
DIRECT GROWTH OF CARBON NANOTUBES ON

INCONEL SHEETS USINGHOT FILAMENT

CHEMICAL VAPOR DEPOSITION

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon

By

Wenwen Yi

c©Wenwen Yi, May 2009. All rights reserved.



PERMISSION TOUSE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that theLibraries of this University

may make it freely available for inspection. I further agreethat permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor who supervised my thesis work or, in her absence, by the Head of the

Department or the Dean of the College in which my thesis work was done. It is understood

that any copying or publication or use of this thesis or partsthereof for financial gain shall

not be allowed without my written permission. It is also understood that due recognition

shall be given to me and to the University of Saskatchewan in any scholarly use which

may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Mechanical Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5A9

i



ABSTRACT

Carbon nanotubes (CNTs) have great potential in many applications due to their unique

structure and properties. However, there are still many unsolved problems hampering their

real applications. This thesis focuses on three important issues limiting their applications,

namely: (1) direct growth of CNTs without additional catalyst, (2) secondary growth of

carbon nanotubes on primary CNT bed without using extra catalyst, (3) and CNT align-

ment mechanisms during the growth.

The CNTs used in this thesis were prepared by hot filament chemical vapor deposition

(CVD) reactor and characterized using scanning electron microscopy (SEM), transmission

electron microscopy (TEM), X-ray diffractometry (XRD), and Raman spectroscopy. Field

electron emission (FEE) properties of the CNTs were also tested.

Oxidation-reduction method was adopted in direct growth ofCNTs on Inconel 600

plates and proved effective. The effect of oxidation temperature on the growth of CNTs

was studied. It was found that the oxidation temperature hadan influence on CNT height

uniformity and FEE properties: the higher the treatment temperature, the more uniform the

resultant CNTs, and the better the FEE properties of the resultant CNTs. The contribution

of different oxides formed at different temperatures were investigated to explain the effect

of oxidation temperature on the CNT height uniformity.

Secondary CNTs were grown on primary ones by simply changingthe carbon concen-

tration. No additional catalyst was used during the whole deposition process. It was found

that synthesizing primary CNTs at extremely low carbon concentration is key factor for

the secondary growth without additional catalyst. The CNT sample grown with secondary

nanotubes exhibited improved field emission properties.

The effect of bias voltage on growth of vertically aligned carbon nanotubes was inves-

tigated. The CNTs grown at -500V shows the best alignment. Atthe early growth stage,

simultaneous growth of randomly oriented and aligned carbon nanotubes was observed.

This was consistent with the alignment mechanism involvingstress that imposed on cat-
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alyst particles on tube tips. Through the observation of CNTgrowth on the scratched

substrates, catalyst particle size was found as another determining factor in the alignment

of CNTs. Big catalyst particles promoted aligned growth of CNTs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Carbon nanotubes (CNTs) hold great potential for many applications due to their unique

structure and properties. Stimulated by their wide potential applications, a large number of

works have been done and significant progress has been made inthe synthesis of CNTs [1].

Nonetheless, to realize the full potential of their practical applications, several challenges

remain to be addressed. These include direct growth of CNTs without additional catalyst

and controlled growth of well-aligned CNTs. In recent years, much effort has been put

to overcome these challenges and the progress that has been made can be summarized as

follows:

• To create nano-sized catalyst particles in-situ on the substrate surface other than

pre-coating catalyst is considered to be the key to deposit CNTs directly on metal

substrate using chemical vapor deposition (CVD). Up to now,several techniques

have been tried to grow CNTs directly on Fe [2], Ni [2,3], and Ni containing alloys

(stainless steel (SS) [4–8], Inconel [3, 9–12]). One of themwas using plasma to

produce catalytic sites in-situ for CNT growth [2,4,7–10].Some made use of liquid

catalyst to produce floating catalytic particles to facilitate the CNT growth [11, 12].

Oxidation-reduction pre-treatment was also used to prepare particles of catalyst di-

rectly from the alloy substrates and the growth of CNTs on thepre-treated substrates

has been reported [3,5,6] in which alloy substrates were first oxidized in air and then

reduced inH2 before the thermal CVD process. However, the effect of the pretreat-

ment temperature on the formation of oxides and thus the quality of the resultant
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CNTs was not investigated.

• It has been found that the growth of secondary CNTs can enlarge the surface area of

the primary tubes remarkably, which is significant in applications of biological sen-

sors and field emitters. To generate secondary CNTs, particulate Ni or Fe catalysts

were electrodeposited [13–15], or sputtered [16], or electron beam evaporated [17]

onto primary CNTs; or the synthesized CNTs were dipped into ferritin solution [16]

and then dried in air to form particles of catalyst on CNT bed.The CVD process was

then applied for secondary growth. Secondary CNT growth without the addition of

extra catalyst has not been reported.

• Aligned CNTs have been synthesized by using (i) thermal CVD on porous silicon

embedded with catalyst nanoparticles [18, 19]; (ii) van derWaals forces between

neighboring tubes when a very dense catalyst distribution was applied [20]; (iii)

plasma [21]; and (iv) electric field without plasma [22]. Dueto the possibility of

large-scale controlled growth at relatively low temperature, plasma enhanced CVD

growth of aligned carbon nanotubes have been widely studiedand different CNT

alignment mechanisms have been proposed. Merkulovet al. [23–25] proposed a

stress induced alignment mechanism from glow discharge plasma enhanced chem-

ical vapor deposition (PECVD) of aligned carbon nanotubes.Boweret al. [21, 26]

proposed an alignment mechanism which emphasizes the self biasing effect induced

by plasma in microwave plasma enhanced chemical vapor deposition (MPECVD)

system. Renet al. [27, 28] adopted plasma enhanced hot filament chemical vapor

deposition (PE-HFCVD) method to successfully fabricate large–scale well aligned

carbon nanotubes. However, the alignment mechanism was notgiven. Chenet

al. [29, 30] suggested the effect of directional electrical force in aligning the CNTs

during PE-HFCVD process. This mechanism has been supportedby many other

researchers on PE-HFCVD synthesis of aligned CNTs. In my thesis, however, si-

multaneous growth of random and aligned CNTs has been observed in the early

growth stage using DC PE-HFCVD, which is not in agreement with Chen’s theory

and needs to be further investigated.
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1.2 Objectives

This thesis aimed to address the aforementioned challengesin the synthesis of CNTs.

Specifically, the objectives of this research project were:

1. To use oxidation-reduction method to create catalytic site in-situ to achieve direct

growth of CNTs on Inconel 600 sheets.

2. To achieve secondary CNTs growth without addition of catalysts by changing growth

parameters .

3. To apply bias voltage on substrates to control the alignment of CNTs.

4. To optimize growth conditions to synthesize CNTs with much superior FEE prop-

erties for FEE applications.

1.3 Methodology

Hot filament chemical vapor deposition (HFCVD) technique was employed to synthesize

carbon nanotubes, while a variety of techniques was used to characterize the synthesized

carbon nanotubes, including scanning electron microscopy(SEM), transmission electron

microscopy (TEM), Raman spectroscopy, X-ray diffractometry (XRD), and field electron

emission. SEM allows for the ropes of single-walled nanotubes (SWNTs) in a sample to

be imaged [31] or the highly oriented forest of multiwalled carbon nanotubes (MWNTs)

to be viewed [32]. Although the resolution of this techniquedoes not allow one to image

individual SWNTs within an SWNT bundle, combined with othertechniques it can be

used to determine the amount of impurities present such as amorphous carbon or carbon-

coated catalyst particles, which typically co-exist with SWNT bundles in the sample [33].

TEM is a powerful high- resolution technique which allows one to determine the number

of walls in the MWNT [32, 34] or image the isolated SWNTs residing inside a SWNT

bundle. It has the capacity for accurate measurement of tubediameters as well as in-

vestigation of structural defects within CNTs. TEM has alsoplayed an important role
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in investigating new structures such as SWNT peapods [35] and the effects of nitrogen

doping in MWCNTs [36]. Raman spectroscopy is also a very powerful technique for ana-

lyzing carbon materials. It can be used to differentiate SWCNTS and MWCNTS, diamond

and graphitic structures [37] and to determine the diameter, chirality, dopants, and interca-

lation properties of SWCNTS [38]. XRD is usually used to study the formation of carbon

structures [39], however, it can not alone confirm the formation of CNTs. XRD is also

used to identify the catalyst materials for CNT growth and distinguish between SWCNT

and MWCNT [40]. CNTs are suitable for field electron emittersdue to their electrical

conductivity, nano-scale dimension, and high aspect ratio. Thus the field electron emis-

sion (FEE) properties of the synthesized CNTs were also characterized using Keithley 237

test unit.

1.4 Organization of the thesis

This thesis is organized as follows. Chapter 1 consists of the motivation, objectives, and

methodology of the thesis. Chapter 2 gives a detailed literature review including the prop-

erties, applications, and synthetic techniques of carbon nanotubes. Particularly, aligned

and direct growth as well as the field electron emission theories have been addressed. Ex-

perimental methodologies have been described in Chapter 3,including the CVD reactor

and growth parameters for CNT synthesis and the techniques for characterization. Chapter

4 presents the results and discussion including the effect of substrate oxidation tempera-

ture on the deposition of carbon nanotubes directly on Inconel sheets, the effect of gas

composition on CVD deposition of CNTs, and the aligned growth of carbon nanotubes

using plasma enhanced CVD. Chapter 5 summarizes the main results of the thesis work

and provides some suggestions for the future work.
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CHAPTER 2

L ITERATURE REVIEW

2.1 Properties and Applications of carbon nanotubes

A carbon nanotube (CNT) is a hollow tube structure formed of rolled graphene strips.

Because of its unique one dimensional structure, it possesses many outstanding properties

and thus a wide range of potential applications. Therefore,great effort has been put into

the investigation of synthesis and applications of CNTs since its discovery in 1991 by

Iijima [41]. In this section, various properties and the corresponding applications of carbon

nanotube will be reviewed.

2.1.1 Electronic properties and corresponding applications

A single-walled carbon nanotube (SWCNT) is briefly a rolled up graphene strip. As such,

it is easy to understand that the rolling manner determines its structure. The circumfer-

ential periodicity of a SWNT can be specified by a pair of integers (n, m) that denotes a

vector ~C ( ~C = n ∗ ~a1 + m ∗ ~a2, ~a1 and ~a2 are graphite vectors) [42]. The two ends of

vector C are rolled onto each other when forming a tube. Theoretical predictions have

shown the close relationship between CNT structure and its electronic properties [43–45].

