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ABSTRACT 

Difficulties and dangers in doing experiments on living systems and providing a 

testbed for theorists make the biologically detailed neural simulation an essential part of 

neurobiology. Due to the complexity of the neural systems and dynamic properties of the 

neurons simulation of biologically realistic models is very challenging area.  Currently all 

general purpose simulator are software based. Limitation on the available processing 

power provides a huge gap between the maximum practical simulation size and human 

brain simulation as the most complex neural system. This thesis aimed at providing a 

hardware friendly parallel architecture in order to accelerate the simulation process. 

This thesis presents a scalable hierarchical architecture for accelerating simulations of 

large-scale biological neural systems on field-programmable gate arrays (FPGAs). The 

architecture provides a high degree of flexibility to optimize the parallelization ratio 

based on available hardware resources and model specifications such as complexity of 

dendritic trees. The whole design is based on three types of customized processors and a 

switching module. An addressing scheme is developed which allows flexible integration 

of various combination of processors. The proposed addressing scheme, design 

modularity and data process localization allow the whole system to extend over multiple 

FPGA platforms to simulate a very large biological neural system. 

In this research Hodgkin-Huxley model is adopted for cell excitability. Passive 

compartmental approach is used to model dendritic tree with any level of complexity. 

The whole architecture is verified in MATLAB and all processor modules and the 

switching unit implemented in Verilog HDL and Schematic Capture. A prototype 

simulator is integrated and synthesized for Xilinx V5-330t-1 as the target FPGA. While 

not dependent on particular IP (Intellectual Property) cores, the whole implementation is 

based on Xilinx IP cores including IEEE-754 64-bit floating-point adder and multiplier 

cores. The synthesize results and performance analyses are provided. 
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Chapter 1  

Introduction 

Computational Neuroscience reflects the possibility of generating theories of brain 

function in term of the information-processing properties of structures that make up 

nervous systems [1]. As a rapidly expanding interdisciplinary science, it combines 

various fields such as neuroscience and cognitive science with electrical engineering, 

computer science and mathematics. As instructional and research tools, biologically 

realistic neural simulators play an important role in computational neuroscience. Due to 

difficulties and dangers in doing experiments on living systems, simulators provide a 

testbed for neuro-theorists to examine various hypotheses to explain fundamentals of 

neural network behavior.  

1.1 Motivation 

Large scale neural simulators are critical instruments to test hypotheses of brain 

structure, dynamics and functions.  Through simulation, scientists can have better 

understanding how the brain structure leads to cognition.  Massive numbers of neurons in 

neural systems and neuron dynamics makes the realistic biological neural modeling and 

simulations a very challenging area. Available processing power limits the scale of 

simulations to much smaller than human brain size. Due to these complexities and 

limitations, parallel computation is the only practical approach for large scale 

simulations. Efforts toward designing neural simulators fall into three main categories: 

Analog (VLSI) design, software approaches and digital reconfigurable circuit. VLSI 
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implementation of Analog models to mimicking neural behavior [2][3][4] can provide the 

fastest simulators. Since analog circuits are not reconfigurable they cannot be used as 

general purpose simulators as research tools to examine wide range of hypotheses. 

Secondly, it would be very difficult, if not impossible, to simulate network of 

biophysically detailed neurons with complex dendritic trees with the VLSI approach. 

Currently, all general purpose neural simulators are software based. Software packages 

such as NEURON [5] and GENESIS [6] have been widely used in many laboratories 

around the worlds for rapid modeling of realistic neurons. NEURON and GENESIS are 

the two major simulators utilized by researchers to model neural activities. They allow 

biologically detailed neural modeling and support parallelization for large scale 

simulations. GENESIS can be used to simulate neural systems ranging from complex 

models of single neurons to simulations of large networks made up of more abstract 

neuronal components. Parallel GENESIS or PGENESIS [7] can run simulation of large 

networks on multiple processors or run many simulations concurrently. For parallel 

processing, a neural system is divided into group of neurons and each group is allocated 

to a single processor. NEURON is designed around the notion of continuous cable 

"sections" which are connected together to form any kind of branched cable and which 

are endowed with properties varying continuously with position along the section [8]. 

NEURON supports parallel processing by dividing a network of cells into two sub-

networks at any point within a cell and running each section on separate hosts [9]. 

Although both simulators can distribute the processing load over thousands of processors 

using clustering protocols such as MPI [10] and PVM [11], human brain simulation (with 

100 billion neurons and 100 trillion interconnections) cannot be handled at the time. To 

improve software solutions, various techniques are used to increase the simulation scale. 

Multi-rate simulation [12] improves simulation scale by dividing a dynamic system into a 

slow and fast sub-system.  The processing power is divided unevenly among the sub-

systems in favor of more demanding ones. But in addition to concerns on accuracy of this 

approach [13], a huge gap between the available processing power and realistic neural 

simulation requirements remained to be filled. 
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Major attempts to increase the scale of simulations are focused on higher number of 

processing units and more powerful processors. The Blue Brain project [14], founded in 

2005, aimed at creating a synthetic brain using Blue Gene supercomputers [15]. At the 

first phase of the project, NEURON simulator was used to simulate rat neocortical 

column. The initial phase was successfully completed with simulation of 10,000 neurons 

with 30 million synapses on Blue Gene/L supercomputer with 8000 processors [16]. At 

the latest effort of IBM performed the first near real time cortical simulation of the brain 

that exceeded the scale of cat cortex [17]. This simulation was performed on IBM Dawn 

BlueGene/P supercomputer with 147,456 processors and 144 terabytes of main memory. 

The simulation contained 1 billion spiking neurons and 10 trillion individual learning 

synapses. To perform this simulation the IBM team built a cortical simulator called C2 

[18] that incorporates a number of innovations in computation, memory, and 

communication as well as sophisticated biological details from neurophysiology and 

neuroanatomy. With all of these efforts the simulator ran for 500 seconds to simulate 5 

seconds of brain activity [17]. 

GPUs (Graphic Processor Units) and FPGAs (Field Programmable Gate Arrays) have 

the potential to significantly improve simulation processing speed. GPUs are specialized 

microprocessors that accelerate floating point operations and large matrices 

manipulations for 2D and 3D graphic rendering. FPGAs are integrated circuits that are re-

configurable after manufacturing. The FPGA configuration is generally specified using a 

hardware description language (HDL) such as Verilog or VHDL.  

FPGAs are ideal substitutes for high speed processors when high processing power is 

required [19]. Configurable Computing [20] provides the performance of application 

specific hardware along with the flexibility and low cost of software implementations. 

Performance analysis [21] shows that FPGAs can accelerate High-Performance 

Computing (HPC) applications by one or more orders of magnitude over traditional 

microprocessors, thus they can be used to accelerate scientific applications [22] if utilized 

properly.  

Reconfigurable computers will be ideal platform for developing new generation of 

biologically detailed large scale general purpose neural simulators. They can be 
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categorized in two classes. Hybrid architectures are based on one standard 

microprocessor with one or more FPGAs. Fully FPGA based architectures are a relatively 

new class of reconfigurable computes which is based on only FPGAs. One of these two 

architectures can be used, depending on how effectively simulation algorithms are 

implemented on FPGAs [23]. Thus far, most efforts on neural simulations using FPGAs 

have been limited to the behavioral level [24][25] or application specific simulators [26]. 

This research is aimed at providing hardware friendly architecture to use as the base 

structure of very fast neural simulators. A proper method should address flexibility, 

scalability and parallel processing. A flexible design will be able to process network of 

cells with simple or complex structures. Scalability can be achieved by expanding the 

simulator over multiple FPGAs without significant changes in the design core. 

1.2 Objectives 

Neuronal cells couple complex structure with dynamic behavior. Various models have 

been proposed in the past to explain neurons behavior and brain function [27].  The 

Hodgkin-Huxley model [28] and Resonate-and-Fire model [29] describe cells 

excitabilities. Cable theory [30] and compartmental modeling [31] provide a 

mathematical model for the complex structure of dendrites. Cell interconnections such as 

synapse and postsynaptic potential are described in [32]. Based on these models, 

biologically realistic neural networks can be simulated using parallel processing 

techniques. 

The main goal of this thesis is to improve the simulation time of biologically realistic 

neural network models. To achieve this goal, this thesis: 

• Studies a new perspective of neural model and simulation process for a flexible 

and scalable parallel architecture suitable for hardware implementation;  

• Develops a parallel architecture on reconfigurable hardware based platforms; and 

• Performs MATLAB modeling and simulations for a feasibility study as well as 

for detailed implementation and performance analysis. 
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For the purpose of this research, a classic Hodgkin-Huxley model for cell excitability 

and passive compartments for dendritic tree modeling with any degree of complexity are 

adopted. Simulation of large number of individual neurons without synaptic connections 

is considered.  

1.3 Thesis Outline  

Chapter 2 provides background on the Hodgkin-Huxley model and compartmental 

modeling, with a primary focus on action potential. Chapter 3 introduces the concept of 

Similar Processable Entities which is the foundation of the proposed method. Also in 

Chapter 3, the main building blocks of the resultant parallel architecture are discussed. 

Chapter 4 explains the requirements for each functional block of the architecture. Chapter 

5 provides the detailed design of each main module and shows how FPGA resources and 

IP (Intellectual Property) cores can be utilized to develop a scalable design. Chapter 6 is 

dedicated to reviewing the synthesis results of a prototype simulator and performance 

analysis.  In Chapter 7 conclusions and future works are provided. 
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Chapter 2  

Background 

The nervous system is a network of excitable cells - called neurons - that coordinate the 

actions in an animal. Electrical and chemical signal interaction among neurons underlies 

the neural systems activities. This chapter provides a brief review of neuron structure 

with focus on action potential generation, cell modeling and current solutions for general 

purpose simulators.  

2.1 Neural Systems 

A neuron as shown in Figure 2.1(a) is an excitable cell that can generate 

electrochemical signals called action potentials. The results of action potentials in neural 

Figure 2.1   a) Biological Neuron                         b) Action Potential [33] 

 

Sodium equilibrium 

potential (+55mV) 

Potassium 

equilibrium 

potential  

Soma Axon 

Dendrite 
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system are various tasks such as heartbeat or body movement. A neuron cell as depicted 

in Figure 2.1(a) has three main components. The dendrite is a branching structure which 

is responsible for collecting action potentials from other neurons and transferring them to 

the cell body or soma. The soma is the processing unit of the neuron. Based on the 

signals from the dendritic tree, the soma triggers an action potential. And, at the final 

stage, there is the axon. Terminal branches on the axon form synapses with other neurons 

which cause the generation of postsynaptic potential (PSP).  

