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ABSTRACT 

Grain quality in chickpea (Cicer arietinum L.) is a major factor affecting its consumption for 

human nutrition and health benefits. Some of the major factors affecting chickpea grain quality 

are: seed weight, size, colour, protein, starch and amylose concentration, and amylopectin 

structure. The objectives of this study were to: 1) determine variation, repeatability and genotype 

by environment interaction on thousand seed weight, starch, amylose and protein concentration 

of chickpea cultivars adapted to western Canada; 2) assess variations in global chickpea 

germplasm for thousand seed weight, seed size, protein, starch and amylose concentrations; and 

3) characterize the desi and kabuli type chickpea for starch concentration, composition, and 

amylopectin structure to study their effect on starch enzymatic hydrolysis. Limited variation was 

observed in seed composition of chickpea cultivars adapted to the western Canadian prairies. 

Significant genotype by environment interaction occurred for starch, amylose, and protein 

(except for kabuli) concentrations, seed yield and thousand seed weight indicating that testing 

over a wide range of environments is needed to identify genotypes for grain quality 

improvement. Repeatability of starch, amylose, and protein concentrations was low and 

inconsistent across chickpea market classes. Broad sense heritability was higher than 

repeatability across all traits for all market classes implying that repeatability estimates do not set 

upper limits to heritability if significant genotype by environment interaction is present. The 

negative relationship between seed constituents and yield indicates that selection for chickpea 

cultivars with desired seed composition may require compromise with yield and indirect 

selection. All the mini core accessions that had above average seed diameter score in both desi 

and kabuli also had above average score for thousand seed weight. Selecting mini core with 

promising intrinsic and extrinsic quality characteristics may reduce yield. Slowly digestible 

starch was negatively correlated with hydrolysis index in both pure starch and meal starch of desi 

and kabuli. Amylose had a strong relationship with resistant starch but not with rate of starch 

hydrolysis. Genotypes with a significantly higher rate of starch hydrolysis had significantly 

lower 60-80 µm starch granule size volume.  Amylopectin B2 chains were related to slowly 

digestible starch of meal (except kabuli) and extracted starch. Resistant starch positively 

correlated with B1 fraction of amylopectin chain length in both desi and kabuli meal starch.  Our 

results suggest that there is no major difference between starch composition in the two chickpea 
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market classes, although only three genotypes of each class were tested.  The meal components 

affect the starch hydrolytic properties and the effect is genotype specific.  The results also show 

that amylopectin structure influences starch hydrolytic properties.  These observations emphasize 

that complete characterization of seed components is needed to obtain meaningful results 

regarding the desired nutritional and health benefits attributed to any grain.        
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CHAPTER 1 

INTRODUCTION 

Pulse, coined from the latin word puls meaning thick soup, is the dried edible seed of fabaceae 

(legume) family members such as chickpea, pea, lentil, and dry beans. In 2007 global production 

and area seeded to pulse was estimated to be 60.9 million tonnes and 74.13 million ha, 

respectively (FAO, 2009). Pulse production in the Canadian prairie dates back to 1883, however, 

pulse crops began playing significant economic role in western Canada in the 1970s when the 

Canadian wheat oversupply urged farmers to diversify into crops like pea, lentil and rape seed 

(Saskatchewan Pulse Growers, 2009; Carlyle, 2004). Global chickpea production and area under 

cultivation has been estimated to be 8.8 million tonnes and 11.6 million ha, respectively (Food 

and Agriculture Organization, 2009), accounting for 12% of global pulse production and is third 

after beans and pea. Chickpea (Cicer arietinum L.) was commercially produced in Western 

Canada during the 1993/1994 production season, to serve as an inexpensive protein source and 

health food, with two market classes: kabuli and desi adapted to brown, and brown and dark 

brown soil zones, respectively (Pulse Canada, 2009). Presently, Canada accounts for 2.3%, 8.6% 

and 9.2% of global chickpea production, trade volume and export value, respectively (FAO, 

2009).  Saskatchewan accounts for >80% of the Canadian chickpea production (Pulse Canada, 

2009).  

The nutritive value of pulses as protein and carbohydrate source was recognized almost 

10,000 years ago. Pulse crops including chickpea are a staple food globally playing critical 

dietary roles among vegetarians (Wood and Grusak, 2007). Pulses are a good source of starch, 

protein (2-3 times higher than cereals), fibre, minerals, vitamins and phytochemicals. Pulse 

proteins are rich in the essential amino acid lysine, which is deficient in cereal grains, thus 

making pulses a good nutritional compliment to cereals. The principal nutritional component in 

chickpea is carbohydrate constituting 51-65% in desi types and 54-71% in kabuli types (Wood 

and Grusak, 2007). All the main carbohydrates, such as monosaccharides, disaccharides, 

oligosaccharides and polysaccharides are present in chickpea seeds.  The major storage 

carbohydrate in chickpea seed is starch and it accounts for 30-57% of seed dry weight. Amylose 

makes up 20-42% and 21-46.5% of desi and kabuli starch, respectively (Wood and Grusak, 

2007).  
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Starch is also classified based on digestibility as rapidly digestible starch (RDS), slowly 

digestible starch (SDS) and indigestible or resistant starch (RS).  Unlike RDS and SDS, resistant 

starch is not digested in the small intestine but fermented in the large intestine by bifidobacteria 

into short chain fatty acids (Englyst et al., 1992a; Topping and Clifton, 2001). Short chain fatty 

acids are simple carboxylic acids (eg butyrate: CH3-CH2-CH2-COOH) which lower colonic pH 

thereby facilitating mineral absorption and promote natural death rate of cancer cells, protecting 

colon lining from cancer polyps (Topping and Clifton, 2001). Lower colonic pH also stimulates 

excretion of protein metabolites, which are potent carcinogens (Binghams, 1990). Phillips et al. 

(1995) reported in clinical studies that consumption of 39g resistant starch per day over three 

weeks reduced fecal pH from 6.9 to 6.3 and increased the levels of acetate (by 38% mmol/day) 

and butyrate (by 100 mmol/day). 

Legume starch (including chickpea) is less digestible than cereal starch probably due to 

high amylose, starch granule structure differences and cell wall components blocking enzyme 

access to granules (Carre et al., 1998). Roasted chickpeas and green bananas have been reported 

as the richest sources of resistant starch (Muir and O’Dea, 1992). In high amylose maize (Hi-

Maize), a strong relationship between increasing amylose concentration and amount of resistant 

starch has been reported (Brown, 1996). Consumer acceptance and consumption of Hi-Maize 

bread in Australia has increased by 1.4% (Brown, 1996). It is possible that high amylose 

chickpea bread (chapatti) will also increase chickpea consumption. Despite its economic and 

nutritional roles, chickpea research and improvement in Canada has in the past focused on 

enhancing yield (Vandenberg et al., 2004; Slinkard et al., 2000; Anbessa et al., 2006) and 

improving agronomic practices (Gan et al., 2007). 

In the Canadian prairies, chickpea production is sole cropping, rotational with wheat and 

mainly rain fed with some supplemental irrigation during periods of drought. Chickpea is a dry 

land crop, because it has a deep root system that allows for extraction of soil moisture from 

lower soil profile (Sekhon and Singh, 2007). Chickpea yield is increased with early season single 

irrigation of 25mm while later irrigation decreased yield and extended maturity period thus 

risking frost damage in Saskatchewan (AAFC, 2009).  Chickpea seed quality improvement is 

challenging as seed composition is affected by environment, agronomic practices and genetic 

factors (Wood and Grusak, 2007). Chickpea seed quality can be extrinsic or intrinsic. The 
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extrinsic component reflects the appearance of seed, while intrinsic component is governed by 

the seed composition.   

As a first step towards chickpea seed composition improvement in western Canada, it is 

important to characterize the extrinsic characteristics and selected seed constituents in currently 

grown chickpea varieties.  To develop breeding strategies for seed quality improvement it is 

imperative to study the genotype x environment interactions and repeatability of selected seed 

quality traits.  There are limited published reports about chickpea seed composition, but no 

systematic study to characterize genetic variation that exists in chickpea gene pool.  Although 

chickpea derived food products have been shown to have low glycemic indices and increased 

amounts of resistant starch, there are no systematic studies to associate these characteristics with 

chickpea seed composition. The main objective of this research is to characterize chickpea seed 

composition and understand the influence of genotype and environment on deposition of seed 

starch and its composition.  Selected global chickpea germplasm will be analyzed for genetic 

variation in seed protein and starch composition. Attempts will aso be made to study the 

difference in desi and kabuli chickpea cultivars seed starch composition, structure and associate 

these properties with digestibility using an in vitro enzymatic assay.  Successful completion of 

this project will result in a better understanding of chickpea seed composition and strategy (ies) 

for chickpea seed quality improvement.  The specific objectives of this study were to: 

1. Study variations, repeatability and genotype by environment interaction on thousand seed 

weight, starch, amylose and protein concentrations of chickpea adapted to 

Saskatchewan’s environment 

2. Assess variations in global chickpea minicore for thousand seed weight, protein, starch 

and amylose concentrations 

3. Characterize selected chickpea genotypes for starch composition and structure and study 

their effect on starch enzymatic hydrolysis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Chickpea 

2.1.1. Taxonomy 

Chickpea is a self pollinating, diploid (2n=2x=14, 16, 24, 32, 33) pulse crop with genome size 

1C=740 Mbp (van der Maesen et al., 2007). Cultivated chickpea belongs to the genus Cicer, tribe 

Cicereae Alef., family Leguminosae and sub-family Papilionoideae (van der Maesen et al., 

2007). The genus Cicer comprises of 44 species divided into two subgenera Pseudononis Popov 

and Viciastrum Popov; four sections – Monocier Popov, Chamaecicer Popov, Polycicer Popov, 

and Acanthocicer Popov; and 14 series (Popov 1929; van der Maesen, 1972).  The section 

Monocicer is made up of annual species and is subdivided into three series; Arietina 

(imparipinnate leaves with none to small arista or bract), cirrhifera (leaves ending in tendrils with 

short arista) and macro-arista (leaves imparipinnate, long arista). Only one of the 44 known 

species of the genus Cicer, C. arietinum L. is cultivated in 49 countries worldwide with Asia and 

Africa accounting for 96% of the global production (van der Maesen et al., 2007). C. 

echinospermum and C. reticulatum form the primary gene pool with the cultivated C. arietinum 

L. However, C. bijugum, C. judaicum, and C. pinnatifidum form the secondary gene pool while 

other Cicer species form the tertiary gene pool. 

2.1.2 Classification 

There are two types of chickpea: kabuli and desi types (van der Maesen, 1972; Figure 1). 

Morphologically, desi and kabuli types are distinct with intermediate forms rarely appearing 

(Iruela et al., 2002). Kabuli, the ‘macrosperma’ types have relatively lager pods, seeds, leaves, 

smoother and rounder thin seed coat, pale white to cream-coloured seeds and taller in stature 

(van der Maesen, 1972) compared to desi. Desi types have small, dark seeds and a rough coat 

with a pronounced angularity and strongly ridged surface (van der Maesen, 1972). Kabuli types 

are less wrinkled. Seed coat of desi types is considerably thicker than that of kabuli types but in 

both types there is good adherence of seed coat to the cotyledons (Knights, 1980). Desi and 

kabuli are broadly representative of single gene pool within chickpea hence easily crossable. 

However, they have evolved in separate regions under different environmental conditions and 
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subjected to different selection pressures. Kabuli requires more rainfall than desi. Nutritional 

differences between desi and kabuli seeds might be attributable to seed type and/or the combined 

effects of natural and artificial selection pressure (Saini and Knights, 1984).  

2.1.3 Origin and domestication 

Chickpea is an ancient low-input pulse crop of modern times. It has been cultivated for over 

9,500 years in the Fertile Crescent from Turkey to Iran, since the beginning of agriculture 

(Yadav et al., 2007), along with other domesticates to meet man’s basic needs: carbohydrates, 

protein, vegetable, animal fibre, animal transport and traction (Redden and Berger, 2007),  

As part of the evolution of agriculture over 10,000 years ago when annuals were first 

planted along the shores of the expanded lakes and ponds in the Levant (Bar-Yosef, 1998), 

chickpea was domesticated (Abbo et al., 2003). Chickpea originated in the southern Caucasus 

and northern Persia (van der Maesen 1987). Linguistic evidence suggests that Kabuli type 

entered India through Kabul, capital of Afghanistan some two centuries ago and got the name 

“kabuli chana” in Hindi (van der Maesen, 1972). However, Ladizinsky, (1975) reported the 

center of origin to be southeastern Turkey. 

Serret et al., (1997) analyzed 30 accessions of chickpeas from 11 different countries 

using restriction fragment length polymorphism (RFLP) and concluded that there are three 

centers of diversity for chickpea: Pakistan-Afghanistan, Iraq-Turkey and Lebanon, while India 

previously considered as a secondary center of diversity for chickpea, showed lower diversity 

than the above regions. Numerous plant species were domesticated and harnessed in the Near 

East about 11,000 years ago (Kareem et al., 2007). Meanwhile Zohary (1989) in his analysis 

showed that pulses including chickpea were domesticated as a result of a mutation causing loss 

of wild type adaptation (breakdown of mode of seed dispersal and loss of germination 

regulation). It has been proposed that the nutritive value of chickpea, especially its high 

tryptophan levels (1.1mg/g seed dry weight) that synthesize human brain serotonin, the feel-good 

hormone, may account for its domestication and the struggle to keep growing such 

agronomically  
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Figure 2.1. Picture showing: (a) desi flowered plant and dried seeds (b) kabuli flowered plant and 
dried seeds. Please look for differences in flower and seed colour. 

(a) (b) 
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complicated crop (Kareem et al., 2007). Abbo et al. (2005) proposed that the interaction between 

man and plants in the Near East was driven by the plants’ nutritional features as well as cultural 

forces several years ago. The ancient conversion of chickpea into summer crop, vernalization 

insensitivity rather than pod indehisence or free germination makes chickpea domestication 

exceptional from all other crops (Abbo et al., 2003). The Fertile Crescent where chickpea was 

domesticated is the primary center of diversity and the Mediterranean Europe, Indian 

subcontinent, north-east Africa, Mexico and Chile being some of the secondary centers of 

diversity (van der Maesen, 1972). Upon domestication in the Middle East, chickpea spread 

throughout the Middle East, the Mediterranean region, India, and Ethiopia (Ladizinsky, 1975; 

van der Maesen, 1987). 

2.1.4 Distribution 

Distribution of chickpea occurs from sea level to >5000m. Cicer arietinum L. is found only in 

cultivation and the wild species such as C. reticulatum and C. bijugum occur in weedy habitats; 

C. pungens and C. yamashitae in mountain slopes; C. montbretii and C. floribundum on forest 

soils and in braod-leaf forests (ICRISAT, 2007). Cicer reticulatum has limited distribution, 

mainly found in the south eastern Turkey (Redden and Berger, 2007). Dark seeded desi type is 

mainly found in Ethiopia, Turkey, Iran, and India (van der Maesen, 1972). Chickpea had spread 

widely to Crete in the west, upper Egypt in the south, eastwards through modern Iraq to Indian 

sub-continent by 2800-1300 BC (Vishnu-Mittre and Savithri 1982). However, chickpea 

distribution continued to South and West Asia and Ethiopia for the fisrt time by 1300-500 BC 

(Redden and Berger, 2007). Presently desi types prevail in the Indian subcontinent, Ethiopia, 

Mexico, Iran whereas Kabuli types are mainly grown in Southern Europe, Northern Africa, 

Afghanistan, Chile and introduced to India only in the 18th century. Introduction of chickpea to 

the New World in the 16th century AD was by the Spanish and Portuguese (van der Maesen, 

1972), however chickpea cultivation and genetic improvement in the USA, Australia and Canada 

are recent occurrence (Redden and Berger, 2007). 
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2. 2     Utilization of Chickpea 

2. 2.1 Human food 

Chickpea, one of the most favored legumes globally is consumed in various forms and 

preparations. In India, unripe chickpea seeds are eaten as raw snack whereas leaves are eaten as 

green vegetables (Muehlbauer and Tullu, 1997). Chickpea leaves are a good source of several 

minerals required by humans and nutrients levels significantly exceeded those previously 

reported for spinach and cabbage (Ibrikci et al., 2003). In Turkey and India, the countries with 

the respective highest and second highest per capita consumption globally, chickpea is consumed 

as besan (flour), dhal (shelled and split seeds), and whole grain in order of decreasing preference 

(Yadav et al., 2007). Mature chickpeas are eaten in salads, cooked in stews, ground into flour 

and used in different ethnic cuisines, ground and shaped into balls and fried and roasted, spliced 

and eaten as a snack (Muehlbauer and Tullu, 1997). 

Until now, most legumes including chickpea have constantly been accompanied by 

species that produce carbohydrates, ie cereals in temperate zones and tubers in tropical zones 

(Yadav et al., 2007). However, chickpea seed, a major carbohydrate source, has been reported to 

have starch contents from 30 to 57% and amylose contents from 20 to 46% (Wood and Grusak, 

2007). This makes chickpea a complete diet as it has appreciable levels of the limiting amino 

acids; methionine, lysine, leucine, isoleucine, tryptophan, threonine, valine, and phenylalanine 

(Wood and Grusak, 2007). Cystein, tyrosine, histidine, and argenine, all amino acids required by 

infants and growing children are constituents of chickpea seeds. 

2.2.2 Human health benefits  

Glycemic index (GI) defines amount of glucose released into the blood after food ingestion 

(Jenkins et al., 1981). A low GI food will release energy slowly, steadily and it is generally 

appropriate for everyone, especially diabetics (Salmeron et al., 1997, Lui et al., 2001), dieters 

and endurance athletes. Chickpeas have a low GI making them good for people with blood 

glucose problems (Jenkins et al., 1983). Mendosa (2009) reported a GI of 10 for chickpea 

compared to 100 for potato and bread. He noted that GI is about quality and not quantity of 

glucose and the smaller the GI value the better. Chickpea-based chapatti, a popular bread made 

of chickpea flour mixed with wheat in various ratios, is served as a special component of lunch 

or dinner (Yadav et al., 2007). It has been recently found that addition of chickpea flour to wheat 
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flour in chapattis increased its resistant starch significantly from 0.66% (100:0, wheat-chickpea 

flour ratio) to 3.22% (60:40, wheat-chickpea flour ratio) (Utrilla-Coello et al., 2007). Hydrolysis 

index and glycemic index, respectively, decreased from 66.3% and 65.3% (control wheat) to 

30.7% and 34.6% (60:40, wheat-chickpea flour ratio). It is strongly believed that high amylose 

chickpea chapatti will experience increased sales and consumption, since high amylose maize 

bread had a 1.4% increase in bread consumption in Australia (Brown, 1996). 

Chickpea is one of the most hypocholesteremic agents among food legumes, as 

germinated chickpea was shown to be most effective in controlling cholesterol level in rats 

(Geervani, 1991). Duke (1981) reported that chickpea is considered a cholesterol reducer due to 

their unsaturated fatty acid (primarily high in linoleic and oleic acids) and fiber content. Both the 

desi and kabuli type chickpea have higher oleic acid to linoleic acid (Desi: oleic 52.1, linoleic 

38.0; Kabuli: oleic 50.3, linoleic 40.0). Chickpea have also been suggested to increase sperm and 

milk production in humans and animals, provoking menstruation and helping to treat kidney 

stones (Muehlbauer and Tullu, 1997). Malic and oxalic acids, glandular secretions harvested 

from chickpea plants have important medicinal values in treating bronchitis, catarrh, cutamenia, 

cholera, constipation, diarrhea, dysepepsia, flatulence, snakebite, sunstroke and warts (Duke, 

1981). 

2.2.3 Animal feed 

Comparing eight adapted lines each of desi (Indian origin) and kabuli (Mediterranean origin) for 

their nutrient digestibility in swine, the digestibility coefficients for dry matter (83.1 vs 72.5%), 

gross energy (83.5 vs 74.8%) and crude protein (83.7 vs 79.4%) were higher for kabuli than desi 

type chickpea.  Therefore kabuli chickpea will have greater potential as protein and energy 

source for use in swine rations than desi (Thacker et al., 2002).   However, Salgado et al. (2001) 

reported that both kabuli and desi chickpea seem to be satisfactory protein and energy sources 

for weaned piglets. By soaking in basic medium (sodium bicarbonate solution, 0.07% pH=8.4), 

the nutritional value of raw and processed chickpea protein with or without cooking led to the 

highest food intake, nutritive utilization of protein, and weight gain in rats (Nestares et al., 1996). 

Monogastric animals and human intestinal mucosa lacks α-galactosidase enzyme required 

for hydrolyzing α (1-6) linkages of raffinose family of oligosaccharides (RFO) hence RFO are 

classified as non-digestible carbohydrates (Gitzelman and Auricchio, 1965). RFO produces 
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flatulence upon microbial degradation in the colon. Net energy value of legume seeds which 

contains high amounts of α-galactosides is low since net efficiency of digestible energy 

utilization due to fermentation is 70% than that of glucose absorbed in the upper gut (Muller et 

al., 1989; Hedley, 2001).  Therefore it is desirable that RFO levels in legumes be reduced 

through addition of microbial α-galactosidase in feed formulations or reduce seed RFO 

concentration by plant breeding to improve its nutritional quality. 

2.3 Chickpea germplasm 

2.3.1 Germplasm collection 

The ICRISAT genebank contains the largest collections of 16,991 accessions of chickpea from 

44 countries (Upadhyaya, 2003). Of these, 4,150 accessions were obtained from 65 collection 

missions in 14 countries, Afghanistan, Bangladesh, Ethopia, India, Kenya, Malawi, Morroco, 

Myanmar, Nepal, Pakistan, Syria, Tanzania, Turkey and Uganda. The other 12, 842 accessions 

of cultivated species were obtained from donations by 42 countries. According to Redden and 

Berger (2007), the greatest diversity of the largest gene bank for chickpea landraces (17,250 

accessions) at ICRISAT is from India, Iran, Ethiopia, Afghanistan, Pakistan, Turkey, Mexico, 

Syria, Chile, former Soviet Union, and regions like southern Europe, northern Africa, eastern 

Africa, South America, North America (Table 2.1). 

