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Abstract

This dissertation deals primarily with applications of chiral lithium amides (free

and polymer-supported) as bases in the synthesis of a-functionalized carbonyl

compounds.

Two cyclic ketones, tropinone and 1,4-cyclohexanedione monoethylene ketal

were deprotonated with several chiral bases in solution. Tropinone was deprotonated

enantioselectively in up to 96-99% ee in the presence of LiCI as the additive. This

successful outcome was the result of extensive methodological studies. Nine chiral

lithium amides and ten different additives were tested. The enolate was trapped with

2,2,2-trichloroethyl chloroformate. The 'complexation effect of a chiral amine to the

lithium enolate of the cyclic ketone was studied. 1,4-Cyclohexanedione monoethylene

ketal was deprotonated with two chiral lithium amides, and the corresponding lithium

enolate was trapped with benzaldehyde to give the optically active aldol product.

Three methods for the synthesis of insoluble and soluble polymer-supported chiral

amines were developed. The chiral lithium amides were successfully generated and they

were applied as bases in the deprotonation of different carbonyl compounds, a ketone,

and a D-ketoester. The corresponding a-functionalized compounds were obtained in

good yield and enantioselectively (where applicable). Two soluble polymer-supported

chiral amino-alcohols were synthesized and used as a proton donor in diastereoselective,

and enantioselective protonation of the lithium enolates derived from cyclic ketones.

This is the first reported generation and application of novel, polymer-supported

chirallithium amides. Hopefully, the work presented in this thesis will lay the foundation

of a new way ofperforming organic synthesis.
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CHAPTER I: INTRODUCTION

Selected topics in chemistry ofpolymer-supported amines

The work presented in this thesis deals primarily with the synthesis and

applications of chiral amines in organic synthesis. Chiral amines in solution are described

in Part A of the Results and Discussion section. Their lithium amides were used as bases

in deprotonation of two cyclic ketones: tropinone and 1,4-cyclohexanedione

monoethylene ketal. Deprotonation of cyclic ketones with chiral lithium amides derived

from the corresponding chiral amines has been the subject of many literature reviews.

Therefore it will not be discussed in this chapter. I - 13 The main purpose of this chapter is

to review the literature dealing with the synthesis and applications of polymer-supported

chiral amines and their derivatives.

Organic synthesis utilizing polymer-supported reagents experienced very rapid

growth in the past ten years. Solid-phase synthesis was invented by Merrifield in 1963.14

This technique revolutionized the synthesis of peptides. Known methods of the coupling

of amino acids were used but peptide purification after every step of the synthesis was

reduced to filtration of the polymer-supported compound followed by washing to remove

the excess of reagents. After the desired peptide was synthesized it was cleaved from the

polymer support and could be purified by conventional methods (e.g: reverse-phase

column chromatography). The solid-phase method for synthesizing complicated peptides

became so popular that automatic peptide synthesizers were developed. It was thought

that solid phase methods could be used for the synthesis of small organic compounds.

The first publications dealing with this area of research were reported in the early 1970's

by Leznoff15 and other researchers16 - 18 but this new approach towards the synthesis of

small compounds did not become popular until the publication of seminal papers by

Ellman,19 the Chiron group,20 and the group at Parke-Davis?1 There are already reviews

compiling reactions that can be performed on solid supportS?2 Synthesizers for small

molecules were built similar to the peptide synthesizers.21,23
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The growth in the area of solid-phase synthesis can be illustrated by the number

ofpublications on the topic, which have appeared in the chemical literature (Figure 1). 24

1997 1999 Year

~

-

~

~

I
1995

I
1989

100-

rI.l

= 400-.!:....
=.~:c
=Q.

'0.. 300-~

.ce
=z

200-

600l

500-

Figure 1. Number of articles dedicated to solid-phase organic synthesis (ref. 24).

Chiral amines are one of the most commonly used compounds in organIc

synthesis. They can be used as chiral auxiliaries, ligands, reagents, catalysts, and

resolving agents.25 Chiral amines can also be used as precursors for the generation of

chiral lithium amides1
- 13 that can serve as bases in the enolization of ketones, esters and

amides.

Before my work was started there were essentially no literature precedents

describing synthesis of polymer-supported chiral secondary amines, but the syntheses of

polymer-supported primary and tertiary amines, and amino-alcohols were documented to

some extent, and selected publications are cited in this section. Different applications of
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these compounds are discussed. General concepts in SPS (solid-phase synthesis) and LPS

(liquid-phase synthesis) involving reagents on polymer-support are going to be presented

as well.

1.1 Synthesis of small organic molecules involving compounds supported on insoluble

polymers.

There are three general approaches in the polymer-supported synthesis (SPS) of small

organic molecules involving polymer-bound reagents (Scheme 1), polymer-bound

catalysts (Scheme 2), or polymer-bound protecting groups (Scheme 3).

Scheme 1

1

o
p.

b

Polymer-supported triphenylphosphine 1 was used as the reagent in the conversion of n­

alkyl alcohols 2 into the corresponding n-alkyl halides 3.26 The synthesis of small organic

molecules employing polymer-bound reagents is less popular than the methods using

polymer-bound catalysts or polymer-bound protective groupS.26 In order to broaden the

chemistry of polymer-bound reagents we have developed the synthesis of several

polymer-supported chiral secondary amines and chiral amino-alcohols, which were used

in the deprotonation of ketones and protonation of lithium enolates. This work will be

discussed in part B of Results and Discussion.
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An example of a polymer-bound catalyst is presented in Scheme 2

Scheme 2

H

~+Jy~~+~
4 5 4 6

o :solid support

This is a schematic representation of a reduction of an alkene in the presence of a

polymer-supported catalyst. After the reaction is completed, the catalyst remains bound

to the polymer-support and the product stays in solution. A number of polymer-bound

catalysts are now commercially available, but many researchers still have not recognized

the advantages associated with polymer-supported catalysts and solid phase synthesis??

In the last approach to SPS of small organic molecules, polymeric protecting

groups are used. One of the functional groups of the substrate 7 is protected with polymer

8 while another is derivatized. The chemical transfonnations employing this approach

require two additional steps: anchoring of the substrate to the resin and cleaving the final

product after completion of the reaction. A general description of this approach is offered

in Scheme 3.

Scheme 3

Attachment

Synthetic
transfonnation

X-FG2__D_FGt ----.....

9

~X-FG2--D-y
10

Cleavage..
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Supports and linkers in solidphase synthesis (SPS).

In order to attach a molecule to the resin a covalent linking group, called

the linker (or spacer) is often required. The linker is usually a carbon chain of different

length and complexity, which separates reactive groups from the polymer matrix. It has

to be stable to all the reagents used in the SPS but must allow cleavage of the small

molecule from the polymer at the end of the synthesis. It should be pointed out that the

requirement for the linker adds two additional steps to a solid phase reaction sequence

compared to the solution route. The correct choice of the most appropriate linker for a

particular class of a target molecule is the key factor in designing the SPS.28 Available

linkers can be divided according to their properties and the desired cleavage strategy: (i)

cyclative cleavage; (ii) linkers which release specific functional groups; (iii) traceless

linkers which form C-H bonds after cleavage;29 (iv) active-able linkers (safety catch);30

(v) cleavable and functional group interconversion; (vi) linkers developed for stabilityl

selectivity and (vii) recyclable linkers.28

o :solid support

,. : reagent or starting material

Figure 2: General structure of a polymer-supported reactant.

The solid support must also be carefully chosen when solid-phase synthesis is

concerned. The general structure of a polymer-supported reagent (substrate) is shown in

Figure 2. The most popular insoluble resins that were used as supports in a majority of

the published articles dealing with SPS are p-chloromethylstyrene-styrene-p­

divinylbenzene copolymers (PS/DVB), and polyethylene glycol (PEG) grafted on a

PS/DVB copolymer.28 General structures of polystyrene and PEG type polymers and

their properties are presented in Table 1.
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Table 1. Properties ofpolystyrene (PS) and polyethyleneglycol (PEG) type copolymers.

Solid Functional groups Particle Loading Chemical

support that could be attached size (mmol/g) compatibility

Polystyrene e-\rx 100 - 200 0.5 -4.0 Swells in:

type x= CI, OR, NH2
mesh DMF, DCM, THF,

X= CI (Merrifield 200 - 400 toluene;

resin) mesh thermally stable

PEG type ~o~~~x variable 0.2 -0.5 Swells in:

(TentaGel)
x= Br, OH, NH2, SH, C02H

polar solvents,

DCM

It can be clearly seen that the two most important variables that guarantee the

success of a planned solid phase synthesis are the correct choice of the support and the

linker.

Analysis and monitoring ofsolid-phase (SP) reactions.

After selection of the suitable support and the linker a method for the analysis and

monitoring of the progress of the SP reaction has to be found. It should be pointed out

that every step in SPS yields a polymer-bound intermediate, the characterization of which

can pose a serious problem. Quantifying the loading (which corresponds to yield) and

determining the structure of the polymer-supported product(s) and possible by-products is

rather difficult, and special techniques are needed. In addition to the standard procedures

like derivatization, cleavage, purification and analysis, several analytical methods such

as:27 (i) FT-IR and FT-Raman spectroscopy; (ii) solid state and gel-phase NMR

spectroscopy and IH_ 13C correlation spectroscopy; (iii) IH Magic Angle Spinning (MAS);

(iv) matrix-assisted laser desorption ionization time-of-flight mass spectroscopy

(MALDI-TOF); (v) elemental analysis; (vi) titration of reactive groups (e.g: NH2, C02H,
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ArOH, SH)28; (vii) gravimetric analysis and (viii) photometry e.g: NH2 group monitored

by photometric Fmoc determination are available for characterizing a polymer-supported

compound.

The conventional IR and NMR spectra of polymer-supported compounds are

difficult to interpret due to the interference of the polymer matrix. Measurements by FT­

IR under defined conditions can give qualitative data. Developments in the area of solid­

state and gel-state NMR in the last decade have led to the elaboration of suitable methods

for monitoring SPS reactions.27 Gel state NMR is a mixture of standard solution NMR

and solid state NMR spectroscopy eg.: a sample of a PS/DVB supported compound is

transferred to the ordinary NMR tube and allowed to swell in an appropriate solvent.

After degassing, the NMR spectrum can be taken under typical conditions used for

dissolved samples.27 It should be pointed out that the 1H and Be NMR spectra are

dominated by the signals given by the polymer matrix, making signals from the attached

compound difficult to observe. Due to the strong baseline broadening, simple NMR

spectra are difficult to interpret. The problem can be solved by applying a combination of

MAS (Magic Angle Spinning) and gel-phase NMR. Another analytical method that can

be used to obtain structural information about polymer-supported compounds is MALDI­

TOF MS.31 This technique is used to determine the mass of polymer-supported

compounds after they are cleaved from the resin.

Application ofSP reactions.

Until recently, new compounds were synthesized individually and then tested for

their potential biological or catalytic activity. After solid phase synthesis became more

popular, the procedures of searching for new lead structures became more efficient than

ever before. Progress in biotechnology, molecular biology, robotics and automation led to

the development of new screening assays. As a consequence, the number of compounds

waiting to be tested rapidly become depleted, and standard methods for synthesizing new

compounds are not efficient enough to satisfy the demand.27 Two new methods for the

efficient synthesis of a variety of organic compounds were developed: parallel synthesis
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and "split-pool" synthesis. These two methods employ SP reactions, and belong to a

relatively new area of organic chemistry called combinatorial synthesis.

Parallel synthesis is used to synthesize relatively larger quantities of libraries

containing a small number of compounds (Scheme 4).

Scheme 4

II

I.x I .Y Ia-z
AI-.-XA I.VA I.ZA
BI.XB I.YB I.ZB
cl.xc I.vc I.zc

1-.:Polynmupport I

.X.Y.z+

A

c

B

In this method only one compound is prepared per reaction vessel. This technique is

especially suitable for the rapid optimization of previously identified lead structures.27

The "split-pool" synthesis is used to prepare smaller quantities of libraries containing a

large number of compounds (Scheme 5).
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Scheme 5

'i
~ AI ~ A2, coupling

~
mixing

AI A2 A3

/ j \
dividing

AI A2 A3 AI A2 A3 AI A2 A3

!BI !B2 !B3

AI A, A3 AI A, ~3 AI ~2 A3I I- I I I- I I
BI BI BI B2 B2 B2 B3 B3 B3

Many different compounds having a common backbone can be synthesized

simultaneously in each reaction vessel.2
? First, the portions of the resin are allowed to

react with several building blocks Al - A3• After the reaction is completed, the resin

beads are mixed and then divided into portions of the same size followed by a reaction

with another set of building blocks (B I - B3). Thus, it is possible to obtain a mixture

("library") of nine different compounds after only two steps.
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Advantages ofSPS compared to classical methods.

More than thirty years ago, when the polymer-supported synthesis of peptides

became popular, several advantages over classical methods in solution were noticed. The

same advantages can be attributed to solid phase synthesis of small organic molecules,

and they are as follows: (i) Time consuming purification and isolation of the product is

eliminated. The substrate and the product are covalently bound to a support and the

excess of reagents can be removed by filtration. (ii) The polymer support can be

regenerated and reused if appropriate cleavage conditions to release the product are

developed. (iii) It is possible to use "the principle of high dilution" for a reaction with

polymer-supported reagents if loading values of reactive groups are less than 0.8 mmol/g.

This prevents undesired reactions like cross-linking or multiple couplings to occur?7,28

There are also drawbacks to polymer-supported synthesis. The main

disadvantages of SP chemistry include the need to develop a new synthetic route, the

limited availability of supports and linkers, and the limited number of analytical methods

that could be used to monitor the progress of a reaction. Solid phase synthesis also

requires two additional steps in the reaction sequence: the attachment of a starting

material to a resin and the cleavage of a final product.

The influence ofthe polymer support on the reaction.

It is important to realize that polymer-supported reactions are often completely

different from reactions conducted in solution. The presence of a resin can influence the

result of the SP reaction and the reaction can exhibit different substrate selectivity,

different rate, or give different stereoisomers.32, 33 This is due to effects that can take

place inside a polymer bead which can be grouped into three categories: (i) the need for

dissolved reactants to gain access to the supported reactants; (ii) microenviromental

effects and (iii) site-site interactions.

Access: Amongst the most popular polymer supports used in SPS are microporous

polystyrene type polymers that are cross-linked with 1% or 2% divinylbenzene. To allow
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the reagents in solution access to polymer-supported substrates the polymer has to be

swollen by a solvent. The extent of swelling decreases with the increase of cross-linking,

thus the 1% cross-linked polymer swells more than the 2% cross-linked one. It should be

stressed here that the functional groups attached to the polymer can change the swelling

properties, and this change can also take place during a reaction when one functionality is

changed into another.32 The choice of solvent for a reaction with polymer-supported

reagents is therefore crucial and the optimal solvent may be different than the solvent

commonly used for an equivalent reaction conducted in solution. One should realize that

most of the reacting sites in a polymer-supported reagent are situated inside a bead. When

a polymer is swollen these reactive sites are more exposed and they are more accessible

for reagents in solution.

Microenviromental effects: It was established that the microenvironment inside a

polymer bead might be different than outside due to a difference in polarity or different

steric crowding. The difference can encourage or discourage reagents in solution from

diffusing into the bead.32 According to Hodge, if the diffusion barriers are not too high,

equilibrium may be set up between the soluble reactant inside and outside the bead.32 The

presence of such microenviromental effects can also influence selectivity of a reaction

e.g.: chlorination of a polystyrene containing methyl groups in the para position takes

place on the side chain rather than on the polymer backbone.34 This is due to the fact that

the microenvironment in the vicinity of the polymer backbone is sterically crowded.32

Steric effects are more pronounced when reactive groups are directly attached to the

polymer matrix. If the reactive group is separated from the polymer matrix by a spacer,

the steric effects might disappear making the group more accessible to reagents in

solution.35

Site-site interactions: When the synthesis of polymer-supported peptides became

popular in the early 1970s, it was thought that the reactive sites within the resin were

isolated and thus could not react with the polymer matrix or with each other.32 Ford,

however, demonstrated that this was not the case.36 It is possible for the polymer­

supported starting material to react with the support rather than with reagents in solution,
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especially if the polarities of the microenvironment inside the bead are different from

outside. It is also possible for the polymer-supported reactive groups to interact with each

other. One has to remember that in most SP reactions the concentration of reactive sites

in a resin bead is quite high eg.: if a polymer-supported reactant has a loading of 1.0

mmol/g, and the polymer swells in the reaction solvent by a factor of 3, the concentration

of reactive groups is 3.0 mmol/g.32 If the concentration of reactive groups is high and

they can react with each other, it is possible that new cross-linking would take place and

the polymer beads would have reduced swelling ability.

In summary there are numerous factors that have to be taken into consideration

when polymer-supported synthesis is concerned: solid support, linker, solvent,

availability of analytical methods to monitor the progress of the reaction, and influence of

the polymer matrix on the reaction result. In order to obtain the desired result, solid phase

synthesis has to be very carefully planned.

1.2 Applications ofinsoluble polymer-supported chiral amines.

A common goal in solid-phase synthesis is to adapt a reaction which is well known in

solution and find conditions under which it works well on a resin. Chiral amines are one

of the most commonly used classes of compounds in asymmetric synthesis conducted in

solution. They are used as reagents, catalysts, ligands or resolving agents. The chemistry

of polymer-supported primary and tertiary chiral amines and their derivatives has been

investigated for some time and relevant papers are discussed below.

SP chiral amines as auxiliaries.

The first applications of SP chiral amines in asymmetric synthesis were reported

by Leznoff37
, Takemot038 and Frechet.39 These authors were able to support different
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chiral pnmary amlnes on an insoluble polymer and use them as auxiliaries in the

alkylation of cyclic ketones. The synthesis of a SP chiral amine described by Leznoff is

presented in Scheme 6.

Scheme 6

o
o~o

:- +
R~OH

13aR=H
13b R=CH3
13c R= Ph

KH, THF,HMPA
18-crown-6

~CI
12

Ro N 0

~O~R
14aR= H
14b R=CH3
14c R= Ph

I. NaI
2. BU3SnH
3. NH2NH2

~ NH2

~O~R
15aR=H
15bR=CH3
15c R= Ph

The N-protected (S)-amino-alcohols 13a - c were attached to the insoluble Merrifield

resin (12) by O-alkylation to give polymers 14a - c. The loading of unreacted

chloromethyl groups in the polymers (14a - c) was detennined by reaction with pyridine

followed by analysis of the solution phase for chloride.37 The unreacted chloromethyl

groups were removed in two steps: the chlorine atoms were converted to iodine atoms

using the Finkelstein reaction, which was followed by free radical dehalogenation with

tributyl tin hydride. The resulting polymers were treated with hydrazine to afford amines

15a - c. Final loading of the polymeric amines (15a - c) was 0.5 mmol ofNH2/g.
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The synthesis of other polymer-supported chiral amines is shown in Scheme 7.38

Scheme 7

H2N~
OH

16

k NH2
OH

18

12, NaH
•

12, NaH
•

17

19

Compounds 16 and 18 were prepared according to an earlier described method.4o They

were coupled with cross-linked chloromethyl polystyrene 12 in the presence of an excess

of NaH. Different conditions were examined in order to find the most effective method

for the attachment of amino-alcohols 16 and 18 to the polymer. It was found that the

mole fraction of substituted benzyl groups in the polymer 12 was affected by the amount

of compounds 16 and 18, the reaction time and the temperature. In the end, the reaction

required two equivalents ofNaH and refluxing in dry THF for 14 days, which illustrates

how a reaction involving a polymer can differ from the solution system. Fixation of

compound 16 onto the resin 12 was found to be easier than compound 18, which exhibits

steric hindrance of the amino group.

Another method for the preparation a polymer-supported chiral amine, later used

as the auxiliary in the alkylation of cyclic ketones, involved polymerization of monomers

containing the chiral amine moiety (Scheme 8).39
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Scheme 8

20

+

21

DVB,AIBN,

toluene, 70°C, 24 h..

22

Amine 22 was synthesized by free radical copolymerization of (R)-l-(4­

vinylphenyl)ethylamine (20) with styrene (21) in the presence of DVB. Elemental

analysis of the polymer 22 indicated that the resin contained 1.65% of N, which

corresponded to loading value of 1.18 mmol ofNH2/g.

The use of insoluble polymers containing chiral reactive groups has received

increasing attention in the last decade.41
, 48 The resins were used as auxiliaries in chemical

transformations of prochiral substrates. The method appeared to have a promising future

due to several advantages: (i) the polymer-supported chiral auxiliaries were easily

recovered and could be reused, (ii) the supported lithiated species should have increased

reactivity in comparison to their equivalents in solution, and (iii) it should be possible to

obtain high yields and enantioselectivities in reactions of polymer-supported substrates

due to their reduced mobility. Taking these three reasons into consideration, polymer­

supported amines 15a - C, 17, 19 and 22 were used in the alkylation of cyc1ohexanone

(25). The general reaction is shown in Scheme 9 and the results are presented in Table 2.



16

Scheme 9

~NH2 +6
15a Linker= 23a 25
15b Linker= 23b
15c Linker= 23c
17 Linker= 23d
19 Linker= 23e
22 Linker= 24

25a Linker= 23a
25b Linker= 23b
25c Linker= 23c
25d Linker= 23d
25e Linker= 23e
25£ Linker= 24

15a - c, 17, 19,22 27 26a - £

Me Me

~2 H2N~£
~~O~R 9-(

Me all
23aR=H
23b R=Me 23d
23c R=Ph

M~NH' "):NH

Me 0,

23e' 24

Cyclohexanone (25) was attached to the resin (lSa - C, 17, 19 or 24) by fonnation of the

corresponding imine.37 - 39 The resulting chiral imines (2Sa - f) were lithiated with LDA

and alkylated with alkyl halides to give compounds 26a - f. The polymer-supported

auxiliaries were removed by hydrolysis and a-alkylated cyclohexanone 27 was

obtained.37 -39
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Table 2. Alkylation reactions of polymer-supported imines 25a - f.

Entry Method Polymer RX temp. yield ee

cae) (%) (%)

1 Leznoff~' 15c Mel 20 87 94

2 Leznoff' 15a Mel 0 50 94

3 Leznoff~' 15c Mel -78 72 98

4 Takemoto~~ 17 Mel 20 - 8

5 Takemoto"'/) 19 Mel 20 - 65

6 Takemoto~~ 19 PrJ 20 - 54

7 Frechet"'~ 22 Mel 0 - 58

8 Frechee~ 22 Mel -78 - 61

The best results in terms of the yields and enantioselectivities, were obtained by the

Leznoff groUp.37 This might have been due to the fact that the chiral amine moiety in

polymers 15a - c was separated from the polymer backbone by a linker, which made the

amine group more accessible for the formation of the imine 25a - c.

Besides alkylation reactions of cyclic ketones, there are other very interesting

examples of applying SP chiral amines derivatives as auxiliaries in asymmetric synthesis.

An SP chiral amide was employed as the chiral auxiliary in enantioselective alkylation of

the lithium enolate derived from an ester.41 The synthesis of polyacrylic resins 43a - c

with pendent chirality is presented in Scheme 10.
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Scheme 10
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Polyacrylic resins 43a - c were synthesized by free radical copolymerization of three

monomers: 65% (by weight) of the N-acryloyl derivative of (S)-N-methyl-a-phenylethyl

amine 39a, or (S)-prolinol methyl ether 39b or (S)-prolinol 39c as the chiral element;

10% ofN,N'-dimethylethylenebisacrylamide (42) as the cross-linking agent, and 25% of

N-acryloyl N-methyl p-aminobenzaldehyde (41) as the functionalizing agent. The loading

of the polymers 43a - c was 1.00 mmol of aldehyde/g, which meant that one aldehyde

group was surrounded by three to four chiral pendants. Resins 43a - c were used as the

auxiliaries in the alkylation reaction oft-butyl glycinate (44).41

The glycinate was attached to the resin 43a - c by acid catalyzed condensation to give the

corresponding Schiffbase (45a - c), followed by deprotonation with LDA and alkylation

with an alkyl halide (Scheme 11).



19

Scheme 11
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Deprotonation of the polymer-supported esters (45a - c) with LDA gave the

corresponding lithium enolates (46a - c). Subsequent reaction with an alkyl halide,

followed by hydrolysis with HCI afforded the amino acid chloride 47a or 47b. Reaction

with HMDS, and then treatment with an excess of MeOH gave the pure, a-alkylated

amino acid 48a or 48b. The results of the alkylation reaction of t-butyl glycinate (44) are

presented in Table 3.

Table 3. Alkylation reactions of the lithiated compounds 46a - c.

Entry Resin RX temp. yield ee

eC) (%) (%)b

1 43a Mel -78 68 21

2 43b Mel -78 58 61

3 43b Mel 20 87 55

4 43b iPrI -78 62 63

5 43b iPrI 20 83 56

6a 43c Mel -78 75 88

7a 43c Mel 20 85 82

8a 43c iPrI -78 77 89

9a 43c iPrI 20 84 84

a 2 eq. ofLDA were used. b (S) enantiomer was the major product in all cases.
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As shown in Table 3, the enantiomeric excess in the alkylation reaction of the esters 45a

- c depended on the nature of the polymer support used as the auxiliary (Table 3 entries 1

- 3 vs. entries 6 - 9).41 The lowest yield and ee were obtained with polymer 43a as the

auxiliary (Table 3, entry 1). This was explained by its limited interaction with the

supported lithium enolate of 44. Better results were obtained with polymer 43b as the

auxiliary (Table 3, entries 2 - 5). The best results were obtained when polymer 43c was

used as the auxiliary. The a-alkylated derivatives of ester 44 were obtained in up to 85%

yield and 89% ee. The addition of Ti(O)Pr)4 did not improve enantioselectivity and the

replacement of LDA with t-BuOK, followed by alkylation with Mel gave a large amount

of a dialkylated derivative of 44.

In summary, the syntheses of several chiral amines and their derivatives supported on

polymer have been described in the literature. The resins were successfully employed as

the auxiliaries in the alkylation reaction of cyclohexanone (25) and t-butyl glycinate (44).

The corresponding a-functionalized products were obtained in very good yields and

enantioselectivities. Surprisingly, the polymer-supported chiral auxiliaries did not

become popular in the synthesis of organic compounds considering the aforementioned

advantages.

Protonation ofpolymer-supported compounds.

Protonation of lithium enolates is a method complementary to alkylation in the

synthesis of enantiomerically enriched a-functionalized carbonyl compounds. There are

two literature reports of the protonation of lithium enolates of carbonyl compound where

a polymer-supported chiral amine or amide was used as an auxiliary.37c,41 The synthesis

of the polymer-supported auxiliaries used in asymmetric protonation is presented in

Schemes 637c and 9.41 Resins 15a - c were used in protonation reaction of the lithiated

imine derived from 2-methylcyclohexanone (49) and a chiral amine (Scheme 12).
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Scheme 12

ISaR=H
ISc R= Ph

1. LOA, -78°C

2.HA, -78°C
•

3. AcOH, NaOAc, H20

49 (racemic)

6--
49 (optically active)

R~O~
N

N 50.R~HV SOcR=Ph

The racemic ketone 49 was attached to the polymers 15a or 15c by fonnation of a Schiff

base with the amine moiety giving imines 50a or 50c. The imines were lithiated with

LDA, and than protonated with various proton sources. The subsequent hydrolysis gave

enantiomerically enriched 2-methylcydohexanone (49). The results are presented in

Table 4.

Table 4. The influence of the polymeric auxiliary 15a and 15c on the protonation of the
lithiated derivatives of 50a and 50c.

Entry Polymer HA ee

(%t

1 15a Et3N . HCI in THF 36 (R)

2 15a EtOH 22 (R)

3 15c EtOH 90 (S)

4 15c EtOH, Et3N . HCI in THF 82 (S)

a Based on known optical rotation ofpure (R)-2-methylcydohehanone (ref. 42).

Selectivity was dependent on the nature of auxiliary and the proton source. The

highest enantioselectivity was obtained when the polymer 15c was used as the auxiliary

and EtOH was used as the proton source (Table 4, entry 3). When the proton source was

changed to t-BuOH the racemic product 49 was obtained. When a similar reaction was
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tried in solution using (S)-2-aminopropyl benzyl ether as the auxiliary, the product did

not exhibit optical activity.37c

The protonation of polymer-supported lithium species is not restricted to ketones. A

study of the protonation of polymer-supported lithium enolates of esters was described.41

The resins 43b - c were used as the auxiliaries (Scheme 13).

Scheme 13

R

o ~N~Ot-Bu ,
~J;lN 0 l.LDA,-78 C,THF.

CH
3 51a polymer 43b, R= Me
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SId polymer 43c, R= Bn

~
1 ~Ot-Bu° ?'" N- 'Y

~ I OLi
N
I

CH3 52a - d

'I: Polymer 43b or 43c

I. H20, -78°C R H

2.1NHCI +X
• -CIH3N C02H

47aR=Me
53aR=Bn

1.HMDS
2. MeOH RXH

H2N C02H

48aR=Me
54aR=Bn

Racemic alanine or phenylalanine was attached to the polymers 43b and 43c by

formation of Schiff bases to give esters 51a - d. The resulting compounds were lithiated

with LDA, followed by the addition of water and cleavage from the polymer by

hydrolysis to give amino acid hydrochlorides 47a and 53a. Pure amino acids 48a and 54a

were obtained after treatment of these salts with HMDS and an excess of MeOH. The

results ofprotonation of compounds 51a - d are summarized in Table 5.
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Table 5. Protonation ofpolymer-supported lithium enolates 52a - d.

Entry reSIn Polymer-supported Amino acid yield ee

ester (%) (%t

1 43b 51a 48a 90 55

2 43b 51b 54a 90 49

3° 43c 51c 48a 95 61

4° 43c 51d 54a 95 54

a R enantiomer of alanine (48a) and phenylalanine (54a) was the major product. b Two
equivalents of LDA were used.

As shown in Table 5, the yield of protonation of polymer-supported lithium enolates 52a

- d was excellent in all cases but the enantioselectivity was moderate (Table 5, entries 1 -

4).

In summary, polymer-supported chiral amInes 15b - c, and polymer-supported

derivatives of chiral amines 43b and 43c were used as auxiliaries in the deracemization of

cyclic ketone 49 and two amino acids: alanine (48a) and phenylalanine (54a). Optically

active compounds 49 (Table 4), 48a and 54a (Table 5) were obtained in very good yields

and promising enantioselectivity. However, the application of polymer-supported chiral

amines and their derivatives as auxiliaries in the protonation of the lithiated carbonyl

compounds, unfortunately, did not become very popular despite its advantages associated

with the polymer supported synthesis. More work is needed in order to gain further

insight into the chemistry of such reagents.

SP chiral amines as ligands.

The strategy of attaching chiral ligands to a polymer support offers several

advantages in catalytic asymmetric synthesis over the use of the same ligand in solution.

These advantages were mentioned before (page 10).
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Diethylzinc addition to aldehydes in the presence ofchiral polymer supported ligands.

Enantioselective addition of diethylzinc to aldehydes employing polymer­

supported amino-alcohols as ligands has been studied extensively during the last

decade.43
- 47 When the reaction was performed in solution, the yields and

enantioselectivities were usually up to 95%.45 The enantioselectivity of the addition

depends on the structure of the chiralligand. The syntheses of various polymer-supported

chiralligands were reported, and can be divided into two groups: synthesis of ligands

directly attached to a resin, and synthesis of ligands separated from a resin by a linker.43
­

47

Polymer-supported ephedrine derivatives could be easily synthesized from commercially

available starting materials. The synthesis of polymer-supported ephedrines 56a - d and

compound 57 directly attached to the resin is shown in Scheme 14.43

Scheme 14

R,

~Ph
OH

55a (lR, 2S) R= Me
55b (l S, 2R) R= Et
55e (1 S, 2R) R= n-Pr
55d (1 S, 2R) R= Bu

12, K2C03, toluene
reflux, 30 h

56a - d

~Ph
OH

H- N8
HO+ Ph

Ph

57 58

N-Alkylated derivatives of norephedrine 55a - d and compound 57 were attached to the

commercially available 1% cross-linked p-chloromethyl polystyrene 12 (0.8 mmol of ell

g) in a one step reaction to give the corresponding ligands 56a - d and 58 in 84% - 930/0

yield.43
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The syntheses of other catalysts separated from a polymer matrix by a linker are

presented in Schemes 1544
, 1645

, 1747 and 1846
•

Scheme 15

~OH
HO

59

I. 12, NaH, DMF
2. SOCl2 ~..,..,., ..,.....,.,'... '.' Nat, acetone

~O~CI •

60

~O~I
61

55d,K2C03,

toluene, reflux ..
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The synthesis of the ligands 62 and 63 started from attachment of a 1,6-hexanediol (59)

to the 1% cross-linked p-chloromethyl polystyrene 12 (0.8 mmol of CI/g) by O-alkylation

of the alkoxide, followed by conversion of the hydroxyl group to chloride. The chlorine

atom was replaced by iodine in the next step, and resin 61 was obtained. The last step

was the attachment of compounds 55d and 57, resulting in polymer-supported amino­

alcohols 62 and 63.

When the synthesis of the polymer-supported compound is a concern there are two

variables that can be changed: a resin and a linker. A synthesis of the polymer-supported

analogue of ligand 63 is shown in Scheme 16.45
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Scheme 16
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Compound 65 was coupled to the resin 64 using PPTS in 1,2-dichloroethane and the

polymer 66 was obtained. The coupling efficiency was determined by mass balance after

cleavage of the material from the support. Next, a large excess of phenylmagesium

bromide was added to resin 66, followed by reduction with Red-AI to give polymer 67.

The synthesis of ligands 71a - c and 73a - c is presented in Scheme 17. The reactive

groups were separated from a polymer matrix by a linker. Mesoporous silica with pore

sizes between 2 - 10 nm was used as the solid supports and a carbon chain was used as

the linker. Silica MCM-4l and SBA-15 were synthesized using self-assemblies of

surfactants and block copolymers as templates.47
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Scheme 17
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The first step in the synthesis of compounds 71a - e and 73a - e was the attachment of

the linker. A chloropropyl linker was grafted on the polymer (68a - e) by treating the

resin with chloropropyltriethoxysilane in toluene. Reaction of the resulting resin (69a - e)

with compound 70 yielded the polymer-supported ligands 71a - e. The surface area of

the resin 71b was 655 m2/g, the mean pore diameter was 2.4 nm, and the loading was 0.4

mmol of N/g. The surface area of the resin 71e was 320 m2/g, the mean pore diameter

was 8.4 nm, and the loading 0.36 mmol ofN/g. It was thought that free SiOH moieties on

the silica surface could interfere during a diethylzinc addition to aldehydes, so it was

decided to cap these functional groups with TMS.47 The transformation was achieved by

treating the polymer (69a - e) with HMDS. The final polymer-supported ligands (73a ­

e) were obtained by O-alkylation of compound 70 with the polymer-supported n-propyl

chlorides (72a - e). The resins 71a - e and 73a - e were employed as ligands in

diethylzinc addition to benzaldehyde (Scheme 19).
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The synthesis of a very efficient ligand 76 for diethylzinc addition to various aromatic

aldehydes is shown in Scheme 18. Barlos resin (74) was used as the solid support since

Merrified resin 12 proved to be ineffective.46

Scheme 18

74

+

75

DIEA, CH2Cl2
ft., 24 h, N2 .. Me,C)Me

Ph~O
OH

76
CI

The polymer-supported ligand 76 was prepared by the reaction of Barlos resin (74) with

compound 75. It was characterized by gel phase Be NMR, and the loading, established

by elemental analysis was found to be 1.2 mmol ofN/g.

Polymer-supported amino-alcohols 56a - d, 58, 62, 63, 67, 71a - C, 73a - C and 76 were

used as chiralligands in diethylzinc addition to aliphatic and aromatic aldehydes (Scheme

19). Structures of these ligands are presented in Figure 3.
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Figure 3. Structure of chiralligands used in addition ofdiethylzinc to aldehydes.

Scheme 19

ZnEt2, 56a - d, 58, 62, 63..
67, 71a - C, 73a - C, 76

OH

R~
77aR=Ph
77b R= Me(CH2h
77c R= i-Bu

78a R=Ph
78b R= Me(CH2)2

78c R= i-Bu

Diethylzinc was added to aldehydes 77a - c. The detailed experimental procedures are

described in the literature.43
- 48 The selected results are presented in Table 6.
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Table 6. Diethylzinc addition to aldehydes catalyzed by polymer-supported chiral
ligands.

Entry R Polymer-supported yield ee

ligand (0/0) (0/0)

1 Ph 56a 83 89a, 0

2 Me(CH2h 56b 88 80a

3 i-Bu 56e 49 57a

4 Ph 58 68 24a

5 Ph 62 91 82a

6 Ph 63 91 61 a

7 Ph 67 100 89a

8 Ph 71a 69 41 c

9 Ph 71b 84 26c

10 Ph 71e 97 52c

11 Ph 73a 74 43c

12 Ph 73b 96 64c

13 Ph 73e 98 75c

14 Ph 76 99 94°

a Enantioselectivity based on the known values of [a]n (ref. 43 and 45). b (R) Enantiomer
was the major product. c Enantioselectivity was measured by HPLC using Chiralcel OD
column (ref. 47). d Enantioselectivity was measured by GC using ~-Dex 120 column (ref.
46).

Aliphatic and aromatic aldehydes were used as the starting materials, and the

corresponding alcohols were obtained in high yields and moderate to high

enantioselectivity (Table 6). The aldehyde that was studied in the most detail was

benzaldehyde (77a). It was possible to obtain the corresponding alcohol 78a in high yield

and enantioselectivity (Table 6, entry 14). This result was very comparable to the results

obtained in solution.45
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SP chiral amines as ligands in asymmetric dihydroxylation ofolefins.

Sharpless catalytic asymmetric dihydroxylation (AD) of alkenes using catalytic

amounts of OS04 in the presence of cinchona alkaloid derivatives, leading to a variety of

enantiomerically pure vicinal diols, is one of the most useful and reliable organic

reactions.49 To explore the possibility of recycling both the expensive OS04 and the chiral

ligand, a variety of the polymer-supported ligands were employed.48 Most of those

polymer-supported ligands required complicated synthesis, and their efficiency was not

satisfactory for practical purposes.

It was established that substituted pyrimidine bis-cinchona alkaloid ligands gave

improved enantioselectivity in the AD reaction of monosubstituted terminal 01efins.5o

The synthesis of the polymer-supported ligand 82 is shown in Scheme 20. The general

AD reaction is shown in Scheme 22 and the results are presented in Table 7.

Scheme 20
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The chiral precursor 81 was prepared by nucleophilic substitution of compound 79 and

quinine (80) according to a known method.48 The polymer-supported ligand 82 was

obtained by free radical copolymerization of monomer 81 and ethylene glycol

dimethylacrylate (EGDMA). Loading of the resin 82 as determined by elemental analysis

was 0.1 mol/g.

As mentioned before, one of the variables that could be changed during the

synthesis of a polymer-supported ligand is the solid support. Synthesis of a novel

polymer-supported cinchona alkaloid has been reported by Crudden.51 The authors were

studying a new class of silicates that are called mesoporous molecular sieves and have

well defined pores of nanometer size and a very narrow pore size distribution. The exact

size of the pores and their shape could be tailored depending on how they were prepared.

