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ABSTRACT

In the recent past, attention has been directed towards the
possibility of using properly controlled dual-excited synchronous
machines to overcome the existing stability limitation of the
conventional ones.

This thesis presents a generalized analysis for the dual-
excited synchronous machine, in which the two field windings are
not necessarily located on the rotor-axes, and may not have equal
number of turns or equal inclination angles to the direct-axis
off the pole structure. In deriving the general equations, the
external connection is considered in a general form so as to allow
for studying the machine performance when it is connected to an infinite-
bus through a general transmission system. The small displacement '
equations are then derived and arranged in a form suitable for
investigating the dynamic stability when different excitation control
schemes are used.

The improved dynamic stability of the dual-excited synchronous
generator is demonstrated by studying a simple power system. For this,
a digital computer program has been established. The results show that
this machine has superior dynamic stability boundaries compared with
those of a conventional synchronous machine espec1ally at no load as
well as at low power demand.

This research has been supported by the National Research Council
of Canada Grants No. A-7115 and No. C-0343.
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1. INTRODUCTION

The rate of increase in production of electrical energy is such
as to double the amount of installed plants each nine or ten years in
all the highly developed, industrialized countries of the world. In the
underdeveloped countries, the rate of plants installation and growth of
consumption is even more rapid. This has resulted in greater inter-
connection and larger systems, since this alone can énsure stability,
continuity of supply, the most efficient use of plant and the most
economical use of national resources. Accordingly, long high voltage
transmission lines are needed to connect the remote electrical energy
resources to the load centers. Moreover, for safety reasons and
because of environmental accommodation, overhead transmission lines
are now replaced by high voltage underground cables for power distribﬁtion
in large towns.

As a consequence of the erection of such long high voltage
transmission lines and the widespread use of underground cables,
situation can arise in which the loads of synchronous machines become
capacitive and they should operate in the under-excited region. The
extent to which this is possible is severely limited by the stability of
synchronou§ machines.

The present tendency towards building larger synchronous machines,
which is dictated by economical reasons has made the stability problem
more acute. Such large machines have higher reactances, which result

in reducing appreciably their stability limits.




Many well-known techniques have been applied to improve these
stability limits, but it appears that a situation has been reached
beyond which further improvements are not seen for conventional
synchronous machines especially at no load as well as at light loading.
In the recent past, attention has been directed to the possibility of
using properly controlled dual-excited synchronous machines to improve
further the stability of power systems. The general énalysis for such
machines with special reference to their dynamic stability.is the main

concern of this thesis.




2. STABILITY PROBLEM OF SYNCHRONOUS MACHINES

2.1 Introduction

The stability of synchronous machines can be generally defined

as their ability to remain in synchronism with other machines in the power
system without excessive oscillations and to be able at the same time to
supply all connected consumers without interruption. To simplify the
handling of such a problem, it is a common practise to divide it into two
main categories.

2.2 Transient vStabili'cyz_4

Power systems are often subjected to sudden large disturbances
such as: sudden increments of load, faults, switching one or several
lines out of the system, a combination of a fault and the subsequent
isolation of the faulted part. For a certain fault occuring at a given
location and cleared in a definite manner, there is a power limit which
the loading cannot exceed without the system being exposed to a loss of
synchronism. For this power limit, known as the transient stability
limit, and a certain reactive power flow, there is definite phase
difference between the electromotive force of the synchronous machine
and the voltage at the terminals (Fig. 2.1). The phase of the terminal
voltage is related to the resultant rotating field, while the phase of
the electromotive force is related to the exciting field produced by
the field winding.

For a simple system consisting of a conventional synchronous
generator connected to an infinite-bus through a simple tie line, the

transient power angle characteristic is given by Fig. 2.2. Neglecting
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transient saliency, the characteristic is approximately a sine wave
having its crest equal to V - é / (xé + xe), where é is the voltage of
the machine behind its transient reactance. If a short circuit occurs
on the tie line, the power output from the generator will be interrupted
either completély or partly. Owing to the inertia inherent in the

power regulation of the prime mover, the driving mechanical power

gannot adapt itself to the new conditions without time lag. Tt follows
that, for a short time, there is a surplus mechanical torque which tends
to accelerate the rotor of the synchronous generator and so the transient

-

load-angle § increases. If the short circuit is not cleared before

a

S reaches a certain critical value gc’ the generator will fall out of
step.

2.2.1 Methods for improving transient stability

The most obvious method for improving the transient stability of
power systems is to reduce the transfer reactance between synchronous
machines, as this increases fhe synchronizing power that may be inter-
changed between them. High-speed circuit breakers and relays constitute
n very important measure for increasing the transient stability by
clearing the fault in the shortest time interval, and so limiting the
effect of the disturbance. Control of the excitation of synchronous
machines helps also to improve the transient stability by partially over-
coming the demagnetizing effect within the machine through positively
increasing the machine fluxes and terminal voltagess’6

2.2.2 Improving transient stability by the dual-excitation of
synchronous generators

Among the methods used for improving the transient stability, it

is noticed that there is no one dealing with a direct actijon on the load-




angle. The problem as seen from the machine point of view is that

the magnetic-axis of the exciting field is attached to the physical-
axis of the pole structure, and so it follows its movement. If this
magnetic-axis is set free during the fault period, a situation can be
reached at which the phase angle of the electromotive force in respect
to the terminal voltage is maintained at values consistent with the
synchronous operation.

Sapen25 suggested the decoupling of the magnetic-axis of the
exciting field from the physical-axis of the pole structure by providing
the machine with an additional field winding acting on the quadrature-
axis (Fig. 2.3). The d-q synchronous generator in this case has two
identical field windings, one is continuously excited (direct-axis),
while‘the other is excited only after the occurance of a disturbance.

To demonstrate the stabilizing effect of the quadrature-axis field
winding, a simple power system is considered. As shown in Fig. 2.4, the
system consists of a d-q generator connected to an infinite bus through
two parallel transmission lines. On the occurance of a three phase

short circuit at point F, the change of the rotor angle due to the fault
and the subsequent variations of the machine excitation is shown in

Fig. 2.4. Curve 1 represents the power-angle characteristic for steady-
state operation with only the direct-axis field winding éxcited.

Curve 6 is the same as Curve 1 but with the quadrature-axis field winding
only excited. Curves 2 - 5 represent different operating conditions. On
the occurance of a disturbance, the sequence of operation can be explained
as follows:

Point A represents the steady-state operating point before the

occurance of the short circuit.
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Point B is the operating point just after the occurance of the

short circuit, and at the same instant the quadrature-axis field

=

yinding begins to be excited.

Point C represents the situation after isolating the faulted line.
The path from C to D depends on the response of the exciters of
both field windings as well as the inertia of the machine.

Points D and E are the operating points before and after

Lo

eclosing respectively. At point E, it is no more necessary to keep on

the excitation of the direct-axis field winding, and so it can be gradually
reduced. The machine can, then, run steadily with only its quadrature-
axis field winding excited. To resume normal operation, with the direct-
axis field winding only excited, it is sufficient to energize the direct-
axis field winding under the control of its voltage regulator, while
reducing at the same time the excitation current of the quadrature-axis
flield winding gradually to zero. It may be expected that the increase of
the cost of d-q(synchronous generators will be only a fraction of the

conomical advantages gained by their use in power system526. It must,

(]

however, be noted that this cost increase may be counterbalanced by the
possibility of using machines without damping windings, since the two field

windings do its function in this case.
1,3,4 ’

N

.3 Steady-State Stability
While the transient stability of synchronous machines is the
measure of their ability to remain in synchronism after a specific sudden,

severe disturbance, the steady-state stability is the measure of their
ability to remain in synchronism for small disturbanceé. Small
disturbances, such as those produced by small changes 6f load, irregularities

in prime-movers and manual or automatic control of excitation, are always
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present in power systems. A synchronous machine does not go out of
step because of such minute disturbances unless it is operating at or
near its steady-state stability limit.

Steady-state stability can be classified into two categories:

a) Static stability: It denotes the stability of the machine
when the disturbance is slow compared with the natural frequency of
the mechanical oscillations and also with the rate of change of the
field flux linkage. Thus, it is not necessary in this case to consider
the transient behaviour of the machine, its regulators and the system
to which it is connected. |

b) Dynamic stability: It refers to the stability of the
synchronous machines for relatively fast, small disturbances. 1In this
case, the transient behaviour of the machine, its regulators and'the
system to which it is connected must be taken into consideration.

The steédy—state stability problem of synchronous generators
has become more acute in recent years as a consequence of the new
developments in electric power systems. Such developments, as the
esfablishment of more long high voltage transmission lines and the wide-
spread use of underground cables, have brought about a change in the
conditions under which synchronous generators operate. Because of fhe
large capacitive power needed by the power network, synchronous generators
often operate at leading power factors and may have to work beyond their
normal static stability limit.

It is clear from the power diagrams shown in Figures 2.5
and 2.6 that the maximum capacitive power, which a synchronous generator

with fixed excitation can supply for stable operation (static stability
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limit), is determined by the magnitudes of their synchronous reactances.7
This maximum has the value Vz/(xd + xe) for nonsalient~pole generators
and ranges from Vz/(xd + xe) at full load to VZ/(xq + xe) at no load

for salient-pole generators. The limits mentioned above are the
theoretical and will be reduced if a reasonable margin is chosen.

2.3.1 Methods'for improving the steady-state stability

It follows from the preceeding discussion, that the extension
of thé steady-state stable region calls for the design of synchronous
generators having low values of synchronous reactances. Synchronous
generators Qith low synchronous reactances are expensive. The cost of
increased short circuit ratio for waterwheel generators increases in
.|general as shown in Fig. 2.7 { On the other hand, as the production of
electrical energy continues its steady rate of increase,it has become
economically desirable to use larger synchronous generators. The use of
efficient methods for‘cooling makes it also possible to obtain more K.V.A.
from a given frame size of a generator. This in turn has resulted in
higher per-unit reactances and as a result lower steady-state stability
limits,

However, the steady-state stability region of a conventional
synchronous generator can be extended very considerably by the proper
control of its excitation 8_24. The machine cén then opefate dynamically
stable beyond its static stability limits as shown in Fig. 2.8. The
improvement achieved at full load may be very nearly equal to doubling the
short circuit ratio of the generator. Unfortunately, this method is less

effective at low power loading and useless at no load (Appendix A).
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2.3.2 Improvement of dynamic stability by the dual-excitation of
synchronous generators

To extend the dynamic stability region also at no load, it

Was suggested28’30 to provide the synchronous generator with an
additional field winding on the quadrature-axis of the rotor. By
controlling the excitation of this winding with a rotor-angle regulator,
the stable underexcited region can be appfeciably extended all over the
whole active loading range. The suggested scheme for operation is to
keep the rotor-angle fixed at zero value. Since the direct-axis field
winding in this case coincides with the magnetic-axis of the resultant
air-gap flux, a change in its current will vary the reactive power

without changing the rotor position. This can be explained by considering

the vector diagram of Fig. 2.9, from which the following relations can be

bbtained:
Ed = Iqo . xq 2.1
Eq =V + Ido X4 2.2
I =1 2.3
p qo
= 2.
IV Ido 4

Where Ip and Iv are the active and reactive components of the
armature current respectively.

Eq and Ed depend on the field currents as follows:

£d 2.5
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q-axis

d-axis

Fig. 2.9 Vector Diagram of a d-q Synchrbnous Generator Directly
Connected to an Infinite-Bus (6=0)
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2.6

Where ifd and ifq are the currents in the direct and quadrature-

xis field windings respectively.
ence
xaq
I = i 2.7
£ .
P x q
q
X . Vv
IV = ad 1ea ~ ;E' 2.8
*d
s a result, the direct-axis field winding can be negatively excited

o that the machine can provide the required capacitive loading without

4

esulting in a change of the rotor-angle. Sl i

5

.4 Application df the Eual—Excitation‘to.Turbo-genefétoré

A quadréture-axis field winding on the rotor of a turbo-generator
ould be uneconomical because of the increase in the reluctance of the
enerator magnetic circuit. This will require larger excitation currents
nd a larger machine to prevent excessive saturation of the rofbr. This
as suggestéd the development of the divided-winding rotor (d.w.r.)

onstruction 27,29

. The particular feature of the d.w.r. is that the
onductors are located in slots distributed as in the rotor of a con-
entional synchronous machine and are divided into two parts, whose

xes are displaced from each other (Fig. 2.10). This arfangement makes

t possible to change a conventional turbo-generator to a dual-excited one

v just rewinding its rotor or changing its field end connections. Sopper

nd‘Fagg27 studied through analogue computer simulation a synchronous
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Pachine with rotor construction using two identical field windings
arranged in X-form. Harely and Adkins 29 tried to simplify the
analysis of the d.w.r. synchronous machine by replacing it with a d-q
machine. As will be seen in this thesis, such simplification is not
valid except when both field windings are identical and have thé same

inclination angle to the direct-axis of the rotor.

2.5 Purpose of the Thesis
Although some effort has been directed to solve the stability
problem of synchronous machines by dual-exciting their rotors, all studies

25-28,30

done till now deal with special rotor construction and some

of them rely on simplifying assumptionszs’zg.

It is the purpose of this thesis to present a.generalized analysis
for the dual-excited synchronous generator, in Which the two field
windings are not necessarily located on‘the rotor-axes, and may not have
¢qual number of turns or equal inclination angles to the direct-axis of
the pole structure (Fig. 2.11). To maké the analysis complete, the effect
of a general transmission syétem is taken into consideration. |
Special aftention is directed towards formalizing the small
displacement equations, which are essential for performing dynamic
stability studies. The equations readily take into consideration the
effect of alternator and transmission system resistances, speed variations
and the effect of the voltages induced in the armature by the rate of change
of its flux linkage.

A digital computer program is established to formalize the

characteristic equation of this machine, and then to check its dynamic

tability by applying the well-known Routh's critef&on to the equation.

2]
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Fig. 2.11 Schematic Layout of a Dual-Excited Synchronous Machine
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The program provides the possibility of investigating the effect of
numerous schemes of excitation regulation on the dynamic stability
boundaries. The improved dynamic stabiliéy limits of this type of
synchronous genefators at different operating conditions are
lemonstrated by studying a simple power system. The system consists of
1 dual-excited synchronous generator provided with an adequafe control

irrangement and connected to an infinite-bus through a simple tie-line.




23

3. ANALYSIS OF THE DUAL-EXCITED SYNCHRONOUS MACHINE

3.1 Introduction

As in the conventional synchronous machine, all mutual inductances
between stator and rotor circuits of a dual-excited onevare periodic
functionsof_the rotor angular position. In addition, because of the

rotor saliency, the self inductances of the stator phases and the

mutual inductance between any two of them are also periodic functions
f the rotor angular position. It follows that the characteristics of
he dual-excited synchronous machine are expressed by a set of differential

quations, most of whose coefficients are periodic functions of the rotor-
ngle. .Such equations, even in the case of synchronous operation, are

heory33 Ss,as in the case of conventional machines, can also be

wkward to handle and difficult to solve. The two-reactien

ntroduced here to overcome this difficulty. This is done by replacing
he three phases of the armature winding by two fictitious stationary

! indings to which they are equivalent (stationary with respect to the
otor): one on the pole-axis (direct-axié) and the other on the interpole-

xis (quadrature-axis), which are denoted respectively by 'd' and 'q'

in Fig. 3.1.

