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ABSTRACT 

In the recent past, attention has been directed towards the 
p ssibility of using properly controlled dual-excited synchronous 
machines to overcome the existing stability limitation of the 
c nventional ones. 

This thesis presents a generalized analysis for the dual-
e cited synchronous machine, in which the two field windings are 
net necessarily located on the rotor-axes, and may not have equal 
n ber of turns or equal inclination angles to the direct-axis 
o the pole structure. In deriving the general equations, the 
e ternal connection, is considered in a general form so as to allow 
for .studying the machine performance when it is connected to an infinite 
bus' through a general transmission system. The small displacement 
eq ations are then derived and arranged in a form suitable for 
in estigating the dynamic stability when different excitation control 
sc emes are used. 

The improved dynamic stability of the dual-excited synchronous 
ge erator is demonstrated by studying a simple power system. For this, 
a •igital computer program has been established. The results show that 
th s machine has superior dynamic stability boundaries compared with 
these of a conventional synchronous machine especially at no load as 
well as at low power demand. 
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1. INTRODUCTION 

The rate of increase in production of electrical energy is such 

as to double the amount of installed plants each nine or ten years in 

all the highly developed, industrialized countries of the world. In the 

underdeveloped countries, the rate of plants installation and growth of 

consumption is even more rapid. This has resulted in greater inter-

connection and larger systems, since this alone can ensure stability, 

continuity of supply, the most efficient use of plant and the most 

economical use of national resources. Accordingly, long high voltage 

transmission lines are needed to connect the remote electrical energy 

resources to the load centers. Moreover, for safety reasons and 

because of environmental accommodation, overhead transmission lines 

are now replaced by high voltage underground cables for power distribution 

in large towns. 

As a consequence of the erection of such long high voltage 

transmission lines and the widespread use of underground cables, 

situation can arise in which the loads of synchronous machines become 

capacitive and they should operate in the under-excited region. The 

extent to which this is possible is severely limited by the stability of 

synchronous machines. 

The present tendency towards building larger synchronous machines, 

which is dictated by economical reasons has made the stability problem 

more acute. Such large machines have higher reactances, which result 

in reducing appreciably their stability limits. 
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Many well-known techniques have been applied to improve these 

stability limits, but it appears that a situation has been reached 

beyond which further improvements are not seen for conventional 

synchronous machines especially at no load as well as at light loading. 

In the recent past, attention has been directed to the possibility of 

using properly controlled dual-excited synchronous machines to improve 

further the stability of power systems. The general analysis for such 

• 
machines with special reference to their dynamic stability is the main 

concern of this thesis. 
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2. STABILITY PROBLEM OF SYNCHRONOUS MACHINES 

2.1 Introduction 

The stability of synchronous machines can be generally defined 

as their ability to remain in synchronism with other machines in the power 

system without excessive oscillations and to be able at the same time to 

supply all connected consumers without interruption. To simplify the 

handling of such a problem, it is a common practise to divide it into two 

main categories. 

2.2 Transient Stability
2-4

Power systems are often subjected to sudden large disturbances 

such as: sudden increments of load, faults, switching one or several 

lines out of the system, a combination of a fault and the subsequent 

isolation of the faulted part. For a certain fault occuring at a given 

location and cleared in a definite manner, there is a power limit which 

the loading cannot exceed without the system being exposed to a loss of 

synchronism. For this power limit, known as the transient stability 

limit, and a certain reactive power flow, there is definite phase 

difference between the electromotive force of the synchronous machine 

and the voltage at the terminals (Fig. 2.1). The phase of the terminal 

voltage is related to the resultant rotating field, while the phase of 

the electromotive force is related to the exciting field produced by 

the field winding. 

For a simple system consisting of a conventional synchronous 

generator connected to an infinite-bus through a simple tie line, the 

transient power angle characteristic is given by Fig. 2.2. Neglecting 



6O c c' 

P - V ,E  • Sind 
X
d
+X
e 

lO 

Fig. 2.2 Transient Power/Angle Characteristic of a Conventional 

Synchronous Generator (Transient Saliency Neglected) 
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ransient saliency, the characteristic is approximately a sine wave 

aving its crest equal to V • E / (xd + x
e
), where E is the voltage of 

he machine behind its transient reactance. If a short circuit occurs 

n the tie line, the power output from the generator will be interrupted 

ither completely or partly. Owing to the inertia inherent in the 

ower regulation of the prime mover, the driving mechanical power 

annot adapt itself to the new conditions without time lag. It follows 

hat, for a short time, there is a surplus mechanical torque which tends 

o accelerate the rotor of the synchronous generator and so the transient 

oad-angle 6 increases. If the short circuit is not cleared before 

reaches a certain critical value 6 the generator will fall out of 

tep. 

.2.1 Methods for improving transient stability 

The most obvious method for improving the transient stability of 

ower systems is to reduce the transfer reactance between synchronous 

achines, as this increases the synchronizing power that may be inter-

hanged between them. High-speed circuit breakers and relays constitute 

very important measure for increasing the transient stability by 

learing the fault in the shortest time interval, and so limiting the 

ffect of the disturbance. Control of the excitation of synchronous 

achines helps also to improve the transient stability by partially over-

oming the demagnetizing effect within the machine through positively 

ncreasing the machine fluxes and terminal voltages
5,6

. 

2.2.2 Improving transient stability by the dual-excitation of 

synChronous generators 

Among the methods used for improving the transient stability, it 

is noticed that there is no one dealing with a direct action on the load-



ngle. The problem as seen from the machine point of view is that 

he magnetic-axis of the exciting field is attached to the physical-

.xis of the pole structure, and so it follows its movement. If this 

agnetic-axis is set free during the fault period, a situation can be 

eached at which the phase angle of the electromotive force in respect 

o the terminal voltage is maintained at values consistent with the 

synchronous operation. 

Sapen
25 

suggested the decoupling of the magnetic-axis of the 

exciting field from the physical-axis of the pole structure by providing 

the machine with an additional field winding acting on the quadrature-

axis (Fig. 2.3). The d-q synchronous generator in this case has two 

identical field windings, one is continuously excited (direct-axis), 

while the other is excited only after the occurance of a disturbance. 

To demonstrate the stabilizing effect of the quadrature-axis field 

winding, a simple power system is considered. As shown in Fig. 2.4, the 

system consists of a d-q generator connected to an infinite bus through 

two parallel transmission lines. On the occurance of a three phase 

short circuit at point F, the change of the rotor angle due to the fault 

and the subsequent variations of the machine excitation is shown in 

Fig. 2.4. Curve 1 represents the power-angle characteristic for steady-

state operation with only the direct-axis field winding excited. 

Curve 6 is the same as Curve 1 but with the quadrature-axis field winding 

only excited. Curves 2 - 5 represent different operating conditions. On 

the occurance of a disturbance, the sequence of operation can be explained 

as follows: 

Point A represents the steady-state operating point befOre the 

occurance of the short circuit. 



8 

d - Axis 

d- Axis 

Axis.41— — 

Conventional 
Machine 

Fig. 2.3 Field Windings Arrangement in Synchronous Machines 
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t 

r 

Point B is the operating point just after the occurance of the 

hort circuit, and at the same instant the quadrature-axis field 

inding begins to be excited. 

Point C represents the situation after isolating the faulted line. 

The path from C to D depends on the response of the exciters of 

oth field windings as well as the inertia of the machine. 

Points D and E are the operating points before and after 

eclosing respectively. At point E, it is no more necessary to keep on 

he excitation of the direct-axis field winding, and so it can be gradually 

educed. The machine can, then, run steadily with only its quadrature-

xis field 

xis field 

xis field 

winding excited. To resume normal operation, with the direct-

winding only excited, it is sufficient to energize the direct-

winding under the control of its voltage regulator, while 

educing at the same time the excitation current of the quadrature-axis 

field winding gradually to zero. It may be expected that the increase of 

the cost of d-q synchronous generators will be only a fraction of the 

e onomical advantages gained by their use in power systems
26
. It must, 

h wever, be noted that this cost increase may be counterbalanced by the 

p ssibility of using machines without damping windings, since the two field 

indings do its function in this case. 

2.3 Steady-State Stability1'3'4

While the transient stability of synchronous machines is the 

measure of their ability to remain in synchronism after a specific sudden, 

severe disturbance, the steady-state stability is the measure of their 

ability to remain in synchronism for small disturbances. Small 

disturbances, such as those produced by small changes of load, irregularities 

in prime-movers and manual or automatic control of excitation, are always 
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present in power systems. A synchronous machine does not go out of 

step because of such minute disturbances unless it is operating at or 

near its steady-state stability limit. 

Steady-state stability can be classified into two categories: 

a) Static stability: It denotes the stability of the machine 

when the disturbance is slow compared with the natural frequency of 

the mechanical oscillations and also with the rate of change of the 

field flux linkage. Thus, it is not necessary in this case to consider 

the transient behaviour of the machine, its regulators and the system 

to which it is connected. 

b) Dynamic stability: It refers to the stability of the 

synchronous machines for relatively fast, small disturbances. In this 

case, the transient behaviour of the machine, its regulators and the 

system to which it is connected must be taken into consideration. 

The steady-state stability problem of synchronous generators 

has become more acute in recent years as a consequence of the new 

developments in electric power systems. Such developments, as the 

establishment of more long high voltage transmission lines and the wide-

spread use of underground cables, have brought about a change in the 

conditions under which synchronous generators operate. Because of the 

large capacitive power needed by the power network, synchronous generators 

often operate at leading power factors and may have to work beyond their 

normal static stability limit. 

It is clear from the power diagrams shown in Figures 2.5 

and 2.6 that the maximum capacitive power, which a synchronous generator 

with fixed excitation can supply for stable operation (static stability 
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limit), is determined by the magnitudes of their synchronous reactances. 

This maximum has the value V
2
/(x

d 
+ x

e
) for nonsallent-pole generators 

and ranges from V
2
/(xd + xe) at full load to V/(x + x

e
) at no load 

for salient7pole generators. The limits mentioned above are the 

theoretical and will be reduced if a reasonable margin is chosen. 

2.3.1 MethOds for improving the steady-state stability 

It follows from the preceeding discussion, that the extension 

of the steady-state stable region calls for the design of synchronous 

generators having low values of synchronous reactances. Synchronous 

generators with low synchronous reactances are expensive. The cost of 

increased short circuit ratio for waterwheel generators increases in 

general as shown in Fig. 2.7 1. On the other hand, as the production of 

7 

electrical energy continues its steady rate of increase, it has become 

economically desirable to use larger synchronous generators. The use of 

efficient methods for cooling makes it also possible to obtain more K.V.A. 

from a given frame size of a generator. This in turn has resulted in 

higher per-unit reactances and as a result lower steady-state stability 

limits. 

However, the steady-state stability region of a conventional 

synchronous generator can be extended very considerably by the proper 

control of its excitation 8-24. The machine can then operate dynamically 

stable beyond its static stability limits as shown in Fig. 2.8. The 

improvement achieved at full load may be very nearly equal to doubling the 

short circuit ratio of the generator. Unfortunately, this method is less 

effective at low power loading and useless at no load (Appendix A). 
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.3.2 Improvement of dynamic stability by the dual-excitation of 

synchronous generators 

To extend the dynamic stability region also at no load, it 

as suggested
28,30 

to provide the synchronous generator with an 

additional field winding on the guadrature-axis of the rotor. By 

ontrolling the excitation of this winding with a rotor-angle regulator, 

he stable underexcited region can be appreciably extended all over the 

hole active loading range. The suggested scheme for operation is to 

eep the rotor-angle fixed at zero value. Since the direct-axis field 

inding in this case coincides with the magnetic-axis of the resultant 

ir-gap flux, a change in its current will vary the reactive power 

ithout changing the rotor position. This can be explained by considering 

he vector diagram of Fig. 2.9, from which the following relations can be 

/obtained: 

E
d 
= I

go 
• x

q 

Eq = V + Ido • xd

I = I 
p go 

I
v 
= I

do 

Where I and I
v 
are the active and reactive components of the 

rmature current respectively. 

E and E
d 
depend on the field currents as follows: 

E = x • i 
q ad fd 

2.1 

2.2 

2.3 

2.4 

2.5 
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Fig. 2.9 Vector Diagram of a d-q Synchronous Generator Directly 
Connected to an Infinite-Bus (6=0) 
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r 

E
d 
= x

aq 
• i

fq 2.6 

Where ifd and ifq are the currents in the direct and quadrature-

xis field windings respectively. 

ence 

s 

I 

x
aq 

x 
q 

x
ad 

x
d 

. i
fq 

a result, the direct-axis field winding can be negatively excited 

2.7 

2.8 

that the machine can provide the required capacitive loading without 

esulting in a change of the rotor-angle. 

2.4 Application of the Dual-Excitation to Turbo-generators 

A quadrature-axis field winding on the rotor of a turbo-generator 

ould be uneconomical because of the increase in the reluctance of the 

enerator magnetic circuit. This will require larger excitation currents 

.nd a larger machine to prevent excessive saturation of the rotor. This 

as suggested the development of the divided-winding rotor (d.w.r.) 

2729 
onstruction . The particular feature of the d.w.r. is that the 

onductors are located in slots distributed as in the rotor of a con-

ventional synchronous machine and are divided into two parts, whose 

axes are displaced from each other (Fig. 2.10). This arrangement makes 

it possible to change a conventional turbo-generator to a dual-excited one 

by just rewinding its rotor or changing its field end connections. Sopper 

and Fagg
27 

studiedthrough analogue computer simulation a synchronous 
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achine with rotor construction using two identical field windings 

arranged in X-forma Harely and Adkins 
29 

tried to simplify the 

.nalysis of the d.w.r. synchronous machine by replacing it with a d-q 

achine. As will be seen in this thesis, such simplification is not 

alid except when both field windings are identical and have the same 

.nclination angle to the direct-axis of the rotor. 

.5 Purpose of the Thesis 

Although some effort has been directed to solve the stability 

roblem of synchronous machines by dual-exciting their rotors, all studies 

one till now deal with special rotor construction 
25-28,30 

and some 

f them rely on simplifying assumptions28,29

It is the purpose of this thesis to present a generalized analysis 

or the dual-excited synchronous generator, in which the two field 

indings are not necessarily located on the rotor-axes, and may not have 

qual number of turns or equal inclination angles to the direct-axis of 

he pole structure (Fig. 2.11). To make the analysis complete, the effect 

f a general transmission system is taken into consideration. 

Special attention is directed towards formalizing the small 

.isplacement equations, which are essential for performing dynamic 

tability studies. The equations readily take into consideration the 

effect of alternator and transmission system resistances, speed variations 

.nd the effect of the voltages induced in the armature by the rate of change 

of its flux linkage. 