Hexagonal mesoporous molecular sieves of SBA-15 type were employed as supports for

the synthesis ofpolymer-supported ligands (Scheme 21).

Scheme 21

N=N

C1~C1

V+
MeO

NaH, DMF, ft., 20 h

92%
~ /; '7 ~ OMe

:-... I -&
N

83

1. NaH,DMF

2.80,50 °c, 18 h

84
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87 '- 88a SBA, R= Et
88b Si02, R= Si02Et



33

The first step in the synthesis was the reaction of dichlorophthalazine (83) with

dihydroquinidine (84) to give compound 85, followed by reaction with quinine (80) to

yield compound 86. Hydrosilylation with HSi(OEt)3 in the presence of H2PtCl6 gave 87,

which was grafted on two silicas: SBA-15 (68c) and amorphous silica gel (68a)

providing ligands 88a and 88b. The loading of these two resins was determined by

elemental analysis and found to be 0.13 mmol/g for 88a, and 0.09 mmol/g for 88b,

respectively.

The Polymer-supported chiral ligands 82, 88a and 88b were used in the asymmetric

hydroxylation of olefins (Scheme 22).

Scheme 22

89a R=R1= Ph
89b R= Ph, R1= H
89c R= t-Bu, R1= H
89d R= Ph, R1= Me
8ge R= C02Me, R 1= Ph

~RI
R -

OH

R~RI
OH

90a - e

The AD reaction is a very versatile transformation.49 Both terminal and internal olefins

were used. All transformations gave the corresponding diols (90a - e) in high yield and

enantioselectivity, and the results are summarized in Table 7.48
,51
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Table 7. AD reaction catalyzed by polymer-supported quinidine ligands (ref 48, 51).

Entry R R 1 Ligand yield ee

(%) (%)

1 Ph Ph 82a 92 84c

2 Ph H 82a 92 67c

3 t-Bu H 82a 80 76c

4 Ph Ph 88ao 97 >990

5 Ph Me 88ao 98 98°

6 C02Me Ph 88b" 72 940

7 Ph H 88b" 85 87°

a Molar ratio of olefin: OS04: ligand 82 1: 0.0025: 0.005 (ref. 48). b Percentage of OS04
1%, percentage of ligands 88a and 88b 2% (ref 51). c Enantioselectivity was detennined
by comparison of [a]D20 with literature values (ref. 48). d Enantioselectivity was
detennined by preparation of bis Mosher's esters and confinned by optical rotation of
unreacted diols (ref. 51).

The ligand 82 proved to be less effective than ligands 88a and 88b (Table 7, entries 1 - 3

vs. 4 - 7). The results obtained with resins 88a and 88b are almost identical to the results

obtained in solution (dihydroxylation of 89a with DHQD2PHAL gave the corresponding

diol90a in 99% yield and >99% ee).49, 51

In summary, syntheses of various polymer-supported chiralligands were reported. These

ligands were employed in diethylzinc addition and AD reaction of olefins. The

corresponding products were obtained in high yields and very good enantioselectivities

(Table 6 and Table 7) and the results were comparable to those obtained with chiral

ligands in solution.
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SP chiral amines as catalysts.

Reduction ofketones and oximes

The enantioselective reduction ofprochiral ketones using chiral catalysts or chiral

reagents has received a lot of attention in the past 20 years.53, 54 A variety of catalysts and

reagents have been developed for this purpose. However, the recovery and purification of

these reagents has proven to be problematic. Immobilization on solid support offers a

solution to the problem. The immobilized reagents can be recovered by filtration at the

end of the reaction without the loss of activity. Several polymer-supported chiralligands

derived from amino-alcohols have been developed, but only a few of them have

displayed high enantioselectivity.52, 55 The synthesis ofpolymer-supported catalysts 94a ­

c is shown in Scheme 23.

Scheme 23

II 0'(1/l( 10

°
91

DMF, 100°C

92

AIBN, polyvinylpyrrolidone
dodecanol, cyclohexanol, heat..

94a R j = R2=H, R3= Ph
94b R j =H, R2= Me, R3=Ph
94c R j = R2= H, R3= Me

93

Free radical copolymerization of compound 91 with 92 afforded cross-linked copolymer

93 in high yield.52 Optically active polymers containing amino alcohol functionalities 94a

- c were then formed from 93 through epoxide ring opening with a number of chiral

amines. The loading of the polymer-supported catalysts was determined by elemental

analysis, and was 1.20 mmol ofN/g, 1.21 mmol ofN/g, and 0.76 mmol ofN/g for 94a­

c, respectively. It was shown that ruthenium complexes based on these compounds were

effective catalysts for the enantioselective reduction of acetophenone (Scheme 25).52
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The synthesis of the Noyori's catalyst analogues supported on polymers is presented in

Scheme 24. In solution, (8,8)- or (R,R)-N-(p-tolylsulfonyl)-1,2-diphenylethylenediamine

are excellent chiral ligands for the ruthenium catalyzed hydrogenation of aryl ketones,

alkynyl ketones and imines giving products with up to 90% ee.55

Scheme 24
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In the first step chiral diamine 95 was sulfonylated with reagent 96 to give compound 97.

Protection of the amino group in compound 97 with (BochO yielded compound 98,

which was coupled to two different resins 99a and 99b, to yield the corresponding

polymer-supported ligands 100a and 100b. Loading of the polymers 100a and 100b

detennined by mass increase was 0.70 mmol/g and 0.22 mmol/g, respectively. The active

hydrogen catalyst was fonned by mixing the resins 100a and 100b with an equimolar

amount of [RuCh(p-cymene)h.55

The effectiveness of resins 94a - C, 100a and 100b was assessed by using the

reduction of acetophenone as the model (Scheme 25). The results are summarized in

Table 8.
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Scheme 25
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Table 8. Reduction of acetophenone catalyzed by resins 94a- C, 100a and 100b.

Entry Resin Hydrogen yield ee

source (%) (O~)

1 94a IPA 94 70°

2 94b IPA 94 45°

3 94c IPA 95 65°

4 100aa IPA 88 90c

5 100a HC02H: Et3N 71 >99c

6 100b HC02H: Et3N 100 92c

a Reaction was run in CH2Ch. b (R)-Enantiomer was the major product; method for
detennining the enantioselectivity was not reported (ref. 52). c (S)-Enantiomer was the
major product; enantioselectivity was detennined by HPLC with Diacel Chiracel OD
column (ref. 55).

As can be seen from Table 8, the optically active alcohol 102 was obtained in each case.

The absolute stereochemistry depended on which resin was used (Table 8, entries 1 - 3

vs. entries 4 - 6), and better results were obtained with resin 100a or 100b (Table 8,

entries 4 - 6). Recycling of the resin (Table 8, entry 1) resulted in a marked decrease in

yield (27% comparing to 940/0) and enantioselectivity (54% comparing to 70%).52 It was

thought that the addition of co-solvents might improve the yield and enantioselectivity for

polymers 100a and 100b. The reaction had to be conducted in CH2Ch for the resin 100a

otherwise the alcohol 102 was obtained in 21 % yield and 91 % ee. The addition of CH2Ch

and DMF to the reaction when polymer 100b was used resulted in low yield of the

product 102 (420/0 for CH2Ch and 460/0 for DMF).55
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Enantioselective reduction of the C=N double bond is an important synthetic

strategy for the preparation of optically active amines.57 Polymer-supported catalysts a~e
/

receiving considerable attention as useful tools for automated reactions with unique

microenvironments which can be used for stereoselective reactions.56 The synthesis of

novel, polymer- supported oxazaborolidine catalysts 105a - d is shown in Scheme 26.

The chiral monomer 103 was not commercially available, and was synthesized according

to known methods.56

Scheme 26

rS poly(y;nyl alcohol), H20, 0 'c,y styrene, DVB, 0 'C- 80 'c, 48 h
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103

O:::.S,=O
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I

H

104a x= 0.10, y= 0.10
104b x= 0.10, y= 0.02
104c x= 0.20, y= 0.10
104d x= 0.20, y= 0.02

105a - d

The first step in the synthesis was radical copolymerization of chiral monomer 103 with

styrene and DVB in water in the presence of poly(vinyl alcohol) to give resins 104a - d.

The resins were converted to the corresponding polymer-supported oxazaborolidines

(105a - d) by the reaction with tetrabutylammonium fluoride (TBAF), followed by

treatment with BH3 in THF. The loading of the resins 105a - d was determined by

elemental analysis and was 0.71 mmol/g.

Polymer-supported catalysts (105a - d) were used in the borane reduction of 0­

methyloximes (106a - c) to give the corresponding chiral primary amines (107a - c)

(Scheme 27). Selected results are shown in Table 9.
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Scheme 27

1. lOSa - d, BH3 x THF
•

l06a R)= Ph, R2= Me
l06b R)= p-MeOPh, R2= Me
l06c R)= Ph, R2= Et

l07a R)= Ph, R2= Me
l07b R}= p-MeOPh, R2= Me
l07c R)= Ph, R2= Et

Table 9. Enantioselective reduction of oxime ethers (106a - e) with BH3 . THF catalyzed
by polymer-supported catalysts (105a - d) (ref. 56)

Entry Oxime Polymer-supported Yield Ee

catalyst (%) (%t

1 106a 105a 56 72

2 106a 105e 60 82

3 106a 105d 65 96

4 106a 105d 70 99

5 106b 105d 75 86

6 106e 105d 81 93

a Enantioselectivity was determined by GC with a chiral stationary column.

The absolute configuration of the major product of the borane reduction of oximes 106a­

e was R in all cases. As can be seen from the above Table, the polymer-supported catalyst

105d gave better results than catalysts 105a and 105e (Table 9, entries 3 - 6 vs. entries 1

and 2). Moderate yields of amines 107a - e (Table 9, entries 1 - 4) were caused by the

difficulties in the removal of byproducts including methoxyamine. When oxime 106a

was reduced with catalyst 105d, the corresponding amine 107a was obtained in 96 - 990/0

ee. The polymer-supported catalyst 105d proved to be even more effective than the

catalyst in solution. When oxime 106a was reduced with (S)-4-(p-toluenesulfonyl)-2­

piperazinemethanol, the corresponding amine 107a was obtained in 84% ee.57 The

reduction of oximes 106a - e with polymer-supported catalysts 105a - d is an example of
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how the presence of the polymer matrix can influence the reactivity and selectivity of a

catalyst.

Polymer-supported chiral catalysts in Michael addition. 58

Sundararajan described another interesting application of a polymer-supported

catalyst in Michael addition.58 The problems associated with these reactions performed in

solution lie in the separation of the product from the catalyst. The catalytic activity and

selectivity in solution could be lowered in some cases by formation of oligomers by the

catalyst.58 Supporting a catalyst on a polymer could restrict such aggregation. A synthesis

of the catalyst is presented in Scheme 28.

Scheme 28
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First, the amine 110 was synthesized by reaction of p-chloromethyl styrene with

ammonia. In the next step, compound 110 reacted with (R)-(+)-styrene epoxide (111) to

give chiral monomer 112, which was copolymerized with different amounts of styrene

and DVB as cross-linking agent to give resins 113a - b. The corresponding chiral

catalysts 114a - b were obtained in the reaction of compounds 113a - b with LiAIH4 in
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THF. The effectiveness of catalyst (114a) was evaluated in three different Michael

reactions (Scheme 29).58

Scheme 29
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Michael addition catalyzed by resin 114a proved to be a very general reaction. The

products 116, 118 and 121 were obtained in excellent yield and good enantioselectivity in

each case. The chiral catalyst could be recycled by washing the polymer 114a with 1 N

HCI then reused.58

Polymer-supported catalystfor the kinetic resolution ofracemic secondary alcohols.

Traditionally, kinetic resolution reactions are performed using enzyme catalysts

that react selectively with only one enantiomer of the racemic starting material.53 More

recently, nonenzymatic kinetic resolution of alcohols was achieved.61
, 62 The preparation

of the polymer-supported proline based diamine catalyst 127 for the kinetic resolution of

the racemic mixtures of secondary alcohols is shown in Scheme 30.
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Scheme 30
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Hydroxyproline 122, protected as a BOC-derivative, reacted with benzylmethylamine,

and the corresponding amide 123 was obtained in 98% yield. Next, the diamine (124)

was prepared by reduction of the carbamate (123) with LiAIH4• Subsequently, it was

treated with an excess of KH and the corresponding alkoxide was O-allylated with allyl

bromide to provide diamine 125. Compound 125 was treated with 9-BBN to give the

hydroxypropyl ether 126 after oxidation. Compound 126 was successfully coupled to

chloromethyl JandaJel via Williamson ether fonnation to yield polymer-supported

resolving agent 127.61
,62 The loading of resin 127 was calculated by mass increase and

was 0.59 mmol/g.

After the synthesis of polymer 127 was completed the stage was set for testing its

effectiveness in the resolution of racemic mixtures of different alcohols (Scheme 31). The

selected results of the process are presented in Table 10.
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Scheme 31

127, BzCI, Et3N

molecular sieves, CH2CI2, -78°C..

128a - c 129a - c 130a - c

Table 10. Kinetic resolution of the racemic alcohols (128a - c) using catalyst 127.

Entry Alcohol yield of ee of yield of eeof

ester (%) ester (%) alcohol (0/0) alcohol (0/0)

1 CX
H 44 96 45 85

Ph 128a (1S,2R)

2 OH 44 58 47 50

c6 (R)
h 128b

3 OH 46 16 49 16

d' (S)
h 128c

The optimal conditions that were used in all experiments (Table 10) were as follows: 2.0

equivalents of the polymer-supported catalyst (127), 0.75 equivalent of BzCI, 0.5

equivalent of Et3N and molecular sieves. The reactions were conducted at -78°C in

CH2Ch for 11 h. Optical purity of the products 129a - c and 130a - c was detennined by

HPLC with a chiral column. The corresponding esters (129a - c) and unreacted chiral

alcohols (130a - c) were obtained in excellent yields. The results of the resolution

catalyzed by resin 127 were almost the same as those obtained in solution.59 For the

resolution of alcohol 128a conducted in solution with diamine 131, the corresponding

ester 129a was obtained in 48% yield and 97% ee, and the alcohol 130a was obtained in

49% yield and 97% ee.
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When the resolution of 128a was performed with recycled catalyst 127 there was no

significant decrease in enantioselectivity and yield of product 129a (36% yield and 96%

ee). It was shown that the polymer-supported catalyst 127 was as effective as its solution

equivalent 131. The reaction was fully automatable, did not require an aqueous workup,

and gave the selectivity factors comparable to those obtained in the solution phase.59

In summary, syntheses of several polymer-supported chiral amines and their derivatives

have been reported by several groups. The compounds were successfully applied as: (i)

chiral auxiliaries (alkylation of cyc1ohexanone or amino acid derivative, and protonation

of lithium enolates derived from 2-methylcyc1ohexanone and an ester), (ii) chiralligands

for the addition of diethylzinc to aldehydes and dihydroxylation of olefins, and (iii) chiral

catalysts for the reduction of ketones and oximes, Michael addition, and kinetic

resolution of racemic alcohols. The corresponding products of these reactions were

obtained in good yields, and the enatioselectivities were comparable to the values

obtained In solution. The polymeric amines and their derivatives possessed several

typical advantages for SP compounds: they could be separated by filtration, and they

could be regenerated and reused. It should be emphasized here that there has been no

publication in the literature describing polymer-supported chiral amines as reagents. I

decided to synthesize several different polymer-supported chiral amines and investigate

their properties as reagents. The work is described in detail in part B of the Results and

Discussion.
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1.3 Soluble resins - the potential for combining the advantages of solution phase

chemistry with macromolecularproperties ofreagents.

Reagents and catalysts attached to insoluble polymers such as Merrifield resin

proved to be very practical since the separation of the products from the reaction mixtures

involved only filtration. Although solid-phase synthesis is often highly successful, it still

exhibits several shortcomings due to the heterogeneous reaction conditions.63 Unequal

distribution of reactive groups, access to reaction sites, solvation, and other synthetic

problems associated with the solid-phase led researchers to look for different

methodologies that could restore the homogeneous conditions of a reaction.63 By

replacing insoluble resins with soluble polymer supports the familiar reaction conditions

of classical organic chemistry could be restored and purification of a product would still

be facilitated through macromolecular properties of the reagent.63 - 65 This methodology

is called "liquid-phase-synthesis" (LPS).63

1.3.1 Requirements/or soluble resins.

Polymers employed as soluble supports for LPS must fulfill the following

requirements: (i) they have to be commercially available or amenable to rapid and

convenient preparation; (ii) they must have good mechanical and chemical stability and

(iii) they have to provide appropriate functional groups for easy attachment of chemical

moieties. Additionally, one should realize that soluble polymers (bought or prepared in

the laboratory) consist of macromolecules of variable sizes. As polymer properties vary

with chain length, the molecular weight range should be narrow. The resins should have a

molecular weight high enough to be a solid at room temperature.63, 64

A soluble resin must be stable towards a variety of reaction conditions, and must

possess reactive groups allowing for anchoring organic molecules. If the conditions of

polymerization and choice of a monomer allow for suitable polymer functionalization,
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then anchoring of the initial structure can be made directly to a support for LPS.63 In

order to improve the accessibility of a polymer reactive group towards reagents in

solution, the former should be separated from the polymer matrix by a linker.

Polymers chosen as supports for "liquid-phase synthesis" should provide a

reasonable compromise between loading (functionality) and solubility. High loadings are

desired in order to make the synthesis more manageable on a large scale, but it is known

that the solubility of the resin can decrease as the loading capacity increases.63 When

soluble polymers with high loadings are used as supports, the influence of neighboring

anchoring sites on the reaction course has to be taken into consideration.63 Multiple

attachment of compounds may result in unequal reactivity ofbound species, which can be

unevenly distributed along the polymer.63

In order to ensure the success of liquid phase synthesis two variables have to be chosen

very carefully: the soluble support and the linker. If the support is not commercially

available, a polymerization procedure has to be elaborated in such fashion that the

resulting polymer has a narrow molecular weight range. Next, the correct conditions for

the anchoring of the linker must be designed. After the linker is attached to the chosen

resin, the stage is set for performing the "liquid-phase synthesis".

1.3.2 Methods ojseparating soluble polymersjrom reaction mixtures.

The filtration method, which is used as the technique to separate insoluble

polymers from the reaction mixture, cannot be used in the case of soluble polymers. Most

of the time the reaction mixture containing the soluble resin is diluted with a solvent

inducing polymer precipitation. Next, the precipitated resin is separated by filtration and

the excess reagents can be washed away. The precipitation of polymers often requires

careful choice of solvent and temperature. Although precipitation is the most popular

technique for separating soluble polymers from the reaction mixture there are other

methods that can be used as well. They include: dialysis using semipermeable
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membranes,66 membrane filtration,63 centrifugation methods,63 gel permeation

chromatography,67 and adsorption chromatography.67 One should realize that these

methods isolate the polymer-supported products from soluble impurities, but do not

purify the products from polymer-supported impurities. Consequently, the total

purification of intermediates cannot be achieved. Instead all reactions have to be

optimized and driven to completion in order to avoid a complicated mixture of products

at the end of a synthesis.

1.3.3 Analytical methods used in LPS.

Compounds attached to a soluble polymer can be characterized by conventional

methods like IH NMR, l3C NMR, IR and UV-visible spectroscopy. Moreover, samples

taken for analysis by these non-destructive methods can be returned to a reaction flask

after recovery.63 Sometimes, TLC can be used to monitor the reaction without

preliminary cleavage from the resin.68 Chemical methods such as titration and

derivatization can be routinely performed, and allow subsequent characterization of

compounds in the presence of a solid support.

1.3.4 Commercially available soluble polymers.

Soluble polymers that are used in LPS are listed in Table 11 and their structures are

presented in Figure 4.63
,64
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Figure 4. Structures of soluble polymers used in LPS (ref. 63).
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Table 11. Soluble polymers utilized in "liquid-phase-synthesis" (ref. 63).

Polymer Application

I I
a b c d

Homopolymers:

1. polystyrene (non-cross-linked) (132) + + + -

2. polyvinyl alcohol (133) + + + +

3. polyethylene imine (134) + - - -

4. polyacrylic acid (135) + - - -

5. polymethylene oxide (136) + - - -

+ + + +
6. polyethylene glycol (PEG) (137)

+ - - -
7. polypropylene oxide (138)

+ + - -
8. cellulose (139)

+ - + -
9. polyacrylamide (140)

Copolymers I
10. PEG with 3,5-diisocyanatobenzyl + - - -
chloride (141)

11. PEG with 3-nitro-3-azapentane + - - -
-1,5-diisocyanate (142)

12. polyvinyl alcohol-poly-(1-vinyl-2- + + - -
pyrrolinone) (143)

13. poly(N-isopropylacrylamide)-poly - - + -
(acrylic acid derivatives) (144)

14. polystyrene-poly(p-chloromethyl + - - +
styrene (145)

15. polystyrene-poly(vinyl-substituted - - - +
mono saccharides) (146)

a Peptide synthesis. b Oligonucleotide synthesis. C Oligosaccharides synthesis. d Synthesis
of small molecules.
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Polyethylene glycol (PEG) (137) is the most popular soluble resin for LPS and

thus a brief discussion of its properties is justified. Depending on the polymerization

conditions of ethylene glycol, PEG tennini may consist of hydroxyl groups or may be

substituted. Commercially available PEG can possess hydroxyl groups, methoxy groups

or both at the ends of its chains.65 The polymer has a molecular weight between 2000 and

20000 with a loading capacity of 0.1 - 1.0 mmol/g. It has good mechanical properties and

it is crystalline at room temperature.63 The polydispersity of commercially available PEG

resins is narrow, which corresponds to the narrow distribution of the molecular weight of

macromolecules.68c The polymer is soluble in a wide range of organic solvents and in

water but it is not soluble in hexane, Et20 and tert-butyl methyl ether. Careful

precipitation using these solvents or cooling of the polymer solutions in EtOH or MeOH

yields crystalline PEG, which can be separated from the reagents in solution by simple

filtration. One of the main advantages of this resin is that the supported organic

compounds can be analyzed by conventional IH NMR and l3C NMR spectroscopy since

PEG-MeO contains a single methoxy group and ethylene protons of the polymer

backbone, which can be used as the internal standards.

1.3.5 Applications ofLP reactions.

Insoluble polymers are used intensively in the synthesis of compound libraries,

since product purification can be achieved by simple filtration and rinsing. As discussed

before, solid-phase synthesis has several shortcomings, which are caused by the

heterogeneous conditions of a reaction. In order to overcome these limitations, liquid­

phase combinatorial synthesis was developed as the alternative method for the

construction of libraries of small molecules.63 The application of soluble resins combines

the advantages of SPS and the benefits of classical chemistry.68b Liquid phase synthesis

can be applied in combinatorial chemistry, in fact both the "split-pool" and the parallel

methods, which were described above for insoluble polymers can be used. The validity of

the LP method was demonstrated by the synthesis and screening of a peptide-based
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library that led to the identification of several compounds showing strong binding to an

anti B-endorphin monoclonal antibody.68b

1.4 Chemistry ofsoluble polymer-supported chiral amines.

Immobilization of chiral ligands and catalysts on polymer supports is the current

subject of intense research activity.70 The efforts are aimed at improving the efficiency of

asymmetric catalysis by allowing for recycling of the chiral ligand or catalyst. While the

use of insoluble resins has been investigated to some extent, immobilization on soluble

resins has received much less attention. This is surprising, since soluble polymers allow

for the reaction to be carried out under homogeneous conditions, and to secure higher

enantioselectivities and more catalytic cycles than insoluble supports, as recently

demonstrated by several researchers.70

Chiral amines as chiralligands.

The ligand-accelerated catalytic (LAC) asymmetric dihydroxylation of olefins

based on the cinchona alkaloid ligands was described by Sharpless in 198849a and since

then, the reaction has been further developed. From the standpoint of cost, ligand and/or

metal recovery and recycling are of prime interest because cinchona alkaloids and

osmium tetroxide are the most expensive components of the procedure. In this regard

several groups have reported AD reaction using insoluble, polymer-supported

alkaloids.48, 51 The solid-phase methodology was less satisfactory than reactions in

solution49 because of the increased reaction times and highly variable yields. In order to

overcome these problems a synthesis of soluble polymer-supported ligands was designed

and is presented in Scheme 32.69
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Scheme 32

~
\~ xHCI
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TEA,DMAP
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147

DCC,DMAP,MeOPEG

95%

149

The commercially available hydrochloride salt of hydroquinidine 147 was acylated using

glutaric anhydride (148) to provide carboxylate monoester 149. This simple reaction

provided the linking unit for attachment to the homopolymer MeOPEG, which was

achieved in the next step. The resulting resin 150 was soluble in an acetone/water mixture

(v/v= 10:1). The conditions of the asymmetric dihydroxylation reaction of olefins

catalyzed by 150 were homogeneous, and the transformation was completed within the

same amount of time as a reaction conducted in solution with no decrease in yield and

selectivity.69 The general AD reaction of olefins is shown in Scheme 34, and results are

presented in Table 12.

Ligand 150 was not the most effective one in the AD reaction.69 Therefore, an attempt to

improve yields and enantioselectivities was made and the synthesis of ligand 152 was

designed (Scheme 33).70
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Scheme 33
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In the first step of the synthesis, dihydroquinidine (84), 1,4-dichlorophthalazine (83),

KOH and K2C03 were refluxed in dry toluene to give the mono-substituted

chlorophthalazine 85. Next, quinine (80) was attached and compound 86 was obtained.

Heating of 86 with 3-mercaptopropionic acid (3-MPA) and AIBN gave the intermediate

151. The acid 151 was coupled with MeOPEG-NH2 in the presence of DCC and DMAP,

followed by oxidation with OS04/ NMO to give the desired sulfone 152. Ligand 152 was

employed in the AD reaction of oletins (Scheme 34). Selected results are presented in

Table 12.
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Scheme 34

89a R1= R2= Ph
89b R 1= Ph, R2= H
89d R 1= Ph, R2= Me
153 R 1= R2= n-Bu

OH

~ JR2
R( '[

OH

90a R}= R2= Ph
90b R}= Ph, R2= H
90d R}= Ph, R2= Me
154 R}= R2= n-Bu

Table 12. Selected results for AD reactions catalyzed by LP ligands.

Entry Olefin Ligand Oxidant Yield ee

(%) (%)

1 89a 150 NMO 89 88

2 89b 150 NMO 80 60

3 89d 150 NMO 80 84

4 153 150 NMO 62 42

5 89a 152 K3FeCN6 953 99

6 89b 152 K3FeCN6 883 98

7 89d 152 K3FeCN6 833 99

8 153 152 K3FeCN6 80a 97

a Higher yields but lower enantioselectivities were obtained with NMO as the oxidant
(ref. 70).

As seen from Table 12, better results were obtained with ligand 152 (Table 12, entries 5­

8) than with ligand 150 (Table 12, entries 1 - 4) considering the yield and

enantioselectivities. The reaction conditions were homogeneous, and the polymers 150

and 152 could be recycled and reused, which reduced the cost of an AD transformation.

In summary, the synthesis of two soluble polymer-supported ligands for

asymmetric dihydroxylation of olefins was reported.69
, 70 The ligands were as effective as

their equivalents in solution.49
, 50 This methodology is a good example of the successful
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combination of macromolecular properties of a polymer-supported compound and

solution conditions of the reaction.

LP chiral amines as ligands in reduction ofprochiral ketones.

Perhaps the most successful method for the reduction of prochiral ketones

involves 1,3,2-oxazaborolidines as catalysts. The method was developed by Itsuno72
, and

improved by Corey and co-workers (CBS reducing agent).74 Some of the

oxazaborolidines were extensively studied, however the development of cost effective

catalysts that exhibit high reactivity and enantioselectivity is still a challenging task.71

One approach to reduce the cost of a product specific catalyst is to recover a catalyst and

reuse after completion of a reaction. Towards this end, a soluble, polymer-bound catalyst

159 was invented (Scheme 35).71

Scheme 35

155

Ph Ph

1. allyl bromide, Ag20 ~OH
2.PhMgBr
-------. 0 Nr ,,,. -Cbz

156

2. Pd/C, H2

The first step in the synthesis of this catalyst was O-allylation of the precursor 155,

followed by a Grignard addition of phenylmagnesium bromide to the ester group to give
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the chiral monomer (156). This monomer was then subjected to platinum catalyzed

hydrosilylation with polymer 157 to give, after deprotection, resin 158. The chiral,

polymer-supported oxazaborolidine 159 was obtained in the reaction of the

corresponding amino-alcohol 158 with BH3 • Me2S complex, according to the procedure

described before.71 The activity of the polymer 159 was tested in the reduction of

prochiral ketones (Scheme 36, Table 13).

Scheme 36

THF

QH

Ph~R

101 R= Me
160a R= Et
160b R= CH2Cl

102R=Me
161a R= Et
161b R= CH2Cl

Table 13. Enantioselective reduction ofprochiral ketones with reagent 159.

Entry ketone yield ee Config.c

(%t (%)b

1 101 86 97 R

2 160a 88 89 R

3 160b 83 94 S

a Yield was detennined after purification. b Enantioselectivity was determined by HPLC
(ref. 71). C Determination of the absolute configuration was based on the sign of the
known [a]D for the pure enantiomers of the product (ref. 71).

As can be seen from Table 13, the corresponding alcohols 102, 161a and 161b

were obtained in high yield and enantioselectivity, and the results can be successfully

compared to the results obtained with solution phase reagents (compound 102 was

obtained in 96% ee).72 The enantioselectivity and the yield of the reduction of

acetophenone (101) (Table 13, entry 1) can be compared to the results obtained with

insoluble ligands 94a - c and 100a - c (Scheme 25, Table 8). The soluble ligand 159
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could be recycled and reused in the reduction of ketones (101, 160a and 160b) without

significant decrease of selectivity.

Cozzi and co-workers described another interesting application of derivatives of

LP chiral amines as ligands in enantioselective synthesis.74 These researchers synthesized

two soluble polymer-supported bisoxazolines 168a - b that were used as the chiral

inductors in two different reactions (Scheme 38). The synthesis of resins 168a - b is

presented in Scheme 37.

Scheme 37

OR 1. LOA, THF, 0 °c OR
OH
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166b R= Bn, R]= t-Bu
166c R= Allyl, R]= Ph
166d R= Allyl, R]= t-Bu

1.KOH
2. SOCl2

R1 165a R]= Ph
3 h 165b R1= t-Bu

. R2N OR

OH

..
4. Ts- or MsCl
5.DMAP
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O-Benzylated and allyl protected 4-alkoxybenzyl bromides 163a and 163b were easily

obtained from compound 162 by phenoxide ion alkylation and reaction with PBr3. Those

bromides were used to alkylate the lithium enolate of dimethyl methylmalonate to afford

the corresponding esters (164a - b). Conversion of compounds 164a - b to the

oxazolines 166a - d was achieved in the reaction with commercially available (S)-amino­

alcohols 165a - b, followed by alcohol activation as tosylates or mesylates, and ring

closure promoted by DMAP. After deprotection of the hydroxyl moiety, the oxazolines

(167a - b) were coupled to the soluble polymer (MeOPEG) and resins 168a and 168b

were obtained. These supported ligands were tested in the cycloadditions that are shown

in Scheme 38. The results are summarized in Table 14.

o 0

O~ + ~A
N 0
LI

169 170

Scheme 38

168b, Cu(OTf), • t:Ij
o J-)

171 0 0

168b, CU(OTf)2
•

1728 R= H
172b R= Ph

173 1748 - b



59

Table 14. Selected results for enantioselective Diels-Alder reactions catalyzed by 168b
(ref. 74).

Entry Catalyst Product yield de ee

(%) (%) (%)b

1 168b 171 83 >98: 2a 45

2 168b 174a 63 77: 23a 91

3 168b 174b 45 - 93

a Diastereoselective ratio for product 171 was endo: exo, for product 174a the ratio was
trans: cis. b Enantioselectivity was detennined by IH NMR with chiral shift reagent for
product 171, by optical comparison of the known [a]D value for pure enantiomers with
[a]D for products 174a - b

It can be seen from Table 14 that the products were optically active but the

enantioselectivity for compound 171 was low (Table 14, entry 1). Cozzi postulated that it

could be caused by three factors: the supported ligand 168b did not possess the C2

symmetry (which is the necessary requirement for a ligand to be selective),75 the presence

of the PEG, and the contamination of resin 168b. Unfortunately it was not possible to

confinn these hypotheses.74 Other products (174a - b) were obtained with very good

enantioslectivity (Table 14, entries 2 and 3). The polymer-supported ligands 168a - b

were recovered and reused. Overall, the resin 168b proved to be effective as the ligand

and it could be used preferentially to the solution phase analogues in giving products in

high yield and ee. The cost of the reaction would be lowered due to the possibility of the

recovery of chiralligands.

In summary, the syntheses of a few chiral ligands supported on soluble polymers were

reported by several groupS.69, 70, 71,74 Those chiral ligands were successfully applied as

chiral promoters in enantioselective reactions, such as Sharpless asymmetric

dihydroxylation, reduction of prochiral ketones and cycloaddition reactions. All resins

were completely soluble in the organic solvents used in these reactions, which restored

the homogeneous conditions. It should be noted that there were fewer publications
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describing soluble polymer-supported chiral amines and their derivatives than papers

dealing with insoluble resins. Obviously, more work is needed in order to adapt the

catalysts and reagents that work well in solution to reactions on a soluble support.
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CHAPTER II: RESULTS AND DISCUSSION

Part A of this chapter deals with the deprotonation of cyclic ketones. This reaction of has

been studied since 1986.13
, 76 The fonnation of enolates is the first step in many C-C

bond-fonning reactions (e.g., aldol, alkylation, Michael, Robinson annulation and

acylation). The base commonly employed in the fonnation of an enolate is the lithium

amide, derived from the chiral secondary amine. If the lithium amide is chiral, a chiral

enolate can be obtained. This is due to the fact that a chiral base can differentiate between

two enantiotopic axial hydrogens present in a cyclic ketone. The enolization of a ketone,

followed by the reaction of the corresponding enolate with an electrophile can be

influenced by the addition of different substances such as inorganic salts and organic

compounds. An increase of enantioselectivity was observed in many cases. 13 A study of

the effect of such substances on deprotonation of cyclic ketones, and on the reaction of

the lithium enolate with an electrophile was performed, and the results will be discussed.

Part B of this chapter deals with the synthesis and application of novel, polymer­

supported reagents. The concept of solid-phase synthesis was introduced by Merrifield

thirty years ago. 14 Since then, many support-bound reagents were developed for

conducting a variety of reactions on solid support. These reagents simplify the

performance of a reaction (especially the workup), the support can be regenerated (very

important from the economical point of view), and a reaction can be automated. As

mentioned before, chiral lithium amides are used as the bases in the fonnation of

enolates. The reactions of enolates with electrophiles are amongst the most employed

reactions for the construction of a carbon framework in solution. The synthesis of

polymer-supported chiral lithium amides was developed and their application will be

described.
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Part A: Deprotonation ofcyclic ketones

l.A.] Introduction

Deprotonation of ketones with chirallithium amides has been studied since 1986.1

- 13, 76 The deprotonation process (with both achiral and chirallithium amides) is much

more complicated than was thought. One has to consider numerous effects: aggregation

of lithium amides, aggregation of lithium enolates, complexation of chirallithium amides

to the carbonyl group before the deprotonation step, and complexation ofchiral amines to

an enolate via lithium after the deprotonation step.13 The deprotonation reaction of a

cyclic ketone followed by a reaction of the corresponding enolate with an electrophile is

shown in Scheme 39.

Scheme 39

0 0 0

HRQHS
~ ~

E'oHs
+
HROE

R1 R1
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175 176 177

11 UNRR* 1 E+

178 179 180 181
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Most advanced organic chemistry textbooks ignore the complexity of the deprotonation

reaction of ketones.77 One must realize that all of the structures shown in the box in

Scheme 39 are oligomers, which makes the study of a deprotonation reaction of a ketone,

followed by the reaction of the corresponding enolate with an electrophile, quite

complex. Another factor that complicates the study of these two reactions is the

equilibration between complexes 178 or 179 and 180 or 181.

The formation of an enolate of a cyclic ketone, followed by the reaction with an

electrophile can be an enantiotopic group selective or enantiotopic face selective process.

Reaction at A.. +

Figure 5. Enantiotopic group selective reaction.

enantiomers

An enantiotopic group selective process involves a preferential reaction at one of

the two-enantiotopic groups A (Figure 5).78 If one considers that an achiral substrate has

an internal plane of symmetry, then one can say that the two groups A have an

enantiotopic relationship. If one replaces either one of the groups A with a group D, a

mixture of enantiomers is obtained. For the reaction to be enantioselective (i.e., to give

one of the enantiomers in excess), the substrate requires a chiral environment: reagent,

catalyst or solvent. Deprotonation of ketones can be an enantiotopic group selective

reaction if a ketone belongs to a Cs symmetry point group (Scheme 39, R1= alkyl, allyl or

aryl). It is known that one of the axial hydrogens can be abstracted preferentially by a

base in the deprotonation step. 13 If a lithium amide used for a deprotonation is chiral, then

it can differentiate between two enantiotopic axial hydrogens, and the enolates 180 and

181 are not going to be obtained in a 1: 1 ratio. The ratio of the enolates should be

reflected in the ratio of the products 176 and 177 if the yield of the reaction is 100%.
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Reaction with D
• +

Figure 6. Enantiotopic face selective reaction.

enantiomers

An enantiotopic face selective reaction involves preferential addition to one of the

two enantiotopic faces of a trigonal atom e.g., addition to C=C or C=O (Figure 6). The

substrate molecule is achiral, since it has a plane of symmetry. For the process to result in

a non-racemic mixture, the reaction requires a chiral element (i.e., reagent, catalyst or

solvent), which causes discrimination between the two enantiotopic faces. 78 It is possible

to obtain an enantiomerically enriched ketone, which is functionalized at the a position.

The stereochemistry of this process can be controlled by face selectivity of the fonned

enolate. If a ketone belongs to the C2V symmetry point group (Scheme 39, R1= H) only

one enolate is formed. The faces of the complex 180 = 181 became diastereotopic and

they react with different rates with an electrophile. The products 176 and 177 will not be

formed in a 1: 1 ratio.

Effect ofachiral additives on the deprotonation ofcyclic ketones.

Deaggregation ofthe oligomeric eno/ates

It is known that in solution and in the crystalline stages Li-enolates exist as

oligomers. The crystalline enolates were analyzed by X-ray structural analysis and were

found to exist as dimers, tetramers or hexamers.79a
, 79b The structures of lithium enolates

were further validated by NMR studies, which indicated that lithium enolate aggregates

are directly involved in reactions with electrophiles.80 The reactivity, and the regio- as

well as stereoselectivity of reactions of these aggregates could be modified by the

addition of different substances.
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The effect of the addition of a lithium salt on a reaction of a lithium enolate with an

e1ectrophile is shown in Scheme 40.80 One must remember that enolates can exist as more

complexed oligomers. In Scheme 40 only a dimeric form of enolate 182 is shown to

simplify the discussion. If a lithium salt was not added to the solution of dimeric lithium

enolate 182 than the only obtained product would be product Pl. After addition of a

lithium salt, the dimer 182 could be converted to mixed aggregate 184, and the only

product obtained would be P2• In the presence of an equilibration between dimer 182 and

mixed aggregate 184, the mixture of products PI and P2 would be fonned in the same

ratio as the ratio of 182 to 184.