Ideal synchronous machines are usually assumed and may be
efined as follows oo
Saturation, hysteresis and eddy currents in all magnetic

circuits are neglected.

Each machine winding produces a sinusoidally space distributed

magneto-motive force.
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Fig. 3.1 Schematic Layout of an Idealized Dual-Excited Synchronous
Machine
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3. The pole structure is symmetrical about the axis of the
pole. A symmetric three phase armature is also considered.

4. The self and mutual inductances of all rotor circuits are
independant of rotor position. Thus, the effect of stator
slots is neglected.

5. The damper winding, if it exists, is replaced by two equi-
valent damper circuits: one on the direct-axis and the other
on the quadrature-axis.

.2 Mathematical Representation:,’:(’—35

Based on the preceeding assumptions, the performance of the
ual-excited synchronous machine may now be described by the following

quations. In them, the convention adopted for the signs of voltages

and currents are that v is the impressed voltage at the terminals and

hat the direction of positive current i corresponds to generation. The

ign of the current in the damper winding is taken positive when it flows

in a direction similar to that of a positive field current.

3.2.1. Inductance equations

a) Stator self-inductances

The reluctance of the magnetic circuit of a synchronous machine at

any section in the air-gap depends on the position of the pole structure.

As iron has a very high permeability compared with air, the permeance of

he magnetic circuit of any stator phase varies from a maximum (when its

axis coincides with the direct-axis of the rotor) to a minimum (when its

Xis coincides with the quadrature-axis). This variation can be

‘epresented by a Fourier series expansion which contains even harmonics.

Considering only the zero and second harmonic terms of this series,
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the self-inductances of the stator phases can then be expressed as

follows:
Laa = Laao + Laaz + Cos 26 ‘ 3.1
Lbb = Laao + Laa2 * Cos(26 + 120) 3.2
LCC = Laao + Laaz « Cos (2060 - 120) 3.3

in which Laao is the average value of the self-inductance and Laaz is
the difference between maximum and average values. As the leakage flux
of any stator phase is independant of the rotor position, it is usually
included in the constant term Lo

b) Stator mutual-inductances

It can also be shown that the mutual-inductance between any two
stator phases varies periodically from a maximum (when the quadrature-axis
is midway between the axes of the two phases) to a minimum (when the quad-
rature-axis is 90° electrical from the maximum position). Following

the method adoped for self-inductances representation, the mutual-

inductances between the stator phases can be expressed by:

Lab = Lba = ’[Labo + Lbb2 - Cos (20 + 60)] 3.4

Lpe = Lep = “[lypo * Lppp ~ Cos(28 - 180)] 3.5

L., = Lac = —[Labo + Lbb2 * Cos(26 + 300)] 3.6
where Labo is the average value of the mutual -inductance between

phases and Lbb2 is the difference between maximum and average values.
Theoretical analysis shows that the difference between the maximum and

minimum values of the self-inductance is the same as the difference
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between the maximum and minimum values of the mutual-inductance, i.e.:

Lbb2 = Laa2 5.7

It has also been found that, apart from the leakage inductance, the
average value of the self-inductance of a stator phase is double the
average value of the mutual-inductance between any two stator phases.

This can be expressed as follows:

Laao - Lo = 2Lab0 ‘ 3.8

¢) Mutual-inductances between stator and rotor circuits

The mutual -inductances between the stator phases and the direct-

and quadrature-axis damper circuits vary sinusoidally with rotor angle

and are maximum when the two coils in questions are in line. Thus:

Lakd = lkda = Fakdo + Cosb _ 3.9

Lbkd =L ® Liao Cos(6 - 120) = 3.10
Lckd = Lkdc = Lakdo * Cos(® + 120) 3.11
Lakq = qua = -Lakqo * Sin 8 3.12
Lbkq = qub = -Lakq0 - Sin(6 - 120) 3.13
L = L = -L - Sin (8 + 120) | 3.14

ckq kqc akqo

On the other hand, the mutual-inductances between the stator

phases and any field winding depend on the permeance of the magnetic

¢ircuit in both the direct-and quadrature-axis of the rotor. The deri-

yation of the expressions for these inductances can be done as follows.
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Considering phasé a, its magneto-motive force (M.M.F.)a can be
resolved into two components equal to (M.M.F.)a * Cos® and -(M.M.F.)a'Sine
acting in the direct- and quadrature-axis respectively (Fig.2.11). These
components of M.M.F. produce corresponding components of flux in the
direct- and quadrature-axis of magnitudes equal to Ad . (M.M.F.)a * Cos®6
and —Aé . (M.M.F.)a - Sind respectively. The linkage of field winding

1 caused by this flux is then proportional to (M.M.F.)a . (Ad + Cosa

1

Cos6 + Aq . Sina1 * 8inB). Similarly, the linkage of field winding 2 is

proportional to (M.M.F.)a . (Ad . Cosot2 * Cost - Aq . Slna2 - Sinod).
It follows that the expressions for the mutual-inductances between phase

a and the field windings 1 and 2 respectively can be written as:

Lafl = Lfla = Lafld * Cos® f Laflq * Siné 3.15

Lafz = LfZa = Laf2d Coso - Lafzq * Siné 3.16

where

Lafld can be defined as the mutual-inductance between field
winding 1 and phase a when the axis of the latter coincides
with the direct-axis of the rotor.

Laflq can be defined as the mutual-inductance between field
winding 1 and phase a when the axis of the latter coincides
with the quadrature-axis of the rotor.

L ¢4 and Laf2q have similar corresponding definitions for

field winding 2.
Following the same procedure used for deriving Lafl and Lafz’

L and L
c

Lbfl’ Lbf2’ of1 are found to be:

f2
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Lbfl = Lflb = Lafld * Cos(® - 120) + Laflq * Sin(6 - 120) 3.17
\ Lbf2'= Legp = Logag ~ COS(0 - 120) = Lo Sin(e - 120)  3.18
\ chl = Lflc = Lafld * Cos(6 + 120) + Laflq - Sin(8 + 120) 3.19

ché = LfZC = Laf2d - Cos(6 + 120) - Lafzq * Sin(6 + 120) 3.20

d) Rotor self-and mutual -inductances

All inductances of the rotor circuits do not depend on the rotor

position and so they are considered constant. Because of the symmetry
f the damper winding, there is no mutual -inductance between the
quivalent damper circuits on both the direct and quadfature-axis.
.2.2 Flux linkage equations

) Utilizing the inductance relations given before, the flux

rinkage equations of the dual-excited synchronous machine can be written

ps follows:
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.2.3 Park's transformation

Applying the two-reaction theory , equation 3.21 can be
xtremely simplified by replacing the variables of the armature
indings by new fictitious variables, which differ from but are related
o the actual ones. For example, the transformation of the currents

s expressed.by the following equation:

itd CosH Cos(6-120) Cos(6+120) ita

2 .

—3' . ltb 3.22
1tq -Sind -Sin(6-120) -Sin(6+120) e

#imilar transformations are used for armature voltages and flux linkages.

Equation 3.21 can then be obtained in the following two-axis frame:

i | |k Laf1d Laf2d Lakdo ig

Wq _Lq , _Laflq Laf2q Lakqo ttq

v | |-3.L St L L L L i

f1| {2 "afld 2" “aflq ff1 f1£2 kdfl kqf1 f1
RIED 3 L L L L i | 3.23
£2| |72 “af2d 7' “af2q | “f1f2 ££2 kd£2 kqf2] | ‘€2 3-
! 3 L i

K| 7 Lardo Leagr | Lkagz | kkd Kd

¥ 3 L L L i

kq 2" "akqo kqf1 kqf2 kkq kq

where

3

d aao abo 2 ° Tga2
3
2

q aao abo
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3.2.4 Voltage equations

While the voltage equations of the rotor circuits can be simply
obtained by the direct application of Kirchoff's law, the derivation of

those for the two-axis armature voltages Ved and vtq needs a more or

less lengthy analysis. This is usually done by finding firstly the

expressions for Viar Vb and Vie and then transforming them in the

two-axis frame. As a result, the machine voltage equatidns will be:

vtd+r . 1td P -poé Wd
v, +r - i ) ¥

tq tq PPy q
Ve1Ter  ip P Yep | 3-%4
Veq-To, * i p . ¥

f2 " f2 £2 f2
o-r | ] Y

kd kd | kd

o—rkq 1kq P qu

3.2.5 Torque equations

A general expression for the torque may be derived by using the

expression for the instantaneous power output:

= . i - i g 3.
Power Vta 1ta * th 1tb * Vtc 1tc 25

This equation can be rewritten in terms of the two-axis quantities as

follows:

i

Power = = - (th gt vtq . ltq) 3.26
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Bubstituting from equation 3.24, Vid and v
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can be eliminated to give:

tq
Power = 3. {i - (p¥, -p® - ¥ -1 - i_.) +
2. td d q td
leq (p\llq +Ppe - ¥y -1 ltq)}
S ((i,, cp¥,+ i, cpY) - r(i 2 + i, 2)
2 td d tq q td tq
+po - (ltq C¥y - iy Wq)} ‘ 3.27

quation 3.27 may be interpreted as:
(net power output) = (rate of change of armature magnetic energy)
-(armature copper loss) + (power transferred
across the air-gap).

rom this, it is evident that by dividing the air-gap power term by the

otor speed, we obtain the developed torque Te as:

© Y ) 3.28

= 3. . . -
T = > ' M ( Y ig q

e P ltq d

The relation between the mechanical shaft torque and the electrical

eveloped torque is given by:

= I .
Ti = Te +J " p Gm + GD(p) Pem 3.29

.3 Per-Unit System for the Dual-Excited Synchronous Machine
Per-unit systems have been extensively used to simplify phenomena
ver a wide range of different physical problems. The advantages, which
rise from the application of a well-designed per-unit system to
lectrical power problems,are numerous. Among of which are the following:
1. A direct comparison between machines of widely varying power

ratings is straight forward.
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2. In the two-axis theory of synchronous machines, a per-unit
system is useful in removing thosearbitrary numerical
factors which can appear in the original equations and
have values dependant on the transformation used.

3. In single and polyphase studies, the turns ratios of
transformers (and the manner of internal connections in the
polyphase case) are removed from the analysis.

4. Simplification occurs in the analysis of polyphase circuits
under balanced conditions. By defining appropriate per-unit
line quantities to correspond with chosen per-unit phase
quantities, both line and phase parameters can be represented
in one per-unit analysis.

5. A basic set of dimensionless parameters can help to prevent
errors in converting pei'formance characteristics between
different systems of units.

6. The numerical range of per-unit parameters is small. This is
valuable for solution by analogue or digital computers, since
the variables are of convenient order. Manual calculations are

also simplified.

The derivation of the per-unit system for the dual-excited
synchronous machine is given as follows.

3.3.1 Stator base values

It is a common practise to choose the rated armature current and

the rated phase voltage to be the stator current and voltage base values

respectively. As the components of the armature current and phase voltage
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in both the d- and q-axis are instantaneous values, it is rather
preferred to use the maximum value of the rated armature current and
terminal voltage than the root mean square values as stator bases.

Hence: I _p = V2 I 3.30

]

<B V2 v, 3.31

v
here In and Vn are the rated armature current and the rated phase
oltage respectively.

From equations 3.30 and 3.31 it follows that

Pp=3V - T =3V -1, | 3.32
ZSB = Vn/In | 3.33
Lg =V, / (I " p8) ' 3.34
wsB = LsB . IsB 3.35
here PsB’ ZsB’ LSB and wsB are the base values for stator power, impedance,

inductance and flux linkage respectively.

.3.2 Rotor base values
a) Power equality constraint
As seen from equation 3.23, the inductance matrix is not symmetric.
From the mathematical point of view, the per-unit system‘can be chosen
ithout removing this property. However, for the sake of obtaining a simple
representatibn of the machine which facilitates the formation of its
equivalent circuit, it is preferable to make this matrix reciprocal. To
fulfill this requirement in a per-unit system, the following constraint

should be imposed.
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power of any rotor circuit.

b) Inductance relations

£2B

£2B

2 _ .
Teop = Lxas

quB '

" Teop = Vids -
quB

In other words, the base power of the stator is equal to the

-
N
|

3.36

« 1 3.37

base

Before going to choose the base current for each rotor circuit of
the dual-excited synchronous machine, it would be helpful to put the
M.K.S. expressions of all machine mutual-inductances in terms of the
It will be assumed that the mutual
flux produced in one axis by any machine circuit links equally all the

This assumption will be referred to as

The following relations can then be written:

s f1

1 Ns " Ngy

2 " Ng - Ngp
N N

3.38
3.39
3.40
3.41
- 3.42

3.43
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/ d s kd
Lakqo ) >‘q . Ns ' qu
Lf1f2 = (Ad * Cos ay Cos
Letkg = 2 - Cos op * Ngy
Lflkq = -Aq + Sin a; ” Nfl
Leaka = *a ~ Cos 9y 7 Npy
Legkg = Aq * Sin o 7 Ng

¢) Rotor base currents

conventional synchronous machine,
several discussions. In general,
infinite number of ways. For the
has been found more convenient to
others.

representation which displays the

a - x_, base system

ad

perfect.
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results in simplified equivalent circuits.

choices have resulted in the following per-unit systems:

The choice of the base current for any rotor circuit, even for

such a choice can be made in an

conventional synchronous machine, it

3.44
3.45
a, - Aq - Sin a - Sin az) Nep © Nf2
3.46
" Nig 3.47
. qu 3.48
. de 3.49
: qu 3.50
a
is a problem which has been subject to

choose certain base values rather than

The chosen values were preferred on the basis of providing a

physical picture of the machine and

Two of the most convenient
31,32

b - Equal mutuals base system

in which the coupling between the machine circuits on each axis is

It is worthwhile to mention that both systems are identical for the case
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For the dual-excited synchronous machine, suitable rotor base
quantities can be obtained by choosingthe ideal turns ratio* between two
windings to be the ratio between their base currents. Hence, the base

rotor currents can be expressed as follows:

Ieip 1/Ngy
Ieop 5 1/Ng,
I =7 NS . l/N . ISB 3.51
kdB kd
Teqn Nq

Substituting from equations 3.38 - 3.45 in 3.51, it follows that the base

rotor currents in terms of the machine inductances can be written as

follows:

. Lad . Cosa1 (or La Slnoa1 )

f1B Laf1d Lafiq

. L d Cosoc2 (or L Slnoc2 )

£28 Laf2d Laf2q

= I 3.52
sB

L

I ad

kdB Lakdo
L

I 29

kaB| - Laqko

3,3.3. Per-unit time, speed and torque
The normalized equations of the dual-excited synchronous machine are
further simplified if the electrical angular velocity p6 is also

normalized. The synchronous electrical angular velocity peo is con-

* /An ideal turns ratio between two windings is defined as follows:
Total flux linkages of mutual flux with one winding

Ideal turns ratio = Total flux linkages of mutual flux with the other winding
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veniently chosen as the base value. Since p6 - t is a dimensionless
quantity, the selection of peo as the base of pd is equivalent to
selecting l/pe0 as a base of time.

It may be noted that, as reactance is the product of the
inductance and the electrical angular velocity, the per-unit inductance
and per-unit rated frequency reactance will be equal. It is therefore
common to find no distinction between these quantities where time is
normalized.

