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ABSTRACT 
 

Neonicotinoids are neurotoxic insecticides that are commonly applied to combat 

agricultural pests. Due to widespread application and select physicochemical characteristics, 

mixtures of different neonicotinoids are frequently detected in freshwater environments. This is of 

potential concern because these freshwater habitats are populated with ecologically important 

benthic macroinvertebrates (e.g. Chironomidae), which are markedly sensitive to neonicotinoid 

compounds. Despite the likelihood of continuous and/or repeated exposure, previous studies have 

primarily evaluated the individual toxicities of these neurotoxic compounds. Yet, little is known 

about how mixtures affect sensitive aquatic insects under real world exposure scenarios. Thus, the 

objectives of this research were to (1) evaluate acute and chronic toxicities of three commonly 

used neonicotinoids (imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (TMX)) and their 

mixtures to Chironomidae using Chironomus dilutus as a representative test species, (2) validate 

single compound and neonicotinoid mixture toxicity predictions to Chironomidae populations 

under field settings, and (3) identify mechanisms behind species-, life stage-, and compound-

specific differences in neonicotinoid toxicity for these sensitive aquatic insects.  

To address the first objective of this research, acute (96 h, endpoint = lethality) and chronic 

(28 d, endpoint = cessation of emergence) laboratory-based toxicity tests were carried out, 

characterizing the toxicities of IMI, CLO, TMX and their binary and ternary mixtures to larval C. 

dilutus. Using the MIXTOX approach (a statistical technique based on fitting mixture toxicity data 

to pre-defined mixture models), the nature and magnitude of cumulative toxicity was classified for 

each neonicotinoid mixture. Several mixtures were found to display cumulative toxicity that 

significantly deviated from direct, concentration-based additivity. Under acute exposure settings, 

all IMI-containing mixtures (IMI-CLO, IMI-TMX, and IMI-CLO-TMX) exhibited synergism 



  

iii 

 

when the concentrations of IMI in the solution were dominant (up to 7 %, 28 %, and 6 % decreases 

in survival, respectively), and some mixtures (IMI-CLO and IMI-TMX) displayed antagonism 

when the other mixture constituent was dominant (up to 19 % and 30 % increases in survival, 

respectively). Under chronic exposure settings all binary mixtures demonstrated dose-ratio 

dependent deviation from direct additivity (concentration addition), displaying synergism at high 

concentrations of CLO (IMI-CLO: 13 % decrease in emergence) or TMX (CLO-TMX and IMI-

TMX: 2 % and 4 % decreases in emergence, respectively) and antagonism at high concentrations 

of IMI (IMI-CLO and IMI-TMX: 5 %, and 2 % increases in emergence, respectively). Under 

chronic exposures, the ternary mixture (IMI-CLO-TMX) elicited an overall antagonistic effect (2 

% increase in emergence). Thus, laboratory-derived bioassays indicated that under both acute and 

chronic exposure settings, neonicotinoid mixtures had the potential to display cumulative toxicities 

that deviated from direct additivity. Furthermore, although toxicities of neonicotinoid mixtures 

were not exactly parallel across different exposure settings, acute tests generally predicted which 

mixtures were likely to display significant synergism under chronic exposure settings.  

To determine if laboratory-derived predictions could be used to estimate the toxicities of 

neonicotinoids and their mixtures under more environmentally realistic exposure settings 

(Objective 2), chronic (56 day), semi-controlled field studies were carried out in a natural wetland 

in Saskatchewan’s Prairie Pothole Region. Using in situ limnocorrals fitted with emergence traps, 

the effects of predicted equitoxic concentrations of IMI, CLO, TMX, and their binary mixtures 

(concentrations equivalent to 28 d EC50 values; mixtures at 1:1 ratio) were characterized for all 

emerged aquatic insects (endpoint: abundance) and Chironomidae (endpoint: abundance, biomass, 

and sex ratios) at the community level. In all treated limnocorrals, there were subtle shifts in insect 

community composition. Furthermore, at concentrations tested, neonicotinoids and their mixtures 
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significantly impacted Chironomidae abundance and biomass. However, contrary to laboratory 

predictions, IMI-CLO and IMI-TMX mixtures did not elicit greater-than-additive effects. 

Furthermore, exposure to IMI, CLO, TMX, and CLO-TMX elicited greater-than-expected declines 

in Chironomidae abundance and biomass. In addition, CLO significantly shifted sex-ratios of 

emerged Chironomidae towards female-dominated populations. Thus, although laboratory-

derived toxicity estimates could adequately predict relative effects of IMI, CLO, and TMX on 

Chironomidae populations (e.g. toxicity: IMI ≥ CLO >> TMX), they frequently underestimated 

the magnitudes of single-compound and neonicotinoid mixture effects under semi-controlled field 

settings.  

To better characterize patterns of observed toxicity (e.g. differences among compounds, 

species, and life-stages), the binding properties of IMI, CLO, and TMX to their molecular target 

(nicotinic acetylcholine receptors (nAChRs)) were investigated in Chironomidae (Objective 3). 

Using radioligand binding studies with tritium-labeled IMI ([3H]-IMI) and unlabeled competitors 

(IMI, CLO, and TMX), nAChR density and neonicotinoid binding affinity were characterized for 

and compared across two species (C. dilutus and Chironomus riparius) at two different life stages 

(larval and adult). Despite marked differences in neonicotinoid toxicity, there were no significant 

species-specific differences in neonicotinoid binding or nAChR density. However, there were life 

stage-specific differences in nAChR density and binding, and compound-specific differences in 

binding affinity that reflected previously described patterns in neonicotinoid toxicity (e.g. higher 

larval sensitivity and relative toxicity of IMI ≥ CLO >> TMX). Furthermore, compared to other 

insects, Chironomidae displayed relatively high densities of nAChRs with high neonicotinoid 

affinity, which reflected their sensitivity to these insecticides.  
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Ultimately this work provides a comprehensive characterization of the toxicity of three 

commonly used neonicotinoid insecticides (IMI, CLO, and TMX) and their mixtures to the 

sensitive aquatic insect group, Chironomidae. This can help inform regulators and risk assessors 

focused on assessing risks of neonicotinoids in freshwater environments. Furthermore, by 

characterizing effects at three levels of biological organization (molecular, individual, and 

communities), this work provides a basis through which a relative toxicity pathway could be 

formed, highlighting techniques that could be potentially used to predict large-scale effects for 

Chironomidae inhabiting neonicotinoid-contaminated aquatic environments. Finally, this work 

highlights areas worthy of further investigation and provides methodology through which these 

studies can be carried out, including the characterization of the binding properties and/or 

expression profiles of nAChRs for other neonicotinoid-sensitive aquatic insects, evaluation of the 

nAChR binding profiles for other nAChR agonists (e.g. other neonicotinoids, sulfoximines, and 

butenolides), and further characterization of nAChR binding profiles in Chironomidae (e.g. with 

α-bungarotoxin or epibatidine) to allow for a more comprehensive, mechanistic understanding of 

neonicotinoid mixture toxicity.    
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CHAPTER 1: GENERAL INTRODUCTION 

Preface 

This chapter contains a general introduction to neonicotinoid insecticides and a literature 

review on environmental chemodynamics, aquatic detections, toxicities (single compound and 

mixture), and modes of action of neonicotinoids along with the environmental risk assessment 

strategies used for these insecticidal compounds. Chapter 1 also gives an overview of the current 

knowledge of nicotinic acetylcholine receptors and discusses their diversity in expression and 

function in insect species. Finally, this chapter includes the overall goals and objectives of this 

thesis, and the hypotheses tested in subsequent chapters.   
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1.1 Introduction 

Over the past two decades, neonicotinoids have represented the largest-selling and fastest-

growing group of insecticides worldwide (Jeschke et al., 2010). Initially developed to counter the 

growing occurrence of pest resistance to ‘classic pesticides’ (e.g., organophosphates, carbamates 

and pyrethroids), neonicotinoids were rapidly adopted due to their high selective toxicity for 

invertebrate (particularly arthropod) species, versatility in application, and physicochemical 

characteristics (e.g. low lipid solubility and high persistence in light-limited environments) 

(Simon-Delso et al., 2015). Between 1991 (when neonicotinoids were introduced) and 2008 (when 

the most recent survey of global pesticide sales data was published), neonicotinoids had become 

the dominant insecticide class in the agrochemical market, making up 24 % of all insecticides and 

80 % of seed-treatments sold worldwide (Jeschke et al., 2010). Since 2008, global neonicotinoid 

application has continued to move in an upward trajectory. In the Canadian prairies alone, 

neonicotinoid application has increased from an estimated 11 million hectares in 2012 (Main et al., 

2014), to an estimated 13 million hectares in 2015 (E. Malaj, pers. comm. 2019). Global usage and 

sales data suggest that similar rising patterns have also been occurring in other regions in North 

America (NA) (e.g. California), the United Kingdom, the European Union (EU) (e.g. Sweden), 

and Asia (e.g. Japan) (Simon-Delso et al., 2015). The most recent estimates available indicate that 

neonicotinoid insecticides are registered for use on over 140 different crops in over 120 different 

countries (Jeschke et al., 2010). However, as patent protections have recently expired for most 

neonicotinoid compounds, allowing for the introduction of generic products onto the market, this 

is likely an underestimation of actual neonicotinoid usage worldwide.  

Neonicotinoids are a class of insecticides presently containing seven commercial 

compounds (active ingredients): imidacloprid (IMI), clothianidin (CLO), thiamethoxam (TMX), 
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nitenpyram (NIT), acetamiprid (ACE), thiacloprid (THIA), and dinotefuran (DIN), under various 

product trade names (Jeschke et al., 2010). These compounds are divided into generations based 

on when they were synthesized. Introduced in 1991, IMI is the only first-generation neonicotinoid 

(Jeschke et al., 2010). Thus, IMI represents the prototypical neonicotinoid, and remains the most 

widely researched and the historically most heavily applied compound on the market (Jeschke et 

al., 2010). All the other compounds listed here (CLO, TMX, ACE, DIN, NIT, THIA) are second- 

or third-generation compounds, having been introduced after IMI, and formulated to elicit slightly 

different toxicological effects with slightly different environmental profiles (Simon-Delso et al., 

2015). Commonly used to protect seedlings from piercing-sucking pests (e.g. aphids or brown 

planthoppers), neonicotinoids can be applied as soil-drenches (applied directly to the soil), foliar 

sprays (sprayed directly on the leaves of crops), or seed treatments (coated on seed prior to planting, 

conveying systemic protection throughout plant growth) (Elbert et al., 2008; Jeschke et al., 2010). 

Whereas all neonicotinoids described here can be applied as soil drenches and foliar sprays, only 

IMI, CLO, and TMX are also commonly applied as seed-treatments (Elbert et al., 2008). Because 

of this wide versatility in application, IMI, CLO, and TMX also have larger ranges of crop uses 

(applied on fruit, vegetable, and cereal crops) and broader pest spectra (protecting against pests 

that target young crops and newly sprouted seedlings) than most of the other compounds (Table 

1.1) (Elbert et al., 2008; Jeschke et al., 2010). Thus, these compounds are the most widely applied 

neonicotinoids in the agricultural sector. Due to their widespread use and heavy application as seed 

treatments on cereal crops, especially in the Canadian prairies (E. Malaj, pers. comm. 2019), this 

work will exclusively focus on IMI, CLO, and TMX (Figure 1.1) and the risk these pesticides pose 

to aquatic environments in arable regions.    
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Table 1.1 Application profiles of current-use neonicotinoid insecticides. a 

 

Neonicotinoid 

 

Number of Crop 

Uses 

 

Number of Additional 

Pest Uses b 

 

Application 

Methods 

 

Acetamiprid 60 2 
Foliar spray, soil drench. 

 

Clothianidin 40 3 

Foliar spray, soil drench, seed 

treatment. 

 

Dinotefuran 35 3 
Foliar spray, soil drench. 

 

Imidacloprid 140 4 

Foliar spray, soil drench, seed 

treatment. 

 

Nitenpyram 12 - Foliar spray, soil drench. 

    

Thiamethoxam 115 4 

Foliar spray, soil drench, seed 

treatment. 

 

Thiacloprid 50 2 

Foliar spray, soil drench, seed 

treatment. c 

 
a Adapted from Elbert et al. (2008); Jeschke et al. (2010). 

b Specific target pest spectrum (outside of the common neonicotinoid spectrum) for each individual compound. 

c
 Thiacloprid is only used as a seed treatment in one commercial product (Sonido®, Bayer Crop Science). 
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Figure 1.1 Chemical structures of the three most widely applied neonicotinoid insecticides, 

(A) imidacloprid (IMI), (B) clothianidin (CLO), and (C) thiamethoxam (TMX), demonstrating 

the structural diversity of different neonicotinoid insecticides.  
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1.2 Chemical properties and environmental fate of neonicotinoid insecticides 

Neonicotinoids are all based on the molecular structure of nicotine but display different 

degrees of structural diversity. These compounds can exist as five-membered ring systems (e.g. 

IMI), six-membered ring systems (e.g. TMX), or non-cyclical compounds (e.g. CLO) (Figure 1.1) 

and can contain one of three pharmacophore moieties (N-nitroguanidine, nitromethylene, or n-

cyanominidine), which impart different physicochemical properties (Jeschke et al., 2010). IMI, 

CLO, and TMX all contain an N-nitroguanidine moiety, which increases the lipophilicity and 

photostability of these compounds, facilitating their use as efficacious seed treatments, and 

increasing their stability in soils post-application (Anderson et al., 2015; Jeschke et al., 2010).   

The three systemic neonicotinoids of interest (IMI, CLO, and TMX) display 

physicochemical properties that suggest they are likely to move into nearby aquatic environments 

following agricultural application. These compounds are all small and non-polar, with low octanol-

water and organic carbon partition coefficients (log(KOW) = -0.13 - 0.7 at 25°C; KOC = 84 - 2877 

L/kg) (Table 1.2) (Cox et al., 1997; Gupta et al., 2008; Jeschke et al., 2010; Stoughton et al., 2008; 

United States Environmental Protection Agency, 2003). Furthermore, IMI, CLO and TMX are all 

highly water soluble (solubilities: 0.33 - 4.10 g/L at 20°C) (Table 1.2) (Bonmatin et al., 2015). 

Therefore, these compounds are more likely to remain in aquatic fractions than bind to particles 

and organic carbon, or partition into organic compartments of the soil matrix, allowing them to 

easily move from areas of application into ground- or surface-waters. Movement into aquatic 

systems is thought to primarily occur through surface run-off and drainage following major rainfall 

events (Armbrust and Peeler, 2002; Chiovarou and Siewicki, 2008). However, there is also 

evidence that suggests that these compounds can be carried into nearby aquatic systems via 

snowmelt runoff (e.g. soluble and insoluble fractions carried over from soil during the winter) 
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(Main et al., 2016), leaching into groundwater followed by subsurface discharge (Lamers et al., 

2011; Pest Management Regulatory Agency, 2001), decay of treated plants in water bodies 

(Kreutzweiser et al., 2007), drift of contaminated dust dispersed during seed drilling (Krupke et 

al., 2012; Nuyttens et al., 2013), and/or the deposition/drift of treated seeds or sprayed insecticides 

into soil, waterbodies or depressions (Morrissey et al., 2015). Some of these pathways (e.g. runoff, 

leaching, and snowmelt) are particularly important for neonicotinoid seed treatments which, post-

seeding, can move into soils rather than be systemically taken up by target crops. Indeed, studies 

have found that often > 90% of the active ingredient moves directly into the soil, compared to ~ 

5% which is taken up by target crops (Goulson, 2013), rendering a large fraction of applied 

compound available for movement into nearby aquatic systems. 

Movement of neonicotinoids from the soil has been shown to follow a biphasic pattern, 

with an initial phase of rapid loss (pulse exposure), followed by a secondary phase of slower loss. 

Within each phase, the rate of loss follows first-order kinetics (Gupta et al., 2008). The initial phase 

of dissipation from soil can be quite rapid, with aquatic neonicotinoid concentrations peaking 

within 24 h of application (Armbrust and Peeler, 2002). As sorption of neonicotinoids to soil 

increases with time, the secondary phase ends when an equilibrium has been reached between 

adsorbed and free neonicotinoid concentrations in the soil (Gupta et al., 2008). Therefore, a portion 

of applied neonicotinoid will remain adsorbed to the soil. This can enhance neonicotinoid 

persistence in terrestrial environments and increase the likelihood of subsequent, nearby aquatic 

system contamination.  Due to their high water solubility, adsorbed neonicotinoid fractions can be 

transported into aquatic environments through leaching or via events such as rainfall, snowmelt, 

drainage, and runoff (Wood and Goulson, 2017). Therefore, nearby aquatic environments can be 
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subjected to a series of pulse neonicotinoid exposures rather than just a single, high concentration 

pulse exposure following agricultural application.          

 Neonicotinoids are primarily degraded via photolysis (Canadian Council of Ministers of 

the Environment, 2007; Peña et al., 2011; Thuyet et al., 2011), with hydrolysis and microbial 

degradation representing important (yet less prevalent) secondary and tertiary degradation 

pathways (Gupta et al., 2008; Morrissey et al., 2015). Optimal elimination occurs under acidic or 

neutral conditions with high light penetration (Sarkar et al., 1999); however, neonicotinoids have 

been found to persist in light-limited environments (Wood and Goulson, 2017). This is particularly 

true in terrestrial settings. Neonicotinoids display low volatilities (vapour pressures = 2.0 x 10-4 - 

1.3 x 10-7 mPa at 20°C) (Gupta et al., 2008; Stoughton et al., 2008; Uneme, 2011), long terrestrial 

half-lives (DT50s = 3 - 6931 d) (Goulson, 2013) (Table 1.2), and have been detected in agricultural 

soils several years after the last application date (Wood and Goulson, 2017). Terrestrial persistence 

is highly dependent on a number of factors, such as treatment regimen, rate and method of 

application, temperature, soil characteristics, and concurrent use of fertilizers (Anderson et al., 

2015). However, the current weight of evidence indicates that, in most agricultural areas, 

neonicotinoids are likely to remain in the soil, demonstrating persistence that exceeds annual 

agricultural cycles (Wood and Goulson, 2017). Similarly, it has been suggested that neonicotinoids 

can persist in aquatic systems under environmentally relevant conditions. Although reported 

aquatic half-lives for these insecticides can be quite short (ranging from < 1 - 39.5 days, Table 1.2) 

(Morrissey et al., 2015), a recent study has found that turbid wetland water can screen out UV light 

(e.g. via the actions of natural organic matter), severely limiting photolysis (Lu et al., 2015). Indeed, 

Lu et al. (2015) found that photolytic degradation of TMX was completely restricted in wetland 

water at depths greater than 8 cm, and suggested that, due to their chemical similarities, the same 
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effect could occur with other neonicotinoid compounds (e.g. IMI and CLO). Therefore, rather than 

being rapidly eliminated, it is likely that this reduced photodegradation could occur broadly in 

wetland environments near areas of agricultural application (e.g. the Prairie Pothole Region (PPR)), 

allowing neonicotinoids to persist in these aquatic systems.  

In aquatic and terrestrial environments, neonicotinoid degradation processes (e.g. 

photolysis, and microbial activity) can result in the production of metabolites. In aquatic 

environments, IMI can be degraded into 14 different metabolites, CLO into 5 different metabolites, 

and TMX into 9 different metabolic products (Simon-Delso et al., 2015). Although a majority of 

these metabolites are not typically included in monitoring programs or ecotoxicological studies, 

there has been a focus on certain metabolic products, as they have the potential to contribute to the 

toxic load of neonicotinoids in aquatic systems. For example, in both aquatic and terrestrial 

environments, TMX can be metabolized into CLO (Simon-Delso et al., 2015). Therefore, in 

contaminated environments, rather than TMX existing as a single-compound neonicotinoid 

contaminant, it is likely to exist as a mixture of CLO and TMX (e.g. (Main, 2016)), which can 

potentially enhance neonicotinoid toxicity in these systems.  

The physicochemical properties and environmental chemodynamics of neonicotinoids 

indicate that these compounds can pose a risk to aquatic ecosystems. First, aquatic persistence in 

UV-filtered/light limited environments can result in chronic neonicotinoid exposure to aquatic 

insects, organisms which have been shown to be markedly sensitive to these insecticides (Raby et 

al., 2018b). Second, terrestrial persistence indicates that there is a high likelihood for repeated 

pulse exposure events following initial application. These repeated exposures can result in 

neonicotinoid accumulation in aquatic insects, increasing internal neonicotinoid concentrations, 

and therefore eliciting toxicity at lower concentrations than would be expected with single, acute 
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exposures (Focks et al., 2018). Finally, observed multi-season persistence (Main et al., 2014) and 

metabolism to other neonicotinoids (e.g. TMX to CLO), combined with agricultural practices (e.g. 

field rotation), can result in the presence of neonicotinoid mixtures, which may potentially pose a 

greater risk than single-compound exposures.  

1.3 Neonicotinoid detection in aquatic environments 

Neonicotinoids insecticides are frequently detected in aquatic environments (Anderson et 

al., 2015; Hladik and Kolpin, 2015; Morrissey et al., 2015). Due to its widespread historical use, 

most monitoring programs have focused exclusively on IMI, detecting this neonicotinoid at high 

frequencies (36 - 100%) in surface waters sampled across North America (Phillips and Bode, 2004; 

Starner and Goh, 2012; Struger et al., 2017; Xing et al., 2013), South America (Starner and Goh, 

2012), Europe (Kreuger et al., 2010; van Dijk, 2010), Asia (Lamers et al., 2011), and Australia 

(Sánchez-Bayo and Hyne, 2014; Smith et al., 2012). Fewer monitoring programs have focused on 

quantifying CLO or TMX in aquatic environments. However, recent studies have detected CLO 

at high frequencies (44 - 93%) in surface waters across North America (Hladik et al., 2018a; Main 

et al., 2014; Miles et al., 2017; Struger et al., 2017), Australia (Sánchez-Bayo and Hyne, 2014), 

and Asia (Yamamoto et al., 2012), and TMX at high frequencies (22 - 100%) in surface waters 

across North America (Anderson et al., 2013; Hladik et al., 2018a; Main et al., 2014; Miles et al., 

2017; Struger et al., 2017) and Asia (Yamamoto et al., 2012).  

Concentrations of IMI, CLO and/or TMX detected in freshwater aquatic environments tend 

to vary depending on land use (e.g. agriculture vs. urban) and season. In freshwater environments, 

surface waters (e.g. wetlands and rivers) that directly drain or receive runoff from agricultural 

crops are the most susceptible to neonicotinoid contamination (Morrissey et al., 2015). 
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Table 1.2 Select physicochemical properties of imidacloprid, clothianidin, and 

thiamethoxam, the three most commonly applied and widely detected neonicotinoid insecticides. 

Neonicotinoid Molecular 

Weight 

(g/mol) 

Solubility 

(mg/L;  

pH 7, 

20C) 

Lipophilicity  

(log (Kow); 

25C) 

Soil 

Affinity 

(Koc;  

L/kg) 

Vapour 

Pressure 

(mPa; 

20C) 

Soil 

Persistence 

(DT50; d) 

Aquatic 

Half-life 

(DT50; d) 

Imidacloprid 255.7 0.5 - 0.6 (1, 

2) 

0.6 (1) 248 - 

411(3,4) 

2.0 x 10-4 

(5) 

28 - 1250 
(10) 

< 1 (11) 

Thiamethoxam 291.7 4.1 (1) -0.1 - 0.7 (1,6) 104 -  

2877 (7) 

6.6 x 10-6 

(6) 

7 - 6931 
(10,11) 

2.7 - 39.5 
11) 

Clothianidin 249.7 0.3 (1) 0.7 (1) 84 - 

345 (8) 

1.3 x 10-7 

(9) 

3 - 1386 
(10,11) 

< 1 (11) 

(1) Jeschke et al. (2010); (2) Gupta et al. (2002); (3) Cox et al. (1997); (4) Armbrust and Peeler (2002); (5) Stoughton et 

al. (2008); (6) Gupta et al. (2008); (7) Carbo et al. (2007); (8) United States Environmental Protection Agency (2003); 

(9) Uneme (2011); (10) Goulson (2013); (11) Morrissey et al. (2015).  
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Through a comprehensive survey of US streams conducted between 2012 and 2014, Hladik and 

Kolpin (2015) found that levels of CLO and TMX detected in surface waters were significantly 

and positively correlated with the amount of surrounding landscape used for agriculture. Similarly, 

Struger et al. (2017) found that distribution of neonicotinoid insecticides in southern Ontario 

surface waters were significantly and positively correlated with agricultural activities (IMI 

detection correlated with greenhouse activity, vegetables, vineyards and orchards; CLO and TMX 

correlated with row crops). Furthermore, the highest acute concentrations of neonicotinoid 

contamination (IMI = 10 - 320 µg/L; CLO = 10 - 55.7 µg/L; and TMX = 10 - 225 µg/L) have been 

detected in surface waters within agricultural watersheds (Wood and Goulson, 2017). Overall, 

environmental monitoring trends indicate that aquatic neonicotinoid concentrations tend to be 

highest in the spring, and contamination is associated snowmelt, spring rains, and crop planting 

(Hladik et al., 2014; Main et al., 2014; Struger et al., 2017). Although neonicotinoids have been 

frequently detected both prior to the planting seasons in some agricultural areas (e.g. Prairie 

Pothole Region, Saskatchewan (Main et al., 2016)), and year-round in non-agricultural 

waterbodies (e.g. Great Lakes tributaries (Hladik et al., 2018a); agricultural sites in the Niagara 

region in Canada (Struger et al., 2017)), concentrations are generally lower compared to the late 

spring/early summer seasons. Therefore, in temperate agricultural regions, contamination of 

aquatic systems with neonicotinoids is most likely to peak in the spring, following spring rainfall 

and after pesticide application occurs (i.e. in planting/growing seasons).  

1.4 Neonicotinoid toxicity 

Due to their popularity as agricultural insecticides, potential for persistence, propensity 

for movement from the area of application, and environmental ubiquity, there is a high 

probability that non-target organisms inhabiting environments in agricultural regions will be 
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exposed to neonicotinoid insecticides singly and in combination. To date, a significant amount of 

the published research on this topic has focused on the toxicity of neonicotinoids to terrestrial 

pollinators (e.g. bees), as these compounds have been shown to have deleterious individual- and 

population-level impacts on these sensitive and ecologically important organisms (Wood and 

Goulson, 2017). However, given the frequent detection of neonicotinoids in aquatic 

environments, the toxicity of neonicotinoids to non-target aquatic organisms has become an 

increasingly prevalent issue, especially when trying to understand the broader effects that 

widespread neonicotinoid contamination could have on biodiversity. Therefore, it is important to 

understand the mechanisms of neonicotinoid toxicity in non-target organisms, their toxicological 

effects on aquatic species (direct effects on individuals and populations), and their large-scale 

effects on aquatic ecosystems (indirect effects on consumers and communities).    

1.4.1 Mechanism of neonicotinoid toxicity  

 Neonicotinoids elicit toxicity by acting on nicotinic acetylcholine receptors (nAChRs) in 

exposed organisms. As agonist-gated ion channels, localized in post-synaptic membranes of 

neuronal or neuromuscular junctions (Guyton and Hall, 2006), nAChRs are responsible for rapid-

excitatory neurotransmission at cholinergic synapses (Tomizawa and Casida, 2004). In vertebrates 

nAChRs are located in both the central nervous system (CNS)  and the peripheral nervous system 

(PNS) (Guyton and Hall 2006). In invertebrates, which display varying degrees of nervous system 

complexities, nAChRs are either similarly dispersed (e.g. across both the CNS or PNS) or 

exclusively located in diffuse neuropil regions (Matsuda et al. 2001). 
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Figure 1.2 Interaction of the hydrogen-donating and anionic sites of insect nicotinic 

acetylcholine receptors with (A) acetylcholine (ACh) and (B) a representative neonicotinoid, 

imidacloprid (IMI), demonstrating key structural and binding similarities between the 

endogenous moiety (ACh) and the insecticidal compound (IMI). Modified from Jeschke and 

Nauen (2008). 
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Neonicotinoids elicit toxicity by binding to nAChRs and interfering with neural 

transmission (Simon-Delso et al., 2015). Normally, nAChRs are activated by the endogenous 

neurotransmitter acetylcholine (ACh) (Tomizawa and Casida, 2004). Upon ACh binding, nAChRs 

open ion channels, allowing for an influx of extracellular ions [typically sodium (Na+) or calcium 

(Ca2+)] and an efflux of intracellular ions [typically potassium (K+)], which acts to propagate an 

action potential in post-synaptic neurons or myocytes (Casida and Durkin, 2013; Karlin, 1977). 

Once the nervous signal is transmitted, acetylcholinesterase (AChE) is released, hydrolyzing ACh 

at nAChR surfaces, inhibiting ion flow and terminating impulse transmission at cholinergic 

synapses (Fayuk et al., 2004). Neonicotinoids have key structural similarities to ACh (e.g. 

quaternary (sp3) nitrogen atoms, and hydrogen bond acceptors) (Figure 1.2), allowing them to bind 

to the ACh binding site and activate nAChRs (Jeschke and Nauen, 2008; Tomizawa and Casida, 

2004). However, these insecticides are not degraded by AChE (Thany, 2011), thus once bound, 

neonicotinoids can continuously excite cholinergic neurons, causing a biphasic response (Gupta, 

2007; Tomizawa and Casida, 2004). First, neonicotinoid binding excites the cholinergic 

neuron/myocyte, increasing the frequency of spontaneous discharge, resulting in uncontrollable 

muscle tremors, cell energy exhaustion, and cell death (Gupta, 2007; Tomizawa and Casida, 2004). 

This is then followed by neural desensitization to ACh, blocking nerve impulse propagation, 

resulting in paralysis, loss of normal neuronal or neuromuscular function, and then death (Oliveira 

et al., 2011; Thany, 2009; Tomizawa and Casida, 2004). Therefore, following exposure 

neonicotinoid toxicity manifests as seizures, immobility, and then eventual death.    

Neonicotinoids demonstrate a high selectivity for target sites (nAChRs) in the insect CNS, 

and a low affinity for vertebrate nAChRs (Jeschke and Nauen, 2008). This is thought to be due to 

structural differences between vertebrate and invertebrate receptors. Insect nAChRs have cationic 
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target sites, whereas vertebrate nAChRs have anionic target sites, tending to preferentially interact 

with cationic ligands (Tomizawa and Casida, 2004, 2003). Neonicotinoids demonstrate both low 

protonation at physiological pH and co-planarity, resulting in a conjugated system that facilitates 

the formation of an electronegative tip at the nitro- or cyano-moiety (Figure 1.2) (Matsuda et al., 

2001). Therefore, this negatively charged moiety preferentially interacts with the cationic 

invertebrate nAChRs and displays limited interaction with its anionic counterpart in vertebrate 

species (Tomizawa and Casida, 2004, 2003). 

Toxicity of neonicotinoids can also be influenced by metabolic processes. Neonicotinoids 

are metabolized in two phases. Phase I, carried out by cytochrome P450 enzymes (CYP), involves 

structural alterations (e.g. hydroxylation (ring opening or olefin production), demethylation, nitro-

reduction, cyano-hydrolysis, and/or dechlorination) at multiple sites, either detoxifying the 

compound or producing metabolites that can be more toxic than the parent compounds (e.g. the 

metabolism of TMX to CLO) (Simon-Delso et al., 2015). Phase II, carried out by a variety of 

conjugation enzymes (dependent on organism of interest and neonicotinoid of exposure), involves 

conjugation of the Phase I metabolites, and often leads to the production of less toxic products that 

are subsequently excreted (Simon-Delso et al., 2015). Therefore, any alteration of the expression 

or activity of Phase I or II enzymes can influence metabolic pathways, changing the magnitude of 

toxic effect elicited by neonicotinoid exposure. 

1.4.2 Direct toxicity to aquatic organisms and higher-tier consumers 

As aquatic macroinvertebrates typically inhabit aquatic systems for a majority or the 

entirety of their life-cycle, they are both likely to be exposed to neonicotinoid contaminants and 

susceptible to neonicotinoid toxicity. Indeed, aquatic macroinvertebrates (aquatic insects, macro-

crustaceans, and cladocerans) are significantly more sensitive to neonicotinoid toxicity than most 



  

17 

 

other tested aquatic/terrestrial organisms (Table 1.3). For example, acute geometric mean 

neonicotinoid LC50 values for higher tier aquatic vertebrates (i.e. fish and amphibians) range from 

60.8 - 162.8 mg/L, whereas acute geometric mean LC50 values for aquatic macroinvertebrates 

range from 0.006 - 30.4 mg/L (Sanchez-Bayo, 2012). Therefore, aquatic macroinvertebrates can 

be anywhere from 2 -107 times more sensitive to neonicotinoid insecticides than their vertebrate 

counterparts. Due their neurological similarities to pest species (e.g. nAChR structure and function) 

(Tomizawa and Casida, 2003), aquatic insects are the most neonicotinoid-sensitive 

macroinvertebrate group (acute geometric mean neonicotinoid LC50 of 6.0 µg/L) (Table 1.3) 

(Sanchez-Bayo, 2012). Specifically, Ephemeroptera (mayflies), Trichoptera (caddisflies), and 

Diptera (true flies) are the most sensitive aquatic insect taxa (Table 1.4), with acute geometric 

mean LC50 values of 3.9, 6.9, and 32.9 µg/L, respectively (Morrissey et al., 2015). Interestingly, 

despite their typical sensitivity to aquatic contaminants and use in toxicity testing (e.g. Wogram 

and Liess (2001)), cladocerans (e.g. Daphnia magna) are relatively insensitive to neonicotinoid 

toxicity, representing the most resistant aquatic macroinvertebrate order (acute geometric mean 

neonicotinoid LC50 = 43.9 mg/L) (Morrissey et al., 2015).  

Some studies have indicated that neonicotinoids can elicit time-dependent toxicities in 

aquatic invertebrates (i.e. the concentration required to produce lethality was inversely 

proportional to exposure time). For example, time-dependent lethality has been observed in 

laboratory-based experiments with mayflies (Epeorus longimanus) (Alexander et al., 2007), 

midges (Chironomus dilutus), and amphipods (Hyallela azteca) (Stoughton et al., 2008), and 

Beketov and Liess (2009) found that 24-h, low concentration neonicotinoid pulses (5.4 - 4740 

µg/L) could elicit delayed lethality (up to 12 d post exposure) in various aquatic insect species. 

Time-dependent toxicity is thought to result from a nearly irreversible binding of neonicotinoids 
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to nAChRs (as described by the Druckrey-Küpfmüller equation), resulting progressive inactivation 

and eventual death in exposed organisms (Tennekes, 2011, 2010; Tennekes and Sánchez-Bayo, 

2013). However, both this proposed mechanism of action and the occurrence of time-dependent 

toxicity have been contested due to the methods applied to characterize time-weighted effects (e.g. 

Druckrey-Küpfmüller equations) (Maus and Nauen, 2011) and conflicting results observed in 

alternative studies (e.g. a lack of neonicotinoid accumulation at target sites and rapid post-exposure 

recovery following IMI exposure in honeybees and bumblebees) (Cresswell et al., 2014). In fact, 

a lack of time-dependent toxicity has been observed for some compounds in some aquatic 

invertebrate species. For example, Bartlett et al. (2019) found that for H. azteca, neonicotinoid 

toxicity did not significantly increase with exposure time. Instead, as seen in Hexagenia spp. 

(Bartlett et al., 2018), toxicological discrepancies tended to stem from differences in endpoint of 

interest (e.g. survival and growth) (Bartlett et al., 2019). Therefore, although neonicotinoids 

demonstrate the potential to elicit time-dependent cumulative toxicity, there is no overarching 

consensus on whether increased exposure time equates to enhanced toxicity for all neonicotinoid 

compounds and in all exposed organisms.  

Under chronic, low-dose exposure scenarios (e.g. via persistence in aquatic systems or 

repeated low-concentration pulse events) neonicotinoids can also have sub-lethal effects on 

exposed aquatic invertebrate populations. This can include delayed or reduced emergence 

(Alexander et al., 2007; Cavallaro et al., 2018; Mohr et al., 2012; J. Pestana et al., 2009; Stoughton 

et al., 2008), supressed reproduction (Beketov and Liess, 2009; Raby et al., 2018b), decreased 

growth and development (Alexander et al., 2007; Henrique M V S Azevedo-Pereira et al., 2011; 

J. Pestana et al., 2009), immobility and decreased locomotion (H.M.V.S. Azevedo-Pereira et al., 

2011), impairment of burrowing behaviour (benthic invertebrates) (J. Pestana et al., 2009), and/or 
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reduced feeding, shredding activity and respiration (Alexander et al., 2007; Henrique M V S 

Azevedo-Pereira et al., 2011; J. Pestana et al., 2009; J. L. T. Pestana et al., 2009). These sub-lethal 

effects are of concern as they have the potential to culminate in lethality and/or destabilization of 

invertebrate populations. Indeed, a number of prior studies have found that low-dose neonicotinoid 

exposure can influence diversity, richness or abundance of aquatic invertebrates (Colombo and 

Mohr, 2013; Daisuke Hayasaka et al., 2012; J. L. T. Pestana et al., 2009).  

Of the three neonicotinoids of interest here (IMI, CLO, and TMX), IMI is the oldest and 

(historically) most widely applied neonicotinoid. Therefore, IMI has the best-characterized 

toxicological profile. However, due to their prevalence in aquatic environments (e.g. Hladik and 

Kolpin (2015)), a range of recent studies have also evaluated the toxicities of CLO and TMX to 

non-target aquatic invertebrate species. Whereas IMI and CLO are typically equitoxic (or at least 

have a relatively comparable toxicity), TMX has a lower toxicity to most aquatic 

macroinvertebrate taxa (Table 1.4). In a recent review of the published toxicity data for aquatic 

insects, Morrissey et al. (2015) calculated geometric mean acute LC50 values for IMI and CLO 

that ranged between 25.3 and 26.8 µg/L, and a median toxicity value for TMX of 44.8 µg/L 

(approximately 2 times higher than that of IMI and CLO) (Table 1.4). Similar results were 

observed with crustaceans, with TMX displaying a geometric mean acute toxicity (8864.5 µg/L) 

that was approximately 10 times lower than that of IMI or CLO (587.0 – 842.3 µg/L) (Table 1.4) 

(Morrissey et al., 2015). This comparative toxicity pattern has been verified for a number of 

sensitive aquatic organisms. For example, Cavallaro et al. (2017) reported that under chronic 

exposure settings (40 d) TMX was approximately 10 times less toxic to the aquatic midge C. 

dilutus than CLO or IMI (endpoint = emergence; IMI and CLO EC50s = 0.71 - 1.48 vs. TMX EC50 

= 23.60). Similarly, under chronic exposure scenarios, Raby et al. (2018a) found that TMX was 2 
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times less toxic to the mayfly Neocloeon triangulifer than IMI or CLO (endpoint = emergence; 

IMI and CLO EC50s = 0.95 - 1.75 µg/L vs. TMX EC50 = 2.18 µg/L). In addition, risk-based 

rankings of the in-use agricultural pesticides of Canada have indicated that the relative risks of 

these three seed treatments are as follows: IMI > CLO > TMX. For example, by dividing estimated 

96-h environmental concentrations (modeled using application data and physicochemical 

properties) by the hazard concentration for 5 % of aquatic species (HC5 values; obtained through 

species sensitivity distributions), Whiteside et al. (2011) indicated that IMI posed a much higher 

risk to aquatic invertebrates than CLO or TMX (risk IMI = 4.38 vs. risk CLO and TMX = 0.00 - 

0.03). Similarly, by dividing measured environmental concentrations (derived from aquatic 

monitoring programs) by HC5 values,  Raby et al. (2018a, b) derived hazard quotients (HQs) that 

indicated that IMI posed the highest risk to invertebrates inhabiting contaminated aquatic 

environments, followed by CLO and then finally TMX under acute (HQ: IMI > 1.1 ; CLO = 0.1 < 

HQ < 1.0 ; TMX < 0.1) and chronic (HQ: IMI = 74; CLO = 1 – 1.5; TMX < 0.1) exposure settings.  

Neonicotinoids are likely to be metabolized in vivo in exposed organisms or 

biotransformed in the environment (e.g. photolysis, hydrolysis, microbial degradation). Yet, 

limited studies have focused on characterizing the effects of neonicotinoid metabolites. The most 

recent evidence indicates that most neonicotinoid metabolites are less acutely toxic than their 

parent compounds (Malev et al., 2012). However, there are three notable exceptions. TMX can 

be metabolized into CLO or N-(2-chlorothiazol-5-ylmethyl)-N’-methyl-N-nitroguanidine (CGA-

322704) in plant and insect tissues (Morrissey et al., 2015; Simon-Delso et al., 2015), and IMI 

can be metabolized into 6-chloronicotinic acid (6-NC), which are slightly more toxic then their 

parent compounds (Malev et al., 2012; Morrissey et al., 2015). Thus, the in vivo metabolism or 

environmental biotransformation of IMI or TMX could potentially enhance their toxic effects.    
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Table 1.3 Comparative toxicities of neonicotinoid insecticides to non-target terrestrial and 

aquatic organisms. Adapted from Sanchez-Bayo (2012). 

 Taxonomic Group LC50 / LD50 * 

 

Aquatic Organisms 

Aquatic Insects 0.006 mg/L 

Macrocrustaceans 4.1 mg/L 

Cladocerans 30.4 mg/L 

Fish 60.8 mg/L 

Amphibians 162.8 mg/L 

 

 

Terrestrial Organisms 

Bees 0.00013 mg/organism 

Earthworms 54.0 mg/kg soil 

Birds 659 mg/kg body weight 

Mammals 868 mg/kg body weight 
*Toxicities are reported as geometric means of oral LD50 (terrestrial organisms) or LC50 (aquatic organisms) values.   
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Table 1.4. Comparative toxicity of neonicotinoid insecticides to common aquatic macro-

invertebrates (Crustacea and Insecta) by taxonomic order and neonicotinoid active ingredient. 

Sensitive taxa from each order are listed in brackets. Adapted from Morrissey et al. (2015) and 

Sanchez-Bayo (2012). 

Taxonomic 

Group 

Order LC50 (µg/L) * Active 

ingredient 

LC50 (µg/L) * 

 

Insecta 

Ephemeroptera 3.9 Clothianidin 25.3 

Trichoptera 6.9  

Diptera  

(Chironomus dilutus) 

32.9 

(9.3) 

Imidacloprid 26.8 

Odonata 55.2  

Hemiptera 64.9 Thiamethoxam 44.8 

Megaloptera 711.3  

     

 

Crustacea 

Podocopida 73.6 Imidacloprid 587.0 

Mysida 106.2  

Amphipoda 235.8 Clothianidin 842.3 

Isopoda 464.8  

Decapoda 1562.2 Thiamethoxam 8864.5 

Cladocera 

(Daphnia magna) 

23690.0 

(43926.5) 

 

*Reported LC50 values are geometric means from acute (24 – 96 h) toxicity tests.   
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1.4.3 Indirect effects on aquatic invertebrate communities and consumers  

 At concentrations observed in aquatic environments, neonicotinoids are unlikely to directly 

elicit toxic responses in vertebrate consumers that inhabit or depend on those ecosystems (Gibbons 

et al., 2015). It is more likely that these higher-tier consumers will be impacted by neonicotinoids 

indirectly, via impairment of aquatic ecosystem function. As aquatic invertebrates are relatively 

susceptible to neonicotinoid toxicity (Table 1.3) (Morrissey et al., 2015) and low-concentration 

neonicotinoid exposure can lead to pronounced effects on diversity and abundance in aquatic 

invertebrate populations (Colombo and Mohr, 2013; Daisuke Hayasaka et al., 2012; J. L. T. 

Pestana et al., 2009), widespread contamination of aquatic environments with neonicotinoids could 

affect the composition and function of aquatic macroinvertebrate communities. In fact, loss of 

specific aquatic invertebrate populations due to neonicotinoid toxicity has been linked to changes 

in trophic interactions which could affect aquatic ecosystem function, including decreases in 

predator abundance (Sánchez-Bayo and Goka, 2009), increases in the relative abundance of 

competing species (Daisuke Hayasaka et al., 2012), and changes in leaf-litter decomposition rates 

(Kreutzweiser et al., 2007).   

 Indirect effects are often hard to measure and suffer from limitations of correlative 

inferences, therefore only a limited number of studies have focused on characterizing the indirect 

effects of neonicotinoids on higher-tier organisms that inhabit or rely on aquatic ecosystems. 

However, as aquatic macroinvertebrates represent important food sources for a range of fish, 

reptile, amphibian, and avian species, it is possible that effects of neonicotinoids on these species 

could translate to higher-tier organisms (Robinson et al., 2019). For example, Hayasaka et al. (2012) 

found that low concentrations of IMI contamination in rice-paddies (~ 1.0 µg/L) could reduce body 

size in both adult and juvenile medaka fish (Oryzias latipes) by influencing the abundance of 
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aquatic arthropods (which constituted their food source). Several authors have also suggested that 

this type of indirect effect could occur with avian species, postulating that there is a link between 

global neonicotinoid use and declining insectivorous bird populations (Gibbons et al., 2015; 

Goulson, 2014; Hallmann et al., 2014; Mineau and Whiteside, 2013). The observed global decline 

of insectivorous bird populations is likely multi-factorial. However, food supply (i.e. abundance 

and availability) has been shown to affect the reproductive success, habitat selection and survival 

of bird populations (Mineau and Palmer, 2013). Furthermore, previous studies have linked prey-

base collapses (resulting from pesticide use) with adverse effects in avian populations (Boatman 

et al., 2004; Mineau and Whiteside, 2013; Poulin et al., 2010). Therefore, it is possible that 

neonicotinoids are indirectly affecting avian populations, and neonicotinoid-driven invertebrate 

loss is contributing to the phenomenon of insectivorous bird decline.   

1.5 Invertebrate nicotinic acetylcholine receptors 

1.5.1 Molecular structure  

 Despite the frequent use of the nAChR as a selective target for neurotoxic insecticides like 

neonicotinoids, the molecular structure of this receptor has not yet been fully characterized in an 

invertebrate species. Thus, the much better defined vertebrate nAChR is typically used as a basis 

for understanding the molecular structures of invertebrate nAChRs (Tomizawa and Casida, 2001). 

Belonging to the cys-loop ligand gated ion channel (cysLGIC) superfamily, nAChRs consist of 

five homologous subunits arranged around a central ion channel (Figure 1.3A). Each subunit 

contains four hydrophobic transmembrane domains (TM1 - 4) and a large (~200 amino acid) N-

terminal extracellular domain (Millar, 2003) (Figure 1.3a). The N-terminal extracellular domain 

contains a functionally important Cys-loop motif, made up of two disulfide bond-forming cysteine 

residues separated by 13 amino acid residues (Jones and Sattelle, 2010), which is thought to play 
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a significant role in nAChR assembly and continued function (Green and Wanamaker, 1997). The 

agonist binding site, located at the interface of two subunits (Figure 1.3B), is formed by six of 

these N-terminal extracellular loops (loops A - F) (Corringer et al., 2000). Loops A - C are 

composed of an α subunit, whereas loops D - F are composed of either an α or a non-α (e.g. β, γ, 

δ, or ε) subunit. The α subunits differ from other subunit classes in that they contain two adjacent 

cysteine residues in their third loop (loop C), which are important for binding acetylcholine or 

other receptor agonists (Kao and Karlin, 1986). Non-α subunits lack these vicinal cysteines (Jones 

and Sattelle, 2010). Within each subunit classes there is a range of different subunit subtypes (e.g. 

within the α class, subtypes α1 - α9 can exist (Jones and Sattelle, 2010)). Thus, a suite of functional 

nAChRs with different subunit combinations can be formed. In fact, nAChRs can be homomeric, 

consisting of only one kind of α subunit, or heteromeric, consisting of either multiple types of α 

subunits or various combinations of α and non-α subunits (Figure 1.3b) (Millar and Gotti, 2009).   

1.5.2 nAChR subunit diversity  

 Diversity of expressed nAChR subunits varies considerably amongst different species. 

Vertebrates generally have large nAChR gene families, expressing up to 17 distinct subunit types 

(α1 - 10, β1 - 4, δ, ε, and γ) (Millar, 2003), but invertebrates tend to have very small nAChR gene 

families, expressing a much smaller range of distinct subunit types (Jones and Sattelle, 2010). 

Arthropod nAChR gene families are amongst the smallest known, with only 10 - 12 distinct 

subunit types having been identified to date (Jones et al., 2007; Jones and Sattelle, 2010). In this 

group, complete nAChR gene families have been characterized for several species: Drosophila 

melanogaster (common fruit fly) (Littleton and Ganetzky, 2000), Anopheles gambiae (African 

malaria mosquito) (Holt et al., 2002; Jones et al., 2005), Apis mellifera (honey bee) (Jones et al., 

2006; Weinstock et al., 2006), Tribolium castaneum (red flour beetle) (Jones and Sattelle, 2007; 
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Richards et al., 2008), Bombyx mori (silk worm) (Shao et al., 2007; Xia et al., 2004), Chilo 

supressalis (rice striped stem borer) (Xu et al., 2017). The number of distinct nAChR subunits 

depends on taxonomic order, with Diptera (D. melanogaster and A. gambiae) expressing 10 

subunits (Holt et al., 2002; Jones et al., 2005; Littleton and Ganetzky, 2000), Hymenoptera (A. 

mellifera) expressing 11 subunits (Jones et al., 2006; Weinstock et al., 2006), and Coleoptera (T. 

castaneum) and Lepidoptera (B. mori and C. supressalis) expressing 12 nAChR subunits (Jones 

and Sattelle, 2007; Richards et al., 2008; Shao et al., 2007; Xia et al., 2004; Xu et al., 2017). 