Carbon nanotubes have either metallic or semiconducting characteristics, depending on

the diameter and the indices (n, m). Particularly, confine effect on the tube circumferences

makes individual metallic tubes or metallic tube ropes behave like quantum wires [46–48].

These extraordinary electronic properties are essential to carbon nanotubes in their elec-

tronic applications. For example, joining two half-tubes of different helicity would make

nanoscale metal-semiconductor, or semiconductor-semiconductor, or metal- metal junc-
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tions [49–51], respectively. These nanoscale junctions are of great significance in building

nanoscale electronic devices. Impurities and defects werealso found to have certain im-

pact on the conductance of the metallic nanotubes [52]. Therefore, doping is often adopted

in applications of carbon nanotubes in semiconductor device. CNT–based molecular elec-

tronics mainly include field emission devices [53] and field effect trasistor (FET) [54,55].

Besides individual nanotubes, nanotube ropes and crossed–tube junctions have also been

investigated [56]. The intertube interactions give rise tomany potential applications, for

example, nanotube memory. Moreover, mechanical, chemical, biological, thermal, and

magnetic interactions with nanotubes can affect their electronic properties, leading to

many extended applications that will be introduced in the following sections.

2.1.2 Mechanical, electromechanical properties and corresponding

applications

Since CNT is intrinsically a rolled graphite sheet, bondingin nanotubes issp2 formed by

three in-planeσ bonds and an out-of-planeπ bond [57]. Owing to the strong shortσ bond-

ing, carbon nanotube exhibits the highest Young’s modulus and tensile strength among all

the materials. Theoretical [58, 59] and experimental data [60–62] show Young’s modu-

lus as high as 1 TPa for SWCNT, and 1.1 to 1.3 TPa for multi-walled carbon nanotubes

(MWCNT). The robust mechanical properties and high aspect ratio make carbon nanotube

an ideal probe material in scanning probe microscopy (SPM) [63] and scanning-force mi-

croscopy (SFM) [64]. These tools may be exlusively used in information technology and

biological science due to the inherent mechanical flexibility of nanotube probes. As dis-

cussed in section 2.1.1, the electronic properties of CNTs have high sensitivity to their

structure. Thus it is not surprising to find changes in electronic properties of asymmetric

tubes when they undergo a tensile or torsional strain. Thereare mainly two kinds of resul-

tant electromechanical effects. One is the metal-insulator transition caused by mechanical

deformation, namely, piezoresistance [65–67]. The other effect is electromechanical ac-

tuator [68], in which a voltage is applied to bring in mechanical deformation. Combined

with the mechanical properties, these electromechanical effects may lead to the develop-
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ment of nanotube-based mechanical sensors and actuator, and even more complex devices

such as oscillators or electromechanical switches.

2.1.3 Optical, optoelectronic properties and corresponding applica-

tions

It is generally known that excitations of electrons or holesfrom one energy level to another

cause optical transition. Optical and optoelectronic properties of carbon nanotubes are

thus dependent on their band and sub band structures that aredecided largely by tube

diameter and chirality. Resonant Raman [69], and fluorescence [70] have been extensively

used to study the electronic structure of nanotubes by analyzing the position and intensity

of the peaks of the spectra. These spectra can also help to determine the orientation of

tubes since the intensity of optical transition is much greater when the polarized light is

parallel to the tube axis than when it is not. Well–defined band and sub band structures

of nanotubes are of essential importance in applications such as optical and optoelectronic

devices. In particular, semiconducting nanotubes have a theoretically predictable ability

to emit light of wavelength ranging from 300 to 3000 nm, whichis ideal for IR detectors

[71]. Electronically induced light emission of wavelengthof 1500 nm was experimentally

observed from semiconducting carbon nanotubes [72].

2.1.4 Magnetic, electromagnetic properties and corresponding appli-

cations

Carbon nanotubes have similar magnetic properties as graphite, e.g. anisotropic magnetic

susceptibilities [73]. As such, both single-walled and multi-walled carbon nanotubes have

been successfully aligned by external magnetic fields [74, 75]. Another interesting prop-

erty of carbon nanotubes is their electrical response to a magnetic field. Because the band

gap of nanotube change with the applied magnetic field, metallic–semiconducting transi-

tion has been realized [76]. This unique property will lead to interesting applications of

carbon nanotubes in information storage devices.
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2.1.5 Chemical, electrochemical properties and corresponding appli-

cations

Carbon nanotubes have higher chemical and biological activity than graphite owing to the

circular curvature andσ - π rehybridization. In particular, CNT ends are more reactive

than the sidewalls because of the greater curvature and the existence of pentagons on the

open ends [77]. Therefore, a variety of functional groups can be attached to the open ends

and/or sidewalls to modify the properties of CNTs. Althoughnot soluble in water, carbon

nanotubes can be wetted by various solvents and oxides, thereby leading to meaningful

applications like separating insoluble impurities [78]. In addition, capillary effect makes

it possible to fill different agents into the interior hollowspace of the CNTs [79] and thus

enhancing the fabrication of CNT–reinforced composites. Adsorption is another important

chemical property of carbon nanotubes. Due to the high gas adsorption capacity of CNTs,

it is possible to use them to store hydrogen for hydrogen fuelcells [80]. Furthermore,

significant electronic response of nanotubes to chemical adsorption can be obtained, giving

rise to applications as chemical sensors [81]. Combined with nano-scale dimension, the

unique electrochemical properties will also greatly stimulate applications in the fabrication

of electrodes of lithium batteries [82] and electrochemical supercapacitors [83].

2.2 Synthesis of carbon nanotubes

Carbon nanotubes have been synthesized mainly by three techniques: arc discharge, laser

ablation, and chemical vapor deposition (CVD). Among them,CVD has been the most

widely investigated for synthesizing carbon nanotubes dueto its large-scale production

ability and high growth controllability. In this section, arc discharge, laser ablation, and

CVD techniques will all be introduced with the emphasis mostly on CVD techniques.

2.2.1 Arc discharge and laser ablation synthesis of carbon nanotubes

Arc discharge method has been widely used for producingC60 fullerenes. In 1991, Iijima

[41] reported the production of MWCNTs by this method for thefirst time. Later, SWC-
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NTs were also successfully produced by Iijima and his colleagues using the same method

[84]. Schematic of an arc discharge chamber is shown in Fig. 2.1 [85]. Two graphite rods

are placed end to end with a distance of about 1mm, acting as two separated electrodes.

The chamber is usually filled with low pressure noble gas. When a voltage is applied, a

direct current will be produced and create a high temperature discharge between the two

electrodes. The high energy discharge will vaporize one graphite electrode and form car-

bon nanotubes on another one. Tube diameter has been found tohave a close relationship

with the composition in gas mixture, the temperature, and the metal catalyst density. High

yield of carbon nanotubes can be obtained with uniform plasma arc and high temperature.

Although this technique is easy to be operated, the resultedproduct contains many im-

purities including amorphous carbon, fullerenes and graphite particles. In laser ablation

method, laser is used to vaporize a graphite target in an oventhat is filled with helium or

argon gas at a pressure of approximately 500 Torr (Fig. 2.1) and an extremely hot vapor

plume forms on the target surface and will vaporize carbon target, which sometimes is

coupled with metal catalyst, to form carbon nanotubes on thecounter collector. Smalley

et al. [86] are the first in reporting production of carbon nanotubes by laser ablation. But

just like arc discharge synthesis, many by-products are formed together with nanotubes.

2.2.2 Chemical vapor deposition of carbon nanotubes

Chemical vapor deposition (CVD) synthesis usually involves the decomposition of hydro-

carbons over catalyst, thus it is also called catalytic chemical vapor deposition (CCVD).

CVD was firstly used to produce carbon nanotubes by Yacamanet al. in 1993 [87]. Then

in 1994, Ivanovet al. [88] and Amelinckxet al. [89] reported the successful synthesis

of carbon nanotubes using the same method. Since then, many works have been done in

improving and optimizing CVD techniques to carry out large-scale controllable growth

of carbon nanotubes [90]. In principle, CVD synthesis of CNTs is a process involving

decomposition of carbon containing gases into reactive atomic carbon by different energy

sources, diffusion of the carbon towards substrate and intoparticles of catalyst (typically

Fe, Ni, or Co), and finally the precipitation of carbon to formcarbon nanotubes. Tube

diameter, growth rate, orientation and position can be controlled by adjustment of CVD
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Figure 2.1: Schematic of setups for nanotube growth methods [85].

conditions. The concentration and types of carbon sources,catalysts, and growth tem-

perature are the three key parameters in nanotube CVD growth[85]. Depending on the

form of energy to break down hydrocarbons, there are three CVD techniques widely used

for nanotube growth: thermal CVD, hot filament CVD (HFCVD), and plasma enhanced

CVD (PECVD). These techniques are introduced respectivelyin the following sections.

General CVD growth mechanism is also introduced.

Thermal CVD

In thermal CVD (TCVD), heat is the only energy source to decompose the carbon source

and the temperature is usually uniform in the whole reactionchamber. The apparatus
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for TCVD are usually composed of a quartz tube, a furnace and agas line, as shown

in Fig. 2.1. Catalyst is introduced into the system by eithersupported catalyst [91] or

floating catalyst [92]. For supported catalyst, catalyst isdeposited onto substrate, whereas

for floating catalyst, the catalyst particles are formed in-situ from gas. TCVD has been

used to grow CNTs since 1993 due to its low equipment cost and simple process. Both

MWCNTs [93] and SWCNTs [91, 92] have been synthesized by TCVD. Nevertheless,

TCVD requires higher growth temperature than the other two CVD techniques. Especially,

SWCNTs can only be synthesized when the temperature is over 900◦C and the catalyst

particle size is small [94].

HFCVD

Hot filament CVD utilizes tungsten filament(s) which is(are)hung over the substrate

holder within a given distance and electrically heated to around 2000◦C [37]. The heated

filament will decompose gas source and heat the substrate. Same as TCVD, either sup-

ported catalyst on substrate [37] or floating catalyst in vapor phase [95] is required for

growth of CNTs using HFVCD. Ferrocene has been widely used asfloating catalyst source

for continuous production of both MWCNTs and SWCNTs [95] whereas coated catalyst

patterns have been widely used for controlled pattern growth of CNTs [37]. One of the

advantages of HFCVD over TCVD is that it can significantly lower the substrate tem-

perature due to higher filament temperature. For example, the required temperature for

nanotube growth is between 900 and 1100◦C [96] by TCVD and can be lowered to 750

- 850◦C [97] when using HF-CVD. In addition, HFCVD is very versatile and easy to be

modified according to research needs, which is necessary forcontrolled growth of carbon

nanotubes.