Having normalized time, it is now possible to see the definition
of the differential operator p in the per-unit system. In nonnormalized

form:

=%

P = at

but t(p - u) t/pe0 ; so it follows that

p(p - u) = p/pd ‘ 3.53

When writing the torque equations in M.K.S. system, it is
inevitable that the number of pole pairs np appears. It is desirable
in forming the per-unit equations of the machine to remove this
parameter because it is not fundamental to the performance of the
machine. As a consequence, the form of the per-unit rotor angular
velocity is simplified becoming the same whether expressed in mechanical
or electrical form. This is done by defining the base mechanical angular
velocity pemB as that corresponding to the base electrical velocity
Thus:

pemB = peo/np . 3.54
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Using the expressions for the base power and basc mechanical

peed given by equations 3.32 and 3.54 respectively, the base torque

ill be:
T = 3 vsB ) IsB
eB 2 ° po ’ np
0
=3 : 5
=5 ‘PSB ISB np 3.55
.4 The Normalized Equations

Having established the per-unit system, the normalized cquations

of the dual-excited synchronous machine can be derived. [n the following

equations and here after, all the parameters are in per-unit valuecs.

3.4.1., Flux linkage equations

The normalized flux linkage equations can be arranged as follows:

Lo

v - e . :
4 d Xaq "Cosay Xaq C0say [ x _ 1t
Y ~X ~ i -8i
q q xaq.Smm1 xaq Smuz xaq tq
¥ -X_,Cosa “Si *Cous *Si i
£1 ad (059 | Xy Sinay 1 oxpel Xe12 R et
- 3.56
¥ . . T vo: .
£2 | |Xaq Cosay | ~Xyq"Sinay | xg, Xeg2 Xaq Cosay | X, q"Sina, )
Yy -X . . .
kd ad Xaq Cosa; Xad Cosay | Xpuy i
L . o esin e .
Xq aq x'_Aq Sln:xl xaq Slnaz xkkq 'kq




&here:

xd = xao
X = X
q ao
Xr127 *ad
Xee1® X£10
Xee2™ X£20
*kkd~ *kdo
*kkq~ *kqo

+

. Cosa1 :

xad

ad

X
aq

3.4.2 Voltage equations

41

Cosoc2 - xa . Slnu1
© Cosh .+ Sing

osa, + Xaq ina,

c 2 2

osoe2 + xa Slncx2

The normalized voltage equations in matrix form can be

written as:

Veg v T itd P -po Wd
Veg * T itq po p wq
Ver T Te1 T ip P Y1 3.57
Ver < Tep g | P Y2
© - Tra " lkd P ¥kd
o - rkq . ikq P qu
3.4.3 Torque equations

'H-

n the following form:

The developed electrical torque in per-unit values can

be written

3.58
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Normalizing equation 3.29, which relates the developed electrical
orque of the dual-excited synchronous machine to both the shaft and

nertial torques, gives the following:
. ] . ) * 2 S
T, = 1tq ¥q - i Wq-+Q§ - pe o+ £(p) P 3.59

.4.4 The operational equations

Y N W S S

For the study of the performance of synchronous machines,

specially from the power system analysis point: of view, one is only
interested in the variables at the terminal, namely: voltage, current

d power. So, the rotor currents can be eliminated from equation 3.56

__6__%,__1:__0_

'to give the following flux linkage equations:

* The inertial torque = J - pzem
|

I\ normalized form, it will be equal to:
[

-
s \

«‘ 2
/ - oPS, (P8, 5)

o Pomp 3 Vsp ' Tsp

o Po

but from the definition of the inertia constant H:
2
(P® )

]
: vsB ) IsB

1
H=73

N o]

it follows that the per-unit expression for the inertial torque is
given by:

Inertial torque = 2 + H - pg_ - p26

Q

from which it appears that the normalized value of the inertia constant

@ is 2 -po_ - H
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=
1}

4 —xd(p) i Gfld(p) : Ve * Gde(p) : Ve, + M(p) itq 3.60

=
i

q M(p) niggt Gflq(p) - Ve t szq(p) c Vey - xq(p) . 1tq 3.61

where x,(p), xq(p), Ge1g(P)s Gppy(P)s Gflq(p), szq(p) and M(p)

are the operational functions of the dual-excited synchronous machine

and can be put in polynomial forms (Appendix C).

Equations 3.60 and 3.61 show that both the direct- and
quadrature-axis circuits are no loﬁger independent of each other

. as in the conventional synchronous machine. However, for’the

special case in which both field windings are identical and have the

same inclination angles to the physical axis of the rotor, the cross
coupling term M(p) vanishes. This proves that the technique suggested

in reference 29 for simplifying the analysis by replacing the dual-excited
synchronous machine by an equivalent conventional machine having an
additional field winding on the quadrature axis cannot be applied except to
"this special case.

By substituting equations 3.60 and 3.61 in 3?57 and 3.59, the

following operational form of the normalized equations is derived:
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Vea = Gpq@) =P - P8 7 Gpy o (PI) 7 Vg
= (Bgpg(®) " P - P8 7 Gy (P)) 7 Vg,
Veq ~ (PO 7 Geyg(P) + Geyg () " P) - Vg
(08 - Cppg (@) + By (P) - P - Vg
Ty - (pq " Gpqa®) - Bpq " Ggq(P)) - Vg
- g - G - g " Gppg(P)) - Vi
- gp(p) - pe
-r-x,(p) * p-pé-M(p) pe x (p)+M(p) - p g
-p8 - x4(pP)*M(p) . p -r—xq(p) ; p+p6 - M(p) itq
g Xa@) iy TME) | gy xg(PIH o ME) [ @ ey P

3.5 Dual-Excited Synchronous Machine Connected to an Infinite-Bus

Through a General Transmission System

3.5.1

Analysis of the transmission system

No complete analysis for the dual-excited synchronous machine

can be claimed without taking into consideration the effect of its

external connection with the power network.. Equation 3.62 describes

3.62
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the relations among the components of the terminal voltage of the

=

achine and the components of its armature current as a function of

Pt

ts excitation voltages and speed. If the machine is connected to

an infinite-bus via a transmission system having driving point

[

mpedances 211, 222 and transfer impedance 212, then the relations

between the voltages at both sides of the transmission system can

bhe written as follows:

Z,,(p) v A\ v
11 a b C

v v v = ————— Z..(p) - - - 3.63
ta tb | "tc le(p) 11 i, 1tb 1tc

The analysis is based on replacing the unknown terminal voltage

aof the machine Ve with the known bus-voltage v. Park's transformation

helps again to formalize equation 3.63 in the two-axis frame. For

)}

xample, the relations between the variables for phase a and its

two-axis components are:

y o0, o738
Vta Vtd tq 2
= 3.64
Va Vd Vq .
i i i A
ta td tq -2j

Substituting equation 3.64 in 3.63, the following equation

is obtained:

. .o Z.1(p) ;
. L s -38_ 11 . jo
[th + Jth] e + [th Jvtq] . € le(P) [(Vd+JVq) e +
3.65
. -j6 . .. jo L -j6
+(Vd'JVq) . € ]+ le(P) [(1td + Jltq) . € + (ltd Jltq) . © ]




Putting 6=6O + A8 + peo
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theorem36 F(p) eatf(t) = eat F(p + a)
becomes:
. I+ A8 +ps . t) .
[th + Jth . el%% o + [th Jth
_ G, +pe .ty P+ dpo,) veos vl e
Zip(p + jpe ) " 'd q
Zy1( - dpe ) . :
zll(p - jpeo) [Vg - 3vgl - e 188, (6 +ph, - )
12 0
. .. 1 AS -j(s + ps .t .
[ltd + ]ltq ]. e’ + e il 0 PY, ,) . le(p - Jpeo)
L -jA8
[1td R l. e

o}

[EN

y equating the coefficients of 63(60

+ po

0

t)

and e

jas e—J(GO * P8

3(60

+ peo

. t and applying the Laplace transform

. f(t) , equation 3.65

-+ 2390 + jpo )

3.

. t)

1 . e—3(5o + AS + peo .

. t

66

n both the right and the left hand side, the following equation can be

written:
v v, ) L eI80 21 (P*3P0 ) Lj88 Zy1 (p*3po,) 1108
td ©'tq Z1,(p+ips )" Zy,(p+ipe )
S X I I CL Lt N P M € e ) jo-08
td " 'tq Zy,(p-ipo ) Zy,(p-ip8 )
. jAS . . JAS v
le(p+3peo) e le(p+3peo) . je vd
' q
_iAS -jas | | *ta
le(P'jPeo) . eJ ‘le(P’jpeo) je tq

t)

)

3.67
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Considering equation 3.67, the axis components of the machine

pltage can be given by:

le(p+jpeo)] [211(p+jp60)
Re [ -Re [———rc
Z1,(P+jpd ) Zy,(p*ipd )
vy | |Cosas | sinas Cosag Sinas
244 (p+ipé ) Z11(p*ipd )
~-Im [m-—)— -Im —-—-———-—Z ( 3 5 )
1o (P*ipPE 12 (P*ipPo
SinA¢§ CosAS
Re[zll(p+jpeo) Re[le(P+jpeo)
Zy,(p*ipe ) Z;,(p*jpe )
Veg | | -Sinss | Cosas SinAg Cosho
+Im[le(p*preo) _Im[le(p+Jp90)
Z1,(P*+ipo ) Zy,(P*ipo )
CosAé$ SinA§
V4
CosAS SinAé§
-In[z,, (p+jps )] -Im[2,, (p+jpe )]
Vv
SinAé8 CosAS q
Re[le(p+jpeo)] Re[le(p+jp69]
' i
SinAs CosAS$ td
+Im[211(p+jp00)] -Im[zll(P+jpeaﬂ ;
Ly
CosAS SinAg q

3.68
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.5.2

quation 3.62 by the expressions of equation 3.68.

erms, the equation takes the following form:

The general cquation is obtained by replacing

Cquations of the machine in connection with the system

and v in

Vid tq

After rearranging its

2y, (p*jpo.) z,, (prips))
{CosAs, Re[ (p*Jpe S5y ] CosAS-CosAS. lm[ ()”pe 8 }1Sinas
Z1 (p+ips,) A {p+ipo,)
+SinAé.Re by 1 Sinas+Sinas. hnL —2._1CoshA8) 7y
12(P¥iPa) 12 “’JPU)
11(p*JpS ) L (prips)
+{-CosAS.Re [Z P*Jlﬁ } Sinas-CosAs. In [/uﬁ”jpdg) 1 Cosas
1 (pi-Jpe ) (pw)o b

+SinAS.Re [Z (}NJ,)OTJCO:’M -$inas. Iml (l’*)}” \ 1Sinad} Va

-(Gfld(p) p- (p00+pM) 'Gflq(p)) vfl-(GEM(p) .p-(p()obpMS) .Gf

2q(P)) Vg2

1 (pripe,) Zyy(oripod, )]
Sin Re CosA+Sinag. Im AS
{-31nag- [5 P*Jve’j Jeos 28Ik “pripu,y S
(p ipd) L(p+ipo )
+Cosas. Re{ (—:Jpe—)—]SUluG&COSAS lm[ (-”Jpe ) 1Cosaé} vy
1 (p*ipa,) (p'JpG )
+{SinaAé. Re[ WTJSmA&SmM In (s Cp*Jp_) } Cosps
11(p+3pe ) (P*JPG )

+CosAS . Re[ WT ] C05A5 -Cosps. Im[ (P")POT ] S1nA5) v

-((p0°+p06)~Gfld(p)+cflq(p)-p) Ve~ (09 +pA8) .Gy y (P)+Gyy

QPP Vgp

Ti-gD(p)'pAG-(itq-Gf}d(p)-itd~Gf1q(p)) Ve (eq-Gpaa P~ 1.4:6 (p)) Ve
~r-x4(p) .p- (P0 +Pas) -M(p) (PGO*PAG)-Xq(P)+M(P)-P
~{Cospg.Re[ 2y, (p+ipa,)] Cosas +{Cosas. Re[Zy, (p+ipay) 1 Sinas
-Cosas.Im (2 (p+jpo ) 15inas +Cosps. m (2 (pripey) 1 Cosas Lo
+Sinag.Re (2, (p+ipo ) ) Sinas -$inaé. Re [Z“(p+jp0°)] CosAs
+SinAd. Im {le(pﬁipeo) ] Cosad) +SinA5.Im[Z“(p‘+jp0°)] SinAd}
= -(p8,*P48) . x4 (P) *M(p) .p “T-xo (P)-p* (PO, +pAd) N(P) 3.69
- (SinAé.Re[Zn(p+jpeo)] CosAd -{Sinx\ﬁARe[zll(p\*jpﬁo)] SinAd
4SinA6.Im[Zn(p+jpeo) ] Sinas +SinA5,Im(Z“(p+jpso)] CosAd itq
+Coshé . Re [Zu(;njpoo)] SinAs +CosA6.Re[Z”(p+jp0°)} CosAb
+Coshag, Im [Zn(p+jp00)l Cosné) ~CosA6.I.’n[Zu(p+jp0°) ] Sinas}
) - i 3 ; i L2 )
RIEHORTIC Lyg X (B Figg M) -y as
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3.5.3 Steady-state equations

values independant of time (Appendix D).

by putting p=0 in equation 3.69. This,

following simplified equation:

Hence, the general equations

of the synchronous generator at this mode of operation can be derived

in addition to the fact that

there are no variations in speed or rotor angle, would result in the

Z,,1Gpo ) Zy,Gpo )
11 0 11 o
Re ——]. v, - Im[z=——u""]. +po_ . e
le(Jpeo)] do m le(Jpeo) qu P¥ d
. e .
Im[zll(Jp 0)] v + Re [M v - po e =
Z,,(3p8 )77 “do Z,(ip8 )" g0 °© q
T.
i

- -Re[le(Jpeo)] po_ - Xq + Im[le(jpeo)] itdo
= -peo - Xgq - Im[le(jp@o)] -T —Re[le(jpeo)] .
+ 1tqo
! tqo * *q ®q 7 'tdo * %a
‘where
v v
€q4 = - flo . Sina1 + rf20 C Xy Sinoc2
Tf1 24 £2 4
v v
e fl f2o0
q = — . X . Cosa, + X . Cosa
Teq ad 1 Tey ad 2

At steadyfstate'dperafion, it can be shown that the axis currents

and voltages corresponding to the time varying quantities are constant

3.70
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3.5.4. Simplified transient equations

Since the speed of a synchronous machine cannot deviate appreciably
from its steady synchronous value, it is justified to neglect its change

on the machine electrical transients. As a result, the general equation

3169 can be reduced to:

Zy9 (p*jpe ) . [le(p+jp60)
Re —r—r—sv] v,-Im [ 00
ey Va Z,,®+jp0 J 'q

Zy1(p+ipo ) Zy1(p*ipd )

m ————] v, + Re - 1 vq
Z21,(p*ipo )° "d Z1,(P*3ipé )

—(peo-Gfld(p)+Gf1q(p)-p) vfl-(pGO-Gde(p)+Gf2q(p)-p) Ve

137 GeqGp1a P -iyq Gy q(P)) vy~ (g "Cppg (P)-1yyGpy ()Y Ve,

-gp(p) -pAs

"T-x4(p) p-po -M(p) PO, xq (P)+M(p) -p .
' » td
rRe £, (p+ipe ) ] +Im 2, (p+jpe ) ]
P8 -X4(p) + M(p)-p T X, (p) -prpo M(p) .
i I

