completed each of the 

five different surveys at least once of the three times the surveys were distributed.  

A more detailed comparison of the compliance with data collection methods across the 

initial 10-day period versus the full 70-day study period is shown in Table 2.5. Compliance in 

taking pictures of meals during the first 10 days, taking pictures through the entire study, and 

completing microsurveys did not significantly differ between males and females, based on age, 
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undergraduate and graduate students, or those who reported gastrointestinal symptoms during the 

study and those who did not (p>0.05). 

Table 2.5: Compliance with three data collection strategies for food consumption data (digital 

images, meal descriptions and microsurveys). 

  Initial 10 days 
Full 70 day  

study period 

Digital Images 

(n=96) 

 

Average/participant/day (SD) 

Average ≥ 1 per day  

Average ≥ 2 per day  

Average ≥ 3 per day 

2.3 (1.4) 

85.4% (82) 

51.0% (49) 

26.0% (25) 

1.2 (1.0) 

44.8% (43) 

14.6% (14) 

6.3% (6) 

Written Meal 

Descriptions 

(n=79) 

 

Average/participant/day 

Average ≥ 1 per day  

Average ≥ 2 per day  

Average ≥ 3 per day 

1.5 (1.1) 

56.3% (54) 

20.8% (20) 

7.3% (7) 

1.0 (1.0) 

32.3% (31) 

12.5% (12) 

3.1% (3) 

Microsurveys 

(n=96) 

 

Average/participant/day 

Average ≥ 1 per  

Average ≥ 2 per day 

Average = 3 per day 

2.7 (0.4) 

100% (96) 

94.8% (91) 

28.1% (27) 

Not administered 

after day 10 

 

   

2.4.5 Food Safety Knowledge and Food Preference Data 

The Ethica app also provided a tool to poll participant’s food safety knowledge; the 

number of participants who responded to each survey is shown in Table 2.6, followed by the 

number of correct responses in Table 2.7 and finally food preferences in Table 2.8.  

Table 2.6: Number of responses to food safety knowledge questions administered at three 

different points in time (n=96). 

 Responded 

0/3 times 

Responded  

1/3 times 

Responded  

2/3 times 

Responded  

3/3 times 

Food Safety Survey 1 
2 (2.1%) 10 (10.4%) 42 (43.8%) 42 (43.8%) 

Food Safety Survey 2 
4 (4.2%) 10 (10.4%) 18.8 (10.4%) 64 (66.7%) 

Food Safety Survey 3 
3 (3.1%) 8 (8.3%) 22 (22.9%) 63 (65.6%) 

Food Safety Survey 4 
7 (7.3%) 4 (4.2%) 22 (22.9%) 63 (65.6%) 

Food Safety Survey 5 
5 (5.2%) 9 (9.4%) 23 (24.0%) 59 (61.5%) 
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Table 2.7: Number of correct responses to food safety knowledge questions administered at three 

different points in time (n=96). 

 

Correct 

3/3 

times 

Correct 

2/3 

times 

Correct 

1/3 

times 

Correct 

0/3 

times 

# Participants 

that 

responded  

3 times (n) 

Washing a kitchen sponge with 

soap will get rid of all the 

bacteria. (False) 

47 

(74.6%) 

10 

(15.9%) 

2  

(3.2%) 

4  

(6.3%) 

63 

 

Raw meat should be washed in 

the sink before cooking.  

(False – due to risk of cross  

contamination) 

26 

(41.3%) 

5  

(7.9%) 

6  

(9.5%) 

26  

(41.3%) 
63 

Food should be allowed to sit on 

the counter before putting it in the 

fridge for storage.  

(False) 

39  

(61.9%) 

6  

(9.5%) 

6  

(9.5%) 

12  

(19.0%) 
63  

Prebagged 'ready to eat' greens 

should not be washed again 

before eating.  

(True – due to risk of cross 

contamination) 

2  

(3.4%) 

12  

(20.3%) 

11  

(18.6%) 

34  

(57.6%) 
59 

Hamburgers should be cooked 

until they are 'piping hot' and 

there is no visible pink left.  

(False – the temperature should 

be checked with a thermometer) 

2  

(3.4%) 

8  

(13.6%) 

6  

(10.2%) 

43  

(72.9%) 
59 

It is important to use a 

thermometer to check the 

temperature of meat before 

serving but you don't need a 

thermometer for precooked 

leftovers. 

(False) 

14  

(23.7%) 

11  

(18.6%) 

8  

(13.6%) 

26 

(44.1%) 
59  

 

The relative frequency of correct responses to a series of six questions about food safety 

knowledge are summarized in Table 2.7 for those who answered each question all three times it 

was asked. Note that individuals in columns labelled `Correct 2/3 times` and `Correct 1/3 times` 

changed their responses when asked the same question again at a later date. 
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When prompted to compare the safety of organic foods with foods from commercial 

production systems 14.6% (14/96) always indicated that they thought there was no difference. 

Conversely, 13.5% (13/96) always said that organic foods were the safer choice. It is notable that 

17.7% (17/96) changed their responses between the times when the question was administered. 

Similarly, when prompted to compare the safety of local foods with foods from commercial 

production systems 11.5% (11/96) always indicated no difference. On the other hand, 20.8% 

(20/96) always said that local foods were the safer choice. Notably, 15.6% (15/96) changed their 

responses when asked at a later date.  

The responses to a number of food preference questions indicate that on the three days 

which the surveys were administered, 38% ate at a restaurant (Table 2.8). Furthermore, 

approximately 17% of participants were conscientious of eating organic foods, 31% of 

participants reported having eaten locally grown foods and 31% reported eating and hormone-

/steroid-free foods on the days on which the surveys were completed (Table 2.8). 

When prompted 5.7% of participants indicated that they were vegetarian or vegan and 

9.1% of participants in this study indicated that halal or kosher diets influenced their food 

choices.
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Table 2.8: Number of ‘Yes’ responses to questions about food preferences administered on the 

different occasions throughout the study period (n=96). 

 
Yes  

3/3 times 

Yes  

2/3 times 

Yes  

1/3 times 

Yes  

0/3 times 

# Participants 

that 

responded  

3 times (n) 

Did you eat organic food 

today? 

2 

(3.1%) 

3 

(4.6%) 

6 

(9.2%) 

54 

(83.1%) 

65 

Did you eat food identified as 

being locally grown today? 

0 

(0.0%) 

7 

(10.8%) 

13 

(20.0%) 

45 

(69.2%) 

65 

Did you eat food identified as 

being raised without 

steroids/hormones today? 

3 

(4.7%) 

6 

(9.4%) 

11 

(17.2%) 

44 

(68.8%) 

64 

Did you eat food identified as 

being raised without 

antibiotics today? 

2 

(3.1%) 

3 

(4.6%) 

11  

(16.9%) 

49 

(75.4%) 

65 

Did you eat in a restaurant 

today? 

2 

(4.8%) 

5 

(11.9%) 

9 

(21.4%) 

26 

(61.9%) 

42 

Did you eat take out / ready 

to eat food today? 

2 

(4.8%) 

10 

(23.8%) 

17 

(40.5%) 

13 

(31.0) 

42 

Do you eat purchased ready 

to eat foods and store them at 

room temperature for more 

than 1 hour before eating? 

0 

(0.0%) 

6 

(14.3%) 

10 

(23.8%) 

26 

(61.9%) 

42 

Do you take leftovers home 

from restaurants to eat later? 

3 

(7.10%) 

12 

(28.6%) 

12 

(28.6%) 

15 

(35.7%) 

42 

 

2.4.6 Focus Groups 

A total of 28 study participants took part in focus group discussions. Key themes 

obtained pertaining to the advantages, disadvantages and suggestions for improvement of each 

data collection strategy that were obtained from the two focus groups are shown in Table 2.9. 
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Table 2.9: Themes obtained from focus group discussions pertaining to the advantages, 

limitations and suggested changes for three data collection methods - digital-images, food 

descriptions and microsurvey responses (n=28). 

 
 Advantages Limitations Suggestions for improvement 

Digital Images -Efficiency 

 

  

-Difficulty remembering to 

complete task 

-Snack foods often missed 

-Limited use for wrapped foods  

-Push notifications  

-Include images of grocery 

receipts 

-Option to upload images at 

later time 

Text 

Descriptions 

-High level of detail  -Time consuming 

-Requires manual data input 

-Enable retrospective 

reporting  

(Backlogging) 

Audio 

Recordings  

-Efficiency 

-Minimal burden on 

user 

-Recording voice made some users 

feel self-conscious/uneasy 

-Incorporate dictation 

capabilities into the 

PhotoFoodDiary feature 

Food 

Microsurveys 

-Comprehensive 

-Prompts increased 

compliance 

-Not all foods assessed 

-Does not require ongoing attention 

-Take dietary restrictions into 

account to provide tailored 

sets of questions 

Illness 

Surveys 

-Timely 

-Easy to access 

-Increased false positives due to 

accidentally triggering survey 

-Follow up illness survey with 

48 hour food history 

questionnaire 

Overall -Relatively small 

burden on user 

-Increased food safety 

awareness 

-Requires time to become familiar 

with new technology 

-Link to existing  fitness, 

financial and food tracking 

applications 

 

The technology was described as “easy to use” (male participant of focus group 2) and 

“pretty straightforward” (female participant, focus group 2). General themes of focus group 

discussions centered around convenience of the application in tracking what a person eats with 

minimal disruption to everyday routines. Participants were not bothered by the idea of 

continuous data collection under the conditions that informed consent had been given and the 
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purpose of the study had been disclosed. Several potential applications of the smartphone 

technology were brought up during focus group discussions. Such detailed food history reports 

would be an asset to individuals seeking to identify specific food allergies. A common thread 

through discussions was the potential of the data to identify vulnerable populations, high risk 

food consumption behaviours and foodborne illness hotspots. 

 

2.5 Discussion 

While the underreporting of foodborne illness is widely acknowledged, the extent and 

implications of underreporting due to cases that do not seek medical care are not as well agreed 

upon. This study is unique in that by tracking allowing participants to easily self-report 

symptoms across a 70-day period, it allowed for a more sensitive method of surveillance in a 

targeted population. The occurrence of enteric illness described here using the user-triggered 

recording option appeared to be higher than previous estimates of foodborne illness reported as 

12.5% - 1 in 8 per year (Thomas et al., 2013). In this study, 34% of participants reported having 

experienced an episode of vomiting or nausea and 29% reported an episode of diarrhea that was 

not believed to be caused by alcohol consumption in a 10-week period. However, it is important 

to recognize that the case definition for acute diarrheal illness in the previously reported study 

was ≥ 3 loose stools in 24 h with duration lasting > 1 day (Thomas et al., 2013). In the present 

feasibility study, participants were simply asked to report the occurrence of symptoms; 

information on frequency within a day, duration, or severity was not requested. In future studies 

the app questions could be made more specific such that information was requested on vomiting 

or diarrhea with 3 or more episodes in 24 hours. 

Only 7% of individuals who described enteric symptoms on the user-triggered or time-

triggered feature reported their symptoms to a health practitioner. The percentage of acute cases 
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of foodborne illness that seek medical care obtained from retrospective studies  – 14% (Thomas 

et al., 2013), 18% (Scallan et al., 2011) and 22% (Sargeant et al., 2008) were higher, but might 

also be impacted by the definition of enteric illness in these studies and the relative severity to 

that in the current study. Discrepancies in estimates of under-reporting may be attributed to 

differences in the sensitivities of methods used to detect cases. More sensitive methods are able 

to capture mild cases of foodborne illness that would be missed by other traditional surveillance 

strategies. Mild cases are less likely to seek medical attention when compared to severe cases 

(Scallan et al., 2006). Therefore, as the proportion of mild cases to severe cases increases, the 

percentage of cases that seek medical care will drop accordingly.  

Prompting users to complete microsurveys describing symptoms in the previous week 

may potentially increase the sensitivity of the data collection methods, although the differences 

observed in this study were not significant. These findings provide evidence regarding the extent 

of underreporting of enteric illness in a group of university students and the potential for 

innovative strategies to address this issue.  

The complexity of human behavior in regards to schedule, food preferences and risk-

benefit perceptions make it unlikely that any single data collection method will provide an 

accurate account of food history. Instead, tradeoffs must be made to reach a balance between 

feasibility and level of detail that can be obtained. While some studies have attempted to create 

passive methods of tracking food intake (Arab et al., 2011) a certain level of disruption to 

everyday activities is unavoidable. Data obtained from food descriptions was rich in detail and 

provided information on ingredients that were not evident in digital images. During the initial ten 

days of the study, participants recorded an average of 1.5 meal descriptions per day. As the study 

continued, compliance dropped, resulting in an overall rate of approximately 1.0 meal 
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descriptions per participant per day for the full 70-day study period. The time and effort required 

to manually input food descriptions is believed to have played an important role in the observed 

drop in compliance. During focus group discussions, ease and efficiency were described as a key 

advantages of the option to describe foods through audio recordings. However, only a small 

number of participants chose to report audio descriptions rather than written descriptions of 

meals. A recurring disadvantage that participants associated with this data collection method was 

self-consciousness and a feeling of unease brought about by recording one’s own voice.  

In focus group discussions, participants perceived stated efficiency as an important 

advantage for the image capture technique. However, as a consequence of the minimal effort and 

time required by the user, a degree of ambiguity was introduced into the analysis of the images. 

Similar to challenges faced in other studies (Arab et al., 2011), there was uncertainty in the 

identification of foods and whether the user actually consumed all foods seen in the image. In 

some cases, images were not suitable for analysis because the foods had been partially eaten or 

the images were too blurry to interpret. Participants highlighted situations in which it was not 

socially acceptable to use a smartphone device or to take pictures of the meal that was being 

served (i.e. at restaurants, dinner parties). As the novelty of the task diminished, burn-out and 

forgetfulness on the part of the participants began to negatively impact compliance. These factors 

are important consideration when planning the length and intensity of surveillance initiatives. 

Food microsurveys were found to have the highest rate of compliance for the initial 10-

days of the study, averaging 2.7 survey responses per participant per day. This comparatively 

high rate of compliance is believed to be partly due to the prompts sent by the application system 

to indicate to users. The short (1-4 question) design of the surveys, consisting of straightforward, 

closed-ended multiple choice questions, minimized the time and effort burden placed on 
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participants. The limitation of such surveys is the loss of data on foods not assessed by the 

survey questions. In summary, aspects of the food history data collection system that increase 

compliance include automated reminders, easy access, and most importantly, minimal time and 

effort requirements. The most relevant pitfall of the user-triggered food history data collection 

strategies was reliance on the memory of participants. A potential solution for this moving 

forward is the evolving capability of the Ethica app to issue location or context specific prompts 

for users who are willing to share location data in addition to time-triggered messages. 

When asked the same questions on food safety knowledge surveys at three different 

points in time, between 17 and 39% of respondents changed their response between surveys. 

This finding illustrates the flexibility of the app for obtaining different types of information and 

room for improvement in regards to food safety knowledge among the millennial generation. The 

simple strategy of repeated assessments proved effective in eliciting improvements in many of 

the study participants. During focus group discussions, participants emphasized the benefit that 

providing references for further information on food safety could have on behaviours, further 

illustrating a strong interest and willingness to learn more about food safety. 

Looking forward, this technology has the potential to fill gaps in existing surveillance 

systems and to provide a foundation for new and innovative strategies. By harnessing the 

capabilities of smartphone devices, detailed health related data can be collected from sentinel 

surveillance cohorts in a feasible and sustainable manner. Particular advantages such as the low 

burden placed on the user, the option to send reminders and prompts and ability to collect a wide 

range of data without regular access to the internet may alleviate many limitations of existing 

participatory web-based surveillance systems (Wójcik et al., 2014). While Ethica does require 

occasional internet access to upload data and download updates, the Ethica app can function and 
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store data for several days or weeks if needed between access to Wi-Fi or cellular networks. This 

advantage makes this data collection option feasible even for target groups in rural and 

somewhat remote areas. Overcoming some of the challenges of traditional surveillance methods 

creates new opportunities for targeted surveillance strategies to better understand health related 

behaviours in previously understudied segments of the Canadian population including rural and 

rural and remote communities (Wójcik et al., 2014). 

 

2.6 Conclusion 

Self-reports of enteric symptoms provide valuable insight on the extent, and risk factors 

of foodborne disease. Smartphone apps, such as Ethica, harness the capabilities of mobile 

devices to facilitate the collection of data that would be otherwise challenging to acquire from 

the general population. Results from self-reported illness data indicate that the level of 

underreporting might be greater than previously described. Collecting an accurate and 

comprehensive food history is an equally difficult challenge. Features associated with higher 

compliance include automated reminders, easy access and minimal requirements for time and 

effort in data entry. Further research is warranted to obtain detailed information on the 

occurrence of disease, food safety behaviors and the feasibility of new data collection tools. 
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CHAPTER 3 – FOODBORNE OUTBREAK INVESTIGATION: THE EFFECT OF RECALL 

BIAS ON FOOD HISTORIES COLLECTED A WEEK OR MORE AFTER CONSUMPTION 

 

3.1 Abstract 

Collecting accurate and comprehensive food histories has been recognized as an obstacle 

in foodborne illness investigation. Recall bias is a key limitation in a foodborne outbreak 

investigation. The ability to associate an outbreak of enteric illness with a common food 

exposure is dependent on the accuracy of data collected from food history questionnaires. The 

purpose of this study was to investigate the effect of recall bias on the validity of food history 

data in a context comparable to outbreak investigations, and to characterize the food exposures 

of a previously understudied segment of the Canadian population. The food consumption of 96 

university students was collected using Ethica, a smartphone-based data acquisition system. 

