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ABSTRACT 

 

 Salt stress, or salinity, is one of the most common environmental stresses affecting crop 

yield worldwide. Due to the prevalence of salinity stress, it is not surprising that plants have 

evolved mechanisms to tolerate osmotic and ionic stress caused by salinity.  Dehydrins are 

intrinsically unstructured proteins that accumulate in photosynthetic organisms under 

dehydrating conditions, such as salinity, and are thought to confer stress tolerance through the 

stabilization of cellular membranes. Thellungiella salsuginea, a close relative of Arabidopsis 

thaliana, is a halophyte that thrives in the Canadian sub-Arctic (Yukon Territory), that is able to 

tolerate extreme conditions, including high salinity. TsDHN-2 is a basic dehydrin from 

Thellungiella whose transcript increases over 10-fold in response to salinity treatment.  Using 

RNA interference (RNAi) methodology, TsDHN-2 has been silenced and these lines were used 

in this study to investigate the role TsDHN-2 may play in the salt tolerance of Thellungiella.  

RNAi line 7-8 presented a 41% reduced expression of TsDHN-2 in comparison to wild-type 

(WT). Seed of this line showed a 15% germination rate compared to 40% in WT in the 

presence of 100 mM NaCl. Salinity stress experiments were performed by treating the RNAi 

lines and WT plants with 300 mM NaCl for up to two weeks. Line 7-8 exhibited a 6.2% greater 

decrease in photochemical efficiency of photosystem II (PSII) as estimated by the variable to 

maximal fluorescence ratio (Fv/Fm) and showed 5% greater phenotypic damage than WT when 

estimated visually.  Concentrations of the compatible osmolyte proline increased in response to 

salt treatment by 3.4-fold in WT and 8.1-fold in line 7-8, suggesting this compound may be a 

marker for salinity tolerance.  Collectively, these data support the notion that TsDHN-2 plays a 

role in the salinity tolerance mechanisms of Thellungiella. 
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1.0 INTRODUCTION 

 

 Soil salinity represents a major abiotic stress limiting crop production worldwide.  

Salinity imposes, in the short term, an osmotic stress, making it difficult for the plant to extract 

water from the soil.  In the longer term, salinity stress results in an ionic stress due to the 

accumulation of potentially toxic ions.  Plants have evolved various mechanisms to combat 

these stresses which include the synthesis of stress proteins known as dehydrins (Dure and 

Chan, 1981; Dure and Galau, 1981; Dure et al., 1981). Dehydrins belong to the D-11 subgroup 

of late embryogenesis abundant (LEA) proteins that accumulate in all photosynthetic organisms 

exposed to dehydrating conditions such as salinity, drought, or low temperatures. Dehydrins are 

intrinsically disordered (unstructured) proteins that are highly hydrophilic and characterized by 

three conserved sequence motifs designated K-, S-, and Y-segments.  While their exact function 

is unknown, they are proposed to act as chaperones or in some way stabilize cellular or 

organellar membranes during stress conditions. This is thought to occur by the formation of 

amphipathic α-helices in the conserved K-segments.  

 Thellungiella salsuginea (Yukon ecotype) is a crucifer that thrives in the Canadian sub-

Arctic where it grows on saline-rich soils and can tolerate salinity as high as 500 mM NaCl, 

conditions far more extreme than those tolerated by the model organism Arabidopsis. 

Using a transcriptomic approach to investigate the stress responses of Thellungiella, Wong et al. 

(2006) identified a transcript that showed a 3.4-, 31.3- and 10.4-fold increase in ratio of 

expression in response to cold, drought and salinity respectively. This transcript was identified 

as an attractive target for further study and identified as an ortholog of a dehydrin RAB18-

related protein from Arabidopsis (Wong et al., 2006). 

 This gene from Thellungiella was cloned (Barbara Moffatt, unpublished results) and 

denoted TsDHN-2, a basic dehydrin of the Y2SK3-type (Rahman et al., 2010, 2011). Most 

studies examining dehydrins have utilized an overexpression approach (Brini et al., 2007; 

RoyChoudhury et al., 2007; Xu et al., 2008). However, few have focused on using plants with 

reduced dehydrin expression.  Several lines silenced in the expression of TsDHN-2 have been 

generated by Dr. Moffatt’s group and were kindly provided for use in this study.  While the 

direct role of TsDHN-2 in membrane stabilization has been investigated (Rahman et al., 2010, 

2011), there have been no studies specifically examining the physiological role played by this 
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dehydrin in response to salinity.  This thesis examines the contribution of the Thellungiella 

dehydrin TsDHN-2 in salinity tolerance using RNAi lines with reduced TsDHN-2 expression.   
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2.0 LITERATURE REVIEW 

 

2.1 Salinity Stress 

 Salinity is a major abiotic stress limiting plant growth and development resulting in 

decreased crop quality and production worldwide.  It is currently estimated that 20% of all 

irrigated agricultural land and 50% of cropland in the world is salt-stressed, with the most 

obvious effects of salinity in arid and semi-arid regions where rainfall is limited and 

evaporation is high (Yokoi et al., 2002; Nawaz et al., 2010).  The main contributors to soil 

salinity include environmental factors such as the weathering of parental rocks or the deposition 

of oceanic salts, and man-made factors such as the use of poor quality water for irrigation and 

poor drainage (Chen and Jiang, 2010).  Saline soil is characterized by having a high 

concentration of soluble salts, mainly chlorides of sodium, calcium and magnesium, with 

sodium chloride being the most abundant source of salinity (Munns and Tester, 2008).  

Furthermore, saline soil is defined as having an equivalency of 40 mM NaCl, with most crop 

plants being susceptible at lower levels (Chinnusamy et al., 2005).  

 

2.1.1 Osmotic and Ionic Stresses 

 Adverse effects of salinity on plant growth occur in two phases. The first is a rapid, 

osmotic phase that inhibits growth of young leaves while the second is an ionic phase that 

accelerates senescence of mature leaves.  Under normal physiological conditions, the osmotic 

potential in plant cells is higher than that of the soil, thus allowing plants to take up water and 

essential minerals in root cells. However during salinity stress, the increased concentration of 

soil solutes disrupts the water potential gradient making it harder for roots to extract water and 

minerals leading to the reduction of normal cellular activities and eventually plant death (Xiong 

and Zhu, 2002; Nawaz et al., 2010).   Ionic stress is caused when Na+ and Cl- accumulate in 

cells and have direct toxic effects on cell membranes, enzyme activities and the functioning of 

the photosynthetic apparatus (Chinnusamy et al., 2005; Munns and Tester, 2008).  Therefore, to 

circumvent the consequences of high salinity, plants employ various mechanisms to alleviate 

both cellular osmotic and ionic disequilibrium.  These include the accumulation and/or 

partitioning of ions, osmotic adjustment through the accumulation of compatible osmolytes and 

the synthesis of stress proteins such as dehydrins (Zhu, 2002; Munns and Tester, 2008). 
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2.2 Mechanisms of Salinity Tolerance 

2.2.1 Ion Homeostasis 

2.2.1.1 Na+ Influx and Ca2+ Signaling 

 Under normal physiological conditions plants maintain a high K+/Na+ ratio in the 

cytosol, which is essential for normal cellular functions.  However, during salinity stress, the 

sodium electrochemical potential gradient established across the plasma membrane of plant 

cells favours the passive transport of Na+ from the environment into the cytosol (Zhu, 2003; 

Zhang et al., 2010). Sodium gains entry into root cell cytosol through uniporters or ion channel 

type transporters such as voltage-dependent ion non-selective cation channels (NSCC) and high 

affinity K+ transporters (HKTs).  Although NSCCs are thought to be the dominant pathway for 

Na+-influx, HKTs have also been found to mediate a substantial Na+-influx in some species 

(Apse and Blumwald, 2007). In rice, nine HKT homologues (OsHKT1-9) have been identified 

and encode proteins with distinct transport activities, with OsHKT8 being a Na+-transporter 

found to mediate salt tolerance by maintaining shoot K+ homeostasis (Chinnusamy et al., 2005; 

Apse and Blumwald, 2007).  Similarly, in Arabidopsis, the AtHKT1 gene encodes a Na+-

transporter and functions in mediating salt stress tolerance through cytosolic Na+ detoxification 

(Berthomieu et al., 2003; Rus et al., 2005).  Additionally, other transport proteins that may be 

involved in regulating Na+ influx during salinity stress include cation transporters and channels 

(Zhang et al., 2010). 

 The increase in extracellular Na+ sensed by membrane receptors activates intracellular 

signaling cascades including the generation of secondary messengers, such as Ca2+ (Mahajan et 

al., 2008).  This ion plays a fundamental role in plant growth and development under normal 

physiological conditions, as well as during stress conditions.  Under salinity stress, the increase 

in Ca2+ is thought to have an inhibitory effect on the Na+ entry system, and functions in this 

stress response leading to salinity tolerance (Yokoi et al., 2002).  For example, increase in 

externally supplied Ca2+ is thought to facilitate higher K+/Na+ selectivity, thus reducing the 

toxic effects of NaCl (Zhu et al., 2000). Furthermore, saline conditions also cause increases in 

cytosolic Ca2+, which is primarily transported from the apoplast and intracellular compartments 

(Zhu et al., 2000; Mahajan et al., 2008).  The increase in cytosolic Ca2+ is recognized by Ca2+-

sensing proteins, which initiates stress signal transduction leading to salt tolerance. 
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2.2.1.2 The SOS Pathway and Na+ Efflux 

 Zhu and colleagues have identified several SOS (salt overly sensitive) genes in 

Arabidopsis that are components of a stress-signaling pathway controlling ion homeostasis and 

salt tolerance (Liu and Zhu, 1998; Zhu, 2002; Zhu, 2003).  The SOS pathway helps to reinstate 

ion homeostasis through the exclusion of excess Na+ ions out of the cell via the plasma 

membrane Na+/H+ antiporter.  The SOS pathway is depicted in Figure 2.1. 

 SOS3 encodes a Ca2+-binding protein with four Ca2+-binding EF-hands and a N-terminal 

myristoylation motif (Chinnusamy et al., 2005; Mahajan et al., 2008).   The salinity induced 

increase in cytosolic Ca2+ is sensed by SOS3, which transduces the signal downstream by 

physical interaction with SOS2 (Figure 2.1).  SOS2 is a serine/threonine protein kinase with an 

N-terminal kinase catalytic domain and a unique C-terminal regulatory domain (Zhu, 2003).  

