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ABSTRACT 

Multiple Sclerosis (MS), a chronic inflammatory demyelinating disease of the Central Nervous 

System (CNS), is recognized as the leading cause of disability in young adults in Canada. The 

pathological features of MS include neuroinflammation, demyelination, and oligodendrocyte (OL) 

loss. Cognitive impairment (CI) and depression are the most common neuropsychiatric symptoms 

and major determinants of MS disability. Despite the broad and severe spectrum of signs and 

symptoms, we are still missing effective treatment methods that can be applied to treat MS.  

Low field magnetic stimulation (LFMS) is a novel non-invasive neuromodulation technology. A 

few clinical and animal studies have shown that LFMS has beneficial effects on emotional dis-

turbances and cognitive function. Our research has shown that LFMS ameliorated cuprizone 

(CPZ)-induced working memory deficits and depression-like behaviours in the mice. The current 

study aimed to assess the effects of LFMS on cognition and remyelination in a CPZ-induced 

chronic demyelination model of MS.  

Eight-week-old female C57BL/6 mice were fed with 0.2% of CPZ (w/w) for 12 weeks (12w) to 

induce chronic brain demyelination. The mice resumed the regular diet and received 20-min LFMS 

or Sham treatment every day for five days a week. The treatments lasted for two (14w) or four 

weeks (16w) to study the effects of LFMS on locomotor functions, anxiety and depression-like 

symptoms, as well as working memory using behavioural tests at the different time points (12w, 

14w, and 16w). The animals were then euthanized, and the brain samples were collected and stored 

at -80°C for future experiments (Western blots and immunohistochemistry).  
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The results showed that chronic CPZ administration led to working memory deficits and depres-

sion-like behaviours. The gross locomotor function and anxiety-like behaviours were not affected 

by CPZ. LFMS treatment significantly enhanced the expression of myelin basic protein (MBP) 

and myelin oligodendrocyte glycoprotein (MOG). LFMS also increased the expression of Gluta-

thione S-transferase (GST-π), a mature OL marker. LFMS reduced the level of Glial Fibrillary 

Acidic Protein (GFAP), an activated astrocyte marker, and pro-inflammatory factor Tumor necro-

sis factor-alpha (TNFα). There was a significant reduction in the number of overall OL lineage 

cells labelled with Olig-2 (Oligodendrocyte Transcription Factor 2). A significantly enhanced ex-

pression of TGF-β (Transforming Growth Factor beta) and the receptors (TGF-β R1 and TGF-β 

R2) involved was reported.  

Our results show that LFMS enhanced cognitive function and alleviated depression-like behav-

iours. LFMS facilitated the remyelination process in mice with chronic demyelination. LFMS may 

exert its therapeutic effects by reducing neuroinflammation and promoting OL regeneration 

through the TGF-β pathways. These results suggest that LFMS can be a promising therapeutic 

method for depression and cognitive impairment in MS patients. In addition, LFMS may also fa-

cilitate remyelination through its neuroprotective and immunomodulating effects, but this remains 

to be shown. Further studies are warranted to understand the detailed molecular mechanisms which 

facilitate the remyelination processes and behavioural deficits.  

  



 

iv 

 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my supervisor, Dr. Yanbo Zhang, who offered me 

the opportunity to pursue an M. Sc. degree at the University of Saskatchewan. Throughout my 

Master's program, he always provided me with insightful suggestions and infinite patience, not 

only on scientific research but also in my future career. My work could not have been completed 

without his full support. 

I would also like to express my sincere gratitude to other members of my committee, Dr. Francisco 

S. Cayabyab, Dr. Valerie Verge, and Dr. Changiz Taghibiglou, for their time and patience on my 

program. They gave me substantial encouragement and valuable suggestions for my research dur-

ing my entire M. Sc. Program. Their support helped me become more confident and understand 

my project more thoroughly. 

Also, I am lucky to get guidance from Dr. Zelan Wei and Dr. Akanksha Baharani. They provided 

me with vital support during the most challenging time and trained me to be stronger. I would also 

like to learn and work with a group of great colleagues: Ali Mooshekhian, Nataliya Dolgova, and 

Jacob Cohen. 

Besides, I would like to thank my girlfriend, Wenxuan Li, for her love and care in my life in 

Saskatoon. Also, many thanks to Yufei Shan, Ping Luo, Hao Gao, for being wonderful friends. 

Finally, I would like to express my highest gratitude to all my families for their unconditional 

support and love. I am also grateful for the financial support provided by the Saskatchewan Health 

Research Foundation (SHRF), University of Saskatchewan (U of S), and College of Medicine.  



 

v 

 

TABLE OF CONTENTS 

PERMISSION TO USE    ………………………………………………………………………... i 

ABSTRACT   ………………………………………………………………………...………….. ii 

ACKNOWLEDGMENTS    …………...………………………………………………………... iv 

TABLE OF CONTENTS    ……………………………………………………...…...……...….... v 

LIST OF FIGURES    ……………………………………………………...…...…......………..... ix 

LIST OF ABBREVIATIONS     ……………………………………………………...…...…….. xi 

1 Introduction ……………………………………………………………………………… 1 

  1.1 Multiple Sclerosis ………………………………………………………………………... 1 

     1.1.1 The clinical features of MS ………………………………………………………. 4 

     1.1.2 Neuropsychiatric conditions in MS ………………………………………………. 6 

     1.1.3 Neuropathological changes in MS ……………………………………………….. 8 

  1.2 Transforming growth factor-β pathways ………………………………………………... 13 

     1.2.1 Signal transduction ……………………………………………………………... 13 

     1.2.2 Transforming growth factor-β pathways and MS ……………………………….. 15 

  1.3 Low Field Magnetic Stimulation ……………………………………………………….. 18 



 

vi 

 

     1.3.1 Mechanism of action of LFMS on remyelination ……………………………….. 20 

     1.3.2 Advantages of Low Field Magnetic Stimulation ………………………………... 20 

2 Hypothesis and Objectives …………………………………………………………..…. 20 

3 Materials and Methods ………………………………………………………………..... 21 

  3.1 Cuprizone-induced chronic demyelination model ……………………………………… 21 

     3.1.1 Introduction …………………………………………………………………….. 21 

     3.1.2 Animal modelling ……………………………………………………………..... 25 

  3.2 Low Field Magnetic Stimulation treatment ……………………………………………... 25 

  3.3 Behavioural Tests ………………………………………………………………………. 28 

     3.3.1 Open Field Test …………………………………………………………………. 28 

     3.3.2 Y-maze …………………………………………………………………………. 29 

     3.3.3 Tail Suspension Test ……………………………………………………………. 30 

  3.4 Biochemical and pathological tests ……………………………………………………... 31 

     3.4.1 Brain tissue collection  ………………………………………………………….. 31 

     3.4.2 Sample preparation and SDS-PAGE ……………………………………………. 31 

     3.4.3 Antibodies ……………………………………………………………………… 32 



 

vii 

 

     3.4.4 Image Analysis …………………………………………………………………. 33 

  3.5 Data analysis ……………………………………………………………………………. 33 

  3.6 Ethical approval ………………………………………………………………………… 33 

4 Results ………………………………………………………………………………….. 34 

  4.1 Behavioural tests ………………………………………………………………………... 34 

     4.1.1 Unimpaired locomotion in mice with cuprizone feed  ………………………….. 34 

     4.1.2 Increased awareness of facing danger with LFMS treatment …………………… 36 

     4.1.3 Chronic CPZ intake resulted in severe cognitive impairment, while LFMS treat 

                       ment significantly improved cognitive function ………………………………… 38 

     4.1.4 Chronic CPZ intake leads to a high-level depressive state ……………………… 40 

     4.1.5 Chronic CPZ intake significantly reduced mice weight, along with significant  

                        weight regain after LFMS ………………………………………………………. 42 

  4.2 Biochemical and pathological tests ……………………………………………………... 44 

     4.2.1 LFMS treatment enhances the expression of MBP and MOG ………………….. 44 

     4.2.2 LFMS treatment lowered the expression of GFAP and TNFα, which are enhanced   

                        in CPZ-treated mice …………………………………………………………….. 48 



 

viii 

 

     4.2.3 LFMS treatment decreased the Olig-2 expression and increased the GST-π expres   

                        sion ……………………………………………………………………………... 52 

     4.2.4 Chronic CPZ intake decreased the expression of TGF-β and TGF-β-R1, and LFMS  

                        significantly enhanced TGF-β, TGF-β-R1, and TGF-β-R2 ……………………... 55 

5 Discussion ……………………………………………………………………………… 60 

6 Limitations ……………………………………………………………………………… 66 

7 Conclusions and future direction ……………………………………………………...... 67 

8 References …………………………………………………………………………….... 68 

  



 

ix 

 

LIST OF FIGURES 

Figure 1.1: The normal and affected nerve in multiple sclerosis. 

Figure 1.2: Clinical courses of multiple sclerosis. 

Figure 1.3: The TGF-β signalling pathway. 

Figure 1.4: The electrical and magnetic signalling transduction of repetitive Transcranial Magnetic        

                  Stimulation. 

Figure 3.1: Demyelination in the corpus callosum of cuprizone treated mice. 

Figure 3.2: Low Field Magnetic Stimulation treatment. 

Figure 3.3: Open field test arena. 

Figure 3.4: Y-maze arena. 

Figure 3.5: Tail suspension test arena. 

Figure 4.1: The effect of Cuprizone on locomotor function. 

Figure 4.2: The effect of LFMS on anxiety-like behaviour. 

Figure 4.3: The effect of LFMS on cuprizone-induced working memory deficits. 

Figure 4.4: The effect of LFMS on cuprizone-induced depression-like behaviour. 

Figure 4.5: The effect of LFMS on cuprizone-induced weight loss. 

Figure 4.6: The effect of LFMS on MBP expression in the prefrontal cortex.  

Figure 4.7: The effect of LFMS on MOG expression in the prefrontal cortex.  

Figure 4.8: The effect of LFMS on GFAP expression in the prefrontal cortex.  

Figure 4.9: The effect of LFMS on TNFα expression in the prefrontal cortex.  

Figure 4.10: The effect of LFMS on Olig-2 expression in the prefrontal cortex.  

Figure 4.11: The effect of LFMS on GST-π expression in the prefrontal cortex.  

Figure 4.12: The effect of LFMS on TGF-β-1 expression in the prefrontal cortex.  



 

x 

 

Figure 4.13: The effect of LFMS on TGF-β-R1 expression in the prefrontal cortex.  

Figure 4.14: The effect of LFMS on TGF-β-R2 expression in the prefrontal cortex.  