PECVD

In Plasma enhanced CVD, different from thermal CVD, molecules are activated by a

nonequilibrium plasma. A variety of plasma sources have been attempted for PECVD

nanotube growth, including direct current (DC PECVD) [23,98], magnetron type radio fre-

quency (rf PECVD) [99], inductively coupled plasma (ICP PECVD) [100], microwave(M-
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PECVD) [10, 21, 101–103], electron cyclotron resonance (ECR PECVD) [104], and a

combination of HFCVD and DC plasma (HF-DC PECVD) [27, 105]. To understand ba-

sic processes that happen in plasmas, a simple example of DC PECVD is given here.

Low pressure gas mixture fills the space between two electrodes and a glow discharge

is initiated by applying a DC voltage. Four regions of the glow discharge across from

cathode to anode are cathode dark space, negative glow, faraday dark space, and positive

column [23]. The ions are driven by the applied voltage to bombard the substrate and

generate secondary electrons. The secondary electrons arerepelled away from substrate

(cathode) and ionize some of the excited molecules. These processes are indispensable in

sustaining DC discharge. And the excitation process results in negative glow. By plasma

assistance, the activation energy can be significantly reduced, leading to decreased growth

temperature. Recently, PECVD nanotube growths at as low as room temperature have

been reported [106]. These results are very inspiring sincelow substrate temperature

growth is in highly demanding in many applications. For example, growth temperature

lower than the soda lime glass substrate melting temperature of 500◦C is required in ap-

plications of carbon nanotubes as field emission display [27]. In addition, PECVD can

facilitate the growth of well dispersed aligned carbon nanotubes. In contrast, only densely

packed alignment resulted from crowd effect can be observedusing the other two CVD

processes, in which the dense compacting is harmful to the field emission properties of

nanotubes [107].

2.2.3 Growth mechanism of CNT growth in CVD

To grow CNTs by CVD requires catalyst either pre-coated on the substrate or in vapor

phase. And the catalytic nanoparticles are required for CNTgrowth rather than smooth

catalyst layer. CVD growing CNTs, in general speaking, willexperience five steps in

sequence [90]: 1) precursor(s) diffuse through a thin boundary layer to the substrate. 2)

These reactive species are adsorbed onto the particle surface. 3) Surface reactions take

place to produce nanotubes and by products. 4) Gaseous byproducts are desorbed from

the surface. 5) Outgassing species diffuse through the boundary layer into the bulk stream.

One or more of these steps may be rate controlling, varying from case to case. Two
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growth models have been proposed to explain the growth of CNTby CVD: surface carbon

diffusion [108] and bulk carbon diffusion [109]. Surface carbon diffusion mechanism

is commonly used to explain low temperature growth especially with Ni catalyst. Carbon

species dissociate and diffuse around the surface and carbon nanotube nucleates on the side

of the metal particles. Subsequently the tube continues to grow when carbon continually

breaks down on the particle. In bulk carbon diffusion model,the carbon feedstock breaks

down on the surface of the metal particle and the carbon dissolves into metal particles.

The dissolution proceeds on until the saturation point is reached. At this point, the CNTs

start to grow from the outer surface and two sub-models are proposed to describe the CNT

growth after this point. If the catalyst particles adhere tightly to the substrate surface,

CNTs grow out from the top surface of the catalyst particles leaving the particles on the

substrate surface. In contrast, the weak adhesion of particles to the substrate results in

the lift up of particles from the substrate surface by the growing CNTs, in which, catalyst

particle can be observed at the top end of tubes. The first scenario is called base growth

whereas the second one is called tip growth. Figure 2.2 displays these two CNT growth

models.

2.3 Direct growth of carbon nanotubes in CVD

CVD have been widely used in synthesizing carbon nanotubes,owing to its distinct ad-

vantages over other techniques such as laser ablation and arc discharge. These advantages

include the lower growth temperature and the flexibility to produce well-aligned CNT

arrays for field electron emission applications [110, 111].Nevertheless, CVD approach

needs assistance of catalysts, generally being transitionmetal nanoparticles, for efficient

CNT growth. Additionally, non-metal materials have often been pre-coated onto metal

substrates to reduce the catalyst-metal interaction. These requirements greatly limit the ap-

plication of CNT in field emission devices. For example, the non-metal interlayer between

the metals and CNTs may result in unstable emission current [2] and thus post-processing

is required to remove the interlayer. Even worse, the removal process raises the risk of

losing CNTs and their desired properties. In this regard, itis essentially important to find
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Figure 2.2: General growth modes of nanotube in chemical vapor depo-
sition. Left represents the base growth mode and right represents the tip
growth mode [85].

ways to grow aligned CNT arrays directly on metals without any additional catalyst [112].

A number of works have been done on using oxidation-reduction method to gener-

ate catalyst particles in-situ from a variety of metal substrates to grow CNTs directly on

the substrates [3, 5, 6]. Yanget al. [111] have synthesized large-quantity of carbon nan-

otubes directly on stainless steel using thermal CVD to decompose ethanol. Soneda and

Makino [113] obtained CNTs by thermal decomposition of CO over stainless steel. Both

results indicate that catalyst particles can be generated from metal substrate through ther-

mal pre-treatment. However, it is difficult to control the morphologies of the resulted

CNTs. Plasma has been proved to be effective in breaking catalyst layers and producing

catalyst particles. Hirakawaet al. have grown carbon nanotubes directly on SUS304,

nickel, Inconel-600, and Invar-42 substrates using PECVD [9]. Parket al. [4] adopted an

innovative way to synthesize CNTs directly on stainless steel plates: a sequential com-

bination of PECVD and thermal CVD. PECVD is supposed to nucleate and initiate the

CNT growth while thermal CVD is used for further growth. Biasenhanced microwave
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plasma chemical vapor deposition technique was also utilized in direct synthesis of CNTs.

Using this technique, carbon nanotubes were grown directlyon a Fe, Ni, 304 stainless

steel [2, 7] and Fe-Ni-Cr alloy [8] respectively. In those two studies, a negative bias was

applied to substrate in a plasma, and the substrates were etched in the hydrogen plasma for

30 min before the growth [2,8], which was believed to enhancethe formation of catalytic

sites for CNT nucleation. Without hydrogen plasma pre-etching, CNTs were also obtained

on stainless steel [7], indicating that CNT nucleation can be initiated under CNT growth

conditions in a plasma. Particularly, Yanget al. [10] have successfully synthesized car-

bon nanotubes on inconel-600 plates at temperature lower than 550◦C in a bias enhanced

MPECVD system. Plasma aided Hot Filament CVD [29] was also used to directly grow

CNTs on single crystalline Ni wafers and the synthesis was carried out in two steps: high

bias voltage was applied for CNT nucleation, and lowered bias voltage was applied for

CNT growth.

Oxidation-reduction process on a metal substrate is one of the main methods to pro-

duce catalysts in-situ from the substrate. Oxidation immobilizes the catalyst and pre-

vents clustering, whereas reduction activates the catalyst through conversion of oxides

into elemental metal state. Vander Wal and Hall [5] have usedthermal oxidation and

laser oxidation to pre-treat stainless steel mesh, followed by in-situ reduction. CNTs were

successfully grown on the mesh in both cases. Karwaet al. [6] reported similar results

regarding direct growth of CNTs on stainless steel in which the oxidation, reduction, and

growth were proceeded sequently in a thermal CVD chamber, and the effects of flow rate

and deposition time on the length of CNTs were studied. The quality of the nanotubes

formed was found to be influenced by the oxidation temperature. However, the effect of

the pretreatment temperature on the formation of oxides andthus the quality of the resulted

CNTs was not investigated. In this thesis, the direct synthesis of CNTs on Inconel sheets

pre-treated in air at different temperatures by using plasma enhanced hot filament CVD

(HFCVD) and the FEE properties of the resulted CNTs are beinginvestigated in order to

optimize the growth conditions to obtain CNTs with superiorFEE properties.
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2.4 Aligned growth of carbon nanotubes by CVD

Due to the unique electrical, chemical, and mechanical properties, as well as the high

aspect ratios and small radius of curvature at their tips, carbon nanotubes are of great

potential in many applications. Being a functional ensemble, they are utilized in such

applications as catalyst supports, supercapacitors, and fuel cells electrodes [114]; being

single nanotube, they are used individually as functional components in devices such as

field emitters [115], electron sources [116], transistors [54], and scanning probe tips [117].

For many of the aforementioned applications, it is desirable to fabricate carbon nanotubes

with controlled alignment and orientation. Vertically aligned carbon nanotubes are of

great interests in applications such as electron-field emitters in panel display, scanning

probe microscope tips, biological probes, and interconnect for nanoelectronics. To date,

aligned growth of nanotubes using both thermal CVD and plasma enhanced CVD have

been reported and different alignment mechanisms have beenproposed.

2.4.1 Aligned growth by TCVD

Two methods are usually adopted in TCVD growth of aligned carbon nanotubes. One is to

pre-deposit densely arranged catalyst particles onto the substrate. The crowding effect will

then force the growing carbon nanotubes to be aligned. Fanet al. [20] used porous silicon

as substrates and deposited catalyst by electron beam evaporation in which shadow masks

have been used for patterning. After deposition, aligned growth was observed within each

block with high density of carbon nanotubes attracted to each other by van der Waals force.

The other way is to template CVD by which nanotubes were grownwithin highly ordered

pores on template membrane placed on the substrate [118]. The alignment in this case

was attributed to the constraint imposed by the pores as wellas Van der Waals interaction

in between. Anodic aluminum oxide (AAO) is one of the most commonly used template

materials that have nanopores patterned in a hexagonal order. Catalyst is then filled into

pores by electrochemical deposition, or electroless deposition. After nanotube deposition,

the template can be etched away. The synthesis of aligned CNTs by template method was

first reported in 1995 [18]. Martin [19] and his group have been devoted in this technique
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for years to grow aligned carbon nanotubes with small diameters of about 20 nm.

2.4.2 Aligned growth by PECVD

Due to its versatility and flexibility, PECVD has attracted great interests in synthesizing

aligned carbon nanotubes. A few alignment mechanisms have also been proposed to ex-

plain the growth results in different plasma apparatus under different plasma conditions.

Zhanget al. [22] applied a DC and an ac voltage respectively to a quartz supported

polycrystalline silicon film to synthesize CNTs by CVD process. Prior to CVD process,

tree parallel trenches were formed on the silicon film by plasma etching. After then, cat-

alyst was transferred onto the substrate film by contact printing. During the CVD deposi-

tion, methane and hydrogen were used as gas sources. After CVD deposition, SWCNTs

were observed suspending across over the trenches. Although no plasma was generated,

it was proposed that the electric field was the origin of the alignment of CNTs and polar-

ization induced alignment was the key mechanism, in which large aligning torques and

forces originated from dipole moments are the keys in the alignment of nanotubes.