The C-terminal regulatory domain of SOS2 contains an autoinhibitory FISL/NAF motif, which 

under normal physiological conditions, interacts with the N-terminal catalytic domain in order 

to keep the enzyme in the inactive state (Chinnusamy et al., 2005; Mahajan et al., 2008). SOS3 

interacts with the SOS2 FISL/NAF motif in a calcium dependent manner resulting in the 

activation of the substrate phosphorylation activity of SOS2 (Figure 2.1). Deletion of the 

FISL/NAF motif results in a constitutively active SOS2 that is independent of SOS3 (Zhu, 

2003).  Furthermore, Halfter et al. (2000) analyzed Arabiopdsis sos2sos3 double mutants and 

found that there was no additive effect towards salt sensitivity, indicating that SOS3 and SOS2 

function in the same regulatory pathway (Halfter et al., 2000).  

 Together SOS3 and SOS2 regulate the expression of SOS1, a plasma membrane Na+/H+ 

antiporter (Figure 2.1). A sos1 mutant was found to be hypersensitive to salt stress (100 mM 

NaCl) and demonstrated impaired ionic and osmotic balance (Chinnusamy et al., 2005). SOS1 

is predicted to contain a highly hydrophobic N-terminal region consisting of 12 transmembrane 

domains and a C-terminal region with a long protruding hydrophilic tail (Mahajan and Tuteja, 

2005).   The transmembrane domains of SOS1 have substantial similarities with the Na+/H+ 

antiporters isolated from bacteria and fungi, while the long cytoplasmic tail has been proposed 

to function as a sensor for all solutes that SOS1 transports (Zhu, 2002; Sairam and Tyagi, 2004). 

Salt stress is perceived by a plasma membrane sensor, which 
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Figure 2.1 Proposed SOS signaling pathway for the maintenance of ion homeostasis 
during salinity stress 
Reproduced from Chinnusamy et al. (2004) with permission. SOS, Salt overly sensitive; HKT, 
High affinity K+ transporter; NHX, Low affinity Na+/H+ antiporter. 
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 elicits an increase in cytoplasmic Ca2+.  Perturbation in the cytoplasmic Ca2+ level is sensed by 

SOS3, which interacts with and activates SOS2. The myristoylation motif of SOS3 then recruits 

the SOS3-SOS2 complex to the plasma membrane where SOS2 phosphorylates and activates 

the antiporter activity of SOS1 (Zhu, 2002; Mahajan et al., 2008).  Cellular ion homeostasis is 

then restored as excess Na+ ions are expelled out of the cell (Figure 2.1).  Furthermore, the SOS 

pathway interacts with other regulatory proteins in order to regulate Na+ ion homeostasis.  

During salinity stress, the activity of HKT seems to be inhibited by the SOS3-SOS2 complex 

thus restricting Na+ entry into the cytosol (Rus et al., 2002; Zhu, 2002; Chinnusamy et al., 2004; 

Mahajan et al., 2008).   

 The SOS3-SOS2 complex also functions in regulating vacuolar sequestration of Na+, 

which not only lowers cytoplasmic Na+ concentrations but also contributes to osmotic 

adjustment by maintaining water uptake (Zhu, 2003; Chinnusamy et al., 2005; Mahajan and 

Tuteja, 2005).  In Arabidopsis, Na+ compartmentation is achieved through the AtNHX1 family 

of Na+/H+ antiporters.  Transgenic Arabidopsis and tomato plants overexpressing AtNHX1 

exhibited higher salt tolerance at 200 mM NaCl, thus implicating the pivotal role of the AtNHX 

family in vacuolar Na+ compartmentation (Yokoi et al., 2002; Xu et al., 2009).  Qui et al. (2003) 

compared tonoplast Na+/H+-exchange activity originating from AtNHX proteins in wild type 

and sos1, sos2, and sos3 Arabidopsis mutants, and found that SOS2 interacts and regulates 

tonoplast exchange.  Additionally, using a yeast two-hybrid assay, it was found that SOS2 

regulates the activity of the vacuolar Ca2+/H+ antiporter (CAX1), resulting in the maintenance 

of Ca2+ homeostasis (Cheng et al., 2004).  Furthermore, the activation of CAX1 by SOS2 was 

independent of the presence or activity of SOS3, suggesting a mechanistic link between Na+ 

and Ca2+ homeostasis in plants as SOS2 regulates both Na+ and Ca2+ transporters in 

Arabidopsis (Cheng et al., 2004; Gong et al., 2004; Majaham and Tuteja, 2005). 

 

2.2.2 Compatible Osmolytes 

 A major consequence of high salinity is intracellular water loss.  In order to prevent 

water loss and protect cellular protein, plants accumulate metabolites known as compatible 

osmolytes.  Compatible osmolytes are highly water soluble compounds, have low molecular 

weights, and generally accumulate in the cytoplasm in order to balance the osmotic pressure 

that arises as Na+ and Cl- are sequestered into the vacuole (Tamayo and Bonjoch, 2001; Sairam 



 - 8 - 
 

and Tyagi, 2004; Chen and Jiang, 2010). Compatible osmolytes include simple sugars (fructose 

and inositols), complex sugars (trehalose, raffinose and fructans), quaternary amino acid 

derivatives (proline, glycine betaine, β-alanine betaine, proline betaine), tertiary amines 

(1,4,5,6-tetrahydro-2-metyl-3-carboxy pyrimidine) and sulfonium compounds (choline o-sulfate, 

dimethyl sulfonium propironate) (Yokoi et al., 2002).  

 These compounds  are thought to protect plants from osmotic stress through several 

different mechanisms including osmotic adjustment, detoxification of reactive oxygen species 

(ROS), stabilization of enzymes or proteins, and protection of membrane integrity (Yokoi et al., 

2002; Sairam and Tyahi, 2004; Chinnusamy et al., 2005; Chen and Jiang, 2010).   

 

2.2.2.1 Proline 

 The amino acid proline is one such osmoprotectant thought to stabilize membranes and 

proteins, buffer cellular redox potential, serve as a storage sink for carbon and nitrogen and also 

serve as a free-radical scavenger (Tamayo and Bonjoch, 2001; Matysik et al., 2002; Szabados 

and Savoure, 2010). In organisms ranging from bacteria to higher plants, there is a strong 

correlation between exposure to abiotic stress and the accumulation of free proline.  In bacteria, 

this correlation is found to be associated with salinity tolerance (Szabados and Savoure, 2010). 

However, accumulation of free proline does not necessarily confer stress tolerance in all 

organisms.  In salt-sensitive varieties of barley, the accumulation of high levels of proline 

during salinity stress was not found to confer salt tolerance, but instead was considered to be a 

symptom of salt-susceptibility (Chen et al., 2007). 

   Proline is synthesized from either glutamate or ornithine, with glutamate being the 

primary precursor during osmotic stress (Figure 2.2).  Proline synthesis from glutamate occurs 

in the cytosol and the chloroplasts, and is mediated by Δ1-pyrroline-5-carboxylate synthase 

(P5CS) and Δ1-pyrroline-5-carboxylate reductase (P5CR), with P5CS being a rate-limiting 

enzyme in this pathway (Tamayo and Bonjoch, 2001; Chen et al., 2007; Szabados and Savoure, 

2010).  Briefly, P5CS reduces glutamate to glutamate-semialdehyde (GSA), which 

spontaneously converts to pyrroline-5-carboxylate (P5C).  P5CR then reduces the P5C 

intermediate to proline (Figure 2.2; Szabados and Savoure, 2010).  Alternatively, proline can be 

synthesized in the mitochondria from ornithine, which is first transaminated by ornithine 

aminotransferase producing GSA and P5C, which is then converted to proline (Tamayo and 
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Bonjoch, 2001; Szabados and Savoure, 2010).  Upon relief from osmotic stress, the catabolism 

of proline occurs in the mitochondria and is mediated by proline dehydrogenase (PDH; Figure 

2.2) (Kishor et al., 2005). Proline catabolism provides electrons for the respiratory chain and 

therefore contributes energy to resume growth following stress.  Furthermore, proline oxidation 

is an important regulator of cellular ROS balance and influences programmed cell death 

(Szabados and Savoure, 2010). 

 

2.2.3 Late Embryogenesis Abundant (LEA) Proteins 

 Late embryogenesis abundant proteins were first identified in seeds during their last 

stage of maturation when the acquisition of desiccation tolerance occurs in the embryo.  They 

were subsequently found in vegetative organs, especially under water deficit conditions such as 

cold, drought, or high salinity and in response to abscisic acid (ABA) (Zhang et al., 2007).  

While their role is not completely understood, LEAs have been suggested to stabilize plasma 

and organellar membranes, providing a protective role during dehydrative conditions and 

participation in acclimation and adaptive responses to stress. (Hincha et al., 1990; Dure, 1993b; 

Bray, 1997; Han et al., 1997; Danyluk et al., 1998; Steponkus et al., 1998; Ismail et al., 1999; 

Garay-Arroyo et al., 2000; Hoekstra et al., 2001; Puhakainen et al., 2004; Beck et al., 2007; 

Tolleter et al., 2007; Zhang et al., 2010). 

 LEA proteins have been separated into at least six different groups on the basis of 

sequence similarity and expression patterns (Dure et al., 1989; Ingram and Bartels, 1996; 

Colmenero-Flores et al., 1999; Cuming, 1999; Wise and Tunnacliffe, 2004; Tunnacliffe and 

Wise, 2007; Battaglia et al., 2008; Hundertmark and Hincha, 2008). The group 2 LEA proteins 

(D-11 subgroup), also known as dehydrins, are the most widely studied for their role in stress 

tolerance and over 100 dehydrin genes have been characterized from both angiosperms and 

gymnosperms (Campbell and Close, 1997; Close, 1997; Garay-Arroyo et al., 2000; Zhu et al., 

2000; Allagulova et al., 2003; Puhakainen et al., 2004; Mouillon et al., 2006; Beck et al., 2007; 

Kosová et al., 2007, 2008;  Battaglia et al., 2008). 

 

 2.2.3.1 Structural Properties and Classification of Dehydrins 

 Dehydrins (and most LEA proteins) are part of a broader group of proteins called 

hydrophilins based on their physicochemical characteristics.  Dehydrins are highly hydrophilic 
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Figure 2.2 Metabolic pathway of proline synthesis and degradation in higher plants 
Reproduced with permission of Garland Science/Taylor & Francis Books, Inc.  Copyright 
Smith et al. (2010). 



