Bioavailability of metsulfuron and sulfentrazone herbicides in soil as affected by amendment with two contrasting willow biochars.

UNIVERSITY OF SASKATCHEWAN

Introduction

There are multiple environmental and agronomical benefits of biochar addition to soil. Due to their porous structure, biochars sorb and retain a variety of organic compounds from soil including soil-applied herbicides. The degree of sorption may vary depending on the biochar physical and chemical properties and its application rate [1].

Objectives

This study investigated the effect of two willow biochars (Salix spp) produced using either fast (at 400°C) or slow (up to 750°C) pyrolysis on the bioavailability of metsulfuron and sulfentrazone herbicides in soil.

Materials and Methods

• Five rates (0, 1, 2, 3, 4%; w/w) of each biochar (Table 1) were used, along with varying rates of metsulfuron (0 to 3.2 µg ai kg⁻¹) and sulfentrazone (0 to 200 μ g ai kg⁻¹).

• To measure herbicide bioactivity in soil with added biochar, a sugar beet bioassay in WhirlPak[™] bags was used [2] (Fig. 1).

using slow (at 400 C) of last (up to 750 C) pyrolysis.								
Biochar	С	Н	0	Ν	Ash	рН	SSA*	CEC
	%	%	%	%	%		m² g ⁻¹	Meq 100g
Fast	70.7	3.6	12.0	1.4	10.9	9.5	3	26
Slow	81.3	1.9	3.9	0.7	10.6	9.7	175	20

Table 1. Selected physical and chemical properties of willow biochar produced using slow (at 400° C) or fast (up to 750° C) invrolveis

*Specific Surface Area

Fig. 1. Bioassay performed in WhirlPak bags.

Anna M. Szmigielski¹, Ryan D. Hangs, Jeff J. Schoenau¹

¹Dept. of Soil Sci., University of Saskatchewan

- Bulk density $g \text{ cm}^{-3}$ 1.39 1.16

- the bioavailability of both herbicides (Fig. 2b and 3b).
- respectively).

Fig. 3. Sugar beet shoot length inhibition in response to sulfentrazone in soil amended with increasing concentration of (a) fast-pyrolysis biochar (b) slow-pyrolysis biochar.

Although increased adsorption associated with the high-surface area biochars is useful from the environmental perspective, further research on how biochars influence the efficacy of soil-active herbicides is needed as biochar may have negative effect on weed control for years to come.

Results

• The fast-pyrolysis biochar had minimal effect (Fig. 2a and 3a), while the slow-pyrolysis biochar decreased

• Despite using the same feedstock, the two biochars had different physical and chemical properties (Table 1), of which specific surface area was most contrasting (3.0 and 175 m² g⁻¹ for fast- and slow-pyrolysis biochar,

Fig. 2. Sugar beet root length inhibition in response to metsulfuron in soil amended with increasing concentration of

Conclusions