Scheme 40

(electrophile)

dimer 182 183 (product I)

mixed aggregate 184

(electrophile)

(product 2)
185

The structures of typical reactive mixed aggregates of lithium enolates and lithium salts

are presented in Figure 7.
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Figure 7. The structures of the reactive mixed aggregates of a lithium enolate (ref 80).

Deaggregation ofoligomeric chiral lithium amides

It has been observed that the selectivity of deprotonation with lithium amides can

be influenced by the addition of lithium salts.8t
, 82 It has also been reported that LDA

forms mixed aggregates with lithium chloride.79b It was postulated that similar to LDA

mixed aggregates should be formed from a chiral lithium amide and lithium chloride. In

the NMR study of the solution of chiral lithium amide 190b Koga found that in the

absence of lithium halides, a chiral lithium amide existed predominantly as a dimer (a

small amount of a monomer was also found).83

,/'-.... ,x 0t-Bu N

Ph~N
(R)-190a X= H
(R)-190b X= Li
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In the presence of lithium halides the chiral lithium amide 190 existed as two

aggregates having different stoichiometry, 1 : 1 lithium amide: lithium halide 193 (major)

and 2 : 1 lithium amide: lithium halide 194 (minor). Similar aggregates were also

observed by other scientists. 79b
, 85 The general structures of all aggregates are presented in

Figure 8.

Before the addition of LiC} After the addition of LiC} I

minor momomer 191

*R Li R
\ / '. /

N N
I " / "'-

R Li R*

major dimer192 1: 1 dimer
major 193

R R
I I

*R-N- -Li-N-R*
I I I

I I

Li--C}-Li

2: 1 dimer
minor 194

Figure 8. Structures of lithium amides aggregates.

The hypothesis of a mixed dimmer of lithium amide: lithium chloride acting as the

deprotonating agent was validated by Williard in crystallographic and computational

studies.84, 85 The transition structure proposed by Williard is shown in Figure 9.

195

Figure 9. Mixed dimer based transition state structure for deprotonation of ketones. (ref.
84,85).

The structure consists of a cyclic eight-member complex 195 that involves the mixed

lithium amide - lithium halide dimer and the ketone molecule. The proton is transferred

in a nearly linear fashion. 86
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2.A.2. Effects of lithium salts and other additives on deprotonation of cyclic ketones

described in the literature.

Lithium salts are known to accelerate the rate and selectivity of various reactions

e.g., LiBr affected the diastereoselectivity of the aldol reaction of cyclohexanone (25)

with benzaldehyde.85 The reaction is shown in Scheme 41 and the selected results are

presented in Table 15.

Scheme 41

°6
25

1. LDA, additive, -78°C, THF

2. PhCHO, -78°C
•

°H9
H W(rPh + 0 Ph

196 (threo) 197 (erythro)

Table 15. The effect of LiBr on the aldol reaction of cyclohexanone.

Entry LiBr Ratio

(eq.) 196: 197

1 - 84: 16

2 1 62:38

3 2 52:48

As can be seen, the addition of one or more equivalents of LiBr diminished substantially

the diastereoselectivity of the aldol addition ofbenzaldehyde to cyclohexanone (25).

Addition of LiBr also had an effect on the deprotonation reaction of 3,5­

dimethylcyclohexanone (198) by a chiral lithium amide (Scheme 42).82 The results are

presented in Table 16.
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Scheme 42

~ I. (S)-200b, -78°C, THF OAc

AA 2
.AC

2
0 ·n

198 199

Ph~N~
I

X

(S)-200a X= H
(S)-200b X=Li

Table 16. The effect of the LiBr on the deprotonation ofketone 198.

Entry LiBr ee

(eq.) (%)

1 - 30

2 1 64

It is usually difficult to predict the effect of lithium salts on an outcome of a

deprotonation reaction of a ketone, but it can be easily determined experimentally, e.g.,

deprotonation oftropinone (201) (Scheme 43).2 The results are presented in Table 17 and

in Figure 10.

Scheme 43

4
Me

201

1. R2*NLi, additive, -78°C, THF

2. PhCHO ifPh

Me

202

Ph,lN~
I

X
(R)-200a X= H
(R)-200b X= Li

/--.. -'" Ph
Ph N

I

X
(S)-203a X= H
(S)-203a X= Li

PhJN1Ph,
X

(S,S)-204a X= H
(S,S)-204b X= Li
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Table 17. The effect of LiCI on the enantioselectivity of the deprotonation of tropinone
(201), followed by the aldol reaction of the corresponding enolate.

Entry Lithium LiCI ee

amide (eq.) (%t

1 (R)-200b - 23

2 (R)-200b 1 71

3 (S)-203b - 23

4 (S)-203b 1 45

5 (S,S)-204b - 36

6 (S,S)-204b 1 90

a The enantiomeric excess of product 202 was measured by 1H NMR in the presence of
the chiral solvating agent (S)-(+)-TFAE.

As can be seen from Table 17 and Figure 10, the three monodenate chirallithium amides

(R)-200b, (S)-203b and (S,S)-204b showed significant LiCI effects. The highest effect

was achieved by the C2 symmetric lithium amide (S,S)-204b. The increase of the

enantioselectivity was observed after addition of about half an equivalent of LiCI. The

enantioselectivity did not increase significantly after the addition of one or more

equivalents of lithium salt. Those results suggest that the species that are involved in the

deprotonation of tropinone (201) are mixed aggregates comparable with the general

structures shown in Figure 8.
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Figure 10. The effect of added equivalents of LiCI on the deprotonation of tropinone
(201), followed by the aldol reaction of the corresponding enolate (ref. 2).

When tropinone (201) was deprotonated with bidenate lithium amide (R)-190b in

the presence of varying equivalents of LiCI, and the corresponding enolate was reacted

with PhCHO, it was noticed that the enantioselectivity of the aldol reaction was

independent of the amount of LiCI used, but dependent on the solvent in which the

reaction was performed.

~ ,xOt-Bu N

Ph~N
(R)-190a X= H
(R)-190b X= Li
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The enantioselectivity was in the range of 94 - 97% in THF but only 45 - 57% in Et20.2

The cause of the different ee values in these two solvents is due to the fact that lithium

amide (R)-190b is a monomer in THF and a dimer in Et20.83 The structures of the

monomer and the dimer of lithium amide (R)-190b are shown in Figure 11.

Ph

CN8~1
t-Bu

(R)-190b
monomer

(R)-190b
dimer

Figure 11. The structures of the monomer and the dimer of(R)-190b.

The results showed in Figure 10 demonstrated that the enhancement of enantioselectivity

was always observed when LiCI was added. The magnitude of this effect was dependant

on the nature of the chiral lithium amide, starting ketone, and solvent in which the

reaction was perfonned. To gain more insight into the nature of the LiCI effect other

ketones were studied by our group: dioxanone 205 and ketone 207 (Scheme 44).13 The

most remarkable results were observed in the case of the aldol reaction of dioxanone 205

with (R)-200b. In the absence of Liel, the reaction gave the dextrorotatory enantiomer

206 as the major product. The addition of 1 equivalent of LiCI caused the levorotatory

enantiomer of product 206 to be obtained. 12 These results are presented in Table 18.
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Scheme 44

0 1. R*2NLi, -78°C, THF
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OX:
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°XO (R)-200a X= H

t-Bu Me t-Bu Me
(R)-200b X= Li

205 206
Ph,lN~Ph

I
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0
1. R*2NLi, -78°C, THF OTMS (R,R)-204a X= H

¢ ¢
(R,R)-204b X=Li

2. TMSCI

,ll
Naph ~ Naph

OTBDMS OTBDMS
x

207 208
(R,R)-209a X= H
(R,R)-209b X=Li

Table 18. The effect ofLiCl on the deprotonation ofketones 205 and 207.

Entry Lithium Product LiCl ee

amide (eq.) (010)

1 (R)-200b 206 - 15

2 (R)-200b 206 1 54a

3 (R,R)-204b 206 - 18

4 (R,R)-204b 206 0.5 60

5 (R)-200b 208 - 36

6 (R)-200b 208 1 70

7 (R,R)-209b 208 - 74

8 (R,R)-209b 208 1 77

a Levorotatory enantiomer of206 was the major one.

At the same time as our group was investigating the deprotonation of different cyclic

ketones88 other research groups were conducting similar studies.80, 81, 83, 89 - 94 During the

work on the deprotonation of 4-tertbutylcyclohexanone (210), Koga made an interesting

observation.83 The enantioselectivity of the sHyl enol ether (211), formed when the
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"internal quench" technique was employed with (R,R)-204b, was strongly dependent on

the kind of silylating reagent used. The enantiose1ectivity varied from 90% for TMSCI to

31 % for TMSI. When the enolate 210a was trapped with the TMSCI (the "external

quench" technique), the effect was smaller but it was still dependent on what kind of

halide was used as the additive. The selectivity was 88% for LiCI and only 44% for LiI

(Scheme 45).83

Scheme 45

"Internal quench"

¢
t-Bu
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... ...
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X= I, ee= 44%

t-Bu t-Bu t-Bu
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Based on the similarity of the results from both experiments, Koga concluded that

trimethyl silyl halides acted as the in situ source of lithium salts, and that the chiral

lithium amide (R,R)-204b existed as the dimer in the absence of lithium salts.83 In the

presence of lithium salts the chiral lithium amide (R,R)-204b existed as the monomer.

The general structures of oligomers formed by chiral lithium amides were shown in

Figure 8. The difference in the results of the deprotonation reaction of ketone 210 was

attributed to the difference in the position of the equilibrium between the dimer and the

mixed dimer. In the case of LiCI, the equilibrium was shifted heavily towards the mixed



75

dimer whereas LiI did not form an appreciable amount of mixed dimer. Besides LiCI,

other lithium salts and other inorganic and organic compounds (e.g., ZnCh, HMPA,

TMEDA, DMPU) could be used as the additives to increase the yield and/or the

selectivity of the deprotonation reaction of various cyclic ketones. 80, 89 One of the most

common polar co-solvents used as an additive is HMPA. It was used to improve the

enantioselectivity of the deprotonation reaction of 4-tert-butylcyclohexanone (210) with

(R)-190b (Scheme 46, Table 19, Figure 12).90

Scheme 46

¢
t-Bu

210

(R)-194b, TMSCl, HMPA,

solvent, -78 DC

OTMS

¢
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Table 19. Solvents effects on the formation of silyl enol ether 211 from 4-tert­
butylcyclohexanone (210) with (R)-190b.

Entry Solvent HMPA ee

(eq.) (%)

1 THF - 84

2 THF 2 82

3 Et20 - 64

4 Et20 2 82

5 DME - 70

6 DME 2 81

7 PhMe - 58

8 PhMe 2 82
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Figure 12. The effect of the addition ofHMPA on the enantioselectivity of the fonnation
of silyl enol ether 211 in toluene (ref. 90).

As can be seen from Table 19, HMPA did not have any effect on the enantioselectivity of

the reaction when the reaction was conducted in THF because bidenate lithium amide

(R)-190b exists as a reactive monomer. In other solvents: EhO and toluene, bidenate

amine (R)-190b exists as a dimer. The dimer can be deaggregated by the addition of

HMPA. HMPA caused the dimer to break to more reactive monomers, which are also

more selective deprotonating agents (Figure 12).90 - 93 In the case of lithium amides

derived from the corresponding, monodenate chiral amines a different trend was

observed. The enantioselectivity of a deprotonation reaction is often decreased or remains

the same if the reaction is carried in THF. HMPA complexes easily to the lithium atom,

but does not necessarily break up the unreactive dimer.
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Simpkins discovered that zinc chloride had a remarkable effect on the enantioselectivity

of the enolization of sulfur and oxygen bridged, bicyclic ketones (Scheme 47, Figure

13).94

Scheme 47
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(S,S)-204a X= H
(S,S)-204b X= Li

ketone 212b

I
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I
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I
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Figure 13. The effect ZnCb on the enantioselectivity of the deprotonation of ketones
212a - b (ref. 94).
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As can be seen from Figure 13, the maximum enantiomeric excess was observed in both

reactions when 0.5 equivalents of ZnCb were added. When more equivalents of ZnCb

were added, the ee decreased. This phenomenon could be explained as occurring because

zinc chloride reacted with lithium amide (S,S)-204b to produce lithium chloride.

However, the difference in profiles of the LiCI vs. ZnCb graphs (Figure 13) suggests that

the explanation of the ZnCh effect is actually far more complicated.94

2.A.3. Effects of chiral additives on the enantioselectivity of a-functionalization of

cyclic ketones.

The chiral additives that could influence the outcome of the deprotonation

reaction of cyclic ketones are chiral lithium amides (Scheme 48) and chiral amines

(Scheme 49).80

Scheme 48

..
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Addition of a chirallithium derivative e.g., chiral lithium amide to an achiral dimer 214,

can yield a chiral mixed aggregate 215. A lithium amide breaks the dimer 214 by

complexation to the oxygen atom via the lithium atom. The faces of complex 215 are

diastereotopic and they react at different rates with an electrophile. In principle, it should
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be possible to obtain an enantiomerically enriched product 216 from a reaction between

two achiral reagents.80

Scheme 49
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Addition of a chiral secondary amine can also have an effect on a reaction of an achiral

enolate 217 with an electrophile. Faces of the enolate 217 are enantiotopic before

addition of a chiral amine, and if a chiral environment is not present (solvent or ligand),

they would react at the same rate with an electrophile giving racemic 216. A chiral

amine, after addition to the achiral enolate 217, becomes complexed to the enolate via the

lithium atom to give complex 218. The faces of the complex 218 are diastereotopic and

they react at different rates with an electrophile so that the optically active product 216 is

obtained.80 In many cases the a-functionalization conditions are chosen in such a fashion

that both a chirallithium amide and a chiral amine are present together with the achiral

enolate in the reaction mixture.80

The use of chiral additives (chiral amines, lithium amides and alkoxides) in aldol and

Michael reactions has been investigated by Seebach's group since the early 1980s.80

Cyclohexanone (25) was used as the model ketone. The enantioselectivity was low with a

few exceptions (Scheme 50, Table 20).
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Scheme 50
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Table 20. The results of Seebach's study (ref. 80).

Entry PhCHX Chiral additive Yield ee

(%) (%)

1 PhCHO
Ph~N~NMe2

80 34

I
Li

2 Ph(CH2)2N02 )(j:.Me 18 70

.... Li
o ", ,Li

'f':N,
Ph Ph Me

Another example of a face selective reaction of cyclic ketones was reported by Koga in

1990.95 1-Tetralone (221) and cyclohexanone (25) were chosen as the model systems. For

the purpose of this discussion only the results for I-tetralone (221) are shown (Scheme

51).

Scheme 51
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1. R*2NLi, LiBr, PhMe dY'
2. BnBr ~ Ph

• 1.&
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A Ph

NJ~~x-----oMe
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(R)-223b X= 0
(R)-224b X= NMe

eeup to 92%
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Face selective reactions are not only limited to cyclic ketones. Shioiri96 and Landais97

investigated, independently, the aldol reaction of 2,2-dimethyl-3-pentanone (225)

(Scheme 52). The results of the aldol reaction of 225 with lithium amide 227b are

presented in Table 21, and with lithium amides 228b and 229b in Table 22.

Scheme 52
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LDA and! or
chirallithium amide..
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~N_

R X

[

,,=<OLi ] _PhC_HO..
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R

r-"- h
MeO NOMe

I
X

(S,S)-226 (erythro)

227a R=R1= i-Pr, X= H
227b R=R1= i-Pr, X= Li

228a R= i-Pr, X= H
228b R= i-Pr, X= Li
229a R= t-Bu, X= H
229b R= t-Bu, X= Li

Enolization of ketone 225 with LDA, followed by the reaction with an aldehyde

(benzaldehyde in this example) is known to give erythro aldol diastereoselectively.98

Table 21. Results of the aldol reaction ofketone 225 with base 227b.

entry yield ee

(%) (%t

l a 90 18

2 93 68

3D 92 47

a No LDA was added. b n-BuLi was added to 225a solution before addition ofPhCHO. c

Determined by HPLC with a chiral column and by lH NMR of (R)-MTPA ester (ret: 96).

When chiral lithium amide 227b was used without LDA, the aldol 226 was obtained in

900/0 yield but only 18% ee (Table 21, entry 1). The addition of LDA caused the
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enantioselectivity to increase to 68% (entry 2). It was postulate, that LDA acted as the

strong base and that the chiralligand 227b was more effective than the corresponding

amine 227a.96

Table 22. Results of the aldol reactions ofketone 225 with bases 228b and 229b.

entry Lithium TMEDA Yield ee

amide (eq.) (%) (%t

1 228b 2.4 61 78

2a 228b - 58 48

3a 228b 1.2 60 62

4 228b 3.6 58 36

5° 228b 2.4 59 5

6 229b 2.4 57 12

a No LDA was added. b No n-BuLi was added after formation of 229a. C Determined by
HPLC with a chiral column and by IH NMR of (R)-MTPA ester (ref. 97).

During his work Landais made several interesting observations.97 The secondary amine

228a or 229a or i-Pr2NH formed during the formation of enolate 225a had to be

redeprotonated (Table 22, entry 1 vs. entry 5). Koga and Shioiri observed the same

phenomenon in their earlier work.94
, 99 They suggested that a free amine was a poor

ligand, when it was not tightly bound to an enolate. Addition ofTMEDA (2 eq. for every

eq. of a chiral base) before the addition of benzaldehyde increased the ee of the reaction

(Table 22, entry 1). When the ratio of TMEDA to a chiral base was different, e.g., more

than 2: 1, the enantiose1ectivity of the aldol reaction of 225 decreased (Table 22, entry 1

vs. entry 4). This trend was explained by the change in the stoichiometry of the mixed

aggregate (chiral lithium amide 228b-lithium enolate 225a). In the case of the lithium

amide 229b (Table 22, entry 6), the decreased enantiose1ectivity was explained in terms

of formation of the mixed aggregate (chiral lithium amide 228b-lithium enolate 225a)

that was affected by the steric interaction.
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Conclusions:

The deprotonation reaction of cyclic ketones has been studied for more than

twenty years. 13 It is a first step to many organic reactions, e.g., hydroxylation, alkylation,

Michael, Mannich or Robinson annulation. Very often, these simple reactions are used

for the synthesis of complex natural products. It is possible to conduct deprotonation in

an enantioselective fashion and obtain up to 95% ee, if a chiral lithium amide is

employed. It was established that addition of even small amounts of lithium salts could

improve enantioselectivity of deprotonation. These reactions are classified as

enantiotopic group selective reactions. It was also shown that it was possible to obtain

enantiomerically enriched, a,-functionalized ketones, if chiral ligands combined with

LDA were used. Those reactions are classified as enantiotopic face selective reactions.

Study of both types of reactions was complicated by the fact that lithium enolates and

chiral lithium amides form oligomers of different order, e.g., dimers, mixed dimers,

tetramers and hexamers. In order to better understand what is going on during enolization

of a ketone, followed by a reaction of a corresponding enolate with an electrophile, more

research in this area oforganic chemistry is needed.

2.A.4. Objectives ofthe deprotonation project.

In order to better understand the limitations ofmethods for enolization of a ketone

and a reaction of the corresponding lithium enolate with an electrophile, it was decided to

study a,-functionalization of two cyclic ketones in more detail.

1. To find reagents and conditions for high enantioselectivity and yield of tropinone

in order to broaden the scope of the method.
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2. To evaluate the effectiveness of several chiral lithium amides as bases in the

deprotonation reaction of tropinone followed by the reaction of the corresponding

lithium enolate with 2,2,2-trichloroethyl chloroformate.

3. To study the combined effect of different chirallithium amides and additives in

order to find the most effective combination ofboth reagents.

4. To gain some insight into the effect of a chiral ligand, e.g., a chiral amine or a

chiral lithium amide. The enantioselectivity of this reaction is controlled by face

selectivity of the enolate-chiral ligand complex. 1,4-Cyclohexanedione

monoethylene ketal was chosen as the model system, and two chiralligands were

selected.

2.A.5. The ring-opening oftropinone.

Although many aspects of enolate chemistry can be examined, the two most

important variables are: the structure of the chiral lithium amide and the structure of the

substrate. Even after several years of enantiose1ective deprotonation research, it is not

possible to reliably choose a chiral base for a Cs symmetric substrate that will give a high

ee without much experimentation. Usually, a trial and error study that involves different

chirallithium amides and different additives is required to elaborate conditions for high

enantioselectivities and yields. lOo A reaction that was chosen to be the model in my

studies of enantioselective deprotonation of a ketone belonging to the Cs symmetry point

group was the ring-opening reaction oftropinone (201) (Scheme 53).
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Scheme 53
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This reaction was developed in our group during attempts to a-functionalize tropinone

(201) with 2,2,2-trichloroethyl chloroformate (Trocel). The enone 230 was obtained

instead of the expected a-substituted derivative of tropinone. 101 The mechanism of this

reaction is interesting but still not fully understood. The preliminary experiments done in

our group resulted in the low enantioselectivities.101 It was decided to optimize conditions

for this reaction, so that it could be used for the enantioselective synthesis of tropane

alkaloids e.g., 6P- and 7p-acetoxytropanes (231 and 232) and physoperuvine (233).

geoR

W
AcO Me

231 R= Ac
232R= Tg

233

Several chiral lithium amides were used as the bases in the study of the enantioselective

deprotonation of tropinone (201), structures ofwhich are shown in Figure 14. The lithium

amides are shown in the order that they were studied.
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Figure 14. The structures of chiral lithium amides used in the study of the effect of
different additives on the selectivity of the deprotonation oftropinone (201).

The major product of the reaction was the dextrorotatory enantiomer in all cases. The

absolute stereochemistry was established by correlation with anhydroecgonine.88d

The starting point of this project was to investigate the effect of lithium chloride

on the enantioselectivity of the ring-opening reaction of tropinone (201) (Scheme 53).

The results are presented in Table 23 and in Figure 15. All the data are presented in

Appendix 1. Selected parts of the results are discussed below.
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Table 23. The effect of LiCl on the enantioselectivity of the ring-opening reaction of
tropinone (201).

Entry Lithium LiCl Yield ee

amide (eq.) (%)a (%)b

1 (S,S)-204b 0 70 44

2 (S,S)-204b l c 74 93

3 (S,S)-204b 1 92 96

4 (S)-200b 0 52 29

5 (S)-234b 0 98 14

6 (S)-235b 0 86 78

7 (S)-235b 1 86 87

8 (S,S)-236b 0 22 17

9 (S,S)-236b 1 60 72

10 (S,S)-237b 0 50 48

11 (S,S)-237b I C 89 88

12 (S,S)-209b I C 71 77

13 (R)-190b 0 82 83

14 (R)-190b 1 85 95

15 (R)-238b 0 80 87

16 (R)-238b 1 97 96

a Yield after purification of the crude product by flash chromatography.
b Enantioselectivity was measured on the crude product by HPLC with a Chiralpack AD
column and 15% IPA in hexane as the solvent system. C Amine hydrochloride salt was
used to generate in situ the 1: 1 Li-amide-LiCl complex.
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Figure 15. The effect of 1 eq. of LiCI on the ring-opening of tropinone (201) with
different lithium amides.

Most of the tested lithium amides gave low enantioselectivity without LiCI (Table 23,

entries 1, 4, 5, 8 and 10). The two exceptions were bidenate lithium amides (R)-190b and

(R)-238b, previously developed by Koga102
, which gave the product 230 in 830/0 ee and

87% ee, respectively. The addition of one equivalent of LiCI prior to enolization resulted

in the enhancement of the enantiose1ectivity when monodenated lithium amides were

used, especially lithium amide (S,S)-204b (Table 23, entry 3). Lithium chloride had a

much smaller effect on the already efficient bidenate lithium amides (R)-190b and (R)­

238b, but it still caused improvement in the enantiose1ectivity of the ring-opening

reaction (Scheme 53). The lithium amide (S,S)-204b became the base of choice because

the two latter bases were much more difficult to prepare. It was decided to investigate the

effect of different amounts of LiCI on enantioselectivity, as well as the effect of other
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lithium salts (e.g., LiBr, LiF), and polar co-solvents (e.g., TMEDA, HMPA, DMPU)

(Table 24, Figure 16).

Table 24. The results of different additives on the enantioselectivity of the ring-opening
reaction oftropinone (201) with (S,S)-204b.

Entry Additive Yield ee

(eq.) (%t (%)b

1 - 70 44

2 LiCl (0.1) 84 49

3 LiCI (0.25) 92 85

4 LiCI (0.5) 90 95

5 LiCI (1.0) 92 96

6 LiCI (2.0) 94 95

7 LiBr (0.1) 90 35

8 LiBr (0.25) 82 54

9 LiBr (0.5) 88 63

10 LiBr (1.0) 93 73

11 LiBr (2.0) 85 88

12 CeCb (0.1) 94 36

13 CeCb (0.25) 82 44

14 CeCb(0.5) 24 38

15 CeCb (l.0) 71 80

16 ZnCh (0.1) 72 80

17 ZnCh (0.25) 45 62

18 ZnCh (0.5) 40 86

19 ZnCh (1.0) 40 90

20 ZnCh (2.0) 42 88

a Yield after purification of a crude product by flash chromatography. b Enantioselectivity
was measured on the crude product by HPLC with a Chiralpack AD column.
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Figure 16. The change of enantioselectivity of the ring-opening of tropinone (201) as a
function of the addition of increasing equivalents ofdifferent additives.

As can be seen from Figure 16 and Table 24 (entries 2 - 11) addition of even a small

amount of LiCI or LiBr resulted in a significant increase of the enantioselectivity. The

salt effect "wore off' after addition of one (for LiCI) equivalent of the halide. Zinc

dichloride showed a salt effect similar to LiCI or LiBr, but it should be noted that all of

the experiments with ZnCb resulted in a relatively low yield (Table 24, entries 16 - 20).

The comparison between the effects of one equivalent of different additives on the

enantioselectivity of the ring-opening reaction of tropinone (201) with the C2 symmetric

base (S,S)-204b is presented in Figure 17.
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Figure 17. The effects of the addition of one equivalent of different compounds on the
enantiose1ectivity of the ring-opening reaction oftropinone (201).

It is known that lithium amides form aggregates.83
- 86, 102 General structures of such

aggregates of lithium amides were shown in Figure 8. After the addition of a lithium salt

the chirallithium amides are believed to exist as mixed dimers.83
- 86 The increase of the

enantioselectivity of the deprotonation (Scheme 53) after the addition of LiCI and LiBr

could be explained by assuming that the major mixed aggregate was acting as a more

selective deprotonating agent. The differences in the results of the deprotonation with

different lithium halides (e.g., LiCI, LiBr and Lil) were attributed to the difference in the

position of the equilibrium between the dimer and the mixed dimer formed by a chiral

lithium amide. In the case of LiCI the equilibrium was shifted heavily towards the mixed

major dimer, Lil on the other hand did not form an appreciable amount of mixed dimer.

Other lithium salts LiF, LiCI04, and the polar co-solvents TMEDA, HMPA and DMPU

had no effect on the enantioselectivity. It should be noted that the deliberate addition of
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water (0.05 mmol or 0.2 mmol), followed by the addition of excess of n-BuLi (0.05

mmol or 0.2 mmol), practically destroyed the enantioselectivity and the yield of the

reaction.88d The water and the excess of n-BuLi were added in order to stimulate the

presence of LiOH. This could not be explained by the simple fact that some molar

amount of the generated enolate was quenched by the addition of water. If 5% or 20% of

the enolate were quenched by the addition of 5% or 20% of water than the remaining

95% or 80% of enolate would still react with 2,2,2-trichloroethyl chloroformate and yield

the product. This surprising result could be explained by considering that the oligomer

composed of the lithium enolate of tropinone-additive became more complexed and less

reactive towards the electrophile. The practical observation from these results is that it is

not enough to titrate the n-BuLi solution prior to use. If the reagent contains large

quantities ofLiOH, the reaction will not work, despite use of the excess ofn-BuLi.

A very short study was perfonned on the lithium amide (R)-190b. The results are

shown in Table 25.

/'--.. ,Li 0t-Bu N

Ph~N
(R)-190b

The addition of even 0.1 equivalent of LiCI resulted in an increase of

enantioselectivity (Table 25, entry 2) with the maximum value of 99% at 0.25 equivalent

of LiCI (entry 3). The addition of HMPA had no effect on the enantioselectivity (Table

25, entries 7 - 11), and the addition of water resulted in the loss of both the yield and the

enantioselectivity (entries 12 and 13).
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Table 25. The results of the ring-opening oftropinone (201) (Scheme 53) with (R)-190b.

Entry Additive Yield ee

(eq.) (%t (%)b

1 - 82 83

2 LiCI (0.1) 67 94

3 LiCI (0.25) 82 99

4 LiCI (0.5) 86 94

5 LiCI (1.0) 85 95

6 LiCI (2.0) 79 94

7 HMPA (0.1) 91 81

8 HMPA (0.25) 57 80

9 HMPA (0.5) 74 86

10 HMPA (1.0) 56 86

11 HMPA (2.0) 49 85

12 H20 (0.2) 8 6

13 H20 (0.2), LiCI (1.0) 8 10

a Yield after purification of the crude product by flash chromatography. b

Enantioselectivity was measured on the crude product by HPLC with a Chiralpack AD
column.

Conclusions:

It was shown that tropinone (201) could be deprotonated with a chiral lithium

amide to give the corresponding lithium enolate in moderate (for monodenate chiral

lithium bases) to good (for bidenate chiral lithium amides) enantioselectivity. Different

additives were studied including lithium salts (LiF, LiCI, LiBr, LiI and LiCI04), ZnCh,

CeCb, and organic co-solvents (HMPA, DMPU and TMEDA), but LiCl gave the best

results. Addition of even a small amount of LiCl increased the enantioselectivity of the

deprotonation reaction with all chiral bases. The best combination of base and additive
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proved to be the C2 symmetric chiral lithium amide (S,S)-204b with one equivalent of

LiC!. The enolate of tropinone was generated with this set of reagents, and trapped with

2,2,2-trichloroethyl chloroformate. The product 230 was obtained in 92% yield and 96%

ee. The ring-opening reaction of tropinone could now be used in the enantioselective

synthesis of tropane alkaloids e.g., 613- and 7p-acetoxytropanes (231 and 232) and

physoperuvine (233).

2.A.6. Studies ofdeprotonation of1,4-cyclohexanedione monoethylene ketal

It should be noted that the enantioselectivity in the deprotonation reaction of the

cyclic ketones with Cs symmetry is a sum oftwo effects:

1. Differentiation between the two axial a-hydrogens that are enantiotopic by a

chiral lithium amide (Scheme 39, R1= alkyl, allyl or aryl). Two complexes 180

and 181 are not formed in a 1: 1 ratio. An enantiomerically enriched product is

formed after a reaction of these complexes with an electrophile.

2. After the deprotonation step is completed the chiral amine remains complexed to

the enolate via the lithium atom (Scheme 39, R1= alkyl, allyl or aryl). The faces of

the complexes 180 or 181 became diastereotopic, and they react at different rates

with an electrophile giving one of the enantiomers 176 or 177 in excess.

In most cases, it seems that when a researcher deprotonates a ketone and obtains the a­

functionalized product in high yield and enantioselectivity, often not wondering what was

the cause of the result (the first effect or the second one, or the sum of both). When I

started this project, there were only a couple of precedents in the literature showing that

the complexation of a chiral amine to the enolate was enough to introduce

enantioselectivity into the final product. I decided to investigate this hypothesis in more
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detail. The compound of choice for this study was 1,4-cyc1ohexanedione monoethylene

ketal (239), with "average symmetry" of C2y.
78

, 103 Deprotonation of ketone 239,

followed by a reaction with an electrophile is presented in Scheme 54.

Scheme 54

239

240

..

--

242

241

The axial a-hydrogens in ketone 239 are homotopic, so the chirallithium amide will not

differentiate between them. The base can abstract either of them giving only complex 241

as the result. The faces of the complex 241 are diastereotopic. They would react at

different rates with an electrophile, and the optically active product 242 could be

obtained.

The ketone 239 was deprotonated with the two chirallithium amides (S,S)-204b and (S)­

200b. The corresponding enolate was "trapped" with benzaldehyde (Scheme 55, Table

26).
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Scheme 55

1. R*2NLi, -78 DC, THF

2. PhCHO, -78 DC

239
~~

Ph,./"'o-N Ph
I
Li

243 (threo)
9:

244 (erythro)
1

(S,S)-204b (S)-200b

The geometry of the enolate fonned in this reaction is E. The major product of the aldol

reaction of 239 is threo-aldol 243. It can be rationalized from the Zimmennan-Traxler

model. 104 The enantioselectivity was measured by IH NMR with shift reagent Eu(tfch.

The results are presented in Table 26. The relative stereochemistry of product 243 was

detennined by the literature method. 105 The absolute stereochemistry is not known.

Table 26. The results of the deprotonation reaction of239.

Entry Lithium Yield ee

amide (%) (%)

1 (S,S)-204b 85 14

2 (S,S)-204b 85 14

3a (S,S)-204b 80 13

4a (S, S)-204b 79 13

5 (S)-200b 50 6

6 (S)-200b 53 8

7a (S)-200b 40 6

Sa (S)-200b 45 7

a An additional equivalent of n-BuLi was added to the reaction mixture before the
addition ofPhCHO.93
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The addition of a second equivalent of n-BuLi prevents the "internal proton return"

phenomenon. 107 This phenomenon is depicted in Scheme 56.

Scheme 56

241

II n-BuLi

245

G
. R

,LI....... /

o ~R*

~H
o 0
LJ

240

After the deprotonation step is completed, the chiral amine remains complexed to the

enolate. The chiral amine can act as the proton donor, and intramolecular proton transfer

can take place, in which case the equilibrium between complex 241 and complex 240 is

established. If the proton transfer is rapid, it can diminish the yield and the selectivity of

the reaction of the enolate with an electrophile. After addition of a second equivalent of

n-BuLi, the chiral amine is transformed into the lithium amide, which can still remain

complexed to the enolate (complex 245), but the proton transfer is not possible anymore,

and the yield and the selectivity should be improved.

To avoid a "proton transfer" between the enolate and the complexed chiral amine,

the enolate can be generated from the corresponding sHyl enol ether. The synthesis of

silyl enol ether 246 is shown in Scheme 57.
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Scheme 57

o

R
LJ

239

1. LDA, -78°C, THF

2. TMSCl, Et3N, -78°C ..

OTMS

Q
o 0
LJ

246

The enolate fonned in this reaction was trapped with TMSCl. The silyl enol ether 246

was separated from the reaction mixture and purified before the conversion to the

"amine-free enolate". The phrase "amine-free enolate" means that the chiral amine is no

longer coordinated to the lithium enolate. As mentioned before, a chiral amine and a

chiral lithium amide can also be used as the chiral additives. The aldol reaction of the

silyl enol ether 246 is shown in Scheme 58.

Scheme 58

1. n-BuLi, THF, -78°C

2. chiral additive

3. PhCHO

246 243 (threo)

Chiral additives:

244 (erytrho)

Ph~N,lPh
I
X

(S,S)-204a X= H
(S,S)-204b X= Li

Ph~N~
I
X

(S)-200a X= H
(S)-200b X= Li

The "amine-free enolate" can also be generated with n-BuLi instead of MeLi. 106 The

major product of this reaction is aldol 243. The enantiomer ratio of 243 was calculated by

IH NMR with chiral shift reagent Eu(tfc)3' The diastereoselectivity, which was not the
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main subject of my study showed an interesting trend (Table 27). The enantioselectivity

of the aldol reaction of246 (Scheme 58) is presented in Table 28.

Table 27. The diastereoselectivity of aldol reaction of the compound 246.

entry Additive Ratio

243:244

1 - 99: 1

2 (S,S)-204a or (S)-200a 94:6

3 (S,S)-204a or (S)-200a 84: 16

and 1 eq. ofn-BuLi

4 (S,S)-204b or (S)-200b 84: 16

Table 28. The results of the aldol reaction of silyl enol ether 246.

Entry Chiral Yield ee

additive (%) (%)

l a (S,S)-204a 60 15

2 (S,S)-204b 69 14

3 (S,S)-204a 77 14

4 (S,S)-204a 81 13

5a (S)-200a 55 6

6a (S)-200a 50 5

7 (S)-200b 65 6

8 (S)-200b 60 7

9 (S)-200a 75 4

10 (S)-200a 76 4

a An additional equivalent of n-BuLi was added before the addition ofbenzaldehyde.93

The results presented in Table 28 show that for the amine (S,S)-200a enantioselectivity of

the aldol reaction of the silyl enol ether 246 was between 4% and 7% (entries 5 - 10), and
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the enantioselectivity for amine (S)-204a (entries 1 - 4) was slightly better. The same

trend was observed when ketone 239 was used as the starting material in the aldol

reaction (Scheme 55; Table 26, entries 1 - 4 vs. 5 - 8).

2.A. 7 Conclusions

The lithium enolate of l,4-cyclohexanedione monoethylene ketal (239) was

obtained using two different methods: from 239 by deprotonation (LDA and two chiral

lithium amides) and from silyl enol ether 246. Chiral ligands (S)-200a, (S)-200b, (S,S)­

204a and (S,S)-204b were added to the solution of the lithium enolate before the addition

of benzaldehyde, and enantiomerically enriched aldol 243 was obtained as a result. The

enantioselectivity of this reaction was low (between 15% and 4%). It was shown that the

effect of complexation of a chiral ligand to an achiral enolate was small, and can be

neglected when considering enantiose1ective a-functionalization of cyclic ketones.
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Part B: Polymer-supported chirallithium amides

2.B.l. Introduction

A continuing challenge in developing chemistry that involves reactants on solid

support (Solid Phase Synthesis (SPS) for insoluble polymers, and Liquid Phase Synthesis

(LPS) for soluble resins) is to elaborate solution phase reactions to work well on the

resin.26, 27,33,63 - 65,107 -114 As confidence in the generality of solid phase chemistry grows,

more challenging aspects of synthetic chemistry such as asymmetric synthesis are being

developed in the SPS and LPS context,47, 58, 59, 115 - 122, 163 One aspect of asymmetric

synthesis, which had not been investigated before my project was started, involves the

use of polymer-supported bases to generate lithium enolates. Chiral amines are among

the most commonly used species in the synthesis of enantiomerically pure compounds

(EPC synthesis).13, 27c, 123 They are used in many chemical reactions as the resolving

agents, chiralligands, catalysts, reagents and auxiliaries. Chirallithium amides derived

from the corresponding amines are widely used in the deprotonation reaction of carbonyl

compounds and in ring-opening of epoxides. Deprotonation of ketones is the first step in

many organic reactions, e.g.: aldol, Michael, Robinson and alkylation. These processes

are among the most popular reactions for the formation of carbon skeletons during the

syntheses of complex natural products. 13

Our group has been interested in the development of chiral lithium amide bases

for several years. 13 Elaborating the synthesis of chirallithium amides supported on a resin

seemed like an attractive idea due to a potential connection to SPS and LPS. It should be

noted that applications of substrates and reagents on a solid support are not limited to

combinatorial chemistry (c.f., the literature review section). There are a number of

potential benefits, which could arise from using such reagents including easy recovery of

expensive chemicals, easier control of environmental contamination, new chemical

reactor design, etc.27,33, 63, 108, 109, 111
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2.B.2. Objectives ofthe polymer project:

When the project was initiated it was decided:

1. To synthesize a number of chiral amines on a polymer support.

2. To transform these chiral amines into the corresponding chirallithium amides and

to test them as deprotonating reagents on a model system.