 - 11 - 
 

and are generally enriched with glycine (> 6%), serine, alanine and lysine, and lack cysteine 

and tryptophan.  They are also thermostable, and able to maintain their integrity in aqueous 

solutions up to 100°C, which is due to their large number of charge and polar amino acids. 

Dehydrins range in molecular mass from 9 to 200 kD (Allagulova et al., 2003; Zhang et al., 

2007). Dehydrins have also been categorized as intrisincally disordered/unstructured proteins 

(IDPs/IUPs) (Koag et al., 2003; Kovacs et al. 2008). IDPs/IUPs lack a defined three-

dimensional structure under normal physiological conditions, and may fold into more ordered 

structures upon interacting with their target molecules (Close, 1997; Bokor et al., 2005; Tompa 

et al., 2006). 

 Dehydrins are characterized by three conserved motifs known as the Y-, S- and K- 

segments. The Y-segment ((V/T)DEYGNP), when present, is found near the N-terminus.  This 

segment shares significant homology with the nucleotide binding site of plant and bacterial 

chaperones, however nucleotide binding by this segment has yet to be documented (Allagulova 

et al., 2003).  The S-segment, when present, is made up of serine tract repeats and is known to 

undergo in vitro phosphorylation, as has been demonstrated in maize RAB17 and the tomato 

TAS14 dehydrins (Allagulove et al., 2003). The phosphorylation of dehydrin S-segments has 

been suggested to promote the ability to bind ligands, such as divalent cationic metal ions, as 

well as interaction with specific signal peptides involved with nuclear localization (Close, 1996; 

Campbell and Close, 1997; Heyen et al., 2002; Alsheikh et al., 2003; Zhang et al., 2006; Xu et 

al., 2008).  Finally, the lysine rich K-segment (EKKGIMDKIKEKLPG) is present as one or 

several copies near the C terminus, and is the only segment found in all dehydrins.  The K-

segment has been proposed to form an amphipathic α-helix that can associate with membrane 

surfaces due to electrostatic and hydrophobic interactions (Close, 1997; Campbell and Close, 

1997; Allagulova et al., 2003; Bravo et al., 2003; Koag et al., 2003, 2009; Rorat et al., 2006). 

 The Y-, S- and K-segments are assembled together in a consistent manner with less 

conserved regions (the Φ-segments) interspersed between the conserved motifs.  The Φ-

segments are rich in polar amino acids and glycine, and have been proposed to prevent 

coagulation by interacting with the hydrophobic surfaces of nuclear or cytoplasmic 

macromolecules (Campbell and Close, 1997).  Based upon the number and order of the 

conserved domains, dehydrins are divided into five subclasses; YnSKy, SKn, Kn, KnS and YnKy 

(Figure 2.3). YnSKy is the most common dehydrin containing one to thirty-five Y-segments, 
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followed by one S-segment and up to three K-segments.  These dehydrins are basic or neutral 

proteins, which that induced by drought or ABA (Close, 1996; Allagulova et al., 2003). For 

example, barley dehydrins DHN1, DHN2, DHN3, DHN4, DHN6, and DHN9 are YSK2 

dehydrins that are shown to be up-regulated in seedlings by both dehydration and ABA, but not 

by cold (Zhang et al., 2007). SKn dehdyrins contain one S-segment and up to eleven K-

segments.  These are acidic dehydrins, that are preferentially induced by low temperatures but 

also respond to other stressers such as salinity, wounding, drought and heavy metals 

(Allagulova et al., 2003; Zhang et al., 2006). Kn dehydrins are made up of one to 11 K-

segments and contain no Y- or S-segments.  These are acidic or neutral proteins induced by 

cold, dehydration and ABA (Allagulova et al., 2003; Zhang et al., 2007). The characteristic 

feature of KnS dehydrins is that they contain K-segments that begin with the consensus 

E(H/Q)KEG rather than EKKG. These dehydrins are induced by chilling and freezing 

temperatures as is seen in the rice Wsi724 and medic Cas15a and 15b dehydrins (Allagulova et 

al., 2003).  The YnKy contains one to 11 Y-segments and up to four K-segments.  These acidic 

dehydrins are up-regulated by stresses, but do not show any preference to any of the abiotic 

stresses (Zhang et al., 2006).  For example, the chickpea Y2K dehydrin cpdhn1 was expressed 

not only during seed development, but also in leaves during drought, chilling, salinity, and in 

response to ABA and methyl jasmonate treatment (Bhattarai and Fettig, 2005). 

 

2.2.3.2 Distribution and Function of Dehydrins  

 Dehydrins accumulate to various cell compartments including the cytoplasm, nucleus, 

and in the vicinity of the plasma membrane, as well as chloroplasts and mitochondria (Hincha 

et al., 1990; Danyluk et al., 1998; Tolleter et al., 2007; Carjuzaa et al., 2008). Under normal 

physiological conditions dehydrins are found to accumulate in a tissue- and cell-type specific 

manner during plant growth and development.   For example, while the Arabidopsis dehydrin 

RAB18 localizes to all parts of the embryo and endosperm of mature seeds, it is only found to 

accumulate in the stomatal guard cells of stems, leaves and flowers (Nylander et al., 2001). 

Elevated accumulation of dehydrins is correlated with dehydrating conditions such as high 

salinity, low temperatures and drought.   Under such conditions the expression of dehydrins is 

more ubiquitous, extending to most cells and tissues (Nylander et al., 2001; Rorat, 2006).  

Immunohistochemical localization studies of several Arabidopsis dehydrins have demonstrated 
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Figure 2.3 Classification of dehydrins (Group 2; D-11 LEA) based on conserved motifs 
The five classes YnSKy, SKn, Kn, KnS and YnKy are indicated.  Y-, S- and K-segments are 
shown by the yellow, orange and green boxes, respectively. Adapted from Battaglia et al. 
(2008). 
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high accumulation in the vasculature and surrounding tissues which are the most vulnerable 

during dehydrating stress conditions (Nylander et al., 2001). While their functional role is not 

known, dehydrins have been shown to bind proteins and lipids, act as molecular chaperones and 

cryoprotectants, and to have radical scavenging and metal-binding activity (Hara et al., 2001; 

Heyen et al., 2002; Alsheikh et al., 2003; Bravo et al., 2003; Koag et al., 2003, 2008; Brini et 

al., 2007; Kovacs et al., 2008; Rahman et al., 2010, 2011).  In vitro analysis has revealed that 

each of the five subclasses of dehydrins may display distinct functions (Nylander et al., 2001; 

Rorat, 2006).  For example, the YnSKy-type dehydrins have been found to bind lipids in order 

to stabilize their structure during dehydrating conditions, while the KnS-type dehydrins display 

radical-scavenging and metal-binding activity (Rorat, 2006).  SKn-type dehydrins have also 

been proposed to have some metal-binding activity, and along with Kn-type dehyrins may 

participate in protective mechanisms against low temperature stress or are involved in the cold 

acclimation process (Rorat, 2006).  Although no in planta evidence has been obtained to date, 

many in vitro studies have suggested possible roles by which dehydrins protect cells against 

damage caused by dehydration.  

 Proteins and lipid binding would stabilize vesicles or endomembrane structures and 

promote protein integrity during stress conditions.  This is thought to be accomplished through 

the K-segment which is predicted to form an amphipathic α-helix with 10 (IMDKIKEKLP) or 

12 (GIMDKIKEKLPG) residues of the segment being proposed to form a class A2 amphipathic 

α-helix, one that has hydrophilic and hydrophobic residues located on opposite faces (Close, 

1996). This is analogous to the similar structure found in apolipoproteins, which transport 

water-insoluble lipids in plasma via the lipid-binding characteristic of the amphipathic α-

helices (Close, 1996). Furthermore, similar to apolipoproteins, dehydrins have been shown to 

increase α-helicity (gain ordered secondary structure) in the presence of helical inducers such 

as detergents or interaction with lipids (Ceccardi et al., 1994; Ismail et al., 1999; Soulages et al., 

2002, 2003; Koag et al., 2003, 2009; Kovacs et al., 2008).  This gain of structure indicates that 

dehydrins may function as an interface between the hydrophobic surfaces of membrane 

phospholipids and the hydrophilic cytosol in plant cells (Campbell and Close, 1997; Zhang et 

al., 2006).  For example, in maize scutellar parenchyma cells the K-segment of dehydrin DHN1 

forms an A2 amphipathic α- helical structure that binds to small lipid vesicles containing acidic 

phospholipids (Koag et al., 2003; Kovacs et al., 2008). Another analogy can be made with 
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molecular chaperones, which bind to their target protein via hydrophobic interactions in order 

to promote proper folding of proteins, prevent protein aggregation and assist in proper refolding 

of misfolded proteins (Campbell and Close, 1997; Panossian et al., 2009).  Therefore, the K-

segment of dehydrins may play a critical role in the molecular chaperone activity of dehydrins 

by interacting with exposed hydrophobic surfaces to prevent protein-protein aggregation during 

dehydrating or freezing conditions (Campbell and Close, 1997; Zhang et al., 2007). The 

number of K-repeats is thought to play a critical role in the cryoprotective activity of dehydrins, 

with most cold-induced dehydrins containing three or more K-repeats (Zhang et al., 2007). 

During cold stress, dehydrins are proposed to act as cryoprotectants by stabilizing cellular 

structure and macromolecules, and it is proposed that the amphipathic α-helix formed by the K-

segment could interact with exposed hydrophobic patches or lipids in order to prevent further 

inactivation.  The degree of membrane association and putative stabilization is defined by the 

number of K-segments (Bravo et al., 2003).  The citrus dehydrin, CuCOR19, was found to 

protect catalase and lactate dehydrogenase against freezing inactivation, and the circular 

dichroism (CD) spectrum for CuCOR19 found the major secondary structure in solution to be a 

random coil, suggesting that this lack of structure may play an important role in the 

cryoprotection of enzymes (Hara et al., 2001). 