Neural activities are mainly based on ionic channels embedded in the membrane of 

cells from dendrite to soma. Synaptically activated ionic channels create postsynaptic 

potential upon being triggered by action potentials. Voltage activated ion channels in 

dendritic trees shape PSPs through the path to the cell body. Finally ion channel in somas 

are responsible for creating action potentials. Cells with heterogeneous types of ion 

channels show more complex behavior and are more difficult to model and simulate. The 

next section provides additional background on biological neuron models, in particular 

the action potential generation in the soma. 

2.2 Action Potential 

Cell excitability is based on properties of ionic conductance. Mutual interaction 

between the soma voltage and various ionic currents in soma underlies action potential 

generation. For the first time in 1952, Hodgkin and Huxley [28] found the Sodium and 

Potassium ionic conductance roles in generating action potentials for assuring the rapid 

and regular conduction of the neural impulse to muscles of the squid’s mantle. In more 

complex cells, additional varieties of ionic channels, the difference in densities, variation 

in voltage thresholds and time constants for activation and inactivation of the channels’ 

conductance produce wide variation of firing patterns such as “beaters” or regular 

“bursters”. 
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2.2.1 The Hodgkin-Huxley Model 

In the Hodgkin-Huxley (HH) model, the changes in membrane permeability to Sodium 

and Potassium ions are the basis of triggering of the action potential. A cell's membrane 

separates solutions of different ionic concentrations, with a much higher concentration of 

Potassium inside than outside, and the opposite for Sodium. As shown in Figure 2.1(b), at 

the rest potential, inactive state of a neuron, the membrane is semi-permeable to only 

Potassium, thus the membrane voltage is close to the Potassium equilibrium potential 

(about -75mV). During neural activity, the membrane shows more permeability to 

Sodium, and the Sodium conductance contribution to the ionic current overrides the 

Potassium current and causes the membrane voltage to tend towards the Sodium 

equilibrium potential. 

2.2.2 The Mathematical Models 

The Potassium or Sodium conductance of the membrane can be considered as the result 

of large number of ion channels embedded in the membrane. Figure 2.2 is a hypothetical 

representation of a membrane segment with embedded ionic channels. Each individual 

ion channel can be thought of a few numbers of gates such that each gate can be either in 

a permissive or non-permissive mode. Ions can pass through the gates that are in 

permissive states. In Hodgkin-Huxley model, Potassium channels contain four n-type 

gates, and Sodium channels contain three m-type and one h-type gates. Various types 

have different probabilities of being in the permissive state for the same membrane 

Potassium 

channels 

Sodium  

channels 

Figure 2.2   Membrane segment with ionic channels 

membrane 
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Sodium 

 

Potassium 

n-type gates  m-type h-type 

Figure 2.3   Embedded gates in K and Na channels 

voltages. Figure 2.3 demonstrates K and Na channels with the embedded gates. The 

probability of each gate to be in a permissive mode is a function of the membrane 

potential difference from the resting potential which is called the command voltage, or ��. 
Assume that n, m and h are respectively the probability of n-, m- and h- type gates to be 

in the permissive mode. 	
���� and 	�
����� are maximum conductances of Potassium and 

Sodium channels when all gates are open (normalization constants), then the channel 

conductances are [28]:  

�
 � 	
���� ��                                                                (2.1) 

��
 � 	�
����� ���                                                       (2.2) 

The probabilities n, m and h are functions of the membrane voltage. In steady state, 

when the membrane stays at a voltage level for a long time such that all gates have time 

to change their states properly, the gate probabilities are defined as follow [28]: 

 �� � ������
�������������                                            (2.3) 

where �� represents the probability of any of n-, m- or h- gate types and �� and �� are 

rate constants defined as follow [28]: 

������ � 0.01 �10 # ���
exp '10 # ��10 ( # 1    ,     ������ � 0.125 exp �# ��80� 
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�-���� � ../ �012���
345'6789�:; (2/     ,            �-���� � 4 exp '# ��

/=(                                     (2.4) 

�>���� � 0.07exp @# ��20A   ,     �>���� �
1

exp '30 # ��10 ( C 1 

With an instantaneous change of membrane voltage from VC1 to VC2, the changes in 

gate probabilities for all types are expressed by [28]: 

 ��D� � ��E��6F # '��E��6F # ��E��:F( G2H I�J
                 (2.5) 

where: 

K� � 1
��E��6F C �����6� 

The action potential is the result of temporary increase in the membrane voltage which 

is initiated by the Sodium conductance and ended by the Potassium channel. Figure 2.4 

shows the MATLAB simulation results based on Eqs. (2.1) to (2.5). The figure 

demonstrates how the Sodium and Potassium conductance change when a 40mv 

command voltage is applied to a typical soma. The Sodium channel reaction to the 

command voltage is on the scale of a millisecond and it causes significant increase in 

membrane voltage. The Sodium conductance quickly returns to the resting level and 

leaves the membrane voltage in the range of Sodium equilibrium voltage. The Potassium 

conductance change is slower and gradually increases the negative ionic current. The 

negative current in turn returns the membrane voltage back to the resting level.  

 

Na 

K 

Figure 2.4   K and Na channel changes due to application of command voltage 
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2.3 Biological Neuron Modeling 

Modeling is an important step in a simulation process. A neuron can be modeled as a 

finite number of interconnected anatomical compartments. Figure 2.5 shows a cerebellar 

cell [6] with its compartmental model equivalent. Two types of compartments are used to 

model branches and branching points in the dendritic tree and one type is used to model 

the soma. Since neuron activities are dependent on electrical properties such as 

conductance changes or ionic currents, each compartment is replaced with an equivalent 

electrical circuit. During the simulation process, the equivalent circuit is solved for 

interested parameters using analytical or numerical methods.  

The level of simulation accuracy depends on the size of compartments. In detailed 

compartment modeling the division must be small enough such that each compartment is 

at approximately the same electrical potential. Due to the limitation on processing power, 

it is not always possible to use detailed compartmental modeling to simulate neural 

systems with large number of cells. Simplified neuron models consisting of only one or a 

few compartments are therefore used. This simplification at the expense of reduced 

simulation accuracy may cause discrepancies between simulation results and 

experimentally observed behaviors.  

 Figure 2.5   a) cerebellar Purkinje cell [3]                   b) compartmental model [3] 
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2.3.1 Compartment Equivalent Circuit 

Figure 2.6 demonstrates the equivalent circuit of a generic compartment connected to 

other compartments. �- is the membrane voltage, L- and M- are membrane capacitance 

and resistance repectively. These passive properties are part of any compartment. A 

typical compartment may have many types of ionic conductance or none. Each type of 

ionic conductance in a compartment is represented by a variable conductance.  Although 

the current source NO�P is not part of a compartment, it is considered in the model to 

stimulate the cell for test purposes, such as triggering action potentials in soma. 

 

The membrane voltage �-P  can be calculated using a differential equation which 

expresses the fact that the rate of change of the potential across membrane capacitance 

L-P  is proportional to the net current flowing into the compartment to charge the 

capacitance. According to the Ohm’s law the current due to each of the sources shown in 

Figure 2.6 are in the right hand side of the following equation: 

  L-P Q�RSQH � 'TRS 2�RS (
URS C ∑ EWXP # �-PF�XPX C 

 E�-P�/ # �-PF�YP C E�-P2/ # �-PF�YP2/ C NO�PP
                        (2.6)            

where ∑X represents the result of various ionic currents passing through the cell 

membrane. In passive compartments, there is no ionic channel, thus ∑X is zero. To 

simulate a neuron or a neural network, a system of differential equations in the form of 

Eq. (2.6) for all compartments must be created and solved simultaneously. 

M-P

W-P  

L-P  �XP  

WX 

NO�PP
 

�YP  �-P  �-P�/ �-P2/ 
�YP2/ 

Figure 2.6   Equivalent circuit of a generic compartment 
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Chapter 3  

Modeling of Biological Neurons 

This chapter introduces a new architecture which can be used as the basis of general 

purpose hardware based simulators for biological neural systems. Due to the complex 

structure of neurons and the large number of the cells precise simulation of biological 

neural systems require extensive processing power. Parallel processing is the only 

available approach for large scale simulation. Intrinsic difference between software and 

hardware platforms’ capabilities in supporting applications enforces different 

methodologies in developing and implementing the same concepts. Software 

environments are sequential in nature. Codes of a program in the context of a process are 

executed in sequence on a single CPU core, while building blocks of a hardware system 

work in parallel. Implementation of complicated algorithms is easier in software than 

hardware. Communication between software processes may degrade the overall 

performance of multi-process system because of data transfer through various layers of 

kernel or device drivers while communication between hardware units is normally faster. 

For an efficient design, the tradeoff between flexibility and performance of the target 

platform must be properly considered. 
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3.1 Similar Processable Entities 

Similar Processable Entities (SPE) are used to break down a large model to smaller 

groups of entities suitable for parallel processing on hardware platforms such as FPGAs. 

In SPE, a model is divided to groups in such a way that same set of operations can be 

applied to the entities of each group. Referring to Figure 3.1 with membrane voltages as 

state variables, three groups of SPEs are recognizable on the compartmental model of a 

neuron: 

• Dendritic compartments  

• Branching points of dendritic tree segments (or “Common Nodes” (CN)) 

• Cell body or soma 

3.1.1 Dendritic Tree Compartments 

For the purpose of this thesis and to verify the SPE based approach for neural system 

simulation, a passive compartmental model as explained in Section 2.3.1 is used to model 

the dendritic tree. In a passive compartment, there is no ionic conductance element. 

Common Nodes 

Dendritic Compartments 

Soma 

Figure 3.1   Similar processable entities in compartmental modeling 
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Postsynaptic potential is only attenuated through a resistive path to the soma. Figure 3.2 

shows the equivalent circuit diagram of a passive compartment. To reduce the design 

complexity, the injection current sources are considered only in dendritic compartments. 

