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Abstract 

The origin of the exceptional stability of molecular glasses grown by physical vapour deposition 

(PVD) is not well understood. Differences in glass density have been correlated with 

thermodynamic stability for thin films of N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine 

(TPD) grown by PVD at specific substrate temperatures below the glass transition temperature. 

However, the relationship between the internal conformation of glass molecules and 

thermodynamic properties of the molecular glasses is not well studied. We use carbon 1s near 

edge X-ray absorption fine structure (NEXAFS) spectroscopy to examine different TPD sample 

preparations in which differences in thermodynamic stability of the glass are known. DFT 

simulations of the NEXAFS spectra of TPD allow us to attribute spectroscopic differences to 

changes in the internal conformation of the TPD molecule and relate this conformation to the 

stability of the TPD glass. This provides a direct epxerimental measurement of the internal 

conformation of molecules forming an organic glass. 

 

* Corresponding author, Stephen.urquhart@usask.ca 
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I. Introduction: 

Glasses are non-equilibrium materials that can be formed by cooling liquids below their melting 

point, where crystallization is avoided during the cooling process. Organic glasses have been 

subject to strong research interest, as physical vapor deposition (PVD) was shown to prepare 

organic glasses with exceptional thermal stability.1-3 These PVD-grown organic glasses have a 

higher density,4-7 more efficient molecular packing,8-10 and a lower enthalpy1, 8, 11, 12 and heat 

capacity13 than liquid cooled glasses. Other characteristics of PVD-grown organic glasses 

include an increased resistance towards water uptake14 and a thermal expansion coefficient 3-

14% lower than that of ordinary glasses.4 PVD-grown organic glasses show improved electrical 

performance in organic thin-film devices6 and improved resistance to photodegradation.1, 7 An 

ordinary glass would need to be aged for over a thousand years to prepare a material with the 

properties (density, stability, etc.) possible to obtain through PVD-growth.8 A better 

understanding of the origin of the stability of these organic glasses could lead to better use of 

these materials in advanced organic electronic materials.15, 16 

The origin of the exceptional stability of PVD-grown organic glasses has been the subject of 

intense investigation. The enhanced surface mobility of the molecules during PVD growth is 

believed to be an important factor for the glass stability; this mobility is related to the substrate 

temperature during deposition.8 Stable glasses are formed when the substrate temperature is kept 

close to 0.85 Tg, where Tg is the glass transition temperature of the liquid cooled glass.1 

Enhanced surface mobility during deposition is expected to lead to a partial equilibration of 

molecules at the glass surface, before the deposit is buried by subsequent layers.17, 18 This would 

result in a higher stability and density in these PVD-grown glasses.8, 1, 19, 20 When deposition is 
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 3 

performed on a cold substrate, the reduced surface mobility causes the deposited molecules to 

stick without undergoing rearrangement, making lower density and lower stability glass films.21  

Deposition rate can also affect the stability and density of PVD-grown organic glasses.11 When 

organic glasses were grown with a lower deposition rate, a decrease in fictive temperature (Tf) 

and an increase in onset temperature (Tonset) was observed, indicating increased kinetic stability 

with decreased deposition rate.22 A slower deposition rate will give deposited molecules more 

time to explore lower energy configurations on the film surface before being covered by 

subsequent layers.8 A comparison of PVD-grown organic glasses prepared at different deposition 

rates with ordinary glasses aged for a long period of time suggest that molecular rearrangement 

at the film surface during deposition is much more rapid than bulk rearrangements.8  

The stability of PVD grown molecular glasses is also linked with preferential molecular 

orientation in some PVD-grown organic glasses,18, 23 which suggests a relationship between the 

high kinetic stability and anisotropic molecular packing.22, 23 Studies of PVD-grown organic 

glasses show a correlation between increased thermodynamic stability and higher film density.22, 

24-26  

Near edge x-ray absorption fine structure (NEXAFS) spectroscopy is sensitive to structure and 

bonding in organic molecules,27, 28 molecular orientation,29-31 some forms of intermolecular 

interactions,32 and internal molecular conformation in conjugated molecules.33 Bishop et al. used 

angle dependent NEXAFS spectroscopy with surface sensitive partial electron yield detection to 

examine the surface structure of liquid cooled glasses of posaconazole.34 Linear dichroism in 

these spectra demonstrated that posaconazole molecules at the free surface of the liquid cooled 

glass are highly oriented.34 NEXAFS spectra can be highly sensitive to internal molecular 

conformation, through extended π-conjugation.33, 35 For example, Urquhart et al.33 demonstrated 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
54

44
2



 4 

the sensitivity of NEXAFS spectroscopy to chain conformation and aggregation in poly(3-

hexylthiophene-2,5-diyl) (P3HT). 