  Dehydrins have also been proposed to have radical-scavenging ability and metal-

binding activity. Under cold stress, peroxidation and lipid peroxidation causes decreased 

fluidity in membranes and dehydrins have been proposed to function as radical scavengers in 

order to protect membrane structures (Matysik et al., 2002; Zhang et al., 2007). This has been 

shown by in vitro analysis of transgenic tobacco overexpressing the citrus dehydrin CuCOR19, 

that enhanced cold tolerance compared to the control due to reduced electrolyte leakage and 

malondialdehyde production (Zhang et al., 2007).  Furthermore, DNA is also considered highly 

susceptible to radicals, and since dehydrins are known to accumulate in the nucleus, 

chloroplasts and mitochondria, it is assumed that they protect DNA from oxidative damage 

under stress conditions (Matysik et al., 2002; Zhang et al., 2007).  A metal-binding activity of 

dehydrins has been proposed to prevent the adverse effects of increasing ionic strength, which 

occurs due to an increased concentration of metal ions in the cytoplasm from membrane 

leakage during stress.  Several dehydrins capable of binding metal ions have been identified 

including the citrus dehydrin CuCOR15 which binds copper (Hara et al., 2005), the caster bean 
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dehydrin ITP which binds iron (Krüger et al., 2002), as well as the celery dehydrin VcaB45 

(Heyen et al., 2002) and the Arabidopsis dehydrin ERD14 (Alsheikh et al., 2003) that both bind 

calcium upon phosphorylation. Furthermore, analysis of CuCOR15 found it bound copper 

through His residues located within a core sequence (HKGEHHSGKDD) found near the N-

terminus.  This His-X3-His motif has been characterized as a metal-binding site in many metal-

binding proteins, and not only do most dehydrins contain a high proportion of His but they also 

contain the double His sequence and/or the His-X3-His motif, further supporting the notion that 

dehyrins may be metal-binding proteins (Hara et al., 2005).   

 In addition, dehydrins form highly stable hydrated gels in vivo (Wolkers et al., 2001; 

Tompa et al., 2006; Mouillon et al., 2008).  The intrinsically disordered nature of these proteins 

allows them to sequester water and sugars in a tightly hydrogen-bonded network to form a gel 

(Hoekstra et al., 2001; Wolkers et al., 2001; Tompa et al., 2006; Kovacs et al., 2008; Shimizu 

et al., 2010).  For example, nuclear magnetic resonance intensity and differential scanning 

calorimetry measurements on an Arabidopsis dehydrin, ERD10, found it had a high hydration 

potential and a large ion binding capacity similar to other known IDPs/IUPs (Bokor et al., 2005; 

Tompa et al., 2006).   This suggests that the unstructured nature of dehydrins could aid in 

preventing water loss and protein denaturation through its ability to bind water and other ions.  

 

2.3 Halophytes 

 Broadly speaking, a halophyte is a plant that grows in a saline environment.  These 

include semi-deserts, mangrove swamps, marshes, sloughs and seashores. Higher plants in the 

halophyte category include species of Atriplex and Mesembryanthemum crystallinum, the salt 

marsh grass Spartina alterniflora (smooth cordgrass) and sea barleygrass (Hordeum marinum) 

to name a few.  Relatively few terrestrial plant species, approximately 2%, are halophytes, with 

the majority of plant species being glycophytes that display a low tolerance to salinity 

(Radyukina et al., 2007). However, glycophytes are a heterogeneous group and a range of 

sensitivities can be found in these non-halophyte species. 

 Halophytes thrive in saline environments because of osmotic adjustment and 

intracellular compartmentation that partitions otherwise toxic Na+ and Cl- ions to the vacuole 

(Flowers and Clomer, 2008; Ruan et al., 2010). Osmotic adjustment through the accumulation 

of compatible osmolytes to tolerate the low soil water potential caused by salinity is a common 
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feature of most glycophytes and halophytes. In fact, halophytes can readily take up Na+ such 

that the roots typically have much lower NaCl concentrations than the rest of the plant (Flowers 

and Clomer, 2008; Ruan et al., 2010).  However, halophytes possess a greater capacity to 

survive salt shock and more readily establish metabolic steady state for growth in a saline 

environment (Sen and Kasera, 2001). While most plants effectively exclude Na+ and Cl− by 

roots during water uptake, halophytes are able to maintain this exclusion at higher salinities 

than glycophytes.  

 The basis of salinity tolerance is still not well understood, despite the fact it has been 

studied in a variety of glycophytic and halophytic plants (Hasegawa et al., 2000). Unfortunately, 

most all of the halophytic species are not amenable to genetic analyses. Significant 

advancements in the area of salinity tolerance have been realized using Arabidopsis and the 

array of genetic resources developed for this genetic model system (Zhu, 2000; Bressan et al., 

2001). However, these results must be interpreted with caution as Arabidopsis is actually a 

glycophyte which does not exhibit salinity tolerance anywhere near that of a halophyte. 

Arabidopsis, when compared with other species under similar growth conditions, is a salt-

sensitive species.  Ideally, understanding the exceptional degree of salt tolerance in halophytes 

requires a genetic model system incorporating the advantages of the Arabidopsis model.  A 

close relative of Arabidopsis in the genus Thellungiella (Bressan et al., 2001; Teusink et al., 

2002) satisfies this requirement. 

 

2.3.1 Thellungiella salsuginea 

 Over the past ten years, a small cruciferous plant, commonly known as ‘salt cress’, has 

established itself as a new model for research into plant stress tolerance (Bressan et al., 2001; 

Zhu, 2001; Volkov et al., 2003; Inan et al., 2004; Amtmann et al., 2005; Gong et al., 2005; 

Wong et al., 2005; Kant et al., 2006; M’rah et al., 2006; Wang et al., 2006; Warwick et al., 

2006; Wong et al., 2006).  Thellungiella salsuginea, synonymous with Thellungiella halophila 

and previously classified as Arabidopsis halophila, is a member of the Brassica family and a 

close relative of Arabidopsis (Figure 2.4) (Al-Shebaz et al., 1999). 

 Thellungiella displays many of the experimental advantages of Arabidopsis including a 

short lifecycle, self-fertility, copious seed production, transformability, small genome 

(approximately twice the size of the Arabidopsis genome) and high sequence similarity to 
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Arabidopsis (Amtmann, 2009). However, in contrast to Arabidopsis, Thellungiella is able to 

grow and reproduce under conditions of extreme cold, drought, and salinity. To date, most 

studies have utilized the Shandong ecotype of Thellungiella, which grows in the high-salinity 

coastal areas in eastern China, primarily for studies of salinity tolerance mechanisms (Bressan 

et al., 2001; Inan et al., 2004).  The work presented in this thesis was performed with the 

Yukon ecotype of Thellungiella.  This ecotype was isolated in the Takhini Salt Flats near 

Whitehorse in theYukon Territories, Canada, a subarctic and semiarid region (Warwick et al., 

2004) characterized by multiple simultaneous abiotic stresses, including cold, drought, and high 

salinity (Figure 2.4). 

 Thellungiella (Yukon ecotype) is native to harsh environments, can tolerate salinity as 

high as 500 mM NaCl and  can withstand water losses in excess of 40% of its fresh weight 

(Inan et al., 2004; Amtmann, 2009), conditions far more extreme than those tolerated by 

Arabidopsis. For instance, prolonged exposure to 100 mM does not allow Arabidopsis to 

complete its life cycle but has no effect on the growth rate of Thellungiella (Inan et al., 2004; 

Kant et al., 2006).  The increased salt tolerance of Thellungiella over Arabidopsis has been 

attributed to superior ion homeostasis, due in part to the selectivity and regulation of individual 

ion transporters (Volkov et al., 2003; Kant et al., 2006; M’rah et al., 2006, 2007; Wong et al., 

2006; Ghars et al., 2008). In addition, proline increases to higher levels in Thellungiella than in 

Arabidopsis, although the mechanistic basis for this between species is still controversial (Inan 

et al., 2004; Taji et al., 2004; Kant et al., 2006; Ghars et al., 2008). 

 

2.3.2 TsDHN-2 

Much work has been performed to investigate the stress responses of Thellungiella at 

the level of gene expression (Taji et al., 2004; Wong et al., 2005, 2006; Kant et al., 2006). 

Wong et al. (2005) compared 6578 ESTs representing 3628 unique genes from cDNA libraries 

of cold-, drought-, and salinity-stressed plants of the Yukon ecotype and found very little 

overlap between gene expression in the different conditions. Furthermore, when microarrays 

spotted with the ESTs were probed with mRNA obtained from stressed plants, a similar pattern 

was observed (Wong et al., 2006).  Out of 154 transcripts that were differentially regulated 

under conditions of cold, drought and salinity stress, only six of these genes responded to all 

three stresses. One of these genes was identified as an ortholog of a dehydrin RAB18-related  
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Figure 2.4  Photographs of the halophytic plant Thellungiella 
Images are representative of the Yukon ecotype grown in the laboratory (A.) or as found in 
their natural habitat (B.).  Figure 2.4B reproduced from Amtmann (2009) with permission. 
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protein from Arabidopsis (At5g66400). This unique dehydrin from Thellungiella, later named 

TsDHN-2, showed a 3.4-, 31.3- and 10.4-fold increase in ratio of expression in response to cold, 

drought and salinity respectively and was identified as a potential target for further study 

(Wong et al., 2006).  

 The effect of temperature on interaction of the Thellungiella dehydrin TsDHN-2 with 

membranes has recently been examined using CD and transmission-Fourier transform infrared 

spectroscopy (Rahman et al., 2010). These investigators used recombinant protein expressed in 

Escherichia coli and demonstrated that ordered secondary structure is induced and stabilized in 

TsDHN-2 by association with large unilamellar vesicles with similar lipid compositions to that 

of plant membranes. Low temperatures also seemed to enhance the induced folding supporting 

a role for TsDHN-2 in membrane stabilization during low temperature stress conditions 

(Rahman et al., 2010, 2011).   

 

2.4 Thesis Objectives 

 While the direct role of TsDHN-2 in membrane stabilization has been investigated 

(Rahman et al., 2010, 2011), there have been no studies specifically examining the 

physiological role played by this dehydrin in response to salinity.  In this thesis, I will examine 

four silenced RNAi plant lines of the Yukon ecotype of Thellungiella, which are thought to 

have reduced levels of TsDHN-2, to test the hypothesis that this dehydrin confers protection to 

salinity stress.  This will be accomplished by analyzing the level of silencing of TsDHN-2 and 

characterizing the phenotypic responses to long-term salinity treatment.  Plants will also be 

assessed for their photosynthetic performance and accumulation of the compatible osmolyte 

proline.  The effect of reduced TsDHN-2 on seed germination in the presence of salt will also 

be examined.  It is hoped that this information will provide an important first step into the 

elucidation of the role of TsDNH-2 in the stress tolerance mechanisms utilized by Thellungiella 

to thrive under conditions of extreme salinity. 
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3.0 MATERIALS AND METHODS 
 

3.1 Plant Material 

 Seeds of WT Thellungiella salsuginea (Pall.) O.E. Schulz, Yukon ecotype (Al-Shehbaz 

et al., 1999; Cody, 2000) and the four TsDHN-2 RNAi transgenic plant lines (1-1, 5-4, 6-2, and 

7-8) were obtained from Dr. Barbara Moffatt (Department of Biology, University of Waterloo) 

and supplied as T3 homozygote stocks. 