Each of the characterized invertebrate nAChR gene families has been shown to express a 

group of 7 subunits that is highly conserved across species (> 60 % homology in amino acid 

sequence) (Jones et al., 2007). Due to their common (and historical) use as a test species, these 

core subunits are often compared to and classified against the equivalent subunits expressed in D. 

melanogaster: Dα1 - 7 and Dβ1 - 2 (Jones and Sattelle, 2010). Interestingly, along with this core 

group of conserved subunits, different insect species have been shown to display at least one 

species-specific divergent subunit that demonstrates low homology to all other known nAChR 

subunits (< 29 %  homology in amino acid sequence) (Jones et al., 2007). Although little is 

currently known about the impact of these divergent subunits on nAChR function, prior research 

has indicated that these subunits can influence both ligand binding and ion channel characteristics 

(Jones and Sattelle, 2010), and thus could potentially influence the pharmacological characteristics 

of nAChR subtypes and species-specific sensitivity differences to neonicotinoids and their 

mixtures. 
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Figure 1.3 Structure of neuronal nicotinic acetylcholine receptors (nAChRs). (A) Schematic 

model of the pentameric nAChR at the neuronal synapse indicating the ion channel, lined by 

negative charges, and large N-terminal extracellular and transmembrane domains. (B) Cross 

section of the receptor, indicating the arrangement of subunits around the pore and the locations 

of the acetylcholine binding sites. Homomeric nAChRs (top) are composed of only α subunits, 

whereas heteromeric nAChRs (bottom) are composed of various combinations of α and non-α 

subunits. Modified from Hendrickson et al. (2013) and Uzman (2001). 
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1.5.3 Pharmacological subtypes 

 Three major classes of nAChRs have been identified in vertebrates: muscle, 

sensory/epithelial, and neuronal. Muscle nAChRs are composed of the following subunits: α1, β1, 

γ, and either ε or δ (Millar, 2003). Sensory/epithelial nAChRs are homomeric complexes, 

composed of a combination of either α9 or α10 subunits (Millar, 2003). Neuronal nAChRs are 

primarily composed of α and β subunits, with exact subunit composition depending on 

pharmacological subtype (Millar, 2003). Neuronal nAChRs are often subdivided into two different 

pharmacological subtypes based on the sensitivity of the receptor to the neurotoxin α-bungarotoxin 

(α-BGT) (Tomizawa and Casida, 2001). α-BGT sensitive nAChRs are heteromeric complexes, 

composed of a combination of α (α2 - 6) and β (β2 - 6) subunits (Millar, 2003). In contrast, α-BGT 

insensitive nAChRs can be homomeric or heteromeric complexes; either exclusively composed of 

α7 or α8 subunits, or of a combination of α and β subunits (α7 - 8, β2 - 4) (Millar, 2003). 

 As with molecular structure, the genetic and functional composition of pharmacological 

subtypes have been more sufficiently characterized for vertebrates. Therefore, vertebrate subtypes 

are often used as a basis for the understanding of nAChR subtype structure and function in 

invertebrate species. Electrophysiological and molecular structure studies with vertebrate-

invertebrate nAChR hybrids (i.e. experimental nAChRs constructed from a combination of known 

vertebrate and invertebrate subunits) and in vitro binding studies with insect proteins and neural 

tissues have demonstrated that there are different pharmacological subtypes of invertebrate 

nAChRs, and that subunit composition can influence affinity for and sensitivity to agonists such 

as neonicotinoid insecticides (Matsuda et al., 2001). Typically, invertebrate nAChRs are first split 

into two categories based on their response to α-BGT: 1) α-BGT sensitive nAChRs, thought to be 

relatively insensitive to neonicotinoids, and 2) α-BGT insensitive nAChRs, thought to be relatively 
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sensitive to neonicotinoids (Salgado and Saar, 2004). Subtype is then further defined based on 

nAChR responses to particular neonicotinoid agonists. The α-BGT sensitive nAChRs are generally 

divided into two subtypes based on receptor desensitization post-neonicotinoid exposure: 1) 

nAChD, which becomes completely desensitized post-neonicotinoid exposure, and 2) nAChN, 

which do not become desensitized post-neonicotinoid exposure (Salgado and Saar, 2004). The α-

BGT insensitive nAChRs are divided into two subtypes based on their response to IMI: 1) nAChR1, 

which are sensitive to IMI, and 2) nAChR2, which are insensitive to IMI (Simon-Delso et al., 

2015). Differences in sensitivity to neonicotinoid exposure between these two nAChR subtypes 

(nAChR1 and nAChR2) is thought to be due to conformational variation (Bodereau-Dubois et al., 

2012). In a resting state nAChR1 remains closed, but upon agonist binding this receptor opens up, 

allowing an influx of sodium cations (Na+), which acts to propagate an action potential (Bodereau-

Dubois et al., 2012). In contrast, in a resting state nAChR2 remains open, but upon agonist binding 

this receptor closes, inhibiting the efflux of potassium cations (K+), which act to propagate an 

action potential (Bodereau-Dubois et al., 2012). This open/closed resting state variation is thought 

to influence the binding capabilities of neonicotinoids and thus the response of the receptor to 

particular neonicotinoid agonists.  

 Current evidence suggests that neonicotinoids preferentially interact with specific nAChR 

subtypes. Indeed, prior studies have found that whereas CLO can act on all four nAChR subtypes 

(nAChD, nAChN, nAChR1, nAChR2) (Calas-List et al., 2012; Thany, 2009), IMI can only act on 

three subtypes (nAChD, nAChN, nAChR1) (Calas-List et al., 2012; Thany, 2009), and TMX 

primarily acts on one subtype (nAChN), but can weakly bind to two others as well (nAChR1, 

nAChR2) (Thany, 2011). Recent evidence also has suggested that there may be another subtype 

of nAChR preferentially targeted by thiamethoxam (a mixed nicotinic/muscarinic receptor present 
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in cockroach model species (Thany, 2011), however further studies must be completed to verify 

the presence of this receptor in other invertebrate organisms.  

1.5.4 Diversity in neonicotinoid binding and expression in insects 

Expression and activity of nAChRs have been extensively characterized in agricultural 

pests (e.g. aphids, planthoppers, leafhoppers, locusts, hornworms and budworms), and standard 

test insects (e.g. cockroaches, fruit flies, and houseflies) through radioligand binding studies 

(Crossthwaite et al., 2017; Taillebois et al., 2018). Thus, there is strong evidence that different 

pharmacological nAChR subtypes exist in most insect species (Lapied et al., 1990; Matsuda et al., 

2001; Thany and Tricoire-Leignel, 2011). However, these studies have also indicated that there is 

wide diversity in the pharmacological function and expression of insect nAChRs. For example, 

neonicotinoid-sensitive nAChR binding appears to significantly differ depending on taxonomic 

order. Indeed, previous binding studies with radiolabeled IMI ([3H]-IMI) have indicated that 

dipteran insects (e.g. fruit flies and houseflies) tend to express only one IMI binding site, whereas 

hemipteran insects (e.g. aphids and hoppers) tend to express two distinct IMI binding sites that 

differ in their neonicotinoid binding affinity (i.e. high affinity and low affinity binding sites) 

(Crossthwaite et al., 2017; Taillebois et al., 2018). In addition, nAChR binding and/or expression 

has been shown to vary depending on the individual species of interest. For example, Myzus 

persicae (green peach aphid) and Acyrthosiphon pisum (pea aphid) display distinct differences in 

IMI-sensitive nAChR affinity, with A. pisum generally expressing nAChRs with lower affinities 

for IMI than M. persicae (e.g. dissociation constants (KD) for A. pisum range from 0.2 - 41.7 nM 

vs. 0.08 - 12.6 nM  in M. persicae) (Crossthwaite et al., 2017; Nauen et al., 1998a; Shiokawa et 

al., 1994; Taillebois et al., 2018, 2014). Furthermore, nAChR response has been shown to widely 

diverge depending on neonicotinoid compound of exposure. Indeed, most studies that have 
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compared neonicotinoid binding in insects have found that IMI, CLO, and TMX tend to elicit 

significantly different affinities for nAChRs (e.g. (Taillebois et al., 2014). However, although 

nAChR expression/pharmacological function is relatively well defined in agricultural pests and 

experimental insect species, nAChR binding and expression has not been characterized for any 

aquatic insects to date. Thus, we cannot evaluate whether the previously observed patterns in 

nAChR expression/binding also apply for non-target insect species. Aquatic insects (e.g. 

Chironomidae, Ephemeroptera) are both highly sensitive to neonicotinoids (Morrissey et al., 2015) 

and likely to be repeatedly and /or chronically exposed to them over the course of a growing season 

(Hladik et al., 2014; Main et al., 2014). Therefore, it is important to understand how and why 

neonicotinoids elicit their toxic effects in these non-target organisms. In fact, understanding the 

receptor-level actions of neonicotinoids in aquatic insects could be both commercially and 

ecologically beneficial. For example, this knowledge could potentially aid in the design of novel 

neonicotinoids, helping improve the selectivity of these pest control products for target organisms. 

In addition, it could help further elucidate the mechanisms behind neonicotinoid toxicity in non-

target insects and provide further information that can be used in risk assessments of 

neonicotinoid-contaminated aquatic environments.  

1.6 Neonicotinoid mixtures  

In aquatic ecotoxicology, the focus is often placed on characterizing the effects of single 

compounds on sensitive aquatic organisms. This often translates to environmental risk assessment 

and regulation, where contaminants are often regulated on a single compound basis and risk is 

typically estimated using techniques that either do not account for the presence of multiple 

contaminants, or fail to capture the complexity of mixture interactions (e.g. by directly summing 

chemical concentrations in the environment) (Backhaus and Faust, 2012). However, due to the 
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frequent, concurrent use of multiple chemicals in most human-dominated landscapes, aquatic 

environments are more likely to be contaminated with mixtures of chemicals than single 

compounds (e.g. (Kolpin et al., 2002)). This is certainly the case for neonicotinoid insecticides in 

aquatic environments. Due to a combination of their physicochemical and environmental 

properties (e.g. hydrophilicity, propensity for movement from area of application into aquatic 

systems, extended/multi-season persistence) and current agricultural practices (e.g. field-rotation, 

co-application of multiple compounds in a formulated product/tank mix, or application of multiple 

compounds in one watershed), neonicotinoids are likely to exist in mixtures in many aquatic 

environments. However, the ecotoxicities of neonicotinoid mixtures have rarely been investigated 

in the published literature. Therefore, there is a need to consider neonicotinoid (IMI, CLO, and 

TMX) mixtures from the perspective of their prevalence in aquatic environments, their cumulative 

toxicity to sensitive aquatic species, and the potential risks they pose to aquatic ecosystems. 

1.6.1 Prevalence in aquatic environments 

Binary and ternary mixtures of neonicotinoid insecticides have been detected at relatively 

high frequencies in a range of freshwater systems within (or in close proximity to) agricultural 

watersheds. For example, in a multi-year survey (2012 - 2013) of the Canadian Prairie Pothole 

Region (PPR), Main (2016) found that 11 - 63 % of wetlands sampled contained mixtures of IMI, 

CLO, and/or TMX at cumulative concentrations ranging from 0.004 - 1.66 µg/L. In a more recent 

survey of the Canadian PPR (2017 - 2018) similar trends were found, with Malaj et al. (pers. 

comm.) detecting binary and ternary mixtures of IMI, CLO, and/or TMX in 40 % of wetlands 

sampled. Neonicotinoid mixtures have also been detected in other aquatic environments, including 

other wetlands (0 - 67 % of sampled; cumulative concentrations = 0.008 - 0.7 µg/L) (Smalling et 

al., 2015), rivers and streams (25 % of sampled; cumulative concentrations = 0.0054 - 0.38 µg/L) 
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(Hladik and Kolpin, 2015), groundwater (6.1 % of sampled; cumulative concentrations = 0.28 - 

1.05 µg/L) (Giroux and Sarrasin, 2011), and other agricultural surface waters (e.g. puddles, ditches, 

and drains) (100% of sampled; cumulative concentrations = 0.039 - 44.38 µg/L) (Schaafsma et al., 

2015). Therefore, there is substantive evidence that, rather than existing as single compounds, IMI, 

CLO, and TMX are likely to co-exist in aquatic systems. Furthermore, these monitoring data 

suggest that such neonicotinoid mixtures can sometimes be found at cumulative concentrations 

that could pose a risk to aquatic insects likely to inhabit contaminated areas, especially when 

considering their marked sensitivities to individual mixture constituents (Tables 1.3 and 1.4). 

1.6.2 Neonicotinoid mixture toxicity    

Nearly all prior research on neonicotinoid insecticides and their effects on aquatic 

organisms has focused on characterizing the toxicity of individual compounds. However, there is 

both physiological and toxicological evidence that suggests that neonicotinoid mixtures could have 

cumulative inhibitory actions on insect nAChRs, resulting in enhanced toxicity. First, all 

neonicotinoid compounds follow similar metabolic pathways (Simon-Delso et al., 2015; 

Tomizawa and Casida, 2004). Therefore, exposure to multiple compounds could impact levels of 

enzymes involved in phase I or phase II metabolism (e.g. cytochrome P450 or conjugation system 

enzymes), which could impede detoxification, enhance persistence at nAChRs, and potentially 

increase toxicity. Additionally, neonicotinoids have been shown to display differential selectivity 

for different nAChR subtypes (Calas-List et al., 2012; Oliveira et al., 2011; Thany, 2011, 2009), 

so exposure to a neonicotinoid mixture could potentially activate a higher frequency of subtypes 

than exposure to a single compound and enhance toxicity (especially under high concentration 

exposure scenarios). Thus, when present in mixtures, it is possible that neonicotinoids exert a level 

of cumulative toxicity that cannot be predicted by single compound exposures.  



  

34 

 

To date, the cumulative toxicity of neonicotinoid mixtures has only been characterized for 

a handful of invertebrate species and a limited number of compounds. However, these studies have 

uncovered some interesting and unexpected cumulative effects. Due to their common mechanism 

of action, neonicotinoids have been expected to display a cumulative toxicity that can be estimated 

by direct summation of constituent concentrations (i.e. via the concept of Concentration Addition, 

Section 1.6.2). Concentration-additive cumulative toxicity has been reported for some sub-lethal 

endpoints, including body length of the cladoceran, Daphnia magna, (imidacloprid-thiacloprid 

(IMI-THIA) mixture) (Pavlaki et al., 2011) and cocoon production and feeding in the earthworm, 

Eisenia fetida, (IMI-THIA mixture) (Gomez-Eyles et al., 2009). However, other studies have 

reported that cumulative toxicity can deviate from this concentration-additive model. Loureiro et 

al. (2010) found that, in D. magna, IMI-THIA mixtures could have a greater-than-additive 

(synergistic) effect on lethality and a less-than-additive (antagonistic) effect on feeding inhibition. 

Gomez-Eyles et al. (2009) found that, in roundworms (Caenorhabditis elegans), IMI-THIA 

mixtures could elicit synergism at low cumulative doses and antagonism at high cumulative doses 

(dose-dependent deviation from concentration-additive toxicity) for the endpoint of reproduction. 

Similarly, Pavlaki et al. (2011) found that, for reproduction in D. magna, IMI-THIA mixtures 

could synergistically deviate from direct additivity until reaching doses above the EC50 isobole, 

where the cumulative toxicity became antagonistic. Using transcriptomic and proteomic endpoints, 

Dondero et al. (2010) demonstrated that IMI-THIA mixtures could also elicit synergistic 

cumulative toxicity in marine mussels (Mytilus galloprovincialis), with exposure to IMI-THIA 

mixtures resulting in gene response patterns that outweighed the effects of either IMI or THIA 

individually. Finally, and in support of these independent findings, Bayer Crop Science has 
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previously patented the synergistic lethality of binary neonicotinoid mixtures (IMI, CLO and/or 

THIA) for several target invertebrate species (Andersch, W., Jeschke, P., Thielert, 2010). 

Although some studies have evaluated the cumulative effects of neonicotinoid mixtures to 

aquatic organisms, there are clearly some major knowledge gaps that limit our ability to 

comprehensively evaluate their risks to aquatic environments: 1) No published studies have 

evaluated the toxicity of environmentally relevant neonicotinoid mixtures. Environmental 

monitoring studies have indicated that IMI, CLO, and TMX are likely to be present in mixtures in 

aquatic environments (Main, 2016; Schaafsma et al., 2015; Smalling et al., 2015). However, the 

cumulative toxicities of these three neonicotinoids have yet to be characterized. Indeed, the 

majority of prior neonicotinoid mixture studies have focused on IMI-THIA mixtures. This is 

limiting as IMI-THIA mixtures do not represent the most frequently detected neonicotinoid 

mixtures in surface water environments (Hladik and Kolpin, 2015; Main, 2016; Metcalfe et al., 

2019; Schaafsma et al., 2015; Smalling et al., 2015; Struger et al., 2017). Furthermore, it is unclear 

as to whether THIA is similar enough to CLO and/or TMX (in terms of nAChR subtype specificity 

and metabolic pathway) to be used as a proxy for these compounds during neonicotinoid mixture 

assessment. 2. The effects of neonicotinoid mixtures have yet to be characterized for a sensitive, 

non-target insect species. Ephemeroptera, Trichoptera, and Diptera have been identified as the 

most sensitive aquatic insect taxa to neonicotinoid exposure (Table 1.4) (Morrissey et al., 2015). 

However, the effects of neonicotinoid mixtures have yet to be evaluated for these sensitive 

organisms. Indeed, a majority of prior neonicotinoid mixture studies have been carried out with 

standard invertebrate test species (e.g. D. magna), which are relatively insensitive to neonicotinoid 

exposure (Table 1.4) (Morrissey et al., 2015) and physiologically dissimilar to the more sensitive 

insect species. Thus, previously characterized mixture effects may not adequately describe 
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cumulative toxicities in organisms likely to be adversely impacted by low concentration 

neonicotinoid exposures. 3) The molecular mechanisms of neonicotinoid toxicity have yet to be 

characterized in aquatic insects. Despite their marked sensitivity, no published studies have 

attempted to characterize the molecular-level effects of neonicotinoid insecticides in aquatic 

insects. Prior studies have characterized the molecular mechanisms of neonicotinoid toxicity in 

other insects (e.g. dipteran test insects like D. melanogaster and agricultural pests like A. pisum 

(Taillebois et al., 2018)). However, as nAChR expression, function, and pharmacological 

properties tend to widely vary amongst different insect species, it is unlikely that these prior studies 

can be used to validate molecular toxicity pathways in any sensitive aquatic insect species.  

1.7 Environmental risk assessment of neonicotinoids and their mixtures  

1.7.1 Single compounds 

Prospective ecological risk assessment frameworks provided by regulatory agencies (i.e. 

those primarily used for the risk assessment and registration of plant protection products) also tend 

to focus on individual compounds. The ecological risk assessment frameworks available from 

Environment and Climate Change Canada (ECCC) and the US EPA recommend using weight-of-

evidence approaches with multiple lines of ecotoxicological evidence (hazard quotients, 

concentration-response, probabilistic methods, etc.) to evaluate the risk of predicted or measured 

concentrations of individual pesticides in aquatic environments (Environment and Climate Change 

Canada, 2012; United States Environmental Protection Agency, 2018). The risk assessment 

framework recommended by the EFSA is a little more comprehensive, accounting for the 

cumulative toxicity of pesticide mixtures (European Food Safety Authority, 2013a). However, 

these risk assessment recommendations are primarily focused on formulated products containing 

pesticide mixtures, rather than unintentional mixtures found in aquatic systems. Therefore, risk 
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assessments performed in the EU similarly tend to focus on neonicotinoids as individual 

compounds. This is widely reflected in published studies and regulatory reports, with ecological 

risk assessments for neonicotinoid insecticides primarily focusing on individual compounds and 

the risk that long-term, low concentration exposures pose to sensitive aquatic insect communities 

(e.g. (Health Canada, 2018a, 2018b; Pest Management Regulatory Agency, 2018a; Raby et al., 

2018b). 

1.7.2 Neonicotinoid mixtures 

In environmental risk assessments, the cumulative toxicities of chemical mixtures are 

typically predicted based on the toxic mechanisms of action (MOA) of mixture constituents. There 

are two models that are commonly used to predict the cumulative effects of non-interactive 

(independent) chemicals: concentration addition (CA) and independent action (IA). Concentration 

addition is used to predict the cumulative toxicity of chemicals with similar MOA. This model 

assumes that chemicals in a mixture act as dilutions of each other and predicts joint action by 

summing concentrations of the mixture constituents, scaled to reflect their relative toxicity (de 

Zwart and Posthuma, 2005). For example, each mixture constituent can be converted into a toxic 

unit (TU) (Equation 1.1): 

∑ 𝑇𝑈 =
𝑐𝑖

𝐸𝐶𝑥𝑥(𝑖)
   (Equation 1.1) 

where c represents the concentration of chemical i, and ECxx represents the concentration 

of chemical c eliciting a particular toxicological effect of interest (e.g. LC50: median lethal 

concentration). Cumulative toxicity can then be estimated by summing the toxic units of all 

chemicals in the mixture, with TU = 1 representing an ECxx -level effect. In contrast, IA is used to 

predict the cumulative toxicity of chemicals with strictly dissimilar MOA. This model assumes 
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that the effects of each chemical in the mixture are statistically independent and predicts joint 

action by multiplying the probabilities of responses (de Zwart and Posthuma, 2005). CA models 

are easier to apply than IA models, and provide a more conservative estimate of toxicological 

effect, thus CA models are more commonly used in the ecological risk assessment of chemical 

mixtures (de Zwart and Posthuma, 2005; Deneer, 2000; Verbruggen and Van den Brink, 2010). 

However, the behaviour of chemicals in a mixture does not always correspond to that predicted by 

additive mixture models. Toxicological interactions at physiological or biochemical levels, or in 

toxicokinetic or toxicodynamic phases, can result in a cumulative toxicity that deviates from CA 

or IA (Altenburger et al., 2013). Sometimes chemical mixtures will exhibit synergism, where the 

additive model under-predicts mixture toxicity (greater-than-additive toxicity), or antagonism, 

where the additive model over-predicts mixture toxicity (less-than-additive toxicity) (Rand, 1995). 

The toxicological deviation of a mixture from direct additivity can also be dependent on 

cumulative concentration (dose-level dependent deviation), or the ratio of mixture constituents 

(dose-ratio dependent deviation) (Jonker et al., 2005). In dose-level dependent deviation, deviation 

from the additive reference model shifts depending on the cumulative concentration of the sample 

(Jonker et al., 2005). For example, in a mixture displaying dose-level deviation, there could be 

antagonism at low cumulative dose-levels (low cumulative mixture concentrations) which shifts 

to synergism at high cumulative dose-levels (high cumulative mixture concentrations). In contrast, 

in dose-ratio dependent deviation, deviation from the additive reference model can shift depending 

on the composition of the mixture (Jonker et al., 2005). For example, in a mixture displaying dose-

ratio deviation there could be antagonism if chemical A is more prevalent (i.e. at ratios favouring 

chemical A) and synergism if chemical B is more prevalent (i.e. at ratios favouring chemical B). 
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Therefore, although chemicals can behave additively when in mixtures, there are many ways in 

which directly additive mixture models (e.g. IA and CA) could under- or over-predict toxic effect. 

Neonicotinoids all act on nAChRs, therefore their cumulative toxicity (when accounted for) 

is typically characterized using the CA mixture model. However, this assumption has yet to be 

validated in a sensitive, aquatic invertebrate species. Previous toxicity studies have shown that 

neonicotinoid mixtures can elicit synergistic or antagonistic toxicities (Gomez-Eyles et al., 2009; 

Loureiro et al., 2010; Pavlaki et al., 2011), and physiological studies have shown that IMI, CLO, 

and TMX can have diverse effects on different nAChR subtypes (which may influence the 

cumulative toxicological response to mixture exposure) (Simon-Delso et al., 2015). Therefore, it 

is possible that mixtures of these neonicotinoids could elicit cumulative toxicity that deviates from 

the assumption of directly additivity in sensitive aquatic insects. Further testing is thus necessary 

to determine if the assumptions being applied in aquatic regulations and environmental risk 

assessments (e.g. focusing on single compound toxicity and accounting for mixture toxicity using 

CA) are adequately protective of the ecologically important, sensitive aquatic insect species (e.g. 

Chironomidae) likely to be chronically and/or repeatedly exposed to mixtures of IMI, CLO, and/or 

TMX in the natural environment.   

1.8 Project summary and rationale   

 The neonicotinoid insecticides IMI, CLO, and TMX have been detected singly and as 

mixtures in aquatic ecosystems, where they could potentially pose a risk to non-target larval insects. 

However, the cumulative toxicities of binary and ternary mixtures of these compounds have yet to 

be formally characterized for any sensitive or ecologically important aquatic insect species. 

Furthermore, the molecular mechanisms of neonicotinoid or neonicotinoid mixture toxicity have 

yet to be evaluated in any sensitive, aquatic insects. Therefore, we cannot definitively determine 
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whether current environmental regulations and ecological risk assessment practices, which 

primarily focus on the single compound neonicotinoid toxicity under short-term, laboratory-based 

exposure scenarios, are adequately protective of aquatic insects inhabiting these neonicotinoid 

contaminated environments.  

1.8.1 Research objectives and hypotheses 

 The overall goals of the research presented in this thesis were to characterize the cumulative 

toxicity of neonicotinoid insecticides (IMI, CLO, TMX) and their mixtures under laboratory 

(Chapters 2 - 3) and field (Chapter 4) based settings, and to investigate how receptor-level binding 

characteristics may drive toxic effect (Chapter 5). The specific research objectives were:  

1. a) Characterize the acute (96 h) cumulative toxicities of binary and ternary mixtures 

of IMI, CLO, and TMX to larval Chironomus dilutus (a model freshwater benthic 

invertebrate). The goal was to provide a preliminary understanding (proof of principle) of 

whether neonicotinoid mixture toxicity can be adequately predicted by directly additive 

mixture models (e.g. concentration addition). 

H0: There is no statistically significant differences between single compounds and their 

binary and ternary mixtures at theoretically equitoxic concentrations; all cumulative 

toxicities are adequately predicted by the concentration addition mixture model.  

 

b)         Characterize the chronic (28 d) cumulative toxicities of binary and ternary mixtures 

of IMI, CLO, and TMX to larval Chironomus dilutus, using successful emergence as a 

toxicological endpoint. The objective was to enhance the understanding of neonicotinoid 

mixture toxicity under more environmentally relevant exposure scenarios and assess 

whether chronic neonicotinoid mixture toxicity can be predicted from acute toxicity studies. 
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H0: There are no statistically significant differences between single compounds and their 

binary and ternary mixtures at theoretically equitoxic concentrations; all cumulative 

toxicities are adequately predicted by concentration addition and acute toxicity studies 

similarly and adequately predict mixture effects under chronic, sub-lethal exposure 

scenarios.  

 

2.          Evaluate the chronic (28 and 56 d) toxicities of single neonicotinoids (IMI, CLO, and 

TMX) and their binary mixtures to natural Chironomidae populations in a field-based 

exposure setting. Endpoints of cumulative emergence and biomass were used to determine 

if laboratory-derived neonicotinoid toxicity models (single compound and mixture) can 

successfully predict toxicological effects on aquatic insect communities in an 

environmentally realistic field setting.  

H0: Laboratory-derived neonicotinoid toxicity models (for single compounds and 

mixtures) using C. dilutus as a model species successfully predict the toxicities of IMI, 

CLO, TMX, and their binary mixtures to Chironomidae populations under semi-controlled 

field exposure conditions.  

 

3.          Characterize the binding profiles of neonicotinoid-sensitive nicotinic acetylcholine 

receptors in Chironomidae using radioligand binding assays. Neonicotinoid binding will 

be compared in two species (C. dilutus and C. riparius), at two different life stages (larval 

and adult), and with three different compounds (IMI, CLO, TMX) to determine if receptor 

binding characteristics can explain species-, life stage-, and compound-specific patterns in 

toxicity.    
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H0:  Neonicotinoid receptor binding affinity will be equivalent among Chironomidae 

species, adult and larval life stages, and neonicotinoid compounds.  
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CHAPTER 2: CUMULATIVE TOXICITY OF NEONICOTINOID 

INSECTICIDE MIXTURES TO CHIRONOMUS DILUTUS UNDER ACUTE 

EXPOSURE SCENARIOS 

 Preface 

This chapter focuses on characterizing the acute cumulative toxicities of binary and ternary 

mixtures of select neonicotinoid insecticides (imidacloprid, clothianidin, and thiamethoxam) using 

the larval midge, Chironomus dilutus, as a representative aquatic insect species. Neonicotinoid 

mixture toxicity was investigated through a series of 96-h toxicity tests (endpoint: lethality) with 

single compounds, binary mixtures, and ternary mixtures. Using the MIXTOX approach, 

predictive parametric models were fitted using single-compound toxicity data and statistically 

compared to cumulative toxicity in mixture tests. Results from this chapter demonstrate that, under 

acute exposure scenarios, neonicotinoid mixture toxicity can deviate from the common assumption 

of direct additivity (i.e. concentration addition). In fact, it was found that most tested mixtures 

could display greater- or less-than-additive toxicity to C. dilutus. However, cumulative toxicity 

was highly dependent on mixture composition, with mixtures containing higher concentrations of 

imidacloprid displaying the greatest propensity for synergism. This work highlights the need to 

evaluate neonicotinoid mixture toxicity under more environmentally relevant exposure scenarios, 

and suggests that until further investigations are carried out, the synergistic effects observed here 

should be considered when setting water quality benchmarks for neonicotinoid compounds. 

This chapter was published in Environmental Toxicology and Chemistry, under joint 

authorship with Christy A. Morrissey (University of Saskatchewan), Karsten Liber (University of 

Saskatchewan), John V. Headley (National Hydrology Research Centre, Environment and Climate 

Change Canada), and Kerry M. Peru (National Hydrology Research Centre, Environment and 

Climate Change Canada). Following publication, a calculation error was found in the mixture 
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toxicity models. This was corrected, mixture toxicity estimates were re-calculated, and the 

chapter/manuscript was updated accordingly. The corrected work is presented here, and a 

corrigendum has been published in Environmental Toxicology and Chemistry.   

Maloney, E.M., Morrissey, C.A., Headley, J.V., Peru, K.M., and Liber, K. 2017. Cumulative 

toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure 

scenarios. Environ Toxicol Chem. 36: 3091-3101. Corrigendum : Environ. Toxicol. Chem. 2020 

Apr 39(4): 942 – 946. Doi: 10.1002/etc.4675. 
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2.1 Introduction 

Neonicotinoid insecticides are the fastest-growing and largest-selling group of insecticides 

worldwide. Used in a multitude of agricultural products, neonicotinoids are commonly applied as 

seed-treatments, soil drenches, or foliar sprays to protect young crops from biting-sucking pests. 

Because of their versatility, broad-spectrum insecticidal action, and low toxicity to vertebrates, 

neonicotinoids have recently come to dominate the agrochemical market, representing more than 

24 % of agrochemicals and 80 % of seed-treatments sold worldwide (Jeschke et al., 2010). Of the 

seven commercially available neonicotinoid compounds, the most commonly applied are the 

second-generation seed treatments thiamethoxam (TMX) and clothianidin (CLO), and the first-

generation seed treatment imidacloprid (IMI) (Simon-Delso et al., 2015). Extensive application 

has raised concerns about the environmental impacts of these compounds, particularly in aquatic 

environments surrounding areas of intensive use where multiple neonicotinoids may be found. 

The seed treatments IMI, CLO, and TMX display many physicochemical characteristics 

that facilitate their movement into and persistence in aquatic environments (Morrissey et al., 2015). 

Following application, a large portion of active ingredient (up to 90 %) moves from the treated 

seed directly into the soil and soil water (Goulson, 2013). These compounds can then easily move 

into nearby surface- and ground-water systems via leaching, drainage, run-off, or snowmelt 

processes (Main et al., 2014). Once in aquatic and terrestrial environments, neonicotinoids can 

exhibit extended persistence (e.g. TMX has max aquatic and terrestrial half-lives of 43 d and 6931 

d, respectively) (Anderson et al., 2015; Goulson, 2013). This has resulted in widespread and 

frequent detection of IMI, CLO, and TMX residues in diverse waterbodies in Canada (Main et al., 

2014; Struger et al., 2017), Australia (Sánchez-Bayo and Hyne, 2014; Smith et al., 2012), United 
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States (Phillips and Bode, 2004; Starner and Goh, 2012; Xing et al., 2013), Europe (Kreuger et al., 

2010; van Dijk, 2010), and Asia (Lamers et al., 2011). 

One environmental concern is the impact of these neonicotinoid residues on non-target 

aquatic organisms. Many aquatic macroinvertebrates are relatively sensitive to these compounds 

(Morrissey et al., 2015), and thus may be adversely affected by neonicotinoid exposure. Of the 

aquatic macroinvertebrate taxa, insects that have an aquatic larval stage and emerge as adults (e.g. 

Ephemeroptera, Trichoptera, and Diptera) are particularly sensitive to neonicotinoids (Morrissey 

et al., 2015; Van den Brink et al., 2016). Neonicotinoids elicit neurotoxicity in insects by 

interfering with neural transmission. These compounds bind to and activate post-synaptic nicotinic 

acetylcholine receptors (nAChRs), continuously exciting cholinergic neurons, resulting in muscle 

tremors and cell energy exhaustion. This can be followed by neural desensitization to acetylcholine 

(ACh), blocking neural transmission and resulting in paralysis or lethality (Morrissey et al., 2015). 

The relative sensitivity of these insect species is of concern, as aquatic insects play important roles 

in both aquatic and terrestrial ecosystems. 

Rather than being present as single compounds, neonicotinoid residues are often found as 

mixtures in aquatic environments. In a recent survey of the Canadian Prairie Pothole Region, 

binary or ternary neonicotinoid mixtures were detected in 11 - 63 % of wetlands sampled, with 

cumulative concentrations ranging from 0.004 to 1.66 µg/L (Main, 2016). Because of the similar 

mechanism of action among neonicotinoids, mixtures of these insecticides are expected to display 

directly additive cumulative toxicity (e.g. concentration addition). Indeed, concentration-additive 

cumulative toxic effects have been reported for binary mixtures of IMI and thiacloprid (THIA) in 

some invertebrate species (Gomez-Eyles et al., 2009; Pavlaki et al., 2011). However, deviation 

from this assumption of directly additive cumulative toxicity has also been reported (Gomez-Eyles 



  

47 

 

et al., 2009; Loureiro et al., 2010; Pavlaki et al., 2011), with the cumulative toxicity of 

neonicotinoids differing based on test species, toxicological endpoint of interest, and mixture 

constituents. In Canada, the United States, and the European Union neonicotinoids are currently 

regulated as single compounds (Canadian Council of Ministers of the Environment, 2007; 

European Food Safety Authority, 2013a; Morrissey et al., 2015; Smit, 2014; USEPA, 2017), with 

regulations primarily based on toxicity data for IMI only (Canadian Council of Ministers of the 

Environment, 2007). This is of concern for two reasons. First, the use of a single-compound 

toxicity value to protect aquatic organisms does not account for the potential cumulative effects of 

neonicotinoid mixtures in aquatic environments. Second, TMX and CLO account for most 

neonicotinoid use across Canada, especially in densely agricultural regions like the Canadian 

Prairies (Main, 2016). Furthermore, the mixture effects of the neonicotinoid compounds most 

frequently detected in aquatic environments (IMI, CLO, and TMX) have yet to be formally tested 

in mixtures with an ecologically relevant test species. Therefore, it is essential to characterize the 

cumulative toxicities of these neonicotinoid mixtures to understand the impacts of mixture 

exposures on sensitive aquatic insects, and to determine whether using a single-compound water 

quality guideline value would be adequately protective of sensitive aquatic life. 

In the present study, cumulative toxicities of binary and ternary mixtures of IMI, CLO, and 

TMX were investigated under acute exposure scenarios to gain a preliminary understanding (proof 

of principle) of whether neonicotinoid mixture toxicity can be adequately predicted using single-

compound toxicity values. A regression-based, dose-response computational method developed 

by Jonker et al. (2005), MIXTOX, was used to analyze toxicological deviations of the 

neonicotinoid mixtures from direct additivity (i.e. synergism/antagonism, dose-level dependent 

deviation, dose-ratio dependent deviation) using a sensitive aquatic insect, Chironomus dilutus, as 
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a representative test species. The objectives of this work were: 1) to assess the relative acute 

toxicities of the individual neonicotinoid insecticides, IMI, CLO, and TMX; and 2) to characterize 

the joint acute toxicities of binary and ternary mixtures of IMI, CLO, and TMX, to C. dilutus 

larvae. Because of their common mechanism of action, we hypothesized that these neonicotinoid 

insecticides would display a cumulative toxicity that may be adequately described by the 

assumptions of a concentration addition mixture model.  

2.2 Materials and methods  

2.2.1 Test organisms and culture conditions 

Chironomus dilutus were obtained from a laboratory culture maintained at the Toxicology 

Centre, University of Saskatchewan (Saskatoon, SK, Canada). Organisms were cultured in a 

controlled environmental chamber with a temperature of 23 ± 1C, a 16:8-h light: dark 

photoperiod, and an illumination intensity of 500 - 1000 lux. Cultures were sustained in 20-L 

aquaria and maintenance was based on the protocol outlined by Environment Canada 

(Environment Canada, 1997). Culture water consisted of carbon-filtered, bio-filtered, Saskatoon 

municipal water, aerated in 50-L Nalgene® carboys prior to use. Culture tanks were fed with 15 

mL of Nutrafin® (Rolf C. Hagen Inc., Montreal, QC, Canada) fish food slurry (100 g/L) three times 

a week. Water quality was monitored monthly, with parameters as follows [mean ± standard 

deviation (SD)]: dissolved oxygen (DO) 7.54 ± 0.55 mg/L; unionized ammonia (NH3) 0.63 ± 1.34 

mg/L; pH 8.13 ± 0.19; conductivity 510 ± 20 µS/cm; total hardness 174 ± 11 mg/L as CaCO3; and 

alkalinity 127 ± 16 mg/L as CaCO3. 

Chironomus dilutus larvae were obtained for experimentation by isolating and breeding 

adults from the laboratory culture (Stoughton et al., 2008). Adult C. dilutus were collected into a 

300-mL Erlenmeyer flask via aspiration, and then transferred into a 1-L glass breeding jar 
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containing 200 mL of culture water, a floating Parafilm® platform, two rectangular plastic pieces 

of mesh (serving as mating platforms), and a screened lid. Breeding jars were placed in enclosed 

cardboard containers to deter visual disturbances and left in environmental chambers until egg 

mass production occurred (up to 48 h). Egg masses were transferred to fresh 20-L glass aquariums 

containing aerated culture water and a 1-cm layer of washed silica sand (250 - 425 µm). Nutrafin® 

slurry (5 mL @ 100 g/L) was introduced to tanks at the time of hatch (48 - 96 h post-transfer), and 

subsequently every two days until time of experimentation. After 6 or 7 d, larvae were transferred 

to a glass tray and organisms selected for experimental use. 

2.2.2 Experimental compounds 

Three technical grade neonicotinoids were used as experimental compounds: IMI (98.8% 

pure; N-[1-[(6-chloropyridin-3-yl)methyl]-4,5-dihydroimidazol-2-yl]nitramide), CLO (99.6% 

pure; 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-2-methyl-3-nitroguanidine), and TMX (98.8% pure; 

(NE)-N-[3-[(2-chloro-1,3-thiazol-5-yl)methyl]-5-methyl-1,3,5-oxadiazinan-4-ylidene]nitramide). 

IMI and CLO were acquired from Bayer Crop Science (Kansas City, MO, USA), and TMX was 

acquired from Syngenta Crop Protection LLC (Greensboro, NC, USA). Stock solutions were 

prepared by dissolving the technical product in purified, reverse-osmosis water (Barnstead® 

DiamondTM NANOpure, 18 megaohm/cm; Barnstead International, Dubuque, IA, USA) and stored 

in amber glass bottles at 4C in the dark until experimental use. To avoid degradation and 

contamination, fresh stock solutions were prepared monthly, and stock solutions were chemically 

analyzed prior to every experiment. 

2.2.3 Experimental procedures 

Toxicity tests were performed in a controlled environmental chamber at the Toxicology 

Centre, University of Saskatchewan. Experimental conditions remained consistent with those used 
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to culture test animals. Acute (96 h) static toxicity tests were conducted using 300-mL glass 

beakers containing 50 g of washed, dried 250- to 425-µm silica sand and 200 mL of test solution.  

Experimental solutions were prepared by spiking 1 L of culture water with concentrated stock 

solutions to achieve desired test concentrations. Beakers were gently aerated to maintain adequate 

DO concentrations (> 6 mg/L) and covered with borosilicate glass to prevent neonicotinoid photo-

degradation. Ten early-instar (approximately 6 - 7 d old) C. dilutus larvae were placed in each 

beaker and exposed to test solutions for 96 h. To feed test organisms, 60 µL of a 10 g/L Nutrafin® 

slurry was introduced to each beaker daily. Following the exposure period, live organisms were 

retrieved and counted to assess survival. Mortality of test organisms in control solutions never 

exceeded 10 %, thus meeting experimental validity requirements (e.g. > 85 % survival in untreated 

control (Benoit et al., 1997; Environment Canada, 1997; Organization for Economic Cooperation 

and Development (OECD), 2011)). 

2.2.4 Single-compound toxicity tests 

Acute toxicity (median lethal toxicity [LC50]) was assessed for each neonicotinoid 

compound in single-compound toxicity tests. Chironomus dilutus larvae were exposed to 

anywhere from 6 to 10 concentrations of insecticide (IMI, CLO, or TMX), along with untreated 

controls. Each treatment was replicated four times (n = 40 organisms/treatment). Nominal 

concentrations of IMI (0.4 - 20.61 µg/L), CLO (0.4 - 20.61 µg/L), and TMX (0.4 - 482.9 µg/L) 

were based on range-finding tests and previous studies (Cavallaro et al., 2017; Stoughton et al., 

2008). 
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2.2.5 Binary mixture tests 

Mixture tests were designed based on the toxic unit (TU) concept, where a TU was defined 

as the actual concentration of a chemical (c) divided by its toxicity threshold (in this case the LC50; 

Equation 2.1).  

𝑇𝑈 =  
 𝑐

 𝐿𝐶50
  (Eqn. 2.1) 

Exposure scenarios were based on a fixed-ray experimental design. Compounds were tested at 5 

TU dose-ratios (1:0, 3:1, 1:1, 1:3, 0:1), and 6 dose-levels (ΣTU = 0.25, 0.5, 1.0, 1.5, 2.0, 3.0), 

yielding 18 different binary mixtures and 12 single-compound exposures (Figure 2.1A-D) along 

with 6 untreated controls. Nominal exposure concentration ranges were as follows: IMI, 0.29 - 

13.89 µg/L; CLO, 0.37 - 17.79 µg/L; and TMX, 3.46 - 166.02 µg/L. The fixed-ray design 

necessitated reduced replicates (2 per treatment) to allow for an increased number of exposure 

combinations. As the analysis of the mixture toxicity data was regression based, the statistical 

strength was maintained via adequate coverage of the toxicological response surface (Jonker et al., 

2005). 

2.2.6 Ternary mixture tests 

The ternary mixture test also followed a fixed-ray experimental design based on the toxic 

unit concept (Figure 2.1E - F). Mixtures were tested at 10 dose ratios (1:0:0, 0:1:0, 0:0:1, 1:1:1, 

2:1:1, 1:2:1, 1:1:2, 2:2:1, 2:1:2, 2:2:1), and 6 dose levels (ΣTU = 0.25, 0.5, 1.0, 1.5, 2.0, 3.0), 

yielding 42 different ternary mixtures and 18 single-compound exposures along with 8 untreated 

controls. Each ternary mixture treatment was replicated twice (2 / treatment). Nominal exposure 

concentration ranges were as follows: IMI 0.23 - 13.89 µg/L; CLO 0.46 - 17.79 µg/L; and TMX 

3.46 - 166.02 µg/L.  
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Figure 2.1 Fixed-ray experimental design applied in binary (A) and ternary (E) mixture 

toxicity tests, compared to actual concentrations of exposure in (B) IMI-CLO, (C) CLO-TMX, 

(D) IMI-TMX, and (F) IMI-CLO-TMX mixture studies.  

*TU = Toxic Units.  
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2.2.7 Water Quality 

Water quality was assessed at the beginning (d 0) and end (d 4) of each test. A 20-mL 

sample of water was removed from test beakers and analyzed for pH, conductivity, total hardness, 

and alkalinity. The pH was measured with an ORION® PerpHect LogR meter, model 370 (ORION 

Research, Beverly, MA, USA), conductivity with an ORION® Conductivity meter, model 170 

(ORION Research, Beverly, MA, USA), and hardness and alkalinity using a Hach Digital Titrator, 

model 16900 (Hach Company, Loveland, CO, USA). Temperature, DO, and ammonia (NH3) 

concentrations in test beakers were evaluated every 2 days to ensure adequate experimental 

conditions were maintained. The DO and temperature were measured with a Thermo ORION® 

dissolved oxygen meter, model 835 (Thermo Orion, Beverly, MA, USA), and ammonia was 

measured with a VWRTM SB301 sympHony ISE ammonia meter (VWR International, Ltd. West 

Chester, PA, USA) paired with a Thermo ORION® 95-12 ammonia electrode (Thermo Orion, 

Beverly, MA, USA). 

2.2.8 Chemical analysis 

Test solutions were sampled at the start (d 0) and end (d 4) of each test and analyzed to 

determine actual concentrations of neonicotinoid exposure. For each treatment, 50 mL of test 

solution was collected from each replicate beaker, pooled, and stored in a 250-mL amber glass 

bottle at 4C until time of analysis. In the single-compound tests, both new (d 0) and old (d 4) 

water samples were analyzed for each treatment to ensure minimal degradation and constant 

exposure concentrations. Because of the complexity of the experimental designs for the mixture 

tests, only a subset of samples (TU = 1.0 at each dose ratio) were analyzed at both d 0 and d 4. The 

remaining samples were pooled across sample times (d 0 + d 4) prior to analysis. 
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Samples were analyzed at the National Hydrology Research Centre, Environment and 

Climate Change Canada, Saskatoon, SK, Canada using methods described in Main et al. (2014). 

Briefly, analytical standards of IMI, CLO, and TMX were obtained from Chem Service, West 

Chester, PA, USA. The internal standards (d4-IMI and d3-TMX) were obtained from CDN 

Isotopes, Pointe-Claire, QC, Canada. Neonicotinoid concentrations were quantified via solid-

phase extraction (SPE) followed by high performance liquid chromatography paired with tandem 

mass spectrometry (LC-MS/MS). SPE was performed by loading samples onto OASIS® HLB 

cartridges (Waters, Mississauga, ON, Canada), rinsing with deionized water to remove any salts, 

and eluting the retained solutes with methanol. The eluted samples were then dried via evaporation, 

reconstituted in deionized water, and spiked with the internal standards. The LC-MS/MS was 

performed using a Waters 2695 Alliance HPLC system (Waters Corp., Milford, MA, USA) 

equipped with a Waters XTerra MS-C8 column (3.5-µm dia. particle size; 2.1- x 100-mm) (Waters 

Corp., Milford, MA, USA), paired with a Micromass Quattro Premier triple quadrupole mass 

spectrometer (Waters Corp., Milford, MA, USA) equipped with an electrospray ionization 

interface (positive ion mode). The mobile phase consisted of an 80/20 mix of solvent A (99.9% 

water, 0.1% formic acid) and solvent B (90% acetonitrile, 9.9% water, 0.1% formic acid). The 

injection volume was 20 µL, the flow rate 200 µL/min, and the average run-time was 10 min. 

Calibration curves were run, allowing for quantification of neonicotinoids to the following mean 

(± standard deviation [SD]) limits of quantification (LOQ): IMI 0.008 (± 0.002) µg/L, CLO 0.009 

(± 0.003) µg/L, TMX 0.015 (± 0.002) µg/L. Mean recoveries from Milli-Q water spiked with 

neonicotinoid concentrations of 0.125 µg/L were as follows: IMI 88.8 (± 1.5) %, CLO 85.2 (± 1.6) 

%, TMX 88.7 (± 4.7) %. All measured neonicotinoid concentrations reported were recovery 

corrected prior to use in statistical analysis and MIXTOX modeling. 
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Figure 2.2 3-D Binary mixture dose-response surfaces depicting Concentration Addition 

(CA) and three deviation patterns from this reference model: no deviation (CA), synergistic 

deviation (S/A (S)), dose-ratio dependent deviation (DR), and dose-level dependent deviation 

(DL).   