Comprehensive food histories were captured through a combination of digital images, meal 

descriptions, and short food exposure surveys. This real-time data was used as a reference to 

measure the sensitivity and specificity of food history questionnaires administered after an 

average of 7 or 18 days (2.5 weeks) after consumption (n=86). The questionnaires and time 

intervals used in this study were designed to resemble a range of plausible local, provincial and 

national enteric outbreak investigations conducted by public health officials in Canada. The 

validity of food history data collected after 7 days was low for many foods with sensitivities with 

a median of 54.5% for peanut butter and ranged from 14.3% for sprouts to 100% for leafy 

greens. The median of the observed specificities was 71.4% for sprouts and ranged from 30.4% 

for beef to 80.4% for peanuts. Similarly, the sensitivity of data collected after 18 days had a 

median of 46.2% for melons and ranged from 15.8% for sprouts to 77.8% for tomatoes. The 
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specificities after 18 days had a median for 72.2% of nuts and ranged from 21.2% for leafy 

greens to 92.1% for melons. The impact of recall bias on the accuracy of food history data was 

found to vary with food type. This study serves as a first step to quantifying the implications of 

recall bias so that recall can be accounted for in future outbreak investigation strategies. 

 

3.2 Introduction 

Foodborne illness is a global concern with many practical challenges. In 2010, the 

consumption of contaminated foods caused approximately 600 million illnesses worldwide 

(WHO, 2015a). In Canada, 4 million (1 in 8) individuals are thought to be affected by 

domestically acquired foodborne illness each year (Thomas et al., 2013). When reports of 

unusual cases are received or a sudden and unexpected increase in illness is detected, an outbreak 

investigation may be necessary to identify the source of illness and to prevent further harm (Vik 

and Hexemer, 2014). If a review of the preliminary information – which may include laboratory 

test results and basic epidemiological data such as person, place and time – suggests that the 

outbreak may be linked to a common food exposure then a foodborne outbreak investigation may 

be initiated. Advances in laboratory molecular-typing techniques allow investigators to 

distinguish between closely related pathogenic strains. Pulse Field Gel Electrophoresis (PFGE), 

Multiple-Locus Variable number tandem repeat Analysis (MLVA) and Whole Genome 

Sequencing (WGS) are techniques used to match cases infected with the same outbreak strain 

and to test isolates from food samples.  

If food samples are not available or no match can be found the ability to generate an 

accurate hypothesis relies largely on the validity of data collected from food history 

questionnaires (Vik et al., 2014). While the timeframe of investigation varies depending on the 

circumstances of each outbreak, public health practitioners in Canada and the US traditionally 
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aim to administer these questionnaires within one week after the onset of symptoms as part of 

local or regional outbreak investigations, and after to 2-3 weeks for national investigations 

(CIFOR, 2014). In practice, these targets often need to be extended due to limitations in the 

timeliness of reporting, laboratory testing and outbreak detection. In an analysis of metrics of 

enteric outbreaks investigations, the British Columbia Centre for Disease Control (BCCDC) 

reported that the median time to initiate an outbreak investigation was 36 days (Fong et al., 

2017). The incubation period, including the time from consumption to clinical signs, for many of 

the most common foodborne pathogens ranges from hours to several days (CIFOR, 2014). For 

the purposes of this study, time intervals refer to the period between consumption of the food 

item and when the participant was prompted to recall the exposure.   

 Recall bias occurs when people search for explanations for their disease and may assign 

more significance to some exposures than others (Mausner and Kramer, 1985). Thus far, public 

health practice has accepted recall bias as an inherent limitation to outbreak investigation. 

Progress in designing surveys in such a way as to minimize this recall bias has plateaued in 

recent years. As the complexity of the food supply network in Canada continues to grow, so does 

the need for new investigation tools and to address the impact that recall bias has on outbreak 

investigations. Quantifying the effect of recall bias is an important first step to addressing this 

issue.  

In order to examine the sensitivity and specificity of food history questionnaires 

administered at different points in time, researchers would need an accurate account of what each 

individual ate during the time period of interest. Obtaining such a detailed record of food 

consumption continues to be a challenge in nutritional research. Real-time records of food 

exposure can provide accurate accounts of food exposures. Capturing digital images of foods has 

been shown to be a feasible way to aid dietary recall (Arab et al., 2011). Web-based surveys have 
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been implemented in a number of outbreaks (Beatty et al., 2009; Srikantiah, 2005) and have been 

shown to increase the timeliness of investigations without compromising response rates or 

participant satisfaction (Ghosh, 2008). However, data collected from self-reported, retrospective 

dietary histories will always be limited by the quality of the memories from which the 

information was retrieved.  

Limitations in human memory have implications for the accuracy of food histories 

collected during outbreak investigations. Memories of similar and frequently repeated events are 

particularly susceptible to memory decay (Wirfält, 1998). When an individual is unable to 

retrieve details of an event such as a meal, a plausible inference is made based on general 

knowledge about their diet (Smith, 1993). Such compromises may result in the omission of rare 

food exposures as well as the intrusion of more commonly consumed foods (Smith, 1993). The 

longer the delay between exposure and recall, the more likely the event is to be misattributed to 

an earlier or later date. This phenomenon, known as the telescoping effect (Janssen et al., 2006), 

is problematic for outbreak investigations, which assess specific periods of time and place 

importance on the temporality of exposure and the onset of illness. Recall strategies used by 

respondents to retrieve such memories have been found to differ with food type (Johnson-

Kozlow et al., 2006), suggesting that certain food exposures may be more susceptible to recall 

bias than others. 

The impact of recall bias on the validity of self-reported food history data during 

outbreak investigations remains an area of uncertainty as few studies have been conducted in the 

area. Mann (1981) and Decker et al. (1986) investigated dietary recall of meals served at a single 

event after 3 and 5 days, respectively. Both studies involved observing individuals at a buffet 

meal and found sensitivities ranging from 81.2% to 95.2% and specificities ranging from 75% to 

98.5%. While these studies provide insight into local point source outbreak investigations, they 
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offer limited generalizability to national outbreak investigations that involve complex food 

distribution networks and longer times between consumption and recall.  

The Public Health Agency of Canada (Thomas et al., 2013) and the US Centers for 

Disease Control and Prevention (Scallan et al., 2011) have recognized recall bias, in addition to 

under-reporting of enteric illness, as a key limitation to the study of foodborne illness. The 

purpose of this study was to investigate the effect of recall bias on the validity of food history 

data in the context timeframes reported for both local and national outbreak investigations and to 

characterize the food exposure of a previously understudied segment of the Canadian population 

at potentially high risk of food-borne disease.  

 

3.3 Methods 

3.3.1 Study Sample 

Participants were recruited at the University of Saskatchewan through a collaboration 

with the Social Sciences Research Laboratory which actively recruits and maintains a cohort of 

active volunteers. All interested participants with access to an Android phone version 4.0 or 

greater were included in the study. Advertisements were also placed on the campus-wide 

Personalized Access to Web Services (PAWS) online platform and announcements were made in 

a number of classrooms. Upon completion of the study, each participant received compensation 

of up to $100 CAD depending on the study components they had completed. Ethics approval was 

obtained from the University of Saskatchewan Behavioural Ethics Review Committee (BEH 

#15-187). 
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3.3.2 Data Collection 

Data collection took place across three time periods, each lasting 10 weeks. Data were 

collected from the first cohort (n=17) between September 21st and November 29, 2015, from the 

second cohort (n=40) between January 18th and March 27, 2016, and from the third cohort 

(n=39) between January 25nd and April 3, 2016. Basic demographic data were collected using an 

initial online survey through a link emailed to study participants.  

Comprehensive records of food exposures were collected from each group during the 

initial 10 days of the study through a combination of real-time images of meals, food 

descriptions, and daily food exposure mini-survey questions. 

 

Figure 3.1: Timeline of data collection for the recall bias study relative to the 7-day focus period 

between day 2 and day 8 of the study (rectangular block). P1 and P2 were practice microsurveys. 

M1 represents Microsurvey Type 1 and M2 represents Microsurvey Type 2. Microsurveys 

administered on day 1, 2, 3 and day 10 assessed food exposures of only one previous day. The 

remainder of the microsurveys assessed food exposures over the 2 days prior. Diamonds (♦) 

indicate the target for food intake data collection. 

Food exposure data were collected via Ethica smartphone technology developed at the 

University of Saskatchewan. The application can be used to acquire, store, and analyze data on 

human behavior and mobility (Hashemian et al., 2012). Although Ethica had not previously been 

used to study foodborne illness, the application has proven useful in collecting related food 

consumption data (Hashemian et al., 2012). In this study, Ethica provided a convenient and cost 
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effective method by which to collect real-time data in the form of digital images and brief user-

triggered and time-triggered surveys. When this study initiated, Ethica was available for the 

Android operating system version 4.0 or greater. Data were encrypted and securely transmitted 

to Ethica servers at the University of Saskatchewan when the smartphones were connected to 

networks.  

This study utilized specific features of the application custom designed to capture 

information on food consumption behavior and illness. Participants were asked, using a button 

followed by a multiple choice question, to self-report when they were eating and the source of 

the food: eating food prepared at home, eating at a restaurant, eating ready-to-eat food purchased 

off campus, and each food purchased on campus. The participants were then given the option to 

take a picture of the food. The PhotoFoodDiary feature of the application was used to capture 

real-time food consumption information. Participants were asked to capture a digital image of 

each meal or snack consumed over the 10-day period. Each image was automatically labeled 

with the date, time and geographic coordinates. All participants had the option to provide an 

audio description of the meal or snack. Participants in groups 2 and 3 were also given the 

opportunity to provide written descriptions of the components as well as a list of ingredients as 

desired.  

The survey feature of the application was used to administer microsurveys as an 

additional means of acquiring information about recent food exposures. Microsurveys were 

administered at breakfast, lunch and dinner. These microsurveys consisted of 1 to 4 short 

multiple-choice questions regarding food exposures from the previous 24 or 48 hours (Figure 

3.1). Participants were given a timeframe of 4 hours to complete each short survey. The 

microsurveys consisted of short questions modeled after a subset of questions from the 

subsequent detailed web-based food history survey. This follow-up detailed electronic food 
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history was administered after the initial data collection period (Figure 3.1). Representative 

questions were included on the microsurveys for the following food types: fruits, nutrition bars, 

snacks, nuts, salads, sprouts and fish (Microsurvey 1) and nutritional supplements, cereals, eggs 

and dairy products, cheese, nut butters, noodle mixes, tofu, poultry and vegetables (Microsurvey 

2) (see Appendix 1 for examples of the two sets of microsurveys). The surveys were structured 

to ensure that all participants would be asked about their consumption of the target food groups 

for days 2 through 8 of the study. 

Participants from cohorts 2 and 3 were randomly assigned to complete a detailed 

electronic food history questionnaire administered either 7 or 18 days (2.5 weeks) after the 

midpoint of the data collection period using an online survey platform (Qualtrics Survey 

Software, Washington, DC). All participants in cohort 1 completed the survey at 2.5 weeks. This 

questionnaire required participants to recall food exposures between day 2 and day 8 of the study 

(midpoint – day 5) and was sent to participants at either day 12 (day 5 plus 7 days) or 23 (day 5 

plus 18 days). The detailed food history questionnaire was modeled on the Foodbook 

questionnaire (MacDonald, 2016) with some minor adaptations in consent wording required by 

local ethics and to provide appropriate context for the participants. The questionnaires and time 

intervals used in this study were designed to resemble those used by public health officials in 

Canada. 

Self-reported real-time data from days 2 through 8 were summarized for comparison to 

follow up surveys (Figure 3.1). Data on the occurrence of illness was also recorded through a 

user-triggered survey which assessed information on symptoms, whether a health-care 

professional was consulted, and association with alcohol consumption. 
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3.3.3 Data Analysis 

Foods items commonly implicated in enteric outbreaks in Canada were identified based 

on expert opinion and publications as targets for evaluation of recall bias (Greig and Ravel, 

2009; Painter et al., 2009; Pires et al., 2009). Foods that were reported as consumed by between 

twenty and eighty percent of the study population on the detailed food history questionnaire were 

deemed eligible for analysis based on having sufficient variability in intake to evaluate the 

impact of recall on both sensitivity and specificity. Foods that were not easily distinguishable in 

images were excluded. Based on these criteria, fifteen food items of interest were selected for 

analysis including lettuce or leafy greens, poultry, nuts, sprouts, cabbage, berries, cucumber, 

melons, peanut butter, peanuts (not including peanut butter), tomatoes and breaded chicken (see 

Appendix 2 for a complete list of foods that were selected eligible for analysis).  

The analysis of recall bias within the detailed food history questionnaire focused on food 

exposures between day 2 and day 8 of the study. A total of 1645 images, 984 text descriptions, 

18 audio recordings, and 2127 microsurvey responses were collected during this 1-week period. 

Information obtained from each data collection method was assessed for evidence of exposure to 

each of the fifteen foods of interest. Foods were only considered present in an image if the food 

item was visible and clearly distinguishable. Audio recordings were transcribed to text and 

common misspellings were accounted for during the interpretation of each text description. Data 

from microsurveys collected on days 3 through 10 reflected the food consumption on days 2 to 8 

and were also extracted for comparison to the follow up surveys (Figure 3.1). 

A true exposure was defined as the presence of a food item in any image, description, or 

microsurvey response collected between day 2 and day 8 of the study. Accordingly, if a food 

item did not appear in any of the three data collection methods between days 2 and 8 of the 

study, it was assumed the individual did not consume the food item during that period of time. 
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The potential for under-reporting among these three options was acknowledged and is discussed 

later in this paper. However, for the purpose of this analysis, data collected using the Ethica app 

immediately and shortly after exposure was assumed to be the working “gold standard” or 

reference value for food history.  

Cohen’s kappa () is a widely accepted method by which to assess the extent of 

agreement between two or more tests and estimates the level of agreement above that expected 

by chance alone (Landis and Koch, 1977). Previously accepted guidelines for the interpretation 

of levels of agreement, as proposed by Landis and Koch (1977) are as follows:  less than or equal 

to 0 = poor; 0.01-0.2 = slight; 0.21-0.4 = fair; 0.41-0.6 = moderate; 0.61-0.8 = substantial; 0.81-

1.0 almost perfect. In this study, the level of agreement between the reference standard and data 

subsequently obtained from the food history questionnaire was assessed by  values. In this 

context, a  statistic of 1.0 would indicate perfect agreement between the reference standard 

(real-time data) and the results of the food history questionnaire. On the other extreme, a  

statistic of 0.0 would indicate no agreement between the two data sets, suggesting a profound 

effect of recall bias. This analysis was conducted for each of the 15 food items of interest.  

Recall bias was examined by estimating the sensitivity and specificity of the web-based 

detailed food history questions administered at days 12 and 23 relative to the reference standard 

information collected on or before day 10. In the context of this study, sensitivity refers to the 

proportion of participants exposed to a food item (as determined by the reference standard) who 

reported exposure to that food item on the food history questionnaire. Specificity refers to the 

proportion of participants not exposed to a food item (as determined by the reference standard) 

who did not report exposure to that food item on the food history questionnaire. The sensitivity 

and specificity of exposure to the 15 foods of interest reported on the detailed food history 

questionnaire were determined for both the 7-day and 18-day average delay period. Furthermore, 



 

63 

 

the positive predictive value and negative predictive value for exposure to each food item from 

the food history questionnaire was calculated given the proportion of people who had indicated 

eating the food item using the reference standard reporting method.  

Generalized estimating equations (GEE) with a logit link function and assuming a 

binomial distribution were used to estimate the effect of factors of interest on the sensitivity of 

food history questions while accounting for correlations among data on different foods collected 

from the same participant. Bivariate or unconditional analysis were completed to assess the 

individual effects of three potential risk factors for sensitivity and specificity: different time 

delays between consumption and data collection, the presence of gastrointestinal symptoms, and 

for whether there were any prompts to aid in recall of food exposures. Time delay refers to either 

the 7-day or 18-day period of delay between the midpoint of the one-week data collection period 

(day 5 of the day 2 to day 8 focus period) and completion of the food history questionnaire on 

days 12 or 23 (Figure 3.1). Gastrointestinal illness was defined as diarrhea, vomiting, abdominal 

pain and cramps, or nausea experienced between day 2 and day 8 of the study. Illnesses due to 

the consumption of alcohol were excluded from the analysis. 

Prompts that might have aided in recall of food exposures refer to questions about the 

particular food of interest on the microsurveys which preceded the later food history 

questionnaires. Only four of the 15 food items of interest for assessing recall bias (beef, pork, 

spinach and strawberries) from the food history questionnaire did not appear on the 

microsurveys. Participants were prompted to report exposure to the remaining 11 food items on 

the microsurveys up to day 10 before subsequently completing the food history questionnaires on 

days 12 or 23. Using only data collected from digital images and food descriptions as the 

reference standard for this targeted analysis, the accuracy of recall was compared between food 

items, where responses on the detailed survey might have been prompted by the earlier 
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microsurvey questions and food items queried on the detailed food history survey where no 

comparable questions had been asked on the earlier microsurveys. 

To determine the generalizability of the food history results to the larger Canadian 

population, the relative frequency of exposure to the fifteen foods of interest was compared to 

results obtained from the national Foodbook survey conducted in 2014 by the Public Health 

Agency of Canada (MacDonald, 2016). Study results were compared to values for the Canadian 

population as a whole, the Saskatchewan population, the Canadian population for the month of 

January, and the segment of the Canadian population between 20 and 64 years of age. Databases 

were created and managed using Microsoft Access 2016 and Microsoft Excel 2016. Data were 

analyzed using a commercial statistical software program (Stata/SE 14.1 for Windows, 

StataCorp LP, College Station, TX). 

 

3.4 Results 

3.4.1 Study Sample 

A total of 96 participants enrolled in the study and completed the initial phase of data 

collection. Nine participants were lost to follow up before the web-based food history 

questionnaires on days 12 and 23. One participant failed to consent to completing the food 

history questionnaire. Data from the remaining 86 participants was included in this analysis. The 

mean age of the participants providing data for the analysis of recall bias was 26.6 (SD=7.9). The 

study population contained 66% (57/86) females; 37.8% (31/82) of participants were newcomers 

to Canada (within the last two years). When prompted 4.8% (4/83) of participants indicated that 

they were vegetarian or vegan and 8.4% (7/83) of participants in this study indicated that halal or 

kosher diets influenced their food choices. 
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Based on the data available from participants that were lost to follow up, 6/7 were 

female, 71.3% (5/7) were between the 18 to 25 years of age, 20% (1/5) was a newcomer to 

Canada (moved to Canada within the last two years), 20% (1/5) was vegetarian or vegan and 

20% (1/5) indicated that halal or kosher diets influenced their food choices. 