 

3.2 Growth Conditions 

 Plants of WT Thellungiella and four individual TsDHN2 RNAi transgenic plant lines (1-

1, 5-4, 6-2, and 7-8) were grown from seed in controlled environment chambers (Conviron E15; 

Controlled Environments Ltd., Winnipeg, MB, Canada). Seeds were sown onto the surface in 5 

x 15 x 24 plastic trays containing a peat-soil mixture (Sunshine mix; Sun Gro Horticulture, 

Vancouver, BC, Canada) and grown with a 21/3 h light/dark cycle and day/night temperatures 

of 22/10°C. Fluorescent lights (Cool White, 215 W, F96T12/CW/VHO; Sylvania, Danvers, MA, 

USA) provided a photosynthetic photon flux density (PPFD) of 250 µmol photons m-2s-1 

photosynthetically active radiation. The PPFD was measured at pot height with a Li-Cor 

(Lincoln, NE, USA) Quantum/Radiometer/Photometer (model LI-189) equipped with a model 

LI-190SA quantum sensor (Li-Cor).  Plants were irrigated every second day with deionized 

water or nutrient solution (Sommerville and Ogren, 1982).  When the plants were 4 weeks old 

they were subjected to the stress treatment described below. 

 

3.3 Salinity Stress Treatments 

 Salt-shock treatment was imposed by watering 4-week-old plants with a direct 

application of 300 mM NaCl once daily which was provided in the irrigation solution. This 

continued for 14 d. Leaf tissue samples were taken before and during salinity stress treatments, 

snap frozen in liquid nitrogen and stored at -80ºC until further use. 

 

3.4 Sequence Analyses 

 The following freely available programs found at the ExPASY Tools homepage were 

used for analyses: Deduced amino acid sequence was obtained using EMBOSS Transeq 
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(http://www.ebi.ac.uk/emboss/transeq/; Rice et al., 2000). Primary structure analysis was 

performed using ProtParam (http://expasy.org/tools/protparam.html; Gasteiger et al., 2005).  

Amino acid alignment was performed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/; 

Chenna et al., 2003; Larkin et al., 2007). The disordered characteristics were examined using 

the in silico prediction method IUPred (http://iupred.enzim.hu/; Dosztanyi et al., 2005a; 2005b) 

 

3.5 Transcript Analysis 

3.5.1 RNA Isolation  

 Total RNA was isolated from 100 mg leaf tissues using the Qiagen RNeasy® Plant Mini 

Kit (Qiagen Inc., Mississauga, ON, Canada) following the manufacture’s recommendations. 

Residual DNA was removed by DNase I digestion during RNA purification using an RNase-

Free DNase Set (Qiagen) for on-column digestion as described by the manufacturer.  Samples 

were eluted in 30 µL of sterile water.  Spectrophotometric quantification of RNA was 

conducted by measuring the absorbance of the samples at 260 nm with a SmartSpec Plus (Bio-

Rad Laboratories, Mississauga, ON, Canada). Samples were stored at -80°C. 

 

3.5.2 cDNA Synthesis 

 One µg of total RNA was used for first strand cDNA synthesis using the Maxima® First 

Strand cDNA Synthesis Kit (Fermentas Inc.; Burlington, ON, Canada) as described by the 

manufacturer. RNA was combined with 4 µL of 5X Reaction Mix, 2 µL Maxima® Enzyme Mix, 

and brought to a final volume of 20 µL with nuclease-free water.  Samples were then heated at 

25°C for 10 min followed by 15 min at 50°C. The reaction was terminated by heating samples 

at 85°C for 5 min.  All incubations occurred using a thermocycler (iCycler; Bio-Rad).  Samples 

were stored at -80°C. The single strand cDNA was then used as template DNA in the PCR 

described below (section 3.5.3). 

  

3.5.3 Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) 

 Amplification of cDNA was performed using gene-specific primers for Thellungiella 

TsDHN-2 (Appendix A; Table 3.1) and the Arabidopsis reference gene ACTIN7 (At5g09810; 

GenBank accession No. NM_121018; Table 3.1). Primers were synthesized commercially 

(Alpha DNA; Montreal, QC, Canada).  The 50 µL PCR contained: 5 µL cDNA, 25 µL 2X 
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DreamTaqTM PCR Master Mix (Fermentas), 1 µM of each forward and a reverse primer and 

RNase free water to volume. The following cycling conditions were used: 1) 94°C for 3 min; 2) 

35 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 1 min and 3) 72°C for 10 min.  All steps 

were carried out in an iCycler thermocycler (Bio-Rad). 

 

3.5.4 Agarose Gel Electrophoresis 

 PCR products were analyzed by agarose gel electrophoresis and visualized by ethidium 

bromide staining.  Samples were mixed with 6X Orange Loading Dye Solution (Fermentas) 

prior to loading on the gel.  The DNA fragments were separated by electrophoresis through a 

1% (w/v) agarose gel in 1X TAE buffer (40 mM Tris acetate [pH 8.0], 1 mM EDTA). 

Electrophoresis was conducted at 100V for 1 h.  Ethidium bromide (0.5 µg/mL) was added to 

the gel, which allowed visualization of the DNA under short-wave UV-B light using a gel 

documentation system (Gel Doc 2000; Bio-Rad). The images were stored electronically. The 

sizes of the DNA fragments were estimated by comparing them to standards of known size 

(O’GeneRuler 1kb DNA Ladder; Fermentas) which were loaded in adjacent lanes. Gel Doc 

2000 software (Quantity One, version 4.2.3; Bio-Rad) was used to calculate average band 

density measurements, which were expressed as the ratio of the target gene product (TsDHN-2) 

band density to the reference gene product (ACTIN7) band density. 

 

3.6 Photosynthetic Measurements 

 Chlorophyll a fluorescence imaging was used to determine the photochemical efficiency 

of PSII ([Fm-Fo)/Fm] = Fv/Fm).  Images were captured in planta at room temperature using a 

commercially available modulated imaging fluorometer (FluorCam; Photon System 

Instruments, Brno, Czech Republic), as described in detail previously (Gray et al., 2003; Baerr 

et al., 2005).  Image data were normalized to a false colour scale which resulted in the highest 

and lowest Fv/Fm values being represented by the red and blue extremes of the colour scale, 

respectively. 
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Table 3.1. Oligonucleotide primers used for RT-PCR 

Gene  
 

Primer  
 

Sequence (5'→3') Expected fragment size  
 

TsDHN-2F ATCCGGATCCAGCTCTAGC TsDHN-2 
TsDHN-2R CATCGCAGGACGTAGAGAC 

474 bp 

ACT7F GATATTCAGCCACTTGTCTGTGAC ACTIN7 
ACT7R CATGTTCGATTGGATACTTCAGAG 

211 bp 

F, forward primer; R, reverse primer. 
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3.7 Proline Determination 

 Free proline content was measured according to the method described by Bates et al.,  

(1973) which is specific for the imino group of proline. Leaf tissue (0.5 g) from 4 week control 

and salt-stressed plants was ground with a motar and pestle in 3% (v/v) aqueous sulfosalicylic 

acid and the homogenate filtered through Whatman #2 filter paper.  The filtrate (2 mL) was 

added to 2 mL of acid-ninhydrin (1.25 g ninhydrin, 30 mL glacial acetic acid, 20 mL 6 M 

phosphoric acid) and 2 mL of glacial acetic acid in a glass test tube for 1 h at 100°C, and the 

reaction was terminated in an ice bath.  Toluene (4 mL) was added and the mixture was 

vortexed for 20 s. The upper aqueous phase containing the chromophore was removed and its 

absorbance determined at 520 nm (SmartSpec Plus; Bio-Rad).  Proline concentration was 

determined from a standard curve (0 - 250 µg/mL) constructed with L-proline (Sigma-Aldrich; 

St. Louis, MO, USA) and expressed on a fresh weight basis. 

 

3.8 Seed Germination Studies 

3.8.1 Seed Sterilization  

 Seeds of WT Thellungiella and the four RNAi lines were surface sterilized in a 

microcentrifuge tube containing 5.25% (v/v) sodium hypochlorite (Javex) and 0.05% (v/v) 

Tween-20).  The tubes were vortexed for 30 s and allowed to sit for 7 min.  Seeds were then 

washed 5 times with sterile water. 

 

3.8.2 Germination Tests 

 Media plates for germination studies were prepared using Murashige and Skoog basal 

medium (Murashige and Skoog, 1962; Sigma) and 0.7% (w/v) Phytagel (Sigma) in deioized 

water. Following autoclaving the media was poured into sterile plastic 9-cm Petri dishes. The 

solidified media plates were stored at 4°C until use.  In addition, plates were also prepared and 

supplemented with a final concentration of 100, 200 and 500 mM NaCl using a 5 M NaCl stock 

solution.   

 Following sterilization (section 3.8.1), seeds were plated with sterile toothpicks onto the 

Petri dishes at a density of 25 seeds per plate and stratified for 2 d in the dark at 4°C in a 

controlled environment chamber (E8; Conviron).  Plates were removed and placed into a Sanyo 

environmental test chamber (MLR-350HT; Sanyo, Japan) at 20°C with constant light (120 
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µmol photons m-2 s-1) and germination was monitored daily for 14 d. Seeds were considered 

germinated when the radical had completely penetrated the seed coat. This experiment was 

replicated three times. 

 
 

 
 



 - 27 - 
 

4.0 RESULTS 

 

4.1 Sequence Analysis 

 The full-length cDNA sequence of Thellungiella TsDHN-2 was obtained from Dr. 