In this work, we use NEXAFS spectroscopy to measure the internal molecular conformation of 

N,N’-Bis(3-methylphenyl)-N,N’ diphenyl benzidine (TPD) within different sample preparations. 

This material has been extensively studied as a stable organic glass.23, 36 Characteristic 

spectroscopic energy shifts and spectral broadening are used together with DFT simulations to 

determine the internal molecular conformations in TPD glasses.  

II.  Experimental  

A. Sample Preparation  

N, N’-Bis (3-methylphenyl)-N,N’ diphenyl benzidine (TPD, 99%) was purchased from Sigma 

Aldrich and used without purification. Silicon monoxide coated transmission electron 

microscopy (TEM) grids (Ted Pella, USA) were used as substrates for PVD deposited TDP thin 

films. The formvar support layer was removed using chloroform solvent before deposition. 

Indium foil (5x5 square mm) was used as a substrate for examination of TPD in powder form. 

TPD thin films were grown by PVD on silicon monoxide coated TEM grids. Deposition 

occurred from a resistively heated tungsten boat, at pressures below 10-7 torr. The film thickness 

and rate of the deposition were monitored with a quartz crystal microbalance, and a rate of 0.7 - 

0.9 Å/s was used for all depositions. The total sample deposited thickness was 90 nm. The 

substrate temperature during deposition was held at specific temperatures from -11 to 56 ± 0.5 

°C with a Peltier thermoelectric module. The substrate temperature was measured with a 

thermistor, which provided feedback to a TC-48-20 thermoelectric temperature controller (TE 

Technologies Inc). Three films were prepared, with substrate temperatures during deposition of -

11.0 ˚C, 25.0 ˚C and 56.0 ˚C. Taking the Tg for TPD as 330 K,36 these deposition temperatures 
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 5 

correspond to 0.79 Tg, 0.90 Tg and 1.0 Tg when represented relative to the glass transition 

temperature. TPD powder samples were prepared by pressing the powder into clean indium foil 

surface. 

B. X-ray Absorption Spectroscopy  

Scanning Transmission X-ray Microscopy (STXM) was used to acquire NEXAFS spectra for the 

PVD grown TPD films. Experiments were performed on the ambient STXM microscope at the 

Spectromicroscopy (SM) beamline (10ID-1) at the Canadian Light Source.37 The beamline exit 

slits were set to 35 microns with low energy grating, which corresponds to resolving power 

(E/E) of around 3000.37 Left circularly polarized photons were used. The energy scale of 

spectra recorded on the SM beamline was determined by introducing CO2 into the STXM 

microscope chamber with the TPD sample in place. The calibration of monochromator energy 

scale was based on the two vibronic peaks of gaseous carbon dioxide (CO2): carbon 1s →3s 

(ν=0) and carbon 1s →3p (ν=0) transitions in CO2, which were set to the literature values of 

292.74 eV and 294.96 eV, respectively.38 Carbon 1s NEXAFS spectra extracted from different 

sample regions in the STXM microscope are reported as optical density (OD = -ln (I/Io)) versus 

energy, where Io was taken through a broken window of the SiO coated TEM grid. The post-

edge of background subtracted NEXAFS spectra were calibrated to the background subtracted 

atomic cross-section of carbon.39 

Carbon 1s NEXAFS spectra of the TPD powder compound was recorded on the SGM beamline 

(11ID-1) at the Canadian Light Source in total electron yield (TEY) detection mode.40 The 

beamline exit slit was set to 25 microns with the low energy grating, which corresponds to a 

resolving power more than 5000. TEY detection on the SGM was used because it was not 

possible to obtain a sufficiently thin samples of the powder for transmission measurements in the 
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 6 

STXM. TEY spectra were normalized by taking the ratio of the sample current (I) and the gold 

reference current (IR), where the gold reference spectrum was acquired in a separate scan. The 

energy scale of the SGM spectrum of TPD powder was calibrated by shifting the carbon 1s(C-H) 

→ *Aromatic transition (at ~285.2 eV) to match the energy of same band in the NEXAFS spectra 

of TPD thin films measured in the STXM, for which a precise gas phase calibration was 

obtained. Data presented below shows that the carbon 1s(C-H) → *Aromatic transition energy 

does not vary between different sample preparations. 