During the 7 days of interest (Day 2 to Day 8 of the study) 18.6% (16/86) of participants 

experienced at least one symptom of foodborne illness and one participant sought medical 

treatment for their illness. More specifically, 10.5% (9/86) of participants experienced vomiting 

or diarrhea; none sought medical care for their symptoms during this period. 

 

3.4.2 Inter-rater Agreement between Food History Questionnaires and Real-Time Data 

Inter-rater agreement between reported exposure from the reference standard and detailed 

food history data after 7 days (Table 3.1a) and after 18 days (Table 3.1b) was summarized for 

each food of interest. The highest observed agreements for lettuce and greens as reported at 7 

days (=0.548) and for peanut butter at 18 days (=0.530) were considered moderate. Most  

values were classified as fair, slight or even poor. 

With the exception of leafy greens, no significant differences were apparent based on the 

95%CI of levels of agreement between the reference standard and data collected after either 7 

days or 18 days. Inter-rater agreement between the reference standard and leafy greens exposure 

measured on the web-based questionnaire was greater after 7 days, =0.548 [0.303 to 0.794] than 

when compared to that measured at 18 days, =-0.052 [-0.250 to 0.146].  
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Table 3.1: (a) Inter-rater agreement ( and 95% confidence intervals) between food history data 

collected after 7 days and the reference standard. (b) Inter-rater agreement between food history 

data collected after 18 days and the reference standard exposure history collected on the day of 

consumption or within 48 hours. 

       

a)                7-Day Delay (n=35) 

 

b)                   18-Day Delay (n=51) 

   95% CI 

 

   95% CI 

Lettuce and 

Leafy Greens 0.548 0.303 0.794 

 

Lettuce and  

Leafy Greens -0.052 -0.250 0.146 

Nuts -0.091 -0.339 0.158 

 

Nuts 0.180 -0.057 0.417 

Sprouts -0.066 -0.235 0.104 

 

Sprouts -0.088 -0.254 0.078 

Cabbage 0.043 -0.236 0.321 

 

Cabbage 0.187 -0.019 0.393 

Berries -0.071 -0.356 0.215 

 

Berries 0.100 -0.142 0.342 

Cucumber 0.288 -0.031 0.608 

 

Cucumber 0.172 -0.099 0.442 

Melon 0.364 0.02 0.707 

 

Melon 0.426 0.134 0.718 

Peanut Butter 0.388 0.059 0.718 

 

Peanut Butter 0.530 0.298 0.762 

Peanuts 0.189 -0.126 0.505 

 

Peanuts 0.184 -0.048 0.416 

Tomatoes 0.418 0.099 0.736 

 

Tomatoes 0.305 0.026 0.584 

Beef 0.043 -0.203 0.289 

 

Beef 0.108 -0.133 0.349 

Pork 0.199 -0.125 0.524 

 

Pork 0.036 -0.236 0.308 

Spinach 0.283 -0.005 0.572 

 

Spinach -0.123 -0.379 0.134 

Strawberries 0.252 -0.102 0.606 

 

Strawberries 0.014 -0.273 0.245 

Breaded Chicken 0.149 -0.122 0.420 

 

Breaded Chicken 0.058 -0.132 0.247 

         

3.4.3 Accuracy of the Food History Questionnaire  

The specificity, sensitivity, positive predictive value (PPV), and negative predictive value 

(NPV) of food history questionnaires administered after 7 days and after 18 days are shown in 

Table 3.2. Sensitivity with a 7-day delay to the detailed food history questionnaire varied from a 

minimum of 14.3% for sprouts to maximum of 100% for leafy greens. Similarly, sensitivity with 

an 18-day delay to the detailed food history questionnaire varied from a minimum of 15.8% for 

sprouts to maximum of 77.8% for tomatoes. Specificity with a 7-day delay to the detailed food 

history questionnaire varied from a minimum of 30.4% for beef to maximum of 80.4% for 

peanuts. While, specificity with an 18-day delay to the detailed food history questionnaire varied 

from a minimum of 21.2% for leafy greens to maximum of 92.1% for melons. 
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Table 3.2: Diagnostic test measures of the validity and predictive values of data collected on 

exposure after 7 days (a) and after 18 days (b) in regards to 15 food items commonly implicated 

in foodborne outbreaks. Values in bold represent the medians. 

 
a)                         7-day Delay (n=35) 

 

 

 
b)                       18-day Delay (n=51) 

    

  
Point 

Estimate 
95% CI 

   
Point 

Estimate 
95% CI 

Lettuce and 

Leafy Greens 

Sensitivity (%) 100 80.5 100 
 

Lettuce and 

Leafy Greens 

Sensitivity (%) 72.2 46.5 90.3 

Specificity (%) 55.6 30.8 78.5 
 

Specificity (%) 21.2 8.98 38.9 

PPV (%) 68.0 46.5 85.1 
 

PPV (%) 33.3 19.1 50.2 

NPV (%) 100 69.2 100 
 

NPV (%) 58.3 27.7 84.8 

Nuts 

Sensitivity (%) 21.7 7.46 43.7 
 

Nuts 

Sensitivity (%) 48.5 30.8 66.5 

Specificity (%) 66.7 34.9 90.1 
 

Specificity (%) 72.2 46.5 90.3 

PPV (%) 55.6 21.2 86.3 
 

PPV (%) 76.2 52.8 91.8 

NPV (%) 30.8 14.3 51.8 
 

NPV (%) 43.3 25.5 62.6 

Sprouts 

Sensitivity (%) 14.3 4.03 32.7 
 

Sprouts 

Sensitivity (%) 15.8 6.02 31.3 

Specificity (%) 71.4 29.0 96.3 
 

Specificity (%) 69.2 38.6 90.9 

PPV (%) 66.7 22.3 95.7 
 

PPV (%) 60.0 26.2 87.8 

NPV (%) 17.2 5.85 35.8 
 

NPV (%) 22.0 10.6 37.6 

Cabbage 

Sensitivity (%) 33.3 14.6 57.0 
 

Cabbage 

Sensitivity (%) 39.4 22.9 57.9 

Specificity (%) 71.4 41.9 91.6 
 

Specificity (%) 83.3 58.6 96.4 

PPV (%) 63.6 30.8 89.1 
 

PPV (%) 81.3 54.4 96 

NPV (%) 41.7 22.1 63.4 
 

NPV (%) 42.9 26.3 60.6 

Berries 

Sensitivity (%) 46.2 26.6 66.6 
 

Berries 

Sensitivity (%) 37.9 20.7 57.7 

Specificity (%) 44.4 13.7 78.8 
 

Specificity (%) 72.7 49.8 89.3 

PPV (%) 70.6 44.0 89.7 
 

PPV (%) 64.7 38.3 85.8 

NPV (%) 22.2 6.41 47.6 
 

NPV (%) 47.1 29.8 64.9 

Cucumber 

Sensitivity (%) 61.5 31.6 86.1 
 

Cucumber 

Sensitivity (%) 54.2 32.8 74.4 

Specificity (%) 68.2 45.1 86.1 
 

Specificity (%) 63.0 42.4 80.6 

PPV (%) 53.3 26.6 78.7 
 

PPV (%) 56.5 34.5 76.8 

NPV (%) 75.0 50.9 91.3 
 

NPV (%) 60.7 40.6 78.5 

Melon 

Sensitivity (%) 66.7 22.3 95.7 
 

Melon 

Sensitivity (%) 46.2 19.2 74.9 

Specificity (%) 79.3 60.3 92.0 
 

Specificity (%) 92.1 78.6 98.3 

PPV (%) 40.0 12.2 73.8 
 

PPV (%) 66.7 29.9 92.5 

NPV (%) 92.0 74.0 99.0 
 

NPV (%) 83.3 68.6 93 

Peanut Butter 

Sensitivity (%) 54.5 23.4 83.3 
 

Peanut Butter 

Sensitivity (%) 74.1 53.7 88.9 

Specificity (%) 83.3 62.6 95.3 
 

Specificity (%) 79.2 57.8 92.9 

PPV (%) 60.0 26.2 87.8 
 

PPV (%) 80.0 59.3 93.2 

NPV (%) 80.0 59.3 93.2 
 

NPV (%) 73.1 52.2 88.4 

Peanuts 

Sensitivity (%) 30.8 9.09 61.4 
 

Peanuts 

Sensitivity (%) 34.6 17.2 55.7 

Specificity (%) 86.4 65.1 97.1 
 

Specificity (%) 84.0 63.9 95.5 

PPV (%) 57.1 18.4 90.1 
 

PPV (%) 69.2 38.6 90.9 

NPV (%) 67.9 47.6 84.1 
 

NPV (%) 55.3 38.3 71.4 
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Table 3.2: Diagnostic test measures of the validity and predictive values of data collected on 

exposure after 7 days (a) and after 18 days (b) in regards to 15 food items commonly implicated 

in foodborne outbreaks. Values in bold represent the medians (continued).  

 
a)                         7-day Delay (n=35) 

 

 

 
b)                       18-day Delay (n=51) 

    

  
Point 

Estimate 
95% CI 

   
Point 

Estimate 
95% CI 

Tomatoes 

Sensitivity (%) 82.6 61.2 95.0 
 

Tomatoes 

Sensitivity (%) 77.8 60.8 89.9 

Specificity (%) 58.3 27.7 84.8 
 

Specificity (%) 53.3 26.6 78.7 

PPV (%) 79.2 57.8 92.9 
 

PPV (%) 80.0 63.1 91.6 

NPV (%) 63.6 30.8 89.1 
 

NPV (%) 50.0 24.7 75.3 

Beef 

Sensitivity (%) 75.0 42.8 94.5 
 

Beef 

Sensitivity (%) 70.0 45.7 88.1 

Specificity (%) 30.4 13.2 52.9 
 

Specificity (%) 41.9 24.5 60.9 

PPV (%) 36.0 18.0 57.5 
 

PPV (%) 43.8 26.4 62.3 

NPV (%) 70.0 34.8 93.3 
 

NPV (%) 68.4 43.4 87.4 

Pork 

Sensitivity (%) 61.1 35.7 82.7 
 

Pork 

Sensitivity (%) 31.6 12.6 56.6 

Specificity (%) 58.8 32.9 81.6 
 

Specificity (%) 71.9 53.3 86.3 

PPV (%) 61.1 35.7 82.7 
 

PPV (%) 40.0 16.3 67.7 

NPV (%) 58.8 32.9 81.6 
 

NPV (%) 63.9 46.2 79.2 

Spinach 

Sensitivity (%) 54.5 32.2 75.6 
 

Spinach 

Sensitivity (%) 48.6 31.4 66 

Specificity (%) 76.9 46.2 95.0 
 

Specificity (%) 37.5 15.2 64.6 

PPV (%) 80.0 51.9 95.7 
 

PPV (%) 63.0 42.4 80.6 

NPV (%) 50.0 27.2 72.8 
 

NPV (%) 25.0 9.77 46.7 

Strawberries 

Sensitivity (%) 44.4 13.7 78.8 
 

Strawberries 

Sensitivity (%) 18.8 4.05 45.6 

Specificity (%) 80.8 60.6 93.4 
 

Specificity (%) 80.0 63.1 91.6 

PPV (%) 44.4 13.7 78.8 
 

PPV (%) 30.0 6.67 65.2 

NPV (%) 80.8 60.6 93.4 
 

NPV (%) 68.3 51.9 81.9 

Breaded 

Chicken 

Sensitivity (%) 38.1 18.1 61.6 
 

Breaded 

Chicken 

Sensitivity (%) 18.5 6.3 38.1 

Specificity (%) 78.6 49.2 95.3 
 

Specificity (%) 87.5 67.6 97.3 

PPV (%) 72.7 39.0 94.0 
 

PPV (%) 62.5 24.5 91.5 

NPV (%) 45.8 25.6 67.2 
 

NPV (%) 48.8 33.3 64.5 

 

3.4.4 The Effects of Time, Illness and Multiple Assessments on the Accuracy of Dietary Recall 

There were no differences in either sensitivity or the specificity of the reported exposures 

based on the detailed food history questionnaires for the 15 foods of interest regardless of 

whether the questionnaire was administered after the 7- or 18-day delay (Table 3.3). Similarly, 

there was no difference among the sensitivities and specificities of the reported exposures for the 

15 foods of interest depending on whether or not the participant reported any illness during the 

study period (Table 3.3).  
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Table 3.3: Odds ratios for the bivariate analysis of effect of time delay, enteric illness and 

multiple assessments on the sensitivity and specificity of dietary recall for 15 foods of interest 

(n=86). 
 Sensitivity  Specificity 

 OR 95% CI P  OR 95% CI P 

Time Delay 

18-day delay 

(In reference to 7-day delay) 

0.99 0.96 1.02 0.43  1.00 0.96 1.03 0.83 

Enteric Illness 

Symptomatic 

(In reference to non-symptomatic) 

1.20 0.77 1.87 0.42  1.08 0.71 1.66 0.72 

Memory Priming 

Assessed on Microsurveys AND FHQ 

(In reference to assessed only on FHQ) 

1.18 0.83 1.68 0.37  .638 .473 .859 .003 

        

Multiple assessments had a negative effect on the specificity and positive predictive value 

of food history questionnaires (Table 3.3). In other words, repeatedly prompting participants to 

recall a food exposure on microsurveys increased the likelihood of reporting a false positive on 

food history questionnaires administered later. The sensitivity of food history questionnaires was 

not significantly affected. 

 

3.4.5 Comparing Apparent Prevalences to Foodbook Exposure Frequencies  

The apparent prevalence of each food item of interest based on the combined results of 

the detailed food history questionnaire at 7 and 18 days was compared to results obtained from 

the national Foodbook Survey conducted in 2014 by the Public Health Agency of Canada 

(MacDonald, 2016). This national initiative interviewed participants over the telephone to assess 

food exposures over the past 7 days. Results were compared to national exposure rates, as well as 

to exposure rates specific to the province of Saskatchewan, and to the corresponding age 

demographic. 
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Table 3.4: Food exposures reported by the study population of university students based on a 

food history questionnaire completed an average of at least 1 week after exposure (n=86) 

compared to reference values from the Foodbook report (MacDonald, 2016). 

 Study Population  Foodbook Report (MacDonald, 2016) 

 

Prevalence 

(%) 
95% CI 

 
Canada (%) Saskatchewan (%) 

20-64 Years 

(%) 

Lettuce/Leafy Greens 41 30.0 51.8  82.4 80.7 86.3 

Melons 22 14.0 32.3  39.7 41.2 38.3 

Tomatoes 69 58.0 78.2  72.9 66.4 77.9 

Breaded Chicken 56 45.0 66.9  16.5 18.7 14.2 

Pork 43 32.0 54.2  55.1 62.7 55.1 

Spinach 66 55.0 76.1  28.4 28.9 29.7 

Strawberries 29 20.0 39.9  49.6 49.7 46.3 

Peanut Butter 44 33.0 55.3  55.0 58.8 54.5 

Peanuts 45 35.0 56.5  33.6 36.3 35.7 

Nuts 65 54.0 75.1  65.4 64.6 68.9 

Sprouts 77 66.0 85.2  12.9 11.7 13.0 

Beef 37 27.0 48.3  78.4 86.3 79.7 

Cabbage 63 52.0 73.3  30.0 32.0 30.9 

Berries 64 53.0 74.4  65.2 61.1 62.5 

Cucumber 43 32.0 54.2  62.9 59.0 61.7 

 

To account for seasonality, data gathered in January (groups 1 and 2) were also 

specifically compared to Foodbook reference values corresponding to the month of January 

(MacDonald, 2016). 
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Table 3.5: Food exposures reported by the study population of university students based on a 

food history questionnaire completed an average of at least 1 week after exposure (n=86) 

compared to reference values from the Foodbook report reference values for the month of 

January (MacDonald, 2016). 

 
Study Population 

 Foodbook Report 

(MacDonald, 2016) 

 

Prevalence (%) 95% CI  January (%) 

Lettuce/Leafy Greens 41 30.0 51.8  76.2 

Melons 22 14.0 32.3  22.0 

Tomatoes 69 58.0 78.2  63.0 

Breaded Chicken 56 45.0 66.9  18.0 

Pork 43 32.0 54.2  54.7 

Spinach 66 55.0 76.1  29.8 

Strawberries 29 20.0 39.9  42.3 

Peanut Butter 44 33.0 55.3  62.3 

Peanuts 45 35.0 56.5  36.6 

Nuts 65 54.0 75.1  61.7 

Sprouts 77 66.0 85.2  13.2 

Beef 37 27.0 48.3  79.9 

Cabbage 63 52.0 73.3  22.8 

Berries 64 53.0 74.4  55.2 

Cucumber 43 32.0 54.2  51.8 

 

3.5 Discussion 

The fallibility of human memory has long been recognized as a key limitation to 

foodborne outbreak investigation (Decker et al., 1986; Mann, 1981). Misclassifications in self-

reported exposure status reduces the power of epidemiological studies to detect meaningful 

associations between exposures and the development of illness. While the limitations associated 

with recall bias are commonly reported (Dechet et al., 2006; Schenkel et al., 2006), little is 

known about the extent and implications of the problem. This study serves as a first step in 

quantifying recall bias in a context comparable to how cases and controls might be questioned 

for outbreak investigations so that recall bias can be accounted for and mitigated in public health 

practice. 
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 The validity of food history data collected after 18 days was found to be generally low 

with sensitivities ranging from 15.8% to 77.8% for 15 foods of interest, and specificities ranging 

from 21.2% to 92.1%. There was no observed significant improvement in sensitivity or 

specificity observed when recall time was reduced to 7 days from the midpoint of the period of 

interest. Similarly, agreement with the gold standard did not differ between the time intervals for 

most food items, with leafy greens being the lone exception. The comparably low accuracy of 

dietary memory after both time intervals examined in this study suggests there is a substantial 

potential for bias for most food types following the first week after consumption.  