2.3.2 Mini core 

The concept of mini core collection, a representative sample of whole collection with maximum 

diversity but minimum repetitiveness was introduced by Frankel (1984). Accessions from 

adjacent countries with similar agroclimate were grouped together in developing the core 

collection (Upadhyaya and Ortiz, 2001). Forty sets including one set with 165 accessions of 

unknown origin constituted the entire collection (16,991 accessions) held at ICRISAT genebank. 

Each entry was planted on a 4m-row ridge. Data on geographic distribution or origin and 

quatitative traits such as days to 50% flowering, days to maturity, basal primary branches, apical 

primary branches, basal secondary branches, apical secondary branches, tertiary branches, 100-

seed weight, plant height, plant width, number of pods per plant and number of seeds per pod, 

seed yield were used for clustering. Standardized data (Milligan and Cooper, 1985) was 

subjected to hierarchical cluster alogarithm (Ward, 1963) at an R2 (squared multiple correlation) 

value of 0.75 with SAS (SAS Institute, 1989). This procedure minimizes sum of squares within 
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(error) groups and maximizes the sum of squares among (traits) groups. Aproximately 10% of 

accessions were randomly selected for inclusion into core subset from each cluster. Clusters that 

had less than 10 accessions had at least one accession randomly selected and included in the 

core. Sixty-three accessions from 12 countries did not have quantitive data available and six 

accessions were selected randomly and included in the core. To determine whether the core 

subset represented the entire germplasm for each of the 13 traits, the Wilcoxon (1945) rank-sum 

non-parametric test was performed with the SAS NPAR1-WAY procedure (SAS, 1989). The 16, 

991 entire chickpea collection produced 1, 956 chickpea core collection entries consisting of 

1465 desi, 433 kabuli and 58 intermediate type. Chickpea mini core represents 1% of entire 

collection at a given time and captures 70% of the useful genes of the entire gene pool 

(Upadhyaya and Ortiz, 2001).  

To develop the mini core, the 1,956 core collections were planted in the Vertisols 

(Kasireddipally series-Isohyperthermic Typic Pellustert) in the field in the 1999/2000 post rainy 

season at ICRISAT centre, Patancheru, India (Upahyaya and Oritz, 2001). Five plants were 

randomly selected from each entry and observations recorded on plant height, plant width, 

number of apical primary branches, apical secondary branches, basal primary branches, basal 

secondary branches, tertiary branches, number of pods per plant, seeds per pod, 100-seed weight 

and plant yield. Flower colour, plant colour, growth habit, seed colour, seed shape, dots on seed 

testa and seed testa texture; all morphological descriptors were recorded by IBPGR, ICRISAT 

and ICARDA (1993). Days to 50% flowering, days to maturity, flower duration (days between 

50% flowering and end of flowering in 50% plants) and pod yield were recorded on plot basis. 

Statistical analysis was the same as that for core selections. Proportional strategy was used where 

approximately 10% of the accessions were randomly selected from each cluster to constitute the 

mini core subset. At least one accession was randomly selected from clusters which had 10 

accessions. Shannon-Weaver (1949) diversity index (H) was estimated as a measure of 

phenotypic diversity of each trait independently for core and mini core and compared if diversity 

of each trait was retained. The 1,956 core subset resulted in 28 clusters which produced 211 

entries from core subset as mini core. Percentage proportions of accessions retained, trait mean 

scores, variances, median scores, coefficient of variation and Shannon-Weaver diversity indices; 

all indicated that the mini core subset composition reflected the core subset and the entire 

collection. 
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Table 2.1: Chickpea accessions collected and housed at ICRISAT  

Country 

Number of accessions  

Core 

collection* 

Minicore** chickpea types 

Desi Kabuli Intermediate*** 

Afghanistan 700 3 4 - 

Chile 139 1 0 - 

Ethiopia 930 13 1 - 

India 6930 82 9 - 

Iran 4850 39 13 - 

Mexico 390 3 1 - 

Pakistan 480 4 - - 

Soviet Union 133 2 4 - 

Syria 220 - 2 - 

Others 2398 12 10 8 

Total 17,250 159 44 8 

 

*Entire chickpea accessions at ICRISAT gene bank in 2007 (Redden and Berger, 2007). 

**Mini core accessions (Upadhyaya and Ortiz, 2001) developed from 16, 991 accessions. 
*** Accessions could not be classified as desi or kabuli  
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2.4 Chickpea seed composition 

Chickpea is a good source of carbohydrates and proteins, both accounting for about 80% of seed 

total dry weight (Singh, 1985).  Seed coat constitutes 14% of the desi seeds compared with 6% 

of seed coat weight of kabuli types (Saini and Knights, 1984). Chickpea and beans have slightly 

higher starch concentration as compared to lentils and peas, with chickpea showing a much 

larger variation in amylose concentration as compared to other pulse seeds (Table 2.2).   

2.5 Carbohydrates 

Carbohydrates have been classified into monosaccharides, disaccharides, oligosaccharides and 

polysaccharides (Chibbar et al., 2004). Carbohydrates are derived from simple sugars like 

glucose, fructose and galactose, therefore reducing or increasing any of these compounds will 

affect other carbohydrate constituents (Hedley, 2001). Carbohydrates in human nutrition can be 

classified into available (mono and disaccharides), which are enzymatically digested in the small 

intestine and unavailable (oligosaccharides, resistant starch, non-cellulosic polysaccharides, 

pectins, hemicellulose and cellulose), which are not digested in the small intestine (Chibbar et 

al., 2004).  The latter carbohydrates are fermented by microflora in the large intestine releasing 

short chain fatty acids, carbon dioxide and methane gas among others (Hedley, 2001).  

2.5.1 Monosaccharides 

As primary source of energy, chickpea monosaccharides such as glucose, fructose, ribose, and 

galactose exist in their phosphorylated forms in mature seeds. They are mostly transitory 

intermediates in the synthesis of more complex carbohydrates (Buchanan et al., 2005). The 

Maillard reaction reduces monosaccharides that cause oxidative stress through free radical 

formation especially during seed maturity and germination, hence it has been suggested it is 

advantageous to a plant to have reduced monosaccharides in its seeds (Sun and Leopold, 1995). 

Sanchez-Mata et al. (1998) reported chickpea monosaccharide concentrations for galactose 

(0.05%), ribose (0.1%), fructose (0.25%), glucose (0.7%). 

2.5.2 Disaccharides 

Maltose (0.6%) and sucrose (1-2%) have been reported to be the most abundant free 

disaccharides in chickpea (Wood and Grusak, 2007). Maltose is a reducing sugar, whereas 
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sucrose is a non-reducing sugar. In other pulses, sucrose concentrations vary from 1.7% to 4.7% 

in bean, pea, lentil, faba bean and chickpea seeds, respectively (Table 2.2).  

2.5.3 Oligosaccharides 

Polymeric sugars of 3-20 monosaccharides are called oligosaccharides (Chibbar et al., 2004).  

Pulse seeds contain the highest concentrations of oligosaccharides among the crops. Sucrose is 

the precursor for oligosaccharide synthesis, for example, transfer of galactinol (α-1, 1-

myoinositol) to the C-6 hydroxyl group of the terminal D-glucosyl of sucrose molecule forms the 

trisaccharide raffinose in the presence of raffinose synthase (Buchanan et al., 2005). The 

tetrasaccharide stachyose and the pentasaccharide verbascose are synthesized in a similar process 

(Peterbauer et al., 2001). Oligosaccharides are not absorbed or hydrolyzed by human digestive 

system but fermented by colonic bacteria to release gases or flatulence (Kozlowska et al., 2001). 

However, the fermented products like short chain fatty acids are reported to increase 

bifidobacteria population thereby improving colon health (Tomomatsu, 1994). Total α-

galactosides reported are 3.0% (faba beans), 3.2% (lentils), 3.8% (beans and chickpeas) and 

4.6% (Peas) (Table 2.2). 

2.5.4 Polysaccharides 

Polysaccharides are high molecular weight monosaccharide polymers present as storage 

carbohydrate (example starch) or as structural carbohydrates (e.g. cellulose) providing structural 

support (Wood and Grusak, 2007). Among the storage polysaccharides, chickpea is reported to 

synthesize and store starch and not galactomannans (Wood and Grusak, 2007).  

2.6 Starch 

Starch, a major source of calories in the human diet and in animal feed, is the predominant 

storage carbohydrate reserve in the seeds of grain legumes. The starch quantity is a major 

contributor to seed weight and affects the grain yield. Starch is made up of two large glucan 

polymers, amylose (105 – 106 Da) and amylopectin (107 – 108 Da), in which the glucose residues  

are linked by α-(1→4) bonds to form a chain (Figure 2.2).  The glucan chain is branched by α-

(1→6) bonds, which are frequent (up to 5%) in amylopectin and infrequent (<0.5%) in amylose 

(Figure 2.2). The ordered nature of the α-(1→6) bonds, glucan branch chain length and their  
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Table 2.2 Carbohydrate concentration (%) of some pulse seeds. 

 

Constituents Bean Pea Lentil Faba bean Chickpea 

Water -Soluble carbohydrates 

Fructose - - 0.1 0.4 - 

Sucrose 2.5 2.1 1.7 2.2 4.7 

Raffinose 0.7 0.9 0.3 0.5 0.3 

Ciceritol - - 0.7 Not 
detected 2.2 

Stachyose 2.7 2.0 1.9 0.9 1.3 

Verbascose 0.6 1.8 0.3 1.8 Trace 

Total α-galactosides 3.8 4.6 3.2 3.0 3.8 

Total soluble sugars 5.2 6.7 5.0 5.6 8.4 

Water-Insoluble Carbohydrates 

Starch 54.0 39.0 47.4 43.0 50.4 

Amylose 27.2-29.5 23.9-24.1 23.5-24.7 24.0 20.0-46.5 

Resistant starch 8.2 10.1-13.3 14.7 33.0 3.4-16.4 

NDF 8.9-12.8 13.2-25.6 9.7-24.1 13.0-19.5 7.5-19.2 

ADF 3.5-7.2 no information 2.0-6.8 10.3-11.4 3.8-14.7 

Cellulose 3.2-13.1 0.9-13.3 3.5-14.8 8.3-14.3 1.1-13.7 

Hemicellulose 0.5-5.6 0.9-12.4 1.2-15.7 1.6-8.9 0.6-16.0 

Lignin 0.1-3.1 0.3-2.1 Trace-2.6 0.7-2.0 Trace-7.1 

TDF 11.2-27.5 16.1-21.6 11.0-21.4 17.1-23.8 8.2-24.0 

SDF 8.1-10.0 4.6-6.0 1.2-4.4 6.0-8.7 3.7 

IDF 9.1-11.6 11.6-16.1 8.8-13.7 8.3-15.5 7.9 

NSP 6.4-20.4 no information 6.9-14.7 17.5 5.5-35.4 

Total CHO 67-71 69.7-71.3 67.8-72.3 52-54 50.0-73.1 
Source: Wood and Grusak, 2007; Kozlowska et al. 2001; Sika et al.1995; Chung et al. 2008; 
Hoover and Ratnayake, 2002; Guillon and Champ, 2002; Bello-Perez et al. 2007. Abusin et al. 
2009. NDF-neutral detergent fibre, ADF-acid detergent fibre, TDF-total dietary fibre, SDF-
soluble dietary fibre, IDF-insoluble dietary fibre, NSP-non-starch polysaccharides 
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Table 2.3 Comparison of selected extrinsic characters and carbohydrate composition of desi and 
kabuli chickpea whole seeds.  

Extrinsic characters / 
Constituents 

 
                    Desi                                                   Kabuli 

No. of 
cultivars Mean No. of 

cultivars Mean 

Extrinsic Characters 

Thousand seed weight (g) 5 13.9 1 21.9 

Mean seed diameter (mm) 5   6.6 1   7.7 

Intrinsic Characters 

Water Soluble Carbohydrates (% dry weight) 

Sucrose 1 1.5 3 2.0 

Raffinose 1 6.8 3 1.7 

Ciceritol 10 2.0 - - 

Stachyose 1 21.1 3 2.6 

Verbascose 1 0.6 1 0.0 

Water Insoluble Carbohydrates (% dry weight) 

Starch 1 42.9 2 46.3 

Starch granule length (μm) 5 18.3 1 19.9 

Starch granule width (μm) 5 12.2 1 14.4 

Amylose 5 31.1 1 30.4 

Resistant starch 1 6.4 1 3.9 

Total CHO 5 64.7 1 66.9 

Others (% dry weight) 

Ash 5 2.9 1 3.1 

Fibres 5 10.3 1 4.6 

Fat 5 3.6 1 5.5 
Source : Singh et al. 2004; Salgado et al. 2001; Attia et al. 1994; Chung et al. 2008 
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Table 2.4 Comparison of protein and amino acid composition of desi and kabuli chickpea whole 
seeds.  

Constituents 

 
                    Desi                                                   Kabuli 

No. of 
cultivars Mean No. of 

cultivars Mean 

Total protein (%) 8 22.2 7 23.2 

Amino acids (g/kg) 

Alanine 1   8.9 1 11.4 

Arginine 1 22.4 1 23.2 

Aspartic acid 1 23.1 1 29.5 

Glycine 1   7.9 1 11.2 

Glutamic acid 1 43.6 1 54.5 

Histidine 1   6.9 1   8.9 

Isoleucine 1   9.1 1 11.4 

Leucine 1 16.3 1 20.6 

Lysine 1 12.4 1 17.0 

Methionine 1   2.6 1   3.8 

Phenyalanine 1 13.2 1 16.8 

Serine 1 11.8 1 14.2 

Threonine 1   8.4 1 11.6 

Tyrosine 1   6.7 1   8.5 

Valine 1   9.4 1 11.5 

Tryptophan 3 12.0 4 14.0 
Jambunathan and Singh, 1980; Viveros et al. 2001; Ribeiro and Melo, 1990 
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Table 2.5 Comparison of mineral composition and concentration (mg 100g-1) desi and                        
kabuli chickpea whole seeds.  

Minerals  

 
                    Desi                                                   Kabuli 

No. of 
cultivars Mean No. of 

cultivars Mean 

Cu 16   1.3 21    1.2 

Fe 16   4.5 21    4.5 

Zn 16   3.6 21    3.5 

Mn 16   1.7 21    1.6 

Ca 16 210 21 154 

Mg 16 128 21 122 

Na 16   23 21   21 

K 16 878 21 926 

P  8 380  3 235 

                  Ibanez et al. 1998; Thacker et al. 2002; Ribeiro and Melo, 1990 

 

 



 

19 
 

 branching pattern, form clusters of branches within an amylopectin molecule. Three main types 

of glucan chains, short A-chains, intermediate B-chains and the long inter-cluster C-chains 

(Figure 2.3). provide the unique and highly-ordered structure of the amylopectin molecule, 

which is essential to the formation of the starch granule. Both polymers are packed into water 

insoluble granules to form a three-dimensional semi-crystalline structure (Figure 2.4).   In a 

normal starch granule, amylose and amylopectin are present in a ratio of 1:3, along with small 

amounts of lipids, protein phosphate.  Both the relative proportion of amylose to amylopectin 

and their molecular structure which vary with the botanical species have significant influence on 

starch properties and end-use of starch and grains.   

2.6.1 Starch granule structure and organization 

The size and shape of starch granules also varies with the plant species adding to the natural 

diversity of starches.  The size and shape of starch granules also influence the end use of starch 

(Lindeboom et al., 2004).  Singh et al. (2004) reported chickpea starch as large-oval to small-

spherical shaped granules with a smooth surface and no fissures. Chickpea starch granule length 

and width ranged between 17-20.1 and 11-14.4 μm, respectively (Singh et al., 2004). Hoover and 

Ratnayake (2002) reported a range of 22.0-22.4 and 18.5-18.8 μm, respectively for chickpea 

granular length and width. The granule size of pea, a pulse crop has been reported to be 5-38 μm 

and monomodal in distribution, similar to that of waxy maize and B-granule potato starch 

(Fredriksson et al., 1998). Amylopectin structure is composed of A, B and C chains (Figure 2.3; 

Hizukuri, 1986). A chain binds to B chains only. B binds to other B or C chain, which has a 

reducing end. A chains are shortest, while C chains are longest, and B1-B3 chains have a degree 

of polymerization in between the A and C chains. Hanashiro et al. (1996) suggested the 

classification of amylopectin chain length into four fractions: A chain fractions (DP6-12), B1 

fractions (DP13-24), B2 fractions (DP25-36) and B3 fractions (DP≥37). Amylopectin chain 

lengths from different wheat sources had fractions A, B1, B2, and B3 ranging from DP12-16, 

DP20-24, DP42-48 and DP69-75, respectively (Yasui et al., 2005). Shibanuma et al. (1994) 

reported amylopectin chain length fractions of A, B1, B2, and B3 as DP10-13, DP20-23, DP41-

43 and DP68-71, respectively, in bread wheat. Amylopectin chain length distribution profiles are 

plant species specific, and these could potentially be used as fingerprints to identify plants from 

which the starch was extracted (Koizumi et al., 1991). 
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Figure 2.2 Amylose (top) and amylopectin (bottom) linear structures. Adapted from Google 
Images, 2009. 
 

 
 

Figure 2.3. Branching pattern of amylopectin schematically representing α-(1-4) chains (A, B1-
B3) joined by α-(1-6) linkage branch points. Adapted from Hizukuri (1986). 

α (1-6) bond α (1-4) bond 
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Figure 2.4. Overview of the organization of starch granule structure. From lowest level (top) of 
hard crystalline and soft amorphous/semicrystalline shells of the granule to the highest level 
(bottom) of crystal structure types A and B. Adapted from Gallant et al. 1997. 
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2.6.2 Starch Biosynthesis 

Starch is the major storage carbohydrate of many seeds especially of grains consumed by 

humans, yet starch structure and biosynthesis are not completely understood (Zeeman et al., 

2010). Starch is synthesized and stored in the plastids, temporarily in the chloroplast of leaves 

and in a long-term in the amyloplasts of roots, tubers and seeds. Starch synthesis protects plants 

from osmotic disruption, without which sucrose would flood the plastids, absorbing water from 

the cytosol and causing plastids to swell and burst (Michalska et al., 2009). 

Studies of starch mutants have produced a general consensus that ADP-glucose 

pyrophosphorylase (AGPase), soluble starch synthases (SS), starch branching enzymes (SBE), 

starch debranching enzymes (DBE; pullulanase; isoamylase) and possibly a disproportionating 

enzyme (D-enzyme) catalyze the final steps leading to amylopectin synthesis. Several of the 

enzymes exist in different isoforms, some of which vary in their sub-cellular distribution, 

enzyme specificity, temporal activity and interactions with other enzymes, making the starch 

synthesis pathway very complex. A minimal subset of 14 conserved starch biosynthetic enzymes 

(two AGPases, five SS, three SBE and four DBE) is homologous in all plant species studied to-

date (Morell and Myers, 2005). Some of these isoforms have specific functions in starch 

biosynthesis.  

ADPglucose pyrophosphorylase is a key regulatory enzyme in starch biosynthesis. It is 

allosterically regulated by both inorganic phosphate (an inhibitor) and 3-phosphoglycerate (an 

activator) (Preiss and Sivak, 1996). The priming mechanism for starch glucan polymerization in 

plants is unclear, but likely involves short-chain maltodextrins that are extended and branched by 

the action of GBSS1, SBE1 and SS1 to form a molecule with amylopectin-like backbone. The 

primary glucan polymer is further polymerized through cycles of chain extensions and branching 

catalyzed mainly by SSI and SBEII. Starch synthases catalyze the transfer of a glucosyl moiety 

from ADP-glucose to the non-reducing end of an α(1-4) glucan primer. Plants produce several 

SS isoforms which include GBSSI, SSI, SSII, SSIII and SSIV, of which all but SSIV have been 

shown to have distinct roles in determining starch composition and structure. Opinions still differ 

as to whether ADP-Glc is added to the reducing end without a primer (Mukerjea and Robyt, 

2005a; Mukerjea and Robyt, 2005b; Mukerjea et al., 2002) or nonreducing end with a primer 

(Denyer et al., 2001; de Fekete et al., 1960). Besides the core enzymes (Morell and Myers, 

2005), additional enzymes such as starch phosphorylases, disproportionating enzymes and 

http://www.pnas.org/search?author1=Justyna+Michalska&sortspec=date&submit=Submit�
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glucan water kinases also play important roles in starch biosynthesis. Recent studies have also 

shown post-translational modifications of some core starch biosynthetic enzymes (Tetlow et al., 

2004), introducing a new level of complexity for modification of starch structure in planta.  

Recently, Tetlow et al. (2008) reported that 260kDa protein-protein complexes (SS-SBEII 

complex) in wheat amyloplasts revealed functional interactions among starch biosynthetic 

enzymes. It was concluded that the 260kDa SS-SBEII protein complexes were formed 10-15d 

after pollination and prior to that stage, SSI, SSII and SBEII forms were detectable only in 

monomeric forms. Amylose and extra-long unit chains of amylopectin are primarily synthesized 

by granule-bound starch synthase I, a class of the starch synthases (Hanashiro et al., 2008). 

2.7.1 Seed starch isolation methods  

Legume grain starch isolation is difficult because of insoluble flocculent protein (~0.3-0.4%) and 

fine fibre, which decrease sedimentation and co-settles with starch giving a brownish deposit 

(Hoover and Sosulski, 1990). Lineback and Ke (1975) isolated chickpea and horse bean starch 

by steeping flour (1000 g, 3L) overnight. Residual pulp was re-washed and rescreened with 

distilled water and 60-mesh sieve, respectively. Starch was centrifuged at 2000 x g for 20min, 

supernatant decanted, brown upper layer removed with spatula and residual starch was air-dried 

at room temperature. 