It was not clear if solid-phase and liquid-phase chemistry would be compatible with

highly reactive reagents like n-butyllithium or carbanions. Fortunately, no major

problems on this score were encountered. The synthesis of all chiral amines on solid

support will be described first, although in reality synthesis of each amine was followed

by brief testing, which led to suggestion of another amine, etc.

2.B.3. Synthesis ofchiral amines on an insoluble polymer support.

As mentioned before, at the time that this project was started, there was no

information in the literature on the synthesis of chiral secondary amines supported on an

insoluble resin. Reactions involving polymers, such as connection of new fragments

containing functional groups to the polymer backbone are significantly different from the

reactions in solution. As the result, even if the reaction in solution is well described and

easy to perform, development of an analogous reaction involving polymeric reagents

might be difficult. Two general methods for the synthesis of chiral amines were

developed: (i) direct attachment of a chiral amine to a solid support, and (ii) attachment

of a chiral amine to a solid support via a linker.

Chloromethyl polystyrene 12 (200-400 mesh) was chosen as the solid support for the

initial studies. The general method elaborated for the direct attachment of a chiral amine

to the resin is shown in Scheme 59.
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Scheme 59

I. chiral amine or
~CINaI,aceton~ ~Ichiralamino-alcoh~l ~~_R*

2. BU3SnH H

12 247 250a amine 248a
251a amine 248b
252a amino-alcohol 249
56a amino-alcohol 55a

chiral amines: chiral amino-alcohol:

Ph............... NHZ

248a

Ph...............N~NH
I z
Boc

248b

Ph~I'_R
OH H

(lR, 2S)-249 R= H
(IS, 2R)-SSa R= Me

It is known from classical chemistry that benzyl iodide is more reactive than benzyl

chloride in substitution reactions (r is a better leaving group than Cr).76 The replacement

of chlorine in 12 with iodine was done using the Finkelstein reaction. The loading (i.e.

mmol of iodine per Ig of the resin) for polymer 247 was not determined at this step.

Next, N-alkylation of chiral primary amines (248a and 248b) and amino-alcohols (249

and 55a) was performed. The primary amine was used in excess in order to avoid

overalkylation of 247 and formation of tertiary amines or quaternary ammonium salts.

One has to remember that in a synthesis conducted on a solid support it is not possible to

separate the attached product from the impurities and, because of that, the reaction

conditions have to be carefully chosen. After the reaction was completed, the resins

(250a - 252a and 56a) were separated by filtration, washed with the following solvents:

THF, MeOH, MeOH: H20 (1: 1), H20, NaOH, H20, MeOH, Et20, and dried under high

vacuum to constant weight. The polymers swelled in THF and Et20, but did not in polar

protic solvents like MeOH or H20. First, the resins 250a - 252a and 56a were washed

with the swelling solvents, so some of the impurities that had been absorbed could be

removed. The wash with THF was followed by a wash with a solvent, which did not have

good swelling properties (MeOH and/or H20). The structures of the amines are shown in

Figure 18.
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250a X= H
250b X= Li
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N~N--lph
I I
X Boc

251a X= H
251b X= Li

~~Ph
X OR

(IR,2S)-252a X=R= H
(IR, 2S)-252b X= Li, R= Li
(I S, 2R)-56a X= Me, R= H
(I S, 2R)-56b X= Me, R= Li

Figure 18. Structures of polymer-supported, chiral secondary amines attached to
Merrifield resin (the shaded ball represents the insoluble polymer).

Next, a method for the determination of the amount of nitrogen in the polymer-supported

reagents had to be elaborated. This was necessary in order to use the correct amount of n­

BuLi during generation of the corresponding, polymer-supported chirallithium amides. It

was decided to try the Volhard titration method first. 124 This method is normally used for

titration of Ag+ ions. To determine the concentration ofCI-, back titration was necessary.

First, a known amount of standard HCI was added to the polymer-supported amine

sample, which gave the corresponding salt. The CI- ions not trapped by the amine

moieties, were precipitated by addition of a known excess of a standard solution of

AgN03. The AgCI precipitate was isolated, and the excess of Ag+ions was titrated with a

standard solution of KSCN in the presence of Fe3+ as the indicator. The end point was

indicated by the formation of a deep red complex of FeSCN2+. After several trials, it was

found that HCI was being incorporated into the polymer matrix (the measured loading of

the resin 250a was much higher than the CI loading of the original Merrifield resin 12).

This absorption of HCI on the polymer was confirmed by several "blind titration"

experiments, i.e., the commercially available Merrifield resin 12 was treated with a

known amount of the standard HCI, the resin was separated by filtration, and the filtrate

was titrated using the Volhard method. Overall, the Volhard method, which necessitated

treatment of the polymer with HCI, was not effective.
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Another method was then tried, the Fajans titration method, which relied on the

analysis of S042- ions. 124 A known excess of a standardized solution of H2S04was added

to a sample of the polymer-supported chiral amine. The amine groups reacted with the

S042- ions to form the salt, and then the unreacted sulfate anions were titrated with

Ba(OHh in the presence of alizaryn red S as the indicator. This method allowed for a

reasonably accurate determination of the amine loading. 124

The third method used for the determination of the nitrogen content in polymeric

amines was elemental analysis. The loading values of all insoluble, polymer-supported

amines are presented in Table 29.

Table 29. Nitrogen loading of chiral amines on insoluble polymer.

Entry Amine Loading Yield

(mmol of NH/g) (%t

1 250a 0.604 60

2 251a 0.485 45

3 252a 1.257 63

4 56a 1.064 97

5 260a 0.636 59

6 261a 0.707 42

7 264a 0.414 38

8 265a 0.536 49

a Yields correspond to the molar ratio of nitrogen in the final resin to chlorine in the
commercially available resin (Merrifield resin 12), which was used for the synthesis of
the specific polymeric amine. The value of the initial loading of the Merrifield resin 12 is
given in the Experimental Section.

After the loading determination, it became clear that the N-alkylation reaction did not go

to completion. Since halide groups on the polymer could interfere with the next step of

the reactions (generation of polymer-supported chiral lithium amides), a dehalogenation

procedure was performed according to the method described by Leznoff.37b During the

work on methylation of the polymer-supported imines 25a - c derived from
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cyclohexanone (25) and the polymer-supported primary amines 15a - c (Scheme 9),

Leznoff noticed that the presence of unreacted chloride was interfering with the course of

the reaction, and lowering the enantioselectivities. However the nature of this

interference was not explained.37a, b In our case, the remaining alkyl halide moieties could

react with n-BuLi that was added to the suspension of a polymeric amine in THF in order

to generate the lithium amide causing the amine-amide conversion to be incomplete. It is

known that BU3SnH acts as a hydrogen donor in the radical dehalogenation of alkyl

halides,125 so an excess of BU3SnH solution was added to the suspension ofpolymer 250a

in THF in order to remove the unreacted alkyl halide groups.

One question that should be addressed here is how one could monitor a SP

reaction. Normal techniques like TLC cannot be used, the interpretation of IR spectra is

troublesome because of the adsorption bands from the polymer backbone, and also NMR

spectroscopy usually does not give clear answers. The signals prevailing in the 1H NMR,

and l3C NMR spectra result from the polymer backbone. A literature search revealed that

the presence of amino groups attached to a polymer could be detected by a reaction of the

resin with a solution of bromophenol blue. 109 This method was developed by Lam and

co-workers in order to monitor a coupling reaction of aminoacids. A library of insoluble,

polymer-supported tetrapeptides with free terminal amino groups was treated with a

solution of bromophenol blue, which made the beads uniformly colored. A sample of the

library (ca. 20,000 beads) was placed on a Petri dish under the microscope, and a solution

of Fmoc-Val-OH, HOBt and DIC was added. Progress of the reaction was observed by

monitoring the color change of individual beads. 109

In the present study, the commercially available Merrifield resin 12 and the

polymer-supported amine 250a were treated with bromophenol blue solution in EtOH.

The beads were mixed with the dye for several hours, separated by filtration, washed with

the usual cocktail of solvents (i.e., THF, EtOH, H20, EtOH, MeOH), and dried to

constant weight under high vacuum. Next, the samples were put under a microscope and

pictures were taken (Figure 19).
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(b)

Figure 19. (a) Merrifield resin after mixing with a solution of bromophenol blue (beads
remained yellow). (b) Resin 250a after mixing with a dye solution. The presence of
amino groups is indicated by a color change from yellow to blue.

The amine 248b needed for the sYnthesis of resin 251a IS not commercially

available and had to be sYnthesized in solution (Scheme 60). The resin 251a is the

precursor for the chirallithium amide 251b that could have chelating properties.

~()
O'yNyPh

25tb I =o ::
t-B:

Scheme 60

Nal, acetone
reflux

248a, K2C03, ~O ,
THF, reflux ~ I ~ A
----_. N N Ph

~ I
H° 255

30% Et3N in MeOH,
(Boc)20, MeOH

.. H2N~N~Ph
I
Boc

248b
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The bromine in the alkyl halide moiety present in compound 253 was replaced by iodide

using a Finkelstein reaction, which was followed by reaction with (8)-(a)-methylbenzyl

amine (248a). The NH group in the resulting amine 255 was protected with (BochO, and

the phthalimide protective group was cleaved with hydrazine giving the amine 248b in 30

% yield.

After development of the method for the synthesis of secondary amines directly

attached to the polymer (the phrase "directly attached" is used throughout this thesis to

describe a situation where no linker was used; for cases involving linkers vide infra), it

was decided to explore this chemistry further in order to generate some structurally

different chiral amines. It had been shown in our laboratory that the structure of chiral

bases had a dramatic effect on the selectivity of deprotonation of cyclic ketones.2
, 12, 13

These studies had been performed in solution and are referred to as the "solution phase

chemistry". The difference between "solid-phase", "liquid-phase" and "solution-phase"

chemistry was discussed by Janda in his seminal paper in 1997.63

When polymer-supported reagents are used most of the reacting groups are situated

inside a polymer bead. These reacting sites are not easily accessible to reagents in

solution, but the situation can be improved by distancing the reactive groups from the

rigid polymer matrix by a linker. The work with linkers initiated in this study can be

divided in two groups: (i) a linker is first attached to the polymer, followed by the

reaction of a resulting modified resin with a chiral amine, and (ii) the chiral amine

containing a linker is first synthesized in solution, followed by its attachment to the resin.

Selection of the proper linker can be critical to the success of SP chemistry.27, 63, 108 ­

111, 167 Initially, two simple linkers derived from 1,3-propanediol (257) and 1,6­

hexanediol (59) were used. They were attached to the polymer-supported benzyl chloride

12 by a modified literature method (Scheme 61). 44b
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Scheme 61

HO~OH

1. NaH, 0 °C, DMF

2. 12,60 °c

257 n= 1
59 n=4 I. 248a, THF, reflux

2. BU3SnH

O~I

259 n= 1
61 n=4

258a n= 1
258b n=4

o~/rv-lPh
n I

H
260a n= 1
261a n=4

The linkers were attached to the polymer-supported benzyl chloride 12 by O-alkylation,

followed by functional group manipulation using methods well known in the context of

the reactions in solution. 126 Polymer-supported amines 260a and 261a were obtained by

simple N-alkylation of (S)-(a)-methylbenzyl amine (248a) with the iodides 259 and 61,

respectively. The loading of the resulting resins (260a and 261a) was determined by

elemental analysis and is shown in Table 29 (entry 5 and entry 6).

The presence of the amino group in compound 261a was detected by the reaction

of 261a with bromophenol blue (Figure 20).

(a) (b)

Figure 20. (a) Merrifield resin after mIXIng with a solution of bromophenol blue
(yellow). (b) Resin 261a after mixing with a dye solution. The presence of the amino
groups is indicated by a color change from yellow to blue.

The last method that was invented for the SYnthesis of chiral secondary amines

attached to the resin is shown in Scheme 62. In this method chiral amino-alcohols were
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used as the starting materials. Ideally, the amino-alcohols should be commercially

available or easy to synthesize in high yield. There were some precedents in the literature

of chiral amino-alcohols attached to an insoluble polymer and used as catalysts for

addition of diethyl zinc to aldehydes.43
- 47,118 The compounds described in the literature

were attached either by N-alkylation43
, 44 or, in the case of a tertiary amino group, by 0­

alkylation.47,118

Scheme 62

1. 247, NaH, K2C03, DMF

HO~ Linker ~N' R* 2. BU3SnH, THF

I
H

262 or 263

amino-alcohoIs

2648 or 2658

chiral amines

R*
N'
I

H

: , I~OH
Ph/'..N~

I

H 262 ~

HO~'in
263 H'r~

Amino-alcohols 262 or 263 were attached to the insoluble polymer by O-alkylation of the

corresponding alkoxides with the polymer-supported benzyl iodide 247. The loading of

polymers 264a and 265a was determined by elemental analysis and is shown in Table 29

(entries 7 and 8).

Compounds 262 and 263 used in these studies were synthesized by the reductive

amination method (Scheme 63).
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Scheme 63

MOH

248a, NaBH3CN,
AcOH, MeOH, rt.

'7 ~OH
Ph./"'-N

I
H

266 262

6 0

NaBH3CN, AcOH

O"/N~OHMeOH, rt.

HO~NH2 I

~ ~ H
(268)

267 263

In summary, three general methods for the synthesis of chiral secondary amines

supported on Merrifield resin were developed, and a variety of polymer-supported

reagents 250a - 252a, 56a, 260a, 261a, 264a and 265a, were synthesized. A method for

the determination of the nitrogen content in a polymer-supported amine (loading) was

elaborated.

250a

N~N~Ph
I I

H Boc

251a

~l Ph
~ ~/I

X OH

(lR, 2S)-252a X= H
(IS, 2R)-56a X= Me

~~ ~
~ o~~ Ph

H
260a n= I
261a n=4

264a
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2.B.4. Synthesis ofchiral amines supported on a soluble polymer.

The first problem that had to be addressed was the choice of the soluble polymer

that would suit the conditions of generating the chirallithium amides from the polymer­

supported chiral amines. The most popular soluble polymer is polyethylene glycol

(PEG).63 It is soluble in a wide range of organic solvents and in water, but it is not soluble

in hexane, Et20, t-butyl methyl ether and THF at low temperatures, typical of solvents

used for the generation of lithium amides. The solubility of PEG in H20 eliminates the

aqueous workup of a reaction, which is a desirable feature in this project. One of the

byproducts formed in the a-functionalization of cyclic ketones, when chiral lithium

amides are used in a deprotonation step, are lithium salts. They are removed in the

aqueous extraction of a reaction mixture with water and an organic solvent. The soluble

polymer of choice was the non-cross-linked co-polymer of styrene and chloromethyl

styrene 145 (Scheme 64).113 The chlorine moiety in this polymer was easily exchanged to

iodine by the Finkelstein reaction yielding the compound 270 (Scheme 64).

Scheme 64

+

AIBN, benzene

70°C, 48 h .vel
21 145

N.l, acetone. .vI
270

Compound 145 was chosen as the soluble support because of the following factors: it can

be prepared from the commercially available starting materials in an inexpensive way, it

is soluble in commonly used organic solvents such as: THF, CH2Ch, CHC!), AcOEt, and

benzene, even at low temperatures, and it is insoluble in MeOH and H20. The reaction
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products can be purified using aqueous extraction and polymer precipitation. Attached

compounds can be characterized by conventional methods eH-NMR and 13C-NMR

spectroscopy can be performed in solution because the resin is soluble in most organic

solvents), and the loading can be controlled by a designing the synthesis.127 Polymer 273

was used as the support in a direct attachment of chiral amines, when the reaction of a

chiral amine with polymer 145 resulted in a low loading.

Chiral amines were attached to polymer 145 or 270 according to two general

methods described before: (i) direct attachment of a chiral amine to polymer 145 or 270,

(ii) a linker was attached to polymer 145 or 270 first, followed by the reaction of the

modified resin with a chiral amine.

A general method for the direct attachment of chiral amines to polymer 145 or 270 is

shown in Scheme 65.

Scheme 65

chiral amine or
~ chiralamino-alcohol~ ,R*
.,~ Hal .~ ~

R
145 Hal= CI or 270 Hal= I 271a amino-alcohol 55a, Hal= CI

272a amino-alcohol 275, Hal= CI
273a amine 248a, Hal= I
274a amine 276, Hal= I

chiral amino-alcohols: chiral amines:

H_~~Ph
Me OH

(lR, 2S)-55a (IS,2S)-275

Ph~NH2

248a

NH2 0
Ph~N

276

Chiral amino-alcohols (lR,28)-55a or (18,28)-275, and chiral amines 248a and 276 were

attached to the soluble polymer-supported benzyl chloride 145 (for 55a and 275) or

benzyl iodide 270 (for amines 248a and 276) by N-alkylation. The compounds 55a, 275,
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248a, and 276 were added to the polymers 145 and 270 in an excess in order to avoid

overalkylation leading to tertiary amines or quaternary ammonium salts. All reactions

were easy to carry out, and the resins (271a - 274a) were isolated by precipitation from

cold (-45°C) MeOH, separated by filtration, washed with H20 and MeOH, and dried to

constant weight under high vacuum. The structures of soluble, polymer-supported amines

271a - 274a are presented in Figure 21.

~l Ph
~ ~/l

Me OX

271aX=H
271b X= Li

273aX=H
273bX= Li

272aX= H
272bX= Li

274aX= H
274bX= Li

Figure 21. Structures of chiral amines and the corresponding lithium amides directly
attached to a soluble resin (the black ball represents the soluble polymer support).

The loading of all soluble polymer-supported amines 271a - 274a, 286a, 287a and 292a

was determined by elemental analysis and is summarized in Table 30.
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Table 30. Nitrogen loading of chiral amines on soluble polymer.

Entry Amine Loading Yield

(mmol ofNH/g) (%t

1 271a 1.000 100

2 272a 1.000 100

3 273a 0.690 69

4 274a 0.850 85

5 286a 0.905 90

6 287a 0.742 74

7 292a 0.644 64

a Yields correspond to the mole ratio of nitrogen in the final resin to chlorine in the
starting polymer, which was 1.00 mmol ofCl/g.

The loading values (Table 30, entries 3 - 7) indicated that N-alkylation did not proceed to

completion. The radical dehalogenation method for the removal of unreacted alkyl halide

groups was not useful here, due to the partial solubility of these polymers in hexane.

Hexane is conventionally used in the workup of the dehalogenation reaction because of

the solubility of the tin byproducts in this solvent, which makes them easy to remove

from a reaction mixture.

Chiral amine 276 used for the synthesis of compound 274a was not commercially

available but it could be easily synthesized. Syntheses of similar amines have been

perfonned in our group, and the synthesis of amine 276 relied on the previously

described procedures (Scheme 66).1, 2, 12,
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Scheme 66

NHz (Boc)Z0, NaOH Boc.... N,H DCC, piperidine Boc'N,H 0
Ph~OH

t-BuOH, rt.
Ph~OH

CHzClz, rt.
Ph~N

° ° °
277 278 279

TFA,OoC NH, 0 LiAl~, EtzO, rt. NH, 0
• Ph~N .. Ph~N

°280 276

The second general method elaborated for the attachment of chiral amines to the soluble

polymers (145 or 270) is shown in Scheme 67.

Scheme 67

~x +Y~Z NaH,solven! ~Y~Z

145 X= Cl 281

~ R*
~Y~~'

H

283

282

The linker was attached first to the soluble polymer 145, followed by the mamipulation

of functional group and the attachment of a chiral amine. It was thought that the

attachment of the linker would allow for the amino group to be located further away from

the rigid polymer matrix, and that it would make it more accessible to n-BuLi during

generation of chirallithium amides. Two specific examples are shown in Schemes 68 and

69.
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Scheme 68

1. NaH, 0 DC, DMF

HO~OH 2.145,60°C ~O~OH
imidazole, PhP3,

12, CH2Cl2, rt.

257n= I
59IF4

285a n= I
285bn=4

248a, THF, reflux.

284an= 1
284bn=4

~ ~
~ O~~ Ph

H
286a n= I
287a n=4

288

1. NaH, 0 DC, DMF
o 0
~ 2.145,80 OC

MeO OMe

Polymers 286a and 287a were synthesized according to the modified procedure described

for amines 260a and 261a. The resins were precipitated by cold MeOH (-45°C),

separated by filtration, washed with H20 and MeOH, and dried to constant weight under

high vacuum. Both compounds 286a and 287a were characterized by IH and 13C NMR.

The loading of the amines (286a and 287a) was determined by elemental analysis and is

presented in Table 30 (entry 5 and entry 6).

A somewhat different synthesis is shown in Scheme 69.

Scheme 69

e--vLCO M
LiAIHt, THF, reflux

• 2 e •
~ !J

C02Me
289

PPh3, imidazole,
12, CH2CI2, rt.

276, K2C03
benzene,reflux

•
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In this example, dimethyl malonate (288) was chosen as the linker and was

attached to the polymeric benzyl chloride 145 using the C-alkylation method. The bulk of

DMF was removed by distillation, and the polymer 289 was precipitated from cold

MeOH (-45°C). The resin 289 was separated by filtration, washed with H20 and MeOH,

and dried to constant weight under high vacuum. In the next step, the ester functional

groups were reduced with LiAIH4, which was followed by the conversion of the hydroxyl

moiety to the iodide by the method described before. 126 The amine 276 was attached by

the N-alkylation method to give polymer 292a. The polymeric amine 292a was

precipitated by addition of MeOH at -45 °c, separated by filtration from the excess of

reagents, and washed with H20 and MeOH. The reagent was extracted with MeOH

overnight in a Soxhlet apparatus, and dried to constant weight under vacuum. The

loading of polymer 292a was determined by elemental analysis and is shown in Table 30

(entry 7).

In summary, the syntheses of seven soluble, polymer-supported chiral amines:

271a, 272a, 273a, 274a, 286a, 287a and 292a was designed and successfully elaborated.

The amines were obtained in good to excellent yields. All intermediates in the synthesis

of these resins were characterized by IH and 13C NMR spectroscopy. Methods for

determining the loading characteristics of the resins were developed.

2.B.5. Reactions ofpolymer-supported amines.

2.B.5.1 Generation oflithium amides

After the synthesis of the insoluble (250a - 254a, 56a, 260a, 261a, 264a and

265a), and soluble, polymer-supported reagents (271a - 274a, 286a, 287a and 292a) was

completed, the stage was set for trying to generate the corresponding chiral lithium

amides. This is a very simple reaction in solution. There are numerous procedures

described in the literature, and it is difficult to cite all of them. The reader's attention is

directed to only a few references. I, 2, 12, 101, 123, 128, 129 Chiral lithium amides are usually
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generated by addition of n-BuLi (1 equivalent) to the solution of a chiral amine in an

appropriate solvent: EhO, THF or toluene. Sometimes additives like lithium salts (e.g.

LiCI, LiBr) or polar co-solvents (e.g. HMPA or TMEDA) are used. 13

A procedure for generation ofpolymer-supported lithium amides was designed by

analogy with solution chemistry. The general method is shown in Scheme 70, and the

structures ofpolymer-supported lithium amides are summarized in Figure 22.

Scheme 70

~R*
~~'

H

293a

~R*

~~N:
H

294a

n-BuLi

solvent

~
R*

P ~ /; ~'
Li

293b

R*
P ~ /; Linker 11\

Li

294b

'it = insoluble resin e = soluble resin

Polymer-supported chiral lithium amides were generated at °°C in THF. In the case of

insoluble polymer-supported chirallithium amides (250b - 252b, 56b, 260b, 261b, 264b

and 265b) THF is a solvent that greatly swells the polymer matrix. One has to remember

that if an insoluble, polymer-supported reagent is used in a reaction, the reaction

conditions are heterogeneous, and the reaction takes place inside a polymer bead. In order

to obtain the highest yield and selectivity (if more than one product is possible), the

conditions of a reaction should be homogeneous. This means the solvent that swells a

particular polymer well, should be used. The "swelling of a polymer" term describes the

polymer ability to dissolve. The reactive sites are exposed to the reagents present in

solution, and the reaction takes place. If soluble, polymer-supported lithium amides

(273b, 274b, 286b, 287b and 292b) were used, the heterogeneity of a reaction was not an
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issue because those reagents simply dissolved in THF, and homogeneous conditions of a

reaction were restored.

During generation of the insoluble and soluble, polymer-supported lithium amides

from the corresponding chiral amines a color change was observed (the suspension

changed color from yellow to light reddish-brown in the case of insoluble reagents; the

solution changed color from yellow to red or purple in the case of soluble ones). This

could be attributed to the formation of unidentified by-products. It was determined

qualitatively, that if the color change did not occur, the reaction did not proceed or if the

color was very dark (dark brown), the yield of the reaction was usually low.

250b

25tb

252b

273b

~NLiO
Ph~N

274b

260b n= 1
26tb n=4

0'> .. :Y'o1J!i~Ph
~ Li

265b

~ ~
~ O~Zi Ph

286b n= 1
287b n=4

292b

Figure 22. Structures of polymer-supported chiral lithium amides. Shaded balls
represents insoluble support, black balls represents soluble support.
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After the conditions for the generation of polymer-supported chiral lithium

amides were elaborated, a question arose as whether these reagents could be applied as

bases in organic reactions. The use of polymer-supported reagents could have several

advantages over chiral lithium amides generated in solution. Some of those advantages

could be: simplifying reaction procedures, the possibility of easily regenerating the

polymer bound reagent, and the suppression of undesired side reactions such as cross­

linking by using more solvent (the principle of high dilution).27 Polymer-bound reagents

are usually more stable, and a possibility for the automation of reactions exists when

dealing with polymer-supported chirallithium amides.

The reaction that was chosen to be the model was the aldol reaction of cyc1ohexanone

(25). In solution, this reaction was studied numerous times before, and the conditions for

deprotonation of ketone 25 with LDA were well established.79, 86,133 The enolization of

cyc1ohexanone (25) with lithium amide 250b, followed by addition of the benzaldehyde

is shown in Scheme 71.

Scheme 71

1. 250b, -78°C, THF
•

2.PhCHO

25 196 (threo) 197 (erythro)

250b

Ratio: 196: 197
5: 1

Yield < 10%

It was established experimentally that the results (yield and diastereoselectivity) of the

aldol reaction of the lithium enolate of cyc1ohexanone (25) depended on the nature of the

additives, and on the workup conditions.86
, 130 - 132 If the reaction was allowed to warm up

to room temperature before extracting of the aqueous layer then the retro-aldolization was

possible, and the diastereoselectivity was lowered. In order to avoid retro-aldolization,

the reaction had to be extracted with appropriate solvent immediately after quenching
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with aqueous solution of a weak acid. These workup conditions were not possible to

apply with SP reagent 250b. After quenching, the polymer-supported amine 250a had to

be separated by filtration before the extraction could take place. During this process, the

reaction mixture was warmed up to room temperature. Despite the low yield and

selectivity, the results were promising; the polymer-supported chiral lithium amide

(250b) that enolized a ketone (25) was generated.

After it was determined that polymer-supported lithium amides could be used for

generation of the lithium enolates, the stage was set for investigation of the properties of

these reagents in more detail. Two groups of reactions were subsequently studied:

deprotonation reaction of ketones and p-ketoesters and protonation of cyclic lithium

enolates.

2.B.5.2 Deprotonation ofcarbonyl compounds.

The choice of the model compound(s) is critical when the versatility of a reaction

is studied or a new reaction is developed. Tropinone (201) was chosen as the first model

compound for this project. The reasons for selecting this ketone involved its structural

simplicity, and the fact that tropinone was previously enantioselectively deprotonated in

solution, yielding the chiral enolate with high selectivity.2, 13, 88d, 101 The first reaction

under study was the aldol addition reaction. The experimental procedure for the reaction

conducted in solution is well known, and the enantioselectivity of the aldol product can

by analyzed by I H NMR with the chiral solvating agent (S)-(+)-2,2,2-trifluoro-l-(9­

anthryl)ethanol.2 The reaction is shown in Scheme 72, and the results are presented in

Tables 31 (SP reagents) and 32 (LP reagents).
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Scheme 72

4
Me

201

1.V-CLA,THF,-78°C N
2. PhCHO • ~j -Ph

Me

202

V-CLA: polymer-supported chirallithium amide

Table 31. The results of deprotonation of tropinone (201) with SP lithium amides,
followed by the aldol reaction of the corresponding enolate.

Entry Lithium Addition ofketone Additive Yield ee

amide (min.) (eq.) (%t (%t

1 250b 2-3 - 38 14

2 250b 45 - 40 20

3 250b 2-3 LiCI (1 eq.) 45 24

4 261b 2-3 - 30 10

5 261b 2-3 LiCI (1 eq.) 35 20

a Yields and enantioselectivity refer to compound 202.

The optimization of conditions for a reaction conducted in solution can be a difficult task.

In some cases, numerous experiments are required before the precise variables are

elaborated (the correct order for the addition of reagents, solvent, time and temperature)

in order to achieve high yield and selectivity. When polymer-supported reagents are used,

the quest for the optimal conditions of a reaction is even more complicated because more

variables have to be taken into consideration; e.g., the polymer matrix, the nature of the

linker, etc. The polymer matrix can either react with the reagents in solution in an

undesirable fashion giving raise to by-products and/or microenvironmental effects of an

unknown nature are present.32 The reagents that are supported on a polymer have

restricted mobility due to the rigidity of the polymer matrix. Usually, longer times are
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required for reactions in which such reagents are employed. The first problem that had to

be addressed was how much time would be required for the complete conversion of the

chiral amine to the corresponding lithium amide. When the aldol reaction of tropinone

(201) was conducted in solution, generation of the lithium amide was completed after 1 ­

2.5 h (for details cf. Experimental Section). For the SP reaction 8 h were required for

successful generation of the lithium amide. This was established experimentally for the

resin 250b. Deprotonation of tropinone (201) by SP lithium amide took 15 h (compared

with 2.5 h for the reaction in solution- Experimental Section), followed by 6 h for the

subsequent addition reaction (detailed procedures are described in the Experimental

Section).

Every procedure for performing an organic reaction has several parts, "the actual

reaction" and "the workup" being the most important, and these stages have to be

carefully designed. Even if one succeeded in obtaining the desired product in "the actual

reaction", the product could decompose if inappropriate workup conditions were applied.

The second task was to design the workup of a reaction with polymer-supported reagents.

When an aldol reaction is conducted in solution, it is usually quenched with an aqueous

solution of a weak acid, followed by a simple extraction. The organic products stay in the

organic layer, and inorganic by-products (lithium salts) are in the aqueous layer. 1, 2, 12,

101128 129 133 Th . . . d'f~ h d l'd' " e sItuation IS 1 lerent w en reagents supporte on so 1 support are

involved. After an aldol reaction was quenched, the reaction mixture could not be

extracted before the removal of SP reagent. After much trial and error the following

procedure proved to be effective: the reaction was quenched by addition of an aqueous

solution of NH4CI, the polymers 250a and 261a were separated by filtration and washed

with THF. The aqueous layer of the filtrate was extracted with EhO, dried, concentrated

in vacuo and the crude product 202 was obtained. The enantioselectivity of the aldol

reaction of tropinone (201) was measured on the crude aldol 202 by IH NMR with the

chiral solvating agent (S)-(+)-TFAE. The SP reagents 250a and 261a were recycled, and

washed with THF, H20, MeOH and Et20. Next, they were mixed with a 1M solution of

H2S04, separated by filtration, washed with H20, followed by mixing with a 2M solution

of NaOH. The polymeric amines 250a and 261a were separated by filtration, washed

with H20 until the filtrate pH was 7, MeOH and THF, followed by an overnight
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extraction with THF. The polymers were then dried to constant weight under high

vacuum.

Both, the yield and the enantioselectivity of the aldol reaction of tropinone (201)

were modest. Perhaps the heterogeneous conditions were lowering the efficiency and

selectivity of the reaction. In order to maintain the homogenicity of a reaction and still

have some of the advantages of SPS, chiral lithium amides were attached to the soluble

polymer. Compounds 274b, 286b, and 287b were subsequently employed as the bases in

the aldol reaction of tropinone (201) (Table 32). In this case, the extraction was applied

before the precipitation of the polymer, which made the workup much easier. After

quenching the reaction, the mixture was simply diluted with AcOEt, and the aqueous

layer was further extracted with AcOEt. The detailed procedure is given in the

Experimental Section.

Table 32. The results of the aldol reaction oftropinone (201) with LP reagents.

Lithium Addition of Additive Yield ee

Entry amide ketone (min.) (eq.) (%) (%)

l a 274b 2-3 - 20 5

2 274b 2-3 LiCI (1 eq.) 51 70

3 286b 2-3 - 10 11

4 286b 2-3 LiCI (1 eq.) 35 26

5a 286b 2-3 LiCI (1 eq.) 25 14

6a 287b 2-3 LiCI (1 eq.) 40 35

a Reaction was performed in 50 mL of THF instead of 30 mL in order in to investigate
"the concentration effect".

A few trends were observed during the work on elaborating the conditions for the

aldol reaction oftropinone (201) with LP reagents 274b, 286b, and 287b: 135

1. Lithium chloride is a necessary additive in the deprotonation step. The lithium

amide could not be generated without the additive, possibly due to formation of a gel,

which made the reaction mixture heterogeneous. It was suggested that formation of a gel
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could be caused by a non-covalent cross-linking of polymer-chains because of possible

aggregation of the polymer-supported lithium amide. After the addition of a LiCI

solution, the gel disappeared due to the formation of mixed aggregates: R*2NLi-LiCI

(Figure 23).

2. There seems to be a concentration effect in the aldol reactions involving soluble

polymer-supported lithium amides 273b, 274b, 286b and 287b, e.g.: the concentration of

amide 273b cannot be too high; the ee of the aldol 204 was 75% at 0.026 M of 273b, but

only 30% when the concentration of 273b was raised to 0.075 M. B5 The opposite effect

was observed for other lithium amides (Table 32).

Without Li Cl With LiCl

I I I I I I
CH2 CH2 CH2 CH2 CH2 CH2

CH2 CH2

I I I I *R_I *R- 1 *R_I *R_'
N N N N N N N N, "'- ' "'-/ "'- /," /1"'- /1 "

, "- ' "- L( Li Li~ Li*R Li *R " ~i *R: Li, *R " Li Li" Li Li\ /Li\ \ ,," ~ I I
\ I \ I

I
I

c!{ c'1, I
\ " .. I

,
I Cl Cl\ ,

\ I
\

, I

*R'-.,.\ / Li *R \ Li *R ~ Li
........... \ / ........... ' /

N N N

I I I
CH2 CH2 CH2

I I I
(a) (b)

Figure 23: The hypothetical structures of (a) a dimer involving chiral lithium amide
supported on soluble polymer and (b) mixed aggregates involving lithium amide and LiCI
connected to the polymer.
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Another reaction oftropinone (201) that was studied in solution in great detail by

our group was ring-opening (Scheme 73)?' 88d, 101 The reaction is easy to carry out in

solution, and the method for measuring the enantiomeric excess of the product 230 is

known. Those qualities made this transformation a good model for expanding the

methodology study of polymer-supported lithium amides (Scheme 73). The results are

presented in Tables 33 (SP reagents) and 34 (LP reagents).

Scheme 73

4
Me

201

l.@-CLA, THF, -78°C

2. TrocCI

230

0-CLA: polymer-supported chirallithium amide

o
Cl A

Cl-r--0 Cl

Cl TrocCI
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Table 33. The results of the deprotonation of tropinone (20t) with SP reagents,
followed by the ring-opening of the corresponding enolate.

Entry Lithium Addition of Additive Yield ee

amide ketone (min.) (eq.) (%) (%t

1 250b 2-3 - 13 2

2 250b 45 - 28 10

3 250b 2-3 LiCI (1 eq.) 37 59

4a 25tb 2-3 - 10 -13

5 25tb 2-3 LiCI (1 eq.) 15 36

6a,o 252b 2-3 - 5 -1.5

7a 252b 2-3 - 7 -6.5

8a 252b 2-3 LiCI (1 eq.) 10 -13

9 260b 2-3 - 42 3

10 260b 2-3 LiCI (1 eq.) 48 6

11 26tb 2-3 - 22 2

12 26tb 2-3 LiCI (1 eq.) 25 22

13a 264b 2-3 - 5 -11

14 264b 2-3 LiCI (1 eq.) 11 9

15 265b 2-3 - 5 3

a Levorotatory enantiomer of 230 was the major product. b The reaction was performed
in 2,5-tetramethyltetrahydrofuran. C Enantioselectivity was measured with HPLC using
Chiralpack AD column and 15% isopropanol in hexane as the solvent system.

The highest ee in this series of experiments was obtained with lithium amide 250b· and 1

equivalent of LiCI (Table 33, entry 3). Interesting results were obtained with lithium

amides 25tb (Table 33, entries 4 and 5) and 264b (Table 33, entries 13 and 14). In both

cases, the major product was a dextrorotatory enantiomer of 234 when deprotonation was

performed in the absence of LiCI; however, after the addition of 1 equivalent of LiCI the

levorotatory enantiomer was the major product. The mechanism of deprotonation of

ketones with SP chiral lithium amides is not well understood. It could be suggested, by

analogy with a reaction conducted in solution that the origin of the LiCI effect lies in
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different lithium amide species acting as the deprotonating agents. It is known that in

ethere solution chiral lithium amides exist as oligomers, with the major component is the

dimer and the minor component is the monomer.83, 85, 86 Recent investigations, however

suggested that the monomer is the more reactive species in deprotonation.85, 136 After

addition of LiCI, mixed aggregates that have different reactivity can form. Structures of

the possible aggregates are shown in Figure 8. On the other hand, formation of a dimer by

an insoluble, polymer-supported lithium amide seemed to be quite unlikely, because of

the rigid nature of the polymer matrix. The reactive lithium amide groups should be

separated from each other, and formation of dimers is then difficult. The explanation why

the dextrorotatory enantiomer of product 230 is formed without Liel, and the

levorotatory enantiomer 230 is formed in the presence of LiCI has to await a detailed

mechanistic study.

The yields and enantioselectivities varied from mediocre to low with only a few

exceptions (Table 33, entries 3, 5 and 10). It has to be remembered that the reaction

conditions were heterogeneous. The addition of the linker in order to separate the chiral

lithium amide (compounds 260b, 261b, 264b and 265b) from the polymer rigid

backbone did not seem to make a difference. Obviously, the steric hindrance that

reagent 250b exhibits is necessary for the reaction to proceed with a useful degree of

enantioselectivity.135

In order to avoid microenvironmental effects that could be present in the SP

reactions, e.g., side interaction of an insoluble polymer chain, and to restore

homogeneous reaction conditions soluble, lithium amides 273b, 274b, 286b and 287b

were employed (Table 34).
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Table 34. The results of the deprotonation of tropinone (201) with LP reagents,
followed by the ring-opening of the corresponding enolate.