Similar to Zhang’s experiment, Avigal and Kalish [119] utilized a DC voltage for align-

ing nanotubes. But in their experiment, substrate is one of the electrodes with the counter

electrode placing above it, thus producing a plasma in the space between the two elec-

trodes. The results show that negative bias on the substratefacilitated vertically aligned

CNTs, whereas positive bias resulted in randomly oriented CNTs. The alignment was

proposed to be associated with Coulomb attraction. A DC PECVD process was also used

by Chenet al. [120] to grow arrays of aligned CNTs. Nanotube morphology was found

to have strong dependence on electric field. By increasing the bias voltage, the transition

from nanotube to nanocone structure occurred. Plasma etching was reported to be the

transition mechanism. Chhowallaet al. [98] also reported vertically aligned CNT growth

by a DC PECVD process. They investigated the effect of different growth parameters,

including catalyst layer thickness, bias voltage, deposition temperature, gas composition,

and pressure on the growth and alignment of CNTs and concluded that the alignment of

CNTs was due to the effect of electric field.

Merkulov et al. [23–25] synthesized vertically aligned carbon nanofibers (CNFs) by
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DC PECVD. In their experiment, a glow discharge was initiated around the substrate and

a negative bias voltage of 550V and a current of 100mA were applied. The result show

that both aligned and non-aligned CNFs were grown on the substrate in a single growth

process, in which catalyst particles were found on the aligned CNFs and not on the non-

aligned ones. Based on this observation, a CNT aligning model was proposed, as shown

in Fig. 2.3. In the case of tip growth, electrostatic force causes a compressive force at the

particle/nanofiber interface where growth rate is higher, and a tensile force at the interface

spot where growth rate is lower. The resultant net force is infavor of balance the growth

rate around the entire periphery thus stabilizing the aligned growth, and the orientation

of CNFs is along the applied electric field line direction. Incontrast, compressive force

is produced at lower growth rate spot while tensile stress islocalized at higher growth

rate spot in the case of base growth. As a result, the stress feedback will further misalign

CNFs, thus resulting in randomly oriented CNTs.

Microwave plasma enhanced chemical vapor deposition (MPECVD) is one of the most

commonly used techniques to grow aligned CNTs. Boweret al. [21, 26] reported CNT

growth using MPECVD and the result show that the tube axes arealways perpendicular to

the local substrate surface regardless of the substrate shapes or tilt angles. It was suggested

that CNTs were aligned by the electric field produced by the self-bias potential imposed

on substrate surface. The electric field is always perpendicular to the substrate surface

regardless of the substrate shape or tilt angles. However, Chenet al. [33] thought that the

self-bias is not high enough to align the CNT. In their reports, random oriented spaghetti

like morphology was obtained usingCH4 / H2 mixture in a MPECVD system, butN2 addi-

tion leaded to the vertical alignment of CNTs. They attributed the alignment to crowding

effect. Tsaiet al. [101] have proposed another CNT growth mechanism in MPECVD,

in which anisotropic etching is responsible for alignment growth. It is reported that ion

etching removes nanotubes that are unparallel to the ion movement direction. However,

this mechanism can not explain the coexistence of random andaligned CNTs in a single

growth process. Apart from alignment mechanism investigation, many other works have

been focused on how to control the growth of aligned CNTs [33].

Plasma enhanced hot filament chemical vapor deposition (PE-HF-CVD) has also been
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Figure 2.3: Schematic diagrams of alignment mechanism [24].

proved to be an effective technique to grow aligned CNTs. A DCbias is usually added to

the filament and substrate holder to produce a plasma betweenthem. Renet al. [27, 28]

have reported that large area of well-aligned CNTs can be synthesized on glass by PE-

HFCVD. Plasma intensity was found critical in determining nanotube aspect ratio and

height distribution, which in turn affect the field emissionproperties of the aligned CNTs.

But the alignment mechanism was not given. Chenet al. [29,30] also used DC PE-HFCVD

to grow aligned CNTs and found that nanotube orientation canbe controlled by tilt the

substrate during growth and the alignment mechanism were attributed to the electric field.

Other works regarding the effect of growth parameters on thealigned growth of CNTs

have also been reported. Huanget al. [121] reported the effect of catalyst on the aligned

growth of CNTs. Nickel, iron and cobalt were used respectively as catalyst using PE-

HFCVD. It was shown that nickel resulted in the biggest nanotube diameter and thus was
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the best catalyst to obtain aligned CNTs.

In this thesis, co-growth of random and aligned CNTs has beenobserved in the early

stage using DC PE-HFCVD, which can not be explained by Chen’smechanism. In order

to achieve controlled growth of CNTs, it is essential to fully understand the alignment

mechanism. In this thesis, a wide range of bias voltage was applied during CNT growth,

and the structural evolution of the resulted CNTs was monitored for mechanism specula-

tion. In addition, the effect of substrate pre-scratching on alignment was also investigated.

2.5 Secondary growth of carbon nanotubes by CVD

Recently, the secondary growth of carbon nanotubes on primary carbon nanotubes has

attracted growing interests for catalysis and sensor applications [14]. It has been found

that the growth of secondary CNTs can enlarge the surface area remarkably [122]. An

enhanced amperometric sensing for glucose has been reported through the growth of sec-

ondary CNTs in a multiple- branching manner [13]. The secondary CNTs were investi-

gated to enhance field electron emission, showing great potential in improving uniformity

and efficiency of field emission flat panel displays [17,123].

A number of works have been done in growing secondary CNTs [13–15, 17]. The

results show that catalyst layers are necessary in order to grow CNTs with different struc-

ture on the primary CNTs. To simplify the secondary growth process, it is in demanding

to obtain secondary CNTs directly on primary CNTs without addition of any catalysts.

In this thesis, very low carbon concentration has been used to grow primary CNTs, and

followed by secondary CNTs growth by simply increasing carbon source concentration.

No catalyst deposition was needed throughout the whole process. The mechanism for the

secondary CNT growth and the FEE properties of resulted CNTshave also been investi-

gated have also been investigated. Significant improvementof field emission properties

has been observed.
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2.6 Field electron emission

2.6.1 Field electron emission theories

Free flowing electrons are widely used in many areas including electron microscopy, Cath-

ode Ray Tube (CRT) display, X-ray generation, electron-beam lithography, surface treat-

ment and thin film deposition [124]. Free electrons can be generated through two ways in

high vacuum environment. One is using external energy source to energize electrons and

make them escape the potential barrier at the solid surface.The most common technique

used is thermionic emission, in which thermal energy is applied to provide sufficient ki-

netic energy for electrons to overcome the surface potential barrier. The main drawbacks

of thermionic emission are low efficiency caused by energy loss in radiation, filament de-

formation, and finite lifespan of the filament. An alternative choice is to reduce or thin

the barrier for electrons to tunnel through. High electric field is well-proven to be com-

petent and to induce electron emission. Normally an extremely high electric field (several

kV/µm) is in need. In practical cases, local field enhancement is the only solution for

such a high–field demand. Thus, a conducting sharp tip structure is usually used as a

field emission cathode, which can reduce macroscopic start-on electric field to just a few

V/µm. The conducting nature, nanoscale dimension, and sharp tipend all make CNTs

ideal as field electron emitters.

The Fowler-Nordheim (FN) theory is used to analyze field emission from CNTs. A

FN equation is presented as follows:

I = AJ = At−2

N aφ−1β2E2 exp
[

−υNbφ3/2/(βE)
]

, (2.1)

whereI is the emission current andJ is the emission current density (here,J is taken as

a constant over a notional emission areaA). φ is the local work function,E = V/d is the

macroscopic electric field (i.e.,E is the electric field in a parallel-plate configuration and

is defined by the ratio of applied voltageV to the probe-sample distance d) andβ is the

field enhancement factor (FEF) that relates to the field F in the tunneling barrier toE (i.e.

F = βE). The quantitiesa(= 1.5410−6AeV V −2) andb(= 6.83109eV −3/2V m−1) are

universal constants, andυN andtN are called Nordheim functions. Details of derivation
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can be found in [125, 126]. A field emission test result can be plotted in ln(I/E2) versus

(1/E) coordinates and the working equation for FN plot is

ln(I/E2) = ln(αaφ−1β2) − bφ3/2/(βE), (2.2)

More details can be found in [127]. In this equation,α is called “effective emission area”.

2.6.2 Field emission performances of CNTs films

Many factors have been reported to have impacts on the field emission characteristics

of CNTs. One of the primary factors is the screening effect. It is a situation in which

nanotubes are too close to each other so that one CNT tip can beshielded from the macro-

scopic electric field by other CNTs, resulting in impaired emission property. Hence, den-

sity control over CNT films has great significance in CNT field emitter design. Nilssonet

al. [128] predicted that optimum field emission occurs when thetube height is about one

half of the intertube spaces. AAO template method was used bySuhet al. [107] to grow

highly ordered CNT arrays and the best emission result was observed when intertube dis-

tance equals to the tube height. Screen effect has also been observed for a variety of CNT

morphologies. CNT bundles of different density showed different emission characteris-

tics [129]. Short and stubby aligned CNTs are better field emitter than those with higher

aspect ratios [130].

Orientation of CNTs is another important decisive factor affecting emission properties.

The CNTs deviated from the substrate normal performed better in field emission than

vertically aligned ones did [30], because more emission sites (e.g., defects) are on the

sidewalls of CNTs. Additionally, factors such as the state of tube ends [2] and surface

treatment on CNTs [131] can also largely influence the field emission properties of CNTs.
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CHAPTER 3

MATERIALS AND EXPERIMENTAL METHODS

3.1 Substrate material and pre-treatment

The substrate alloy used in this thesis was Inconel 600 alloy(a nickel–based superalloy).

Its chemical composition is shown in Table 3.1.

Although nanoparticles of Ni, Fe or Co or their alloys are widely used as catalysts for

CVD growth of CNTs, successful synthesis of CNTs directly onInconel 600 substrate

without the addition of any catalyst was only reported by Hirakawaet al., using plasma-

enhanced CVD in a methane and hydrogen gas mixture [9]. Synthesis of CNTs on Inconel

600 substrate was also reported by Talapatraet al. using floating catalyst CVD [11]. Yang

et al. recently reported that randomly distributed CNTs can be feasibly grown on Inconel

600 plates at low temperatures using microwave plasma enhanced CVD [10]. In this

thesis, the CNTs were synthesized on Inconel plates withoutany additional catalysts by

hot filament CVD (HFCVD). Pre-oxidation were employed in order to produce catalyst

particles on substrate surface. The pre-treatment were conducted using a muffle furnace.