Barbara Moffatt (University of Waterloo) (unpublished results) and was generated from 

overlapping EST sequences previously deposited in GenBank (Wong et al., 2005).  The 

deduced amino acid sequence was obtained using EMBOSS Transeq.  These data are presented 

in Appendix A.  Amino acid sequence analysis of TsDHN-2 using ProtParam revealed that, 

similar to other plant dehydrins, TsDHN-2 is hydrophilic, rich in glycine residues (30.2%) and 

contains no cysteine or tryptophan. TsDHN-2 contains 215 amino acids and is a basic dehydrin 

with a theoretical pI of 7.91 and predicted molecular mass of 21.4 kD.  The alignment of 

TsDHN-2 with several previously characterized dehydrins of various classes is shown in Figure 

4.1.  Comparison to Arabidopsis RAB18 revealed a 71% amino acid sequence identity and 74% 

amino acid similarity of Thellungiella TsDHN-2 (Figure 4.1).  Furthermore, based on the YSK 

nomenclature scheme developed by Close and co-workers (Close, 1997), sequence analysis 

confirmed that TsDHN-2 is a Y2SK3 dehydrin with three conserved lysine-rich K-segments 

(EKKGMMDKIKDKLPG) located near the C-terminus, a single S-segment containing the 

conserved serine tract repeat, and two Y-segments (DEYGNP) near the N-terminus (Figure 4.1). 

   

4.2 Prediction of Protein Disorder 

 Many dehydrins are IDPs/IUPs (Koag et al., 2003; Kovacs et al., 2008).  TsDHN-2 has 

been proposed to be an IDP/IUP and this disordered characteristic was supported by in silico 

analysis using the prediction method IUPred (Dosztanyi et al., 2005a; 2005). IUPred is a 

prediction algorithm for recognizing ordered and disordered regions in proteins based on 

estimating the capacity of polypeptides to form stabilizing contacts.  Presumably, globular 

proteins are composed of amino acids that have the potential to form a number of favorable 

interaction, while the amino acid composition of intrinsically unstructured proteins do not, and 

therefore do not adopt a stable structure (Dosztanyi et al., 2005a; 2005).  Proteins that are 

highly disordered will score above 0.5, which is the threshold separating disordered from 

ordered regions in protein (Dosztanyi et al., 2005a; 2005). 
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Figure 4.1. Alignment of TsDHN-2 deduced amino acid sequence 
Thellungiella TsDHN-2 (Appendix A) was aligned with the following known dehydrins of 
various classes; Arabidopsis RAB18 (GenBank accession No. CAA48178.1), Barley DHN1 
(GenBank accession No. P12951.1), Rhododendron RcDHN5 (GenBank accession No. 
ACB41781.1), Peach PpDHN3 (GenBank accession No. AAZ83586.1), Arabidopsis ERD10 
(GenBank accession No. NP_564114.2), Arabidopsis COR47 (GenBank accession No. 
BAA23547.1 and Citrus CuCOR19 (GenBank accession No. BAA74736.1).  Conserved Y- 
(green), S- (red), and K-segments (purple) are indicated. Asterisks (*), colons (:) and periods (.) 
indicate identical residues, conserved substitutions and semi-conserved substitutions, 
respectively.  Dashes indicated where gaps have been introduced to allow optimal sequence 
alignment. Sequences were aligned using ClustalW. 
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As seen in Figure 4.2, in silico prediction of TsDHN-2 confirmed the disordered characteristic 

of this dehydrin, scoring above 0.5 over the entire sequence as did Arabidopis RAB18, a known 

disordered dehydrin used as a positive control (Figure 4.2). In contrast, BSA, a known globular 

protein used as a negative control scored below 0.5 over its amino acid sequence (Figure 4.2). 

 

4.3 Response of TsDHN-2 to Salinity 

4.3.1 Transcript Accumulation 

 The expression levels of TsDHN-2 in WT Thellungiella and RNAi lines 1-1, 5-4, 6-2, 

and 7-8 were estimated by RT-PCR performed on leaf tissue before and after salinity stress 

treatment (Figure 4.3). Under normal growth conditions, expression of TsDHN-2 was 

undetectable in WT and all of the RNAi lines (Figure 4.3A).  Following salinity treatment for 

14 days, the expression of TsDHN-2 was induced in all of the material examined, with the 

primers robustly amplifying a distinct DNA product at approximately 474 bp when analyzed by 

agarose gel electrophoresis (Figure 4.3A).  A 211 bp fragment of ACTIN7 was also amplified 

and detected in all samples and treatments at approximately the same levels (Figure 4.3B).  

However,  the level of induction of TsDHN-2 varied with lines 1-1 and 7-8 demonstrating 

reduced amounts of transcript in comparison to WT and lines 5-6 and 6-2 expressing 

comparable levels as WT (Figure 4.3A).  Based on band density measurements, expressed as 

the ratio of TsDHN-2 (Figure 4.3A) to ACTIN7 (Figure 4.3B), it was estimated that lines 1-1 

and 7-8 exhibit a 28 and 42% reduction respectively in TsDHN-2 in comparison to WT. 

 

4.3.2 Phenotypic Responses 

 The phenotypic responses the WT and TsDHN-2 RNAi lines were recorded before, and 

7 and 14 days after salinity treatment, and representative photographs are shown in Figure 4.4.  

All material appeared healthy prior to salt treatment (control) and no effects were observed 

after 24 hours of stress initiation (Figure 4.4).  However, symptoms, in the form of chlorotic 

and necrotic leaves are obvious after 7 days (Figure 4.4). These symptoms progressed and were 

readily apparent at the 14 day mark (Figure 4.4). 

 In an attempt to quantify the visual observations, the % viable leaves were calculated at 

each time point for WT and RNAi lines (Table 4.1).  This value was determined as the  
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Figure 4.2. Prediction of protein disorder in TsDHN-2 
IUPred analysis of the amino acid sequences of TsDHN-2 (A.), RAB18 (B.) and BSA (C.).  
Scores range from 0 to 1 with values above 0.5 (blue line) suggestive of a disordered structure. 
Sequences used are: TsDNH-2, Appendix A; RAB18, GenBank accession No. CAA48178.1; 
BSA, GenBank accession No. AAA51411.1).  
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Figure 4.3. Abundance of TsDHN-2 in leaves of Thellungiella in response to salinity stress 
Plants of WT Thellungiella and TsDHN-2 RNAi lines were subjected to a salt stress of 300 mM 
NaCl for 14 days as indicated.  A 474 bp fragment of TsDHN-2 (A.) was amplified using PCR 
and analyzed by agarose gel electrophoresis. A 211 bp fragment of ACTIN7 (B.) was also 
amplified and used for normalization purposes. A representative photo is shown from a 
minimum of 5 independent measurements. 
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Figure 4.4. Phenotypic responses of Thellungiella to salinity stress 
Photographs were obtained before and after 7 d and 14 d salt stress in WT Thellungiella and 
TsDHN-2 RNAi lines as indicated. Plants were subjected to 300 mM NaCl for the duration of 
the experiment. Representative photographs are shown from ten plants for each line and are the 
exact same plants analyzed in Figure 4.3. All photographs are shown in Appendix B. 
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Table 4.1. Leaf viability in response to salinity in Thellungiella1 
Plants of WT Thellungiella and TsDHN-2 RNAi lines were subjected to 300 mM NaCl for the 
duration of the experiment. Values represent means ± SD, n = 10. 
Viability (%)2 Line 
 WT 1-1 5-4 6-2 7-8 
      
Before salt  86.9 ± 3.9 84.3 ± 3.0 82.7 ± 2.0 84.4 ± 2.7 82.3 ± 2.0 
7 d salt   64.9  ± 15.0 65.1 ± 21.2 61.2 ± 15.5 60.8 ± 20.8 57.8 ± 15.2 
14 d salt 46.9  ± 10.1 45.4 ± 20.2 47.1 ± 10.4 44.1 ± 13.0 41.5 ± 12.8 
1Values and calculations are based on the data presented in Appendix B. 
2Viabiliy was calculated as the number of green leaves remaining (> 55% green) and expressed 
as a percentage of the total leaves present. 
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number of leaves remaining >55% green as a percentage of the total leaves present.  After 7 

days of 300 mM salt treatment all of the plants showed a decrease in viability of 19-24% 

depending on which line was examined (Table 4.1).  Viability continued to decrease and at day 

14 of the salt treatment the viable leaves represented only 47% of the total in WT and 45, 47, 44, 

and 42% in the RNAi lines 1-1, 5-4, 6-2 and 7-8 respectively (Table 4.1).  These values are 

consistent with the visual observations in Figure 4.4 and Appendix B. 

 

4.3.3 Photosynthetic Responses 

 Light absorbed by chlorophyll drives photosynthesis but can also be dissipated as heat 

or re-emitted as fluorescence. These are competing processes and therefore changes in 

fluorescence reflect changes in photosynthetic function (Krause and Weis, 1991; Baker, 2008).  

Chlorophyll fluorescence measurements provide a sensitive, rapid and non-invasive method for 

the characterization of photosynthetic responses (Bolhàr-Nordenkampf and Öquist, 1993; 

Schreiber et al., 1994). A useful measurement is the photochemical efficiency of PSII (Fv/Fm). 

A decrease in Fv/Fm is a reliable indicator of abiotic stresses, which can directly or indirectly, 

affect the photosynthetic characteristics of the leaves and alter their fluorescence properties 

(Krause, 1988; Ögren 1991).  Furthermore, when combined with a charge-coupled device 

camera, chlorophyll fluorescence can be imaged, thus allowing the spatial visualization of 

photosynthetic processes over whole plants (Gray et al., 2003). 

 The fluorescence images shown in Figure 4.5 and Appendix B were used to generate the 

values presented in Table 4.2.  Prior to salt treatment, the WT and TsDHN-2 RNAi lines all had 

similar Fv/Fm values ranging from 0.76 ± 0.02 to 0.78 ± 0.01 which are indicative of healthy 

unstressed plants (Table 4.2; Figure. 4.5; Baker, 2008).  Following 24 h and up to 7 days of 

salinity stress treatment, Fv/Fm remained virtually unchanged (Table 4.2; Figure 4.5).  However, 

14 days of salinity stress resulted in reductions in Fv/Fm from 6.6 to 15.4% depending on plant 

line (Table 4.2; Figure 4.5).  The greatest reduction was observed in line 7-8 (15.4%) while WT 

decreased by only 9.2% (Table 4.2; Figure 4.5; Appendix B). 