A digital computer program is established to formalize the 

characteristic equation of this machine, and then to check its dynamic 

stability by applying the well-known Routh's criterion to the equation. 
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IC 

Fig. 2.11 Schematic Layout of a Dual-Excited Synchronous Machine 
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he program provides the possibility of investigating the effect of 

umerous schemes of excitation regulation on the dynamic stability 

oundaries. The improved dynamic stability limits of this type of 

ynchronous generators at different operating conditions are 

emonstrated by studying a simple power system. The system consists of 

dual-excited synchronous generator provided, with an adequate control 

rrangement and connected to an infinite-bus through a simple tie-line. 
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3. ANALYSIS OF THE DUAL-EXCITED SYNCHRONOUS MACHINE 

.1 Introduction 

As in the conventional synchronous machine, all mutual inductances 

etween stator and rotor circuits of a dual-excited one are periodic 

functionsof.the rotor angular position. In addition, because of the 

rotor saliency, the self inductances of the stator phases and the 

nutual inductance between any two of them are also periodic functions 

f the rotor angular position. It follows that the characteristics of 

he dual-excited synchronous machine are expressed by a set of differential 

quations, most of whose coefficients are periodic functions of the rotor-

ngle. Such equations, even in the case of synchronous operation, are 

wkward to handle and difficult to solve. The two-reaction 

33-35 
heory ,as in the case of conventional machines, can also be 

ntroduced here to overcome this difficulty. This is done by replacing 

he three phases of the armature winding by two fictitious stationary 

indings to which they are equivalent (stationary with respect to the 

otor): one on the pole-axis (direct-axis) and the other on the interpole-

xis (quadrature-axis), which are denoted respectively by 'd' and 'q 

in Fig. 3.1. 

Ideal synchronous machines are usually assumed and may be 

efined as follows 
33-35 

Saturation, hysteresis and eddy currents in all magnetic 

circuits are neglected. 

. Each machine winding produces a sinusoidally space distributed 

magneto-motive force. 
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d -AXIS 

q -AXIS+ 

Fig. 3.1 Schematic Layout of an Idealized Dual-Excited Synchronous 
Machine 
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3. The pole structure is symmetrical about the axis of the 

pole. A symmetric three phase armature is also considered. 

4. The self and mutual inductances of all rotor circuits are 

independant of rotor position. Thus, the effect of stator 

slots is neglected. 

5. The damper winding, if it exists, is replaced by two equi-

valent damper circuits: one on the direct-axis and the other 

on the quadrature-axis. 

.2 Mathematical Representation 
33-35 

Based on the preceeding assumptions, the performance of the 

ual-excited synchronous machine may now be described by the following 

quations. In them, the convention adopted for the signs of voltages 

nd currents are that v is the impressed voltage at the terminals and 

that the direction of positive current i corresponds to generation. The 

1 sign of the current in the damper winding is taken positive when it flows 

in a direction similar to that of a positive field current. 

3.2.1. Inductance equations 

a) Stator self-inductances 

The reluctance of the magnetic circuit of a synchronous machine at 

y section in the air-gap depends on the position of the pole structure. 

s iron has a very high permeability compared with air, the permeance of 

t e magnetic circuit of any stator phase varies from a maximum (when its 

a is coincides with the direct-axis of the rotor) to a minimum (when its 

a is coincides with the quadratureTaxis). This variation can be 

represented by a Fourier series expansion which contains even harmonics. 

C nsidering only the zero and second harmonic terms of this series, 

1) 
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he self-inductances of the stator phases can then be expressed as 

ollows: 

L
aa 

= L
aao 

+ L
aa2 

• Cos 20 3.1 

Lbb = Laao Laa2 
• Cos(20 + 120) 3.2 

Lcc = 
Laao 

+ L
aa2 

• Cos(20 - 120) 3.3 

n which 
Laao 

is the average value of the self-inductance and Laa2 is 

he difference between maximum and average values. As the leakage flux 

f any stator phase is independant of the rotor position, it is usually 

ncluded in the constant term L
aao

. 

b) Stator mutual-inductances 

It can also be shown that the mutual-inductance between any two 

tator phases varies periodically from a maximum (when the quadrature-axis 

s midway between the axes of the two phases) to a minimum (when the quad-

is 90° electrical from the maximum position). Following 

he method adoped for self-inductances representation, the mutual-

.nductances between the stator phases can be expressed by: 

Lab 
• 

= Lba = -[• Labo L• bb2 
Cos(20 + 60)]

Lbc = Lcb = -[• Labo L• bb2 
• Cos(20 - 180)] 

•  
Lca = Lac = -[• Labo L• bb2 

Cos(20 + 300)]

3.4 

3.5 

3.6 

here L
abo 

is the average value of the mutual-inductance between 

hases and L
bb2 

is the difference between maximum and average values. 

heoretical analysis shows that the difference between the maximum and 

inimum values of the self-inductance is the same as the difference 
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etween the maximum and minimum values of the mutual-inductance, i.e.: 

L
bb2 

= L
aa2 

t has also been found that, apart from the leakage inductance, the 

verage value of the self-inductance of a stator phase is double the 

verage value of the mutual-inductance between any two stator phases. 

his can be expressed as follows: 

3.7 

L
aao 

- L = 2L
abo 

3.8 

c) Mutual-inductances between stator and rotor circuits 

The mutual-inductances between the stator phases and the direct-

nd quadrature-axis damper circuits vary sinusoidally with rotor angle 

nd are maximum when the two coils in questions are in line. Thus: 

= Lk   
da 

= Lakdo 
Cosa 

Lbkd 
= L

kdb 
= 

Lakdo 
• Cos(6 - 120) 

L
ckd 

= L
kdc 

= L
akdo 

Cos(6 + 120) 

L = L = -L
ako 

' Sin 6 
akq kqa q

Lbkq 
= L

kqb 
= -Lakqo • Sin(6 - 120) 

3.9 

3.10 

3.11 

3.12 

3.13 

Lckq 
= L. = -Lakqo Sin (0 + 120) 3.14 

On the other hand, the mutual-inductances between the stator 

hases and any field winding depend on the permeance of the magnetic 

ircuit in both the direct-and quadrature-axis of the rotor. The devi-

ation of the expressions for these inductances can be done as follows. 
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Considering phase a, its magneto-motive force (M.M.F.)a can be 

resolved into two components equal to (M.M.F.)a • Cos() and -(M.M.F.)a•Sin0 

acting in the direct- and quadrature-axis respectively (Fig.2.11). These 

components of M.M.F. produce corresponding components of flux in the 

direct- and quadrature-axis of magnitudes equal to Ad • (M.M.F.)a • Cose 

and -A' . (M.M.F.)a • Sine) respectively. The linkage of field winding 

1 caused by this flux is then proportional to (M.M.F.)a • (Ad • Cosa].

°se + Aq • Sinai • Sin0). Similarly, the linkage of field winding 2 is 

proportional to (M.M.F.)a • (Ad • Cosa2 • Cos0 -Aq 7 Sina2 • Sin0). 

It follows that the expressions for the mutual-inductances between phase 

and the field windings 1 and 2 respectively can be written as: 

Lafl = Lfla = Lafld • 
Cos0 

Laflq 
• Sine 3.15 

3.16 
Laf2 = Lf2a = Laf2d Cos0 - L af2q 

• Sin6 

where 

L
afld 

can be defined as the mutual-inductance between field 

winding 1 and phase a when the axis of the latter coincides 

with the direct-axis of the rotor. 

can be defined as the mutual-inductance between field Laflq 

winding 1 and phase a when the axis of the latter coincides 

with the quadrature-axis of the rotor. 

and 
Laf2q 

have similar corresponding definitions for Laf2d 

field winding 2. 

Following the same procedure used for deriving Lafi
 and L

af2' 

bfl' 
L
bf2' Lcfl 

and L
cf2 

are found to be: 
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= 
Lbfl 

= 
Lflb Lafld 

• Cos(0 - 120) + Laflq • Sin(0 - 120) 3.17 

Lbf2 
= L

f2b 
= 

Laf2d 
' Cos(0 - 120) - Laf2q • Sin(8 - 120) 3.18 

Lc fl 
= L

flc 
= L

afld 
• Cos (6 + 120) + L

aflq
Sin(8 + 120) 3.19

= 
Lc f2 

= 
Lf2c Laf2d 

• Cos(0 + 120) - Laf2q • Sin(0 + 120) 3.20 

d) Rotor self-and mutual-inductances 

All inductances of the rotor circuits do not depend on the rotor 

osition and so they are considered constant. Because of the symmetry 

f the damper winding, there is no mutual-inductance between the 

quivalent damper circuits on both the direct and quadrature-axis. 

.2.2 Flux linkage equations 

Utilizing the inductance relations given before, the flux 

linkage equations of the dual-excited synchronous machine can be written 

follows: 
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.2.3 Park's transformation 

Applying thb two-reaction theory. , equation 3.21 can be 

xtremely simplified by replacing the variables of the armature 

indings by new fictitious variables, which differ from but are related 

the actual ones. For example, the transformation of the currents 

s expressed by the following equation: 

ltd 

it
q 

2 
3 

CosO Cos(0-120) Cos(0+120) 

-Sin° -Sin(e-120) -Sin(0+120) 

i
ta 

i
tb 

tc 

3.22 

Similar transformations are used for armature voltages and flux linkages. 

where 

Equation 3.21 can then be obtained in the following two-axis frame: 

-L
d 

L
afld 

, 

Laf2d Lakdo 

-L 
q , 

- 
Laflq Laf2q 

L 
akqo 

3 
-T -' afld 

3 
T 1- Lffl Lf1f2 Lkdfl Laflq kqfl 

372 L af2d 
3 
--.-,af2q 72-. Lf1f2 Lff2 Lkdf2 

Lkcif2 

3-2-L. akdo Lkdfl Lkdf2 Lkkd 

3  
-T -1akqo Lkqfl Lkqf2 Lkkq 

L
d 
= L + L + 3 L 

abo T aao aa2 

_ 3 
Lq L 

aao + Labo 2 Laa2 

ltd 

it
q 

i
fl 

i
f2 

ikd 

q 

3.23 
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2.4 Voltage equations 

While the voltage equations of the rotor circuits can be simply 

0 btained by the direct application of Kirchoff's law, the derivation of 

hose for the two-axis armature voltages v
td 

and v
tq 

needs a more or 

ess lengthy analysis. This is usually done by finding firstly the 

xpressions for v
ta' 

v
tb 

and v
tc 

and then transforming them in the 

wo-axis frame. As a result, the machine voltage equations will be: 

v +r • 
td ltd 

v
tq

+r • i
tq 

v
f 

-r
fl 

• 
'fl 

v
f2

-r
f2 

• 
'f2 

o- • 
rk . kd 

o-r • 
kq 

. 
q 

i 

2.5 Torque equations 

p -PO 

PO p 

p 

p 

p 

p 

d 

fl 

f2 

kd 

kq 

3.24 

A general expression for the torque may be derived by using the 

xpression for the instantaneous power output: 

Power = v
ta 

• i
ta 

+ v
tb 

• i
tb 

+ v • 
tc tc 

3.25 

his equation can be rewritten in terms of the two-axis quantities as 

follows: 

Power = (v • 
ltd + 

v • i ) 
td td tq tq 

3.26 
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ubstituting from equation 3.24, v
td 

and v
tq 

can be eliminated to give: 

Power = 
3 
T. {ltd • (pT

d 

itq 
• (p 1̀' q

-Po • 

+pa - 

'P - r 

T
d 

- r 

3 
= T " itd • PTd itq • PTq) r(itd2

+0 • (i
tq 

• 
'Pd 

- i
td 

• T
q
)1 

i 2)
tq 

3.27 

quation 3.27 may be interpreted as: 

(net power output) = (rate of change of armature magnetic energy) 
-(armature copper loss) + (power transferred 
across the air-gap). 

rom this, it is evident that by dividing the air-gap power term by the 

otor speed, we obtain the developed torque Te as: 

3 
T
e 
= 2 • n

p 
• (i

tq Td itd • Tq)
3.28 

The relation between the mechanical shaft torque and the electrical 

developed torque is given by: 

T. = T e + J • p20m + GD(p) .pem 3.29 

.3 Per-Unit System for the Dual-Excited Synchronous Machine 

Per-unit systems have been extensively used to simplify phenomena 

dyer a wide range of different physical problems. The advantages, which 

rise from the application of a well-designed per-unit system to 

lectrical power problems,are numerous. Among of which are the following: 

1. A direct comparison between machines of widely varying power 

ratings is straight forward. 
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2. In the two-axis theory of synchronous machines, a per-unit 

system is useful in removing those arbitrary numerical 

factors which can appear in the original equations and 

have values dependant on the transformation used. 

3. In single and polyphase studies, the turns ratios of 

transformers (and the manner of internal connections in the 

polyphase case) are removed from the analysis. 

4. Simplification occurs in the analysis of polyphase circuits 

under balanced conditions. By defining appropriate per-unit 

line quantities to correspond with chosen per-unit phase 

quantities, both line and phase parameters can be represented 

in one per-unit analysis. 

5. A basic set of dimensionless parameters can help to prevent 

errors in converting performance characteristics between 

different systems of units. 

6. The numerical range of per-unit parameters is small. This is 

valuable for solution by analogue or digital computers, since 

the variables are of convenient order. Manual calculations are 

also simplified. 

The derivation of the per-unit system for the dual-excited 

ynchronous machine is given as follows. 

.3.1 Stator base values 

It is a common practise to choose the rated armature current and 

he rated phase voltage to be the stator current and voltage base values 

respectively. As the components of the armature current and phase voltage 
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in both the d- and q-axis are instantaneous values, it is rather 

preferred to use the maximum value of the rated armature current and 

terminal voltage than the root mean square values as stator bases. 

Hence: I
sB 

= /2 In 3.30 

V = V2 
sB Vn 

here I
n 

and V
n 

are the rated armature current and the rated phase 

oltage respectively. 

From equations 3.30 and 3.31 it follows that 

PsB = 3Vn • In 
= —32 

V
sB 

• I
sB 

Z
sB 

= V
n
/I

n 

LsB = Vn / (In • p00) 

T
sB 

= L
sB 

• I
sB 

3.31 

3.32 

3.33 

3.34 

3.35 

here P
sB' 

Z
sB' 

L
sB 

and Y
sB 

are the base values for stator power, impedance, 

nductance and flux linkage respectively. 

.3.2 Rotor base values 

a) Power equality constraint 

As seen from equation 3.23, the inductance matrix is not symmetric. 

From the mathematical point of view, the per-unit system can be chosen 

ithout removing this property. However, for the sake of obtaining a simple 

r presentation of the machine which facilitates the formation of its 

e•uivalent circuit, it is preferable to make this matrix reciprocal. To 

f lfill this requirement in a per-unit system, the following constraint 

s ould be imposed. 
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L . 12 L • 12 . L • 12 L • 12 . 
2 sB sB flB flB f2B f2B kdB kdB

L • 12
kqB kqB 

which implies that: 

2 sB 
• 
IsB 

= V
flB 

• I
flB 

= V
f2B 

• I
f2B 

= V
kdB 

• I
kdB 

= 

V
kqB 

• I
kqB 

In other words, the base power of the stator is equal to the base 

power of any rotor circuit. 