Entry Lithium Additive Yield

amide (eq.) (%)

la 273b - 3

2a 273b LiCI, (1 eq.) 6

3 273b LiCI, n-BuLi, (1 eq.) 47

4a 274b - g

5a 274b LiCI (1 eq.) 10

6 274b n-BuLi (1 eq.) 42

7° 274b LiCI (1 eq.) and n-BuLi 57

(1 eq.)

ga 286b - 3

ga 286b LiCI (1 eq.) 5

lOa 287b - 3

11 287b LiCI (1 eq.) 10

a The same reaction conditions as for the aldol reaction were applied. b The
enantioselectivity of the reaction was 30%.

A plausible explanation of the low yield of the ring-opening reaction of tropinone (201)

(entries 1, 2, g - 11) is offered in Scheme 74.
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Scheme 74
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It is known from studies of enolates in solution that after the deprotonation step the

chiral amine stays coordinated to the enolate via the lithium atom.79 One could assume

that polymer-supported amines behave in a similar fashion. A complexed amine could

act as the proton source, and an "internal proton return" could take place (Scheme 74,

step 1). The "internal proton return" phenomenon in reactions conducted in solution has

been described by other researchers.80, 131, 132 The reattachment of the hydrogen

connected to the amine portion of the complex to the enolate component takes place at a

faster rate than the reaction of the latter with electrophiles. In the next step 2,2,2­

trichIoroethyl chloroformate could react with an LP lithium amide giving the

corresponding carbamate, which could be cleaved from the resin during the aqueous

workup or the precipitation of the polymeric reagent from methanol. The byproduct 298

was observed, and unreacted tropinone (201) was recovered. The situation was different

when the second equivalent of n-BuLi was added before the addition of an electrophile

(Scheme 75).
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Scheme 75

after the addition of second equivalent of n-BuLi

n-BuLi

2.

295

299
Trocel

230

After the addition of another equivalent of n-BuLi to the reaction mixture the internal

proton return does not occur because the complexed amine is converted to the lithium

amide (step 1) and the electrophile reacts with the lithium enolate to yield the final

product 230 (step 2).

I would like to point out that for, simplicity, all structures in Schemes 74 and 75 are

shown as monomers. However, one has to remember that chiral lithium amides and

enolates have the tendency to form oligomers in solution. The structures of those

oligomers were presented in Figures 7 and 8.

Other reactions were studied in order to explore the potential of soluble

polymer-supported lithium amides in more detail and to gain more understanding of

how they work. One of these reactions was the a-alkylation of a J3-ketoester. Alkylation

of J3-ketoesters is well known. 137
- 143 Generally, such alkylations are not difficult to

perform and the alkylated derivatives can be obtained in high yields. This reaction can

be also viewed as an alternative method of synthesis of a-alkylated ketones. Alkylation

of ketones is often troublesome. 144 - 149 General a-alkylation of a J3-ketoester is shown
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in Scheme 76; the reaction is usually followed by decarboxylation to obtain the u­

alkylated ketone.

Scheme 76

0 0 1. base 0 0 0

HOR 2.RI X ~
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In the first step, the p-ketoester is deprotonated with a base (NaH, LiNH2 or RO-)

generating the enolate, followed by alkylation with an alkyl halide. Interestingly, there

seemed to be no literature precedent of using LDA to generate the monoanion from a P­
ketoester. According to Weiler, the use of2 equivalents ofLDA to generate the dienolate,

followed by the reaction with an alkylating agent gave the y-alkylated p-ketoester in low

yield. 150 A literature procedure for generation of monoenolates of a p-ketoester with

LiNH2 was found. 139 It seemed interesting to try deprotonation of ethyl 2-oxo­

cyc1opentanecarboxylate (303) with LDA. If this was successful, a reaction with a chiral

lithium amide e.g., 30Sb would be tried (both reactions were conducted in solution). As

mentioned before, optimization of the conditions of a new reaction in solution can be

difficult, but this task becomes even more complicated when LP reactions are concerned.

The course of these reactions is often completely different from their equivalents in

solution. After the procedure for deprotonation of 303 in solution was established, the

soluble, polymer-supported lithium amides 274b and 292b were to be tried as bases. The

benzylation reaction of 303 is shown in Scheme 77, and the results for the reaction in

solution are presented in Table 35.
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Scheme 77
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Table 35. The influence of the reaction conditions (temperature and time) on the results
of the benzylation of p-ketoester 303 in solution.

Entry Lithium Conditions of Conditions of Conv. Yield

amide deprotonation alkylation (0,,10)b (%)

la LDA -78°C, 45 min 2.5 h, rt. 0 -

2 LDA -20°C, 45 min 2.5 h, rt. 7 -

3 LDA -20°C, 4 h 12 h, -78°C 14 -

4 LDA As above 12 h, -40°C 18.5 -

5 LDA -20°C, 4 h 12 h, O°C 100 62

then 0 °c, 2 h then rt., 24 h

6 305b As above As above 80 47

a Mel was used as an alkylating agent. b The percentage (%) of the starting material that
was converted into the product(s).
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As seen from Table 35 the conditions for the alkylation reaction of B-ketoester 303 with

LDA were established (entry 5). First, the enolate was generated at -20°C, followed by

raising the temperature to 0 °c. The lithium enolate of the B-ketoester was alkylated with

BnBr, and compound 304 was obtained in 62% yield. This was a very promising result

when compared to the results of benzylation under "typical" conditions. 137
- 139, 141 The

benzylated derivative 304 was obtained in 550/0 yield when KH was used as the base to

generate the corresponding potassium enolate from compound 303 at 0 °C. 138 The

solution of the enolate was warmed to room temperature, and after stirring for 3 hours,

benzyl bromide was added followed by heating of the reaction mixture for 3 hours to 50

°C. Compemolle and co-workers were able to obtain the benzylated derivative 304 in

89% yield when the K2C03 was applied as the base, and the benzylation reaction took

place at room temperature for 24 hours. 141 The chirallithium base 30Sb proved to be less

effective than LDA (Table 35, entry 6), and unfortunately the reaction was not

enantioselective. It was thought that a polymer-supported chirallithium amide could be

used as the base for generation of the enolate of the B-ketoester. The base would be more

bulky than LDA and the lithium amide 30Sb, because of the presence of the polymer­

support, might be beneficial in the deprotonation step. The benzylation reaction of

compound 303 was performed with the two soluble polymer-supported lithium amides

274b and 292b (Table 36).
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Table 36. The influence of conditions (temperature and time) on the results of the
deprotonation reaction of 303 with LP bases, followed by the alkylation of the
corresponding monoanion.

Entry LP Deprotonation Alkylation Proton Conv Yield

base (temp. and (temp. and source (%t (%)

time) time)

1 274b -20°C, 4 h; o°c 12 h· H2O 80 47, ,

o°c, 2 h rt. 24 h

2 274b As above o°c 24 h· H2O 81 40, ,

rt. 12 h

3 274b Procedure Procedure citric acida 72 46

from entry 1 from entry 1

4 274b Procedure Procedure citric acida 91 47

from entry 1; from entry 2

LiCI (1 eq.),

o°c, 12 h

5 274b As above As above AcOHo 41 71

6 292b As above As above AcOHD 0 -

7 292b As above As above phthalimideo 100 70

8 292b As above As above MeOHo 100 76

a 10% solution was used as the proton source. b A non-aqueous workup of the reaction
was applied. C The percentage (%) of the starting material that was converted into the
product/(s).

The phrase "non-aqueous workup" means that the reaction mixture was poured directly

onto cold MeOH (-45 °C) and the polymeric amines (274a and 292a) precipitated. They

were separated by filtration, and washed with MeOH. The filtrate was evaporated, and

the crude product 304 was obtained. It was possible to apply LS reagents 274b and 292b

as the bases in the deprotonation of ~-ketoester303. The best result was obtained with

292b (Table 36, entries 7 and 8). The enolate was generated at -20°C, and the

temperature of the reaction was raised to 0 °C. One equivalent of LiCI was added to the
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mixture in order to prevent formation of a gel. The gelation of LP reagents was observed

during work on deprotonation of tropinone (201), and an explanation of the effect was

given before. The enolate was alkylated with benzyl bromide, and racemic product 304

was obtained.

In summary, it was demonstrated that insoluble and soluble polymer-supported lithium

amides could be used as bases in deprotonation reactions of ketones and ~-ketoesters.

The products of these reactions were obtained in reasonable yields. It was possible to

obtain the optically active a-functionalized ketone.

2.B.5.3 Protonation ofcyclic lithium eno/ates.

Optically active carbonyl compounds bearing a stereogenic center a to the

carbonyl group are important intermediates or buildings blocks in the synthesis of

optically active natural compounds. Enantioselective and diastereoselective protonation

of enolates are important methods for the preparation of optically active a-substituted

ketones or esters. These methods are complementary to asymmetric alkylation. The

protonation reaction can be performed directly on an achirallithium enolate (Scheme 78)

or auxiliaries can be used (Scheme 79).
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Scheme 78
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The lithium enolate of a cyclic ketone can be generated in three ways: by deprotonation

of the racemic ketone 309 with a chiral lithium amide, with an achiral lithium amide

(e.g., LDA) or from the corresponding silyl enol ether 310. In the first case, the chiral

amine is complexed to an enolate via the lithium atom after the deprotonation step. The

faces of the complex 307 (R2= H, alkyl, aryl) are diastereotopic, thus they react at

different rates with an achiral proton source giving the enantiomerically enriched ketone

309 as the result. In the second approach, the racemic ketone 309 (R2= H or alkyl) reacts

with an achiral base (LDA in this example) to give the corresponding achiral enolate (R2=

H). Faces of the complex 308 are enantiotopic (R2= H), and they react at different rates

with chiral proton sources yielding the enantiomerically enriched product 309. If R2=

alkyl or aryl the faces of the complex 308 are diastereotopic. The enolate 306 (R2= H or

alkyl) can also be generated from the corresponding sHyl enol ether 310. Additives (chiral
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or achiral) can be added to the solution of the enolate 306, and the complexes 307 and

308 are obtained as the result. Protonation of these complexes was described above.

Scheme 79
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R2= H, enantioselective protonation
R2= alkyl, diastereoselective protonation

A primary amine (achiral or chiral) can be used as the auxiliary in the enantioselective

(R2= H) or diastereoselective (R2= alkyl) protonation of lithiated derivatives 3110r 312.

The pioneering work in the area was done by Duhamel/51 and continued later by

others. 152 - 161 Most of the reagents employed as chiral proton sources are weakly acidic

compounds. These include organic acidsl51d, alcohols, amides, hydrochlorides of

amines, combinations of chiral secondary amines and chiral or achiral weak acids,158, 161

chiral anilines154 and chiral imides. 153, 154, 157, 159
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Three examples of protonation where polymer-supported reagents were used are

reported (Scheme 80).37c, 115a, 115b

Scheme 80
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The first example of such protonation was reported by Leznoff in 1982.37c Racemic 2­

methylcyclohexanone was attached to a chiral primary amine supported on Merrifield

resin via imine formation. The lithiated derivative of the imine (SOc) was protonated

with an achiral proton source and the optically active 2-methylcyclohexanone 49 was

obtained in 90% ee. Two other examples described the use ofpolymer-supported proton

donors. (D)-Mandelic acid was attached to the Merrifield resin affording the polymer­

supported chiral proton donor 315, which was used in enantioselective protonation of

the silyl enol ether 316, giving the optically active product 317.115a In 1998 Krause and

co-workers reported a diastereoselective protonation reaction of the chiral enolate 319

with the achiral, polymer-supported proton donor 318.115b The insoluble polymer 318

containing methyl salicylate units was synthesized, and used in diastereoselective
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protonation of the lithium enolate 319 derived from (R)-carvone. The products 320 and

321 were obtained in 94% de, but the yield was not reported.

Enantioselective protonation

It was decided to investigate protonation of the lithium enolate of a cyclic ketone with

soluble polymer-supported chiral proton sources related to the previously described

amines. Accordingly, two new reagents were synthesized.

~l Ph
~ ~/I

Me OX

271a X= H
271bX= Li

~~Ph
~~.::

Me OX

272aX=H
272bX=Li

Enantioselective protonation of the enolate 322a derived from racemic 2-methyl-l­

tetralone (323) is a reaction documented well in the literature. 161
, 162 The starting ketone

is commercially available, and methods for measuring the optical purity of the u­

alkyltetralones are known. These reasons made this reaction a logical choice to be

considered for the study of enantioselective protonation (Scheme 81). The amine 292a

was investigated first. The results are summarized in Table 37.
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Scheme 81
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322a

292a

323 (optically active)

The chiral amine 292a was chosen because Koga had successfully used its solution

analogue 324a as the chiral additive in stoichiometric and catalytic protonation of a­

methyltetralone lithium enolate. 161

324a

Me2N~NMez

325

Stoichiometric conditions for protonation of lithium enolate 322a (i.e., 1 equivalent of

amine 324a was used with achiral additive 325 and an achiral proton source) resulted in

formation of the S enantiomer of a-methyltetralone (323) in 85-91 % yield and 91-93%

ee. In the case of catalytic conditions (ie., 0.10 equivalent of the chiral amine and 2.0

equivalents of the achiral amine 325, and 10% citric acid as the proton source), the (S)­

ketone 323 was obtained in 93% ee.
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Table 37. The influence of the reaction conditions on the protonation of the lithium
enolate of2-methyl-l-tetralone (322a) with LP reagent 292a.

Entry Conditions ofprotonation AR Yield

(temperature and time) (%)

1 -45 °c, 6h 10% citric 62

acida

2 -40°C, 12 h 10% citric 75

acida

3 -40°C, 12 h then -78°C, 12 h AcORD 75

4 -78°C, 12 h AcORD 55

a Fast extraction was applied: the reaction mixture was poured into the 10 mL of 10%
citric acid and 75 mL of AcOEt, and extracted without warming to room temperature.
b The non-aqueous workup was applied.

The data in Table 37 show some interesting features of this reaction. The 2-methyl-l­

tetralone (323) was obtained in a good yield but as the racemate (entries 1 - 4). When a

polymer-supported reagent is used in a reaction it is very important to develop a workup

that allows for the efficient recovery of the reagent. When an aqueous proton source

was used (Table 37, entries 1 and 2) the recovery of polymer 292a was only 60o~. That

was due to the fact that part of the resin 292a precipitated from water as the gel, which

did not dissolve in AcOEt. This problem was avoided when a non-aqueous workup was

employed (Table 37, entries 3 and 4). The lack of the enantioselectivity in this reaction

can be explained by the inability of the amine 292a to complex to the enolate 322a that

was generated from the silyl enol ether 322.

As mentioned before, chiral alcohols were used as proton sources in

enantioselective protonation of cyclic enolates. 154
, 156 It was also established that the

acidity of the proton source played a crucial role in achieving high enantiomeric

excess. 152
- 161, 165, 166 Proton exchange reactions are usually very fast, so it can be

difficult to discriminate between the two diastereotopic transition states, therefore the
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chiral proton source should be a weak acid (pKa of a simple alcohol is about 15).77 The

chiral proton source should be added in excess, be efficient, and it should also have

electron-rich groups capable of undergoing chelation. 156 The use of an ephedrine analog

326 as the effective proton source for the protonation of lithium enolates in solution was

reported by Fehr (Scheme 82).156

Scheme 82

~ CXO~ ~ 326 .\\I~----..
-& h- 328 ee 95%

327
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Ph

329 -& 330 ee 98%
326

~
326 Jyy----..

ee90%

331 332

Keeping this fact in mind, it was decided to use polymer-supported ephedrine 271a as

the proton donor in the protonation reaction of the enolate 322a. The rationalization of

the idea is presented in Scheme 83.



145

Scheme 83
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In the first step, the "amine-free" enolate 322a is obtained. The phrase "amine-free"

means that there is no amine complexed to the enolate via the lithium atom. After

addition of LP ephedrine 271a, the complex 333 can be formed, followed by the proton

transfer, which leads to complex 334. The enantiomerically enriched product (R)-323 is

produced, and the polymer-supported reagent 271a is released after the addition of an

achiral proton source (e.g. AcOH).

The results of the protonation reaction of lithium enolate 322a are presented in Table

38.



146

Table 38. The influence of the reaction conditions on the protonation reaction of
lithium enolate of 2-methyl-l-tetralone (322a) with LP reagent 271a.

Entry Solvent Conditions ofprotonation AH yield ee

(temp. and time) (%) (%t

1 THF -20°C 2 h· -40 °c 4 h citric acid 71 (-) 5" ,
10%

2 THF -20°C 2 h· -40 °c 12 h citric acid 57 0" ,
10%

3 THF -20°C 2h·-78°C 12h citric acid 69 0" ,
10%

4 toluene -20°C 1 h· -40 °c 2 h citric acid - -" ,
10%

5 toluene -20°C 2 h· -40 °c 4 h AcOH 75 (+) 13" ,
6 toluene -20°C 2 h· -40 °c 12 h AcOH 75 (+) 15" ,
7 toluene -20°C, 2 h; at -78°C, 12 h AcOH 80 (+) 10

a The enantioselectivity of the protonation reaction was calculated by measuring the [a]
value of the product and dividing by the known [a] value of the pure enantiomers of 2­
methyl-l-tetralone (ref. 163).

The reaction was strongly solvent dependent. In THF, the product 323 was obtained in a

good yield but as the racemate (Table 38, entries 1 - 3). When the solvent was changed

to toluene, and non-aqueous workup conditions were applied, the yield was slightly

improved, and (R)-323 was obtained, (Table 38, entries 5 - 7). The "non-aqueous

workup" means that the reaction was quenched with glacial AcOH, followed by

precipitation of the polymer-supported ephedrine 271a from cold MeOH (-45°C). The

LP reagent was separated by filtration, and the crude product 323 was left in the filtrate.

The enantioselectivity of the protonation was measured on the pure product 323, and the

[a]D value of the product was compared to the known [a]D values for pure (R)- and (S)­

enantiomers of 2-methyl-l-tetralone (323) reported by Meyers. 163 In order to improve

the yield and enantioselectivity of the protonation of 322a, a second equivalent on MeLi
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was added before the addition of the proton source. The yield of the protonation was

improved to 98%, but the enantioseiectivity dropped to 3%. A plausible explanation of

the results of protonation of lithium enolate 322a with LP reagent 271a is offered in

Figure 24.

reaction at ~
si tace ofenolate!

err
~3~a j
LP-271a

reaction at
re face of enolate

~T
:j:

M~~
:j:
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H \
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Figure 24. Proposed transition state structures of the enantioselective protonation of
lithium enolate 322a with LP proton source 271a.

The faces of the lithium enolate 322a are enantiotopic, and they react at different rates

with the chiral proton source. The structures of the two corresponding transition states

are shown in Figure 24. The complex 336 is likely less stable than the complex 335, due

to stenc interactions between the methyl group in 322a and the methyl group in the

protonating reagent 271a, and that is why the major product of protonation was (R)-2­

methyl-l-tetralone (323). The enantioselectivity of this reaction was only 15%, which
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could be explained by the small difference in the stability of the transition states 335

and 336.

Diastereoselective protonation ofcyclic enolates.

Protonation of chiral enolates is a fascinating subject with respect to

diastereoselectivities, since double stereodifferentiation can be expected when a chiral

proton source is used. 78, 159, 160 A new stereocenter generated in such a process is formed

under the influence of both reagents: the chiral enolate, and the chiral proton source. It

had been shown before that the chiral ephedrine derivative 326 was successfully applied

as the proton donor in enantioselective protonation (Scheme 82).156 Keeping that in mind,

I wondered if I could apply chiral alcohols as proton sources indiastereoselective

protonation of the lithium enolate of a cyclic ketone. The lithium enolate 337a derived

from the silyl enol ether of (-)-menthone was chosen as the model compound. The

enolate was first protonated in solution with amino-alcohols 340a and 341a.

Commercially available ephedrine (55a), and pseudoephedrine (275) were N-alkylated

with benzyl bromide to give reagents 340a and 341a, respectively.

340a X= H
340bX=Li

" ~PhN _
I .=.
Bn OX

341aX=H
341bX= Li

Protonation of enolate 337a was performed in solution and in liquid-phase (Scheme 84).

The results are summarized in Tables 39 (solution reagents) and 40 (LP reagents).
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Scheme 84
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Table 39. The results of the study of diastereoselective protonation of 337a conducted
in solution.

Entry Reagent Additive Yieldo RatioC

(%) 338:339

1 341a - 26 87: 13

2a 341b 341a 54 87: 13

3 341a 341b 74 97:3

a Lithium enolate 337a was generated first then aminoalcohol341a was added, followed
by addition of the lithiated derivative 341b. b The combined yield ofboth products.
C The ratio was measured by I H NMR.

All reactions were performed in THF. The unreacted lithium enolate 337a was trapped

with TMSCI. The best result was obtained with N-benzylpseudoephedrine 341a and its

lithiated derivative 341b (Table 39 entry 3). The products were obtained in a 97: 3 ratio

(338: 339), and in 74% combined yield. This result is comparable with the result

obtained by Yamamoto and co-workers (98% combined yield, ratio: 97: 3) during the

studies on a protonation reaction of337a conducted in solution. I5
? Chiral imide 342 was

used as the proton source.
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~t~~~
o

(S)-342

The conditions for the reaction in solution were elaborated, so the stage was set for the

development of the protonation reaction of 337a conducted in the "liquid phase" (Table

40).

Table 40. The influence of the conditions on the diastereoselectivity of protonation of
lithium enolate 337a with LP reagents.

Entry Reagent Additive AH Yield Ratio

(%) 338:339

1 271a - BTH 44 67:33

2a 271a - NH4CI aq. - -

3 271a - BTH (1 hour) 40 91:9

4 271b - BTH (1 hour) 59 89.5: 11.5

5° 341a 272b MeOH 98 91:9

6° 341a 272a MeOH 63 90: 10

7° 341a t-BuOLi MeOH 84 85: 15

a Starting material was recovered. b Non-aqueous workup was applied.

It can be seen from the above data that the best results of diastereoselective protonation

of enolate 337a were obtained, when the lithium enolate was generated in the presence

of alkoxide (Table 40, entries 5 and 7) or when the additive was added (Table 40, entry

6). It is known that lithium halides, lithium alkoxides, and lithium amides can cause

deaggregation of enolates. Lithium enolates fonn monomeric mixed aggregates with

these species, as shown below. 156
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The fonnation of mixed aggregates 343 - 345 in solution is followed by C-protonation.

When the polymer-supported alkoxide 272b was added to the solution of 337a it

presumably caused deaggregation of the enolate 337a, and fonnation of mixed

aggregates of structures similar to 343 - 345. The mixed aggregates were then

protonated by 341a and the products (338 and 339) were obtained in 91: 9 ratio (Table

40, entry 5). This result is comparable to the result obtained in solution by Yamamoto

and coworkers. IS7
, 159 These authors generated the amine-free lithium enolate from (-)­

menthone silyl enol ether 337, and protonated this enolate with reagent 341. A mixture

of two diastereomers: 338 and 339 was obtained in 98% yield and in a 97: 3 ratio. 157

When LP alcohol 272a was added to the solution of the enolate 337a, the enolate was

deaggregated as well, but the product was obtained in a lower yield (63%). This could

be explained by the possibility of proton transfer between enolate 337a and reagent

272a. Another effect that likely had influence on the resultant protonation of 337a was

double stereodifferentiation.78 When two chiral reagents undergo a reaction, the

stereoselectivity can be higher than expected (matched pair) or lower (mismatched

pair). The diastereoselectivity of the protonation of 337a was increased after the

addition of a chiral additive (Table 40, entries 5 and 6) compared to the achiral additive

(Table 40, entry 7).

In summary, it was demonstrated that soluble, polymer-supported aminoalcohols and

their lithiated derivatives could be successfully employed in the selective protonation of

cyclic lithium enolates. The products were obtained in good to excellent yield and in

good enantio- and diastereoselectivity.
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2.B.6 Conclusions

1. The syntheses of two new classes of organic reagents were developed: insoluble

and soluble polymer-supported chirallithium amines and alcohols. They can be

divided into two categories:

(i) reactive groups directly attached to the polymer matrix.

(ii) separated from the polymer matrix by a linker.

2. Methods for the determination of the nitrogen content in the polymer-supported

reagents were developed.

3. It was shown that the presence of an amino group in the polymer could be

confirmed by a bromophenol blue test (a change of color from yellow to blue

was observed.)

4. General methods for the generation of the corresponding polymer-supported

chirallithium amides and alkoxides were elaborated.

5. SP and LP chiral lithium amides were successfully employed as bases in

deprotonation reactions oftropinone and a ~-ketoester.

6. LP reagents could be used in the stereoselective protonation of lithium enolates

derived from cyclic ketones.

7. It was shown that the reactions, which work well in solution can be successfully

adapted to solid and liquid phase synthesis involving polymer-supported

reagents, thus providing a new methods of performing synthetically useful

reactions.
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CHAPTER III: SUMMARY AND FUTURE WORK

3.1 Summary

Deprotonation of ketones is a very complicated process. Chiral lithium amides

used as bases to generate corresponding lithium enolates from cyclic ketones can form

aggregates (dimers of different stoichiometry), which are less reactive species than

monomers. The aggregation of lithium amides can be broken by addition of different

substances.

Deprotonation of tropinone with nine chiral lithium amides was studied. The

corresponding enolate was obtained, and captured with 2,2,2-trichloroethyl

chloroformate. The influence of additives such as lithium salts (LiCI, LiBr, LiI, LiF,

LiCI04), polar co-solvents (HMPA, DMPU, TMEDA), and other compounds (CeCh,

ZnCh) on the course on the reaction was investigated. The most efficient combination of

the reagents was found to be the simple C2 chirallithium amide and 1 equivalent of LiCI

(the enone was obtained in 92% yield and 96% ee).

It is known that after the generation of lithium enolate, the chiral amine derived

from the corresponding chiral lithium amide stays complexed to the enolate via the

lithium atom, which can affect the enantioselectivity or diastereoselectivity of the

reaction of the latter with an electrophile. Thus, the final enantioselectivity of

deprotonation of ketones belonging to the Cs symmetry group is a result of two effects:

preferential abstraction of one of the a axial hydrogens and complexation of the chiral

amine to the enolate via the lithium atom. To study the complexation effect, 1,4­

cyclohexanedione was deprotonated with two chiral bases. The ketone has the average

symmetry C2V so the chiral lithium amide will not differentiate between two a axial

hydrogens. The corresponding enolate was captured with benzaldehyde, and the aldol

product was obtained in 85% yield. The enantioselectivity of this reaction was only 14%,

which indicates that the complexation effect of the chiral amine to the enolate via the

lithium atom can be neglected when enantioselective deprotonation of cyclic ketones is

considered.
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The other part of the work presented in this thesis deals with synthesis, and

application of polymer-supported lithium amides. At the beginning of this work little was

known about the synthesis of these reagents and their properties, therefore it was decided

to explore their chemistry.

Three general methods for the synthesis of the insoluble and soluble, polymer­

supported chiral amines were elaborated. The synthetic procedures are general and easy

to perform. A method for the loading determination (i.e., the number of mmol of NH

groups in 1 g of resin) was elaborated. Polymer-supported chiral lithium amides were

generated according to the procedure adapted from "the solution phase". The reagents

were used as the bases in deprotonation of a cyclic ketone (tropinone) and a f3-ketoester

(ethyl 2-oxocyc1opentanecarboxylate). The corresponding a-functionalized carbonyl

compounds were obtained in good yield. It was possible to deprotonate tropinone

enantioselectively. The aldol product was obtained in up to 70% ee with the soluble

polymer-supported lithium amide; and the ring-opening product of tropinone was

obtained in up to 59% ee with the insoluble polymer-supported lithium amide. It was not

possible to obtain the enone enantioselectively with soluble polymer-supported lithium

amides due to the leaching of amines from the resin. The benzylated f3-ketoester was

obtained in 76% yield, but not enantioselectively.

A preliminary study of protonation of the lithium enolate with polymer-supported

chiral proton sources was performed. The lithium enolate of 2-methyl-l-tetralone was

protonated enantioselectively with soluble polymer-supported ephedrine and the

corresponding product was obtained in 80% yield and 15% ee. The lithium enolate

derived from (-)-menthone was protonated diastereoselectively, and the corresponding

ketone was obtained in 74% yield and 94% de.
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3.2 Future work

The task of synthesizing the polymer-supported lithium amides proved to be very

challenging. It was demonstrated in this preliminary study that these reagents could be

used as bases in the deprotonation of carbonyl compounds. To fully understand the

potential of this new class ofbases a more detailed methodology study is needed.

The first task could be a more detailed study of the concentration effect, which

was observed during the deprotonation of tropinone with soluble polymer-supported

lithium amides. This work could be used in further optimization of the conditions of ring­

opening reaction of tropinone and benzylation of ethyl 2-oxocyclopentanecarboxylate.

Other reactions catalyzed by chirallithium bases should be tried. One of them is

the catalytic deprotonation of cyclic ketones e.g., u-tetralone and 2-methyl-l-tetralone,

which was studied by Koga in "the solution phase". 158 The chiral amine 324a was used in

a catalytic amount (0.3 equivalent), with 2-3 equivalents of the achiral amine 325. The

achiral amine (346a or 346b) could be attached to the polymer by methods described

previously.

I
0--OlN~N,

N-l _
346a (insoluble resin) Y
346b (soluble resin)

~O NH NH 0
N~Ph Ph~N

324

The achiral amIne (346a and/or 346b) could be recycled and reused after

completion of reaction, which would minimize the cost of this transformation (the achiral

amines used for the "solution phase" catalytic deprotonation are expensive). 125

The ring-opening of epoxides could be another model reactions to be study with

polymer-supported chirallithium amides. The general reaction is shown in Scheme 85.
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Scheme 85

~O
347

RR*NLi ..
THF

RR*NLi

crOB

348

1\ R)

"N~N-R2
I
X

349aX=H
349b X= Li

MeHPh

H,N,X OR

350aR=X=H
350b R= X= Li

The reaction has been extensively studied in solution, and numerous procedures are

available. 184 The chirallithium amide (349b and/ or 350b) could be attached to the resin

to give polymer-supported chiral lithium amides 352b - 355b by methods described in

this thesis, and than applied in the ring-opening of a simple epoxide.

CY-N~N I
I R
Li

352b (insoluble resin)
353b (soluble resin)

354b (insoluble resin)
355b (soluble resin)
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CHAPTER IV: EXPERIMENTAL

4.1 General methods

All air sensitive reactions were carried out under nitrogen. Tetrahydrofuran was

distilled under nitrogen from sodium and benzophenone. Diisopropylamine, triethylamine

and other amines used as precursors for lithium amides were distilled from calcium

hydride. Chiral amines were prepared according to the procedures described in the

literature. 168 Lithium chloride was dried at 130 - 150°C under high vacuum for 12 hours,

dissolved in THF, and stored under nitrogen. Tetramethylethylenediamine (TMEDA),

hexamethylphosphoric triamide (HMPA), and 1,3-dimethyl-3,4,5,6,-tetrahydro-2(1H)­

pyrimidinone (DMPU) were distilled from calcium hydride and stored under nitrogen.

tert-Butyl alcohol was distilled from calcium hydride. The polymer-supported amines

were recycled by mixing with a solution of sodium hydroxide, followed by filtration,

washing of the polymers with water, methanol, and dried to the constant weight under

high vacuum. The insoluble polymer-supported amines were pre-swollen in appropriate

solvent for 1 hour before a reaction was started. n-BuLi was periodically titrated with 2,5­

dimethoxybenzyl alcohol as the standard indicator.

Flash column chromatography (FCC) was carried out using Merc silica gel 60 (230­

400 mesh). Dry-column flash chromatography was carried out using Sigma silica gel

Type H (10 - 40 J.lm), and TLC was performed on precoated glass plates (Merck, silica

gel 60, F254). The spots were detected using UV light (254 nm), or with a developing

solution by charring on a hot plate. The developing solution was prepared by dissolving

concentrated sulfuric acid (50 g), cerium (IV) sulfate (10 g), and phosphomolybdic acid

hydrate (40 g) in water (1 L).

The known compounds described in this section were characterized by the melting/

boiling point temperature, Rf values, proton magnetic resonance and carbon magnetic

resonance spectra. The literature references to the original publications are located after

the compound name.
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Melting points and boiling points are uncorrected. Melting points were measured on a

Gallencamp melting point apparatus. The optical rotation of compounds described in this

section, were recorded on a DigiPol 781 Automatic Polarimeter Rudolph Instrument (1

dm, 1 mL cell), all the concentrations are given in gl 100 mL.

Proton magnetic resonance eH NMR) and carbon nuclear magnetic resonance (BC

NMR) spectra were recorded on a Bruker AM-300 (300 MHz) spectrometer in CD3Cl.

Chemical shifts are reported in ppm of ~ale with TMS as the internal standard.

Coupling constants are reported to the nearest 0.5 Hz. In order to obtain a high signal to

noise ratio, IH NMR spectra for analysis of the ee of the aldol oftropinone were recorded

using 20 - 25 mg samples in 0.4 mL of chloroform-d in the presence of 20 mg of (S)-(+)­

2,2,2-trifluoro-l-(9-anthryl)ethanol (S-(+)-TFAE). IH NMR spectra for analysis of the ee

of the anti aldol of 1,4-cyclohexanedione monoethylene ketal were recorded using 20 - 25

mg samples in 0.4 mL of chloroform-d in the presence of Eu(tfc)3.

Gas chromatography was performed using a Hewlett Packard 5890A instrument fitted

with a methyl silicone gum column (HP-l, 5 m x 0.53 mm). Chromatographic analyses of

the enantiomeric purity of the ring-opening of tropinone were done on a computer

controlled Gilson HPLC system with the ChiralPack AD column (Diacel) and a UV

detector (at 254 nm). The solvent system was 85: 15 (voll vol) hexane: isopropanol at 0.8

mIl min flow rate.

Infrared (IR) spectra were recorded on a Biorad FTS-40 Fourier Transform

interferometer by means of the diffuse reflectance cell method. Only diagnostic peak

frequencies are reported.

Mass spectra were recorded on a VG Analytical retrofit of a single sectored, magnetic

scanning MS-12 (low resolution) or a double sectored MS VG 70-250-VSE (high

resolution) and are reported as m1z ratio (relative intensity). Electron impact (EI)

ionization was accomplished at 70 eV and chemical ionization (CI) at 50 eV.

The CRN elemental analyses were carried out using Perkin Elmer 2400 CRN

Elemental Analyzer.
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4.2. NMR spectroscopy ofpolymers.

One of the techniques giving the most infonnation about the structure of polymers is

IH and Be NMR spectroscopy. The abundance of the Be isotope of carbon is only 1.1

%, but the sensitivity of the NMR spectroscopy is high enough to allow signals given by

Be atoms to be easily detected. The chemical shifts in Be NMR are considerably larger

in comparison to 1H NMR, and the spectral features can be observed with higher

resolution. There are special techniques that are applied to sharpen up the otherwise very

broad signals: "magic angle spinning" (MAS), "cross polarization" (ep), and "proton

decoupling" (PD) but they all require special probes.

When this project was started, the department did not have a special NMR probe that

could be used for perfonning IH and Be NMR experiments on polymers. The IH and Be
spectra for insoluble polymers were recorded in a gel phase (a polymer swollen in

chlorofonn-d fonning a gel) or in a very viscous solution of soluble resins. The peaks in

IH and Be spectra were very broad, many of them were overlapping therefore it was not

possible to obtain detailed infonnation about the structure of a resin. The number of

hydrogens assigned to each signal in IH spectra for the insoluble and soluble polymers

was calibrated from the signal given by the hydrogen nuclei of the CH2CI or CH2I

groups. The numbers of aromatic hydrogen included mostly hydrogens from the polymer

backbone, and hydrogens from the attached compound. The number of aliphatic

hydrogens represents the number of the aliphatic hydrogens present in the polymer matrix

(mostly), and aliphatic hydrogens of the attached compound.

A

Iur"' I
FG

A

IU~k", I
FGX= Cl orl

A=OorN
Linker= -(CH2)- chain

FG= functional group: OH, I, C02R or ArNH
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It is known, that the chemical shifts in l3e NMR are considerably larger than in IH NMR,

so the spectral features can be observed with better resolution. 169 Unfortunately this was

not the case, when it came to polymer-supported reagents synthesized during this project.

The signals in l3e NMR were broad, but the diagnostic peaks were observed, and are

reported. The signals given by aromatic carbon consisted of carbons from the polymer

matrix, and carbons of the attached compound. It was not possible to differentiate

between specific carbons. The MAS technique was not feasible due to the lack of

appropriate probe for the 300 MHz NMR instrument present at the Department during

my work on the synthesis ofpolymer-supported chiral amines.
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4.3. Methodology study performed in solution

Procedure A: Generation of racemic lithium tropinone enolate (201a) using LDA?

Me

[@ON',.......Li]LDA, -78°C, THF "..4
Me

201 201a

A solution of n-BuLi (2.25 M, 0.49 mL, 1.1 mmol) was added to the solution of

diisopropylamine (0.150 mL, 0.112 g, 1.10 mmol) in THF (6 mL) at 0 °c under N2 and

the resulting solution was stirred for 25 minutes. After cooling to -78°C, a solution of

tropinone (201) (0.139 g, 1.00 mmol) in THF (2 mL) was added over a period of 3

minutes and the resulting mixture was stirred for 45 minutes.

Procedure B: Generation of non-racemic tropinone lithium enolate (201a) using a chiral

lithium amide prepared from corresponding chiral amine (and an additive).2

°

EV
Me

[e ]
Me

201 201a

A solution of n-BuLi (2.25 M, 0.20mL, 0.44 mmol) was added to the solution of a chiral

amine (0.44 mmol) in THF (3 mL) at 0 °c under N2 and the resulting solution was stirred

for 2 - 2.5 hours. (A solution ofan additive was added; the number of equivalents, and

the type of additive are specified in Appendix 1). After cooling to -78°C, a solution of
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tropinone (201) (0.056 g, 0.400 mmol) in THF (0.80 mL) was added over a period of 3

minutes and the resulting mixture was stirred for 1 hour.

Procedure C: Generation ofnon-racemic lithium enolate oftropinone (201a) with a

chirallithium amide prepared from a corresponding chiral amine hydrochloride.

4
Me

201

R*2NLi, LiCl,

-78°C, THF, N2 [~ ]
Me

20la

A solution of n-BuLi (2.25 M, 0.40 mL, 0.88 mmol) was added to the solution of a chiral

amine hydrochloride salt (0.440 mmol) in THF (3 mL) at 0 °c under N2 and the resulting

solution was stirred for 2.5- 3 hours. After cooling to -78°C, a solution of tropinone

(201) (0.056 g, 0.400 mmol) in THF (0.80 mL) was added over a period of 3 minutes and

the resulting mixture was stirred for 1 hour at this temperature.