 

4.3.4 Proline Accumulation 

 Proline is a compatible osmolyte which frequently accumulates during salt stress in 

many species, including Thellungiella (Tamayo and Bonjoch, 2001; Inan et al., 2004; Ghars et  
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Figure 4.5. Photosynthetic responses to salinity in Thellungiella 
Images of the photochemical efficiency of PSII (Fv/Fm) were obtained before and after 24 h, 7 d 
and 14 d salt stress in WT Thellungiella and TsDHN-2 RNAi lines as indicated. Plants were 
subjected to 300 mM NaCl for the duration of the experiment. Representative photographs are 
shown from ten plants for each line. All images are shown in Appendix B. 
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Table 4.2. Photosynthetic responses to salinity in Thellungiella1 
Plants of WT Thellungiella and TsDHN-2 RNAi lines were subjected to 300 mM NaCl for the 
duration of the experiment. Values represent means ± SD, n = 10. 
Fv/Fm

2 Line 
 WT 1-1 5-4 6-2 7-8 
      
Before salt  0.76 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 0.77 ± 0.02 0.78 ± 0.01 
24 h salt 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.76 ± 0.02 
7 d salt   0.76 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 
14 d salt 0.69 ± 0.03 0.71 ± 0.03 0.67 ± 0.06 0.70 ± 0.02 0.66 ± 0.05 
1Values and calculations are based on the data presented in Appendix B. 
2The photochemical efficiency of PSII (Fv/Fm) was determined using chlorophyll fluorescence 
imaging. 
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al., 2008; Amtmann, 2009; Szabados and Savouré, 2010). The accumulation of this compound 

was determined in WT and TsDHN-2 RNAi lines before and after a 300 mM salt treatment for 

7 days (Figure 4.6).  Prior to salt treatment the RNAi lines presented proline values which were 

either the same or slightly greater (1.5- to 2-fold) than those observed in WT (Figure 4.6).  

While WT proline levels increased 3.4-fold in response to salt treatment, accumulation in RNAi 

lines 1-1, 5-4, and 6-2 was 4.1-, 4.9- and 4.2-fold respectively. The final proline levels attained 

in these lines ranged from 1.2- 2.7-fold greater than the increase observed in WT (Figure 4.6).  

The greatest proline accumulation was seen in RNAi line 7-8 with an 8.1-fold increase in 

response to salt treatment, which was 3.6-fold greater the increased observed than WT (Figure 

4.6). 

 The phenotypic responses of the WT and TsDHN-2 RNAi lines were recorded before, 

after 24 hours and 7 days of salinity treatment and these photographs are shown in Figure 4.7 

and Appendix C.  All material appeared healthy prior to salt treatment and no effects were 

observed after 24 hours of initiating the stress (Figure 4.7).  However, symptoms, in the form of 

chlorotic and necrotic leaves were readily apparent at the 7 day mark (Figure 4.7). 

 The % viable leaves were calculated at each time point for the WT and RNAi lines 

(Table 4.3).  After 24 h of 300 mM salt treatment, all of the plants showed a minimal decrease 

in viability (1-8%; Table 4.3).  Viability continued to decrease and at day 7 of the salt treatment 

the viable leaves represented 50% of the total in WT and 47, 44, 45, and 53% in the RNAi lines 

1-1, 5-4, 6-2 and 7-8 respectively, with the greated decrease observed in line 7-8. (Table 4.3).  

These values were consistent with the visual observations in Figure 4.7.  

 

4.4 Seed Germination 

 In order to establish a baseline germination for WT Thellungiella, seeds were plated on 

media containing 0, 100, 200 and 500 mM NaCl.  After 14 days the percentage germination 

values were 92% in the absence of salt and decreased to 40 ± 4% and 11 ± 2% in the presence 

of 100 amd 200 mM NaCl, respectively (Figure 4.8).  Germination rates assessed at 500 mM 

were < 2% (data not shown).   Based on these data, the germination of the RNAi lines was 

evaluated at 100 and 200 mM NaCl as further increases in salt concentration essentially proved 

to be lethal for WT Thellungiella. 
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Figure 4.6. Proline accumulation in leaves of Thellungiella in response to salinity 
Proline was determined before (black bars) and after (white bars) salt stress in WT 
Thellungiella and TsDHN-2 RNAi lines as indicated. Plants were subjected to 300 mM NaCl 
for 7 days prior to measurement.  Values represent means ± SD, n = 6.   
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Figure 4.7. Phenotypic responses of Thellungiella to salinity during proline experiments 
Plants of WT Thellungiella and TsDHN-2 RNAi lines were subjected to 300 mM NaCl for the 
durations indicated.  Representative photographs are shown from six plants for each line. All 
photographs are shown in Appendix C. 
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Table 4.3. Leaf viability in response to salinity in Thellungiella during proline 
experiments1 
Plants of WT Thellungiella and TsDHN-2 RNAi lines were subjected to 300 mM NaCl for the 
duration of the experiment. Values represent means ± SD, n = 6. 
Viability (%)2 Line 
 WT 1-1 5-4 6-2 7-8 
      
Before salt  74.7 ± 5.4 77.3 ± 4.6 79.7 ± 3.7 78.8 ± 7.5 79.4 ± 6.5 
24 h salt 69.6 ± 6.6 72.8 ± 3.8 72.1 ± 5.1 78.4 ± 7.4 74.4 ± 7.0 
7 d salt   50.4  ± 5.5 47.0  ± 7.4 43.7  ± 5.5 45.4  ± 4.4 53.4  ± 9.2 
1Values and calculations are based on the data presented in Appendix C. 
2Viabiliy was calculated as the number of green leaves remaining and expressed as a percentage 
of the total leaves present. 
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Figure 4.8. Seed germination of Thellungiella in response to salinity 
Seeds of WT Thellungiella () and TsDHN-2 RNAi lines 1-1 (), 5-4 (), 6-2 () and 7-8 
() were sown on MS medium containing 0 (A.), 100 (B.) or 200 mM (C.) NaCl and 
germination recorded daily.  Values represent means ± SD, n = 3.  When not present error bars 
are smaller than symbol size. 
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 Under germination conditions free from salt, both WT and all RNAi lines had similar 

values for percentage germination ranging from 83 to 100% (Figure 4.8A). Interestingly, RNAi 

lines 1-1 and 5-4 showed a lag in germination by one day (Figure 4.8A). Increasing the 

concentration of NaCl in the media to 100 and 200 mM resulted in germination of 15 to 56% 

and 16 to 30% reduction in germination, respectively, for all lines tested (Figure 4.8B and C).  

In comparison to WT, the RNAi lines showed variable results at each of the NaCl 

concentrations examined. At 100 mM NaCl the RNAi lines 1-1 and 5-4 had increased 

germination (1.2- to 1.4-fold respectively), while lines 6-2 and 7-8 had decreased germination 

(20 and 60% respectively; (Figure 4.8B). In contrast, at 200 mM all RNAi lines had increased 

germination compared to WT, ranging from 1.5- to 2.6-fold (Figure 4.8C). 
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5.0 DISCUSSION 

  

 This project focused on the role of TsDHN-2 during salinity tolerance in Thellungiella.  

Four silenced lines, created with a RNAi construct against TsDHN-2, were obtained from Dr. 

Barbara Moffatt (University of Waterloo).  These lines were obtained as T3 homozygotes for 

the reduced expression of TsDHN-2.  Work began immediately to increase seed stock and to 

verify the reduced expression of TsDHN-2 in all lines by RT-PCR.  Throughout the course of 

this work, it was discovered that either through seed bulking error or error in the segregation 

process, only one RNAi line, line 7-8, was deemed to be a true silenced line with reduced 

TsDHN-2 expression compared to WT Thellungiella.  Therefore, this discussion will only focus 

on the results for WT Thellungiella and the RNAi line 7-8 in regards to the role of TsDHN-2 in 

the salinity tolerance of Thellungiella. 

 

5.1 Reduced Expression of TsDHN-2 Enhances Susceptibility to Salinity  

 Many studies have reported a positive correlation between the accumulation of 

dehydrins and salinity tolerance (Xu et al., 1996; Nylander et al., 2001; Du et al., 2011).  

Furthermore, the over-expression of dehydrins has been found to improve salinity tolerance in 

transgenic Arabidopsis (Brini et al., 2007) and tobacco (RoyChoudhury et al., 2007; Xu et al., 

2008).  Conversely, reducing the expression of dehydrins has been found to result in salt 

susceptibility in moss (Saavedra et al., 2006) and Arabidopsis (Hundertmark et al., 2011).   

Transcript analysis revealed that the RNAi line 7-8 demonstrated a 42% reduction in expression 

of TsDHN-2 compared to WT Thellungiella.  Upon treatment with 300 mM NaCl, greater 

phenotypic damage was observed (wilting, drying of old leaves and necrosis of young leaves) 

in RNAi line 7-8 indicating that TsDHN-2 plays a role in salinity tolerance.  TsDHN-2 is a 

Y2SK3 dehydrin, and this class of dehydrins has been proposed to act by stabilizing membranes 

(Rorat, 2006; Zhang et al., 2007).  Recent work by Ranham et al. (2010, 2011) found that 

TsDHN-2 underwent partial ordering upon association with membranes and this ordered 

secondary structure is significantly enhanced by further membrane- and/or zinc-association.  

This suggests that TsDHN-2 may function in Thellungiella by interacting and stabilizing 

cellular membranes in conditions causing dehydration, such as salinity.   
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5.2 Salinity Decreases Photosynthetic Activity 

 Reduced growth rates observed in plants subjected to salinity stress is often associated 

with a decrease in their photosynthetic activity.  High soil salinity results in dehydrating 

conditions, causing plants to close their stomata in order to conserve water.  This restricts the 

entry of CO2 into the leaf, thus reducing photosynthesis (Sudhir and Murthy, 2004; Munns and 

Tester, 2008; Hichem et al., 2009; Stepien and Johnson, 2009).  Photosystem II is considered to 

play a key role in the response of photosynthesis in plants to abiotic stresses such as salinity 

(Baker, 1991), and several studies have reported a link between salinity stress and reduced 

photochemical efficiency of PSII (Stephen and Klobus, 2006; Siler et al., 2007; Jamil et al., 

2007; Hichem et al., 2009).  The photochemical efficiency of PSII is measured as Fv/Fm and 

relates information on the maximum efficiency at which light absorbed by PSII is used to drive 

photochemistry (Baker, 2008).  Recently, a study by Stepien and Johnson (2009) compared the 

effects of short- and long-term salinity on photoinhibition of PSII in Arabidopsis and 

Thellungiella.  It was found that short-term salinity did not have any immediate effect on PSII 

in either species; however, following long-term salinity treatment there was significant 

photoinhibition to PSII in Arabidopsis (seen by a drop in Fv/Fm), while Thellungiella showed no 

sign that the photosynthetic apparatus was stressed (Fv/Fm similar to that of an unstressed plant).   