3.36 

3.37 

b) Inductance relations 

Before going to choose the base current for each rotor circuit of 

the dual-excited synchronous machine, it would be helpful to put the 

M.K.S. expressions of all machine mutual-inductances in terms of the 

permeance and the number of turns. It will be assumed that the mutual 

flux produced in one axis by any machine circuit links equally all the 

other circuits on this axis. This assumption will be referred to as 

erfect mutual coupling. The following relations can then be written: 

Lad 
= 

 2
•• A 

 d
• N2 • 

s 
3.38 

Lag 
2 

= -3- • A 
q 

• N2s 3.39 

Land = Ad • Cos al • Ns • Nfl 3.40 

L
aflq 

= A
q 

• Sin a
l 

• N
s 
' N

fl 
3.41 

Llf7d = Ad • Cos a2 ' Ns - Nf2 3.42 

I. 
\ 

af2q q 
• Sin a, • N • N. 3.43 
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L
akdo 

= A
d 

• N
s 

• N
kd 

Lakqo 
= A

q 
• N

s 
• Nkd 

3.44 

3.45 

Lf1f2 = (Ad 
• Cos al • Cos a2 - Ail, • Sin al • Sin a2) • Nfi • Nf2

3.46 

L
flkd 

=
d 

• Cos a
1 

• N
fl 

• N
kd 

= -A • Sin a1 • Nfl • Nkq Lflkq 

= ad • Cos a2 •• Nf2 • Nkd Lf2kd 

Lf2kq 
= A

q 
• Sin a2 • Nf2 • Nkci

c) Rotor base currents 

3.47 

3.48 

3.49 

3.50 

The choice of the base current for any rotor circuit, even for a 

conventional synchronous machine, is a problem which has been subject to 

several discussions. In general, such a choice can be made in an 

infinite number of ways. For the conventional synchronous machine, it 

-1as been found more convenient to choose certain base values rather than 

thers. The chosen values were preferred on the basis of providing a 

epresentation which displays the physical picture of the machine and 

esults in simplified equivalent circuits. Two of the most convenient 

hoices have resulted in the following per-unit systems:31'32

a - x
ad 

base system 

b - Equal mutuals base system 

It is worthwhile to mention that both systems are identical for the case 

in which the coupling between the machine circuits on each axis is 

perfect. 
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q 

w 

For the dual-excited synchronous machine, suitable rotor base 

antities can be obtained by choosing the ideal turns ratio* between two 

ndings to be the ratio between their base currents. Hence, the base 

tor currents can be expressed as follows: 

I
flB 1/Nfi

I
f2B 

3 =T N
s

1/Nf2

3.51 I
sB I

kdB 1/Nkd

I
kqB 1/N

kq 

S bstituting from equations 3.38 - 3.45 in 3.51, it follows that the base 

tor currents in terms of the machine inductances can be written as 

follows:.

I
flB 

f2B 

I
kdB 

I
kqB 

L
ad 

• Cosa
l

L
aq 

• Sina
1 
) L

afld 
(or L

aflq 

L
ad 

• Cosa
2 Laq • Sina2 

) L 
af2d 

L(or 
af2q 

L
ad 

Lakdo 

L
aq 
L
aqko 

I
sB 

3.52 

3.3.3. Per-unit time, speed and torque 

The normalized equations of the dual-excited synchronous machine are 

further simplified if the electrical angular velocity pe is also 

normalized. The synchronous electrical angular velocity peo is con-

* An ideal turns ratio between two windings is defined as follows: 

Ideal turns ratio 
Total flux linkages of mutual flux with one winding 

= 
Total flux linkages of mutual flux with the other winding 
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veniently chosen as the base value. Since pe • t is a dimensionless 

quantity, the selection of pOo as the base of pe is equivalent to 

selecting 1/00 as a base of time. 

It may be noted that, as reactance is the product of the 

inductance and the electrical angular velocity, the per-unit inductance 

and per-unit rated frequency reactance will be equal. It is therefore 

common to find no distinction between these quantities where time is 

normalized. 

Having normalized time, it is now possible to see the definition 

of the differential operator p in the per-unit system. In nonnormalized 

form: 
_d 

P- dt 

but t(p • 

p(P • 

u) = t/p00 ; so it follows that 

u) = p/peo 3.53 

When writing the torque equations in M.K.S. system, it is 

inevitable that the number of pole pairs n appears. It is desirable 

in forming the per-unit equations of the machine to remove this 

parameter because it is not fundamental to the performance of the 

machine. As a consequence, the form of the per-unit rotor angular 

velocity is simplified becoming the same whether expressed in mechanical 

or electrical form. This is done by defining the base mechanical angular 

velocity pOmB as that corresponding to the base electrical velocity 

Thus: 

pemB = p0 3.54 /np 
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Using the expressions for the base power and base mechanical 

eed given by equations 3.32 and 3.54 respectively, the base torque 

will be: 

3 VsB . IsB 
T = 
eB z • 

p00 

.3 y
2 sB sB 

. n 
p 

n 
p 

3.55 

3.4 The Normalized Equations 

Having established the per-unit system, the normalized equations 

o the dual-excited synchronous machine can be derived. [n the following 

e uations and here after, all the parameters are in per-unit values. 

3.4.1. Flux linkage equations 

The normalized flux linkage equations can be arranged as follows: 

q 

Yf 

f2 

' kd 

q 

-xd xad'Cosa
l xad'Cosa2 xad

-x 
9 

-x
aq.Sinal x

aq•Sina2 x
aq 

-x
a .Cosa1 

x
aq'Sinai 

xfii
xf12 x Cosa'

ad 1 
-x Sinn 

aq I 

-xad.Cosa2 -xaq *Sina., 
z xf12 x

ff2 
xad.Cosa2 xaccSina2

-xad xad'Cosa
l Cosazxad. - 

xkkd

-x
aq 

-x
aq•Sinal x

aq'Sina2 arkkci 

ltd 

'tq

f1 

if2 

ikd 

i 
kg 

3.56 
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here: X
d 

=
aa 

+ X
ad 

x = x x 
q as aq 

Xf12 Xad 
Cosa1 Cosa

2 
- x

aq 
• Sina1 • Sina = 

2 

Xffl= Xflu 
2 

+ xad ' Cosa1 + xaq • Sina21 

2 2 

xff2 f2a + xad • Cosa ff2= f2a ad 2 + xaq • Sina2 = 

X
kkd

= X
kda 

+ X
ad 

X
kk
q= X

kqa 
+ X

aq 

3.4.2 Voltage equations 

The normalized voltage equations in matrix form can be written as: 

v
td 

+ r • 
ltd 

v
tq 

+ r i 
tq 

vfi • i
fl 

v
f2 

- r
f2 

• i
f2 

o - r • 
kd kd 

rkq • ikq 

p -Pe 

Pe p 

p 

p 

p 

p 

T
d 

q 

fl 

f2 

Y
kd 

kg 

3.57 

3.4.3 Torque equations 

The deVeloped electrical torque in per-unit values can be written 

i the following form: 

T =i • T -i • Tq 
e tq d td 

3.58 
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Normalizing equation 3.29, which relates the developed electrical 

torque of the dual-excited synchronous machine to both the shaft and 

inertial torques, gives the following: 

= i
tq 

• T
d 
- i

td +

The operational equations 

P
2
6 gD(p) P6

For the study of the performance of synchronous machines, 

3.59 

specially from the power system analysis point of view, one is only 

nterested in the variables at the terminal, namely: voltage, current 

d power. So, the rotor currents can be eliminated from equation 3.56 

• give the following flux linkage equations: 

The inertial torque = J • p
2
0
m 

In normalized form, it will be equal to: 

b 

110
2

\ (PemB) 
= J • Pe   •   3 V • I 

° Puo 
p0mB

 -2- sB sB 

t from the definition of the inertia constant H: 

H - 
2 3 V • I 

sB sB 

1 J *(110 mB)
2 

follows that the per-unit expression for the inertial torque is 

'ven by: 

fr 

Inertial torque = 2 • H • p0
o 

• p
2 

om which it appears that the normalized value of the inertia constant 

is 2 1300 • H 
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-xd(P) ltd Gfld(P) ' vfl Gf2d(P) vf2 M(p) itq 

= M(P) • t 

3.60 

+ Gfict(p) • vfl + Gf2q(P) • vf2 - xcl(p) • itq 3.61 

where xd(p), xcl(p), Gfid(p), Gf2d(p), Gfici(p), Gf2q(P) and M(p) 

.re the operational functions of the dual-excited synchronous machine 

nd can be put in polynomial forms (Appendix C). 

Equations 3.60 and 3.61 show that both the direct- and 

quadrature-axis circuits are no longer independent of each other 

s in the conventional synchronous machine. However, for the 

.pecial case in which both field windings are identical and have the 

same inclination angles to the physical axis of the rotor, the cross 

oupling term M(p) vanishes. This proves that the technique suggested 

n reference 29 for simplifying the analysis by replacing the dual-excited 

.ynchronous machine by an equivalent conventional machine having an 

3.dditional field winding on the quadrature axis cannot be applied except to 

his special case. 

By substituting equations 3.60 and 3.61 in 3.57 and 3.59, the 

following operational form of the normalized equations is derived: 
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Vtd 
- 
(Gf

(p) • p - p0 • G
flq

(p)) • v
fl 

(Gf2d(p) • P 0  • Gf2q(P)) • vf2 

• Vtq - (p0 • Gfld(p) + G flq(p) P) • vfl

-(0 • Gf2d(P) Gf2q(P) • P) • vf2 

Ti (itq • Gfld(p) itd • Gflq(P)) • vfl 

_
(lta

 • • 
(0) vf2 

• G
f2d(P) ltd G 

f2q 

- gp(P) • P° 

-r-xd(p) • p-p044(p) Pe. x q(p)+Wp) • p 

-Pe • xd(p)+M(p) . p -r-xq (P) • P+Pe • M(p) 

-i
tq 

• x
d
(p)-

it 
• M(p) i

td 
• x

q
(p)+i

tq 
• M(p) QD . p 

itd 

Itq 

Pe 

3.5 Dual-Excited Synchronous Machine Connected to an Infinite-Bus 

Through a General Transmission System 

3.5.1 Analysis of the transmission system 

No complete analysis for the dual-excited synchronous machine 

can be claimed without taking into consideration the effect of its 

external connection with the power network.  . Equation 3,62 describes 

3.62 
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the relations among the components of the terminal voltage of the 

achine and the components of its armature current as a function of 

'ts excitation voltages and speed. If the machine is connected to 

.n infinite-bus via a transmission system having driving point 

'mpedances 
Z11,

 Z2
2 
and transfer impedance Z12, then the relations 

etween the voltages at both sides of the transmission system can 

e written as follows: 

v
ta 

v 
tb vtc 

Z
11
(p) 

Z
12
(p) Z11 (p) 

va v
b 

v
c 

i 
a 

i
tb 

i
tc 

3.63 

The analysis is based on replacing the unknown terminal voltage 

f the machine v with the known bus-voltage v. Park's transformation 

elps again to formalize equation 3.63 in the two-axis frame. For 

xample, the relations between the variables for phase a and its 

two-axis components are: 

a 

v 
a 

i
ta 

v
td 

v
tq 

v
d 

v a 
i
td 

i
tq 

e
ke 

+ e-je
2 

eje - e-jel
-2j 

Substituting equation 3.64 in 3.63, the following equation 

s obtained: 

Z (p) 

[vtd + jv ] • eie + Evw-jv
tq

] . 
11 

tq Z12(p) ECva+jv 

+(vd-jvq) . e-je I Z11(p) [(ltd jitg) • de

JO +

-jitq) • 
-j0

3.64 

3.65 
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Putting 0=6 + Ad + p0 . t and applying the Laplace transform
0 o 

heorem
36 

F(p) . e
at
f(t) = e

at 
. F(p + a) . f(t) , equation 3.65 

ecomes: 

td ivtq
] e3 (6o " 

pee
 
. 
t) + [v

td 
-

t
q] . e-i

so + Ad + pee . t) 

ej(60 Peo t) 
P 

zil( jPe

o) 

) 

z vd jvol] • ejA6 + 
e (6 PO0 

t) 

12 (1) jPe o 

Z11(p - 
jpeo) 

z12(P jPeo) [vd jvq] • e-i" ej(60 + poo t) z

itd jitq , ejAo e-j 

td
-ji

tq 
] . e-j" 

So + p00 .t 

equating the coefficients of 

Z11 (P - jPeo) 

(p ipso ) 

3.66 

(60 Peo • t) and e-j(6o Peo • t)

both the right and the left hand side, the following equation can be 

itten: 

(vtd 
+jvtq ) . ej

v
td

-jv
tq

) . ejA6

Z11(P-1-iP00) jAd 

e

Z11(P-fjP0o) jAd j 

eZ12(13+iP60). Z12(1)+jPeo).

Z11(P-j1360) -jAd 

• e

Z11(P-iP00) . -jA6 

je Z12(1)-iP°0) Z12(13-jP°0). 