Spectral analysis was performed using aXis 200041 and spectra were plotted for presentation 

using OriginPro software package.42 Fits to determine NEXAFS peak energies were performed 

using Sigmaplot v10.0,43 and fits to characterize spectroscopic data as a plane (e.g. z = ax + by + 

c) were performed with published python codes.44 

C. Computational Methods 

DFT simulations were used to model how carbon 1s → *Aromatic transition energies45 vary with 

the internal molecular conformation, as determined by specific dihedral angles within the TPD 

molecule. The molecular structure of TPD (Scheme 1) shows the following variables: the angle 

of the terminal phenyl or tolyl groups (v1); the angle between the two phenyl rings compromising 

the biphenyl group (v2); and relative angle and planarity of the tertiary amine group (v3).  

The equilibrium geometry of TPD and the geometry and total energy of TPD with varied 

geometries were obtained through geometry optimization with the program Gaussian 1646 using 

density functional theory calculations with the MO62X model and the 6-31+G(d,p) basis set.  

The equilibrium geometry was obtained from an unrestricted geometry optimization; no 

imaginary frequencies were found.  
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 7 

To examine the effect of internal molecular conformation, calculations were performed to 

determine the total energy with respect to phenyl group rotation. Dihedral angles v1 and v2 were 

fixed while all other structural variables were varied to minimize the total energy of the 

molecule. Calculations were performed with these dihedral angles varied as a set between 20 

and 70 in 5 steps for the phenyl/tolyl dihedral angle (v1) and between 20 and 90 in 5 steps 

for the biphenyl dihedral angle (v2). Dihedral angles of less than 20 lead to unphysical results 

due to steric interference.  

DFT simulations of NEXAFS spectra were obtained using the program deMon2k version 

6.0.147,48 using the PBE functional. The transition potential (TP-DFT) method and the half-core-

hole approximation to simulate the effect of the core hole.49 Diffuse functions (IGLO-III)50 and 

extensive augmentation (XAS-I)49 were used for the core excited atom, and equivalent core 

potentials were used on all other atoms except hydrogen, which was a triple zeta basis function. 

Simulations were obtained for each carbon atom in the TPD molecule and summed to obtain an 

overall molecular NEXAFS spectrum.  

III. Results 

Figure 1a (top) presents the carbon 1s NEXAFS spectra of a TPD thin film (prepared by PVD at 

0.79 Tg) and TPD in powder form. The width of features in the NEXAFS spectrum of the 

powder are narrower on account of the higher resolving power of those data (E/ΔE of 5000 

versus 3000). Minor shape differences between these spectra are attributed to the difference in 

detection mode, as transmission detection has better fidelity to the absorption cross section than 

TEY detection. Figure 1b (bottom) presents a close-up of the * region of these NEXAFS 

spectra. The first band at ~285 eV is assigned as the carbon 1s(C-H) → *Aromatic transition, 

originating from phenyl ring carbon atom sites that have C-H bonding. The second band at 
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 8 

~286.2 eV is assigned as the carbon 1s(C-R) → *Aromatic transition, where the “C-R” notation 

refers to the NEXAFS transition originating from phenyl ring carbon atom sites that are bonded 

to a substituent. Carbon 1s(C-R) → *Aromatic transitions are shifted to higher energy on account 

of the inductive effect of the group bonded to the C-R site.51 A small shift in the energy of the 

carbon 1s(C-R) → *Aromatic band (e.g. C-R * band)  is perceptible between the powder and thin 

film spectrum, while the carbon 1s(C-H) → *Aromatic band (e.g. C-H * band) appears at nearly 

constant energy, albeit with energy resolution differences. We use the notation C-H/C-R * band 

to refer to the experimental peak, which can be formed from multiple carbon 1s(C-H/C-R) → 

*Aromatic transitions. 