 

 

  



 

xi 

 

LIST OF ABBREVIATIONS 

BSA: Bovine Serum Albumin  

CI: Cognitive Impairment 

CNS: Central Nervous System 

CPZ: Cuprizone 

CPZT: Cuprizone (LFMS) Treatment 

DMD: Disease-Modifying Drugs  

GFAP: Glial Fibrillary Acidic Protein 

GST-π: Glutathione S-Transferase pi 

LFMS: Low Field Magnetic Stimulation 

MBP: Myelin Basic Protein 

MOG: Myelin Oligodendrocyte Glycoprotein 

MS: multiple sclerosis 

OFT: Open Field Test 

Olig-2: Oligodendrocyte Transcription Factor 2 

PBS: Phosphate Buffered Saline 

PFA: Paraformaldehyde 

PFC: Prefrontal Cortex 

PIC: Protease Inhibitor Cocktail  

PPMS: Primary-progressive multiple sclerosis   

RRMS: Relapsing-remitting multiple sclerosis  

SPMS: Secondary-progressive multiple sclerosis  

TGF-β1: Transforming Growth Factor beta 1 



 

xii 

 

TGF-β-R1: Transforming Growth Factor beta receptor 1 

TGF-β-R2: Transforming Growth Factor beta receptor 2  

TNFα: Tumor Necrotizing Factor-alpha 

TST: Tail Suspension Test



 

1 

 

1 INTRODUCTION 

1.1 Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic neurological disorder that causes catastrophic damages to the 

central nervous system (CNS) and a broad spectrum of disabilities [1]. The core symptoms and 

signs of MS include muscle weakness and spasms, sensory and balance impairments, urinary in-

continence, visual problems and blindness, fatigue and pain, as well as emotional and cognitive 

deficits [2]. The most common pathological changes of MS are neuroinflammation, demyelination, 

and neuronal and oligodendrocyte (OL) damages (Figure 1.1) [3].  

Canada has one of the highest MS prevalence in the world, with 290 cases per 100,000 population 

[4]. There are more than 90,000 patients in 2018 and is increasing in recent years in Canada [4] 

[5]. It is estimated that about 50% of patients need help walking within 15 years after the onset of 

the disease [6]. A summary of the countries with the highest prevalence rates of multiple sclerosis 

are shown in the table below: 

 

 

 

 

 

 

 

 

Table 1: Countries with the highest prevalence rates of Multiple Sclerosis.  
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Regions Case per 100,000 population 

Canada 291 

San Marino 250 

Denmark 227 

Sweden 189 

Hungary 176 

Cyprus 175 

United Kingdom 164 

Czech Republic 160 

Norway 160 

Germany 149 

Source: https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic#3 

 



 

3 

 

  

Figure 1.1: The normal and affected nerve in multiple sclerosis (MS). In multiple sclerosis, 

the protective coating myelin sheath (top) around axons is damaged (bottom) and may eventu-

ally be lost entirely. Unmyelinated axons are vulnerable to attacks and ultimately degenerate. 

[Ref: https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/multimedia/multiple-

sclerosis/img-20006188]. Used with permission from the copy right owner MAYO CLINIC.  
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1.1.1 The clinical features of MS 

Clinically, MS can be divided into asymptomatic, prodromal, and symptomatic phases [7, 8]. The 

relapsing symptoms of MS usually develop gradually and cause long-lasting neural damages in 

remitting stages called asymptomatic scarring of the nerve tissue [8]. The majority of patients (~ 

85%) start with relapsing-remitting MS (RRMS), in which remissions follow the recurring symp-

toms (Figure 1.2A) [9]. The rest of the patients (~ 15%) have a progressive decline from the onset 

of the disease without remissions, resulting in a diagnosis of primary progressive MS (PPMS) 

(Figure 1.2B [9]). Up to 50% of patients with RRMS develop secondary progressive MS (SPMS) 

within 10-15 years when their symptoms persist without full remission [9, 10] (Figure 1.2C). 

1.1.1.1 Relapsing-remitting MS 

The overall course of MS is thus classified as 'relapsing-remitting' when the disease exhibits only 

relapses and remissions [11, 12]. Most often, RRMS starts with repeated neurologic episodes fol-

lowed by partial or complete remission without new symptoms [13]. In RRMS, the typical lesion 

is inflammatory demyelination in the white matter (WM) of the CNS featured as diminishing my-

elin sheath around preserved axons [14]. Relapses are due to demyelination, followed by activated 

T cells entering the WM of CNS from blood [15-17]. Remission occurs when the immune attack 

is subsided, and remyelination is initiated by oligodendrocyte progenitor cells (OPC) [18, 19]. 

1.1.1.2 Primary-progressive MS 

Progressive MS (PMS), including primary progressive MS (PPMS) and secondary progressive MS 

(SPMS), starts with or without relapses and remissions stage, followed by a progressive stage 

without remission. In PPMS, there is a "skipping" of the usual relapsing-remitting phase [13] in 
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which patients show a slow and steady functional decline from the time of its onset. Symptoms 

and severity of disability continue worsening with no or short remission. The neuropathology of 

PPMS is characterized by obvious GM demyelination in the cerebral and cerebellar cortex [20, 

21]. The progressive disability in PPMS is caused by the diffused antibodies produced by B cells, 

which act as CNS antigen-presenting cells and trigger further T cell activation [17, 22, 23].  

1.1.1.3 Secondary-progressive MS 

About 50% of patients with RRMS develop secondary progressive MS (SPMS) within 10-15 years, 

until then, their symptoms persist without full remission [10]. SPMS is more complex and can be 

seen as a combination of RRMS and PPMS. Initially, it has a period of relapsing-remitting fluctu-

ation, which is followed by a gradually worsening symptom [24]. SPMS can be considered as 

RRMS with insufficient time for remission and finally "deteriorated" to PPMS. SPMS keeps con-

stant severity of disability in the first decades, which is then followed by a stepwise worsening 

period with seldom remission phases after 10 to 15 years. Similar to PPMS, SPMS also has prom-

inent demyelination in the cerebral and cerebellar cortex resulting from the action of autoantibod-

ies produced by B cells in the CNS. 
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1.1.2 Neuropsychiatric conditions in MS 

Emotional disturbances can cause enormous suffering and significant disruption of one's family 

relationship, personal work, and social life [25]. Mood instabilities arising from demyelination can 

be used as a therapeutic indicator for treatment implications [26].  

1.1.2.1 Anxiety 

Anxiety is a natural response to potential danger and risk with a feeling of apprehension due to 

stress [27, 28]. It becomes a disorder when people suffer from chronic and functional impairing 

anxiety [29]. Anxiety disorder commonly affects information processing speed and working 

memory, thus directly impacting cognitive function [30, 31] [32, 33]. It is noteworthy that long-

term anxiety is closely associated with emotional dysregulation, reduced life quality, and increased 

Figure 1.2: Clinical courses of multiple sclerosis (MS). (A) Relapsing-remitting MS (RRMS), which 

affects about 85% of the MS patients. (B) PPMS affects the rest of 15% of MS patients. (C) Up to 50% 

of RRMS patients develop SPMS within 10-15 years. [Ref: https://www.nationalmssociety.org/What-

is-MS/Types-of-MS]. Used with permission from the copy right owner National Multiple Scle-

rosis Society. 
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suicide risk [34]. The lifetime prevalence rate of anxiety in MS is between 19.3% to 35.7%, which 

is significantly higher than in the general population (5%) [35-37]. 

1.1.2.2 Depression 

Depression is a psychiatric condition that presents with a persistent and intense feeling of sadness, 

hopelessness, loss of interest, fatigue, or irritability lasting over two weeks [38]. The lifetime prev-

alence of depression in MS is approximately 50% [39, 40]. Studies suggest that frontal and tem-

poral cortical atrophy, microglial activation, and WM and grey matter (GM) damage are all critical 

contributors to the development of depression in MS [41]. Depression increases suicidal risk, and 

significantly increases the morbidity and mortality of those with MS. The reported suicide risk 

peaks within five years after diagnosis, with over 50% of suicides occurring in this interval [42]. 

Further, the relative risk for contemplating suicide was highest within five years of diagnosis, and 

after more than 20 years of illness [42, 43]. Depression frequently co-occurs with cognitive im-

pairment (CI) and adversely impacts cognitive function [44]. MS patients with CI tend to escape 

when facing a challenging problem [45], which leaves them vulnerable to depression and fre-

quently emotional flooding leading to worsening of their condition. 

1.1.2.3  Cognitive impairment 

CI is one of the leading causes and the most significant determinant of MS disability that affects 

40-65% of patients [46-49]. It can occur at any stage of the disease but is more frequent and more 

severe in PMS [50, 51]. CI affects family relationships, social communication, career development 

and mental health. The most common affected domains of cognition are attention, visuospatial 

abilities, information processing speed, executive functions, and learning and memory [49, 52, 53].  
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CI is challenging to detect in the early period or before MS onset [54]; however, as MS progresses, 

there is a constant deterioration of the cognitive functions.  

Recent studies have confirmed that both GM and WM are involved in the pathogenesis of MS. 

Therefore, some clinical symptoms, like CI, can be explained better. Traditionally, MS is consid-

ered as a WM pathology in which inflammatory lesions and retrograde changes are the results of 

demyelination and cognitive function damage [55]. However, only moderate cases of WM demy-

elination are correlated with CI, suggesting that WM pathology alone is not enough to explain the 

mechanism of CI completely [56]. Different from WM lesions, GM lesions are non-inflammatory 

but can precede further WM pathology and are characterized by diffuse damage [57].  

1.1.3 Neuropathological changes in MS 

Previous research indicated that MS is a two-stage disease that starts with an active inflammatory 

phase and later transforming into a chronic and diffused neurodegenerative stage [58, 59]. Demy-

elination and neurodegeneration are two representative pathologies in PMS. Demyelination repre-

sents the damage of the myelin sheath that surrounds and protects axons. Neurodegeneration refers 

to the loss of function or death of the neuron. 

1.1.3.1 Demyelination and myelin integrity  

Myelin is a unique structure with high lipid content (~70%) and high enrichment of myelin basic 

protein (MBP) and proteolipid protein (PLP), which are the major component of CNS myelin [60]. 

In humans, around 40% of the brain contains WM, where myelin is the main component (50–60% 

dry weight of the WM) [61]. In the CNS, myelin is generated by OLs, and each OL form multiple 

branches (up to 30 or more) that interact with different axon bodies. In contrast, Schwann cells 

generate myelin in the peripheral nervous system (PNS), and each Schwann cell only builds a 
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single connection with a single axon body [62]. The establishment of a myelin sheath is comprised 

of three essential steps: (i&ii) wrapping and remodelling by OLs; and (iii) compaction by MBP 

[63]. The extent of myelin sheath formation is dynamically regulated by the plasticity to induced 

as brain function adapts to the environmental stimuli [64-66]. 

The myelin sheath is involved in neuroprotection and enables rapid action potential propagation 

via saltatory conduction across nodes of Ranvier through voltage-gated Na+ channels [67]. This 

increases the speed of conduction, reduces the energy, and decreases the reaction time of the or-

ganism. Therefore, axons that are fully myelinated along their length conduct impulses faster than 

unmyelinated axons of the same cross-sectional size [68]. 