Z11(P+jP80) 
. e

jAd 
Z
11
(p+jp00) . je

jAd 

Z11(P-iPeo) 
. 
6j" -Z11(13-jPeo) • id"

v
d 

v 
q 

td 
i t

q 

3.67 
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Considering equation 3.67, the axis components of the machine 

v•ltage can be given by: 

Cosa Sina 

-Sina Cosa 

Re 
1-Z11 (1)+j P80 ) 1 Z (13+iPe ) D r 11 0 -, 

'2 (-+41)(30)j 12 1' J
-Re J 

Cosa SinA6 

T Zi1(RfjP00) 
r T Z11(114jPed i r

--in 'Z
12 
(p+jpe o 1 ) ' --In ̀ Z12 (p+jpe 0)" 

Sina Cosa 

Z11(11-fjPed 
Re

Z11(III-jPeo) 

Re [ i 

Z12(134jPeo)i Z12(134jPeo) 

Sina Cosa 

Z11(1)+jPeo)
I 

Z11(p+jpeo) 
[ 1 +Im r -Im 

Z12(134iPeo) 
Z12(p+jp0o) 

Cosa Sima 

Re[Zil(p+jped] 

Cosa 

-Im[z11(p+jp00)] 

Sina 

-ReEZ11(134jPedl 

Sina 

-ImrZ11(134jPedl 

Cosa 

Re[Zil(PiPeo)] 

Sina 

+InirZ11(PliP°0)1

Cosa 

Re[211(p+jp0d] 

Cosa 

-I (Z11(1"JPedi

Sima 

v
d 

q 

l td 

it
q 

3.68 
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3.5.2 Equations of the machine in connection with the system 

e 

The general equation is obtained by replacing vtd and vtq 
in 

uation 3.62 by the expressions of equation 3.68. After rearranging its 

rms, the equation takes the following form: 

Z (p+jp0 ) Z., (p +jp00) 

(CosA6.Re [-
11 

. ° Cos AS-Cos 46.1m  1 SinAd 

Z12 (1" -J P eo) Z12 (P 6o)
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Z11 (P +iPeo)

+SinAkS.Re GosAd-SinAS.Iin - SinA6) v 
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5..3 Steady-state equations 

At steady state operation, it can be shown that the axis currents 

nd voltages corresponding to the time varying quantities are constant 

alues independant of time (Appendix D). Hence, the general equations 

f the synchronous generator at this mode of operation can be derived 

y putting p=0 in equation 3.69. This, in addition to the fact that, 

here are no variations in speed or rotor angle, would result in the 

ollowing 

where 

simplified equation: 

Zii(jp00) 
T rz1100 o) 

Re rZ12  
o) ]. vdo 

- 
'714Z12(J00) • 

v 
qo 

,13 
o 

e 
d 

Z11(J0o) Z11 o) 
Im [z

12 UP e0' 
vdo + Re rz12 

` r"
i 
P 
6 vqo - p00 . eq
o 

T. 
1 

-r -Re[Zii(jp00)] 0 0 . xq + Im[Zii(jp00)] 

-130o 
. 

xd - im[Z11(jP9o)] 
-r -Re[Zli(jp00)] 

-ed 4* itqo ' xq e
q 

- i
tdo 

. x
d 

v
flo v

f2o ed = -r . xaq 
. Sina1 +   . xa . Sim%2 

fl 
 r

f2 q

eq 
v
fl 

v
o rf1 . xad . Cosa1 + 

r
f2f2

 x
ad . Cosa2 

tdo 

tqo 

3.70 
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3.5.4. Simplified transient equations 

Since the speed of a synchronous machine cannot deviate appreciably 

from its steady synchronous value, it is justified to neglect its change 

on the machine electrical transients. As a result, the general equation 

3,69 can be reduced to: 

Z11(P4j1)00) Z
11 
(p+jp0o) 

e
12 (p+jp0 0) vd Im [z12 (p+jp0o) }qq 

f (1)) .P-Peo *Gfici(P)) vfl- (Gf2d(P)13-Peo .Gf2q(P)) f2 

Z11(1)4j1:100) Z
11(p+jp00) 

m[Z12 (p+jp00) 1 vd + Re(Z12(p+jp0o) vq 

-(p00.Gfid(p)+Gfict(p).p) vfl-(p0o.Gf2d(p)+Gf2,4(p).p v
f2 

l tq•Gf1d (P)  vfl -(i tq .Gf2d (P)-it 
-g

D
(013Ad 

G (p)) v f2q f2 

-xd(P)13-0 0 'M(P) 

rRe V11 (1)4j130 ) 

p00 •xci(p)+M(p) .p 

\+Im [Zii  (p+jpeo) 

100 .xd (P) m(0-13 
I P11(P+300)]

- r - xcl (1))13+1300 'M(P) 

-Re [Zii  (p+jp00 ) 

i tq'xd itccm(P) i td .xci (13)+i-tc(M(P)

l td 

tq 

AtS 

3.71 
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3 .5.5 Application to a simple power system 

x
e 

R
e 

Dual-Excited Generator 

R
c 

x 
Infinite-Bus 

Fig. 3.2 A Simple Power System 

For the system shown in Fig. 3.2, the following equations can 

written: 

where 

x
c 

1(p) = Z12 (p) 
= R

e 
+ x

e 
• p + 

P a 

a = X / 

3.72 

x . (p+a) 
Re[Z11(134-iPeo)] = Be + xe p + (p+c)z (pe )z 3.73

o

0 0 . xc 3.74 
Im[Z11 (134j0 0)] = xe • P00 (P+a)2 (00)2 

Z11(P+iPeo) = 1 3.75 Re[ • 
Z12(13+3P°o)

Z11(1)4)136° ) 
Im[

Z12 (p+jp0o
)] - 0 

td = id 

tq 
= iq

3.76 

3.77 

3.78 
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Substituting from equations 3.72 - 3.78 in equations 3.70 and 3.71., 

the system during steady state and transient conditions may he represented 

as follows: 

a) Steady-state equations 

v + 0 'e 
do o d 

v - 
qo q 

•e 

T. 
1 

a • x 
-(r+R ) c 

P0o.(xe+xq) 

Pe •xco 
c 

a2+(p0o)2 
a244p00)2 

p0 'x 
c -p0o (xe+xd) + -(r+R 

0 
.

X 
c 

2
° 

a +(p0o) 2 
) 

e 
a

:2
+(p0

o
)

2 

-e
d 

+ i
qo 

• x
q e - 

q 
i ' . x 
do d 

b) Simplified transient equations 

vd - (Gfld (P) • P• - P• O,„ 6• fiq (P)) v11 

(Gf2d (P) • P• P• R, • G• f2q (P)) vf2 

vq -(P00 • Gfld (P) 
Gf1q

 (P) • P) vfl 

-(p00 • Gf2d (P) Gf2q (P) • P) vf2 

Ti -(1 • G 
tq fl (P) itd 

• Gflq (p)) vfl

(itq • Gf2d (P) ltd • Gf2q (P)) vf2 

-(r+Re) -(xe+xd(p))* P 

xc ' (p+a) 

p0o '(x c 
+x q(p)) 

xC • p0o 
(p+a)2 + (p00)2 (p+02 + (00)2

-00 .(xe+xd(p)) 

x . p0 
c o 

* -(p,--a-f - Ti-- (})00—11

-(r+Rc) -(xc +Xq (P)). p 

x
c 

• (pf-a) 

'8,r 7

+G (p)*p D 

— 
CI), ar ' (PP,ff 

-iq • (P)-id • M(P)
i
d 

• x
q
(p) + iq • M(p) 

CIO 

id

216 

5.79 

3.80 
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4. SMALL DISPLACEMENT EQUATIONS OF THE 

DUAL-EXCITED SYNCHRONOUS MACHINE 

4.1 Introduction 

Since the static stability is concerned with a very slow variation, 

the determination of its limit is based on representing the synchronous 

m chines simply by their synchronous reactances. In this case, a 

m thematical expression can be deduced from the steady-state vector 

d'agram. When there is no saliency, the expression for the static 

stability boundary of the dual-excited synchronous machine is quite 

simple and is the same as that of a nonsalient conventional one. If 

saliency is considered, the expressions obtained will be very complicated 

and no physical interpretations can be understood from it. 

On the other hand, the instability of the regulated synchronous 

machines in the neighbourhood of the dynamic stability boundary shows up 

in the form of self-excited oscillations and not, as normally happens 

at the static limit, by slow falling out of synchronism with continuously 

and monotonically increasing rotor angle. The period of these oscillations 

rainges from 0.5 to 10 seconds or more for large machines. Thus, a 

cl. termination of the dynamic stability limit through representing the 

machine by its synchronous reactance cannot be justified, as this does 

n9t allow for the changes in the variables. Going to the other extreme 

and using the transient reactances of the machine cannot be justified 

either, since the transient reactances apply only to sudden changes 

which take place within a fraction of a second. A more accurate 

representation of the machine allowing for field time constants, inertia 

and other transient quantities is therefore necessary for investigating 
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its dynamic stability. 

4.2 Possible Techniques for Dynamic Stability Studies 

An accurate dynamic stability analysis should be based on the 

generalized machine representation in the two-axis frame given by 

uation 3.69. The differential equations involved are non-linear and, 

with the inclusion of regulating devices in the representation, the 

n mber of variables to be handled becomes excessively large. Consequently, 

is necessary to rely on some simplifications, or some computing devices 

perform the calculations, or upon a combination of both. The methods, 

which have been used in the past, may be broadly grouped into two 

c tegories: 

a) Methods relying upon a full solution of the general equation: 

In these methods, the solution of the general equation is 

o tained by numerical methods or by analogue computer simulation. The 

1 tter is not generally preferred due to the limited capacity of most 

analogue computers, its relative inaccuracy and the long time required 

for setting such problems. On the other hand, solving the general 

equation of the machine using a digital computer would be uneconomical 

epecially if many operating conditions are to be studied. 

b) Methods using a linearizing approach: 

This is the usual approach to dynamic stability studies. It is 

m thematically valid if only very small changes around the operating point 

a e postulated. The assumption of a linear system makes it possible to 

a ply a range of techniques which have been used in control system applica-

tions. The solution in this case may be accomplished by a digital computer. 

Tle computing time will be far shorter than in the case of the complete 

so lution of the general equation by numerical means. Among the methods 
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that have been used are the following: 

1. Nyquist Criterion 

This is one of the oldest of the control systems techniques. 

Nyfquist diagrams have been used by Messerle and Bruck
11
, Jacovides 

and Adkins and others 
28'29 

Apart from the indirect approach to the 

stability limit, it suffers from the disadvantages of extensive 

c mputation and poor presentation of results but is able to show the 

d gree of stability and to indicate the possible procedure for 

i provement. 

2. Root Locus 

In this method, the system characteristic equation is formed and 

the eigenvalues are calculated. It has been used by Stapleton
23
. It 

ffers from the extensive effort consumed in finding the characteristic 

roots . 

3. Domain Separation 

The Russians make use of this method to show the stability limit 

the plane of two parameters of interest. The method is fast and 

*ears to have considerable application to problems involving the 

tting of regulator parameters for optimum results. It has been used 

b Yu
19
. 

4. Routh's Criterion 

This is perhaps the best method available for general problems. 

I allows a direct approach to the stability limit using a set of 

c iteria which can be easily programmed on a digital computer. This 

m thod has been extensively used
8,9,19,30. 

It is utilized herein for 
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in estigating the dynamic stability limits of the dual-excited synchronous 

ma hine. 

Small Displacement Equations 

As explained before, it is quite sufficient for studying the 

dyhamic stability of the dual-excited synchronous machine to use a 

linearized small displacement representation. Such a representation can 

be obtained by considering deviations in the time dependant variables 

fr 

d 

m their steady-state values. Thus 

v = v
o 
+ Av 

i= i
o 
+ Ai 

=
o 
+ Ad 

4.1 

4.2 

4.3 

Substituting equations 4.f - 4.3 in the general equation of the 

-excited synchronous machine (equation 3.69) and subtracting the 

tems corresponding to the initial steady-state operating point, the 

eqOations of the machine will be given in terms of the time dependant 

deViations. If these deviations are very small, the terms of power 2 

ani more can be neglected and the following approximations can also 

be applied: 

Cosa = 1 4.4 

Since = Ad 4.5 

Hence, the following small displacement equations result: 
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Fr 

{R 

Al 

m equation 3.70, the following relations are obtained: 

b100 0) z1100 0) 

%2(jPeo) ] 
Im[

z12 -- 0) ] • vdo) A6

= {vtqo itdo • Im[Z11(iPeo) itqo 
• Re[Zii(jp00)]) . A6

.v 
rZ11(J0) 

LnIz ripe ) 1. v 1:10 
1 A6 

o 

t o itdo 
• Re[Z11(J00)] + itco • ImP11(jp00)1} . A6 

o for a constant bus voltage, the following relations are valid: 

• Sin(6
o
+A6) - vSind

o 
= v

qo 
. A6 

Avg = v . Cos(6
o
+6,6) - vCos6

o
= -v

do 
. A6 

4.7 

4.8 

4.9 

4.10 

Substituting equations 4.7 - 4.10 in 4.6, the small displacement 

equations can be written as follows: 
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4 4 Machine Regulation 

The superior dynamic and transient performance of the dual- 

elicited synchronous machine is mainly due to the availability of two 

separate field circuits with the possibility of controlling each in a 

different way. One of the suggested regulation schemes is to provide 

o e of the two field windings (winding 1) with a voltage regulator while 

e other is provided with a rotor angle regulator 
27,29,30 

However, it 

w4uld be interesting to study the performance of this machine for various 

other schemes of excitation regulation. Fig.4.1 shows a single-line 

block diagram for dual-excited synchronous machine excitation control, in 

which any possible feed-back signal combination can be chosen by using a 

stoup of arbitrary constants CFI!, C2v, C16, C26, C1p6, C2p6, C1p26, C2p26, 

C . C2p, Clq, C2q, C
1I' 

C
21
. 

In general, the expressions of the excitation controlling 

signals for both field windings may be given as follows: 

Avfl 
= g

R1 
(p)[Clv .Av + C

lp
.AP + C

lq
.AQ C

ld
.A6 

+cipts*pAS + C1p261)2A ] 6 

= 
g
R2
(p)[C

2v
.Av + C

2p
.AP + C

2q
.AQ + C21 'Ai + C2(5.A6 

+C
2p6

.pAd + C
2p26

.p2Ad] 

4.12 

4.13 

The equations giving the terminal voltage, power, reactive 

power and current deviations in terms of Aitd' 
Ai
tq 

and &scan be derived 

by expanding these variables in the neighbourhood of the operating 

point. This will result in the following equations: 
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Th 

in 

eq 

v
tdo 

v, 
Avt = . Av + . Avt v

to 
td v

to q 

Ait -  
tdo 
i 

Ai
td 

+ 
lltgo 

. Ai
tq to to 

i
tdo 

• Av
td 

+
tqo 

• A
vtq 

+ v
tdo 

• Ai
td 

•  +Vt o 
Ai
tqq 

Li
p=-i 

Av 
tdo i 
 • 

Avtq 
+v Di

 Ai 't t o td td 

- v
tdo 

• Ai
tq 

elimination of Av
td 

and Av
tq 

from equations 4.14, 4.16 and 4.17 

favour of Aitd' Aitq and A6 can be done through linearizing 

ation 3.6a as follows: 

4.14 

4.15 

4.16 

4.17 
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Av
td 

Av
tg 

Z11 
(p+jp60) 

Re „ 
Z11 (p+jpeo) 

Re [Z p+j peon 
Z12 (p+jpeo) ] 'Lin[z 12 (p+ipe ID) ] 

Z
11 

(p+jpeo) 
Im 

Z
11 

(p+jp80) 
Re[ z Im[Zil (p+jp80)] 

Z12(13+jPeo) 
] 

12 
(114j00) ] 

Im[Z11(p+Jpe o) 

Z (jp0 ) 
-vdo • 

Z11 (13+i P6o) 
vdo • Im[ Z ill2 00 °0)1

Im[Z12 (13+jPel o)]

Z
11 

(p+jp0o) Z11 (jp0 o ) v t 
-v "Re[ 

q° Z12 (13+ jP°o) 
go.ReZ 

12(30 o) 

zii (P+i00)1+itdo • im[z11(J0 )1

R-i tgo • Re [Z11 (p+jp80)]+ i tgo • e[Z11-(jp00)] 