+Im [2,, (p*jpo )] -Re [Z,, (p+jpo ) ]
<43 . ‘ - 1 . 3 . 3 . . 2 A6
ThqXa®) - iy M) Lea Xq @)+ M®) ® .p
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3.5.5 Application to a simple power system

S
T
o

——

L

3 ——

Dual-Excited Generator c Infinite-Bus

Fig. 3.2 A Simple Power System
For the system shown in Fig. 3.2, the following equations can

be written:

: ) ) . c
211 = 25(P) = R, + x, - p# p +a
where _ o =X /R
c c
x.- (pra)’
Re(zy) (p+ip8 )] = R, + x, - p (p+a)” + (p0 )*
P . X

6 _ o] c
e " P T pra)2 + (po )°

Imlz,, (p+jpe )] = x

Re [le (p+] pGO) =1
Zy,(p+jpo )
Zy1(p*ipe )

Im [ 2] =
mly ,5v3p6)

.72

73

.74

.75

.76

77

.78
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Substituting from equations 3.72 - 3.78 in equations 3.70 and 3.71,
the system during steady state and transicent conditions may be represented
as follows:

a) Stcady-state equations

. a * xc ) peo'xc
vd0+Peo.ed -(x+R ) - T3 pOo'(Xe+X ) e ]
a +(Peo) a“+(po ) Lo
peo'xc [ 3 xc
V..oP e l=] -p0 (X +x)) +—s5———— | -(r+R ) -
qo q o e 'd u2+(p0°)2 e ei+(veo)2 3.79
i
qo
'1‘1 eyt 1q0 xq eq e Y
b) Simplified transient equations
Va = Ggrg ) 7P - 0o, " Gy ) vy
Vg “(P9 " Gepq (P) * Ggyg (P © P Vg
(PO, 7 Ggag (P) * Gppq () ° P) Vg
Ty ~Ueq " Ggrg @) - 1gg * Ggyq ®)) Ve
“Upq " Ggag P - iy 7 Gppq (8D Vg
_(r+Re) -(xe+xd(p))' P pOo '(xc+xq(p)) .
1
S (pta) Xo " p(l(Jl d
- c— e
(pra)2 + (po )2 (pra)2 + (p8)
. . -(r+R ) -0 Y- p
= po, + (xgrxy (P)) (r+R,) ((°+XQ(P) l . 3.80
b eI M (N ) '
(prads v (po )2 (pra)” ¢ (pd )2
) @ . p" \5
. i i + i HEp :
i xg®Y-iy * M(p) i \q(P) q ( Gy ()
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4. SMALL DISPLACEMENT EQUATIONS OF THE

DUAL-EXCITED SYNCHRONOUS MACHINE

.1 Introduction

Since the static stability is concerned with a very slow variation,
e determination of its limit is based on representing the synchronous
chines simply by their synchronous reactances. In this/case, a
thematical expression can be deduced from the steady-state vector
agram. When_there is no saliency, the expression for the static
ability boundary of the &ual-excited synchronous machine is quite
mple and is the same as that of a nonsalient conventional one. If
liency is considered, the expressions obtained will be very complicated
d no physical interpretations can be understood from it.
On the o;her hand, the instability of the regulated synchronous

chines in the ncighbourhood of the dynamic stability boundary shows up
the form of self-excited oscillations and not, as normally happens
the static limit, by slow falling out of synchronism with continuously
d monotonically increasing rotor angle. The period of these oscillations
nges from 0.5 to 10 seconds or more for large machines. Thus, a
termination of the dynamic stability limit through representing the
chine by its synchronous reactance cannot be justified, as this does

t allow for the changes in the variables. Going to the»other extreme
d using the transient reactances of the machine cannot be justified
ther, since the transient reactances apply only to sudden changes

ich take place within a fraction of a second. A more accurate
presentation of the machine allowing for field time constants, inertia

d other transient quantities is therefore necessary for investigating
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its dynamic stability.

-2 Possible Techniques for Dynamic Stability Studies

An accurate dynamic stability analysis should be based on the

generalized machine representation in the two-axis frame given by

equation 3.69. The differential equations involved are non-linear and,

ith the inclusibn of regulating devices in the representation, the

nTmber of variables to be handled becomes excessively large. Consequently,
it is necessary to rely on some simplifications, or some computing devices
to perform the calculations, or upon a combination of both. The methods,

which have been used in the past, may be broadly grouped into two

categories:

~a) Methods relying upon a full solution of the general equation:

In these methods, the solution of the general equation is

ohbtained by numerical methods or by analogue computer simulation. The

latter is not generally preferred due to the limited capacity of most

analogue computers, its relative inaccuracy and the long time required

for setting such problems. On the other hand, solving the general

equation of the machine using a digital computer would be uneconomical

especially if many operating conditions are to be studied.

b) Methods using a linearizing approach:

This is the usual approach to dynamic stability studies. It is

mathematically valid if only very small changes around the operating point

are postulated. The assumption of a linear system makes it possible to

apply a rahge of techniques which have been used in control system applica-

tions. The solution in this case may be accomplished by a digital computer.

The computing time will be far shorter than in the case of the complete

solution of the general equation by numerical means. Among the methods
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at have been used are the following:

1. Nyquist Criterion

This is one of the oldest of the control systems techniques.
quist diagrams have been used by Messerle and Bruckll, Jacovides

d Adkins22 and others 28,29

. Apart from the indirect approach to the
ability limit, it suffers from the disadvantages of extensive
mputation and poor presentation of results but is able to show the

gree of stability and to indicate the possible procedure for

improvement.

2. Root Locus

In this method, the system characteristic equation is formed and

the eigenvalues are calculated. It has been used by Stapletonzs. It

suffers from the extensive effort consumed in finding the characteristic

roots.

3. Domain Separation

The Russians make use of this method to show the stability limit

in the plane of two parameters of interest. The method is fast and

appears to have considerable application to problems involving the

s%tting of regulator parameters for optimum results. It has been used

19

by Yu
T 4. Routh's Criterion

I

This is perhaps the best method available for general problems.

allows a direct approach to the stability limit using a set of

thod has been extensively used8 9’19’30. It is utilized herein for

|
therla which can be easily programmed on a digital computer. This
|




in

ma

dy
1ir
be

fr

du
te
eq
de
an

be

He

56

vestigating the dynamic stability limits of the dual-excited synchronous

chine.

-3 Small Displacement Equations

As explained before, it is quite sufficient for studying the

namic stability of the dual-excited synchronous machine to use a
nearized small displacement representation. Such a representation can
obtained by considering deviations in the time dependant variables
om their steady-state values. Thus
vV =v_+ Av 4.1
o
i=1_ + Al 4.2
o
§ =8 + AS 4.3
0

Substituting equations 4.I - 4.3 in the general equation of the
al-excited synchronous machine (equation 3.69) and subtracting the
rms corresponding to the initial steady-state operating point, the
nations of the machine will be given in terms of the time dependant
viations. ‘If these deviations are very small, the terms of power 2
d more can be neglected and the following approximations can also
applied:

CosAS = 1 4.4

SinAs = AS | | 4.5

nce, the following small displacement equations result:
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From equation 3.70, the following relations are obtained:

Z,,Gpe ) Z11(p8))
{RB Ez—lm] . qu + Im[z_lz—(JP_GOT] . Vdo} AS

" iigo t mmEy;Gre )] - itqo * Re[Z,, (5P )]} . 48 4.7

= Vo

Z,,Gpe )

e[ ]. V £11 9P9,)
Z,,(3p8 ) 7 “do

1. v_1} s
Z;,(3p8 ) ] q0

{R - Im|

= {vtdo ~ g0 Re[le(jpeo)] + itqo . Im[le(jpeo)]} . AS 478

Also for a constant bus voltage, the following relations are valid:

Av v - Sin(60+A6) - vSin60 =y . AS 4.9

d qo

v . Cos(60+A6) - vCoséo= AS 4.10

Avq -vdo

Substituting equations 4.7 - 4.10 in 4.6, the small displacement

equations can be written as follows:




1y

oV

by

Pq

4 (@)98+,d . @

[Codlsd) Tz wr. %P4

[ Codc+d) 7] oy. OPP-

°p1A+d-(be+px-°p11-)

[Code+d) TT7] oy. PFrs

[Codr+d) TT7) wy . P34

OblA—d.(pa-bx-Obly)

Py, 0P, D

(d)bx.0p1; (d)px.

o+ bx.°b1;+Pa-

(n. s (dp. -

ob1¥_

¥ py ((d)bz;9,0pzt_(d)pzss.obll

[Fay ((d)P135.0P3_ (4)PT3y. 003y,

s

[fed£+d)llz]

oy~ [[(“edr+d) 7 ug-

(d)w.09d+ d. (d)pw+

d.(d)bx-x- (d)px.oed-

By (d. (d)°P 94 (@) P, %pd)-

Bay (d (@°Pos ()PP, %pd) -

[Cedc+d) TP7]

d.(d

(d)bx-o

wy + [(oed§+d)tlz]au-
)
YW+ (d)W- ed-

od d.(d)px-x-

ey ((@)P%. %gd-d. (d)Pe0)-

Bay ((d)°Wy. %d-d. (d)PTFq)

6§
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4,4 Machine Regulation

The superior dynamic and transient performance of the dual-
excited synchronous machine is mainly due to the availability of two
separate field circuits with the possibility of controlling each in a
different way. One of the suggested regulation schemes is to provide

one of the two field windings (winding 1) with a voltage regulator while

27,29,30

the other is provided with a rotor angle regulator - However, it

wauld be interesting to study the performance of this machine for various
other schemes of excitation regulation. Fig.4.1 shows a single-line
block diagram for dual-excited synchronous machine excitation control, in
which any possible feed-back signal combination can be chosen by using a

group of arbitrary constants Clv’ CZV’ C16’ CZG’ Clpd’ C2p6’ C1p26’ C2p26’

Cl,»

1p C

19> %2q° G’ Cor

In general, the expressions of the excitation controlling

CZp’
signals for both field windings may be given as follows:

Avf1 = gRl(p)[Clv'Av + Clp-AP + C1q~AQ + CII'Ai * CIG'AG

. 2
+Cy 5 POS + C p245] 4.12

1p28

Avf2

]

8o (P)[Cy w8V + Czp‘AP + Czq'AQ + Cypt0i+ €y o8

*Copg PAS + C "p2A8] 4.13

2p26

The equations giving the terminal voltage, power, reactive

power and current deviations in terms of Aitd’ Ai_, and p§can be derived

tq

by expanding these variables in the neighbourhood of the operating

point. This will result in the following equations:




61

SUTYOB[ SNOUOIYIUAS
Po31IOoXg-TeNng B JO [OIJUO) UOTIBITULXI 9yl IoJ wexderq }oo1g aur] 9[8urs 1[°v "Jtd

_

401vIN93Y T ONIANIM @1314
AV Tiay
dv 3INIHOVIN

3

ﬁ&o m&o 8%y ﬁﬁoﬁﬁﬁo %o Aty
Dv

— ; 5 SNONOYHONAS

,ﬁ ki Q3.110X3-1vna
gvd \

ev,d

¢

m&um%auoﬁmﬁo MWU JNNQ A—Muo AZo

HOLVIN93Y 2 ONIONIM Q1314
_

"y




The

in

v
Avt - vtdo .
to
i
Ait - itdo
to
APt= 1tdo .

. A

td

Led
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A"
+ tqu A"t
to 9
i
* it > i,
to 1
*ligo  Meq * Vedo T Alea

+v © Al

AQ =-i i . . Lo
Q: ltqo Mg * Ttdo Avtq ¥ tho Altd

elimination of Avtd and Avtq from equations 4.14, 4.16 and 4.17

favour of Aitd’

Ai

tq

-V Al

and AS can be done through linearizing

equation 3.68 as follows:

4.14

4.15

4.16

4.17



63

Avtd

Re[le(p+jp90)
Z,,(P+3p6_) ]

. Z11(p+ipd )
- m[Z ip+jpe )]
12 0

Re[le(P+jP90)”

Av

Iru[211(1;>+J'p90) |
Z,,(+jp8 )
Z,,(p*ipd )

Re[le(pﬂ'peo) :
P T
Zy,(p+ipo )

Im[Z,, (p+jp6 )]

_Im[le(p+jpeo)]

‘Re[

Z,1(P*ip8)

Z,1(+*jpo )

'Re[le(p+jpeo)]+ it

] L
Z,,(p+jpe ) do

e |+ V :
Z,,(p*jpsd ) ] qo

: Im[le(p+jpeo)]+itdo

qo

‘Im[2,, (po )|

‘Re[Z;,4ip®,)]

Av

Av
q

Re [Z,,(p+ipo )]

qo
+1

tdo

tqo

do'

Re [-———————1] - :
bz mvipe )1 " Vdo

‘Im[————s] *+ V__°
[212(p+3p60)] qo

Zy1(p*ipe )

Zy1(p+ip® )

'Re[zll(P+ijo)]' itd

'Im[le(p+jp60)]+ it

0

qo

‘Re {2, (§p6 )]

‘I [Z,, (596 )]

td

Ai

AS

4.18
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But:
Z,,(3p8,) 2,,(5pe )
11 0 11 ) . . \
v Re p=—rr—r] | -Im Re[Z (jpe )1} -Im[Z, (Gpé )} | "do
tdo lz(Jpeo) [212 Jpeo ] 11 (o) 11 o
] 'q0
14.19
Z,,(ipe ) Z,,(ip8 ) “tdo
11 0 11 0 . .
v ImG=—s] | Re lm—m—"Cl Im{z_ . (Gpo )1 Re[z,,(ip9)] =
tqo le(JpGO) le(JpGO) 11 0 11 J 1tqo
Using equations 4.9, 4.10 and 4.19, equation 4.18 can be reduced to:
Wy : Re[le(p+jpeo)] -Im[le(pfjpeo)]
e | |y ripe )] Re [2,, (p+3pe ) ]
Vtqo
Tldo - M2y (P * 3P8,)] Mg
-itqo ) Re[zll(P + jpeo)]
Al 4.20
Vido
*1ido Re[le(p + Jpeo)]
-itqo . Im[le(p + jpﬁo)] A§
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Substituting equations 4.12 - 4,17 and 4.20 in 4.11, the following

general form of the small displacement equations results:

X — )
GRGL(p). mlé"‘“lpé .p+Clp26.p )+
r " 2 .
GRG1 (1)).1314-61{(32(19).82 GRGl(p).C1+GR62(p).C2 GRGZ(p).(C26+(,2p6.p+czp26.p ) Mtd
GRG1(p) .D1+GRGZ(p) -0,
. 2
GRG3(p) . (CIG+C“,5 'p+Clp26 p)
GRQS(p).Bl+GRG4(p).82 GR(:S(p).Cl'r(.Rbd(p).Cz GRM(P)'(C26+('2p6'p“‘2p26'p ) Altq
GRG3 (p) . D, +GRG4 (p) -D,
2
_ GRGS(p).(C16+C1p6.p+C1p25.p )+
2
GRGS (p) . B, +GRG6 () - B, GRGS (p) . C, +GRG6 (p) .C, GRG6 () - (Cp*Co5P*Cap2g P ) AS
GRGS (p) .D1+GRG6 (p) .D2
v-r-xd(p)»p Pey X, (P) (ipgo *q %) P Veqo
- (p8,) -M(p) +M(p) .p i g0 InlZ)) (p+ipe)] Bi,g
-Re[le(p+jpel)] +Im[Zu(p+jpe°)] +itqo.Re[Zu(p+jp00)].
~po,-X4(P) -r-xg (p)-p (-1 g0 Xa* 9 Vedo
= +M(p) .p +p0, - M(p) | "itdo'Rc [Zu(p+jpoo)l iy 4.21
-Im{le(p+jp9°)] -Re[le(p+jpe°)] +itqo.1m[211(p+jp60)]
g Xa® 40 %q®) )
3. . s p g . AS
140 M@ +y00M(P) ® p+gpe)-p
€4 tqo0 q *oaledo e
where:
: i v
’ tdo tdo . .
B, = (C,_'v +C, v +C.  e—)+(C, r—— +C_ _° - . .
1 ( 1p tdo '1q 'tqo 1I i )+( iv v C1p Ltdo C1q 1tqo)