*Adapted from (Jonker et al., 2005). TU = Toxic Units. 
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2.2.9 Statistical analysis and MIXTOX modeling 

Single-compound toxicity was evaluated by fitting survival data to a three-parameter 

logistic dose-response curve (Equation 2.2) using SigmaPlot statistical software, ver. 11.0 (Systat 

Software Inc., San Jose, CA, USA). Here the toxicological response (Yi) is a function of maximum 

response (Ymax), concentration of exposure (ci), LC50, and the slope of the response curve (βi): 

𝑌𝑖 =
𝑌𝑚𝑎𝑥

1+(
𝐶𝑖

𝐿𝐶50
⁄ )𝛽𝑖

   (Eqn. 2.2) 

Single compound LC50 values were estimated using the trimmed Spearman-Kärber method 

(Hamilton et al., 1977) and compared to those derived through fitting the dose-response curve 

(Equation 2.2) to assess the reliability of parameter estimates. For all mixture tests, a 2-fold 

difference from Spearman-Kärber LC50 estimates was set as the reliability cut-off, with > 2-fold 

deviation indicating that single-compound data was unreliable for use in further mixture analysis. 

In this case, mixture tests were repeated to ensure accuracy when evaluating cumulative effect.  

Binary mixture toxicity data were analyzed using the MIXTOX approach (Jonker et al., 

2005). A descriptive approach to modeling cumulative toxicity of complex mixtures, MIXTOX 

compares observed data with fitted parametric models of mixture effects, calculated from single-

compound toxicity data, thus enabling quantification of the deviation of observed data from 

reference models of Concentration Addition (CA), which assumes concentration-additive 

cumulative toxicity, or Independent Action (IA), which assumes response-additive cumulative 

toxicity, (Figure 2.2; concentration addition shown under CA). Deviation from the reference 

models could take the form of synergism or antagonism, dose-ratio-dependent deviation, or dose-

level-dependent deviation, and was assessed via a step-wise addition of extra parameters, a and b. 

The first parameter, a, describes a synergistic (greater than expected toxicological effect) or 
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antagonistic (lower than expected toxicological effect) deviation from CA or IA (Fig. 2.2; 

synergistic deviation shown under SYN). The models were then further extended with b. Two 

forms of the b parameter exist, bDR and bDL, where bDR describes a dose-ratio dependent deviation 

from the reference model, indicating a shift between synergism and antagonism dependent on the 

ratio of mixture constituents (Fig. 2.2; dose-ratio dependent deviation shown under DR), and bDL 

describes a dose-level dependent deviation from the reference model, indicating a shift between 

synergism and antagonism dependent on the cumulative magnitude of toxic units (Fig. 2.2; dose-

level dependent deviation shown under DL). Interpretation of numerical values derived in the 

MIXTOX analysis can be found in the Appendix (Table A2.1).  

Ternary mixture toxicity was analyzed using an extension of the MIXTOX approach, called 

the Ternary-Plus model (Cedergreen et al., 2012). In this analysis, data from all three binary 

mixture studies were analyzed alongside the empirical ternary mixture data, to account for the 

toxicological effects of binary mixtures when predicting ternary-mixture response. A ternary 

deviation parameter, a1,2,3, was introduced, describing the deviation of the measured ternary 

response surface from the response surface predicted by a combination of binary deviation 

functions. This parameter describes a synergistic or antagonistic deviation from IA or CA. As the 

Ternary-Plus model is still in development, this equation could not be further extended to model 

dose-level and dose-ratio dependent deviations from the synergism/antagonism model. An 

interpretation of the numerical values derived in the Ternary-Plus model can be found in the 

Appendix (Table A2.1).  

Mean measured (not nominal) neonicotinoid concentrations were used in the MIXTOX 

analysis to more accurately characterize the cumulative effects of these neonicotinoid mixtures. 

Adequate coverage of the toxicological response surface was evaluated through scatterplots of 



  

58 

 

measured concentrations tested in mixture toxicity tests (Figure 2.1). Experimental data were fit 

to parametric models using maximum likelihood estimation. First, measured data were fit to 

reference models using the following baseline input values: maximal response (Ymax) = 0.98; and 

slope (βi) and median effect concentration (LC50) (Equation 2.2) derived for each mixture 

constituent.  Due to their similar mechanisms of action at the nicotinic acetylcholine receptor, 

mixtures of neonicotinoids were hypothesized to have a cumulative effect that is best described by 

the CA reference model. However, to comprehensively assess the cumulative toxicity of the 

neonicotinoid mixtures evaluated in the present study, both reference models (CA and IA) were 

initially fit to mixture datasets. Models were then further extended with parameters indicating 

deviation from direct additivity (i.e. synergism/antagonism, dose-level deviation, and dose-ratio 

deviation). As the sequential addition of parameters resulted in the formation of a series of nested 

models, the fit of parametric models could be directly assessed through pairwise model comparison 

and significance testing. Following extension of reference models with additional parameters, 

improved fit was confirmed by a reduction in the residual deviance (RD) and the statistical 

significance of this improvement determined via Chi-squared tests (χ2) with degrees of freedom 

equal to the difference in number of parameters in the two models. For each mixture, model of 

best fit was defined as that which most significantly reduced RD compared to the reference model 

of interest. For each model of best fit, percent deviation (e.g. % increase or decrease from survival) 

was evaluated by comparing reference model estimates (e.g. estimated survival in CA and/or IA 

models) to actual survival data at each tested mixture concentration. Further information regarding 

the derivation and statistical interpretation of parametric MIXTOX models can be found in Jonker 

et al. (2005). 
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2.3 Results  

2.3.1 Water quality and chemical analysis  

 Due to their consistency, routine water quality variables were averaged across all single-

compound and mixture toxicity tests. Mean values (± SD) were as follows: DO = 7.8 (± 0.4) mg/L; 

temperature = 23.0 (± 1.3) °C; pH = 8.03 (± 0.13); conductivity = 328 (± 30) µS/cm; total hardness 

= 108 (± 13) mg/L as CaCO3; and alkalinity = 109 (± 15) mg/L CaCO3. Unionized ammonia 

concentrations increased over the duration of each test, but remained well below the ammonia 96-

h LC50 for C. dilutus (82 mg N/L) (Schubauer-Berigan, M.K., Monson, P.D., Ankley, 1995), with 

a mean value (± SD) of 0.66 (± 0.64) mg N/L. Neonicotinoid concentrations did not change 

significantly throughout the duration of the test (analysis of new and old water) with concentrations 

(mean ± SD) of IMI, CLO, and TMX on d 4 remaining within 96.7 ± 12.0 %, 100.0 ± 7.8 %, and 

102.4 ± 26.1 % of original (d 0) concentrations, respectively. Measured neonicotinoid 

concentrations were close to nominal concentrations, with measured IMI, CLO, and TMX 

concentrations (mean ± SD) being within 101.3 ± 14.0 %, 98.6 ± 17.3 %, and 101.7 ± 38.8 % of 

nominal concentrations, respectively. Neonicotinoid concentrations in control treatments remained 

lower than the limits of quantification. Measured neonicotinoid concentrations are presented in 

Tables A2.2 and A2.3. 

2.3.2 Single-compound toxicity   

 Dose-response curves generate from the single compound toxicity tests (Spearman-Kärber 

method) are shown in Figure 2.3. Chironomus dilutus demonstrated the greatest sensitivity to IMI, 

with a 96-h LC50 of 4.63 (3.96 - 5.41) µg/L. CLO displayed similar toxicity, with a 96-h LC50 of 

5.93 (5.29 - 6.63) µg/L. TMX was the least toxic compound to C. dilutus, with a 96-h LC50 

approximately 10 times lower, at 55.34 (43.98 - 69.64) µg/L. 
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Single-compound 96-h LC50 values were also determined using an alternate method (3-

parameter log-logistic curve; Equation 2.2) and for individual mixture constituents in the mixture 

toxicity tests (MIXTOX fit) (Table 2.1). To evaluate accuracy and replicability, the LC50 values 

for IMI, CLO, and TMX were compared between methods and across single-compound and 

mixture toxicity tests. For all three compounds, single-compound toxicity remained relatively 

consistent, with LC50 values ranging from 3.55 to 7.19 µg/L for IMI (vs. 4.63 µg/L), 3.70 to 5.91 

µg/L for CLO (vs. 5.93 µg/L), and 29.76 to 41.37 µg/L for TMX (vs. 55.34 µg/L). Slight variation 

in calculated effect levels was likely due to statistical differences between individual methods (e.g. 

trimmed Spearman-Kärber method (Hamilton et al., 1977) vs. 3-parameter logistic dose response 

curve fitting (Equation 2.2) vs. MIXTOX fitting (Jonker et al., 2005)) and differences in chosen 

concentration ranges (in single compound vs. binary mixture tests).   

2.3.3 Mixture toxicity 

 Binary mixture: imidacloprid-clothianidin. Cumulative effects of IMI-CLO mixtures were 

better described by the CA reference model (RD = 50.0) than the IA reference model (RD = 63.5). 

Extension of the CA model with the synergism/antagonism (S/A) parameter (a) significantly 

improved model fit (RD = 45.3, χ2 = 4.74, p = 0.03). Extension of the CA-S/A model with the 

dose-level (D-L) parameter (bDL) failed to significantly improve model fit (RD = 44.9, χ2 = 0.38, 

p = 0.54). However, further extension of the CA-S/A model with the dose-ratio (D-R) parameter 

(bDR) did reduce the RD and significantly improve model fit compared to the CA model (RD = 

43.2, χ2 = 6.77, p = 0.03). Therefore, CA-DR was selected as the model of best fit (Figure 2.4A 

and Table A2.4), with parameters a = 1.21 and bDR = -1.57 indicating synergism at higher 

concentrations of IMI (i.e. declines in survival: mean = 1 %; max = 7 %) and antagonism at higher 
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concentrations of CLO (i.e. increases in survival: mean = 2 %; max = 19 %). The CA-DR model 

explained 92.0% of the variability in the IMI-CLO mixture data (Figure 2.4B).  

Binary mixture: clothianidin-thiamethoxam. Cumulative effects of CLO-TMX mixtures 

were better described by CA (RD = 43.0) than IA (RD = 77.1). Extension of the CA model with 

S/A, DL, or DR parameters failed to significantly improve model fit (S/A RD = 43.0, χ2 = 0.01, p 

= 0.92; DR RD = 43.0, χ2 = 0.07, p = 0.96; DL RD = 43.0, χ2 = 0.01, p = 0.99). Therefore, the 

model of best fit was CA, with the CLO-TMX mixtures demonstrating concentration additive 

cumulative toxicity (Figure 2.4C). The CA-S model explained 94.2% of the variability in the CLO-

TMX mixture data (Figure 2.4D, Table A2.5). 

  Binary mixture: imidacloprid-thiamethoxam. Cumulative effects of the IMI-TMX 

mixtures were better described by IA (RD = 121.1) than CA (RD = 151.5). Extension of the IA 

model with the S/A parameter significantly improved model fit (RD = 117.0, χ2 = 4.10, p < 0.01). 

Extension of the IA-S/A model with both DR and DL parameters also further improved model fits. 

However, IA-DR was the model of best fit for the IMI-TMX mixture data (RD IA-DR = 100.5, χ2 

= 16.5, p < 0.01; RD IA-DL = 111.5, χ2 = 5.45, p = 0.02). IA-DR parameters a = 11.99 and bDR = 

-26.41 indicated that IMI-TMX mixtures displayed synergism at dose ratios with higher IMI 

concentrations (i.e. declines in survival: mean = 13 %; max = 28 %), and antagonism at dose ratios 

with higher TMX concentrations (i.e. declines in survival: mean = 2 %; max = 30 %). Therefore, 

the model of best fit was IA-DR, with IMI-TMX mixtures demonstrating dose-ratio dependent 

cumulative toxicity (Figure 2.4E and Table A2.6). This model was found to explain 83.4% of the 

variability in the IMI-TMX mixture data (Figure 2.4F). 
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Figure 2.3 Survival (mean ± SD) of Chironomus dilutus larvae after exposure to (A) IMI, (B) 

CLO, and (C) TMX for 96 hours (n = 4 treatments, 10 organisms/treatment). 

* Significantly different from the untreated control, calculated via one-way ANOVA with the Tukey post-hoc test (p < 0.05). 
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Table 2.1 Mean lethal concentrations (96-h LC50; µg/L) and slopes (β) for Chironomus 

dilutus larvae after exposure to IMI, CLO, and TMX, calculated using three-parameter log-

logistic and MIXTOX fitting methods. 

 

Test Method 

 

Mixture  

Treatment 

 

Imidacloprid 

 

Clothianidin 

 

Thiamethoxam 

 

   

LC50 

 

 

β 

 

LC50 

 

β 

 

LC50 

 

β 

3-Parameter  

Log-Logistic a 

- 5.07 4.67 5.65 14.56 29.76 3.62 

 

 

 

MIXTOX b 

 

IMI-CLO 

 

7.19 

 

3.62 

 

5.58 

 

21.6 

 

- 

 

- 

 

CLO-TMX 

 

- 

 

- 

 

5.91 

 

15.78 

 

37.51 

 

30.87 

 

IMI-TMX 

 

5.88 

 

5.03 

 

- 

 

- 

 

36.20 

 

17.63 

 

IMI-CLO-TMX 

 

 

3.55 

 

6.99 

 

3.70 

 

6.79 

 

41.37 

 

7.14 

a Calculated by fitting a three-parameter dose-response curve, using toxicity data from single compound toxicity tests.  

b Calculated via maximum-likelihood estimation through MIXTOX analysis, using single compound positive control data from 

mixture toxicity tests (Jonker et al., 2005). 
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Ternary mixture: imidacloprid-clothianidin-thiamethoxam. The IMI-CLO-TMX mixtures 

were better described by IA (RD = 583.4) than CA (RD = 722.5). Extension of this model with 

S/A parameters significantly improved model fit (RD = 406.3, χ2 = 177.06, p < 0.01), with the 

parameter aIMI,CLO,TMX = -50.34 indicating a synergistic effect across all concentration levels (i.e. 

decline in survival: mean = 6 %; max = 48 %) and interaction parameters aIMI,CLO = 4.95, aCLO,TMX 

= -6.33, and aIMI,TMX = 0.13 indicating that the binary mixtures had both antagonistic (IMI-CLO, 

IMI-TMX) and synergistic (CLO-TMX) contributions to cumulative toxicity. Therefore, the 

model of best fit was IA-S, with the IMI-CLO-TMX mixtures demonstrating synergistic 

cumulative toxicity (Table A2.7). This model was found to explain 82.1% of the variation in the 

IMI-CLO-TMX experimental data (Figure 2.5). 

Model fit. In the present study, the strength of model fit is demonstrated in the statistical 

analysis (Tables A2.4-2.7). Each model presented is the MIXTOX model of best fit, and each fit 

is statistically significant (p < 0.05) compared to the reference model of interest. However, the 

strength of correlation between modeled and measured data varies between mixture models. 

Although there is visibly strong correlation between modeled and measured data for IMI-CLO 

(Figure 2.4B), the correlation between modeled and measured data in CLO-TMX, IMI-TMX, and 

IMI-CLO-TMX mixtures is visibly less strong (Figures 2.4D, 2.4F, and 2.5). This is potentially 

because of the complexity of interactions occurring in the insecticide mixtures. The MIXTOX 

method presents a finite number of mixture models (i.e., CA/IA, S/A, D-R, and D-L for binary 

mixtures; CA/IA, S/A for ternary mixtures). Thus, it is possible that goodness of fit of the CLO-

TMX, IMI-TMX, and IMI-CLO-TMX models could be improved by fitting more complex models 

of mixture toxicity. However, further research is required to determine how the MIXTOX 

approach could be extended to increase the complexity of mixture models.   
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Figure 2.4 Survival (%) of Chironomus dilutus larvae following 96-hour exposures to (A) 

IMI-CLO, (C) clothianidin-thiamethoxam (CLO-TMX), and (E) imidacloprid-thiamethoxam 

(IMI-TMX) mixtures. Relationship between measured survival data and modeled values for the 

most statistically significant parsimonious deviation model for (B) IMI-CLO, (D) CLO-TMX, 

and (F) IMI-TMX mixtures.  

*A diagonal line (one-to-one relationship) indicates idyllic model description. 
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Figure 2.5 Relationship between measured data and modeled values for the most  

statistically significant parsimonious deviation model for the ternary mixture of  

IMI, CLO, and TMX.   

*A diagonal line (one-to-one relationship) indicates idyllic model description. 
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2.4 Discussion 

2.4.1 Acute toxicity of single neonicotinoid compounds 

Although the toxicity of neonicotinoids has been extensively investigated for several non-

target invertebrate species, few published studies have compared the toxicities of different 

neonicotinoid compounds to sensitive insect species under consistent experimental conditions. 

Furthermore, to our knowledge, this toxicity comparison among multiple neonicotinoids has yet 

to be reported for C. dilutus under acute (96-h) exposure scenarios. In the present study, C. 

dilutus demonstrated the greatest sensitivity to IMI (LC50 = 4.63 µg/L), followed by CLO (LC50 

= 5.93 µg/L), and then TMX (LC50 = 55.34 µg/L), which was 10 times less toxic. These relative 

toxicities are in accordance with what has been previously reported for C. dilutus under longer 

exposure scenarios (Cavallaro et al., 2017). Under sub-chronic (14-d) exposure conditions, C. 

dilutus was found to display the highest sensitivity to IMI (LC50 = 1.52 µg/L), followed by CLO 

(LC50 = 2.41 µg/L), and TMX (LC50 = 23.6 µg/L) (Cavallaro et al., 2017). After 40 d of 

exposure, C. dilutus displayed slightly higher sensitivity to CLO (median effect concentration 

[EC50] = 0.28 µg/L) than IMI (EC50 = 0.39 µg/L), followed by TMX (EC50 = 4.13 µg/L). Other 

studies with C. dilutus have reported similar acute toxicity values to those found in the present 

study: a 96-h LC50 for IMI of 5.75 µg/L (Stoughton et al., 2008) and a slightly lower 96-h LC50 

for CLO of 2.32 µg/L (de Perre et al., 2015).  

Under acute single-compound exposure scenarios, measured environmental 

concentrations above these would be expected to elicit lethal toxicity in C. dilutus and other 

sensitive aquatic arthropods (e.g. Ephemeroptera (Van den Brink et al., 2016)). The single-

compound toxicity values (96-h LC50) generated from the present study add to the growing body 

of literature used to evaluate current regulations and will be important for the development of 
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new water quality guidelines, to ensure protection of sensitive aquatic insects from short-term 

neonicotinoid exposures.  

2.4.2 Cumulative toxicity of neonicotinoid mixtures  

 Importantly, this study extends beyond the examination of single-compound 

neonicotinoid toxicity, focusing on characterizing the cumulative toxicity of neonicotinoid 

mixtures. In the present study, acute exposures of C. dilutus to some neonicotinoid mixtures (e.g. 

IMI-CLO, IMI-TMX, and IMI-CLO-TMX) resulted in cumulative toxicity that deviated from 

that predicted based on the current mechanistic understanding of the toxicities (concentration 

addition) of neonicotinoid insecticides to insects. Indeed, whereas CLO-TMX mixtures displayed 

concentration additive toxicity, IMI-CLO mixtures displayed concentration additive dose-ratio 

dependent deviation, IMI-TMX mixtures displayed response-additive dose-ratio dependent 

synergistic deviation, and ternary mixtures (IMI-CLO-TMX) displayed response-additive 

synergistic deviation. 

 To our knowledge, no other published studies to date have investigated the cumulative 

toxicity of neonicotinoid mixtures to any aquatic insect species. However, the deviation from 

direct additivity observed in the present study is consistent with what has been described for 

some invertebrate species in other neonicotinoid insecticide mixture studies. In Caenorhabditis 

elegans, a terrestrial roundworm, mixtures of IMI and thiacloprid (THIA), were found to have a 

dose-level-dependent synergistic effect on reproduction (Gomez-Eyles et al., 2009). In the 

crustacean, Daphnia magna, mixtures of IMI and THIA had a synergistic effect on reproduction 

(Pavlaki et al., 2011), a synergistic effect on lethality (Loureiro et al., 2010), and an antagonistic 

effect on feeding inhibition (Loureiro et al., 2010). In addition, Bayer Crop Science has patented 

synergistic activity of binary mixtures of IMI, THIA, and CLO for control of several invertebrate 
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pest species (Andersch, W., Jeschke, P., Thielert, 2010). Although the cumulative toxicities of 

these neonicotinoid insecticide mixtures vary when comparing across compounds, endpoints, and 

species, the present study, along with other neonicotinoid mixture studies, confirms a general 

trend of deviation from the hypothesized default CA model under short-term exposure settings.  

2.4.3 Mechanistic response to neonicotinoid mixtures  

 One potential explanation for this observed deviation from the CA model is the action of 

the mixture constituents at nAChRs. nAChRs are pentameric receptors, with a wide variety of 

subunits that can be arranged into distinct nAChR subtypes (Simon-Delso et al., 2015). At least 

two functionally distinct subtypes of nAChRs exist: α-bungarotoxin (α-BGT)-sensitive 

(neonicotinoid-insensitive) nAChRs, and α-BGT-insensitive (neonicotinoid-sensitive) nAChRs 

(Simon-Delso et al., 2015). These subtypes have been further categorized based on functional 

responses to specific neonicotinoid agonists. Within the α-BGT-insensitive nAChR group, 

subpopulations are defined by their sensitivity to IMI: nAChR1 (IMI-sensitive) and nAChR2 

(IMI-insensitive) (Simon-Delso et al., 2015). Within the α-BGT-sensitive nAChR group, 

subpopulations are categorized based on their ability to bind to and activate these receptor 

subpopulations. CLO strongly activates both nAChR1 and nAChR2 subtypes and strongly 

desensitizes cockroach (Periplaneta americana) neurons following excitatory action (Salgado 

and Saar, 2004; Thany, 2009). IMI exclusively activates nAChR1 and desensitizes P. americana 

neurons with the strength of neuronal desensitization dependent on length of exposure (Oliveira 

et al., 2011; Thany, 2011). TMX weakly interacts with nAChR receptors, with reversible (non-

desensitizing) neuronal depolarization effects in P. americana (Thany, 2011). Therefore, it is 

possible that the presence of multiple nAChR subtypes in larval C. dilutus could be influencing 

the observed cumulative toxicological effects of these neonicotinoid mixtures. However, to the 
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best of our knowledge, the molecular composition and functional characterization of nAChR 

subtypes in C. dilutus have not been investigated. Thus, further research is required to make 

firmer conclusions regarding the molecular action of neonicotinoid mixtures at the receptor level 

in aquatic insects such as Chironomidae.  

2.4.4 Implications for hazard assessment of neonicotinoid mixtures 

 The most common approach to hazard assessment of chemical mixtures in the 

environment involves an assumption of additive joint activity. When mixture constituents have 

similar sites and modes of action, the chemicals are thought to act as dilutions of each other, and 

the CA reference model is assumed to most accurately describe cumulative toxicity (Altenburger 

et al., 2003). All neonicotinoid compounds act on the same general neuronal receptor, with the 

same general mechanisms of action; therefore, CA was hypothesized to be the model of best fit 

for binary and ternary mixtures of IMI, CLO, and TMX. However, in the present study, IMI-

TMX, and IMI-CLO-TMX mixtures displayed a cumulative toxicity that was better described by 

the IA reference model. In addition, most neonicotinoid mixtures tested displayed cumulative 

toxicities that deviated from direct additivity. This deviation from both CA and direct additivity 

was unexpected. Traditionally, the IA model is assumed to best describe the cumulative toxicity 

of mixtures of compounds that are strictly dissimilar in their sites and mechanisms of action 

(Altenburger et al., 2003). In the IA model, cumulative toxicity is determined by summing 

toxicological responses of test organisms for each mixture constituent. Therefore, mixture effects 

must be predicted based on toxicological data rather than chemical concentration alone. In the 

present study, binary and ternary mixtures demonstrated similar deviation patterns when fit with 

both CA and IA reference models (Tables A2.4-A2.7). However, CA reference models could 

under-predict the magnitude of deviation from direct additivity. With IMI-CLO mixtures, for 
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example, the CA model predicted dose-ratio dependent deviation (a = 1.21, bDR = -1.57), 

whereas the IA model predicted synergism (a = - 6.39; Table A2.4). Similarly, for IMI-CLO-

TMX mixtures, the CA model predicted an antagonistic effect (a = 9.26), whereas the IA model 

predicted a synergistic effect (a = - 49.58) (Table A2.7). 

2.4.5 Applications in field settings and risk assessment  

 As MIXTOX is a descriptive, statistically based data analysis procedure, it cannot be 

used to directly identify the combination of mechanisms that lead to the cumulative toxicological 

effects observed in neonicotinoid mixtures (Jonker et al., 2005). Indeed, this analysis is typically 

carried out with an a priori assumption of mechanism of action of mixture constituents (i.e. the 

reference model is selected prior to analysis). However, in the present study, we found that 

cumulative toxicity of most neonicotinoid mixtures investigated deviated from the predicted 

reference model (based on what is currently assumed about neonicotinoid mode of action). In the 

literature, there is no consensus on how similar the molecular sites or modes of action of mixture 

constituents must be to adequately employ either reference model (Altenburger et al., 2003). 

Consequently, it is difficult to determine what model of mixture toxicity is best to apply in a risk 

assessment for acute exposures of neonicotinoid insecticide mixtures to aquatic insect species 

such as C. dilutus. We propose the application of a prediction window, incorporating both 

reference models into a probabilistic prediction of cumulative effects (Altenburger et al., 2003). 

For risk assessment practices, this information should be further incorporated into a broad dataset 

of neonicotinoid mixture studies, including a range of neonicotinoid compounds, sensitive 

aquatic organisms, and exposure scenarios. This will aid in the further development of 

probabilistic mixture models, allowing for more accurate predictions of the ecotoxicological 

effects of neonicotinoid mixtures on aquatic insect communities.  
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 Both the prevalence of the neonicotinoid mixtures in aquatic environments (Main et al., 

2014) and the antagonistic, synergistic, and additive behaviour of some neonicotinoid mixtures 

observed in the present study indicate that neonicotinoids should not be regulated as single 

compounds. The use of neonicotinoid toxic equivalency factors (Cavallaro et al., 2017) 

represents a reasonable approach for assessing cumulative toxicity; however this may still 

underestimate risk. Furthermore, although exposure to acutely toxic concentrations of 

neonicotinoid mixtures could occur, non-target aquatic organisms are more likely to be 

chronically exposed to low concentrations of neonicotinoids in mixtures (Main, 2016; Morrissey 

et al., 2015). Therefore, caution should be taken when extrapolating the mixture responses 

observed in the present study to chronic exposure scenarios. However, until the effects of 

neonicotinoid mixtures on aquatic insects and arthropod communities under longer term, chronic 

exposure scenarios are further investigated, the cumulative synergism observed in the present 

study under acute exposure scenarios should be considered when setting water quality 

guidelines.   
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CHAPTER 3: CAN CHRONIC EXPOSURE TO IMIDACLOPRID, 

CLOTHIANIDIN, AND THIAMETHOXAM MIXTURES EXERT 

GREATER THAN ADDITIVE TOXICITY IN CHIRONOMUS DILUTUS? 
 

 Preface 

Building on acute studies (Chapter 2), this chapter focuses on characterizing the chronic 

cumulative toxicities of binary and ternary mixtures of three neonicotinoid insecticides 

(imidacloprid, clothianidin, and thiamethoxam) using Chironomus dilutus as a representative 

aquatic insect species. Chronic cumulative toxicities were evaluated through a series of 28-d 

toxicity tests (endpoint: successful emergence) with single compounds, binary mixtures, and 

ternary mixtures. Using the MIXTOX approach, predictive parametric models were fitted using 

single-compound toxicity data and statistically compared to observed toxicity in mixture tests. 

Furthermore, sex ratios of emerged insects were compared between neonicotinoid-exposed (single 

compound and mixture) and unexposed (controls) organisms to evaluate if exposure to 

neonicotinoids or their mixtures could cause sex ratio shifts within C. dilutus populations. Results 

from this chapter demonstrate that under chronic exposure scenarios neonicotinoid mixture 

toxicity can deviate from direct-additivity (concentration addition), eliciting both synergism and 

antagonism in C. dilutus (depending on mixture composition). However, as observed under acute 

exposure scenarios, in all neonicotinoid mixtures, synergistic and antagonistic potential was 

relatively limited in magnitude (< 13 % deviation from direct additivity). This research indicates 

that although cumulative toxicities of neonicotinoid mixtures should be accounted for in current 

environmental regulations, use of a concentration addition-based approach (accounting for 

synergistic potential using ~ 10% safety factor) should adequately account for mixture effects. 

Furthermore, this research highlights the need to investigate the molecular actions of 

neonicotinoids in non-target insects like C. dilutus, to better understand the mechanisms behind 
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neonicotinoid mixture toxicity and thus improve our ability to assess the risks that these 

compounds and their mixtures pose to aquatic environments.  

 This chapter was published in Ecotoxicology and Environmental Safety, under joint 

authorship with Christy A. Morrissey (University of Saskatchewan), John V. Headley (National 

Hydrology Research Centre, Environment and Climate Change Canada), Kerry M. Peru (National 

Hydrology Research Centre, Environment and Climate Change Canada), and Karsten Liber 

(University of Saskatchewan). Following publication, a calculation error was found in the mixture 

toxicity models. This was corrected, mixture toxicity estimates were recalculated and the 

chapter/manuscript was updated accordingly. The corrected work is presented here and a 

corrigendum has been published in Ecotoxicology and Environmental Safety.  

Maloney, E.M., Morrissey, C.A., Headley, J.V., Peru, K.M., and Liber, K. 2018. Can chronic 

exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive 

toxicity in Chironomus dilutus? Ecotoxicol. Environ. Safe. 156, 354-365.  

Corrigendum to "Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam 

mixtures exert greater than additive toxicity in Chironomus dilutus?" [Ecotoxicol. Environ. Safe. 

156C (2018) 354-365]. 
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3.1 Introduction 

 Environmental monitoring has provided clear evidence that aquatic organisms are often 

exposed to mixtures of pesticides rather than individual compounds. For example, recent 

environmental surveys of surface waters in North America (Hladik and Kolpin, 2015; Main et al., 

2014; Schreiner et al., 2016), the European Union (Schreiner et al., 2016), Australia (Allinson et 

al., 2015), and Asia (Zhang et al., 2011) have reported frequent detection of pesticide mixtures, 

often at cumulative concentrations likely to pose a risk to sensitive aquatic species. Given the 

numerous potential combinations of pesticides that can be found in aquatic environments, it is not 

feasible to characterize the toxicity of every potential mixture. Therefore, most ecotoxicological 

studies, regulatory risk assessments, and water quality guidelines focus on the toxicological effects 

of single compounds (Barata et al., 2006), and cumulative toxicity is typically estimated directly 

using additive predictive models based on either concentration or organism response (i.e. 

Concentration Addition (CA) or Independent Action (IA)) depending on the mechanisms of action 

of mixture constituents. However, in some scenarios this can underestimate risk, as it does not 

account for cumulative toxicities that deviate from direct additivity (e.g. synergism). This is 

particularly relevant for agricultural pesticides in surface waters as they tend to occur in mixtures 

where a few compounds dominate the overall toxicity and thus are likely to exhibit more severe 

mixture interactions (i.e. elicit synergistic cumulative toxicity) (Cedergreen, 2014). 

 Neonicotinoids are a group of insecticides that can exist as simple mixtures in aquatic 

environments. Commonly applied as seed treatments, foliar sprays and soil drenches, 

neonicotinoids have been frequently detected as mixtures across Canada and the United States, 

with cumulative neonicotinoid concentrations ranging from 0.0011 to 1.66 µg/L in wetlands (Main 

et al., 2014; Smalling et al., 2015), 0.28 to 1.05 µg/L in groundwater (Giroux and Sarrasin, 2011), 
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0.0054 to 0.38 µg/L in rivers/streams (Hladik and Kolpin, 2015), and 0.039 to 44.38 µg/L in other 

surface waters (Schaafsma et al., 2015). As neonicotinoids are highly water soluble, large 

proportions of active ingredient (up to 90%) can move directly into soil and soil water following 

application (Goulson, 2013). From there, neonicotinoid residues can be transported via leaching, 

drainage, runoff, or snowmelt into nearby aquatic systems where they can exhibit extended 

persistence (Main et al., 2014). Multi-season carryover, application of different compounds within 

the same watershed, and field rotation with different neonicotinoid treated crops has led to the 

widespread presence of neonicotinoid mixtures in surface waters near areas of intensive 

agricultural use (Hladik and Kolpin, 2015; Morrissey et al., 2015). 

 Neonicotinoids are neuroactive insecticides, eliciting toxicity in invertebrates by 

interfering with neural transmission at post-synaptic nicotinic acetylcholine receptors (nAChR). 

As all neonicotinoids target nAChRs, the cumulative toxicities of neonicotinoid mixtures are 

typically estimated through a predictive model based on direct addition of constituent 

concentrations (i.e. Concentration Addition). However, recent evidence has indicated that 

neonicotinoid mixtures can exert greater than expected cumulative toxicity (i.e. synergism) in 

exposed aquatic macro invertebrates (Loureiro et al., 2010; Maloney et al., 2017; Pavlaki et al., 

2011). Furthermore, prior studies have demonstrated that neonicotinoids display the potential to 

chronically or repeatedly contaminate aquatic systems (Hladik et al., 2018a; Main et al., 2014). 

Therefore, non-target organisms inhabiting these environments have the potential to be chronically 

exposed to sub-lethal neonicotinoid concentrations throughout their aquatic life stages. This is a 

concern as, to date, the effects of the neonicotinoid compounds most frequently detected as 

mixtures in aquatic environments (imidacloprid (IMI), clothianidin (CLO), and thiamethoxam 

(TMX)) have yet to be formally tested as mixtures under chronic (sub-lethal) exposure conditions. 
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Therefore, it is currently unknown if the synergism observed under acute exposure conditions 

holds true under more environmentally realistic conditions, and thus whether current regulatory 

practices are adequately protective of sensitive aquatic invertebrates.  

In this study, we characterized the cumulative toxicities of binary and ternary combinations 

of three commonly applied neonicotinoids (IMI, CLO, and TMX) under chronic exposure 

scenarios using a sensitive aquatic insect, Chironomus dilutus, as a representative 

macroinvertebrate test species. Using MIXTOX, a regression-based, dose-response mixture 

analysis modeling framework (Jonker et al., 2005), we evaluated deviations of neonicotinoid 

mixture toxicity from direct additivity (i.e., synergism/antagonism, dose-level dependent 

deviation, dose-ratio dependent deviation). Study objectives included: (1) assessment of the 

relative single-compound toxicities of IMI, CLO, and TMX under chronic exposure conditions, 

and (2) characterization of the cumulative chronic toxicities of binary and ternary mixtures of IMI, 

CLO, and TMX to C. dilutus. Current risk assessment and regulatory practices estimate the 

cumulative toxicity of neonicotinoid mixtures using concentration-additive predictive models. 

Therefore, we evaluated whether Concentration Addition could adequately characterize 

neonicotinoid mixture toxicity under chronic exposure scenarios, or whether, as demonstrated 

under acute exposure scenarios, some of these binary and ternary mixtures could display greater- 

or less-than-additive cumulative toxicity to C. dilutus (Maloney et al., 2017). 

3.2 Materials and methods  

3.2.1 Experimental organisms and culturing techniques  

 Chironomus dilutus larvae were obtained from a laboratory culture maintained in a 

controlled environmental chamber at the Toxicology Centre, University of Saskatchewan, 

Saskatoon, SK, Canada. Culture maintenance was based on the protocol outlined by Environment 
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Canada (Environment Canada, 1997) with cultures sustained in 20-L aquaria under a constant 

temperature (23 ± 1°C), photo-period (16 h light: 8 h dark), and illumination intensity (500 - 1000 

lux). Culture water consisted of carbon and bio-filtered Saskatoon municipal water, aerated in a 

50-L Nalgene® carboy for > 24 h prior to use. Culture tanks were fed 15 mL of Nutrafin® (Rolf 

C. Hagen Inc., Montreal, QC, Canada) fish food slurry (100 g/L) three times a week, and culture 

water was changed weekly. Routine water chemistry was completed, with the following 

parameters describing the culture water [mean ± standard deviation (SD)]: dissolved oxygen (DO) 

7.5 ± 0.6 mg/L; unionized ammonia (NH3) 0.63 ± 1.34 mg/L; pH 8.1 ± 0.2; conductivity 510 ± 20 

µS/cm; total hardness 174 ± 11 mg/L as CaCO3; and alkalinity 127 ± 16 mg/L as CaCO3.  

 Prior to experimental use, C. dilutus larvae were obtained by isolating and breeding adults 

from the laboratory culture (Stoughton et al., 2008). Briefly, emerged adults were aspirated from 

culture tanks into a 300-mL Erlenmeyer flask, then transferred into 1-L breeding jars (200 mL of 

culture water, a small Parafilm® platform, two rectangular pieces of mesh, and a screened lid). 

Following adult transfer, breeding jars were placed inside cardboard containers, to deter visual 

disturbances, until egg masses were produced (≤ 2 d). New egg masses (≤ 24 h old) were 

transferred to new 20-L aquaria containing aerated culture water and 1 cm of washed silica sand 

(250 - 425 µm). Nutrafin® slurry (5 mL @ 100 g/L) was introduced to the tanks every 2 days, 

from time of hatch (2 - 3 d post-transfer) until time of experimentation. After 6 or 7 days, early-

instar larvae were removed from aquaria and randomly selected for toxicity testing.  

3.2.2 Neonicotinoid compounds 

 Technical grade IMI (98.8% pure; N-[1-[(6-chloropyridin-3-yl)methyl]-4,5-

dihydroimidazol-2-yl]nitramide), CLO (99.6% pure; 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-2-

methyl-3-nitroguanidine), and TMX (98.8% pure; (NE)-N-[3-[(2-chloro-1,3-thiazol-5-yl)methyl]-
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5-methyl-1,3,5-oxadiazinan-4-ylidene]nitramide) were used as experimental compounds in all 

toxicity tests. IMI and CLO were acquired from Bayer Crop Science (Kansas City, MO, USA) and 

TMX from Syngenta Crop Protection LLC (Greensboro, NC, USA). Stock solutions were prepared 

by dissolving the technical product in reverse-osmosis water (Barnstead® DiamondTM NANOpure, 

18 megaohm/cm, Barnstead International, Dubuque, IA, USA) and stored in amber glass bottles 

until experimental use. To avoid degradation and contamination, fresh stock solutions were 

prepared for each toxicity test. To ensure accuracy in the preparation of test solutions, chemical 

analysis of stock solutions was performed prior to every experiment (Section 3.2.5).  

3.2.3 Toxicity tests 

 Chronic (28-d) static-renewal toxicity tests were conducted in a controlled environment 

chamber at the Toxicology Centre, University of Saskatchewan, Saskatoon SK, Canada. Ambient 

test conditions remained consistent with those used to culture test organisms. Toxicity tests were 

performed in 300-mL glass beakers containing 50 g of washed, dried silica sand (250 - 425 µm) 

and 200-mL of test solution. Test solutions were prepared by spiking 1 - 2 L of culture water with 

concentrated stock solutions to achieve desired test concentrations. Test beakers were gently 

aerated to maintain adequate concentrations of DO (> 6 mg/L) and covered with borosilicate glass 

plates to prevent photo-degradation of test compounds.  

 Ten early-instar C. dilutus larvae (approximately 6 - 7 d old) were placed in each beaker 

and exposed to test solutions for 28 days. Nutrafin® slurry (60 µL/beaker @ 10 g/L) was introduced 

to each beaker daily to feed the test organisms. The water in all beakers was renewed every 2 - 3 

days with freshly prepared test solutions (70 % renewal/beaker) to avoid compound degradation 

and minimize total ammonia concentrations. Emerged adult C. dilutus and moribund pupae were 

removed and counted daily. Emergence was deemed successful if the adult completely dissociated 
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from its pupal exuvia and exited the water (Benoit et al., 1997). Surviving adults were evaluated 

for sex. Male Chironomidae were identified and separated from females via their more slender 

abdomen, genital appendages, and plumose antennae (Merritt et al., 2008). Pupae were considered 

moribund if they exhibited paralytic symptoms and failed to respond to manual stimulation. 

Following the exposure period, all replicates were removed, and the surviving organisms were 

counted, sexed and assessed for metamorphic stage. Successful emergence was used as the primary 

toxicological endpoint of interest for both single compound and mixture studies (i.e. MIXTOX 

analysis). However, sex ratios of successfully emerged adults were also evaluated to determine if 

neonicotinoid mixtures could alter ecologically relevant endpoints related to reproduction or 

population dynamics (Cavallaro et al., 2017). 

3.2.3.1 Single compound studies  

 Chronic toxicity (28 d ECxx) was assessed for each neonicotinoid compound in single 

compound toxicity tests, using lack of successful emergence as a toxicological endpoint. In each 

test, C. dilutus larvae were exposed to six neonicotinoid concentrations (IMI, CLO, or TMX), 

along with an untreated control. Each treatment was replicated four times (n = 4, 10 

organisms/replicate). Nominal concentrations of IMI (0.15 - 5.00 µg/L), CLO (0.4 - 20.16 µg/L), 

and TMX (1.25 - 40.00 µg/L) were chosen based on previous chronic studies with this species 

(Cavallaro et al., 2017; Stoughton et al., 2008). 

3.2.3.2 Binary mixture studies  

 Mixture studies used a fixed-ray experimental design. Compounds were tested at five toxic 

unit (TU) dose-ratios: (1:0, 3:1, 1:1, 1:3, 0:1), and six dose-levels (ΣTU = 0.25, 0.5, 1.0, 1.5, 2.0, 

3.0), yielding 18 different binary mixture and 12 single-compound exposures (Figure A3.1A).  
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Here a TU was defined as concentration (c) divided by its toxicity threshold:  

𝑇𝑈 =
𝑐

𝐸𝐶50
  (Eqn. 3.1) 

In this case, the toxicity threshold chosen was the median effective concentration for lack of 

successful emergence (28 d EC50) for each chemical.  

 Nominal concentrations of exposure were as follows; IMI 0.03 - 1.49 µg/L, CLO 0.05 - 

2.12 µg/L, and TMX 0.56 - 26.73 µg/L. The fixed ray design necessitates reduced replication to 

allow for an increased number of exposure concentrations, therefore each treatment was replicated 

three times (n = 3, 10 organisms per replicate). As the mixture toxicity analysis is regression-based, 

statistical strength was maintained via adequate coverage of the toxicological response surface 

(Jonker et al., 2005). 

3.2.3.3 Ternary mixture study 

 For the ternary mixture study, the fixed-ray experimental design utilized ten TU dose-ratios 

(1:0:0, 0:1:0, 0:0:1, 1:1:1, 2:1:1, 1:2:1, 1:1:2, 1:2:2, 2:1:2, and 2:2:1) and six dose-levels (ΣTU = 

0.25, 0.5, 1.0, 1.5, 2.0, 3.0), yielding 42 different ternary mixtures and 18-single compound 

exposures (Figure A3.1B). Nominal concentrations of exposure were as follows: IMI 0.02 - 1.49 

µg/L, CLO 0.04 - 2.13 µg/L, and TMX 0.45 - 26.73 µg/L. Each treatment was replicated three 

times (n = 3, 10 organisms per replicate).  

3.2.4 Water quality 

 Water quality was assessed at the beginning (d 0), middle (d 14), and end (d 28) of each 

test. 20 mL water samples were removed from test beakers and analyzed for pH, conductivity, 

total hardness, and alkalinity. Water pH was measured with an ORION® PerpHect LogR meter, 

model 170 (ORION Research, Beverly, MA, USA). Hardness and alkalinity were measured using 
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a Hach Digital Titrator, model 16900 (Hach Company, Loveland, CO, USA). DO, temperature, 

and ammonia (NH3) were measured in old and new water during every solution removal to ensure 

adequate experimental conditions were maintained. DO and temperature were measured with a 

Thermo ORION® dissolved oxygen meter, model 835 (Thermo ORION, Beverly, MA, USA), and 

ammonia was measured with VWRTM SB301 sympHony ISE ammonia meter (VWR International 

Ltd., West Chester, PA, USA) paired with a Thermo ORION® 95-12 ammonia electrode (Thermo 

ORION, Beverly, MA, USA).  

3.2.5 Neonicotinoid analysis 

 Over the course of all toxicity tests, test solutions were sampled and analyzed to measure 

actual concentrations of neonicotinoid exposure. In the single-compound studies, test solutions 

were routinely sampled over the course of the study (d 0, 3, 6, 12, 15, 22, 28). In the mixture 

studies, test solutions were sampled at the start (d 0), middle (d 14), and end (d 28) of each exposure 

period. For each treatment, 80 mL of test solution was collected from each replicate beaker, pooled, 

and stored in a 250-mL amber glass bottle at 4°C until time of analysis. If measured concentrations 

fell outside of the expected range (e.g. ≥ 50% difference between measured and nominal) or 

analysis indicated unexpected neonicotinoid detection, those test beakers were excluded from 

further mixture analysis. Samples were analyzed at the National Hydrology Research Centre, 

Environment and Climate Change Canada, Saskatoon, SK. A comprehensive description of 

analytical methods is available in Main et al. (2014). Briefly, neonicotinoid concentrations were 

quantified via solid-phase extraction (SPE) followed by high performance liquid chromatography 

paired with tandem mass spectrometry (LC-MS/MS). The SPE was performed by loading samples 

onto OASIS® HLB cartridges (Waters, Mississauga, ON, Canada), removing salts with a deionized 

water rinse, and eluting retained components with methanol. Eluted extracts were then dried via 
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evaporation, reconstituted in deionized water, and spiked with internal standards (d4-IMI, and d3-

TMX) obtained from CDN Isotopes, Pointe-Claire, QC, Canada. The LC-MS/MS was comprised 

of a Waters 2695 Alliance HPLC system (Waters Corp., Milford, MA, USA), equipped with a 

Waters Xterra MS-C8 column (3.5-µm diameter, particle size; 2.1 x 100-mm) (Waters Corp., 

Milford, MA, USA), paired with a Micromass Quattro Premier triple quadrupole mass 

spectrometer (Waters Corp., Milford, MA, USA) equipped with an electrospray ionization 

interface (positive ion mode). The mobile phase was an 80/20 mix of solvent A (99.9% water, 

0.1% formic acid) and solvent B (90% acetonitrile, 9.9% water, 0.1% formic acid). The sample 

injection volume was 20 µL, the mobile phase flow rate was 200 µL/min, and the average run-

time was 10 min. Analytical standards (IMI, CLO, TMX) purchased from Chem Service, West 

Chester, PA, USA, were used to create calibration curves and determine recoveries. Limits of 

quantification (LOQ) were as follows: IMI 0.003 - 0.008 µg/L, CLO 0.003 - 0.013 µg/L, and TMX 

0.007 - 0.027 µg/L. Recoveries were determined using Milli-Q water spiked with neonicotinoid 

concentrations of 0.125 µg/L: IMI 85.2 - 104.0 %, CLO 76.1 - 98.8%, and TMX 77.8 - 101.1 %. 

Measured neonicotinoid concentrations were recovery corrected and averaged across sampling 

days. Mean measured (not nominal) concentrations were subsequently used in all statistical 

analysis and MIXTOX modeling.  

3.2.6 Data analysis  

 Single compound toxicity was evaluated by fitting emergence data to a logistic dose-

response curve (Equation 3.2) using SigmaPlot statistical software, ver. 11.0 (Systat Software Inc., 

San Jose, CA, USA). Here the toxicological response (Yi) is a function of maximum response 

(Ymax), concentration of exposure (ci), the 28-d EC50 estimate, and the slope of the response curve 

(Bi): 
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𝑌𝑖 =  
𝑌𝑚𝑎𝑥

1+(
𝐶𝑖

𝐸𝐶50
)𝐵𝑖

  (Eqn. 3.2) 

EC50 values were estimated using the trimmed Spearman-Kärber method (Hamilton et al., 1977) 

and compared to those derived through fitting the dose-response curve (Equation 3.2), and those 

derived for single compounds using MIXTOX modeling (Jonker et al., 2005) to assess the 

reliability of parameter estimates. Other effective concentration estimates (EC20, EC90) were 

obtained through linear interpolation using the US EPA ICp program (Norberg-King, 1993). 

Effects of neonicotinoid exposures on sex of emerged adults were evaluated by averaging 

proportions of emerged males and females across treatment replicates. Emergence data were 

assessed for normality and equality of variance using Shapiro-Wilk and Brown-Forsythe tests (α 

= 0.05), and then differences amongst treatment groups (vs. controls) were assessed using one-

way analysis of variance (ANOVA) paired with a Dunnett post-hoc analyses (95% level of 

confidence, α = 0.05). Sex differences of successfully emerged adults were assessed by comparing 

the mean proportion of emerged males in treatment groups to experimental controls using z-tests 

(95% level of confidence, α = 0.05).  