Procedure D: Generation of the lithium enolate of 1,4-cyc1ohexanedione monoethylene

ketal (239).1

0 OLi

P LDA, -78 °e, TAF Q.
or R*2NLi

LJO o °LJ

239 239a

A solution of n-BuLi (1.45 M, 0.76 mL, 1.1 mmol) was added to the solution of

diisopropylamine (0.14 mL, 0.11 g, 1.1 mmol) in THF (5 mL) at 0 °c under N2 and the

resulting solution was stirred for 0.5 hour. After cooling to -78°C, a solution of ketone
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239 (0.156 g, 1.00 mmol) in THF (1 mL) was added over a period of 3 minutes, and the

resulting mixture was stirred for 0.5 hour.

Alternatively:

A solution of n-BuLi (1.45 M, 0.76 mL, 1.1 mmol) was added to the solution of a chiral

amine (1.10 mmol) in THF (5 mL) at 0 DC under N2 and the resulting solution was stirred

for 1.5 hour. After cooling to -78 DC, a solution of ketone 239 (0.156 g, 1.00 mmol) in

THF (1 mL) was added over a period of 3 minutes, and the resulting mixture was stirred

for 2.5 hour.

Procedure E: Generation of the lithium enolate of 1,4-cyc1ohexanedione monoethylene

ketal (239) with second equivalent ofn-BuLi.

0 OLi

P
1. procedure D

Q2. n-BuLi, 0 °c ..
o 0

LJO LJ

239 239a

A solution of n-BuLi (1.45 M, 0.76 mL, 1.10 mmol) was added to the solution of the

lithium enolate 239a prepared by procedure D (1.00 mmol). The reaction mixture was

warmed to 0 DC and stirred for 0.5 hour followed by cooling down to - 78 DC before

addition ofbenzaldehyde.
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Procedure F: Generation of the lithium enolate 239a from 8-trimethylsilyloxy-1,4­

dioxaspiro[4.5]dec-7-ene (246) without any additive.

246

n-BuLi, -78°C.. 6o 0
LJ

239a

A solution of n-BuLi(1.45 M, 0.24 mL, 0.35 mmo1) was added to the solution of si1yl

enol ether 246 (0.08 g, 0.35 mmol) in THF (3 mL) at -78°C under N2, and the resulting

solution was stirred for 2.5 hour.

Procedure G: Generation of the lithium enolate 239a from the corresponding sily1 enol

ether 246 with the additives.

246

1. n-BuLi, -78°C

2. an additive ..

OLi

R
LJ

239a

A solution of chiral amine (0.48 mmol) in THF (1 mL) was added to the solution of

lithium enolate 239a generated by procedure E, and the stirring was continued for an

additional 2.5 hour.

Alternatively:

A solution of chiral amine (0.48 mmol) in THF (1 mL) was added to the solution of

lithium enolate 239a generated by procedure E, and the stirring was continued for an

additional 2.5 hour. The reaction mixture was warmed to 0 °c and a solution of n-BuLi in
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hexane (1.45 M, 0.34 mL, 0.48 mmol) was added. The mixture was stirred at 0 °c for 0.5

hour, before it was cooled to -78°C.
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6-[N-(2,2,2-Trichoroethoxy)carbonyl-N-methyl]amino-2-cyclohepten-1-one (230)2

[~]
201a 230

2,2,2-TrichIoroethyl fonnate (0.16 mL, 0.246 g, 1.16 mmol) was added to the tropinone

lithium enolate 201a generated by procedure A (1.0 mmol), and the reaction mixture was

stirred for 0.5 hour.

Alternatively:

2,2,2-Trichloroethyl fonnate (0.080 mL, 0.123 g, 0.580 mmol) was added to the

tropinone lithium enolate 201a generated by procedure B or C (0.400 mmol) and the

reaction mixture was stirred for 0.5 hour.

After quenching with 40% K2C03 (5 mL) and wanning to room temperature, the reaction

mixture was extracted with EhO (3 x 30 mL). The combined organic layers were washed

with a solution of citric acid (3 x 30 mL), followed by brine, and were dried with MgS04•

The solvents were removed in vacuo giving the crude product. The crude product was

purified by crystallization from hexane or by FCC (hexane: AcOEt 4: 1 - 1: 1). The yield

of the racemic product is 76 % and the yields of the optically active products are shown

in Appendix 1.

RF 0.55 (1: 1 hexane: AcOEt)

mp: (racemic) 58 - 60°C (lit. 59 - 61 °C)2

The pure product 230 was characterized by 1H NMR, and the spectrum was in agreement

with previous results.2,86,101
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IH NMR 8: 6.64 (ddd, J= 12 Hz, J= 6 Hz, J= 5 Hz, 1H), 6.05 (d, J= 12 Hz, 1H), 4.75 (8,

2H), 4.55 (br, 1 H), 2.90 (8, 3H), 2.92 - 2.82 (m, 2H), 2.68 - 2.45 (m, 2H), 2.20 - 1.90

(m,2H).
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1,4-Dioxaspiro[4.5]dec-8-trimethylsilyloxy-7-ene (246)1

239

>5.
S

LJ
246

A solution of n-BuLi (1.45 M, 1.59 mL, 2.20 mmol) was added to the solution of

diisopropylamine (0.28 mL, 0.22 g, 2.2 mmol) in THF (10 mL) at 0 °c under N2, and the

resulting mixture was stirred for 0.5 hour. After cooling to -78°C, freshly distilled Et3N

(0.700 mL, O. 510 g, 5.03 mmol) was added, followed by the addition of TMSCI (0.53

mL, 0.45 g, 4.2 mmol). The mixture was stirred for 5 minutes, and the solution of ketone

239 (0.312 g, 2.00 mmol) in THF (2 mL) was added over a period of 3 minutes. The

resulting mixture was stirred for 1 hour. After quenching with saturated solution of

NH4CI (20 mL), the reaction mixture was extracted quickly with Et20 (3 x 75 mL). The

combined organic layers were washed with brine, and dried with MgS04. The solvents

were removed in vacuo to give crude product 246 (0. 420 g). The crude product was

purified by DFC (hexane, hexan: AcOEt 9:1) yielding the pure 246 (0.365 g, yield 80%).

RF 0.49 (hexane: AcOEt 8: 1)

The IH NMR spectrum was in agreement with previous results: 1

IH NMR 8: 4.67 - 4.65 (m, 1H), 3.92 (s, 4H), 2.22 - 2.21 (br. s, 2H), 2.21 - 2.13 (m,

2H), 1.78 - 1.74 (t, J= 6.6 Hz, 2H), 0.14 (s, 9H).
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1,4-Dioxaspiro[4.5]decan-7-(hydroxyphenylmethyl)-8-one (243)1

6o 0
LJ

239a 243 244

Benzaldehyde (0.11 mL, 0.120 g, 1.10 mmol) was added to the solution lithium enolate

239a (1.00 mmol) generated by method D or E at - 78°C, and the reaction mixture was

stirred for 0.5 hour.

Alternatively:

Benzaldehyde (0.05 mL, 0.052 g, 0.490 mmol) was added to the solution of lithium

enolate 239a (0.35 mmol) generated by method G or F at - 78°C, and the reaction

mixture was stirred for 0.5 hour.

After quenching with phosphorane buffer (10 mL) the reaction mixture was extracted

quickly with Et20 (3 x 50 mL). The combined organic layers were washed with brine,

and dried with MgS04• The solvents were removed in vacuo to give the two

diasteromeric products: 243 and 244. The crude products were purified by DFC (hexane:

CH2Ch 9: 1, hexane: AcOEt 5:1) to yield the pure threo isomer 243.

Diastereoselectivity of this reaction is shown in Table 2 in Appendix 1.

mp= 140-141 °c (lit. 141-142 °C)l

IH NMR 8 : 7.35 - 7.27 (m, 5H), 4.79 (d, J= 8.6 Hz, 2H), 3.96 - 3.80 (m, 5H), 2.98 (m,

1H), 2.67 (m, IH), 2.43 (m, 1H), 2.04 - 1.94 (m, 2H), 1.67 - 1.48 (m, 2H).
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4.4 Methodsfor determination ofpolymer loading:

1. Determination ofN content in a polymer sample

(i) the original Volhard titration methodl24
:

The Vohlard titration method is a procedure for the titration of Ag+. To determine

cr a back titration is necessary. First, the cr is precipitated by a known, excess quantity

of standard AgN03:

Ag+ + cr --.... AgCl(s)

The AgCI is isolated and the excess of Ag+ is titrated with standard KSCN in the

presence of Fe3+:

Ag+ + SCN" .. AgSCN (s)

When Ag+is consumed, than SCN- reacts with Fe3+to form a red complex:

Fe3+ + SCN --.... FeSC~+

The appearance of red color indicats the end point. The amount of SCN- required for

back titration was known, so the amount of Ag+ left over from the reaction with CI- was

known as well. To calculate the amount of cr, the leftover amount of Ag+ has to be

subtracted from the total, known amount ofAg+.

General procedure:

An excess of standard HCI (VHCb CHC1) was added to the sample of a polymeric

amine (mamine= mg), and the mixture was stirred for 3 hours. The polymer was separaed

by filtration and washed with distilled water. The Vohlard titration was performed on the

filtrate. An excess of AgN03 solution was added to the filtrate (VI, C1). The white
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precipitate was fonned (AgCI), which was covered with nitrobenzene. 3 Drops of Fe3+

solution were added, and the remaining Ag+ ions were titrated with standard KSCN

solution (V2, C2). The red color indicated the end point. The loading of a sample was

calculated from the following equation:

Loading of a polymer (mmol ofN/g ofpolymer)

VRC1: used volume of standard HCI mL

CRC1: molar concentration of standard HCI, mol/L

VI: used volume of standard AgN03, mL

C1: molar concentration of standard AgN03, mol/L

V2: used volume of standart KSCN solution, mL

C2: molar concentration of standard KSCN solution, mol/L

mamine: weight of a polymer sample, mg

It was found, experimentally, that this procedure was giving higher loading values than

were possible. This was due to the fact that HCI was absorbed on the Merrifield resin.

This observation was confinned by "blind" titration of the Merrifield resin. The nitrogen

content of a polymer-supported amine was calculated by Fajans titration method or by

elemental analysis.

(ii) Fajans titration method124:

The Fajans titration method is based on the fonnation of an insoluble salt on

which surface an indicator is being absorbed. In this particular example S042
- ions were

titrated with a standardized Ba(OHh in 50% aqueous MeOH.
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BaS04 (8)

Alizarin red S was used as an indicator. The end point was visualized by color change of

precipitate (BaS04) from white to light pink.

General procedure:

An excess of standard H2S04 solution (V1, C I ) was added to a sample of a

polymer-supported amine, and the suspension was stirred for 3 hours. The polymer was

separated by filtration and washed with aqueous MeOH (1: 1 MeOH: H20). The Fajans

titration was performed on the filtrate. Alizarin red S solution (5 drops) was added to the

filtrate, and the remaining S042- ions were titrated with standard Ba2
+ solution. The end

point was indicated by the color change of the precipitate (BaS04) from white to light

pink due of the absorbtion of the dye on its surface.

Loading value of the sample was calculated from the following equation (mmol ofN/g):

[(VI· CI) - (V2 . C2)]· 1000

2 . ffiamine

VI: used volume of standard H2S04, mL

C I : molar concentration of standard H2S04, mol/L

V2: used volume of standard Ba2
+ solution, mL

C2: molar concentration of standard Ba2
+ solution, mol/L

mamine: weight of a polymer sample, mg
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(iii) detennination of nitrogen content by elemental analysis

Loading of a polymer (mmol of N/g of a polymer) was calculated from the following

equation:

N% . 1000

100% . MN

N%: percentage of nitrogen present in a sample used for an elemental analysis

MN : atomic mass ofnitrogen

2. Determination ofOH content in a polymer sample.

A method for detennining the concentration of an organolithium reagent was

described for the first time in 1980 by Ronald and co-workers. 170 2,5-Dimethoxybenzyl

alcohol was used as the primary standard. In the first step an OR functionalized resin is

reacted with an excess of n-BuLi:

~OH + n-BuLi (excess) --...

o :insoluble or soluble resin

Then, the remaining excess of n-BuLi is back titrated with a standard solution of the

indicator:

~OH + n-BuLi (excess)Y (excess)

OCH3

Ii

Finally, the excess of 2,5-dimethoxybenzyl alcohol is titrated with n-BuLi:



¢:~~S) + n-BuLi

OCH3

General procedure:
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II

A polymer sample (200 '" 300 mg) was pre-swollen by the appropriate solvent

(3.00 mL, THF or benzene) for 30 minutes at room temperature under N2• The sample

was cooled down to 0 °C (for THF) or -15 °C (for benzene), and n-BuLi was added (2 '"

3 equivalents, based on an estimated loading of a precursor resin (V}, mL; Cn-BuLi, M).

The reaction mixture was stirred at the appropriate temperature for an additional hour.

Subsequently, 2,5-dimethoxybenzyl alcohol was added (1.00 mmol, Vindicator, mL;

Cindicator, M), and the reaction mixture was warmed to room temperature. After stirring for

30 minutes, the yellowish suspension was titrated with n-BuLi (V2, mL; Cn-BuLi, M). The

endpoint is characterized by a green, brown or greenish brown color. The loading of a

resin (mmol ofOH/g) was calculated from the following equation:

[(V1 + V 2) . Cn-BuLi - Vindicator . Cindicator] . 1000

VI + V2 : used volume ofn-BuLi

Cn-BuLi: molar concentration of n-BuLi, mol/L

Vindicator: used volume of 2,5-dimethoxybenzyl alcohol, mL

Cindicator: molar concentration of 2,5-dimethoxybenzyl alcohol, mollL

mamine: weight of a polymeric sample, mg
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The gravimetric analysis:

The gravimetric detennination of polymer loading is explained in the following example:

FW1

loading: 2.00 mmol ofF01
; g

Polymer-F01 (eg., 1.00 g, 2.00 mmol of F01/g) was transfonned into polymer-F02
• The

yield of the reaction was 100%. The theoretical weight of the polymer-F02
, and the

theoretical loading ofpolymer-F02 can be calculated from the following equations:

theoretical weight ofpolymer-F02
:

1000

FWI
: molar weight of functional group 1 (F01)

FW2
: molar weight of functional group 2 (F02

)

2.: initial loading values ofpolymer-F01(2.00 F01/g)

1: mass ofpolymer-F01(1.00 g)

theoretical loading ofpolymer-F02
:

2

theoretical weight ofpolymer-FG2
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4.5 Synthesis ofinsoluble polymer-supported chiral amines.

Cross-linked (CL) polystyrene-supported methyl iodide (247)

12

Cl

247

Sodium iodide (5.00 g, 33.4 mmol) was added to the pre-swollen Merrifield resin (12)

(4.00 g, 4.00 mmol, original loading: 1.00 mmol of ClIg) in acetone (50 mL), and the

resulting suspension was refluxed for 48 hours. After the reaction was completed, the

polymer 247 was separated by filtration, and washed with 100 mL of each of the

following solvents: acetone, THF, ethanol, methanol, 1: 1 methanol - water, NaOH,

water, methanol, and ethanol. The polymer 247 was dried to constant weight under high

vacuum, and 3.862 g of 251 was obtained. The loading of polymer 247 was not

determined.

IH NMR 8: 7.60 - 5.74 (m, 25H, Ar), 4.65 - 4.03 (m, 2H, CH2X), 2.47 - 1.05 (m, 17H,

CH2, and CH, polymer matrix).

13 C NMR d: 145.3 (C-Ar), 128.2 (C-Ar), 125.9 (C-Ar), 44.1 (CH2, polymer matrix), 40.6

(CH, polymer matrix), 6.6 (CH2I).
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CL polystyrene-supported (S)-N-methyl-l-phenylethylamine (250a)

247

I
..

S-(-)-a-Methylbenzylamine (248a) (3.645g, 3.880 mL, 30.12 mmol) was added to the

pre-swollen polymer 247 (6.026 g) in THF (100 mL). The mixture was refluxed under N2

for 48 h. After the reaction was completed, the polymer 250a was separated by filtration

and washed with 150 mL of each of the following solvents: THF, acetone, methanol, 1: 1

methanol: water, water, NaOH, water, methanol, ethanol and Et20. The polymer was

dried under high vacuum to constant weight, and 6.000 g of resin 250a was obtained. The

loading of the polymeric amine 250a was determined by Fajans titration method or by

elemetal analysis, and was 0.604 mmol ofNH/g.

Dehalogenation procedure:37b

A solution of tributyl tin hydride (3.645 g, 3.300 mL, 12.54 mmol) was added to the

suspension of polymer 250a (6.122 g, 4.180 mmol, loading of 0.604 mmol of N/ g) in

THF (125 mL), and the reaction mixture was refluxed under N2 for 48 hours. After the

reaction was completed, the polymer 250a was separated by filtration and washed with

the following solvents (150 mL): hexane, THF, methanol, 1: 1 methanol: water, water,

NaOH, water, methanol, ethanol, hexane and Et20. The polymer was dried under reduced

pressure to constant weight, and 5.387 g of the polymer-supported amine 250a was

obtained. The loading of the polymer was determined by elemental analysis, and was

0.604 mmol ofNH/g.

IH NMR 8: 8.05 - 5.75 (m, 28H, Ar), 3.87 - 3.11 (m, 3H, PhCH2-N, and CH-N), 2.14 ­

0.44 (m, 12H, CH2, CH, polymer matrix, and CH3, amine moiety).
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B C NMR 8: 145.8 (C-Ar), 128.1 (C-Ar), 126.9 (C-Ar), 125.9 (C-Ar), 58.1 (CH-N),52.3

(PhCH2-N), 40.6 (CH, polymer matrix), 24.7 (CH3).

Anal. (Found): C, 81.43; H, 6.55; N, 1.83, which was used to determine the loading of

amine 250a.
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CL polystyrene-supported 3-methoxy-l-propanol (258a)

12
CI

258a

O~OH

1,3-Propanediol (257) (10.94 g, 10.40 mL, 144.0 mmol) was added to the suspension of

pre-washed sodium hydride* (1.728 g, 75.13 mmol) in DMF (100 mL) and the reaction

mixture was stirred at 0 °C under N2 for 2 hours. Chloromethyl polystyrene 12 (8.00 g,

8.80 mol, 1.10 mmol of ClI g) was added, and the reaction mixture was refluxed under N2

for 48 hours. The reaction was quenched by addition of water (100 mL) at 0 °C, and

polymer 258a was separated by filtration. The resin 258a was washed with 150 mL of

each of the following solvents: water, methanol, ethanol, and £120, followed by

extraction with 1:1 mixture of THF and ethanol (150 mL) for 4 hours, and dried to

constant weight under high vacuum. The amount of polymer 258a obtained was 8.125 g.

The loading was determined by gravimetric analysis, and was 0.825 mmol of OH/g.

IH NMR 8: 8.57 - 6.30 (m, 24H, Ar), 4.28 - 3.37 (m, 8H, CH2CI, polymer matrix, and

PhCH20-, -OCH2 and -CH20H, alcohol moiety), 2.18 - 1.09 (m, 8H, CH2, CH polymer

matrix, and CH2, alcohol moiety).

B C NMR 8: 128.4 (C-Ar), 68.1 (PhCH20-), 62.5 (OCH2-), 40.5 (CH, polymer matrix),

25.8 (CH2).

*NaH was purified according to the following procedure:

Dry pentane (50 mL) was added via syringe to NaH (1.900 g, 80% dispersion in oil) at

room temperature under N2and the suspension was stirred for 0.5 hour. The solvent was

removed via syringe and fresh portion of pentane was added. This was repeated three

times. The purified NaH was dried under N2 to constant weight before being used.
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CL polystyrene-supported 6-methoxy-l-hexanol (258b)

12
CI

•

258b

O~OH

1,6-Hexanediol (59) (8.069 g, 68.38 mmol) was added to the suspension of washed

sodium hydride (0.821 g, 35.7 mmol) in DMF (100 mL) and the reaction mixture was

stirred at 0 °c under N2 for 2 hours. Chloromethyl polystyrene 12 (3.800 g, 4.180 mol,

1.100 mmol of CII g) was added, and the reaction mixture was refluxed under N2 for 48

hours. The reaction was quenched by addition of water (100 mL) at 0 °c, and the

polymer 258b was separated by filtration. The polymer 258b was washed with the 100

mL of each of the following solvents: water, methanol, ethanol, and Et20, followed by

extraction with 1:1 mixture of THF and ethanol (100 mL) for 4 hours, and drying to

constant weight under high vacuum. The amount ofobtained resin 258b was 3.946 g. The

loading was determined by OH titration, and was 0.800 mmol of OH/g.

IH NMR 8: 8.20 - 6.02 (m, 46H, Ar), 4.75 - 4.24 (m, 2H, CH2CI), 4.00 - 3.23 (m, 7H,

PhO-CH2, -OCH2-, CH20H, and OH), 2.15 - 0.70 (m, 26H, CH2, CH, polymer matrix and

CH2, alcohol moiety).

B C NMR 8: 128.1 (C-Ar), 66.0 (PhCH20-), 63.0 (-OCH2), 40.6 (CH, polymer matrix),

32.9 (CH2), 30.0 (CH2), 25.8 (CH2).
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CL polystyrene-supported I-methoxy-3-iodopropane (259)

258a

O~OH
..

259

O~I

Imidazole (1.138 g, 16.74 mmol) was added to the solution of triphenylphosphine (4.386

g, 16.74 mmol) in dry CH2Ch (150 mL). Next, the iodine (4.252 g, 16.74 mmol) was

added, followed by the addition of polymer 258a (6.973 g, 5.753 mmol, 0.825 mmol of

OH/ g). The reaction mixture was protected from light, and was stirred under N2 for 96

hours. After the reaction was completed, the polymer 259 was separated by filtration and

washed with 200 mL of each of the following solvents: diethyl ether, benzene, water,

methanol, and diethyl ether. Polymer 259 was dried to constant weight under high

vacuum, and 7.210 g of the resin was obtained. The loading of the polymer 259 was

estimated from gravimetric analysis and was 0.750 mmol ofI/g.

IH NMR 8: 8.50 - 5.90 (m, 148H, Ar), 4.93 - 4.13 (m, 4H, CH2CI, polymer matrix, and

PhCH20-), 3.82 - 2.85 (m, 12H, -OCH2, and CH2I), 2.35 - 0.80 (m, 52H, CH2, CH,

polymermatrix, and CH2, iodide moiety)

13C NMR 8: 128.8 (C-Ar), 68.1 (PhCH2-O), 41.0 (CH, polymer matrix), 33.8 (CH2), 3.7

(CH2I)
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CL polystyrene-supported I-methoxy-6-iodohexane (61)

O~OH O~I

258b 61

Imidazole (0.5750 g, 8.047 mmol) was added to the solution of triphenylphosphine

(2.108 g, 16.74 mmol) in dry CH2Ch (100 mL). Next, the iodine (2.044 g, 8.047 mmol)

was added, followed by the addition of polymer 258b (3.353 g, 2.682 mmol, 0.800 mmol

of OH/ g). The reaction mixture was protected from light, and was stirred under N2 for 96

hours. After the reaction was completed, the polymer 61 was separated by filtration and

washed with 100 mL of each of the following solvents: diethyl ether, benzene, water,

methanol, and diethyl ether. The polymer was dried to constant weight under high

vacuum, and 3.515 g of the resin 61 was obtained. The loading of the polymer 61 was

estimated from gravimetric analysis, and was 0.790 mmol ofl/g.

IH NMR 8: 8.50 - 5.90 (m, 148H, Ar), 4.93 - 4.13 (m, 4H, CH2CI, polymer matrix, and

PhCH20-), 3.82 - 2.85 (m, 12H, -OCH2, and CH21), 2.35 - 0.80 (m, 52H, CH2, CH,

polymer matrix, and CH2, attached iodide).

B C NMR 8: 128.1 (C-Ar), 70.05 (PhCH20-), 66.0 (OCH2-), 40.6 (CH, polymer matrix),

33.6 (CH2), 30.5 (CH2), 29.8 (CH2), 25.4 (CH2), 7.3 (CH21)
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CL polystyrene-supported (S)-N-(3-methoxypropyl)-1-phenylethylamine (260a)

259

O~I

(8)-(-)-a-Methylbenzyl amine (248a) (3.225 g, 3.430 mL, 26.65 mmol) was added to the

pre-swollen polymer 259 (5.33 g, 3.99 mmol, 0.750 mmol of II g) in THF (150 mL). The

reaction mixture was refluxed under N2 for 72 hours. After the reaction was completed

the polymeric amine 260a was separated by filtration, and washed with 150 mL of each

of the following solvents: THF, acetone, methanol, 1: 1 methanol: water, water, NaOH,

water, methanol, ethanol and ether. The polymer 260a was dried under high vacuum to

constant weight, and 5.00 g of the resin was obtained. The loading of the polymer 260a

was detennined from elemental analysis, and was 0.636 mmol ofNH/g.

Dehalogenation procedure:37b

The dehalogenation was conducted according for the procedure described for the amine

250a. The polymeric amine 260a was dried to constant weight under high vacuum, and

4.850 g of the resin was obtained. The loading was the same as before the dehalogention

procedure.

IH NMR 8: 8.35 - 6.50 (m, 25H, Ar), 4.04 - 3.15 (m, 5H, PhCH20, O-CH2, CH-N), 2.10 ­

0.70 (m, 10H, CH3, CH2, CH, polymer matrix, and CH3, CH2, amine moiety)

13C NMR 8: 128.5 (C-Ar), 126.7 (C-Ar), 68.8 (PhCH20-), 66.2 (OCH2), 58.6 (CH-N),

45.5 (CH2N), 40.6 (CH, polymer matrix), 31.0 (CH2), 24.7 (CH3)

Anal. Found: C, 87.68; H, 7.57; N, 0.92, which was used for the loading detennination of

amine 260a.
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CL polystyrene-supported (S)-N-(6-methoxyhexyl)-1-phenylethylamine (261a)

(S)-(-)-a-Methylbenzyl amine (248a) (6.450 g, 6.860 mL, 53.30 mmol) was added to the

pre-swollen polymer 61 (7.331 g, 5.776 mmol, 0.790 mmol of II g) in THF (250 mL).

The reaction mixture was refluxed under N2 for 72 hours. After the reaction was

completed, the polymeric amine 261a was separated by filtration,and washed with 200

mL of each of the following solvents: THF, acetone, methanol, 1: 1 methanol: water,

water, NaOH, water, methanol, ethanol and ether. The polymer 261a was dried under

high vacuum to constant weight and 7.000 g of the resin was obtained. The loading of the

polymer 261a was determined from elemental analysis, and was 0.707 mmol ofNH/g.

Dehalogenation procedure:37b

The dehalogenation was conducted according for the procedure described for amine

250a. The polymeric amine 261a was dried to constant weight under high vacuum, and

6.950 g of the resin was obtained. The loading was the same as before the dehalogention

procedure.

IH NMR 8: 7.60 - 6.13 (m, 32H, Ar, polymer matrix and amine moiety), 4.50 - 4.27 (br s,

2H, PhCH20-), 3.95 - 3.70 (br s, IH, N-CH), 3.58 - 3.15 (br s, O-CH2), 2.70 - 0.70 (m,

25H, CH3, CH2, CH, polymer matrix, and CH3, CH2, amine moiety).

B C NMR 8: 145.4 (C-Ar), 128.2 (C-Ar), 127.9 (C-Ar), 125.9 (C-Ar), 73.0 (PhCH20-),

58.6 (CH-N), 45.4 (CH2N), 44.0 (CH2), 42.0 (CH2, polymer matrix), 40.7 (CH, polymer

matrix), 29.9 (CH2), 26.4 (CH2).

Anal. Found: C, 86.25; H, 7.80; N, 0.903, which was used to determine the loading of

amine 261a.
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CL polystyrene-supported (lR, 2S)-2-methylamino-l-phenyl-l-propanol (256a)

247

to

252a

lf~Ph
H OH

A solution of (lR,2S)-(-)-norephedrine (249) (2.052 g, 13.60 mmol) in benzene (10 ml)

was added to the pre-swollen mixture of polymeric benzyl iodide 247 (5.00 g) in benzene

(100 mL), followed by the addition of sodium carbonate (2.00 g, 18.9 mmol). The

reaction mixture was refluxed for 48 hours. The reaction was cooled down to room

temperature, and the polymer 252a was separated by filtration. The polymer was washed

with 200 mL of each of the following solvents: water, MeOH, THF, MeOH. It was dried

under the high vacuum to constant weight, and 5.50 g of the polymer-supported

ephedrine 252a was obtained. The loading of the polymer was determined by elemental

analysis, and was 1.257 mmol ofNH/g.

Dehalogenation procedure:37b

The dehalogention step was performed according to the procedure described for the

polymer 250a. The loading of the polymer was the same as before dehalogentaion.

IH NMR 8: 8.60 - 5.65 (m, 50H, Ar), 5.00 - 4.35 (m, 3H, CH2CI, polymer matrix, and

CH-OH), 3.98 - 2.65 (m, 5H, PhCH2-N, N-CH2, NH and OH), 2.35 - 0.00 (m, 25H, CH2,

CH, polymer matrix, and CH3, amino-alcohol moiety)

BC NMR 8: 128.9 (C-Ar), 68.1 (PhCH2-N), 66.0 (N-CH), 40.5 (CH, polymer matrix),

15.5 (CH3)

Anal. Found: C, 86.09; H, 7.50; N, 1.76, which was used to determine the loading of

amino-alcohol 252a.
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CL polystyrene-supported (lS, 2R)-2-dimethylamino-l-phenyl-l-propanol (56a)

247
I

56a

: Ph
N~
I :-

CH3 OH

A solution of (1S,2R) ephedrine (55a) (2.052 g, 12.44 mmol) in benzene (10 ml) was

added to the pre-swollen mixture of polymeric benzyl iodide 247 (5.000 g) in benzene

(100 mL), followed by the addition of sodium carbonate (1.00 g, 9.45 mmol). The

reaction mixture was refluxed for 48 hours. The reaction was cooled down to room

temperature, and 56a was separated by filtration. The polymer 56a was washed with 150

mL of each of the following solvents: water, MeOH, THF, MeOH. It was dried under

high vacuum to constant weight, and 5.310 g of the polymer-supported ephedrine 56a

was obtained. The loading of the polymer was determined by elemental analysis, and was

1.064 mmol ofNH/g.

Dehalogenation procedure:37b

The dehalogention step was performed according to the procedure described for the

polymer 250a. The loading of the polymer was the same as before dehalogenation.

IH NMR 8: 8.63 - 6.10 (m, 16H, Ar), 5.20 - 4.67 (m, 1H, CH-OH), 4.60-4.15 (m, 1H,

OH), 4.09 - 3.14 (m, 3H, PhCH2-N and N-CH), 2.40 - 0.45 (m, 9H, CH3, CH2, CH,

polymer matrix, and N-CH3, CH3, amino-alcohol moiety)

13C NMR 8: 143.8 (C-Ar), 128.4 (C-Ar), 73.9 (CH-OH), 66.1 (N-CH), 63.8 (PhCH2-N),

40.8 (CH, polymer matrix), 25.7 (N-CH3), 15.5 (CH3)

Anal. Found: C, 85.0; H, 7.96; N, 1.49, which was used to determine the loading of

amino-alcohol 56a.
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N-(3-iodopropyl)-phthalimide (254) 171

o

~N~Br
~ 253

o

o

--....~N~I
~ 254

o

A solution of N-(3-bromopropyl)-phthalimide (253) (0.50 g, 1.86 mmol) in acetone (2

mL) was added to the suspension of sodium iodide (1.395 g, 9.300 mmol) in acetone (15

mL), and the reaction mixture was refluxed for 2.5 hour. Acetone was evaporated, the

residue was diluted with EhO (35 mL), and saturated solution of Na2S203 (30 mL) was

added. The aqueous layer was extracted with Et20 (3 x 35 mL). The organic layers were

combined, dried with MgS04, and the solvent was removed in vacuo giving the crude

product 254 (O.6g). The crude product was purified by DFC (hexane, hexane: AcOEt 4:1)

yielding the pure 258 (0.53 g, 90% yield).

IH NMR 8: 7.85 - 7.57 (m, 4H), 3.71 (t, J= 6.8 Hz, 2H), 3.11 (t, J= 7.2 Hz, 2H), 2.19

(quint, J= 7.0 Hz)

B C NMR 8: 168.3,134.1,132.0,123.4,38.7,32.6,1.4

RF 0.37 (hexane: AcOEt 4:1)

mp= 84-86 °C (lit. 86-88 °C)171
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(S)-(-)-(3-phthalimidopropyl)-1-phenylethylamine (255)

o

crN~1
~ 254

o

A solution of (S)-a-methylbenzylamine (252a) (0.363 g, 3.00 mmol) in THF (5 mL) was

added to the solution of iodide 254 (0.473g, 1.50 mmol) in THF (15 mL). The reaction

mixture was refluxed for 1.5 hour, and potassium carbonate (0.207 g, 1.50 mmol) was

added. The reflux was continued overnight. The reaction mixture was cooled to room

temperature, a saturated solution of sodium bicarbonate (20 mL) was added, and the

mixture was extracted with Et20 (3 x 30 mL). The organic layers were combined, washed

with brine, and dried with MgS04. The solvent was removed in vacuo yielding the crude

product 255 (0.65 g). The crude product was purified by DFC (hexane, hexane: AcOEt

1: 1) and the pure compound 255 was obtained (0.265 g, 57% yield).

IH NMR 8: 7.80 - 7.70 (m, 2H), 7.65 - 7.57 (m, 2H), 7.27 - 7.08 (m, 5H), 3.80 - 3.52 (m,

3H), 2.70 - 2.31 (m, 2H), 1.77 (quint. J= 6.7 Hz, J= 13.4 Hz, 2H), 1.48 (br. s, 1H, NH),

1.27 (d, J= 6.6 Hz, 3H).

l3C NMR 8: 168.3, 145.7, 133.8, 132.1, 128.3, 126.7, 126.5, 123.0, 58.2,44.6, 35.9,28.8,

24.3.

lR: 2958, 1708, 1395 em-I.

MS: (El) 293 (M-l, 97), 231 (6), 188 (32), 160 (42), 134 (16), 105 (l00), 79 (11).

Anal. Calculated for CI9H20N202: C, 74.00; H, 6.54; N, 9.08. Found: C, 73.98; H, 6.49;

N,8.94.



mp= 82 - 85°C

RF 0.27 (hexane: AcOEt 1 : 1)
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(S)-(-)-[N-tert-ButoxycarbonyI-(3-phthalimidopropyl)]-1-phenylethylamine (260)

255

This compound was prepared according to a general procedure for protection of amines.

For the convenience of the reader, the specific procedure is given below.

A solution of 30% Et3N in MeOH (2.5 mL) was added to the solution of amine 255

(0.500 g, 1.62 mmol) in MeOH (20 mL), followed by the addition of (BOC)20 (1.769 g,

8.110 mmol) in MeOH (10 mL) during which the reaction was stirred vigorously. The

reaction mixture was refluxed overnight. The mixture was cooled to room temperature,

and the solvent was removed in vacuo giving the crude product (0.454 g), which was

purified by DFC (hexane, hexane: AcOEt 1: 1), giving the pure compound 256 (0.433 g,

70% yield).

IH NMR (5: 7.80 - 7.60 (m, 4H), 7.25 - 7.00 (m, 5H), 5.65 - 5.14 (br s, IH), 3.53 - 3.36

(m, 2H), 3.03 - 2.85 (br s, 2H), 1.89 - 1.68 (m, 2H), 1.50 - 1.41 (d, J= 7.1 Hz, 3H), 1.41 ­

1.30 (s, 9H)

B C NMR (5: 167.6, 155.2, 141.2, 133.5, 131.8, 127.9, 126.8, 122.7, 79.2, 59.8, 35.4,28.0,

20.6, 16.9, 13.9

IR: 2974, 1710, 1687, 1394, 1365 cm-I.

Anal. Calculated for C24H28N204: C, 70.57; H, 6.91; N, 6.86. Found: C, 70.30; H, 7.08;

N,6.75.



191

MS: (CI-NH3) 409 (M + 1,82),370 (17),353 (26),309 (l00), 266 (10), 203 (8), 120

(15).

RF 0.66 (hexane: AcOEt, 1: 1)

bp= 150 - 152 °C/ 0.05 mm Hg
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(S)-(-)-3-[tert-Butoxycarbonylamino-(1-phenylethyl)]-1-propylamine (248b)

--..-. H2N~N,tPh
tB"'~O

248b

A solution of 95 % hydrazine (1 mL) was added to the solution of amide 256 (0.20 g,

0.49 mmol) in EtOH (10 mL), and the reaction was stirred at room temperature

overnight. A white solid (phthalazine-l A-dione) was filtered off, and washed with EtOH

(10 mL). The filtrate was concentrated in vacuo. The residue was diluted with Et20 (10

mL), and a saturated solution of sodium bicarbonate was added (10 mL). The aqueous

layer was extracted with £t20 (2 x 10 mL). The organic layers were combined, washed

with brine (30 mL), and dried with MgS04• The solvent was removed in vacuo, and the

crude product 248b was obtained (0.15 g). The crude product was purified by DFC

(hexane, hexane: AcOEt 1: 1), giving the pure amine 248b (0.11 g, 81 % yield).

I H NMR 8: 7.45 - 7.09 (m, 5H), 5.59 - 4.98 (br s, IH), 3.23 - 2.70 (m, 2H), 2.65 - 2.35

(m,2H), 1.55 -1.47 (d, J= 7.0 Hz, 3H), 1.47 - 1.23 (m, lIB).

l3C NMR 8: 155.9, 141.9, 128.3, 127.0, 79.6, 53.7,49.7,41.4,39.7,33.7,28.5, 17.5.

IR: 2973, 2931,1685,1406,1365,699 cm- I
.

Anal. Calculated for C16H26N202: C, 69.03; H, 9.41; N, 10.06. Found: C, 69.07; H, 9.16;

N,9.99.

MS (CI-NH3) 279 (M + 1, 100),223 (23),179 (24), 120 (5)



RF 0.40 (CH2Ch: MeOH, 85: 15)

[a]25D-77.29 (c 1.11, CH2Ch)

bp= 235 °C/ 15 mm Hg
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CL polystyrene-supported (S)-(N-tert-butoxycarbonyl-3-methylpropylamino)-1­

phenylethylamine (251 a)

247

..

A solution of amine 248b (1.26 g, 4.50 mmol) in THF (10 mL) was added to the pre­

swollen polymeric benzyl iodide 247 (2.25g) in THF (75 mL), and the resulting

suspension was refluxed under N2 for 4 hours. Potassium carbonate (1.24 g, 9.00 mmol)

was added, and the reflux was continued for an additional 68 hours. The amine 255a was

separated by filtration, and washed with 100 mL of each of the following solvents: THF,

MeOH, H20, MeOH, Et20, THF. The polymer 251a was dried under high vacuum to

constant weight (2.40 g). The loading of the resin was calculated by subtractions the

recovered molar amount of amine 251b from the total molar amount of 251b used for

attachment to the polymer 247. The loading of 251a was 0.485 mmol ofNH/g and was

confirmed by elemental analysis.