Demyelination leads to damage in the protective covering myelin sheath that surrounds nerve fi-

bres in CNS (brain) and PNS (optic nerves and spinal cord). Demyelinated axons are exposed to 

neurotoxic insults, oxidative stress, and energy deficiency, and are therefore vulnerable to further 

injury, which can result in irreversible axonal damage [69-72]. There are two main mechanisms of 

demyelination: Outside-In model, where peripheral immune cells (represented by T cells, B cells, 

and macrophages) are involved; and Inside-Out model, which involves oligodendrocyte demye-

lination and loss of mature oligodendrocyte [73, 74]. 

1.1.3.2 Oligodendrocyte maturation  

Oligodendrocyte precursor cells (OPCs) are progenitor cells that can proliferate [75]. During re-

myelination, OPCs migrate to the demyelinated area and differentiate into OLs [76, 77]. The dif-

ferentiated OLs form myelin sheaths around axons and support saltatory conduction of neural sig-

nals [76, 77].  
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OPCs respond to injury and promote recovery [78]. In chronic or severe acute demyelinated areas, 

where mature OLs are damaged or dead, OPCs are capable of differentiating into oligodendrocytes 

and reducing the impairment due to the loss of damaged oligodendrocytes. In response to myelin 

damage, OPCs are activated and recruited to demyelinated areas, and if driven to differentiate into 

OLs, can help to reconstruct a new myelin sheath [79]. This regenerative process induced by OPCs 

is called remyelination where OPCs undergo rapid proliferation, migration, and directional differ-

entiation [80]. However, impairment of myelin debris clearance inhibits OPCs from differentiating 

into mature OLs [79, 81]. Therefore, the accumulation of myelin debris and OPCs also leads to 

incomplete remyelination, which leaves lesions which are more vulnerable to inflammatory dam-

ages targeted at the axon and OL. Glutathione S-transferase (GST)-pi is a cytosolic isoenzyme, 

which previously found to be associated with oligodendrocyte maturation and myelin sheath for-

mation [82, 83]. In addition, GST-pi plays an important role in detoxification of harmful com-

pounds by catalyzing glutathione conjugation [84]. Therefore, GST-pi can be used as a stage-spe-

cific maker for mature myelinating oligodendrocyte and a marker for the detoxification [85, 86]. 

Other markers, like NG2 and GPR17, are required to detect early OPCs and immature oligoden-

drocytes, thus completing the fate-tracking analysis of oligodendrocyte lineage [85]. 

The pathological features vary among the different courses of MS. RRMS is characterized by ac-

tive lesions, focal inflammatory WM lesions, inflammation-dependent neuronal damages, and ac-

tive remyelinated remissions [87, 88]. PMS has chronic diffused inflammation in both WM and 

GM, with more prominent cortical demyelination, and impaired remyelination [89]. 
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1.1.3.3 Microglia activation and polarization in MS 

Microglia are resident immune cells in the CNS that play critical and dynamic roles in MS pathol-

ogy. In response to inflammation and demyelination, a large proportion of resting microglia polar-

ize into pro-inflammatory M1 or pro-repair M2 phenotypes, which is a result of reactive pheno-

typic transformation [90]. Rapid and massive expression of pro-inflammatory cytokines can fur-

ther stimulate microglia activation [91]. Studies in animal models have shown that M1 and M2 

microglia play distinctive roles in MS progression [91, 92]. M1 microglia dominate the demye-

lination phase, while M2 microglia are prominent during the remyelination process [91, 92]. Clas-

sically, activated M1 microglia have the properties with neurotoxicity and pro-inflammation [93, 

94]. Immunohistochemistry staining using M1 markers ( tumour necrosis factor-α (TNF-α), inter-

leukin-1β (IL-1β), IL-6, and nitric oxide (NO)) showed abundant M1 microglia in the active, de-

structive demyelinated lesions [95-97]. These neuroinflammatory factors generate excitotoxicity 

and mitochondrial dysfunction that leads to neurodegeneration and OL damage [70-72].  

In contrast, M2 microglia are considered neuroprotective and anti-inflammatory [98]. M2 micro-

glia are involved in tissue repair by producing anti-inflammatory cytokines and factors promoting 

growth [92]. M2 microglia facilitate remyelination by cleaning up collapsed myelin debris and 

apoptotic cells in the demyelinated areas through phagocytosis [99-101]. M2 microglia also release 

anti-inflammatory factors ((e.g., IL-10, transforming growth factor-beta (TGF-β), and glucocorti-

coids)) to promote neurogenesis, OPC recruitment and remyelination [98, 102]. M2 microglia ab-

normality is strongly related to CI, emotional disturbances, and incomplete remyelination [103-

105]. The depletion of M2 microglia inhibits remyelination, thereby interfering with the CNS re-

covery after injury [106]. M2 microglia abnormality also occurs in other neuropsychiatric diseases, 

including Alzheimer's disease, epilepsy, and major depressive disorder [103, 107, 108]. 
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In summary, microglia activation has both beneficial and detrimental roles on CNS regeneration 

[109]. Activation of M1 microglia releases destructive pro-inflammatory factors that can precede 

inflammation and demyelination. The shift in the microglia from an M1 to protective M2 pheno-

type can serve to prevent chronic demyelination and axonal injury, as well as improving cognitive 

and emotional symptoms [110-112].  

1.1.3.4 Remyelination in MS 

Remyelination is a spontaneous regenerative process identified with the production of new myelin 

sheaths around demyelinated axons [113]. Remyelination is a frequent restorative event in the 

early stage of RRMS [114]. In chronic lesions of PMS, remyelination becomes inadequate and 

eventually aborts with the disease progression and ageing [115]. The impairments of OPCs are 

presumed to take major responsibility for the delay or failure of the remyelination process, which 

includes the failure of OPC recruitment or failure to differentiate into mature OLs [116, 117]. 

Newly remyelinated tissue is vulnerable to inflammation and incomplete or failed remyelination, 

is also evident after repeated MS attacks [118]. Finally, there are only 10–20% of the chronic 

lesions, which can be completely remyelinated [119]. It is noteworthy that the expressions of 

growth factors, including TGF-β, are associated with remyelination, with delayed expressions of 

growth factors correlate with slowed remyelination [120]. Specifically, a decrease in TGF-β ex-

pression prevents remyelination in the spinal cord after toxin-induced demyelination [121].  



 

13 

 

1.2 Transforming growth factor-β pathways 

1.2.1 Signal transduction 

TGF-β represents a large family of multifunctional growth factors that are critical for regulating 

various biological processes such as embryonic development, immune response, and cellular pro-

liferation and differentiation [122]. TGF-β also acts as a growth inhibitor on epithelial cell or en-

dothelial cell proliferation [123]. 

There are three types of TGF-β receptors (TGF-β-RⅠ, RII and RⅢ). These receptors have distinc-

tive structures and functions in modulating the ligand-binding and in regulating the TGF-β expres-

sion on the surface of the cells [124, 125].  

In this study, we mainly focussed on TGF-β-RI and TGF-β-RII because of their prominence in 

signal transduction. The TGF-β pathway can be directly activated when TGF-β binds to a hetero-

tetrameric TGF-β receptor complex composed of two RIs and two RIIs [126]. In the complex, 

TGF-β induces RIIs to phosphorylate and activate the RIs, which phosphorylates the C-terminal 

serine of Smad2 and Smad3 [127]. The phosphorylation-activated Smads (also named R-Smads) 

then activate the common-mediator (Co) Smad (also named Smad4), forming a trimer consisting 

of two R-Smads and one Smad4 [126, 128]. Finally, the trimer translocates to the nucleus, regu-

lating gene expression [129, 130] (Figure 1.3). 
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Figure 1.3: The TGF-β signalling pathway. Transforming growth factor (TGF-β) binds to the Type II 

receptor and recruits Type I. The Type I receptor, which is phosphorylated and activated by Type II 

receptor, in turn, phosphorylates Smads (Smad2/3) transcription factors. Smad4 helps activated Smads 

to translocate into the nucleus upon cellular stimulation. [Ref: Greenwood, W. and A. Bruna, TGF-β 

and the SMAD Signaling Pathway in Carcinogenesis in Predictive Biomarkers in Oncology. 2019, 

Springer. p. 305-310.]. Used with permission from the copy right owner Springer Nature. 
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1.2.2 Transforming growth factor-β pathways and MS 

Previous studies have shown an involvement of the TGF-β pathway in MS. The results indicate 

that TGF-β regulates CNS myelination by modulating OPCs differentiation, with a decrease in 

TGF-β expression preventing remyelination in the spinal cord after toxin-induced demyelination 

[121, 131]. In the present study, we aimed to determine whether LFMS regulates the expression 

of TGF-β which may serve to promote remyelination after chronic cuprizone-induced demye-

lination. 

TGF-β is a crucial regulator of cell proliferation, migration, differentiation, survival, and microglia 

polarization (from M1 to M2) [122]. TGF-β was identified as an anti-inflammatory factor that 

inhibits the production of reactive oxygen species (ROS) by activated microglia [98, 102, 132]. 

TGF-β receptor knock-out (KO) in the transgenic mouse model was shown to prevent CI and the 

disruption of the blood-brain barrier (BBB) in epilepsy [133]. In addition, TGF-β signalling plays 

a vital role in the process of regulating regulatory T cell (Treg) development and normal function 

[134]. Treg dysregulation suppresses immune responses in inflammatory sites, thus the deficit in 

Treg expression or function is commonly associated with autoimmune diseases, including MS 

[135]. 

1.2.2.1 Magnetic stimulation as a potential treatment for MS 

In addition to therapeutic or immune-modulating drugs, there are also some existing novel treat-

ment techniques for MS management, including repetitive Transcranial Magnetic Stimulation 

(rTMS). rTMS is a focal, non-invasive brain stimulation technique with limited side effects. There 

are twice transductions between a magnetic signal and an electrical signal (Figure 1.4). First, an 

electromagnetic coil on the scalp creates an area with magnetic pulses, which are single-cycle sine 
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pulses with a period of about 0.28ms at 1–20 Hz [136, 137]. Then, these magnetic pulses penetrate 

the brain without breaching the brain surface (e.g., craniotomy) [138]. Upon encountering nerve 

cells, magnetic energy transduces back to electrical energy, thereby affecting the neural tissue by 

regulating the electrical current to flow.  