Binary mixture toxicity was characterized using the MIXTOX approach (Jonker et al., 

2005). The descriptive approach was used to evaluate the cumulative toxicity of neonicotinoid 

mixtures by comparing measured data, observed in toxicity tests, with fitted parametric models of 

mixture effects, calculated from single-compound toxicity data. Using the MIXTOX approach, 

deviation of observed data from the reference model of Concentration Addition (CA; 

concentration-additive cumulative toxicity) was assessed via a step-wise addition of extra 

parameters, a and b. Models were first extended with a, describing a synergistic (greater than 

expected toxicological effect) or antagonistic (lower than expected toxicological effect) deviation 
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(S/A) from CA. Models were then further extended with bDR and bDL. The bDR parameter describes 

a dose-ratio dependent deviation from the reference model (DR), indicating a shift between 

synergism and antagonism dependent on the ratio of mixture constituents. The bDL parameter 

describes a dose-level dependent deviation from the reference model (DL), indicating a shift 

between synergism and antagonism dependent on the cumulative magnitude of toxic units. 

Interpretation of numerical values derived in the MIXTOX analysis and mixture models (CA, S/A, 

DR, and DL) can be found in the Appendix (Table A2.1).  

 Ternary mixture toxicity data were analyzed using the Ternary-Plus approach (Cedergreen 

et al., 2012), an extension of the MIXTOX model optimized for three compound mixtures. In this 

analysis, data from all three binary mixture studies were analyzed alongside the empirical ternary 

mixture data, to account for the toxicological effects of binary mixtures when predicting ternary-

mixture response. A ternary deviation parameter, a1,2,3, was introduced, describing the deviation 

of the measured ternary response surface from the response surface predicted by a combination of 

binary deviation functions. This parameter describes a synergistic or antagonistic deviation from 

CA for the ternary mixture. As the Ternary-Plus model is still in development, this equation could 

not be further extended to model dose-level and dose-ratio dependent deviations from the 

synergism/antagonism model. An interpretation of the numerical values derived in the Ternary-

Plus model can be found in the Appendix (Table A2.1).  

 Adequate coverage of the toxicological response surface was evaluated through 

scatterplots of measured concentrations tested in mixture toxicity tests. Experimental data were fit 

to parametric models using maximum likelihood estimation. First, measured data were fit to the 

reference model. Due to their similar mechanism of action at the nicotinic acetylcholine receptor, 

mixtures of neonicotinoids are typically expected to have a cumulative effect that is best described 
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by the reference model, Concentration Addition (CA). Therefore, to evaluate whether this 

assumption is protective of C. dilutus and other similarly sensitive aquatic insect species, we used 

CA as our reference model for all MIXTOX analysis. After fitting to CA, models were further 

extended with the extra parameters indicating deviation from the reference model (i.e. a, bDR, and 

bDL). As the sequential addition of parameters resulted in the formation of a series of nested 

models, fits of parametric models were directly assessed through pairwise model comparison and 

significance testing. Following extension of reference models with additional parameters, 

improved fit was confirmed by a reduction in the residual deviation (RD) and the statistical 

significance of this improvement determined via Chi-squared tests (χ2) with degrees of freedom 

equal to the difference in number of parameters in the two models. For each mixture, model of 

best fit was defined as that which most significantly reduced RD compared to CA. If a significant 

deviation from direct additivity was observed, the measured emergence response was directly 

compared to that predicted by CA to describe the magnitude of deviation (% decrease or increase 

in emergence). Further information regarding the derivation and statistical interpretation of 

parametric MIXTOX models can be found in Jonker et al. (2005). 

3.3 Results 

3.3.1 Test solutions 

Routine water quality of test solutions remained consistent across all toxicity tests with 

mean (± SD) parameters as follows: DO 7.6 (± 0.3) mg/L, temperature 23.0 (± 1.0) °C, pH 8.1 (± 

0.1), conductivity 421 (± 148) µS/cm, total hardness 119 (± 34) mg/L as CaCO3, and alkalinity 

117 (± 16) mg/L CaCO3. Due to build-up of excess food and metabolic waste in test beakers, 

ammonia concentrations increased between water renewals. However, mean concentrations 

remained well below the unionized ammonia LC50 estimate for C. dilutus (10 d LC50: 82.4 mg 
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N/L) at 1.0 (± 0.3) mg N/L (Schubauer-Berigan, M.K., Monson, P.D., Ankley, 1995). 

Neonicotinoid exposures also remained relatively consistent throughout the duration of each 

toxicity test. Neonicotinoid concentrations in control treatments were always lower than the limit 

of quantitation (< LOQ), and the mean measured concentrations of IMI, CLO, and TMX in the 

insecticide treatments remained within (mean ± SD) 112 ± 20 %, 101 ± 17 %, and 135 ± 34 % of 

target nominal doses, respectively (Tables A3.1 and A3.2).  

3.3.2 Single compound studies 

 IMI elicited the greatest toxicity in C. dilutus, with a 28 d EC50 of 0.50 µg/L. CLO 

demonstrated comparable toxicity with a 28 d EC50 of 0.71 µg/L. TMX was markedly less toxic, 

with a 28 d EC50 of 8.91 µg/L. ECxx estimates and confidence intervals are reported in Table 3.1.  

Toxicity estimates generated using the log-logistic model (Equation 3.2) generated similar median 

effect levels; 0.43 µg/L (IMI), 1.34 µg/L (CLO), and 8.58 µg/L (TMX) (Table A3.3). Furthermore, 

there were trends of sex-ratio shifts toward male dominated populations in IMI and CLO 

treatments (Figure 3A, B). However, the effects of single-compound exposures on sex-ratios were 

not statistically significant (p > 0.05) due to limited sample sizes at higher concentrations.  

3.3.3 Mixture studies   

 To evaluate the reproducibility and accuracy of the laboratory tests, 28 d EC50 values for 

IMI, CLO, and TMX were compared with the single compound test data and presented in Table 

A3.3. Single compound toxicity remained relatively consistent across all three mixture tests, with 

28 d EC50 values calculated from the positive controls generally falling within the 95% confidence 

intervals of single compound EC50 estimates. In some cases, EC50 estimates were slightly higher 

than expected. For example, in the IMI-TMX mixture test, the EC50 of IMI was slightly higher 

than that generated in the single compound toxicity test (IMI EC50 = 0.81 µg/L vs. 0.50 (0.37 – 
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0.59) µg/L) and in the IMI-CLO-TMX test the EC50 of IMI was slightly higher than expected (IMI 

EC50 = 0.66 µg/L vs. 0.50 (0.37 – 0.59) µg/L). Furthermore, in the CLO-TMX test, the toxicity of 

TMX fell far outside of the expected range (e.g. cessation of emergence was not achieved at the 

highest TMX concentration tested (32.5 µg/L vs. 8.91 (5.79 – 12.37) µg/L). Thus, toxicity values 

generated in the single compound test were used in the CLO-TMX mixture analysis. However, for 

the rest of the tests, toxicity estimates remained within relatively narrow ranges (e.g. IMI = 3.3-

fold; CLO = 2.8-fold; and TMX = 1.4-fold). Thus, single compound and positive control toxicity 

estimates were considered to be accurate, and appropriate for use in further mixture analyses.  

3.3.3.2 Imidacloprid-clothianidin 

 Measured IMI and CLO concentrations in the binary mixture test show that the 

toxicological response surface was adequately covered, indicating that reported results are likely 

to accurately reflect the cumulative effects of the IMI-CLO mixtures (Figure 3.2A).  

 The residual deviation (RD) for the CA reference model was 177.9. Extension of the model 

with the synergism/antagonism (S/A) parameter (a) significantly improved model fit (RD = 164.6, 

χ2 = 13.3, p < 0.05; a = 0.54). Extension of CA-S/A with the dose-level (DL) parameter failed to 

improve model fit (RD = 164.4, χ2 = 0.21; p = 0.64). However, extension of CA-S/A with the dose-

ratio (DR) parameter did significantly improve model fit (RD = 139.3, χ2 = 25.26, p < 0.05), with 

a = -9.97 indicating greater-than-additive toxicity at higher concentrations of CLO (i.e. decrease 

in emergence compared to CA: mean = 13 %; max = 49 %) and bDR = 17.82 indicating less-than-

additive toxicity at higher concentrations of IMI (i.e. increase in emergence: mean = 5 %; max = 

25 %) (Figure 3.2B). This model (CA-DR) explained 68.9% of the variability (R2 = 0.689) (Figure 

3.2C). Additional information on the MIXTOX analysis of the IMI-CLO mixtures can be found in 

the Appendix (Table A3.4).  
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Table 3.1 Chronic toxicity endpoints (EC20, EC50, EC90; µg/L) and 95% confidence 

intervals for successful emergence of Chironomus dilutus exposed to technical grade IMI, CLO, 

and TMX over 28 days, compared to current water quality guidelines in Canada, the US, and the 

EU. 

 

ECxx 

 

 

Imidacloprid 

 

Clothianidin 

 

Thiamethoxam 

 

20a 

 

0.14 

(0.08 – 0.42) 

 

0.34 

(0.19 – 0.45) 

 

4.62 

(0.85 – 6.70) 

 

50b 

 

0.50 

 

0.71 

 

8.91 

 (0.37 – 0.59) (0.50 – 0.85) (5.79 – 12.37) 

 

90c 

 

1.02 

(0.80 – 1.09) 

 

1.37 

(1.22 – 2.08) 

 

17.38 

(15.93 – 18.16) 

Current Water 

Quality Guidelines 

(µg/L) 

 

0.0083 – 0.23 d-g 

 

1.10 d 

 

35.0 d 

a Concentrations estimated to produce a 20% effect, calculated using the USEPA Inhibition Concentration program 

(ICp) (USEPA, 1993). 
b Median effective concentration, calculated using the trimmed Spearman-Kärber method (Hamilton et al., 1977). 

c Concentrations estimated to produce a 90% effect, calculated using the USEPA ICp method (USEPA, 1993).  
d USEPA Aquatic Life Benchmarks (USEPA, 2017). 

e Environment and Climate Change Canada Water Quality Guidelines (Canadian Council of Ministers of the 

Environment, 2007). 
f European Food Safety Authority Water Quality Guidelines (European Food Safety Authority, 2006). 

g Dutch National Institute for Public Health and the Environment Water Quality Guideline (Smit et al., 2015). 
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Figure 3.1 Emergence and sex (%) of adult Chironomus dilutus after exposure to (A) IMI, 

(B) CLO, and (C) TMX (C) for 28 days relative to controls (n = 4 treatments, 10 

organisms/treatment). 
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 IMI-CLO mixtures did not have any statistically significant effects on sex of emerged C. 

dilutus (p > 0.05). However, there were trends of sex ratio shift towards male dominant populations 

across all dose-ratios and at all concentration-levels (Figure 3.2D). 

3.3.3.3 Clothianidin-thiamethoxam 

 Measured concentrations show that the coverage of the toxicological response surface in 

the CLO-TMX mixture study was slightly skewed at higher concentrations of TMX, with the 

highest dose-levels exceeding 3 TU (Figure 3.3A). However, as the cessation of C. dilutus 

emergence occurred at cumulative concentrations less than 3 TU, these higher concentration 

ranges are not essential for the characterization of cumulative toxicological effects. Therefore, the 

model presented here should accurately reflect the cumulative effects of the CLO-TMX mixtures. 

The RD of the CA reference model was 140.06. Extension of the CA model with the S/A, 

parameter significantly improved model fit (CA-S/A RD = 93.9, χ2 = 46.2, p < 0.01; a = 0.84). 

Further extension of the CA-S/A model with the DL parameter slightly decreased RD (CA-DR 

RD = 92.8, χ2 =1.05, p = 0.30). However, extension of the CA-S/A model with the DR parameter 

more significantly decreased RD (CA-DR RD = 91.6) compared to CA (χ2 = 47.2, p < 0.01). 

Therefore, the model of best fit was defined as CA-DR (Figure 3.3B), with a = 2.15 indicating 

negligible less-than-additive toxicity at higher concentrations of CLO (i.e. % increase in overall 

emergence: mean = 0 %; max = 8 %) and bDR = -2.15 indicating greater-than-additive toxicity at 

high concentrations of TMX (i.e. % decrease in overall emergence: mean = 2 %; max = 13 %). 

This model was found to explain 84.0 % of the variability in the measured data (Figure 3.3C). A 

summary of the MIXTOX analysis output for the CLO-TMX mixtures can be found in the 

Appendix (Table A3.5).  
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  Exposure to CLO-TMX mixtures did not have any statistically significant effects on the 

sex of emerged C. dilutus (p > 0.05). However, there were trends of sex ratio shift towards male 

dominant populations occurring across most dose-ratios with as cumulative concentration 

increased (Figure 3.3D). 

3.3.3.4 Imidacloprid-thiamethoxam 

 Measured concentrations of IMI and TMX in the mixture study indicated that the 

toxicological response surface was slightly skewed at higher dose-levels, with the highest 

measured dose levels in this study exceeding 3 ΣTU (Figure 3.4A). However, cessation of 

emergence (i.e. EC100) occurred at concentrations lower than 3 ΣTU. Therefore, the measured data 

at these higher dose-levels (i.e. ΣTU between 3.0 and 4.5) were unnecessary for an accurate 

characterization of joint toxicity, and the model presented here should accurately reflect the 

cumulative effects of the IMI-TMX mixtures.  

The RD of the CA reference model was 175.5. Extension of the model with the S/A 

parameter (a) failed to improved model fit (RD = 172.6; χ2 = 2.94, p = 0.09). Similarly, extension 

of the model with the DL parameter (bDL) failed to improve model fit (RD = 172.6; χ2 = 0.002; p 

= 0.96). However, extension of the model with the DR parameter did significantly improve the 

goodness of fit (CA-DR RSS = 168.7, χ2 = 3.86, p < 0.05), with parameters of a = -0.95, and bDR 

= 3.10 indicating greater-than-additive toxicity in mixtures with higher concentrations of TMX 

(i.e. decrease in emergence: mean = 4 %; max = 24 %), and less-than-additive toxicity in mixtures 

with higher concentrations of IMI (i.e. increase in emergence: mean = 2 %; max = 27 %) (Figure 

3.4B). This model (CA-DR) explained 67.1% of variability (Figure 3.4C). A summary of the 

MIXTOX output for this mixture can be found in the Appendix (Table A3.6). 
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Exposure to the IMI-TMX mixtures did not have any significant effects on the sex of 

emerged C. dilutus (p > 0.05) and did not elicit visible trends of a sex ratio shift (Figure 3.4D). 

3.3.3.5 Imidacloprid-clothianidin-thiamethoxam 

 Measured concentrations of IMI, CLO, and TMX in the ternary mixture study showed that 

toxicological response surface was adequately covered (Figure 3.5A), indicating that reported 

results accurately reflect the cumulative effects of IMI-CLO-TMX mixtures.  

 The RD of the CA reference model was 618.0. Extension of the CA model with the S/A 

significantly improved fit (CA-S/A RSS = 588.1, χ2 = 29.9, p < 0.05), with aIMI,CLO,TMX = 0.20 

indicating less-than-additive toxicity (i.e. increase in emergence: mean = 2 %; max = 28 %) in the 

ternary mixture, and aIMI,CLO = -1.24, aCLO,TMX = 0.18, and aIMI,TMX = 0.54 indicating that the binary 

mixtures had both synergistic (IMI-CLO, CLO-TMX) and antagonistic (IMI-TMX) contributions 

to cumulative ternary mixture toxicity. Therefore, the IMI-CLO-TMX mixture displayed slight 

antagonistic deviation from the CA model (Figure 3.5B). This model was found to explain 65.5% 

of the variability, with weaker correlation (compared to most binary mixtures) between modeled 

and measured data (Figure 3.5C). A summary of the MIXTOX output for this mixture can be found 

in the Appendix (Table A3.7).  

Exposure to IMI-CLO-TMX mixtures did not have any statistically significant effects on 

sex of emerged C. dilutus (p > 0.05). However, there were trends of sex ratio shift across most 

tested dose-ratios and dose-levels (Figure 3.2D). 
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Figure 3.2 Chronic (28-d) exposure to IMI-CLO mixtures demonstrating (A) actual 

concentrations of exposure, (B) emergence (mean, %) of adult Chironomus dilutus relative to 

control, (C) relationship between measured emergence data and modeled values for the most 

statistically significant parsimonious deviation from reference model (dose-ratio dependent 

deviation), and (D) sex of emerged adults (mean ± SD; %) relative to controls.  

*A diagonal line (1:1) indicates idyllic model description (C). TU = Toxic Unit. 
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Figure 3.3 Chronic (28-d) exposure to CLO-TMX mixtures demonstrating (A) actual 

concentrations of exposure, (B) emergence (mean, %) of adult Chironomus dilutus relative to 

controls, (C) relationship between measured survival data and modeled values for the most 

statistically significant parsimonious deviation from reference model (no deviation, 

Concentration Addition), and (D) sex of emerged adults relative to controls (mean ± SD; %). 

*A diagonal line (1:1) indicates idyllic model description (C). TU = Toxic Unit.  
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Figure 3.4 Chronic (28-d) exposure to IMI-TMX mixtures demonstrating (A) actual 

concentrations of exposure, (B) emergence (mean, %) of adult Chironomus dilutus relative to 

controls, (C) relationship between measured survival data and modeled values for the most 

statistically significant parsimonious deviation from reference model (dose-ratio synergism), and 

(D) sex of emerged adults (%) relative to controls (mean ± SD; %).  

*A diagonal line (1:1) indicates idyllic model description (C). TU = Toxic Unit.  
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Figure 3.5 Chronic (28-d) exposure to IMI-CLO-TM mixtures demonstrating (A) actual 

concentrations of exposure, (B) relationship between measured survival data and modeled values 

for the most statistically significant parsimonious deviation from reference model (no deviation, 

Concentration Addition), and (C) sex (mean ± SD; %) of emerged adults relative to controls.  

* A diagonal line (1:1) indicates idyllic model description (B). TU = Toxic Unit.  
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3.4 Discussion 

3.4.1 Chronic toxicity of single compounds  

In aquatic environments, chronic exposure to IMI, CLO, or TMX at concentrations 

exceeding the toxicity estimates reported here will likely elicit sub-lethal toxicological effects in 

C. dilutus and other sensitive aquatic insect taxa (e.g. Ephemeroptera, Trichoptera, and other 

Chironomidae species (Morrissey et al., 2015)). In this study, IMI elicited the greatest toxicity in 

C. dilutus (e.g. 28 d EC50 = 0.50 µg/L), followed closely by CLO (28 d EC50 = 0.71 µg/L). TMX 

was by far the least toxic neonicotinoid tested, inhibiting emergence only at concentrations 13 - 18 

times higher than IMI or CLO (28 d EC50 = 8.91 µg/L). The chronic toxicity estimate for IMI is 

comparable to what has been previously reported for C. dilutus in the literature (e.g. a 28-d EC50 

for IMI in formulation of 0.91 µg/L (Stoughton et al., 2008)). The relative toxicities of IMI, CLO, 

and TMX also corroborate what has previously been reported for C. dilutus under shorter and 

longer exposure durations. Under acute exposure conditions (96 h), C. dilutus demonstrated the 

greatest sensitivity to IMI (96 h LC50 = 4.63 µg/L), followed closely by CLO (96 h LC50 = 5.93 

µg/L), and then TMX (96 h LC50 = 55.34 µg/L) which was 10 times less toxic (Maloney et al., 

2017). Under longer chronic exposure conditions (40 d), IMI and CLO displayed similar toxicities 

(IMI 40 d EC50 = 0.39 µg/L; CLO 40 d EC50 = 0.28 µg/L), whereas TMX was 15 times less toxic 

(40 d EC50 = 4.13 µg/L) (Cavallaro et al., 2017). Furthermore, the trend towards greater toxicity 

(lower EC50 values) with increased exposure duration with IMI, CLO, and TMX is consistent for 

a range of other test species, and for other neonicotinoid compounds (Sánchez-Bayo et al., 2016). 

3.4.2 Chronic toxicity of imidacloprid, clothianidin, and thiamethoxam mixtures 

Importantly, this study focused on characterizing the cumulative toxicity of neonicotinoid 

insecticide mixtures to determine if single compound toxicity values could adequately predict 
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neonicotinoid mixture toxicity for C. dilutus under chronic exposure scenarios. We found that 

the toxicities of IMI, CLO, and TMX mixtures could deviate from direct additivity; however 

cumulative effects varied depending on mixture composition. For the IMI-CLO-TMX mixtures 

there was only a slightly antagonistic deviation from the CA mixture model (displaying a 2 % 

increase in emergence). However, all binary neonicotinoid mixtures displayed cumulative 

toxicities that deviated from direct additivity, depending on the ratio of mixture constituents 

(dose-ratio dependent deviation). Indeed, IMI-CLO, CLO-TMX, and IMI-TMX mixtures all 

displayed the potential for greater-than-additivity (displaying 2 - 13 % average decreases in 

successful emergence compared to that predicted by CA) and less-than-additive toxicity 

(displaying 2 - 5 % increases in successful emergence compared to that predicted by CA), 

depending on mixture composition. Therefore, although CA could likely be used to adequately 

predict mixture toxicity of some mixture compositions, this assumption of direct additivity could 

underestimate cumulative toxicities of other mixture compositions in aquatic environments 

(resulting in up to a 13 % greater-than-predicted decrease in successful emergence of C. dilutus).    

 Under acute exposure scenarios, the cumulative toxicities of most binary and ternary 

mixtures of IMI, CLO, and TMX were found to significantly deviate from directly additive toxicity 

(Maloney et al., 2017). Here, we found similar patterns of cumulative toxicity for some (but not 

all) neonicotinoid mixtures under chronic exposure scenarios. For example, as in acute studies 

IMI-CLO and IMI-TMX mixtures displayed dose-ratio dependent deviation. However, contrary 

to acute studies (where IMI was the primary driver of dose-ratio dependent synergism), IMI-CLO 

and IMI-TMX mixtures displayed synergism only at high concentrations of CLO and TMX, 

respectively. Furthermore, whereas in acute studies the CLO-TMX mixture was found to be 

concentration-additive, chronic exposures to CLO-TMX resulted in dose-ratio dependent 



  

100 

 

cumulative toxicity. Finally, under acute settings the IMI-CLO-TMX mixture was found to be 

mildly synergistic, but under chronic exposure settings this ternary mixture was slightly 

antagonistic. In addition, the magnitude of synergism tended to differ depending on exposure time. 

For example, in IMI-CLO and CLO-TMX mixtures the magnitude of synergism increased between 

acute and chronic exposure settings (e.g. from 1 % to 13 % (IMI-CLO) and from negligible to 2 

% (CLO-TMX)) (Maloney et al., 2017). However, the exact opposite was observed in IMI-TMX 

and IMI-CLO-TMX mixtures, in which the magnitude of synergism decreased between acute and 

chronic exposure settings (e.g. from 13 % to 5 % (IMI-TMX) and from 2 % synergism to 

antagonism (IMI-CLO-TMX)) (Maloney et al., 2017). For most mixtures (with the exception of 

IMI-CLO), these differences in synergistic potential were relatively limited, displaying less than a 

10 % difference in magnitude between acute and chronic exposure settings. Therefore, it is likely 

that for IMI, CLO, and TMX, the chronic toxicities of binary and ternary mixtures can be 

adequately predicted using data from acute exposure scenarios, as long as the potential for time-

weighted enhancement of cumulative toxicity is adequately accounted for.  

3.4.3 Consideration of a predictive window for neonicotinoid mixture toxicity  

 During a risk assessment of chemical mixtures in aquatic environments, CA is typically 

used as a predictive model when the mixture constituents are mechanistically similar (i.e. have 

similar sites and modes of action). In contrast, the predictive model Independent Action (IA), 

assuming response-additive cumulative toxicity, is typically applied when mixture constituents are 

strictly dissimilar in target sites and mechanism of action (Altenburger et al., 2003). However, in 

the literature there is no consensus on how similar the target sites or modes of action of mixture 

constituents must be to properly employ either reference model in an environmental risk 

assessment (Altenburger et al., 2003). Therefore, when the mechanism of action has not been fully 
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elucidated, or the molecular target has not been characterized in a species of interest, it can be of 

benefit to apply both IA and CA in mixture toxicity analysis. Here we used CA as the reference 

model of interest to evaluate if current CA-based risk assessment techniques are adequately 

protective of C. dilutus. However, we caution that alternative conclusions (i.e. synergism of CLO-

TMX or IMI-CLO-TMX mixtures) may be drawn when using IA as a reference model (Tables 

A3.2 - 5). This may be due to the fact that the molecular target of neonicotinoids has not been 

characterized in our test species (see Section 3.4.4). Therefore, to be adequately protective of 

sensitive aquatic insect species, we propose consideration of a prediction window that incorporates 

both reference models (CA and IA) when interpreting cumulative effects (Altenburger et al. 2003; 

Maloney et al. 2017), accounting for any potential greater-than-additive effects that may occur 

resulting from neonicotinoid mixture exposure.  

3.4.4 Neonicotinoid action at the nicotinic acetylcholine receptor 

 Neonicotinoid mixture toxicity can thus deviate from directly additive toxicity. However, 

the magnitude of deviation varies depending on mixture composition, exposure conditions (i.e. 

duration and intensity) and reference model applied (CA vs. IA). The reasons for this are not well 

understood. We hypothesize this may be due to the actions of the neonicotinoid compounds at the 

nicotinic acetylcholine receptor (nAChR). Neonicotinoids all act on the nAChR, therefore 

neonicotinoid mixtures should theoretically elicit concentration-additive toxicity in invertebrate 

species (i.e. mixture effects should be directly predictable from single compound toxicity values). 

We have determined that, depending on specific composition, mixtures of neonicotinoids can elicit 

greater-than-additive toxicity in C. dilutus under both acute and chronic scenarios. We have 

previously suggested that the greater-than-additive mixture effects could be a result of 

neonicotinoid interactions at the receptor level (Maloney et al., 2017). Neonicotinoid research 
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focusing on target (pest) insect species has found that the nAChR can display a range of 

functionally distinct subtypes that differ in their response to neonicotinoid exposure. Indeed, IMI, 

CLO, and TMX have been shown to differ in their abilities to bind to and activate different nAChR 

subtypes (Calas-List et al., 2012; Oliveira et al., 2011; Salgado and Saar, 2004; Thany, 2011, 

2009). Therefore, it is possible that the presence of multiple nAChR subtypes in C. dilutus could 

be influencing the observed cumulative toxicological effects of neonicotinoid mixtures, resulting 

in the greater-than-additive toxicity observed in most mixtures in our acute and chronic studies. 

The actions of these compounds on nAChR receptors could also explain the decrease in synergistic 

magnitude seen in IMI-TMX and IMI-CLO-TMX mixtures between acute and chronic exposure 

conditions. IMI, CLO, and TMX elicit dose-dependent responses in nAChRs, with higher 

neonicotinoid concentrations inducing stronger nAChR depolarization (Buckingham et al., 1997; 

Thany, 2011, 2009). Therefore, the higher concentrations of exposure in the acute study could 

have elicited stronger responses in the various nAChR subtypes, leading to more dramatic mixture 

effects than observed in the lower concentration, chronic exposure study. However, as synergism 

slightly increased between acute and chronic exposures in IMI-CLO and CLO-TMX mixtures, it 

is likely that other factors are responsible for differences in cumulative toxicity observed between 

acute and chronic exposure settings. For example, it is possible that differential effects are due to 

variation in nAChR subtype expression throughout the C. dilutus life-cycle, with different 

proportions of functional subtypes being expressed at different life-stages (i.e. larvae, pupae, 

adult). Indeed, previous studies with the rice striped stem borer (Chilo supressalis) and the pea 

aphid (Acyrthosiphon pisum) have shown that the expression levels of nAChR subunits can vary 

between developmental stage (Taillebois et al., 2014; Xu et al., 2017). However, to the best of our 

knowledge, neither the nAChR nor the actions of neonicotinoids on this receptor have yet to be 
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characterized for any sensitive aquatic insect species at any stage of development. Therefore, 

further research is required to determine whether the presence and expression of multiple nAChR 

subtypes in C. dilutus can influence their toxicological responses to neonicotinoid mixtures.  

3.4.5 Effects of neonicotinoids and their mixtures on sex ratios of emerged adults 

 Along with effects on successful emergence, this study investigated the impacts of chronic 

neonicotinoid single and mixture exposures on sex ratios of emerged C. dilutus. Chironomidae are 

sexually reproducing aquatic insects (Armitage, 1995). Therefore sex ratio can be an ecologically 

relevant toxicity endpoint, as significant sex-ratio skews (e.g. significantly different from the 

typical 1:1 male: female ratio) can reduce swarming success and egg mass fertility (Armitage, 

1995). In turn, this can influence the reproductive success and viability of Chironomidae 

populations. Therefore, it is important to determine if chronic exposures to neonicotinoids and 

their mixtures have the potential to influence sex ratios in C. dilutus, as was previously reported 

for C. dilutus exposed to single neonicotinoids over longer periods (40 d) (Cavallaro et al., 2017) 

and to other insecticides such as DDT (Rakotondravelo et al., 2006). Results from this study cannot 

not lead to the formation of definitive conclusions concerning the effects of neonicotinoid mixtures 

on sex ratios of emerged adults, as none of the sex ratio trends observed in this study were 

statistically significant. The lack of statistical significance observed here was likely due to the 

experimental design of the mixture studies. First, in this study, experimental organisms were 

exposed to neonicotinoid mixtures for only 28 days. Typically chronic (life-cycle) toxicity tests 

with C. dilutus are conducted over the course of 40 days, and are concluded when emergence is 

fully completed (Benoit et al., 1997). Therefore, the exposure period used here may have been too 

short to observe statistically significant effects on the sex of emerged adults (with mean (± SD) 

control emergence in this study ranging from 46.7 ± 23.9 % to 83.3 ± 20.8 %). Indeed, as 
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Chironomidae are known to exhibit protandry (with males typically emerging before females), it 

is likely that this experiment failed to capture the full emergence profile for each tested 

neonicotinoid and neonicotinoid mixtures. Second, the MIXTOX approach is optimized for a 

select toxicological endpoint (Jonker et al., 2005), so the concentrations of exposure were tailored 

for the primary endpoint (inhibition of successful emergence) not sex of emerged adults. 

Consequently, mortality and emergence inhibition at the higher concentrations may have masked 

the effects on sex ratios. Therefore, to better characterize the effects of neonicotinoids and their 

mixtures on the sex ratios of C. dilutus and to determine if they have potential to pose multi-

generational risks to natural Chironomidae populations, further research should focus on 

evaluating the effects of neonicotinoids and neonicotinoid mixtures under extended exposure 

scenarios (to capture full emergence profiles) and using lower neonicotinoid concentrations (to 

limit lethality in exposed organisms). 

3.4.6 Environmental risk assessment and regulatory implications  

 In Canada, the United States, and the European Union, neonicotinoid water quality 

guidelines exclusively focus on the toxicities of single compounds (Canadian Council of Ministers 

of the Environment, 2007; European Food Safety Authority, 2013a; Smit, 2014; USEPA, 2017). 

For example, Environment and Climate Change Canada (ECCC) currently uses an interim 

freshwater quality guideline of 0.23 µg active ingredient/L (IMI) (Canadian Council of Ministers 

of the Environment, 2007). The United States Environmental Protection Agency (US EPA) sets 

aquatic life benchmarks for chronic neonicotinoid exposures at 0.01 µg/L (IMI), 1.10 µg/L (CLO), 

and 35 µg/L (TMX) (USEPA, 2017). The European Food Safety Authority (EFSA) has 

recommended maximum aquatic concentrations of 0.2 µg/L (IMI) (European Food Safety 

Authority, 2006). Finally, the Dutch National Institute for Public Health and the Environment 
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(RIVM, Netherlands) has recently derived a chronic water quality guideline of 0.0083 µg/L (IMI) 

(Smit, 2014). Across all these water quality guidelines, the additive and/or greater-than-additive 

potential of neonicotinoid mixtures demonstrated here and in previous studies is currently 

unaccounted for (Gomez-Eyles et al., 2009; Loureiro et al., 2010; Maloney et al., 2017). 

 MIXTOX is a descriptive, statistically-based computational method. Although this method 

can elucidate statistically significant differences in the magnitude of cumulative effects, it cannot 

be used to determine the biological significance of observed mixture toxicity. Biologically 

significant synergism is commonly defined as more than a two-fold deviation of observed effects 

from direct additivity (CA) (i.e. the concentration predicted to yield a certain effect is more than 

two times the concentration actually observed giving the proposed effect) (Cedergreen, 2014). In 

this study, we observed statistically significant greater-than-additive toxicity in all binary 

neonicotinoid mixtures (compared to CA). However, as the magnitude of synergism was relatively 

low (only up to ~ 13%), we cannot make definitive conclusions concerning the likelihood of these 

mixtures eliciting biologically significant synergistic toxicity in sensitive aquatic insects inhabiting 

chronically contaminated aquatic environments. Indeed, further studies are required to better 

characterize the risk neonicotinoid mixtures pose to natural aquatic insect communities. 

Nonetheless, given the prevalence of mixtures observed in field water quality monitoring (Hladik 

and Kolpin, 2015; Main, 2016; Schaafsma et al., 2015; Smalling et al., 2015), the weak synergism 

observed in this study should be considered in the risk assessment and regulation of neonicotinoid 

insecticides to ensure adequate protection of sensitive, ecologically important aquatic insect 

species.  

 The degree of protection of these current water quality guidelines appears to vary, which 

may or may not be adequate for sensitive aquatic insects (e.g. Chironomidae or Ephemeroptera). 
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For example, whereas the RIVM recommendation (0.0083 µg/L) is likely to protect C. dilutus (and 

other Chironomidae with similar sensitivities), the US EPA aquatic benchmarks for CLO and 

TMX exceed the 28-d EC50 values we found in this study, and thus are unlikely to be adequately 

protective. Conversely, the interim guidelines set by ECCC and EFSA focus exclusively on IMI 

and are set toxic units (0.46 and 0.4, respectively) that have been shown here (for particular 

mixtures) to elicit significant toxicity. Thus, these guidelines are likely to only offer protection for 

certain neonicotinoid mixtures, depending on the relative concentrations and ratios of mixture 

constituents. Chironomidae are important in freshwater ecosystems; typically representing a 

significant proportion of an aquatic insect community and serving as a major food source for 

higher-tier organisms (i.e. fish and water-fowl) (Benoit et al., 1997; Environment Canada, 1997), 

so water quality guidelines should attempt to adequately protect these freshwater insects. We 

recommend that the toxicity values (i.e. 28-d EC50) and the weak synergism presented in this study 

be accounted for when setting chronic water quality benchmarks and performing risk assessments 

for this class of pesticides. Furthermore, in this study, we only considered the direct effects of 

neonicotinoid mixture exposure on C. dilutus. Due to the environmentally controlled, laboratory-

based exposure conditions, this study did not account for potential population effects or other 

external factors that could occur in natural aquatic environments (e.g. temporal flux, wetland 

drainage, nutrient enrichment, and co-occurrence of other contaminants). Therefore, it is possible 

that the neonicotinoid mixture toxicity observed here could be different in surface waters 

containing additional stressors. Although further studies using more environmentally realistic 

experimental settings are necessary to better characterize the risk of multiple neonicotinoids (and 

other external factors) in aquatic environments, we believe that accounting for the cumulative 

toxicity of neonicotinoid mixtures for sensitive aquatic insects like C. dilutus in regulatory and 
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risk assessment practices is a good first step toward protecting the integrity of aquatic ecosystems 

surrounding areas of intensive neonicotinoid use. Therefore, when assessing the toxicity of 

neonicotinoid mixtures, the toxic unit concept should be used to estimate effect, and a minimum 

10 % safety factor should be included in calculations to account for potential greater-than-additive 

toxicity.   
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CHAPTER 4: NEONICOTINOID INSECTICIDE MIXTURES: 

EVALUATION OF LABORATORY-BASED TOXICITY PREDICTIONS 

UNDER SEMI-CONTROLLED FIELD CONDITIONS 

 Preface 

This chapter focuses on evaluating the toxicities of single neonicotinoid compounds 

(imidacloprid, clothianidin, and thiamethoxam) and their binary mixtures to natural aquatic insect 

communities under semi-controlled field conditions. In previous chapters (Chapters 2 and 3), 

predictions for neonicotinoid and neonicotinoid mixture toxicity were derived using laboratory-

based, single species studies. Here those predictions were evaluated to determine if they adequately 

account for the toxicity of neonicotinoids and their mixtures to aquatic insect populations under 

more environmentally realistic exposure conditions. Using in situ experimental limnocorral 

enclosures, placed in an experimental wetland and fitted with emergence traps, natural benthic 

invertebrate communities were exposed to either single compounds or binary mixtures at 

theoretically equitoxic concentrations (1 Toxic Unit under the principle of Concentration Addition) 

for 56 days. Emerged adult insects were collected, identified, sexed and weighed, and using 

parametric analyses (χ2 tests and repeat measures and one-way ANOVAs) the impacts of 

neonicotinoids/mixtures on aquatic insect community composition, and emergence, biomass and 

sex-ratios of Chironomidae populations were evaluated. Results from this chapter demonstrate that 

laboratory-derived toxicity predictions cannot adequately predict neonicotinoid and neonicotinoid 

mixture toxicity to Chironomidae populations, with laboratory studies under-predicting single-

compound effect and over-predicting mixture effect. This research emphasizes the need for field-

validation of laboratory-derived toxicity predictions, to adequately characterize the effects of 

aquatic contaminants on benthic invertebrate populations/communities and indicates that the 
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greater-than-predicted toxicity observed in this study should be accounted for when deriving 

environmental regulations or conducting risk assessments for neonicotinoid insecticides.   

 This chapter was published in Environmental Pollution, under joint authorship with 

Karsten Liber (University of Saskatchewan), John V. Headley (National Hydrology Research 

Centre, Environment and Climate Change Canada), Kerry M. Peru (National Hydrology Research 

Centre, Environment and Climate Change Canada), and Christy A. Morrissey (University of 

Saskatchewan). 

Maloney, E.M., Liber, K, Headley, J.V., Peru, K.M., and Morrissey, C.A. 2018. Neonicotinoid 

insecticide mixtures: evaluation of laboratory-based toxicity predictions under semi-controlled 

field conditions. Environmental Pollution 243(B):1727-1739. 
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4.1 Introduction 

 Neonicotinoid insecticides are frequently detected in global surface waters (Anderson et 

al., 2015; Morrissey et al., 2015). Widespread use and relatively high application rates have led to 

the detection of neonicotinoids at concentrations commonly ranging from < 0.001 - 44.38 µg/L in 

marine (Smith et al., 2012), freshwater lentic (e.g. wetlands and ponds) (Evelsizer and Skopec, 

2016; Lamers et al., 2011; Main et al., 2014; Schaafsma et al., 2015), and freshwater lotic (e.g. 

rivers and streams) (Metcalfe et al., 2019; Struger et al., 2017) ecosystems across the world. Due 

to a combination of their physicochemical characteristics (e.g. high water solubility, limited 

degradation in light-limited environments) (Lu et al., 2015) and current agricultural application 

practices (e.g. field-rotation with different neonicotinoid-treated crops and application of different 

compounds in the same watershed), neonicotinoids are commonly detected as mixtures. For 

example, in a recent study of Canada’s Prairie Pothole Region (PPR), an ecologically important 

area containing over a million shallow wetlands, binary or ternary neonicotinoid mixtures were 

detected in 11 - 63% of wetlands sampled (n = 136 wetlands) at cumulative concentrations ranging 

from 0.004 to 1.66 µg/L (Main, 2016). Other environmental monitoring studies have reported 

similar neonicotinoid mixtures in rivers/streams (Hladik and Kolpin, 2015), other surface waters 

(e.g. ditches) (Schaafsma et al., 2015), and ground waters (Giroux and Sarrasin, 2011) across North 

America.  

 Despite the prevalence of neonicotinoid mixtures in aquatic environments, a relatively 

limited number of studies have focused on characterizing the cumulative toxicity of neonicotinoid 

mixtures to non-target organisms. As neonicotinoids all have a common mechanism of action, 

eliciting neurotoxicity by binding to and continuously activating nicotinic acetylcholine receptors 

(nAChRs), it is typically assumed that neonicotinoid mixtures will elicit directly-additive 
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cumulative toxicities. Therefore, the risk of neonicotinoid mixtures to non-target organisms is 

typically estimated using a predictive model based on the direct addition of constituent 

concentrations (i.e. Concentration Addition). Furthermore, current environmental regulations in 

Canada, the US, and Europe exclusively focus on single neonicotinoid compounds (Canadian 

Council of Ministers of the Environment, 2007; Morrissey et al., 2015; Smit, 2014; USEPA, 2017), 

and exclude potential cumulative effects of neonicotinoid mixtures. However, recent studies have 

shown that the assumption of directly-additive toxicity may not be adequately protective of non-

target organisms. For example, it has been previously reported that binary and ternary mixtures of 

imidacloprid, clothianidin, and thiamethoxam can have greater- or less-than-additive effects on the 

freshwater midge Chironomus dilutus (C. dilutus) under acute (96-h) and chronic (28-d) laboratory 

conditions (Maloney et al., 2018b, 2017). Similarly, deviation from the assumption of directly 

additive cumulative toxicity has been reported for mixtures of other neonicotinoids (e.g. 

imidacloprid-thiacloprid) in laboratory assays using water fleas (Daphnia magna) and 

roundworms (Caenorhabditis elegans) (Gomez-Eyles et al., 2009; Loureiro et al., 2010; Pavlaki 

et al., 2011). However, limited broad-scale conclusions can be drawn from these neonicotinoid 

mixture toxicity assessments. This is primarily because the cumulative toxicity of neonicotinoid 

insecticides appears to vary depending on exposure time (e.g. acute vs. chronic), endpoint of 

interest (e.g. emergence, body length, or mortality), and experimental organism (e.g. D. magna vs. 

C. dilutus). Furthermore, most studies have been laboratory-based, focusing on the impacts of 

neonicotinoid mixtures on single species under environmentally controlled conditions. None of 

the reported mixture effects have been validated under more field-realistic conditions. Therefore, 

it is currently unknown how neonicotinoid mixtures may impact the organisms (and 

populations/communities) that typically inhabit contaminated aquatic environments.  
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 Due to their distinct life-cycle traits (e.g. larvae and pupae are typically aquatic or semi-

aquatic and these stages make up a majority of their life cycle), aquatic insects are likely to be 

exposed to neonicotinoid mixtures in wetland environments receiving agricultural runoff, like the 

PPR. Furthermore, as they are often physiologically similar to target pests, freshwater insects are 

likely to be sensitive to neonicotinoid mixture toxicity. Non-biting midges (Chironomidae) have 

been shown to be particularly sensitive to neonicotinoids (Morrissey et al., 2015). This is of 

concern because Chironomidae are ecologically important in aquatic environments. As the most 

ubiquitous and abundant insect family in freshwater ecosystems (Bataille and Baldassarre, 1993), 

Chironomidae play vital roles as primary consumers and act as food sources for a range of high 

trophic-level consumers, including predatory insects, fish, water fowl and other insectivorous birds, 

and bats (Benoit et al., 1997). Despite the high likelihood of their exposure to neonicotinoid 

mixtures, their sensitivity to neonicotinoids, and their relative importance in freshwater (and 

proximal terrestrial) ecosystems, the effects of neonicotinoid mixtures on natural Chironomidae 

populations have yet to be evaluated under field-realistic exposure conditions.  

 This study aimed to characterize the effects of chronic (28- and 56-d) exposure to three 

common neonicotinoid insecticides (e.g. imidacloprid (IMI), clothianidin (CLO), and 

thiamethoxam (TMX)) and their binary mixtures (e.g. IMI-CLO, CLO-TMX, IMI-TMX) to 

natural insect communities and Chironomidae populations under semi-controlled field conditions 

using limnocorrals (in-situ shallow wetland enclosures). The effects of single compounds were 

compared to the effects of binary mixtures at concentrations estimated to elicit equivalent toxicity 

(1 toxic unit (TU) based on the principle of Concentration Addition, derived from 28-d chronic 

laboratory studies (Maloney et al., 2018b)). This design allowed for the evaluation current risk 

assessment and regulatory approaches, investigating whether the use of laboratory-derived, single 
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compound EC50 values are adequately protective of natural Chironomidae populations, or if 

neonicotinoid mixtures also display greater-than-additive cumulative toxicity under semi-

controlled field conditions.    

4.2 Materials and Methods 

4.2.1 Study site 

 Experiments were conducted in a single permanent (class V) prairie pothole wetland (Pond 

2) at the St. Denis National Wildlife Area (NWA), Saskatchewan, Canada (52°12’N/106°5’W). 

The St. Denis NWA, currently under the management of Environment and Climate Change Canada, 

is a protected area primarily used for research and conservation of waterfowl and wetland-

dependent fauna. Pond 2 was selected due to its consistent inter-annual central water depth (1.0 – 

1.3 m), water quality characteristics (e.g. intermediary pH, conductivity, and dissolved oxygen), 

high insect secondary production, and water inflow from ‘untreated’ agricultural land (i.e. 

unexposed to pesticides). Prior use of this wetland for other semi-controlled field experiments 

provided historical reference values for insect abundance, composition, peak emergence times, and 

water quality (Cavallaro et al., 2018). Despite prior limnocorral studies, neonicotinoid 

contamination was not of concern as the limnocorrals were placed in physically different locations 

in Pond 2 than used in Cavallaro et al. (2018) (e.g. at the periphery rather than the pond centre) 

and water quality testing prior  to the initiation of this study (~ 16 days of water column monitoring 

pre-dosing) indicated that there were no traces of neonicotinoid contamination within the isolated 

water columns of the experimental wetland. Sediment sampling was not carried out to avoid 

disturbance of the benthic community prior to the exposure period.  
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4.2.2 Experimental design 

 Twenty-one custom-built limnocorrals (fixed size: 1.0 x 1.0 m diameter; adjustable depth: 

< 1.5 m) purchased from Curry Industries Ltd (Winnipeg, MB, Canada) were employed in the 

experimental wetland. Limnocorral design was adapted from Cavallaro et al. (2018). Polyethylene 

sleeves were fastened to polyvinyl-encased Styrofoam floats (top), and the open bottom of the 

sleeves were sealed with a heavy steel chain buried in the sediment (~15 cm depth). Sediment seal 

was confirmed using an Aqua Scope IITM underwater viewer (Rickly Hydrological Co. Inc., 

Columbus, OH, USA). Limnocorrals were fitted with custom built aquatic insect emergence traps. 

These covered the entire open-air limnocorral surface and featured a removable acrylic collection 

chamber leading to a polypropylene jar containing ~400 mL of 70% ethanol for emerged insect 

collection. Due to variable weather patterns in the St. Denis NWA region (e.g. strong winds and 

storms), wooden stakes were secured to the corners via a nylon rope. ABS plumber’s pipe rings 

(10 cm diameter) were used to anchor the limnocorral floats, allowing them to rise and fall with 

the natural water level. Extra material in the limnocorral walls allowed for small changes in water 

volume (i.e. expansion without disruption of the sediment seal). Biological heterogeneity within 

the wetland and seasonal water-depth variation was controlled for by randomizing treatments 

across three experimental blocks (3 x 7). Limnocorrals were secured at water depths of 

approximately 0.7 m. Limnocorral volumes, calculated from measured depths (i.e. length x width 

x height), ranged between 442.3 - 793.8 L (mean: 605.4 ± 92.9 L) and were not significantly 

different amongst neonicotinoid treatments or experimental blocks (one-way analysis of variance 

(ANOVA), p > 0.05). To avoid disturbing either the limnocorral sleeves or the sediments after the 

limnocorrals were secured in the experimental wetland, all experimental work (i.e. dosing, water 

sampling, and insect sampling) was conducted from a canoe.  
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4.2.3 Neonicotinoids 

4.2.3.1 Experimental compounds 

 Technical grade neonicotinoid insecticides were used as experimental compounds in this 

study. Imidacloprid (IMI) (98.8% pure: N-(1-[(6-chloropyridin-3-yl)methyl-4,5-dihydroimidazol-

2-yl]nitramide) and clothianidin (CLO) (99.6% pure: 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-2-

methyl-3-nitroguanidine) were acquired from Bayer Crop Science (Kansas City, MO, USA). 

Thiamethoxam (TMX) (98.8% pure: (NE)-N-[3-[(2-chloro-1,3-thiazol-5-yl)methyl]-5-methyl-

1,3,5-oxadiazinan-4-ylidene]nitramide) was acquired from Syngenta Crop Protection LLC 

(Greensboro, NC, USA). Stock solutions were prepared by dissolving technical product in reverse-

osmosis water (Barnstead® DiamondTM NANOpure, 18 MΩ/cm, Barnstead International, 

Dubuque, IA, USA) and solutions were stored in amber glass bottles (4°C in the dark) until 

experimental use. 