Although this study utilized a multitude of data collection methods in an effort to capture 

comprehensive food histories, imperfections in the reference standard will still exist. Compliance 

measured as an average of at least one report per day in the data collection methods used to 

create the gold standard of food history in the first ten days of the study were 100% (96/96) for 

food microsurveys, 85.4% (82/96) for digital images and 68.4% (54/79) for meal descriptions 

(Chapter 2). It is possible that participants failed to record a food exposure in all three data 

collection methods used to create the reference standard with Ethica (false negative), but 

remembered the exposure when later completing the Food History Questionnaire.  

Such false negatives in the Ethica data could have inflated the negative denominator 

derived from the reference standard and have potentially lead to an underestimate of the 

specificity of Food History Questionnaires. These same false negative results in the Ethica data 

could have resulted in an underestimate of the denominator for the questionnaire sensitivity 

calculation and an inflated estimate of sensitivity. It is much less likely that participants would 

have said that they ate something that they did not when using Ethica (false positives), given 

most reporting was done shortly after the meal was consumed.  
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The sensitivity of recall based on the Ethica reference standard was highest for common 

foods such as leafy greens and tomatoes (77.2%-100%). These same foods were associated with 

relatively low specificities (21.2%-58.3%). Recognizing that the low specificity estimates might 

be impacted by incomplete reporting, this finding may still indicate a tendency for participants to 

use knowledge of habitual diet to answer questions about common food exposures rather than 

recalling specific exposure events. On the other hand, specificities were found to be highest 

(67.7%-72.2%) for sprouts and nuts.  

The sensitivities of 18-day dietary recall were compared to the findings of past relevant 

outbreak investigations reported by PHAC and the US CDC. This comparison included only 

solved outbreaks investigations in which cases were laboratory confirmed, and where cases were 

infected with the same outbreak strain (PFGE, MLVA or WGS) that was isolated from the 

contaminated food source. Infection with the same outbreak strain suggests consumption of the 

same contaminated food source. Therefore, the percentage of laboratory confirmed cases that 

failed to report consuming the implicated food item might provide an estimate of the false 

negative rate and then the sensitivity of food history questionnaires. While cross-contamination 

and multiple source outbreaks may account for some differences, a substantial proportion of the 

discrepancies where cases did not report eating the food of interest was assumed to be a 

consequence of recall bias for this comparison.  

The sensitivity of dietary recall to tomato consumption computed in this study (77.8% 

[60.8-89.9]) is consistent with the relative frequency of exposure reported among confirmed 

cases in previous tomato outbreaks: 75% (Reller et al., 2006), 81% (Behravesh et al., 2012), 70% 

(Greene et al., 2008), and 69% (Donnan et al., 2012). Comparable results were found between 

the computed sensitivity estimated for reporting consumption of cucumbers (61.6 [31.6-86.1]) 

and previous cucumber outbreaks: 62% (Angelo et al., 2015), 75% (Centers for Disease Control 
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and Prevention, 2015) and 69% (Donnan et al., 2012). Finally, the sensitivity of dietary memory 

for consumption of leafy greens (72.2% [46.5-90.3]) was also congruent with the exposure 

frequencies observed among confirmed cases in past leafy green outbreaks: 71% (Nuorti et al., 

2004), 70% (Ackers et al., 1998), 85% (Centres for Disease Control and Prevention, 2013), and 

64.9% (Slayton et al., 2013). The similarity of these findings indicates that recall bias may serve 

as a plausible explanation for the lack of exposure reported among confirmed cases during 

outbreak investigations. 

In addition to time after consumption, one of the other factors considered as a potential 

influence on recall was illness during the observation period. The dietary recall of participants 

who reported enteric illness during the study were not found to be more sensitive or specific than 

that of asymptomatic individuals. Similarly, prompting participants to recall food exposures on 

more than one occasion (i.e. on microsurveys and again on food history questionnaires) did not 

have a significant effect on the sensitivity of dietary recall. However, food exposures that were 

assessed on multiple occasions (i.e. on microsurveys and again on Food History Questionnaires) 

were found to have a lower specificity than food exposures that were assessed only on the food 

history questionnaire. In other words, having been previously asked about a food exposure 

increases the likelihood of reporting a false positive. 

 Hupbach et al. (2009) describe the retrieval of episodic memories as a reactivation 

process in which memories become fragile before they are reconsolidated. Each time a memory 

is retrieved, it becomes susceptible to the intrusion of information from similar events that took 

place at a later date (Hupbach et al., 2009). In this way, details of memory may become lost, 

misattributed or inadvertently falsified. Jacoby and Whitehouse (1989) also found that priming 

often resulted in a misattribution of familiarity. Memories of recalling whether or not an event 

occurred may be misclassified as having actually experienced the event (Janssen et al., 2006). In 
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the context of this study, priming from microsurveys is believed to have caused a misattribution 

of familiarity leading to a higher rate of false positives. Foods that were not assessed on 

microsurveys experiences no such increase. 

Advances in smartphone technology continue to give rise to new opportunities for the 

acquisition of data on human behavior. The Ethica app has itself advanced and is now available 

for iPhones as well as Android phones. As new data collection and analysis tools become 

available, they allow for a more accurate representation of dietary history. While a true gold 

standard of dietary histories may not be attainable for direct comparison, future studies may 

employ methods such as Bayesian latent class analysis to investigate the sensitivity and 

specificity of data collection methods that are currently available in the absence of a true gold 

standard. Formal incorporation of prior knowledge regarding measurement uncertainty may offer 

a means by which to account for, rather than aim to eliminate, recall bias in foodborne outbreak 

investigations. 

 The magnitude of the effect that recall bias had on the accuracy of dietary memory was 

not uniform across food types. This type of differential error has considerable implications on 

outbreak investigations as it may diminish some associations while inflating others. Quantifying 

the effects of recall bias on the accuracy of self-reported exposure to different foods is the first 

step toward accounting for this bias. Future research into the effects of recall bias at different 

points in time and on different commonly implicated foods is warranted. Not only will this 

research provide insight on strategies to mitigate recall bias during data collection but it may lead 

to data analysis strategies to adjust for these inherent biases. 
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3.6 Conclusion 

Limitations in human memory present practical implications to the investigation of 

foodborne disease outbreaks. This study serves as a first step towards quantifying these 

implications so that they can be accounted for and mitigated in future outbreak investigation 

strategies. The sensitivity and specificity of dietary recall of different food items will allow for a 

better understanding of the implications of recall bias on outbreak investigation strategies. 

Through multidisciplinary collaborations, advances in areas of psychology may be applied to 

epidemiological studies to inform best practices in foodborne outbreak investigation.  
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CHAPTER 4 – SHORT COMMUNICATION: APPLYING BAYESIAN LATENT CLASS 

ANALYSIS TO DETERMINE THE SENSITIVITY AND SPECIFICITY OF A REAL-TIME 

DATA COLLECTION METHODS, MICROSURVEYS, AND A FOOD HISTORY 

QUESTIONNAIRE 

4.1 Abstract 

One of the most pertinent obstacles to foodborne outbreak investigation continues to be 

the lack of a true gold standard by which to measure the accuracy data collected from food 

history questionnaires. Even data collected in real-time, may involve misclassifications of 

exposure status due to issues in compliance. Bayesian latent class analysis incorporates previous 

knowledge of a parameters and does not require a gold standard test. The purpose of this study 

was to determine the accuracy and validity of data collected in real-time from digital images and 

meal descriptions, microsurveys and the food history questionnaire. Using Bayesian analysis, the 

sensitivities and specificities of the three data collection methods were assessed. Data was 

obtained from 51 students at the University of Saskatchewan that captured their food 

consumption through digital images and meal descriptions, microsurveys and completed a food 

history questionnaire that was administered 2.5 weeks after the midpoint of a 1 week window of 

interest. The five food exposures that were assessed included tomatoes, lettuce and leafy greens, 

cucumbers, berries and nuts. The sensitivities of the three data collection methods ranged from 

53.0-79.1% for images/meal descriptions, 52.4-75.1% for microsurveys and 59.1-78.6% for the 

food history questionnaire. The specificities ranged from 84.3-90.9% for images/meal 

descriptions, 83.3-89.3% for microsurveys and 47.8-88.4% for the food history questionnaire. 

Overall, the sensitivities, specificities and true prevalences computed by Bayesian latent class 

analysis did not differ significantly from findings of the frequentist approach used in Chapter 3. 
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However, the previously assumed gold standard was found to be imperfect with sensitivities 

from 85.3-91.0% and specificities from 73.4-80.6% for the parallel interpretation of images/meal 

descriptions and microsurveys. This study provides an innovative approaches to adjusting for 

recall bias in estimating food exposures with imperfect tests. 

 

4.2 Introduction 

Food recall is influenced by various individual characteristics, such as food preferences, 

memory performance and attention to detail. While we consume a wide variety of foods on a 

daily basis, the attention that our minds devote to processing and storing this information varies 

depending on context and food type (Johnson-Kozlow et al., 2006; Smith, 1993). Although 

information on when which foods were eaten may seem of little importance in our daily lives, 

these details are crucial to foodborne outbreak investigations.   

The epidemiological tools used in outbreak investigations are susceptible to a variety of 

biases. While biases introduced by the interviewer and the instruments used to collect data are at 

the focus of methodological studies, error introduced by the interviewee is often overlooked. It is 

well known that dietary memory fades with time (Wirfält, 1998), yet data collected from food 

history questionnaires is assumed to be accurate regardless of time delays. Although the 

fallibility of human memory may be unavoidable, it may be possible to mitigate the error it 

introduces through careful quantification and calibration of epidemiological tools.  

Health studies are often faced with the challenge of assessing the accuracy of a diagnostic 

test when the true disease status cannot be determined with certainty. Latent class modelling has 

been introduced as a method by which to obtain valid estimates of sensitivities, specificities, and 

true prevalence even when no gold standard test is available (Formann and Kohlmann, 1996; 

Rindskopf and Rindskopf, 1986; van Smeden et al., 2013). The Bayesian approach to latent class 
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modelling has some important advantages when compared to the frequentist approach. Bayesian 

modelling allows researchers to incorporate prior knowledge from published articles and expert 

opinion. This approach allows new data to be assessed in the context of previous work that has 

been done in the area. If minimum prior knowledge is incorporated into the Bayesian model, 

then it is likely to arrive at a similar result as the frequentist model. An illustrative example of 

the application of Bayesian latent class modelling in diagnostic testing is found in the work of 

Schumacher et al. (2016) on the evaluation of diagnostic tests for childhood pulmonary 

tuberculosis. By simultaneously assessing the results of different tests, and inputting prior 

knowledge on the measurement accuracy of each test, Schumacher et al. (2016) determined the 

sensitivity and specificity of radiography, microscopy, Xpert MTB/RIF, tuberculin skin test, and 

liquid culture in diagnosing the disease. 

During outbreak investigations, data collected from food history questionnaires is 

assumed to be an accurate and complete account of dietary history. Since these questionnaires 

are typically administered anywhere from several days to several weeks after the onset of 

symptoms, errors in memory may result in incomplete and unreliable data. By asking 

participants to capture images of foods, describe meals and complete microsurveys, using the 

Ethica application, the study reported in Chapter 3 attempted to create a reference standard for 

dietary history. However, less than perfect compliance was observed; this may have had 

consequences on the validity of the reference standard. The purpose of this study was to 

determine sensitivity and specificity without assuming a gold standard for the analysis for the 

data collected in real-time from digital images and meal descriptions, from the microsurveys and 

from a food history questionnaire similar to those currently being used to conduct national 

foodborne outbreak investigations in Canada. These results will be used to measure the validity 
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of the gold standard used in the previous study, to estimate the true prevalence of exposure to 

foods of interest, and to gain a more informative estimate of the effect of recall bias on dietary 

memory. 

 

4.3 Methods 

This study utilized data collected as part of previous investigation (Chapter 3) to assess 

the validity of food history techniques that are currently being implemented to investigate 

foodborne outbreaks. Data on the food histories were collected from 51 students at the 

University of Saskatchewan through three different methods – images/meal descriptions, 

microsurveys and food history questionnaires – to assess how accurately participants could recall 

food exposures.  

Data was collected over three different time periods; the first group began data collection 

on September 21, 2015 and completed the food history questionnaire on October 13, 2015 

(n=15); the second group began data collection on January 18, 2016 and completed and the 

February 9, 2016 (n=22); the third group began data collection on January 25, 2016 and 

completed the food history questionnaire on February 16, 2016 (n=14). See Figure 4.1 for the 

timeline of data collection.  
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Figure 4.1: Timeline of data collection for microsurveys and the food history questionnaire 

relative to the 7-day period of interest between day 2 and 8 of the study (rectangular block). P1 

and P2 were practice microsurveys. M1 represents Microsurvey Type 1 and M2 represents 

Microsurvey Type 2. Microsurveys administered on day 1, 2, 3 and day 10 assessed food 

exposures of only one previous day. The remainder of the microsurveys assessed food exposures 

over the 2 days prior. Diamonds (♦) indicate the target for food intake data collection. 

Refer to Chapter 3 for a complete description of the timeline, tools and methods that were 

used to collect the relevant data.  

 

4.3.1 Bayesian Latent Class Analysis 

Bayesian latent class analysis was conducted to determine the sensitivity and specificity 

of foodborne history questionnaires for five foods that contained non-zero values in each cell of 

the contingency tables. The foods included in the Bayesian analysis were tomatoes, nuts, lettuce 

and leafy greens, berries, and cucumbers. The Bayesian simulations were run assuming 3 tests 

and 1 population (Branscum et al., 2005). The model also allowed for correlation between the 

images/meal descriptions and microsurvey data collected using Ethica. 

Sokal (1989) suggests that the burn-in period should be less than 5% of the length of the 

simulation to ensure that the parameter estimates are minimally biased by any data generated 

from the non-stationary segment of the distribution. A burn-in period of 100,000 was discarded 

based on the inferences made from the Brook-Gelman-Rubin diagnostic plots (Gelman and 
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Rubin, 1992). A total run length of 2,500,000 was used; the burn in period comprised 4.2% of 

the total number of simulations. After excluding the 100,000 iterations of the burn-in period, the 

remaining 2,400,000 iterations were monitored and analyzed. To avoid correlation between 

sampling points, only every 100th sample in the simulation was used. This method of analysis 

combined data from three tests to determine the accuracy of each test as well as the prevalence of 

exposure to each food item. Bayesian latent class modelling was conducted in OpenBUGS 

version 3.2.3 (Spiegelhalter et al., 2007). See Appendix 10 for an example of the OpenBUGS 

code that was used. 

 

4.3.1.1 Test 1 – Digital Images and Meal Descriptions 

The first test consisted of data extracted from digital images and meal descriptions 

collected in real-time. As part of the previous study, participants captured a digital image of each 

meal or snack consumed between day 2 and day 8 of the study through the PhotoFoodDiary 

feature of the Ethica application. All participants had the option to accompany each image with 

an audio description of the meal or snack. Participants in groups 2 and 3 were also given an 

additional option to provide written descriptions of the components as well as a list of 

ingredients as desired.  

 

4.3.1.2 Test 2 – Microsurveys 

The second test was comprised of data extracted from microsurveys. In order to allow 

participants to become familiar with the Ethica Survey Tool, two practice surveys were 

administered on days 1 and 2 of the survey (Figure 4.1). After this brief introductory period, two 

microsurveys were administered on alternating days during the days of interest. Each 
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microsurvey consisted of up to four multiple answer questions that assessed specific food 

exposures of interest that may have taken place on the previous day or two. Microsurvey 1 was 

administered on days 3, 5, 7, and 9 and assessed recent exposures to foods such as fruits, 

nutrition bars, snacks, nuts, salads, sprouts and fish (Figure 4.1). Microsurvey 2 was 

administered on days 4, 6, 8 and 10 and assessed recent exposures to foods such as nutritional 

supplements, cereals, eggs and dairy products, cheese, nut butters, noodle mixes, tofu, poultry 

and vegetables. A time limit of 4 hours was given to complete each microsurvey (refer to 

Appendix 1 for microsurveys questionnaires).  

 

4.3.1.3 Test 3 – Food History Questionnaire 

The third test was comprised of information provided on food history questionnaires 

modeled on the Foodbook questionnaire (MacDonald, 2016) with some minor adaptations in 

consent wording required by local ethics and to provide appropriate context for the participants. 

This questionnaire required participants to recall food exposures between day 2 and day 8 of the 

study (midpoint – day 5) and was sent to participants on day 23 (day 5 plus 18 days) (Figure 

4.1).  

  

4.3.1.4 Priors and Assumptions 

Priors on the sensitivities of the food history questionnaire for each food item were 

informed by published reports of past outbreak investigations. Although data on the sensitivity of 

food history questionnaires in the context of national outbreak investigations is not directly 

available, indirect measures of this information can be deduced from past outbreak reports. With 

the exception of situations of cross-contamination and multiple source outbreaks, when a 
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pathogen is isolated from a particular food item, it may be assumed that cases infected with that 

particular outbreak strain have consumed the contaminated product before falling ill. Therefore, 

the proportion of laboratory confirmed cases that misclassified their exposure status to the 

implicated food item serves as a proxy for the sensitivity of the food history questionnaire. Using 

this line of deductive reasoning, priors for the sensitivities were inferred from past outbreak 

reports from PHAC and the US CDC. Only published reports of outbreaks in which cases were 

confirmed through PFGE, MLVA or WGS and the outbreak strain was successfully isolated 

from the contaminated food source were used to inform priors. For a list of the publications that 

were used to inform priors see Appendix 11. No previous knowledge was available for the 

specificities of food history questionnaires. Therefore, Jeffrey’s priors (non-informative) were 

used for specificities of the food history questionnaire in the Bayesian analysis. 