Figure 2 presents the experimental carbon 1s NEXAFS spectra of a series of TPD thin film that 

were deposited onto substrates held at temperatures corresponding to 0.79 Tg, 0.90 Tg, and 1.0 

Tg. The full spectra (Figure 2a, top) are similar on account of the consistent thickness of the 

samples and the use of transmission detection. Figure 2b (middle) presents the carbon 1s 

NEXAFS spectra of the C-H and C-R * region, while Figure 2c (bottom) focuses on the small 

changes present in the C-R * band. The TPD film sample deposited onto a substrate at 1.0 Tg 

has a broader C-R * band than that band in the spectra of samples deposited onto substrates 

held at 0.79 Tg and 0.90 Tg. As the apparent width and the energy of the C-R * band can be 

interpreted subjectively on the basis of data presentation, the results of Gaussian fits of this band 

are presented in Table 1. These fit data show that the film deposited at 1.0 Tg has a broader C-R 

* band (0.572 eV) than the 0.79 Tg and 0.90 Tg samples (0.462 eV and 0.449 eV, respectively), 

and that the energy of this band appears at slightly lower for the sample deposited at 1.0 Tg 

(286.120 eV) than in the samples deposited at 0.79 Tg and 0.90 Tg samples (286.130 eV and 
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 9 

286.133 eV, respectively); the latter difference is small relative to the estimated uncertainty (20 

meV).  

The difference in the C-R * band between the TPD thin film and TPD powder spectra is much 

larger; this band is narrower (0.358 eV compared to 0.449 - 0.572 eV) and shifted to higher 

energy (286.290 eV, from 286.120 - 286.133 eV) in the powder. The significance of these results 

will be discussed below. 

DFT simulations of the NEXAFS spectra are used to understand how the spectra evolve with 

internal conformation, in particular the C-R * band. Figure 3 presents a simulation of the 

carbon 1s NEXAFS spectrum of TPD calculated by TP-DFT calculations. This simulation was 

performed with a representative fixed geometry (𝜈1 = 40°; 𝜈2 = 30°; 𝜈3= 39° that is similar to the 

calculated equilibrium geometry of TDP (𝜈1 = 39.9º - 40.7º; 𝜈2 = 38.0º; 𝜈3 = 39.2º – 39.6º). The 

individual atomic contributions of different chemical moieties in TDP (terminal phenyl, terminal 

tolyl, and central biphenyl group) are presented with different vertical offsets. This simulation is 

compared to a representative experimental carbon 1s NEXAFS spectrum of TPD, which is 

presented with a 1.5 eV energy shift to account for the well-known energy difference between 

experiment and calculation.  

The TP-DFT simulation shows how the lower energy C-H * band (~285.0 eV) and the higher 

energy C-R * band arise from individual carbon 1s → * transitions that reflect the local 

chemical environment of each carbon atom in the molecule. The experimental spectrum is 

broader than the TP-DFT simulation on account of the presence of vibronic character (e.g., 

carbon 1s(ν=0) → *(ν=1, 2, etc) transitions) that are not considered in the TP-DFT simulations. 

For comparison, references 52 and 53 present a discussion of vibronic effects in benzene53 and 

polystyrene,52 which have similar vibronic character as the phenyl and tolyl moieties in TPD. 
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 10 

While vibronic structure is significant in the C-H * band, the TP-DFT simulation in Figure 3 

also shows the importance of small chemical shifts to the overall shape of this band.  

The TP-DFT simulation also shows a series of carbon 1s(C-R) → *Aromatic transitions attributed 

to different moieties bonded to the phenyl ring.51 The shift in the carbon 1s(C-R) → *Aromatic 

transitions due to phenyl-phenyl bonding in biphenyl group is relatively small, so the transitions 

for these sites appears within the C-H * band. There are two well separated C-R * features: 

one associated with C-R bonding of the biphenyl group to the amine group (bottom trace, 

~287.45 eV) and a second that is a degenerate combination of the C-R bonding of the 

tolyl/phenyl bonding to the amine group. The C-R * transitions associated with the amine group 

(e.g. C-R(N) sites) are well separated from the C-H * band and form the experimentally 

observed C-R * band. 

The experimental NEXAFS spectra shown in Figures 1 and 2 show a small but distinct variation 

in the C-R * band between different sample preparations. We hypothesize that these shifts are 

due to changes in the internal conformation of the TPD molecule. Scheme 1 shows a series of 

likely conformational variables, where the TPD molecule can show conformational flexibility by 

rotation of the terminal phenyl or tolyl groups (𝜈1), rotation of the biphenyl dihedral angle (𝜈2) or 

rotation of the amine group (𝜈3) plane.  A comparison of DFT-calculations with solid-state NMR 

measurements of a melt-quenched TPD sample shows that the DFT-optimized structure 

reasonably reflects the TPD structure in the condensed amorphous state.54 A comparison of XRD 

and NMR show considerable variability in the dihedral angles of the phenyl and tolyl rings in the 

solid state.55,54 Variable temperature XRD shows that significant rotational movement of the 

terminal phenyl/tolyl rings persists down to 150 K.55 Further, XRD and NMR results show that 