4.2.3.2 Neonicotinoid treatments  

 Limnocorrals were treated with single neonicotinoid compounds (e.g. IMI, CLO, or TMX) 

or binary mixtures (e.g. IMI-CLO, CLO-TMX, or IMI-TMX) every 4 days for 56 days. Each 

treatment was replicated three times (n = 3). Three experimental controls (untreated) were also 

employed, yielding a total of 21 experimental limnocorrals. Neonicotinoid exposures began in 

spring, following ice-off and complete sediment thaw, and continued into early summer (May-

July). Specific exposure lengths (e.g. 28 d) and conditions (e.g. semi-continuous rather than pulse 

neonicotinoid exposure) were chosen to allow for direct comparison of prior laboratory studies 

(Maloney et al., 2018b) to this semi-controlled field study. Overall exposure length (56 d) was 

selected based on a study by Cavallaro et al. (2018) that indicated that peak emergence of 

indigenous Chironomidae in a Prairie wetland occurred within 50 days of ice-off, thus 56 days was 
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expected to capture the full life cycle. Therefore, responses of single compound and binary mixture 

treated limnocorrals were compared at 28 d of exposure (study midpoint) to emulate the exposure 

lengths of prior laboratory studies, and 56 d of exposure (study cessation) to evaluate effects on 

the full Chironomidae life cycle.  

 Neonicotinoid concentrations were selected based on toxicity thresholds (28-d EC50 values 

for successful emergence) determined for a representative aquatic insect species (Chironomus 

dilutus) in previous laboratory studies (Maloney et al., 2018b). To allow for direct comparisons of 

effect, all treatments with single compounds or binary neonicotinoid mixtures were tested at 

equivalent toxic unit (TU) dose-ratios (1:1), and dose-levels (ΣTU = 1), yielding three different 

binary mixtures and three single-compound exposures. Here a TU was defined as the concentration 

(c) of a compound (e.g. IMI, CLO, or TMX) divided by its toxicity threshold (28-d EC50): 

𝑇𝑈 =  
𝑐

𝐸𝐶50
 (Eqn. 4.1) 

 To determine if binary mixtures elicited greater-than-additive (synergistic) or less-than-

additive (antagonistic) effects, toxicological response (e.g. Chironomidae emergence) was 

compared directly between limnocorrals treated with single compounds and theoretically equitoxic 

binary mixtures. Under the principle of Concentration Addition, treatments with equivalent ΣTU 

should yield equivalent toxicological responses (i.e. 50% of control response). Therefore, mixtures 

eliciting significantly greater toxicological responses than the single compound exposures were 

deemed ‘greater-than-additive’ and mixtures eliciting significantly lower toxicological responses 

than single compound exposures were deemed ‘less-than-additive’. 

 Neonicotinoid concentrations in limnocorrals were measured prior to (pre-dose) and 1 h 

after (post-dose) dosing events (Section 4.2.3.3). Between dosing periods, treatment-specific 
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dissipation rates were estimated for each neonicotinoid compound. Dissipation rates were 

estimated by calculating the mean (± standard deviation) percent of active ingredient remaining in 

each limnocorral 4 d after dosing. Treatment- and limnocorral-specific 4-d dissipation rates, 

combined with estimated enclosure volumes, allowed for the concentrations of neonicotinoids in 

each limnocorral to be estimated and then dosing adjusted accordingly to maintain semi-

continuous neonicotinoid exposures. Dosing solutions were prepared fresh for each treatment day 

by spiking 250 mL of culture water (carbon-filtered, bio-filtered Saskatoon municipal water, 

aerated in a 50-L Nalgene® carboy for >24 h prior to use) with concentrated neonicotinoid stock 

solution to achieve nominal test concentrations as follows: IMI (single compound = 0.50 µg/L; in 

binary mixtures = 0.25 µg/L), CLO (single compound = 0.71 µg/L; in binary mixtures = 0.36 µg/L), 

and TMX (single compound = 8.91 µg/L; in binary mixtures = 4.46 µg/L). Dosing solutions were 

then transferred into 250-mL amber bottles and transported in coolers to the study site (to limit 

thermal and photo-degradation). During each dosing event, test solutions were poured directly into 

limnocorrals, and each limnocorral was gently stirred with a paddle to ensure adequate mixing and 

equivalent neonicotinoid distribution throughout. To control for potential disturbance-related 

effects on aquatic insect communities, untreated controls were subjected to the same treatment as 

the other limnocorrals (e.g. addition of 250 mL of untreated culture water and stirring on each 

dosing day). Further mixing occurred through natural turnover within the pond, via wind and 

temperature-guided density changes.  

4.2.3.3 Water sampling and neonicotinoid analysis 

 Prior to the initiation of the study, water samples were collected from Pond 2 to assess for 

neonicotinoid contamination (days -12, -8, -4, and -2). Over the course of the experimental period, 

water samples were collected from each limnocorral and analyzed to measure actual 
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concentrations of neonicotinoid exposure. Pre- and post-dosing, water samples were collected 

from each limnocorral (every 4 d over the course of the study). Pre-dose samples were collected 

immediately before limnocorral dosing. Post-dose samples were collected 1-h after limnocorral 

dosing (to allow limnocorrals to equilibrate after dosing/mixing events). Subsurface grab water 

samples were collected in 250-mL amber bottles from the centre of each limnocorral at >30 cm 

depth below the surface and stored at 4°C in the dark until analysis (within 14 d).  

 All samples were analyzed at the National Hydrology Research Centre, Environment and 

Climate Change Canada, Saskatoon, Canada, as described in Main et al. (2014). Briefly, 

neonicotinoid concentrations were quantified through solid-phase extraction (SPE) followed by 

high performance liquid chromatography paired with tandem mass spectrometry (LC-MS/MS). 

Methods adapted by Xie et al. (2011) allowed for simultaneous extraction and determination of 

IMI, CLO, and TMX concentrations in aqueous samples. SPE was performed using OASIS® HLB 

cartridges (Waters Corp., Milford, MA, USA). Internal standards (d4-imidacloprid and d3-

thiamethoxam) were obtained from CDN Isotopes (Pointe-Claire, QC, Canada). LC-MS/MS was 

performed using a Waters 2695 Alliance HPLC system (Waters Corp., Milford, MA, USA) 

equipped with a Waters XTerra MS-C8 column, paired with a Micromass Quattro Premier triple 

quadrupole mass spectrometer (Waters Corp., Milford, MA, USA) equipped with an electrospray 

ionization interface (positive ion mode). Analytical standards obtained from Chem Service (West 

Chester, PA, USA) were used to create calibration curves and determine neonicotinoid recoveries. 

Limits of quantification (LOQ) and recovery correction factors (RC %) were as follows, IMI: LOQ 

= 0.0018 - 0.0043 µg/L (mean = 0.0028 µg/L), RC = 85.5 - 94.6 % (mean: 90.8 %); CLO: LOQ = 

0.0026 - 0.0056 µg/L (mean = 0.0034 µg/L), RC = 65.2 - 74.7 % (mean: 69.8 %); TMX: LOQ = 

0.0042 - 0.0077 µg/L (mean = 0.0058 µg/L), RC = 79.2 - 100.9 % (mean: 88.3 %). Measured 
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neonicotinoid concentrations in limnocorrals were recovery corrected and averaged across sample 

days. Mean measured concentrations were subsequently used in all statistical analyses.  

4.2.4 Water quality  

 Dissolved oxygen (DO) and temperature were measured in each limnocorral on every 

dosing day using a hand-held Thermo ORION® dissolved oxygen meter, model 835 (Thermo 

ORION, Beverly, MA, USA). Due to prior studies indicating their relative stability in the 

limnocorrals over time (Cavallaro et al., 2018), all other water quality parameters were only 

assessed at the beginning (d 0), middle (d 28), and end (d 56) of the study. Water samples (50 mL) 

were removed from limnocorrals and analyzed in the laboratory for nitrate, phosphate, pH, 

conductivity, total hardness, alkalinity, ammonia (NH3), and dissolved organic carbon (DOC) (< 

12 h after sampling). Phosphate (PO4) and nitrate (NO3) were measured with an YSI EcoSense 

photometer, model 9300 (YSI Inc., Yellow Springs, OH, USA); pH was measured with an 

ORION® PerpHect LogR meter, model 170; hardness and alkalinity were measured using a Hach 

Digital Titrator, model 16900 (Hach Company, Loveland, CO, USA); ammonia was measured 

with a VWRTM SB301 sympHony ISE ammonia meter (VWR International Ltd., West Chester, 

PA, USA), paired with a Thermo ORION® electrode (Thermo ORION, Beverly, MA, USA); and 

DOC was measured using a Shimadzu Total Organic Carbon Analyzer (TOC-V), CPN model 5000 

(Shimadzu Co., Kyoto, Japan). 

4.2.5 Insect sampling, identification, and analysis 

 Adult insects were collected from the polypropylene sample jars on each emergence trap 

over the course of the exposure period (every 4 d for 56 d) to obtain cumulative abundance. To 

determine a baseline level for limnocorral productivity, insects were also collected prior to the 

dosing period (d -12, -8, -4, -2, and 0). Insects were collected by changing the entire collection jar, 
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and organisms were stored at 4°C (preserved in 70 % ethanol) until identified and counted. All 

collected insects were first identified to order. Diptera were further identified to family using 

dichotomous keys (Merritt et al., 2008). Adult Chironomidae were subsequently sexed. Male 

chironomids were separated from females via their more slender abdomens, genital appendages, 

and (typically) plumose antennae (Merritt et al., 2008). To determine the subfamily composition 

of collected Chironomidae, a subset of samples from control treatments were collected and sent to 

the Water Security Agency of Saskatchewan, Saskatoon, SK, Canada to be further identified. 

Briefly, larval head capsules were removed, and soft tissue was dissolved in a 10 % potassium 

hydroxide (KOH) solution. Head capsules were then mounted on glass slides using Euparal 

mounting medium and dried for 48 h. Taxa-specific key sand literature were subsequently used to 

accurately identify unique midge fauna (Diptera: Chironomidae) (Hirvenoja, 1973; Merritt et al., 

2008; Oliver, 1976; Oliver and Rousssel, 1983). A voucher series, linking the identified 

Chironomidae to this research project, was deposited in the Water Security Agency of 

Saskatchewan Invertebrate Voucher Collection, Saskatoon, SK, Canada. All remaining collected 

Chironomidae were oven-dried (at 60°C for 24 h) and weighed to evaluate total biomass for each 

experimental day.  

4.2.6 Data analysis 

Water quality variables and neonicotinoid concentration data were averaged across time 

and then compared between treatments using one-way analysis of variance tests (ANOVAs) paired 

with Tukey’s post-hoc analyses for pairwise comparisons between treatments (95 % level of 

confidence, α = 0.05). Initial (baseline) cumulative total insect and Chironomidae abundances in 

limnocorrals were also compared across treatments using one-way ANOVAs paired with Tukey’s 

post-hoc tests (95 % level of confidence, α = 0.05). As baseline insect abundances were low (as it 
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was relatively early in the spring) and did not significantly differ among treatments (one-way 

ANOVA, p > 0.05) (Table A4.1), baseline insect abundance was not included as a variable in 

further analyses. Effects of the three experimental wetland blocks on abundance (total insect and 

Chironomidae) and biomass were tested using two-way ANOVAs, using experimental block and 

neonicotinoid treatment as factors (95 % level of confidence, α = 0.05). Similar to other tested 

factors, experimental blocks did not significantly affect cumulative total insect or Chironomidae 

abundance or biomass (two-way ANOVA, pinteraction > 0.05), therefore block was not included as a 

variable in further analyses. Prior to comparative analysis, water quality, neonicotinoid 

concentration and emergence data were evaluated to ensure they met normality (Shapiro-Wilk, α 

= 0.05) and homogeneity of variance (Brown-Forsythe, α = 0.05) assumptions.  

The mean, cumulative proportion of emerged insects in each order was compared amongst 

treatments using chi-square tests (χ2, 95 % level of confidence, α = 0.05). Prior to statistical 

analysis, data (cumulative Chironomidae abundance and biomass) were transformed [log (x + 1)] 

to meet normality (Shapiro-Wilk, α = 0.05) and equality of variance (Brown-Forsythe, α = 0.05) 

assumptions. To determine time-weighted treatment effects, cumulative Chironomidae abundance 

and biomass were compared across neonicotinoid treated limnocorrals over the course of the study 

(d 0 - 56) using two-way repeated measures (RM) ANOVA (fixed effect of time + treatment + 

time x treatment interaction) paired with the Holm-Sidak method for post-hoc pairwise 

comparisons (95% level of confidence, α = 0.05). Cumulative Chironomidae abundance and 

biomass were analyzed at the two key time points, d 28 (study midpoint, allowing for direct 

comparisons to prior 28-d laboratory-based tests) and d 56 (study culmination, aimed to capture a 

more complete Chironomidae life cycle) using univariate statistical tests (i.e. one-way ANOVAs 
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paired with Tukey’s post hoc tests (95 % level of confidence, α = 0.05). All statistical analyses 

were performed using SigmaPlotTM Version 13.0 (Systat Software Inc., San Jose, CA, USA). 

4.3 Results 

4.3.1 Water quality  

 General water quality remained relatively consistent across time, and did not significantly 

deviate amongst individual limnocorrals, across experimental blocks, or amongst neonicotinoid 

treatments (one-way ANOVA, p > 0.05) (Table A4.2). Mean (± SD) water quality parameters 

during the dosing period were as follows: DO = 5.2 (± 0.7) mg/L, temperature = 20.5 (± 0.5) °C, 

pH = 8.1 (± 0.0), conductivity = 2934 (± 53) µS/cm3, total hardness = 1708 (± 59) mg/L as CaCO3, 

alkalinity = 414 (± 26) mg/L as CaCO3, phosphate = 1.3 (± 0.5) mg/L, nitrate = 3.97 (± 0.89) mg/L, 

ammonia = 0.7 (± 0.3) mg/L, and DOC = 32.0 (± 2.4) mg/L). 

4.3.2 Measured neonicotinoid concentrations 

 Mean measured IMI, CLO, and TMX concentrations in treated limnocorrals are presented 

in Table 4.1. Over the course of the study, mean (± SD) measured neonicotinoid concentrations 

remained within 99.2 ± 28.7 %, 104.4 ± 30.5 %, and 102.8 ± 48.0 % of the target nominal doses, 

respectively (Tables A4.3 and A4.4). Mean cumulative toxic units (ΣTU) ranged from 0.7 to 1.20 

(target ΣTU = 1.0) and were not significantly different between treatments (one-way ANOVA, p 

> 0.05).  

Occasional variation in neonicotinoid concentrations occurred between dosing days (e.g. 

target nominal concentrations were exceeded on some dosing days, with maximum ΣTUs ranging 

from 1.37 to 2.23 (Table A4.4)). However, these deviations from the target concentrations were 

relatively consistent across treatments. Despite experimental precautions, there were occasional 
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detections of low-level neonicotinoid contamination in treated limnocorrals (e.g. TMX detection 

in IMI treatments in 3/42 analyzed samples) and in experimental controls (Tables A4.3 and A4.4). 

However, these were typically ΣTU < 0.01 (or < 5 % of the lowest target dose), and were included 

in the calculated ΣTU, thus it is unlikely that this significantly influenced experimental results. 

Notably, in all TMX treated limnocorrals, there was slight degradation of TMX into CLO. On 

average, 0.32 ± 0.43 % of TMX was degraded into CLO (v/v) between 4 d dosing periods.  

4.3.3 Insect diversity  

 Mean (± SD) cumulative proportions of emerged adult insects collected from experimental 

limnocorrals are presented in Table 4.2. Across treatments, Diptera were the dominant taxa, 

accounting for 92.5 ± 3.9 % of the total number of emerged insects over the course of the study. 

Overall, Chironomidae were the most abundant insect family, accounting for 89.3 ± 5.8 % of the 

total number of emerged insects across treatments. Within the Chironomidae, there was relatively 

low subfamily diversity: 93.3 ± 3.9 % were Chironominae, 4.3 ± 2.4 % were Orthocladiinae, and 

2.4 ± 1.2 % were Tanypodinae. The remaining insect taxa primarily consisted of Odonata 

(dragonflies and damselflies) (4.4 ± 3.0 %) and Trichoptera (caddisflies) (2.2 ± 1.4 %). A limited 

number of Hymenoptera (parasitoid wasps) (0.5 ± 0.3 %), Coleoptera (beetles) (0.4 ± 0.4 %) and 

Ephemeroptera (mayflies) (0.0 ± 0.0 %) were also collected.  

Neonicotinoid and neonicotinoid mixture exposure subtly altered insect community 

composition. For most orders (i.e. Diptera, Hymenoptera, Coleoptera, and Ephemeroptera), the 

mean proportions of emerged adult insects (d 56, cumulative) were not significantly different 

between treated and untreated limnocorrals, or amongst single compounds and binary mixtures 

(Chi-square test, p > 0.05). However, statistically significant, treatment-specific differences were 

found in the cumulative proportions of emerged Trichoptera (χ2 = 25.0, p < 0.001) and Odonata 
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(χ2 = 100.6, p < 0.001) over the course of the study (e.g. 56-d cumulative). In all treatments, 

there were increases in the mean proportions of emerged Trichoptera relative to controls (e.g. 

0.03 ± 0.0 % in controls vs. 1.1 ± 0.9 - 4.1 ± 5.5 % in treatments), and in IMI, IMI-CLO, CLO, 

and CLO-TMX treatments there were significant increases in the mean proportions of emerged 

Odonata relative to controls (e.g. 1.3 ± 1.1 % in controls vs. 4.8 ± 3.8 % - 9.7 ± 15.3 % in 

treatments). However, due to the large amount of variation amongst experimental replicates, the 

cumulative total abundances of Trichoptera and Odonata in treated limnocorrals (Table A4.5) 

were not significantly different from controls (one-way ANOVA, p > 0.05).   

4.3.4 Chironomidae abundance and biomass 

4.3.4.1 Time-weighted treatment effects  

 Cumulative abundance of emerged Chironomidae, the most abundant taxa, increased over 

time (two-way RM ANOVA, F = 129.8, p < 0.001) (Figure 4.1A). In the time-weighted analysis, 

treatment was statistically insignificant (two-way RM ANOVA, F = 2.20, p = 0.11). However, 

there was a significant interaction between treatment and exposure time across all treatments (two-

way RM ANOVA, F = 1.39, p = 0.03), indicating that time was an important factor in treatment 

effects, with effects of neonicotinoid treatments on cumulative abundance becoming more 

pronounced over time (Figure 4.1A). Similarly, in all treatments, cumulative biomass increased 

over the course of the study (Figure 4.1B) (two-way RM ANOVA, F = 29.9, p < 0.001) and 

treatment was statistically insignificant in the time-weighted analysis (two-way RM ANOVA, F = 

2.379, p = 0.085), but again there was a significant interaction between treatment and exposure 

time (two-way RM ANOVA, F = 2.2, p < 0.001). Therefore, for cumulative Chironomidae biomass, 

exposure time also enhanced treatment effects (Figure 4.1B).  
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Table 4.1 Mean (± SD) measured neonicotinoid concentrations (µg/L) and toxic units (TU) 

in single compound and binary neonicotinoid mixture treated limnocorrals over the course of the 

study period (56 days, 14 measurements). (n = 3 limnocorrals/treatment). 

Treatment Measured Neonicotinoid  

Concentrations (µg/L) 

Toxic Units  

(TU) (1) 

Cumulative Toxic 

Units (ΣTU) 

 IMI CLO TMX IMI CLO TMX  

 

CON <0.01 - <0.01 <0.01 - <0.01 <0.01 

IMI 

 

0.52 ± 

0.16 

- 0.01 ± 

0.03 

1.03 ± 

0.32 

- <0.01 1.03 ±  

0.32 

IMI-CLO 

 

0.25 ± 

0.08 

0.34 ± 

0.12 

0.01 ± 

0.04 

0.49 ± 

0.14 

0.47 ± 

0.17 

<0.01 0.97 ±  

0.32 

CLO 

 

- 0.73 ± 

0.21 

0.03 ± 

0.06 

- 1.03 ± 

0.30 

<0.01 1.03 ±  

0.30 

CLO-TMX 

 

- 0.39 ± 

0.10 

5.80 ± 

2.40 

- 0.55 ± 

0.14 

0.65 ± 

0.28 

1.20 ±  

0.38 

TMX <0.01 0.02 ± 

0.03 

9.31 ±  

3.7 

<0.01 0.03 ± 

0.04 

1.04 ± 

0.42 

1.09 ±  

0.44 

 

IMI-TMX 0.23 ± 

0.07 

0.03 ± 

0.00 

5.27 ± 

2.19 

0.47 ± 

0.14 

0.04 ± 

0.01 

0.58 ± 

0.24 

1.10 ±  

0.37 

* All unreported concentrations were lower than the limits of quantification (LOQ): imidacloprid = 0.0028 ± 0.0006 µg/L; 

clothianidin = 0.0034 ± 0.0008 µg/L; thiamethoxam =  0.0058 ± 0.0009 µg/L. 
(1) Toxic units were calculated from laboratory-based 28-day EC50 values (emergence) previously characterized for Chironomus 

dilutus (Maloney et al., 2018b).  
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4.3.4.2 Single compounds 

 By d 28 (study midpoint), there were no statistically significant impacts of IMI, CLO, and 

TMX on cumulative Chironomidae emergence or biomass (relative to the controls) (one-way 

ANOVA, p > 0.05) (Figure 4.1C and D). However, IMI and CLO treatments reduced cumulative 

emergence by 92.0 ± 2.6 % (IMI) and 67.8 ± 6.5 % (CLO) relative to controls (vs. 50 % expected) 

(Figure 4.1C). A similar trend occurred for mean cumulative Chironomidae biomass (e.g. 86.2 ± 

11.5 % (IMI), and 85.0 ± 6.6 % (CLO) reduction relative to controls) (Figure 4.1D). At the 

termination of the study (d 56), IMI and CLO treatments elicited statistically significant declines 

in cumulative Chironomidae emergence (Figure 4.1E) (Tukey post-hoc test, n = 20, F = 5.1, p = 

0.008). Indeed, mean cumulative emergences were: 90.0 ± 1.4 % (IMI) and 85.4 ± 5.5 % (CLO) 

reduced relative to controls. At study termination (d 56), IMI and CLO treatments had also elicited 

statistically significant declines in the cumulative biomass of emerged Chironomidae (Figure 4.1F) 

(Tukey post-hoc test, n = 20, F = 3.2, p = 0.03), with mean cumulative biomasses that were 79.6 

± 6.0 % (IMI) and 81.4 ± 8.6 % (CLO) reduced, relative to controls. However, the TMX treatment 

did not elicit a statistically significant decline in either cumulative Chironomidae emergence or 

biomass on d 56, demonstrating 71.0 ± 7.9 % (emergence) and 51.7 ± 6.8 % (biomass) reduction 

relative to controls (Figures 4.1E and F).  

4.3.4.3 Binary mixtures 

 Binary neonicotinoid mixtures elicited effects that deviated from lab-based predictions. On 

d 28, there were (statistically insignificant) declines in mean cumulative abundance relative to 

controls (e.g. % mean reduction in emergence (94.1 ± 1.7 % vs. 50 % expected) and biomass (97.5 

± 0.1 %) in the CLO-TMX treated limnocorrals (Figure 4.1C and D). At study termination (d 56), 

there were statistically significant reductions in Chironomidae emergence (one-way ANOVA, n = 



  

128 

 

20, F = 5.2, p = 0.008) and biomass (one-way ANOVA, n = 20, F = 3.2,  p = 0.03) in the CLO-

TMX treated limnocorrals, with a reductions of 85.4 ± 12.7 % and 86.5 ± 9.1 % for mean 

cumulative emergence and mean cumulative biomass relative to controls (Figure 4.1E and F). 

However, partially due to the high variability in all neonicotinoid (single compound and binary 

mixture) treatments, declines in emergence and biomass in CLO-TMX treatments were not 

significantly different from single compound treatments (Tukey post-hoc tests, p > 0.05). 

Therefore, although declines in cumulative abundance and biomass in the CLO-TMX treated 

limnocorrals were greater-than-predicted, the mixture response could not be categorized as 

greater-than-additive.  

 Due to high variation between individual limnocorrals, IMI-CLO and IMI-TMX mixtures 

did not elicit statistically significant declines in cumulative emergence or biomass on d 28 (Figure 

4.1C and D). Indeed, reductions in cumulative emergence were 30.5 ± 67.3 % (IMI-CLO) and 46.0 

± 86.0 % (IMI-TMX) (Figure 4.1E) and reductions in cumulative biomasses were 47.5 ± 20.0 % 

(IMI-CLO) and 33.4 ± 54.8 % (IMI-TMX) (Figure 4.1F), relative to untreated controls. 

Toxicological responses in IMI-CLO and IMI-TMX treated limnocorrals were not significantly 

different from single-compound treatments (Tukey post-hoc tests: p > 0.05), thus the mixture 

effects had to be categorized as directly additive (Concentration Addition). 
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Figure 4.1 Chronic (56-d) exposures of Chironomidae populations to single compounds 

(imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (TMX)) and binary neonicotinoid 

mixtures in experimental limnocorrals, compared to untreated controls: (A) mean (± SD) 

cumulative emergence and (B) biomass over time; (A) mean (± SD) cumulative emergence and  

(D) biomass at day 28 (study mid-point); and (E) mean (± SD) cumulative emergence and (F) 

biomass at day 56 (study cessation). (n = 3 limnocorrals/treatment, data.). 

* Asterisk indicates significantly different from untreated control (one-way ANOVA, p < 0.05). 

**Dashed line (B) indicates predicted effect (Σ Toxic Unit = 1), based on 28-d EC50 values (emergence) derived 

from laboratory studies using the aquatic insect Chironomus dilutus as an experimental organism. 
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Figure 4.2 Sex of emerged Chironomidae (mean ± SD; %) after exposure to single 

neonicotinoids and their binary mixtures in experimental limnocorrals for (A) 28 and (B) 56 

days. (n = 3 limnocorrals/treatment).  

* Asterisk indicates significantly different from control (z-test, p < 0.05). 

** Sex ratios for specific treatments (i.e. d 28 IMI and CLO, and d 56 CLO) did not equal 100% of total, due to variation of 

emerged proportions of males/females within treatment.  
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4.3.5 Chironomidae sex ratios 

The impacts of single compound and neonicotinoid mixture exposure on the sex of 

emerged Chironomidae were also evaluated after 28 d (study midpoint) and 56 d (Figure 4.2A 

and B). In most neonicotinoid treatments, the cumulative proportions of male and female 

chironomids were similar to controls. However, there were a few notable exceptions. Statistically 

significant shifts toward female-dominated Chironomidae populations occurred at d 28 in CLO 

(55.5 % Female) (z = 4.29, p < 0.001), IMI-CLO (57.1 % Female) (z = 3.25, p = 0.001), and 

IMI-TMX treatments (62.8 % Female) (z = 2.79, p = 0.005), compared to controls (43.2 % 

Female) (Figure 4.2A). However, by the end of the study (d 56), with the exception of the CLO 

treatment (51.2 % Female) compared to controls (43.2 % Female) (z = 4.32, p < 0.001), sex 

ratios did not significantly differ between other treatments and controls (Figure 4.2B).  

4.4 Discussion 

4.4.1 Effects of single and neonicotinoid mixture exposures on aquatic insect communities 

In this study, both theoretically equitoxic single-compound and neonicotinoid mixture 

exposures were found to slightly shift the taxonomic composition of the aquatic insect community. 

In all neonicotinoid-treated limnocorrals, there were statistically significant increases in the 

proportions of emerged Trichoptera, and in the IMI, IMI-CLO, CLO, and CLO-TMX treated 

limnocorrals there were statistically significant increases in the proportions of emerged Odonata. 

However, largely due to high within-treatment variation, there were no statistically significant 

increases in the absolute abundances of emerged Trichoptera and Odonata in the treated 

limnocorrals. Interestingly, although Diptera (e.g. Chironomidae) are known to be sensitive to 

neonicotinoids (Morrissey et al., 2015), the proportion of emerged dipterans were similar among 

treatments. This either indicates that effects on dipteran species were masked by variation (due to 
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the limited number of experimental replicates and variability associated with natural insect 

community composition), or that (as a taxonomic group) Diptera are not significantly more 

sensitive than other insect communities. This can be clarified by a thorough examination of the 

abundance data for all collected insect taxa (Table A4.5). In all neonicotinoid treated limnocorrals, 

there were marked reductions in emergence of Diptera (and thus Chironomidae) compared to 

untreated controls. Indeed, in neonicotinoid treated limnocorrals there were 2.6 - 9.8-fold 

reductions in mean dipteran abundance (and 2.7 - 10-fold reductions in mean chironomid 

emergence) compared to untreated controls. However, the significance of these differences was 

likely masked when evaluating proportional differences in emergence amongst insect communities. 

First, there was a large amount of variation amongst experimental replicates (e.g. 15.4 - 112.0 % 

variance in mean dipteran emergence and 14.2 - 112.0 % variance in mean chironomid emergence), 

which likely limited the statistical power of our comparative analysis and/or masked some of the 

differences between untreated controls and neonicotinoid-treated groups. In addition, in all 

limnocorrals, Diptera were the most dominant taxa, displaying abundances that far exceeded those 

of other taxa (e.g. 17.6 - 654-fold higher than that of Trichoptera, Hymenoptera, Odonata, 

Coleoptera, and Ephemeroptera) (Table A4.5). Thus, although neonicotinoid exposure did 

markedly reduce emergence of Diptera, effects were likely masked due to the high proportions of 

this taxon in all limnocorrals. 

Although many studies have focused on the effects of anthropogenic disturbance on 

wetland invertebrate communities, there is currently limited scientific consensus on what shifts in 

community dynamics are likely to be ecologically significant (Batzer, 2013). In this study, the 

proportional changes observed in aquatic insect taxa were relatively small, with emergence of 

Odonata and Trichoptera in the neonicotinoid treated limnocorrals typically being 1 - 8 % higher 
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than in the controls (and Diptera being ~ 3 - 13 % lower than controls). Furthermore, these Prairie 

wetland communities were highly dominated by a few dipteran taxa, and the abundances of 

Odonata and Trichoptera were low in comparison. Similarly, a previous limnocorral study found 

that neonicotinoid (IMI, CLO, TMX) exposure did not elicit changes in wetland insect community 

composition (Cavallaro et al., 2018). Therefore, it is difficult to conclude if these shifts in 

community composition are likely to be ecologically significant and thus these observed 

community shifts should not be directly interpreted into potential effects on an ecosystem level.  

4.4.2 Effects of neonicotinoid exposures on Chironomidae populations 

 Importantly, this study focused on determining if laboratory-derived toxicity models, 

developed using a representative aquatic insect species (Chironomus dilutus), could adequately 

predict the toxicity of three individual neonicotinoids and their binary mixtures to natural 

Chironomidae communities under semi-controlled field conditions. To accomplish this, wetland 

limnocorrals containing natural Chironomidae populations were exposed to effect-based 

neonicotinoid concentrations (derived from laboratory-based 28-d EC50 values), and  cumulative 

toxicological effects were evaluated over time, focusing on endpoints of emergence and biomass, 

and at two specific time points [28 d (comparative to laboratory-based studies) and 56 d (aimed at 

capturing a more complete Chironomidae life-cycle)], focusing on endpoints of emergence, 

biomass, and sex-ratios (relative to controls). Although there were differences among individual 

limnocorrals (experimental replicates), effects of chronic single-compound and binary mixture 

exposures were found to significantly deviate from what was predicted from previous laboratory 

studies using current environmental risk assessment approaches.  
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4.4.2.1 Time-weighted treatment effects  

 This study specifically focused on evaluating neonicotinoid and neonicotinoid mixture 

toxicity at the two key time points (28- and 56-d). Therefore, this experiment was not specifically 

designed to focus on time-weighted effects of neonicotinoid insecticides (single compounds and 

binary mixtures) on Chironomidae populations. However, as a result of the study design (i.e. insect 

collection every 4 d over the course of the study), an analysis could be performed to evaluate the 

time-weighted effects of IMI, CLO, TMX and their binary mixtures on cumulative Chironomidae 

abundance (emergence) and biomass. As expected, we found that Chironomidae emergence and 

biomass were mainly affected by time (both increasing over the study duration). However, 

treatment effects were somewhat masked by intra-treatment variation. Indeed, when accounting 

for individual limnocorral identity, exposure time, and the time-treatment interaction, there were 

no statistically significant differences in cumulative Chironomidae abundance or biomass amongst 

the neonicotinoid treatments and experimental controls. Importantly, the interaction between time 

and treatment was determined to be significant, with treatment effects being highly dependent on 

exposure duration. This indicates that exposure time is critical when considering the toxicity of 

neonicotinoid compounds and their mixtures to Chironomidae and other similarly sensitive aquatic 

insect species. In fact, for neonicotinoids and their mixtures, time-weighted analyses might be 

more important than concentration- or toxicological response-based analyses in environmental risk 

assessment. Previous studies with lab-reared Chironomidae have shown that both single compound 

and neonicotinoid mixture toxicity can significantly vary depending on exposure time (Cavallaro 

et al., 2017; Maloney et al., 2018b, 2017). Therefore, further studies should be carried out to better 

evaluate the time-weighted toxicological effects of neonicotinoids and their mixtures to determine 
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if and how exposure duration and life cycle stage should be incorporated into neonicotinoid risk 

assessment for sensitive aquatic insect species.  

4.4.2.2 Single neonicotinoid compounds 

 The effects of individual neonicotinoids on natural invertebrate populations are typically 

characterized using laboratory-based toxicity tests with standard laboratory species (e.g. Daphnia 

magna or Chironomus dilutus). However, in this study, laboratory-derived toxicity thresholds for 

neonicotinoid insecticides (single-compounds) on C. dilutus were not adequately predictive of the 

responses of natural Chironomidae populations. Indeed, most of the single-compound exposures 

were much more toxic than hypothesized based on the toxic unit approach. Applied neonicotinoid 

concentrations were chosen to elicit a predicted 50 % decrease in emergence of C. dilutus and 

other similarly sensitive species (e.g. a ΣTU = 1, based on 28-d EC50 values). However, after 28 d 

of exposure, abundances of emerged Chironomidae in IMI and CLO treated limnocorrals were 42 

% and 17.8 % lower than predicted. Although some deviation should be expected (due to 

sensitivity differences between lab-reared and natural insect species and variation in dosing), the 

magnitude of deviation in single-compound effects observed in this study from laboratory-

predicted toxicity was quite large. Furthermore, similar trends were observed after 56 d of 

exposure (e.g. 85.4 - 90 % declines in emergence and 86.2 - 85 % declines in the size/weight of 

Chironomidae, relative to controls), demonstrating the potential extents of IMI and CLO impacts 

on exposed Chironomidae communities.  

4.4.2.3 Binary neonicotinoid mixtures 

 The effects of neonicotinoid mixtures are commonly estimated using the principle of 

Concentration Addition (CA). That is, toxicity is predicted by directly summing neonicotinoid 

concentrations (as toxic equivalents). In prior studies, mixtures of IMI, CLO, and TMX were 
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shown to elicit greater-than-additive toxicity in C. dilutus. Under acute (96 h) exposure 

scenarios, IMI-CLO and IMI-TMX were found to display cumulative toxicities that deviated 

from direct additivity, eliciting greater-than-additive (1 - 13 %) or less-than-additive (2 - 3 %) 

toxicities depending on mixture composition (Maloney et al. 2017)). Similarly, under chronic 

laboratory-based exposure scenarios, all three binary mixtures displayed cumulative toxicities 

that deviated from direct additivity, eliciting greater-than-additive (2 - 13 %) or less-than-

additive (2 - 6 %) toxicities, depending on mixture composition (Maloney et al., 2018b). 

Furthermore, for IMI-TMX and IMI-CLO-TMX mixtures, the magnitude of synergism could 

actually decrease with increased exposure time (Maloney et al., 2018b). However, in this study, 

the mixture effects (on emergence) did not follow what was predicted by these laboratory-based 

toxicity tests. Contrary to laboratory predictions, there were no statistically significant 

differences in toxicological response amongst single compound and theoretically equitoxic 

neonicotinoid mixture treated limnocorrals, with IMI-CLO, CLO-TMX, and IMI-TMX mixtures 

displaying directly additive toxicities (i.e. behaving as predicted by CA). In addition, the relative 

responses to the neonicotinoid mixture treatments varied from what was predicted from 

laboratory studies. The CLO-TMX mixture, and not IMI-CLO or IMI-TMX mixtures elicited the 

most significant declines in Chironomidae emergence (e.g. 44 % greater-than-predicted impact 

on field Chironomidae than that was predicted from 28-d laboratory toxicity tests; 94 % 

reduction in emergence vs. 50 % predicted).  

4.4.2.4 Chironomidae sex ratios 

 Previous laboratory studies have also indicated that exposure to neonicotinoids and 

neonicotinoid mixtures could potentially shift sex ratios toward male dominant populations 

(Cavallaro et al., 2017). Contrary to those laboratory-based predictions, this study found that 
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chronic neonicotinoid exposure did not shift sex ratios towards a greater proportion of males in 

natural Chironomidae populations. Exposure to some neonicotinoid treatments did elicit 

statistically significant shifts in sex-ratios relative to the control. For example, after 28 d of 

exposure there were shifts toward female-dominant populations in CLO, IMI-CLO, and IMI-TMX 

treatments. However, for most treatments, any statistically significant sex-ratio differences that 

were apparent at d 28 became statistically insignificant by d 56. In fact, CLO was the only 

neonicotinoid treatment that elicited a statistically significant sex-ratio shift over the full course of 

the study, resulting in an increase in the overall proportion of emerged female Chironomidae (e.g. 

an average 40.8 % females in the controls vs. 51.2 % females in the CLO treated limnocorrals). 

Therefore, as with Chironomidae emergence and biomass, the effects of neonicotinoid exposure 

on Chironomidae sex-ratios significantly deviated from what has been previously observed in 

laboratory tests.  

4.4.3 Deviations from laboratory-predicted toxicity 

  Under semi-controlled field conditions, single compounds were generally more toxic than 

predicted by laboratory-based studies. The reasons behind these deviations are unclear, but there 

are several experimental factors that could have influenced the results. First, neonicotinoid 

concentrations occasionally fell above or below the target doses (Tables A4.3 and A4.4). One 

particular example of this was on d 8, where neonicotinoid concentrations were ~ 2 X higher than 

the target doses (e.g. d 8 measured ΣTUs ranged from 1.37 to 2.23, compared to the target ΣTUs 

of 1.0). These concentration spikes could have resulted in increased internal concentrations in the 

exposed organisms, which could have contributed to the greater-than-predicted toxicity observed 

in some of the neonicotinoid treatments (Focks et al., 2018). However, it is unlikely that these 

concentration spikes elicited acute toxicity in the exposed organisms, as these peak concentrations 



  

138 

 

were much lower than concentrations likely to cause lethality in the exposed invertebrates (e.g. 

IMI peak concentration = 0.94 µg/L vs. IMI 96 h LC50 for C. dilutus = 4.63 µg/L). In addition, 

these spikes were relatively consistent across mixture and single-compound treatments, thus any 

effects should have been equivalent across treatments. Furthermore, although the limnocorrals 

were occasionally overdosed, they were also occasionally under-dosed (Tables A4.3 and A4.4), 

with mean limnocorral concentrations remaining within the target ΣTU over the course of the study 

(Table 4.1). Thus, internal concentrations in the exposed organisms were likely stabilized over the 

course of the study. In short, although these concentration spikes could have contributed to the 

observed deviations from predicted toxicity, there were likely other contributing factors that 

influenced the experimental results. 

 Another reason for the observed greater-than-predicted toxicity in the single compound 

treatments could be that there are species-specific differences in neonicotinoid sensitivity amongst 

exposed Chironomidae. Although this has yet to be confirmed, previous studies have shown that 

sensitivity to water quality (e.g. both natural and anthropogenic stressors) greatly varies among 

different chironomid species (Odume and Muller, 2011; Orendt, 1999). Furthermore, species-

specific differences in physiology, reproduction (e.g. multivoltine vs. univoltine), life-cycle length, 

and behaviour, along with ecological preferences, could result in different sensitivities to 

neonicotinoid insecticides. Unfortunately, since the biomass of the emerged Chironomidae was 

quantified using a destructive technique, there was no way to verify whether differences in species 

composition in the treated limnocorrals significantly contributed to these differential effects. In 

addition, the doses applied in this study were based on laboratory studies that used only one 

Chironomidae species (C. dilutus) in an environmentally controlled setting (Maloney et al., 

2018b). In this semi-controlled field study, natural biotic and abiotic factors (i.e. predatory stress, 
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community dynamics, and species-specific differences in response) were present that could have 

influenced neonicotinoid toxicity. Thus, while this experiment offers an initial bridge between 

laboratory- and field-based toxicity studies, further studies are needed to determine how these 

biotic and abiotic factors could influence the species-specific toxicity of neonicotinoids to wetland 

insects.  

 Importantly, the response of natural Chironomidae populations to neonicotinoid mixtures 

also deviated from that predicted from laboratory mixture studies. This was primarily due to the 

high amount of variability among replicate limnocorrals, particularly in the mixture treatments, 

which potentially limited the interpretation of mixture effects. For example, for Chironomidae 

emergence (56 d exposure), the coefficient of variation (CV) for experimental controls was 39.9 

% and for the single compound treatments CVs ranged from 14.2 to 27.4 % (Table A4.6). 

However, for the mixtures, variance was 2 - 4 times higher, with CVs ranging from 57.1 to 111.9 

% (Table A4.6). Therefore, it is possible that mixture effects did occur, but they were masked by 

this large variation. Although variance was not as significant for Chironomidae biomass (Table 

A4.6), there was still a trend of higher variability in the mixtures (38.1 - 82.4 %) when compared 

to the single compound treatments (14.0 - 46.3 %). Increased variability can be an indicator of an 

ecological system experiencing stress (Forbes et al., 1995; Orlando and Guillette, 2001), so it is 

possible that these neonicotinoid mixtures were negatively impacting Chironomidae populations. 

Finally, the lack of greater-than-additive mixture effects observed in this study could also have 

been a factor of experimental design. Due to physical, practical, and financial constraints, the 

experimental design used in this study was kept relatively simple (i.e. mixtures were only tested 

at one dose-level (ΣTU = 1.0) and one dose-ratio (1:1)). However, as prior studies have 

demonstrated, mixtures tend to behave variably depending on composition and cumulative 
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concentration (Jonker et al., 2005; Maloney et al., 2017), as well as exposure time (Maloney et al., 

2018b). Effects in this study were found to be time dependent, therefore the simplified exposure 

regime may have failed to capture deviations from direct additivity, as seen in previous laboratory-

based studies. Further studies should thus focus on characterizing the toxicity of neonicotinoid 

mixtures under field-realistic settings with more extensive exposure ranges and ratios (i.e. aim to 

better characterize the toxicological response surface) and more replication, to determine if 

synergistic or antagonistic mixture effects do occur and if they pose a risk to natural Chironomidae 

populations.  

4.4.4 Relevance to global water quality regulations 

 The neonicotinoid concentrations employed in this study were specifically chosen to 

evaluate if laboratory-based predictions of mixture toxicity would adequately translate to semi-

controlled field conditions. Therefore, the doses applied were effect-based (designed to be 

equitoxic if the principle of Concentration Addition held (e.g. ΣTU = 1)), and in some cases higher 

than neonicotinoid concentrations typically observed in the field. In aquatic environments, IMI, 

CLO, TMX and their mixtures have been detected at maximum cumulative toxic units of 0.09 

(agricultural surface waters) (Schaafsma et al., 2015; Smalling et al., 2015), 0.36 (rivers and 

streams) (Hladik and Kolpin, 2015), 4.38 (wetlands) (Main, 2016), and 32.0 (groundwater) 

(Giroux and Sarrasin, 2011). Some of the concentrations employed here were either equivalent to 

or lower than current neonicotinoid water quality guidelines. For example, in this study there were 

significant reductions in Chironomidae emergence and biomass in limnocorrals treated with CLO 

at concentrations (0.34 µg/L, mixtures; 0.73 µg/L, single compounds) substantially lower than the 

current United States Environmental Protection Agency (US EPA) aquatic life benchmark (1.10 

µg/L) (USEPA, 2017). Similarly, in the TMX-treated limnocorrals, concentrations applied ranged 
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from 5.27 (mixtures) to 9.31 µg/L (single-compound), which are much lower than the current US 

EPA aquatic life benchmark of 17.5 µg/L (USEPA, 2017). Regulations for IMI are more stringent, 

thus the concentrations applied here were higher than most chronic water quality benchmarks 

(Smit, 2014; USEPA, 2017). However, IMI concentrations used in the IMI-CLO and IMI-TMX 

mixtures (0.23 - 0.25 µg/L) were approximately equivalent to current Canadian and European 

water quality guidelines (0.23 and 0.20 µg/L, respectively) (Canadian Council of Ministers of the 

Environment, 2007; European Food Safety Authority, 2006). Therefore, at concentrations 

equivalent to current water quality guidelines, Chironomidae emergence and biomass could 

potentially be affected in aquatic environments chronically contaminated with some single 

compounds (CLO and TMX), and all binary neonicotinoid mixtures.  For example, an 

environmental monitoring survey of the Canadian PPR carried out by Main et al. (2014) showed 

that 5.5 - 8.2 % of wetland samples collected in early summer (June 2012 and 2013) contained 

neonicotinoid concentrations that were lower than current water quality guidelines, but 

cumulatively exceeded concentrations that were shown to significantly reduce Chironomidae 

emergence (under chronic exposure scenarios) in this study.  

 To be adequately protective of natural Chironomidae and similarly sensitive taxa (e.g. 

Ephemeroptera), the current aquatic regulatory values should be modified to account for enhanced 

neonicotinoid toxicity observed under field conditions. The US EPA and the National Institute for 

Public Health and the Environment (RIVM, Netherlands), have set chronic aquatic life 

benchmarks for IMI of 0.01 and 0.0083 µg/L, respectively (Smit, 2014; USEPA, 2017). According 

to this study (and previous laboratory toxicity tests), these benchmarks would be protective for 

natural Chironomidae populations and similarly sensitive aquatic insects. Therefore, other 

regulatory bodies (e.g. Canadian Council of Ministers of the Environment and the European Food 
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Safety Authority) should consider employing similar regulatory guidelines for IMI concentrations 

in aquatic systems. In previous studies, CLO and IMI have been shown to be approximately 

equitoxic to natural Chironomidae populations. Thus, to be adequately protective of Chironomidae 

species, water quality guidelines for IMI and CLO should be set at similar levels. Therefore, CLO 

chronic toxicity benchmark in the range of 0.0083 - 0.01 µg/L is recommended (Smit, 2014; 

USEPA, 2017). Under both laboratory and field conditions, TMX appears to be ~ 10 times less 

toxic to Chironomidae than IMI or CLO. Therefore, a freshwater, chronic toxicity benchmark for 

TMX that does not exceed 0.1 µg/L is recommended. Although this is likely protective for 

Chironomidae, it does not consider other more sensitive species (e.g. Ephemeroptera (Van den 

Brink et al., 2016)). Therefore, further studies with other sensitive aquatic invertebrates should be 

considered when deriving and modifying current water quality benchmarks. Importantly, along 

with deriving regulatory recommendations for neonicotinoids and their mixtures for the protection 

of some important non-target aquatic insect species, this work stresses the importance of 

complementary field-based studies to better characterize toxic responses elicited by neonicotinoids 

and their mixtures when setting regulatory guidelines.   
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CHAPTER 5: LINKING NEONICOTINOID TOXICITY TO NICOTINIC 

ACETYLCHOLINE RECEPTOR BINDING AND EXPRESSION IN 

CHIRONOMIDAE  

 Preface 

This chapter builds upon previous research demonstrating species-, compound- and life-

stage specific differences in neonicotinoid toxicity (Chapters 2 - 4) by evaluating binding profiles 

of imidacloprid, clothianidin, and thiamethoxam to chironomid nicotinic acetylcholine receptors 

(nAChR). Using radioligand binding assays with [3H]-imidacloprid, nAChR density and binding 

affinity were compared between two different midge species (Chironomus riparius vs. 

Chironomus dilutus), at two different life stages (larval vs. adult), with the three different 

neonicotinoid insecticides of interest (imidacloprid vs. clothianidin vs. thiamethoxam). Results 

indicated that some (but not all) previously observed toxicological patterns likely result from 

differential nAChR expression and/or neonicotinoid binding. For example, larval organisms 

displayed significantly higher nAChR densities and binding affinities than adults and relative 

binding affinities of the three neonicotinoid compounds were similar to their relative toxicities in 

C. riparius and C. dilutus, indicating that life stage- and compound-specific toxicity is likely 

influenced by receptor binding characteristics. However, there were no significant differences in 

receptor binding or density between the two chironomid species, indicating that species-level 

differences in sensitivity are unlikely to be driven by differential nAChR binding profiles. 

Furthermore, comparison of Chironomidae binding data (generated in this study) to those 

previously derived for other insects (agricultural pests and non-target dipteran species) indicated 

that Chironomidae tend to display relatively high densities of nAChR that bind neonicotinoids 

with relatively high affinity. This provides one potential explanation for the marked sensitivity of 

Chironomidae to neonicotinoid insecticides. This chapter presents novel information, yielding 
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mechanistic explanations for previously observed patterns of neonicotinoid toxicity in 

Chironomidae and presents new techniques that can help guide future research focusing on 

evaluating the mechanistic effects of neurotoxic compounds in aquatic insect species.     