The gas atmosphere was air. The furnace was heated to the pre-set temperature (800◦C,

900◦C, 1000◦C, and 1100◦C, respectively) first, and then kept at the temperature for 3

hours for stabilization. The Inconel sheets (10 mm× 10 mm× 0.3 mm) were then placed

on a firebrick and put into the furnace. After 1 h, the electrical power of the furnace was

shut down and the treated sheets were cooled down within the furnace.
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Table 3.1: Composition of Inconel 600 alloy.

Element Ni Cr Cu Fe Mn Si S P C

wt.% 72.0 15.5 0.5 8.0 1.0 0.5 0.015 0.015 0.065

3.2 Hot filament chemical vapor deposition reactor

The schematic diagram of the hot filament CVD (HFCVD) reactorused in the present

work is shown in Figure 3.1. The HFCVD reactor (image shown inFigure 3.2) is com-

posed of a vacuum chamber, a gas supply, a pumping system, andan electrical system.

The vacuum chamber is a cross–shaped glass tube with a diameter of 15 cm. A diffusion

pump combined with a rotary pump makes up the vacuum system. The gas composition

and the pressure in the chamber were controlled by a two-channel gas flow controller and

a needle valve in the pumping line. The gas mixture was guidedby a stainless steel tube

directly to the top of the filament in the reaction chamber. The filament in the CVD reactor

is a coiled tungsten of ten coils. The coils measured 4 mm in diameter and 4 cm in length.

The tungsten wire used to make the coils was 0.3 mm in diameter. The coiled tungsten

filament was connected to an AC power source and was Ohmicallyheated to provide the

thermal energy for dissociating the processing gases. An optical pyrometer was used to

measure the filament temperature during the CNT deposition.A cooling fan stood by the

chamber to dissipate the heat produced by the filament duringthe growth. A thermocouple

was attached to the substrate holder for substrate temperature measurement. According to

experimental needs, a DC bias voltage could be applied between the filament and the sub-

strate holder to create a glow discharge or to bias the substrate without starting a discharge.

3.3 Growth of Carbon Nanotubes

The CNT growth was carried out using an HFCVD system, as described in section 3.2. 10

mm× 10 mm× 0.3 mm sized Inconel 600 sheets were used as substrates. In some experi-

ments, the substrates were scratched using sand paper priorto the other treatments. Before
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Figure 3.1: Schematic diagram of the hot filament chemical vapor deposi-
tion reactor [105].(1: gas inlet, 2: filament, 3: substrate,4: substrate holder,
5: pump port; 6: dc power supply)

Figure 3.2: A picture of the hot filament chemical vapor deposition reactor.
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the CNT growth experiments, the Inconel sheets were heated in air to obtain an oxidized

layer on their surfaces as described in section 3.1 and cleaned using ethanol. After the

sheets were placed on the substrate holder, the chamber was pumped down to a pressure

of 2.7 Pa using a rotary pump and a diffusion pump. Then methane (CH4) and hydrogen

(H2) gases were introduced through separate mass flow controllers. When the working

pressure was stabilized at the preset value of 2.66 kPa, the power supply for filament was

turned on. The coiled tungsten filament was heated by an AC power supply at a voltage

of 30 V and a current of 9 A. A DC bias voltage was applied between the substrate holder

and the filament for aligned growth. The substrate temperature was measured with a ther-

mocouple attached to the backside of the substrate holder. The pre-treatment conditions

and growth parameters were varied for different investigation purposes, as listed in Table

3.2.

3.4 Scanning Electron Microscopy

As one of the most widely used surface characterization techniques, scanning electron mi-

croscope (SEM) uses a high energy electron beam to scan and image the sample surface.

Through interactions between incident electrons and the solid sample atoms, a number of

signals are generated and collected, including secondary electrons, back scattered elec-

trons, characteristic X-rays, and light (cathodoluminescence). More details can be found

in [132]. Specialized detectors are required for detectingdifferent types of signals. One

single SEM machine usually is not assembled with all the detectors. Secondary electron

imaging (SEI) is the most commonly used detection mode in theSEM to determine sur-

face morphology because the secondary electron emission isstrongly dependent on the

incident angle between the probe beam (incident electron beam) and the local surface

morphology. The resolution of a SEM is affected by the diameter of the electron probe.

Typical resolution for a 20 kV SEM is about 3 nm, much higher than optical microscopes.

While secondary electrons are ejected from inelastic scattering interactions between the

specimen atoms and incident electrons, backscattering electrons (BSE) are the elastic scat-

tering electrons. BSE are often used to map the elemental distribution in the sample based
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Table 3.2: Pre-treatment conditions of substrate sheets and growth parame-
ters of CNTs.

Sample Pre- Pre-oxidation Bias Substrate H2 CH4 CH4 Growth

Number scratching Temperature Voltage Temperature Flow Rate Flow Rate Concentration Time

(◦C) (V ) (◦C) (sccm) (sccm) (vol.%) (h)

1 No No -500 620 35 1.8 5 1

2 No 800 -500 620 35 1.8 5 1

3 No 900 -500 620 35 1.8 5 1

4 No 1000 -500 620 35 1.8 5 1

5 No 1100 -500 620 35 1.8 5 1

6 No 1100 0 560 35 0.1 0.28 1/6

7 No 1100 0 560 35 0.1 0.28 1/2

8 No 1100 0 560 35 0.1 0.28 1

0.1 0.28 1
9 No 1100 0 560 35

1.8 5 1/2

10 No 1100 0 560 35 1.8 5 1/6

11 No 1100 0 560 35 1.8 5 1

12 No 1100 0 560 35 1.8 5 1.5

13 No 1100 0 560 35 1.8 5 1

14 No 1100 -400 620 35 1.8 5 1

15 No 1100 -450 620 35 1.8 5 1

16 No 1100 -500 620 35 1.8 5 1

17 No 1100 -500 620 35 1.8 5 1/6

18 No 1100 -500 620 35 1.8 5 1/2

19 No 1100 -550 620 35 1.8 5 1

20 No 1100 +150 620 35 1.8 5 1

21 Yes 1100 -500 620 35 1.8 5 1/6

22 Yes 1100 -500 620 35 1.8 5 1
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on the fact that heavier atoms elastically scatter more electrons thus producing brighter

images. X-rays can also be detected by a SEM coupled with an energy-dispersive X-ray

spectroscopy (EDS) or a wavelength-dispersive X-ray spectroscopy (WDS) equipment.

With EDS, it is possible to use SEM to obtain chemical composition information locally

and semi quantitatively.

In this thesis, a JEOL JSM 840A SEM operating at 20 KV was used to observe the

morphologies of the synthesized CNTs. BSE detection mode was used to identify the

position (tip or bottom of CNTs) of catalyst particles. Although limited by its resolution,

when combined with other techniques, SEM is still able to analyze the impurities existing

in SWCNT bundles [33].

3.5 Transmission Electron Microscopy

Transmission electron microscope (TEM) uses the electron beam as illumination source

just like SEM, it has totally different operation principles. SEM utilizes medium- to low-

energy focused electron beam probe, ranging from 500 V to 50 kV , to scan over the sam-

ple surface. In contrast, TEM uses a high-energy parallel electron beam (100 kV to 200

MV) to transmit through a thin sample foil [133]. The detector is placed on the other side

of sample to collect transmitted electrons. Due to the different ways of producing images,

a TEM has much higher spatial resolution than a SEM. Another electron microscope is

called scanning transmission electron microscope (STEM).In STEM, a high-energy elec-

tron beam is used to scan samples and transmitted electrons are collected and analyzed. By

integrating the advantages of both SEM and TEM, a STEM can be used to detect sample

topology, while possessing an excellent spatial resolution. Diffracted electrons can also

be detected in TEM to obtain diffraction patterns of materials locally. By analyzing the

positions of the diffraction spots and the image symmetries, information about the space

group symmetries in the crystal and the crystal’s orientation to the beam path can be ob-

tained. Another advantage of TEM over SEM is that electron energy loss spectrometry

(EELS) can also be obtained in a TEM. EELS is a powerful chemical analysis technique

that provides users with qualitative and quantitative chemical analysis through measuring

28



the energy loss of the transmitted electrons.

TEM is a powerful tool to investigate detailed structure of CNTs. Due to its high reso-

lution, it is possible to obtain the number of walls in an MWCNT, to resolve an individual

SWCNT within an SWCNT bundle, measure the tube diameter, andinvestigate defects

in CNTs. The electron diffraction and EELS equipped in TEM have also been used to

determine the helicity and dopants in CNTs. Coupled with EDS, a TEM can also identify

the composition of the catalyst for nanotube nucleation.

However, TEM specimens must be very thin and be able to survive in high vacuum

environments. Thus sample preparation for TEM is much more complicated than that for

SEM. However, as nanotubes have dimensions small enough to be electron transparent,

sample preparation can be easily done by depositing dilute sample that contains nanotubes

under analysis onto support grid or films. In this thesis, thesynthesized CNTs were firstly

scratched off from the substrates and dispersed in 70% alcohol. The solution was vibrated

in an ultrasonic device and then deposited onto copper grids. The prepared samples were

dried overnight and then analyzed in a Phillips 410LS TEM with an electron energy of

100 KeV.

3.6 X-ray diffraction

X-ray diffractometry (XRD) is a non-destructive techniquebased on the elastic scatter-

ing [132]. Basically, X-ray diffraction is obtained when anX-ray beam is diffracted from

planes of atoms in a crystalline material, in accordance with the Bragg’s law. Constructive

interference results in intensity peaks whereas destructive interference does not. Iden-

tification of the phase composition of materials can be achieved by a procedure called

indexing of X-ray diffraction data. It is a technique for comparing the diffraction patterns

of an unknown sample with standard patterns. Apart from peakpositions, peak heights

are also useful in XRD analysis. The amounts of the components in a solid material can

be estimated by measuring peak heights in an X-ray diffraction pattern. It is also possible

to determine crystallinity and particle size of a sample by comparing XRD patterns of the

test material with that of the same crystalline material. Another application of the XRD
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technique is to measure residual stresses. Residual stresses change the lattice parameters

of crystals, and XRD can determine these stresses through the measurement of the lattice

parameters. Texture, the preferred orientation of crystallites in a specimen, can also be

determined by XRD through investigating the intensity changes of diffraction peaks with

the change of the incident angle. By analyzing the width and the shape of the diffraction

peaks, crystallite size can also be determined.