Demeke et al. (1999) and Zhao and Sharp (1996) steeped cut wheat seeds in sterile 

distilled water over night at 4oC. Water was decanted and seeds were ground into slurry with a 

pestle. Slurry was layered over cesium chloride (80% w/v) in 2mL microfuge tube and 

centrifuged at 13000 x g for 5min. This step was repeated twice to remove any adhering non-

starch molecules. Starch granules were washed twice with tris-HCl buffer (pH 6.8) and granules 

air-dried over night before used for amylose determination. Miao et al. (2009) soaked overnight 

at 20oC, chickpea seeds in excess of distilled water containing 0.2% sodium hydrogen sulphite. 

Testa of seeds was removed manually, decorticated grains ground in laboratory blender, slurry 

was filtered through 100-mesh sieves and centrifuged at 3000 x g for 20min. Sediment was 

washed thoroughly with distilled water and washing repeated until starch was free of colour. 

Starch was oven dried at 40oC for 12 hours. 

To isolate various components of chickpea seeds, dehulled chickpea seeds were milled 

with GM 280/S-D (Conduk Werk, Hannau, Wolfgang, Germany) (Emami et al., 2006). Sodium 

hydroxide (10M NaOH) was added to 5% (w/w) slurry bringing pH to 9.0 and stirred at 20oC for 
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1h. Slurry was left over night, reducing pH to 7.5-8.0, pH adjusted to 9.0 and stirred at 20oC for 

one hour. Slurry was transferred to feed tank of hydrocyclone system and processed for starch, 

protein, total diatery fibre, fibre, fat and ash employing centrifugation. Precipitates were washed 

with distilled water, pH adjusted to 4.3, centrifuged, freeze dried and ground in Willey Mill with 

mesh of 2mm.  

2.7.2 Total starch determination methods 

Quantification of starch, the most important component of economically important grains, is very 

relevant to both research (proximate composition, purity check) as well as commercial (nutrition 

labeling, pricing and selection) applications (Vasanthan, 2001). Polarimetric (Mitchell, 1990), 

acid and enzymatic hydrolysis procedures are the major starch determination methods employed 

(Anon, 1987). In polarimmetric methods, samples are treated with HCl, stirring in a bath of 

boiling water, and in 4% sodium phosphotungstate and saccharimeter readings are taken at 

different time intervals. The polarimetric method is of little value as it underestimates total starch 

content (McCleary et al., 1994). 

Under acid hydrolysis, a sample is treated with trifluoro acetic acid, followed by heating, 

treatment with sodium acetate (pH5.0) and glucose oxidase peroxidase (GOPOD) reagent 

(McCleary et al., 1994). The acid hydrolysis procedure complicates results because it can lead to 

the release of glucose from other polysaccharides such as beta-glucan in oat bran, amorphous 

cellulose and beta-glucan in chicken feed pellets. Acid hydrolysis is effectively applicable only 

to purified starch samples and therefore has limited applications.   

In the AACC approved methods (1985 and 1990), for starch hydrolysis a sample is 

suspended in water and gelatinized by autoclaving and treated with amyloglucosidase (55oC) to 

convert starch to glucose. McCleary et al. (1994) reported that this enzymatic method as well as 

acid hydrolysis method underestimated total starch in samples containing resistant starches, high 

amylose maize and cross-linked starches. In McCleary et al. (1994) modified method; starch is 

converted to soluble fragments by treatments with thermostable α-amylase at 100oC followed by 

pullulanase/beta-amylase at 50 oC. Starch dextrins are hydrolysed quantitatively to glucose with 

amyloglucosidase. Free glucose is then quantified as total starch after reaction with glucose 

oxidase/ peroxidase reagent (GOPOD) at absorbance of 510 nm on a spectrophotometer. 

Following its accuracy and reproducibility of starch in an interlaboratory evaluations, the 
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American Association of Cereal Chemists and Royal Australian Chemical Institute have adopted 

McCleary et al. (1994) modified method as a standard procedure. 

2.7.3 Amylose determination methods 

Measurement of amylose concentration is an important quality parameter because some 

properties of starches that determine their suitability for particular end-uses are dependent on 

their amylose/amylopectin ratios (Gibson et al., 1997). Comparing differential scanning 

calorimetry, high-performance size-exclusion chromatography (HPSEC) and iodine-binding 

methods, double iodine binding procedure at 620nm and 510nm wave lengths increased 

precision in amylose concentration (Zhu, 2008). Iodine binds to amylose causing conformational 

change from flexible coil to helix yielding blue colour (Banks and Greenwood, 1975). However, 

amylopectin binds weakly to iodine to form reddish brown colour probably due to its short chain 

lengths (DP≤20) (Wang et al. 1998). In determining amylose by iodine inclusion complexes 

using colourimetric methods, amylopectin-iodine complexes also form which may absorb at 

similar wavelengths to amylose-iodine complexes (Takeda et al., 1987) leading to overestimation 

of amylose. Moreover, amylose calibration curves do not account for absorption by amylopectin-

iodine complexes and commercial sources of amylose for amylose calibration curves vary in 

their purity and iodine binding capacity (Welsh and Blakeney, 1992). Wavelength of maximum 

absorbance of amylose-iodine complexes increases with increasing degrees of amylose 

polymerization (Banks and Greenwood, 1975). Iodine binding should be used as a guide to 

determine the nature of the polymer and not as classification method (Yu et al., 1996).  

Differential scanning calorimetry procedure for amylose determination is not influenced 

by the presence of amylopectin or indigenous lipids (Mestres et al., 1996). Moreover near-

infrared transmittance spectroscopy (NITS) (Villareal et al., 1994) and differential scanning 

calorimetry (DSC) (Mestres et al., 1996) are rapid procedures for amylose determination. Both 

NITS and DSC eliminate much wet chemistry but require reference method for calibration. Other 

drawbacks of NITS and DSC have been lower penetration of light in whole grains giving less 

accurate results (Kays et al., 2005) and several mathematical and regression models required for 

calibration (Delwiche et al., 1995). 

In another method a lectin concavalin A was used to precipitate amylopectin from a 

starch solution and determines the residual amylose by converting it in to glucose (Gibson et al., 
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1997).  This method has several benefits such as applicability to starch samples from various 

sources with full range of amylose concentrations, avoids empirical corrections necessary in 

methods based on amylose-iodine complex formations and does not need standard curves with 

varying amylose: amylopectin concentration (Gibson et al., 1997).  However, a major limitation 

is the inability to precipitate all of the amylopectin thus giving an apparent higher amylose 

concentration (Demeke et al., 1999).  A modified HPSEC method which uses starch debranched 

with isoamylase was fractionated on a size exclusion column and eluant monitored by a 

refractive index detector.  In this method debranched amylopectin and amylose are separated on 

size and the integration of peak area is used to calculate amylose to amylopectin ratio (Demeke 

et al., 1999).       

2.7.4 Amylopectin chain length determination methods 

High performance anion exchange chromatography with pulsed amperometric detection 

(HPAEC-PAD) is the most selective high performance/pressure liquid chromatography (HPLC) 

method available for separating monosaccharides, oligosaccharides and homopolymer series of 

oligosaccharides (Hardy and Townsend, 1988). However, HPAEC provides individual DP 

information but only for chains with DP of a maximum of about 80 (Broberg et al., 2000). 

O’Shea and Morell (1996) described a novel method in which debranched starch molecules were 

tagged with 8-amino-1,3,6-pyrenetrisulfonic acid (APTS), electrophoresed on slab gel and 

separated fragments were detected using a fluorescent detector using a DNA sequence apparatus.  

This method could detect >80 dp from a 15 ng starch sample.  This technology was further 

improved by using flourophore-assisted capillary electrophoresis (FACE) (Morell et al., 1998).  

This method has several advantages in resolution (DP1 to 100) and sensitivity over previously 

used methods as it provides capacity for facile analysis of oligosaccharide population on either 

molar or mass basis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) has also been used to determine amylopectin chain length distribution, but it 

has been found to be less reproducible than high performance anion-exchange chromatography 

with pulsed amperometric detection (HPAEC-PAD) method (Broberg, et al., 2000). Yao et al. 

(2005) concluded in a study to describe chain length distribution of debranched starch that data 

sets from high-performance size-exclusion chromatography (HPSEC) may be transformed to 

allow a similar presentation as for that obtained by FACE.  
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2.8.1 Resistant starch (RS) 

Englyst et al. (1982) for the first time, used the term ‘resistant starch’ to describe a small fraction 

of starch that was resistant to in vitro hydrolysis by treatment with excessive quantitities of α-

amylase and pullulanase treatment.  The definition of resistant starch has been further refined to 

include all starch and starch degradation products that resist small intestinal digestion but get 

fermented in the colon of humans (Topping and Clifton, 2001). Four classes of RS are 

recognized (Englyst et al., 1982; Englyst et al., 1992b; Brown et al., 1995) based essentially on 

the mechanisms for delivering resistant starch: RS I, physically inaccessible starch, as in partially 

milled grains or seeds; RS II, starch granules that resist digestion, as in raw potato and green 

banana; RS III, retrograded starch, eg. cooked and cooled potato and bread; RS IV, chemically 

modified starch, eg. esterified, cross-bonded starch and processed food. Most common form of 

resistant starch in diet is retrograded starch (RS III) because it forms as a result of food 

processing (Soral-Smietana et al., 1998). Starch cooked in water beyond gelatinization 

temperature and cooled retrogrades. There is a strong positive correlation between amylose 

content and level of RS III in cereals (Hedley. 2001), however, legume starch have an amylose 

content ranging from 30-70%, which is high compared with cereal and tuber starches (Soral-

Smietana and Dziuba, 1995). 

Anaerobic bacterial fermentation of starch in large intestine produces short chain fatty 

acids such as butyric, propionic and acetic acids (Topping and Clifton, 2001). They further 

observed butyrate is the most important as it is a very important source of energy for colonocyte 

(Silvester et al., 1995), activates human colon cell proliferation (Mortensen and Clausen, 1996), 

suppress proliferation and differentiation of tumor cells (Hylla et al., 1998). Resistant starch is 

therefore a prebiotic as it helps grow beneficial bacteria in the large intestine improving colon 

and intestine health. Resistant starch-rich foods also have low glycemic index and maintains 

normal levels of blood glucose, insulin and cholesterol in humans (Liljeberg and Bjorck, 1994; 

Pereira et al., 2002; Lui et al., 2001). 
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Table 2.6: Classification of starch, its structure and physiological properties (Englyst et al., 
1992b).  
 

 

 
 
 
 

Starch 
Fraction 

Digestion 
time line (in 
vitro)/ place 

Examples 
Amount 
(g/100g dry 
matter) 

Strucutre Main physiological 
property 

Rapidly 
Digestible 
Starch (RDS) 

Within 20 
min, mouth, 
small 
intestine 

Freshly 
cooked 
food 

Boiled hot 
potato: 65 

Mainly 
amorphous 

Rapid source of 
glucose/energy: 
Leads to diabetes, 
obesity, 
cardiovascular 
disease 

 

Slowly 
Digestible 
Starch (SDS) 

20-120 min, 
small 
intestine 

Native 
waxy 
maize 
starch, 
millet, 
legumes 

 

Boiled 
millet: 28 

Amorphous 

/crystalline 

Slowly and 
sustained source of 
energy and 
sustained blood 
glucose 

Resistant 
Starch (RS) 

Types I-IV 

>120 min; 
not in small, 
mainly in 
colon 

Raw 
potato, 
stale bread 

Raw potato 
starch: 75 

Mainly 
crystalline 

Effects on gut 
health (eg. 
Prebiotic, 
fermentation to 
butyrate with 
hypothesized anti-
carcinogenic effect) 
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2.8.2 Resistant starch measurement 

The growing interest in RS has increased interest to develop a robust in vitro method to 

determine RS content in food and food products.  However, the physiological definition of RS 

complicates the precise determination of RS as it not only includes RS fraction but also some 

digestible fractions (Champ et al., 2003).  In addition, starch digestion in the human digestive 

system is affected by starch structure and the functional and physiological environment during 

digestion.  These factors vary from one individual to other, therefore for food and food product 

characterization it is preferable to use an in vitro method for RS determination. Nevertheless, for 

practical application the in vitro assay results needed to be validated using in vivo assays done 

with a large number of human subjects.  The main methods for RS in vitro assay have been 

recently reviewed (Champ et al., 2003).   All the methods include digestion of starch with 

appropriate hydrolytic enzymes and separating the starch and its hydrolytic products and 

measuring the glucose released at specific time intervals.  Several methods based on this basic 

principle have been reported to measure RS.  Some of the modifications include changes in 

enzyme concentrations (Saura-Calixto et al., 1993), types of enzymes used (Muir and O’Dea, 

1992; Champ 1992; Sharma et al., 2010), sample pre-treatment (Muir and O’Dea, 1992; Goni et 

al., 1996), pH of incubation (Champ, 1992; Saura-Calixto et al., 1993) and sample size (Champ, 

1992) all of which impact RS levels in a sample. 

McCleary and Monaghan (2002) assessed effects of concentrations of pancreatic α-

amylase, pH of incubation, importance of maltose inhibition of α-amylase, need for 

amyloglucosidase inclusion, effects of shaking and stirring on determined values and problems 

in recovering and analyzing RS-containing pellet. The aim was to create condition that will 

mimic in vivo conditions and yield values that are physiologically significant. Pre-treatemnt of 

samples with pepsin (as was done by Muir and O’Dea, 1992; Goni et al., 1996) had no effect on 

the RS values obtained. Alcohol precipitation and washing with alcohol ensured reproducibility 

of RS values compared with Goni et al., 1996. The McCleary and Monaghan (2002) method has 

been accepted by the AOAC (2002.02) and the results are very close to those obtained in human 

in vivo assays with ileostomy patients (Champ et al., 2003).    
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2.8.3 Factors affecting amount of rate of starch hydrolysis and RS 

Botanical sources, physical form, pre-consumption food processing, extent of chewing and 

intestinal transit time have been reported to affect the extent and rate of starch digestion by 

amylolytic enzymes (Englyst et al., 1992a). Starch crystallinity affects starch digestibility: for 

instance, A-type starch (eg. wheat) is digested without gelatinization whereas B-type starch (eg. 

firm banana or potato) is poorly digested until gelatinized (Englyst and Cummings, 1990). Starch 

granule size of ≤10 μm as occur in rice was reported to have higher rate of hydrolysis than starch 

granules of size >40μm as found in potatoes (Tatsumi et al., 2007). Grinding of rice grains 

decreased RS content in raw rice whereas it did not increase RS content in roasted chickpea. By 

cooking, RS decreased from 0.161g/g dw to 0.028 and 0.247g/g dw to 0.032g/g dw in oats and 

raw bananas, respectively. Storing boiled potato overnight at 4oC increased RS by 2.8 fold (Muir 

and O’Dea, 1992). Chewing on the other hand decreased amount of RS in foods.  

2.8.4 Relationship between starch composition and structure with RS 

Amylose concentration is one of the single most important factor affecting gelatinization and 

retrogradation properties of starch (Yasui et al., 2005). After gelatinization amylose reassociates 

and retrogrades quicker than amylopectin in non-waxy starch. Amylose molecular weight and 

chain length has also been associated with starch retrogradation (Takeda et al., 1983). 

Amylopectin short chains with DP 6-9 inhibit retrogradation in maize whereas longer side-chains 

accelerate starch retrogradation (Shi and Seib, 1992). However, bread wheat with high amylose 

starch has more side-chains with DP 6-10 and fewer side-chains with DP 11-25 than normal 

starch (Yamamori et al., 2000; Yasui et al., 2005). Waxy starches have lower proportions of DP 

6-12 side-chains and higher proportions of DP>35 side-chains compared with non-waxy wheat 

starches (Sasaki et al., 2002; Yasui et al., 2005). Amylopectin chain length and amylose 

concentration of cereals are affected by environment and endosperm mutation (Inouchi et al., 

2000). To study the effect of environmental temperature on distribution of amylopectin unit 

chains in rice, Inouchi et al. (2000) reported an increased amounts of short chains and decreased 

amount of long chains in rice plants grown at 25 oC compared to amylopectin obtained from rice 

plants grown at 30 oC. High performance anion exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD) revealed significantly increased 6 and 11-13 DP 

amylopectin chains of rice grown at 25oC and significantly decreased 22-24 and 29 DP 
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amylopectin chain lengths of rice at 30oC (Inouchi et al. 2000). Environmental temperature 

between 5 and 10 days after pollination strongly influenced structural characteristics of rice 

endosperm starches. Large proportions of amylopectin short side-chains with DP 6-10 cause low 

density of the granule structure, hence it degrades at a higher rate (Inouchi et al., 2000). Genkina 

et al. (2009) explained that short side-chains of amylopectin in a cluster within the semi 

crystalline ring affect the whole supramolecular granule organization and promote a more 

favorable penetration of water molecules and hydrated proteins within the starch granule thereby 

decreasing the resistance of starch to hydrolytic action. 

Rice mutants RS7954, RS25 and RS26 have similar amylose contents but both RS25 and 

26 showed higher RS concentration than RS7954 (Shu et al., 2007). Analysis of amylopectin 

structure revealed that rice mutants high in resistant starch had significantly increased levels of 

short chains with DP ≤12, decreased intermediate chain contents with size 13≤DP≤36 and long 

chains with DP ≥37. Fraction A positively correlated with RS while fraction B2 negatively 

correlated with RS. They concluded that increased or decreased RS in rice is dependent on 

amylose content as well as amylopectin structure (Shu et al., 2007). 

2. 9 Genotype by environment interaction and chickpea chemical composition 

Genotype-environment (g x e) interactions have always been a major concern to plant breeders 

but its effect on grain quality has been less studied (Basford and Cooper, 1998). Basford and 

Cooper (1998) defined genotype x environment interaction in terms of biological or statistical 

concepts. Biologically, g x e interaction occurs when contributions or expression of genes 

regulating a trait differ among environments. Statistically, g x e interaction is significant if 

different pattern of response is detected among genotypes grown across environments. Falconer 

and Mackay (1996) defined g x e interaction as instance where “specific difference of 

environment may have greater effect on some genotypes than on others, or there may be a 

change in the order of merit of a series of genotypes when measured under different 

environments”. Genotype-environment interaction occurs when “different genotypes respond 

differently to environmental changes” (Roy, 2000).  

Expected mean squares from ANOVA for g x e interaction takes a form dependent of 

model (random, fixed or mixed) used. For instance, in a random model, both genotypes and 

environment used for the experiment are random for the populations whereas both are fixed in 
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case of fixed model (Roy, 2000). However, genotypes are fixed samples and environment 

random or vice versa in case of a mixed model. According to Roy (2000), “significant mean 

square genotype x environment interaction (MS g x e) indicates the presence of genotype x 

environment interaction. Significant g x e interaction means genotypes should be further tested 

over the selected environment. Roy (2000) stressed “a worker should not stop carrying out 

further analysis of g x e even if interaction mean square is not significant as one should be 

interested in studying the underlying stability structure of individual genotype”. 

Environments in g x e experiments are either micro-environment or macro-environment 

(Roy, 2000). Microenvironments are heterogeneities within a single plot, or even single plant, 

uncontrolled and attributed to error variation in statistical analysis. Macroenvironment is 

climatic, edaphic, or management conditions (day length, temperature, humidity, soil types, 

rainfall, planting dates and densities and different nutrient levels). 

Basford and Cooper (1998) noted that g x e interactions complicate selection for broad 

adaptation rather than specific adaptation and their effect must be accounted for in selecting trait 

performance within selected environments. Genotypes response to environment is multivariate 

where stability models, concepts and measurements transform this multivariate system to 

univariate structure. Understanding the adaptations associated with g x e interactions requires 

critical knowledge of the concept of repeatability (Basford and Cooper, 1998). It is critical to 

define environmental aspects responsible for g x e interactions and hence the production 

constraints instead of focusing on search for broad and/or specific adaptation to random g x e 

interactions. For instance, combinations of genetic variation for resistance to rust, variation 

among environments for its incidence, and level of infection by the pathogen give rise to g x e 

interaction for economically important traits like yield and quality. The best strategy for 

removing the g x e interaction is to select for resistance to rust and incorporate the sources of 

resistance into adapted cultivars (Basford and Cooper, 1998). Variations in genetic regulations of 

growth and development and environmental variation in timing of stress events can cause large 

scale g x e interaction for yield and quality.  Stratification of breeding lines into different 

maturity groups is the best strategy to eliminate g x e interactions. Lack of information (both 

time and resource wise) on detailed characterization of environments and influences of biotic and 

abiotic stresses on plant adaptation are some undefined causes of g x e interactions (Eisemann, et 

al., 1990). 
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     Genotype-environment interaction has been partitioned into those contributing to change in 

rank of genotypes (cross-over interaction) and those that do not (non-cross over interaction) 

(DeLacy et al., 1996). Non repeatable interactions are a source of error to be factored into 

extensive testing of lines and broad adaptation selections whilst repeatable interactions are 

exploited for positive specific adaptation.  

   Economic implications of g x e interactions from statistical perspective have been 

influenced by Type I, II, and III errors where Type I and II errors refer to false rejection and false 

acceptance of the null hypothesis, respectively. Type III error refers to getting the rank order 

wrong (Basford and Cooper, 1998). Berger et al. (2007) noted that with large g x e interaction 

effect, genetic advancement is complicated hence g x e interaction in this situation cannot be 

ignored. However, further investigations need to be done to restructure the program to minimize 

interaction effect or exploited to develop cultivars of specific adaptation. Genotype-environment 

interaction analysis should be considered at the start of the investigation rather than the end, as 

such genotypes and environment should be well characterized to ascertain the underlying cause 

of g x e interaction (Berger et al., 2007).  