TPD amine group is planar. 55, 56  
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 11 

To examine the dependence of the C-R * band on the internal molecular conformation, DFT 

calculations were performed to examine the total energy of TPD as a function of the phenyl/tolyl 

substituent dihedral angles (𝜈1) and the biphenyl dihedral angles (𝜈2). The tertiary amine plane 

angle (𝜈3) was not varied, as this tends to a consistent inclined position (~39º). For reference, our 

geometry optimization calculations of TDP (unrestricted optimization, no imaginary frequencies) 

predict that the terminal phenyl/tolyl groups have dihedral angles (𝜈1) in the range 39.9º - 40.7º, 

the benzene rings in the central biphenyl group have the dihedral angle (𝜈2) of 38.0º, and the 

tertiary amine groups (𝜈3) are planar but rotated by ~39.2º – 39.6º with respect to the benzene 

ring of the biphenyl group.  

This energy surface plot is presented in Figure 4. The minimum energy is observed for 𝜈1 = 40°, 

and 𝜈2 = 40°, which is consistent with the equilibrium structure calculation. There is a higher 

barrier to rotation of the phenyl and tolyl groups on account of steric interference from the tolyl’s 

methyl groups. A wider variation in the biphenyl dihedral is possible in the TDP samples, while 

rotation of the terminal phenyl/tolyl groups will be more tightly circumscribed by the 

significantly higher slope of this energy surface.  

The surface presented in Figure 4 shows the constraints in which molecular conformation can 

vary in the formation of the TPD glass. This energy plot does not account for intermolecular 

interactions in the molecular solid, as we expect that intramolecular interactions will also 

contribute to the structural landscape of molecular solids. 

TP-DFT simulations were performed to explore the effect of this internal molecular 

conformation on the NEXAFS spectra of the TPD samples. Figure 5 presents the simulated 

carbon 1s NEXAFS spectra of TPD at a series of phenyl/tolyl dihedral angles (𝜈1 = 30°, 40° and 

50°; top, middle, and bottom set of traces) and then at a series of biphenyl dihedral angles (20° ≤ 
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𝜈2 ≤ 60°). The energy of the C-H * band and the C-R(Me) *Aromatic transitions are relatively 

consistent for these conformations. These data show clear shifts in the C-R(N) *Aromatic 

transitions associated with phenyl/tolyl C-R(amine) bonding (indicated by an asterisk) and the C-

R(N) *Aromatic transitions associated with C-R(biphenyl-amine) bonding (indicated by a pound 

sign). The peak that arises from the C-R(N) sites on the phenyl / tolyl groups (*) is more intense 

than that from the biphenyl C-R(N) sites (#) on account of the number of atoms in each site (4:2 

ratio). Considerable variation in the energy of these C-R(N) *Aromatic transitions as a function of 

𝜈1 and 𝜈2 dihedral angles is observed. 

To better illustrate the shifts in the C-R(N) * band as a function of molecular conformation, 

these transition energies are plotted as a function of 𝜈1 and 𝜈2 dihedral angle in Figure 6. The top 

pane of Figure 6 presents the energy of the carbon 1s(C-R(N)) → *Aromatic transition originating 

on the biphenyl group C-R(N) atoms, and the bottom pane the energy of the carbon 1s(C-R(N)) 

→ *Aromatic transition originating on the terminal phenyl/tolyl C-R(N) atoms. In both cases, 

these energy surfaces are nearly planar, and were fit to the equation of a plane (z = ax + by +c) 

using a python code.44 The results of this fit are presented in Table 2. As shown by the slopes 

obtained from this fit, the biphenyl dihedral angle (𝜈2) has a weaker effect on the C-R(N) * 

peak energies, in part from distance of this dihedral angle from the core excited atom sites. 

IV. Discussion 

The experimental results presented in Figures 1 and 2 show that the width and energy of the C-

R(N) * band varies between different TPD sample preparations. Specifically, the C-R(N) * 

band appears at higher energy for the powder TPD sample, while the position and breadth of the 

C-R(N) * band varies modestly for TPD thin film deposited at different substrate temperatures. 