Re[le(p+jp00)]+(clv'v———-+C1p-1tqo+C1q'itdo)~Im ﬁll(p+jpeo)]

to

Vtqo
to

to
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(P +C td°) +(C tdo i, -C, i, )~
2p tdo" 2q tqo 21 1t 2v v, 2p "tdo "2q "tqo
o to
tgo y . ) :
Re[le(p+Jp6 )]+(C o C2p ltqo+C2q ii40) Im[le(p+Jp60)]

tho

(c ClI ) (c + C
lp tqo lq Vtdo 11:0 v v to

lp.ltdo_clq'ltqo)'

v
. Vtqo . N .
InZ) (piPO )+ (Cy ==+ € oiy 0 0*Cy g ipgo) RelZ g (pHipE )]

to

tgo .vtdo . . -

)-(C,, ~—— + C,_-i -C, i
to 2v Vio 2p "tdo "2q "tqo

(c 2p tqo 2q Vtdo CZI i

_tho

Im[Z,, (p+jp® ) ]+(C,, Ve, + Czp'ltqo

+C2q'itdo)-Re[le(p+jp60)]

v
. tdo s . . ] . . .
€y Veo *C1p 1o %19 Y tqo?  Meqoledo ™ [z,, (p+ip6 )] Ltqo

Vtqo
Re[le(pﬁtjpeo)]]*'(clv'v ¥ Clp.ltqo 19 tdo) [- Vtdo tdo

to

Re [Z,, (p+jp8 ) ]—itqo'Im [z ; (p+ipe )11

v
tdo . . ) [

2v v 2p.1tdo'c2q.1tqo ) tho—ltdo'Im[zll(p+Jpeo)]-1tqo'

to
v
a0 ..

Re[le(p+jp60)]] * (CZV Vto * 2p.1tqo+c2q.ltdo)

[_thoﬂ'tdo'Re nll(p+jpeo)]—itqo.Im|le(p+jpao)]]
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GRGL(p) = [-Ggy (p) *p + po_ - Gerq(PIT - 8o, (P
GRG2(P) = [-Ggpq(P) * P + PO - Gpaq®)] * gp, (@)
GRG3(p) = [-P8; * Gy (P) - Ggy (P) - ] * 8y (@)
GRG4(p) = [-pO_ * Gy, (p) - Geaq(®) - PI * gp,(p)
GRG5(P) =[-ip o = Gppg(P) + dpy - Ge1qPI1 8y (P)

[ep)

+

RG6(P) = [-igqy ™ Gppg(P) * iyqy * Gppg ()] * gy ()

o

.5 Application to a Simple Power System
For the system shown in Fig. 3.1, the small displacement equations

can be written as follows:




68

GRG1 (p) *C1+GRG2 (p) °C,

GRG1(p) * (€, 5+C

» -2
GRG2 (p)* (CZG+C2p6 p+C2p26'p )

. g . 2
1ps P*C1p2s'P )*

Ai

GRG1 (.p‘) : Bl+GR02 (p) 'B2 4
' GRG1 (p) D, +GRG2(p) *D,
GRG3(p) - (C, 4+C 1p5 "P+Cyp2s°P or
GRG3 (p) B, +GRG4(p) B, | GRG3(p)'C +GRGA(p)-C, | GRGA(P)(Cpq+Cpp 5P+ Czpza-p ) Mg
GRG3 () D, +GRG4 (p) *D,
; GRGS5 (p) - (C16 1ps'F *p+ C1p26 p )+
GRGS (p) *B, +GRG6(p) *B2 | GRGS (p) °C; +GRG6(p) °C, GRG6(P)j(C25 2p6 P*Cop2s P 2y 28
GRGS (p) *D, +GRG6 (p) °D,,
-[r+R] -[x +xd(p)] p peo'[xe+xq(p)] [iqo.(xeﬂ(q) - ed] .'p-vtqo
-po  *M(p) M(p) p M,
X, (p+a) xc'pe0 +Y
(Aol T rraYZ+ (e Y2
(pro) 2+ (p0_)? (P 2+ (p8_)
-pe '[x_*x4 (p)] [reR ] -[x #x ()] 'p [-igo" (xg*xg)ted "P*Viq,
M(p)p +pé -M(p) i
x_'pé X - (pt+a)
C 0 - C +Z
(p+a)Z+ (P8, )2 (pra)Z+(p6 )2
-i tx(p) x_(p) @ - p°
qo [d P 4o’ q P
: . 88
—1d°'M(p} +1qo M{p)
, ‘ +gp(p) - p
€4t q0%q Y% o X

6.22
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where:
i, v, o
- . . ._do . tdo s .
By = (Clp tho+c1q tho+C11 i )+(Cyy V;;'+C1p 1do'Clq lqo)
X _‘(p+a) v
e S 1 . tqo Vs .s
[Re+xe P (p+a)2+(p60)2J+ (Clv Veo * Clp 1qo+C1q ldo)
X +p6
. c o 1
[Xe peo (p+a)2+(peo)2_|
i v
= . . . do . tdo s s
B2 h (C2p tho+C2q tho+c21 i )+ (CZV Vio ¥ C2p 1do“CZq lqo)
x _*(p+a) v
cns S . tgo o s
[Re+xe P (p+a)2+(p60)2]+ (C2v Vio ¥ C2p 1qo+C2q ldo)
X 'pb
) ¢ o
e P8~ Tpra)zeipe )z ]
i "
= . - . '__q_o. - '_t_d.?_ -1 - * 3
Cl (Clp tho Clq vtdo+C11 i ) (Clv Vio ¥ Clp Ydo Clq 1qo)
Xc-peo Vt o . c .
[Xe peo - (p+a)2+(peo)2 1+ (Clv Vio ¥ Clp 1qo+ 1q ldo)
x. " (p+a)
[Re+xe P+ (p+a)2+(peo)2]
igo Vtdo
Cy = (C2p'vtqo'C2q'tho+C21'io ) - (sz'vto * Copia07Caq 1q0’
X *pd v
. .- 0 1 ._tqo ‘i v
[xe peo (p+a)2+(peo)‘1+ (C2v Vio C2p 1qo+C2q ldo)
xc'(p+a)
[Rox p+ (pra) 2+ (pU )
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Vtdo X. PO,
= (€, Vio ¥ Clp'ldo'clq'lqo)'[vtqo-ldo'[xe'peo' (p+a)2+(peo)2] B
X *(p+a) v
. . c ; ._tqo s .
1qo [Re+xe P+ (p+a)2+(p9052’] + (Clv V., + Clp 1qo+C1q ldo)
xc'(p+a) X."P8,

_ i . 1 5 . . 1
[ Vtdo*tdo [Re+xe p* (p+a)2+(peo)2J 1qo [xe peo (p+a) +(pGOI?“]

,tho . . . xc'peo
Dy = (G Vio * C2p 1do-CZq 1qo).[vtqo‘ldo [x P, - (p+a)z+(peo)7i )
X; - (pra) Vtqo

1qo.[Re+xe.p + (p+a)2+(p90)2]] + (CZV‘Vto + Czp-1qo+C2q'1do)

x_ " (p+a) X.'Po_

- i . 1 -i . . - 1
[ tho+ldo[Re+xe P+ (p+a)2+(peo)2J 1qo [xe peo (p+a)2+(peo)21]

xc'(p+a) xc'peo

. . . o 1
1o [R+x p + (p+a)2+(p607§J + ldo[xe Pe () Z+ (702

]

X - (p+a) X _'pb
-1, [R+X p + —~ ] +1i [x pp - s ]
do'"e e (p*a)2+(p6 )2 Q e P T Tpra)2e(ps )2

L]
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5. EXTENSION OF THE UNDER-EXCITED STABLE REGION

OF .-THE DUAL-EXCITED SYNCHRONOUS GENERATOR

.1 Introduction

It has been a common practise to conduct the dynamic stability
udies of synchronous machines on a reduced power system  usually
nsisting of a single machine connected through a transmission line

11,13,22,28-30

an infinite-bus . This form of representation has the

vantage that attention can be focused on the machine and its excitation

system, both of which may be reasonably completely described without

un

st

Eecessarily complicating the analysis.
In this chapter, the possibility of improving the dynamic

ability limits of the dual-excited synchronous generator through

controlling its excitation is demonstrated by considering such simple

Po
€a

it

wer system (Fig. 5.1). A block diagram of the regulator used for
ch field winding is given in Fig. 5.2. The parameters of the generator,
s regulators and the tie line are as follows:

v =1.0 p.u.

X, = 0.200 p.u.

R, =0.010 p.u.

r = 0.006 p.u.

Xy = 2.32 p.u.

X = 2.07 .u,
q p

Xq © 2.22 p.u.
aq =1,97 p.u.
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Voltage ;
Regulator [* O Vi Ret

Infinite-
Busbar
1 AngleMeasuring|
Device
Angle -i;
Regulator ¢ &z SRef

Fig. 5.1 Schematic Single Line Diagram of the Studied System
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W

(a9

Xppp = 2.442
re, = 0.0025
Xepp = 2.442
re, = 0.0025
Xppg = 2+33
rg = 0.01
Xkq = 2.11
Tyq ° 0.02
= 0
o 33.75
= o

o, = 33.75
® = 2185

T =0.02

a -

T =0.0

C

T =0.8

€

T =1.0

S

K =1.0

e

w = 0.03
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p.u.

sec

seC

sec

sec

7.54  p.u.

0.0 p.u.

301.6 p.u.

377.0 p.u.

.2 Method of Investigation

It has been pointed out in Chapter 4 that, for studying the

ynamic stability of synchronous machines, it is sufficient to apply

ny of the well-known control theories to its linearized small

isplacement equations.

Such equations have been already derived in
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n be arranged in the following compact form:

e preceeding chapter for the dual-excited synchronous machine and

Equation 5.2 is the characteristic

lem is positive, the machine will be unstable.

AP | ALY | A(P) AL
1 A® | A | AD) Bg =0 s 1
D(p)
A (P) | Az (p) | Az (P) AS
ich represents a set of homogeneous algebraic equations. To get a
ntrivial solution for these equations, the determinant of the
efficient matrix should be equal to zero. This implies that:
Ay ALGY A (P)
A (@) AL () Agg(p)

equation of the machine and

hence for checking the machine dynamic stability.

s roots are the characteristic roots. If the real part of any of
Thus, the problem of
»termining the stability is one of finding the characteristic roots.
swever, this task is tedious and time'consuming and the use of an
lternative method, by which stability can be checked wiéhout actually
»lving for the characteristic roots, would be desirable. Routh;s
riterion provides a simple technique for finding out whether the

haracteristic equation has roots with positive real parts or not, and

If the characteristic

juation is written in the following polynomial form:
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...n ..n-1 ..n-2 _
an P + an_1 P + an_2 P I a0 =0
Routh's criterion for stability can be summarized as follows:
1. All the coefficients of the polynomial have the same sign.
2. None of the coefficients vanish.
3. The signs of the elements in the first column of the
folldwing array must be the same:
%n 3h-2 4h-4
3h-1 %n-3 %h-5
11 12 213
21 822 23
where
4 = 3h-1 " %2 " %3
11 - a
n-1
a. = 311 %h-4 " %5 T %
12 ‘ a1
U e T s V- T
21 a1
o o1 ®nos T %13 fnd
22 a4
A digital computer program has been developed to form the
chafacteristic equation of the system at each operating point and
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then to check its stability by applying Routh's criterion to this
equation. A flow chart for this program is given in Appendix F.

The results obtained are in the form of curves representing the

dynamic stability boundaries with the freedom of using any two system
parameters under study as variables. In the present investigation, the
reactive powér at the infinite bus Q 1is chosen as the variable on

one axis, while the active power P or the regulating system gain

ua is the variable on the other axis.

5.3 Static Stability Boundaries and Capability Diagram

As shown in Fig. 5.3, the steady-state operating range of

a dual-excited synchronous generator is limited by many'factors,
namely: the static stability boundary, the maximum prime mover power,
the stator heating limit and the rotor heating limit.

For a n&n-salient pole dualfexcitgd synchronous generator, the
static stability limits are similar to those of a non-salient pole
conventional one. This is true for any ratio between the excitation
currents in the two field windings. If saliency is present, the

limits will insignificantly change for different ratios between the two
field currents as shown in Fig. 5.4.

The maximum prime mover power and stator heating limits are
fixed for a certain machine design independant of its exéitation system.
On the other hand, the rotor heating limit depends on the

ratio between the two field currents. It is essential to keep always
not only the total copper losses in the field winding minimum but

also the copper losses of each field winding within safe limits.

Fig. 5.5 shows that, for machines whose field windings are identical
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Fig. 5.3 Steady-State Capability Diégram of the Unregulated
‘Dual-Excited Synchronous Generator

Theoretical Static Stability Limit
Practical Static Stability Limit

-Stator Heating Limit

Maximum Prime Mover Power

Rotor Heating Limit

06 08
Q in p.u.




79

= 1.0
G| =X Ke=10
: f
=0.8 —— K;=05
O o= Ki=15
!

Stable

0.4

Generator Unstabie

%

0.0

Mctor A

0.4

=
o

044 043 042 04 04
Q (capacitive) in p.u.

Fig. 5,4 Static Stability Boundaries of the Dual-Excited
Synchronous Machine for Different Ratios of
Excitation Currents




80

0.007
~Ge Ke=10 |
O Kf: 1.5

0006

0.005

Field Copper Losses in p.u.

o~
A

A

Capacitive |Inductive

L 0002
-10-08 -04 00 04 0810
| Qinp.u.

g

Pig, 5.5 Total Vicld Copper losses of the Dual-Excited
Synchronous Generator for Different Ratios of
Excitation Currents (p=1.0 p.u.)




an

th

ha

1o

of

ch

th

al

ti

PY

0s

st

in

fi

Th

an

it

ge
of

81

d have the same inclination angle to the direct-axis of the rotor,

e rotor heating is minimum when both are equally excited. This

s also the ‘virtue of resulting in an even distribution of copper

sses between the two field windings and so preventing the overheating

any of them as shown in Fig. 5.6.

.4 Dynamic Stability Boundaries

As mentioned in Chapter 2, the possible capacitive power, which
conventional synchronous machine can supply at no load, cannot be
anged through the application of regulating systems. This is due to
e fact that the magnetic-axis of the field winding in this case is
ways in alignment with the resultant flux (neglecting armature and
e-line resistances). llence, any regulating signal is unable to
oduce a stabilizing torque which can suppress the rotor angle
cillations. For the same reason, the improvement of the dynamic
ability limit at low power consumption is also not satisfactory.