In regards to data collected from digital images and meal descriptions, no previous 

knowledge was available for sensitivities so again Jeffrey’s priors were used. Since this data was 

collected in real-time, it is unlikely that it contains many false positives – the priors for 

specificity were based on 95% certainty that the true value was above 80% with a point estimate 

of 95%. Due to a lack of previous knowledge and relevant literature, Jeffrey’s priors were used 

for the sensitivity of microsurveys. Since these were completed up to 48 hours after the foods 

were consumed, the specificities were expected to be slightly less than those of real-time data. 

Priors for specificities of the microsurvey were based on 95% certainty that the true value was 

above 80% with a point estimate of 90% (slightly less than real-time data). The true prevalence 

of each exposure was unknown so Jeffrey’s priors were used. The beta distributions for each of 

the priors was calculated using epiR beta buster (Stevenson et al., 2015). For a complete list of 

priors used and corresponding beta parameters see Appendix 12.  
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Convergence diagnosis and output analysis (CODA) was conducted to ensure that 

Markov chains were sampling from stationary distributions. Four diagnostic tests were 

conducted on the Coda of each measure to verify that convergence had been reached including 

Gelman and Rubin (1992), Geweke (1991), Raftery and Lewis (1992) and Heidelberger and 

Welch (1981). Conditional correlations were assessed by applying the conditional independent 

Bayesian model. Coda diagnostic tests were conducted using packages “coda” and “mcmcplots” 

in the R software package (R Core Team, 2013). For an example of the R code that was used to 

assess convergence, see Appendix 13. 

 

4.3.1.5 Comparing findings from Bayesian Analysis to Frequentist Analysis (used in Chapter 3) 

The sensitivity and specificity of test 1 and test 2 run in parallel was computed using 

Ausvet EpiTools epidemiological calculator to estimate the accuracy of the reference standard 

used in Chapter 3 (calculator available at 

www.epitools.ausvet.com.au/content.php?page=2Tests). 

   

4.4 Results 

A total of 51 participants recorded their food consumption through digital images/meal 

descriptions and microsurveys during the time period of interest and completed the food history 

questionnaire 2.5 weeks later. See Appendix 14 for the contingency tables of the number of 

participants that reported each food exposure using each of the three data collection methods.  

 

4.4.1 Convergence and Conditional Independence 

The results of the CODA diagnostic tests suggested that the Markov chains had reached 

their stationary distributions. The Gelman and Rubin (1992) diagnostic indicated that the 

http://www.epitools.ausvet.com.au/content.php?page=2Tests
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potential scale reduction were approaching 1. The dependence factor values computed by the 

Raftery and Lewis (1992) diagnostic all fell below 5. The p-values in the Geweke (1991) 

diagnostic were all greater than 0.05. Finally, the p-values in the Heidelberger and Welch (1981) 

diagnostic were also all greater than 0.05. The conditional correlation estimates – rhoD for 

sensitivities and rhoDc for specificities – were found to be near zero and did not include the 

value 1, indicating that the tests were conditionally independent (see Appendix 15 for a complete 

list of rhoD and rhoDc values). 

 

4.4.2 Test 1 – Digital Images and Meal Descriptions 

The sensitivities of the real-time self-reported data pertaining to each food item ranged 

from 53.0% [24.8-91.2] for cucumbers to 79.1% [64.9-92.3] for tomatoes (Table 4.1).  

Table 4.1: Sensitivities and 95% credible intervals (CrI) for test 1 (digital images and meal 

descriptions) for tomatoes, lettuce and leafy greens, cucumbers, berries and nuts (n=51).  

           

 Sensitivity 95% CrI 

Tomatoes 79.1 64.9 92.3 

Lettuce and Leafy Greens 69.1 51.2 90.1 

Cucumbers 53.0 24.8 91.2 

Berries 71.5 47.3 95.0 

Nuts 69.8 37.5 99.8 

 
 

The specificities of real-time self-reported data pertaining to each food item ranged from 

84.3% [65.5-97.8] for berries to 90.9% [76.1-98.8] for tomatoes (Table 4.2).  



 

90 

 

Table 4.2: Specificities and 95% credible intervals (CrI) for test 1 (digital images and meal 

descriptions) for tomatoes, lettuce and leafy greens, cucumbers, berries and nuts (n=51).  

       

 Specificity (%) 95% CrI 

Tomatoes 90.9 76.1 98.8 

Lettuce and Leafy Greens 90.4 74.7 98.7 

Cucumbers 90.3 79.1 98.3 

Berries 84.3 65.5 97.8 

Nuts 88.1 72.9 98.3 

 

 

4.4.3 Test 2 – Microsurveys  

The sensitivities of microsurveys pertaining to each food item ranged from 52.4% [36.6-

70.5] for lettuce and leafy greens to 75.1% [40.3-99.9] for cucumbers (Table 4.3). 

Table 4.3: Sensitivities and 95% credible intervals (CrI) for test 2 (microsurveys) for tomatoes, 

lettuce and leafy greens, cucumbers, berries and nuts (n=51).     

         

 Sensitivity (%) 95% CI 

Tomatoes 57.0 42.8 71.2 

Lettuce and Leafy Greens 52.4 36.6 70.5 

Cucumbers 75.1 40.3 99.9 

Berries 54.1 31.0 93.3 

Nuts 65.4 37.1 98.9 

 
 

The specificities of microsurveys pertaining to each food item ranged from 83.3% [71.6-

93.6] for nuts to 89.3% [79.9-96.0] for cucumbers (Table 4.4). 

Table 4.4: Specificities and 95% credible intervals (CrI) for test 2 (microsurveys) for tomatoes, 

lettuce and leafy greens, cucumbers, berries and nuts (n=51).     

    

 Specificity (%) 95% CrI 

Tomatoes 87.9 77.1 95.5 

Lettuce and Leafy Greens 88.1 77.4 95.7 

Cucumbers 89.3 79.9 96.0 

Berries 88.9 79.2 95.9 

Nuts 83.3 71.6 93.6 
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4.4.4 Test 3 – Food History Questionnaire  

The sensitivities of the food history questionnaire pertaining to each food item ranged 

from 59.1% [55.0-63.2] for berries to 78.6% [68.1-87.8] for lettuce and leafy greens (Table 4.5). 

Table 4.5: Sensitivities and 95% credible intervals (CrI)   for test 3 (food history questionnaire) 

for tomatoes, lettuce and leafy greens, cucumbers, berries and nuts.     

          

 Sensitivity (%) 95% CrI 

Tomatoes 70.3 61.8 78.3 

Lettuce and Leafy Greens 78.6 68.1 87.8 

Cucumber 68.9 61.5 75.9 

Berries 59.1 55.0 63.2 

Nuts 70.7 54.4 86.4 

 
 

The sensitivity for lettuce and leafy greens, 78.6% [68.1-87.8], was significantly higher 

than the sensitivity for berries 59.1% [55.0-83.2].  

The specificities of the food history questionnaire pertaining to each food item ranged 

from 47.8% [0.96-99.6] for lettuce and leafy greens to 88.4% [66.9-100] for berries (Table 4.6).  

Table 4.6: Specificities and 95% credible intervals (CrI)   for test 3 (food history questionnaire) 

for tomatoes, lettuce and leafy greens, cucumbers, berries and nuts.     

    

 Specificity (%) 95% CrI 

Tomatoes 59.7 1.21 99.8 

Lettuce and Leafy Greens 47.8 0.96 99.6 

Cucumbers 72.9 51.3 99.3 

Berries 88.4 66.9 100 

Nuts 72.7 48.4 99.5 

 

 

4.4.5 True Prevalence 

The true prevalence of exposure to each food item ranged from 38.3% [15.4-69.5] for 

cucumbers to 92.4% [76.5-100] for tomatoes (Table 4.7). 
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Table 4.7: The true prevalence and 95% credible intervals (CrI) of exposure to for tomatoes, 

lettuce and leafy greens, cucumbers, berries and nuts. 

 

 Prevalence (%) 95% CrI 

Tomatoes 92.4 76.5 100 

Lettuce and Leafy Greens 86.2 59.4 100 

Cucumbers 38.3 15.4 69.6 

Berries 54.0 25.2 77.7 

Nuts 46.4 15.9 84.0 

 

 

4.4.6 Comparison between Bayesian Analysis Results and Frequentist Analysis 

The sensitivity and specificity of the food history questionnaire computed through 

Bayesian Latent class analysis are shown in Table 4.8 directly next to the corresponding 

frequentist results from Chapter 3. 

 

Table 4.8: Sensitivities of food history questionnaire for tomatoes, lettuce and leafy greens, 

cucumbers, berries and nuts for Bayesian approach compared to the sensitivities computed 

through the frequentist approach. 
    

 Bayesian Approach  

Food History Questionnaire 

Sensitivity (%) [95%CrI] 

Frequentist Approach  

Food History Questionnaire 

Sensitivity (%) [95%CI] 

Tomatoes 70.3 [61.8-78.3] 77.8 [60.8-89.9] 

Lettuce and Leafy Greens 78.6 [68.1-87.8] 72.2 [46.5-90.3] 

Cucumbers 68.9 [61.5-75.9] 54.2 [32.8-74.4] 

Berries 59.1 [55.0-63.2] 37.9 [20.7-57.7] 

Nuts 70.7 [54.4-86.4] 48.5 [30.8-66.5] 

 

A comparison between the specificities of the food history questionnaire computed 

through Bayesian Latent class analysis and the results of specificity results from the frequentist 

analysis are shown in Table 4.9. 
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Table 4.9: Specificities of food history questionnaire for tomatoes, lettuce and leafy greens, 

cucumbers, berries and nuts for Bayesian approach (used in this chapter) compared to the 

sensitivities computed through the frequentist approach. 
           

 Bayesian Approach  

Food History Questionnaire 

Specificities (%)[95%CrI] 

Frequentist Approach  

Food History Questionnaire 

Specificities (%)[95%CI] 

Tomatoes 59.7 [1.21-99.8] 53.3 [26.6-78.7] 

Lettuce and Leafy Greens 47.8 [0.96-99.6] 21.2 [8.98-38.9] 

Cucumbers 72.4 [51.3-99.3] 63.0 [42.4-80.6] 

Berries 88.4 [66.9-100] 72.7 [49.8-89.3] 

Nuts 72.7 [48.4-99.5] 72.2 [46.5-90.3] 

 

 

The accuracy parameters of the combination of test 1 and test 2 run in parallel are shown 

in Table 4.10. This combination of tests represents the reference standard used in chapter 3. 

 

Table 4.10: Sensitivities and specificities of test 1 (digital images and meal descriptions) and test 

2 (microsurveys) run in parallel for tomatoes, lettuce and leafy greens, cucumbers, berries and 

nuts. 
           

 Sensitivity (%) Specificity (%) 

Tomatoes 91.0 79.9 

Lettuce and Leafy Greens 85.3 79.6 

Cucumbers 88.3 80.6 

Berries 86.9 74.9 

Nuts 89.6 73.4 

 

 

A direct comparison between the true prevalances calculated above and the prevalances 

computer through Bayesian Latent Class analysis are shown in Table 4.11.  
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Table 4.11: The prevalence of exposure to for tomatoes, lettuce and leafy greens, cucumbers, 

berries and nuts as determined based on the food history questionnaire data compared to the true 

prevalence calculated using Bayesian latent class analysis. 

 

 Bayesian 

Approach 

Prevalence 

(%) 

[95%CrI] 

Apparent 

Prevalence Food 

History 

Questionnaire (%) 

(n=51) 

Apparent 

Prevalence 

Image/ 

Descriptions (%) 

(n=51) 

Apparent 

Prevalence 

Microsurvey 

Data (%) 

(n=51) 

Tomatoes 92.4  

[76.5-100] 

68.6 (35/51) 74.5 (38/51) 88.2 (45/51) 

Lettuce and  

Leafy Greens 

86.2  

[59.4-100] 

76.5 (39/51) 60.8 (31/51) 76.5 (39/51) 

Cucumbers 38.3  

[15.4-69.6] 

45.1 (23/51) 25.5 (13/51) 45.1 (23/51) 

Berries 54.0  

[25.2-77.7] 

33.3 (17/51) 49.0 (25/51) 60.8 (31/51) 

Nuts 46.4  

[15.9-84.0] 

41.2 (21/51) 39.2 (20/51) 72.5 (37/51) 

 

 

4.5 Discussion 

The overall objective of this study was to determine the accuracy and validity of data 

collected in real-time from digital images and meal descriptions, microsurveys and the food 

history questionnaire. By incorporating sensitivity information derived for questionnaires of 

previous outbreak investigations, as well as the results of each of the diagnostic tests into 

Bayesian latent class models, the sensitivity and specificity of each test was determined for the 

classification of exposures to tomatoes, cucumbers, nuts, lettuce/leafy greens and berries as well 

as the true prevalences of exposure.  

The sensitivities of the three data collection methods were fairly similar – 53.0% to 

79.1% for images/meal descriptions, 52.4% to 75.1% for microsurveys and 59.1% to 78.6% for 

the food history questionnaire. The range of specificities for images/meal descriptions and 

microsurveys were also similar to one another – 84.3% to 90.9% for images/meal descriptions 

and 83.3% to 89.3% for microsurveys. The specificities of the food history questionnaire were 
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found to vary more than the other tests, ranging from 47.8% to 88.4%. When looking at each 

food type individually, the credible intervals of the sensitivity of the tests were found to overlap 

– indicating no significant difference in the sensitivities of the tests. The credible intervals 

specificities of each test also overlapped for each of the five foods. 

The sensitivity and specificities for individual foods were not significantly different from 

each other with the exception of the microsurvey data for tomatoes and lettuce/leafy greens, 

where the specificity was significantly higher than the sensitivity.  While the credible intervals 

were relatively wide for most estimates of sensitivity and specificity, many of the estimates did 

contain useful information both on most probably value and the extent of uncertainty in the 

estimates even with this relatively small sample size. However, the credible intervals for the 

sensitivity of the food history questionnaires were narrower than for the frequentist approach 

outlined in Chapter 3, while the specificity intervals were wider. Two particularly notable results 

were the specificity estimates for tomatoes and lettuce/leafy greens based on the food history 

questionnaire.  In both cases the specificity estimate was close to 50% with credible intervals that 

extended from 1% to >99%. The interpretation is that there is so much uncertainty that the risk of 

false positives could not be meaningfully estimated given the available data. 

The true prevalence of exposure to tomatoes 92.4% [76.5-100] calculated via Bayesian 

Latent Class analysis was significantly higher than the true prevalence for cucumbers 38.5% 

[15.4-69.6]. The same observation was made using the frequentist approach in Chapter 3 where 

the prevalence of tomatoes was 69% [58.0-78.2] and the prevalence of cucumbers was 43% 

[32.0-54.2]. This finding is also in agreement of the findings of the Foodbook Report 

(MacDonald, 2016) in which the prevalence of exposure to tomatoes was 72.9% [66.4-77.9] in 

the Canadian population and the prevalence of exposure to cucumbers was 62.9% [59.0-61.7].  
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The lower boundary of the 95% credible intervals for the estimated true prevalence of 

tomatoes (76.5%) calculated using Bayesian latent class analysis was, however, greater than the 

apparent prevalence of consumption of tomatoes (68.6%) based on the food history 

questionnaire.  This could be a combination of the low sensitivity of the food history 

questionnaire and the limited information on the specificity of the food history questionnaire for 

this food group. All other reported apparent prevalences fell within the credible intervals for the 

estimated true prevalences, suggesting the apparent and true prevalences were not significantly 

different from each other for the remaining tests and foods.     

 These results of this study provide context to the findings of the previous study (Chapter 

3) that implemented a frequentist approach to quantifying recall bias. The credible intervals of 

the sensitivity and specificity of the food history questionnaire for each food item computed in 

Chapter 4 were found to overlap between the corresponding results from Chapter 3. In other 

words, no significant differences were found in the measures of accuracy computed by the 

methods of analysis. 

The previously used reference standard was based on parallel interpretation of the real-

time data from images/meal descriptions and the microsurveys administered with 48 hours. The 

results of the Bayesian analysis indicated that this combination of tests had sensitivities ranging 

from 85.3-91.0% and specificities ranging from 73.4-80.6%. These findings indicate that the 

reference test used in Chapter 3 was as suspected not a perfect gold standard. The Bayesian 

latent class analysis, therefore, allows for a better approximation of both sensitivity and 

specificity of the food history questionnaire and the true prevalence of exposure to each food 

item.  
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The Bayesian latent class analysis approach has several important advantages over the 

more traditional frequentist approach. This method provides a more comprehensive assessment 

of the uncertainty associated with sensitivity and specificity of all three diagnostic tests and 

provides a better assessment of the true prevalence of exposure to each food group. This served 

to reduce the impact of the limitations of each individual data collection method. Furthermore, 

by formally incorporating prior knowledge regarding measurement uncertainty, more informed 

estimations of sensitivities and specificities of the questionnaire were obtained for each of the 

food items given the limitations of the study sample size.  

This approach to quantifying recall bias may have important implications on the field of 

outbreak investigation. By determining the sensitivity and specificity of different tools, data can 

be adjusted to account for errors in human memory yielding a more accurate representation of 

the food consumption histories. Given the pretest probability of exposure and the sensitivity and 

specificity of the test, the positive and negative predictive values can be determined to adjust 

questionnaire results for the potential recall bias.  

This method does, however, require a strong sample size to ensure that the final answers 

are not influenced too strongly by prior information. In this example, there were only five foods 

of interest where there were data from all three tests and no zero cells. The estimated true 

prevalences had very wide confidence intervals for all foods but tomatoes emphasizing the 

uncertainty associated with this relatively small sample. The list of foods that were assessed in 

this study are a subset of the foods commonly implicated in outbreak investigations. Future 

studies may consider conducting similar analyses on a wider range of food items to gain a more 

comprehensive perspective on the effect of recall bias on dietary memory. By recruiting larger 

sample sizes and building on the knowledge from this work, future studies can also narrow the 
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confidence intervals of the estimated parameter and determine whether some food items are less 

susceptible to recall bias than others. 