This chapter will be submitted to Aquatic Toxicology, under joint authorship with Karsten 

Liber (University of Saskatchewan), Christy A. Morrissey (University of Saskatchewan), Emiliane 

Taillebois (Université d’Orléans), Dennis Servent (Commissariat à l’Énergie Atomique et aux 

Énergies Alternatives), Nicholas Gilles (Commissariat à l’Énergie Atomique et aux Énergies 

Alternatives), and Steeve H. Thany (Université d’Orléans). 
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5.1 Introduction 

 Neonicotinoids are a group of neurotoxic insecticides, commonly applied to protect young 

crops against biting-piercing agricultural pests. These compounds display broad pest control 

spectra, low mammalian toxicity, and are highly versatile in application (Jeschke and Nauen, 

2008). Thus, over the past two decades, neonicotinoids have come to dominate global 

agrochemical markets (Jeschke et al., 2010). Originally based on the molecular structure of 

nicotine, neonicotinoids elicit toxicity in exposed insects by acting on nicotinic acetylcholine 

receptors (nAChR) (Kagabu, 2011). These compounds are structurally similar to the endogenous 

nAChR agonist acetylcholine (ACh) (Jeschke and Nauen, 2008), so they can bind directly to 

agonist binding sites, activating the receptor and propagating action potentials. However, unlike 

ACh, neonicotinoids are not degraded by acetylcholinesterase (Thany, 2011). Thus, once bound, 

these insecticides can continuously stimulate action potentials, progressively causing 

uncontrollable muscle tremors, cell energy exhaustion, paralysis, and eventually death in exposed 

insects (Tomizawa and Casida, 2004).  

Insect central nervous systems typically contain high densities of nAChRs (Jones and 

Sattelle, 2010; Millar and Denholm, 2007). Thus, along with being the primary molecular targets 

of neonicotinoids, nAChRs are likely to be highly important for normal physiological function. 

Responsible for fast transmission at neuronal and neuromuscular junctions (Jones and Sattelle, 

2010; Millar and Denholm, 2007), nAChRs are composed of five related subunits arranged around 

a central cation selective pore (Hendrickson et al., 2013; Uzman, 2001). Each subunit contains 

four hydrophobic transmembrane domains (TM1 - 4), and a large (~ 200 amino acid) N-terminal 

extracellular domain (Millar, 2003). Agonist binding sites are located at the interface of two 

adjacent subunits (Corringer et al., 2000). Insect nAChRs are difficult to stably express using in 
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vivo and in vitro techniques, thus they remain poorly characterized (Tomizawa and Casida, 2001). 

However, genetic analyses have indicated that insects tend to express a core group of nAChR 

subunits that is highly conserved across species (> 60% homology in amino acid sequence), and 

at least one species-specific subunit (< 20 % homology in amino acid sequence), which is thought 

to contribute to species-specific differences in nAChR function (Jones et al., 2007).  

Binding properties and densities of insect nAChRs are typically investigated by evaluating 

receptor response to standard agonists (e.g. α-bungarotoxin (α-BGT), and epibatidine) and/or well-

characterized neonicotinoid insecticides (e.g. imidacloprid (IMI), clothianidin (CLO), 

thiamethoxam (TMX)) (Taillebois et al., 2018). These neuro-pharmacological studies have 

indicated that there are different functional subtypes of insect nAChRs, which can influence 

affinity for and sensitivity to agonists like neonicotinoid insecticides (Matsuda et al., 2001), and 

that binding and receptor density tend to vary between taxonomic orders, individual species, and 

different life-stages (Crossthwaite et al., 2017; Eastham et al., 1998; Schloss et al., 1988; Taillebois 

et al., 2018). However, the majority of neonicotinoid research has focused on insect targets (i.e. 

agricultural pests, standard insect test species, and disease vectors) (Crossthwaite et al., 2017; 

Taillebois et al., 2018). In fact, there are no published studies in the open literature which have 

characterized the functional expression of nAChRs in non-target insect species that can be 

unintentionally exposed to neonicotinoids. Thus, it is currently unknown if these functional 

subtypes also exist in insect species and if functional expression of the nAChRs can influence 

affinity for and sensitivity to neonicotinoids.   

Of recent concern are the ecotoxicological effects of neonicotinoids on aquatic insects 

(Sánchez-Bayo et al., 2016). Due to their unique physicochemical properties (e.g. high water 

solubilities and poor degradation in light-limited environments) (Jeschke et al., 2010; Lu et al., 
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2015), neonicotinoids can easily move into nearby aquatic systems following agricultural 

application (Goulson, 2013). Thus, aquatic insects (who spend most their life cycles in aquatic 

systems) can be unintentionally subjected to repeated and/or prolonged exposures to these 

neurotoxic insecticides. One group of aquatic insects that has been shown to be markedly sensitive 

to neonicotinoids are Chironomidae (Raby et al., 2018a). Chironomidae are highly abundant, 

diverse, and ecologically important, representing food sources for birds and fish (Benoit et al., 

1997; Oliver, 1971). Therefore, it is important to comprehensively characterize the risk that 

neonicotinoids may pose to these sensitive and ecologically important insects. Recently, a large 

number of studies have focused on evaluating the impacts of neonicotinoids on Chironomidae (e.g. 

Cavallaro et al. 2017; Maloney et al. 2018a; Raby et al. 2018a). However, toxicological effects 

tend to vary depending on individual species, length of exposure, and neonicotinoid compound 

(Raby et al., 2018a, 2018b), which can make it difficult to predict population-level effects using 

laboratory-derived toxicity data (e.g. Maloney et al. 2018a).  

In this study, we aimed to move beyond standard ecotoxicity testing and characterize 

potential neuropharmacological drivers of these ecotoxicological patterns in Chironomidae. Our 

objectives were to: 1) use radioligand binding assays to characterize nAChR densities and binding 

profiles in two chironomid species (Chironomus riparius and Chironomus dilutus), at two distinct 

life-stages (larval and adult), using three common neonicotinoids (IMI, CLO, and TMX); and 2) 

compare our collected data to those previously reported for agricultural pests and standard test 

insects with differing neonicotinoid sensitivity. By investigating some of the underlying 

mechanisms driving the expression of neonicotinoid toxicity in non-target aquatic insects, this 

study focused on providing information that could both help inform future nAChR insecticide 

development and guide predictive risk assessments for neonicotinoids in aquatic environments.   
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5.2 Materials and Methods 

5.2.1 Experimental organisms 

 Chironomus dilutus were obtained as egg cases from Aquatic Biosystems Inc. (Fort 

Collins, CO, USA) and reared in an environmentally controlled chamber at the Toxicology Centre, 

University of Saskatchewan, Canada. Chironomus riparius were obtained as egg cases from the 

Centre Ecotox (EPFL ENAC IIE-GE, Lausanne, Switzerland) and grown in an environmentally 

controlled chamber at Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, 

Université d’Orléans, Orléans, France). Consistent with published protocols (Environment 

Canada, 1997), Chironomidae were reared in 50-L aquaria (3 - 6 egg cases/tank) under constant 

temperature (23 ± 1°C), photo-period (16 h light: 8 h dark), and illumination (500 - 1000 lux). 

Chironomus dilutus cultures were reared in aquaria containing 30 L of culture water, which 

consisted of carbon and bio-filtered Saskatoon municipal water, aerated in a 50-L Nalgene® carboy 

for >24 h prior to use. Chironomus riparius cultures were reared in aquaria containing 5 or 10 L 

of culture water, which consisted of reconstituted deioinized water (0.37 mM CaSO4, 0.45 mM 

CaCl2, 0.25 mM MgSO4, 1.14 mM NaHCO3, 0.05 mM KCl) (United States Environmental 

Protection Agency, 1994), aerated in a 20-L container for >24 h prior to use. For both 

Chironomidae cultures, water was renewed every 2 - 3 days and organisms were fed ~ 300 mg of 

Nutrafin® (Rolf C. Hagen Inc., Montreal, QC, Canada) fish food every 1 - 2 days. Water chemistry 

analyses were routinely completed, yielding the following results [mean ± standard deviation 

(SD)]: dissolved oxygen (DO) 6.91 ± 1.4 mg/L; temperature 21.05 ± 1.1 °C; unionized ammonia 

(NH3) 0.93 ± 1.88 mg/L; pH 7.93 ± 0.43; conductivity 418 ± 5 µS/cm; total hardness 115 ± 42 

mg/L as CaCO3; alkalinity 127 ± 39 mg/L as CaCO3; and total chlorine 0.01 ± 0.02 mg/L. 

Experimental organisms were isolated at two different life stages: larval and adult. Larvae were 
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siphoned directly from culture tanks when they were in approximately third-instar (17 days post-

hatch for C. dilutus and 12 days post-hatch for C. riparius) and removed from their cases prior to 

further analysis. Adult Chironomidae were removed from culture tanks following successful 

emergence (daily) via manual aspiration. Following isolation, experimental organisms at both life 

stages were flash-frozen in liquid nitrogen and stored at -80 °C until further use.  

5.2.2 Membrane protein preparation 

Membrane proteins were isolated from whole, frozen insects at the LBLGC, Université 

d’Orléans, France. To identify the optimal methods to use in membrane protein extraction, 

preliminary studies were completed using whole, frozen Chironomidae larvae (mixed culture) 

under a range of extraction conditions (Table A5.1) (Liu and Casida, 1993; Taillebois et al., 2018; 

Wiesner and Kayser, 2000). Membrane protein extraction was ultimately carried out using 

methods adapted from Wiesner and Kayser (2000) and Taillebois et al. (2014). The dissociation 

medium (pH = 7.0) was composed of 20 mM of sodium phosphate, 150 mM of sodium chloride, 

1 mM of ethylenediaminetetraacetic acid (EDTA), 0.1 mM of phenylmethyl sulfonyl fluoride 

(PMSF), 2 µg of pepstatin (dissolved in methanol), 2 µg chymostatin (dissolved in dimethyl 

sulfoxide (DMSO)), and 2 µg leupeptin (dissolved in deionized water). Experimental organisms 

were homogenized in dissociation medium with a pellet pestle motor (4°C, 6 mL/g of insects). 

Samples were then centrifuged for 10 minutes at 1000 g (4°C), and the supernatant collected 

(SN1). The pellet was then resuspended in dissociation medium (4°C, 3 mL/sample) and the 

solution homogenized with a pellet pestle motor (on ice). The homogenized sample was then 

centrifuged again (10 min, 1000 g, 4°C) and the supernatant collected (SN2). Supernatants (SN1 

and SN2) were combined and then ultra-centrifuged for 30 min at 43000 g (4°C). The precipitated 

pellet was then washed with cold dissociation medium (1 mL) and ultra-centrifuged again (30 min, 
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43000 g, 4°C). The final protein pellet was resuspended in cold dissociation medium (2-5 

mL/sample, 4°C). Total protein was quantified via PierceTM Coomassie (Bradford) Protein Assays 

(Thermo Scientific, Pierce Biotechnology, Rockford, IL, USA) using bovine serum albumin as the 

protein standard. Following quantification, membrane preparations were stored at -80°C until 

further use. 

5.2.3 Binding assays   

Binding assays were completed at the Service d’Ingénierie Moléculaire des Protéines 

(SIMOPRO), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) Paris 

Saclay, Gif-Sur-Yvette, France. Due to practical and financial constraints associated with 

radioligand binding assays, this study exclusively focused on characterizing the binding profiles 

of IMI-sensitive nAChRs (which are typically classified as the ‘neonicotinoid-sensitive’ receptor 

subtypes) (Crossthwaite et al., 2017; Taillebois et al., 2018). Thus, [3H]-imidacloprid ([3H]-IMI) 

(40 Ci/mmol, American Radiolabeled Chemicals, St. Louis, MO, USA) was exclusively used as 

the radiotracer for all binding experiments. Saturation and competition binding experiments were 

carried out under consistent experimental conditions. Binding reactions had a final volume of 200 

µL, and Tris-HCl (10 mM, pH = 7.4) was used as the reaction buffer. Reactions were incubated in 

96-well microplates for 3 h at room temperature (23°C) and terminated via rapid vacuum filtration 

using GF/C glass microfiber filter plates presoaked in 0.5% polyethyleneimine. Following reaction 

termination, filter plates were rapidly rinsed (< 20 s) with cold Tris-HCl buffer (10 mM, pH = 7.4) 

and dried. Scintillation liquid was added to each well (20 µL/well) (Perkin-Elmer, Waltham, MS, 

USA) and plates immediately counted on a β-counter (TopCount NXT, Hewlett Packard, San 

Diego CA, USA).  
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Saturation binding studies were carried out to characterize and compare receptor density 

and ligand ([3H]-IMI) affinity in experimental organisms. Larval saturation binding experiments 

were carried out by incubating 2.5 - 5 µg of total membrane protein (varying between independent 

experiments) with [3H]-IMI concentrations ranging from 6.8 pM to 20 nM, to obtain complete 

binding curves. Adult saturation binding experiments were carried out by incubating 10 µg of total 

membrane protein with [3H]-IMI concentrations ranging from 22.9 pM to 50 nM, to obtain 

complete binding curves. At each concentration of [3H]-IMI, non-specific binding (NS) was 

measured by adding 10 µM of unlabeled IMI to a subset of samples prior to membrane incubation. 

To account for potential quenching effects, blank filter (BF) binding was measured by adding only 

[3H-IMI] to a subset of wells. Each saturation test was replicated twice, with two total binding 

(BT), two NS replicates, and two BF replicates per [3H]-IMI concentration (n = 4 BT and 4 NS / 

[3H]-IMI concentration).  

Competition binding assays were carried out to characterize and compare receptor binding 

to three different neonicotinoid insecticides of ecotoxicological interest (IMI, CLO, TMX) in C. 

dilutus and C. riparius. Due to experimental constraints (e.g. assay cost and availability of protein) 

and ecotoxicological considerations (e.g. limited neonicotinoid exposure at adult life stages), 

competition binding assays were only carried out using larval organisms. Competitive binding 

experiments were carried out by incubating 2.5 - 10 µg of total membrane protein (varying between 

independent experiments) with a fixed concentration of radiolabeled [3H]-IMI (0.5 nM) and 

unlabelled competitors (IMI, CLO, TMX) at a range of concentrations to obtain complete 

inhibition curves. Concentrations of unlabeled competitors (C. riparius: IMI/CLO = 0.10 nM - 

217 nM, TMX = 0.64 nM - 38.23 µM; C. dilutus: IMI/CLO = 3.4 pM - 24 nM, TMX = 0.53 nM - 

3.51 µM) were chosen based on prior binding studies (Crossthwaite et al., 2017; Taillebois et al., 
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2018) and preliminary range-finding tests. To quantify non-specific binding (NS; addition of 10 

µM of unlabeled IMI), quenching effects (BF), and total binding (BTcomp; experimental controls, 

no added competitor), an additional set of reactions (n = 3 BT, 3 NS, and 2 BF / competition 

experiment) were run for each competition binding experiment. Each competition test was 

replicated twice, with two or three competitive binding (BC) replicates per concentration of 

unlabeled competitor (n = 5 - 6 BC / competitor concentration).  

5.2.5 Data analysis 

Analysis of data from binding experiments was performed using GraphPad Prism 5 

(GraphPad Software Inc., La Jolla, CA, USA). To account for differing quantities of protein used 

between independent experiments, binding data were normalized prior to analysis. In saturation 

binding assays, binding data were normalized to protein concentration (i.e. analyzed as pmol of 

bound 3H-IMI/mg protein). In competition binding assays, binding data were normalized to total 

binding in experimental controls (i.e. analyzed as % bound 3H-IMI relative to BC). Prior to 

analysis, binding data were corrected to account for biological activity of the radioligand (Figure 

A5.1) and evaluated for ligand depletion (if ligand depletion was > 30%, data point was considered 

unreliable thus was repeated and/or excluded from analysis).  

Normalized binding data were analyzed via non-linear regression. For saturation binding, 

maximal binding parameters (Bmax; indicative of receptor density) and dissociation constants (KD; 

indicative of ligand affinity) were derived by fitting specific binding data to Equation 5.1: 

𝑌 =  
𝐵𝑚𝑎𝑥 × [𝐿∗]

𝐾𝐷+[𝐿∗]
              (Eqn. 5.1) 

where Y represents the concentration of [3H]-IMI bound (pmol/mg protein) and [L*] represents 

the concentration of 3H-IMI (nM). Scatchard plots were used to further visualize model fits.  
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Briefly, the data were transformed and total amount of bound ligand ([Bound]) was plotted against 

the amount of bound ligand divided by its free concentration ([Bound]/[Free]). Axis intercepts 

were derived using previously computed saturation binding parameters (Y axis: X = 0, Y = 

Bmax/KD; X intercept: X = Bmax, Y = 0).    

For competition binding assays, the median inhibitory concentrations of unlabeled IMI, 

CLO, and TMX (IC50; indicative of functional strength of competitor) were calculated by fitting 

specific binding data to Equation 5.2, and inhibition coefficients (Ki; indicative of competitor 

affinity for receptor) were derived using the Cheng and Prusoff equation (Equation 5.3): 

𝑌 =  𝑌𝑚𝑖𝑛 +  
(𝑌𝑚𝑎𝑥− 𝑌𝑚𝑖𝑛)

(1+ 10(𝑥−log(𝐼𝐶50)))
              (Eqn. 5.2) 

𝐾𝑖 =  
𝐼𝐶50

1+(
[𝐿∗]

𝐾𝐷
)
              (Eqn. 5.3) 

where Y represents the percentage of bound 3H-IMI relative to the untreated control (BT in 

competition binding assay), x represents the logarithmic concentration of the competitor (log[ ], 

nM), IC50 represents the median inhibitory concentration of the competitor, [L*] represents the 

concentration of 3H-IMI (nM), and KD is the dissociation constant for 3H-IMI (Equation 5.1).  

Statistical analysis was performed using SigmaPlot 14 (Systat Software Inc., San Jose, CA, 

USA). One-way analyses of variance (ANOVA) analyses paired with Tukey’s post-hoc tests (α = 

0.05) were used to characterize statistical differences between binding parameters. For saturation 

binding assays, binding parameters (KD and Bmax) were compared between life stages (larvae vs. 

adult) and across Chironomidae species (C. dilutus vs. C. riparius). In competition binding assays, 

Ki and IC50 values were compared among neonicotinoid compounds (IMI vs. CLO vs. TMX) and 

between species (C. dilutus vs. C. riparius). 
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5.2.6 Comparison of Chironomidae nAChR binding profiles to other Insecta 

 To investigate whether the marked neonicotinoid sensitivity in Chironomidae is likely to 

be receptor mediated (i.e. arise due to differences in nAChR density or neonicotinoid binding), 

results obtained in saturation binding assays were compared to those previously derived for other 

insect species. Specifically, binding and toxicity data were collated from the published literature, 

and receptor densities, binding affinities, and IMI toxicity were compared between Chironomidae, 

agricultural pests, and other dipteran insects commonly used in efficacy/mode of action testing. 

Binding and nAChR density data were primarily derived from two recent literature reviews, 

Crossthwaite et al. (2017) and Taillebois et al. (2018), and included five hemipteran pests (Myzus 

persicae (green peach aphid), Acyrthosiphon pisum (pea aphid), Aphis craccivora (cotton aphid), 

Nephotettix cincticeps (green rice leafhopper), and Nilaparvata lugens (brown planthopper)) one 

orthoperan pest (Locusta migratoria (migratory locust)), two lepidopteran pests (Manduca sexta 

(tobacco hornworm) and Heliothis virescens (tobacco budworm)), and two dipteran test insects 

(Drosophila melanogaster (common fruit fly) and Musca domestica (housefly)). Hemipteran and 

orthopteran species tend to display two binding sites, one with high neonicotinoid affinity and one 

with low neonicotinoid affinity (Crossthwaite et al., 2017; Taillebois et al., 2018). For each 

species, binding data were averaged and presented as mean ± standard error (SE). Acute IMI 

toxicity data (24 - 96 h L/EC50; endpoint = lethality or immobility) were also collated from a range 

of studies and compared across insect species (Abbas et al., 2015; Abd-Ella, 2014; Eure et al., 

2018; European Food Safety Authority (EFSA), 2014; Frantzois et al., 2008; Jairin et al., 2005; 

Kaufman et al., 2006; Lagadic et al., 1993; Maloney et al., 2017; Matsuda et al., 2009; Nauen et 

al., 1998b, 1998a; Ohkawara et al., 2002; Parkinson et al., 2017; Posthuma-Doodeman, 2008; Raby 

et al., 2018a; Taillebois et al., 2014; Tang et al., 2013; Wang et al., 2009; White et al., 2007). To 
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ensure comparability to Chironomidae toxicity estimates, toxicity data were preferentially selected 

from studies that presented results in liquid concentration units (e.g. ng/L - mg/L). Due to the wide 

range of methods applied across test species (e.g. aquatic toxicity tests, leaf dip bioassays, and 

artificial feed assays), there was occasionally significant variability in reported toxicity values. 

Therefore, to be conservative, the lowest reported toxicity estimate was used to compare 

toxicological effects between Chironomidae and the other insect species. 

5.3 Results 

5.3.1 Saturation binding  

Complete saturation binding curves (mean ± standard error (SE); Figure 5.1) were 

obtained for C. riparius and C. dilutus at both larval and adult life stages, allowing for the 

derivation of binding affinity (KD) and receptor densities (Bmax) (presented as mean, (95 % 

confidence intervals); Table 5.1) for all tested organisms. Overall, experimental data provided 

good fits for saturation binding curves (R2 = 0.84 - 0.92) for both larval and adult binding assays 

(Figure 5.1, Table 5.1). Saturation binding assays revealed that both Chironomidae species 

displayed a single 3H-IMI binding site (Figure 5.1), which was supported by a lack of slope 

change observed in Scatchard representations (Figure 5.1, insets).  

In both Chironomidae, larval organisms expressed significantly higher densities of 

nAChRs than adult organisms (C. riparius, q = 15.1, p < 0.001; C. dilutus, q = 24.0, p < 0.001; 

Table 5.1). For C. riparius there was approximately a 3-fold difference in nAChR density 

between life stages (Figures 5.1A, C), with larvae displaying a Bmax of 5.10 (4.43 - 5.77) 

pmol/mg membrane protein and adults displaying a Bmax of 1.57 (1.37 - 1.78) pmol/mg 

membrane protein. For C. dilutus there was approximately a 7-fold difference in nAChR density 

(Figures 5.1B, D), with larvae displaying a Bmax of 6.52 (5.88 - 7.17) pmol/mg of membrane 
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protein and adults displaying a Bmax of 0.93 (0.80 - 1.05) pmol/mg membrane protein. Similarly, 

in both species, larval nAChR were found to have higher affinities for IMI than adults (Table 

5.1). For C. riparius, differences in receptor affinity were not statistically significant (q = 2.3, p 

> 0.05), with larvae displaying a KD of 0.20 (0.08 - 0.31) and adults displaying a KD of 0.49 

(0.23 - 0.74) (Table 5.1). However, for C. dilutus, differences in receptor affinity were 

statistically significant (one-way ANOVA, q = 4.9, p = 0.02), with larvae displaying a KD of 0.24 

(0.15 - 0.34) nM, and adults displaying a mean KD of 0.87 (0.42 - 1.32) (Table 5.1). 

Comparison of saturation binding parameters between C. dilutus and C. riparius 

indicated that there were only slight differences in nAChR density or IMI binding affinity 

between the two species (Table 5.1). At the larval stage there were minor, but statistically 

significant, species-level differences in receptor density, with C. dilutus displaying an 

approximately 1.2-fold higher density of nAChR than C. riparius (q = 6.1, p = 0.005; Figures 

5.1A, B) There were also species-level differences in receptor affinity at the adult life stage, with 

C. dilutus displaying an approximately 2-fold lower affinity for IMI than C. riparius (q = 4.9, p 

= 0.02; Figures 5.1C, D). No other binding parameters (e.g. larval affinity, adult density) were 

significantly different between the two chironomid species (q = 0.311 - 2.95, p > 0.05).   
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Figure 5.1 Saturation curves demonstrating specific binding of [3H]-imidacloprid (3H-IMI) 

to membrane protein extracted from two different Chironomidae species, at two different life 

stages; Chironomus riparius larvae (A) and adults (C), and Chironomus dilutus larvae (B) and 

adults (D). Binding (total vs. bound [3H]-IMI) are presented as mean ± standard error (SE) of 

four experimental replicates. Scatchard plots (insets) are presented to visualize model fits. 
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Table 5.1 Saturation binding of [3H]-imidacloprid to membrane protein of two 

Chironomidae (Chironomus riparius and Chironomus dilutus) at two different life-stages (larval 

and adult). * 

Species C. riparius C. dilutus 

Life-stage Larvae Adults Larvae Adults 

KD (nM)** 0.20 a 

(0.08 - 0.31) 

 

0.49 a 

(0.23 - 0.74) 

0.24 a 

(0.15 - 0.34) 

0.87 b 

(0.42 - 1.32) 

Bmax 

(pmol/mg) ** 

5.10 a 

(4.43 - 5.77) 

 

1.57 b 

(1.37 - 1.78) 

6.52 c 

(5.88 - 7.17) 

0.93 b 

(0.80 - 1.05) 

R2 0.85 0.84 0.92 0.88 
* Saturation binding parameters were estimated from four experimental replicates. Data presented as mean estimates, 

and 95% confidence intervals are presented in parentheses.  

** Binding parameters (KD and Bmax) compared across species and life-stages using one-way ANOVAs paired with 

Tukey’s post-hoc analyses. Significant differences (p < 0.05) are indicated with different letters. 
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5.3.4 Competition binding  

 Complete competition binding curves (mean ± SE, Figure 5.2) were obtained for each 

tested neonicotinoid, allowing nAChR binding affinity (Ki) and functional strength (IC50) 

(presented as mean (95 % CI)) to be derived for IMI, CLO, and TMX in both C. riparius and C. 

dilutus (Table 5.2). Overall, good fits were obtained for competition binding curves (R2 = 0.94 - 

0.97), indicating that derived parameters accurately reflected experimental data (Table 5.2). 

Competition binding studies indicated that in both larval Chironomidae there were 

compound-specific differences in nAChR binding affinity and functional strength. In C. riparius, 

IMI and CLO exhibited analogous binding profiles, displaying high affinities for nAChR (IMI Ki 

= 0.50 (0.39 - 0.65) nM vs. CLO Ki = 0.43 (0.30 - 0.62) nM; q = 1.1, p > 0.05) and relatively 

high functional strengths (IMI IC50 = 1.78 (1.38 - 2.31) nM vs. CLO IC50 = 1.53 (1.06 - 2.19) 

nM); q = 1.1, p > 0.05). TMX, on the other hand, exhibited a much weaker binding profile than 

IMI and CLO, with a significantly lower nAChR affinity (TMX Ki = 43.36 (35.09 - 53.50) nM; q 

= 30.6 – 31.7, p < 0.001) and a significantly lower functional strength than the other competitors 

(TMX IC50 = 153.90 nM (124.60 - 190.20); q = 30.7 – 31.8, p < 0.001) (Table 5.2, Figure 5.2A). 

In C. dilutus, competitive binding patterns were slightly different. CLO exhibited a significantly 

stronger binding affinity to nAChRs than IMI (CLO Ki = 0.21 (0.14 - 0.29) nM vs. IMI Ki = 0.42 

(0.33 - 0.54) nM; q = 4.6, p = 0.04) and displaying a significantly higher functional strength 

(CLO IC50 = 0.63 (0.43 - 0.90) nM vs. IMI IC50 = 1.29 (1.01 - 1.65) nM; q = 4.6, p = 0.03). 

Similar to that observed for C. riparius, TMX had a much weaker binding profile than either IMI 

or CLO in C. dilutus, exhibiting a significantly lower affinity (TMX Ki = 45.54 (31.44 – 65.97) 

nM; q = 29.4 - 34.0, p < 0.001) and functional strength than the other competitors (TMX IC50 = 

140.00 (96.90 – 203.40) nM); q = 29.5 - 34.0, p < 0.001) (Table 5.2, Figure 5.2B).  
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Figure 5.2 Competitive inhibition of [3H]-imidacloprid (3H-IMI) in response to differential 

exposure to imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (TMX).  Competitive 

inhibition was measured in membrane protein extracted from larval Chironomidae of two 

species: (A) Chironomus riparius, and (B) Chironomus dilutus. Data are presented as mean ± 

standard error (SE) of five or six experimental replicates (n = 5 - 6).  
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Table 5.2 Competitive binding of [3H]-imidacloprid and unlabelled neonicotinoids, 

imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (TMX), to membrane protein 

isolated from larvae of two Chironomidae species (Chironomus riparius and Chironomus 

dilutus) compared to their acute toxicities (48-96 h LC/EC50 values; endpoint = lethality or 

immobility). 

 

 

C. riparius  

 

C. dilutus 

   

 

Competitor 

 

IMI CLO TMX IMI CLO TMX 

IC50 (nM)* 

1.78 a 

(1.38 - 

2.31) 

1.53 a 

(1.06 - 

2.19) 

153.90 b 

(124.60 - 

190.20) 

1.29 a  

(1.01 - 

1.65) 

0.63 c 

(0.43 - 

0.90) 

 

140.00 b 

(96.90 - 

203.40) 

 

Ki (nM)* 

0.50 a 

(0.39 - 

0.65) 

0.43 a 

(0.30 - 

0.62) 

 

43.36 b 

(35.09 - 

53.50) 

 

0.42 a 

(0.33 - 

0.54) 

0.21 c 

 (0.14 - 

0.29) 

45.54 b  

(31.44 - 

65.97) 

R2 
 

0.97 

 

0.95 

 

0.97 

 

0.97 

 

0.94 

 

0.94 

 

Acute 

L/EC50 

(µg/L) ** 

 

12.94 

 

 

21.80 

 

 

55.50  

 

 

4.63  

 

 

3.30  

 

45.00 

       
* Competitive binding parameters (IC50 and Ki) were estimated from six experimental replicates, and 95 % 

confidence intervals are presented in parentheses. Ki calculations considered KD parameters derived in saturation 

binding experiments (KD C. riparius = 0.20; KD C. dilutus = 0.24) and concentration of 3H-IMI (0.51 nM). 

Significant differences in IC50 and Ki were evaluated using one-way ANOVA (p < 0.05) and are indicated by 

different letters. 

** Acute toxicity values presented are derived from regulatory risk assessments (used in species sensitivity 

distributions, SSDs) carried out by the European Food Safety Authority and the Pest Management Regulatory 

Agency (PMRA, Health Canada).) (European Food Safety Authority (EFSA), 2014; Pest Management Regulatory 

Agency, 2018b, 2018c). 
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There were limited differences in neonicotinoid binding between the two Chironomidae 

(Table 5.2; Figure 5.2). For IMI and TMX, competition binding assays indicated that there were 

no significant differences in affinity (q = 0.3 - 1.2, p > 0.05) or functional strength (q = 0.6 - 2.1, 

p > 0.05) between C. riparius and C. dilutus. However, minor species-specific differences in 

functional strength and binding affinity were observed for CLO, which had a significantly higher 

affinity for nAChRs (Ki C. dilutus = 0.21 (0.14 - 0.29) nM vs. Ki C. riparius = 0.43 (0.30 - 0.62) 

nM; q = 4.9, p = 0.02) and functional strength (IC50 C. dilutus = 0.63 (0.43 - 0.90) vs. IC50 C. 

riparius = 1.53 (1.06 - 2.19); q = 5.9, p = 0.004) in larval C. dilutus than in larval C. riparius.  

5.3.5 Receptor binding, affinity, and toxicity of imidacloprid across different Insecta 

Differences in IMI affinity (KD; mean ± SE), nAChR density (Bmax; mean ± SE), and IMI 

acute toxicity (L/EC50) among Chironomidae, agricultural pests, and other dipteran test insects are 

presented in Figure 5.3 and Table A5.2. Chironomidae nAChRs appeared to have relatively high 

affinities for IMI (KD = 0.2 - 0.24 nM), exhibiting KD values that were markedly lower than any 

other previously tested Diptera (KD = 2.96 ± 0.94 - 4.04 ± 0.98 nM) or Lepidoptera (KD = 1.30 -

1.51 nM), and that fell within the range of high affinity binding sites observed in Hemiptera (KD 

= 0.0035 - 0.9 ± 0.3 nM) and Orthoptera (KD = 0.18 ± 0.02 nM) (Figure 5.3A). Furthermore, 

Chironomidae displayed nAChR at much higher densities (Bmax = 5098 - 6522 fmol/mg) than other 

Diptera (Bmax = 523 ± 74 - 1018 ± 325 fmol/mg), Lepidoptera (Bmax = 134 - 150 fmol/mg), 

Orthoptera [Bmax = 290 ± 46 fmol/mg (low affinity sites); 131 ± 22 fmol/mg (high affinity sites)] 

or Hemiptera [Bmax = 0.43 - 1151 ± 125 fmol/mg (low affinity sites); 0.0035 - 0.9 ± 0.3 fmol/mg 

(high affinity sites)) (Figure 5.3B). Finally, prior studies indicated that Chironomidae were much 

more sensitive to IMI than any of the other insect species, displaying acute toxicity values (L/EC50 

= 4.6 - 12.9 µg/L) much lower than observed in Hemiptera (L/EC50 = 30 - 1160 µg/L) and 
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Lepidoptera (L/EC50 = 976 µg/L), as well as other dipteran insects (L/EC50 = 194.7 - 6700 µg/L) 

(Figure 5.3C). Unfortunately, the toxicological information on L. migratoria and H. virescens is 

currently unavailable. Thus, a direct comparison of neonicotinoid toxicity could not be carried out 

between these two pest species and the tested Chironomidae.   

5.4 Discussion 

5.4.1 Species- and Life-Stage Specific Differences in Receptor Density and Binding Affinity  

Chironomidae are a highly diverse taxonomic family, composed of an estimated 1231 

different species (Interagency Taxonomic Information System (ITIS), 2019), which display 

different sensitivities to neonicotinoid compounds. For example, C. dilutus and C. riparius have 

been shown to demonstrate 2- to 21-fold differences in IMI toxicity (e.g. acute L/EC50 ranges: C. 

riparius = 12.94 - 55.20 µg/L vs. C. dilutus = 2.65 - 5.75 µg/L) (European Food Safety Authority 

(EFSA), 2014; Maloney et al., 2017; Morrissey et al., 2015). As IMI is thought to primarily elicit 

toxicity by binding to and activating nAChRs, one logical hypothesis is that these species-specific 

differences are driven by differential IMI binding to nAChR or expression of nAChR at different 

densities. Through saturation binding analysis, this study investigated whether nAChR density or 

binding characteristics were likely to significantly influence species-level differences in IMI 

toxicity. C. riparius and C. dilutus were found to display similar densities of nAChR that bound 

to IMI with similar affinities. Although there were species-specific differences at some life stages 

(e.g. nAChR density was higher in larval C. dilutus than in larval C. riparius, and receptor affinity 

was lower in adult C. dilutus than in adult C. riparius), they were relatively limited in magnitude 

(e.g. 1.2- to 2-fold differences in density and expression, respectively).  
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Figure 5.3 Species-level differences in (A) nicotinic acetylcholine receptor (nAChR) affinity 

for imidacloprid (IMI) (mean ± standard error (SE) a; log-scale), (B) nAChR density (mean ± SE 

a; log-scale); and (C) acute IMI toxicity (24 - 96 h L/EC50, endpoint = immobility or lethality; 

log-scale) amongst Chironomidae, other dipteran test insects, and agricultural pest species 

(Hemiptera, Orthoptera, and Lepidoptera) b. 

* n.a. = Data were unavailable or unsuitable for direct comparison to other insect species.    

a Sample sizes (n) used to derive SE are presented in Table A5.2.  

b Low and high affinity sites are presented separately for hemipteran and orthopteran pests.  
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The results of this study suggest that for C. riparius and C. dilutus, differences in IMI 

toxicity are unlikely to be driven by differences in the densities or binding properties of expressed 

nAChRs. Thus, it is likely that differences in IMI toxicity are the result of other species-level 

differences. For example, it is possible that there are species-specific differences in neonicotinoid 

metabolism or elimination. In insects, neonicotinoids are thought to be first metabolized by 

cytochrome P450 enzymes (CYP; Phase I) and then conjugated by various enzymes, dependent on 

the species (Phase II) (Simon-Delso et al., 2015). Thus, variation in CYP or Phase II enzyme 

expression between C. dilutus and C. riparius could result in differential IMI activity. In fact, some 

studies have indicated that there are metabolic differences between C. riparius and C. dilutus. For 

example, glutathione-s-transferase (GST) activity and expression have been shown to differ 

between these two Chironomidae, with C. riparius displaying lower GST activity (in response to 

1-chloro-2,4-dinitrobenzene exposure) and more GST transcripts than C. dilutus (Katagi and 

Tanaka, 2016). Furthermore, in vivo metabolism studies have demonstrated that C. riparius and 

C. dilutus differentially metabolize the insecticide chlorpyrifos, demonstrating different CYP-

mediated metabolic reactions (Katagi and Tanaka, 2016). Therefore, it is possible that differences 

in IMI toxicity are the result of species-specific differences in neonicotinoid metabolism and/or 

elimination. However, as neonicotinoid metabolism has yet to be comprehensively characterized 

for and/or compared across different chironomid species, further studies are required to determine 

whether these factors are likely to drive species-level differences in IMI toxicity.  

 This study also investigated life-stage level differences in IMI binding characteristics and 

nAChR density. Both nAChR density and IMI binding affinity were found to be significantly 

influenced by life stage, with adult organisms expressing nAChRs at significantly lower densities 

than larvae (e.g. nAChR density was 3 - 7-fold lower in adults than larvae), and adult nAChRs 
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displaying significantly lower affinities for IMI than larval nAChR (e.g. affinity was 2.5 - 3.6-fold  

lower in adults than larvae). This indicates that throughout their development Chironomidae likely 

undergo significant neurophysiological changes, ultimately influencing nAChR expression and 

function. In terms of direct neonicotinoid toxicity, this information has limited significance. Adult 

Chironomidae tend to have short life spans (relative to other developmental stages), limited contact 

with neonicotinoid-contaminated aquatic environments, and reduced feeding capabilities (Oliver, 

1976). Thus, adults are unlikely to be directly exposed to neonicotinoids. In fact, as there is 

currently no published data examining the toxicity of neonicotinoids to adult Chironomidae, the 

life-stage level differences in nAChR density and IMI-affinity cannot be directly linked to 

differences in neonicotinoid toxicity. However, this information can potentially help explain some 

of the toxicological patterns observed for neonicotinoids in the aquatic portions of Chironomidae 

life cycles. Previous chronic toxicity studies with larval C. dilutus have noted that reduction in 

emergence was often linked to death at the pupal life stage (Cavallaro et al. pers. comm.) indicating 

that Chironomidae undergoing metamorphosis may be particularly sensitive to neonicotinoid 

exposure. Results presented here suggest that throughout their life cycles, C. riparius and C. 

dilutus can undergo developmental changes that influence binding properties and nAChR 

expression. Thus, it is possible that pupal Chironomidae express higher concentrations of IMI-

sensitive nAChR with higher affinities for IMI and other neonicotinoids, enhancing their 

sensitivity to these insecticidal compounds. Unfortunately, due to difficulties associated with the 

pupae isolation and membrane protein extraction, we were unable validate this hypothesis. Thus, 

further studies are necessary to characterize the role that nAChR expression and binding activity 

play in neonicotinoid toxicity at different stages of chironomid development.   
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5.4.2 Relative Binding Affinities of Imidacloprid, Clothianidin, and Thiamethoxam  

Neonicotinoids are a group of seven neurotoxic insecticides, encompassing a range of 

systemic compounds that can be toxic to sensitive aquatic insects like Chironomidae. Within this 

class of insecticides, IMI is considered the ‘classic’ (first generation) neonicotinoid compound, as 

it was the first compound to be commercially produced and, historically, has been the most widely 

used (Jeschke and Nauen, 2008). However, in recent years other systemic (second generation) 

neonicotinoids (i.e. clothianidin (CLO) and thiamethoxam (TMX)) have also become dominant 

global agrochemicals. In fact, recent environmental monitoring studies have indicated that CLO 

and TMX are more likely to be detected in freshwater systems (Hladik and Kolpin, 2015; Main et 

al., 2014), with TMX currently representing the most commonly detected neonicotinoid in western 

Canadian agricultural regions (Malaj et al. pers comm.). Prior studies have demonstrated that there 

are significant compound-specific differences in neonicotinoid toxicity to C. dilutus and C. 

riparius (European Food Safety Authority, 2013b; Maloney et al., 2017; Pest Management 

Regulatory Agency, 2018b, 2018a; Raby et al., 2018a). However, limited studies have focused on 

why these compound-specific toxicological differences occur in these non-target aquatic species. 

Thus, along with IMI, this study characterized and compared the binding profiles of CLO and 

TMX in larval Chironomidae and found that compound-specific toxicity differences correlated 

with differences in nAChR binding (Table A5.3). For example, TMX, which elicits similar 

toxicities in C. riparius and C. dilutus (i.e. 48 - 96 h L/EC50s: C. dilutus = 45.0 µg/L vs. C. riparius 

= 55.50 µg/L) (Pest Management Regulatory Agency, 2018b), was found to have similar affinities 

for IMI-sensitive nAChRs in these two insect species. Similarly, CLO, which has been found to 

be more toxic to C. dilutus than C. riparius (i.e. 48 - 96 h L/EC50s; C. dilutus = 3.30 µg/L vs. C. 

riparius = 21.80 µg/L) (Pest Management Regulatory Agency, 2018c), was found to have a higher 
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affinity for C. dilutus nAChRs. In addition, compound-specific differences in toxicity were in 

accordance with their relative affinities for chironomid nAChR. In previous toxicity studies, IMI 

has been shown to display the highest toxicity to C. riparius and C. dilutus (i.e. 48 - 96 h L/EC50s: 

C. dilutus = 4.63 µg/L; C. riparius = 12.94 µg/L), followed closely by CLO (i.e. 48 - 96 h L/EC50s: 

C. dilutus = 3.30 µg/L; C. riparius = 21.80 µg/L), and then finally TMX which is much less toxic 

than the other two compounds (i.e. 48 - 96 h L/EC50s: C. dilutus = 45.0 µg/L; C. riparius = 55.50 

µg/L) (Canadian Council of Ministers of the Environment 2007; Maloney et al. 2018; Pest 

Management Regulatory Agency 2018a, c). Correspondingly, CLO tended to bind to chironomid 

nAChR with the highest affinity, followed closely by IMI, and then finally TMX, which 

demonstrated a much lower binding affinity than the other two compounds (i.e. relative binding 

affinity: CLO ≥ IMI >> TMX). These findings confirm that binding affinity likely plays a 

significant role in compound-specific differences in neonicotinoid toxicity. Furthermore, these 

findings indicate that binding affinity could potentially be used to predict the relative toxicities of 

IMI, CLO, and TMX to Chironomidae. However, there were slight differences in relative 

neonicotinoid toxicity and relative binding affinity patterns. For example, prior studies have 

demonstrated that TMX is between 2.5 and 13-fold less toxic than IMI or CLO in C. riparius and 

C. dilutus, but in this study TMX binding affinity was found to be 87 - 217-fold lower than that of 

IMI or CLO (Table A5.3). This could be because this study only used one radiolabeled nAChR 

agonist ([3H]-IMI). Previous binding studies with radiolabeled α-bungarotoxin ([125I-α-BGT), 

have identified distinct nAChR binding sites in D. melanogaster, Myzus persicae, Aphis 

craccivora, and Acyrthosiphon pisum with different neonicotinoid binding affinities (Taillebois et 

al., 2014; Tomizawa et al., 2005; Wiesner and Kayser, 2000; Zhang et al., 2004). These insects 

display both α-BGT sensitive nAChR, which can competitively bind CLO and TMX (but not IMI), 
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and α-BGT insensitive nAChR, which can competitively bind all three compounds (e.g. Taillebois 

et al., 2014). Similarly, binding studies with radiolabeled thiamethoxam (3H-TMX) have 

demonstrated that (at least in aphids) there are distinct nAChR binding sites for IMI and TMX, 

which are highly specific to each compound (Kayser et al., 2016). Thus, it is possible that the 

binding affinities obtained in this study did not perfectly correlate with toxicity because the use of 

a single radiolabeled ligand could not fully capture the binding profiles of these three neonicotinoid 

compounds. Indeed, future studies should focus on expanding the nAChR binding profile 

presented here by carrying out binding assays with other relevant agonists (e.g. α-BGT or 

epibatidine). Not only could this enhance our understanding of how neonicotinoids like IMI, CLO, 

and TMX exert their toxic effects in Chironomidae, but it could also help explain previously 

observed mixture effects (Maloney et al. 2017, 2018) and be potentially used to construct 

predictive models describing the ecotoxicity of different neonicotinoids to sensitive aquatic 

insects.  

5.4.3 Receptor Densities and Neonicotinoid Binding in Chironomidae Relative to Other Insects 

 The expression and neonicotinoid binding characteristics of insect nAChRs have been 

widely investigated in agricultural pest species (e.g. aphids, planthoppers, locusts, budworms, and 

hornworms) and standard test insects (e.g. fruit flies and houseflies) (Taillebois et al., 2018). Thus, 

most available data concerning the expression and activity of insect nAChRs have been derived 

from terrestrial insects, which may not be comparable to Chironomidae in terms of physiology and 

life history traits. Regardless, this study found that some of the binding characteristics of 

chironomid nAChR were similar to what has been previously observed for other taxonomically 

related species. For example, as observed with other dipteran species like D. melanogaster (fruit 

fly), M. domestica (house fly), and Lucilia sericata (blow fly) (Lind et al., 1998; Liu and Casida, 
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1993; Ohkawara et al., 2002; Taillebois et al., 2018), C. riparius and C. dilutus expressed IMI-

sensitive nAChR with only one binding site. This finding supports a current hypothesis in 

invertebrate neurobiology: that there are distinct and predictable differences in the expression and 

activity of insect nAChR between taxonomic orders, with Hemiptera and Orthoptera expressing 

two distinct IMI binding sites (high and low affinity) and other orders (e.g. Diptera and 

Lepidoptera) expressing a single IMI binding site (Crossthwaite et al., 2017; Taillebois et al., 

2018). However, due to key differences in membrane protein extraction methodology (e.g. the 

typical use of Triton-X in dipteran studies, but not with other insects), there is still some doubt 

surrounding the certainty of this hypothesis (Crossthwaite et al., 2017). In this study, the membrane 

protein extraction methods were primarily derived from aphid radioligand binding studies 

(Taillebois et al., 2014; Wiesner and Kayser, 2000). Thus, it is unlikely that the membrane protein 

techniques applied significantly influenced our characterization of nAChR binding profiles. 

Furthermore, in both C. riparius and C. dilutus and at both larval and adult life stages only a single 

IMI binding site was characterized. Thus, it is highly likely that (as hypothesized) these dipteran 

species express nAChR with a single binding site. However, it must be acknowledged that 

Chironomidae comprise a large taxonomic group, and only two species were used in this study. 

Therefore, further data are required before a conclusion can be made about whether (as observed 

with other dipteran species) taxonomic-mediated differences in nAChR binding properties apply 

for this insect family.  

 Due to the breadth of data that has been published concerning the pharmacological effects 

of neonicotinoids in different invertebrate species, the IMI binding properties and nAChR densities 

derived for Chironomidae could be compared to those previously characterized for agricultural 

pests and other commonly used test insects. Furthermore, through a comprehensive literature 
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search IMI toxicity data could be collated across these different insect species. This comparison 

has yielded some potentially important insights into the relative sensitivity of Chironomidae to 

neonicotinoids. Both C. riparius and C. dilutus were found to display IMI binding affinities that 

fell within the range of high-affinity binding sites previously characterized in hemipteran and 

orthopteran species (e.g. aphids, planthoppers, and locusts). However, whereas these agricultural 

pests tend to display low densities of high affinity receptors, the Chironomidae studied here 

displayed significant densities of high affinity, IMI-sensitive nAChRs. The presence of relatively 

high densities of high affinity IMI-sensitive receptors could (at least partially) explain why IMI 

tends to be highly toxic to these aquatic organisms. As neonicotinoids are thought to primarily act 

on nAChRs (Tomizawa and Casida, 2003), it is possible that they are particularly efficacious in 

Chironomidae because there is a plethora of neuronal receptors that they can efficiently bind to, 

enhancing the likelihood of a toxic effect. This hypothesis is supported by recent studies focused 

on insecticide resistance in agricultural pests. Loss of high affinity IMI binding sites has been 

shown to result in IMI resistance, and entire populations of neonicotinoid resistant Hemiptera (e.g. 