It is therefore expected that these limitations can be overcome

a dual-excited generator, since the magnetic-axis of eitherlof the two
eld windings or both can be kept inclined to the resultant flux.
is can be simply achieved by equally exciting the two field windings

d then controlling either or both by suitable regulators.

4.1 Effect of voltage regulators

In the normal operation of conventional synchronous generators,
is customary and almost necessary to keep the terminal voltages at
specified value. This is usually achieved by controlling the
nerator exéitation by voltage regulators, which has also the advantage

limiting the overvoltages that may occur on loss of load. It has
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been found that continuously-acting voltage regulators extend also

the stable under-excited region of these generators at loading

conditions. However, it has no effect on these limits at no load.

For operation of the dual-excited synchronous generator with

equally excited field windings, the dynamic stability boundaries are

shown in Figs. 5.7 and 5.8 for the case of controlling any of the two

field windings by a voltage regulator. The under-excited stable region

is

at

considerably extended at full load, while no improvement is achieved

no load. The ineffectiveness of this type of control at no load

could be explained by the following analysis.

Neglecting the armature and transmission line resistances,

the machine terminal voltage Ve in terms of the three quantities id’

and § can be expressed as:

q
2 _ Las . 2 . .. 2
Ve = (v-8iné - 1q xe) + (v-Coss + i xe) | 5.4
Hence:
v. + )% = (veSin(s + A8) - (i + AL) - x)°
to t o qo q e
. . 2
(v-Cos(éO + AS) + (1do + Ald) xe] 5.5

The corresponding small-displacement equation is:

*AS + (vqo *ig0x ) - Ald

e v Gl g ¥ qu.lqo) e

-(vdo - 1q0'xe) . Alq) 5.6

This can be rewritten as:

= — -P-AS + ‘Al ‘Al 5.7
Av ( Veqo q) ,
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At no load and for equally excited field windings:

Vedo = 0 5.8

vtqo = vto 5.9

Hence, equation 5.7 is reduced to:

Avt = xe . Ald 5.10

This shows that a signal proportional to the change in the terminal
voltage is proportional to the change in the direct-axis component of

the current. In Appendix B, it has been proved that the latter cannot

improve the dynamic stability of the dual-excited synchrénous generator

% no load. Hence, it follows that a voltage regulator used for any
oﬁ the two field windings is ineffective from this point of view.

L It should be noted that, when both field windings are equally
eicited and simultaneously controlled by identical voltage regulators,
t‘e generator becomes equivalent to a conventional one provided with a
voltage regulator. Hence, the same dynamic stability limitations of
tﬂe latter hold also for this case and no improvemént can be achieved
at no load.

5 4.2 Effect of rotor-angle regulators

In this 1nvest1gat10n as for the case of u51ng voltage

e adjusted to be equal at every operating condition.
a) Control of field winding 1
The dynamic stability boundaries representing this case are

ven in Fig. 5.9. It is clear that the dynamically stable region is

tended far beyond the static stability limits, even at no load. However,

1gulators, the steady-state excitation currents in both field windings
i
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it is noticed that instability will occur at no load when the capacitive
power becomes less than its value at the static stability limit. This
would restrict the use of this signal to the range of capacitive loadings
beyond the static stability limit. However, if the sign of the control
signal could be reversed in this region, stability will be also achieved
for this loading range. This phenomenon can be explained by examining
Fig. 5.10 a.,bwhich represents the vector relations of the dual-

excited machine at no load when it is operating beyond its static stability
boundary. Point A represents the normal operating point for this specific
loading. If the rotor accelerates due to the occurance of a disturbance,
a jpositive control signal will result in increasing the excitation of
field windingll. Consequently, the operating point will move to

paint B, which means an increase of the electrical output power. This
will in turn cause deceleration of the rotor and the machine at last
settles in a stable position. On the other hand, when a negative control
silgnal is used, the acceleration of the rotor will be followed by a
decrease of field winding 1 excitation and the operating point moves to
C. This will result in an increase of the accelerating power which

makes the machine go out of step. Using the same procedure, it can be
easily shown from Fig. 5.10 b. that, when the capacitive power loading
is| less than its value at the static stability limit, a positive control
signal will lead to instability while a negative control signal will not.
Fijg. 5.11 shows that this instability problem is not created only at

no| load but ovér certain operating range.

b) Control of field winding 2

As shown from Fig. 5.12, the dynamic stability boundaries of the

dupl —excited machine at no load as well as at full load can also be
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onsiderably improved by this scheme of regulation, providing that the
roper sign of the control signal is used. The improvement achieved

t 0.2 p. unit load is not satisfactory. At full load, a positive

control signal is required, while the sign of the control signal at no

load depends on the operating range. It should be positive for operation

within the static stable region and negative for operation beyond the

static stability boundary. An explanation for this could be found

by studying Fig. 5.13. Fig. 5.13 a. represents the vector relations of

the dual-excited synchronous generator at no load when operating beyond

its static stability boundary. Point A is the corresponding operating

point. If the rotor-angle increases due to a disturbance, a positive

control signal will increase the excitation of field winding 2. The

operating point will then move to point B, which indicates an increase

of the input electrical power. As a result, the rotor will continue to

accelerate and the machine will go out of synchronism. On the other

hand, when negative control signal is used, the operating point will

mo

in

ma

ve to C indicating that the electrical output power of the machine will
crease. It follows that a case of equilibrium can be reached and the

chine keeps running in synchronism. Following the same method of

explanation, it is also possible to show from Fig. 5.13 b. that the

op
re
wh
st

un

posite will occur when the machine operates within the static stable
gion. 1In this case, negative control signal will cause instability,
ile positive control signal will stabilize the machine. The P - Q
ability boundaries given in Fig. 5.14 shows clearly the stable and

stable regions associated with cach sign of contrel signal.
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c) Control of both field windings

When both field windings are simultaneously conﬁrolled by
identical rotor-angle regulators and with the same sign fof the control
signal, the machine becomes similar to a regulated conventional one.
Thus the same dynamic stability limitations of conventional synchronous
machines hold also for this case and no imporvement can be achieved at
no load.

5,4.3 Operation with fixed rotor-angle

From the preceeding investigation of the dual-excited synchronous
generator with equally excited field windings, it is clear that the

control of either of them using a rotor-angle regulator fails to stabilize

the generator over the whole loading range. The proper sign of the
c%ntrol signal which extends the dynamic stability region at full load
c%eates instability within certain operating regions. These unstable
regions occur approxiﬁétely when the rotor-angle is less than ¢y for the
case of controlling the excitation of field winding 1 and greater than
1 0—a2 for the case of controlling the excitation of field winding 2.

5 This problem could be overcome by fixing the position of the
t&o field windings with respect to the resultant flux for all loading
conditions. To achieve this, the excitation of both field windings have
to be adjusted so as to keep the rotor-angle § fixed at a certain
specified value; Fixing the rotor-angle at a value equal to a4y makes
field winding 1 magnetic-axis in the direction of the resultant flux

and hence it controls only the reactive power (if saliency and resistance

are neglected). This can be explained by the following simple analysis.
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Considering the vector diagram of Fig. 5.15, the following

equations can be written:

Ed =V - Siné - Iqo . (xq + xe) 5.11
Eq =V . CosS + Ido . (xd + xe) 5.12
Ip = Ido * Siné + Iqo * Cos§ 5.13
Iv = Ido * Cos$ - Iqo * Siné 5.14

where Ip and IV are the active and reactive components of the armature
current respectively.

Ed and Eq depend on the field currents as follows:

Ed = xaq . 1flo . Slna1 - xaq . 1f2° . S1na2 5.15

* Cosa, + X

Eq =Xy iflo 1 - i - Cosa 5.16

ad f2o 2

From equations 5.11 - 5.12

1 e 1 :
= -V . é - V. .
L X (B -V-Cos§) - Sind + X%, (-E4+V-Sing) - Cos§ 5.17
1 1 : .
= -\ . - [ - 'V' . .
L, X (Ey-V:Cosé) - Cosé Xgs (-E4+V-Sing) - Sin§ 5.18

Substituting from equations 5.15 and 5.16 in 5.17 and 5.18, then:

1 ) . ' ‘
= . . . R - V'
Ip X%, . (xad 1o Cosa1 *X g " ieo Cosa2 Cos§)
. 1 e s V-Sing) -Coss
Sins + ol (-xaq ip1, Sinay + Xaq 20 Sina, +V-Sin ) -Cos

5.19
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» d-Axis

Fig. 5.15 Steady-State Vector Diagfam of the Dual-Excited
Synchronous Generator (6=a1, resistance neglected)




98

1 . ) . ) )
Iv - X4 %o . (xad *flo COSOtl * Xad 20 Cosaz - V-Cosé) - Cosé
- c(-x_ i -Sina, + ‘] <Si + V * Sind) * Siné 5.20
xq+xe aq flo *1 xaq 1£20 010% mn m )
If 6 = oy and saliency is neglected, i.e., Xy = xq = Xy, Xoq = xaq = X,

then the following expressions can be obtained:

r x,
Ip = ;I - Sln(a1 + az) R TSN 5.21
X X
.2 2 . v
Iv = . Cos(a1 + az) igog * ;I- ieio x] 5.22

It is 6bvious that the active component of the‘current depends
only on the excitation of field winding 2. So, the control of this
winding by a rotor-angle regulator can improve the machine stability.
Field winding 1 current controls only the reactive power and thus it
makes no contribution to the stability of the machine in this case.

a) Control of field winding 2

Fig. 5.16 gives the dynamic stability boundaries of the dual-
excited synchronous genefator when its field winding 2 is controlled by

! a rotor-angle regulator. In this case, the excitation of field winding 1
is| adjusted but unregulated. It is noticed that the stable under-excited

region is extended at any loading condition far beyond the static stability

boundary.

Such extension of the dynamic stable region can be also achieved

when the rotor-angle is fixed at values other than a, as shown in Fig. 5.17

and Fig., 5.18. It appears from these figures that keeping § fixed at the
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Fig. 5.17 Dynamic Stability Boundaries of the Dual-Excited
Synchronous Generator for Operation with Fixed Rotor-
Angle (P=0.0, Field Winding 2 is Controlled by a
Rotor-Angle Regulator)
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value oy does not provide the maximum stable region.
It is noticed that the total copper loss and its distribution

between the two field windings varies widely from one reference angle to

another as shown in Figs. 5.19 and 5.20. The values may exceed the

|

\
r?tor safe heating limits and thus may affect the choice of the

r%ference angle. For lagging power factors, the operation with rotor
?

a?gle fixed at the value oy
|

However, equal excitation of the two field windings still produces

results in minimum rotor copper losses.
minimum rotor copper losses. Moreover, it results in an even

\
i
d%stribution of copper losses between the two field windings and so
‘
p*event the overheating of either of them.

; b) <Control of field winding 1

§ It has been already proved that when the rotor-angle is fixed at
t#e value @;, no stability improvement can be achieved by controlling
t%e excitation of field winding 1. This fact is confirmed by Fig. 5.21
H%wever, the situation is different if the rotor-angle is fixed at
v&lues other than oy and considerable extention of the dynamic stable
region in this éase is also achieved (Fig. 5.21).
c) Control of both field windings
As explained before, if the rotor angle is fixed at the value
ays field winding 1 controls only the reactive power and so it does not
contribute to the stability of the machine. This field winding could
be utilized in regulating the terminal voltage of the machine by providing

it with a voltage regulator. The extension of the dynamic stable region

1 this case can still be achieved by controlling field winding 2 with

s

al rotor-angle regulator. As shown in Fig. 5.22, the addition of the
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vbltage regulétor does not affect significantly the stability boundaries

aﬁ no load. Moreover, the machine is stable even with very high gain

fLr the voltage regulator.
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6. CONCLUSIONS

6.1 General

The recent developments in power systems,such as the erection

(@)

f long high voltage transmission lines, the widespread use of underground
cables and the design of large machines with high per-unit reactances, have
made the stability problem of power systems more acute. In Chapter 2,

the stability problem of conventional synchronous machines both at

n

teady-state and transient conditions is discussed briefly. It appears

t

hat, with the available methods used for improving the machine stability,

0

point has been reached beyond which further improvements are not seen

[}

specially for the dynamic operation at no load. Dual-exciting the

]

ptors of synchronous machines has been recently suggested as a possible
technique for achieving further extension of the stable opefation of
these machines.

6.2 Analysis of the Dual-Excited Synchronous Machine

In Chapter 3, a generalized analysis for the dual-excited

0

ynchronous machine has been developed. The mathematical representation
obtained allows for the study of machines, in which both field windings afe
not necessarily located on the rotor-axis and may have different number

of turns as well as different inclination angles to the direct-axis of the
pole structure. This representation is also applicable to any special

case such as the d-q or the conventional synchronous machine.

The equations are derived for the case of a dual-excited synchronous

=

ichine connected to an infinite-bus through a general transmission system.

—

wy are arranged in the operational form which is of interest as far as
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power system analysis is concerned. Special attention has been directed
in Chapter 4 towards formalizing the linearized small displacement
equations taking into account the possibility of using different schemes
of excitation regulation for either of the two field windings or both. In
the whole analysis, no assumptions are made other than those required
for deriving Park's transformation and so it offers a more exact machine
representation.

The general analysis is followed in Chapter 5 by a study of the
machine dynamic stability. A simple power system is considered, in
which a dual-excited éynchronous generator is connected to an infinite-
bus via a simple tie line. The dynamic stability investigation is
carried out through the application of Routh's criterion to the
characteristic equation of the system as found from its linearized
representation. For this, a digital computer program has been developed,
which gives the stability boundaries in the plane of any two arbitrary

parameters.

6.3 Static Stability and Capability Diagram of the Dual-Excited
Synchronous Generatof

The static stability limits of the dual-excited synchronous
generator with identical and equally excited field windings are the same
as those of an equivalent conventional one. This applies also for
the case of differently excited field windings if there is no saliency.
Wth saliency is present, the static stability boundary depends on the

ratio of the excitation currents in both field windings. However, it

does not significantly differ from that of the conventional synchronous

generator.
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The values of the excitation currents in both field windings are
|
rfstricted at any operating point by the rotor heating limit. Not

only the total field copper losses have not to exceed a safe value, but
a[so the copper losses of each field winding should not exceed its
h

ating limit.’ It has been found that equally exciting both field
windings has the advantage of producing minimum total field copper
losses as well as even heat distribution in the rotor. This would
p+event the overheating of either of the two field windings and thus
provide a wider operating range.

generator has no advantage over the conventional one as far as the
‘ .

i
|
|
} Hence, it can be concluded that the dual-excited synchronous
|
¢
s{eady-state (static) operation is concerned.
|

6;4 Dynamic Stability of the Dual-Excited Synchronous Generator.

' For investigating the dynamic stability of the dual-excited
s#nchronouS'genérator, two modes of operation are considered. In the
f%rst, the two field windings are always equally excited. In the
s#cond, the excitation currents of both windings are adjusted so as to
k%ep the rotor-angle fixed at a certain specified value.