 Very little has been published on the influence of genotype x environment interaction on 

chickpea chemical components. Ereifej et al. (2001) reported that concentrations of chickpea 

seed protein, fat, fibre, ash, glucose, fructose, P, Ca, Mg, Na, and Cu were significantly affected 

by growing season. Cultivar x growing season interaction significantly influenced all traits 

except seed starch and seed sodium concentrations. Al-Karaki and Ereifej (1997) observed that 

variations in protein, lipids, sucrose and starch in peas were caused by the environment.  

  Environmental temperature influences the structure of amylopectin, hence starch content 

and quality. Bread wheat grown at higher temperatures had lower ratio of side-chains with DP6-

12 and higher ratio of side chains with DP13-34 and DP≥35. Thus at higher tempe ratures 

proportions of side chains with DP6-12 decreased by 2.7-5.4%, and DP13-34 and DP≥35 

increased by 1.7-3.9% and 1.1-2.2%, respectively (Matsui et al. 2003). 

Genotype and environment studies on chickpea since 1971 have been compiled (Table 

2.7). However, out of the 34 references, only four (Yadavendra and Dixit, 1987; Ereifej et al., 

2001 and Sood et al., 2001) reported on g x e effect on protein. All the 34 references focused 

extensively on the effect of g x e on yield and its components.  
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2.10 Repeatability and heritability 

Repeatability has been defined simply as the consistency or correlation between repeated 

measurements of the same individual (Falconer and Mackay, 1996). In other words, if a trait is 

repeatable then it is heritable and selectable (Boake, 1989) since its performance remains 

consistent over time and environment. A serious obstacle of genetic factors in evolution has been 

the difficulty in measuring heritability of natural populations (Boake, 1989). Useful estimates of 

heritability can rarely be made in field studies since statistical properties of variance components 

are not well understood, however, repeated measures of individual traits can easily be made 

(Boag, 1983 and Findlay and Cooke, 1983). 

Use of variance components from a two-way ANOVA to estimate multi-environment genetic 

correlations (Yamada, 1962) is known to be highly biased (Fernando et al., 1984). High 

repeatability may accompany high heritability implying environmental variation is low and most 

of the genetic variation is additive in nature. However, excessively higher repeatability over 

heritability may be caused by high environmental variations, strong past selection or major 

contributions by non-additive variance such as dominance effects (Boake, 1989). 

Repeatability can be used to: 

• showing how much is to be gained by repetition of measurements 

• setting upper limits to heritability in both broad (Vg/Vp) and narrow (Va/Vp) sense, ie. 

heritability cannot be greater than repeatability, however, Dohm (2002) reported that 

repeatability may not always set upper limits to heritability. 

• predicting future performance from past records 

Assumptions of repeatability are: variances of different measurements are equal and different 

measurements reflect genetically the same character. 

Repeatability is a powerful tool for population geneticists, however it is reported that 

there are errors in its calculation (Lessells and Boag, 1987). For instance, a number of authors 

have equated Falconer’s “variance” with “mean square” and miscalculated repeatability. In their 

analysis, they cautioned scientists not to publish or use published repeatability values 

unaccompanied by associated F ratios. 

Repeatability, rapprox can be calculated as: 



 

35 
 

ñ= (df1 + df2 + 1)/(df1 + 1)                       (1) 

rapprox= (F-1)/(F-1 + ñ)                               (2) 

where df1 is numerator or trait degree of freedom 

df2, the denominator or error degree of freedom 

F, F ratio value of the trait 

ñ, mean group size 

Reason for rapprox being an approximation value is that ñ has been used in place of no, the sample 

size. 

In evaluating evolutionary role of repeatability on mating behavior, Boake (1989) defined 

repeatability as: 

r= Vg + Ve/ Vt 

where Vg is genotypic variance, Ve is general environmental variance, Vt is total phenotypic 

variance. 

Repeatability, computed as a ratio can be low for two reasons (Boake, 1989). First, 

similarity of individual genotypes leads to relatively small numerator. This similarity could be 

due to genetic or environmental causes. Secondly, environmental influences can cause relatively 

large denominator and hence low repeatability. Factors such as temperature, soil moisture and 

experimental errors could affect repeatability estimates. 

Heritability (in narrow sense) is defined as: 

h2=Va/Vt 

where Va is additive genetic variance and Vt is total phenotypic variance. Vt may be greater than 

Va if non-additive effects such as dominance influence a character. Thus low repeatability 

cannot accompany high heritability or low repeatability puts a low ceiling on heritability (Boake, 

1989). 

Heritability of clonal replicates or full-sibs grown in multi-environments can be estimated 

from mean square values of ANOVA table as the ratio of genotype-environment interaction 

variance to the total phenotypic variance (Schneiner and Lyman, 1989; Becker, 1984). Thus 
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Table 2.7 Chickpea g x e studies on agronomic traits published since 1971 - organized by 
publication year and methodology employed to analyse G x E interaction. 

Reference Genotypes Traits studied Method 
employed 

Chandra et al. 1971 40 Grain yield 4 

Tomer et al. 1973 10 Grain yield, seed weight, seed 
colour 

1,2 

Ramanujam and Gupta, 

1974 
35 Grain yield, seed weight 1,2 

Mehra et al. 1980 11 Grain yield and components 1,2,4 

Jain et al. 1984 32 Grain yield and components 1,2 

Yadavendra and Dixit, 1987 3,9,11 Grain yield and components, 
Seed protein 

1,2 

Khan et al. 1988 14 Grain yield and components 1,2 

Malhotra and Singh, 1991 23 Grain yield, seed weight 4,7 

Singh et al. 1991 16 Grain yield and components 1,2 

Singh and Singh, 1991 66 Grain yield, seed weight 1,2 

Katiyar et al. 1992 20 Grain yield, seed weight 1,2 

Singh et al. 1993 20 Grain yield and components 1,2 

Singh and Kumar, 1994 24 Grain yield and components 1,2 

Singh et al. 1995 44 Grain yield and components 1,2 

Kumar et al. 1996 16 Grain yield, seed weight 1,2 

Banik et al. 1997 9 Grain yield and components 1,2,4 

Kumar et al. 1998 16 Grain yield and components 1,3,4 

Aher et al. 1998 27 Grain yield, seed weight 1,2 

Deshmukh et al. 1998 8 Grain yield, seed weight 1,2, 4 

Mhase et al. 1998 23 Grain yield and components 1,2 

1. bi: slope of genotype vs site mean regression. 
2. S2di: deviation mean squares for genotypes vs site mean regression. 
3. Wi: Wricke’s ecovalence. 
4. ANOVA: main effects partitioned (ie. environments into years and location, genotypes 
     into desi and kabuli), and used to partition G x E interaction. 
5. AMMI: additive main effects and multiplicative interaction. 
6. HC: hierarchial clustering. 
7. PCA: principal components analysis. 
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Table 2.7 (continued) Chickpea g x e studies on agronomic traits published since 1971 - 
organized by publication year and methodology employed to analyse G x E interaction. 

Reference Genotypes Traits studied 
Method 

employed 

Popalghat et al. 1999 19 Grain yield and components 1,2 

Khorgade et al. 2000 16 Grain yield and components    1,2  

Yadava et al. 2000 81 Grain yield, wilt resistance 1,2 

Ereifej et al. 2001 4 
Grain yield and seed 

composition 
4 

Sood et al. 2001 33 
Grain yield, yield components 

and protein content 
1,2, 4 

Arshad et al. 2003 25 Grain yield and components 1,2,5 

Rubio et al. 2004 11 

Grain yield, seed weight, seed 

size, growth habit, 

single/double pod, early/late 

flowering genes 

4,5,7 

Berger et al. 2004 73 
Grain yield, seed weight, 

growth habit, maturity 
5,7 

Berger et al. 2006 46 
Grain yield, seed weight, 

growth habit, maturity 
1 

Berger et al. 2008 619,562 
Grain yield, seed weight, 

growth habit 
1 

Segherloo et al. 2008 17 Grain yield and components 6 

Atta et al. 2009 14 Grain yield and components 4,6 

Alwawi et al. 2010 7 Grain yield and components 4 

Dehghani et al. 2010 17 Grain yield and components 1,5,7 

1. bi: slope of genotype vs site mean regression. 
2. S2di: deviation mean squares for genotypes vs site mean regression 
3. Wi: Wricke’s ecovalence. 
4. ANOVA: main effects partitioned (ie. environments into years and location, genotypes 
     into desi and kabuli), and used to partition G x E interaction. 
5. AMMI: additive main effects and multiplicative interaction. 
6. HC: hierarchial clustering. 
7. PCA: principal components analysis. 
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h2= σ2
GE/ σ2

P 

where  

                 σ2
GE = (MSGE - MSe) /r 

                 σ2
P    = σ2

G + (σ2
GE/e) + (σ2e/re) 

                  σ2
G = (MSG-MSGE)/re 

Note: 

σ2
GE is the genotype-environment variance 

MSGE, mean square of genotype-environment 

σ2e = MSe, the error mean square 

σ2
G, genotypic variance 

MSG, genotypic mean square 

 e = number of environments 

 r = replications per environment 

For two environments, heritability of plasticity is the ratio of variance components or slope of a 

parent-offspring regression (Scheiner and Lyman, 1989): 

OMD=h2PMD + intercept, 

Where PMD is the mean difference in the F1 offspring of the parental families and OMD, mean 

difference in the F2 offspring of the F1 families. 

Heritability, like repeatability is specific for given set of genotypes and environments. 

2.11 Hypotheses for thesis 

The main research thrust with pulse starch concerns its use as a food source with health benefits. 

Storage components of seeds including starch are affected by the environment (Al-Karaki and 

Ereifej, 1997). There is little knowledge as to why legume starches digest more slowly than 

cereal starches, however, knowledge on the relationship between starch chemical and granular 

structure and starch nutritional characteristics on one hand, and genetic control of starch 

chemical and granular structure on the other will be critical for starch manipulation and 
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improvement in legumes (Hedley, 2001). Literature published to-date points to the fact that the 

production of designer starch is a long term objective requiring a multidisciplinary approach that 

will involve geneticists and plant breeders to provide genetically characterized lines, biochemists 

to elucidate dynamics in starch biosynthesis, analytical chemists to determine the changes in 

molecular structure of starch, physical chemists and physicists to comprehend and interpret 

starch granular structure and interactions within the granule that contribute to functional 

properties of starch. The hypotheses for the thesis are therefore: 

1. Carbohydrate based seed quality traits have low repeatability, as storage components are 

strongly influenced by environment. 

2. Genetic variability for carbohydrate based seed quality traits is present in natural 

       germplasm collections. 

3. There is an association between rate of starch hydrolysis and seed starch structure.  
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CHAPTER 3 

GENOTYPE AND GROWING ENVIRONMENT INFLUENCE CHICKPEA 

(CICER ARIETINUM L.) SEED COMPOSITION 

3.1 ABSTRACT 

As a first step towards genetic improvement of seed quality in chickpea (Cicer arietinum L.), 

seven desi and nine kabuli varieties were grown at multiple sites in Saskatchewan and Alberta, 

Canada to assess the affect of environment on seed yield, weight and selected seed constituents. 

The sites were chosen to represent a range of environments in chickpea production areas of the 

Canadian prairies. Genotype × environment interaction effects on starch, amylose and protein 

(desi only) concentrations and seed yield were significant, suggesting that the varieties did not 

perform consistently relative to each other in the different environments. Starch concentration 

was negatively correlated (rkabuli = −0.25, P < 0.05; r desi = −0.16, P < 0.05) with protein 

concentration in both chickpea market classes. However, repeatability estimates of starch, 

amylose and protein concentrations were low and inconsistent across chickpea market classes, 

possibly owing to complex biosynthetic pathways for these constituents. The results suggest that 

testing for seed constituent traits over a range of environments will be required to improve seed 

quality in individual chickpea varieties. The best selection strategies for seed constituent 

improvement in chickpea will be influenced by genotype and genotype × environment 

interaction for these traits. The negative relationship between seed constituents and yield 

indicates that selection for chickpea cultivars with desired seed composition may require 

compromise and indirect selection. 

 3.2 INTRODUCTION 

Chickpea (Cicer arietinum L.) is an important pulse crop, ranking second in growing area 

(15.3% of total pulse area) and third in production (14.6% of total pulse production) around the 

world (Knights et. al., 2007). It is a staple food in India, North and East Africa, southern Europe 

and the Americas, with annual production of 8.4 × 106 t from an area of 10.4 × 106 ha (FAO, 

2005). Chickpea is an important crop in Saskatchewan, with a total area of production of over 

1.28 × 105 ha in 2006 (McVicar et al., 2006; SAF, 2007). Saskatchewan accounts for over 80% 

of Canadian chickpea production, with the remainder coming from Alberta (SAF, 2007). Two 
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main chickpea market classes are recognized, kabuli (white flower with large, cream-coloured 

seeds) and desi (purple flower with smaller, angular, dark-coloured seeds). Desi chickpeas have a 

thicker testa, accounting for 150 g kg−1 dry weight as compared with 70 g kg−1 in kabuli 

chickpeas, which affects the determination of seed composition (Wood and Grusak, 2007; 

Knights and Mailer, 1989). The mean seed yield of Saskatchewan grown chickpea is 1550 kg 

ha−1 for desi and 1300 kg ha−1 for kabuli (McVicar et al., 2006). Chickpea is consumed as whole 

seed, dhal (decorticated split cotyledons) or dhal flour. In almost three-quarters of the Indian 

subcontinent, chickpea is utilized as either dhal, dhal flour or whole seeds, whereas in Canada, 

Australia, Ethiopia, Mexico, Sudan, Tanzania, Turkey, the USA and the UK it is consumed as 

whole seed (Saini and Knights, 1984). Seed legumes are a good source of complex 

carbohydrates, proteins and dietary fibre (Wood and Grusak, 2007; Chibbar et al., 2004).  

Starch is the major storage carbohydrate and a primary energy source in most human 

diets and animal feeds. Starch is a complex macromolecule composed of two glucan polymers, 

an essentially linear chain amylose and a highly branched amylopectin. Starch is normally made 

up of one quarter amylose and three-quarters amylopectin. The proportions of amylose and 

amylopectin and their structures vary with the plant species. Chickpea starch concentration 

varies from 430 to 590 gkg−1 seed weight, and total starch concentration is an average of 8% 

higher in kabuli chickpea than in desi chickpea (Wood and Grusak, 2007; Chibbar et al., 2004). 

A considerable variation in amylose concentration (310–450 g kg−1) has been reported in 

chickpea (Wood and Grusak, 2007; Chibbar et al., 2004). In contrast to starch, protein 

concentration generally varies by only a small magnitude between desi and kabuli market classes 

(McVicar et al., 2006). Chickpea protein concentration ranges from 160 to 300 g kg−1 and from 

120 to 290 g kg−1 for desi and kabuli market classes respectively and is typically two- to-

threefold higher than the protein concentration in cereal seeds (Wood and Grusak, 2007). 

Chickpea proteins are limited in methionine and cysteine, sulfur containing amino acids, but are 

high in lysine, making chickpea an ideal companion to cereals that are known to be higher in 

sulfur amino acids but limited in lysine (Wood and Grusak, 2007).  

Seed storage constituents such as protein and starch are affected by both genetic make-up 

and the environment (Hucl and Chibbar, 1996; Morris, 2004). Several reports have shown the 

effect of genotype × environment interaction on chickpea yield and some agronomic characters 

(Berger et al., 2007). An extensive study of 23 chickpea genotypes grown at 37 (1985–1986) and 
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(1986–1987) locations in western Asia, North Africa, Mediterranean Europe and Latin America 

revealed significant differences in seed yield (Malhotra, and Singh, 1991). Combined analysis of 

variance showed the presence of highly significant differences due to location as well as 

genotype × location and genotype × location × year interactions. Similarly, in another recent 

study, 46 genotypes (41 Indian, three Australian and two of Mediterranean basin origin) were 

grown over three years at seven locations in diverse chickpea growing regions of India (Berger et 

al., 2006). Highly significant genotype × environment interaction for yield was observed, with 

the interaction accounting for more variance than attributed to genotype alone. Several 

agronomic traits and yield were evaluated over three years and the genotypes were grouped into 

five clusters based on their performance. In another study on three chickpea genotypes grown 

under semi-arid Mediterranean conditions, several seed composition traits were affected by 

cultivar × growing season interaction (Ereifej et al., 2001). However, no effect was found on 

seed starch and sodium concentrations. Significant genotype × environment interaction was also 

reported for chickpea canning quality characteristics (Nleya et al., 2002). In a recent report, 

chickpea genotype × trial interaction was also found to affect milling parameters such as 

dehulling efficiency and splitting yield, which are important considerations in chickpea 

utilization (Wood et al., 2008). Seed storage compounds such as protein and starch are important 

determinants of chickpea utilisation and processing, including milling. In this study we evaluated 

seven desi and nine kabuli chickpea varieties at multiple sites to study the effect of environment 

on seed yield, thousand-seed weight and protein, starch and amylose concentrations.  

3.3 MATERIALS AND METHODS 

3.3.1 Varieties and environments 

Seven desi and nine kabuli varieties of chickpea were grown at nine sites (two in 2004, seven in 

2005) in Saskatchewan and two sites (2005) in Alberta (Table 3.1). The experimental sites 

(environments) represent a range of chickpea production areas of the Canadian prairies (Table 

3.1). The Brown (having brownish A horizons and drier) and Dark Brown (having darker A 

horizons and moister) soil types there are characterized by increased soil organic matter contents. 

Average precipitation varied from 203 mm in Hodgeville (2005) and Swift Current (2005), two 

sites in close proximity, to 380 mm in Brooks (2005). Most of the precipitation at all locations 

was in the month of June, except in Scott (2004) where highest precipitation was recorded in 
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July (Table 3.1). Mean temperatures varied from 13.4 to 16.5 ◦C. May recorded lowest 

temperatures, while mean temperatures in the other three months did not vary significantly 

(Table 3.1).  

The chickpea varieties selected for this study were either adapted cultivars or advanced 

breeding lines that are likely to become cultivars in the near future. All will be referred to as 

‘varieties’ in this section of the thesis. Detailed information on varieties is given in Table 3.2.  

Chickpea is best adapted to a long, warm growing season and is preferably planted in 

early May and harvested by mid-September in western Canada. Desi and kabuli experiments 

were separately arranged in a randomised complete block design with three replications per 

location. Plot size was 4.45 m2 with four rows per plot, inter-row spacing was 30 cm, row length 

was 3.65 m and seeding rate was 54 seed m−2. Experiments were carried out under rain-fed 

conditions, and weed control was done by hand hoeing.  

3.3.2 Seed weight  

Thousand-seed weight was determined by counting 250 seeds (120 g kg−1 moisture content) 

using an electronic seed counter (Seedburo Equipment Co., Chicago, IL, USA) and a convertible 

electronic computerized balance.  

3.3.3 Dehulling of desi and grinding of chickpeas  

Desi chickpeas were dehulled for 60 s using a Satake seed testing mill (Satake Engineering 

Company, Tokyo, Japan) equipped with a Satake abrasive roller stone driven by an electric 

motor. A Turkish table-top dehuller (BuffaloMachines, Buffalo, NY, USA) was used to separate 

the hulls from the cotyledons. Intact kabuli and dehulled desi chickpea seeds were broken into 

small pieces and ground into a fine meal using a UDY cyclone mill (UDY Corporation, Fort 

Collins, CO, USA) to pass through a 0.5 mm sieve. 

3.3.4 Total starch 

Total starch concentration was determined according to the Megazyme method (Megazyme 

International Ireland Ltd, Wicklow, Ireland) (McLeary et al. 1994). Briefly, a 100 mg sample 

was suspended in 0.2 mL of 800 mL L−1 ethanol to aid dispersion and mixed vigorously using a 

vortex mixer. The sample was incubated at 100 ◦C for 8 min and mixed every 2 min with 300 U 

of α-amylase (AA) in 50 mmol L−1 3-(N-morpholino) propanesulfonic acid (MOPS) buffer (pH 
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Table 3.1. Soil zone, monthly precipitation (P, mm) and mean temperature (T,◦C) during 

growing period at trial locations (data obtained from 

http://www.climate.weatheroffice.ec.gc.ca/). 

 

     Environment                                                          Growing period (month) 

Location (provincea)      Year      Soil zone                 May      June     July     Aug    TP/MTb 

Bow Island (AB) 2005 Brown 
P 

T 

8 

8.6 

148 

19.2 

3 

20.5 

50 

18.2 

209 

16.4 

Brooks (AB) 2005c Brown 
P 

T 

23 

8.3 

228 

17.4 

42 

18.5 

87 

17.8 

380 

15.4 

Hodgeville (SK) 2005 d  Brown 
P 

T 

29 

9.1 

97 

18.6 

27 

17.6 

50 

20.0 

203 

16.2 

Swift Current (SK) 2005 Brown 
P 

T 

29 

9.1 

97 

18.6 

27 

17.6 

50 

20.0 

203 

16.2 

Davidson (SK) 2005 Dark Brown 
P 

T 

73 

9.9 

157 

18.6 

44 

17.9 

40 

19.3 

314 

16.5 

Elrose (SK) 2005 Dark Brown 
P 

T 

44 

7.1 

134 

16.1 

38 

14.7 

34 

15.6 

249 

13.4 

Goodale (SK) 2005 Dark Brown 
P 

T 

31 

7.8 

110 

18.0 

55 

17.6 

61 

16.5 

256 

14.8 

Kyle (SK) 2004 c  Dark Brown 
P 

T 

51 

9.5 

88 

15.2 

60 

16.3 

72 

14.9 

271 

14.2 

Kyle (SK) 2005 Dark Brown 
P 

T 

57 

8.8 

165 

18.2 

21 

20.3 

31 

19.2 

275 

16.4 

Scott (SK) 2004 c Dark Brown 
P 

T 

15 

8.1 

68 

15.6 

99 

17.4 

52 

13.1 

234 

13.6 

Scott (SK) 2005 c  Dark Brown 
P 

T 

51 

8.7 

88 

16.9 

60 

18.1 

72 

16.7 

271 

15.2 
aAB, Alberta; SK, Saskatchewan. 
bTP, total precipitation; MT, mean temperature. 
cUsed for desi only. 
dUsed for kabuli only. 

http://www.climate.weatheroffice.ec.gc.ca/�


 

45 
 

Table 3.2 Description of chickpea varieties used in the study. 