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

 

Figure 1.4: The electrical and magnetic signalling transduction of repetitive Transcranial Mag-

netic Stimulation. Electronic energy produces a magnetic field, which penetrates the skull to deep brain 

regions, where the magnetic energy encounters nerve cells and transduces back to electrical energy, thus 

completing the signalling transduction and stimulating brain regions 
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1.3 Low Field Magnetic Stimulation  

Low Field Magnetic Stimulation (LFMS) is an experimental form of non-invasive neurostimula-

tion device that produces diffuse, low-intensity (≤1 V/m, 1kHz), and oscillating magnetic stimuli 

to multiple cortical areas [139, 140]. It aims to use low field strength magnetic stimulation to 

manipulate brain function. The magnetic field changed between uniform and linear gradients (Fig-

ure 1.4). Each gradient is composed of several on or off cycles (Figure 1.5). Clinically, LFMS has 

shown beneficial effects in the treatment of mood disorders, including bipolar depression and ma-

jor depressive disorders [140, 141], in maintaining synaptic plasticity and brain connectivity [142], 

and in improving cognitive impairment in neuropsychiatric disorders, such as Alzheimer's Disease, 

Schizophrenia, and Post-traumatic Stress Disorder [143-145]. 
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Figure 1.5: The gradients with on or off cycles in either gradient. (A) The magnetic field changed 

every 2 min between uniform and linear gradients. (B) Each cycle consisted of 2 seconds (sec) on and 

8 sec off. (C) Each 2-second stimulation was composed of rhythmical trains, which has 6 pulses at 1000 

Hz frequency and 19 msec intervals. (D) The Maximal magnetic flux density (BMax) is less than 2 mT, 

and the peak induced electric field (EMax) is less than 0.5 V/m. 
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1.3.1 Mechanism of action of LFMS on remyelination 

In our current study, we aimed to determine whether LFMS treatment could decrease CPZ-induced 

cognitive impairment, demyelination, and astrocyte activation in mouse brains. Some pieces of 

evidence indicated that OL functions (OPC proliferation, migration, and differentiation) could be 

controlled by glutamate and GABAergic pathways [146, 147]. Therefore, LFMS might affect the 

signal transduction in the neuron-glial interaction, thereby leading to remyelination and OL lineage 

development. Base on this, we propose that LFMS has therapeutic potential for PMS by regulating 

microglia function, promoting OL differentiation, and enhancing remyelination. 

1.3.2 Advantages of Low Field Magnetic Stimulation  

LFMS is beneficial due to the following effects: i) rapid mood improvement after one brief treat-

ment; ii) completely non-invasive treatment, free from painful feeling and side effects; iii) portable 

since it is the size of a regular laptop, which allows home use and the ease of operation; iv) low 

intensity but deep regional neurostimulation; and v) relatively lower cost compared to other in-

struments [140].   

2 HYPOTHESIS AND OBJECTIVES 

Previous studies have shown that cognitive deficits were improved by LFMS[148]. We hypothe-

size that LFMS can alleviate demyelination-related cognitive deficits and depression-like behav-

iour in a chronic Cuprizone (CPZ) mouse model of MS by promoting remyelination. The objec-

tives of the study are: 1) To determine the effects of LFMS on cognitive decline and mood dis-

turbance; 2) To determine the effects of LFMS on remyelination and OL recovery. Based on recent 

reports about the anti-inflammatory actions of TGF-β described above, we chose to analyze the 
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role of the TGF-β signalling pathway as a possible mediator of the effects of low-field magnetic 

stimulation (LFMS) treatment in remyelination. We anticipated identifying the signalling mole-

cules in the TGF-β pathway that are responding to the LFMS treatment during the remyelination 

process. The goal was to confirm whether the remedial LFMS leads to remyelination in the chronic 

cuprizone treated mice, which were demyelinated.  

3 MATERIALS AND METHODS 

3.1 Cuprizone-induced chronic demyelination model 

3.1.1 Introduction 

Several animal models have been developed for studying MS, which are represented under three 

broad categories, namely: i) experimental autoimmune encephalomyelitis (EAE); ii) cuprizone in-

toxication; iii) Theiler's murine encephalomyelitis virus (TMEV) infection [149, 150]. Each model 

has its unique values and limitations in MS research.  

In this study, we utilize the cuprizone-induced chronic demyelination model (Figure 3.1 [151]). 

Cuprizone (CPZ) is a copper chelator used to generate CNS demyelination and OLs depletion [152, 

153]. CPZ-induced toxic model exhibits the advantage that CPZ generates inside-out and non-

inflammatory neuronal damages without involving peripheral immune cells [57], thus providing a 

suitable environment to explore the mechanism and interactions of de- and remyelination [154]. 

Because CPZ model studies oligodendrocyte apoptosis and subsequent demyelination, CPZ model 

shows a drawback that it does not readily mimic the clinical progress of MS, which involves pe-

ripheral immune responses, characterized by the reactions of T cells, B cells, and macrophages 
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[57]. In addition, the variability of the CPZ consumption is another disadvantage during the study, 

which will differ from one mouse to the other [155]. 

An acute exposure (for 5–6 weeks) of young adult mice to 0.2% CPZ causes diffused lesions (sig-

nificant myelin depletion, OPC proliferation, and microglia activation) in both GM and WM areas, 

which is represented in the prefrontal cortex, hippocampus, cerebellar peduncles, and corpus cal-

losum [156]. Spontaneous but incomplete remyelination occurs within weeks after removal of CPZ 

from the mouse diet, with the effects of CPZ administration being partially reversed [157].  

Prolonged exposure to CPZ (up to12 weeks) leads to progressive demyelination and irreversible 

axonal damage, followed by incomplete remyelination and chronic microglial activation [158]. 

Chronic CPZ feeding can effectively exhaust mature OLs population and reduce their ability to 

sustain existing myelin and generate new myelin [153]. These selective targeting attacks make 

CPZ model become a suitable model to study OL apoptosis and myelin depletion [159, 160].  

The mechanism of CPZ-induced OL death remains unclear. Previous studies have shown that CPZ 

may cause a copper deficit that leads to oxidative stress and mitochondrial dysfunction. During 

the peak of myelin formation, oligodendrocytes generates three times of their weight in membrane, 

which requires a high cellular metabolism and a large amount of ATP [161].  Dysfunctional mito-

chondria ultimately do not allow the cells to meet their metabolic needs, which eventually results 

in apoptosis [162]. CPZ also triggers microglial activation and pro-inflammatory cytokine release, 

which further aggravates OL and axonal damage [157].  

In addition, characterized by targeting mature OL, the CPZ model provides a suitable model to 

study the neuropsychiatric mechanism of MS symptoms and promote novel interventions for MS 



 

23 

 

treatment by avoiding adaptive immune system activation and blood-brain barrier (BBB) break 

down [163].  
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Figure 3.1: Demyelination in the corpus callosum of cuprizone treated mice. (A) Immunostaining 

of MBP in the corpus callosum of healthy mice. (B)A significantly decreased MBP level in the corpus 

callosum after five weeks of CPZ exposure was revealed by immunostaining. [Ref: Zhang, J. et al., 

Thymosin beta4 promotes oligodendrogenesis in the demyelinating central nervous system. Neurobiol-

ogy of Disease, 2016. 88: p. 85-95.]. Used with permission from the copy right owner Springer 

Nature. 
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3.1.2 Animal modelling 

C57BL/6 mice (8 weeks old, female) were randomly assigned into three groups, consisting of 

control (CTL) mice, and CPZ-treated mice with or without LFMS exposure. Specifically, the CPZ 

group consisted of two groups, with one receiving Sham treatment (CPZ) and with the other re-

ceiving LFMS treatment (CPZT). A total of 70 mice were used for this study, the number of animal 

used in each treatment group were calculated by power analysis and type I error [164, 165]. CTL 

mice were fed with the regular powder diet for 16 weeks. CPZ mice were fed with 0.2% of CPZ 

in powder diet (w/w) for 12 weeks (12w) to induce chronic brain demyelination, which was fol-

lowed by a regular diet for four weeks. The food intake was monitored by controlling the amount 

given to animals between animal diet refills. Following chronic and toxic CPZ exposure, mice 

display 'sickness' behaviour that is characterized by weight loss [159]. Thus, the body weights of 

mice were used as a clinical indicator to evaluate the CPZ-induced demyelination severity. Mice 

were weighed individually at the beginning of the studies, during CPZ administration, and before 

sacrifice. During CPZ administration, the body weights of mice were taken and recorded each 

week. The effects of LFMS on remyelination and cognitive improvement were assessed when the 

CPZ mice returned to a regular diet for 2 and 4 weeks (14w and 16w of the entire experiment). 

3.2 Low Field Magnetic Stimulation treatment 

The metal lid of the cage was removed before the cage was placed on the LFMS device (Figure 

3.2). Mice in LFMS group received a 20-min LFMS treatment daily for five days a week. In com-

parison, mice in the Sham group received no treatment after 12 week cuprizone diet. This was 

completed on the LFMs machine for 20-min treatment without the application of LFMS stimulus 

parameters. The 40 Hz LFMS settings were based on previous studies with minor modifications 
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[166, 167]. Briefly, the magnetic field changed every 2 min between uniform and linear gradients. 

Each cycle consisted of 2 seconds (sec) on and 8 sec off [166, 167]. Each 2-second stimulation 

was composed of rhythmical trains, which has 6 pulses at 1000 Hz frequency and 19 msec intervals 

[167]. The Maximal magnetic flux density (BMax) is less than 2 mT, and the peak induced electric 

field (EMax) is less than 0.5 V/m [166] (see Figure 3.2). Animals in the sham group went through 

the same treatment routine, but with no magnetic stimulation. The treatments lasted for two (14w) 

or four weeks (16w). The effects of LFMS were studied on the locomotor functions, anxiety and 

depression-like symptoms, as well as working memory using behavioural tests as discussed later.  
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Figure 3.2: Low Field Magnetic Stimulation treatment. Low Field Magnetic Stimulation treatment 

was implemented for 20-min. Mice were placed in the cages, and the lid of the cages was removed 

during the treatment. Animals in the sham group were treated similarly, but without magnetic stimula-

tion.  
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3.3 Behavioural Tests 

3.3.1 Open Field Test  

Open Field Test (OFT) is a behavioural test that involves a conflict between the desire to explore 

and the desire to avoid the anxiogenic stimuli of open space in rodents [168]. In this study, OFT 

was used to examine the gross locomotor function and anxiety-like behaviours of the mice. The 

total distance travelled indicates an animal's gross locomotor function, and the duration spent in 

the center area of the box was used to evaluate the anxiety level of the tested animal [169]. Each 

mouse was placed at the center of a box (42cm*42cm*40cm high) and allowed to explore the area 

freely for 5 mins. The floor of the box was virtually divided into 16 identical squares on ANYmaze 

software. The 12 outer squares along the wall were identified as the peripheral area; the 4 central 

squares were identified as the central area (Figure 3.3). 

Figure 3.3: Open Field Test (OFT) arena. In our study, the testing surface of OFT was 42 cm*42 cm 

and was subdivided into 16 equal squares (4 by 4 matrix) for locomotor and anxiety-like behavioural 

data acquisition. 
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3.3.2 Y-maze 

Y-maze (Figure 3.4) is a behavioural test that is extensively used to evaluate working memory. 

The percentage of the spontaneous alternations completed during the 5-min test period were rec-

orded and analyzed. Y-maze test examines if the mice remember the arm they have just explored 

and therefore enter two other previously unexplored arms of the maze [170]. Mice were placed in 

the center of the maze and allowed to explore all three arms freely. Each time that a mouse com-

pleted a set of three non-repeating entries was recognized as one spontaneous alternation.  