The membrane voltage �-P  in Figure 3.2 can be characterized by the ordinary 

differential equation: 

 L-P Q�RSQH � EW-P #�-PF �-P C E�-P�/ # �-PF �YP C E�-P2/ # �-PF �YP2/ C NO�PP
      (3.1) 

Due to a large number of compartments in a realistic system, numerical methods are a 

preferable approach to solving Eq. (3.1). There are various algorithms, such as Forward 

Euler method [34], Exponential Euler and Crank-Nicholson Methods [35], to solve 

ordinary differential equations. Forward Euler method provides a hardware friendly 

implementation. With ∆t as the simulation time step, application of Forward Euler to the 

ordinary differential Eq. (3.1) gives the following equation as the membrane voltage at 

step (k+1) of simulation: 

L-P �-
P�Z C 1� # �-P�Z� ∆D � 'W-P #�-P�Z�( �-P C '�-P�/�Z� # �-P�Z�( �YP C 

E�-P2/�Z� # �-P�Z�F �YP2/ C NO�PP �Z�                 (3.2) 

Simplification of Eq. (3.2) gives: 

�-O �Z C 1� � �Q��-O2/�Z� C �-O�/�Z�� C �Q�-O �Z� C LQ C \Q  ,     (3.3) 

�-P

W-P  

L-P  
NO�PP

 

�YP  �-P  �-P�/ �-P2/ 
�YP2/ 

Figure 3.2   Electrical circuit of passive compartment 
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where:   

 �Q � ∆]
^R_ �YO      �Q � `1 # ∆H

^R E2�YO C �-O Fa 

 LQ � ∆H
^R_ �-O W-O      \Q � ∆H

^R_ NO�P�Z� 

3.1.2 Common Nodes 

Common nodes denote the membrane voltage at the branching points of dendritic trees. 

Not only is the equivalent circuit of a common node compartment different from ordinary 

compartments of dendrite branches, as will be described in different chapter, but the 

processing requirement of common nodes are also different as well. Thus a different SPE 

is considered for common nodes. In the proposed model for a branching point, a parent 

segment has two child branches. Figure 3.3 represents the equivalent circuit of a common 

node. Bifurcation of parent segments simplifies the equivalent circuit (Figure 3.3) and 

consequently the processing complexity and hardware resources. The processing unit 

must permanently allocate resources such as memory to store child segments’ parameters 

(e.g. �-/ or �Y/), therefore permanent allocation of resources for more than two child 

segments is not efficient use of available resource. Branching points with more child 

segments can be modeled by considering one-compartment child segments at the first 

level and dividing them to more child segments. The common node voltage �-. in Figure 

W-.  

�-.  

�-/ 

�-. 
�Y. �-2/ 

L-.  

�Y0 �-0 

Parent 

Segment 

Child 

Segment 2 

Child 

Segment 1

common node 

�Y/ 

Figure 3.3   Equivalent circuit of a common node 
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3.3 can be explained by the ordinary differential equation:  

L-. Q�R;
QH � �W-.#�-.��-. C ��-2/ # �-.��Y. C ��-/ # �-.��Y/ C ��-0 # �-.��Y0       (3.4) 

Applying the Forward Euler method to Eq. (3.4) gives the following recursive 

equation:  

 �-.�Z C 1� � ���-2/�Z� C ���-.�Z� C L��-/�Z� C \��-0�Z� C W�  ,            (3.5)  

where: 

 �� � ∆H
^R; . �Y. �� � `1 # ∆H

^R; ��Y. C �Y2/ C �-/ C �-0 �a  

 L� � ∆H
^R; �Y/ \� � ∆H

^R; . �Y0 W� � ∆H
^R; �-. W-.    

3.1.3 Soma 

To simulate neuron excitability, the equivalent circuit proposed by Hodgkin and 

Huxley for the cell body is used. As explained in section 2.2, Sodium and Potassium 

conductance are the source of action potential triggering. Figure 3.4 shows the equivalent 

circuit of a soma connected to a dendrite compartment. For simplicity, it is assumed that 

the dendritic tree is connected to the soma through one root dendritic compartment. Soma 

with more than one dendritic tree will be considered in future work. The soma voltage �-. 

in Figure 3.4 can be expressed by the ordinary differential equation:  

L-. b�-
.

bD � �W-.#�-.�. �-. C �W
. # �-.�. �
. C 

EW�

. # �-.F. ��


. C ��-/ # �-.�. �Y.                          (3.6) 

Applying Forward Euler method to Eq. (3.6) gives the following recursive equation for 

soma voltage: 

�-.�Z C 1� � @�c C �c '��

. �Z� C �
.�Z�(A �-.�Z� C Lc ��


. �Z� C 

\c�
.�Z� C Wc�-/�Z� C dc  ,                                                  (3.7) 
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where �-. is soma voltage, �-/ is the connected dendritic compartment voltage and: 

 �c � 1 # ∆H
^R; ��-. C �Y/�      �c � # ∆H

^R;    Lc � ∆H.Te
;
^R;  

 \c � ∆H.Tf;
^R;   Wc � ∆H.g
:

^R;  dc � ∆H.gR; .TR;
^R;      

The main difference between Eq. (3.7) and the recursive Eq. (3.5) or Eq. (3.3) is the 

dependency of ionic conductance on the membrane voltage changes. Thus at each 

simulation step, �
  and ��
must be updated after calculation of the new voltage for the 

soma. Assume ��Z�, m�Z� and h�Z� are the gates probabilities and �
.�Z� and ��

. �Z� are 

the Potassium and Sodium conductance at the ZH> simulation step. With change in soma 

voltage, the ionic conductances must be updated using Eqs. (2.1) through (2.5).  

According to Eq. (2.5): 

 ��Z C 1� � ������Z C 1�� # E������Z C 1�� # ���Z��F. G2∆H I�J
,  (3.8) 

With substitution of �� and K� using Eq. (2.3) and Eq. (2.5) respectively, ��Z� can be 

specified recursively as: 

��Z C 1� � ��Z C 1� C ��Z C 1�. ��Z�,                     (3.9) 

where: 

��Z� � ������X��
������X���������X��   '1 # Gh�E#∆D. �������Z�� C ������Z���F(     (3.10) 

��Z� � Gh�E#∆D. �������Z�� C ������Z���F 

�-.  

W-.  

L-.  

�-. �-/ 
�Y/ 

�
.  

W
.  

��

.  

W�
 

Figure 3.4   Hodgkin and Huxley model of Soma 
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In Eq. (3.9), ��Z� and ��Z�  must be calculated based on the new membrane voltage 

prior to updating the probabilities of n-, m- and h- type gates. As the last step, the new 

values of n, m and h probabilities are used to calculate the ionic conductances using Eqs. 

(2.1) and (2.2). 

3.2 MATLAB Simulations 

In order to verify the proposed approach, MATLAB scripts are developed to execute 

Eqs. (3.3), (3.5), (3.7) and (3.9) for membrane voltage and Eqs. (3.9), (2.1) and (2.2) to 

update Sodium and Potassium conductances. The MATLAB simulation results are 

compared with GENESIS output as the reference. Figure 3.5 shows MATLAB and 

GENESIS simulation results of the soma voltage for a cell with ten passive dendritic 

compartments. Identical parameters and models were used in both simulations. The 

parameters used to model the cell are listed in Table 3.1. The specific values and the 

physical dimensions in Table 3.1 are used to calculate the electrical components of the 

compartment equivalent circuit shown in Figures 3.2 and 3.4 using the following 

equations [6]: 

 

Figure 3.5   GENESIS simulation (left) and MATLAB simulation (right) 
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M- � Mi/�k. b. l� 
 L- � Li. k. b. l 

 MY � 4. l. Mm/�kb0�                                             (3.11) 

 �
 � 	
����. k. b. l                                                    
 ��
 � 	�
�����. k. b. l                                                    

where d and l are the compartment diameter (i.e. dend_d ) and length (i.e. dend_l ). 

�
 and ��
  are the maximum conductance of the Potassium and Sodium channels, 

respectively. 0.002µA injection current is applied to the last compartment starting from 

20mS with 40mS duration. 80ms of soma voltage is simulated in 10µs time steps. 

Comparison of various parameters in Figure 3.5, such as the number of action potentials, 

their voltage levels, and time of triggering, shows similarity between MATLAB and 

GENESIS simulations. 

Table 3. 1  Neuronal cell parameters 

Property Symbol Value Unit 

Specific  Capacitance Li 1 
μd o�0J  

Specific Resistance Mi 5 Zp. o�0 

Specific Axial Resistance Mm 0.025 Zp. o� 

Soma Diameter soma_d 3.00E-03 cm 

Soma Length soma_l 3.00E-03 cm 

Dendrite Diameter dend_d 2.00E-04 cm 

Dendrite Length dend_l 1.00E-02 cm 

Sodium normalization 

constant 
	�
����� 120 �q o�0J  

Potasium normalization 

constant 
	
���� 36 �q o�0J  

    

Rest potential WrscH  -70 mV 

    

Potassium equilibrium 

potential 
W
 -80 mV 

    

Sodium equilibrium 

potential 
W�
  55 mV 

equilibrium potential W- 11.7 mV 
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Figure 3.6 represents a more complex model for simulation. Some of the dendrite 

segments in Figure 3.6 are numbered for reference purpose. Although variable numbers 

of compartments in each dendrite segment can be used, three compartments are 

considered at each segment to simplify creation of the model parameters. Table 3.1 lists 

the parameters of the soma and direct-connected dendrite segment. To simplify the 

creation of simulation model, child segments diameters are set to half of that of parent 

segment. Although the model in Figure 3.6 is regular and unrealistic still it can be used 

for verification purpose and studying some properties of neurons such as propagation 

delay of electrochemical signals through the dendritic tree.  

.  

Figure 3.7 shows the soma voltage for the period of 80ms without injection current for 

stimulation. Initially, an action potential is created and then the voltage reaches the rest 

level. At 30ms of time, a 0.002µA injection current is applied to the last compartment of 

the dendrite segment #31 for 30ms duration. Figures 3.8 and 3.9 show the membrane 

voltage at the compartment where current was injected and soma, respectively. 

31 

30 

16 

17 

1 

2 

3 

8 

4 

soma 

Inj. current 

Figure 3.6   Cell model with multi-branch dendrite tree 
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According to Eq. (3.11), membrane resistance M- is inversely proportional to membrane 

diameter. When a parent dendrite segment is divided into child segments, the membrane 

resistance increases as a result of the smaller diameters of those segments. Due to the 

increased membrane resistance in the stimulated compartment, injection of the current 

causes large voltage displacement as shown in Figure 3.8. This voltage displacement, 

through the dendritic tree, stimulates the soma to trigger action potentials. Figure 3.9 

shows two action potentials generated periodically. Based on the time difference between 

the voltage displacement in Figure 3.8 and the first action potential in Figure 3.9 (≈4ms) 

and the distance between the two points (15compartmets × 0.01cm), the propagation 

speed of electrochemical signal through the dendritic tree of the model can be obtained 

approximately as 350m/s.   