These findings support my data for the effects of short- and long-term salinity on PSII in WT 

Thellungiella and the RNAi line 7-8.  Prior to salinity stress and during short-term salinity 

stress (24 hours and 7 days), both WT Thellungiella and the RNAi line 7-8 demonstrated 

similar photochemical efficiencies of PSII.  However following long-term (14 days) salinity 

stress, the Fv/Fm of RNAi line 7-8 demonstrated reduced Fv/Fm in comparison to WT, indicative 

of the sensitivity to salinity demonstrated in the RNAi line.  Rahman et al., (2010; 2011) 

recently found that under low temperatures TsDHN-2 underwent partial ordering in association 

with vesicles mimicking the lipid composition of plant plasma and organellar membranes, 

including chloroplast membranes.  This suggests that during salinity stress TsDHN-2 may 

function by stabilizing chloroplast membranes, which would aid in the maintenance of 

photosynthetic activity. 
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5.3 Proline Accumulation as a Marker of Salt Susceptibility 

 Several roles have been proposed for the accumulation of proline during salinity stress, 

however the function of proline in salinity tolerance is still a subject of debate.  Some studies 

have reported a positive correlation between proline accumulation and salinity tolerance (Khedr 

et al., 2003; Kishor et al., 2005; Brini et al., 2007; RoyChoudhury et al., 2007); however, 

several others have challenged this hypothesis and suggest that proline accumulation is not 

linked with salinity tolerance but rather is a marker of susceptibility (Liu and Zhu, 1997; Nanjo 

et al., 2003; Chen et al., 2007; Arbona et al., 2010).  For example, Ghars et al., (2008) 

investigated the role of proline accumulation during salinity stress by comparing Thellungiella 

and Arabidopsis to the eskimo-1 mutant of Arabidopsis, which was shown to over-accumulate 

proline due to both an increase in synthesis and decrease in degradation.  It was found that the 

eskimo-1 mutant was more salt sensitive than either WT Arabidopsis or Thellungiella despite 

accumulating the greatest amount of proline.  Furthermore, Claussen (2005) suggested that 

proline levels could be an indicator of the environmental stress imposed on plants.  However, it 

is not the maximum amount of proline accumulation but the fold increase in proline compared 

to constitutive proline levels that is important. Additionally, using CD spectra, dehydrin 

proteins from soybean (Soulages et al., 2003) and Arabidopsis (Mouillon et al., 2006) were 

found to contain a variable content of poly (L-proline)-type II structures and it was suggested 

that dehydrins may act as reservoirs or buffers for water under dehydrating conditions.  Prior to 

salinity stress, both WT and the RNAi line 7-8 demonstrated similar basal levels of proline. 

Following salinity stress, both WT and 7-8 demonstrated an increase in proline; with line 7-8 

accumulating over three times as much proline compared to WT.    Furthermore, line 7-8 also 

appeared to be more sensitive to salt stress as greater phenotypic damage was observed 

compared to WT.  Therefore, these data support the suggestion that the accumulation of proline 

itself does not confer salinity tolerance but rather is a marker of salt susceptibility.  

 

5.4 Effects of Salinity on Seed Germination 

 Several studies have found a correlation between high salinity conditions and impaired 

halophytic germination (Ungar, 1996; Gulzar and Khan, 2001; Debez et al., 2004; Inan et al., 

2004; Hanslin et al., 2005; Orsini et al., 2010; Atia et al., 2011a, 2011b).  Salinity could affect 

the germination of halophytes by osmotic stress (preventing the embryo from taking up water), 
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ionic stress (toxic effect of ions leading to embryo poisoning), or a combination of the two 

(Ungar, 1978; Duan et al., 2004; Atai et al., 2011b).  Many studies have found that halophytes 

reach their maximum germination in distilled water, and show a reduction in germination when 

exposed to salinity (Ungar, 1996; Gulzar and Khan, 2001; Inan et al., 2004). Recently, it was 

found that in the absence of salinity the germination rates of Thellungiella and Arabidopsis 

were close to 100% however, under saline conditions the germination rate of Thellungiella was 

greatly reduced compared to Arabidopsis which continued to have a high rate of germination 

(Inan et al., 2004; Orsini et al., 2010).    These data correspond with our findings for the 

germination rates of WT Thellungiella compared to WT Arabidopsis at various NaCl 

concentrations (data not shown).   It is believed that under saline conditions, Thellungiella 

enters a state of dormancy characteristic of halophytes. Many halophytic species enter 

osmotically enforced seed dormancy under saline conditions allowing them to remain viable 

and germinate when salinity concentrations are reduced, thus ensuring maximal survival (Ungar, 

1996; Debez et al., 2004; Inan et al., 2004; Orsini et al., 2010).  Dehydrins are known to 

accumulate during seed maturation and studies have found a positive correlation between the 

over-accumulation of dehydrins and enhanced germination under saline conditions (Brini et al., 

2007). Hundertmark et al. (2011) recently found that by reducing the expression of the seed-

expressed dehydrins LEA14, XERO1 and RAB18 in transgenic Arabidopsis plants, this reduced 

the ability of the plants to germinate under saline conditions, indicating a role for these 

dehydrins in Arabidopsis seed germination.   

 Under control conditions (no NaCl), both WT Thellungiella and the RNAi line 7-8 

demonstrated germination rates close to 100% (92 and 97.3% respectively). Germination rates 

for the WT and line 7-8 were reduced at 100 mM NaCl (40 and 15% respectively), which is in 

accordance with the literature for Thellungiella seed germination (Inan et al., 2004; Orsini et al., 

2010). At NaCl concentrations of 200 mM, WT demonstrated a steady decrease in germination 

to 11%, while the germination rates of line 7-8 actually increased to 20%.  The reduced 

germination rate of line 7-8 compared to WT at 100 mM could be due to the reduced expression 

of TsDHN-2, indicating a possible role for this dehydrin during Thellungiella germination; 

however, it is uncertain whether TsDHN-2 is playing a role as it is not known whether the seeds 

used in these experiments were T3 homozygous transformants.  It has been found that 

germination in Thellungiella is not uniform with a portion of Thellungiella seeds germinating 
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immediately, while germination of the other portion is spaced out and can extend up to 3 or 4 

months after sowing (Inan et al., 2004).  Therefore, although it is possible that TsDHN-2 may 

be playing a role in Thellungiella seed germination, it is also reasonable to speculate that the 

fluctuation in germination patterns seen in line 7-8 can be attributed to the non-uniform 

germination rates of Thellungiella and further testing is required to confirm this notion. 

 

5.5 Conclusions and Future Studies 

 Dehydrins are intrinsically unstructured proteins that accumulate in photosynthetic 

organisms under dehydrating conditions and are thought to confer stress tolerance.   

Thellungiella salsuginea, a close relative of Arabidopsis thaliana, is a halophyte able to tolerate 

extreme conditions, such as high salinity. Most dehydrin studies have focused on transgenic 

plants over-expressing proteins and few have examined their role using transformants with 

reduced dehydrin expression.  This work examined the possible role of a Thellungiella dehydrin, 

TsDHN-2, in salinity tolerance using an RNAi line with reduced TsDHN-2 expression.  It was 

found that the RNAi plants demonstrated a reduced ability to tolerate salinity stress based on 

phenotypic observations, photosynthetic determinations, leaf viability and proline accumulation 

and germination studies.  These data suggest that TsDHN-2 plays a role in the salinity tolerance 

mechanisms of Thellungiella.   

 In order to further elucidate the role(s) TsDHN-2 plays in salinity tolerance it is 

important to generate additional T3 homozygous lines with reduced dehydrin expression. 

Analyzing more than one RNAi line with reduced TsDHN-2 expression will validate the results 

if the same effects are observed in all RNAi lines compared to WT.   Since salinity generally 

reduces leaf water content, better estimators of plant sensitivity to salinity such as plant fresh 

weight, dry weight and water content could be utilized.  Furthermore, Thellungiella has 

demonstrated the ability to tightly control Na+ accumulation and maintain a high K+/Na+ ratio 

during salinity stress, which is a key feature of salt tolerance (Inan et al., 2004; Wang et al., 

2006; Ghars et al., 2008).  Therefore, measuring the Na+ and K+ ion content in WT and RNAi 

plants prior to and following salinity stress will give further insight into the salinity sensitivity 

demonstrated in the RNAi lines as well as further elucidate possible mechanisms by which 

TsDHN-2 functions in Thellungiella salinity tolerance. 



 - 48 - 
 

 Greater proline accumulation in response to salinity stress was demonstrated in the 

RNAi line compared to WT, which is indicative of a salt susceptibility in the RNAi line.  

Thellungiella is known to accumulate high levels of proline in response to salinity stress, 

however other compatible osmolytes were also found to accumulate in moderate concentrations 

(Inan et al., 2004). Therefore, it would be valuable to measure the accumulation of other 

osmolytes, such as sugar alcohols, in response to salinity stress in order to determine the 

possible effect of TsDHN-2 on their accumulation. 

 It is uncertain whether TsDHN-2 plays a role in and during Thellungiella germination as 

sporadic germination rates were seen in line 7-8 at concentrations higher than 100 mM NaCl, 

and it is also not known whether the seeds used in these experiments were T3 homozygous 

transformants. Therefore, in order to elucidate the role of TsDHN-2 in and during germination, 

the assay should be repeated with confirmed T3 homozygous seeds.  Furthermore, as 

Thellungiella is known to have nonsynchronous germination and seeds can germinate up to 3 

months after sowing, it would be of interest to extend the assay for a longer time period.  

Thellungiella is known to enter a state of dormancy when exposed to saline conditions, thus 

ensuring that seeds remain viable to germinate once the stress is alleviated.  It would be of 

interest to assess the ability of salt treated seeds to be rescued, indicative of a possible role of 

TsDHN-2 in the ability to ensure seed viability despite salinity treatment.   

Using RNAi methodology, this work examined the role of TsDHN-2, an Y2SK3 

dehydrin, in the salinity tolerance mechanisms of Thellungiella.  In response to salinity stress it 

was observed that RNAi line 7-8 demonstrated a 41% reduction in TsDHN-2 expression, 

greater phenotypic damage, decreased photosynthetic activity and increased proline 

accumulation in comparison to WT.  Collectively, these data support the notion of a potential 

role for TsDHN-2 in Thellungiella salinity tolerance. 
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Appendix A 
TsDHN-2 cDNA and Deduced Protein Sequence 
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Appendix B 
Phenotypic and Photosynthetic Responses - Salinity Experiments 
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Appendix C 
Phenotypic Responses - Proline Experiments 
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