IH NMR 8: 8.55 - 4.80 (m, 105H, Ar, and CH-N), 3.70 - 3.10 (m, 4H, PhCH2-N, and N­

CH2), 2.64 - 0.00 (m, 110H, CH3, CH2, CH, polymer matrix, and CH3, CH2, amine

moiety)

BC NMR 8: 128.2 (C-Ar), 65.3 (C-O), 40.5 (CH, polymer matrix), 28.5 (CH3-C), 17.3

(CH3)

Anal. Found: C, 84.12; H, 8.07; N, 2.72, which was used to determine the loading of

resin 251a.
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(S,S)-(+)-4-(1-phenylethylamino)-2-methyl-l-pentanol (262)

JL0H
266

.. , I iOH

Ph/'-N~
I

H
262

This compound was prepared according to a general procedure for reductive amination of

ketones. I72 For the convenience of the reader, the specific procedure is given below.

A solution of 4-hydroxy-4-methyl-2-pentanone (266) (1.00 g, 1.07 mL, 8.62 mmol) in

MeOH (5 mL) was added to the solution of (S)-a-methylbenzylamine (248a) (0.949 g,

1.00 mL, 7.84 mmol) in MeOH (25 mL), followed by the addition ofNaBH3CN (0.518 g,

8.23 mmol). The reaction was stirred at room temperature overnight. The solvent was

removed in vacuo, 10% solution of hydrochloric acid (50 mL) was added to the residue,

and the aqueous layer was extracted with E120 (30 mL). The acidic aqueous layer was

cooled to 0 °c, and it was made basic by the slow addition of NaOH (ca. 4 g). The basic

solution was extracted with E120 (3 x 50 mL). The organic layers were combined,

washed with brine (75 mL), and dried with MgS04• The solvent was removed in vacuo

giving the mixture of two products in a 5:1 ratio (GC). The products were separated by

DFC (hexane, hexane: AcOEt 1:1) and the major isomer 262 was obtained (0.866 g, 50%

yield). Only the major isomer was fully characterized.

IH NMR 8: 7.28-7.05 (m, 5H), 3.82 (quart, J= 6.5 Hz, 1H), 3.20-3.04 (m, 1H), 1.41-1.33

(m,2H), 1.28 (d, J= 6.5 Hz, 3H), 1.23 (s, 3H), 1.11 (s, 3H), 1.19 (d, J= 6.2 Hz, 3H)

13C NMR 8: 145.6, 128.5, 127.2, 126.3,70.2,54.7,48.3,31.8,28.5,22.1,21.3

IR: 3310,2943,2913,2865,1454,1071 em-I.

MS: (NH3) 222 (M + 1, 100), 148 (9), 105 (5)
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Anal. Calculated for C14H23NO : C, 75.97; H, 10.47; N, 6.33; Found: C, 75.87; H, 10.51;

N,6.60.

RF 0.31 (CH2Ch: MeOH, 97: 3)

bp= 135 - 139 °C/6 mmHg
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CL polystyrene-supported (S, S)-N-[2-(4-methoxy-4-methyl)pentyl]-1­

phenylethylamine (264a)

247

..

A solution of amine 262 (2.00 g, 9.05 mmol) in dry DMF (5 mL) was added to the

washed suspension ofNaH (0.350 g, 14.6 mmol) in DMF (80 mL) at 0 °c under N2. The

reaction mixture was stirred for 1 hour at 0 °c, and the polymer-supported benzyl iodide

247 (6.50 g) was added, followed by the addition of dry K2C03 (2.498 g, 18.10 mmol).

The reaction mixture was heated at 80 °c for 72 hours. The mixture was cooled to room

temperature, and polymer 264a was separated by filtration, washed with H20 (500 mL),

followed by washing with 150 mL of each of the following solvents: MeOH, EtOH, THF,

MeOH, EhO. The polymer 264a was dried to constant weight under high vacuum (7.00

g). The loading of the resin 264a was determined by elemental analysis and was 0.414

mmolofNH/g.

IH NMR 8: 9.00 - 6.00 (m, 33H, Ar), 3.90 - 2.60 (m, 6H, CHzCI, polymer matrix, and

PhCH20-, Ph-CH-N, CH-N), 2.10 - 0.10 (m, 12H, CHz, CH, polymer matrix, and CH3,

CH2, amine moiety)

B C NMR 8: 128.1 (C-Ar), 66.0 (O-C), 45.5 (CH), 40.7 (CH, polymer matrix), 15.5 (C­

CH3).

Anal. Found: C, 89.23; H, 7.64; N, 0.58, which was used to determine the loading of

resin 264a.



198

3-[(lR, 2R, 5S)-2-isopropyl-5-methylcyclohexylamino]-1-propanol (263)

-----
267 263

This compound was prepared according to a general procedure for reductive amination of

ketones. l72 For the convenience of the reader, the specific procedure is given below.

A solution of3-aminopropanol (268) (2.212 g, 2.250 mL, 29.50 mmol) in dry MeOH (10

mL) was added to the solution of (-)-menthone (267) (5.00 g, 5.60 mL, 32.5 mmol) in dry

MeOH (50 ml), followed by the addition ofNaBH3CN (2.047 g, 32.50 mmol). The pH of

the reaction was adjusted to 6 by addition of glacial acetic acid, and the reaction mixture

was stirred overnight at room temperature. The mixture was diluted with water (30 mL),

and EhO (75 mL) was added. The organic layer was extracted with 10% solution ofHCI

(3 x 50 mL). The acidic aqueous layers were made basic by slow addition of solid NaOH.

The basic solution was extracted with Et20 (3 x 50 mL). The organic layers were

combined, dried with MgS04 and the solvent was removed in vacuo giving the crude

product as two diastereomers in 1: 6 ratio (GC) (7.00 g). The crude product was purified

by DFC (hexane, hexane: AcOEt 1:1) giving the pure compound 263 (3.50 g, 55%) yield).

IH NMR 8: 3.63 (dd, J= 5.2 Hz, J= 5.2 Hz, 2H), 2.86 (dt, J= 5.4 Hz, J= 11.2 Hz, 1H),

2.73 (d, J= 2.9 Hz, 1H), 2.47 (dt, J= 5.7 Hz, J= 11.5 Hz, 1H), 1.81 (dd, J= 2.4 Hz, J=

13.8 Hz, 1H), 1.61 - 1.48 (m, 4H), 1.48 - 1.35 (m, 1H), 1.30 (ddd, J= 6.6 Hz, J= 3.2 Hz,

J= 13.2 Hz, 1H), 1.04 - 0.87 (m, 1H), 0.75 (d, J= 2.6 Hz, 3H), 0.74 - 0.69 (m, 9 H).

B C NMR 8: 64.4, 54.3,48.1,47.9,37.5,35.2,31.5,28.9,25.6,24.8,22.5, 21.4, 20.5

IR: 3250,2969, 1600, 1374, 700 cm- I
.
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MS: (CI-NH3) 214 (M + 1, 100), 128 (22)

29 1[a] D +22.39 (c 1.14, CH2C 2)

bp= 145 - 147 °C/ 7 mmHg

RF 0.52 (CH2Ch: MeOH, 85:15)

Anal. Calculated for CI3H27NO: C, 73.18; H, 12.75; N, 6.56; Found: C, 73.13; H, 12.91;

N,6.87.
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CL polystyrene-supported (lR, 2R, 5S)-[N-(1-metoxypropyl)]-2-isopropyI-5­

methylcyclohexylamine (265a)

247

A solution of amino-alcohol 263 (3.443 g, 16.20 mmol) in DMF (10 mL) was added to

the suspension of washed NaH (0.450 g, 18.7 mmol) in DMF (100 mL) at 0 °c, and the

reaction mixture was stirred under N2 for 2 hours. The mixture was warmed to room

temperature, and resin 247 was added (6.50 g), followed by the addition of dry K2C03

(2.235 g, 16.20 mmol). The reaction mixture was heated at 80°C for 72 hours. The

reaction mixture was cooled to room temperature, and the polymeric amine 269a was

separated by filtration. The polymer 265a was washed with water (500 mL), followed by

washing with 200 mL of each of the following solvents: water: MeOH (1: 1), MeOH,

EtOH, THF, MeOH, Et20, and THF. The resin 265a was dried under high vacuum to

constant weight (7.00 g). The loading of the polYmer 265a was determined by the

elemental analysis and was 0.536 mmol ofNH/g.

IH NMR 8: 8.40 - 5.60 (m, 44H, Ar), 3.90 - 3.70 (m, 4H, CH2CI, polymer matrix, and

PhCH20-), 3.70 - 3.40 (m, 8H, OCH2, and CH2N), 2.70 - 1.42 (m, 4H, CH, polymer

matrix, CH2 in the ring), 1.42 - 0.60 (m, 10H, CH2, polymer matrix, and CH3, CH2, CH,

amine moiety).

B C NMR 8: 128.1 (C-Ar), 66.0 (PhCH20-), 54.5 (CH-i-Pr), 48.8 (CH-N), 45.5 (CH2N),

40.7 (CH, polYmer matrix), 25.8 (CH3), 15.5 (CH3).

Anal. Found: C, 88.70; H, 8.42; N, 0.75, which was used to determine the loading of

resin 265a.
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4.6 Synthesis ofsoluble polymer-supported chiral amines.

Non-cross-Iinked (NCL) polystyrene-supported methyl chloride (145)69

21

~CI
145

The resin 145 was prepared according to the procedure described in the literature.69 For

the convenience of the reader the specific procedure is presented below.

A solution of chloromethyl polystyrene 269 (2.42 g, 2.19 mL, 15.0 mmol) in benzene (20

mL) was added to a solution of styrene 21 (17.04 g, 14.72 mL, 155.0 mmol) in benzene

(100 mL). The oxygen was purged from the reaction vesse1* and AIBN (0.128 g, 0.780

mmol) was added. The reaction mixture was heated to 80°C under N2for 48 h. After the

reaction was completed, the bulk ofbenzene was removed under vacuum, and the soluble

polymer 145 was precipitated by addition of MeOH (ca. 500 mL) at --40 °c. The polymer

145 was separated by filtration, and washed with 250 mL of each of the following

solvents: MeOH, water: MeOH (1: 1), water and MeOH. The polymer 145 was dried to

constant weight under high vacuum (20.00 g). The loading of the resin 145 was 1.00

mmol of ClIg.

IH NMR 8: 7.35 - 6.93 (m, 30 H, Ar), 6.93 - 6.37 (m, 20H, Ar), 4.69 - 4.46 (br s, 2H,

CH2CI), 2.23 - 1.79 (br s, 7H, CH; polymer matrix), 1.78 - 1.30 (br s, 18 H, CH2; polymer

matrix).
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l3C NMR 8: 145.5 (C-Ar), 137.0 (C-Ar), 128.7 (C-Ar), 128.5 (C-Ar), 128.2 (C-Ar), 128.0

(C-Ar), 126.4 (C-Ar), 125.8 (C-Ar), 46.5 (CH2Cl), 40.6 (CH2, polymer matrix).

*Oxygen was purged from the reaction vessel by applying vacuum, and flushing with N2•

This was repeated three times.
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NCL polystyrene-supported methyl iodide (270)

~Cl
145

~I
270

Sodium iodide (31.2 g, 208 mmol) was added to the solution of soluble polymer 145

(34.69 g, 34.69 mol, 1.00 mmol of CII g) in acetone (500 mL), and the reaction mixture

was refluxed for 24 hours. After the reaction was completed, the bulk of acetone was

distilled off. The residue was cooled to -40 DC and MeOH (ca. 600 mL) was added. The

polymer 270 was separated by filtration, and washed with the 500 mL of each of the

following solvents: water and MeOH. The polymer 270 was dried to constant weight

under high vacuum (36.50 g). Loading of the polYmer was not determined after this

reaction.

IH NMR 8: 7.31 - 6.85 (m, 25 H, Ar), 6.82 - 6.33 (m, 15H, Ar), 4.55 - 4.33 (br s, 2H,

CH2X), 2.18 - 1.72 (m, 5H, CH, polYmer matrix), 1.72 - 1.35 (m, 18 H, CH2 and CH3

polymer matrix)

BC NMR 8: 145.4 (C-Ar), 136.5 (C-Ar), 128.2 (C-Ar), 127.8 (C-Ar), 126.4 (C-Ar), 125.8

(C-Ar), 44.0 (CH2, polYmer matrix), 42.8 (CH, polymer matrix), 6.5 (CH2I)
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NCL polystyrene-supported (S)-N-(methyl)-l-phenylethylamine (273a)

270

A solution of (S)-(-)-a-methylbenzyl amine (248a) (l0.00 g, 10.64 mL, 82.64 mmol) in

benzene (20 mL) was added to the solution of polymer 270 (20.00 g, 20.00 mmol, 1.000

mmol of halide! g) in benzene (100 mL), and the reaction mixture was refluxed for 48

hours. The mixture was cooled to room temperature, and the solvent was removed in

vacuo. The residue was cooled to -45 DC, and MeOH was added (300 mL). The amine

273a precipitated and, was separated by filtration, washed with water (l00 mL) and

MeOH (500 mL). The amine was dried to constant weight under high vacuum (20.50 g).

The loading of the polymer 273a was determined by elemental analysis and was 0.69

mmolofN!g.

IH NMR 8: 7.41 - 6.98 (m, 102 H, Ar), 6.98 - 6.45 (m, 66H, Ar), 4.74 - 4.54 (br s, 2H,

CH2X,) 4.29 (q, J= 6.4 Hz, 2H, CH-N), 4.01 - 3.55 (m, 9 H, CH2 and NH), 2.20 - 1.86

(m, 30H, CH, polymer matrix), 1.78 - 1.40 (m, 72H, CH3, amine moiety and CH2, CH3,

polymer matrix)

B C NMR 8: 145.2 (C-Ar), 128.8 (C-Ar), 128.6 (C-Ar), 128.4 (C-Ar), 128.1 (C-Ar), 127.8

(C-Ar), 127.0 (C-Ar), 126.1 (C-Ar), 125.8 (C-Ar), 57.6 (-CH-N), 51.1 (CH2N), 46.4

(CH2CI), 43.9 (CH2, polymer matrix), 40.5 (CH, polymer matrix), 24.4 (CH3, amine

moiety)

Anal. Found: C, 89.16; H, 7.74; N, 1.47, which was used to determine the loading of

resin 273a.
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NCL polystyrene-supported 3-methoxy-l-propanol (284a)

~Cl
145

--." ~O~OH
284a

A solution of 1,3-propanediol (257) (6.84 g, 6.58 mL, 90.0 mmol) in THF (20 mL) was

added to the suspension of washed NaH (1.20 g, 50.0 mmol) in THF (100 mL) at 0 °c

under N2. After stirring for 2 hours, the solution of soluble polymer 145 (15.00 g, 15.00

mmol, 1.00 mmol of ClI g) in THF (75 mL) was added dropwise, and the reaction

mixture was refluxed for 48 hours. The mixture was cooled to 0 °c, and water (50 mL)

was added. The layers were separated, and the aqueous layer was extracted with AcOEt

(3 x 300 mL). The organic layers were combined, dried with MgS04, and the bulk of the

solvents were removed in vacuo. The residue was added to cold (-45°C) MeOH (300

mL), and the polymer 284a precipitated. The polymer 28a was separated by filtration,

washed with water (500 mL) and MeOH (750 mL). The polymer was dried under high

vacuum to constant weight (15.50 g). The loading of resin 284a was calculated by

gravimetric analysis and was 0.90 mmol of OH/g.

IH NMR 8: 7.40 - 6.86 (m, 79 H, Ar), 6.86 - 6.30 (m, 50H, Ar), 4.55 - 4.35 (m, 2H,

CH2Cl), 3.89 - 3.73 (m, 2H, CH20H), 3.73 - 3.55 (m, 2H, CH20), 3.45 - 3.25 (m, IH,

OH), 2.35 - 2.10 (m, 10 H, CH2), 2.05 - 1.73 (m, 25 H, CH, polymer matrix), 1.70 - 1.24

(m, 47 H, CH2, CH3, polymer matrix)

B C NMR 8: 145.4 (C-Ar), 131.2 (C-Ar), 128.9 (C-Ar), 128.1 (C-Ar), 127.8 (C-Ar), 125.8

(C-Ar), 73.3 (CH2-OAr), 69.3 (-OCH2), 62.1 (CH20H), 45.5 (CH2CI), 44.0 (CH2,

polymer matrix), 40.6 (CH, polymer matrix), 32.4 (CH2, alcohol moiety).
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NCL polystyrene-supported 6-methoxy-l-hexanol (284b)

145

'~O~OH
284b

A solution of 1,6-hexanediol (59) (9.912 g, 84.00 mmol) in dry DMF (30 mL) was added

to the cold (0 °C) suspension of washed NaH (1.200 g, 50.00 mmol) in DMF (150 mL)

and the reaction was stirred under N2 for 2 hours. Soluble polymer 145 (12.00 g, 12.00

mmol, 1.000 mmol of ClI g) was added. The reaction mixture was heated to 80°C for 48

hours. The bulk ofDMF was removed by distillation under reduced pressure. The residue

was cooled to -45 °c, and MeOH (500 mL) was added. The polymer 284b precipitated,

and was separated by filtration. The compound 284b was washed with water (250 mL),

MeOH (500 mL), and dried under high vacuum to constant weight (12.50 g). The loading

of the polymer 284b was determined by OH titration method, and was 0.98 mmol of

OH/g.

IH NMR 8: 7.45 - 6.35 (m, 55H, Ar), 4.55 - 4.34 (m, 2H, CH2CI), 3.75 - 3.60 (m, 2H, 0­

CH2Ph, 3.55 - 3.30 (m, 4H, OCH2, CH20H), 2.35 - 1.25 (m, 41H, CH2, CH, CH3,

polymer matrix), 1.1 - 0.85 (m, 8H, CH2).

B C NMR 8: 145.4 (C-Ar), 138.0 (C-Ar), 128.1 (C-Ar), 127.8 (C-Ar), 125.8 (C-Ar), 73.5

(CH2-OAr), 64.3 (OCH2), 63.0 (CH20H), 45.5 (CH2Cl), 44.4 (CH2, polymer matrix),

40.6 (CH, polymer matrix), 32.9 (CH2), 29.9 (CH2), 26.3 (CH2), 25.8 (CH2).
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NCL polystyrene-supported I-methoxy-3-iodopropane (285a)

~O~OH
284a 285a

Imidazole (2.652 g, 39.00 mmol) was added to the solution of triphenylphosphine (10.22

g, 39.00 mmol) in dry CH2Ch (200 mL), followed by addition of iodine (9.906 g, 39.00

mmol), and polymeric alcohol 284a (l0.0 g, 9.00 mmol, 0.90 mmol of OHI g). The

reaction mixture was protected from light, and stirred under N2 at room temperature for

48 hours. The mixture was then extracted with a saturated solution of Na2S203 (3 x 50

mL). The organic layers were dried with MgS04, and the bulk of CH2Ch was removed in

vacuo. The residue was cooled to --45 °c, and MeOH (500 mL) was added. The polymer

285a precipitated, was separated by filtration, washed with H20 (200 mL) and MeOH

(500 mL). The resin 285a was dried under high vacuum to constant weight (10.5 g). The

loading of the polymer 285a was not determined at this stage.

IH NMR 8: 7.27 - 6.27 (m, 84 H, Ar), 4.55 - 4.33 (m, 2H, CH2CI), 4.25 - 3.92 (m, 2H,

CH2-0Ar), 3.60 - 3.41 (m, 2H, OCH2), 3.39 - 3.20 (m, 2H, CH2I), 3.89 - 3.50 (m, 2H,

CH2), 2.15 - 1.18 (m, 44 H, CH, CH2, CH3, polymer matrix).

l3C NMR 8: 145.3 (C-Ar), 132.1 (C-Ar), 128.1 (C-Ar), 127.8 (C-Ar), 125.8 (C-Ar), 73.2

(CH2-OAr), 69.5 (O-CH2), 44.3 (CH2CI), 42.0 (CH2, polymer matrix), 40.6 (CH, polymer

matrix), 33.7 (CH2), 3.7 (CH2I).
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NCL polystyrene-supported I-methoxy-6-iodohexane (285b)

~O~OH
284b

- a ~O~I
285b

Imidazole (2.652 g, 39.00 mmol) was added to the solution of triphenylphosphine (10.22

g, 39.00 mmol) in dry CH2Cb (200 mL), followed by addition of iodine (9.906 g, 39.00

mmol), and polymeric alcohol 284b (10.0 g, 9.80 mmol, 0.98 mmol of OH/ g). The

reaction mixture was protected from light, and stirred under N2 at room temperature for

48 hours. The mixture was then extracted with a saturated solution of Na2S203 (3 x 50

mL). The organic layers were dried with MgS04, and the bulk of CH2Cb was removed in

vacuo. The residue was cooled to -45 °C and MeOH (500 mL) was added. The polymer

precipitated, was separated by filtration and washed with H20 (200 mL) followed by

MeOH (500 mL). The polymer 285b was dried under high vacuum to constant weight

(10.68 g). The loading of the resin was not determined at this stage.

IH NMR 8: 7.40 - 6.25 (m, 120H, Ar), 4.57 - 4.32 (m, 2H, CH2C1), 4.3 - 3.92 (m, 2H, 0­

CH2Ar), 3.62 - 3.35 (m, 2H, OCH2), 3.30 - 3.11 (m, 2H, CH2I), 2.98 - 2.54 (m, 4H, CH2,

alcohol moiety), 2.38 - 1.05 (m, 80H, CH2, CH, polymer matrix, and CH2 alcohol

moiety).

B C NMR 8: 145.4 (C-Ar), 132.2 (C-Ar), 128.6 (C-Ar), 128.0 (C-Ar), 127.8 (C-Ar), 125.8

(C-Ar), 73.0 (CH2-OAr), 70.3 (OCH2), 40.5 (CH, polymer matrix), 33.6 (CH2), 30.4

(CH2), 29.7 (CH2), 25.5 (CH2), 7.5 (CH2I).
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NCL polystyrene-supported (S)-N-(3-metboxypropyl)-1-pbenyletbylamine (286a)

A solution of (S)-(-)-a-methylbenzylamine (248a) (4.588 g, 4.880 mL, 37.90 mmol) in

benzene (10 mL) was added to a solution of polymer 286a (6.32 g) in benzene (150 mL),

and the reaction mixture was refluxed under N2 for 48 hours. The mixture was cooled to

room temperature, and the bulk of benzene was removed in vacuo followed by further

cooling to -45 °c and slow addition of MeOH (300 mL). The polymeric amine 286a

precipitated, was separated by filtration, washed with water (250 mL) and MeOH (300

mL). The polymer 286a was dried to constant weight under high vacuum (6.00 g). The

loading of amine 286a was determined by elemental analysis and was (0.905 mmollg)

IH NMR 8: 7.50 - 6.40 (m, 142H, Ar), 4.59 - 4.33 (m, 2H, CH2CI), 4.28 - 4.16 (m, 1H,

CH-OAr), 3.98 - 3.80 (m, 1H, CH-OAr), 3.70 - 3.35 (m, 3H, OCH2, CH-N), 2.85 - 2.57

(m, 2H, N-CH2), 2.53 - 1.13 (m, 80H, CH2, CH, CH3, polymer matrix and CH2, CH3,

amine moiety).

B C NMR 8:145.3 (C-Ar), 135.0 (C-Ar), 128.6 (C-Ar), 128.1 (C-Ar), 127.8 (C-Ar), 126.8

(C-Ar), 125.8 (C-Ar), 72.9 (CH2-OAr), 68.9 (OCH2), 64.4 (CH-N), 58.7 (CH2-N), 45.4

(CH2CI), 44.1 (CH2, polymer matrix), 40.5 (CH, polymer matrix), 30.0 (CH2), 24.5

(CH3).

[a]26n -4.02 (c 1.12, AcOEt, polymer).

Anal. Found: C, 87.50; H, 8.03; N, 1.17, which was used to determine the loading of

resin 286a.
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NCL polystyrene-supported (S)-N-(6-methoxyhexyl) -l-phenylethylamine (287a)

~O~I
285b

.. ~O/'l-...X'N~Ph\ - 14 I

287a H

A solution of (S)-(-)-a-methylbenzylamine (248a) (4.588 g, 4.880 mL, 37.90 mmol) in

benzene (10 mL) was added to a solution of polymer 285b (9.25 g) in benzene (150 mL),

and the reaction mixture was refluxed under N2 for 48 hours. The mixture was cooled to

room temperature, and the bulk of benzene was removed in vacuo. The residue was

further cooled down to -45 DC, and MeOH (300 mL) was slowly added. The polymeric

amine 287a precipitated, was separated by filtration, washed with water (250 mL) and

MeOH (300 mL). The polymer 287a was dried to constant weight under high vacuum

(9.50 g). The loading of amine 287a was detennined by elemental analysis, and was

0.742 mmol/g.

IH NMR d: 7.25 - 6.25 (m, 179H, Ar), 4.60 - 4.35 (m, 2H, CH2CI), 4.25 - 4.13 (m, IH,

ArO-CH2), 3.95 - 3.70 (m, IH, ArO-CH2), 3.55 - 3.30 (m, 4H, OCH2, CH-N, NH), 2.65 ­

0.90 (m, 115H, CH2, CH polymer matrix, and CH2N, CH2, CH3, amine moiety).

BC NMR 8: 145.4 (C-Ar), 134.0 (C-Ar), 128.6 (C-Ar), 128.1 (C-Ar), 125.8 (C-Ar), 73.2

(CH2-OAr), 70.5 (OCH2), 64.3 (CH-N), 58.5 (CH2N), 45.4 (CH2, polymer matrix), 40.6

(CH, polymer matrix), 29.5 (CH2), 27.3 (CH2), 26.2 (CH3).

[a]28D -2.9 (c 5.22, CH2Ch, polymer).

Anal. (Found): C, 87.62; H, 7.69; N, 1.05, which was used to detennine the loading of

amine 287a.
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(R)-N-tert-Butoxycarbonylphenylglycine (278)173

NH2

~- ~OH
Ph~ ."

o
277

>l)(NH
~ ~OH

Ph~ If
o

278

This compound was prepared according to the general procedure for protection of amino

groUp.173 For a convenience of the reader the specific procedure is given below.

(R)-Phenylglycine (277) (13.59 g, 90.00 mmol) was added to a stirred solution ofNaOH

(3.96 g, 0.10 mmol) in water (100 mL) and t-BuOH (54 mI). Di-tert-butyldicarbonate

(20.07 g, 92.00 mmol) was added to the mixture in portions over a 1.5 hour period (a

white precipitate was fonned). The resulting suspension was stirred at room temperature,

overnight. The cloudy mixture was diluted with water (100 mL), and extracted with

CH2Ch (150 mL). The organic extract was washed with diluted aqueous NaOH (100

mL). The NaOH wash was combined with the basic water layer from the first extraction,

cooled (ice bath) and slowly acidified with diluted H2S04 (ca. 200 mL). The white

product precipitated, and was extracted with CH2Cb (3 x 150 mL). The combined

organic layers were washed with water (3 x 250 mL), dried with MgS04, and

concentrated on the vacuum at a temperature not exceeding 30°C. To remove the

remaining t-BuOH, the crude product was dissolved in CH2Cb (250 mL), and the solvent

was removed in vacuo. This was repeated 3 times. The product was dried under vacuum

to give white crystalline solid of278 (17.824 g, yield 79%).

mp= 87 - 90°C (lit. mp= 88 - 91 °C)174

IH NMR 8: 12.0 (s, IH), 7.45-7.25 (m, 5H), 5.14 (d, J= 5.2 Hz, IH), 1.02 (s, 9 H).
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(R)-l- [2-(N-tert-Butoxycarbonylamino)-2-phenylacetyI]piperidine (279)96

>l)lNH
~ -,OH

Pll If
°

278

>l)lNH 0
• ~ ~N

Ph' If
°279

A solution ofDCC (13.13 g, 64.00 mmol) in dry CH2Ch (50 mL) was cooled to 0 °c and

t-Boc-phenylglycine (278) (16.00 g, 64.00 mmol) in dry CH2Cb (45 mL) was added,

dropwise. After 15 minutes of stirring at 0 DC, piperidine (7.286 g, 9.000 mL, 86.00

mmol) was slowly added over a period of 3 hours using a syringe pump. The resulting

mixture was stirred at room temperature, overnight. The solvent was removed under

vacuum, AcOEt (250 mL) was added, and the resulting suspension was stirred over a

period of 30 minutes. The white precipitate (dicyc1ourea) was filtered and washed with

AcOEt (250 mL). The solvent was removed in vacuo, and the crude product was obtained

(20.00 g, 98% yield). The crude product was subjected to deprotection without

purification. The analytical sample 279 was crystallized from hexane.

mp= 94-95 °c (lit. 95.5-98 °C)96

IH NMR: 7.40 - 7.26 (m, 5H), 6.13 (d, J= 10 Hz, IH), 5.55 (d, J= 10 Hz, IH), 3.80­

3.70 (m, IH), 3.50 - 3.38 (m, IH), 3.35 - 3.20 (m, 2H), 1.68 - 1.33 (m, 5H), 1.38 (s, 9H),

1.00 - 0.85 (m, 1H).

RF 0.23 (hexane: AcOEt 4:1)
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(R)-1-(2-Aminophenyl)ethyl-l-piperidine (276)175

Ph~O
o 280

NH
2 0

Ph~N
276

Crude amide 280 (17.00 g, 78.00 mmol) was dissolved in Et20 (100 mL) and was added

to the suspension of LiAIH4 (8.00 g, 205 mmol) in Et20 (200 mL). The resulting mixture

was stirred at room temperature, overnight. Concentrated aqueous ammonia solution

(ca.5 mL), and 40% K2C03 solution (ca. 5mL) were added to the reaction mixture.

Stirring was continued until all of LiAIH4 decomposed (white precipitate was formed).

Ce1ite (ca. 6.0 g) was added, and the solid was filtered. The filtrate was extracted with

Et20 (3 x 150 mL). The filter cake (aluminum salts and celite) was washed with Et20

(100 mL). The solid was filtered, and the filtrate was added to the organic layer from the

first extraction. The ether layer was dried with MgS04, and the solvent was removed in

vacuo yielding the crude product 276 (16.00 g). This was purified by DFC (hexane:

AcOEt 9: 1, CH2Ch: MeOH 9:1) giving the pure amine 276 (10.56 g, 71 % yield).

I H NMR 8: 7.41 - 7.28 (m, 5H), 4.10 (dd, J= 3.8 Hz, J= 10.2 Hz, IH), 2.62 - 2.52 (m,

2H), 2.43-2.25 (m, 2H), 1.86 (s, 2H), 2.19 (s, 2H), 1.68 - 1.38 (m, 6H).

B C NMR 8: 144.7, 128.3, 127.0, 126.7, 67.8,55.0,52.7,26.3,24.6.

bp= 200-204 °C/4 mm Hg (lit. 155 °CI 0.1 mm Hg)175
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NCL polystyrene-supported (R)-l-[(2-methylamino-2-phenyl)ethyl]piperidine

(274a)

~l
270

~NHO
Ph~N

274a

A solution of amine 276 (3.023 g, 15.00 mmol) in benzene (25 mL) was added to the

solution of soluble polymer-supported benzyl iodide 270 (15.00 g) in benzene (150 mL),

followed by the addition of K2C03 (8.28 g, 60.0 mmol). The reaction mixture was

refluxed under N2 for 48 hours. The solvent was removed in vacuo, and the residue was

cooled to -45 °c. Methanol (300 mL) was added, and the amine 274a precipitated. The

polymer 274a was separated by filtration, washed with MeOH (200 mL), water (500 mL)

and MeOH (750 mL). The resin was then dried to constant weight under high vacuum

(16.10 g). The loading of amine 274a was calculated by subtracting the molar amount of

unreacted amine 276 from the total molar amount of 276 used for the attachment to the

polymer and was 0.850 mmol of NH/g. Loading of the resin 274a was confirmed by

elemental analysis.

IH NMR 8: 7.25 - 6.25 (m, 70H, Ar), 3.90 - 3.65 (m, 2H, CH2-N), 3.53 - 3.18 (m, 3H,

CH2-N, CH-N), 2.83 - 2.58 (m, 2H, CH2), 2.58 - 2.28 (m, 4H, CH2), 2.20 - 1.10 (m, 40H,

CH2, CH, polymer matrix and CH2amine moiety)

l3C NMR 8: 145.5 (C-Ar), 143.3 (C-Ar), 128.5 (C-Ar), 128.1 (C-Ar), 127.8 (C-Ar), 127.3

(C-Ar), 125.8 (C-Ar), 66.7 (CH2N), 55.1 (CH-N), 54.7 (CH2-N), 40.6 (CH, polymer

matrix), 26.4 (CH2), 24.7 (CH2)

[a]28D -21 (c 0.52, AcOEt, polymer)

Anal. Found: C, 87.81; H, 7.42; N, 1.91, which was used to calculate the loading of resin

274a.
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NCL polystyrene-supported methyl 2-methyloxycarbonylpropanoate (289)

e-<rCI --" .-Q-yC02Me
Me02C

289

Dimethyl malonate (288) (9.24 g, 8.00 mL, 70.0 mmol) was added to the suspension of

washed NaH (1.00 g, 38.2 mmol) in THF (250 mL) at 0 °C. The reaction mixture was

stirred at this temperature for 2 hours, and the polymer 145 (30.00 g, 30.00 mmol, 1.00

mmol of CI/g) was added. The reaction mixture was refluxed under N2 for 48 hours.

After the reaction was completed, the bulk of THF was evaporated and the polymer 289

was precipitated at -45 °C by addition of MeOH (ca. 600 mL). The polymer 289 was

separated by filtration, and washed with the following solvents: water (300 mL) and

MeOH (500 mL). The resin 289 was dried to constant weight under high vacuum (29.00

g). The loading of the polymer 289 was estimated by the subtraction of the recovered

molar amount of dimethyl malonate (288) (2.627 g, 20 mmol) from the total molar

amount that was used in the beginning (9.24 g, 70.0 romol). The loading of the polymer

289 was 1.67 mmol ofester functionality/g.

IH NMR 8: 7.46 - 6.25 (m, 37H, Ar), 4.33 - 4.10 (m, 4H, OCH2), 3.77 - 3.55 (m, IH,

CH), 3.35 - 3.09 (m, 2H, CH2Ph), 2.25 - 1.01 (m, 29H, CH2, CH, polymer matrix and

CH3, ester moiety).

13C NMR 8: 169.1 (C=O), 145.5 (C-Ar), 135.2 (C-Ar), 128.1 (C-Ar), 127.8 (C-Ar), 125.8

(C-Ar), 61.5 (CH2-O), 54.0 (CH), 40.5 (CH, polymer matrix), 34.4 (CH2Ph), 14.2 (CH3).



217

NCL polystyrene-supported 2-methylhydroxy-l-propanol (290)

A solution of polymer 289 (30.0 g, 50.1 mmol, 1.67 mmol of COzMe/g) in THF (200

mL) was added dropwise to a suspension of LiAIH4 (5.693 g, 150.0 mmol) in THF (200

mL) at 0 °C under Nz. The reaction mixture was stirred at room temperature, overnight.

When the reaction was completed, the mixture was cooled to 0 °C, and the excess of

LiAIH4 was decomposed by slow addition of aqueous ammonia (5 mL) and AcOEt (50

mL). Another portion of AcOEt was added (200 mL), and the crude mixture was stirred

at room temperature for 1 hour. Next, celite (ca. 5.00 g) was added, and the solid was

filtered. The water layer was separated from the organic layer. The organic layer was

washed with water (3 x 75 mL). The water layer was washed with AcOEt (3 x 150 mL).

The organic layers were combined, dried with MgS04, and the solvent was evaporated.

The cake (celite and aluminum salts) was refluxed with AcOEt (500 mL) overnight. The

solid was filtered and the filtrate was dried with MgS04, and added to the crude polymer

290. The solvent was removed in vacuo, and the resin 290 was precipitated at - 45°C by

addition of MeOH (500 mL). The polymer was separated by filtration, and washed with

the following solvents: water (100 mL) and MeOH (500 mL). The resin was dried to

constant weight under high vacuum (16.624 g). The loading of 290 was determined by

titration ofOH and was 1.6 mmol ofOH/g.

IH NMR 8: 7.35 - 6.08 (m, 132H, Ar), 3.90 - 3.35 (m, 8H, CH20H), 3.25 - 3.08 (m, IH,

OH), 2.70 - 2.35 (m, 2H, CHzPh), 2.32 - 0.90 (m, 73H, CHz, CH, polymer and CH,

linker).

B C NMR 8: 145.4 (C-Ar), 128.1 (C-Ar), 125.8 (C-Ar), 65.5 (CH20H), 44.0 (CH, linker),

40.6 (CH, polymer matrix), 33.5 (CH2Ph).
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NCL polystyrene-supported 2-methyliodo-l-propyl iodide (291)

290

OH

..

291

Imidazole (5.44 g, 80.0 mmol) was added to a solution of triphenylphosphine (20.1 g,

80.0 mmol) in dry CH2Cb (300 mL) followed by the addition of iodine (20.32g, 80.0

mmol). Next, polymer 290 was added (16.00 g, 25.60 mmol, 1.60 mmol of OH/g). The

reaction mixture was protected from light, and stirred under N2 at room temperature for

48 hours. After the reaction was completed the bulk of CH2Cb was evaporated and the

polymer 291 was precipitated at -45 DC by addition ofMeOH (300 mL), and separated by

filtration. The polymer 291 was washed with water (150 mL), and MeOH (500 mL). It

was dried to constant weight under high vacuum (16.413 g). The loading of .291 was not

determined at this stage.

IH NMR 8: 7.35 - 6.20 (m, 69H, Ar), 3.45 - 3.30 (m, IH, CH2I), 3.21 - 3.03 (m, IH,

CH2I), 2.71 - 2.51 (m, 1H, CH, linker), 2.43 - 2.20 (m, 2H, CH2Ph), 2.17 - 1.73 (m, 12H,

CH, polymer matrix), 1.73 - 1.28 (m, 28H, CH2, polymer matrix).

l3C NMR 8: 145.5 (C-Ar), 134.1 (C-Ar), 132.3 (C-Ar), 130.3 (C-Ar), 128.8 (C-Ar), 128.1

(C-Ar), 127.8 (C-Ar), 125.8 (C-Ar), 46.6 (CH, linker), 46.2 (CH2Ph), 44.0 (CH2, polymer

matrix), 40.6 (CH, polymer matrix), 14.1 (CH2I).
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NCL polystyrene-supported (R,R)-N,N'-di-[1-phenyl-2-(1-piperidinyl)ethyl]-2­

methyl-1,3-propanediamine (292)

•

291 O NH NH 0
N~Ph Ph~N

2928

A solution of amine 272 (4.634 g, 22.70 mmol) in DMF (30 mL) was added to a solution

of polymer 291 (8.40 g), followed by the addition of dry K2C03 (5.00 g, 36.2 mmol). The

reaction mixture was heated at 80°C under N2 for 48 hours. The solvent was removed by

distillation under reduced pressure, and the residue was cooled to -45 DC, followed by the

addition of MeOH (250 mL). The amine 292a precipitated, and was separated by

filtration. The polymer 292a was washed with MeOH (250 mL), H20 (250 mL), MeOH

(500 mL), and dried to constant weight under vacuum (9.0 g). The loading of 292a was

calculated by Fajans titration and was 0.715 mmol ofNH/g. The loading of the polymer

292a was also estimated by subtracting the molar amount of the recovered amine 276

from the total molar amount of 276 used for the attachment to the polymer 291. It was

determined to be 0.704 mmol of NH/g. The loading determined by elemental analysis

was 0.644 NH/g.