Consistency between MATLAB simulation results and GENESIS simulations verifies 

that the proposed SPE based approach can be used as the starting point to develop a new 

general-purpose neural systems simulator.  

 

Figure 3.7   Soma voltage without stimulation 
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Figure 3.9   Soma voltage with current injected into segment #31 

Figure 3.8   Membrane voltage of the injected compartment 
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Chapter 4  

Architecture for Parallel Neural Simulation 

A proper design architecture for neural simulation must address the common 

requirements of large scale simulations, such as parallel processing and scalability. This 

chapter demonstrates how the concept of Similar Processable Entities (SPE) groups 

discussed in Chapter 3 is used to design a parallel architecture for large scale neural 

simulations. The architecture can be implemented efficiently on hardware. Highly 

specialized processors with a specific addressing scheme allow scaling up in a flexible 

manner.  

It should be note that throughout this chapter and the rest of the thesis, the term node 

refers to the membrane voltage of a compartment or the compartment itself. Thus a node 

can represent a soma voltage, a voltage at a branching point, or a dendritic compartment 

voltage. A common node is the branching point voltage. Also dendrite segment refers to a 

sequence of dendritic compartments without a common node in the middle. 

4.1 Simulator Building Blocks 

The dendrite compartment, common node and soma voltage described by Eqs. (3.3), 

(3.5) and (3.7), respectively, are implemented individually with customized processors. 

In addition to specific functions, each processor is able to communicate with the 

remainder of the system. Figure 4.1 shows part of a large model of a neuron with a 
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branching dendrite. To compute the voltage at common node 1 (branching point group), 

the voltages at node 2, 4 and 5 (dendritic compartments group) must be available to the 

common node processor. On the other hand, the processor which is responsible for 

processing node 2 (middle nodes) must have access to the voltage at node 1 (a common 

node). This means the architecture should includes a minimum of three types of 

processors and a communication media to function together for simulations. Each 

processor type is a custom designed hardware unit to process a specific SPE group (e.g. 

common nodes) effectively. The communication media is a scalable switching unit to 

transfer the data between various processors.  

For large simulations, the architecture must be flexible enough to support multiple 

instantiations of similar processors to work in parallel to increase total processing power. 

Figure 4.2 illustrates the proposed simulator architecture. Two levels of parallelization 

are supported by this simulator. At the first level, a model is divided into SPE groups 

such as common nodes or soma voltages. At the second level, every large SPE group is 

divided to smaller sub-groups. An improved parallelization can be achieved by using a 

dedicated processor for each sub-group.   

In Figure 4.2, dendrite segment processors (DSPs) are responsible for processing 

membrane voltage of dendritic compartments. Common node processors (CNPs) group 

compute the branching point voltages. Finally the soma processors (SPs) groups simulate 

the soma voltage or action potential generation. The communication media provides 

inter-processor communication facilities. The rest of this section describes the structure 

of each processor type.  

 

1 

23

4 

5 

Figure 4.1   Branching point structure of a dendrite tree in compartmental modeling 
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4.2 Dendrite Segment Processor (DSP) 

The DSP is responsible for updating dendrite compartments voltages based on Eq. (3.3) 

as follows: 

t-O �Z C 1� � �Q . �t-O2/�Z� C t-O�/�Z�� C �Q. t-O �Z� C LQ C \Q 

According to Eq. (3.3) the voltage calculation of node i at each simulation step only 

depends on the voltages of the three adjacent nodes i-1, i, i+1.   Figure 4.3 shows the 

conceptual top level block diagram of the DSP. Dendritic compartment voltages are 

stored in a FIFO queue such that the adjacent node voltages can be read from FIFO 

sequentially. When the voltage of node i is in register �., its adjacent nodes’ voltages 

will be at �/ and  �2/. 

Dendrite 

Segment 

Processor 

Common Node 

Processor 

Soma  

Processor 

Communication Media 

Figure 4.2   Top level block diagram of simulator 
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 Referring to Figure 4.3, DSP includes four floating point (FP) adders and two 

multipliers. The arrangement of the FP operators is to maximize parallelization in processing 

individual nodes voltages. This type of parallelization, meaningful only on the hardware 

level, allows the DSP core (in Figure 4.3) to process one compartment per clock.  

In addition, the arrangement of FP adders and multipliers minimizes the pipeline clock 

depth of the implemented processor. The major source of the processor pipe line delay is 

the delay of FP operators. With maximum number of FP operators in parallel the 

processor delay is minimized, which in turn reducing the number of clock cycles of each 

iteration. On the last stage, the new voltage at the output of the Inj. adder is written back 

to the FIFO for the next iteration. 

Using a FIFO to store the node voltages makes the design flexible in handling different 

number of dendritic segments and different number of nodes per segment. To access 

FIFO contents there is no need to address memory locations. Thus, a FIFO simplifies the 

design of memory management aspects of DSP in order to process neurons with dendrites 

of different complexities. According to Figure 4.3, three adjacent nodes are processed to 

update the voltage of the middle node only. Updating the end nodes of each segment 

FIFO uv uw u2v 

xy 

zy 

{y 

Inj. Current Term 

C 

|y 

C } 

} 

C 

C 

Inj. Adder 

Figure 4.3   DSP block diagram 
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required special considerations. Based on the end node status of segments, there are three 

possible conditions: 

• End node is a common node or Soma:  

Node value is updated by the CNP or SP. DSP simply uses the node value 

without further processing. 

• Start of the dendrite segment is an open node:  

DSP is responsible for updating the end node voltage. When this voltage is in 

�. register (in Figure 4.3), uses the same node value for a fake previous node 

by duplicating the contents of �. to �2/ register.  Figure 4.4 shows the 

resulting electrical circuit. Since both sides of �Y. are always at the same 

potential level, the fake node appears as a short circuit to the main node.  

• End of the dendrite segment is :  

Similar to the case when the start of the dendrite segment is an open node, 

DSP updates the next node voltage by duplicating the node voltage from �. 

to �/. 

4.3 Common Node Processor (CNP) 

The CNP module is responsible for updating the voltages at the branching points of the 

�-.
W-.  

L-.  
NO�P.  

�Y. �-. �-. �-2/ 
�Y2/ 

Figure 4.4   Equivalent circuit of the first node with appended fake node 
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dendritic tree based on Eq. (3.5). Figure 4.5 shows the top level block diagram of CNP. 

Upon receipt of voltages of all adjacent nodes of a branching point, CNP starts to 

calculate the common node voltage. In Figure 4.5, �. represents the common node 

voltage, �2/ is the adjacent node on the parent segment, and �/ and �0 are the next 

nodes on the child segments (refer to Figure 3.3 for more details). Since W� term is 

constant for each common node, it can be added to the node voltage prior to the next 

iteration to decrease input-to-output delay time. 

4.4 Soma Processor (SP) 

Neural activities in generating action potentials are based on specific behaviors of ionic 

channels embedded in the membrane. Ionic channels conductances are functions of 

membrane potential. The soma processor computes the new voltage of the node at each 

iteration and updates the ionic conductances accordingly. These requirements indicate 

that the structure of the soma processor differs from that of other modules described 

Common Node Voltage 

�� 

uw u2v uv u~ 

} } } } 

C 

C 

C 

C 

�� L� \�  

W� 

Figure 4.5   Common Node Processor block diagram 
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above, and the design of the processor module is more complex task.  

In our research, the Hodgkin-Huxley model [28] is used for cell excitability. As 

described in Section 2.2, this model is based on two types of ionic channel, Potassium 

and Sodium.  Also it is assumed that the root compartment of a dendritic tree can be 

connected to the soma.  

Implementation of the soma processor is based on two main Eqs. (3.7) and (3.9). 

Assume that at the ZH> iteration all parameters of the model are known. Upon receiving 

the connected dendrite compartment voltage, the SP uses Eq. (3.7) to process the new 

voltage for the soma. The change in soma voltage in turn causes ionic conductance 

changes. Thus the SP must update ion related parameters before starting the next 

iteration. Accordingly, the soma processor can be viewed as if is composed of two 

different processors: 

• Soma Voltage Processor (SVP): To update the soma voltage. 

• Soma Conductance Processor (SCP): To update the soma parameters. 

Figure 4.6 represents the soma processor block diagram with SVP and SCP as sub-

Soma 

Voltage  

Processor  

(SVP) 

Dual 

Port 

Memories 

Soma  

Conductance  

Processor  

(SCP) 

Dendrite Voltage 

Soma Voltage 

Figure 4.6   Soma Processor (SP) block diagram 
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processor modules. When SVP receives the new dendrite voltage, it reads the respective 

cell parameters from the dual port memories and calculates the new soma voltage. The 

new voltage is sent back to the system as well as to the SCP. The conductance processor 

uses the new voltage to update the cell parameters in dual port memories. With the 

proposed architecture, the two tasks to update soma voltage and ionic conductances are 

conducted in parallel. While SVP computes the voltage for new soma, SCP updates the 

previous soma parameters. Thus SCP does not add overhead to the simulation time 

despite considerably high number of mathematical operations.  

4.4.1 Soma Voltage Processor (SVP) 

In the proposed simulation method for soma, SVP implements Eq. (3.7). Upon receipt 

of an associated dendrite voltage, SVP starts to update the soma voltage. SVP structure as 

depicted in Figure 4.7 is similar to that in the CNP module. From as implementation 

point of view there is one difference. Unlike Eq. (3.5) for CNP, Eq. (3.7) can be more 

easily expanded or factored into various expressions.  The fully expanded form of Eq. 

(3.6) is:  

�-.�Z C 1� � �c�-.�Z� C �c��

. �Z��-.�Z� C �c�
.�Z� �-.�Z� C Lc ��


. �Z� C 

\c�
.�Z� C Wc�-/�Z� C dc                                              (4.1) 

Factorizing based on the �c coefficient results in: 

�-.�Z C 1� � �c�-.�Z� C �c���

. �Z� C �
.�Z�� �-.�Z� C Lc ��


. �Z� C 

\c�
.�Z� C Wc�-/�Z� C dc                                              (4.2) 

With prior knowledge on the target platform (Xilinx FPGAs) and floating point 

arithmetic IP cores delay specifications, Eq. (3.7) provides the better results compared to 

Eqs. (4.1) and (4.2). Eq. (3.7) can be implemented using six floating point adders, five 

multipliers and one delay line. Eq. (4.1) requires eight multipliers, six adders and two 

delay lines. Six adders and multipliers are required to implement Eq. (4.2). 
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Figure 4.7   Soma Voltage Processor (SVP) 
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4.4.2 Soma Conductance Processor (SCP) 

As described by the Hodgkin-Huxley model, ionic conductance varies with membrane 

voltage. The SCP module is responsible for updating the Sodium and Potassium 

conductances shown in equivalent circuit of Figure 3.4. According to the proposed 

architecture of SCP, n-, m- and h-type gate probabilities are calculated according to Eq. 