M. persicae and Aphis gossypii) have been shown to have limited (or zero) expression of these 

high affinity nAChRs (Bass et al., 2011; Crossthwaite et al., 2017). However, Chironomidae 

display other, specific traits that likely enhance their sensitivity to neonicotinoid exposure. For 

example, Chironomidae spend the majority of their life cycle at the sediment-water interface and 

tend to be spatially  static (Benoit et al., 1997), thus are at a high risk for continuous and/or repeated 

neonicotinoid exposure during sensitive developmental stages. In addition, larval Chironomidae 

are thought to have large nervous systems, that make up a considerable proportion of their bodies 

(Ospina-Pérez et al., 2019; Richardi et al., 2015). Thus, it is likely that at larval and pupal life-

stages (when these insects are highly susceptible to neonicotinoid exposure), neonicotinoids have 
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more significant neurotoxic effects. Finally, Chironomidae could display marked differences in 

neonicotinoid metabolism (e.g. enzyme expression and/or cytochrome P450 activity) compared to 

other insect species. Although no published studies have directly compared metabolic enzyme 

activity in Chironomidae to that of other insects, various studies have described insecticide 

metabolism in aquatic insects and amphipods (e.g. Hyallela spp. and Daphnia magna) (Katagi and 

Tanaka, 2016). These studies have demonstrated that there can be differences in the concentrations 

and activities of different Phase I and Phase II metabolic enzymes (e.g. CYP, aldrin epoxidase, 

phosphotriesterase, and glutathione-S-transferase) amongst aquatic insects and between insects 

and amphipods (Katagi and Tanaka, 2016). Therefore, it is likely that these differences also exist 

between Chironomidae and terrestrial species (e.g. agricultural pests and other dipteran insects), 

contributing to the toxicological differences between these insects. Since the present study focused 

on nAChR density and binding characteristics, it was not possible to explore other factors that may 

contribute to chironomid sensitivity to neonicotinoids like IMI. However, as these potential 

physiological, behavioural, and metabolic differences likely play significant roles in neonicotinoid 

effects, future studies should focus on characterizing and comparing these differences amongst 

insect species, so that we can gain a better understanding of the species-level differences in 

neonicotinoid toxicity. 

5.4.4 Potential Ecotoxicological Implications for nAChR-Selective Insecticides 

Due to their widespread use and physicochemical characteristics (e.g. high water solubility, 

high leaching potential, minimal photodegradation in light-limited settings) neonicotinoids are 

highly prevalent in aquatic environments near agricultural areas (Morrissey et al., 2015). 

Therefore, aquatic organisms in such areas are likely to be continuously or repeatedly exposed to 

these insecticidal compounds (Main et al., 2014). However, this was the first study (in the 
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published literature) to investigate receptor binding characteristics of neonicotinoid insecticides in 

an aquatic insect species. Understanding the actions of neonicotinoids at the receptor level is 

important, as it allows us to gain a better understanding of the ecotoxicity of these insecticidal 

compounds in non-target organisms. Through this study it was possible to derive some conclusions 

concerning how neonicotinoid binding at the nAChR can influence neonicotinoid toxicity in 

Chironomidae. In addition, this study presents novel information that likely has broader 

ecotoxicological implications for nAChR-selective insecticides. One of the major findings was 

that both Chironomidae species (C. riparius and C. dilutus) expressed high densities of nAChR 

with high neonicotinoid binding affinities. Thus, it is possible that Chironomidae will be highly 

sensitive to other (non-neonicotinoid) nAChR-selective insecticide products. Indeed, any products 

that also act on the neonicotinoid-sensitive nAChR subtypes characterized here will likely 

demonstrate a high potential to elicit adverse ecotoxicological effects in these non-target aquatic 

insects. This requires further consideration, as insect nAChRs appear to be a current mechanistic 

focus in agrochemical development, with several novel nAChR-selective insecticide classes (e.g. 

butenolides, sulfoximines, and mesionic compounds) having recently been introduced into the 

global market (Ihara et al., 2017). Although it is not possible to directly use the present data to 

predict the toxicity of these newer nAChR-selective insecticides, the present findings provide some 

support for conducting further testing to determine how these newer insecticides may influence 

Chironomidae inhabiting agricultural watersheds. This is especially relevant since neonicotinoids 

are currently undergoing regulatory review or removal due to their adverse impacts on aquatic 

insects and the ecosystems that they inhabit (Health Canada 2018b; Pest Management Regulatory 

Agency 2018b, c). Therefore, to ensure adequate and continuous protection of sensitive and 

ecologically important aquatic insects like Chironomidae, the information presented here should 
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be taken under consideration when both evaluating the likely environmental impacts of nAChR 

agonists such as neonicotinoids and their potential replacement products during initial product 

registration, regulation, and risk assessment.  
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CHAPTER 6: NEONICOTINOID INSECTICIDES: WHAT WE HAVE 

LEARNED AND WHERE WE CAN GO FROM HERE 

6.1 Introduction 

Benthic macroinvertebrates are an extremely diverse group of organisms that play 

important roles in aquatic ecosystems. Present in a wide range of environments (e.g. freshwater 

and marine systems, lotic and lentic environments, and geographic regions ranging from the near-

Arctic to the near-Antarctica), these aquatic organisms represent important food sources for 

higher-tier predators like fish and birds, and help maintain microbial communities and nutrient 

cycling by mixing surface sediments and breaking down organic detritus (Wallace and Webster, 

1996). Due to specific life-history characteristics and habitat preferences, benthic 

macroinvertebrates are often at risk of continuous and/or repeated exposure to aquatic 

contaminants. Over the last ten years, one group of aquatic contaminants that has become a concern 

is neonicotinoid insecticides. Recent evidence has indicated that due to high rates of application 

and widespread use, neonicotinoids are present in aquatic systems, both as single compounds and 

in mixtures (Hladik et al., 2018b; Main, 2016; Main et al., 2014). Furthermore, neonicotinoids 

have been shown to demonstrate minimal degradation in light-limited environments (e.g. > 8 cm 

of pond water) (Lu et al., 2015), and thus can persist in aquatic zones that benthic 

macroinvertebrates are likely to inhabit (e.g. the sediment-water interface). Indeed, previous 

studies have shown that neonicotinoids can display long terrestrial half-lives (up to 6931 d 

(Goulson, 2013)) and remain in aquatic systems for multiple agricultural seasons (Main et al., 

2014), indicating their propensity for repeated/chronic contamination of aquatic systems. Of the 

wide range of benthic macroinvertebrates, aquatic insects appear to display the highest sensitivity 

to neonicotinoids (Morrissey et al., 2015). In particular, Chironomidae (aquatic midges) are 

markedly susceptible to neonicotinoid toxicity (Raby et al., 2018a). However, despite the 
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likelihood of neonicotinoid mixtures existing in contaminated environments, neonicotinoid 

mixture toxicity has not been previously characterized in Chironomidae. Furthermore, despite their 

marked sensitivity to these neurotoxic compounds, the pharmacological drivers of neonicotinoid 

toxicity have not been investigated in these aquatic insects. Thus, the specific goals of this thesis 

were to evaluate the toxicity of neonicotinoid mixtures to Chironomidae, at both an individual 

species (acute and chronic) and a population level, and to explore some of the mechanisms behind 

neonicotinoid toxicity by evaluating species-, life stage-, and compound-specific differences in 

neonicotinoid binding to nicotinic acetylcholine receptors (nAChR) in these sensitive aquatic 

organisms.   

6.2 Synthesis, major findings and study limitations  

6.2.1 Acute, cumulative toxicity of neonicotinoid mixtures  

 Previous studies have indicated that neonicotinoids often exist in mixtures in aquatic 

environments (Hladik and Kolpin, 2015; Main et al., 2014). However, limited studies have focused 

on evaluating the toxicity of these mixtures to non-target aquatic insects. Thus, Chapter 2 focused 

on characterizing the acute toxicities of binary and ternary mixtures of three neonicotinoids 

commonly detected in aquatic systems (imidacloprid (IMI), clothianidin (CLO), and 

thiamethoxam (TMX)) to larval Chironomus dilutus, focusing on lethality as a toxicological 

endpoint. Under acute exposure scenarios, the cumulative toxicities of some mixtures (e.g. IMI-

CLO, IMI-TMX, and IMI-CLO-TMX) were found to deviate from direct additivity, with IMI-

CLO-TMX mixtures demonstrating synergism and IMI-CLO and IMI-TMX displaying dose-ratio 

dependent toxicity (displaying synergism at high concentrations of IMI, and antagonism at higher 

concentrations of the other mixture constituent). However, in general, these deviations from direct 

additivity were relatively small (e.g. synergistic effects = 5 - 30 % increases in survival; 
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antagonistic effects =  2 - 19 % decreases in survival), falling well below synergism cutoffs 

previously defined by Cedergreen (2014) (e.g. synergism considered substantial and reproducible 

if there is an overall ≥ 2-fold difference between effect and CA model) and the European Food 

Safety Authority (2013a) (e.g. synergism considered substantial and reproducible if there is an 

overall ≥  5-fold difference between effect and CA model). Therefore, although these 

neonicotinoid mixtures could elicit synergism under some exposure scenarios, there was no overall 

trend indicating that neonicotinoid mixtures are likely to be substantially and/or reproducibly 

synergistic in C. dilutus. However, there were a few limitations in this acute mixture toxicity study. 

The study design used (MIXTOX) favours the examination of a wide range of mixture 

concentrations over experimental replication. Therefore, there was a large amount experimental 

variation, especially in the partial response ranges (i.e. lethality between 1 and 99 %). Although 

this is unlikely to dramatically influence overall conclusions about the magnitude of deviation 

from additivity, this high variation could have masked some more subtle mixture toxicity 

interactions. Furthermore, due to the number of tests required and the complexity of running fixed-

ray design mixture tests, these tests were not repeated. Therefore, it is difficult to determine 

whether results are exactly reproducible, or whether further testing with neonicotinoid mixtures of 

slightly different compositions (e.g. different cumulative concentrations or mixture constituent 

ratios) would yield slightly different results. Indeed, to ensure that all potential mixture effects are 

adequately captured and to increase the certainty associated with reported mixture effects, future 

neonicotinoid (or other) mixture studies should use a higher number of replicates (i.e. > 2) in each 

mixture toxicity test, and aim to carry out multiple full test replicates for each mixture assessed.  
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6.2.3 Chronic toxicity of neonicotinoid mixtures and acute-to-chronic mixture extrapolation  

Due to their distinct physicochemical characteristics, neonicotinoids can persist in light-

limited areas of aquatic ecosystems (Lu et al., 2015). Thus, aquatic insects like Chironomidae can 

be chronically exposed to neonicotinoids and their mixtures. However, limited studies have 

focused on evaluating the cumulative chronic toxicity of neonicotinoid mixtures to these sensitive 

aquatic insects. Furthermore, although acute toxicity data are often used to predict chronic toxicity 

trends, no published studies have focused on evaluating whether mixture toxicity trends could be 

extrapolated from acute to chronic exposure scenarios in Chironomidae. Thus, Chapter 3 was 

focused on characterizing the chronic toxicities of binary and ternary mixtures of IMI, CLO, and 

TMX to larval C. dilutus, focusing on successful emergence as the toxicological endpoint. Under 

chronic exposure settings, all neonicotinoid mixtures were found to display statistically-significant 

deviations from directly additive toxicity (CA), with binary mixtures demonstrating dose-ratio 

dependent toxicities and ternary mixtures displaying antagonism. However, although these effects 

were statistically significant, they were relatively limited in magnitude, (e.g. 2 - 13 % synergism 

and 2 - 5 % antagonism) and only occurred under certain exposure conditions (e.g. synergism only 

occurred at relatively high concentrations of CLO (IMI-CLO) or TMX (CLO-TMX, IMI-TMX) 

and antagonism only occurred at relatively high concentrations of IMI (IMI-CLO, IMI-TMX)). 

Comparison of these chronic mixture toxicity estimates to those derived from acute studies 

(Chapter 2), indicated that chronic mixture toxicity for binary neonicotinoid mixtures could likely 

be extrapolated from acute exposure data with reasonable accuracy. Furthermore, neither single 

compounds nor neonicotinoid mixtures elicited statistically significant shifts in the sex-ratio of 

emerged adults.  
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There were some limitations in the study design that could have influenced derived results. 

Previous studies have indicated that chronic tests with C. dilutus can take up to 50 days (total) 

under control settings, with contaminant-treated populations occasionally taking longer (Benoit et 

al., 1997). Due to practical constraints, chronic exposure studies were limited to 28 days (ending 

35 days into the C. dilutus life cycle). This resulted in reduced overall emergence (i.e. the mean (± 

standard deviation) emergence in control treatments was 64.6 ± 9.5 % across all 28 d chronic 

studies vs. > 90 % emergence in controls in previous 40 d studies (Cavallaro et al., 2017)) and 

could have limited the capacity of the study to capture the full life-cycle effects of neonicotinoids 

and their mixtures in exposed Chironomidae. This could have influenced the study in two major 

ways. First, in all the chronic MIXTOX models, the fit was worse than for the acute models 

(typically R2 < 0.80). Indeed, despite an increased number of replicates (n = 3/concentration vs. n 

= 2/concentration in acute exposures), the variability was much higher in the chronic mixture 

studies than equivalent acute tests. It is likely that this enhanced study variability was (at least 

partially) due to the truncated study lengths, which could have masked some potential delayed 

emergence and skewed study results. Second, in this study there were no significant effects on the 

sex-ratio of emerged adults. Chironomidae generally exhibit protandry, with males typically 

emerging around 5 days before females (Benoit et al., 1997). Thus, it is possible that sex-ratio 

effects were not observed here, as shown previously (Cavallaro et al., 2017), as the chosen length 

of exposure failed to capture the full profile of emergence for both sexes. Furthermore, due to their 

complexity and length, none of the chronic mixture toxicity tests were repeated. Thus, it is difficult 

to determine whether the minor deviations from directly additive toxicity are reproducible, or 

whether further testing with neonicotinoid mixtures of slightly different compositions (e.g. 

different cumulative concentrations or mixture constituent ratios) would yield slightly different 
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results. Future studies should therefore focus on improving model fits, more comprehensively 

evaluating sex-ratio effects, and enhancing certainty associated with observed effects, by 

extending chronic mixture experiments to allow for complete emergence of exposed Chironomidae 

(i.e. 40 – 50 d exposures vs. the 28 d exposure period used here) and by carrying out multiple full 

test replicates for each neonicotinoid combination.  

6.2.4 Extrapolating laboratory-derived mixture predictions to field-based settings  

To maintain data quality standards and allow for adequate reproducibility, laboratory 

toxicity tests with aquatic insects are typically completed under consistent temperatures, 

photoperiods, illumination intensities, and water quality standards. These tests typically focus on 

characterizing toxicity in a single, sensitive species, which is often supposed to be representative 

of an entire aquatic insect population. As physicochemical factors are inherently variable and 

population/community dynamics can significantly influence ecotoxicological effect (Schmitt-

Jansen et al., 2008), laboratory-based studies can over- or under-estimate actual ecotoxicity in 

contaminated aquatic environments. Therefore, it is important to validate laboratory observations 

under field settings to determine if laboratory-derived toxicity estimates are likely to adequately 

reflect real-world ecotoxicological effects. Thus Chapter 4, focused on evaluating laboratory-

based predictions of chronic neonicotinoid toxicity (single compound and binary mixtures) to 

Chironomidae under field-based settings using in situ limnocorrals. Contrary to laboratory-based 

predictions (Chapters 2 and 3), there was no evidence of greater-than-additive toxicity in IMI-CLO 

and IMI-TMX mixtures for natural Chironomidae populations. In addition, some neonicotinoid 

treatments (IMI, CLO, and CLO-TMX) elicited greater-than-predicted effects on Chironomidae 

populations. Therefore, the laboratory-derived toxicity estimates did not adequately predict field-

based effects. However, an analysis of the variation in observed results yielded some potential 
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insight concerning this lack of field-predictability in mixture effects. All mixture-treated 

limnocorrals displayed much higher variabilities than single compound treatments. This could 

indicate that neonicotinoid mixtures had species-level effects on Chironomidae that were not 

captured in the community-level analysis. In fact, one significant limitation in this study was that 

the dipteran insects were only characterized to family level before the samples were oven-dried 

and weighed to evaluate biomass. Further characterization of the collected Chironomidae (i.e. to 

subfamily or species level) could have enhanced the understanding of how IMI, CLO, TMX and 

their mixtures affect these sensitive aquatic insects, and improved the predictability of laboratory-

derived toxicity estimates. Indeed, future studies should consider digging deeper into the species-

level effects of neonicotinoids and their mixtures under field conditions. This could lead to both a 

better evaluation of why there was a disparity between our laboratory-derived predictions and 

field-observed effects and improve predictive capabilities, allowing for a more accurate estimation 

of the toxicological effects of neonicotinoid insecticides on sensitive insects inhabiting 

contaminated aquatic environments. 

6.2.5 Influence of receptor-level binding characteristics on neonicotinoid toxicity  

Chironomidae display marked differences in neonicotinoid sensitivity based on individual 

species, life stage, and neonicotinoid compound (Cavallaro et al., 2017; Maloney et al., 2018a, 

2018b; Morrissey et al., 2015). However, despite their ecological importance and marked 

sensitivity to these aquatic contaminants, no published studies have investigated how or why 

neonicotinoids elicit these different toxicological effects in Chironomidae. Thus Chapter 5 aimed 

to bridge this data gap by evaluating the species-, life stage-, and compound-specific differences 

in neonicotinoid binding to chironomid nicotinic acetylcholine receptors (nAChRs). Specifically, 

binding profiles of IMI-sensitive nAChRs were compared between two standard test species 
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(Chironomus riparius and Chironomus dilutus) at two different life stages (larval and adult) with 

three different neonicotinoid compounds (IMI, CLO, TMX). Interestingly, neonicotinoid binding 

profiles could potentially explain some, but not all, of the toxicological differences previously 

observed in Chironomidae. For example, there were no significant differences in neonicotinoid 

binding between C. dilutus and C. riparius, indicating that neonicotinoid binding to the nAChR is 

unlikely to be the reason for species-specific differences in toxicity. However, life-stage specific 

differences in nAChR binding profiles were observed. Furthermore, larval organisms displayed 

significantly higher densities of nAChRs with significantly higher neonicotinoid affinities than 

adults. This indicated that nAChR expression/function likely varies throughout the Chironomidae 

life-cycle, which could result in life-cycle level differences in neonicotinoid sensitivity. Finally, 

there were compound-specific differences in nAChR binding, with binding profiles of IMI, CLO, 

and TMX positively correlating with neonicotinoid toxicity, indicating that in Chironomidae the 

affinity with which neonicotinoids bind to IMI-sensitive nAChRs is (at least partially) responsible 

for their relative toxicities. Interestingly, Chironomidae were also found to display relatively high 

densities of relatively high affinity nAChRs compared to other insects (e.g. agricultural pests and 

standard test insects), which likely plays a significant role in their marked sensitivities to 

neonicotinoid insecticides.  

This study had one major limitation that could have influenced the interpretations of life 

stage-, species-, and compound-level relative toxicity patterns. Prior research has indicated that 

insects display different nAChR subtypes that respond to specific agonists (i.e. [125I]-α-

bungarotoxin, [3H]-imidacloprid, and [3H]-thiamethoxam) (Crossthwaite et al., 2017; Kayser et 

al., 2016; Taillebois et al., 2018). However, due to practical constraints, nAChR binding was only 

investigated using one radioligand ([3H]-IMI). Thus, the full binding profiles of Chironomidae 
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nAChR were not adequately captured. This likely limited potential interpretations of the 

toxicological effects of neonicotinoids and their mixtures. Without a detailed profile of nAChR 

subtype expression, patterns of cumulative toxicity observed in laboratory-based mixture studies 

could not be adequately interpreted. Therefore, in future studies, multiple, standard nAChR 

agonists (i.e. [3H]-imidacloprid, [125I]-α-bungarotoxin, and [3H]-thiamethoxam) should be used to 

characterize nAChR in non-target insects of interest, so that the relationships between 

neonicotinoid binding and toxicity can be fully investigated.  

6.3 Importance of research and research contributions  

6.3.1 Comprehensive characterization of neonicotinoid mixture toxicity in Chironomidae  

Despite the fact that neonicotinoid mixtures are commonly detected in aquatic 

environments (Hladik and Kolpin, 2015; Main, 2016) and that aquatic insects are markedly 

sensitive to these compounds (Morrissey et al., 2015), no other published studies have attempted 

to evaluate the cumulative toxicities of neonicotinoid mixtures in Chironomidae. This work is the 

first to investigate neonicotinoid mixture toxicity in these sensitive and ecologically important 

aquatic insects. By comprehensively characterizing the toxicological profiles of these insecticide 

mixtures under acute and chronic exposure settings, this work has enhanced our understanding of 

how mixtures of IMI, CLO, and TMX can affect Chironomidae inhabiting contaminated 

environments. Through a series of laboratory- and field-based studies, this thesis has shown that 

although neonicotinoid mixtures could elicit greater-than-additive toxicity under some exposure 

scenarios, the toxicities of IMI, CLO, and/or TMX mixtures to chironomid 

populations/communities are likely to be adequately predicted via Concentration Addition (CA) 

(Equation 6.1):   

∑ 𝑇𝑈 =  
𝐶𝑖

𝐸𝐶50,𝑖
     6.1 
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where mixture constituents are assumed to be directly additive and cumulative effect (ΣTU) is 

evaluated by summing neonicotinoid concentrations (ci) scaled to their relative toxicities (EC50,i) 

(Altenburger et al., 2013). Based on these findings, a model has been derived that could be used 

to estimate the cumulative toxicities of IMI, CLO, and/or TMX mixtures to Chironomidae in 

environmentally realistic settings (Equation 6.2):  

∑ 𝑇𝑈 = (
𝐶𝑖𝑚𝑖

0.51
+

𝐶𝑐𝑙𝑜

0.71
+

𝐶𝑡𝑚𝑥

8.91
) 𝑥 5  6.2 

This model is primarily based on the concept of CA, but also aims to be conservative, accounting 

for potential greater-than-additive toxicity. In this neonicotinoid mixture model (Equation 6.2), c 

represents neonicotinoid (IMI, CLO, or TMX) concentration (µg/L), the denominator values (0.51, 

0.71, and 8.91) are the laboratory-derived, 28-d EC50 values for successful emergence (in µg/L) 

(Chapter 3), and ‘5’ is the recommended safety/uncertainty factor. This recommended safety factor 

is intended to account for both the subtle mixture effects observed in laboratory-based toxicity 

tests (up to 28 % greater-than-additive toxicity in some IMI-TMX mixtures) and the greater-than-

predicted effects observed for both single compounds (IMI and CLO) and the CLO-TMX mixture 

under field settings (approximately a 5X greater-than-predicted cessation in emergence). This 

proposed mixture model would provide toxicity estimates in terms of Toxic Units (TU), which 

directly translate back to laboratory-derived EC values. For example, a TU of 0.1 would translate 

to an EC5 (i.e. an estimated 5% cessation of emergence). By comparing derived TUs to predefined 

toxicity/hazard quotients, this neonicotinoid mixture model could be directly used to evaluate the 

risks that IMI, CLO, and/or TMX mixtures pose to Chironomidae in contaminated aquatic 

environments. This research has the potential to be particularly impactful for risk assessors and 

regulators in Canada and the United States, where these compounds are still registered for use 

(Pest Management Regulatory Agency, 2019a, 2019b, 2016; United States Environmental 
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Protection Agency, 2019), and heavily applied to agricultural crops (Hladik et al., 2018a). In fact, 

the continued use of IMI, CLO, and TMX in North America makes this characterization of 

neonicotinoid mixture toxicity and associated proposed mixture toxicity model particularly 

pertinent. However, there is room for improvement in both the predictive power of this 

neonicotinoid mixture toxicity model and the comprehensiveness of my neonicotinoid mixture 

toxicity characterization. Therefore, this research can also help inform future studies focusing on 

characterizing neonicotinoid mixture toxicity for non-target insects, benefiting researchers by 

providing a template through which future mixture toxicity assessments can be carried out.   

6.3.2 Development of a relative toxicity pathway for imidacloprid, clothianidin, and 

thiamethoxam  

Over the past decade, the toxicities of neonicotinoids to aquatic insects have been 

extensively investigated. The acute and chronic effects of these insecticides have been relatively 

well characterized in laboratory-based toxicity studies, e.g. (Finnegan et al., 2017; Raby et al., 

2018a, 2018b), and their population- and community-level effects have been extensively assessed 

through field-based in situ or environmental monitoring analyses (Basley and Goulson, 2018; 

Cavallaro et al., 2018; Kreuger et al., 2010; Maloney et al., 2018a; Sánchez-Bayo et al., 2016; 

Sánchez-Bayo and Hyne, 2014; Starner and Goh, 2012). However, although the nAChR represents 

the primary molecular target of neonicotinoids (Tomizawa and Casida, 2004), the study carried 

out in Chapter 5 was the first to evaluate nAChR binding characteristics in an aquatic insect species. 

This has contributed to the current understanding of Chironomidae neurophysiology, enhanced the 

understanding of neonicotinoid interactions at different life-stages and in different chironomid 

species, and presented a partial explanation for the enhanced neonicotinoid-sensitivity that these 

aquatic insects display. Thus, this work characterizing nAChR binding profiles in C. riparius and 
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C. dilutus represents an important contribution to the fields of pesticide ecotoxicology and 

invertebrate neurobiology. Furthermore, this information can be combined with individual toxicity 

and population-level effects observed in previous studies (Chapters 2 - 4) and used to develop 

relative toxicological pathways for these insecticides.  

In this thesis, the effects of IMI, CLO, and TMX were characterized at three levels of 

biological organization: molecular (nAChR binding), individual (lethality/cessation of emergence), 

and population (decline of Chironomidae abundance). By linking these effects and using 

previously established molecular pathways of neonicotinoid toxicity (Tomizawa and Casida, 

2004), a putative toxicological pathway for neonicotinoids was constructed based on the adverse 

outcome pathway (AOP) framework (Ankley et al., 2010). Sequentially linking molecular and 

cellular events (known as molecular initiating events (MIE)) to key physiological effects (known 

as Key Events (KE)) and adverse toxicological outcomes (AO), AOP frameworks provide 

structured representations of biological events leading to toxicity in organisms exposed to 

xenobiotic agents (Ankley et al., 2010). As such, this pathway (Figure 6.1 A) links nAChR 

agonism (neonicotinoid binding) to population-level effects (decline in Chironomidae abundance) 

(Figure 6.1 B). Here nAChR agonism (neonicotinoid binding; defined as the MEI), leads to 

continuous nAChR activation (KE 1) and neuronal desensitization and/or cell energy exhaustion 

(KE 2), eventually causing nervous system failure (AO 1), paralysis and lethality (AO 2), and 

population decline (AO 3). As the effects of IMI, CLO, and TMX were characterized at each 

biological level tested (molecular, individual and population/community), this putative 

toxicological pathway could be expanded (Figure 6.1 C) focusing specifically on relative effect. 

Here, neonicotinoid effects are linked from receptor- (i.e. nAChR binding affinity) to population-

levels (i.e. declines in abundance), and magnitude is scaled to that of IMI. For all three compounds, 
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relative nAChR binding affinity translates to population-level effects reasonably well. For example, 

TMX binds to IMI-sensitive nAChR with a 10 times lower affinity than IMI, which translates to 

14 times lower toxicity in exposed individuals, and 50 times lower effects on Chironomidae 

populations than those observed with IMI (Figure 6.1). For CLO, there was a similar linear 

relationship between relative receptor affinity and population-level effects. CLO binds to nAChR 

with similar affinity to IMI (< 2-fold difference in IMI-sensitive nAChR affinity), is approximately 

equitoxic to IMI in exposed individuals (< 2-fold difference in acute/chronic toxicity), and elicits 

comparable effects on Chironomidae populations in field-based exposure settings (2-fold 

difference in population-level effects) (Figure 6.1).  

This relative toxicity pathway demonstrates that there is a quantifiable link between affinity 

at the nAChR and magnitude of adverse effect in Chironomidae populations, furthering our 

specific understanding of how IMI, CLO, and TMX elicit effects in Chironomidae. Furthermore, 

this framework shows that there are significant differences in the toxicities of IMI, CLO, and TMX 

across multiple levels of biological organization, demonstrating how relative predictive pathways 

(like those presented here) could be used to evaluate the ecotoxicological effects of neonicotinoids 

in aquatic environments. In addition, this work highlights how nAChR characterization could be 

used in the evaluation of neonicotinoids or other nAChR agonists (e.g. sulfoximine, or butenolides) 

to Chironomidae or other sensitive aquatic insect species (e.g. Trichoptera or Ephemeroptera). 

Finally, by emphasizing novel avenues of study and presenting a ‘template’ for future pesticide 

research (beyond neonicotinoids), this work offers an alternative, multidisciplinary approach to 

pesticide ecotoxicology, which could help drive further progress in this field. 
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Figure 6.1 Putative toxicological pathways comparing the effects of commonly used 

systemic neonicotinoids in Chironomidae. Based on the (A) adverse outcome pathway (AOP) 

concept, this toxicological pathway links (B) nicotinic acetylcholine receptor (nAChR) binding  

to population declines in these aquatic insects, and estimates how (C) differences in receptor 

binding among imidacloprid (IMI), clothianidin (CLO) and thiamethoxam (TMX) translate into 

effects at the individual and population levels. 

* Effects expressed relative to that of imidacloprid. 

** MIE – molecular initiating event.  
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Unfortunately, there are some distinct limitations in the relative toxicity pathway generated 

here. First, although it is fairly logical, this pathway of relative toxicity is not directly predictable 

(i.e. there is not a 1:1 relationship between relative effect at the individual level and relative effect 

at the population/community level). It is likely that this is due to chemical, molecular, biological, 

or ecological factors that were not considered in this thesis. For example, although neonicotinoid 

metabolism is likely to play a significant role in relative effect, this work did not specifically 

investigate the metabolic differences that likely exist between different neonicotinoid compounds, 

different Chironomidae species, and different life-stages. Thus, more research is required to 

characterize how factors like metabolism contribute to the toxicity of neonicotinoids before this 

relative toxicity can be applied to predict the large-scale effects of neonicotinoids on aquatic 

insects like Chironomidae. In addition, the toxicity data generated in this thesis cannot be used to 

mechanistically explain why there was greater-than-additive neonicotinoid mixture toxicity for 

some neonicotinoid compounds. The radioligand binding studies used to characterize nAChR 

density and binding characteristics only used one agonist ([3H]-IMI), thus these data could not be 

used to fully characterize the expression of different nAChR subtypes (e.g. IMI-sensitive and IMI-

insensitive). It is possible that the relative expression of different nAChR subtypes influences the 

toxicological effects of neonicotinoid mixtures in Chironomidae. In fact, previous studies have 

suggested that IMI, CLO, and TMX can demonstrate different binding profiles depending on 

nAChR subtype (Taillebois et al., 2014), which could amplify single-compound toxicity effects, 

resulting in neonicotinoid mixture toxicity that deviates from direct, concentration based additivity. 

Although the analyses presented here cannot be used to determine whether mixture toxicity 

differences result from receptor binding characteristics, they do lay a foundation for future studies 

focused on further investigating the pharmacological effects of neonicotinoid mixtures. For 
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example, the methods and results presented here could be used as a basis for further study of the 

effects of neonicotinoid mixtures at multiple levels of biological organization. Thus, along with 

presenting a putative relative toxicity pathway, this thesis presents a template and a platform that 

can be used to inform future research on binary and ternary mixtures of IMI, CLO, and/or TMX.  

6.4 Future research recommendations 

 This research addressed several important issues in the field of pesticide ecotoxicology, 

providing answers to some of the questions risk assessors and regulators have posed concerning 

the effects of neonicotinoid insecticides on aquatic organisms. However, it also illuminated many 

potential avenues of future investigation. These potential research topics span a range of fields, 

from ecology to neurobiology, but all focus on improving our understanding of how current-use 

neuroactive pesticides could influence ecologically important aquatic insects inhabiting 

agriculturally intensive areas. First, the mixture toxicity model presented here is relatively limited 

in scope, focusing on only one aquatic insect community and only three neonicotinoid compounds. 

Due to their hydrophilicity and potential for environmental persistence (Morrissey et al., 2015), 

neonicotinoids are likely to exist in the aquatic compartment and affect a range of aquatic insect 

species. Indeed, previous studies have demonstrated that other aquatic insects (e.g. Trichoptera 

and Ephemeroptera) are likely to demonstrate equivalent or higher sensitivity to these 

neonicotinoid compounds than Chironomidae (Raby et al., 2018a, 2018b; Van den Brink et al., 

2016). Therefore, the mixture toxicity characterization presented here should be expanded to 

include effects of neonicotinoid mixtures on these sensitive aquatic species. Furthermore, IMI, 

CLO, and TMX are only three of six neonicotinoid compounds currently registered for use as pest 

control products. Other neonicotinoid compounds like acetamiprid, thiacloprid, and dinotefuran, 

which are more commonly used in fruit-producing regions, display similar physicochemical and 
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toxicological characteristics (Jeschke et al., 2010). Thus, future studies should focus on 

comprehensively characterizing the cumulative effects of mixtures of other neonicotinoid or 

neonicotinoid-derived compounds (e.g. mixtures containing thiacloprid, acetamiprid, nitenpyram, 

dinotefuran, sulfoxaflor, or flupyradifurone). Second, over the course of this study, two predictive 

pathways were established: one focusing on neonicotinoid mixture toxicity (single-species to 

population) and the other focusing on the relative effects of IMI, CLO, and TMX (molecular to 

population). These predictive pathways would greatly benefit from further understanding of the 

ecology of aquatic insects. For example, our understanding of population dynamics in aquatic 

insect communities is relatively limited (Lancaster and Downes, 2018), so it is difficult to expand 

these predictive models beyond the population level. Furthermore, although recent research has 

improved our understanding of Chironomidae population dynamics in the Prairie Pothole Region 

(Williams and Sweetman, 2019), data concerning how the loss of individual species influences 

Chironomidae communities are still limited. Thus, it is difficult to determine why there were some 

deviations between our single-species mixture toxicity predictions and effects on populations 

observed in in situ field studies. Future studies should focus on better understanding aquatic insect 

ecology so that the ecotoxicological effects of insecticidal contaminants like neonicotinoids can 

be better characterized. In addition, the predictive pathways presented in this thesis would benefit 

from further understanding of the specific molecular effects of neonicotinoid insecticides in non-

target insect species. Our current understanding of aquatic insect nAChRs and how neonicotinoids 

interact with these neuronal receptors is still limited. For example, IMI, CLO, and TMX 

interactions were only characterized with IMI-sensitive nAChRs in this thesis (Chapters 5). As 

shown with agricultural pests and other standard test insects there are likely other nAChR subtypes 

(e.g. α-BGT sensitive) that were not investigated here (Crossthwaite et al., 2017). In this thesis, 
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nAChR responses were only characterized in two related aquatic insect species. However, a broad 

range of aquatic insects are likely to be exposed to neonicotinoids in contaminated aquatic 

environments, some of which are also markedly sensitive to neonicotinoid insecticides (e.g. 

Trichoptera and Ephemeroptera) (Morrissey et al., 2015; Raby et al., 2018a; Van den Brink et al., 

2016). Thus, future studies should focus on characterizing nAChR subtypes in other aquatic insect 

species that may be at risk of neonicotinoid exposure. This is especially important as a large 

proportion of current-use insecticides exert toxicity by directly acting on insect nAChRs, so 

understanding the function of these neuronal receptors will improve our ability to understand and 

characterize toxicological effects of new and existing pest control products.  

6.5 Conclusions and Final Perspectives 

Chironomidae are comprised of an estimated 1231 species worldwide (Pape et al., 2011), 

making them one of the most taxonomically rich aquatic insect families in existence. These insects 

are functionally important in aquatic ecosystems and widely distributed across a range of aquatic 

environments (Armitage, 1995). Therefore, midges are important sentinels when considering how 

aquatic contaminants can influence exposed ecosystems. This is especially true for neonicotinoid 

insecticides, which are both demonstrably toxic to Chironomidae and widely distributed in aquatic 

environments. This thesis has comprehensively evaluated the cumulative mixture toxicity and the 

relative effects of imidacloprid, clothianidin and thiamethoxam to Chironomidae, providing 

relevant information that can be used in future risk assessment and regulation of these products. 

However, this research also highlighted gaps in our knowledge of neonicotinoids and their effects 

on non-target aquatic insects. Indeed, in the context of changing environmental regulations, novel 

insecticide introduction, and fluctuating global environmental conditions, Chironomidae represent 

an ideal taxon to use in the evaluation of the environmental impacts of pest control products. As 
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these aquatic insects are both ecologically important and frequently exposed to pesticides, future 

research focused on Chironomidae may benefit our understanding of how widespread use of 

agricultural insecticides is affecting aquatic communities.  
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*Supplemental material and information for this thesis are provided in this Appendix (23 tables 

and 1 figure total). Data include definitions of MIXTOX parameters, comparisons of mean 

measured and nominal concentrations in single compound and mixture experiments, and 

parameters for single-compound and mixture toxicity models for laboratory-based experiments 

(Chapters 2 and 3). Abundance of emerged insects (total and specific taxa) in treated 

limnocorrals, water quality parameters, comparisons of mean measured and nominal 

neonicotinoid concentrations, and coefficients of variation for Chironomidae abundance for 

field-based experiments (Chapter 4) are also presented in this section. For Chapter 5, data 

presented include a comparison of membrane protein extraction protocols, derived biological 

activity of Chironomidae membrane protein, and a comparison of previously derived competition 

binding parameters for agricultural pest species and commonly used test insects to that derived 

for Chironomidae in this study. 
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Table A2.1 Interpretation of parameters substituted into concentration addition (CA) or 

independent action (IA) reference models that act as functional definitions of deviation patterns. 

 

Parameter 

 

CA IA Interpretation 

 

Synergism/Antagonism 

 

a 

< 0 < 0 Synergism 

> 0 > 0 Antagonism 

 

Dose-Ratio Dependent Deviation 

 

a 

< 0 < 0 
Synergism, except for mixture ratios where 

positive bDR indicates antagonism 

> 0 > 0 
Antagonism, except for mixture ratios where 

negative bDR indicates synergism 

 

bDR 

< 0 < 0 
Antagonism, where the toxicity of the mixture 

is caused mainly by chemical 1 

> 0 > 0 
Synergism, where the toxicity of the mixture is 

caused mainly by chemical 1 

 

Dose-Level Dependent Deviation 

 

a 
< 0 < 0 

Synergism at low dose level, antagonism at 

high dose level 

 > 0 > 0 
Antagonism at low dose level, synergism at 

high dose level 

 

bDL 

>1 > 2 Change at lower dose level than LC50 

= 1 = 2 Change at LC50 

0 <bDL< 1 1 <bDL< 2 Change at higher dose level than LC50 

< 0 < 2 

No change, but magnitude of 

synergism/antagonism is dose-level (CA) or 

effect-level (IA) dependent 

 

Ternary-Plus Model 

 

a1,2 

< 0 < 0 
Synergism when mixture solely consists of 

compounds 1 and 2 

> 0 > 0 
Antagonism when mixture solely consists of 

compounds 1 and 2 

 

a1,3 

< 0 < 0 
Synergism when mixture solely consists of 

compounds 1 and 3 

> 0 > 0 
Antagonism when mixture solely consists of 

compounds 1 and 3 

 

a2,3 
< 0 < 0 

Synergism when mixture solely consists of 

compounds 2 and 3 
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> 0 > 0 
Antagonism when mixture solely consists of 

compounds 2 and 3 

 

a1,2,3 

< 0 < 0 
Synergism of ternary mixture - compared to 

isobole plane predicted by binary deviations 

> 0 > 0 
Antagonism of ternary mixture - compared to 

isobole plane predicted by binary deviations 
*Adapted from Jonker et al. (2005), and Cedergreen et al. (2012). 
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SI Table A2.2 Mean (± SD) measured neonicotinoid concentrations (µg/L) for single compound 

96 h Chironomus dilutus toxicity tests. 

Imidacloprid Clothianidin Thiamethoxam 

Nominal Measured Nominal Measured Nominal Measured 

Control < LOQa Control < LOQa Control < LOQa 

0.4 0.33 ± 0.03 0.4 0.37 ± 0.00 0.88 0.24 ± 0.09 

0.88 0.82 ± 0.12 0.88 0.95 ± 0.00 1.94 0.96 ± 0.15 

1.94 1.63 ± 0.03 1.94 2.06 ± 0.11 4.26 2.72 ± 0.35 

4.26 3.37 ± 0.26 4.26 4.89 ± 0.18 9.37 4.69 ± 0.61 

9.37 7.98 ± 0.18 9.37 10.49 ± 0.17 20.61 11.90 ± 0.88 

20.61 16.45 ± 0.69 20.61 26.49 ± 2.04 45.34 24.25 ± 0.76 

- - - - 99.77 77.50 ± 5.65 

- - - - 219.5 168.5 ± 0.51 

a Limits of quantification (LOQ): imidacloprid = 0.005 µg/L, clothianidin = 0.006 µg/L, thiamethoxam = 0.02 µg/L. 
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Table A2.3 Mean measured neonicotinoid concentrations (µg/L) for binary and ternary mixture 

96 h Chironomus dilutus toxicity tests. 

Imidacloprid Clothianidin Thiamethoxam 

Nominal Measured Nominal Measured Nominal Measured 

      

Imidacloprid-Clothianidin 

Control < LOQa Control < LOQa - - 

1.16 1.54 - - - - 

6.95 8.48 - - - - 

13.89 11.78 - - - - 

- - 1.48 2.06 - - 

- - 2.97 4.74 - - 

- - 5.93 5.72 - - 

- - 8.90 8.78 - - 

- - 11.86 13.45 - - 

0.87 0.87 0.37 0.33 - - 

1.74 1.73 0.74 0.72 - - 

3.47 5.51 1.48 2.19 - - 

5.21 7.55 2.22 2.97 - - 

6.95 9.04 2.97 3.08 - - 

0.58 0.55 0.74 0.60 - - 

1.16 1.09 1.48 1.56 - - 

2.32 2.41 2.97 2.97 - - 

3.47 3.69 4.45 4.25 - - 

4.36 5.05 5.93 5.98 - - 

6.95 5.58 8.90 6.63 - - 

0.29 0.30 1.11 1.02 - - 

0.58 0.64 2.22 2.53 - - 
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1.16 1.26 4.45 4.31 - - 

1.74 1.88 6.67 6.12 - - 

2.32 2.40 8.90 8.72 - - 

3.47 2.74 13.30 10.67 - - 

      

Clothianidin-Thiamethoxam 

- - Controla < LOQ Controla < LOQ 

- - 1.48 1.19 - 0.028 

- - 2.97 2.84 - - 

- - 5.93 5.13 - - 

- - 8.90 7.21 - - 

- - 11.86 9.71 - - 

- - 14.83 13.32 - - 

- - - 0.01 13.84 17.30 

- - - 0.01 27.67 24.60 

- - - 0.02 55.34 47.57 

- - - 0.04 83.01 79.4 

- - - 0.05 110.68 104.2 

- - - 0.29 138.35 126.8 

- - 1.11 0.87 3.46 3.05 

- - 2.22 1.83 6.92 7.90 

- - 4.45 3.75 13.84 13.95 

- - 6.67 6.08 20.75 19.3 

- - 8.90 8.6 27.70 29.7 

- - 0.74 0.49 6.92 7.92 

- - 1.48 1.07 13.80 14.7 

- - 2.97 2.02 27.70 28.19 

- - 4.45 3.82 41.50 44.20 
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- - 5.93 4.41 55.30 50.9 

- - 7.41 7.30 69.20 62.3 

- - 0.37 0.28 10.40 11.5 

- - 0.74 0.55 20.80 22.70 

- - 1.48 1.18 41.50 35.00 

- - 2.22 1.86 62.30 57.7 

- - 2.97 2.03 83.00 75.6 

- - 3.71 4.10 103.80 94.2 

      

Imidacloprid-Thiamethoxam 

Control < LOQ a - - Control < LOQ a 

1.16 1.22 - - - - 

2.32 2.53 - - - - 

4.63 4.92 - - - - 

6.95 6.73 - - - - 

9.26 9.42 - - - - 

11.58 11.45 - - - - 

- - - - 13.84 13.26 

- - - - 27.67 24.30 

- - - - 55.34 36.85 

- - - - 83.0 64.6 

- - - - 110.68 87.85 

- - - - 138.35 126.73 

0.87 0.82 - - 3.46 3.23 

1.74 1.67 - - 6.92 5.31 

3.47 3.29 - - 13.84 11.09 

5.21 4.41 - - 20.75 15.09 

6.95 5.73 - - 27.67 19.44 
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8.68 6.80 - - 34.59 24.17 

0.58 0.61 - - 6.92 5.16 

1.16 1.32 - - 13.84 13.53 

2.32 2.24 - - 27.67 29.53 

3.47 3.14 - - 41.51 42 

4.63 4.50 - - 55.34 48.9 

5.79 5.78 - - 69.18 58 

0.29 0.30 - - 10.38 11.45 

0.58 0.57 - - 20.75 12.7 

1.16 1.18 - - 41.51 35.5 

1.74 1.66 - - 62.26 43.8 

2.32 2.46 - - 83.01 68.4 

2.89 2.29 - - 103.76 72.6 

      

Imidacloprid-Clothianidin-Thiamethoxam 

Control < LOQ a Control < LOQ a Control < LOQ a 

1.16 1.25 - - - - 

2.32 2.95 - - - - 

4.63 4.86 - - - - 

6.95 6.76 - - - - 

9.26 8.41 - - - - 

12.89 17.70 - - - - 

- - 1.48 1.67 - - 

- - 5.93 3.68 - - 

- - 8.90 8.78 - - 

- - 11.86 14.30 - - 

- - 17.79 27.54 - - 

- - - - 13.84 13.58 
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- - - - 55.34 50.95 

- - - - 83.01 58.1 

- - - - 110.68 109.4 

- - - - 166.02 157 

0.39 0.42 0.49 0.46 4.61 3.89 

1.54 1.51 1.98 2.09 18.45 17.60 

2.32 2.29 2.97 3.25 27.67 28.3 

3.09 2.74 3.95 4.19 36.89 32.6 

4.63 4.96 5.93 7.18 55.34 53.1 

0.58 0.56 0.37 0.32 3.46 3.99 

2.32 1.94 1.48 1.34 13.84 15.65 

3.47 2.89 2.22 2.03 20.75 20.9 

4.63 4.54 2.97 2.82 27.67 35.2 

6.95 6.19 4.45 4.95 41.51 49.6 

1.16 1.01 2.97 2.84 13.84 13.97 

1.74 1.45 4.45 3.77 20.75 18.60 

2.32 2.49 5.93 5.88 27.67 26.96 

3.47 3.37 8.89 8.87 41.5 49.73 

0.3 0.31 0.37 0.37 6.92 8.09 

1.16 1.09 1.48 1.48 27.67 28.71 

1.74 1.76 2.22 2.67 41.51 35.8 

2.32 2.54 2.97 3.27 55.34 56.6 

3.47 3.23 4.45 5.69 83.01 75.8 

0.23 0.25 0.59 0.59 5.53 11.1 

0.46 0.55 1.19 1.06 11.07 21.98 

0.93 1.07 2.37 2.32 22.14 20.45 

1.39 1.51 3.56 3.57 33.20 26 

1.85 2.05 4.74 4.60 44.27 30.5 
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2.78 2.74 7.12 6.58 66.41 51.5 

0.46 0.49 0.30 0.30 5.53 9.20 

0.93 0.95 0.59 0.57 11.07 20.4 

1.85 1.90 1.19 1.16 22.14 20.3 

2.78 2.65 1.78 1.81 33.2 25.9 

3.7 3.93 2.37 2.13 44.27 39.0 

5.56 5.88 3.56 3.83 66.41 47.2 

0.46 0.48 0.59 0.66 2.77 6.6 

0.93 0.85 1.19 1.24 5.53 12.7 

1.85 2.03 2.37 2.62 11.07 19.20 

2.78 2.79 3.56 4.10 16.6 13.7 

3.7 3.45 4.7 4.82 22.14 17.4 

5.56 5.58 7.12 7.38 33.20 32.9 

0.77 0.80 0.99 0.98 9.22 16.9 

1.16 1.34 0.74 0.84 6.92 12.1 

0.58 0.64 1.48 1.32 6.92 14.0 

0.29 0.29 0.74 0.65 3.46 5.9 

0.58 0.59 0.74 0.61 13.84 30.2 

a Limits of quantification (LOQ): imidacloprid = 0.003 – 0.008 µg/L, clothianidin = 0.003 – 0.017 µg/L, 

thiamethoxam = 0.005 – 0.016 µg/L. 
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Table A2.4 Summary of the MIXTOX analysis output of the acute effects of imidacloprid-

clothianidin mixtures on the survival of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A DR DL Reference S/A DR DL 

µmax 95.5 95.5 95.4 95.6 95.2 95.5 95.6 95.3 

βIMI 4.99 3.77 3.58 2.95 2.55 4.68 4.59 7.49 

βCLO 12.13 20.22 21.66 21.13 22.03 12.33 13.02 16.98 

LC50IMI 8.25 6.83 7.32 6.29 4.29 7.83 7.73 8.36 

LC50CLO 5.80 5.61 5.58 5.60 5.55 5.65 5.67 5.60 

a - 0.63 1.22 1.87 - - 6.52 -7.64 -10.47 

bDR - - -1.68 - - - 2.41 - 

bDL - - - 0.45 - - - 0.75 

RD 49.2 44.8 42.5 44.4 61.8 44.5 44.2 41.52 

 

vs. Reference Model 

χ2 - 4.36 6.66 4.79 - 17.37 17.64 20.31 

df - 1 2 2 - 1 2 2 

p(χ2) - 0.04 0.04 0.09 - < 0.01 < 0.01 < 0.01 

vs. S/A 

χ2 - - 2.30 0.44 - - 0.27 2.94 

df - - 1 1 - - 1 1 

p(χ2) - - 0.13 0.5 - - 0.60 0.09 

 

R2 (%) 

 

90.9 

 

91.7 

 

92.1 

 

91.8 

 

87.9 

 

91.3 

 

91.4 

 

91.9 
*Bolded column represents the mixture model of best fit. 
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Table A2.5 Summary of the MIXTOX analysis output of the acute effects of clothianidin-

thiamethoxam mixtures on the survival of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A DR DL Reference S/A DL DR 

µmax 93.2 93.2 93.2 93.2 89.7 89.7 89.7 89.7 

βCLO 15.78 15.81 15.69 15.81 82.97 82.97 82.97 82.97 

βTMX 30.87 43.82 9304.50 52.52 96.56 96.56 96.56 96.56 

LC50CLO 5.91 5.92 5.91 5.92 5.30 5.30 5.30 5.30 

LC50TMX 37.51 39.33 45.44 40.19 27.56 27.56 27.56 27.56 

a n/a -0.08 -0.47 -0.00047 n/a - - - 

bDR n/a n/a 0.26 n/a n/a - - - 

bDL n/a n/a n/a -25.02 n/a - - - 

RD 43.0 43.0 43.0 43.0 77.1 - - - 

 

vs. Reference Model 

χ2 n/a 0.01 0.07 0.02 n/a - - - 

df n/a 1 2 2 n/a - - - 

p(χ2) n/a 0.92 0.96 0.99 n/a - - - 

vs. S/A 

χ2 n/a n/a 0.06 0.007 n/a - - - 

df n/a n/a 1 1 n/a - - - 

p(χ2) n/a n/a 0.8 0.93 n/a - - - 

 

R2 (%) 

 

94.2 

 

94.2 

 

94.2 

 

94.2 

 

89.7 

 

- 

 

- 

 

- 
*Bolded column represents the mixture model of best fit. 
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Table A2.6 Summary of the MIXTOX analysis output of the acute effects of imidacloprid-

thiamethoxam mixtures on the survival of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A DR DL Reference S/A DR DL 

µmax 89.4 90.3 89.8 90.2 90.0 89.9 89.9 89.2 

βIMI 4.98 3.47 4.82 3.85 4.32 4.72 5.03 4.38 

βTMX 6.59 188.24 16.64 376.94 13.13 12.29 17.63 9.14 

LC50IMI 6.31 4.69 6.13 4.77 4.68 5.24 5.88 5.36 

LC50TMX 45.99 36.80 35.40 36.83 38.59 40.41 36.20 43.61 

a n/a 1.87 3.20 1.15 n/a -2.32 11.99 -0.01 

bDR n/a n/a - 4.59 n/a n/a n/a -26.41 n/a 

bDL n/a n/a n/a -0.40 n/a n/a n/a 
-850.9 

 

RD 151.5 121.0 107.3 120.2 121.1 117.0 100.5 111.5 

 

vs. Reference Model 

χ2 n/a 30.49 44.1 31.28 n/a 4.10 20.61 9.55 

df n/a 1 2 2 n/a 1 2 2 

p(χ2) n/a < 0.01 < 0.01 < 0.01 n/a 0.04 < 0.01 < 0.01 

vs. S/A 

χ2 n/a n/a 13.66 0.80 n/a n/a 16.50 5.45 

df n/a n/a 1 1 n/a n/a 1 1 

p(χ2) n/a n/a < 0.01 0.37 n/a n/a < 0.01 < 0.01 

 

R2 (%) 

 

75.0 

 

80.0 

 

82.3 

 

80.1 

 

80.0 

 

80.7 

 

83.4 

 

81.6 
*Bolded column represents the mixture model of best fit. 
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Table A2.7 Summary of the MIXTOX analysis output of the acute effects of imidacloprid-

clothianidin-thiamethoxam mixtures on the survival of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A Reference S/A 

µmax 87.0 90.7 94.1 92.6 

βIMI 3.07 3.64 3.85 6.99 

βCLO 307.73 307.60 3.36 6.79 

βTMX 4.32 7.38 3.89 7.14 

LC50IMI 5.31 3.91 3.44 3.55 

LC50CLO 7.61 5.47 2.92 3.70 

LC50TMX 35.97 43.92 32.05 41.37 

aIMI,CLO n/a 1.79 n/a 4.95 

aCLO,TMX n/a -0.20 n/a -6.33 

aIMI,TMX n/a 1.41 n/a 0.13 

aIMI,CLO,TMX n/a 4.92 n/a - 50.34 

RD 718.6 485.8 583.4 406.3 

 

vs. Reference Model 

χ2 n/a 232.79 n/a 177.06 

df n/a 1 n/a 1 

p(χ2) n/a < 0.01 n/a < 0.01 

 

R2 (%) 

 

68.5 

 

78.7 

 

74.4 

 

82.2 
*Bolded column represents the mixture model of best fit. 
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Figure A3.1 Fixed-ray experimental design applied in binary (A) and ternary (B) mixture 

toxicity tests.   
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Table A3.1 Mean (± SE) measured neonicotinoid concentrations (µg/L) for single-compound 28-

day Chironomus dilutus toxicity tests. 