IH NMR 8: 7.54 - 6.20 (m, 74H, Ar), 5.03 - 4.55 (m, 1H, CHN), 4.17 - 3.20 (m, 3H,

CH2N and NH), 2.73 - 0.70 (m, 47H, CH2, CH polymer matrix, and CHzPh, CH, linker

and CH2N, CH2, amine moiety).

BC NMR 8: 145.6 (C-Ar), 137.1 (C-Ar), 128.2 (C-Ar), 127.9 (C-Ar), 125.9 (C-Ar), 55.1

(CHzN), 46.2 (CHN), 44.1 (CHzN), 42.8 (CH, linker), 40.6 (CH, polymer matrix), 30.0

(CH2, linker), 26.4 (CHz), 21.2 (CHz).



220

Anal. (Found): C, 81.82; H, 7.09; N, 1.07, which was used to detennine the loading of the

resin 292a.
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NCL polystyrene-supported (lR, 2S)-2-dimethylamino-1-phenyl-1-propanol (271a)

145 271a

A solution of (lR,2S)-ephedrine 55a (3.50 g, 21.3 mmol) in DMF (10 mL) was added to a

solution of freshly prepared soluble polymer 145 (16.5 g, 15.0 mmol, 1.00 mmol ofCI/g)

in DMF (100 mL). Sodium carbonate (2.258 g, 21.30 mmol) was added, and the reaction

mixture was heated at 80°C for 24 hours. DMF was removed by distillation, and the

residue was cooled to - 45°C, followed by addition of MeOH (250 mL). The polymer

271a precipitated and was separated by filtration. It was washed with water (500 mL),

MeOH (500 mL), and was dried to constant weight under high vacuum (17.0 g). The

loading of polymer 271a was determined by elemental analysis and was 1.00 mmol of

NH/g.

IH NMR 8: 7.66 - 6.80 (m, 38H, C-Ar, polymer matrix), 6.80 - 6.23 (m, 18H, ephedrine),

5.20 - 4.90 (m, IH, CH-OH), 3.90 - 3.47 (m, 3H, CH2Ph, CH), 3.16 - 2.85 (m, 1H, OH),

2.27 - 1.70 (m, 10H, CH, polymer matrix, and CH3- N), 1.70 - 1.19 (m, 16H, CH2,

polymer matrix), 1.10 - 0.90 (m, 3H, CH3)

B C NMR 8: 145.4 (C-Ar), 142.6 (C-Ar), 128.5 (C-Ar), 128.4 (C-Ar), 128.2 (C-Ar), 127.8

(C-Ar), 127.2 (C-Ar), 126.4 (C-Ar), 126.2 (C-Ar), 125.8 (C-Ar), 72.5 (CH-OH), 60.9

(CH-N), 59.0 (CH2Ph), 40.6 (CH, polymer matrix), 38.8 (CH3-N), 12.6 (CH3)

26 ([a] D +2.81 c 1.82, AcOEt, polymer)

Anal. Found: C, 85.73; H, 7.25; N, 1.51, which was used to determine the loading of

resin 271a.
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NCL polystyrene-supported (lS, 2S)-2-dimethylamino-l-phenyl-l-propanol (272a)

tKrC1

145

----.. --{Y'N~
~ IOH

275a

A solution of (1S,2S)-pseudoephedrine 275 (3.50 g, 21.3 mmol) in DMF (10 mL) was

added to the solution of freshly prepared soluble polymer 145 (16.5 g, 15.0 mmol, 1.00

mmol of ClI g,) in DMF (l00 mL). Sodium carbonate (2.258 g, 21.30 mmol) was added

and the reaction mixture was heated at 80°C for 24 hours. DMF was removed by

distillation. The residue was cooled to - 45°C, followed by addition of MeOH (250 mL).

The polymer 272a precipitated, and was separated by filtration. The resin 272a was

washed with water (500 mL), MeOH (500 mL), and dried to constant weight under high

vacuum (17.279 g). The loading of 272a was determined by elemental analysis and was

1.00 mmol ofN/g.

IH NMR 8: 7.55 - 6.89 (m, 34H, Ar, polymer matrix), 6.89 - 6.30 (m, 20H, Ar,

pseudoephedrine), 4.45 - 4.30 (m, 1H, CH-OH), 3.85 - 3.58 (m, 1H, CH-N), 3.58 - 3.35

(m, CH2-N), 2.94 - 2.68 (br s, 1H, OH), 2.30 - 2.10 (m, 3H, N-CH3), 2.10 - 1.77 (m, 7H,

CH, polymer matrix), 1.77 - 1.22 (m, 19H, CH2, CH3, polymer matrix), 0.92 - 0.75 (m,

3H, CH3-N)

B C NMR 8: 145.5 (C-Ar), 142.2 (C-Ar), 136 (C-Ar), 128.4 (C-Ar), 128.1 (C-Ar), 127.9

(C-Ar), 127.6 (Ar-C), 125.8 (C-Ar), 125.7 (C-Ar), 75.0 (CH20H), 65.3 (CH-N), 58.1

(CH2-N), 44.0 (CH2, polymer matrix), 40.5 (CH, polymer matrix), 30.5 (CH3N), 7.7

(CH3)

[a]25n +27.55 (c 2.72, AcOEt, polymer)

Anal. Found: C, 85.26; H, 7.16; N, 1.60, which was used to determine the loading of

resin 272a.
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(lR,2S)-2-(benzylmethylamino)-1-phenyI-l-propanoI (340a)176- 178

H ' 0'N~
I OH

55a

,(')
Ph/"'-N~

I OH

340a

Benzyl bromide (5.00 g, 3.37 mL, 42.4 mmol) was added to a solution of (lR,2S)­

ephedrine (55a) (7.00 g, 18.2 mmol) in dry DMF (125 mL), followed by the addition of

K2C03 (6.805 g, 42.40 mmol), and the reaction mixture was stirred at 80°C for 24 hours.

The reaction mixture was cooled to room temperature, and the bulk of DMF was

removed by distillation. Water was added (125 mL), and the residue was extracted with

EhO (3 x 125 mL). The organic layers were combined and washed with aqueous NaOH

(3 x 100 mL), dried with MgS04 and the solvent was removed in vacuo giving the crude

product 340a. The crude product was purified by distillation, followed by crystallization

from hexane to give pure 340a (10.0 g, 92% yield).

l H NMR 8: 7.45-7.20 (m, 10H), 4.9 (d, J= 4.8 Hz, 1H), 3.70-3.55 (m, 2H), 2.95 (ddd, J=

6.7 Hz, J= 11.8 Hz, J= 6.7 Hz, 1H), 2.23 (s, 3H), 1.02 (d, J= 6.8 Hz, 3H).

mp= 46-47 °C (lit. 49-51 °C)176

RF 0.30 (hexane: AcOEt 4:1)
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(lS,2S)-2-(benzylmethylamino)-1-phenyl-1-propanol (341a)178

9H IOIN
'H

278

9H I·OIN
,-/Ph

344a

Benzyl bromide (5.00 g, 3.37 mL, 42.4 mmol) was added to a solution of (18,28)­

pseudoephedrine 275 (7.00 g, 18.2 mmol) in dry DMF (125 mL), followed by the

addition of K2C03 (6.805 g, 42.40 mmol), and the reaction mixture was stirred at 80 DC

for 24 hours. The mixture was cooled to room temperature, and the bulk of DMF was

removed by distillation. Water was added (125 mL), and the residue was extracted with

Et20 (3 x 125 mL). The organic layers were combined, washed with aqueous NaOH (3 x

100 mL), dried with MgS04, and the solvent was removed in vacuo giving the crude

product 341a. The crude product was purified by distillation, followed by crystallization

from hexane and pure 341a was obtained (9.68 g, 89% yield).

1H NMR 8: 7.45 - 7.20 (m, 10 H), 5.10 (br s, IH), 4.35 (d, J= 9.7 Hz, IH), 3.79 (d, J=

12.9 Hz, 1H), 3.53 (d, J= 12.9 Hz, 1H), 2.85 - 2.73 (m, 1H), 2.27 (s, 3H), 0.85 (d, J= 6.5

Hz,3H).

mp= 44-45 DC (lit. 43-46 DC)178

[a]D25 +125 (c 1.0, CHC!) (lit. +126 (c 1.0, CHC!))179

RF 0.45 (hexane: AcOEt 4:1)
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4.7. Methodology study of a-functionalization of carbonyl compounds using SP and

LP reagents.

Procedure H: Generation of lithium tropinone enolate (201a) using insoluble, polymer­

supported chirallithium amide.

4
Me

201

'iit-chirallithium amide
•

(additive)

201a

A solution of n-BuLi in hexane (1.45 M, 1.4 mL, 2.049 mmol) was added to a slurry of

an insoluble polymer-supported chiral amine (2.049 mmol) in THF (20-25 mL) at 0 °c

under N2, and the resulting suspension was stirred for 8 hours. After cooling to -78°C,

tropinone (201) solution (0.258g, 1.86 mmol) in THF (2 mL) was added dropwise for

over 3 or 45 minutes, and the resulting mixture was stirred at -78°C, overnight.

Alternatively:

A solution of n-BuLi in hexane (1.45 M, 1.4 mL, 2.049 mmol) was added to a slurry of

an insoluble, polymer-supported chiral amine (2.049 mmol) in THF (15 mL) at 0 °c

under N2, and the resulting suspension was stirred for 6 hours. A solution of lithium

chloride in THF (0.63 M, 2.95 mL, 1.86 mmol) was added, and the stirring was continued

for an additional 2 hours. After cooling to -78°C, a solution oftropinone (201) (0.258 g,

1.86 mmol) in THF (2 mL) was added dropwise for over a period of 3 minutes, and the

resulting mixture was stirred overnight.
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Procedure J: Generation of the tropinone lithium enolate (201a) using a soluble polymer­

supported chirallithium amide

4
Me

201

e-chirallithium amide
•

(additive)

201a

A solution of n-BuLi in hexane (1.9 M, 0.58 mL, 1.1 mmol) was added to a solution of a

soluble polymer-supported chiral amine (1.1 mmol) in THF (25 mL) at 0 °c under N2,

and the resulting solution was stirred for 2.5 hours. After cooling to -78°C, a solution of

tropinone (201) (0.1 39g, 1.00 mmol) in THF (2 mL) was added dropwise for over a

period of 3 minutes, and the resulting mixture was stirred for 3 hours.

Alternatively:

A solution of n-BuLi in hexane (1.9 M, 0.58 mL, 1.1 mmol) was added to a solution of a

soluble polymer-supported chiral amine (1.1 mmol) in THF (25 mL) at 0 °c under N2,

and the resulting solution was stirred under N2 for 1.5 hours. Lithium chloride in THF

(1.0 mmol) was added, and the stirring was continued for an additional hour. After

cooling to -78°C, a solution oftropinone (201) (0.139 g, 1.00 mmol) in THF (2 mL) was

added dropwise for over a period of 3 minutes, and the resulting mixture was stirred for 3

hours. (If necessary, a second equivalent of n-BuLi (1.9 M, 0.58 mL, 1.1 mmol) was

added, and the reaction mixture was warmed p to a°C. The stirring was continued for 30

minutes, followed by cooling of the reaction mixture to -78°C before the addition of an

electrophile.)
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(lS, 2R, 1 'S)-2-(1 '-Hydroxybenzyl)-8-methyl-8-azabicyclo[3.2.l]-octane-3-one (206)
2,101

201a

With SP chirallithium amides:

202

Benzaldehyde (0.217 g, 0.208 mL, 2.049 mmol) was added to a solution of tropinone

lithium enolate (20la) (1.86 mmol) generated by procedure H, and the reaction mixture

was stirred for 4 hours. The mixture was quenchd with a saturated solution of NH4CI (10

mL). The polymeric amine was separated by filtration, washed with NH4CI solution and

EhO. The water layer was separated and extracted with Et20 (3 x 50.00 mL). The organic

extracts were combined, dried with MgS04. The solvents were removed in vacuo, and the

crude product was obtained. The crude product 202 was purified by DFC (hexane: AcOH

4: 1, CH2Ch: MeOH 85: 15). The yield and enantiose1ectivity of the reaction are

presented in Table 31 ofResults and Discussion.

With LP chirallithium amides:

Benzaldehyde (117 mg, 0.11 mL, 1.10 mmol) was added to a solution of tropinone

enolate (20la) (1.0 mmol) generated by procedure J, and the reaction mixture was stirred

for 1 hour. The mixture was quenched with a saturated solution of NH4CI (10 mL), and

quickly extracted with AcOEt (3 x 100 mL). The organic extracts were combined, dried

with MgS04, and the solvents were removed in vacuo. The residue was cooled to --40 DC,

and MeOH (100 mL) was added. A soluble polymer-supported amine precipitated, and

was separated by filtration. The filtrate was concentrated in vacuo, and the crude product
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was obtained. It was purified by DFC (hexane: AcOH 4: 1, CH2Ch: MeOH 85: 15) and

the yield and enantioselectivity of the reaction is presented in Table 33.

The pure product 202 was characterized by 1H NMR, and the spectrum was identical as

that previously recorded?' 101

IH NMR 8: 7.42 - 7.20 (m, 5H), 5.23 (d, J= 3.0 Hz, IH), 3.60 (d, J= 6.5 Hz, IH), 3.60 ­

3.45 (m, IH), 2.86 (ddd, J j = 15.5 Hz, J2= 5.0 Hz, J3= 1.5 Hz, IH), 2.47 (s, 3H), 2.45 ­

2.41 (m, IH), 2.32 (ddd, J j = 15.5 Hz, J2= 4 Hz, J3= 1.5 Hz, IH), 2.35 - 2.10 (m, 2H),

1.70 - 1.50 (m, 2H).
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6-[N-(2,2,2-Trichloroethoxycarbonyl)-N-methyl]-amino-2-cyclohepten-l-one (230)2,
88d,101

20la

With PS chirallithium amides:

o

--" Me ~'NJJI
Troc

230

2,2,2-Trichloroethyl chlorofonnate (0.434g, 0.28 mL, 2.05 mmol) was added to a

solution of tropinone lithium enolate (20la) (1.86 mmol) generated by procedure H, and

the reaction mixture was stirred for 8 hours. The reaction was quenched with a saturated

solution of K2C03 (10 mL), and a polymeric amine was separated by filtration, washed

with saturated solution of K2C03 (l00 mL) and Et20 (l00 mL). The water layer was

separated, and extracted with E120 (3 x 50.00 mL). The organic extracts were combined,

and dried with MgS04 • The solvents were removed in vacuo, and the crude product was

obtained. The crude product was purified by DFC (hexane, hexane: AcOEt 1: 1) giving

the pure 230. The yields and the enantioselectivities of the reaction are presented in Table

33 of Results and Discusion.

With LP chirallithium amides:

2,2,2-trichloroethyl chlorofonnate (277 mg, 0.18 mL, 1.30 mmol) was added to a solution

of tropinone lithium enolate (20la) (1.0 mmol) generated by procedure J (with a second

equivalent ofn-BuLi), and the reaction mixture was stirred for 2 hours. The mixture was

quenched with saturated solution of K2C03 (10 mL), and was allowed to wann to room

temperature followed by extraction with AcOEt (3 x 100 mL). The organic extracts were

combined, dried with MgS04, and the solvents were evaporated. The residue was cooled

to --40 °c, and MeOH (100 mL) was added. A soluble polymer-supported amine

precipitated, and was separated by filtration. The filtrate was concentrated in vacuo, and
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the crude product 230 was obtained. It was purified by DFC (hexane, hexane: AcOEt 1:1)

to give the pure compound 230. The yields are shown in Table 34 of Results and

Discussion.

The pure product 230 was characterized by 1H NMR, and the spectrum was identical as

that recorded previously.2, 88d, 101

I H NMR 8: 6.64 (ddd, J]= 12.0 Hz, J2= 6.0 Hz, J3= 5.0 Hz, IH), 6.05 (d, J= 12.0 Hz,

IH), 4.75 (s, 2H), 4.55 (s, IH), 2.90 (s, 3H), 2.92 - 2.82 (m, 2H), 2.68 - 2.45 (m, 2H),

2.20 - 1.90 (m, 2H).
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Ethyll-benzyl-2-oxocyclopentanecarboxylate (304)141

&t0Et __.....

303

Experiment performed in solution:

~ 1.
OEtVBn-

304

A solution of n-BuLi in hexane (2.05 M, 1.08 mL, 2.20 mmol) was added to a solution of

diisopropylamine (0.222 g, 0.30 mL, 2.20 mmol) in toluene (5 mL) at 0 °c under N2, and

the reaction mixture was stirred for 30 minutes. A solution of f3-ketoester 303 (0.312 g,

0.290 mL, 2.00 mmol) in toluene (2 mL) was added, and the stirring was continued for an

additional 6 hours. Benzyl bromide (0.855 g, 0.6 mL, 5.00 mmol) was added, and the

reaction mixture was warmed to room temperature and stirred for 18 hours. A solution of

NaOH (50 mL) was added, and the mixture was extracted with EhO (3 x 50 mL). The

organic layers were combined, dried with MgS04• Solvents were removed in vacuo, and

the crude product was obtained (300 mg), which was purified by DFC (hexane, hexane:

AcOEt 1:1) to give pure 304 (0.246 g, 50% yield).

Experiment performed in "liquidphase":

A solution ofn-BuLi in hexane (2.13 M, 0.590 mL, 1.25 mmol) was added to the solution

of amine 292a (1.925 g, 1.240 mmol, 0.644 mmol of N/ g) in toluene (50 mL) at 0 °c

under N2, and the reaction mixture was stirred for 2.5 hour. The reaction mixture was

cooled to -20°C, and f3-ketoester 303 was added (0.100 g, 0.640 mmol) in toluene (0.5

mL). The stirring was continued at -20°C for another 4 hours, followed by warming the

mixture to 0 °c, and stirring for 2 additional hours at this temperature. Benzyl bromide

(0.719 g, 0.50 mL, 4.20 mmol) was added, and the reaction mixture was stirred

overnight. The reaction mixture was warmed to room temperature, and the stirring was
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continued for an additional 24 hours. Next, phthalimide (0.735 g, 5.00 mmol) was added

in THF: toluene mixture (1: 1, 5 mL). The reaction mixture was poured to cold (-45°C)

MeOH (100 mL), and most of the polymeric amine 292a precipitated as a very fine

powder. The solvents were evaporated in vacuo, the residue was cooled to -45 DC, and

MeOH was added (100 mL). The remaining polymeric amine 292a precipitated, was

separated by filtration, and washed with MeOH (3 x 50 mL). The methanol filtrate was

combined with the one from the first filtration, and concentrated in vacuo giving the

crude product 304 (0.120 g). It was purified by DFC (hexane, hexane: AcOEt 1:1) to give

pure compound 304 (0.108 g, 67% yield).

Pure compound 304 was characterized by IH and l3C NMR, and the spectra are in

agreement with spectra reported in the literature. 180

IH NMR 8: 7.26 - 7.09 (m, 5 H), 4.15 (q, J= 7.1 Hz, J=14.3 Hz, 2H), 3.18 (d, J= 13.7

Hz, IH), 3.09 (d, J= 13.7 Hz, IH), 2.43 - 2.27 (m, 2H), 2.06 - 1.80 (m, 3H), 1.63 - 1.49

(m, IH), 1.22 (t, J= 7.1 Hz, 3 H).

l3C NMR 8: 214.9, 171.0, 136.7, 130.3, 128.4, 126.9, 61.6, 61.5, 39.0, 38.4, 31.8, 19.5,

14.1.
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2-Methyl-l-trimethylsilyloxy-tertralin-l-ene (322)181

ch-..
323 322

A solution ofn-BuLi in hexane (2.5 M, 3.76 mL, 9.4 mmol) was added to the solution of

diisopropylamine (0.949 g, 1.32 mL, 9.40 mmol) in THF (30 mL) at 0 °c, and the

reaction mixture was stirred for 0.5 hour. The solution of LDA was cooled to -78°C, and

freshly distilled Et3N (4.23 mL, 3.071 g, 30.08 mmol), followed by TMSCI (3.31 mL,

2.837 g, 30.08 mmol) was added. The reaction mixture was stirred for 5 minutes, racemic

2-methyl-1-tetralone (323) (1.50 g, 1.42 mL, 9.40 mmol) was added, and the stirring was

continued for an additional 2.5 hour. The reaction mixture was quenched with a saturated

solution ofNH4CI (30 mL), and quickly extracted with EhO (3 x 100 mL). The organic

extracts were washed with brine (150 mL), dried with MgS04 and the solvents were

removed in vacuo The crude product 322 was obtained (2.175 g) and was purified by

DFC (hexane, hexane: AcOEt 95: 5) to give sHyl enol ether 322 (1.74 g, 80% yield).

The IH NMR spectrum was in agreement with the spectrum reported in the literature. I81

IH NMR 8: 7.34 (d, J= 7.5 Hz, 1H), 7.26 - 7.15 (m, 1H), 7.12 - 7.07 (m, 2H), 2.50 (t, J=

7.8 Hz, 2H), 2.28 (t, J= 8.0 Hz, 2H), 1.84 (s, 3H), 0.23 (s, 9 H).
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(R)-2-Methyl-l-tetralone (323)161

322

roo \\'
~ ..'
~I

(R)-323

A solution of MeLi/ LiBr in EhO (1.5 M, 0.74 mL, 1.1 mmol) was added to the solution

of silyl enol ether 322 (0.232 g, 1.00 mmol) in Et20 (3 mL) at room temperature, and the

reaction mixture was stirred under N2for 1.5 hour. The solution was cooled to -20°C and

toluene was added (10 mL). The solution was added via cannula to the solution of soluble

polymer-supported chiral amino-alcohol 271a (1.1 mmol) in toluene (30 - 50 mL). The

reaction mixture was stirred at this temperature for 2 hours, then cooled down to --45 °c

and the stirring was continued for additional 20 hours. The reaction mixture was cooled

to -78°C, and glacial acetic acid (0.36 g, 0.34 mL, 6.0 mmol) in toluene (2 mL) was

added. The stirring was continued for 3 hours, and the reaction mixture was poured into

cold MeOH (100 mL, -45 °C). The solvents were removed in vacuo, and the crude

product 323, along with 271a was obtained. The residue was cooled to -45 °c again, and

MeOH (100 mL) was added again. The resin 271a precipitated, was separated by

filtration, and washed with MeOH (3 x 75 mL). The methanol wash was combined with

the filtrate, and the solvent was evaporated in vacuo giving the crude product 323. It was

purified by DFC (hexane, hexane: AcOEt 95: 5). Yields and enantioselectvities of the

reaction are presented in Table 38 ofResults and Discussion.

The pure compound 323 was characterized by 1H NMR, and the spectrum was In

agreement with a recorded spectrum of commercially available 2-methyl-1-tetralone.

IH NMR 8: 8.30 (d, J= 7.8 Hz, 1H), 7.44 (t, J= 7.4 Hz, 1H), 7.34 - 7.16 (m, 2H), 3.11 ­

2.88 (m, 2H), 2.57 (ddd, J= 6.8 Hz, J= 11.9 Hz, J= 18.6 Hz, 1H), 2.25 - 2.11 (m, 1H),

1.86 (dddd, J= 5.1 Hz, J= 11.7 Hz, J=l1.7 Hz, J= 23.6 Hz, 1H), 1.26 (d, J= 6.8 Hz, 3H).
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(R)-2-isopropyl-5-methyl-l-trimethylsilyloxy-l-cyclohexene (337)182

Clo

267 337

OTMS

Triethylamine (1.640 g, 2.26 mL, 16.25 mmol) was added to a solution of (-)-menthone

(267) (2.000 g, 2.24 mL, 13.00 mmol) in dry acetonitrile (30 mL), followed by the

addition of TMSCI (1.762 g, 2.05 mL, 16.25 mmol) and sodium iodide (2.437 g, 16.25

mmol). The reaction mixture was stirred at room temperature for 2 hours. A saturated

solution ofNH4CI (30 mL) was added, and the mixture was extracted with hexane (3 x 75

mL). The organic layer was dried with MgS04, and the solvents were removed in vacuo

giving the crude product 337 (2.6 g). It was purified by DFC (hexane, hexane: AcOEt

95 :5) to give pure silyl enol ether 337 (2.428 g, 83 % yield).

The pure silyl enol 337 ether was characterized by IH and BC NMR. The spectra were in

agreement with spectra reported in the literature. I82a

IH NMR b: 3.01 (hept, J= 6.9 Hz, J= 18.9 Hz, 1 H), 2.11 - 1.89 (m, 2H), 1.76 - 1.58 (m,

3H), 1.34 - 1.28 (m, IH), 1.08 - 1.13 (m, IH), 0.94 (d, J= 6.0 Hz, 3H), 0.90 (d, J= 7.0 Hz,

6 H), 0.15 (s, 9H).

BC NMR b: 140.9, 120.5,39.2,31.4,29.8,26.3,21.7,20.7,20.5,0.9.
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2-Isopropyl-5-methyl cyclohexanone (338 + 339)157

:{OTMS
1. n-BuLi, additive, 60 :toOOC,THF

• +
2.e-pseudoephedrine (272a)

~

337 338 339

A solution ofn-BuLi in hexane (0.94 mL, 2.21 M, 2.07 mmol) was added to the mixture

of silyl enol ether 337 (232 mg, 1.02 mmol) and t-BuOH or N-benzylpseudoephedrine

(341a) (1.05 mmol) in THF (10 mL) was added. The mixture was stirred at 0 °c under N2

for 2 hours. The solution was cooled to -78°C, and was added via cannula to the solution

of soluble polymer-supported pseudoephedrine (272a) (1.00 g, 1.00 mmollg, 1.00 mmol)

in THF (20 mL). The reaction mixture was stirred at the temperature for 4 hours. The

reaction mixture was poured down to the cold (-45°C) MeOH (150 mL), polymer 272a

precipitated, and was separated by filtration. The filtrate was concentrated in vacuo

giving the crude product as the mixture of 338 and 339. The crude product was purified

by DFC (hexane, hexane: AcOEt 95:5). The yields and diastereoselectivities of the

reaction are presented in Table 40 of Results and Discussion.

The pure product 338 was characterized by 1H NMR. The spectrum was in agreement

with recorded spectrum of commercially available (-)-menthone and was also in

agreement with the spectrum of (-)-menthone reported in the literature. 183

IH NMR 8: 2.19 (ddd, J= 1.6 Hz, J= 3.6, J= 12.7 Hz, 1H), 2.10 - 1.60 (m, 6H), 1.30 ­

1.15 (m, 2H), 0.86 (dd, J= 1.8 Hz, J= 6.1 Hz, 3H), 0.76 (dd, J= 1.9 Hz, J= 6.6 Hz, 3H),

0.71 (dd, J= 1.9 Hz, J= 6.6 Hz, 3H).
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Table 1. The results of different additives on the enantioselectivity of the ring-opening of
tropinone (24).

Entry Chiral Additive Yield Ee

amine (eq.) (0/0)a (%)b

1 (8,8)-204a - 70 44

2 (8,8)-204a HCl salt 74 93

3 (8,8)-204a LiCl (0.10) 84 49

4 (8,8)-204a LiCl (0.25) 92 85

5 (8,8)-204a LiCl (0.50) 90 95

6 (8,8)-204a LiCl (1.0) 92 96

7 (8,8)-204a LiCl (2.0) 94 95

8 (8,8)-204a LiBr (0.10) 90 35

9 (8,8)-204a LiBr (0.25) 82 54

10 (8,8)-204a LiBr (0.50) 88 63

11 (8,8)-204a LiBr (l.0) 93 73

12 (8,8)-204a LiBr (2.0) 85 88

13 (8,8)-204a LiI (0.1 0) 94 41

14 (8,8)-204a LiI (0.25) 84 42

15 (8,8)-204a LiI (0.50) 96 37

16 (8,8)-204a LiI (1.0) 67 40

17 (8,8)-204a LiI (2.0) 78 41

18 (8,8)-204a LiCl04 (0.10) 91 48

19 (8,8)-204a LiCI04 (0.25) 83 44

20 (8,8)-204a LiCl04 (0.50) 80 50

21 (8,8)-204a LiCl04 (l.0) 85 45

22 (8,8)-204a LiCl04 (2.0) 90 56

23 (8,8)-204a CeCb (0.10) 94 63

24 (8,8)-204a CeCb (0.25) 82 44

26 (8,8)-204a CeCb (0.50) 24 38

27 (8,8)-204a CeCb (1.0) 71 80
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(R)-1-(2-Amino-2-phenylacetyl)piperidine (280)96, 168

>l)lNH 0
Ph~N

o
279

..

280

Trifluoroacetic acid (150 mL) was added to t-Boc-phenylglycine piperidine (279) (18.0 g,

57.0 mmol) at 0 °c, and stirred for 1 hour. Benzene (250 mL) was added to the resulting

mixture, and the trifluoroacetic acid was removed with benzene under vacuum. This was

repeated 3 times. The residue was made basic by treating with an excess of NaOH, and

was extracted with Et20 (3 x 150 mL), dried with MgS04 and concentrated under

vacuum to give the crude product 280 (11.00 g, 89%). The crude product was subjected

to reduction without further purification. The analytical sample of 280 was purified by

DFC (10 % AcOEt in hexane: 10 % MeOH in CH2Ch).

The analytical sample 280 was characterized by 1H NMR, which was in agreement with

the literature. 168

IH NMR 8: 7.40 - 7.23 (m, 5H), 4.75 (s, IH), 3.80 - 3.68 (m, IH), 3.50-3.40 (m, IH),

3.30 - 3.15 (m, 2H), 2.19 (s, 2H), 1.63 - 1.25 (m, 5H), 1.05 - 0.85 (m, IH).
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28 (8,8)-204a ZnCb(0.10) 72 80

29 (8,8)-204a ZnCh(0.25) 45 62

30 (8,8)-204a ZnCh(0.50) 40 86

31 (8,8)-204a ZnCb (1.0) 40 90

32 (8,8)-204a ZnCh(2.0) 42 88

33 (8,8)-204a HMPA (0.10) 66 43

34 (8,8)-204a HMPA (0.25) 86 43

35 (8,8)-204a HMPA (0.50) 77 45

36 (8,8)-204a HMPA (1.0) 71 39

37 (8,8)-204a HMPA (2.0) 85 35

38 (8,8)-204a HMPA (3.0) 93 39

39 (8,8)-204a TMEDA (0.10) 63 34

40 (8,8)-204a TMEDA (0.25) 98 45

41 (8,8)-204a TMEDA (0.50) 92 36

42 (8,8)-204a TMEDA(1.0) 45 40

43 (8,8)-204a TMEDA(2.0) 46 45

44 (8,8)-204a LiF (0.10) 60 33

45 (8,8)-204a LiF (0.25) 41 25

46 (8,8)-204a LiF (0.50) 55 38

47 (8,8)-204a LiF (1.0) 70 38

48 (8,8)-204a LiF (2.0) 76 37

49 (8,8)-204a DMPU (0.10) 99 43

50 (8,8)-204a DMPU (0.25) 89 39

51 (8,8)-204a DMPU (0.50) 98 54

52 (8,8)-204a DMPU (1.0) 65 52

53 (8,8)-204a DMPU (2.0) 57 38

54 (8,8)-204a H20 (0.005) 48 38

55 (8,8)-204a H20, excess ofn-BuLi 41 24

(0.005)

56 (8,8)-204a H20 (0.005), LiCI (1.0) 48 81
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57 (S,S)-204a H20, excess ofn-BuLi 48 36

(0.005), LiCl (1.0)

58 (S,S)-204a H20 (0.02) 10 -

59 (S,S)-204a H20, excess ofn-BuLi 13 5

(0.02)

60 (S,S)-204a H20 (0.02), LiCl (1.0) 6 3

61 (S)-200a - 52 29

62 (S)-200a TMEDA (1.0) 23 38

63 (S)-200a TMEDA (2.0) 15 33

64 (S)-200a HMPA (0.25) 88 22

65 (S)-200a HMPA (0.50) 66 15

66 (S)-200a HMPA (1.0) 87 19

67 (S)-200a HMPA (2.0) 64 20

68 (S)-200a HMPA(3.0) 44 19

69 (S)-200a CeCb (1.0) 11 34

70 (S)-200a ZnCh(0.05) 42 46

71 (S)-200a ZnCh(0.10) 87 57

72 (S)-200a (0.50) ZnCh 39 31

73 (S)-200a ZnCh (1.0) 10 22

74 (S)-234a - 98 14

75 (S)-235a - 86 78

76 (S)-235a LiCl (1.0) 86 87

77 (S,S)-236a - 22 17

78 (S,S)-236a LiCI (1.0) 60 72

79 (S,S)-237a - 50 48

80 (S,S)-237a HCl salt 89 88

81 (S,S)-209a HCI salt 71 77

82 (R)-190a - 82 83

83 (R)-190a LiCI (0.10) 67 94

84 (R)-190a Liel (0.25) 82 99
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85 (R)-190a LiCI (0.50) 86 94

86 (R)-190a LiCI (1.0) 85 95

87 (R)-190a LiCI (2.0) 79 94

88 (R)-190a LiCI (3.0) 62 98

89 (R)-190a HMPA (0.10) 91 81

90 (R)-190a HMPA (0.25) 57 80

91 (R)-190a HMPA (0.50) 74 86

92 (R)-190a HMPA (l.0) 56 68

93 (R)-190a HMPA(2.0) 49 85

94 (R)-190a HMPA (3.0) 54 84

95 (R)-190a H20 (0.02) 8 6

96 (R)-190a H20 (0.02), LiCI (l.0) 8 10

97 (R)-238a - 80 87

98 (R)-238a LiCI (1.0) 97 96

3: yield after purification of the crude product using flash chromatography; b:
enantioselectivity measured on the crude product by HPLC with Chiralpack AD column
with 85: 15 hexane: IPA

Table 2. Diastereoselectivity of the aldol reaction of the lithium enolate generated from
1,4-cyc1ohexanedione monoethylene ketal (239) followed by the aldol reaction.

Entry Conditions for generation of the enolate Ratio

(procedure) 243:244

1 D (l eq. of LDA) 9: 1

2 D (2 eq. ofLDA) 2: 1

3 E (l eq. ofLDA, 1 eq. ofn-BuLi) 3: 1

4 D (1 eq. of a chiral amine) 9: 1


	lesanko000
	lesanko001
	lesanko002
	lesanko003
	lesanko004
	lesanko005
	lesanko006
	lesanko007
	lesanko008
	lesanko009
	lesanko010
	lesanko011
	lesanko012
	lesanko013
	lesanko014
	lesanko015
	lesanko016
	lesanko017
	lesanko018
	lesanko019
	lesanko020
	lesanko021
	lesanko022
	lesanko023
	lesanko024
	lesanko025
	lesanko026
	lesanko027
	lesanko028
	lesanko029
	lesanko030
	lesanko031
	lesanko032
	lesanko033
	lesanko034
	lesanko035
	lesanko036
	lesanko037
	lesanko038
	lesanko039
	lesanko040
	lesanko041
	lesanko042
	lesanko043
	lesanko044
	lesanko045
	lesanko046
	lesanko047
	lesanko048
	lesanko049
	lesanko050
	lesanko051
	lesanko052
	lesanko053
	lesanko054
	lesanko055
	lesanko056
	lesanko057
	lesanko058
	lesanko059
	lesanko060
	lesanko061
	lesanko062
	lesanko063
	lesanko064
	lesanko065
	lesanko066
	lesanko067
	lesanko068
	lesanko069
	lesanko070
	lesanko071
	lesanko072
	lesanko073
	lesanko074
	lesanko075
	lesanko076
	lesanko077
	lesanko078
	lesanko079
	lesanko080
	lesanko081
	lesanko082
	lesanko083
	lesanko084
	lesanko085
	lesanko086
	lesanko087
	lesanko088
	lesanko089
	lesanko090
	lesanko091
	lesanko092
	lesanko093
	lesanko094
	lesanko095
	lesanko096
	lesanko097
	lesanko098
	lesanko099
	lesanko100
	lesanko101
	lesanko102
	lesanko103
	lesanko104
	lesanko105
	lesanko106
	lesanko107
	lesanko108
	lesanko109
	lesanko110
	lesanko111
	lesanko112
	lesanko113
	lesanko114
	lesanko115
	lesanko116
	lesanko117
	lesanko118
	lesanko119
	lesanko120
	lesanko121
	lesanko122
	lesanko123
	lesanko124
	lesanko125
	lesanko126
	lesanko127
	lesanko128
	lesanko129
	lesanko130
	lesanko131
	lesanko132
	lesanko133
	lesanko134
	lesanko135
	lesanko136
	lesanko137
	lesanko138
	lesanko139
	lesanko140
	lesanko141
	lesanko142
	lesanko143
	lesanko144
	lesanko145
	lesanko146
	lesanko147
	lesanko148
	lesanko149
	lesanko150
	lesanko151
	lesanko152
	lesanko153
	lesanko154
	lesanko155
	lesanko156
	lesanko157
	lesanko158
	lesanko159
	lesanko160
	lesanko161
	lesanko162
	lesanko163
	lesanko164
	lesanko165
	lesanko166
	lesanko167
	lesanko168
	lesanko169
	lesanko170
	lesanko171
	lesanko172
	lesanko173
	lesanko174
	lesanko175
	lesanko176
	lesanko177
	lesanko178
	lesanko179
	lesanko180
	lesanko181
	lesanko182
	lesanko183
	lesanko184
	lesanko185
	lesanko186
	lesanko187
	lesanko188
	lesanko189
	lesanko190
	lesanko191
	lesanko192
	lesanko193
	lesanko194
	lesanko195
	lesanko196
	lesanko197
	lesanko198
	lesanko199
	lesanko200
	lesanko201
	lesanko202
	lesanko203
	lesanko204
	lesanko205
	lesanko206
	lesanko207
	lesanko208
	lesanko209
	lesanko210
	lesanko211
	lesanko212
	lesanko213
	lesanko214
	lesanko215
	lesanko216
	lesanko217
	lesanko218
	lesanko219
	lesanko220
	lesanko221
	lesanko222
	lesanko223
	lesanko224
	lesanko225
	lesanko226
	lesanko227
	lesanko228
	lesanko229
	lesanko230
	lesanko231
	lesanko232
	lesanko233
	lesanko234
	lesanko235
	lesanko236
	lesanko237
	lesanko238
	lesanko239
	lesanko240
	lesanko241
	lesanko242
	lesanko243
	lesanko244
	lesanko245
	lesanko246
	lesanko247
	lesanko248
	lesanko249
	lesanko250
	lesanko251
	lesanko252
	lesanko253
	lesanko254
	lesanko255
	lesanko256
	lesanko257
	lesanko258
	lesanko259
	lesanko260
	lesanko261
	lesanko262
	lesanko263
	lesanko264
	lesanko265
	lesanko266
	lesanko267
	lesanko268
	lesanko269
	107.pdf
	107000

	109.pdf
	109000