(3.9), and ionic conductances are calculated according to Eqs. (2.1) and (2.2). A notable 

difference between SCP with other processors is the non-linear dependence of 

��Z� and ��Z� coefficients on the membrane voltage. This dependence makes the SCP 

design more challenging.  

 Unlike the situation for software based platforms, implementation of Eq. (3.9) on 

hardware (e.g. FPGAs) is not straightforward due to the exponential terms. Also because 

of longer input-output delay for floating point division operator IP cores, approaches 

based on FP adders or multipliers are preferable. Instead of direct implementation of Eq. 

(3.9), an approach based on lookup tables (LUTs) is proposed to implement ��Z� and 

��Z� coefficients for all three gate types. 

Since ��Z� and ��Z� are functions of the command voltage (difference between 

membrane potential and the rest potential), the applicable range of the command voltage 

must be determined first. As described in Sec. 2.2.2 (referring to Figure 2.4), an increase 

in membrane voltage (for example, due to postsynaptic potential received from the 

dendritic tree) causes an abrupt rise in Sodium conductance in a short time interval. Also, 

according to the equivalent circuit of Figure 3.4, an increase in Sodium conductance 

makes the W�
the dominant parameter in determining the node voltage (≈125mV). 

Eventually, the Sodium conductance returns to the resting condition, and an increase in 

Potassium conductance makes the node voltage close to WX (≈ -10mV). Thus the expected 

range for the command voltage for LUTs should be in the range of -10mV to +125mV.  

As a more quantitative approach in determining of the voltage range, MATLAB scripts 

were developed to calculate �����,  ����� and ����� based on Eq. (2.3). The results 
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are represented in Figures 4.8 and 4.9. When membrane voltage is below -50mV or 

above 150mV, it is clear that the probabilities of all gates in permissive mode are 

approximately 0 and 1 respectively. Thus, according to Eqs. (2.1) and (2.2), increasing or 

decreasing the command voltage beyond those limits does not have noticeable effect on 

the Sodium and Potassium conductance.  Voltage clamp mode and current clamp mode 

simulations can show what these range limit means in terms of membrane voltage 

changes. Referring to Figure 3.4, in voltage clamp mode the voltage of dendritic 

compartment �-/ is kept at high voltage of 400mV for 30ms and the soma voltage is 

recorded. Figure 4.10 shows that even with high voltage application to the closest 

compartment to the soma, the membrane voltage at highest level are less than 180mV 

(dominated by W�
). On the other hand, when the voltage is removed the lowest level 

slightly goes below 0mV. For the current clamp test, 0.002µA injection current is applied 

to the dendrite compartment and the results are recorded. Figure 4.11 shows that the soma 

voltage ranges from -5mV to 120mV.  

Based on the analytical and simulation results, a 256mV voltage range from -64mV to 

192mV is considered to store the values of ��Z� and ��Z� coefficients in LUT. To 

determine the required voltage resolution or simply the size of the LUTs, the Sodium and 

Potassium conductance quantization errors are evaluated. According to Eqs. (2.1) and 

(2.2) since ionic conductances are result of multiplication of �� and ��. �  in 

normalization constant, these equations are used to analyze the quantization error effect. 

Considering the fact that target platform is hardware, it is preferred to implement LUTs 

using memories. For effective use of addressing of memory space, the size of LUTs is 

preferably a power of 2. To show the quantization error on ��Z� and ��Z� coefficients, 

the command voltage range is divided into 32 coarse steps of 8mV. MATLAB scripts are 

then used to calculate ��Z� and ��Z� at quantized levels of command voltage. Figure 

4.12 shows ��Z� and ��Z� terms for n-, m- and h- type gates for a simulation time step of  

∆t = 0.01ms.  
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Figure 4.8   n-type gate probability changes vs. command voltage 

Figure 4.9   m- and h- type gates probabilities vs. command voltage 
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Figure 4.10   Simulation result of soma voltage for voltage clamp experiment 

Figure 4.11   Simulation result of soma voltage for current clamp experiment 
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It is clear that the most quantization errors for ��, �� and �- occur at the high end of 

the voltage range and for �-, �> and �> occur at the low end. As an extreme condition, 

the error in ��and �� } � is calculated for maximum membrane voltage displacement 

and maximum quantization error at the high end of voltage range. 

For calculating the maximum error of n-type gate, the command voltage is set at 

−64mV for a long time such that n-gates have reached to their stable condition. Thus the 

initial value of n is 0.00162 as shown in Figure 4.8. With quick change of command 

voltage to 192mV (the upper bound of quantization) according to Eq. (3.9), the new value 

of n is: 

��0 � ���32� C ���32� } 0.00162 � 0.01885 

With one level of quantization error on �� and �� in the worst case: 

��/ � ���31� C ���31� } 0.00162 � 0.01806 

Thus the error in calculation of Potassium conductance will be proportional to: 

�srr�r � ��0� # ��/� �  1.9743G # 008 

or 

�srr�r% � �srr�r��0� } 100 �  15.65% 

Table 4.1 shows the percentage of error in calculation of Sodium and Potassium 

conductances at each simulation step (0.01ms) for different steps sizes. In our research 

2048 levels of quantization (0.125mV steps) are used to create ��Z� and ��Z� LUTs.  

As described above, soma conductance processor (SCP) is the implementation of Eq. 

(2.1) and (2.2) in which n, m and h probability terms are computed using Eq, (3.9). Since 

the conceptual block diagram and detailed block diagram of SCP are very similar, more 

explanation on SCP is provided in Chapter 5. 
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Figure 4. 12   Quantization error of x�, z�, x�, z�, x� and  z� coefficients 
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Table 4. 1  Maximum Error in Calculation of ionic conductances in each simulation run 

introduced by quantizing A(k)  and B(k)  coefficients at the high end of 

command voltage range 

#Divisions Step Size(mV) K error% Na error% 

32 8 15.65 13.34 

64 4 7.91 6.64 

128 2 3.98 3.31 

256 1 1.99 1.65 

512 0.5 0.99 0.83 

1024 0.25 0.49 0.41 

2048 0.125 0.25 0.21 
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Chapter 5  

Detailed Design 

It is a common practice to select a target platform prior to the detailed design phase. 

Although the proposed architecture can be realized on various types of platforms, Field 

Programmable Gate Arrays (FPGA) are selected to accelerate the simulation execution. 

High configurability of modern FPGAs in many cases make them a valuable candidate 

when high processing power along with configurability is required. In this chapter it is 

demonstrated how FPGA resources and IP cores can be used efficiently to implement a 

highly scalable and flexible neural simulator. The whole design is based on three 

different types of processor modules and one communication media. This chapter 

provides more details on realizing the proposed simulator building blocks. An 

explanation of the processing model and addressing scheme - cross cutting elements 

related to the whole system - is provided first, followed by details of each module type. 

5.1 Processing Model 

Although the three processor types in Figure 4.2 work in parallel to process the three 

different groups of model components, their activities have to be synchronized with each 

other. For example, at each simulation step, a common node processor (CNP) must 

receive the node voltage of the connected compartments (Figure 4.1) from the DSP 

modules in order to calculate the new voltage of the common node. A dendrite segment 

processor (DSP) needs to receive the end node voltages of a dendritic segment from 

CNPs to update the segment nodes.  
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To determine which processor takes action first, the natural path of signal manipulation 

in a biological neuron is followed. In a neuron, inputs are collected by the dendritic tree 

and then transferred to the cell body for further processing and action potential 

generation. Similarly, in our processing model, first the DSP modules start to update the 

node voltages of the dendritic segments. Since the end nodes connected to other segments 

cannot be processed locally, each DSP sends requests to associated CNPs or SPs for 

updated values of the end node voltages. This processing model resembles the 

client/server architecture in a software environment, where the DSPs are similar to 

multiple client applications sending requests for services (updating node voltages) to the 

CNPs or SPs server applications.  

Since SP and CNP both update only one node per request, their pipelined architecture 

enables them to accept one request per clock.  This indicates that the communications 

media can treat them as memory mapped devices and write the request without 

sophisticated handshaking. It should be noted that other ways of organizing the 

processors activities are also possible, e.g. SP as client and DSP as server. The proposed 

sequence of operations provides more flexibility in both design and simulation process. If 

DSPs are implemented as server applications they have to processes variable numbers of 

nodes per incoming request. At the implementation level, this would mean that more 

complex memory management in DSPs and sophisticated handshaking with the client 

processors (e.g. CNP) are required.  

5.2 Addressing Scheme 

Partitioning a large model into smaller groups and distributing their evaluations over a 

cluster of processors will require communications among the processors to fulfill their 

tasks. There are the following activities on each processor type: 

• To calculate the common node voltage, the CNP needs to receive the 

connected nodes voltages. 

• To calculate the soma voltage, the SP needs to receive the connected node 

voltage. 
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• To calculate the voltages of penultimate nodes of a segment, DSP needs to 

receive the end node (common node) voltages. 

The data transferred among the processors are common node voltages (including soma 

voltage) or the dendritic node voltages on the node connected directly to a common node. 

If by some mechanism, the common nodes (and somas) are uniquely identified in a 

model for inter-processor communication, sending the node voltages along with their 

associated identification information is adequate. 

To develop an addressing scheme to uniquely indentify common nodes within the 

model, the concept of host and network address in the Internet Protocol [36] is adopted. 

The Internet Protocol allows networks of small or large number of computers connected 

together on Internet. Similarly, in our proposed addressing scheme every common node 

or soma is uniquely identified within a model by a 32-bit number which is called 

Common Node Id (CNI). Also every common node belongs to a domain which is 

identified by a Common Node Domain (CND). The CND is a 32-bit number with its right 

most significant bits set to 0. A CNI belongs to CND iff: 

 CND equal_ to (CND bit_wise_and CNI) (5.1) 

The CND concept provides a flexible manner of the load distribution over multiple 

processors to meet both the model requirements and hardware resources limitations. For 

example, if the model consists of cells with a very simple dendritic structure (low number 

of bifurcations), then multiple cells can be placed in a domain for processing by a single 

CNP. On the other hand, if a cell includes a complex dendritic tree with several 

thousands of common nodes, the cell can be partitioned to several domains for processing 

in parallel by multiple CNPs.  