Variety Origin Pedigree Maturitya 

Desi varieties 

 

Myles 
USDA/ARS, 

USA 
BDN 9-3/K1184//ICP 87440 Medium 

316B-42 CDC, Canada Myles//B-90/92040-52B Medium 

CDC Cabri CDC, Canada ICCX-860027/ICCX-860047 Medium 

CDC Vanguard CDC, Canada 
92073-60D//92056-

8/ICCV96029 
Medium 

ICC-12512-9 Landrace, India Unknown Medium 

ICC-12512-1 Landrace, India Unknown Medium late 

CDC Anna CDC, Canada ICCX-860047/ICC7002 Late 

Kabuli varieties 

 
   

FLIP97-133C ICARDA, Syria Unknown Medium late 

FLIP98-135C ICARDA, Syria Unknown Medium late 

FLIP98-134C ICARDA, Syria Unknown Medium late 

Amit 
Landrace, 

Bulgaria 
Unknown Late 

CDC Xena CDC, Canada C188-178/ICCV89511 Late 

CDC Frontier CDC, Canada FLIP91-22C/ICC14912 Late 

97-Indian2-1 India Unknown Late 

FLIP97-45C ICARDA, Syria Unknown Late 

Sanford 
USDA/ARS, 

USA 
FLIP85-58/Surutato-77 Very late 

a Early, ≤120 days; late, >150 days. 

 

 



 

46 
 

 

7.0) to hydrolyse starch to dextrins. Subsequent incubation with 4 mL of 20 mmol L−1 sodium 

acetate buffer (pH 4.5) and 0.1 mL of 20 U amyloglucosidase (AMG) at 50 ◦C for 30 min 

hydrolysed dextrins to glucose. The reaction mixture was diluted to 100 mL and a 1 mL aliquot 

was added to 3 mL of glucose determination reagent (GOPOD) and incubated at 50 ◦C for 20 

min. Total starch was calculated as free glucose by measuring the absorbance at 510 nm as 

described previously (Hucl and Chibbar, 1996). Commercial corn starch (Arancia Corn Products 

SA de CV, Mexico City, Mexico) provided with the Megazyme kit was used as a standard to 

accurately determine starch concentration. 

3.3.5 Isolation of starch granules 

Starch was isolated from chickpea seeds using a previously described procedure (Zao and Sharp, 

1996; Demeke et al. 1997). The seeds were cut into several small pieces, placed in 1 mL of 

sterile distilled water in a 1.5 mL microfuge tube and kept overnight at 4 ◦C. The water was 

carefully decanted and a small pestle was used to grind the seeds into slurry. The slurry was 

layered over 1 mL of 800 g L−1 caesium chloride in a 2 mL microfuge tube. The microfuge tube 

was centrifuged at 13 000 × g for 5 min. The supernatant was discarded and the starch granules 

pelleted at the bottom were centrifuged once again through caesium chloride to remove any 

adhering nonstarch molecules. The pelleted starch granules were washed twice with buffer [55 

mmolL−1 Tris-HCl, pH 6.8, 23 g L−1 sodium dodecyl sulfate (SDS), 100 mL L−1 glycerol], once 

with water and a final time with acetone. After the final wash, the starch granules were dried at 

room temperature and used for amylose concentration determination. 

3.3.6 Amylose determination 

A high-performance size exclusion chromatography (HP-SEC) method was used to determine 

amylose concentration (Demeke et al. 1999). A 5 mg starch sample was suspended in 5 mL of 

distilled water in a glass tube and incubated at 130 ◦C for 30 min. To 1 mL of this gelatinized 

starch solution, 55 μL of 1mol L−1 sodium acetate (pH 4) was added with vigorous mixing, 

followed by 4 U of isoamylase to debranch the starch. After 4 h of incubation at 40 ◦C the 

debranching reaction was stopped by boiling for 20 min to inactivate isoamylase. The 

debranched starch solution was freeze dried. The freeze-dried sample was dissolved in 200 μL of 

990 mL L−1 dimethyl sulfoxide (DMSO) and centrifuged in a microfuge at 15 000 × g. A 40μL 
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aliquot of the supernatant was injected into a PLgel MiniMix-C guard column attached to a 

PLgel MiniMix 4.6 mmi.d. column (Polymer Laboratories, Inc., Amherst, MA, USA) to separate 

amylose and amylopectin using a high-performance liquid chromatography (HPLC) system 

comprising a Waters 600 controller, Waters 610 fluid unit, Waters 717 Plus autosampler and 

Waters 410 differential refractometer (Waters Corporation, Milford, MA, USA). The data were 

collected and analysed using Empower software (Waters Corporation). Starch samples, column 

and detector were maintained at 40, 100 and 45 ◦C respectively. The eluent used was 990 mL L−1 

DMSO at a flow rate of 0.2 mL min−1. The amylose concentration was calculated by integration 

of the peak area corresponding to amylose with respect to the peak area corresponding to both 

amylose and amylopectin (Demeke et al. 1999).  

3.3.7. Protein concentration 

The protein concentration of chickpea seed meal was determined using the combustion method. 

The ground chickpea sample was passed through hot copper to remove oxygen and to convert 

NOx into N2, followed by Lecosorb and Anhydrone treatment to remove carbon dioxide and 

water; the nitrogen in the sample was measured by the thermal conductivity cells (FP-528 

Protein/Nitrogen Analyser, Leco Corporation, St Joseph, MI, USA). The crude protein 

concentration of each sample was calculated using the following formula (AACC, 2000): 

crude protein (%) = % N × 6.25 

3.3.8 Statistical analyses 

Analysis of variance (ANOVA) was done for each trait and market class in each location 

followed by a combined analysis across locations. Mean comparison for each trait across 

varieties was done using Duncan’s multiple range test (DMRT). Phenotypic correlations between 

traits and P values were estimated using SAS Version 8.0 (SAS Institute Inc., Cary, NC, USA). 

Location and replication effects were considered random and the genotypic effect as fixed in a 

mixed model (PROC MIXED) of the SAS program. Principal component analysis (PCA) was 

done using SYSTAT software Inc., Chicago, IL, USA for Windows Version 12 on the mean 

value of each trait across environments. All differences were significant at P ≤ 0.05 unless noted 

otherwise. 
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3.3.9 Repeatability estimates 

Repeatability (rapprox) was calculated from the ANOVA based on the F ratio and its degree of 

freedom (Lessells and Boag, 1987): 

n = (df1 + df2 + 1)/(df1 + 1) 

rapprox = (F − 1)/(F − 1 + n) 

where n is the mean group size, df1 is the numerator degree of 

freedom, df2 is the denominator degree of freedom and F is the F 

ratio value of the trait. 

3.3.10 Heritability estimates 

Heritability of clonal replicates or full-sibs grown in multi-environments was estimated from 

mean square values of ANOVA table as the ratio of genotype-environment interaction variance 

to the total phenotypic variance (Scheiner and Lyman, 1989; Becker, 1984). Thus 

h2= σ2
GE/ σ2

P 

where         σ2
GE = (MSGE - MSe) /r 

                 σ2
P    = σ2

G + (σ2
GE/e) + (σ2e/re) 

                  σ2
G = (MSG-MSGE)/re 

                   σ2e = MSE, the error mean square 

                e = number of environments 

                r = replications per environment 

 

3.4 RESULTS AND DISCUSSION 

Significant genotype, environment and genotype × environment interaction effects were detected 

for seed yield, seed weight, starch, amylose and protein concentrations in both desi and kabuli 

varieties (Table 3.3.). In kabuli varieties, protein × location interaction was not significant (Table 

3.3). The results suggest adequate variability for studied characters among genotypes and 
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genotypic plasticity over environments. Chickpea market class (desi versus kabuli) had a 

consistent effect on total starch concentration (see Tables 3.4 and 3.5). Genotype × environment 

interactions for thousand-seed weight and yield have been reported (Malhotra and Singh, 1991; 

Sood et al. 2001; Berger et al. 2006). A cluster analysis of genotype × environment interaction 

was used as a tool to classify chickpea growing environments and develop guidelines for 

inclusion of varieties in international nurseries for testing (Malhotra and Singh, 1991). Analysis 

of genotype × environment interaction in 46 genotypes grown at seven sites over three years 

revealed both specific and wide adaptation in chickpea to low- and high-yielding environments. 

Starch and amylose concentrations showed genotype × environment interaction in both desi and 

kabuli varieties, but protein concentration did so only in desi varieties (Table 3.3). Seed 

composition traits are less affected by genotype × environment interaction as compared with 

thousand-seed weight and yield (Ereifej et al. 2001; Singh et al. 1983; Singh et al. 1993). 

3.4.1 Desi chickpea 

For desi varieties, mean seed yield across varieties and environments was 1462 kg ha−1 and mean 

thousand-seed weight was 228 g (Table 3.4). ICC-12 512-9 and Myles had the highest (1710 kg 

ha−1) and lowest (1120 kg ha−1) yields respectively. Myles also had the lowest thousand-seed 

weight, while CDC Cabri had the highest thousand-seed weight but was a medium-yielding 

variety (Table 3.4). Significant genotype × environment interactions were observed for seed 

yield and thousand-seed weight (Table 3.3). CDC Vanguard and CDC Anna had the lowest 

protein concentrations, while Myles, which had the lowest-thousand seed weight and was lowest-

yielding, had the highest protein concentration (Table 3.4). Desi chickpeas have a thick seed coat 

(Wood and Grusak, 2007; Knights and Mailer, 1989) which might skew the seed composition 

results. Moreover, desi chickpeas are consumed as dhal produced after dehulling. Therefore 

dehulled desi chickpeas were used for seed composition analysis. Total starch concentration 

showed less variation, with desi varieties having total starch concentrations of 420–452 g kg−1, 

with a mean of 435 g kg−1 (Table 3.4), similar to values reported previously (Bakhsh et al. 2006; 

Wood et al. 2008). CDC Cabri, CDC Anna, CDC Vanguard and ICC-12 512-9 had the highest 

total starch concentrations (Table 3.4). Interestingly, CDC Cabri had the highest starch 

concentration across all environments. Amylose concentration showed less variation among desi 
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Table 3.3 Mean squares of combined ANOVA and coefficient of variation (CV) for seed yield, 
seed weight and protein, starch and amylose concentrations of desi and kabuli chickpea varieties 
grown in different environments in western Canada. 

                                 Variety (G)           Location (E)            G x E                    CV (%) 

Desi 

 
    

Seed yield 1250000**  7890000**    200000**     12.2 

Seed weight     42800**        2900**          400**       5.5 

Protein       2400**      17500**          159**       4.1 

Starch       3200**      41600**        1500**       7.0 

Amylose         563*        1540**          186**       2.3 

 

Kabuli 

 

    

Seed yield 1309000**  4860000**       88260**     12.7 

Seed weight     59640**      22200**         2060**     10.0 

Protein       1150*        8117**           478ns     12.8 

Starch       6894**      22185**         3415**       4.3 

Amylose         175**          836**           385**       2.4 

*Significant at 5% level; **Significant at 1% level; ns, not significant. 
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Table 3.4 Seed yield, seed weight and protein, starch and amylose concentrations of desi 
chickpea varieties evaluated across different environments in western Canada. 

 Seed yield 
(kg ha-1 

Seed weight 
(g) 

Protein (gkg-1 

seed meal) 
Starch (gkg-1 

seed meal) 
Amylose(gkg-1 

starch) 
Variety      
ICC-12512-9 1710a 260.8b 192.2cd 439.1ab 267.8cd 

ICC-12512-1 1690a 245.4c 191.6de 425.9bc 265.7e 
CDC 
Vanguard 1580b 222.1d 185.4f 438.5ab 269.9bc 

CDC Cabri 1410c 286.9a 196.3c 451.6a 263.8e 

316B-42 1390c 199.3e 200.7b 431.0bc 266.4de 

CDC Anna 1270d 197.0e 187.7ef 439.6ab 276.4a 

Myles 1120e 184.5f 211.5a 420.2c 272.3b 

Mean 1462 228.0 195.1 435.1 268.9 

CV 12.2 5.5 4.1 7.0 2.2 

Pooled SE 32.7 2.3 0.2 0.6 0.1 

Location      

Brooks 2005 2690a 233.1bc 217.8b 410.9d 251.2f 
Bow Island 
2005 2210b 232.0bc 184.0e 450.4b 263.6e 

Goodale 2005 1614c 208.0f 176.9f 449.0b 268.4d 
Davidson 
2005 1550c 216.0e 154.7g 429.0cd 274.2bc 

Kyle 2004 1430d 218.0ed 190.0d 477.3a 264.4e 

Kyle 2005 1380d 250.0a 197.4c 475.3a 279.3a 
Swift Current 
2005 1204e 235.0b 212.7b 417.6d 271.8cd 

Elrose 2005 1034f 230.0bc 155.5g 438.5bc 277.9ab 

Scott 2004 880g 231.0bc 245.6a 475.3a 275.0bc 

Scott 2005 630h 225.7cd 216.5b 328.1e 263.1e 

Mean 1462 228.0 195.1 435.1 268.9 

CV 8.5 3.7 3.2 5.1 2.2 

Pooled SE 39.1 2.7 0.2 0.7 0.1 
Means followed by the same letter within a column are not significantly different at P<0.05 
based on DMRT. 
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varieties. The mean amylose concentration of desi varieties was 269 g kg−1 starch (Table 3.4). 

CDC Anna had the highest amylose concentration, followed by Myles and CDC Vanguard. In 

general, amylose concentration in both desi and kabuli chickpeas is lower than that reported in 

other studies (Saini and Knights, 1984; Chibbar et al. 2004; Wood and Grusak, 2007). In this 

study, debranched starch was separated using an SEC-HPLC method, which determined the 

amount of amylose molecules (Demeke et al. 1999) compared with iodine-based 

spectrophotometric methods determining apparent amylose concentration. 

     In desi chickpea varieties, growing environment significantly affected all traits studied. 

Interestingly, high precipitation during vigorous plant growth (June) resulted in higher yields. 

Brooks with 228 mm precipitation in June recorded the highest yield (2690 kg ha−1), while Scott 

2004 and 2005 with only 68 and 88 mm precipitation in June, respectively, recorded the lowest 

yields (630 and 880 kg ha−1 respectively) (Table 3.4). The amount of June precipitation effected 

extreme values of seed yield in desi chickpea varieties, but seed yield is the net result of several 

interacting factors, as shown by observations with intermediate June precipitation levels (Table 

3.4). Thousand-seed weight was highest at Kyle 2005 (250 g) and lowest at Goodale (208 g) 

(Table 3.4). Kyle 2004, Kyle 2005 and Scott 2004 had the highest seed starch concentrations. 

Scott 2005 had the lowest total starch concentration (Table3. 4). Kyle 2005 had the highest 

amylose concentration of 279 g kg−1 starch. This may be attributed to the inherent properties of 

local edaphic factors as well as the lower temperatures (Table 3.1) compared with other 

locations. Brooks recorded significantly (P < 0.05) lower amylose concentration (251 g kg−1 

starch) (Table 3.4). 

3.4.2 Kabuli chickpea 

Kabuli varieties had lower seed yield (Table 3.5) compared with desi varieties (Table 3.4). CDC 

Frontier had the highest seed yield, which was not significantly different from those of FLIP97-

133C, Amit and FLIP97-45C. Sanford produced the lowest yield of 860 kg ha−1. CDC Xena and 

FLIP98-135C showed the highest thousand seed weights, 449 and 427 g respectively. Kabuli 

varieties had an average of 186 g kg−1 protein, which is slightly lower as compared with desi 

varieties. Protein concentration did not differ greatly among kabuli varieties (Table 3.5).  

     In general, kabuli chickpea varieties had higher total starch concentration than desi 

varieties (Tables3.4 and 3.5), which may be due to the larger seed size of kabuli (8–10 mm) 
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compared with desi (<8 mm). Moreover, kabuli chickpeas were used intact with the hulls (testa), 

contributing 6.7% of dry weight and 5.6% of dietary fibre in kabuli chickpea, which is half the 

contribution to seed dry weight in desi chickpea (Knights and Mailer, 1989). Desi chickpeas 

were dehulled prior to milling, because their hulls are easy to remove as compared with those of 

kabuli chickpeas. Kabuli varieties had total starch concentrations of 480–550 g kg−1 meal, with a 

mean of 546 g kg−1 meal (Table 3.5). These starch concentrations are similar to those reported 

previously (Saini and Knights, 1984; Jambunathan and Singh, 1980). FLIP97-133C produced the 

highest, while Amit yielded significantly (P < 0.05) lower starch concentration. The other 

varieties had similar starch concentrations (Table 3.5). FLIP97-133C was the highest starch 

yielder at Elrose, Davidson and Goodale but the lowest starch yielder at Kyle.  

    Kabuli chickpea varieties had higher amylose concentration than desi varieties (Tables 

3.4 and 3.5). The amylose concentration in this study is comparable to the 26.8–29.0% reported 

by Singh et al. (1956) but lower than and not consistent with the 33.5 and 36.3% for kabuli and 

desi varieties respectively reported by Saini and Knights (1984). The amylose concentration of 

kabuli chickpea varieties ranged from 271 to 280 g kg−1 starch (Table 3.5).  

  For kabuli varieties, Bow Island was the best location for seed yield, with an average of 2224 

kg ha−1, while the lowest seed yield of 910 kg ha−1 was obtained at Hodgeville (Table 3.5). 

Interestingly, similar to desi chickpea varieties, the highest yield was recorded at Bow Island, 

which had the highest amount of June precipitation (148 mm, Table 3.1). However, no definite 

trends were observed with other locations. Kyle produced the highest thousand-seed weight of 

417 g, whereas Davidson and Goodale produced the lowest thousand-seed weights. The effect of 

genotype × environment on both seed yield and thousand seed weight was significant (P < 0.05) 

(Table 3.3), indicating that these respective traits ranked differently from one environment to 

another. 

Average protein, starch and amylose concentrations of kabuli varieties across environments were 

186, 547 and 276 g kg−1 meal respectively. For kabuli varieties, Swift Current had the highest 

protein concentration at 210 g kg−1, whereas Davidson yielded the lowest protein concentration 

at 159 g kg−1. Elrose recorded the highest total starch concentration at 565 gkg−1 meal and Swift 

Current the lowest at 484 g kg−1 meal (Table 3.5). Amylose concentration ranged from 265 g 

kg−1 starch at Elrose to 280 g kg−1 starch at Davidson, Goodale and Hodgeville (Table 3.5). 
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3.4.3 Trait correlation 

A positive correlation (r = 0.16, P = 0.05) was detected between starch concentration and seed 

yield in desi varieties, but there was no association (r = − 0.01, ns) in kabuli varieties. The 

relationship between starch concentration and seed weight was positive in both kabuli (r = 0.16, 

P = 0.05) and desi (r = 0.11, ns) varieties but was not significant in the latter. Starch and protein 

concentrations were negatively correlated in desi (r = −0.16, P = 0.05) and kabuli (r = −0.25, P = 

0.01) varieties. In desi varieties, amylose concentration was positively correlated with starch 

concentration (r = 0.18, P = 0.01) but negatively correlated with seed weight (r = − 0.16, P = 

0.02), protein concentration (r = −0.16, P = 0.02) and seed yield (r = −0.40, P = 0.01) (Table 

3.6). The generally small magnitude of the correlation between traits may have been due to the 

relatively small sample size used and/or the relatively narrow genetic base of the genotypes. 

In kabuli varieties, amylose concentration had a significant (r = − 0.21, P = 0.01) negative 

relationship with starch concentration but not with protein concentration (r = 0.07, ns), seed yield 

(r = −0.05, ns) and seed weight (r = 0.02, ns) (Table 3.6). This implies that selecting for high-

amylose desi will require selecting for high starch yield, whereas selecting for high amylose 

kabuli will mean selecting for low starch yield (Hildebrand, 1990). The relationship between 

amylose and starch concentrations in desi is similar to that reported in potatoes (XinLing et al., 

2005). Protein concentration and seed yield were negatively correlated (r = −0.19, P = 0.01) in 

desi but not in kabuli (r = −0.06, ns). No correlation was observed between protein concentration 

and seed weight in desi (r = 0.04, ns) and kabuli (r = −0.02, ns) chickpeas. 