Re [Zii  (p+jp0o) 

Z (p+jp6 
• Re [  

11  ] r  Z1100 ) 
v 

do Z12 (p+jp80) vdo • 
D 
—e LZ12 Op°o)1 

Z
11 

(p+jp0o) 
-vqo • Im [Z12 30 (p+ 0) • I 

Z11 (jP° o) 
+ v • Im [ • qo Z12 p8o) ,

+itdo • Re [Z11 (P+iPeo) I- itdo 
 Re 

[Z11 (iP° )1

-i
tgo 

• Im [Zil  (p+jp80) ]+ i tgo • Im [Z11 ()p0o) ] 

Av 
q 

Aitd 

Ai 
tq 

AS 

4.18 



64 

But: 

0 

0 

U 

Re 
1
i
Cila

(iPeo) Z (jpe ) 
11 o 

1
-Im[Z 

Repli(jp60)] -Im[Zti(jp00)] 
o ) 112 0 00 )i 

12 o 

Z...00 ) 
ImE il ° 1 

Z„(iPe ) 
Re[ " ° 1 Im[Z Op° )] 

11 o 
Re Z • 0 
[ 1 (JP di Z12(W o) Z12(jPeo) i 

v
do 

v
qo 

i
tdo 

i
tqo 

ing equations 4.9, 4.10 and 4.19, equation 4.18 can be reduced to: 

td 

Av
tq 

Re[Z11(p+j00)] 
-/m[Z11(P+jPeo)]

Ini1Z11 (P+i Pe o) 1
Re 

[Z
li (p+jp00) ] 

v
tqo 

-itdo Im[Z11(1) jP80)] 

-itqo Re[Zil(p + jp00)] 

-v
tdo 

+itdo 
• Re[Zil(p + jp00)] 

tqo 
• lin[Z (p + jp60)] 

Ai
td 

Bit
q 

A6 

4.20 

4.19 
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Substituting equations 4.12 - 4.17 and 4.20 in 4.11, the following 

general form of the small displacement equations results: 

GRG1(p).131+GRG2(p).B2 GRG1(p).C1+GRG2(p).C2

21
GRG1(p).(Cid*G. 

o - +Clp20 ' 4.I.p..1)

GRG2(p).(C26+C2pd.pfC2p26.p
2
) 

0161(p).1)1+GRG2(p).D2

GRG3(p).131+GRG4(p).132 GRG3(p).CII-GRG4(p).C2

2 
GRG3(p).(C1d+C1p 6.p+Cip2s.p )+ 
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-(1000).M(P) 
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+0
q
-it

do
-x
d 

0 •P2 +1.1.0(13).1)
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Irtdo = (C2p 
.vtdo 

+C2g 'vtgo +C • + C2p*itdo-C2g tqo). 
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itdo.14.(c 

to 
' 
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(Clp•Irt o Clg•Irtdo+C11 
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C
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v 
C 

(c .v _c .v +c ) (c tdo + 
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D 
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v
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Z (P4j0))] 

1p•itdo-Clg•itgo). [vtgo-itdo • im [Z (P+iP6o) ]-itgo • 
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(P+iP°o) ]1+ (Clv c•v i 

C
 [-vt o+itdo • 

to 

Re [Z 
P+i Pe 0) ]-itgo • 'In rZ11 (P-Ej Pecs) 1]

= (C • 
p• tdo 2g • itgo) • Evtgo-itdo • im [Z11 (Pjri Pea) ]-itgo • 2v vtovtdo 

Re[Zil(p+jped (]] 
-C2v vto 2p tqo

+C 
2g tdo) 

• 

[-vtdo+lt o • Re [Z11 (134-iP6o) ]-itgo • 'In [Z11 (P+iPelo) 1] 
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RG1(p) = 
[-Gfld(P) *P + P6o • Cf1q(P)] * gRl(P)

0G2 (p) = 
[-Gf2d(P) • P 4. Pe° 

GRG3(p) = [-p60

GRG4(p) = [-peo 

• G
f2q(p)] ' gR2

(p) 

Gfld(P) - Gflq(P) • 0 ' gRi(P) 

• G
f2d

(p) - G
f2q

(p) • p] • g
R2
(p) 

GRG5(13) =[-itqco Gfid(P)

9RG6(p) = [-itqo  Gf2d(P)

i
tdo 

• G
flq(p)] • gR1(p) 

tdo • Gf2q(P)] • gR2(P)

4.5 Application to a Simple Power System 

For the system shown in Fig. 3.1, the small displacement equations 

can be written as follows: 
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5. EXTENSION OF THE UNDER-EXCITED STABLE REGION 

OF THE DUAL-EXCITED SYNCHRONOUS GENERATOR 

5.i Introduction 

It has been a common practise to conduct the dynamic stability 

stOies of synchronous machines on a reduced power system usually 

consisting of a single machine connected through a transmission line 

to an infinite-bus 
11,13,22,28-30

 This form of representation has the 

advantage that attention can be focused on the machine and its excitation 

system, both of which may be reasonably completely described without 

un ecessarily complicating the analysis. 

In this chapter, the possibility of improving the dynamic 

stability limits of the dual-excited synchronous generator through 

controlling its excitation is demonstrated by considering such simple 

polwer system (Fig. 5.1). A block diagram of the regulator used for 

each field winding is given in Fig. 5.2. The parameters of the generator, 

its regulators and the tie line are as follows: 

v = 1.0 p.u. 

x
e 

= 0.200 p.u. 

R
e 

= 0.010 p.u. 

r = 0.006 p.u. 

x
d 

= 2.32 p.u. 

x = 2.07 p.u. 

x
ad 

= 2.22 p.u. 

x
aq = 

1,97 p.u. 
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Fig. 5.1 Schematic Single Line Diagram of the Studied System 
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x
ffl 

= 

rfl 
= 

Xff2 
= 

r
f2 

= 

Xkkd 
= 

r
kd 

= 

x kkg = 

r
kq 

= 

a = 

042 = 

aD = 

T = 
a 

T = 

T = 
e 

T = 

K
e 

us = 

2.442 p.u. 

0.0025 p.u. 

2.442 p.u. 

0.0025 p.u. 

2.33 p.u.

0.01 p.u. 

2.11 p.u. 

0.02 p.u. 

33.750

33.75°

2185 p.u. 

0.02 sec = 7.54 

0.0 sec = 0.0 p.u. 

0.8 sec = 301.6 p.u. 

1.0 sec = 377.0 p.u. 

1.0 

0.03 

5.2 Method of Investigation 

It has been pointed out in Chapter 4 that, for studying the 

amic stability of synchronous machines, it is sufficient to apply 

any of the well-known control theories to its linearized small 

displacement equations. Such equations have been already derived in 
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e preceeding chapter for the dual-excited synchronous machine and 

c n be arranged in the following compact form: 

1 
D (p) 

All(p) 
Al2 (p) A13 (p) 

A21 (p) A22 (p) A23(13) 

A31(p) A32(p) A33(p) 

Ai
d 

Di 
q 

AS 

= 0 

w ich represents a set of homogeneous algebraic equations. To get a 

n ntrivial solution for these equations, the determinant of the 

c efficient matrix should be equal to zero. This implies that: 

A
11
(p) A

l2
(p) A

1
3(p) 

A
21
(p) A

22
(p) A

23
(p) 

A
31
(p) A

32
(p) A

33
(p

) 

5.1 

= 0 5.2 

Equation 5.2 is the characteristic equation of the machine and 

s roots are the characteristic roots. If the real part of any of 

em is positive, the machine will be unstable. Thus, the problem of 

d termining the stability is one of finding the charatteristic roots. 

However, this task is tedious and time consuming and the use of an 

ternative method, by which stability can be checked without actually 

lying for the characteristic roots, would be desirable. Routh's 

c iterion provides a simple technique for finding out whether the 

c aracteristic equation has root$ with positive real parts or not, and 

h nce for checking the machine dynamic stability. If the characteristic 

eniation 1s written in the following polynomial form: 
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a •p
n + a

n-1 
1)
n-1 

+ an-2I)n-2 + + . + ao = 0 5.3 

Ro th's criterion for stability can be summarized as follows: 

1. All the coefficients of the polynomial have the same sign. 

2. None of the coefficients vanish. 

3. The signs of the elements in the first column of the 

following array must be the same: 

where 

a
n 

a
n-2 

a
n-4 

a
n-1 

a
n-3 

a
n-5 

a
11 

a
12 

a
13 

a
21 

a
22 

a
23 

• • • • • • • • • • • • • • • • • 

an-1 • an-2 - an-3 • an

all 
-  

a
n-1 

a
n-1 

• a
n-4 

- a
n-5 

a
n 

a
12 

-  
a
n-1 

all 
• a

n-3 - a12 an-1 
a
21 

-  
a
11 

all an-5
 - a13 • an-1 

a22 - a11 

• • • 

• • • 

A digital computer program has been developed to form the 

characteristic equation of the system at each operating point and 
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th :n to check its stability by applying Routh's criterion to this 

eq ation. A flow chart for this program is given in Appendix F. 

Th results obtained are in the form of curves representing the 

d amic stability boundaries with the freedom of using any two system 

pa ameters under study as variables. In the present investigation, the 

re ctive power at the infinite bus Q is chosen as the variable on 

on axis, while the active power P or the regulating system gain 

is the variable on the other axis. 

Static Stability Boundaries and Capability Diagram 

(1 

As shown in Fig. 5.3, the steady-state operating range of 

a ual-excited synchronous generator is limited by many factors, 

n ely: the static stability boundary, the maximum prime mover power, 

th stator heating limit and the rotor heating limit.

For a non-salient pole dual-excited synchronous generator, the 

tic stability limits are similar to those of a non-salient pole 

conventional one. This is true for any ratio between the excitation 

rents in the two field windings. If saliency is present, the 

li its will insignificantly change for different ratios between the two 

fild currents as shown in Fig. 5.4. 

The maximum prime mover power and stator heating limits are 

ed for a certain machine design independant of its excitation system. 

On the other hand, the rotor heating limit depends on the 

ao 

r do between the two field currents. It is essential to keep always 

n t only the total copper losses in the field winding minimum but 

also the copper losses of each field winding within safe limits. 

Fig. 5.5 shows that, for machines whose field windings are identical 
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a d have the same inclination angle to the direct-axis of the rotor, 

t e rotor heating is minimum when both are equally excited. This 

h s also the virtue of resulting in an even distribution of copper 

1 sses between the two field windings and so preventing the overheating 

o any of them as shown in Fig. 5.6. 

5. 

a 

ch 

tlie fact that the magnetic-axis of the field winding in 

al 

ti 

4 Dynamic Stability Boundaries 

As mentioned in Chapter 2, the possible capacitive power, which 

conventional synchronous machine can supply at no load, cannot be 

anged through the application of regulating systems. This is due to 

this case is 

ways in alignment with the resultant flux (neglecting armature and 

e-line resistances). Hence, any regulating signal is unable to 

p oduce a stabilizing torque which can suppress the rotor angle 

o cillations. For the same reason, the improvement of the dynamic 

stability limit at low power consumption is also not satisfactory. 

It is therefore expected that these limitations can be overcome 

a dual-excited generator, since the magnetic-axis of either of the two 

field windings or both can be kept inclined to the resultant flux. 

T is can be simply achieved by equally exciting the two field windings 

d then controlling either or both by suitable regulators. 

5.4.1 Effect of voltage regulators 

In the normal operation of conventional synchronous generators, 

i is customary and almost necessary to keep the terminal voltages at 

a specified value. This is usually achieved by controlling the 

generator excitation by voltage regulators, which has also the advantage 

limiting the overvoltages that may occur on loss of load. It has 
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be n found that continuously-acting voltage regulators extend also 

th stable under-excited region of these generators at loading 

co ditions. However, it has no effect on these limits at no load. 

For operation of the dual-excited synchronous generator with 

eq ally excited field windings, the dynamic stability boundaries are 

shswn in Figs. 5.7 and 5.8 for the case of controlling any of the two 

fi ld windings by a voltage regulator. The under-excited stable region 

is 

at 

cold 

considerably extended at full load, while no improvement is achieved 

no load. The ineffectiveness of this type of control at no load 

be explained by the following analysis. 

Neglecting the armature and transmission line resistances, 

machine terminal voltage vt in terms of the three quantities id, 

and 6 can be expressed as: 

Henke : 

Th 

Thi 

v
2 
= (v-Sind - i

q
.x
e
)
2 
+ (v-Cosd +

d
.x
e
)
2 

(vto + Avt)2 = (v-Sin(60 + A6) - (iqo + Aiq) ' xe)2 + 

(v•Cos(60 + pd) + 
(ido Aid) • xe)

2 

corresponding small-displacement equation is: 

x
e 

Avt 
vto 

= • (-(vdo do + vqo
qo
) • A6 + qo + do*xe) • Aid 

-(v
do 

-
qo

.x
e
) • Ai q

s can be rewritten as: 

Avt = e 
. ( vtgo•Aid vtdo.Alq)vto

5.4 

5.5 

5.6 

5.7 
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A no load and for equally excited field windings: 

v
tdo 

= 

v
tqo 

= V
to 

Hence, equation 5.7 is reduced to: 

Av
t 
= x

e 
• Ai

d 

5.8 

5.9 

5.10 

This shows that a signal proportional to the change in the terminal 

voltage is proportional to the change in the direct-axis component of 

4e current. In Appendix B,it has been proved that the latter cannot 

prove the dynamic stability of the dual-excited synchronous generator 

no load. Hence, it follows that a voltage regulator used for any 

(:) the two field windings is ineffective from this point of view. 

It should be noted that, when both field windings are equally 

excited and simultaneously controlled by identical voltage regulators, 

e generator becomes equivalent to a conventional one provided with a 

voltage regulator. Hence, the same dynamic stability limitations of 

tlIte latter hold also for this case and no improvement can he achieved 

no load. 

5.4.2 Effect of rotor-angle regulators 

a e adjusted to be equal at every operating condition. 

a) Control of field winding 1 

itohne::::n:: 

using voltage

windings ✓ gulatIo:::shei::::: iy!::::11e,e::i::: 

i 
The dynamic stability boundaries representing this case are 

given in Fig. 5.9. It is clear that the dynamically stable region is 

e tended far beyond the static stability limits, even at no load. However, 
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is noticed that instability will occur at no load when the capacitive 

wer becomes less than its value at the static stability limit. This 

uld restrict the use of this signal to the range of capacitive loadings 

yond the static stability limit. However, if the sign of the control 

Or this loading range. This phenomenon can be explained 

Fl.g. 5.10 a., which represents the 

excited machine at no load when it 

undary. Point A represents the normal operating point for this specific 

leading. If the rotor accelerates due to the occurance of a disturbance, 

a 

fi 

Pa 

gnal could be reversed in this region, stability will be also achieved 

by examining 

vector relations of the dual-

is operating beyond its static stability 

positive control signal will result in increasing the excitation of 

eld winding 1. Consequently, the operating point will move to 

int B, which means an increase of the electrical output power. This 

will in turn cause deceleration of the rotor and the machine at last 

ttles in a stable position. On the other hand, when a negative control 

signal is used, the acceleration of the rotor will be followed by a 

decrease of field winding 1 excitation and the operating point moves to 

C. This will result in an increase of the accelerating power which 

kes the machine go out of step. Using the same procedure, it can be 

e sily shown from Fig. 5.10 b. that, when the capacitive power loading 

is less than its value at the static stability limit, a positive control 

signal will lead to instability while a negative control signal will not. 