Imidacloprid Clothianidin Thiamethoxam 

Nominal Measured Nominal Measured Nominal Measured 

Control < LOQa Control < LOQa Control < LOQa 

0.16 0.18 ± 0.01 0.10 0.09 ± 0.01 1.25 1.10 ± 0.04 

0.31 0.33 ± 0.02 0.25 0.21 ± 0.04 2.50 2.10 ± 0.09 

0.625 0.68 ± 0.05 0.63 0.59 ± 0.05 5.00 4.34 ± 0.18 

1.25 1.26 ± 0.07 1.56 1.47 ± 0.17 10.00 8.05 ± 0.69 

2.50 2.67 ± 0.15 3.91 3.77 ± 0.38 20.00 19.23 ± 0.52 

5.00 5.49 ± 0.36 9.77 11.58 ± 1.64 40.00 40.69 ± 1.62 

a Limits of quantification (LOQ); imidacloprid = 0.004 - 0.006 µg/L, clothianidin = 0.0007 - 0.002 µg/L, 

thiamethoxam = 0.007 - 0.02 µg/L. 
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Table A3.2 Mean (±SD) measured neonicotinoid concentrations (µg/L) for binary and ternary 

mixture 28-day Chironomus dilutus toxicity tests. 

Imidacloprid Clothianidin Thiamethoxam 

Nominal Measured Nominal Measured Nominal Measured 

 

Imidacloprid-Clothianidin 

Control < LOQa Control < LOQa   

0.12 0.13 ± 0.01 0 < LOQ - - 

0.25 0.26 ± 0.02 0 < LOQ - - 

0.5 0.42 ± 0.16 0 < LOQ - - 

0.75 0.75 ± 0.13 0 < LOQ - - 

1.0 1.10 ± 0.14 0 < LOQ - - 

1.49 1.56 ± 0.06 0 < LOQ - - 

0 < LOQ 0.18 0.18 ± 0.06 - - 

0 < LOQ 0.35 0.39 ± 0.06 - - 

0 < LOQ 0.71 0.68 ± 0.06 - - 

0 < LOQ 1.06 1.04 ± 0.13 - - 

0 < LOQ 1.41 1.47 ± 0.09 - - 

0 < LOQ 2.12 2.11 ± 0.38 - - 

0.09 0.10 ± 0.01 0.04 0.05 ± 0.16 - - 

0.19 0.20 ± 0.02 0.09 0.08 ± 0.13 - - 

0.37 0.40 ± 0.04 0.18 0.16 ± 0.02 - - 

0.56 0.55 ± 0.03 0.2 0.26 ± 0.04 - - 

0.75 0.76 ± 0.09 0.35 0.36 ± 0.05 - - 

1.12 1.20 ± 0.09 0.53 0.53 ± 0.04 - - 

0.06 0.07 ± 0.01 0.09 0.09 ± 0.03 - - 

0.12 0.13 ± 0.02 0.18 0.17 ± 0.02 - - 

0.25 0.27 ± 0.02 0.35 0.35 ± 0.04 - - 

0.37 0.43 ± 0.03 0.53 0.54 ± 0.03 - - 
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0.5 0.53 ± 0.05 0.7 0.76 ± 0.09 - - 

0.75 0.83 ± 0.05 1.06 1.04 ± 0.08 - - 

0.03 0.04 ± 0.01 0.13 0.13 ± 0.02 - - 

0.06 0.07 ± 0.01 0.26 0.22 ± 0.01 - - 

0.12 0.14 ± 0.02 0.53 0.50 ± 0.07 - - 

0.19 0.20 ± 0.02 0.79 0.71 ± 0.20 - - 

0.25 0.13 ± 0.14 1.06 1.06 ± 0.08 - - 

0.37 0.39 ± 0.02 1.59 1.50 ± 0.07 - - 

 

Clothianidin-Thiamethoxam 

- - Control < LOQa Control < LOQa 

- - 0.18 0.14 ± 0.01 0 < LOQ 

- - 0.35 0.37 ± 0.08 0 < LOQ 

- - 0.71 0.83 ± 0.05 0 < LOQ 

- - 1.06 1.17 ± 0.08 0 < LOQ 

- - 1.41 1.53 ± 0.13 0 < LOQ 

- - 2.12 2.21 ± 0.11 0 < LOQ 

- - 0 < LOQ 2.23 2.75 ± 0.30 

- - 0 < LOQ 4.46 5.11 ± 0.32 

- - 0 < LOQ 8.91 9.27 ± 0.68 

- - 0 < LOQ 13.37 14.91 ± 0.34 

- - 0 < LOQ 17.82 19.95 ± 1.58 

- - 0 < LOQ 26.73 32.52 ± 2.51 

- - 0.04 0.04 ± 0.00 1.67 2.05 ± 0.37 

- - 0.09 0.08 ± 0.00 3.34 3.79 ± 0.53 

- - 0.18 0.15 ± 0.01 6.68 8.01 ± 0.52 

- - 0.26 0.23 ± 0.01 10.02 11.29 ± 0.88 

- - 0.35 0.33 ± 0.03 13.37 16.87 ± 1.67 

- - 0.53 0.55 ± 0.06 20.05 27.36 ± 5.50 
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- - 0.09 0.07 ± 0.01 1.11 1.28 ± 0.17 

- - 0.18 0.14 ± 0.02 2.23 2.92 ± 0.22 

- - 0.35 0.31 ± 0.02 4.46 6.07 ± 0.67 

- - 0.53 0.48 ± 0.03 6.68 8.44 ± 0.91 

- - 0.71 0.63 ± 0.05 8.91 10.16 ± 1.30 

- - 1.06 0.99 ± 0.06 13.37 16.47 ± 1.13 

- - 0.13 0.11 ± 0.01 0.56 0.72 ± 0.07 

- - 0.26 0.22 ± 0.02 1.11 1.48 ± 0.11 

- - 0.53 0.46 ± 0.03 2.23 3.25 ± 0.39 

- - 0.79 0.69 ± 0.04 3.34 4.55 ± 0.21 

- - 1.06 1.00 ± 0.04 4.46 5.67 ± 0.25 

- - 1.59 1.55 ± 0.05 6.68 10.14 ± 0.47 

 

 

Imidacloprid-Thiamethoxam 

Control < LOQa - - Control < LOQa 

0.12 0.11 ± 0.02 - - 0 < LOQ 

0.50 0.46 ± 0.03 - - 0 < LOQ 

0.75 0.91 ± 0.33 - - 0 < LOQ 

1.49 1.72 ± 0.07 - - 0 < LOQ 

0 < LOQ - - 2.23 1.92 ± 0.41 

0 < LOQ - - 4.46 4.57 ± 0.65 

0 < LOQ - - 8.91 8.78 ± 0.81 

0 < LOQ - - 13.40 15.21 ± 0.09 

0 < LOQ - - 17.80 23.01 ± 3.72 

0 < LOQ - - 26.70 38.87 ± 1.51 

0.09 0.13 ± 0.07 - - 0.56 0.95 ± 0.86 

0.19 0.13 ± 0.06 - - 1.11 0.92 ± 0.15 

0.37 0.38 ± 0.02 - - 2.23 3.36 ± 0.34 

0.56 0.60 ± 0.02 - - 3.34 4.68 ± 1.11 
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0.75 0.85 ± 0.07 - - 4.46 5.84 ± 0.59 

1.12 1.23 ± 0.04 - - 6.68 9.75 ± 1.01 

0.06 0.04 ± 0.00 - - 1.11 1.14 ± 0.34 

0.12 0.11 ± 0.00 - - 2.23 2.68 ± 0.19 

0.25 0.27 ± 0.00 - - 4.46 4.94 ± 1.04 

0.37 0.38 ± 0.02 - - 6.68 8.16 ± 0.16 

0.50 0.58 ± 0.12 - - 8.91 10.72 ± 0.82 

0.75 0.82 ± 0.01 - - 13.40 17.82 ± 0.53 

0.03 0.03 ± 0.00 - - 1.67 1.98 ± 0.60 

0.06 0.06 ± 0.00 - - 3.34 3.91 ± 0.29 

0.12 0.12 ± 0.02 - - 6.68 8.09 ± 1.25 

0.19 0.19 ± 0.01 - - 10.0 11.55 ± 1.93 

0.25 0.25 ± 0.00 - - 13.4 18.00 ± 1.15 

0.37 0.44 ± 0.02 - - 20.0 26.60 ± 0.17 

 

Imidacloprid-Clothianidin-Thiamethoxam 

Control < LOQa Control < LOQa Control < LOQa 

0.12 0.14 ± 0.02 0 < LOQ 0 < LOQ 

0.25 0.26 ± 0.13 0 < LOQ 0 < LOQ 

0.5 0.52 ± 0.07 0 < LOQ 0 < LOQ 

0.75 0.85 ± 0.09 0 < LOQ 0 < LOQ 

0.99 1.20 ± 0.08 0 < LOQ 0 < LOQ 

1.49 1.55 ± 0.40 0 < LOQ 0 < LOQ 

0 < LOQ 0.36 0.20 ± 0.03 0 < LOQ 

0 < LOQ 0.71 0.72 ± 0.06 0 < LOQ 

0 < LOQ 1.07 1.47 ± 0.47 0 < LOQ 

0 < LOQ 1.42 1.96 ± 0.57 0 < LOQ 

0 < LOQ 2.13 2.58 ± 1.26 0 < LOQ 

0 < LOQ 0 < LOQ 2.23 3.81 ± 0.53 

0 < LOQ 0 < LOQ 4.46 7.45 ± 3.08 
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0 < LOQ 0 < LOQ 8.91 14.92 ± 6.07 

0 < LOQ 0 < LOQ 13.37 24.02 ± 9.69 

0 < LOQ 0 < LOQ 17.82 33.24 ± 15.38 

0 < LOQ 0 < LOQ 26.73 49.87 ± 15.70 

0.04 0.05 ± 0.00 0.06 0.07 ± 0.03 0.74 1.49 ± 0.52 

0.08 0.09 ± 0.01 0.12 0.13 ± 0.03 1.49 2.66 ± 0.99 

0.17 0.19 ± 0.02 0.24 0.24 ± 0.03 2.97 3.63 ± 0.58 

0.25 0.43 ± 0.18 0.36 0.33 ± 0.03 4.46 6.13 ± 0.49 

0.33 0.38 ± 0.07 0.47 0.44 ± 0.08 5.94 12.07 ± 4.60 

0.497 0.57 ± 0.07 0.71 0.84 ± 0.28 8.91 15.31 ± 4.78 

0.06 0.09 ± 0.01 0.04 0.05 ± 0.02 0.56 1.23 ± 0.32 

0.12 0.12 ± 0.09 0.09 0.10 ± 0.03 1.11 2.42 ± 0.91 

0.25 0.28 ± 0.05 0.18 0.21 ± 0.08 2.23 4.18 ± 1.39 

0.38 0.42 ± 0.04 0.27 0.31 ± 0.05 3.34 4.18 ± 0.07 

0.50 0.50 ± 0.07 0.36 0.37 ± 0.05 4.46 7.78 ± 3.34 

0.75 0.69 ± 0.08 0.53 0.48 ± 0.02 6.68 11.64 ± 3.83 

0.03 0.04 ± 0.01 0.09 0.07 ± 0.03 0.56 0.89 ± 0.11 

0.06 0.07 ± 0.01 0.18 0.19 ± 0.01 1.11 1.58 ± 0.23 

0.12 0.16 ± 0.03 0.36 0.34 ± 0.08 2.23 2.93 ± 0.32 

0.19 0.20 ± 0.02 0.53 0.52 ± 0.08 3.34 4.61 ± 0.31 

0.25 0.29 ± 0.01 0.71 0.70 ± 0.12 4.46 6.03 ± 0.45 

0.03 0.06 ± 0.02 0.04 0.07 ± 0.06 0.45 0.72 ± 0.11 

0.06 0.07 ± 0.01 0.09 0.12 ± 0.05 0.89 1.02 ± 0.07 

0.12 0.18 ± 0.08 0.18 0.19 ± 0.04 1.78 2.15 ± 0.39 

0.19 0.21 ± 0.02 0.27 0.28 ± 0.04 2.67 3.45 ± 0.47 

0.25 0.29 ± 0.02 0.36 0.38 ± 0.06 3.56 4.94 ± 0.57 

0.03 0.04 ± 0.01 0.07 0.08 ± 0.03 0.89 1.19 ± 0.15 

0.05 0.07 ± 0.02 0.14 0.15 ± 0.04 1.78 2.53 ± 0.23 

0.10 0.12 ± 0.02 0.28 0.29 ± 0.03 3.56 4.41 ± 1.07 
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0.15 0.16 ± 0.02 0.43 0.30 ± 0.24 5.35 7.04 ± 1.39 

0.20 0.24 ± 0.01 0.57 0.62 ± 0.06 7.13 9.66 ± 1.21 

0.05 0.06 ± 0.02 0.04 0.06 ± 0.04 0.89 0.86 ± 0.49 

0.10 0.11 ± 0.01 0.07 0.11 ± 0.04 1.78 2.30 ± 0.49 

0.20 0.21 ± 0.02 0.14 0.14 ± 0.02 3.56 4.36 ± 0.55 

0.30 0.30 ± 0.02 0.21 0.25 ± 0.02 5.35 6.31 ± 0.57 

0.40 0.48 ± 0.02 0.28 0.32 ± 0.01 7.13 9.15 ± 1.42 

0.60 1.17 ± 0.10 0.43 0.49 ± 0.07 10.70 13.68 ± 3.23 

0.05 0.06 ± 0.00 0.07 0.08 ± 0.02 0.45 0.87 ± 0.39 

0.10 0.12 ± 0.01 0.14 0.15 ± 0.04 0.89 1.16 ± 0.12 

0.20 0.22 ± 0.02 0.28 0.20 ± 0.12 1.78 2.18 ± 0.10 

0.30 0.25 ± 0.02 0.43 0.37 ± 0.04 2.67 3.62 ± 0.37 

0.40 0.39 ± 0.08 0.57 0.51 ± 0.02 3.56 4.24 ± 0.58 

0.60 0.65 ± 0.09 0.85 0.70 ± 0.16 5.35 8.25 ± 1.49 

a Limits of quantification (LOQ); imidacloprid = 0.003 – 0.008 µg/L, clothianidin = 0.003 – 0.011 µg/L, 

thiamethoxam = 0.007 – 0.027 µg/L. 
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Table A3.3 Median effective concentrations (28-d EC50; µg/L) and slopes (β) for successful 

emergence of Chironomus dilutus exposed to single-compound positive controls in chronic 

mixture toxicity tests. a 

 

Statistical 

Method 

 

Mixture  

test 

Imidacloprid Clothianidin Thiamethoxam 

EC50 β EC50 β EC50 β 

Log-logistic 

curve 
- 0.43 2.25 1.34 33.95 8.58 2.97 

 

MIXTOX 

modeling 

IMI-CLO 0.25 2.69 0.48 6.43 - - 

CLO-TMX - - 0.82 428.8 9.65 223.2 

IMI-TMX 0.81 5.81 - - 10.31 4.59 

IMI-CLO-

TMX 
0.66 3.21 0.66 18.40 11.70 5.51 

a Calculated via maximum likelihood estimation through MIXTOX analysis (Jonker et al., 2005). 

  



  

253 

 

Table A3.4 Summary of the MIXTOX analysis output of the chronic effects of imidacloprid-

clothianidin (IMI-CLO) mixtures on the successful emergence of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A DR DL Reference S/A DL DR 

µmax 47.9 55.2 60.4 55.0 34.9 34.9 28.9 28.9 

βIMI 3.20 12.00 2.69 15.52 2.25 2.25 2.35 2.35 

βCLO 44.86 2.67 6.43 2.81 33.95 33.95 33.95 33.95 

EC50 IMI 0.48 0.69 0.25 0.71 0.33 0.33 0.30 0.31 

EC50 CLO 0.65 0.28 0.48 0.29 1.34 1.34 0.95 0.95 

a - 0.53 -9.97 0.004 - 0 -0.12 -0.12 

bDR - - 17.82 - - - -0.06 - 

bDL - - - -85.42 - - - -0.06 

SS 177.9 164.6 139.3 164.4 314.8 314.8 284.7 284.7 

 

vs. Reference Model 

χ2 - 13.34 38.61 13.56 - 9.17 30.08 30.08 

df - 1 2 2 - 1 2 2 

p(χ2) - < 0.05 < 0.05 0.001 - < 0.05 < 0.05 < 0.05 

 

vs. S/A 

χ2 - - 25.26 0.21 - - 30.08 30.08 

df - - 1 1 - - 1 1 

p(χ2) - - < 0.05 0.64 - - < 0.05 < 0.05 

         

R2 (%) 60.3 63.3 68.9 63.3 29.8 29.8 36.5 36.5 
*Bolded columns represent the mixture models of best fit (best correlation between modeled and measured data) for 

each reference model (CA and IA). 

  



  

254 

 

Table A3.5 Summary of the MIXTOX analysis output for the chronic effects of clothianidin-

thiamethoxam (CLO-TMX) mixtures on the successful emergence of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A DR DL Reference S/A DR DL 

µmax 55.8 60.6 60.5 60.6 60.4 60.6 60.6 60.6 

βTMX 12.3 58.0 22.1 59.3 5.84 13.0 13.0 13.0 

βCLO 67.8 9.24 8.4 10.0 189.0 189.0 189.0 189.0 

EC50 TMX 8.29 8.10 8.20 8.10 6.97 8.32 8.31 8.30 

EC50 CLO 1.09 0.63 0.57 0.64 0.46 0.47 0.47 0.47 

a - 0.84 2.15 0.01 - -9.13 -9.13 -9.20 

bDR - - -2.15 - - - 0.09 - 

bDL - - - -54.5 - - - 1.29 

RSS 140.1 93.9 91.6 92.8 114.0 96.4 96.4 96.3 

 

vs. Reference Model 

χ2 - 46.2 48.5 47.2 - 17.6 17.6 17.6 

df - 1 2 2 - 1 1 2 

p(χ2) - < 0.01 < 0.01 < 0.01 - < 0.01 < 0.01 < 0.01 

 

vs. S/A 

χ2 - - 2.26 1.05 - - 0.001 0.02 

df - - 1 1 - - 1 1 

p(χ2) - - 0.13 0.30 - - 0.97 0.88 

         

R2 (%) 75.5 83.6 84.0 83.8 80.0 83.1 83.1 83.1 
*Bolded columns represent the mixture models of best fit (best correlation between modeled and measured data) for 

each reference model (CA and IA). 
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Table A3.6 Summary of the MIXTOX analysis output for the chronic effects of imidacloprid-

thiamethoxam (IMI-TMX) mixtures on the successful emergence of Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A DR DL Reference S/A DR DL 

µmax 63.0 62.3 61.9 62.3 64.3 62.0 62.0 62.0 

βTMX 3.23 3.82 4.59 3.86 2.58 10.64 10.55 10.98 

βCLO 6.25 6.27 5.81 6.31 4.90 5.05 5.04 5.45 

EC50 IMI 0.83 0.80 0.81 0.80 0.63 0.92 0.92 0.92 

EC50 TMX 10.40 9.55 10.31 9.56 8.35 10.15 10.16 10.13 

a - 0.68 -0.95 0.61 - -5.79 -5.89 -6.52 

bDR - - 3.10 - - - 0.26 - 

bDL - - - -0.07 - - - 0.32 

SS 175.5 172.6 168.7 172.6 177.9 168.0 168.0 167.9 

 

vs. Reference Model 

χ2 - 2.94 6.8 2.94 - 9.90 9.90 10.09 

df - 1 1 2 - 1 2 2 

p(χ2) - 0.09 < 0.05 0.23 - < 0.05 < 0.05 < 0.05 

 

vs. S/A 

χ2 - - 3.86 0.002 - - 0.002 0.19 

df - - 1 1 - - 1 1 

p(χ2) - - < 0.05 0.96 - - 0.97 0.66 

         

R2 65.8 66.4 67.1 66.3 65.3 67.3 67.3 65.9 
* Bolded columns represent the mixture models of best fit (best correlation between modeled and measured data) for 

each reference model (CA and IA). 
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Table A3.7 Summary of the MIXTOX analysis output for the chronic effects of imidacloprid-

clothianidin-thiamethoxam (IMI-CLO-TMX) mixtures on the successful emergence of 

Chironomus dilutus. * 

 Concentration Addition Independent Action 

 Reference S/A Reference S/A 

µmax 54.2 54.8 49.7 58.1 

βIMI 3.21 3.21 1.91 3.95 

βCLO 18.40 18.40 33.94 5.37 

βTMX 6.51 5.51 3.43 4.63 

EC50 IMI (µg/L) 0.71 0.71 0.34 0.63 

EC50 CLO (µg/L) 0.65 0.66 0.62 0.61 

EC50 TMX (µg/L) 11.70 11.70 8.52 7.66 

aIMI,CLO - -1.24 - -6.19 

aCLO,TMX - -0.18 - -2.23 

aIMI,TMX - 0.54 - 0.73 

aIMI,CLO,TMX - 0.20 - -38.9 

SS 618.0 588.1 793.1 564.4 

 

vs. Reference Model 

χ2 - 29.9 - 228.7 

df - 1 - 1 

p(χ2) - < 0.05 - <0.05 

     

R2 (%) 63.9 65.6 53.6 67.0 
*Bolded columns represent the mixture models of best fit (best correlation between modeled and measured data) for 

each reference model (CA and IA). 
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Table A4.1 Mean (± standard deviation) cumulative total insect and Chironomidae emergence 

from experimental limnocorrals prior to neonicotinoid treatment (n = 3 days of sampling over 8 

days prior to neonicotinoid treatment) in field study. 

Treatment Total Insect Abundance Chironomidae Abundance 

Control 29 ± 24 22 ± 25 

IMI 10 ± 7 6 ± 5 

IMI-CLO 36 ± 25 31 ± 26 

CLO 47 ± 42 43 ± 42 

CLO-TMX 31 ± 3 22 ± 5 

TMX 12 ± 14 8 ± 12 

IMI-TMX 23 ± 17 18 ± 16 

a Significantly different from control (one-way ANOVA, p < 0.05). 
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Table A4.2 Mean (± standard deviation) physicochemical water quality parameters in control 

and neonicotinoid treated limnocorrals over the 56-d field exposure period. 

Water Quality Parameter 

Treatment 

Control IMI 
IMI-

CLO 
CLO 

CLO-

TMX 
TMX 

IMI-

TMX 

 

Dissolved Oxygen (mg/L) 

4.5 ±  

0.7 

4.7 ±  

0.8 

6.2 ±  

3.0 

5.2 ±  

1.2 

5.1 ±  

1.4 

4.8 ±  

0.7 

6.1 ±  

1.6 

Temperature 

(°C) 

19.7 ±  

0.8 

20.3 ±  

0.2 

20.5 ±  

0.1 

20.6 ±  

0.1 

20.7 ±  

0.2 

20.9 ±  

0.2 

20.8 ± 

 0.9 

Ammonia  

(mg/L) 

0.4 ±  

0.1 

0.6 ±  

0.0 

1.4 ±  

0.7 

0.7 ±  

0.0a 

0.6 ±  

0.2 

0.6 ±  

0.1 

0.6 ±  

0.1 

pH 
8.1 ±  

0.0 

8.1 ±  

0.0 

8.2 ± 

0.1 

8.1 ± 

0.1 

8.2 ± 

0.2 

8.0 ± 

0.1 

8.1 ± 

0.1 

Conductivity 

(mS/cm3) 

2937 ± 

120 

2935 

± 

86 

2959 ± 

125 

2899 

±  

90 

3021 ± 

85 

2850 

± 

23 

2936 ± 

58 

Hardness (mg/L as CaCO3) 
1773 ±  

87 

1771 

± 

82 

1741 ± 

73 

1709 

± 

21 

1677 ±  

50 

1609 

±  

57 

1678 ± 

 27 

Alkalinity (mg/L as 

CaCO3) 

419 ± 

9 

405 ± 

20 

411 ± 

39 

413 ±  

15 

393 ± 

36 

392 ± 

10 

469 ± 

72 

Nitrate (mg/L) 
3.5 ± 

0.4 

3.7 ±  

0.7 

3.8 ±  

0.6 

3.0 ±  

0.3 

4.7 ±  

0.1 

4.0 ±  

0.2 

4.9 ±  

0.4 

Phosphate (mg/L) 
1.1 ±  

0.4 

1.7 ±  

0.6 

1.3 ±  

0.7 

0.7 ±  

0.5 

0.8 ± 

0.4 

1.0 ±  

0.2 

2.2 ±  

1.6 

Dissolved Organic Carbon 

(mg/L) 

 

31.5 ±  

1.6 

 

31.6 ±  

2.3 

 

34.5 ±  

5.3 

 

31.9 ±  

1.6 

 

30.9 ±  

1.1 

 

31.2 ±  

1.2 

 

32.5 ±  

1.6 

a Significantly different from control (One-way ANOVA, p<0.05). 
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Table A4.3 Mean measured neonicotinoid concentrations (µg/L) in limnocorrals on each 

dosing day (post-dose) over the 56-d exposure period. Nominal doses of neonicotinoids were as 

follows: IMI (single compound = 0.50 µg/L; in binary mixtures = 0.25 µg/L), CLO (single 

compound = 0.71 µg/L; in binary mixtures = 0.36), and TMX (single compound = 8.91 µg/L; in 

binary mixtures = 4.46 µg/L). 

Treatment (µg/L) 

Day Control 

(0 µg/L) 

IMI 

(0.50 µg/L) 

CLO 

(0.70 µg/L) 

TMX 

(8.91 µg/L) 

  

IMI 

 

CLO 

 

TMX 

 

IMI 

 

CLO 

 

TMX 

 

IMI 

 

CLO 

 

TMX 

 

IMI 

 

CLO 

 

TMX 

0 - - - - - - - - - - - 0.04 

4 - - <0.01 0.46 - - - 0.53 <0.01 - 0.02 8.41 

8 - - - 0.94 -  - - 1.28 0.21 - - 17.00 

12 - - - 0.73 - - - 0.97 0.04 - 0.04 16.31 

16 - - 0.002 0.61 - 0.03 - 0.83 0.12 - 0.07 12.78 

20 - - - 0.54 - - - 0.76 - - 0.07 10.60 

24 <0.01 - - 0.49 - 0.07 - 0.63 - - - 8.17 

28 <0.01 - - 0.51 - <0.01 - 0.71 - <0.01 0.07 7.48 

32 - - - 0.42 - - - 0.51 - - - 6.50 

36 - - - 0.52 - - - 0.84 - - - 5.72 

40 - - <0.01 0.48 - - - 0.74 0.03 - - 6.15 

44 <0.01 - - 0.45 - - - 0.65 - - - 6.50 

48 - - - 0.37 - - - 0.56 - - - 7.10 

52 - - <0.01 0.39 - - - 0.60 - - - 10.68 

56 - - - 0.32 - - - 0.59 - - 0.07 6.87 
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Treatment (µg/L) 

 

 

Day 

 IMI-CLO 

(0.25 µg/L,  

0.35 µg/L) 

CLO-TMX 

(0.35 µg/L,  

4.45 µg/L) 

IMI-TMX 

(0.25 µg/L,  

4.45 µg/L) 

     

IMI 

 

CLO 

 

TMX 

 

IMI 

 

CLO 

 

TMX 

 

IMI 

 

CLO 

 

TMX 

 

0    - - - - - - - - 0.02 

4    0.25 0.30 - - 0.30 5.64 0.22 <0.01 4.72 

8    0.43 0.65 0.14 - 0.66 11.33 0.41 0.02 9.74 

12    0.32 0.48 0.01 - 0.49 9.41 0.33 0.03 8.92 

16    0.27 0.34 0.02 - 0.43 8.38 0.24 0.03 7.18 

20    0.26 0.33 - - 0.43 6.07 0.24 0.03 5.78 

24    0.20 0.25 - - 0.33 4.78 0.18 0.03 4.89 

28    0.15 0.19 - - 0.38 3.68 0.16 0.04 3.29 

32    0.17 0.19 0.02 - 0.33 3.89 0.15 0.03 2.86 

36    0.26 0.41 - - 0.45 3.50 0.25 0.02 3.17 

40    0.27 0.39 - - 0.37 3.71 0.29 0.02 3.91 

44    0.25 0.37 - - 0.36 4.47 0.25 0.02 3.81 

48    0.23 0.28 - - 0.28 4.55 0.24 0.03 4.27 

52    0.21 0.30 - - 0.34 6.81 0.20 0.04 5.99 

56    0.17 0.29 - - 0.33 4.60 0.20 0.03 3.83 

* All unreported concentrations were lower than the limits of quantification (LOQ): IMI: 0.0028 ± 0.0006 µg/L, CLO: 0.0034 ± 

0.0008 µg/L, TMX: 0.0058 ± 0.0009 µg/L. 
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Table A4.4 Mean measured neonicotinoid concentrations expressed as toxic units (TU) in 

limnocorrals at each dosing day over the 56-d exposure period. Nominal TU of neonicotinoids 

were as follows: IMI (single compound = 1; in binary mixtures = 0.5), CLO (single compound = 

1; in binary mixtures = 0.5), and TMX (single compound = 1; in binary mixtures = 0.5). 

 

 Treatment (TU) 

Day Control 

(0 TU) 

IMI 

(1.0 TU) 

CLO 

(1.0 TU) 

TMX 

(1.0 TU) 

 IMI CLO TMX IMI CLO TMX IMI CLO TMX IMI CLO TMX 

0 - - - - - - - - - - - <0.01 

4 - - <0.01 0.93  - - - 0.75  <0.01 - 0.03  0.94  

8 - - - 1.89  -  - - 1.80  0.02  - - 1.91 

12 - - - 1.46 - - - 1.37 <0.01 - 0.06 1.83 

16 - - <0.01 1.21 - <0.01 - 1.17 0.01 - 0.10 1.43 

20 - - - 1.08 - - - 1.07 - - 0.01 1.19 

24 <0.01 - - 0.98 - <0.01 - 0.88 - - - 0.92 

28 <0.01 - - 1.03 - <0.01 - 1.0 - <0.01 0.10 0.84 

32 - - - 0.84 - - - 0.72 - - - 0.73 

36 - - - 1.03 - - - 1.19 - - - 0.64 

40 - - <0.01 0.97 - - - 1.04 <0.01 - - 0.69 

44 <0.01 - - 0.90 - - - 0.92 - - - 0.73 

48 - - - 0.73 - - - 0.80 - - - 0.80 

52 - - <0.01 0.78 - - - 0.85 - - - 1.20 

56 - - - 0.63 - - - 0.84 - - 0.09 0.77 
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Treatment (TU) 

 

Day 

   IMI-CLO 

(1.0 TU) 

CLO-TMX 

(1.0 TU) 

IMI-TMX 

(1.0 TU) 

    IMI CLO TMX IMI CLO TMX IMI CLO TMX 

0    - - - - - - - - <0.01 

4    0.49 0.42  - - 0.43  0.63  0.43  0.01  0.53  

8    0.86  0.92  0.02  - 0.93  1.3 0.82 0.03 1.09 

12    0.65 0.67 <0.01 - 0.68 1.06 0.66 0.04 1.00 

16    0.54 0.48 <0.01 - 0.61 0.94 0.47 0.04 0.81 

20    0.52 0.46 - - 0.61 0.68 0.47 0.05 0.65 

24    0.40 0.35 - - 0.47 0.54 0.36 0.04 0.55 

28    0.30 0.27 - - 0.53 0.41 0.31 0.05 0.37 

32    0.35 0.27 <0.01 - 0.47 0.44 0.29 0.04 0.32 

36    0.52 0.58 - - 0.63 0.39 0.50 0.03 0.36 

40    0.55 0.54 - - 0.51 0.42 0.46 0.02 0.44 

44    0.50 0.52 - - 0.51 0.50 0.50 0.03 0.43 

48    0.46 0.39 - - 0.39 0.51 0.49 0.04 0.48 

52    0.41 0.42 - - 0.48 0.77 0.40 0.06 0.67 

56    0.34 0.32 - - 0.46 0.52 0.40 0.04 0.43 

* All unreported toxic units were measured at concentrations lower than the limits of quantification (LOQ): IMI: 0.0028 ± 0.0006 

µg/L, CLO: 0.0034 ± 0.0008 µg/L, TMX: 0.0058 ± 0.0009 µg/L. 
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Table A4.5 Mean (± standard deviation) abundances of emerged insect taxa in untreated 

limnocorrals (controls) compared to limnocorrals treated with single compounds or binary 

neonicotinoid mixtures for 56 days (cumulative), (n = 3 limnocorrals/treatment). 

Treatment Diptera Trichoptera Hymenoptera Odonata Coleoptera Ephemeroptera 

Total Chironomidae 

Control 1972 ± 773 1962 ± 782 6 ± 3 2 ± 0 20 ± 12 3 ± 2 0 ± 1 

IMI 201 ± 31 197 ± 28 4 ± 1 1 ± 1 24 ± 38 0 ± 1 0 ± 0 

IMI- 

CLO 

653 ± 364 638 ± 364 8 ± 6 1 ± 2 25 ± 17 2 ± 3 0 ± 0 

CLO 284 ± 109 282 ± 103 8 ± 5 2 ± 1 16 ± 10 2 ± 2 0 ± 1 

CLO-TMX 284 ± 258 284 ± 249 7 ± 6 2 ± 3 14 ± 19 3 ± 1 0 ± 0 

TMX 579 ± 156 572 ± 156 9 ± 4 3 ± 1 12 ± 11 1 ± 1 0 ± 1 

IMI-TMX 765 ± 853 735 ± 823 12 ± 4 2 ± 2 13 ± 11 2 ± 1 0 ± 0 

* Significantly different from the control (One-way ANOVA, p < 0.05). 
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Table A4.6 Coefficients of variation (%) for cumulative emergence and biomass of emerged 

Chironomidae in neonicotinoid treated limnocorrals after 56 days of exposure (n = 3 

replicates/treatment). 

Treatment Coefficient of Variation for  

Emergence (%) 

Coefficient of Variation for  

Biomass (% CV) 

Control 39.9 52.4 

IMI 14.2 29.7 

CLO 36.6 46.3 

TMX 27.4 14.0 

IMI-CLO 57.1 38.1 

CLO-TMX 87.8 67.4 

IMI-TMX 111.9 82.4 
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Table A5.1 Comparative efficiencies of five different experimental methodologies for the 

extraction of membrane protein from larval Chironomidae (spp. unknown; mixed culture). 

Bolded method indicates most efficacious, and thus was used for all membrane protein 

extraction.   

Method Homogenization 

Instrument 

Dissociation 

Medium 

Quantity of 

Chironomidae 

used in 

Extraction (g) 

Concentration 

of Extracted 

Membrane 

Protein  

(µg/mL) 

Quantity 

of 

Membrane 

Protein 

Extracted 

(g) 

Membrane 

Protein 

Extraction 

Efficiency  

(%) * 

1 Manual 

Homogenization 

(Mortar + 

Pestle) 

Fly a 5.2 1436 0.0029 0.06 

2 Automatic 

Blender 

Fly a 5.4 2254 0.005 0.08 

3 Automatic 

Blender 

Aphid b 5.9 1322 0.005 0.09 

4 Automatic 

Pestle Motor 

Fly a 2.7 1819 0.003 0.09 

5 Automatic 

Pestle Motor 

Aphid b 4.0 2056 0.004 0.15 

* Membrane extraction efficiency (%) =  
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 (𝑔)

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ𝑖𝑟𝑜𝑛𝑜𝑚𝑖𝑑𝑎𝑒 (𝑔)
 𝑥 100 % 

a Fly dissociation medium (/6 mL of media, dissolved in reverse-osmosis water, pH = 7.0): 100 mM Na2HPO4, 0.32 mM sucrose, 

0.1 mM EDTA, 100 µM PMSF, and 1 µM of each leupeptin (dissolved in water) and chymostatin (dissolved in DMSO). Adapted 

from Liu and Casida (1993). 
b Aphid dissociation medium (/6 mL of media, dissolved in reverse-osmosis water, pH = 7.4): 20 mM sodium phosphate, 150 

mM sodium chloride, 1 mM EDTA, 0.1 mM PMSF, and 2 µg of each pepstatin (dissolved in methanol), chymostatin (dissolved 

in DMSO), and leupeptin (dissolved in water). Adapted from Taillebois et al., (2014) and Wiesner and Kayser (2000). 
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Figure A5.1 Specific binding (disintegrations per minute, DPM) of 3H-imidacloprid ([3H]-

IMI) to membrane protein isolated from C. riparius larvae. Biological activity of [3H]-IMI was 

evaluated by comparing the maximal binding (Bmax = 4885 DPM) to the target [3H]-IMI 

concentration (9057 DPM) (i.e. 𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  𝐵𝑚𝑎𝑥 𝑇𝑎𝑟𝑔𝑒𝑡 [[3𝐻] − 𝐼𝑀𝐼]⁄ ). 

 *Data is presented as mean ± standard error (SE) of three experimental replicates. 
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Table A5.2 Binding affinity of [3H]-imidacloprid ([3H]-IMI) (KD; mean ± SE), nicotinic 

acetylcholine receptor density (Bmax; mean ± SE), and acute imidacloprid (IMI) toxicity (48 - 96 

h LC/EC50; minimum reported value) for larval Chironomidae compared to that previously 

characterized for other insects.*  

Insect  

Species 

Classification Taxonomic 

Order 

Binding 

Site 

(Affinity) 

n KD 

(nM) 

Bmax 

(fmol/mg) 

Acute 

Toxicity 

Ref* 

Chironomus 

dilutus 

Aquatic 

Insect 

Diptera - 1 0.24 

 

5098 

 

5 µg/L [1 - 

2] 

Chironomus 

riparius 

Aquatic 

Insect 

Diptera - 1 0.20 

 

6522 

 

13 µg/L [3 - 

4] 

Drosophila 

melanogaster 

Standard Test 

Species 

Diptera  

- 

4 3.0 ± 0.9 1018 ± 

325 

195 µg/L [5 - 

6] 

Musca 

domestica 

Standard Test 

Species 

Diptera - 8 4.0 ± 1.0 523 ± 74 6700 µg/L [5, 7 

- 9] 

Myzus 

persicae 

Agricultural 

Pest 

Hemiptera Low 6 4.8 ± 1.8 696 ± 191 73 µg/L [5, 

10 - 

12] High 3 0.3 ± 0.2 196 ± 53 

Acyrthosiphon 

pisum 

Agricultural 

Pest 

Hemiptera Low 1 41.70 0.43 38 µg/L [13] 

High 1 0.16 0.051 

Aphis 

craccivora 

Agricultural 

Pest 

Hemiptera Low 4 13.2 ± 4.3 1151 ± 

125 

1160 µg/L [5, 

12, 

14 - 

15] High 3 0.9 ± 0.3 123 ± 53 

Nephotettix 

cincticeps 

Agricultural 

Pest 

Hemiptera Low 1 1.2 179 30 µg/L [5, 

12, 

16] High 1 0.004 33 

Nilaparvata 

lugens 

Agricultural 

Pest 

Hemiptera Low 2 1.5 ± 0.0 18 ± 1 110 µg/L [5, –

12, 

17] High 1 0.0035 4 

Locusta 

migratoria 

Agricultural 

Pest 

Orthoptera Low 2 9.6 ± 0.7 290 ± 46 3 µg/g 

insect 

[5, 

12, 

17 - 

18] 

High 2 0.2 ± 0.0 131 ± 22 

Manduca 

sexta 

Agricultural 

Pest 

Lepidoptera - 1 1.3 150.0 976 µg/L a [19 - 

20] 

Heliothis 

virescens 

Agricultural 

Pest 

Lepidoptera - 1 1.51 134  821 µg/g 

feed b 

[19, 

21] 

*Bolded data was generated in this study. 

a Toxicity datum is for technical product. b Toxicity datum is derived from a feeding assay. 

* [1] Maloney et al. 2017; [2] Raby et al. 2018a; [3] European Food Safety Authority (EFSA), 2014; [4] Posthuma-Doodeman 

2008; [5] Crossthwaite et al., 2017; [6] Frantzois et al., 2008; [7] Kaufman et al. 2006; [8] White et al. 2007 ; [9] Abbas et al. 

2015; [10] Nauen et al., 1998; [11] Nauen et al. 1998b; [12] Taillebois et al., 2018; [13] Taillebois et al., 2014; [14] Tang et al. 

2013; [15] Abd-Ella, 2014;  [16] Jairin et al. 2005; [17] Matsuda et al., 2009; [18] Parkinson et al., 2017; [19] Ohkawara et al., 

2002; [20] Eure et al., 2018; [21] Lagadic et al., 1993. 
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Table A5.3 Competitive binding of [3H]-imidacloprid and unlabelled neonicotinoids, 

imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (TMX) and acute toxicities (48 - 96 h 

LC/EC50 values) for larval Chironomidae (C. dilutus and C. riparius) compared to that 

previously characterized for agricultural pests and other experimental insects.*  

Bolded data was generated in this study. 

Insect  

Species 

Common 

Name 
Classification 

Taxonomic 

Order 

 

Compound 
Ki 

(nM) 

IC50 

(nM) 

Acute 

L/EC50 
Ref** 

Chironomus 

dilutus 

Non-

Biting 

Midge 

Aquatic Insect Diptera 

 

IMI 

 

0.42 

 

1.29 

 

4.63 

µg/L 
 

[1 - 4] CLO 0.21 0.63 
3.30 

µg/L 

TMX 45.54 140.00 
45.0 

µg/L 

Chironomus 

riparius 

Non-

Biting 

Midge 

Aquatic Insect Diptera 

 

IMI 

 

0.50 

 

1.78 

 

12.94 

µg/L 

[2 - 4] 
CLO 0.43 1.53 

21.80 

µg/L 

TMX 43.36 153.90 
55.50 

µg/L 

         

Drosophila 

melanogaster 
Fruit Fly 

Experimental 

Organism 
Diptera 

IMI 3000 
2.3 -  

5.8 

6827 -  

19407 

µg/L 
[5 – 

7] 
CLO 1800 2.2 

0.56 

µg/g 

insect 

TMX - - - 

Musca 

domestica 
House Fly 

Experimental 

Organism 
Diptera 

 

IMI 

 

- 

 

2.6 

 

31.4 

µg/g 

feed [5, 8] 

CLO - 1.8 - 

TMX - - - 

Myzus persicae 

Green 

Peach 

Aphid 

Agricultural 

Pest 
Hemiptera 

 

IMI 

 

2700 – 

24200 

 

7.2 -  

9.2 

 

470 - 

1600 

µg/L 

 

 

 

 

 

[5, 9 - 

10] 

CLO 
550 -  

3100 

2.3 -  

3.1 

1303 - 

2341 

µg/L 

TMX 
12000 - 

2.9 x 106 

2800 - 

4800 

4020 

µg/L 

Aphis 

craccivora 

Cotton 

Aphid 

Agricultural 

Pest 
Hemiptera 

 

IMI 
- 

 

2.3 -  

25.2 

1160 - 

6330 

µg/L 

[5, 11 

- 12] 
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    CLO - 
2.3 -  

8.6 
- 

    TMX - 
270 -  

2300 
600 µg/L 

Acyrthosiphon 

pisum 
Pea Aphid 

Agricultural 

Pest 
Hemiptera 

 

IMI 

 

38140 

 

0.061 

 

38 µg/L [5, 

13] CLO 126900 0.203 34 µg/L 

TMX 1047200 1.675 118 µg/L 

* Modified from Taillebois et al., (2018). 

** [1] Maloney et al., 2017; [2] Pest Management Regulatory Agency, 2018; [3] Pest Management Regulatory 

Agency, 2018b; [4] European Food Safety Authority (EFSA), 2014; [5] Taillebois et al., 2018; [6] Frantzois et al., 

2008; [7] Arain et al., 2014; [8] Burgess and King, 2015; [9] XueXiang et al., 2011; [10] Cho et al., 2011; [11] Tang 

et al., 2013; [12] Abd-Ella, 2014;  [13] Taillebois et al., 2014. 

 