! With equally excited field windings, the control of either of them
b? a voltage regulator extends éonsiderably the dynamic siable region

at full load. However, such an extension will be less when the machine
\

i% lightly loaded. At no load, no improVement can be achieved and the

maximum capacitive power which the machine can supply for stable

operation, could not exceed the static stability limit. Thus, this

cheme of controlling the excitation of the dual-excited generator does

w0

not offer any further advantage in comparison with the conventional one.
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However, the extension of the under-excited region beyond the

n

tatic stability limits for all loading conditions can be achieved
by controlling the excitation of field winding 1 by a rotor-angle

regulator. In this case, instability will be created if the machine

[

s operating within its static stable region with a rotor-angle less

than - Stability within this region can then be maintained if the

n

ign of the control signal is reversed or if the excitation control loop
is out of service for this operating condition. It follows that this
scheme of excitation control is not helpful unless special arrangements
are used to take care of this problem. vThis may introduce practical
difficulties, the study of which is beyond the scope of this work.

When the excitation of field winding 2 is controlled by a rotor-
angle regulator, the extension of the under-excited stable region is
subjected also to certain restrictions concerning the sign of the
control signal. .For stabilizing the machine, this sign should be
positive when § is less than 180-a., and negative when 6§ is greater

2

t?an 180—a2. It is also noticed that the improvement achieved at

I%ght loading is not satisfactory.

With both field windings equally excited and simultaneously

controlled by two similar regulators, the dual-excited synchronous
!
g%nerator (with identical field windings) is equivalent to a conventional

!
one. Thus, the dynamic stable region at full load can be extended
considerably, while such extension is limited at light loading. At no

load, no improvement can be achieved at all and the maximum capacitive

-
=

power, which the generator can develop, does not exceed the static

stability limit,
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As the control of either of the two field windings by a rotor-
gle regulator fails to stabilize the machine all over the whole
nerating range, the second mode of excitation has been suggested as
possible way to overcome this limitation.

If the rotor-angle is fixed at the value a.,, the dynamic stable

1’
gion can be considerably extended at any loading condition through
ntrolling the excitation of field winding 2 by a rotor-angle regulator.
eld winding 1, having in this case its magnetic-axis coinciding with

e resultant flux, cannot heélp improve the machine stability.

The extension of the dynamic stable region can also be achieved

byl controlling the excitation of either of the two field windings by a

ro

th

th

va

At

he

€ex

be

VO

ta

hi

re

tor-angle regulator, when the rotor-angle is fixed at values other

an a It is found that the largest stable region is obtained when

1
e rotor-angle is fixed at the value 90°. However, the choice of other
lues than ay is restricted by the heating limit of each field winding.

lagging power-factors, the value o, gives rise to minimum rotor

1
ating but not to the extent to be less than in the case of equally
cited field windings. Further, with the rotor-angle fixed at the value
, field winding 1 does not contribute to the machine stability and can
utilized to control the terminal voltage by providing it with a

ltage regulator. Stability of the machine in this case can be main-

ined at any loading condition through controlling field winding 2 by

gh gains for the voltage regulator without leading to instability.
In general, it can be concluded that the under-excited stable

gion of a properly controlled dual-excited generator can be extended

rotor-angle regulator. Such a scheme will allow for the use of extremely
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at no load as well as at low power demand far beyond its static stability

limits. On the other hand, this machine at full load operation has no

afvantage over a properly controlled conventional one from the dynamic
s#ability point of view.

|

! 3
6}5 Recommendations for Future Work /

} Although some effort has been directed in this thesis to
| .

sTudy the dynamic stability of the dual-excited synchronous generator,

mény investigations are still to be carried out in the future to

understand more its dynamic behaviour. Some of the studies suggested

for futurewwork are:

1. Studies of the effect of other control signals such as current,
péwer, reactive power, speed, acceleratiog or any possible
combination of them on the machine dynamic stability.

2. Finding out methods for realizing stable dynamic operation all
over the whole loading range with equally excited field windings.

3. Effect of different rotor designs on the dynamic stability of
this machine.

4. Optimization of the regulator parameters to achieve the best
dynamic operation especially when both field windings are
simultaneously controlled.

5. Enhancement of damping of synchronous machines especially
at no load.

6. Investigating the machine transient stability under the effect
of different schemes of excitation regulation.

7. Experimental work on the microalternator tfor verifying most of

these theoretical studies.
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8. APPENDICES

Appendix A - Limitations of the Conventional Synchronous Machine
Excitation Control At No Load.

Theoretical and experimental studieszz’28

showed that the possible
capacitive power, which a conventional synchronous generator can
develop at no load, cannot be increased through the use of voltage or
load-angle regulators. In this appendix, it will be proved that, no
matter what signal is fed-back from the output of the generator to the

direct-axis field winding, this limitation still holds.

The equations describing the performance of a conventional

s*nchronous generator connected to an infinite-bus through a series
|

|
reactance x, are:

Vg =V Siné = pwd—(peo+pA6) . Wq-r ) 8.1
=V - Cos§ = pY +(pb +pA§) * ¥Y,-r - i 8.2

Vg <V pq(pop) 4 q
T, =i -¥,-i, - v +@ -pas 8.3

i q d d q
where:
Wd'= -(xe+xd(p)) id+G(p) Ved 8.4
\y___._ + 1 8.5
o = " @) iy

Since the speed changes during a small disturbance are small, the
valtage terms pAS-Wq and pAé-Wd can be neglected. Also, the voltages de
and qu induced in the armature by the rate of change of armature flux

linkages are negligible compared with the rotational voltages.
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Neglecting de, qu,pAsand substituting p60=1, equations 8.1 -

8.3 can be rewritten as follows:

vy = v:Siné = (xe+xq(p)) iq -r -id 8.6
vq = v*Cosé$ = -(xe+xd(p)) id + G(p)vfd -r '1q 8.7
T i GOy () iy + G(p) vgy)

. . 2
*i -(xe+xq(p)) 1q + @ - p°as 8.8

Following the procedure explained in Chapter 4, the small displacement

equations can be written as follows:

Avd = qu'AG = (xe+xq(p)) Aiq -T - Aid 8.9
Avq = Vgo 88 = -(x_#x () My - T - Aiq + G(p) MV ey 8.10
ATi = _iqo . (xe+xd(p)) Aid + iqo . (xe+xq) Aid

+ido . (xe+xq(p)) Aiq + (e—ido (xe+xd)) Aiq

gy TG Mgy + @ p2as 8.11

Using equations 8.9 and 8.10, equation 8.11 can be reduced to:

_ s N s s N A w2y
ATi -»(Vdoﬂdo T) Mg o+ (quﬂqo T) Alq + (Q+® -p7) - As 8.12

where Q is the reactive power delivered to the infinite-bus and is equal

to (ido . vqo - 1qo . Vdo)

Equations 8.9, 8.10, and 8.12 can be rewritten in the following

matrix form:




LLD

G(p) Avfd xe+xd(p) T “Vio Aid
= -T X _+X -V Ai 8.13

| Xe™q® qo a

. . 2
Vdo 'do'T qu+1qo r ® - p"+Q A8
!
At no load:
Vio = 0 8.14
V= 4y 8.15
qo - -

The positive sign applies when 5=0°, while the negative sign when
8§=180°. Substituting from equations 8.14 and 8.15 and neglecting the

armature resistance, equation 8.13 becomes:

G(p) Avfd xe+xd(p) Aid
0 = + + Ai 8.16
Xq xq(p) +V . 1q
0 +v ® - p2+Q A8

From equation 8.16, the transfer functions of the conventional
synchronous generator (Fig. 8.1) can be written as follows:

M a1 - (@@ Y - AT p) ¢
FouP) = 55

£ Tea  Xa*Xe) (1+T(;’p)-(1+T;-p)'[(Q+®~p2)°(1+T;.p)+

v/ (xg#x ) o Cop) ]

8.17
2 . 1+T H' ) .
v/ (xg#xg)) - (15T °P)
Aiq
Fiq(p) = g =0 8.18
_ b8
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Variation in reference

> Fia®
Avfd
%} . & P lq(P)
o Fs®)
A
‘ ‘ +  , ‘
. —
g (p) Ste— M®  fe—r
| ' . Aid(p) —

Fig. 8.1 Transfer Functions of the Conventional Synchronous Machine
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where:

1

Td = direct-axis transient short-circuit time constant.
" - »

Td = direct-axis subtransient short-circuit time constant.

de = direct-axis damper leakage time constant.
”

qu = quadrature-axis subtransient open-circuit time constant.
1

Tq = quadrature-axis subtransient short-circuit time constant.

Whatever feed-back signals or regulator transfer functions are used, the

complete open-loop transfer function Avfb/Avfd will be:
Fo(P) = Ay (@) " F. () 8.20
Aidt(p) can have the following general form:
n n-1
a pta P t...te.. 1
A...(p) =k - 8.21

m ..m-1
bm P +bm_1 P t...t... + 1

where a s a b, b ... and k are always positive. Hence,

n-1’ " m’ “pm-1’

the characterisitic equation of the system becomes:

X . +X
d -1 1 " 2
r a(—;j)'(bm‘pm%m_l'Pm oot + 1) (14T ) (1T op) - [(Q+ @ “p)

Hh

" 2 . "' ..n . n-1 . .
(1+Tq p)+{v /(Xq+xe)) (1+quP)]+1<(an Pta P ...t + 1) (14T, 0p)

A ", 2 ) " _
[Q+® 'p9) (1+Tq P+ /(xq+xe)) (1+qu p)] =0 8.22

According to Routh's Criterion, the system will be unstable if

any of the polynomial terms of cquation 8.22 disappears or becomes negative.
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e only terms of this equation which can be zero or negative are those

cluding the quantity (Q+v2/(xq+xe)). It can be seen that the first

rm to become negative with the change of Q is the constant term of the
lynomial. This occurs when Q=-v2/(xq+xe). Hence, the machine cannot
stable when the capacitive power exceeds its value at the static

ability limit.
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Appendix B - Limitations of the Dual-Excited Synchronous Machine

Excitation Control at No Load

Equations 8.1 - 8.3 are valid for any synchronous machine.

ence, it represents also the dual-excited synchronous one. The
xpressionsvfor the flux linkages in both the direct- and the quadrature-
xis are given by equations 3.60 and 3.61. The special case of a generator
ith two identical field windings having equal inclination angles to the
irect-axis of the rotor and equally excited is considered. The generator

s assumed to be connected to an infinite bus through a series reactance

For this case, the flux linkage equations can be written as:
¥ = T OXg(P)) 3g + Gy (P) Vpy*Cepg (P) Vg 8.2
Wq = -(Xe+Xq(p)) i + Gflq(p) vf1+€%2q(p) Ve 8.24

Substituting for Wd and Wq in equations 8.1 - 8.3 and applying

he same approximations considered for deriving equations 8.6 - 8.8,
he following equations are obtained:
vSind = -r'1d+(xe+xq(p)) lq_Gflq(p) vfl—szq(p) Vey 8.25
vCosé = -r'1q-(xe+xd(p)) 1d+Gf1d(p) Vf1+Gf2d(p) Vo 8.26
Ty o= iy (xgxg (P)) B4+ g (P) vy +Geyq (P) Viy)
iy (= Oghx, (9)) 446y () gy Gy (B) Viey)
@ - pZ A8 8.27

ence, the small displacement equations can be written as follows:
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A VAR = e Ad . _ _
V4 qu AS T Ald + (xe+xq(p)) Alq Gflq(p)Avfl szq(p) Avf2 8.28

Ay = -VdO‘A6 = -r‘A1q —’(xe+xd(p)) Aid+Gf1d(p)Avf1+Gde(p) Avf2 8.29

AFi = -1qo'(xe+xd(p)) A1d+1qo’Gf1d(p) Avf1+1qo'Gf2d(p) Avf2 +

lgo" (Xe*Xq(PI) Ao -iy "Gy (P) AV =iy Gy (P) Avg, +

<A P AS w2 A
Va0 A1q+vdo by + @ -p° As 8.30

If only field winding 1 excitation is controlled, then all the

terms containing Av .  will disappear. Hence, equations 8.28 - 8.30

f2

will be reduced to:

0= -r'Ald + (xe+xq(p)) Alq-qu AS -Gflq(p) Avf1 8.31
0= -r-Alq - (xe+xd(p)) Aid+vdO AS + Gfld(P) Avfl 8.32
0= -iqo'(xe+xd(p)) Aid+iqo-Gf1d(p) Avf1+1do'(xe+xq(p)) Al

q

s Vs VA L o2
£ Gflq(p) Avf1+vqo ML +vy thig o+ @ - p? As 8.33

q

At no load, equations 8.14 and 8.15 can be also applied. Neglecting
the armature resistance, equations 8.31 - 8.33 are simplified and can

be arranged as follows:

Gy (PIAVey X *+x4(P) Ay
G., (p) '
B x| x| Ty Al 8,34
GerqP) e d e’ q q

+ v Q*QD'PZ' A8
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where Q is the reactive power delivered to the infinite bus.

The transfer functions of the dual-excited synchronous generator

(Fig. 8.2) can be written as follows:

By G @) ((xgex () @ @p) +v7)

F. 1) = = 8.35
WL gy (xg#g () ((x %, () @+ @ P)#v")
g : . 2
o - ilq* Gy Oy ) @ ® ) _ e
" YEL (xgrxg 09) (0 rx 00) (@ @) wO)
+ Vo Gy (P (x 44 (P))
P @) = 5 flq e™d g 37

FL (rgxy (0) (0o () (@ @ ) + v

e+xd(p), xe+xq(p), Gfld(p) and Gflq(p) can be expressed in polynomial

forms as follows:

I

A -p4+A -p3+A 'p2+A ‘p+A
_ 4 3 2 1 o 8.38
X*xq(p) = ) 3 2 '
A 'p + B-p +C'p +D-p+E
B 'P4+B 'P3+B 'P2+B ‘p+B
_ 4 3 2 1 o 8.39
XX (P) = —g——3—— :
A'p +B-p"+C-p " +D-p+E
CS-p3+C2-p2+C1p+C0
Gfld(p) = 8.40

A'p4+B‘p3+C'p2+D'p+E

D -p3+D 'p2+D “p+D
3 2 1 0 8.41
Ce1g® = -~ 3> '
q A‘p +B'p +C p +D-p+E

t should be noted that all the values, A, B, C, D, E, A4, AS’ cee

o B4, BS’ cie Bo’ C3, C2, cee CO, D3, D2’ ces D0 are positive.
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riation in reference Aigy
» F..:(P)
+ Av Al
f1
q
. AS
» Fs1(p)
Av
fib
A1 (P) >
gp (P) Aga® e
riation in reference
Ai
o Fia2(P d
+ Av Ai
q
AS
Av
f2b
ggo (P) Aiqg2®
Aja2(P)

Fig. 8.2 Transfer Functions of the Dual-Excited Synchronous Machine
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The effect of using the three output quantities Aid,

5 individually as control signals can be studied as follows:

Ai  and
q

a) Aid Control signal:
The complete open loop transfer function Avﬂb/Avfl
an have the following form:

Fo(P) = Fiq1:(P) * Foyq () 8.42

Assuming that Fidlt(p) has the same form as that given by equation
21 for Fidt(p)’ the characteristic equation of the system can be written

$:

m . E . - 4 . 3 . 2 . . . 4 . 3
?m'p +bm_1 p + ... +1) (A4 P +A3 P +A2 p +A1 p+Ao) ((B4 P +B3 P+

|
2 2 4 3...2 2, LN
i'P +Bl'P+Bo) Q@ p7) + (A'p +Bp+C'p +D'p+E) ° v7) + Ke(a 'p+a

n-l . .3'.2 . . .4 .3 -2 M
+ ...+ 1) (C3 p+C,'p +Cy p+Co) ((34 P +B;p +B, p +B; P*Bo)

Q +@ 'p%) + (Apt+B-po+C-pI+Dp+E) * v2) | 8.43

TWe terms of the characteristic polynomial which can become zero or

n

f

T

t

t

S

S

%gative are those containing the quantity Q. It can be seen that the
|

%rst term to become negative is the constant term of the polynomial.
ﬁis term has the value (AO+K'CO) : (B0~Q+E'v2). It is thus obvious
hat the machine cannot be stable when the capacitive power exceeds

he value E~Q2/BO. As shown, this value is independant of the control
ystem parameters. Hence, Aid signal alone is useless at no load.
Inspection of the operational functions of the dual-excited

ynchronous machine, which are given in Appendix C, shows that




128

2 . . 2
v /B0 is nothing but v /(xq+xe).

b) Aiq Control signal:

Following the same procedure as for Ai, control signal,

d

the characteristic equation of the system in this case may be written as:

no

oM . m-1 4 3.0 - 2.p . L2
(B P"+by_ 1 B" T oL ¢ 1)+ (B, -p*+B,p 4B, pPB p+B ) <@+ @ pO)+
(At.p4+B,p3+C.p2+D.p+E) Vz) —K(a .pn+a .pn'1+ L+ 1)'(D .p3+D .p2
n n-1 : 3 2
+D,"p+D ) - (Q+ @ p%) =0 8.44

To ensure that all terms of the characteristic polynomial which do

t include the quantity Q are positive, K should be negative.