To simplify the address allocation and also the routing algorithm in the communication 

media, a specific address range for somas is dedicated, starting from (00000000)H. The 

last address is determined by the number of somas in the model. For example for a model 

with 7000 cells, the address range from (00000000)H to (00001FFF)H will be used to 

address the  soma nodes and the rest of address space from (00002000)H to 

(FFFFFFFF)H can be partitioned into several domains to cover  the common nodes.   
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5.3 Dendrite Segment Processor (DSP) 

5.3.1 Segment Definition Packet 

To process a dendrite segment efficiently, a data structure is created to fully specify 

required segment information. Assume the simulation time step ∆t is constant over the 

simulation period. According to Eq. (3.3), for a cell with known parameters, �Q, �Q and 

LQ are constants. The constants can be computed prior to simulations, for example by a 

software application and stored as part of model information. To keep the storage size 

minimal in this implementation, the compartments in each segment are considered to 

have same properties, e.g., specific resistance, diameter and length. Thus one set 

of  �Q, �Q and LQ parameters can be used to describe all compartments of a segment.   To 

process dendrite segments, further information is required about the condition of the end 

nodes.  The proposed data structure is called Segment Definition Packet (SDP) and is 

depicted in Figure 5.1. It contains all information about a dendritic segment to be used by 

the DSP.  

A SDP packet consists of a number of Header rows and Data rows. Each row is a 66-

bit word. The first header word mainly contains the information about the first node of 

the segment. Figure 5.2 shows various fields of the first row. The first 32 bits represents 

the CNI field which is uniquely identified as the start of the segment within the model. 

INDEX field is the address of local memory where the voltage of the first node is stored. 

The content of this memory location is updated by CNP or SP. The next field (bits 40 - 

47) specifies the number of the nodes in the segment. Bits 48-64 (marked as "x") are not 

used. Bits 64-65 show if the end node is a common node or not. All possible conditions 

for an end node are listed in Table 5.1. 

Similar to the first header field, the second header contains the information regarding 

the last node of the segment. This header row, however, does not have the “Number of 

nodes” field. The third to fifth rows contain  �Q, �Q and LQ coefficients for the segments 

in IEEE-754 64-bit floating-point format, and bits 64-65 of these three rows are spare 

bits. 
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Start Node Data 

End Node Data 

xy 

zy 

{y 

1
st
 Node Voltage/Status 

2
nd

 Node Voltage/ Status 

▪ 

▪ 

Last Node Voltage/Status 

Figure 5.1   Segment Definition Packet (SDP) structure 

 

Table 5. 1  The Status field describes the end node connectivity to the other 

segments 

State Description 

00 End  of the segment is not connected 

01 
End of the segment is connected and the segment is a 

parent segment 

10 
End of the segment is connected and segment is one 

of the child segments 
11 

Header Fields 

Data Fields 

Status x Num of Nodes CNI INDEX 
65 64 47 40 39 32 31 0 

Figure 5. 2   First row of the SDP header 
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The SDP data rows contain the segment nodes’ voltage, starting from the first node. As 

above, node voltage is represented in double precision floating point format (64-bit). The 

65
th

 bit represents the injection current status. If it is set to 1, it means that the 

compartment has an injection current source and the \Q term in Eq. (3.3) is considered in 

computation of the node voltage. 

5.3.2 Detailed Design 

Figure 5.3 shows the main modules of the DSP. It is composed of two types of 

processors. The header part and the data part of the segment definitions packets are 

processed separately by the two types of the processors. To start the simulation, the 

Header and Data FIFOs are loaded with the header and data parts of the SDPs. Every 

simulation cycle starts with applying the cycle start command to the Simulation Cycle 

Control module which in turn activates the header processor.  

The header processor reads the header of the first segment and sets its output interface 

with the individual information retrieved from the SDP header such as �Q, �Q and LQ 

coefficients or CNIs. The header processor writes a 66-bit word read from the Header 

FIFO back to the FIFO for the next run. Since the write operation prevents the FIFO 

from being empty, to detect the end of the segments, the Simulation Cycle Control 

module counts the number of write operations and compares it with the initial data size of 

the FIFO.  

Activation of the segment start signal causes the node processor to start processing of 

the first segment. It reads nodes voltage from the Data FIFO and uses the header 

information from its input interface to update the node voltages. Updated voltages are 

written back to the Data FIFO for the next run. After completion of processing of all 

nodes, the node processor sends the segment end signal to the header process to start a 

new segment. The End of Cycle Detector module uses the same mechanism as the 

Simulation Cycle Control module to detect processing of all nodes and then it issues the 

cycle end signal to declare the end of current simulation step.  
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The Output Buffer module, which is also a FIFO, provides the interface with the 

communication media. After updating the middle nodes’ voltage, the DSP sends requests 

for the updated voltage of the end nodes. To send the request, the DSP writes the address 

of the common node (CNI) and the voltage of its adjacent node (section 5.2) to the output 

buffer. By polling the status of this buffer, the communication media reads the existing 

requests and routes them to the proper destinations.  

The node processor, shown in Figure 5.4, is responsible for updating the dendritic 

segments’ node voltages based on the functional descriptions of section 4.2. The node 

processor is composed of four main modules, Common Node Voltage, Node Controller, 

Node Voltage Processor and Injection Current Controller. The common node voltage 

module is a dual port memory to store the voltages of the end nodes. The communication 

media has direct write access to this memory and updates the memory contents with the 

common node voltages received from the other processors. The Node Controller module 

reads the node voltages from the SDP Data FIFO and organizes them properly, in 

accordance to the direction provided in section 4.2. If the end nodes are connected, it uses 

the voltage value from the common node voltage memory and then sends a request for the 

updated value of the node voltage. For the open ends it creates a fake node to process the 

end node locally. For the node to be processed locally, the node controller puts its 

voltage and the voltages of its adjacent nodes at the outputs connected to the Voltage 

Processor (�-2/,  �-. and �-/) for further processing. 

The Voltage Processor is the implementation of Figure 4.3 (excluding the FIFO and 

the Inj. adder which is to apply the injection current term  \Q).  �Q, �Q and LQ 

coefficients received from the header processor and the node voltages from the node 

processor are used to determine the new voltage of the middle node. 

In Eq. (3.3) and Figure 4.3,  \Q is the injection current term which is only applicable 

for dendritic compartment with injection current sources. Based on the status bit of each 

node, the Injection Current Controller module decides whether or not to apply the \Q 

term. For the nodes with the status bit set to 1, Injection Current Controller adds \Q and 
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for nodes with status bit set to 0, it adds 0 to the updated node voltage received from the 

Node Voltage Processor. 

Node 

Controller 

First Node 

Data 

Last Node 

Data 

�Q  
�Q 
LQ 

Node Count 

Common 

Node 

Voltage  

Memory 

Response: 
Common node 

voltage  

Voltage 

Processor 

Node 

Voltage 

Request: 
Common Node 

Address  Node 

Status   

Updated 

node 

voltage   

�2/ 

�/ 

�. 

Injection 

Current 

Controller 

Figure 5.4   Node Processor block diagram 
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5.3.3 Common Node Processor (CNP) 

In our proposed processing model, a CNP is a server process responsible for updating 

the branching points’ voltage of the dendritic trees. The update process is based on Eq. 

(3.5) and the conceptual design in Figure 4.3. To calculate the new voltage for a common 

node, the CNP must receive the adjacent node voltages on three different dendritic 

segments. During the distribution of the model elements among various processors, it is 

possible to load the parameters of the three segments forming a common node on three 

different DSPs. Thus the CNP must be capable of collecting the requests from DSPs in 

any order and detecting the completion of data required to process each common node.  

The three voltages in Eq. (3.5) are not available at the same time. They are sent from 

various sources and in the worst case scenario the communications media delivers all 

voltages in three consecutive clocks. In this situation the permanent allocation of floating 

point operators to implement the conceptual design of Figure 4.3 does not result in 

efficient usage of FPGA resources. For a minimal design which accomplishes the 

maximum level of parallelization, the terms of Eq. (3.5) are divided into two groups. 

Upon receiving a node voltage, corresponding terms in each group are processed. The 

two groups and the conditions to process their elements are listed in Table 5.2. 

 
  

Table 5. 2  Elements of the Eq. (3.5) that can be processed in parallel upon receiving an 

adjacent node voltage 

Adjacent node Symbol Node Status Group 1 Group 2 

Parent Segment �-2/ 01 �� . t-2/ �� . t-.  

Child Segment 1 �-/ 10 L� . t-/  W� 

Child Segment 2 �-0 11 \� . t-0  0 
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Figure 5.5 represents the block diagram of the CNP. When an adjacent node voltage is 

received, its status is used to conduct the proper arithmetic operation. MUX1 and MUX2 

select the proper coefficient for group 1 and group 2 according to Table 5.2. Thus 

depending on the status of the received node, different result will be transferred to the 

first Dual Port Memory according to the following expressions: 

 �D�D�� �� 01 �  �� . t-2/ C �� . t-.  

 �D�D�� �� 10 �  L� . t-/ C W� 

 �D�D�� �� 11 �  \� . t-0  

The two dual port memories are configured to work as shift register for each specific 

node. With the CNI as the address of both memories, every time a new term is calculated 

for a CNI, the contents of the associated location in the memories chain shift from the 

first memory to the second memory (Figure 5.5) and the first memory is updated with the 

new term. The Monitoring module detects whether the three terms are ready. If the three 

terms are ready, the Monitoring module sends them out for final processing and also 

resets the addresses of both memories to 0 for the next run. The new common node 

voltage is stored in a dual port memory for the next run of the simulation. The new 

voltage is also written to the output FIFO to be read by the communication media at the 

proper time. 

The CNP Monitor module determines the idle status of the CNP module. As described 

above, CNP module needs to receive three requests for each common node update. The 

CNP Monitor module has a built-in counter which increments with each write operation 

and decrements by three with each read operation. Any time the counter is zero the CNP 

Monitor signals the idle status of the CNP. The importance of this signal is in declaring 

the end of a simulation step. 
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5.3.4 Soma Processor (SP) 

Referring to the conceptual design in section 4.4, the Soma Processor is the realization 

of Eqs. (2.1), (2.2) and (3.7) based on two sub-processors, the soma voltage processor 

(SVP) and the soma conductance processor (SCP). As shown in Figure 5.6 the soma 

processor is composed of six main modules. In addition to SVP and SCP, the Soma 

Processor also includes a � Conductance module, �Y Conductance module, SP Monitor 

module and an Output Buffer.  