Genotype × environment interaction trial data can be partitioned as genotype × environment 

(location) data for traits being studied (Figures 3.1– 3.12) and as genotype × trait data on 

individual environments (Figures. 3.13-3.16). PCA plots provide an effective tool for visual 

analysis of two way data. Both varieties and environments will be scattered in all directions in 

PCA plots if there is a minor effect of genotype in the data, and PC1 and PC2 will be dominated 

by genotype × environment. This statement may be supported by low repeatability values (see 

Table 3.7). On the other hand if genotype is sizable, PC1 will be dominated by genotype and all 

other PCs will be dominated by genotype × environment. Figures 3.1 and 3.4 both show two 

non-overlapping clusters of varieties and three non-overlapping clusters of environments for 

amylose concentration in desi chickpea. This clustering of environments reflects genotype × 

environment (location) interactions for amylose concentration (Table 3.3). Genotype × 
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environment interaction trial data can be partitioned as genotype × environment (location) data 

for traits being studied (Figures 3.1– 3.12) and as genotype × trait data on individual 

environments (Figures 3.13-3.16). PCA plots provide an effective tool for visual analysis of two 

way data. Both varieties and environments will be scattered in all directions in PCA plots if there 

is a minor effect of genotype in the data, and PC1 and PC2 will be dominated by genotype × 

environment. This statement may be supported by low repeatability values (see Table 3.7). On 

the other hand if genotype is sizable, PC1 will be dominated by genotype and all other PCs will 

be dominated by genotype × environment. Figures 3.1 and 3.4 both show two non-overlapping 

clusters of varieties and three non-overlapping clusters of environments for amylose 

concentration in desi chickpea. This clustering of environments reflects genotype × environment 

(location) interactions for amylose concentration (Table 3.3).   According to Yan and Tinker 

(2005), the total variation explained by a PCA plot determines its credibility, and genotype × 

environment for the trait may be complex if the plot explains only a small fraction of the total 

variation. For instance, Figure 3.1 explained that 77% of the total variation in amylose 

concentration was due to genotypic effects as compared with 66% (Figure 3.4) due to 

environmental effects. 

Positive genotype × environment can be exploited and negative genotype × environment avoided 

by dividing environments into meaningful clusters and deploying different cultivars for different 

environments. The average environmental coordination (AEC) (Yan, 2001) abscissa has one 

direction with an arrow pointing to greater genotype main effect. The AEC ordinate is indicated 

by a double arrow, which when pointed in either direction away from the biplot origin indicates 

greater genotype × environment effect and reduced stability. CDC Anna was the most stable and 

high yielding cultivar for both amylose and starch concentrations in most environments (Figures 

3.1 and 3.2), while 316B-42 was the most stable and high-protein cultivar (Fig. 3.3). Elrose 

produced one of the highest amylose concentrations and was the most stable environment for that 

trait (Figure 3.4). Davidson and Brooks were stable environments that produced high desi starch 

concentration (Fig. 3.5), but this is inconsistent as their mean values are below average (Table 

3.4). According to Yan (2002), this inconsistency is because biplots do not explain 100% of 

genotype and genotype × environment interaction. Scott 2005 and Brooks were the most stable 

and high-yielding environments for protein concentration (Figure 3.6). The relative dispersion of 

the varieties suggests a high level of genetic diversity for amylose concentration compared with  
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Table 3.5 Seed yield, seed weight and protein, starch and amylose concentrations of kabuli 
chickpea varieties evaluated across environments in western Canada. 

 
Seed yield 

(kg ha-1 

Seed weight 

(g) 

Protein (gkg-1 

seed meal) 

Starch (gkg-1 

seed meal) 

Amylose(gkg-

1 starch) 

Variety      

CDC Frontier 1620a 361.2f 187.9a 520.4b 274.0bcd 

FLIP97-133C 1574ab 366.4ef 171.2b 549.5a 277.5ab 

Amit 1555abc 255.1g 191.8a 480.0c 271.1d 

FLIP97-45C 1517abcd 376.7ed 189.7a 525.8b 272.8cd 

FLIP98-135C 1490bcd 427.4b 186.2ab 526.1b 277.0abc 

FLIP98-134C 11450cd 384.4cd 183.7ab 526.8b 275.9abc 

97-Indian2-1 1430d 392.0c 187.3ab 516.1b 280.4a 

CDC Xena 1100e 449.0a 182.0ab 524.1b 275.0bcd 

Sanford 860f 380.0cd 198.1a 516.9b 278.1ab 

Mean 1398 376.6 186.4 546.6 275.7 

CV 12.7     5.4 12.8     4.3     2.4 

Pooled SE 38.7     4.4   0.5     0.5     0.2 

Location      

BowIsland 2005 2224a 380.2cd 192.3bc 503.2d 276.4ab 

Elrose 2005 1435b 390.4cb 172.0d 565.3a 264.5c 

Kyle 2005 1423b 417.1a 194.2b 499.7d 273.3b 

Davidson 2005 1407b 354.6e 158.4e 518.0c 279.8a 

Goodale 2005 1390b 327.7f 198.2ab 549.1b 280.1a 

SwiftCurrent 

2005 
980c 375.2d 209.7a 483.9e 276.1ab 

Hodgeville 2005 910c 393.2b 180.3cd 525.3c 280.1a 

Mean 1398 376.9 186.4 546.6 275.7 

CV 6.4 2.7 7.1     2.0     2.4 

Pooled SE 34.1 3.9 0.5     0.4     0.1 

Means followed by the same letter within a column are not significantly different at P<0.05 
based on DMRT.
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Table 3.6 Correlation coefficients among chickpea seed yield, seed weight and protein, starch 
and amylose concentrations evaluated across environments in western Canada.  

 Seed yield Seed weight Protein Starch Amylose 

Desi      

Seed yield 1 0.04ns -0.19** 0.16* -0.40** 

Seed weight   0.04ns 0.11ns -0.16* 

Protein    -0.16* -0.16* 

Starch     0.18* 

Amylose     1 

Kabuli      

Seed yield 1 0.04ns -0.06ns -0.01ns -0.05ns 

Seed weight   -0.02ns 0.16* 0.02ns 

Protein    -0.25** 0.07ns 

Starch     -0.021** 

Amylose     1 

*Significant at 5% level.  

**Significant at 1% level.  

ns, not significant. 
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Figure 3.1. Plots of first two major principal components for genotypic effect on major seed 
components in desi chickpeas, representing genotype-focused, singular value partitioning for 
amylose: 1, ICC-12512-1; 2, CDC Cabri; 3, Myles; 4, CDC Anna; 5, Vanguard; 6, ICC-12512-9; 
7, 316B-42.  
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Figure 3. 2. Plots of first two major principal components for genotypic effect on major seed 
components in desi chickpeas, representing genotype-focused, singular value partitioning for 
starch: 1, ICC-12512-1; 2, CDC Cabri; 3, Myles; 4, CDC Anna; 5, Vanguard; 6, ICC-12512-9; 7, 
316B-42.  
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Figure 3.3. Plots of first two major principal components for genotypic effect on major seed 
components in desi chickpeas, representing genotype-focused, singular value partitioning for 
protein: 1, ICC-12512-1; 2, CDC Cabri; 3, Myles; 4, CDC Anna; 5, Vanguard; 6, ICC-12512-9; 
7, 316B-42.  
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Figure 3.4. Plots of first two major principal components for environmental effect on major seed 
components in desi chickpeas, representing environment focused, singular value partitioning for 
amylose: 1, Bow Island; 2, Brooks; 3, Davidson; 4, Elrose; 5, Goodale; 6, Kyle 2004; 7, Kyle 
2005; 8, Scott 2004; 9, Scott 2005; 10, Swift Current. 
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Figure 3.5. Plots of first two major principal components for environmental effect on major seed 
components in desi chickpeas, representing environment focused, singular value partitioning for 
starch: 1, Bow Island; 2, Brooks; 3, Davidson; 4, Elrose; 5, Goodale; 6, Kyle 2004; 7, Kyle 2005; 
8, Scott 2004; 9, Scott 2005; 10, Swift Current. 
 

 

. 
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Figure 3.6. Plots of first two major principal components for environmental effect on major seed 
components in desi chickpeas, representing environment focused, singular value partitioning for 
protein: 1, Bow Island; 2, Brooks; 3, Davidson; 4, Elrose; 5, Goodale; 6, Kyle 2004; 7, Kyle 
2005; 8, Scott 2004; 9, Scott 2005; 10, Swift Current. 
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starch and protein concentrations in kabuli varieties (Figures 3.7-3.9). FLIP98-135C was among 

the top performers and the most stable cultivar for amylose and starch concentrations. Sanford 

was among the most stable for protein concentration. Three non-overlapping clusters of 

environments were observed in kabuli varieties for starch and amylose concentrations but not for 

protein concentration (Figures 3.10-3.12). 

The clustering of Goodale in the fourth quadrant is inconsistent with results in Table 3.5, 

because Goodale performed above average for both kabuli amylose and starch concentrations 

and therefore should have been in the first or second quadrant. Kyle and Hodgeville were among 

the good but unstable environments for kabuli amylose concentration, contrasting with Goodale 

and Bow Island. Davidson was the best and most stable environment for amylose concentration, 

whereas Kyle and Elrose were shown to be the most stable environments for kabuli starch and 

protein concentrations. The results show that Elrose and Davidson were the best environments 

and Bow Island the worst environment with respect to desi chickpea amylose concentration 

(Figure 3.4). In kabuli varieties, Bow Island and Elrose were the best environments, and Goodale 

and Swift Current the most unstable environments for protein concentration (Figure 3.9).  

  Finding protein, starch and amylose in different clusters with obtuse angles between their 

vectors indicates that their effects on quality were independent (Figures 3.13-3.16). Lack of 

phenotypic correlation among traits (Table 3.6) may be the underlying reason for this. However, 

the vector lengths for protein, starch and amylose concentrations show that they individually 

have a pronounced effect on seed quality. Vector length indicates the degree of effect of that trait 

on seed quality. Short vectors have a minor effect whereas long vectors have a pronounced 

effect. The traits for both desi and kabuli varieties had both positive and negative values for both 

axes, implying that trait–quality relations varied dramatically among varieties and environments 

(except desi environment). Hence no single trait had a positive effect on seed quality in all 

environments. Therefore it will not be feasible to improve quality by selecting for any specific 

trait in these varieties and environments. 

3.4.4 Repeatability and heritability 

Repeatability and heritability are two genetic and phenotypic parameters required for efficient 

planning of crop improvement programmes. Repeatability defines the correlation between 

measurements made on the same trait of the same plant or identical plant types over time or 
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Figure 3.7 Plots of first two major principal components for genotypic effect on major seed 
components in kabuli chickpeas, representing genotypefocused, singular value partitioning for 
(a) amylose: 1, Amit; 2, CDC Frontier; 3, CDC Xena; 4, FLIP97-45C; 5, FLIP98-134C; 6, 
FLIP97-133C; 7, FLIP98-135C; 8, 97-Indian2-1; 9, Sanford. 
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Figure 3.8 Plots of first two major principal components for genotypic effect on major seed 
components in kabuli chickpeas, representing genotypefocused, singular value partitioning for 
starch: 1, Amit; 2, CDC Frontier; 3, CDC Xena; 4, FLIP97-45C; 5, FLIP98-134C; 6, FLIP97-
133C; 7, FLIP98-135C; 8, 97-Indian2-1; 9, Sanford. 
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Figure 3.9 Plots of first two major principal components for genotypic effect on major seed 
components in kabuli chickpeas, representing genotypefocused, singular value partitioning for 
protein: 1, Amit; 2, CDC Frontier; 3, CDC Xena; 4, FLIP97-45C; 5, FLIP98-134C; 6, FLIP97-
133C; 7, FLIP98-135C; 8, 97-Indian2-1; 9, Sanford. 
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Figure 3.10 Plots of first two major principal components for environmental effect on major seed 
components in kabuli chickpeas, representing environment-focused, singular value partitioning 
for amylose: 1, Bow Island; 2, Davidson; 3, Elrose; 4, Goodale; 5, Hodgeville; 6, Kyle; 7, Swift 
Current. 
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Figure 3.11 Plots of first two major principal components for environmental effect on major seed 
components in kabuli chickpeas, representing environment-focused, singular value partitioning 
for starch: 1, Bow Island; 2, Davidson; 3, Elrose; 4, Goodale; 5, Hodgeville; 6, Kyle; 7, Swift 
Current. 
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Figure 3.12 Plots of first two major principal components for environmental effect on major seed 
components in kabuli chickpeas, representing environment-focused, singular value partitioning 
for protein: 1, Bow Island; 2, Davidson; 3, Elrose; 4, Goodale; 5, Hodgeville; 6, Kyle; 7, Swift 
Current. 
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Figure 3.13 Trait-focused, singular value partitioning PCA plots indicating genetic correlations 
among five traits (S, starch; P, protein; Am, amylose; K, seed weight; Y, seed yield) in kabuli 
chickpea: genotype-focused, singular value partitioning for kabuli class.  
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Figure 3.14 Trait-focused, singular value partitioning PCA plots indicating genetic correlations 
among five traits (S, starch; P, protein; Am, amylose; K, seed weight; Y, seed yield) in kabuli 
chickpea: environment-focused, singular value partitioning for kabuli class.  
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Figure 3.15 Trait-focused, singular value partitioning PCA plots indicating genetic correlations 
among five traits (S, starch; P, protein; Am, amylose; K, seed weight; Y, seed yield) in desi 
chickpea: genotype-focused, singular value partitioning for desi class.  
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Figure 3.16 Trait-focused, singular value partitioning PCA plots indicating genetic correlations 
among five traits (S, starch; P, protein; Am, amylose; K, seed weight; Y, seed yield) in desi 
chickpea: environment-focused, singular value partitioning for desi class.  
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 space (Roman et al. 2000). Heritability explains the extent to which observed differences 

between individuals are associated with additive genetic variance (variance of the breeding 

values) (Roman et al. 2000). Knowledge of both parameters can determine whether or not a 

particular trait can be improved by geneticists using selection, improvement of management 

practices or both. This report focuses on repeatability of quality traits. Seed yield and seed 

weight had repeatability values of 0.68 and 0.94 respectively for desi and 0.75 and 0.91 

respectively for kabuli chickpeas (Table 3.7). Repeatability for protein concentration was higher 

(0.66) than that for starch concentration in desi but much lower (0.07) than that for starch 

concentration in kabuli chickpeas. However, amylose concentration had repeatability values of 

0.44 and 0.18 for desi and kabuli chickpeas respectively. Single determination repeatability 

estimates of starch concentration were 0.12 and 0.49 for desi and kabuli chickpeas respectively. 

These were lower, but according to Hucl and Chibbar (1996) multiple determination of 

repeatability after additional testing increased repeatability. The small magnitude of the 

repeatability values of traits may possibly be due to the small sample size used and the narrow 

genetic base of the experimental materials. Although desi and kabuli chickpea market classes are 

of the same species, the inconsistencies in repeatabilities for protein, starch and amylose traits 

across market classes may be due to multiple genes in biosynthetic pathways that contribute to 

their synthesis (Chibbar and Baga, 2003; Morell and Myers, 2005 ).  

Most of the starch biosynthetic genes are present in multiple forms, whose expression 

could be influenced by the environment. Failure of individual varieties to maintain the trait 

balance from one location to another and errors arising from extraction procedures could also 

account for low repeatability values. Dohm (2002) explained the former as lack of independence 

among the unique environmental effects for successive measurements. 

Repeatability values of less than 1.0 could provide direction for additional tests. Our 

study was not of sufficient length to indicate stable, specific location adaptation, as demonstrated 

by low repeatability (Table 3.7). Low repeatability could also indicate practical problems 

associated with the measurement protocols. Repeatability measures genetic and environmental 

sources of variation, whereas heritability includes only genetic differences among individuals 

(Boake, 1989). 
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Table 3.7 Repeatability (rapprox) estimates for seed yield, seed weight and protein, starch and 
amylose concentrations of desi and kabuli chickpea varieties evaluated across environments in 
western Canada. 

Trait Desi rapprox Kabuli rapprox 

Seed yield 0.68 0.75 

Seed weight 0.94 0.91 

Protein concentration 0.66 0.07 

Starch concentration 0.12 0.49 

Amylose concentration 0.44 0.18 
 

 

 

Table 3.8: Heritability (H broad sense) estimates for seed yield, seed weight, protein, starch, and 
amylose concentrations of desi and kabuli chickpea varieties evaluated across environments in 
western Canada.  

Trait Desi H broad sense Kabuli H broad sense 

Seed yield 0.83 0.97 

Seed weight 0.99 0.97 

Protein concentration 0.93 0.59 

Starch concentration 0.53 0.50 

Amylose concentration 0.68 0.36 
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Heritability for the studied traits in these genotypes were higher than their respective 

repeatability values ranging between 0.53-0.99 in desi and 0.36-0.97 for kabuli (Table 3.8). This 

trend disagrees with Falconer and Mackey (1996) proposition that repeatability sets upper limits 

to heritabilities in braod sense. However, our results support Dohm (2002) proposal that 

repeatability estimates may not set the upper limits to heritability if significant genotype by 

environment interaction is present.  

3.5 CONCLUSIONS 

Genotype × environment interaction was significant (P < 0.05) for starch, amylose and protein 

(except for kabuli) concentrations, seed yield and seed weight. Selecting for high-amylose kabuli 

chickpea will mean selecting for low starch yield, whereas selecting for high-amylose desi 

chickpea will require selecting for high starch yield. The positive and significant relationships 

between starch concentration and seed yield in desi and between starch concentration and seed 

weight in kabuli offer breeders the possibility of indirect selection. The negative relationship 

between starch and protein concentrations across chickpea market classes will require a 

compromise during selection. Repeatabilities for starch, amylose and protein concentrations were 

low and inconsistent across chickpea varieties. However, like heritability, repeatability was 

genotype- and environment-specific and may be improved with additional testing environments 

to reduce error. However, the small magnitude of the correlation between traits and repeatability 

values may be due to the relatively small sample size utilised and the relatively narrow genetic 

base of the experimental materials. Among desi varieties, Myles and CDC Anna had the highest 

protein, starch and amylose concentrations, while Sanford and FLIP97-45C had the highest 

concentrations of protein, starch and amylose among kabuli varieties.Identifying the best 

strategies for selection of seed quality characteristics in chickpea improvement programmes will 

be affected by the size of the genotype × environment interaction for these traits. The negative 

relationship between some seed constituents and yield indicates that selection for chickpea 

cultivars with high seed quality may require compromise and indirect selection. However, 

progress can be made in improving various quality traits by using large segregating populations 

and relatively strict selection intensity. Alternatively, identification of mutants or development of 

molecular biological strategies could be used to develop varieties with desirable seed 

constituents. 
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CHAPTER 4 
 

VARIATION IN CHICKPEA (Cicer arietinum L.) MINI CORE 

COLLECTION FOR SEED QUALITY TRAITS 
 

4.1 ABSTRACT 

 Identification and utilization of genetic diversity is the basis for cultivar improvement. Genetic 

diversity investigations identify parents for hybridization programs tailored to achieve heterotic 

recombinants. The chickpea mini core collection was characterized for seed colour, seed 

diameter (size), thousand seed weight (TSW), starch, amylose, and protein concentration to 

identify accessions for potential use in chickpea seed quality improvement programs. In the desi 

accessions, mean seed diameter and TSW were 5.8±0.5 mm and 165±0.0g, respectively, while 

starch, amylose, and protein concentrations were 50.5±2.6%, 28.8±2.3%, and 25.9±2.0%, 

respectively.  In kabuli accessions, seed diameter and TSW were 6.8±0.6 mm and 220.6±56.5 g, 

while starch, amylose and protein concentrations, were 47.3±2.6%, 27.4±2.2%, and 23.4±1.6%, 

respectively. Amylose concentration did not have any relationship with all other traits in both 

desi (except seed colour r=0.67, p<0.05) and kabuli (except seed diameter r=0.47, p<0.05). In 

desi and kabuli accessions, within trait correlation of amylose, protein, seed diameter and 

thousand seed weight (TSW) were significant (p<0.001). However, the assessed mini core subset 

did not exhibit significant quantitative variation for intrinsic seed quality traits, despite a high 

Shannon-Weaver Diversity index.  To obtain a larger amount of variation in the intrinsic seed 

quality traits, a new and larger-sized mini core collection based on expanded collections to 

enrich the diversity in current collected chickpea accessions needs to be screened.    

4.2 INTRODUCTION 
Chickpea is grown across the major agro ecological zones of the world over an area of 8.8 

million hectares in 51 countries with an annual production of over 11.6 million metric tonnes 

(FAO, 2009). Two chickpea market classes are recognized, the dark seed coat colour, small 

seeded, angular and fibrous desi type and the beige, large seeded, rams-head shaped and lower 

fiber kabuli type. Chickpea grain quality can be extrinsic (seed colour, seed size and seed 

diameter) or intrinsic (starch, amylose, protein and other nutrient contents). The seed is 
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consumed for its high protein (25 - 29%) and starch (30 - 57 %) concentration as well as other 

essential human nutrients. Approximately 20 - 47 % of chickpea starch is amylose (Wood and 

Grusak, 2007). Starch plays an important role as the dominant carbohydrate in human diets and 

serves as the main carbon reserve in many grain legumes including chickpea. The content and 

composition of carbohydrate in chickpea seed may also affect the physical attributes of the grain 

and its use in human diets (Hedley, 2001).  In pea (Pisum sativum), the genetic variation for seed 

starch content and its composition has been well characterized (Wang et al., 1998).  More than 

30 starch mutants have been characterized in pea (Wang et al., 2003). These mutations alter the 

seed shape from round to wrinkled, cause changes in starch and amylose content, amylopectin 

architecture, and starch granule composition and structure (Wang et al., 2003). As compared to 

cereal grains, legume grains have a higher amylose concentration in their starches making them 

less bioavailable either raw or retrograded (Guillon and Champ, 2002). Lower bioavailability of 

starches reduces their glycemic index, makes legumes starches such as chickpea, beneficial for 

prevention of insulin resistance related diseases.  

Seed storage proteins in legumes have been classified as either albumin or globulin types, 

depending on their solubility in water or dilute salt solution (Croy and Gatehouse, 1985). Genetic 

diversity for the quantity and quality of legume seed proteins has been investigated in many 

genera including Pisum (Schroeder, 1982), Arachis (Bertozo and Valls, 2001) and Vicia 

(Potokina and Eggi, 1997), and alfalfa (Medicago sativa L.; Krochko and Bewley, 2000). 

However limited information exists on the genetic diversity for extrinsic and intrinsic seed 

quality traits in chickpea germplasm.   