In this case, the signs of the other terms depend on the value of Q.

The first term to become negative is that free from the operator p. This

te
m4
Ag
ma

it

(b

+D

rm has the value (BO—K'DO)'Q + E'vz. Thus, stability cannot be
intained when the capacitive power_exceeds the value E'vz/(Bo-K'Do).

K is -ve, it follows that the maximum capacitive power, which the
chine can éupply at no load with this scheme of control without losing

s stability, is even less than the static stability limit.

c) A8 Control signal:

In this case, the characteristic equation of the system becomes:

..m ..m-1 g .4 ) L2 . . L2
P +bm_1 P+ ... 1) ((B4 p +B;'p 4B, p +B, p+B ) Q+® p°) +

L4 5.3 2 . 2, - .. n ..n-1 ) .3 L2
p +B'p +C-pT+D p+E) - v) + K v-(an-p +an—1 p + ... +1) (03 P +D2 p
PP =0 8.45
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[= |

he positive sigﬁ applies when 6=180° while the negative sign when
§=0°, Thus to ensure that all terms, which do not include the quantity
Q, are positive, K should be positive when 6=180° and negative when

§=0°. In this case, the sign of the other terms depends on the value

O

f Q. Following the same procedure explained before for the other control
signals, it can be shown that the maximum capacitive power, which the
machine can supply in this case without losing its stability, is
(E'v2+K-Do'v2) Bo' It is thus clear that this scheme of excitation control
can be effective in extending the dynamic stability of the dual-excited
synchronous machine at no load.

When field winding 2 is only controlled, similar conclusions

will be cbtained for Aid and AS control signals. However, on the

(o]

ontrary of the case of controlling field winding 1, Aiq control signal

can extend the dynamic stable region of this machine at no load.
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Appendix C - Expressions for the Operational Functions of the

Dual-Excited Synchronous Machine

The expressions for the dual-excited synchronous machine
operational functions can be derived by eliminating the rotor currents

from equation 3.56, 3.57. This would result in the following:

X
n ad . . i 1lufe 2.0:2 2
d(p) = x5 - [xy {-rkd+(2 xad-xkkd) pl {xaq Sin (a1+a2)p

+2'xf12‘Cosa1'Cosa2'(rkq+xkkq~p)-p-(rkq+xkkq-p)
2. . 2. ; .
{Cos oy (rf2+xff2 p)+Cos o (rf1+xffl p)}}
—2'x2 *X_.°X *Si *Sina, "’ 4—x X :
P aq Yad Yf12 SNy O P Xaq Xaq

.2, . .2, . .
{Sin oy (rf2+xff2 p)+Sin oy (rf1+xffl p)}

3 . - . . ‘ . -
PX (T Xygq P) LTy gy ) (T gp X ey P)

ad
2 .2
Xg1o' P} o P ] 8.45
*aq 2 2 2
Xq®) = Xgm 5« [Xaq (gt (2% Xyq) 'PI 1Xgq Sin (og%ey)"p
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1 T2 Xegp P 2 Te1tXefn

+2-X 2-x X -Cosa, *Coso 'p4—x P S
ad "aq “f12 1 2 aq “ad

2 ) 2 51} -pd
{Cos”a, " (Tpy#Xppy PI+COS oy (T oy #X ey "PII P4

Xaq (Tka*™Xkid P) 1Ty *Xepy P (Fgp*Xppy P~

2 2
xflz'p }'p] 8.47
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f2q(p)
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where
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F14(P) =

£24(P) =
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ad
o gt (pgXaq) PI(Cosoy (g #xpy 0 P) " (T ¥Ry P)-
Cosa, "X “(r, +x *p) 'p-Sina, "Sin(a,+a,) *x 2, 2) 8.48
2 *f12 Ykq™ kkq P/ P 2 17920 XaqP 7 ©-
X
ad . .
o+ Txat yga%aq) "PY (Cosay (ry 4%y y 0 PY " (Tgq X gy 'P) -
Cosa, *x (r, +x *p) "p-Sina, *Sin(a,+a,) "x 2. 2) 8.49
1 %f12 Ykq"*kkq P/ P 1 17%27 Xaq P :
X
=—....a..ﬂ.' - - . 3 . . . .
o (Trq* ByiqXag) "PY (8iney " () Xy P) - (Tgy*X ey P) +
Sina, x_.. " (r, ,+X., .*p) ‘p-Cosa, Sin(a,+a.) *x 2'p2) 8.50
2 *£12 Ykd™*kka P’ P 2 17%2) *ad '
X
=_a_q... - . . 3 . . . .
5 gt KpeqXag) PH Ginay {1y 4%y g P (Xgy #Xppy P)
Sina. °x “(r, ,+Xx ‘p) ‘p-Cosa, *Sin(a,+a,) "X 2-p2) 8.51
1 %f12 Tkd*kkd P/ P 1 17270 %ad :
- xad.xaq

30 . P‘(?kq+(xkkq—xaq)‘P)‘{rkd+(xkkd-xad)'p}'(Sin 2a2,

(rf1+xff1'p)-Sin2a1'(rf2+xff2’p)+2-Sin(al—az)‘

Xg12P) 8.52

_ . ) ] 022 s s L2 . .
= (Sln(a1+a2) X d xaq p)-2 Slna1 Slna2 xaq.xf12 (rkd+xkkd P)

3 vn . N oy pY w2 .
P (gt iad P (g™ ikq P {Tgy X ppy "P) T (Fep™Xepy PIXgyp

2, 2 , 2 .2
}—xaq’(rkd+xkkd p)* {Sin ay +Sin o,

P (rep*Xeey P) (e *Xegy PI

2,9 . x 2 . ey oy 2. .
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{Cos al'(rf2+xff2 p)+Cos a, (rf1+xffl Pl'p 8.53
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It is obvious that the expression for M(p) will be only equal
b zero if the two field windings are identical and have equal
nclination angles to the direct-axis of the rotor. This, in turn,
roves that the technique of replacing the dual-excited machine by an
quivalent one, which has two field windings located on the two axes

f the rotor 29,15 not valid except for this special case.
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Appendix D - Steady-State Vector Diagram of the Dual-Excited

*
Synchronous Machine

For steady-state operation, the speed pp is constant and if

the time t is measured from the instant at which the axis of phase a

s in line with the direct-axis of the rotor, then:

6 =po, -t 8.54

According to Park's transformation, the equations of the voltage

and current in phase a are:

v v

to tdo.Cos(peo‘. t)-v

tqo : S1n(p6o T t) 8.55

i, 1td0'€os(p6o ©t)- i : Sln(pe0 T t) 8.56

qo

ow, if the voltage and current of phase a (R.M.S. values) are represented

y vectors Vto and Ito as 1n’F1g. 8.3,

Imaginary-Axis

Fig. 8.3

ltage Representation in
Complex Plane

= —— —% Real-Axis

he components of these vectors in the real and imaginary axes can be

elated to the phase quantities. V%o is the sum of two component vectors

and Vt and Ito is the sum of two component vectors ItR and ItM' If

tR M

he magnitudes of these components are denoted by vtR’ vtM’ I R and ItM

t

*

All equations in this appendix are not normalized.




respectively, then:

Vv, =V

to

Ito
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+ jV _ 8.57

tR tM

ItR + JItM 8.58

The phase voltages and currents are known to alternate with frequency

pé

)
o

/27, Hence:

vto

1to

respectively. Equ

at

be

[}

Vto

1to

Equations 8

all instants of

tho

v
tqo
i

tdo

*tqo

It is seen

represented on

/2|vtol * Cos(pe *t+B) 8.59

/2|T;0| " Cos(po,_"t+a) 8.60

where |V;0| and |T;0| are the magnitudes of the vectors V__ and T,

to

ations 8.59 and 8.60 can be rewritten as follows:

/2~vt *Cos(pe_-t)- wb-vtM-sln(peo-t) 8.61

R
/2-1tR Cos (pe_t)- /2~ItM-sln(peo°t) 8.62

.61 and 8.62 should agree with equationé 8.55 and 8.56

time. Hence:

= V2 v 8.63

tR
= V2 - Ve | 8.64
= /2 Lr 8.65
= V2 - Lo 8.66

from equations 8.63 - 8.65 that the direct- and

quadrature-axis components of the voltage and current of phase a can

a complex plane vector diagram. On this diagram, the

real-axis corresponds to the direct-axis, while the imaginary-axis

corresponds to the quadrature-axis. Thus, it will be more convenient to
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Te
place V I__ and ItM by V

tR’ vtM’ tR

It should be also noted that when working with per-unit quantities,

tdo’ tho, Itdo and Itqo respectively.

there is no differentiation between maximum and R.M.S. values since both

have the same pér-unit value. The factor v2 will disappear from all the

[0)

quations.
As it can be deduced from equations 8.63 - 8.66 and also from

Park's transformation, the axis components of the voltage and current

)

re constant values independant of time. Moreover, the induced e.m.fs
and currents are constant and the damper winding voltage and current are
zero. The general equations 3.23 and 3.24 can therefore be simplified

as follows:

Velo - Te1  fio 8.67
Vezo T TE2 T Y20 8.68
= _p - 4 .3 - 8.
Vido L xq 1tqo 4 69
= - i - i 70
tho T 1tqo X4 ttdo ? eq 8
where:
eq = V2 Eq 8.71
eq V2 E, 8.72
Hence:
vto N tho * Jvtqo
=5 Wego * Veao)
V2 tdo tqo
1 . . L . . .
= -r° . - - * - * 8.73
vz Ot Ltdo™®q 1tqo %7 *tqo%d 1tdo+Jeq)-
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Substituting 8.65, 8.66, 8.71 and 8.72 in 8.73:

E=V, +r 1, +jx 1 +jx, ° I

to to q tqo d tdo 8.74

where

]

E=-E; + JEq~ | 8.75
From equation 8.74, the steady-state vector diagram of the

dual-excited synchronous machine can be constructed as shown in

Fig. 8.4.
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Itdo.xd

eeoezed ~aXis

Fig. 8.4 Steady-State Vector Diagram of the Dual-Excited
: Synchronous Machine.
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Appendix E - Power/AngleCharacteristics of the Dual-Excited

Synchronous Machine

The power-angle is defined as the displacement of the magnetic-
axis of the exciting field from its ideal no load (no current) position.
In a conventional synchronous machine, the magnetic-axis of the exciting
field coincides always with the direct-axis of the rotor. Hence, the
power-angle in this case is always equal to the rotor-angle. The

latter is defined as the displacement of the direct-axis of the rotor
from its ideal no load position.

On the other hand, the magnetic-axis of the resultant exciting
field in a‘duél—excited synchronous machine is no longer attached to

the direct-axis of the pole structure. Thus, the power-angle is not
necessarily equal to the rotor-angle. In Fig. 8.5, which represents

the vector diagram of a dual -excited synchronous machine connected to

an infinite-bus through a simple tie line, the power-angle is denoted

by Ge while the rotor-angle by §.

Neglecting the armature and tie-line resistances, the steady-
state output power of the dual-excited synchronous generator is given
by:

P=YV I + V - I 8.75

From Fig. 8.5

- . Qi 8.77
Vdo \ Siné
A =V . Cosé 8.78
"qo

E -V
1 =9 90 8.79
do X

+ X
e
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q-axis

"(r+R])
E N

4——Iqo'(xd+xe)_1do

‘r

. —3d-axis

Fig. 8.5 Steady-State Vector Diagram of a Dual-Excited
Synchronous Machine Connected to an Infinite-Bus
Through a Simple Tiec-Line
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i Ed + Vdo 8.80
qo X +X :
q e
Hence
V-E 2
. LV 1 1 .
P=—3 | Sin§ + 2. ( - ) + Sin 26

xdrxe 2. xq+xe xd+xe
V-E

piivareentl CosS§ 8.81

q e

Equation 8.81 shows that the only difference between the power/
angle equation of the dual-excited synchronous machine and that of

the conventional one is the existance of an additional term, which
depends on the direct-axis component of the resultant electromotive
force. A plot for. this equétion is given in Fig. 8.6.

The curves obtained show that the power/angle characteristics
can take different shapes according to the ratio between the exciting
voltages of both field windings. Moreover, the maximum output power
under these conditions does not necessafily occur at 6=90,as for a
nonsalient-pole conventional machine, or at an angle, which depends
on the ratio between the reluctance power and the exciting field power,
as in the case of salient pole conventional machines. It can happen
for certain ratios of the exciting voltages that the maximum power

occurs at rotor angles far beyond 90°. This fact is of great interest

as far as transient stability is concerned.
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Pin p.u.

03

W,

02

N
DN
\

\

QOts

40

80

120 16

180
Rotor- Angle §°

—o- Kf=0

—x- K¢ =0.5
—0- Kf=1.0
—e— Kf=1.5

-03

Fig. 8.6 Steady-State Power/Angle Characteristics of the Duai-
Excited Synchronous Machine (E=1.0 p.u.)
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pendix F -- Flow Chart of the Dual-Excited Synchronous Machine
Dynamic Stability Program.

Start

i J

Read Number of Problems

Read axes of the Stability Curves

3

Read Data of

the System

Is There

| Calculate the Opera-

tional Functions

Winding

Print Data of the System

Damper

Calculate the Opera-
tional Functions
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J=J+1
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1

l

Calculate Regulator
Transfer Functions

Calculate Governor
Transfer Function

J=1

Are Roots to be
Calculated

Form the Cha-

racteristic Equa.

Check Stability

Py’

I=1

-

o>
U'l._h

A

Form the Cha-
racteristic Equa.

Check Stability
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Draw the Stability
Curves

No

Have all problems
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Yes

Stop

‘ 2 4 5 3
[
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Calculate roots
Print Results
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