XRD is usually used to identify the formation of CNTs [39]. However, XRD alone can

not confirm the formation of CNTs. XRD patterns are also used to identify the catalyst

materials for CNT growth and distinguish between SWNT and MWNT. [40]. In this

thesis, XRD measurements were done using a Rigaku (Rotaflex Ru-200) diffractometer

to determine phase changes in the Inconel sheets after pre-treatment and growth. The X-

rays used was the Cu Kα line (λ = 0.15418 nm) produced by the impact of an 80 kV, 40

mA electron beam. The collected 2θ range is from 3 to 100◦.

3.7 Raman Spectroscopy

Raman effect is basically the inelastic scattering of lightby matter [134]. It can be de-

picted through an energy level diagram. First of all, assumethe molecular system has

two vibrational energy levels, denoted as n=0 for ground state and n=1 for excited state.

If the energy difference of the two states ishυm and the incident light has a frequency

hυl, the emitted light will have different different frequencies:υL, υL − υM , υL + υM .

The emitted light has the same frequency is due to the elasticor Rayleigh scattering. The

frequency shifted toυL − υM andυL + υM is due to Stokes or anti-Stokes Raman scat-

tering, respectively. At ambient temperatures, Stoke Raman scattering are generally much

more intense. Thus, it is usually the Stokes Raman spectrum that has been studied. The

frequency distribution of the scattered light dictates thecharacteristics of the molecular

structure or bonding states of the matter that scatters the light. Therefore, Raman spec-

troscopy is widely used to determine molecular structure orbonding states of materials.

Raman spectroscopy is non-destructive and operated in ambient environment, simple and

fast. MicroRaman spectrometer can be used to analyze structures locally in a very small
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area.

Raman spectroscopy is a very powerful technique for analyzing carbon materials.

It can be used to differentiate SWCNTS and MWCNTS, diamond and graphitic struc-

tures [37] and to determine the diameter, chirality, dopants, and intercalation properties

of SWCNTS [38]. A micro-Raman (Renishaw 2000) system operated at the argon laser

wavelength of 514 nm with a spot size of approximately 1µ m was used in this thesis to

analyze CNTs.

3.8 Field Emission Measurement

In field electron emission (FEE) measurements, a very high vacuum is normally required

for the sake of accuracy of the measurements. Otherwise, theemitted electrons would

be adsorbed by air molecules and the ionization of air molecules would cause avalanche

breakdown, resulting in fake FEE current. In this research work, a field electron emission

measurement device was designed and set up, as shown in Figure 3.3. The system can

reach a base pressure of(1−2)∗107 Torr in 3 hours by a turbo molecular pump combining

with a mechanical pump. And high vacuum environment can be maintained during the

measurement process. The anode and sample were placed in a stainless steel vacuum

chamber. The diameter of the stainless steel anode is 1 mm, and the anode-cathode spacing

can be adjusted using a micrometer in the range of0 ∼ 100 µm. The high voltage power

source used for the field electron emission measurement is Keithley 237. The Keithley 237

is an instrument programmed to source and measure voltage and current simultaneously.

The Keithley 237 was connected to a PC using IEEE 488 (GPIB) card. Labview software

was used to perform the data acquisition. The current – voltage (IE) measurements were

performed at room temperature in a high vacuum chamber. And the field electron emission

I-E curve and corresponding F-N plot can be obtained and displayed on the computer

screen simultaneously. In order to adjust the distance between anode and cathode without

damaging the sample surface, the resistance between the anode and sample was monitored

when the anode was moved toward the sample. The zero distancepoint was set where the

resistance changes from infinity to a certain value. Then theanode was moved away to the
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desired distance for the consequent measurement. To protect sample from large emission

current, a limitation of maximum emission current was set prior to each FEE test.
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Figure 3.3: Device image (a) and schematics (b) of set-up for field electron
emission measurement. The left part of (a) is Keithley 237 unit. The right
part of (a) is the high vacuum chamber with the test probe and sample inside
[135].
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 The effect of pre-treatment temperature on direct growth

and field electron emission of aligned carbon nanotubes

on Inconel

Figure 4.1 shows SEM micrographs of carbon materials deposited on untreated Inconel

substrate (Fig. 4.1a), and 800◦C (Fig. 4.1b), 900◦C (Fig. 4.1c), 1000◦C (Fig. 4.1d), and

1100◦C (Fig. 4.1e) pre-oxidized Inconel substrates, respectively. Well aligned ensembles

of nanofiber structures were grown on all the pre-treated substrates whereas the structures

formed over the untreated substrate were not fiber-like. TEMobservation (Fig. 4.2) and

Raman spectra (Fig. 4.7) verified that the nanofiber structures grown on the pretreated

substrates were CNTs. The result demonstrates clearly thatoxidation pre-treatment is

efficient in improving CNT growth. From Figure 4.1, we can also see that the CNTs on

the 1100◦C pre-oxidized substrate exhibit the best alignment (Fig. 4.1e) and there are

more crooked and twisted CNTs weaving into bundles as the pre-treatment temperature

decreases. The top-view SEM morphologies of the samples arepresented in Figure 4.3.

It is also interesting that the surface of CNTs grown at 800◦C pretreated substarte (Fig.

4.3a) is capped with unevenly distributed and severely agglomerated particles, whereas

the caps on the surface of CNTs grown on substrates at higher pre-treatment temperature

(Fig. 4.3b - 4.3d) are finer and more uniformly distributed and exhibit better separation

with less agglomeration. The particles capped on the top of the CNTs are considered to

be peeled off from the substrate and lifted up by the up-growing nanotubes. Fig. 4.3e and

4.3f are the enlarged SEM images of the CNTs samples grown on 800◦C and 1100◦C pre-
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(a) (b)

(c) (d)

(e)

Figure 4.1: SEM surface morphologies of CNTs grown on as received
Inconel plate (a), 800◦C (b), 900◦C (c), 1000◦C (d), and 1100◦C (e) pre-
treated Inconel substrates. The scale bar is 2µm
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Figure 4.2: TEM image of CNTs grown on 1100◦C pre-treated Inconel
substrate.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Top view SEM morphologies of samples deposited on differ-
ent temperature pre-treated Inconel plates (800◦C (a), 900◦C (b), 1000◦C
(c), and 1100◦C (d)); (e), (f) are pictures of sample (a) and (d) at higher
magnification.
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treated substrates, respectively. In Fig. 4.3f, carbon nanotube tips protrude from the crest

face with only few noticeable particles located in between.In contrast, the top coverage

in Fig. 4.3e consists of densely packed particles in a broad range of sizes.

In order to understand the effect of oxidation pre-treatment on the CNT growth, XRD

and SEM have been applied to analyze the treated substrates before and after CNT depo-

sition. Figure 4.4 shows the XRD patterns of the Inconel sheets before and after oxida-

tion treatment at different temperatures. The results showthat only a small amounts of

Cr2O3 is present after oxidation at 800◦C and 900◦C, whereas various oxides including

Cr2O3,Fe2O3, NiO, NiCr2O4 [136] appear after oxidation at 1000 and 1100◦C and the

amounts of oxides increase with the increase of pre-treatment temperature. Figure 4.5

presents the SEM images of the substrate after oxidation at different temperatures. The

SEM images show that the substrate surface was roughened by oxidation pre-treatment

regardless of the treatment temperature. As the oxidation temperature rose up, the grain

boundaries became much clearer and the grains were extrudedmore out of the surface.

Compared our XRD and SEM results with the reported literatures [136–138], we propose

the oxidation procedures of the Inconel substrate as follows. Chromium (Cr) was the first

element to be oxidized to formCr2O3 because it needs lower partial pressure of oxygen

to form oxide compared to the other two main elements: Ni and Fe in the alloy [137].

Cr2O3 nucleates and grows preferentially along the alloy grain boundaries due to their

high energy and high diffusion rate, thusCr2O3 islands formed along alloy grain bound-

aries [136, 138]. At higher oxidization temperature,Cr2O3 islands continued to grow

while other oxides like NiO started to nucleate and grow at the alloy surface. Eventually,

a continuousCr2O3 layer may form at the bottom of other oxides [136,138], uplifting the

other oxides out of the surface.

Once methane and hydrogen were introduced for CNT deposition, different reactions

happened on differently pre-treated substrates. XRD patterns of the samples after CNT de-

position are shown in Figure 4.6. Comparing Figure 4.6 with Figure 4.4, we can see that

graphitic carbon (CNTs) has been grown on all the samples after deposition as the rep-

resentative peak of graphitic (002) at around 26◦ is observed after deposition [139–142].

Cr2O3 was not reduced during the deposition process asCr2O3 shows similar peak in-
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Figure 4.4: XRD patterns of as received and oxidized Inconel plates.

tensity in XRD patterns before and after deposition. Some oxides, including NiO and

NiCr2O4, formed at higher oxidation temperature might be reduced tometallic state after

the deposition as the diffraction peaks for these oxides disappears after CNT deposition.

Since there is no reduction ofCr2O3, the oxidation-reduction catalyst generation mecha-

nism is not applicable for 800 and 900◦C pre-treated samples. We can ascribe the CNT

growth on 800 and 900◦C pre-treated substrates to thermal stress roughing, in which the

roughed surface provides catalytically active sites for CNT growth [6]. The thermal effect

should also play roles for CNT growth on the samples pre-treated at 1000 and 1100◦C.

However, for samples pre-treated at 1000 and 1100◦C, the other mechanisms including

oxidation-reduction catalyst generation should also be considered. At higher oxidation

temperature, more oxides were produced, which may induce the formation of more edge

sites and hamper the formation of bigger catalyst clusters [143]. Meanwhile, some ox-

ides, including NiO andNiCr2O4, formed at higher oxidation temperature were reduced

to metallic state to form active catalyst particles for CNT growth during the deposition.
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(a) (b)

(c) (d)

Figure 4.5: Surface morphologies of Inconel substrates after oxidation un-
der different temperatures (800◦C (a), 900◦C (b), 1000◦C (c), and 1100◦C
(d)).
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Figure 4.6: XRD patterns of oxidized Inconel plates after deposition.

In addition, a continuousCr2O3 layer might form at the bottom of the other oxides at

higher oxidation temperature and act as a supporting layer for the creation of catalyst par-

ticles through reduction [142,144]. On this supporting layer, the catalyst particles formed

would be better separated and more uniformly distributed, resulting in CNTs with better

uniformity [121]. Based on above analyses, the higher oxidation temperature would fa-

cilitate CNT growth with better uniformity, which is in agreement with the SEM results

shown in Fig. 4.1 and 4.3 and further confirmed by XRD patternsshown in Figure 4.6 and

Raman spectra presented in Figure 4.7. From Figure 4.6, we can see that the higher the

oxidation temperature, the higher and the sharper the graphite peak (∼ 26◦) resulted from

CNTs. From Figure 4.7, we can see that theIG/ID ratio in Raman spectra increases with

the increase of oxidation temperature, where higherIG/ID ratio indicates CNTs with more

perfect structure [111].