 

Figure 3.4: Y-maze arena. In our study, the arms were labelled as A, B, and C, clockwise. Each time 

that a mouse completed a set of three non-repeating entries was recognized as one spontaneous alterna-

tion.  
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3.3.3 Tail Suspension Test  

Tail Suspension Test (TST) is a behavioural test that induces "behavioural despair" that animals 

give up the attempts to escape in an inescapable situation [171]. The mice were suspended on the 

edge of a shelf, 58 cm above a tabletop by adhesive tape for 6 min. The immobile time in the last 

4 mins of the test was measured as behavioural despair and the depressive state of the animal [172]. 

In the study, we divided the tail suspension box (120cm W x12cm D x 60cm H) into four com-

partments (28cm W x 12cm D x 60cm H). Each mouse was suspended within its compartment to 

prevent the mice from seeing each other (Figure 3.5). 

Figure 3.5: Tail Suspension Test (TST) arena. In our study, the shelf was designed as 58 cm height 

and 84cm in length; in such an arena, the mice could not escape or hold any nearby surfaces. Used with 

permission from the copy right owner Springer Nature. 
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3.4 Biochemical and pathological tests 

After the completion of behavioural tests, the neural tissue was collected after euthanizing the 

animals, and stored at -80oC for future experiments (Western Blots and immunohistochemistry). 

3.4.1 Brain tissue collection  

At each time point (12w, 14w, and 16w), 10 mice from each group were randomly selected for 

tissue harvest. Four mice were perfused with one-time Phosphate Buffered Saline (1x PBS), fol-

lowed by 4% neutralized buffered paraformaldehyde (4% PFA) fixation. The harvested whole 

brains were preserved for future brain histology and immunostaining studies. The rest of the brains 

were perfused with 1x PBS for use in Western Blotting (WBs) and further dissected, thereby col-

lecting the following regions: the prefrontal cortex (PFC), hippocampus, and striatum. 

3.4.2 Sample preparation and SDS-PAGE   

In this study, biochemical and pathological tests focused on the PFC, a brain area critical in emo-

tional regulation and learning and memory [173, 174]. The PFC samples were lysed using RIPA 

lysis buffer mixed with protease inhibitor cocktail (1x PIC) and homogenized by LabGEN 125 

and 700tissue homogenizers (Cole-Parmer, Montreal, QC, Canada). The homogenized samples 

were centrifugated at 4oC for 10 mins at 12000rpm, and the supernatant was collected for deter-

mination of protein concentration. Bradford Protein Assay kit (Bio-Rad, Hercules, CA) and Spec-

traMax M5 multi-mode microplate reader (Molecular Device, San Jose, CA) were used to meas-

uring the absorbance at 595nm and quantify protein concentration. The protein samples were 

mixed with the loading buffer at 90oC for 5 mins before Western blotting.    
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Thirty-micrograms of protein from each sample were loaded and separated on 4-20% SDS-PAGE 

(4-20% Precast Gradient Protein Gel, Bio-Rad), and transferred onto a 0.45mm nitrocellulose 

membrane. The blocking step was performed in 5% (w/v) non-fat dry milk in 1x PBS with 0.1% 

Tween 20 (v/v) (PBST). The membranes were incubated in 5% (w/v) Bovine Serum Albumin 

(BSA) in PBST. 

3.4.3 Antibodies 

Rabbit anti-MBP (1:1,000; 78896s, Cell Signaling, Danvers, MA) and mouse anti-MOG (1:1,000; 

NB300-948, Novus Biologicals, Oakville, ON, Canada) were used to detect myelin sheath integ-

rity. Rabbit anti-GFAP (1:1,000; HPA056030, Sigma Aldrich, St. Louis, MO) and rabbit anti-

TNFα (1:1,000; ab9635, Abcam, Cambridge, UK) were used as a marker for astrogliosis and mi-

croglia activation. Rabbit anti-Olig-2 (1:1,000; P21954, Thermo Fisher Scientific, Waltham, MA) 

and rabbit anti-GST-π (1:1,000; ADI-MSA-102-E, Enzo Life Sciences, New York, NY) were used 

to identify the OL lineage and mature OLs. The combination of GST-π and Olig-2 enabled to 

investigate the changes of OPCs. Rabbit anti-TGF-β1 (1:1,000; ab92486, Abcam, Cambridge, UK), 

rabbit anti-TGF-β-R1 (1:1,000; ab135814, Abcam, Cambridge, UK), and rabbit anti-TGF-β-R2 

(1:1,000; ab186838, Abcam, Cambridge, UK) were used to identify TGF-β pathway. Mouse anti-

β-actin (1:1,000; a3854, Sigma Aldrich, St. Louis, MO) was used as a loading control. The sec-

ondary antibodies used were anti-rabbit fluorescent-conjugated secondary antibody (1:1,000, 926-

32211, LI-COR Biosciences, Lincoln, NE), and anti-mouse fluorescent-conjugated secondary an-

tibody (1:1,000; 926-68070, LI-COR Biosciences, Lincoln, NE).  
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3.4.4 Image Analysis 

The intensity measurements after the WBs were completed by fluorescence detection using the 

scanner from LI-COR Odyssey 9120 imaging system (LI-COR Biosciences, Lincoln, NE). The 

analysis was completed using Image Studio software (Ver 5.2), and the values were recorded for 

the intensity of each band for future statistical analysis. 

3.5 Data analysis 

Statistical significance was evaluated by unpaired t-tests when applicable. The statistical signifi-

cance cut off was set at p < 0.05. Data are shown as means ± SEM in figures and text. GraphPad 

PRISM software (Ver 8.0, GraphPad Software, San Diego, CA) was used to generate the graphs 

and perform the statistical analyses. 

3.6 Ethical approval 

This study used a well-established animal model. There were no human participants in the project. 

The LFMS treatment by itself does not cause any potential risk for the animal and researcher. 

Animal protocol (AUP20160103) was approved by the University Animal Care Committee 

(UACC) of the University of Saskatchewan, according to the Guidelines of the Canadian Council 

on Animal Care (CCAC). 
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4 RESULTS 

4.1 Behavioural tests 

4.1.1 Unimpaired locomotion in mice with cuprizone feed 

Locomotor Function: The total distance travelled in OFT was used as a measurement of gross 

locomotor function. Unpaired t-tests found no significant differences in travel distance between 

CTL and CPZ groups after 12-week demyelination (P>0.05; Figure 4.1A) or between sham and 

LFMS treatment groups during remyelination (P>0.05; Figure 4.1B, C). In summary, neither CPZ 

nor LFMS treatment affected the gross locomotor function in OFT.  
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Figure 4.1: The effect of CPZ on locomotor function. (A) The total travelled distance in the control 

and demyelinated mice at the end of twelve weeks of CPZ feeding (n=23~40 per group). (B) The total 

travelled distance in the Sham (CPZ) and LFMS treated (CPZT) mice after two weeks of remyelination 

and CPZ withdrawal (n=15~20 per group). (C) The total travelled distance in the Sham (CPZ) and LFMS 

treated (CPZT) mice after four weeks of remyelination and CPZ withdrawal (n=10~15 per group). Data 

are expressed as means ± SEM. 
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4.1.2 Increased awareness of facing danger with LFMS treatment 

Anxiety-like Behaviour: OFT also examines the level of anxiety; the time and distance spent in 

the central area of OFT were used to measure anxiety-like behaviour. Unpaired t-tests results 

showed no significant difference in central time and distance between the CTL and CPZ mice after 

12 weeks of CPZ feeding (P>0.05; Figure 4.2A, D). The CPZT mice showed a trend of reduction 

in time and distance spent in the central area than the CPZ mice at 14w, which was conducted after 

two weeks of LFMS treatment (P>0.05; Figure 4.2B, E). The CPZT mice showed a significantly 

shorter time, and distance spent in the central area when compared to the CPZ mice after four 

weeks LFMS treatment (16w) (*P<0.05, **P<0.01; Figure 4.2C, F). Thus, OFT results revealed a 

significant reduction in the distance and time spent in the central area after treatment with LFMS 

for four weeks (16w), as shown in the panels 4.2C and 4.2F, respectively (Figure 4.2).  
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Figure 4.2: The effect of LFMS on anxiety-like behaviour. (A) The central time and central distance 

in the control and demyelinated mice at the end of twelve weeks of CPZ feeding (n=23~40 per group). 

(B) The central distance in the Sham and LFMS treated mice after two weeks of remyelination and CPZ 

withdrawal (n=15~20 per group). (C) The central distance in the Sham and LFMS treated mice after 

four weeks of remyelination and CPZ withdrawal (n=10~13 per group). (D) The central time in the 

control and demyelinated mice at the end of twelve weeks of CPZ feeding (n=23~40 per group). (B, E) 

The central time in the Sham and LFMS treated mice after two weeks of remyelination and CPZ with-

drawal (n=15~20 per group). (F) The central time in the Sham and LFMS treated mice after four weeks 

of remyelination and CPZ withdrawal (n=10~13 per group).  Data are expressed as means ± SEM. 

*P<0.05, **P<0.01 vs. CPZ. 
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4.1.3 Chronic CPZ intake resulted in severe cognitive impairment, while LFMS treatment 

significantly improved cognitive function 

Working Memory: Y-maze was implemented to assess the effects of the CPZ and LFMS on cog-

nitive function. The percentage of spontaneous alternations was evaluated as a measure of working 

memory. Unpaired t-tests results showed a significant reduction in the percentage of the sponta-

neous alternations of the CPZ mice compared to CTL mice (*P<0.05; Figure 4.3A). The CPZT 

mice showed a higher percentage of the spontaneous alternations compared to the CPZ mice after 

LFMS treatment for two weeks (14w) (*P<0.05; Figure 4.3B). At 16w, there was no significant 

difference observed in both the groups of mice, suggesting that the longer duration of the treatment 

does not affect the distance or the mice get accustomed to the maze, hence showing no significant 

difference between the groups. Thus, Y-maze results demonstrated a significant reduction in the 

percentage of spontaneous alternations after chronic CPZ intake, which was found to be signifi-

cantly improved by LFMS treatment but only at 14 weeks (Figure 4.3). We did not notice the 

significant being translated to 16 weeks which could be possible due to the repeated exposure that 

led to the mice being aware of the maze pattern. 
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4.1.4 Chronic CPZ intake leads to a high-level depressive state 

Depression-like Behaviour: Tail Suspension Test (TST) was used to evaluate the effects of the 

CPZ and LFMS on depression-like behaviour. The immobility in the last four minutes of the test 

Figure 4.3: The effect of LFMS on Cuprizone-induced working memory deficits. (A) The percent-

age correct spontaneous alternations in the control and demyelinated mice at the end of twelve weeks of 

CPZ feeding (n=23~40 per group). (B) The percentage correct spontaneous alternations in the Sham and 

LFMS treated mice after two weeks of remyelination and CPZ withdrawal (n=15~18 per group). (C) 

The percentage correct spontaneous alternations in the Sham and LFMS treated mice after four weeks 

of remyelination and CPZ withdrawal (n=10~15 per group). Data are expressed as means ± SEM. 