The C-R(N) * band is the narrowest in the TPD powder sample, then next narrowest for the 
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sample deposited with a substrate temperature of 0.90 Tg and 0.79 Tg .The width of the C-R(N) 

 band is somewhat broader in the TPD samples deposited at higher substrate temperatures of 

1.0 Tg. 

We hypothesize that the differences in density observed between more stable glasses (which 

show greater density) and less stable glasses (which show lower density) are related to molecular 

packing, which is indirectly related to the internal conformation of the molecule. Our 

experimental approach is sensitive to internal molecular conformation, thus providing new 

experimental information on the structure of molecular glasses. 

TP-DFT simulations show how the C-R(N) * band varies with the internal molecular 

conformation. In this regard, the narrower C-R(N) * band in the TPD powder and the 0.90 Tg 

thin film sample is consistent with a narrower range of conformations of the TPD molecule, 

while the broader C-R(N) * bands for TPD samples deposited at higher substrate temperatures 

indicate a broader range of molecular conformations in these films. Nevertheless, the range of 

dihedral angles is not high.  

The energy of the C-R(N) * band can be used to determine the internal molecular geometry of 

TPD. The sensitivity of NEXAFS to internal conformation is well known,35 and recent studies 

using TP-DFT calculations have shown sufficient precision to extract structural information on 

the conformation of the P3HT chain with different degrees of regio-regularity and annealing.33 

Calculated carbon 1s → * transition energies align well with experiment, once the fixed offset 

between calculated and experimental energy scales is accounted for. From this, the internal 

conformation can be extracted from measured transition energies. This approach is used here to 

measure the internal conformation of TPD in powder and thin film samples. 
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The offset between experiment and calculation is determined from the data in Figure 3. The ~285 

eV (experimental energy scale) of the C-H * band does not vary appreciably with internal 

molecular conformation (per Figure 5), so it is used to align experimental and computational 

energy scales. As discussed above, the experimental C-H * band broadens to higher energy due 

to vibronic transitions, and perhaps broadened to a lesser extent due to nuclear motion effects 

(see ref. 57). To avoid vibronic and possible nuclear motion broadening effects, we have aligned 

the experimental maxima – which corresponds to the adiabatic carbon 1s(C-H; ν=0) → 

*Aromatic(ν=0) transition –  to the maximum in the calculated C-H * band. Previous results from 

the high resolution carbon 1s NEXAFS spectra of polystyrene show that the maxima in 

experiment and calculation align;52 we expect a similar alignment for other substituted benzene 

species. 

An offset of 1.50 eV (±0.05 eV) is required to align these scales in Figure 3, where the 

uncertainty reflects the breadth of the C-H * band maxima. For clarity of the following 

analysis, we have recalibrated the calculated energy scales in Figure 6 and Table 2 to match the 

experimental energy scales by subtraction of 1.50 eV. These data show the predicted relationship 

between the C-R(N) * band energy and internal conformation, based on TP-DFT calculations.  

A quick review of the experimental data in Figures 3 and 5 shows a potential complication of 

this analysis: the C-R(N) * band consists of transitions from two different sites, and that the 

phenyl/tolyl C-R(N) * contributions are twice as intense as the biphenyl C-R(N) * 

contributions on account of the ratio of C-R(N) atoms (4:2). As shown in Figure 5, the C-R(N) 

contributions from these sites respond differently to changes in the TPD dihedral angles. 

As a starting point, we use the equations in Table 2 to calculate the carbon 1s(C-R(N)) → 

*Aromatic transition energies for the calculated equilibrium geometry of TPD (𝜈1 = 39.9º - 40.7º; 
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𝜈2 = 38.0º): the carbon 1s(C-R(N) phenyl / tolyl) → *Aromatic transition would appear at 286.18 

eV and the carbon 1s (C-R(N) biphenyl) → *Aromatic transition at 286.00 eV (both on 

experimental energy scales). This is in good agreement with the experimental results for the C-R 

* band presented in Figure 2.  

We can now use the equations in Table 2 to predict the dihedral angles in TPD, based on the 

measured C-R(N) * band energies. If we assume that both C-R(N) * transitions occur at the 

same energy (as tabulated in Table 2), then a direct solution for the angles 𝜈1 and 𝜈2 can be 

obtained. These results are presented in Table 3, with the uncertainty originating from the 

calibration energy scale calibration. These results are reasonable for the TPD thin film samples 

(dihedral angles of 41.6 – 47.6°), which are somewhat higher than the calculated equilibrium 

values for TPD (𝜈1 = 39.9º - 40.7º; 𝜈2 = 38.0º). The TDP powder results are very different (𝜈2 = 

~120º), suggesting that the two C-R(N) transitions do not occur at the same energy. 