 

4.6 Conclusion 

Bayesian latent class modelling is an effective strategy for determining the sensitivity and 

specificity of food history questionnaires in the absence of a true gold standard. Using this 

approach, recall bias can be quantified and adjusted for foodborne outbreak investigations. By 

incorporating prior knowledge and avoiding the need for a true gold standard, this approach 

allows researchers to quantify biases that would otherwise be difficult to measure. The 

sensitivities and specificities computed via the Bayesian approach did not differ significantly 

from the corresponding parameters found by using the frequentist approach used in Chapter 3. 

Similarly, findings regarding prevalence of exposures did not differ significantly between the 

two methods of analysis. This study serves as a first step to a new and innovative approach to 

quantifying biases of human memory to inform public health practice. 
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CHAPTER 5 – CONCLUSION 

It has long been recognized that limitations in human memory introduce errors and biases 

into the data collected during outbreak investigations (Decker et al., 1986; Mann, 1981). More 

specifically, as cases misclassify their own exposure status, the power of epidemiological tools to 

detect meaningful associations between exposures and the development of illness decreases 

significantly. This may increase the time it takes to identify the source of the outbreak and result 

in more cases of illness. While these problems are widely acknowledged (Dechet et al., 2006; 

Schenkel et al., 2006), the studies presented here are among the first to directly measure the 

implications of recall bias and provide a way by which to overcome the challenge. In doing so, 

various other important barriers to outbreak surveillance were also addressed including 

collecting accurate data on the incidence of foodborne illness and food histories for affected 

individuals. 

Bayesian latent class analysis can provide estimates of the accuracy of different test and 

surveillance methods, even when gold standards do not exist. Knowledge of the measures of 

accuracy of a test allow researchers and public health practitioners to convert apparent 

prevalances to true prevalances, as described by Rogan and Gladen (1978). In the context of this 

study, accuracy of data collected from food history questionnaires reflected the effect that recall 

bias had on participants’ abilities to remember different food exposures. When accounting for the 

sensitivity and specificity of the questionnaire used, the true prevalence was found to slightly 

decrease from the apparent prevalence reported from food history questionnaires. This additional 

step of calibrating data analysis methods to account for errors in human memory is expected to 

yield more accurate representation of the food consumption histories and allow public health 

officials to generate more informed hypotheses about the source of outbreaks. 
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5.1 Summary of Key Findings 

A combination of innovative approaches and technological tools has provided new 

insights into the surveillance and investigation of foodborne illness. Ninety-six students at the 

University of Saskatchewan were recruited and asked to report their food consumption over a 10-

week period. These studies have provided information on the frequency of symptoms of enteric 

illness and the food consumption habits of a previously understudied segment of the Canadian 

population. In addition, the three studies collected comprehensive food consumption histories, 

quantified recall bias and provided a method of accounting for such bias in outbreak 

investigations.  

Chapter 2 focused on obtaining an accurate and comprehensive account of self-reported 

enteric illness and tracking food consumption over the course of 10 weeks. The option to trigger 

foodborne illness surveys at the touch of a button gave participants a quick and convenient way 

to report information on the occurrence of illness. Ethica provided a feasible way to collect 

detailed information from a large group of people over a long period of time. Digital images 

provided information about food consumption behaviours and an accurate and objective account 

of each meal. Meal descriptions allowed participants to provide information such as specific 

ingredients and other details that may not be evident in the images. Microsurveys helped to 

ensure that even foods missed in pictures and descriptions, were still recorded by prompting 

participants for responses.  

When asked the same questions on food safety knowledge at three different time points, 

between 17% and 39% of respondents changed their response between surveys. Thus, illustrating 

the room for improvement in regards to food safety knowledge among the millennial generation, 

and the willingness to learn more about food safety, as supported by findings from focus group 

discussions. Participants were found to be reasonably compliant with data collection protocols; 
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for example, during the first 10 days of the study 100% (96/96) of participants completed at least 

1 food microsurvey per day, 85.4% (82/96) submitted at least one digital image per day and 

68.4% (54/79) provided at least one meal description per day. Overall, the convenience of the 

application in tracking what a person eats with minimal disruption to everyday routines, and the 

vast amounts of data that were reported made this an effective and feasible strategy for capturing 

food histories. 

In Chapter 3 the real-time data collected through digital images, meal descriptions, and 

microsurveys were used as a reference to measure the sensitivity and specificity of traditional 7 

or 18-day (2.5 weeks) food history questionnaires. The validity of food history data collected 

after 7 days was found to be consequentially low with the validity of data varying by food type. 

Sensitivities ranged from 14.3% for sprouts to 100% for leafy greens while specificities ranged 

from 30.4% for beef to 80.4% for peanuts. The findings were similar for the questionnaires 

administered after 18 days; sensitivities ranged from 15.8% for sprouts to 77.8% for tomatoes 

and specificities ranged from 21.2% for leafy greens to 92.1% for melons. Similarly, agreement 

between data collected in real-time and data collected from food history questionnaires did not 

differ between the time intervals for most food items, with leafy greens being the lone exception. 

Dietary recall among participants who reported enteric illness during the study did not differ 

from that of individuals who experienced no such symptoms. Foods exposures that were assessed 

on more than one occasion (i.e. on microsurveys and again on food history questionnaires) were 

also not found to be more sensitive or specific than food exposures that were assessed only once 

(on only food history questionnaires). Interestingly, having been previously asked about a food 

exposure decreased the specificity and increased the likelihood of reporting a false positive – the 

rate of false negatives was unaffected. The key findings of this chapter were that dietary memory 
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has comparably low accuracy after 7 and 18 days and that the magnitude of the effect that recall 

bias had on the accuracy of dietary memory was not uniform across food types.  

In Chapter 4 Bayesian analysis was applied to determine the specificity and sensitivity of 

food history questionnaire data collected at 2.5 weeks and data from the Ethica app (self-reported 

images with descriptions and time-triggered microsurveys) in the absence of a true gold standard. 

The sensitivities and specificities of all three tests for 5 different foods were determined using 

this method. The findings of this study suggest that data collected from digital images and 

descriptions alone did not provide a true gold standard of dietary history. Similarly, data 

collected from microsurveys alone does not serve as a true gold standard. While neither method 

is perfect, the combination of these strategies interpreted in parallel provided a relatively 

sensitive assessment of food exposures. Overall, the sensitivities and specificities of the food 

history questionnaire calculated using Bayesian analysis did not significantly differ from those 

calculated in Chapter 3. Bayesian latent class modelling proved as an effective strategy for 

determining the sensitivities and specificities of each of the data collection methods. In this 

sample, the true prevalences based on the Bayesian analysis adjusted for test sensitivities and 

specificities and sample size were not significantly different from the apparent prevalences with 

one exception. The Bayesian estimate of the true prevalence for exposure to tomatoes was higher 

than that based on the food history questionnaire. 

 

5.2 The Broader Context of these Findings 

By directly measuring the symptoms of enteric illness, these studies provided a 

comparison for previous estimates of foodborne illness in Canada. Among the 96 study 

participants, 34% reported having experienced an episode of vomiting or nausea and 29% 

reported an episode of diarrhea that was not believed to be caused by alcohol consumption in a 
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10-week period. These findings are considerably higher than previous estimates of 12.5% - 1 in 8 

per year (Thomas et al., 2013). Differences in the case definition of acute diarrheal illness may 

contribute to this discrepancy. The study by Thomas et al., 2013 defined cases of acute diarrheal 

illness as having ≥ 3 loose stools in 24 hours with duration lasting > 1 day. In the present 

feasibility study (Chapter 2), participants were simply asked to report the occurrence of 

symptoms. Including information such as duration, frequency, and severity on app questionnaires 

in future studies will allow for more direct comparisons to be made.  

Accurately measuring the percentage of cases of acute foodborne illness that seek 

medical care is an important component to measuring the extent and implications of foodborne 

illness in Canada. In this study, 7% of individuals who described enteric symptoms on the user-

triggered or time-triggered feature reported their symptoms to a health practitioner. Previous 

estimates of the percentage of cases of foodborne illness that seek medical care include 14% 

(Thomas et al., 2013), 18% (Scallan et al., 2011) and 22% (Sargeant et al., 2008). Discrepancies 

in these estimates may be attributed to differences in the definition of enteric illness that was 

used in each study and the sensitivities of methods used to detect cases. Severe cases of 

foodborne illness are more likely to seek medical care than mild or moderate cases (Scallan et 

al., 2006). As a result, surveillance methods that utilize only data from health records often fail to 

capture less severe cases of illness.  

The sensitivity of food history questionnaires has rarely been directly studied. Mann 

(1981) and Decker et al. (1986) investigated dietary recall after 3 and 5 days, respectively, in the 

context of local point source outbreak investigations. Both studies observed individuals as they 

ate at a buffet dinner and measured the accuracy of dietary recall of a few specific food items. 

Both studies found sensitivities ranging from 81.2% to 95.2% and specificities ranging from 
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75% to 98.5%. The analysis conducted in Chapter 3 included a greater time lag between 

exposure and the questionnaire and a larger number of food items. The effect of recall bias of 

dietary memory was found to vary considerably with food type. Therefore, the broader range of 

sensitivities (14.3-100% after 7 days and 15.8-77.8% after 18 days) computed in Chapter 3 was 

to be expected. The same can be said for the specificities which ranged from 30.4-80.4% after 7 

days and 21.2-92.1% after 18 days.  

The variety of food preferences and risk-benefit perceptions that characterize the 

Canadian population make it challenging to create data collection strategies that could be applied 

across contexts and situations. New technologies such as Ethica will play an important role in 

collecting and analyzing public health intelligence and identifying risk factors to prevent disease. 

This technology has the potential to collect detailed health related data from sentinel surveillance 

cohorts in a feasible and sustainable manner. Particular advantages of the app include the wide 

range of options to collect data, the low burden placed on the user, the option to prompt and 

remind users throughout the data collection process, and the ability to collect data without 

regular access to the Internet. These advantages create new opportunities for targeted 

surveillance strategies to better understand health related behaviours. 

 

5.3 Limitations 

Although considerable efforts were made and different data collection methods were 

utilized, limitations still exist in the methodology and analysis of the study. Because compliance 

was not perfect, Bayesian estimates of sensitivity and specificity suggest that some participants 

may have failed to report a particular food exposure in digital images, meal descriptions and 

microsurveys, but remembered the exposure when later completing the food history 

questionnaire. The resulting false negatives within the collection of real-time data could have 
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caused a decrease in the specificities for the retrospective questionnaire calculated in Chapter 3. 

It is considered less likely that participants would falsely report having consumed a food item 

shortly after the meal was consumed. These limitations were examined by implementing 

different data analysis methodologies to calculate sensitivities and specificities in Chapters 3 and 

4. Chapter 3 used real-time data as a reference to measure the accuracy of data collected on food 

history questionnaires. Chapter 4 implemented Bayesian latent class modelling to analyze self-

reported data, microsurvey results, and food history questionnaire results to calculate sensitivities 

and specificities in the absence of a true gold standard. The results of the two different 

approaches were not significantly different. 

While the true prevalence of exposure was estimated in Chapter 4 after adjusting for 

errors associate with sensitivity and specificity, the relatively small sample size limited the 

analysis to five foods and resulted in relatively wide credible intervals. Differences were found 

between the frequency of food exposures observed in this study and those published in the 

national Foodbook report Canada (MacDonald, 2016). These differences remained even after 

adjusting for age, province and time of year for 9 of 15 foods that were investigated. This may be 

attributed to differences in the method of data collection, but also emphasizes the importance that 

social, cultural and other demographics that characterize sub-populations have in outbreak 

investigations.  

 

5.4 Tying It All Together 

To solve a challenge that has always faced the field of foodborne illness investigation, these 

studies used a combination of new tools, advanced data analysis methodologies and creative 

innovations. A comprehensive record of the food consumption of each participant was collected 

using Ethica smartphone technology. The effect of recall bias on dietary history was quantified 
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by using data collected in real-time as a reference standard to measure the accuracy of data 

collected from food history questionnaires administer later in the study. Bayesian latent class 

analysis was conducted to measure the sensitivity and specificity of food history questionnaires 

in the absence of a true gold standard. By adjusting for sensitivity and specificity, an example of 

how data analysis methods can then be calibrated to account for the effect of recall bias was 

illustrated. This three step process– collect, quantify and mitigate – guided the process of 

quantifying and mitigate recall bias in foodborne outbreak investigations. To ensure that the 

results of these studies would have practical value for public health officials in Canada, the 

questionnaires and time intervals used were designed to resemble a range of plausible local, 

provincial and national enteric outbreak investigations conducted. It is important to note that 

during outbreak investigations, data collected from food history questionnaires is interpreted in 

combination with information gathered from food testing, food/environmental investigations and 

laboratory results. These other sources of evidence can be used to verify and complement food 

history data.  Decisions regarding public health action are guided by the weight of evidence 

approach that incorporates each piece of available information (Vik et al., 2014).  

Future research into the effects of recall bias at different points in time and on different 

commonly implicated foods is warranted. The list of foods commonly implicated in outbreak 

investigations that were assessed in this study is by no means meant to be comprehensive. By 

including a wider range of food items as well as a larger sample size, more comprehensive 

perspective may be gained on the effect of recall bias on dietary memory. Such investigations 

may unearth trends and insights into why the recollection of some food exposures is better than 

others. Capturing information from grocery receipts may be a beneficial strategy that can be 

incorporated into these types of studies. Although images of such receipts would not guarantee 
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that the individual consumed all foods that were purchased, this strategy has the potential to 

verify food history reports. Furthermore, this type of data may be particularly useful in 

prompting participants’ memories during outbreak investigations that involve long windows of 

time. 

As technologies and methodologies continue to advance, so will opportunities for the 

acquisition of data on human behavior. For example, the Ethica app has itself advanced 

substantially since the time of this study and is now available for iPhones as well as Android 

phones. By harnessing these new technologies new data collection and analysis tools can 

continue to be developed to allow for more accurate representations of diet history. Several 

potential applications of the Ethica smartphone technology were brought up during focus group 

discussions including the identification of specific food allergies as well as risk factors and 

foodborne illness hotspots. 

While a true gold standard of dietary histories may never be attained, data analysis 

methods such as Bayesian latent class analysis can be used to determine sensitivities and 

specificities of a wide range of epidemiological tests and estimate true prevalence of foodborne 

exposures after correcting for recall bias. Formal incorporation of prior knowledge regarding 

measurement uncertainty may offer a means by which to account for, rather than aim to 

eliminate, recall bias in foodborne outbreak investigations. It is important to note that these 

studies serve as a first step to a new and innovative approach to accounting for errors in human 

memory during epidemiological investigations. Through multidisciplinary approaches, advances 

in areas of psychology can continue to be applied to epidemiological studies to inform best 

practices in public health.  

 



 

109 

 

5.5 References 

Dechet, A. M., Scallan, E., Gensheimer, K., Hoekstra, R., Gunderman-King, J., Lockett, J., 

Wrigley, D., Chege, W., Sobel, J., & Group, M. W. (2006). Outbreak of multidrug-

resistant Salmonella enterica serotype Typhimurium definitive type 104 infection linked 

to commercial ground beef, northeastern United States, 2003–2004. Clinical infectious 

diseases, 42(6), 747-752.  

Decker, M., Booth, A., Dewey, M., Fricker, R., Hutcheson, R., & Schaffner, W. (1986). Validity 

of food consumption histories in a foodborne outbreak investigation. American journal of 

epidemiology, 124(5), 859-863.  

MacDonald, D. (2016). Foodbook: The Canadian Food, Water and Animal Exposure Study. 

Paper presented at the IAFP 2016 Annual Meeting. 

Mann, J. M. (1981). A prospective study of response error in food history questionnaires: 

implications for foodborne outbreak investigation. American journal of public health, 

71(12), 1362-1366.  

Rogan, W. J., & Gladen, B. (1978). Estimating prevalence from the results of a screening test. 

American journal of epidemiology, 107(1), 71-76.  

Sargeant, J., Majowicz, S., & Snelgrove, J. (2008). The burden of acute gastrointestinal illness in 

Ontario, Canada, 2005–2006. Epidemiology and Infection, 136(04), 451-460.  

Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., Jones, 

J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States—major 

pathogens. Emerg Infect Dis, 17(1).  

Scallan, E., Jones, T. F., Cronquist, A., Thomas, S., Frenzen, P., Hoefer, D., Medus, C., & 

Angulo, F. J. (2006). Factors associated with seeking medical care and submitting a stool 

sample in estimating the burden of foodborne illness. Foodbourne Pathogens & Disease, 

3(4), 432-438.  

Schenkel, K., Bremer, V., Grabe, C., Van Treeck, U., Schreier, E., Höhne, M., Ammon, A., & 

Alpers, K. (2006). Outbreak of hepatitis A in two federal states of Germany: bakery 

products as vehicle of infection. Epidemiology and Infection, 134(06), 1292-1298.  

Thomas, M. K., Murray, R., Flockhart, L., Pintar, K., Pollari, F., Fazil, A., Nesbitt, A., & 

Marshall, B. (2013). Estimates of the burden of foodborne illness in Canada for 30 

specified pathogens and unspecified agents, circa 2006. Foodborne pathogens and 

disease, 10(7), 639-648.  

Vik, J., Hexemer, A., & Farber, J. (2014). Summary: Weight of evidence-Factors to consider 

when investigating a food-borne illness outbreak. Canada Communicable Disease 

Report, 40(14), 303.  

 



       

110 

APPENDICES 

Appendix 1: Microsurvey Questionnaires (Type 1 and Type 2) 

 Microsurvey Type 1   

Survey A 

Breakfast 

 

Time sent to smartphone: 

8:00 

AM 

 

You are invited to participate in the following study. Thank-you for 

considering to support this research to investigate new technology that we 

believe will help to improve current methods of understanding enteric 

illness and foodborne diseases. 