*P<0.05 vs. CPZ. 
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period was measured as depression-like behaviour. Unpaired t-tests indicated a significant increase 

in the time immobile of the CPZ mice compared to the CTL mice at the end of twelve weeks CPZ 

intake (*P<0.05; Figure 4.4 A). The CPZT mice showed a gradual trend of reduction in the time 

immobile compared to the CPZ mice after LFMS treatment at both 14w and 16w (P>0.05; Figure 

4.4 B, C). Thus, TST results suggest a significant increase in the immobile time with chronic CPZ 

exposure, and the immobility gradually reduced after LFMS treatment but did not significantly 

change (Figure 4.4).  
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Figure 4.4: The effect of LFMS on Cuprizone-induced depression-like behaviour. (A) The time 

immobile in the control and demyelinated mice at the end of twelve weeks of CPZ feeding (n=20~36 

per group). (B) The time immobile in the Sham and LFMS treated mice after two weeks of remyelination 

and CPZ withdrawal (n=15~18 per group). (C) The time immobile in the Sham and LFMS treated mice 

after four weeks of remyelination and CPZ withdrawal (n=10~15 per group). Data are expressed as 

means ± SEM. *P<0.05 vs. CPZ. 
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4.1.5 Chronic CPZ intake significantly reduced mice weight, along with significant weight 

regain after LFMS 

Mice Weight: Weight loss is used as a clinical indicator to evaluate the CPZ-induced demye-

lination severity. Mice were weighed twice a week. Unpaired t-tests evaluated the severity of de-

myelination induced by CPZ exposure, possibly leading to a reduction in the weight. The mean 

body weights of the mice fed with 0.2% CPZ for 12 weeks were significantly less than that of the 

CTL group mice (****P<0.0001; Figure 4.5A). The CPZT mice showed a higher body weight 

than the CPZ mice when treated with LFMS for two weeks (14w) (*P<0.05; Figure 4.5 B). After 

LFMS treatment for four weeks (16w), the CPZT mice showed a significant increase in body 

weight than CPZ fed mice (****P<0.0001; Figure 4.5 C). Thus, a significant weight reduction was 

observed with chronic CPZ diet and regained after LFMS treatment, which was statistically sig-

nificant, as shown in Figures 4.5 B and C.  
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Figure 4.5: The effect of LFMS on Cuprizone-induced weight loss. (A) The weight in the control 

and demyelinated mice at the end of twelve weeks of CPZ feeding (n=23-40 per group). (B) The weight 

in the Sham and LFMS treated mice after two weeks of remyelination and CPZ withdrawal (n=15-20 

per group). (C) The weight in the Sham and LFMS treated mice after four weeks of remyelination and 

CPZ withdrawal (n=10-15 per group). Data are expressed as means ± SEM. *P<0.05, ****P<0.0001 vs. 

CPZ. 
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4.2 Biochemical and pathological tests 

4.2.1 LFMS treatment enhances the expression of MBP and MOG 

Myelin basic protein (MBP) and Myelin oligodendrocyte glycoprotein (MOG) were used to assess 

the myelin content and myelin formation associated protein, respectively. MBP indicates the my-

elin restoration and MOG suggests the maturation of myelinated oligodendrocyte. Western blots 

were performed using antibodies directed against MBP or MOG. The samples used for the Western 

blotting were obtained from the prefrontal cortex (PFC) of mice, and β-actin was used as a loading 

control.  

There was a significant decrease in the MBP expression in the 12w CPZ mice when compared to 

the ones with the regular diet (**P<0.01; Figure 4.6A, B). At 14w, the LFMS-treated mice (CPZT) 

showed a significant increase in the MBP expression compared to the CPZ mice (CPZ) (*P<0.05; 

Figure 4.6A, C). When treated for another two weeks (16w) with LFMS, a significant increase in 

the MBP expression was observed in the CPZT mice compared to the CPZ group (*P<0.05; Figure 

4.6A, D). Thus, chronic CPZ exposure significantly reduced the MBP expression in the PFC. After 

the LFMS treatment, there was an increased MBP expression. (Figure 4.6).  

When treated with twelve weeks of CPZ diet, the CPZ mice showed a significant decrease in the 

MOG expression compared to the mice with regular diet (**P<0.01; Figure 4.7A, B). After LFMS 

treatment for two weeks (14w), the CPZT mice showed a significant increase in the MOG expres-

sion compared to the CPZ mice (*P<0.05; Figure 4.7A, C). After four weeks of LFMS treatment 

(16w), a significant increase in the MOG expression was demonstrated in the CPZT mice than the 

CPZ mice (*P<0.05; Figure 4.7A, D). Thus, chronic CPZ exposure significantly decreased the 
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MOG expression in the PFC, which was significantly increased after LFMS treatment at both 14w 

and 16w (Figure 4.7).  

In summary, chronic CPZ exposure significantly reduced both the MBP and MOG expressions in 

the PFC, which were significantly increased after LFMS treatment at both 14w and 16w. 
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Figure 4.6: The effect of LFMS on myelin basic protein (MBP) expression in the prefrontal cortex 

(PFC). (A) The expression level of MBP was detected by Western Blot. β-Actin was used as a loading 

control, and samples are from PFC. (B) The relative MBP/β-actin ratio in the control and demyelinated 

mice at the end of twelve weeks of CPZ feeding. (C) The relative MBP/β-actin ratio in the Sham and 

LFMS treated mice after two weeks of remyelination and CPZ withdrawal. (D) The relative MBP/β-

actin ratio in the Sham and LFMS treated mice after four weeks of remyelination and CPZ withdrawal. 

Results are expressed as mean ± SEM (n=5 per group). *P<0.05, **P<0.01 vs. CPZ. 

Figure 4.7: The effect of LFMS on myelin oligodendrocyte glycoprotein (MOG) expression in the 

prefrontal cortex. (A) The expression level of MOG was detected by Western Blot. β-Actin was used 

as a loading control, and samples are from PFC. (B) The relative MOG/β-actin ratio in the control and 

demyelinated mice at the end of twelve weeks of CPZ feeding. (C) The relative MOG/β-actin ratio in 

the Sham and LFMS treated mice after two weeks of remyelination and CPZ withdrawal. (D) The rela-

tive MOG/β-actin ratio in the Sham and LFMS treated mice after four weeks of remyelination and CPZ 

withdrawal. Results are expressed as mean ± SEM (n=5 per group). *P<0.05, **P<0.01 vs. CPZ. 
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4.2.2 LFMS treatment lowered the expression of GFAP and TNFα, which are enhanced in 

CPZ-treated mice 

Astrogliosis and Microglia Activation: Western blots were performed to assess inflammation using 

Glial Fibrillary Acidic Protein (GFAP) (was used to assess Astrogliosis) and Tumor Necrotizing 

Factor-alpha (TNFα) (a general marker of Microgliosis). Western blots were performed using an-

tibodies against GFAP or TNFα. Unpaired t-tests were performed to evaluate the results. All load-

ing samples were obtained from the prefrontal cortex (PFC) and β-actin used as a loading control. 

The 12w CPZ mice demonstrated significantly higher expression of the GFAP compared to the 

mice with regular diet (**P<0.01; Figure 4.8A, B). No significant difference in the GFAP expres-

sion was observed between the CPZT mice and the CPZ mice after two weeks of LFMS treatment 

(14w) (P>0.05; Figure 4.8A, C). After LFMS treatment for another two weeks (16w), the CPZT 

mice showed a trend of reduction in the GFAP expression when compared to the CPZ mice 

(*P<0.05; Figure 4.8A, D). Thus, chronic CPZ exposure significantly increased the GFAP expres-

sion in the PFC, while LFMS treatment showed a decreasing trend in the GFAP expression after 

four weeks of treatment (16w) (Figure 4.8).  

The 12w CPZ mice demonstrated a significantly enhanced the expression of TNFα compared to 

the regular diet (**P<0.01; Figure 4.9A, B). After two weeks of LFMS treatment (14w), the CPZT 

mice showed a reduction trend in the TNFα expression when compared to the CPZ mice (P>0.05; 

Figure 4.9A, C). A significant reduction in the TNFα expression in the CPZT mice compared to 

the CPZ mice was observed after LFMS treatment for four weeks (16w) (*P<0.05; Figure 4.9A, 

D). Thus, chronic CPZ exposure significantly increased the TNFα expression in the PFC, which 

was significantly reduced after four weeks of LFMS treatment (Figure 4.9).  
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In summary, chronic CPZ exposure significantly increased the GFAP and the TNFα expression in 

the PFC; after the LFMS treatment, there was a significantly reduced TNFα expression and a trend 

of reduction in the GFAP expression at 16w. 
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Figure 4.8: The effect of LFMS on glial fibrillary acidic protein (GFAP) expression in the prefron-

tal cortex (PFC). (A) The expression level of GFAP was detected by Western Blot. β-Actin was used 

as a loading control, and samples are from PFC. (B) The relative GFAP/β-actin ratio in the control and 

demyelinated mice at the end of twelve weeks of CPZ feeding. (C) The relative GFAP/β-actin ratio in 

the Sham and LFMS treated mice after two weeks of remyelination and CPZ withdrawal. (D) The rela-

tive GFAP/β-actin ratio in the Sham and LFMS treated mice after four weeks of remyelination and CPZ 

withdrawal. Results are expressed as mean ± SEM (n=5 per group). **P<0.01 vs. CPZ. 
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Figure 4.9: The effect of LFMS on tumour necrosis factor-alpha (TNFα) expression in the 

prefrontal cortex (PFC). (A) The expression level of TNFα was detected by Western Blot. β-

Actin was used as a loading control, and samples are from PFC. (B) The relative TNFα/β-actin 

ratio in the control and demyelinated mice at the end of twelve weeks of CPZ feeding. (C) The 

relative TNFα/β-actin ratio in the Sham and LFMS treated mice after two weeks of remye-

lination and CPZ withdrawal. (D) The relative TNFα/β-actin ratio in the Sham and LFMS 

treated mice after four weeks of remyelination and CPZ withdrawal. Results are expressed as 

mean ± SEM (n=5 per group). *P<0.05, **P<0.01 vs. CPZ. 
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4.2.3 LFMS treatment decreased the Olig-2 expression and increased the GST-π expression 

Oligodendrocyte transcription factor 2 (Olig-2) and Glutathione S-transferase pi (GST-π) were 

used to measure the amount of OL lineage cells and mature OLs, respectively. Western blots were 

performed using both the antibodies. All loading samples were homogenized from the prefrontal 

cortex (PFC) and β-actin used as a loading control. 

A significant increase in Olig-2 expression in the CPZ mice was observed when compared to the 

12w CTL mice (*P<0.05; Figure 4.10A, B). After LFMS treatment for two weeks (14w), the CPZT 

mice showed a significant decrease in the Olig-2 expression compared to the CPZ mice (*P<0.05; 

Figure 4.10A, C). After LFMS treatment for four weeks (16w), a significant decrease in the Olig-

2 expression in the CPZT mice as compared to the CPZ mice was observed (*P<0.05; Figure 

4.10A, C). Thus, chronic CPZ exposure significantly increased the Olig-2 expression in the PFC. 