5.11 shows that this instability problem is not created only at 

no load but over certain operating range. 

b) Control of field winding 2 

As shown from Fig. 5.12, the dynamic stability boundaries of the 

dual-excited machine at no load as well as at full load can also he 
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c nsiderably improved by this scheme of regulation, providing that the 

p oper sign of the control signal is used. The improvement achieved 

a 0.2 p. unit load is not satisfactory. At full load, a positive 

crnntrol signal is required, while the sign of the control signal at no 

ad depends on the operating range. It should be positive for operation 

within the static stable region and negative for operation beyond the 

static stability boundary. An explanation for this could be found 

by studying Fig. 5.13. Fig. 5.13 a. represents the vector relations of 

the dual-excited synchronous generator at no load when operating beyond 

its static stability boundary. Point A is the corresponding operating 

point. If the rotor-angle increases due to a disturbance, a positive 

cotrol signal will increase the excitation of field winding 2. The 

oPerating point will then move to point B, which indicates an increase 

of 

ac 

the input electrical power. As a result, the rotor will continue to 

celerate and the machine will go out of synchronism. On the other 

hand, when negative control signal is used, the operating point will 

more to C indicating that the electrical output power of the machine will 

rease. It follows that a case of equilibrium can be reached and the 

hine keeps running in synchronism. Following the same method of 

explanation, it is also possible to show from Fig. 5.13 b. that the 

opposite will occur when the machine operates within the static stable 

re ion. In this case, negative control signal will cause instability, 

whtle positive control signal will stabilize the machine. The P - Q 

st bil ity boundaries given in Fig. 5.14 shows clearly the stable and 

un.Ltable regions associated with each sign of control signal. 
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c) Control of both field windings 

When both field windings are simultaneously controlled by 

entical rotor-angle regulators and with the same sign for the control 

gnal, the machine becomes similar to a regulated conventional one. 

Thus the same dynamic stability limitations of conventional synchronous 

m chines hold also for this case and no imporvement can be achieved at 

n(1) load. 

5 4.3 Operation with fixed rotor-angle 

From the preceeding investigation of the dual-excited synchronous 

g nerator with equally excited field windings, it is clear that the 

cizIntrol of either of them using a rotor-angle regulator fails to stabilize 

the generator over the whole loading range. The proper sign of the 

cntrol signal which extends the dynamic stability region at full load 

cieates instability within certain operating regions. These unstable 

gions occur approximately when the rotor-angle is less than al for the 

c se of controlling the excitation of field winding 1 and greater than 

1 0-a
2 
for the case of controlling the excitation of field winding 2. 

This problem could be overcome by fixing the position of the 

tio field windings with respect to the resultant flux for all loading 

c nditions. To achieve this, the excitation of both field windings have 

t be adjusted so as to keep the rotor-angle 8 fixed at a certain 

s ecified value. Fixing the rotor-angle at a value equal to al makes 

field winding 1 magnetic-axis in the direction of the resultant flux 

d hence it controls only the reactive power (if saliency and resistance 

a e neglected). This can be explained by the following simple analysis. 
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Considering the vector diagram of Fig. 5.15, the following 

a ions can be written: 

E
d 
= V Sind - I

qo 
• (xa + xe) 5.11

Eq = V Cos6 + Ido • (xd + xe) 5.12 

IP = I o SinS + Iqo • Cosd 5.13 

I
v 
= I

do 
• Cosd - I

qo 
• Sin6 5.14 

wh 

Cu 

Su 

re IP and Iv are the active and reactive components of the armature 

rent respectively. 

E
d 

and Eq depend on the field currents as follows: 

E
d 
= x

aq 
i
flo 

• Sina
1 
- x

a 
• i

f2o 
• Sina

2 

E
q 

i
flo 

• Cosa + xad • if2o • Cosa2 
1 

equations 5.11 - 5.12 

5.15 

5.16 

1 
Ip 

= x 1 x  . (E ct-V•Cos(S) • Sin6 + x +x . d+V•Sin(5) • Cos6 5.17 
d e

Iv 
x 1x X 1X 

=   . (E -V•Cosd) • Cosd   . (-Ed+V•Sin6) • Sind 5.18 
+ 

d e q
+
e 

stituting from equations 5.15 and 5.16 in 5.17 and 5.18, then: 

1 
. (x 

ad 
• i

flo 
• Cosa

1 
+

-
x 
ad 

• i
f2o 

• Cosa
2 

- V•Coso) • 
x +x 
d e 

Sin6 + 
1 

.
aq

flo•Sina1 + xaq f2o•Sina2 +V•Sin(S) •Cos6 
Xq+Xe 

5.19 
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if 

Fig. 5.15 Steady-State Vector Diagram of the Dual-Excited 
Synchronous Generator (o=al, resistance neglected) 
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Iv 
-  

d
+xe 

(xad flo•Cosa1 + xad f2o'Cosa2 - V-Cosd • Cosd x 

1 
(-x

aq
*i
flo

•Sina
1 
+ 

xaq f2o
•Sina

2 
+ V • Sind) • Sind 5.20 

Xq+Xe 

d = al and saliency is neglected, i.e., xd = xq = x 
' xad = xaq = x2 

t en the following expressions can be obtained: 

Sin(al a2) • if2o x
1 

x
2 

I 
V X

1 
Cos (a 

x
2

a2) • if20 x
1 

-flo 

5.21 

5.22 

It is obvious that the active component of the current depends 

orly on the excitation of field winding 2. -So, the control of this 

winding by a rotor-angle regulator can improve the machine stability. 

Field winding 1 current controls only the reactive power and thus it 

malkes no contribution to the stability of the machine in this case. 

a) Control of field winding 2 

Fig. 5.16 gives the dynamic stability boundaries of the dual-

excited synchronous generator when its field winding 2 is controlled by 

a rotor-angle regulator. In this case, the excitation of field winding 1 

is adjusted but unregulated. It is noticed that the stable under-excited 

region is extended at any loading condition far beyond the static stability 

boindary. 

Such extension of the dynamic stable region can be also achieved 

when the rotor-angle is fixed at values other than a1 as shown in Fig. 5.17 

and Fig. 5.18. It appears from these figures that keeping d fixed at the 
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v lue a
1 
does not provide the maximum stable region. 

It is noticed that the total copper loss and its distribution 

b tween the two field windings varies widely from one reference angle to 

aillother as shown in Figs. 5.19 and 5.20. The values may exceed the 

r 

r 

tor safe heating limits and thus may affect the choice of the 

ference angle. For lagging power factors, the operation with rotor 

aiigle fixed at the value al results in minimum rotor copper losses. 

HOwever, equal excitation of the two field windings still produces 

4nimum rotor copper losses. Moreover, it results in an even 

distribution of copper losses between the two field windings and so 

p 

the value 

event the overheating of either of them. 

b) Control of field winding 1 

It has been already proved that when the rotor-angle is fixed at 

a
l' 

no stability improvement can be achieved by controlling 

the excitation of field winding 1. This fact is confirmed by Fig. 5.21 

However, the situation is different if the rotor-angle is fixed at 

lues other than a
1 
and considerable extention of the dynamic stable 

gion in this case is also achieved(Fig. 5.21). 

c) Control of both field windings 

As explained before, if the rotor angle is fixed at the value 

a , field winding 1 controls only the reactive power and so it does not 

c ntribute to the stability of the machine. This field winding could 

b utilized in regulating the terminal voltage of the machine by providing 

it with a voltage regulator. The extension of the dynamic stable region 

ii this case can still be achieved by controlling field winding 2 with 

a rotor-angle regulator. As shown in Fig. 5.22, the addition of the 
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voltage regulator does not affect significantly the stability boundaries 

at no load. Moreover, the machine is stable even with very high gain 

for the voltage regulator. 
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6. CONCLUSIONS 

6.1 General 

The recent developments in power systems,such as the erection 

of long high voltage transmission lines, the widespread use of underground 

cables and the design of large machines with high per-unit reactances, have 

mlade the stability problem of power systems more acute. In Chapter 2, 

the stability problem of conventional 

steady-state and transient conditions 

that, with the available methods used 

a 

synchronous machines both 

is discussed briefly. It 

for improving the machine 

at 

appears 

stability, 

point has been reached beyond which further improvements are not seen 

especially for the dynamic operation at no load. Dual-exciting the 

rtors of synchronous machines has been recently suggested as a possible 

technique for achieving further extension of the stable operation of 

tHse machines. 

6.2 Analysis of the Dual-Excited Synchronous Machine 

In Chapter 3, a generalized analysis for the dual-excited 

chronous machine has been developed. The mathematical representation 

obtained allows for the study of machines, in which both field windings are 

not necessarily located on the rotor-axis and may have different number 

of turns as well as different inclination angles to the direct-axis of the 

Ole structure. This representation is also applicable to any special 

c se such as the d-q or the conventional synchronous machine. 

In 

The equations 

whine connected to 

ley are arranged in 

are derived for the case of a dual-excited synchronous 

an infinite-bus through a general transmission system. 

the operational form which is of interest as far as 
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power system analysis is concerned. Special attention has been directed 

Chapter 4 towards formalizing the linearized small displacement 

uations taking into account the possibility of using different schemes 

excitation regulation for either of the two field windings or both. In 

tIe whole analysis, no assumptions are made other than those required 

fir deriving Park's transformation and so it offers a more exact machine 

representation. 

The general analysis is followed in Chapter 5 by a study Of the 

m chine dynamic stability. A simple power system is considered, in 

which a dual-excited synchronous generator is connected to an infinite- 

bus via a simple tie line. The dynamic stability investigation is 

carried out through the application of Routh's criterion to the 

characteristic equation of the system as found from its linearized 

representation. For this, a digital computer program has been developed, 

which gives the stability boundaries in the plane of any two arbitrary 

parameters. 

6.3 Static Stability and Capability Diagram of the Dual-Excited 

Synchronous Generator 

The static stability limits of the dual-excited synchronous 

geperator with identical and equally excited field windings are the same 

as those of an equivalent conventional one. This applies also for 

th e case 

When saliency is present, the static stability 

ratio of the excitation currents in both field 

does not significantly differ from that of the 

generator. 

of differently excited field windings if there is no saliency. 

boundary depends on the 

windings. However, it 

conventional synchronous 
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The values of the excitation currents in both field windings are 

r 

h 

stricted at any operating point by the rotor heating limit. Not 

ly the total field copper losses have not to exceed a safe value, but 

so the copper losses of each field winding should not exceed its 

ating limit. It has been found that equally exciting both field 

windings has the advantage of producing minimum total field copper 

losses as well as even heat distribution in the rotor. This would 

p event the overheating of either of the two field windings and thus 

provide a wider operating range. 

Hence, it can be concluded that the dual-excited synchronous 

Onerator has no advantage over the conventional one as far as the 

seady-state (static) operation is concerned. 

6L4 Dynamic Stability of the Dual-Excited Synchronous Generator. 

For investigating the dynamic stability of the dual-excited 

synchronous generator, two modes of operation are considered. In the 

first, the two field windings are always equally excited. In the 

s cond, the excitation currents of both windings are adjusted so as to 

ksep the rotor-angle fixed at a certain specified value. 

With equally excited field windings, the control of either of them 

b a voltage regulator extends considerably the dynamic stable region 

a full load. However, such an extension will be leSs when the machine 

i lightly loaded. At no load, no improvement can be achieved and the 

mximum capacitive power which the machine can supply for stable 

operation, could not exceed the static stability limit. Thus, this 

scheme of controlling the excitation of the dual-excited generator does 

not offer any further advantage in comparison with the conventional one. 
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However, the extension of the under-excited region beyond the 

static stability limits for all loading conditions can be achieved 

by controlling the excitation of field winding 1 by a rotor-angle 

regulator. In this case, instability will be created if the machine 

i8 operating within its static stable region with a rotor-angle less 

tian al. Stability within this region can then be maintained if the 

sign of the control signal is reversed or if the excitation control loop 

ils out of service for this operating condition. It follows that this 

scheme of excitation control is not helpful unless special arrangements 

are used to take care of this problem. This may introduce practical 

difficulties, the study of which is beyond the scope of this work. 

When the excitation of field winding 2 is controlled by a rotor-

angle regulator, the extension of the under-excited stable region is 

subjected also to certain restrictions concerning the sign of the 

control signal. For stabilizing the machine, this sign should be 

positive when 6 is less than 180-a
2 
and negative when 6 is greater 

than 180-a2. It is also noticed that the improvement achieved at 

l ight loading is not satisfactory. 

With both field windings equally excited and simultaneously 

cOntrolled by two similar regulators, the dual-excited synchronous 

generator (with identical field windings) is equivalent to a conventional 

oche. Thus, the dynamic stable region at full load can be extended 

considerably, while such extension is limited at light loading. At no 

load, no improvement can be achieved at all and the maximum capacitive 

wor, which the generator can develop, does not exceed the static 

St abi lity limit. 



112 

As the control of either of the two field windings by a rotor-

angle regulator fails to stabilize the machine all over the whole 

generating range, the second mode of excitation has been suggested as 

a possible way to overcome this limitation. 

If the rotor-angle is fixed at the value al, the dynamic stable 

region can be considerably extended at any loading condition through 

controlling the excitation of field winding 2 by a rotor-angle regulator. 

Fi Id winding 1, having in this case its magnetic-axis coinciding with 

th resultant flux, cannot help improve the machine stability. 

The extension of the dynamic stable region can also be achieved 

by controlling the excitation of either of the two field windings by a 

rotor-angle regulator, when the rotor-angle is fixed at values other 

than al. It is found that the largest stable region is obtained when 

thre rotor-angle is fixed at the value 900. However, the choice of other 

values than a1 is restricted by the heating limit of each field winding. 

At lagging power-factors, the value al gives rise to minimum rotor 

he ting but not to the extent to be less than in the case of equally 

excited field windings. Further, with the rotor-angle fixed at the value 

a
l' 

field winding 1 does not contribute to the machine stability and can 

be utilized to control the terminal voltage by providing it with a 

voltage regulator. Stability of the machine in this case can be main-

tained at any loading condition through controlling field winding 2 by 

a rotor-angle regulator. Such a scheme will allow for the use of extremely 

high gains for the voltage regulator without leading to instability. 