In response to incoming requests from the communications media, the SVP uses the 

received voltage t-/ , CNI data from the communications media as well as the current 

values of Sodium and Potassium conductances from two dual port memories to update 

the individual soma voltage t-. . SVP writes the new voltage to the output buffer and to 

the SCP for further processing. The output buffer is a FIFO that allows the 

communication media to read the new voltage at a proper time. The SCP uses the new 

voltage to update the ionic conductance values. 

The SP Monitor detects if the soma processor is busy or is in the idle state by counting 

read/write operations. Unlike the CNP, SP sends out an updated soma voltage in response 

to each incoming request (connected dendritic voltage), thus the SP Monitor counter 

increments or decrements by one with each write or read operation.  Any time the counter 

is 0, the SP IDLE signal is activated. Since the SP has two sub-processors, it is idle only 

when both processors are idle. Thus the SP Module counter counts write operations from 

the communications media to the SVP (incoming requests) but decrements the counter 

with the write operations from SCP to the dual port memories. Thus the IDLE is declared 

when both SVP and SCP have completed their current tasks.   

5.3.4.1 Soma Voltage Processor (SVP) 

The SVP design is a direct implementation of Figure 4.7, with replacement of the 

multiplier and adder operators with proper IP (Intellectual Property) cores, thus no further 

block diagram is provided for this section. SVP simply uses the incoming CNI to retrieve 

�c to dc coefficients from LUTs and then updates the soma voltage. 
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5.3.4.2 Soma Conductance Processor (SCP) 

The SCP module updates the Sodium and Potassium conductances of soma based on 

Eqs. (2.1) and (2.2). Figure 5.7 represents the internal block diagram of the SCP.  There 

are dedicated sub-processors for each type of ionic conductances. Each processor is 

designed to update the n-, m- and h- type gates probabilities when the membrane voltage 

changes based on Eq. (3.9). As it is explained in section 4.4.2, ��Z� and ��Z� 
coefficients in Eq. (3.9) are functions of the soma voltage. 2K LUTs are implemented for 

these coefficients to cover the voltage range of -64mV to 192mV in 0.125mV steps.  

The floating-to-fixed point module is a floating point arithmetic IP core to convert the 

soma voltage  t-.   (a 64-bit double precision floating point number) to 11-bit wide fixed 

point number t-,�.
, with 8-bit as the integer part and 3-bit as the fractional. Figures 5.8 

and 5.9 show the internal block diagrams of � and �Y conductance processors. The two 

processors have a similar structure. The first stage of the conductance processor is the 

implementation of Eq. (3.9). Quantized voltage t-,�.
 is applied to the address input of 

��Z� and ��Z� lookup tables. The current value of the n-, m- or h-gates probabilities are 

read from the respective dual port memories. Then � C � } � expression is calculated 

K 
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Processor 

Na 
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Processor 

Floating 

To 

Fixed point 

t-.  

�
.  

��

.  

t-,�.  

Figure 5.7   Internal block diagram of the Soma Conductance Processor 
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using the floating point adder and multiplier operators. The updated values are written 

back to the memories. At the next stage, �� term for Potassium conductance processor or 

�� } � for Sodium processor is calculated.  The final stage multiplies the result by the 

normalization constants 	
����  or 	�
�����. The new ionic conductances are written to the dual 

port memories for the next simulation run. 

�� 
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���� 

t-,�.  �� C 1� 
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	X��� 

��� C 1� 
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Figure 5.8   Potassium conductance processor block diagram 
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5.3.5 Communication Media 

The purpose of the communication media in our architecture for biological neural 

simulators is the transfer of requests/responses between the DSPs as client applications 

and the common node/soma processors as server applications. To have a scalable 

simulator which can be expanded flexibly to meet the simulation requirements, a basic 

switching module, Common Node Switch (CNS), is developed. Several CNS modules can 

be connected together in a hierarchical structure to interconnect higher numbers of 

processors for larger simulations. Figure 5.10 shows the block diagram of the CNS 

module. In a neural system, the number of cells is less than the number of the branching 

points, and the number of common nodes is less than the count of dendritic segments. 

Thus for proper simulations, a higher number of DSP modules are required than is the 

case for CNP or SP modules.  The CNS is designed to allow several DSP processors but 

one optional CNP and SP modules.  

All processors are equipped with FIFO-based output buffers. The processors write to 

these FIFOs when a request or response is required. The CNS CORE scans all buffers 
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Figure 5.10   Common Node Switch (CNS) block diagram 
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and reads their contents and transfers them to the proper destination. If the destination of 

request is not one of the directly connected CNP or SP modules, it is directed to the 

higher level CNS module by writing to the CNS output buffer. Using this routing 

procedure, several CNS modules can be arranged in a hierarchal structure for larger 

simulation.  

It is not necessary to attach a SP and CNP module to each CNS. For example to 

simulate a neural system with a low number of cells and very complex dendritic trees, 

several CNS modules at the lowest of the CNS hierarchal can be used for DSP modules 

connections and the CNP and SP modules can be used at the highest levels of the CNS 

tree. Figure 5.11 shows a typical two-level simulator. The CNP and SP modules are 

added to the CNS at the point where the model requirements are optimal. CNP 1 provides 

services for DSP 1 to 3, CNP 2 covers DSP 4 to DSP 9 and SP 1 process requests from 

all DSPs.   
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Figure 5.11   Typical two-level simulator 



59 

 

 

Chapter 6  

Results 

To verify the proposed architecture, the four basic modules - i.e. DSP, CNP, SP and 

CNS - were implemented in Verilog HDL and Schematic Capture. The modules were 

integrated to make a base simulator unit. The whole implementation and design were 

done in the Xilinx ISE WEB Pack 9.2 environment [37]. In this chapter a brief 

explanation of Xilinx FPGAs is provided followed by the description of the base unit and 

synthesis and comparisons results.  

6.1 Xilinx FPGAs 

Xilinx is one of the leaders in FPGA market. Xilinx provides several FPGA lines of 

products such as Spartan and Virtex families. Each family is aimed to address specific 

application requirements. Spartan series FPGAs are designed for lowest total system cost 

and ideal for low-cost, high-volume applications. Virtex series FPGAs encompass higher 

density of logic cells and are better option for high-performance applications.  

Xilinx Virtex-5 FPGAs, the world first 65nm FPGA, is used as the target FPGA in this 

research work. Virtex5 family consists of five different platforms: LX, LXT, SXT, TXT 

and FXT. By incorporating various combinations of hardware resources, these five 

different platforms are tailored for various design requirements. For example LXT and 

SXT series support RocketIO GTP transceivers for high speed serial connectivity up to 
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3.75 Gbps while in TXT and FXT series GTX transceivers provides higher speed (up to 

6.5Gbps).  FXT series provides one or two Power PC IP cores for Hardware/Software co-

design approaches. 

In Xilinx Virtex-5, Configuration Logic Blocks (CLBs) are the main logic resource for 

implementation of sequential and combinational circuits. The number of CLBs in each 

FPGA device determines the largest design size. In simple words an FPGA design is a 

process of configuring CLBs and connecting them through a switch matrix. CLB 

structure and their connections to the switch matrix are different among different series of 

FPGA families and sub-families. Figure 6.1 shows the CLB structure for Virtex-5 family. 

Each CLB has two slices with no connection to each other. Slice is the elementary 

programmable logic block in Xilinx FPGAs. Each slice has an independent carry chain 

(CIN and COUT). Virtex-5 has column based architecture, i.e. the slices within CLBs are 

connected in a columnar form as shown in Figure 6.2.  

Xilinx Virtex-5 FPGA user guide provides insights to various aspects of Virtex-5 

FPGAs. Each slice contains four look-up tables, four storage elements, multiplexers and 

carry logic (not shown). These elements are used by all slices to implement logic, 

arithmetic and ROM functions. In Virtex-5 there are two types of slices, SLICEL and 

SLICEM. SLICEM is similar to SLICEL with additional functionality for storing data 

using distributed RAMs and shifting data using 32-bit registers. 

Figure 6.1  Virtex-5 Configuration Logical Block 
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6.2 Synthesis 

Figure 6.3 shows the top level block diagram of the system is developed to verify the 

proposed architecture. The base unit is composed of three DSP modules and one CNP, SP 

End of 

Cycle 

Cycle Start 

CNS 

DSP 

1 

DSP 

2 

DSP 

3 
SP 

CNP 

& 

Packet 

Distributor 

CNP 
SP IDLE 

Test 

Bench DSPs’ FIFOs 

Figure 6.3  Block diagram of the implemented simulator and the test bench 

Figure 6.2  Virtex-5 Columnar Architecture 
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and CNS modules. A testbench developed in Verilog HDL to test the simulator. At the 

initialization process, the testbench reads all Segment Definition Packets (SDPs) from a 

text file and sends them to the Packet Distributor module. This module writes the Header 

and Data portion of the SDPs to the respective FIFOs in the DSP modules. A simulation 

cycle starts by issuing the Cycle Start command from the testbench. All processor 

modules start processing the module element based on the sequence of events explained 

in the previous chapter. When all DSPs process their segments for one turn and the CNP 

and SP modules enter the IDLE state, the End of Cycle signal is activated and the 

testbench starts the next iteration. During each simulation step, the testbench monitors the 

updated voltages written to the DSP FIFOs and saves them in a file for verification 

purposes.  

With the following implementation details, the whole design, excluding the test bench 

in Figure 6.3, is synthesized for Xilinx XC5VLX330T-1 as the target device [38]. The 

synthesize results are listed in Tables 6.1 and 6.2. 

• Using the Xilinx IEEE-754 64-bit floating-point multiplier and adder cores 

• 8K words depth for Header and Node FIFOs of DSPs that make each DSP 

capable of processing 1638 segments of four compartments length on average.  