The Consultative Group on International Agricultural Research (CGIAR) supported two 

Institutes, International Crops Research Institute for the Semi-Arid Topics (ICRISAT), India and 

International Centre for Agricultural Research in the Dry Areas (ICARDA), Syria to maintain the 

global chickpea germplasm collections. ICRISAT has 17,258 accessions (135 wild and 17,123 

cultivated) and ICARDA maintains 12,647 accessions (304 wild, and 12,343 cultivated) of 

chickpea representing most of the global germplasm (Upadhyaya et al., 2008).  Inspite of the 

large number of genetic resources available, only a very limited number of improved chickpea 

varieties have been developed using core collections.  To facilitate the utilization of available 

germplasm collections, the concept of core collection was developed (Brown, 1989a).  A core 

collection is a subset of accessions from the entire collection that captures most of the genetic 
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diversity available in the gene pool in a gene bank.  A major consideration in setting a core 

subset is the size.  Using the sampling theory of selectively neutral alleles, Brown (1989a) 

suggested that the entries in a core set should be at least 10% of the total accessions, with a top 

limit of 3,000 accessions.  Upadhyaya et al. (2001) developed a core subset of 1,956 chickpea 

accessions based on the geographic distribution and 13 quantitative traits.  The 13 quantitative 

traits used to develop the core collection, included: days to 50% flowering, plant height, plant 

width, days to maturity, basal primary branches, apical primary branches, basal secondary 

branches, apical secondary branches, tertiary branches, pods per plant, seeds per pod, seed yield, 

and 100-seed weight.  The core collection with 1956 genotypes is also very large to assess traits 

related to seed quality such as seed composition, which often show genotype x environment 

interaction (chapter 3). Upadhyaya and Oritz (2001) developed a two stage strategy to select a 

chickpea mini-core subset consisting of only 1% of the entire collection at ICRISAT.  In the first 

step a core collection was developed using the geographical origin, distribution, and 

characterization and evaluation data available in the gene bank.  In the second stage the core 

subset was evaluated for various morphological, agronomic and quality traits to select 10% of 

the core accessions.  At both stages standard clustering procedures were used. A mini core subset 

of 211 chickpea accessions was developed (Upadhyaya and Oritz, 2001).  To date, the chickpea 

mini core collections have been characterized for 22 morphological and agronomic traits 

(Upadhyaya and Ortiz, 2001), disease resistance (Pande et. al., 2005) and drought tolerance 

(Serraj et al., 2004). The main objective of this experiment was to use the chickpea mini-core 

collection to assess natural variation in extrinsic seed quality traits and seed composition when 

grown in Saskatchewan conditions.   

4.3 MATERIALS AND METHODS 

4.3.1 Plant Materials 

A total of 214 accessions, including 209 accessions comprising the chickpea mini core collection 

(ICC 15406 from Morrocco and ICC16796 from Portugal were not  used in this study) developed 

by Upadhyaya and Ortiz (2001) were obtained from the International Crops Research Institute 

for Semi-arid Tropics, Patancheru, Andhra Pradesh, India.  In addition, a desi accession (ICC 

4948) and four Kabuli accession (ICC 4973, ICC12968, ICC 3162 and ICC 3279) all from India 

were also included in the trials. The entries were divided into two major groups (market classes): 
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(1) desi with purple flower, angular seed shape, light tan to tan seed coat colour and thick hull 

(162 entries), and (2) kabuli with white flower, thin hull and beige seed colour (52 entries).  All 

the 214 lines were seeded in 2006. In 2007 only 143 accessions (41 kabuli and 102 desi) were 

grown due to lack of seed supply for those accessions that were highly susceptible to Ascochyta 

blight or of very late maturity. In addition, six Desi (CDC Anna, CDC Cabri, CDC Desiaray, 

Myles, and lines 304-22 and ICC 12512-1) and six Kabuli (Amit, FLIP97-133C, FLIP97-135C, 

CDC Chico, CDC Chi Chi and CDC Frontier) were also grown at the same locations in both the 

years. Samples of each genotype and each year were analyzed independently. Triplicate 

measurements were done on each sample for seed coat colour, total starch, amylose 

concentration and total protein.  

4.3.2 Growing sites and conditions 
The accessions were grown in an unreplicated trial at Kyle, Saskatchewan, Canada (50o49’N - 

108o1’W) in the summer of 2006 and 2007. Seeding was done on May 10 in 2006 and on May 

22 in 2007. The site belongs to the Chernozemic Order with 1-17% organic carbon, C/N ratio of 

less than 17 and dominant in Ca (Pennock, 2006). Kyle is located within the Brown Soil Zone of 

western Canada.  The mean temperature (May-August) in 2006 and 2007 was16.3oC and 15.4 oC, 

respectively, with total precipitation (May-August) of 215 mm and 234 mm in 2006 and 2007, 

respectively. Plot size was 1 m2 with 30 cm distance between adjacent plots. Fifty seeds were 

sown in three short rows for each plot. Seeds were treated with fungicide Apron FL® before 

planting to protect from soil-borne pathogens. Crop maintenance in field followed the standard 

cultural practices for the area: hand weeding and controlling ascochyta blight (Ascochyta rabiei) 

with an application of prothioconazole (Proline 480 SC) at 150 mL per acre.  

4.3.3. Extrinsic characters 

4.3.3.1 Thousand-seed weight (g)  

Seed weight was measured on 250 seeds at 12% moisture content. The value was then converted 

to thousand seed weight (TSW).  

4.3.3.2 Seed diameter (mm) 

 Seed diameter was measured as the mean of maximum trans-section of 50 seeds for each 

accession using a digital vernier caliper.  
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4.3.3.3 Seed coat colour 

The seed coat colour was measured using a Hunter colourimeter in the L, a*, b* scale (Colour 

Quest XE Hunter Lab, VA, USA). The colour measurement was performed three times and an 

average value was used in the analysis. 

4.3.4 Intrinsic quality determinations 

4.3.4.1  Starch concentration 

The desi seeds were dehulled before milling, whereas the kabuli seeds were milled intact prior to 

the analysis. Total starch was determined using the Megazyme (AA/AMG) method (McCleary et 

al., 1994) as described in section 3.3.4.  

4.3.4.2 Amylose concentration 

Amylose was determined using a high performance size-exclusion chromatography (HP-SEC) 

method (Demeke et al., 1999). Five milligrams of starch sample was debranched as described 

and used for amylose concentration determination in section 3.3.6.  

4.3.4.3 Protein concentration 

Total seed protein was estimated by multiplying the sample’s nitrogen content (N2) with a factor 

of 6.25 (AACC, 2000) as described in section 3.3.7.  

4.3.5 Data analysis 

Means and ranges of each quality characteristic and year were calculated. Correlations between 

2006 and 2007 data for each trait as well as correlations among all the mean traits over the two 

years were computed using the SAS software, version 9.1(SAS Institute, Cary, North Caroline, 

USA). Phenotypic diversity was estimated (Bhattacharjee et al. 2007) by the Shannon-Weaver 

diversity index (SDI) (Shannon and Weaver 1949) as follows: 

SDI = (-Σn
i=1Pi x logePi)/logen 

Where, n = number of phenotypic classes for a trait, 

Pi = proportion of the total number of entries in the ith class. 
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The phenotypic data was grouped into classes using the Minitab software version 16 and 

number of genotypes in each class was determined.  The SDI was calculated in Excel using the 

formula described above.  

4.4 RESULTS AND DISCUSSIONS 

4.4.1 Mini-core collection 
In this study, a chickpea germplasm collection comprising of 214 genotypes, with 162 desi, 52 

Kabuli genotypes was evaluated over two years at the same site.  Two desi and four kabuli 

genotypes were from the centre of origin, while 42 desi and 21 kabuli genotypes were from the 

primary centre of diversity (Figure 4.1, Table 4.1). 90 desi and 10 kabuli genotypes represent a 

major secondary centre of diversity comprising of Bangladesh, India, Myanmar, Nepal and 

Pakistan.  The other regions contributed only a few genotypes of each class, except Ethiopia 

from where 13 desi genotypes were collected (Table 4.1).   

In the first year (2006) of the study, seeds were obtained from all the genotypes planted 

and observations were recorded for all the traits of interest. However, in the second year of study 

(2007), a severe Ascochyta infection occurred and adequate amount of seeds could only be 

obtained from 64 desi and 21 kabuli genotypes for which data on all six traits could be recorded.  

4.4.2  Extrinsic characters – seed colour, shape and size 
          The seed colour was measured using the L*, a*, b* method which measures the whiteness 

or darkness of seed coat. The higher L value shows that seed is whiter or creamier in colour. The 

L value ranged from 17.5 in dark-seeded ICC6293 of Italian origin to 56.3 in ICC11284, beige- 

seeded of Russian origin with an overall two-year mean of 29.6±8.7. The seed colour of desi 

genotypes was mostly brown or dark brown (90%) and black (9%) with a pink (ICC4872) and 

green (ICC5383) coloured accession from India.  One quarter of accessions from Iran were 

black, while both accessions from Italy had black coloured seeds (Figure 4.2).  Pakistan and 

India had one each and Ethiopia had two accessions with black coloured seeds.  All kabuli 

accessions had beige coloured seeds.  Chickpea seeds were mostly of two types: desi types had 

angular seeds, whereas kabuli types had mostly owl head shaped seeds.  Some of the kabuli types 

also had pea-shaped seeds (Figure 4.3).   
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Figure 4. 1. Centers of origin and diversity for chickpea (Cicer arietinum L.). 
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Table 4.1.  Representation of chickpea mini core (number of accessions) by region and type as 
shown in Figure 4.1. 

Region Countries 
 

Number of accessions 
Desi                                Kabuli 

1 Russia, Turkey 4 8 

2 
Afghanistan, Cyprus, 

Iran, Israel, Syria  
 

40 17 

3 

Bangladesh, India, 
ICRISAT (India), 
Myanmar, Nepal, 

Pakistan 

90 10 

4 Algeria, Morocco 2 5 

5 Nigeria 1 0 

6 Ethiopia 13 1 

7 Malawi, Tanzania 5 0 

8 Peru 0 1 

9 Chile 1 0 

10 USA 0 1 

11 Mexico 3 1 

Total 
 

159 44 
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Fig. 4.2. Variations of colour in chickpea mini core collection. 
 
 
 

 
 

Fig. 4.3. Variations of seed shape in chickpea mini core collection. 
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In 2006, desi seed diameter ranged between 5 and 8 mm with mean of 5.8±0.5 mm 

(Table 4.2). Seed diameter ranged from 4-7 mm with mean of 5.5±0.7 mm in 2007. These values 

compare favorably with the local checks of 6-8 mm (mean 6.9 mm) and 6-7 mm (mean 6.0 mm) 

for 2006 and 2007, respectively. The Canadian varieties had larger seed sizes (6.85 mm) with 

CDC Cabri with the largest seed diameter (7.49 mm).  A Russian accession ICC6306 with a seed 

diameter (7.30 mm) was the largest seed size among the 162 accessions studied.  Indian 

accessions had the largest variation in seed diameter (4.8 to 7.0 mm).  Compared to the desi 

types, kabuli chickpea accessions had larger seed sizes with an average diameter ranging 

between 6 to 8 mm (Table 4.2)  The Canadian varieties had larger seeds, with both FLIP97-133C 

and FLIP97-135C recording largest seed sizes (diameter 8.2 mm). However, the variation in 

chickpea kabuli genotypes was less pronounced as compared to desi-types. This classifies desi 

chickpea mini core into medium to large seed size (Upadhyaya et al. 2006b). The differences in 

mean seed size for kabuli and desi could be attributed to differences in cotyledon cell numbers 

(Munier-Jolain and Ney, 1995). Seed size affects crop survival and adaptation, yield and 

consumer preference. 

The desi genotypes showed more than two-fold variation in TSW, with Canadian 

varieties showing the highest TSW (340 g) (Table 4.2).  As in seed size, most variation in TSW 

was also found in Indian accessions, in which ICC1882 had the least TSW (109 g) while 

ICC1915 had the highest TSW (283 g).  The Russian accession ICC6306 with the largest seed 

diameter also had high TSW (268 g). The kabuli chickpea accessions had higher TSW as 

compared to desi chickpea accessions.  A Canadian genotype FLIP97-133C had the highest TSW 

(420 g).  Variation in seed weight of entire chickpea collection at ICRISAT had been reported to 

range from 40-630 mg seed-1 (Upadhyaya, 2003) with over 60% weighing 90-140 mg seed-1. 

Seed size had been reported (Upadhyaya, 2006b) to be under epistatic interaction/inheritance 

hence a cross between small and medium-large may give a recombinant with better seed size. 

Seed size variation could be attributed to geographical pattern and/or different fitness 

components of seedlings and adult plants (Narayanan et al., 1981, Dahiya et al., 1985).  
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Table 4.2.  Mean/range and standard deviation for seed diameter, seed weight and colour 
measurement of the chickpea mini core collection in 2006 and 2007 evaluated at Kyle, SK, 
Canada. 
 

 
 

 
  Number of  

accessions 

Seed 
diameter 

(mm) 

Thousand 
Seed weight (g) 

Colour 
 

L*                a*                    b* 
 

Year Type/Class  
      

2006 
 

Desi 
 

162 
 

5.8±0.5 
5-8 

160.0±39 
113-320 

31.7±7.4 
17-56 

6.9±2.7 
-0.7-12 

11.3±4.1 
1.4-18 

        
 
 

Local checks 
(desi) 6 6.9±0.5 

6-8 
250.0±50 
200-340 

34.9±2.7 
31-39 

10.4±1.0 
9-11 

13.6±0.8 
13-14 

        

 Kabuli 
 

52 
 

7.1±0.5 
6-8 

249.0±52 
181-341 

48.1±5.2 
28-56 

8.2±1.1 
4-10 

15.7±1.6 
8-19 

        
 
 

Local checks 
(kabuli) 6 7.9±0.5 

7-8 
367.0±66 
273-436 

51.8±1.2 
50-54 

8.2±0.5 
7-9 

15.9±0.7 
15-16 

  
       

2007 
 

Desi 
 64** 5.6±0.6 

4.3-7.2 
153.8±35.2 
115.6-272.9 

27.1±8.7 
16.2-57.0 

5.2±2.9 
0.5-9.0 

8.2±4.6 
0.6-16.5 

        
 
 

Local checks 
(desi) 6 6.0±0.3 

6-7 
218.0±38 
178-279 

31.9±3.8 
28-39 

10.1±1.0 
8-11 

11.9±2.1 
10-16 

        

 Kabuli 
 21*** 6.6±0.7 

5.3-7.9 
201.9±72.2 
77.1-315.8 

45.7±7.7 
37.0-55.2 

7.3±1.6 
1.9-9.4 

14.7±3.0 
2.7-16.9 

        
 
 

Local checks 
(kabuli) 6 7.4±0.6 

7-8 
317.0±65 
231-409 

52.27±1.3 
51-54 

8.3±0.4 
7-9 

16.1±0.3 
15-16 

        
 

2006 
+ 

2007 

Desi 64 5.8±0.52 
4.8-7.3 

165.0±0.0 
117.9-283.0 

29.6±8.7 
16.7-46.0 

5.7±2.9 
0.5-10.2 

9.5±4.7 
0.8-15.8 

 
2006 

+ 
2007 

Kabuli 21 6.8±0.6 
6.1-7.9 

220.6±56.5 
137.4-365.0 

47.6±5.3 
33.0-55.8 

7.8±1.1 
5.3-9.2 

15.4±1.7 
9.4-17.5 

 
**Total of 120 accessions had data recorded on them but 64 had data on all the six quality traits due to 
Aschochyta incidence. 
***Total of 42 accessions had data recorded on them but 21 had data on all the six quality traits due to 
Aschochyta incidence. 
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4.4.3 Intrinsic seed characteristics – Starch, amylose and protein concentration 
Starch and protein are the two major constituents of chickpea seeds (Chibbar et al 2010).  

Amylose is a starch component that affects starch hydrolytic properties and its end-use for food, 

feed and industrial applications (Chibbar et al. 2007). The desi and kabuli-type chickpea 

accessions had similar starch concentrations (Table 4.3). In desi-type chickpea the hull was 

removed prior to grinding.  This could be the reason for slightly higher starch concentrations in 

desi type chickpea genotypes.  A desi chickpea accession ICC6877 from Iran had the highest 

starch concentration (56.48 %), while an Indian accession ICC1180 had the lowest starch 

concentration (43.58 %).  In the kabuli type chickpea, Iranian accessions showed the most 

variation with ICC9402 (41.1%) the lowest and ICC15264 the highest (55.4%) starch 

concentrations.  The Canadian varieties had an average of 49.4% starch concentration with 

FLIP97-133C seeds with a starch concentration of 53 %.  

The average amylose concentration in both the desi and kabuli genotypes at 27- 28% did 

not vary between the two chickpea types or in Canadian genotypes (Table 4.3).  However, both 

the desi (22 – 36 %) and kabuli (23 – 35 %) accessions had a wider range of amylose 

concentration than Canadian genotypes (27 – 30%) (Table 4.3).  The desi chickpea accessions 

from India showed the most variation but the ICC2884 from Iran had the highest (32.7%) and 

another ICC27554, had the lowest (24.5%) amylose concentration.    

In the kabuli type chickpea, ICC2277 from Iran had the highest (31.75%), while ICC8151 

from USA had the lowest (21.6%) amylose concentration.  The mean amylose concentration 

observed in this study is less than 32%, which is lower than most of the chickpea amylose 

concentrations reported in the literature (Hoover et al 2010).  Amylose concentrations reported in 

this study were determined by HPLC analysis of debranched starch (Demeke et al 1999), which 

is much more precise than other methods reported in the literature (Chibbar et al 2010; Hoover et 

al 2010).   

The desi type chickpea accessions showed a higher range (19 to 30 %) as compared to 

kabuli type chickpea (21 to 27 %) of protein concentration (Table 4.3).  In both types, the 

Canadian genotypes showed slightly lower protein concentration.  There was less variation for 

protein concentration, but for desi type chickpea an Iranian accession ICC15294 had the lowest 

(19.3 %) and a Mexican accession (ICC12307) had the highest (30.4 %) protein concentration.   
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Table 4.3.  Mean/range and standard deviation for grain starch, amylose and protein 
concentration of chickpea mini core collection in 2006 and 2007 evaluated at Kyle, SK, Canada. 

 
 

 
  Number of 

accessions Total starch (%) Amylose  
 Total protein (%) 

Year Type/Class   
   

2006 
 

Desi 
 

162 
 

51.4±3.6 
42-61 

27.6±1.2 
24-32 

25.1±2.2 
19-31 

      
 
 

Local checks 
(desi) 6 54.2±2.9 

51-58 
28.9±1.0 

27-30 
22.4±2.1 

20-26 
      

 Kabuli 
 

52 
 

49.4±3.6 
41-55 

27.4±1.3 
24-30 

21.4±1.7 
18-26 

      
 
 

Local checks 
(kabuli) 6 53.3±1.4 

51-55 
28.5±0.7 

27-30 
21.4±1.3 

20-23 

  
     

2007 
 

Desi 
 

64** 
 

48.6±3.4 
43.4-56.2 

29.9±4.1 
24.5-36.0 

27.5±2.3 
18.0-32.8 

      
 
 

Local checks 
(desi) 6 50.6±1.9 

48-52 
27.1±0.8 

26-28 
26.8±1.6 

25-29 
      

 Kabuli 
 

21*** 
 

44.0±3.5 
38.3-52.3 

27.5±3.6 
22.6-35.3 

25.1±1.6 
23.3-29.2 

      
 
 

Local checks 
(kabuli) 6 44.3±3.0 

39-48 
27.7±0.6 

27-28 
24.4±1.2 

23-26 
      
 

2006 
+ 

2007 

Desi 64 50.5±2.6 
44.8-55.8 

28.8±2.3 
24.3-32.7 

25.9±2.0 
19.3-29.8 

 
2006 

+ 
2007 

Kabuli 21 47.3±2.6 
43.6-52.1 

27.4±2.2 
24.4-31.7 

23.4±1.6 
21.6-27.1 

 
**Total of 120 accessions had data recorded on them but 64 had data on all the six quality traits due to 
Aschochyta incidence. 
***Total of 42 accessions had data recorded on them but 21 had data on all the six quality traits due to 
Aschochyta incidence. 
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In kabuli type chickpea, ICC15697 from Syria had the lowest (18.2) and ICC9862 and ICC9895 

both from Afghanistan had the highest (27.1 %) protein concentration.   

4.4.4. Trait correlations 
Statistical analysis revealed a significant difference (P ≤ 0.001) when means of Kyle 2006 and 

Kyle 2007 TSW (160.0g, 154.0g), L (31.7, 27.1), a (6.9, 5.2), and b (11.3, 8.2) values were 

respectively compared using t-test. Total starch (51%, 49%), amylose (27.6%, 29.9%) and 

protein (25%, 27.5%) followed a similar trend (Table 4.4). Desi amylose and protein means of 

28.8±2.3% and 25.9±2.0% agree with Saini and Knights’ (1984) and Viveros et al. (2001) 

observations. However considering that these values are records mostly from only one location 

(Kyle) although in different years (2006 and 2007), it implies reliable values for amylose and 

protein traits in desi will only be evident after accessions are tested multi locationally. Desi total 

starch mean across the two years however, was 50.5±2.6%. This is higher compared with Saini 

and Knights’ (1984) observations. In both market classes, accessions having extreme starch 

contents had average protein contents.    

Amylose did not have any relationships with seed diameter, thousand seed weight, starch and 

protein in desi (Table 4.4). However, it had a significant correlation with seed colour (r=0.67, 

p<0.01). This implies the brown-coloured seed desi types had more amylose. Meanwhile TSW 

significantly correlated (r=30, p<0.01) with total starch in desi.  