In general, it can be concluded that the under-excited stable 

region of a properly controlled dual-excited generator can be extended 
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a no load as well as at low power demand far beyond its static stability 

limits. On the other hand, this machine at full load operation has no 

a vantage over a properly controlled conventional one from the dynamic 

stability point of view. 

6,5 Recommendations for Future Work 

Although some effort has been directed in this thesis to 

study the dynamic stability of the dual—excited synchronous generator, 

many investigations are still to be carried out in the future to 

understand more its dynamic behaviour. Some of the studies suggested 

for future work are: 

1. Studies of the effect of other control signals such as current, 

power, reactive power, speed, acceleration or any possible 

combination of them on the machine dynamic stability. 

2. Finding out methods for realizing stable dynamic operation all 

over the whole loading range, with equally excited field windings. 

3. Effect of different rotor designs on the dynamic stability of 

this, machine. 

4. Optimization of the regulator parameters to achieve the best 

dynamic operation especially when both field windings are 

simultaneously controlled. 

5. Enhancement of damping of synchronous machines especially 

at no load. 

6. Investigating the machine transient stability under the effect 

of different schemes of excitation regulation. 

7. Fxperimental work on the microaltornator for verifying most of 

these theoretical studies. 
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8. APPENDICES 

Appendix A - Limitations of the Conventional Synchronous Machine 

Excitation Control At No Load. 

Theoretical and experimental studies22 '28 showed that the possible 

capacitive power, which a conventional synchronous generator can 

develop at no load, cannot be increased through the use of voltage or 

limd-angle regulators. In this appendix, it will be proved that, no 

matter what signal is fed-back from the output of the generator to the 

cqrect-axis field winding, this limitation still holds. 

The equations describing the performance of a conventional 

synchronous generator connected to an infinite-bus through a series 

reactance xe are: 

where: 

• Sind = pTd-(00+06) • Tq-1, ' 

= v • Cosd = pT
q
+(p8

o
+06) • Td-r • 

Ti = iq • 'd-id • T q+(ED 1)2A6 

-(x e +xd (p)) +G (p) 
d vfd 

-(x
e
+x (p

)
) 

8.1 

8.2 

8.3 

8.4 

8.5 

Since the speed changes during a small disturbance are small, the 

voltage terms 06.41q and pAd•Td can be neglected. Also, the voltages pTd

and pTq induced in the armature by the rate of change of armature flux 

ilnkages are negligible compared with the rotational voltages. 
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8 

Neglecting pTd, pTc1,06 and substituting pe = , equations 8.1 - 

3 can be rewritten as follows: 

vd = v•Sin6 = (xe+xq(p)) iq - r •id 8.6 

vq = v'Cos6 = -(xe+xd(p)) id + G(p)vfd -r •iq 8.7 

(-(xe+xd(P)) id G(P) vfd)
T. 
1 

+id .(x e +x q(p)) iq + 0 • p2A6 8.8 

Fallowing the procedure explained in Chapter 4, the small displacement 

e uations can be written as follows: 

Avd = v qo.A6 = (xe+xq(p)) Aiq - r • Aid 

Avq = -v (xe+xd(p)) Aid - r • Ai + G(p) 
do.A6 = - q Av fd 

AT.1 -iqo (xe+xd(p)) Aid + iq0 • (xe+xq) Aid

+i
do 

• (x 
e 
+x (p)) Ai 

q q + (e-ido • (xe+xd)) Aiq 

+i o G(p) Avfd + 0 • p206 

8.9 

8.10 

8.11 

Using equations 8.9 and 8.10, equation 8.11 can be reduced to: 

AT. = (vdo 4ido.r)*Aid (vqo+icio.r).Aiq (Qf(1"
2 
) 

• A6 8.12 

where Q is the reactive power delivered to the infinite-bus and is equal 

t (ido • vqo 
- i

qo 
• v

do
) 

Equations 8.9, 8.10, and 8.12 can be rewritten in the following 

ufftrix form: 



J. 

F.d (n) 

F. 

F
6 

At 

G(p) Avfd

no load: 

x
e
+x
d
(p) r -v

do 

-r xe+xq(p) -vqo 

v
do

+i
do

.r v
qo
+i

qo
.r a) • p2+Q 

vdo = 0 

v = +v 
qo - 

Ai
d 

Ai 

A6 

The positive sign applies when 6=0°, while the negative sign when 

6. 

a 

180°. Substituting from equations 8.14 and 8.15 and neglecting the 

nature resistance, equation 8.13 becomes: 

G(p) Avfd

0 

0 

x e +xd (p) 

- 
x
e
+x

q
(p) +v _ 

+v 0 . P 24',/ 

Ai
d 

Ai 

A6 

From equation 8.16, the transfer functions of the conventional 

synchronous generator (Fig. 8.1) can be written as follows: 

(1+TkdP) • [(Q.* .p
2
) • (1+T •p) + 

•  
Ai
d 

x
ad 

8.13 

8.14 

8.15 

8.16 

Av r (x +x ) 
fd fd d e (1+T P. ).(1+T".p).[(Q.+4) T 2).(1+T .p) + 

Ai 

q(P) - Avg
fd 

A6 
(P) = Avfd 

- 0 

0 

/(xq+xe)).(1+T qo 
".p) 1 

(v
2
/(xci+xe)).(1+Tcto.p)] 

8.17 

8.18 

8.19 
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Variation in reference 

Av
fd 

fb 

gR(P) 

A (p) 

A (P) 

• (p) 

Ai 

Ai 

Ad 

Fig. 8.1 Transfer Functions of the. Conventional Synchronous Machine 
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Td = direct-axis transient short-circuit time constant. 

T
d 
= 
d
irect-axis subtransient short-circuit time constant. 

Tkd = direct-axis damper leakage time constant. 

T
qo 

= quadrature-axis subtransient open-circuit time constant. 

T = quadrature-axis subtransient short-circuit time constant. 

Whatever feed-back signals or regulator transfer functions are used, the 

complete open-loop transfer function Avfb/Avfd will be: 

Fo(P) = Aidt(P) • Fid(P)

A dt(p) can have the following general form: 

Aidt(p)
+b 

= k 
b 

m-1 
m.p m _11, 

n
p
n
+a
n-1

13
n-1

+...+... 

1 

8.20 

8.21 

where an, 
an-1,

 bm, b . . and k are always positive., Hence, 
m-1' • 

tHe characterisitic equation of the system becomes: 

xd:xe) (bm'pmrfa( 
+bm_ 

ad 
1+Tdm-1+...+... + 1)-( •p) • (1+Td•p) • [(Q+ 'p2 ) • 

(1+T •13)+(v /(x
q
+x
e
)).(1+T 1))]+k(a 'p +a

n-1
'pn-1+.. 

q qo n 

2 If 2 [(9+® )'(1+T .0+(v /(xq49(e))*(1+Tqo.p)1 = 0 

an 

1).(14.TkdT)

8.22 

According to Routli's Criterion, the system will be unstable if 

of the polynomial terms of equation 8.22 disappears or becomes negative. 
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The only terms of this equation which can be zero or negative are those 

i cluding the quantity (Q+v2/(x
q
+x
e
)). It can be seen that the first 

t rm to become negative with the change of Q is the constant term of the 

polynomial. This occurs when Q=-v
2
/(x

q
+x
e
). Hence, the machine cannot 

b stable when the capacitive power exceeds its value at the static 

s ability limit. 
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Appendix B - Limitations of the Dual-Excited Synchronous Machine 

Excitation Control at No Load 

Equations 8.1 - 8.3 are valid for any synchronous machine. 

Hence, t represents also the dual-excited synchronous one. The 

ekpressions for the flux linkages in both the direct- and the quadrature-

akis are given by equations 3.60 and 3.61. The special case of a generator 

with two identical field windings having equal inclination angles to the 

direct-axis of the rotor and equally excited is considered. The generator 

iS assumed to be connected to an infinite bus through a series reactance 

xo. For this case, the flux linkage equations can be written as: 

Td = -(xe+xd(P)) id Gfld(P) vfl+Gf2d(P) vf2 

Tq = -(x 
e 
+x 

q
(p)) iq + Gfig(p) vf +Gf2q(p) of

8.23 

8.24 

Substituting for T
d 

and Tq in equations 8.1 - 8.3 and applying 

the same approximations considered for deriving equations 8.6 - 8.8, 

the following equations are obtained: 

vSinS = -r.id+(xe+xq(p)) iq-Gfig(p) vfl-Gf2q(p) vf2 8.25 

vCosS = -r'i -(x +x (p)) +G (p) v +G (p) v 
q e d fld f f2d f2 

Ti = lq*(-(xe xd(P)) id+Gfld(P) v +Gf2d(P) vf2)

-id.(-(xe+xq(p)) iq+Gfig(p) v
f1
+Gf2q(p) vf2) 

+6 •  p2 
DS 

Hlence, the small displacement equations can be written as follows: 

8.26 

8.27 
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A 

A 

d = vqo*A6 = 
r'Ai

d 
(xe+xcl(p)) Aig-Gfict(p)Avfl-Gf2,4(p) Lvf2 8.28 

q 
= -v

do
'Ad = -r'Aiq - (xe+xd(p)) 

Lid+Gf 
(p)Av

f1
+G

f2d
(p) Av

f2 

At' = -iqo.(xe+x (P)) Aid+ip .Gfld(P) •Gf2d(P)
Avfl+ige Avf2 + 

11 

ido.(xe+xq(P)) Alq-ido•Gflq(P) Alf—tl
- 
ido•Gf2q(P) v f2 +

v qo .Ai q +v
do 

.Aid + 2 .p Ad 

8.29 

8.30 

If only field winding 1 excitation is controlled, then all the 

rms containing tarf2 will disappear. Hence, equations 8.28 - 8.30 

;411_11 be reduced to: 

0 = -r.Aid + x
e
+x

q
(p)) 

Aiq-vqo 
Ad - 

0 = -r-Aiq - (xe+x
d
(p)) Aid +vde Ad + 

flq(P) fl 

(p) vf1

0 = icio .(xe+xd (p)) Aid+icio Gfid (p) Avfl 
+ido.(xe."(q (P)) Ai

Avfiflicto .Ai ido'Gfici (P) crdo'Aid p2 M

8.31 

8.32 

8.33 

At no load, equations 8.14 and 8.15 can be also applied. Neglecting 

the armature resistance, equations 8.31 - 8.33 are simplified and can 

b arranged as follows: 

f d
(p)Av

fl 
x e +xd (p) 

Gflq(p) ex +x.(P)) 
e ct

x
e+x (10) 

q ;.
V G

fld(I)) • 

+ v 
Q+01 . 1. 

Ai
d 

Ad 

8.34 
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where Q is the reactive power delivered to the infinite bus. 

The transfer functions of the dual-excited synchronous generator 

(6.g. 8.2) can be written as follows: 

Aid 
G
fld 

(p).((x e +xq (p))-(Q+(p)p2 ) +v2) 
F
i 

(p) - = 
dl Avfl (x +x  

e d 
(p)).((x e +xq (p))-(Q+

(fl)p2)+v2) 

_ 
Ai
q  _

G
flq

(p) • (x
e
+x
d

(p)) •(Q-1-(ED 1)
2
) 

F.  . (p) Av
fl (x

e
+x
d
(p)).((x

e
+x
q
(p))*(Q+051)

2
) +v

2
) 

A6 
!_v • Gflq (p)-(x e +xd (p)) 

Fol(P) Av
fl (xe+xd(p)) •( (xe+xci(p)) • (Q+ ® 132) + v2) 

8.35 

8.36 

8.37 

and Gfici(p) can be expressed in polynomialxe+xd(p), xe+xci(p), Gfld(p) 

f rms as follows: 

x +x 

X
e
+X 

G
f 

(p) 

(p) 

A41)
4
+A3-1)

3
+A2T +Al-p+A0

A 1)4 + B•p3 +CT2 +D•p+E 

B4T
4
+8313

3
+821)

2
+81-p+Bo 

- 
AT

4
+Bla

3
+CT

2
+D•p+E 

313
3
+C21,

2
+C1p+Co 

(p) - 
AT

4
+8.13

3
+C.p

2
+D•p+E 

D3T
3
+D2.1)

2
+DiT+Do 

G
flq

(p) -  
AT

4
+1313

3
+CI)

2
+D•p+E 

I, should be noted that all the values, A, B, C, D, E, A4, A3, ... , 

A B4, B3, . , Bo, C3, C2, . , Co, D3, D2, ... Do are positive. 

8.38 

8.39 

8.40 

8.41 
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Va iation in reference 

Av
fl 

Fidl(P) 

Aid 

v
flb 

gR (P) 

Variation in reference 

Av
f2 

Ai 

F61(p) 

A6 

1(p) 

Aiql (p) 

Fid2(p)

Av
f2b 

gR2(P) 

iq2(13)

(p) 
Ad 

(p) 

1q2 (P) 

( id2 (p)

Fig. 8.2 Transfer Functions of the Dual-Excited Synchronous Machine 



127 

The effect of using the three output quantities Aid, Aici and 

individually as control signals can be studied as follows: 

a) Aid Control signal: 

The complete open loop transfer function Av
flb

/Av
fl 

can have the following form: 

Fo(P) = Fidlt(P) • Fidl(P)
8.42 

Assuming that 
Fidlt(p)

 has the same form as that given by equation 

821 for Fidt(p), the characteristic equation of the system can be written 

as: 

(bm.pm+bm-cpm 1+ ... +1) • (A41)
4
+A313

3
+A21)

2+Acp+Ao) ((B4•p
4+B3133+ 

1303
2
+B1•p+Bo) ' (Q+ ® P2) + (AT

4
+13'p

3
+C'p

2
+DT+E) + Kqa

n
'13
n
+a

n-1 

1) (C31)
3
+C2'p

2
+CI:p+Co) .((B41) + 13

2
+81

.
p+Bo) • 

T 

4 3 2 
+011 .13 2) (AT 4431) +CT +DT+E) • If

2
) 

e terms of the characteristic polynomial which can become zero or 

8.43 

negative are those containing the quantity Q. It can be seen that the 

first term to become negative is the constant term of the polynomial. 

This term has the value (A
o
+K•C

o
) • (8

o
•Q+E'v

2
). It is thus obvious 

that the machine cannot be stable when the capacitive power exceeds 

the value E•v2 /80. As shown, this value is independant of the control 

stem parameters. Hence, Aid signal alone is useless at no load. 

Inspection of the operational functions of the dual-excited 

synchronous machine, which are given in Appendix C, shows that 
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E v
2
/B
o 

is nothing but v
2
/(x

q
+x
e
). 

b) Ai Control signal: 

Following the same procedure as for Aid control signal, 

tl e characteristic equation of the system in this case may, be written as: 

' m+b
m- 

m1 + . + 1).((3
4
.1)
4
+B
3
.13
3
+B
2
'p
2
+B

1
'p+B

o
) -(Q+Q-91)2 )+ 

( .134+13-p
3
+C'p +D.p+E) v

2
) -K(an'pn+an _

1
'pn-1 + • + 1).(D3133+1202'p2 

+D1•p+Do) • (Q+0 T
2
) = 0 8.44 

To ensure that all terms of the characteristic polynomial which do 

not include the quantity Q are positive, K should be negative. 