It is also worthy to note that fewFe2O3 are reduced by comparing Fig. 4.6 with Fig.

4.4. We can assume that it works together withCr2O3 as catalyst support. At lower

41



Figure 4.7: Raman spectra of CNTs grown on Inconel substrates pre-treated
under different temperatures.
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temperature (800 and 900◦C), fewerFe2O3 was formed, indicating more Fe might join

with Ni in catalyzing CNT growth, thus with the increase of oxidation temperature, the

active CNT catalysts would contain higher concentration ofNi. It has been reported that

Ni promotes the growth of straight CNTs whereas Fe facilitates the growth of twisted

or crooked CNTs [121, 145]. Then the CNTs grown on substrateswith higher oxidation

temperature would be more straight and well aligned, which is evident in SEM images

shown in Fig. 4.1. Furthermore, a new phaseC2Cr3 was formed for 1100◦C pre-oxidized

sample, as seen from XRD patterns in Fig. 4.6. The new compound is anticipated to

further improve the interaction between substrate and the newly formed catalyst and to

lead to fewer particles on the top of CNTs, as seen in Fig. 4.1eand Fig. 4.3f.

Fig. 4.8a presents the field electron emission I-E curves of the deposited CNT samples.

For the CNT film grown on 800◦C pre-oxidized Inconel substrate, the largest turn-on

electric field (defined as the electric field at which the emission current reaches 0.01µA)

of 6.56 V/µm is obtained. With the increase of the oxidation temperature from 800◦C, the

deposited CNTs exhibit decreased turn-on electric field of 5.78 V/µm at 1000◦C and 4.66

V/µm at 1100◦C. The Fowler-Nordheim (F-N) plot corresponding to the fieldemission

I-E curve for each sample is displayed in Fig. 4.8b. Using thework function of 5 eV for

CNTs [146], the field enhancement factorβ was estimated from the slope of the FN plot.

The largestβ is achieved from the sample with 1100◦C pre-treatment. It decreases from

872 to 693 and 626 when the oxidation temperature decreases to 1000◦C and 800◦C. Sung

et al. [147] have observed the similar effect of CNTs uniformity ontheir FEE properties.

They used a glass cap to level the CNTs height and found that the vertically levelled CNTs

showed better field emission characteristics than unlevelled ones.
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(a) Typical FEE I-E curves.

(b) Typical FEE FN curves.

Figure 4.8: FEE tests of CNTs grown on pre-treated Inconel plates (� pre-
treat temperature 800◦C; • pre-treat temperature 1000◦C; N pre-treat tem-
perature 1100◦C).
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4.2 The secondary growth of carbon nanotubes by sim-

ply adjusting carbon concentration during deposition

and its effect on FEE properties

Figure 4.9 shows surface morphologies of 1100◦C pre-oxidized Inconel substrates after

CVD process in an extremely low carbon concentration (0.28 vol.%) gas environment for

10 min, 30 min, and 1 hour. After 10 min processing, the substrate surface is characterized

by irregular large particles with small protuberances distributed on the top of them (Fig.

4.9a). 30 min processing results in the reduced particle size with very fine particles cen-

tered at the particle boundaries (Fig. 4.9b). After 1 h CVD process, however, filamentous

structure is observed (Fig. 4.9c). TEM observations of the samples after 1 h processing

confirm that filamentous structure consists of CNTs. Fig. 4.10 shows a TEM image of

a typical CNT. It is a centrally hollow tube, rather than a fiber. As can be seen from the

figure, the outer diameter of this CNT is approximately 35 nm.The inner diameter is

approximately 5 nm, and many catalyst nano particles are embedded in the walls and/or

within the hollow space of the tubes. These catalyst nano particles, just like those inten-

tionally deposited catalyst nano particles on primary CNTs, are supposed to catalyze the

secondary CNT growth during the consequent CVD process at higher methane concentra-

tion. The metal dusting theory can be used to explain the observed results. As reported,

there are two metal dusting mechanisms working conjointly for Ni-based alloys [148]:

one is that carbon diffuses into metal and eventually leads to carbon precipitation, which

disintegrates the carbon supersaturated metal particle, thus resulting in a reduction of cat-

alyst particle size; the other one involves selective oxidation of carbides formed during

the processing, in which metal dust and metal oxides forms. The dusted metal particles

are blown onto the growing carbon nanotubes and attached to the CNT walls, especially

those defect sites caused by hydrogen etching, resembling catalyst seeding for secondary

CNTs. Figure 4.11 shows the XRD patterns of the oxidized Inconel sheets before and

after deposition at carbon concentration of 0.28 vol.% for different time durations. After

10 minutes deposition (CVD processing), the oxides NiO andNiCr2O4 formed during the
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(a)

(b)

(c)

Figure 4.9: surface morphologies of pre-oxidized Inconel substrates after
CVD process in extremely low carbon concentration gas environment for
10 min (a), 30 min (b), and 1 hour (c).
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Figure 4.10: TEM characterization for the CNT sample grown at carbon
concentration of 0.28 vol.% for 1 h.
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Figure 4.11: XRD patterns of oxidized Inconel plates before deposition
and after deposition at carbon concentration of 0.28 vol.% for different time
durations.

48



pre-treatment were reduced and carbon has begun to dissolveinto metal particles, forming

iron and chromium carbides. Since carbon diffuses fast in nickel and that nickel carbide

is not a necessary intermediate product [149], we assume that the disintegration mecha-

nism is dominant in the early stage. When the CVD duration wasextended to 30 minutes,

oxygen or hydrogen starts to play roles. It reacts with the carbides formed during the

early stage of CVD processing to form metal dust, evident from the diminished carbides

peaks, as shown in Fig. 4.11(c), whereas disintegration mechanism, super saturation-

precipitation-disintegration course, occurs simultaneously. The oxygen may be originated

from the reduction of pre-formed oxides and the residual air, whereas hydrogen was flow-

ing into the system during the deposition. As the CVD processproceeded to 1h, a strong

peak at around26◦ emerged, indicating the CNT growth [139,141]. This is consistent with

the SEM observation in Fig. 4.9. Meanwhile, the metal dusting was continuously carrying

on, evident from the disappeared diffraction peaks of carbides, as shown in Fig.4.11(d). To

investigate the uniqueness of CVD synthesis at extremely low carbon concentration, the

growth of primary carbon nanotubes has also been conducted under higher carbon con-

centration conditions (5 vol.%). It has been found that the growth of CNTs becomes much

faster. Carbon nanotubes had already formed within 10 minutes processing, as shown in

Fig. 4.12 and Fig. 4.13. But catalyst nano particles were barely observed on CNT walls

for 1 h processed samples. TEM image of a typical CNT from the 1h processed samples

is shown in Fig. 4.13. The outer diameter of the CNT (approximately 50 nm) is larger

than that grown at 0.28 vol.% carbon concentration. In this case, the small metal particles

were exhausted quickly for CNT growth and the synthesized CNTs covered the surface

to prevent the metal dust formation. In addition, less defect sites are created on the walls

due to the decreased hydrogen content. As anticipated, the extended CVD process did not

produce any secondary CNTs.

For the secondary CNT growth, higher carbon concentration (5 vol.%) was applied to

the primary CNTs obtained using extremely low carbon concentration (0.28 vol.%) CVD

processes. Figure 4.14a shows the SEM micrograph of the secondary growth products.

Small CNT sprouts are protruding out of the surface. The TEM observations (see Fig.

4.14b) shows that smaller and shorter secondary CNTs wind along thicker and longer
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Figure 4.12: Deposits on Inconel substrate at carbon concentration of 5%
after 10min growth.

Figure 4.13: TEM characterization for the CNT sample grown at carbon
concentration of 5 vol.% for 1 h.
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(a)

(b)

Figure 4.14: SEM (a) and TEM (b) characterization of the secondary
growth product.
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primary CNTs. The outer diameter of the secondary CNTs was estimated to be in the range

of 8 to 15 nm. Field electron emission properties were also tested for both the primary

CNTs and the binary structure combing thick primary CNTs andthinner secondary CNTs,

as well as the CNTs grown under regular carbon concentration.

Fig. 4.15a presents the field electron emission I-E curves ofthe samples. The Fowler-

Nordheim (F-N) plot corresponding to the field emission I-E curve for each sample is

displayed in Fig. 4.15b. Assuming the work function of 5 eV for CNTs [146], the field

enhancement factorβ is estimated from the slope of the FN plot. The primary CNTs syn-

thesized from extremely low carbon concentration have a turn-on electric field (defined

as the electric field at which the emission current reaches 0.01 µA) Eto = 3.50 V /µm,

with the field enhancement factorβ = 1213. The growth of secondary CNTs leads to

improved field emission properties (Eto = 2.28 V/µm, and a larger emitted current density

for a certain applied electric field). The improvement may beassociated with the smaller

diameter of the secondary CNTs which would emit electrons ata low voltage [150, 151].

Different from other reports on the degraded field amplification factor caused by the short

length of the secondary CNTs [152], in our case, no worseningeffect was observed af-

ter the secondary growth (β = 1577.8). The negative influence resulted from the short

length of the secondary nanotubes may have been eliminated by the smaller diameter of

the secondary CNTs. The sample with the CNTs grown at regularcarbon concentration

(5 vol.%) without secondary nanotubes shows an inferior FEEperformances comparing

with the other two (Eto = 4.09 V/µm, β = 979.4). We ascribe this to the less defects on

the side walls,thus less emission sites.
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Figure 4.15: FEE tests of CNTs grown under different conditions (� pri-
mary CNTs under extremely low carbon concentration;H combined struc-
ture of primary and secondary CNTs;N CNTs grown under regular carbon
concentration.
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4.3 The effect of bias on aligned carbon nanotube growth

and alignment mechanism of carbon nanotubes by

hot filament chemical vapor deposition

The as-received Inconel sheets were pre-heated and then used as substrates for direct

growth of carbon nanotubes under various bias voltages ranging from -550 V to +150

V. The SEM morphologies of the resulted deposits under different bias voltages are shown

in Fig. 4.16. It can be seen that aligned CNTs were produced under both positive and neg-

ative substrate bias, whereas only random CNTs were obtained when the substrate bias =

0 V, indicating that biasing during the growth is critical inaligning nanotubes. Biasing of

the substrate has been widely used in CNT growth. But the question of which bias (posi-

tive or negative) is more effective for nanotube alignment still remains unclear. Avigalet

al. [119] found that positively biasing the substrate enhanced the alignment performance.