 

 

By completing and submitting the questionnaire, YOUR FREE AND 

INFORMED CONSENT IS IMPLIED and indicates that you understand the 

conditions of participation in this study. 

 

 
 

 

 

Food Group: Fruit 

 
 

 1 Q1 On ________, Did you eat any servings of fresh fruit? 

 

 

Please do not include frozen, canned/jarred or dried fruits. 

 

 

Please do include any fruits in salads, smoothies, desserts or as a garnish. 

 

 
 

 

 

Q2 What fruit (s) 

 

 

Bananas 

 

 

Mangoes 

 

 

Kiwi 

 

 

Pomegranate (not powdered) 

 

 

Pineapple 

 

 

Avocado (including guacamole) 

 

 

Olives 

 

 

Melons 

 

 

Berries 

 

 

Unpasteurized fruit juice 

 

 

Fruit Smoothies 

 

 

Pre-cut fruit mix or fruit platter 
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Survey B 

Lunch 
Time sent to smartphone: 12:45 PM 

 
 

 

 

Food Group: 
Nutrition 

bars 

   

2 

Q1: On _______, did you eat any nutrition bars for a snack or meal 

replacement? 

 

 

granola bar 

 

 

energy bar 

 

 

protein bar 

 

 

other  

 

 
 

 

 

Food Group: 
Meal 

replacements 

 

Q2: On _______, did you eat any meal replacements? 

 

 

fruit based drink 

 

 

vegetable based drink 

 

 

fruit + vegetable 

 

 

protein powder 

 

 

dairy based drink 

 

 

full meal replacement (e.g Boost, Ensure) 

 

 
 

 

 

Food Group: Snacks 

 

Q3: On _______, did you eat any convenience snacks when you were hungry? 

 

 

chips, nachos, popcorn or pretzels 

 

 

chocolate or chocolate containing candy 

 

 

non chocolate candy 

 

 

pizza or pizza pops. 

 

 

dips (e.g. salsa, hummus, prepared or store-bought) 

 

 
 

 

 

Food Group: Nuts 

 

Q4:  On _______, did you eat any nuts as snacks when you were hungry 

(whole, pieces or ground nuts)? 

 

 

Almonds 

 

 

Cashews 

 

 

Peanuts (not including peanut butter) 

 

 

Walnuts 

 

 

Pecans 

 

 

Hazelnuts (filberts) 
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Survey C 

Supper 
Time sent to smartphone: 6:30 PM 

 

Food Group: Salads 

3 Q1: On _______ did you eat any store bought or homemade salads? 

 

 

Lettuce or leafy greens salad 

 

 

with tomatoes? 

 

 

Coleslaw 

 

 

Egg salad (as own dish or prepared on sandwich or pita) 

 

 

Potato salad 

 

 

Pasta salad 

 

 

Fruit salad/pre-cut 

 

 

Fish  or seafood salad (e.g tuna, mixed seafood) 

 

 

Q2: Did you use a salad dressing? 

 

 

processed salad dressing 

 

 

mayonnaise-containing homemade salad dressing 

 

 

oil and/or vinegar-containing homemade salad dressing 

 

 
 

 

 

Food Group: Sprouts 

 

Q3:  On _______, did you eat any sprouts? 

 

 

alfalfa 

 

 

mung bean 

 

 

onion 

 

 

radish 

 

 

mustard 

 

 

broccoli 

 

 

Did you cook the sprouts? 

 

 
 

 

 

Food Group: Fish 

 

Q4: On _______ did you eat any fish products? 

 

 

finned fish (e.g. tuna, bass, sole, cod, salmon, trout, pickerel, perch,    

            jackfish, whitefish etc.)  

 

 
 

 

 
 

 

 

Q5: what type of product? 

 

 

canned 

 

 

fresh fish (caught in wild or bought fresh, not frozen) 

 

 

smoked 

 

 

salted 

 

 

frozen fish fillets 

 

 

raw (e.g. sushi, sashimi, ceviche, tartare) 

 

 
 

 

 

Thank you for your time and contribution 
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Microsurvey Type 2 

 Survey A 

Breakfast 
Time sent to smartphone: 8:00 AM 

 

You are invited to participate in the following study. Thank-you for 

considering to support this research to investigate new technology 

that we believe will help to improve current methods of 

understanding enteric illness and foodborne diseases. 

 

 

By completing and submitting the questionnaire, YOUR FREE AND 

INFORMED CONSENT IS IMPLIED and indicates that you 

understand the conditions of participation in this study. 

 

   

 

Food Group: Supplements 

4 

Q1: On MONDAY did you eat any dietary or nutritional 

supplements? 

 

 

What type of supplement? 

 

 

Chia seeds or powder 

 

 

Hemp seeds or hearts 

 

 

Whey powder 

 

 

Protein mix 

 

 

Flax seeds  (whole or ground) 

 

 

Herbs (dried or fresh) 

 

 
 

 

 

Food Group:  Cereals 

 

Q2: On _______ did you eat cereal for breakfast? 

 

 

Cold breakfast cereal 

 

 

Hot breakfast cereal (e.g oatmeal, cream of wheat, porridge) 

 

 
 

 

 

Food Group:  
Eggs and 

Dairy 

 

Q3: On _______ did you eat eggs or dairy products for breakfast? 

 

 

Any eggs (e.g. scrambled eggs, omelets, put into drinks or 

homemade salad dressing) 

 

 

raw or undercooked (runny or over-easy) eggs 

 

 

Dairy milk (Pasteurized or Unpasteurized (raw)dairy milk 

 

 

Any dairy substitutes or non-dairy milk (e.g soy, almond, 

coconut, oat, or rice milk) 
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 Survey B 

Lunch 
Time sent to smartphone: 12:45 PM 

 

Food Group: Cheese 

5 Q1: On _______ did you eat any cheese products? 

 

 

blue-veined cheese (e.g. gorgonzola, blue cheese) 

 

 

fresh cheese (e.g , feta, buffalo mozzarella sold in water, goat 

or sheep cheese) 

 

 

processed cheese (e.g. sliced, string or tube cheese) 

 

 

hard cheese (e.g cheddar, gouda, mozzarella, Monterey jack) 

 

 

soft cheese (e.g. camembert) 

 

 

cottage cheese  or ricotta 

 

 

parmesan cheese (fresh grated or as dried grated product) 

 

 
 

 

 

Food Group: Sandwiches 

 

Q2: On _______ did you prepare any sandwiches, pitas, crepes, snacks or drinks 

using peanut butter or other nut pastes or spreads? 

 

peanut butter 

 

 

almond butter 

 

 

chocolate hazelnut spread 

 

 

Q3: did you sweeten it with honey or other sugar replacements 

 

 

honey 

 

 

stevia 

 

 

prepared jam 

 

 
 

 

 

Q4: On _______ did you eat any dried soup or noodle mixes? 

 

 

purchased as prepared 

 

 

made it myself (e.g. instant rice noodles) 

 

 
 

 

 

Q5: On _______ did you eat any tofu or tofu-containing products? 

 

 

tofu purchased in package 

 

 

meal or snack containing tofu 
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 Survey C 

Supper 
Time sent to smartphone: 6:30 PM 

 

Food Group: Poultry 

6 Q1: In _______, did you eat any poultry products? 

 

 

chicken 

 

 

turkey 

 

 

duck 

 

 

partridge 

 

 

goose 

 

 

Q2: what type of product? 

 

 

fast food purchase or made at home from frozen ready-cook meal (e.g. 

chicken nuggets/strips) 

 

ground meat 

 

 

pieces (e.g thighs, breast, neck, wings) 

 

 

whole 

 

 

deli meat 

 

 

used to make soup 

 

 
 

 

 

Food Group: Vegetables 

 

Q3: On _______ did you eat any fresh, frozen or canned vegetables? 

 

 

tomatoes 

 

 

peppers 

 

 

carrots 

 

 

broccoli 

 

 

cauliflower 

 

 

onions 

 

 

leeks 

 

 

celery 

 

 

mushrooms 

 

 

cucumber 

 

 

peas 

 

 

beans 

 

 

corn 

 

 

cabbage 

 

 

vegetable juices  

 

 

fresh squeezed or processed 

 

 
 

 

 
 

 

 

Thank you for your time and contribution 
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Appendix 2: Selection process for Foods of Interest 

Eligible Foods 

 (Relative frequency = 20-80%)* 

Visually 

Distinguishable 

Literature 

Review 

Selected for 

Study 

Any lettuce or leafy greens Yes Yes Yes 

Poultry Yes Yes No 

Whole, pieces or ground nuts Yes  Yes Yes 

Sprouts Yes Yes  Yes 

Cabbage(including coleslaw) Yes Yes  Yes 

Berries Yes Yes  Yes 

Cucumber Yes Yes  Yes 

Melons Yes Yes Yes 

Peanut butter Yes Yes Yes 

Peanuts (not including peanut butter) Yes Yes Yes 

Any tomatoes Yes Yes Yes 

Breaded Chicken Yes Yes Yes 

Any cheese products Yes Yes - 

Mushrooms Yes - - 

Peas (shelled or in pods) Yes - - 

Broccoli Yes - - 

Onions Yes - - 

Nutrition bars Yes - - 

Peppers Yes - - 

Carrots Yes - - 

Bananas Yes - - 

Avocado (including guacamole) Yes - - 

Breakfast cereal Yes - - 

Cold breakfast cereal Yes - - 

Convenience snacks Yes - - 

Chips, nachos, popcorn, pretzels Yes - - 

Chocolate  Yes - - 

Non-chocolate candy Yes - - 

Almonds Yes - - 

Dried soup or noodle mixes - - - 

Dairy milk - - - 

Dairy substitutes or non-dairy milk  - - - 

Hot breakfast cereal  - - - 

Parmesan cheese - - - 

Fruit smoothies - - - 

Chicken (not including deli-meat) - - - 

Chicken pieces or parts in soups, or 

as part of a dish, not including deli-

meat) - 

- 

- 
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Frozen fish (e.g. breaded or non-

breaded fillets of cod, haddock, sole 

fish, basa, tilapia) - 

- 

- 

Any dietary or nutritional 

supplements (e.g. meal replacements, 

protein powder, vitamins, herbs) - 

- 

- 

Frozen vegetables - - - 

Finned-fish - - - 

  
 

 *Based on Food History 

Questionnaire 
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Appendix 3: Food Safety Survey 1 

You are invited to participate in the following study. Thank-you for considering to support 

this research to investigate new technology that we believe will help to improve current 

methods of understanding enteric illness and foodborne diseases. 

 
            By completing and submitting the questionnaire, YOUR FREE AND INFORMED 

CONSENT IS IMPLIED and indicates that you understand the conditions of participation 

in this study. 

 
            

Set 1 

            Q1. Did you eat in a restaurant today? 

         Yes 

            No 

            
 

            Q2. Did you eat take out / ready to eat food today? 

       Yes 

            No 

            
 

            Q3. Do you eat purchased ready to eat foods and store them at room temperature for more 

than 1 hour before eating? 

Yes 

            No 

            
 

            Q4. Do you take left overs home from restaurants to eat later? 

      Yes 

            No 

            
 

            
 

            Thank you for your time and contribution 
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Appendix 4: Food Safety Survey 2 

You are invited to participate in the following study. Thank-you for considering to support this 

research to investigate new technology that we believe will help to improve current methods of 

understanding enteric illness and foodborne diseases. 
             

By completing and submitting the questionnaire, YOUR FREE AND INFORMED 

CONSENT IS IMPLIED and indicates that you understand the conditions of 

participation in this study. 

 
Q1. Did you eat organic food today? 

      Yes 

            No 

            Not sure 

           
 

            Q2. Did you eat food identified as being locally grown today? 

      Yes 

            No 

            Not sure 

           
 

            Q3. Did you eat food identified as being raised without antibiotics today? 

     Yes 

            No 

            Not sure 

           
 

            Q4. Did you eat food identified as being raised without steroids/hormones today? 

    Yes 

            No 

            Not sure 

           
 

            Q5. Did you feel sick in the last week? 

        Branch if yes / If no then done 

         
 

            5a. Did you feel nauseous or vomit in the last week 

               

5b. Did you have diarrhea in the last week? 

        Branch if yes to either / If no then done 

        
 

            5c. Did you consult a health care professional regarding this illness? 

      
 

            5d. Do you suspect your illness might be related to consumption of alcoholic beverages?           

Thank you for your time and contribution 
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Appendix 5: Food Safety Survey 3 

You are invited to participate in the following study. Thank-you for considering to 

support this research to investigate new technology that we believe will help to improve 

current methods of understanding enteric illness and foodborne diseases. 

 
            By completing and submitting the questionnaire, YOUR FREE AND INFORMED 

CONSENT IS IMPLIED and indicates that you understand the conditions of 

participation in this study. 

             Q1. Are organic foods safer than foods from conventional production systems? 

     Yes 

            No 

            Not sure 

           
 

            Q2. Are locally grown foods safer than foods from commercial production systems? 

     Yes 

            No 

            Not sure 

           
 

            
 

            Thank you for your time and contribution 
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Appendix 6: Food Safety Survey 4 

You are invited to participate in the following study. Thank-you for considering to support 

this research to investigate new technology that we believe will help to improve current 

methods of understanding enteric illness and foodborne diseases. 

 
            By completing and submitting the questionnaire, YOUR FREE AND INFORMED 

CONSENT IS IMPLIED and indicates that you understand the conditions of participation 

in this study. 

             Q1. Washing a kitchen sponge with soap will get rid of all the bacteria. 

     TRUE 

            FALSE 

            
 

            Q2. Raw meat should be washed in the sink before cooking. 

      TRUE 

            FALSE 

            
 

            Q3. Food should be allowed to sit on the counter before putting it in the fridge for storage. 

   TRUE 

            FALSE 
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Appendix 7: Food Safety Survey 5 

You are invited to participate in the following study. Thank-you for considering to support 

this research to investigate new technology that we believe will help to improve current 

methods of understanding enteric illness and foodborne diseases. 

 
            By completing and submitting the questionnaire, YOUR FREE AND INFORMED 

CONSENT IS IMPLIED and indicates that you understand the conditions of participation in 

this study. 

             Q1. Prebagged “ready to eat” greens should not be washed again before eating. 

    TRUE 

            FALSE 

            
 

            Q2. Hamburgers should be cooked until they are “piping hot” and there is no visible pink left. 

   TRUE 

            FALSE 

            
 

            Q3. It is important to use a thermometer to check the temperature of meat before serving, but 

you don’t need a thermometer for precooked leftovers. 

TRUE 

            FALSE 

            
 

            Thank you for your time and contribution 
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Appendix 8: User-triggered Foodborne Illness Survey 

Did you consult a health-care professional regarding this illness? 

         
 

            Did you suspect your illness might be related to consumption of alcoholic beverages? 

       
 

        I’ve got… 

                             Diarrhea 

                       Vomiting   

                    Abdominal pain and craps 

                             Nausea 

                             Fever             

                 Other             

             

Thank you for your time and contribution 
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Appendix 9: Time-triggered Foodborne Illness Questions 

Did you feel sick in the last week? 

         
 

            Branch if yes / If no then done 

         
 

            4a. Did you feel nauseous or vomit in the last week 

               

4b. Did you have diarrhea in the last week? 

        
 

            Branch if yes to either / If no then done 

        
 

            4c. Did you consult a health care professional regarding this illness? 

             

4d. Do you suspect your illness might be related to consumption of alcoholic beverages?     