A closer examination of the C-R(N) * band for the 0.79 Tg sample in Figure 2 suggests that this 

band may be split into two, with weaker lower energy component at 285.9 eV and a stronger 

higher energy component at 286.1 eV. We expect a 2:1 ratio between the phenyl / tolyl C-R(N) 

* band and the biphenyl C-R(N) * band, so the weaker peak could be attributed to the 

biphenyl C-R(N) * contribution. This is a suggestion, and beyond what can be reasonably 

claimed from the data. Using these energies in the equations in Table 2, we obtain dihedral 

angles 𝜈1 = 48º and 𝜈2 = -3º. This is close to an equilibrium 𝜈1 dihedral, and nearly planar for the 

biphenyl 𝜈2 dihedral. The range of biphenyl 𝜈2 dihedral results is not unreasonable, given the 

low barrier to rotation observed in Figure 4.  

The difference between the TDP powder and thin film C-R * bands – and the predicted dihedral 

angles – are harder to rationalize. In truth, we know little about the structure of this TPD powder; 
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this is an ‘as received’ sample, following synthesis and purification by the chemical supplier’s 

contractor. The density of the powder form of TPD is known to be less than that of vacuum 

deposited TPD thin films (1.145 g/cm3 for the powder; 1.153 g/cm3 for thin film),
25

 where 

increased density is correlated with increased stability. Taken with this density data, wider 

divergences in the dihedral angles are expected for less stable forms of TPD such as the powder 

sample.  

The internal conformation of TPD is expected to be affected by molecular packing, arising from 

the PVD process. For vacuum deposited films, molecules on the surface are highly mobile and 

can reach a more stable configuration before being buried. 

V.  Conclusions: 

We have acquired the carbon 1s NEXAFS spectra of thin films of TPD prepared by PVD on 

substrates with temperatures ranging from -11 ºC (0.79 Tg) to 56 ºC (1.0 Tg) as well as a 

powdered PVD sample. Small but significant changes are observed in the C-R(N) * band in 

these spectra. TP-DFT calculations were used to explore the sensitivity of the C-R(N) * band to 

the internal molecular conformation in TPD. The calculations show a strong dependence of the 

C-R(N) * band energy on characteristic dihedral angles that define the internal conformation of 

TPD. As TP-DFT calculations have an excellent precision and reliable calibration for * 

transitions, the internal conformation of TPD was determined by combining experiment and 

theory. Our results show that the internal conformation of TPD in PVD deposited thin films is 

similar but slightly more twisted than that obtained from DFT calculations of an isolated 

molecule. The most stable TPD samples (prepared at 0.79 Tg and 0.90 Tg) have a smaller range 

of internal conformation dihedral angles, as shown by the narrower C-R(N) * band, as well as a 

decrease in the phenyl/tolyl rotation and an increase in the biphenyl rotation. The internal 
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conformation arises from the dynamics of molecular reorganization during deposition, and the 

increased density of the more stable TPD films relates to closer packing, either reflected by or 

facilitated by the changes in internal conformation of TPD in the glass. 
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Scheme: 

Scheme 1: Schematic of the TPD molecule, with the terminal phenyl/tolyl (v1), biphenyl (v2) and 

amine plane (v3) dihedrals indicated. 

 

Figure Captions: 

Figure 1. (a) Carbon 1s NEXAFS spectra of different forms of TPD: TPD film prepared by PVD 

at 0.79 Tg (black trace) and TPD powder (red trace), obtained with left circular polarized light. 

(b) Close-up of the NEXAFS spectra changes in carbon 1s → * region. 

 

Figure 2. (a) Carbon 1s NEXAFS spectra of TPD films prepared by physical vapour deposition 

at different substrate temperatures: 0.79 Tg (black trace), 0.9 Tg (blue trace) and 1.0 Tg (red 

trace), obtained with left circular polarized light. (b) Close up to show spectral changes in carbon 

1s(C-H) → *Aromatic (C-H * band; 285 eV) and carbon 1s(C-R) → *Aromatic (C-R * band; 

~286.2 eV) regions and (c) a close up of the carbon 1s(C-R) → *Aromatic (C-R * band; ~286.2 

eV) region. 