LFMS treatment decreased the Olig-2 expression at both 14w and 16w (Figure 4.10). 

When treated with CPZ diet for twelve weeks, a trend of reduction in the expression of GST-π was 

observed when compared to the regular diet (P>0.05; Figure 4.11A, B). No significant difference 

in the GST-π expression was shown between the CPZT mice and the CPZ mice at 14w (P>0.05; 

Figure 4.11A, C). When treated with LFMS for another two weeks (16w), the CPZT mice showed 

a significant increase in the GST-π expression compared to the CPZ mice (*P<0.05; Figure 4.11A, 

D). Thus, with chronic CPZ exposure, there was a reduction trend in the expression of GST-π in 

the PFC, which was increased after four weeks (16w) of LFMS treatment (Figure 4.11). 

In summary, chronic CPZ exposure significantly increased the Olig-2 expression in the PFC, 

which was significantly reduced after LFMS treatment at both 14w and 16w. Conversely, chronic 

CPZ exposure significantly decreased the GST-π expression in the PFC, which was significantly 

increased after four weeks (16w) of LFMS treatment. 
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Figure 4.10: The effect of LFMS on oligodendrocyte transcription factor 2 (Olig-2) expression in 

the prefrontal cortex (PFC). (A) The expression level of Olig-2 was detected by Western Blot. β-Actin 

was used as a loading control, and samples are from PFC. (B) The relative Olig-2/β-actin ratio in the 

control and demyelinated mice at the end of twelve weeks of CPZ feeding. (C) The relative Olig-2/β-

actin ratio in the Sham and LFMS treated mice after two weeks of remyelination and CPZ withdrawal. 

(D) The relative Olig-2/β-actin ratio in the Sham and LFMS treated mice after four weeks of remye-

lination and CPZ withdrawal. Results are expressed as mean ± SEM (n=5 per group). *P<0.05, **P<0.01 

vs. CPZ. 
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Figure 4.11: The effect of LFMS on glutathione S-transferase pi (GST-π) expression in the pre-

frontal cortex (PFC). (A) The expression level of GST-π was detected by Western Blot. β-Actin was 

used as a loading control, and samples are from PFC. (B) The relative GST-π/β-actin ratio in the control 

and demyelinated mice at the end of twelve weeks of CPZ feeding. (C) The relative GST-π/β-actin ratio 

in the Sham and LFMS treated mice after two weeks of remyelination and CPZ withdrawal. (D) The 

relative GST-π/β-actin ratio in the Sham and LFMS treated mice after four weeks of remyelination and 

CPZ withdrawal. Results are expressed as mean ± SEM (n=5 per group). *P<0.05, **P<0.01 vs. CPZ. 
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4.2.4 Chronic CPZ intake decreased the expression of TGF-β and TGF-β-R1, and LFMS 

significantly enhanced TGF-β, TGF-β-R1, and TGF-β-R2 

TGFβ Signaling Pathway: Transforming Growth Factor beta 1 (TGF-β1), Transforming Growth 

Factor beta receptor 1 (TGF-β-R1), and Transforming Growth Factor beta receptor 2 (TGF-β-R2) 

were immunoblotted.  Western blots were performed using antibodies specific for TGF-β1, TGF-

β-R1 or TGF-β-R2. Unpaired t-tests were performed to assess the statistical significance. All load-

ing samples homogenized from the prefrontal cortex (PFC) and β-actin used as a loading control.  

A significant reduction in the TGF-β1 expression at 12w was observed in the CPZ mice when 

compared to the CTL mice (*P<0.05; Figure 4.12A, B). After LFMS treatment for two weeks 

(14w), the CPZT mice showed an increasing trend in the TGF-β1 expression when compared to 

the 14w CPZ mice (P>0.05; Figure 4.12A, C). After LFMS treatment for another two weeks (16w), 

the CPZT mice showed a significant increase in the TGF-β1 expression compared to the CPZ mice 

(*P<0.05; Figure 4.12A, D). Thus, chronic CPZ exposure significantly decreased the TGF-β1 ex-

pression in the PFC, which was significantly increased after four weeks of LFMS treatment (16w) 

(Figure 4.12). 

After twelve weeks of CPZ feeding, the CPZ fed mice showed a significant reduction in the TGF-

β-R1 expression when compared to the CTL mice (*P<0.05; Figure 4.13A, B). The 14w CPZT 

mice showed increased the TGF-β-R1 expression compared to the CPZ mice after LFMS treatment 

for two weeks (14w) (**P<0.01; Figure 4.13A, C). After LFMS treatment for another two weeks 

(16w), the CPZT mice showed a significant increase in the TGF-β-R1 expression compared to the 

CPZ mice (*P<0.05; Figure 4.13A, D). Thus, chronic CPZ exposure significantly reduced the 

TGF-β-R1 expression in the PFC, while LFMS treatment significantly increased the TGF-β-R1 

expression, especially after two weeks of treatment (14w) (Figure 4.13).   
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A significant reduction in the TGF-β-R2 expression in the 12w CPZ mice was observed when 

compared to the 12w CTL mice (P>0.05; Figure 4.14A, B). After two weeks of LFMS treatment 

(14w), the CPZT mice showed a significant increase in the TGF-β-R2 expression compared to the 

CPZ mice (*P<0.05; Figure 4.14A, C). A significant increase in the TGF-β-R2 expression in the 

CPZT mice compared to the CPZ mice was observed after four weeks of LFMS treatment imple-

mented (16w) (*P<0.05; Figure 4.14A, D). Thus, after chronic CPZ exposure, there was a de-

creased trend in the expression of TGF-β-R2 in the PFC, which was significantly increased after 

LFMS treatment (Figure 4.14). 

In summary, after chronic CPZ exposure, there was a significant reduction in the TGF-β1 and the 

TGF-β-R1expression and a reducing trend in the TGF-β-R2 expression at 12w. After LFMS treat-

ment, there was a significant increase in the TGF-β1, TGF-β-R1, and TGF-β-R2 expression.  
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Figure 4.12: The effect of LFMS on transforming growth factor-beta 1 (TGF-β1) expression in the 

prefrontal cortex (PFC). (A) The expression level of TGF-β1 was detected by Western Blot. β-Actin 

was used as a loading control, and samples are from PFC. (B) The relative TGF-β1/β-actin ratio in the 

control and demyelinated mice at the end of twelve weeks of CPZ feeding. (C) The relative TGF-β1/β-

actin ratio in the Sham and LFMS treated mice after two weeks of remyelination and CPZ withdrawal. 

(D) The relative TGF-β1/β-actin ratio in the Sham and LFMS treated mice after four weeks of remye-

lination and CPZ withdrawal. Results are expressed as mean ± SEM (n=5 per group). *P<0.05, **P<0.01 

vs. CPZ. 
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Figure 4.13: The effect of LFMS on transforming growth factor-beta receptor 1 (TGF-β-R1) ex-

pression in the prefrontal cortex (PFC). (A) The expression level of TGF-β-R1 was detected by West-

ern Blot. β-Actin was used as a loading control, and samples are from PFC. (B) The relative TGF-β-

R1/β-actin ratio in the control and demyelinated mice at the end of twelve weeks of CPZ feeding. (C) 

The relative TGF-β-R1/β-actin ratio in the Sham and LFMS treated mice after two weeks of remye-

lination and CPZ withdrawal. (D) The relative TGF-β-R1/β-actin ratio in the Sham and LFMS treated 

mice after four weeks of remyelination and CPZ withdrawal. Results are expressed as mean ± SEM (n=5 

per group). *P<0.05, **P<0.01 vs. CPZ. 
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Figure 4.14: The effect of LFMS on transforming growth factor-beta receptor 2 (TGF-β-R2) ex-

pression in the prefrontal cortex (PFC). (A) The expression level of TGF-β-R2 was detected by West-

ern Blot. β-Actin was used as a loading control, and samples are from PFC. (B) The relative TGF-β-

R2/β-actin ratio in the control and demyelinated mice at the end of twelve weeks of CPZ feeding. (C) 

The relative TGF-β-R2/β-actin ratio in the Sham and LFMS treated mice after two weeks of remye-

lination and CPZ withdrawal. (D) The relative TGF-β-R2/β-actin ratio in the Sham and LFMS treated 

mice after four weeks of remyelination and CPZ withdrawal. Results are expressed as mean ± SEM (n=5 

per group). *P<0.05, **P<0.01 vs. CPZ. 
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5 DISCUSSION 

Low Field Magnetic Stimulation (LFMS) is a non-invasive neurostimulation device that improves 

cognitive deficits after acute demyelination [111, 148]. LFMS also has neuroprotective and anti-

inflammatory effects in the CNS [111, 148, 175, 176]. Moreover, a few clinical studies reported 

the beneficial effects of LFMS in mood disorders and cognitive-impaired neuropsychiatric disor-

ders [140, 141, 143-145]. Nevertheless, it is difficult to determine whether the beneficial effects 

of LFMS implementation are due to the promotion of remyelination or because of the protection 

from demyelination. Thus, the CPZ-induced demyelination mouse model was utilized to investi-

gate cognitive impairments and mood disturbances associated with chronic demyelination, neu-

roinflammatory response, and OL loss. 

In the present study, we observed that CPZ feeding resulted in demyelination-related cognitive 

deficits and depression-like behaviour in twelve weeks, indicating that CPZ-induced chronic de-

myelination model was successfully established at the time point for LFMS treatment and behav-

ioural tests. After LFMS treatment for two weeks and four weeks, the following behavioural 

changes were observed: increased awareness in the face of danger, improved cognitive function, 

lower level of the depressive state, and normalization of the body weight. 

Notably, the unimpaired locomotor function was observed in all groups after OFT. This test was 

used as a foundation in our study to confirm anxiety-like behaviour and cognitive function. Con-

sistent with previous researches on acute demyelination, LFMS treatment also demonstrated an 

accompanied increase in awareness in the face of danger and improved working memory deficits 

in mice with chronic exposure to CPZ (dose of 0.2%) [143-145, 148]. It is well known that chronic 

CPZ exposure imposes significant stress on the testing mice, but LFMS application produced a 
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reducing trend in the depressive state, suggesting the antidepressant effects of LFMS treatment 

[140, 141, 148]. 

Consistent with the results from the behavioural tests, we also demonstrated that chronic CPZ 

feeding resulted in biochemical and pathological changes, namely chronic demyelination, astro-

gliosis, microglial activation, mature OL loss, and TGF-β signalling pathway suppression. After 

LFMS treatment for two weeks and four weeks, we observed the following changes based on the 

biochemical tests: a recovery of myelin sheath integrity, amelioration of astrogliosis and micro-

gliosis, promotion of a marker of OL differentiation, and enhancement of TGF-β receptors. 