• 2048 common nodes processing capacity for a Common Node Processor 

• 4096 somas processing capacity for the Soma Processor 

 

Table 6. 1  Device Utilization Summary 

 

 

 

 

 

Resource Used Available Utilization 

Slice 

registers 
86,316 207,360 41% 

Slice LUTs 78,797 207,360 38% 

Block 

RAM/FIFO 
245 324 75% 



63 

 

Table 6. 2  Timing Statistics 

 Minimum Period 8.925ns 

Maximum Frequency 112.048Mhz 

 

The implemented DSP is capable of processing each segment in (10+number of nodes 

in segment) clock cycles. Assuming that for a DSP, S is the number of segments and �O is 

the number of Nodes in segment i, then the number of clock cycles to perform one 

simulation run for each DSP is: 

����l�D��� D��G �\q�� � ∑ �10 C �O��O�/   ; ol�oZ o�olG                  (6.1) 

Eq. (6.1) shows an important point related to the performance of the proposed 

simulator. The clock cycles to complete the segment processing task are equal to the 

maximum result of Eq. (6.1) for all DSPs. Thus to minimize the processing time of 

dendritic tree segments for a model, the Segment Definition Packets must be distributed 

such that Eq (6.1) gives almost similar results for all DSPs. For example, anytime a long 

segment is loaded to a DSP, several short segments should be loaded to other DSPs to 

match their processing times. This indicates the requirement for model processing 

software to pre-process a given model prior to simulation.  

 The CNS is implemented as a fast switch which is capable of transferring one 

request/response per clock between its interfaces using positive and negative clock edges. 

 To update a common node voltage, the CNP must receive the voltages of all three 

adjacent nodes. CNP’s processing speed on average is one common node update per three 

clock cycles. CNP is designed to update common nodes voltages in a clock cycle if it 

receives the 3
rd

 voltages of several common nodes consecutively.  The Common Node 

Processor has 50-clock depth i.e. it declares the IDLE state 50 clock cycles after 

receiving the last request.   

The Soma Processor has a high speed pipelined architecture which can process one 

soma (one action potential) per clock.  The clock depth for the SVP and SCP sub-

processors are 55-clock and 56-clock respectively. Thus in each simulation cycle, the 



64 

 

Soma Processor can enter the IDLE state 55+56=111 clock cycles after receiving the last 

request for updating a soma voltage.  

For verification purpose a set of MATLAB scripts was developed to read neuronal 

model specifications and to create the LUTs and initial memory contents for the 

processors modules (i.e. CNP). The memory contents were saved in separate files in an 

appropriate format to create respective memory IP cores.  Using the base unit several 

models such as cells with a single branch and multi-branch dendrites are simulated and 

results are compared with the MATLAB results (Section 3.2). 

6.3 Performance Analysis 

To have an approximate estimation of the proposed simulator performance, two 

different types of applications for the proposed simulator are considered. The first 

application contains small numbers of cells with relatively complex dendritic trees. In the 

second application, the SP is used to accelerate the simulation of action potentials in a 

model with large numbers of cells.  

The first model consists of 600 cells with two level of bifurcation in dendritic tree 

which gives 7 segments per cell.  Each DSP will be responsible for processing the 

segments of 200 cells i.e. 200x7=1400 segments. If on average each segment consists of 

10 nodes and Segment Definition Packets are distributed evenly among the DSPs, then 

according to Eq. (6.1) the number of clocks to process the segments is: 

1400 } �10 C 10� � 28000 ol�oZ� 

The SP needs 600 clocks to simulate action potentials of 600 cells. With two level of 

bifurcation, there are three common nodes per cell. In this case, the CNP will complete 

each run at: 

600�oGll�� } 3�o����� ��bG �G� oGll� } 3�ol�oZ �G� ��bG� � 5400 ol�oZ� 

 Since all processors work in parallel, the DSPs determine the simulation time. In the 

worst case, where the last segment of the DSP is connected to the soma, 110 clock cycles 
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will be added to the DSP’s time i.e. 28111 clock cycles in total. With the clock frequency 

in Table 6.2, the time to complete one simulation cycle is: 

8.925�qGo } 28111 � 251μqGo 

Thus the processing time to simulate 10ms of model activity in 10µs simulation time 

steps (1000 cycles) is 251ms.  

In the second application action potentials for 4000 cells are simulated. The 

implemented Soma Processor will process all cells in 4111 clock cycle. Thus the total 

time for one simulation cycle is:  

8.925�qGo } 4111 � 36.7μqGo 

and the processing time for 10ms simulation will be 36.7ms.  

To estimate the bottom line of the workload for software based approaches, the 

numbers of floating point arithmetic operations conducted at each cycle are counted for 

both models. The results are listed in Tables 6.3 and 6.4. For consistency, the lookup 

tables and Eq. (3.9) are considered to update gate probabilities which are faster than 

direct use of Eq. (3.8). A C program was developed, listed in Figure 6.4, to execute only 

the same number of floating point operations in small loop. The program was compiled 

and executed on a 2.8GHz Intel Core Duo CPU computer with the Fedora Core 12 

operating system. The Linux time command used to measure the execution time for both 

models. The best measured times were 540ms and 137ms which demonstrated 215% and 

373% increase in execution time respectively, when compared with an FPGA approach.  

Considering the fact the test C program doesn’t include the function calls and actual 

control logics to perform the complete task, the real execution time would be much 

longer. Although the target FPGA is grade 1 and the slowest in its group, the speed 

comparison results are very promising, and suggest that the proposed hardware based 

architecture demonstrates potential to radically improve biological neural simulation 

process. 
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Table 6. 3  Number of required floating point operations in each cycle to simulate 

600 cells with relatively complex dendritic trees 

Updated item # items (×) per node Total (×) (+) per node Total (+) 

Middle nodes 4200×8 2 67200 4 134400 

Common Nodes 1800 4 7200 4 7200 

Soma voltage 600 5 3000 6 3600 

Gates probabilities 1800 1 1800 1 1800 

K conductance 600 4 2400 0 0 

Na conductance 600 4 2400 0 0 

Total 84000  147000 

 

Table 6. 4  Number of required floating point operations to simulate action 

potential for 4000 somas 

Updated item # items (×) per node Total (×) (+) per node Total (+) 

Gates probabilities 12000 1 12000 1 12000 

K conductance 4000 4 16000 0 0 

Na conductance 4000 4 16000 0 0 

Total 44000  12000 

 



67 

 

  

unsigned long int model1=(84000+147000)/4*1000;  

unsigned long int model2=(44000+12000)/4*1000;    

 

double a[1000]={0.0000034141234}; 

double b[1000]={0.0000051345143}; 

double c[1000]={0.0000054141142}; 

double d[1000]={0.0000053421144}; 

unsigned char index=0; 

unsigned long int i; 

 

main() 

{ 

  for(i=0;i<model1;i++) 

  { 

    a[index+1]=c[index]+d[index]; 

    b[index+1]=c[index]*a[index]; 

    c[index+1]=a[index]+b[index]; 

    d[index+1]=a[index]*c[index]; 

    index++; 

  } 

} 

Figure 6.4  The C program to evaluate software based implementation of the proposed 

simulator 
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Chapter 7  

Conclusions 

An innovative parallel architecture is presented for accelerating simulations of 

biological neural networks consisting of a large number of neural cells. The whole project 

was intended to improve the limitations of current solutions when applied to biologically 

realistic simulation of large models. It attempted to do that by using hardware based 

platforms (FPGAs) rather than software base environments. The architecture 

encompasses several features that collectively improve the simulator capabilities: 

• Modularity: The whole design is based on three types of processing modules and 

one switching unit, which can be integrated in a flexible manner to build a neural 

simulator. 

• Data Process Localization: The proposed addressing scheme allows using of the 

server processors (e.g. CNP or SP) as close as possible to the client processors 

(DSP), which increases the processing speed and reduces the communication load 

through the whole system. 

• Customized Processors: By introducing the Similar Processable Entities (SPE) 

concept, highly customized processors can be developed to process the model in 

high speed. 
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• Pipelined data processing: All processors process their input data through a 

pipelined architecture, which along with the non-blocking nature of 

request/response chain between client and server processors significantly 

improves the processing speed. For example, the Soma Processor is capable of 

achieving a one cell per clock processing. 

• Three level of Parallelization: Highest levels of parallelization have been 

achieved by partitioning the model to the SPE group, dividing each group to 

smaller sub-groups to be processed by dedicated processors, and, finally, parallel 

processing of individual elements of the groups at the highest possible level. 

• Low Storage Size: By pre-processing the model and consolidating all model 

parameters in constants, e.g. Eq (3.3), significant reduction in the required storage 

size and the number of floating point operations were achieved.  

• Adaptability: The processing units (DSP or SP) can be arranged so as to meet both 

the available hardware resources and the model requirements.  

The proposed architecture implementation results show such significant improvements 

over software implementations that it suggests that the hardware architecture based on 

reconfigurable computers concept is a valuable approach for proceed with biological 

neural simulations. Of course, further investigation is required to establish effectiveness 

of the proposed solution at large scale for a complete general purpose neural system 

simulator. In addition to factors such as speed improvement vs. system cost [39], some 

other points to consider are the design life cycle and design flexibility. The design life 

cycle on FPGA based platforms is usually longer than its equivalent design on software 

environments. For example while the core design of Eqs. (3.3), (3.5) or (3.7) are very 

quick tasks to program in MATLAB or C, considerable amount of efforts were spent to 

arrive at an acceptable solution for FPGA implementation. For the similar reasons, it is 

simple to implement and use various numerical methods as loadable libraries for 

simulation in software, while in FPGA a separate group of customized processors must 

be developed for each method, considering the fact that not all methods have 
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straightforward implementation in FPGA. Another point to consider is the ease of 

monitoring of various model parameters during simulation. For example, monitoring the 

changes in various ionic conductances or currents in addition to the node voltages are 

simple tasks in software but in FPGA each additional parameter requires allocation of 

dedicated data acquisition resources, or interested parameters must be recalculated by 

complementary software. 

Despite the above mentioned challenges, the majority of problems actually are one 

time efforts and the design results can be presented in the form of configurable IP cores 

as the building blocks of very fast large scale biologically realistic simulators. The future 

lines of work can proceed in various area including: 

• More complex soma models: Hodgkin-Huxley model explains the timing and 

qualitative features of action potentials based on two voltage sensitive ionic 

channels. There are wide varieties of ionic currents that cause more complex 

firing patterns or features such as shunting. 

• Postsynaptic Potentials (PSP): PSP initiates or inhibits the action potentials within 

a cell through the changes in membrane potential of postsynaptic terminals of 

synapses. 

•  Action potentials distribution (cell interconnections): In a real model, each 

neuron can have more than 10,000 connections with other neurons.  

• Inter-FPGA communications protocol to expand the model over very large 

number of FPGAs. 

• Complementary software application to create the model, calculate the simulation 

parameters (i.e. LUTs), distribute them optimally among the FPGAs and interact 

with them to collect and show the results on a real time basis. 
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