 

Figure 3. (bottom) TP-DFT simulations of the carbon 1s NEXAFS spectra of TPD at a selected 

geometry (𝜈1 = 40°; 𝜈2 = 30°). Contributions from chemically inequivalent atoms in the terminal 

phenyl, terminal tolyl and central biphenyl groups are indicated by separate traces, as well as the 

total simulated spectrum (sum). (top) Experimental carbon 1s NEXAFS spectrum of a TPD thin 

film (deposited on a substrate at 25º C or 0.90 Tg). The energy scale of these plots is offset by 

1.50 eV to align the experimental spectra with the calculated data. 
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Figure 4: Calculated total energy of TPD as a function of the phenyl/tolyl dihedral angle (v1) and 

the biphenyl dihedral angle (v2). Energies were provided from DFT geometry optimization 

calculations with fixed dihedral angles, as described in the text. 

 

Figure 5. (bottom) TP-DFT simulations of the carbon 1s NEXAFS spectra at a series of 

phenyl/tolyl dihedral angles (𝜈1 = 30°, 40° and 50°) and biphenyl dihedral angles (20° ≤ 𝜈2 ≤ 

60°). (top) Experimental carbon 1s NEXAFS spectrum of a TPD thin film (deposited on a 

substrate at 25º C or 0.90 Tg). The energy scale of these plots is offset by 1.50 eV to align the 

experimental spectra with the calculated data. 

 

Figure 6. Energy of the carbon 1s (C-R) → *Aromatic transition for amine bonding sites on the 

biphenyl group (top) and phenyl/tolyl groups (bottom) as a function of biphenyl (v2) and terminal 

phenyl/tolyl dihedral angles (v1). The x-axis is set to match the experimental energy scale.  
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TABLES: 

Table 1: Gaussian fits of the experimental C-R * band for TPD powder and TPD thin films. 

 

TPD 

Sample 

Fit Parametersa 

Energy 

(eV) 

(xo)b 

Width 

(eV) 

(2𝜎)b 

Pre-

exponential 

factor (a) 

Background 

(yo) 
R2 

0.79 Tg 286.130 0.462 0.608 0.453 0.9847 

0.90 Tg 286.133 0.449 0.666 0.462 0.9948 

1.0 Tg 286.120 0.572 0.754 0.342 0.9721 

TPD 

Powder 
286.290 0.358 0.462 0.498 0.9903 

 
a. Sigmaplot (version 10.0)43 was used to fit the C-R * band;  band to a single Gaussian peak, using 

a four-parameter fit, 𝑓(𝑥) = 𝑦𝑜 + 𝑎 𝑒
−

1

2
(

𝑥−𝑥𝑜
𝜎

)
2

 

b. The uncertainty in the energy positions and widths is estimated at 20 meV. 

 

Table 2: Results of a fit to determine the parameters of a plane defining the energy of the 

Phenyl/tolyl C-R(N) carbon 1s(C-R) → *Aromatic transition and the biphenyl carbon 1s(C-R) → 

*Aromatic transition as a function of 𝜈1 (phenyl/tolyl dihedral angle) and 𝜈2(diphenyl dihedral 

angle). A published python code was used for this fit.44 The energy scale is set to match the 

experimental scale. 

 

Biphenyl carbon 1s(C-R(N) → *Aromatic transition 

 

z = 0.014414 (v1) + 0.005216 (v2) + 286.7182a 

 

Phenyl / tolyl carbon 1s(C-R(N) → *Aromatic transition 

 

z = -0.009039 (v1) + 0.000272 (v2) + 288.0381a 

 

 
a. The energy scale has been recalibrated to the experimental energy scale by the subtraction of 

1.5 eV. 

b. The energy scale accuracy is estimated as 20 meV   
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Table 3: Calculation of Dihedral Angles – Single C-R * Energy Assumption 

Species 

C-R energy 

(eV) 𝜈1 (°)a 𝜈2 (°)a 

0.79 Tg 286.13 45.5° 46.2° 

0.90 Tg 286.133 46.2° 47.6° 

1.0 Tg 286.12 47.5° 41.6° 

Powder 286.29 31.0° 119.6° 

 
a. The uncertainty of these dihedral angles is estimated from the uncertainty in the estimate of the 

offset between experimental and calculated energy scales (50 me V) and the precision of the C-R 

fits (20 meV): 𝜈1 angles are ± 7° and 𝜈2  angles ± 28°. This uncertainty reflects the calibration of 

the set of angles, and not a unique uncertainty for each angle measurement. 
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