At twelve weeks, there was an evident loss of myelin in chronic CPZ-fed animals, which in turn 

was associated with dramatic down-regulation of the MBP expression, which has been previously 

recorded [153, 158]. A significant increase in the MBP expression after LFMS treatment supported 

a myelin restoration. To better understand the specific mechanisms of remyelination, further in-

vestigation is required. We propose the use of markers specific to the Node of Ranvier, to establish 

remyelination and also corroborate the location of restored myelin. The results of MOG showed a 

similar trend as MBP, which could be explained by the quantitative and functional differences 

between MBP and MOG. MBP is the major component of CNS myelin and plays an essential role 

in myelin compaction when establishing myelin sheath [60, 63]. However, MOG only constitutes 

0.01-0.05% of the CNS myelin protein and is specifically expressed at the outer surface of the 

myelin sheath and OL plasma membrane [177-179]. The function of MOG remains unclear, but 

previous studies have suggested that MOG completes and maintain myelin sheath integrity, and 

serves as an adhesive molecule in cell-cell interaction [180, 181]. MOG also plays a more promi-

nent role in regulation and communication after the myelin sheath establishment. This function is 
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specific to MOG. Therefore, MOG served as a regulator rather than components, thus showing a 

relatively lower quantitative requirement compared to MBP expression.  

Chronic administration of CPZ also triggers astrogliosis and microglial activation [157]. Microglia 

are highly dynamic cells characterized by phenotypical and functional polarization (M1 or M2) 

[90]. It is suggested that activated M1 microglia are involved in neurotoxicity and pro-inflamma-

tion [93, 94]. Several M1 markers have been studied in MS, including tumour necrosis factor 

(TNF)-α, interleukin (IL)-1 β, IL-6, and nitric oxide (NO) throughout the active, destructive de-

myelinated lesion [95-97]. Our study investigated microglia activation in response to inflammatory 

attacks and the polarization to M1 by using TNFα as a representative marker. The significantly 

enhanced expression of TNFα after CPZ exposure for twelve weeks might indicated microglia 

activation after inflammation [182]. To identify more than one protein double immunostaining will 

be utilized. To identify the source of TNFα we can use it along with M1 markers. After  LFMS 

treatment for four weeks, the significant reduction of TNFα expression suggested a restrained po-

larization to M1 and an amelioration of inflammatory responses [91]. The indication of TNFα was 

further supported by the promotive M2 polarization, which was observed by TGF-β expression in 

the study. Based on the results above, inhibition of M1 microglia activation could provide potential 

protection of the Grey Matter (GM) and White Matter (WM) in the MS mouse model. Microglia 

polarization could be used in designing therapeutic targets [183, 184]. These results can be further 

confirmed by using other marker of microglia, like Ionized calcium-binding adaptor protein (Iba)-

1, interleukin-1 (IL)-1 β, IL-6 and nitric oxide (NO) [95-97]. This is so because TNF-apla is not 

only secreted by microglia, and it could also come from activated astrocytes (A1 astrocytes as 

discussed below), infiltrating macrophages, etc [185-188]. 
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A similar trend was observed in the results of GFAP. Consistent with previous studies, there was 

a significant increase in the GFAP expression in CPZ-fed animals, indicating strong astrogliosis 

occurred as a response to chronic CPZ feeding [157, 189, 190]. Supported by various studies on 

GFAP-positive astrocytes in disorders, it is known that astrocyte might possess a dual role, which 

could be either protective or detrimental in the case of MS [191-194]. A recent study showed that 

activated microglia caused neurotoxic reactive astrocytes (also termed as A1) by secreting inter-

leukin-1β (IL-1β) and TNFα [182, 185]. A1 astrocytes lose the ability to promote neuronal survival, 

outgrowth, and induce the death of neurons and OLs [185]. Therefore, we introduced GFAP as 

another marker that indicates an inflammatory response. 

Interestingly, our study also presented an unsynchronized amelioration on astrogliosis and micro-

glia activation. After four weeks of LFMS treatment, there was a decreasing trend in the GFAP 

expression, which was not statistically significant as TNFα. These changes indicate that astro-

gliosis persisted for weeks in remyelination, which is in contrast to the quick amelioration of mi-

croglia activation in the MS tissue samples [195, 196].    

The OL lineage is composed of OPCs and mature OL, which play a crucial role in remyelination 

[197]. As described in previous studies, OPCs proliferate and migrate to demyelinated areas in MS 

[75, 78]. Remyelination is initiated from the directional differentiation of OPCs into pre-myelinat-

ing OLs [76, 77]. The pre-myelinating OLs wrap around demyelinated axons, thus forming mature 

OLs supporting new myelin reconstruction [76, 77]. In the present study, mature OLs marked with 

GST-π were extensively damaged, possibly due to the oxidative stress and mitochondrial dysfunc-

tion generated by the excitotoxicity of chronic CPZ intake [70-72]. Promotion in OL differentia-

tion and maturation had been identified with enhanced the GST-π expression when treated with 

LFMS for four weeks. The reduction of free radicals was controlled by the parallel increase in  the 
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expression of GST- π. However, a reverse trend was seen in immunoblots with Olig-2. It is widely 

accepted that Olig-2 is a robust and representative marker for OL lineage cells [198-200]. Notably, 

prior studies have demonstrated that the expression of Olig2 is transient in immature astrocytes 

and downregulated progressively in mature astrocytes [201, 202]. Therefore, we introduced Olig-

2 in this study as an indirect marker for OPCs when combined with the results of GST-π. A reduc-

tion trend in the GST-π expression after twelve weeks of CPZ exposure, along with the significant 

increase in the Olig-2 expression, suggested an increase in the proliferation of OPCs. After LFMS 

treatment for four weeks, the considerable reduction in Olig-2 expression suggested an ameliora-

tion of OPCs differentiation. This is further indicative of the enhancement of OL differentiation 

and maturation.    

In the present study, the involvement of the TGF-β pathway in MS was studied in the process to 

understand better the molecular changes initiated due to LFMS leading to improved cognitive 

function and remyelination. In contrast with the polarization to M1, previous studies have revealed 

that the shifted activation of M2 microglia involves tissue repairing by cleaning myelin debris and 

producing anti-inflammatory cytokines, represented by IL-10, TGF-β, and glucocorticoids [92, 98, 

102]. Despite this, it had been reported that TGF-β could regulate CNS myelination and a decrease 

in TGF-β expression was therefore expected to correlate with an attenuation of remyelination in 

the spinal cord after toxin-induced demyelination [121, 131].  Based on the previous studies, we 

also suggest that LFMS probably promotes remyelination in a chronic CPZ-induced demyelination 

model through the TGF-β pathway. Significantly decreased TGF-β1 and TGFβ-R1 expression at 

12w supported that chronic CPZ exposure suppressed the TGF-β signalling pathway, and there 

was an implicit correlation between chronic demyelination and TGF-β pathway. When treated with 

LFMS, enhanced expression in TGF-β1, TGFβ-R1, and TGFβ-R2 was recorded. Interestingly, 
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when compared to the results of Y-maze at 14w and 16w, the correlative enhancement of TGFβ 

signalling cascade and % of alternation further suggested that LFMS promotes remyelination pos-

sibly via enhancing TGF-β signalling cascade. According to previous work, TGF-β signalling cas-

cade also plays as a key in long term memory [203].  

Notably, previously unpublished work from our lab has indicated that LFMS also improves cog-

nitive function and is accompanied by increased TGF-β1 expression in the acute demyelination 

model. These findings further support the role of the TGF-β pathway in the MS mouse model. 

TGF-β signalling possibly led to remyelination, and improved cognition after LFMS treatment in 

both acute and chronic CPZ treated mice. In summary, these results suggest that the TGF-β sig-

nalling pathway could be essential for the process of remyelination. It further supports detailed 

studies to understand the molecular mechanism of the TGF-β signalling after LFMS treatment and 

the remyelination process, thus using it as a potential treatment option for MS. These results can 

be further confirmed after determined the cellular sources of TGF-β by using other marker related 

to M2, like IL-4, IL-10, and Cluster of Differentiation 163 (CD163) [98, 204]. To know the mech-

anism of TGF-β signal transduction better, the detection of downstream molecules are required, 

such as Smads and phosphorylated Smads.  

In the present study, we have shown for the first time, the effects of LFMS treatment on the chronic 

CPZ-induced demyelination model. LFMS improved cognitive function and alleviated mood dis-

turbances after chronic demyelination. Further, we have shown that LFMS promoted remye-

lination and OL maturation by ameliorating inflammatory responses. Most surprisingly, changes 

in MOG expression by immunoblotting were recorded in CPZ-induced demyelination for the first 
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time. These observations have been made previously in the experimental autoimmune encephalo-

myelitis (EAE) model. Finally, the TGF-β pathway was identified as a possible therapeutic target 

as it might be involved in the remyelination process after LFMS treatment.  

To better understand the effects of LFMS treatment, we can use immunohistochemical analysis 

(IHC). IHCs could shed light on understanding the pathological changes in LFMS-promoted re-

myelination. Double staining could be introduced using GFAP with IL-10, and BrdU with GST-π. 

Double staining would allow us to answer a few questions, such as the location of inflammatory 

cytokines and the location of OPCs differentiated during the demyelination and remyelination pro-

cesses. We would use direct markers to locate immature OLs in the tissue sections. To better un-

derstand the TGF-β cascade, the downstream signalling molecules should be immunoblotted to 

establish their roles in the remyelination process after LFMS treatment.  

In summary, chronic CPZ exposure resulted in CI and led to a depressive state in the mice. CPZ 

also induced mature OL loss and loss of myelin sheath and increased inflammatory responses. 

Possible suppression of TGF-β signalling is indicated based on the receptor-ligand expression. 

LFMS treatment improved the cognitive function and ameliorated the mood disturbances based on 

the behavioural analysis. LFMS treatment also promoted remyelination and OL maturation, pos-

sibly by enhanced TGF-β signalling, and reduction in the ameliorated inflammatory responses.    

6 LIMITATIONS  

There are a few limitations in the current study which can be addressed. To further validate behav-

ioral changes more tests can be incorporated, such as elevated plus maze (EPM) and novel object 

recognition test. These tests will detect the effects of LFMS treatment on the level of anxiety and 
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learning ability, specifically long-term memory. For microgliosis in WB, only TNF-α was inves-

tigated and used as a specific marker. However, TNF-α is not just secreted by microglia, and it 

could also come from A1 astrocytes, infiltrating macrophages, etc. To identify the microgliosis 

and further inflammatory response, other markers (Iba-1, IL-1, IL-6) of M1 microglia are required. 

For TGF-β signalling, the cellular sources of TGF-β and receptors were not determined. These 

limitations could be solved by implementing IHC, ELISA, or cell culture. Therefore, more typical 

markers for specific cells and the identification of the source of cytokines involved in the study 

are required in future studies before we made a further conclusion on current results. 

7 CONCLUSIONS AND FUTURE DIRECTION 

Our study has shown that LFMS improved cognitive function and ameliorated mood disturbances 

in the chronic demyelination of female C57BL/6 mice. The TGF-β signalling pathway might be a 

potential therapeutic target in MS treatment. Though we need more research to confirm the results 

and better understand the molecular signalling, this could be a starting point. LFMS could be a 

novel technique for the treatment of MS since it is non-invasive and has no known side effects.   
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