Zhanget al. [22] demonstrated a similar performance with positive dc bias and ac bias.

Negative self biasing of the substrate in a plasma was also effective for nanotube align-

ment as reported by Boweret al. [21, 26]. In this paper, both positive and negative biases

have been investigated. From Figure 4.16, one can find that the CNTs grown at -500V

shows the best alignment. Among the negatively biased growths, the one with -500V bias

shows the best result. Below -500V, CNTs are less straight. Beyond -500V, CNTs are so

densely packed that their heads are fused together and formed into a cap shell, caused by

higher temperature from higher plasma intensity. Thus -500V bias was adopted for other

experiments in this section.

Figure 4.17 shows the SEM images of the samples prepared witha growth time of

10 min and 30 min under a bias of -500 V. The SEM image of the 1h grown sample

can be found in 4.16e. It is interesting that the randomly distributed and aligned CNTs

present simultaneously after 10 min growth (Fig. 4.17a). This is not consistent with

the reported results which support the electric field induced alignment mechanism [29,

30]. Therefore, electric field may not be the only factor determining the CNT orientation.

Merkulovet al. [23–25] have reported the formation of both aligned and nonaligned CNTs
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: SEM morphologies of deposits on pre-oxidized unscratched
Inconel plates under different bias (0V (a), 150V (b), -400V(c), -450V (d),
-500V (e), and -550V (f)). The scale bar is 2µm.
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(a)

(b)

Figure 4.17: SEM morphologies of samples prepared under -500V with
different growth time (10 min (a), 30 min (b)).
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in one single growth process. The mechanism was given as follows: different stresses are

produced by electrostatic force between tip growth and basegrowth, consequently leading

to differences in carbon diffusion and precipitation; the growth with catalytic particle at

tube tip is favorable for alignment whilst the base growth causes misalignment. In our

case, TEM observation of the samples with 10 min growth (Fig.4.18) reveals mixture of

tip growth and base growth (with an open end). Therefore, thestress related mechanism,

supposed by Merkulovet al. [23–25] can well explain the observed co-growth of randomly

distributed and aligned CNTs here. As seen in Fig. 4.17b and Fig. 4.16e, only aligned

CNT arrays were observed for samples after 30 min or 1h growth, indicating that crowd

effect eventually makes the randomly distributed CNTs intoaligned arrays.
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Figure 4.18: TEM characterization of 10 min grown sample under bias of
-500 V.

Besides electric field, many researchers have found that other deposition conditions

such as gas composition, catalyst type, catalyst layer thickness can also affect the align-

ment in CNT growth [33]. In this section, Inconel sheets mechanically scratched before

the heat treatment were also used for CNT growth. Figure 4.19presents the SEM mor-

phology of the resulted CNTs. Unlike CNT forest shown in Figure 4.17, isolated tree-like

CNT structure is displayed. The CNTs grown in the center, right upper corner, and right

bottom corner of the substrate were shown in Fig. 4.19a, 4.19b, and 4.19c, respectively. It

is interesting that the deviation of the tube axis from the substrate normal near the sample

edges. This phenomenon has previously been reported by Yanget al. [105] and Merkulov

et al. [25] The axis derivation has been ascribed to the derivation of electric field line. The

CNTs grown on the unscratched substrates shown in Fig. 4.16 exhibited similar alignment

characteristic, although it is harder to observe due to the high packing density. Figure

4.20 shows the SEM morphology of CNT on scratched substratesafter 10 min growth.

It shows that tens of freely standing nanotubes are outgrownunevenly from one catalyst

dot. TEM observation of the CNTs scratched from the substrate shows similar features

as in Fig. 4.18. Comparing Figure 4.19 to 4.20, it is suggested that the carbon nanotubes

are initially aligned by electrostatic force, then as the growth proceeds, the van der Waals

force interacts within a bundle of CNTs and makes them into a tree-like structure. It is
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(a)

(b)

(c)

Figure 4.19: SEM morphologies of deposits on scratched substrates at -
500V and growth time of 1h. The pictures were taken at different spots on
substrate (center (a), right upper corner (b), and right bottom corner (c)).
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Figure 4.20:Early stage of carbon nanotubes grown on scratched substrate.
The scale bar is 1µm.

worthy to note that the tube diameter in Fig. 4.19 (90∼ 100 nm) is apparently larger than

that in Fig. 4.17 (diameter: 50∼ 60 nm). It should be noted that at the initial growth

stage, no randomly distributed CNTs were grown on the scratched substrates even though

both tip and base growth were observed for the scratched substrates, indicating that having

catalyst particle in tip is not indispensable for aligned growth in electric field. In addition,

the heights of the aligned tubes on the scratched substratesare uneven (Fig. 4.19), dif-

ferent from the case in Fig. 4.17a. To explain these discrepancies, heat treated substrate

surface morphologies with and without pre-scratching observed by SEM were compared,

as shown in Fig. 4.21. After scratching, fairly deep tracks are left on the surface. The

particles formed on the scratched substrate after heat treatment exhibit larger average size

(∼ 1 µm) and thinner distribution than unscratched ones (averagegrain size:∼ 0.6µm).

Previous researches have found that big catalyst particlespromote the alignment of CNTs

and large catalyst size distribution causes fluctuation in heights of the formed tubes [121].

Thus we can attribute the above discrepancies between the scratched and unscratched

substrates to the bigger particle size and larger particle size distribution on the scratched

Inocnel sheets and the results show that as long as the catalyst size is big enough, it is

possible to grow well-aligned carbon nanotubes in base growth mode.

The field emission properties were measured and the results are given in Table 4.1.

The turn-on field of each sample is defined as the electric fieldat which the emission
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(a)

(b)

(c)

Figure 4.21: SEM morphologies of the scratched Inconel substrates before
(a) and after heat treatment at 1100◦C (b), and the unscratched substrate
after heat treatment at 1100◦C (c). The scale bar is 10µm.
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current reaches 0.01µA. The CNT bundles grown from the pre-scratched substrate have

the smallest turn-on fieldEto = 4.2 V/µm. This may attribute to the small screen effect.

Compared with the CNT forests obtained on unscratched substrate, these CNT bundles

act as separated emitters centering at the highest tube in one bundle, thus would be less

affected by the screen effect. And it is interesting that theCNT bundles at central and

edges of the substrate exhibited different FEE properties.The smaller turn-on field on the

edges of the substrate is attributed to numerous defects on the side walls, which increases

the number of emission sites. Relatively, the turn-on field difference among the CNTs

on the unscratched substrates small, among which the one grown under -550V shows the

highest turn-on field due to its highest CNT density.

Table 4.1: FEE performances of different samples.

samples Eto (V/µm) field enhancement factorβ

sample on pre-scratched substrate (center) 4.2 952

sample on pre-scratched substrate (edge) 4.03 984

sample on un-scratched substrate (-550V) 4.82 866

sample on un-scratched substrate (-500V) 4.66 872

sample on un-scratched substrate (-450V) 4.6 858

sample on un-scratched substrate (-400V) 4.6 860

sample on un-scratched substrate (+150V) 4.58 864
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Hot filament CVD was employed to investigate the direct growth of carbon nanotubes

on Inconel substrates in this research. The effect of the pre-treatment temperature, sub-

strate roughness, carbon concentration and growth bias on the growth of CNTs and field

emission properties of the resultant CNTs were studied. Consequently, secondary growth

of carbon nanotubes and direct synthesis of well aligned CNTs with improved FEE proper-

ties without any addition of catalyst were achieved. The main conclusions drawn from the

results prescribed in Chapter 4 are summarized in this chapter. In addition, a prospective

view of the future research works is also provided.

5.1 Summary and Conclusions

Time and money–consuming post-processing are normally required for the CNTs grown

on substrates coated with catalyst for many applications, e.g., field emitters. Therefore,

CNT grown directly on the substrate is of great significance.Direct growth of carbon

nanotubes on Inconel sheets without the addition of any catalysts was achieved through

a pre-oxidation treatment to the substrates. The pre-treated substrates and the resultant

CNTs were characterized by SEM, XRD, TEM and FEE measurements. The main con-

clusions are as follows:

1. The effect of the pre-oxidation temperature, ranging from 800◦C to 1100◦C, on the

direct growth and FEE of CNTs on Inconel sheets was studied. The results show

that high temperature oxidation pre-treatment of the Inconel substrate is effective in

enhancing the CNT growth and that high treatment temperature results in improved

CNT uniformity and thus better field electron emission properties (lower turn-on
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field and larger field enhancement factor).

2. A simple two-step deposition method, in which the primaryCNTs were synthe-

sized at extremely low carbon concentration (0.28 vol.%), and secondary growth

was carried out by simply increasing the carbon concentration to 5 vol.%, was devel-

oped to grow secondary CNTs on primary ones without the addition of any catalysts

throughout the whole process. The small diameter of the secondary CNTs signif-

icantly improved the FEE properties of the double–layered CNTs. Metal dusting

due to low carbon concentration provides catalyst particles in the walls of primary

CNTs to catalyze the secondary CNT growth.

3. The effect of bias voltages and substrate scratching before the heat treatment on

the alignment of CNTs was investigated. Well aligned CNTs were synthesized by

bias–enhanced HFCVD. The results show that CNTs grown underbias of -500V

generates the best alignment. Aligned and non-aligned CNTsgrew simultaneously

on unscratched sheets in one single growth process, whereasonly aligned CNTs

were observed on scratched sheets at the early growth stage.Analysis shows that

tip growth is not necessary for the electric field to align theCNTs, and large catalyst

particles created by scratching before the heat treatment can result in alignment

of CNTs at the early growth stage. In addition, tree-like CNTbundles grown on

scratched substrates exhibit better FEE performances thandense carbon nanotube

forest grown on unscratched substrates due to the reduced screen effect.
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5.2 Future work

While direct CNT growth on Inconel has been successful, one of the future research di-

rections is to enlarge the pool of substrates. Substrates like Ni, Fe, stainless steels, and

other alloys may be employed and the results can be compared,which can provide more

complete data for practical applications.

In this thesis, secondary CNT was successfully synthesizedon randomly distributed

CNTs. Future research can extend to the branching growth on aligned CNTs. FEE tests

can be done on diverse secondary CNT structures and the results can be compared. In

addition, various composites can be synthesized based on the synthesized CNT matrix. A

typical example is synthesizing Cu/CNT composite by sputtering copper onto the multi-

branched aligned CNT arrays for high thermal conductivity and low coefficient of thermal

expansion. Future research may also focus on exploring other properties for various ap-

plications, for example, electrochemical properties.
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