   
 

            
 

            Thank you for your time and contribution 
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Appendix 10: Example of OpenBUGS code for 3 Tests and 1 Population 

Berries: 

model; 

# FBQ = foodbook , MicS=microsurvey, SelfR = self reported data 

{ 

# Multinomial Model 

y[1:2, 1:2, 1:2] ~ dmulti(p[1:2, 1:2, 1:2], n) 

# Prob all 3 tests positive 

p[1, 1,1] <- pi*SeFBQ*(SeSelfR*SeMicS+covDp) + (1-pi)*(1-SpFBQ)*((1-SpSelfR)*(1-SpMicS)+covDn) 

# SelfR+, MicS-,  FBQ+ 

p[1,2,1] <- pi*SeFBQ*(SeSelfR*(1-SeMicS)-covDp) + (1-pi)*(1-SpFBQ)*((1-SpSelfR)*SpMicS-covDn) 

# SelfR+,MicS+, FBQ-  

p[1,1,2] <- pi*(1-SeFBQ)*(SeSelfR*SeMicS+covDp) + (1-pi)*SpFBQ*((1-SpSelfR)*(1-SpMicS)+covDn) 

# SelfR+,MicS-, FBQ-  

p[1,2,2] <- pi*(1-SeFBQ)*(SeSelfR*(1-SeMicS)-covDp) + (1-pi)*SpFBQ*((1-SpSelfR)*SpMicS-covDn) 

# SelfR-,MicS+, FBQ+  

p[2,1,1] <- pi*SeFBQ*((1-SeSelfR)*SeMicS-covDp) + (1-pi)*(1-SpFBQ)*(SpSelfR*(1-SpMicS)-covDn) 

# SelfR-, MicS-,  FBQ+ 

p[2,2,1] <- pi*SeFBQ*((1-SeSelfR)*(1-SeMicS)+covDp) + (1-pi)*(1-SpFBQ)*(SpSelfR*SpMicS+covDn) 

# SelfR-,MicS+, FBQ-  

p[2,1,2] <- pi*(1-SeFBQ)*((1-SeSelfR)*SeMicS-covDp) + (1-pi)*SpFBQ*(SpSelfR*(1-SpMicS)-covDn) 

# SelfR-,MicS-, FBQ- 

p[2,2,2] <- pi*(1-SeFBQ)*((1-SeSelfR)*(1-SeMicS)+covDp) + (1-pi)*SpFBQ*(SpSelfR*SpMicS+covDn) 

 

# Constraints for covDp and covDn 

ls <- (SeSelfR-1)*(1-SeMicS) 

us <- min(SeSelfR,SeMicS) - SeSelfR*SeMicS 

lc <- (SpSelfR-1)*(1-SpMicS) 
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uc <- min(SpSelfR,SpMicS) - SpSelfR*SpMicS 

 

# Correlations between Ethica tests, conditional on food status 

rhoD <- covDp / sqrt(SeSelfR*(1-SeSelfR)*SeMicS*(1-SeMicS)) 

rhoDc <- covDn / sqrt(SpSelfR*(1-SpSelfR)*SpMicS*(1-SpMicS)) 

 

# Priors 

pi ~ dbeta(0.5, 0.5) ## Jeffrey’s Prior  

SeSelfR ~ dbeta(0.5, 0.5) ## Jeffrey’s Prior  

SpSelfR ~ dbeta(21.2019, 2.0633) ## Mode=0.95, 95% sure >0.80 

SeMicS ~ dbeta(0.5, 0.5) ## Jeffrey’s Prior  

SpMicS ~ dbeta(42.5732, 5.6192) ## Mode=0.95, 90% sure >0.80 

SeFBQ ~ dbeta(52.4511, 22.5292) ## Mode=0.705, 95% sure > 0.61 

SpFBQ ~ dbeta(0.5, 0.5) ## Jeffrey’s Prior  

covDn ~ dunif(lc, uc) 

covDn ~ dunif(lc, uc) 

covDp ~ dunif(ls, us) 

} 

# Data                 

#     (test1=+,test2=+,test3=+), (+,+,-), (+,-,+), (+,-,-), (-,+,+), (-,+,-), (-,-,+), (-,-,-)#     

#     (SelfR=+,MicS=+,FBQ=+), (+,+,-), (+,-,+), (+,-,-), (-,+,+), (-,+,-), (-,-,+), (-,-,-)#     

list(n=51, y=structure(.Data=c(6,4,4,11,4,3,3,16),.Dim=c(2,2,2))) 

END 

#  Initial Values 

list(pi=0.75, SeSelfR=0.75, SpSelfR=0.75, SeMicS=0.75, SpMicS=0.75, SeFBQ=0.75, SpFBQ=0.75) 

list(pi=0.7, SeSelfR=0.7, SpSelfR=0.7, SeMicS=0.7, SpMicS=0.7, SeFBQ=0.7, SpFBQ=0.7) 

list(pi=0.65, SeSelfR=0.65, SpSelfR=0.65, SeMicS=0.65, SpMicS=0.65, SeFBQ=0.65, SpFBQ=0.65)



 

127 

 

Appendix 11: Priors for sensitivities and specificities used for Bayesian Latent Class Modelling. 
 

 Food Item Prior for 

Sensitivity (%) 

Prior for 

Minimum 

Sensitivity (%) 

Beta Distribution 

Food History 

Questionnaire 

Tomatoes 70.5 61.0 52.4511, 22.5292 

Lettuce and 

Leafy Greens 

79.7 64.9 24.6045, 7.0122 

Cucumbers 68.7 62.0 100.0694, 

46.1364 

Berries 59.5 56.0 326.0973, 

222.2847 

Nuts 75.0 70.0 23.3398, 5.1763 

Microsurveys Tomatoes Jeffrey’s Proir 0.5, 0.5 

Lettuce and 

Leafy Greens 

Jeffrey’s Proir 0.5, 0.5 

Cucumbers Jeffrey’s Proir 0.5, 0.5 

Berries Jeffrey’s Proir 0.5, 0.5 

Nuts Jeffrey’s Proir 0.5, 0.5 

Real-Time 

Data  

(Images and 

Descriptions) 

Tomatoes Jeffrey’s Proir 0.5, 0.5 

Lettuce and 

Leafy Greens 

Jeffrey’s Proir 0.5, 0.5 

Cucumbers Jeffrey’s Proir 0.5, 0.5 

Berries Jeffrey’s Proir 0.5, 0.5 

Nuts Jeffrey’s Proir 0.5, 0.5 

*pi – uninformative Jeffrey’s prior (0.5, 0.5) 
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 Food Item Prior for 

Specificity (%) 

Prior for 

Minimum 

Specificity (%) 

Beta Distribution 

Food History 

Questionnaire 

Tomatoes Jeffrey’s Prior 0.5, 0.5 

Lettuce and 

Leafy Greens 

Jeffrey’s Prior 0.5, 0.5 

Cucumbers Jeffrey’s Prior 0.5, 0.5 

Berries Jeffrey’s Prior 0.5, 0.5 

Nuts Jeffrey’s Prior 0.5, 0.5 

Microsurveys Tomatoes 95.0 80.0 42.5732, 5.6192 

Lettuce and 

Leafy Greens 

95.0 80.0 42.5732, 5.6192 

Cucumbers 95.0 80.0 42.5732, 5.6192 

Berries 95.0 80.0 42.5732, 5.6192 

Nuts 95.0 80.0 42.5732, 5.6192 

Real-Time 

Data  

(Images and 

Descriptions) 

Tomatoes 90.0 80.0 21.2019, 2.0633 

Lettuce and 

Leafy Greens 

90.0 80.0 21.2019, 2.0633 

Cucumbers 90.0 80.0 21.2019, 2.0633 

Berries 90.0 80.0 21.2019, 2.0633 

Nuts 90.0 80.0 21.2019, 2.0633 

*pi – uninformative Jeffrey’s prior (0.5, 0.5) 
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Appendix 12: Priors of Sensitivities of Food History Questionnaire for tomatoes, lettuce/leafy 

greens, nuts, berries and cucumbers used for Bayesian Latent Class Modelling 

 
Sensitivity Reference Average Minimum 

 Tomatoes 

61 

Gupta, S. K., Nalluswami, K., Snider, C., Perch, M., 
Balasegaram, M., Burmeister, D., Lockett, J., Sandt, C., 
Hoekstra, R. M., & Montgomery, S. (2007). Outbreak of 
Salmonella Braenderup infections associated with Roma 
tomatoes, northeastern United States, 2004: a useful 
method for subtyping exposures in field investigations. 
Epidemiol Infect, 135(7), 1165-1173. 
doi:10.1017/S0950268807007911 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

61.0 

70 

Greene, S. K., Daly, E. R., Talbot, E. A., Demma, L. J., 
Holzbauer, S., Patel, N. J., Hill, T. A., Walderhaug, M. O., 
Hoekstra, R. M., Lynch, M. F., & Painter, J. A. (2008). 
Recurrent multistate outbreak of Salmonella Newport 
associated with tomatoes from contaminated fields, 2005. 
Epidemiol Infect, 136(2), 157-165. 
doi:10.1017/S095026880700859X 
 

81 

Behravesh, C. B., Blaney, D., Medus, C., Bidol, S. A., Phan, 
Q., Soliva, S., Daly, E. R., Smith, K., Miller, B., Taylor, T., Jr., 
Nguyen, T., Perry, C., Hill, T. A., Fogg, N., Kleiza, A., 
Moorhead, D., Al-Khaldi, S., Braden, C., & Lynch, M. F. 
(2012). Multistate outbreak of Salmonella serotype 
Typhimurium infections associated with consumption of 
restaurant tomatoes, USA, 2006: hypothesis generation 
through case exposures in multiple restaurant clusters. 
Epidemiol Infect, 140(11), 2053-2061. 
doi:10.1017/S0950268811002895 
 

69 

Donnan, E. J., Fielding, J. E., Gregory, J. E., Lalor, K., Rowe, 
S., Goldsmith, P., Antoniou, M., Fullerton, K. E., Knope, K., 
Copland, J. G., Bowden, D. S., Tracy, S. L., Hogg, G. G., Tan, 
A., Adamopoulos, J., Gaston, J., & Vally, H. (2012). A 
multistate outbreak of hepatitis A associated with 
semidried tomatoes in Australia, 2009. Clin Infect Dis, 
54(6), 775-781. doi:10.1093/cid/cir949 
 

67 

Carvalho, C., Thomas, H., Balogun, K., Tedder, R., Pebody, 
R., Ramsay, M., & Ngui, S. (2012). A possible outbreak of 
hepatitis A associated with semi-dried tomatoes, England, 
July-November 2011. Euro Surveill, 17(6). 
 

75 

Reller, M. E., Nelson, J. M., Mølbak, K., Ackman, D. M., 
Schoonmaker-Bopp, D. J., Root, T. P., & Mintz, E. D. 
(2006). A large, multiple-restaurant outbreak of infection 
with Shigella flexneri serotype 2a traced to tomatoes. 
Clinical infectious diseases, 42(2), 163-169. 
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Lettuce/ 
Leafy 

Greens 

64.9 

Slayton, R. B., Turabelidze, G., Bennett, S. D., 
Schwensohn, C. A., Yaffee, A. Q., Khan, F., Butler, C., 
Trees, E., Ayers, T. L., Davis, M. L., Laufer, A. S., Gladbach, 
S., Williams, I., & Gieraltowski, L. B. (2013). Outbreak of 
Shiga toxin-producing Escherichia coli (STEC) O157:H7 
associated with romaine lettuce consumption, 2011. PLoS 
One, 8(2), e55300. doi:10.1371/journal.pone.0055300 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

79.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70.0 

71 

Nuorti, J. P., Niskanen, T., Hallanvuo, S., Mikkola, J., Kela, 
E., Hatakka, M., Fredriksson-Ahomaa, M., Lyytikainen, O., 
Siitonen, A., Korkeala, H., & Ruutu, P. (2004). A 
widespread outbreak of Yersinia pseudotuberculosis O:3 
infection from iceberg lettuce. J Infect Dis, 189(5), 766-
774. doi:10.1086/381766 

70 

Ackers, M. L., Mahon, B. E., Leahy, E., Goode, B., Damrow, 
T., Hayes, P. S., Bibb, W. F., Rice, D. H., Barrett, T. J., 
Hutwagner, L., Griffin, P. M., & Slutsker, L. (1998). An 
outbreak of Escherichia coli O157:H7 infections associated 
with leaf lettuce consumption. J Infect Dis, 177(6), 1588-
1593. 
 

93 

Centers for Disease Control and Prevention. (2016). 
Multistate outbreak of listeriosis linked to packaged 
salads produced at Springfield, Ohio Dole processing 
facility (final update). Centers for Disease Control and 
Prevention, Atlanta, GA: http://www. cdc. 
gov/listeria/outbreaks/bagged-salads-01-16/index. html  
 

81 

Centers for Disease Control and Prevention. (2012). 
Multistate Outbreak of Shiga Toxin-producing Escherichia 
Coli O157: H7 Infections Linked to Organic Spinach and 
Spring Mix Blend. Retrieved from 
www.cdc.gov/ecoli/2012 
 

85 

Centres for Disease Control and Prevention. (2013). 
Multistate outbreak of E. coli O157: H7 infections linked 
to romaine lettuce. 
 

93 

Tataryn, J., Morton, V., Cutler, J., McDonald, L., Whitfield, 
Y., Billard, B., Gad, R., & Hexemer, A. (2014). Outbreak of 
E. coli O157: H7 associated with lettuce served at fast 
food chains in the Maritimes and Ontario, Canada, Dec 
2012. Canada Communicable Disease Report, 40(S1), 2. 
 

Nuts 

70 

Centers for Disease Control and Prevention. (2014). 
Multistate outbreak of human Salmonella Enteritidis 
infections linked to Turkish pine nuts. Final update. 
 

 
 
 
 

75 

 
 
 
 

70.0 

80 

Centers for Disease Control and Prevention. (2013). 
Multistate outbreak of Salmonella Montevideo and 
Salmonella Mbandaka infections linked to tahini sesame 
paste (final update). 
 

http://www.cdc.gov/ecoli/2012
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Berries 

56 

Calder, L., Simmons, G., Thornley, C., Taylor, P., Pritchard, 
K., Greening, G., & Bishop, J. (2003). An outbreak of 
hepatitis A associated with consumption of raw 
blueberries. Epidemiology & Infection, 131(1), 745-751. 

 
 
 
 

59.5 

 
 
 
 

56.0 

63 

Severi, E., Verhoef, L., Thornton, L., Guzmán Herrador, B. 
R., Myrmel, M., Stene-Johansen, K., & Vold, L. (2015). 
Large and prolonged food-borne multistate hepatitis A 
outbreak in Europe associated with consumption of 
frozen berries, 2013 to 2014. 

Cucumber 

62 

Angelo, K. M., Chu, A., Anand, M., Nguyen, T. A., 
Bottichio, L., Wise, M., Williams, I., Seelman, S., Bell, R., 
Fatica, M., Lance, S., Baldwin, D., Shannon, K., Lee, H., 
Trees, E., Strain, E., Gieraltowski, L., Centers for Disease, 
C., & Prevention. (2015). Outbreak of Salmonella Newport 
infections linked to cucumbers--United States, 2014. 
MMWR Morb Mortal Wkly Rep, 64(6), 144-147. 

 
 
 

 
 
 
 

68.7 

 
 
 
 
 
 
 

62.0 

75 
Centers for Disease Control and Prevention. (2015). 
Multistate outbreak of Salmonella poona infections linked 
to imported cucumbers. 

69 

Donnan, E. J., Fielding, J. E., Gregory, J. E., Lalor, K., Rowe, 
S., Goldsmith, P., Antoniou, M., Fullerton, K. E., Knope, K., 
Copland, J. G., Bowden, D. S., Tracy, S. L., Hogg, G. G., Tan, 
A., Adamopoulos, J., Gaston, J., & Vally, H. (2012). A 
multistate outbreak of hepatitis A associated with 
semidried tomatoes in Australia, 2009. Clin Infect Dis, 
54(6), 775-781. doi:10.1093/cid/cir949 
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Appendix 13: Example of R Code 

# Installing CODA files 

install.packages("coda") 

install.packages ("mcmcplots") 

#Save environment 

save.image("C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\BerriesRData") 

#Load CODA environment 

load ("C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\BerriesRData") 

#Analyses of estimates  

#read.coda ESTIMATES "Berries" 

SeSelfRCodaChain1 <-

read.coda("C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\SeSelfRBerriesCodaChain1.txt", 

"C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\SeSelfRBerriesCodaIndex.txt", 10000, 

300000, 1, quiet=F) 

SeSelfRCodaChain2 <-

read.coda("C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\SeSelfRBerriesCodaChain2.txt", 

"C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\SeSelfRBerriesCodaIndex.txt", 10000, 

300000, 1, quiet=F) 

SeSelfRCodaChain3 <-

read.coda("C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\SeSelfRBerriesCodaChain3.txt", 

"C:\\Users\\pjs147\\Desktop\\CODAFiles\\Berries\\SeSelfRBerriesCodaIndex.txt", 10000, 

300000, 1, quiet=F) 

SeSelfRCodaChains <- mcmc.list(list(SeSelfRCodaChain1, SeSelfRCodaChain2, 

SeSelfRCodaChain3)) 
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#Descriptives 

summary (SeSelfRCodaChains) 

#visual diagnostics 

plot(SeFBQCodaChains) 

autocorr.plot(SeFBQCodaChains) 

mcmcplot(SeFBQCodaChains) 

rmeanplot (SeFBQCodaChains) 

#Convergence Diagnostics, Patrick Lam's syntax 

#1. Gelman and Rubin Multiple Sequence Diagnostic 

gelman.diag(SeSelfRCodaChains, confidence = 0.95, transform=FALSE, autoburnin=TRUE, 

multivariate=TRUE) 

gelman.plot(SeFBQCodaChains, bin.width = 10, max.bins = 50, confidence = 0.95, transform = 

FALSE, autoburnin=TRUE, auto.layout = TRUE) 

 

#2. Geweke Diagnostic 

geweke.diag(SeSelfRCodaChains) 

geweke.plot(SeFBQCodaChains) 

#3. Raftery and Lewis Diagnostic 

raftery.diag(SeSelfRCodaChains, q = 0.025, r = 0.005, s = 0.95) 

 #4. Heidelberger and Welch Diagnostic 

heidel.diag(SeSelfRCodaChains) 
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Appendix 14: Contingency tables for 5 foods used in Bayesian Latent Class Analysis 

Lettuce and Leafy Greens 

  Food History Questionnaires 

Microsurveys Self-Report No Yes 

No 

 

No 4 8 

Yes 5 10 

Yes No 1 7 

Yes 2 14 

 

 

Nuts 

  Food History Questionnaires 

Microsurveys Self-Report No Yes 

No 

 

No 13 8 

Yes 4 4 

Yes No 7 3 

Yes 6 6 

 

 

Berries 

  Food History Questionnaires 

Microsurveys Self-Report No Yes 

No 

 

No 16 3 

Yes 11 4 

Yes No 3 4 

Yes 4 6 

 

 

Cucumber 

  Food History Questionnaires 

Microsurveys Self-Report No Yes 

No 

 

No 21 9 

Yes 2 2 

Yes No 2 6 

Yes 3 6 

 

 

Tomatoes 

  Food History Questionnaires 

Microsurveys Self-Report No Yes 

No 

 

No 3 3 

Yes 6 11 

Yes No 3 4 
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Appendix 15: Measures of conditional independent for tomatoes, lettuce/leafy greens, nuts, 

berries and cucumbers used for Bayesian Latent Class Modelling 

         rhoD  

(for Sensitivity) 

95% CI 

Tomatoes -0.070 -0.343 0.222 

Lettuce and Leafy Greens -.017 -0.381 0.308 

Cucumbers 0.059 -0.393 0.542 

Berries -0.139 -0.513 0.285 

Nuts 0.064 -0.370 0.541 

 

 

 rhoDc 

(for Specificity) 

95% CI 

Tomatoes 0.272 -0.113 0.809 

Lettuce and Leafy Greens 0.272 -0.118 0.811 

Cucumbers 0.318 -0.077 0.810 

Berries 0.172 -0.175 0.709 

Nuts 0.154 -0.169 0.649 

 

 