In this case, the signs of the other terms depend on the value of Q. 

The first term to become negative is that free from the operator p. This 

term has the value (8
o
-K'D

o
).Q + E'v

2
. Thus, stability cannot be 

maintained when the capacitive power exceeds the value E'v2 /(8o-K'Do). 

AS K is -ve, it follows that the maximum capacitive power, which the 

chine can supply at no load with this scheme of control without losing 

s stability, is even less than the static stability limit. 

c) Ad Control signal: 

In this case, the characteristic equation of the system becomes: 

( 'pm+b 
bm m-

p
m-1

+ . +1) • aB4.134+B3.1)3+B2T 2+B1T+B0) • (Q+0 *P2) 

2 - 
p4 +Irp

3 
+CT +D'p+E) • v2 ) + K•v.(a

n pn+an-l
pn-1+

. +1) • (D3'p3+D213
2 

.p+D ) = 0 8.45 
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he positive sign applies when 6=180° while the negative sign when 

1=0°, Thus to ensure that all terms, which do not include the quantity 

are positive, K should be positive when 6=180° and negative when 

=0°. In this case, the sign of the other terms depends on the value 

df Q. Following the same procedure explained before for the other control 

i.gnals, it can be shown that the maximum capacitive power, which the 

nachine can supply in this case without losing its stability, is 

(E.v
2
+K.D

o
.v
2
) 80. It is thus clear that this scheme of excitation control 

clan be effective in extending the dynamic stability of the dual-excited 

ynchronous machine at no load. 

When field winding 2 is only controlled, similar conclusions 

Will be obtained for Aid and AS control signals. However, on the 

dontraryofthecaseofcontrollingfieldwindingl, Aiq control signal 

Can extend the dynamic stable region of this machine at no load. 
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Ap endix C - Expressions for the Operational Functions of the 

Dual-Excited Synchronous Machine 

The expressions for the dual-excited synchronous machine 

operational functions can be derived by eliminating the rotor currents 

from equation 3.56, 3.57. This would result in the following: 

xd 
xad 

(p) = xd- 6 • [xad  
T}.{xact•Sin2 (a +a2)p2

+2•xf12'Cosa1•Cosa2.(r
kq+xkkq.13).1)-(rkq+xkkq)) 

{Cos
2
a1.(rf2+xff2T)+Cos

2
a2.(rfl+xffiT)11' 

2 
13-2.x2aq.xad.xf12'Sinal *Sina21)4 -xad. xaq 

{Sin2
a1 

*(r
f2 +xff2 

'p)+Sin2a2*(r +xff113)}" 

p3+xadqrkq+xkkq
13)—((rfl +xffl 

'p).(r 
f 

xf12 
2 

1)2} • p ] 

ff2'1)) 

x (p) = xq a . [x
aq kq

+(2*x aq -xkkq) p} qx2ad•Sin2(al+a2)T2

-2.xf12.Sina •Sina2 ( 
rkexkkd.13)./3-(rkexkkdT) • 

{Sin
2
a1qrf2+xff21))+Sin

2
a2 (rfi+xffiP)}113 

2 
+2.x

ad -xaq
-xf12.Cosa1 -Cosa2I)4 -xaq-xad

• 

{Cos
2
a1-(rf2+xff7•13)+Cos

2a2.(rfi+xffiT)IT3+ 

xaq.(rkexkkd T).1(r +xff11)).(rf2+xff2.13)-

2  
xf12.192 l'131

8.45 

8.47 
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xad ( 
(P) THCosa...(r a 'rke x̀kkd-xad) W xkkq.13).(rf2+xff213

Cosa2•xf 12'(rWxkkq.P).P-Sina2•Sin(al+a 
).xac2 cp2 ) 8.48 

d
+(x

kkd
-x
ad
)-p}.(Cosa • crkkq.P)*(rfi+xffiT) - 

Cosal•xf12 (rkqjrxkkq•P)1)- Sinai•Sin(a +a )'xaci:p2 ) 8.49 

xa
(p) =- q rkq+(xkkq-x

aq
)1))-(Sinal:( 

rkexkkdT).(rf2+xff2.13) a 

Sina2 
•xf12. ic(r' '

d+xkkd.P)T-Cosa2'Sin(a +a2) xad.P2) 8.50 

xa 

aq 
G (p) = 

ke(xkkg
-xaq).13/.(Sina_ 

( z -rkexkkid.P) (r +xff113)

M (p) 

where 

Sinai 
.xf12 ( rkexkkd.P) •p-Cosal'Sin(al+a2) 2) 

8.51 

x *x 
ad aq 
20 ' P. (1)41.(xkkg-xaq)13)-Irke(xkkd-xad) 'pl.(Sin 2a2 

a 

p
3
'1" 

(r
f1

+xff113)-Sin2a1"(rf2+xff2'p)+2•Sin(al-a2)* 

x
f12 P) 

8.52 

+a Yxaccxaci T 2 )-2 2-Sinal'Sina2 
•xaq'xf12 ( rkexkkd•P) • 

) 
+xkkd•P).(rkexkkq.P).1(rfl+xff1.13).(rf2+xff213)-x 

2 
kd f12 

-x 
aq 2.(rkd 

+x
kkd " 

• ). {Sin2 
a1 

(r
f2 

+xff2*D)+Sin2 
a2 ' 

•Ir
fl 

+x
ffl " 

•D)1 • 
" 

2 2 3 2 
p +2•Cosa 'Cosa 2 

ad f12 k.x .x .(r
-+x '1011'D -x .(r +x •D) • 

1 q kkq ' ad  kq kkq 

{COS a *(rf2+xff2p)+Cos
2
a2 (rfi+xffil3)}•p

2 
8.53 
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It is obvious that the expression for M(p) will be only equal 

to zero if the two field windings are identical and have equal 

inclination angles to the direct-axis of the rotor. This, in turn, 

pioves that the technique of replacing the dual-excited machine by an 

equivalent one, which has two field windings located on the two axes 

of the rotor 
29 
,is not valid except for this special case. 
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pendix D - Steady-State Vector Diagram of the Dual-Excited 

Synchronous Machine

For steady-state operation, the speed pe is constant and if 

the time t is measured from the instant at which the axis of phase a 

is in line with the direct-axis of the rotor, then: 

6 = P6o • t

According to Park's transformation, the equations of the voltage 

a d current in phase a are: 

0 
= v

tdo
'Cos (Pe ' t)- vtqo • Sin(p0o t) 

• 
ito = itdo•C°s(P6o • t)- itqo 

Sin(p00 t) 
* 

8.54 

8.55 

8.56 

1%kma, if the voltage and current of phase a (R.M.S. values) are represented 

by vectors Vto and 1to as in Fig. 8.3, 

Imaginary-Axis 

+ 
VtR 

V- - -- ,I,- Ni 
tM to 

Fig. 8.3 

Al4mature Current and 
Voltage Representation in 
a Complex Plane 

t 

0 

tM 

tR 
—4" Real-Axis 

he components of these vectors in the real and imaginary axes can be 

elated to the phase quantities. V
to 

is the sum of two component vectors 

V
R 

and VtM and Ito is the sum of two component vectors -I-tR and Ttm. If 
t 

the magnitudes of these components are denoted by VtR, VtM,
 ItR and Itm

All equations in this appendix are not normalized. 
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r spectively,then: 

V
7to 

= V
tR 

+ 
JVtM 

Ito 
I
tR 

+ jI
tM 

8.57 

8.58 

TIle phase voltages and currents are known to alternate with frequency 

P60/2ff. Hence: 

vto = 1217
to 

I • Cos(peo•t+B) 8.59

ito = 
/2IT

Ito
I • Cos(pOo•t+a) 8.60 

where IVto l and 
IT'to 

I are the magnitudes of the vectors Vto and 
Ito 

respectively. Equations 8.59 and 8.60 can be rewritten as follows: 

vto = 
/2•VticCos(peo't)- i2"Vtm•Sin(p0

o
't) 

/2•ItR Cos(peo•t)- 1/2•Itm'Sin(peo't) ito = 

8.61 

8.62 

Equations 8.61 and 8.62 should agree with equations 8.55 and 8.56 

at all instants of time. Hence: 

v
t
d
o 
= 1/2 • 

VtR 

v = V2 • V 
tqo tM 

itdo = 
• I

tR 

i
tqo 

=  I
tM 

It is seen from equations 8.63 - 8.65 that the direct- and 

8.63 

8.64 

8.65 

8.66 

Oadrature-axis components of the voltage and current of phase a can 

be represented on a complex plane vector diagram. On this diagram, the 

real-axis corresponds to the direct-axis, while the imaginary-axis 

c rresponds to the quadrature-axis. Thus, it will be more convenient to 
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replace VtR, 
VtM, 

ItR and Itm by Vtdo, Vtgo, Itdo and Itqo respectively. 

It should be also noted that when working with per-unit quantities, 

here is no differentiation between maximum and R.M.S. values since both 

; 
ave the same per-unit value. The factor /2 will disappear from all the 

equations. 

As it can be deduced from equations 8.63 - 8.66 and also from 

Park's transformation, the axis components of the voltage and current 

re constant values independant of time. Moreover, the induced e.m.fs 

; 

nd currents are constant and the damper winding voltage and current are 

zero. The general equations 3.23 and 3.24 can therefore be simplified 

as follows: 

vflo = r• fl • i• flo 

where: 

kence: 

vf2o = r• f2 i• f2o 

v
tdo 

= -r • 
itdo 

+ x ct • i tqo - ed 

v
tqo 

= -r
tqo 

- x
d 

• i
tdo 

+ e 
q 

e
d 

i2 Ed 

/2 E 
q 

7to 
= V

tdo 
+ jV

tqo 

1  
=VT f • v̀tdo ivtgo)

1=if r •-r.-tdo-"Vitcto- ed-7ritcp-ixd.itdo+ject)

8.67 

8.68 

8.69 

8.70 

8.71 

8.72 

8.73 
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S bstituting 8.65, 8.66, 8.71 and 8.72 in 8.73: 

where 

= to to q tqo jx • Jxd • Itdo 

+ jE q

From equation 8.74, the steady-state vector diagram of the 

dta1-excited synchronous machine can be constructed as shown in 

Fl.g. 8.4. 

8.74 

8.75 
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q-axis 

Ito•x 

E 
q 

ItctoI
tqo

.x
d 

A 

tdo•xd 

to 
.r 

-axis 

Fig. 8.4 Steady-State Vector Didgram of the Dual-Excited 
Synchronous Machine 
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Appendix E - Power/Angle Characteristics of the Dual-Excited 

Synchronous Machine 

The power-angle is defined as the displacement of the magnetic-

was of the exciting field from its ideal no load (no current) position. 

In a conventional synchronous machine, the magnetic-axis of the exciting 

field coincides always with the direct-axis of the rotor. Hence, the 

power-angle in this case is always equal to the rotor-angle. The 

latter is defined as the displacement of the direct-axis of the rotor 

from its ideal no load position. 

On the other hand, the magnetic-axis of the resultant exciting 

field in a dual-excited synchronous machine is no longer attached to 

the direct-axis of the pole structure. Thus, the power-angle is not 

necessarily equal to the rotor angle. In Fig. 8.5, which represents 

tbe vector diagram of a dual-excited synchronous machine connected to 

art infinite-bus through a simple tie line, the power-angle is denoted 

.1)
e 

while the rotor-angle by S. 

Neglecting the armature and tie-line resistances, the steady-

sate output power of the dual-excited synchronous generator is given 

13): 

= V
do 

• I
do 

+
qo 

•
clo 

om Fig. 8.5 

V
do 

= V • Sind 

V = V • Cosd 
qo 

I
do

E 
 q- qo 

X
d 
+ X

e 

8.75 

8.77 

8.78 

8.79 
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q-axis 

1 +x )-I *(r+R 
*-- go • d e doEd

I
o
•x 

0 

•R 
o e 

Ido 
'(x

d 
+x e) 

+I go '(r+R e) 

V
go 

Fig. 8.5 Steady-State Vector Diagram of a Dual-Excited 
Synchronous Machine Connected to an Infinite-Bus 
Through a Simple Tic-Line 

-axis 
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Hence 

Ed + Vdo
Iq0 -  Xq + X

e 

V•E 
P= --q . Sind 

xdi xe

V-E
d 

. Cosh 
x +x 
q e 

1 1 
 ) • Sin 2S 

X +X
e 

X
d
+X
e 

8.80 

8.81 

Equation 8.81 shows that the only difference between the power/ 

angle equation of the dual-excited synchronous machine and that of 

t e conventional one is the existance of an additional term, which 

depends on the direct-axis component of the resultant electromotive 

force. A plot for this equation is given in Fig. 8.6. 

The curves obtained show that the power/angle characteristics 

can take different shapes according to the ratio between the exciting 

voltages of both field windings. Moreover, the maximum output power 

under these conditions does not necessarily occur at 6=90,as for a 

nOnsalient-pole conventional machine, or at an angle, which depends 

the ratio between the reluctance power and the exciting field power, 

as in the case of salient pole conventional machines. It can happen 

for certain ratios of the exciting voltages that the maximum power 

o4curs at rotor angles far beyond 90°. This fact is of great interest 

a far as transient stability is concerned. 
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04 

c 
EL 

03 

0.2 

0.1 

. 

0 40 80 120 
Rotor- Angle 

16. 11 
6° 

. 
—0- Kf . o 
-- x— Kf =0.5 
—0— Kf =1.0 

Kf ---e— =1.5 

0.01

- 01 

- 0.2 

-Q3 

Fig. 8.6 Steady-State Power/Angle Characteristics of the Dual-
Excited Synchronous Machine (E=1.0 p.u.) 
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endix F -- Flow Chart of the Dual-Excited Synchronous Machine 
Dynamic Stability Program. 

Read Number of Problems 

Read axes of the Stability Curves 

Read Data of the System 

Is There Damper 
Winding 

Calculate the Opera-
tional Functions 

Print Data of the System 

Yes 
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1 

Calculate Regulator 
Transfer Functions 

Calculate Governor 
Transfer Function 

J=1 

Are Roots to be Yes 
Calculated 

1=1 

Form the Cha-
racteristic Equa. 

Check Stability 

1=1 

Form the Cha-
racteristic Equa. 

Check Stability 
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2 4 5 

A 

I=I+1 

Yes 

Change 
x 

Calculate roots 

Print Results 

Change 
x' 

I=I+1 

No 

Yes 

Draw the Stability 
Curves 

Have all problems 
finished 

Yes 

Yes 

Stop 
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