Protein negatively and significantly correlated with seed diameter, TSW, and starch (except 

kabuli) in both desi and kabuli (Tables 4.4 and 4.5). This implies in both chickpea class, progress 

in breeding for protein, seed diameter, starch and TSW combined will be slowed by the strong 

negative correlations between protein and these traits. Starch in desi correlated positively with 

seed diameter (r=0.31, p<0.01) and thousand seed weight (r=0.30, p<0.01). No relationship was 

observed between starch and seed coat colour in desi. Out of the traits tested, only total starch 

did not have significant within-trait correlation when Kyle 2006 and Kyle 2007 data were 

compared in both market classes implying a lot of resources would be required in improving 

such a trait. Starch did not have any relationship with seed diameter, TSW, amylose, protein and 

L* in kabuli  (Table 4.5). Amylose significantly correlated (r=0.47, 0.05) with seed size implying 

larger seed-sized kabuli had higher amylose contents. The smallness of this correlation 

coefficient may be attributable to the relatively smaller size of kabuli accessions in the mini core. 

Amylose had no relationship with TSW, protein, and seed coat 
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Table 4.4: Correlation coefficients among six quality traits in desi mini core of 2006 and 2007 

growing season in Kyle, Canada. 

Trait 
     Seed 
diameter 
   (mm) 

TSW (g)    Starch  
     (%) 

Amylose 
     (%) 

  Protein  
   (%) 

L∞ 

Seed 
diameter 
   (mm) 

(0.51**)     
 

TSW (g) 0.88** (0.68**)     

  Starch  
     (%) 0.31** 0.30** (0.05ns)    

Amylose 
     (%) 0.07ns 0.10ns -0.11ns (0.30*)   

 Protein  
   (%)  -0.51** -0.52** -0.57** -0.04ns (0.56**)  

L∞ 0.17ns 0.14ns -0.04ns 0.67** -0.12ns (0.78**) 

** and * are significant at 1% and 5% probability level, respectively.   ns means not significant. 
Values in italics and parenthesis are correlation within traits but between 2006 and 2007 samples 
at Kyle. N=64. 
∞ denotes whiteness/blackness of seed coat using the L*, a*, b* method. Higher L means more 
white. 
 
 
Table 4.5: Correlation coefficients among six quality traits in kabuli mini core of 2006 and 2007 
growing season in Kyle, Canada. 

Trait 
     Seed 
diameter 
   (mm) 

TSW (g)    Starch  
     (%) 

Amylose 
     (%) 

  Protein  
   (%) 

L∞ 

Seed diameter 
   (mm) (0.58**)      

TSW (g) 0.92** (0.75**)     

  Starch  
     (%) 0.35ns 0.34ns (0.12ns)    

Amylose 
     (%) 0.47* 0.29ns -0.06ns (0.56**)   

 Protein  
   (%)  -0.51* -0.50* -0.15ns -0.34ns (0.62**)  

L∞ 0.08ns 0.07ns -0.016ns 0.43ns -0.43* (0.56*) 

** and * are significant at 1% and 5% probability level, respectively.   ns means not significant. 
Values in italics and parenthesis are correlation within traits but between 2006 and 2007 samples 
at Kyle. N=21. 
∞ denotes whiteness/blackness of seed coat using the L*, a*, b* method. Higher L means more 
white. 
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colour. Protein negatively correlated with seed coat colour (r= - 0.43, p>0.05) in kabuli.  

4.4.5 Shannon-Weaver Diversity (SDI) index 

The objective of a minicore collection is to provide a manageable size of germplasm collection 

which preserves the phenotypic variation and the genetic diversity available in the entire 

collection. Upadhyaya and Oritz (2001) compared the Shannon-Weaver diversity index (SDI) for 

22 morphological traits in the core and mini core subsets of the chickpea and found good 

agreement between the two collections.  Using a similar strategy, we calculated the SDI for the 

seed extrinsic and selected intrinsic properties analyzed in this study.  For calculating the SDI, 

the traits were grouped into classes using Minitab (version 16).  The number of genotypes in 

each class was entered into an Excel spreadsheet to calculate the SDI (section 4.3.5).  The seed 

weight and seed colour were two traits which were common between the previous study 

(Upadhyaya and Oritz, 2001) which developed the mini core and this study.  We calculated the 

SDI for the kabuli and desi chickpea genotypes and for the two years, separately due to the large 

variation in number of genotypes surviving in each year. Mean of the genotypes common to both 

years were also used for a combined SDI calculation for 2006 and 2007.  

The SDI for desi chickpea seed colour determined as three separate parameters, L*, a* 

and b* separately was calculated to be between 0.811 – 0.861, 0.838 – 0.923, and 0.837 – 0.889 

for 2006, 2007 and both years combined (Table 4.6).  Similarly for kabuli type chickpea, the L*, 

a* and b* values were from 0.688 – 0.564, 0.707 – 0.433 and 0.815 – 0.714 for the years 2006, 

2007 and both years, together, respectively (Table 4.7).  Upadhyaya and Oritz (2001) did not 

separate the mini core collection into desi and kabuli as done in this study.  Nevertheless, the 

SDI obtained in this study is very similar to that obtained for the core (0.856) and the mini core 

(0.871) collection (Upadhyaya and Oritz, 2001) used in this study.  For seed weight, the SDI was 

0.505 and 0.493 for the core and mini core collection, but for both desi and kabuli chickpea 

accessions, SDI between 0.759 to 0.791 and 0.812 to 0.929, respectively were calculated (Tables 

4.6 and 4.7).   

Seed weight is very strongly influenced by growing conditions.  Most of the accessions 

were from the Indian subcontinent and middle-eastern region, thus Saskatchewan conditions may 

not be optimal for all the genotypes. Similarly, a high SDI (≥ 0.75) was observed for all the seed 

composition traits such as starch, amylose and protein concentration and seed size. The high SDI 

is expected as most of the accessions are from areas in the Indian subcontinent and middle-  
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Table 4.6 Shannon-Weaver Diversity Index (SDI) for chick pea mini core (desi genotypes).  

Trait 
Year 

2006 2007 2006 + 2007 

TSW 0.759 0.766 0.791 

Seed Size 0.793 0.893 0.858 

Starch 0.882 0.862 0.903 

Amylose 0.802 0.805 0.866 

Protein 0.849 0.734 0.800 

L* 0.829 0.838 0.837 

a* 0.811 0.904 0.882 

b* 0.861 0.923 0.889 
 

 

 

Table 4.7 Shannon-Weaver Diversity Index for chickpea mini core collection (kabuli genotypes). 

Trait 
Year 

2006 2007 2006 + 2007 

TSW 0.929 0.812 0.836 

Seed Size 0.857 0.939 0.900 

Starch 0.885 0.905 0.933 

Amylose 0.872 0.753 0.780 

Protein 0.875 0.776 0.775 

L* 0.688 0.707 0.815 

a* 0.729 0.702 0.868 

b* 0.564 0.433 0.714 
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Table 4.8 Comparison of Shannon-Weaver Diversity index at the primary (region 2) and 
secondary (region 3) centres of chickpea diversity (desi genotypes). 

Trait 

Region – 2 – Primary centre of diversity 
Region -3 – Secondary centre of 

diversity 

Year Year 

2006 2007 2006+2007 2006 2007 2006+2007 

TSW 0.857 0.926 0.787 0.670 0.794 0.798 

Seed size 0.871 0.758 0.821 0.740 0.942 0.905 

Starch 0.899 0.896 0.919 0.886 0.909 0.815 

Amylose 0.873 0.826 0.757 0.923 0.689 0.876 

Protein 0.839 0.671 0.749 0.945 0.883 0.918 

L* 0.961 0.890 0.950 0.755 0.804 0.818 

a* 0.852 0.822 0.809 0.752 0.804 0.829 

b* 0.866 0.900 0.863 0.774 0.877 0.764 

 

 

Table 4.9 Comparison of Shannon-Weaver Diversity index at the primary (region 2) and 
secondary (region 3) centres of chickpea diversity (kabuli genotypes). 

Trait 

Region – 2 – Primary centre of diversity 
Region -3 – Secondary centre of 

diversity 

Year Year 

2006 2007 2006+2007 2006 2007 2006+2007 

TSW 0.901 0.702 0.766 0.785 0.5804 0.712 

Seed size 0.944 0.912 0.818 0.942 0.534 0.773 

Starch 0.915 0.804 0.859 0.930 0.712 0.500 

Amylose 0.871 0.637 0.701 0.915 0.646 0.430 

Protein 0.765 0.778 0.766 0.742 0.534 0.646 

L* 0.697 0.887 0.782 0.638 0.773 0.773 

a* 0.810 0.887 0.804 0.660 0.773 0.861 

b* 0.578 0.887 0.804 0.315 0.861 0.646 
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eastern region, which when grown in exotic conditions, the genotype by environment affect gets 

more accentuated.  

4.4.6 – Comparison of the diversity in primary and secondary centres of diversity  

Most of the accessions originated from two regions (Table 4.1), the primary (Region 2) and 

secondary (Region 3) cenrtres of diversity.  SDI was calculated separately for the two regions to 

determine if genotypes from either of the regions preferentially contributed to the high diversity 

observed for these traits.  Both the primary and secondary centres of diversity did not differ in 

their SDI for the desi chickpea genotypes.  The SDI were similar for both the centres of diversity 

(Table 4.8).  For protein and amylose concentration and seed size, the SDI is slightly higher for 

the primary centre of diversity than the secondary centre of diversity.   

Kabuli genotypes also have a very similar SDI for both the regions, except that the primary 

centre of diversity shows slightly higher SDI for all the traits studied (Table 4.9).  The 

comparatively low SDI for starch (0.5) and amylose (0.43) concentration may be due to the very 

limited number of genotypes available for study in the secondary centre of diversity.   

 The results show a considerable diversity for the seed extrinsic and intrinsic properties    

analyzed in this study.  SDI is used to measure both allelic richness and eveness (Brown and 

Weir 1983).  A low SDI indicates an extremely unbalanced frequency classes for a character 

being studied and lack of genetic diversity. The results suggest that there is adequate allelic 

diversity for the seed quality traits of interest.  However, to obtain more conclusive results, the 

trials may have to be repeated over a number of years and at several locations.    

 4.5 CONCLUSIONS 
Variations exist among mini core accessions for seed colour, shape, seed diameter, TSW, protein 

and starch, but the level of phenotypic diversity is low. Mean concentrations of amylose, starch, 

and protein concentration, seed diameter and TSW were 27.6±1.2%, 51.2±2.2%, 26.2±1.3%, 

5.7±0.5mm and 158±31.6g, respectively, in desi from across all regions. In kabuli, mean 

amylose, starch and protein concentration, and seed diameter, TSW were, respectively 

27.0±1.1%, 47.6±3.0%, 22.5±1.6%, 6.8±0.5mm and 237.8±50.2g. SDI suggests that despite the 

narrow range of phenotypic diversity, the minicore collection has allelic diversity and evenness, 

which needs to be expressed to obtain the increased phenotypic diversity.  In this study, some 

desi and kabuli accessions showed increases in some quality traits over the CDC released 

varieties and advanced breeding lines. This study suggests that, mini core collection should be 
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tested over three to four years at three or four locations with diverse growing conditions to obtain 

the adequate expression of all the allelic combinations.  Seed composition traits are strongly 

influenced by environment (chapter 3), therefore a multi location and multi-year trials will be 

needed to identify genotypes of interest for use in chickpea improvement programs.   
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CHAPTER   5 

CHICKPEA (Cicer arietinum L.) STARCH STRUCTURE AND ITS 

RELATIONSHIP TO STARCH HYDROLYTIC ACTIVITIES IN 

EXTRACTED STARCH AND MEAL. 

5.1 ABSTRACT 

An important indicator of starch quality is its rate of enzymatic digestion which is affected by 

starch structure: amylose to amylopectin ratio, amylopectin chain length distribution and granule 

size. The objective of this study was to investigate the effects of starch structure on rate of starch 

enzymatic hydrolysis of selected desi and kabuli chickpea mini core genotypes. Meal starch 

hydrolytic rate did not show any relationship with starch amylose concentration in both desi and 

kabuli. Starch concentration was slightly higher in desi than kabuli as desi seeds were dehulled. 

Amylose concentration did not significantly differ between the two market classes. More than 

50% of analyzed starch granules were in the GS5 group, followed by GS20 (between 30-49%), 

GS40 (<10%) and GS60% (<10%) in both chickpea market classes. Desi and kabuli class starch 

showed a similar distribution with least proportion of C chains and increasing proportion of A, 

B2 and B1 chains, respectively. Both meal and extracted starch showed highest rate of hydrolysis 

at 20 min of incubation and the lowest rate of hydrolysis at 240 min of incubation across desi and 

kabuli. Seed meal showed a higher HI in both desi (12.4-36.8) and kabuli (38.6-50.3) compared 

with extracted starch in desi (22.4-24.7) and kabuli (24.9-47.2). Limited results on starch 

concentration, composition and structural characteristics in three desi and three kabuli genotypes 

based on cluster analysis suggest that desi and kabuli genotypes do not differ in their starch 

characteristics. Multivariate analysis of starch characteristics and extracted starch hydrolytic 

properties did not show any difference between desi and kabuli type genotypes. Observed 

changes in starch properties by interactions with seed meal constituents may have a major impact 

on chickpea seed utilization in food and feed applications. 

5.2 INTRODUCTION 

Legumes are an important component of human diet in majority of the population in developing 

countries.  Starch is the major storage carbohydrate accounting for up to half of the chickpea 

seed dry weight.  Upon consumption by humans, starch is hydrolysed in the digestive tract and is 
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a major source of energy for metabolic functions. A part of starch that is not digested in the small 

intestine, but is fermented by colonic microflora in the large intestine is called resistant starch 

(RS).  Starch hydrolysis during the digestive process is a key factor controlling glycemic index 

(Zhang et al., 2008). Jenkins et al., (1981) proposed the concept of ‘Glycemic Index (GI)’ to 

characterize the blood glucose raising potential of carbohydrates in food.  Pulses were identified 

as a low GI food nearly three decades ago (Jenkins et al., 1981; Thorne et al., 1983).  Dietary 

fiber and RS have low GI and are the major contributors to beneficial effects of pulses in human 

health.  In most foods, the RS proportion is low (typically 0 – 5% of starch in cereal foods), but 

pulses contain a relatively higher RS proportion (10-20% in some beans). In a recent 

comparative study of nine crops, pulses were found to be a better source of RS over cereals and a 

pseudocereal (Mikulikova and Kraic, 2006).   

Starch composition and structure affects the rate of starch enzymatic digestion, therefore, 

it is an important factor to optimize starch quality for human health benefits (Gallant et al., 

1992). Several plant studies have demonstrated the relation between starch composition and its 

rate of hydrolysis (Skrabanja et al., 1999; Vesterinen et al., 2002; Tester et al., 2004).  Pea with 

high amylose starch showed a reduced hydrolytic index and a low glycemic index as compared 

to pea starch with normal amylose concentrations (Skrabanja et al., 1999).  However, in rice, 

amylose concentration did not affect RS levels, as significant differences in RS were observed in 

mutants with similar amylose concentration. Interestingly, mutants high in RS had significantly 

increased proportions of short amylopectin chains (DP≤ 12), and decreased numbers of 

intermediate (DP≤ 13-36) and long chains (DP≤ 37) (Shu et al. , 2009). In selected legume seed 

starches including chickpea, starch enzymatic hydrolysis was negatively correlated with starch 

granule diameter, and molecular weight of amylose and amylopectin (Sandhu and Lim, 2008).  

However there are no studies showing the effect of amylopectin starch on starch hydrolysis rates 

and/or and differences in amylopectin structure between desi and kabuli-type chickpea.  The 

main objective of this study was to analyze selected desi and kabuli chickpea genotypes for 

starch concentration, granule composition and size, and amylopectin structure and see the effect 

of starch concentration and composition on seed meal and starch hydrolysis.    
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5.3 MATERIALS AND METHODS 

5.3.1 Genotypes and growing conditions 

Nine genotypes, each from desi and kabuli-type chickpea from diverse regions (Table 5.1) were 

selected based on amylose concentration for an initial screen of seed meal starch enzymatic 

hydrolytic activity.  Subsequently, three desi (ICC12824, ICC9848 and CDC Cabri) and kabuli 

(ICC9862, ICC2277 and FLIP97-133C) were selected for detailed starch composition, structure 

analysis and and starch hydrolytic activity determinations.  

The eighteen selected desi and kabuli accessions were grown in unreplicated trials at 

Davidson, Saskatchewan (51o25’N - 105o48’W), Kyle (50o49’N - 108o1’W) and Saskatoon 

(SPG) (52o09’N - 106o36’W), all in Saskatchewan, Canada in the summer of 2007. Seeding was 

done on May 22, 23 and 24 2007 at Kyle, Davidson and Saskatoon, respectively. Davidson, Kyle 

and Saskatoon sites belong to the Chernozemic Order with 1-17% organic carbon, C/N ratio of 

less than 17 and dominant in Ca (Pennock, 2006). Kyle is located within the brown soil zone, 

while Davidson and Saskatoon are in the Dark Brown Soil Zone of western Canada.  The mean 

temperatures (May-August) in 2007 were 15.8, 15.4 and 16.6 OC for Davidson, Kyle and 

Saskatoon, respectively. However, total precipitation (May-August) was 198.0, 234.0 and 274.4 

mm in 2007 for Davidson, Kyle and Saskatoon, respectively. Plot size was 1 m2 with 30 cm 

distance between adjacent plots. Fifty seeds were sown in three short rows for each plot. Seeds 

were treated with fungicide Apron FL® before planting to protect from soil- borne pathogens. 

Crop maintenance in field followed the standard cultural practices for the area: hand weeding 

and controlling ascochyta blight (Ascochyta rabiei) with an application of Prothioconazole 

(Proline 480 SC) at 150 mL per acre.  

5.3.2 Dehulling and grinding of chickpeas 

Desi seeds were dehulled and ground whereas kabuli seeds were ground intact as described in 

section 3.3.3.  

5.3.3 Isolation of starch granules  

Dehulled seeds (10g) were steeped overnight in 50 mL plastic tubes containing 40 mL of 

0.2% sodium hydrogen sulphate (0.2% NaHSO4) at 40oC. After decanting the steeped solution,  
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Table 5.1: Description and origin of selected chickpea genotypes used to analyze seed meal 

hydrolytic activity. 

Market Class Genotype Origin 

Desi ICC637 India 

Desi ICC1356 India 

Desi ICC2720 Iran 

Desi ICC7184 Turkey 

Desi ICC9848 Afghanistan 

Desi ICC12824 Ethiopia 

Desi ICC14077 Ethiopia 

Desi ICC14595 India 

Desi CDC Cabri CDC, Canada 

Kabuli ICC2277 Iran 

Kabuli ICC5879 India 

Kabuli ICC7308 Peru 

Kabuli ICC8151 USA 

Kabuli ICC9862 Afghanistan 

Kabuli ICC13077 India 

Kabuli ICC13461 Iran 

Kabuli ICC15435 Morocco 

Kabuli FLIP97-133C ICARDA, Syria 
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the grains were made into a slurry using pestle and mortar. The slurry was filtered through 70-

mesh nylon cloth and washed thoroughly with nano-pure water. The filtrate was centrifuged at 

2000 x g for 20 min, and the supernatant was carefully removed by aspiration. Pellet was washed 

three times with 95% (v/v) ethanol, centrifuged at 2000 x g, 20 min and supernatant was 

decanted each time. Subsequently, the pellet was washed three times with 40 mL of 0.2% (w/v) 

NaOH, and centrifuged at 2000 x g, 20 min and supernatant was removed each time. Pellet was 

washed once more with 40 mL Wash Buffer [55 mM Tris-Hcl, pH 6.8, SDS 2.3% (w/v); glycerol 

10% (v/v);  9.5 mL wash buffer and 500 µl β-mercaptoethenol] solution, centrifuged at 2000 x g, 

for 20 min and the supernatant was carefully decanted. The pellet washed three times with nano-

pure water, centrifuged at 2000 x g, for 20 min and supernatant decanted each time until starch 

was free of colour and the decanted supernatant was colourless. Finally, the pellet was washed 

with acetone, centrifuged at 2000 x g for 20 min and supernatant was carefully decanted. The 

starch was left overnight at room temperature to dry. 

5.3.4 Amylose determination 

Amylose concentration was determined after isoamylase mediated debranching of starch using a 

high performance size-exclusion chromatography (HP-SEC) method (Demeke et al., 1999) as 

described in section 3.3.6.  

5.3.5 Starch granule size analysis 

Starch granule size was determined using Malvern Mastersizer-2000 laser-diffraction analyzer 

(Malvern Instruments Ltd, Malvern, UK).  Refractive indices of 1.31 for water and 1.52 for 

starch were used as standard. Starch (40 mg) was suspended in 1 ml water and dispersed in 

sample holder (1700 rpm) attached to the instrument and sonication was allowed during sample 

analysis. Laser obscuration was maintained between 12-14% during sample addition as 

recommended by the manufacturers.  Each sample was analysed three times and average of three 

was recorded. Data was obtained as volume percentage of starch sample. Results were 

statistically analysed.  
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5.3.6 Determination of the α-1,4-glucan chain-length distribution by capillary 

electrophoresis 

Amylopectin chain length distribution (DP 6-55) was analysed using fluorophore assisted 

capillary electrophoresis (FACE; Morell et al. 1998). Purified and defatted starch granules (20 

mg) in a microfuge tube (2 ml) were suspended in 750 μL of distilled water and vortexed 

followed by addition of 50 μL of sodium hydroxide (2M).  The suspension was boiled for 5 min, 

allowed to cool at room temperature and neutralized with 32 μL glacial acetic acid. Sodium 

acetate (1M, 100 μL) and distilled water (1 mL) was added to the gelatinized sample. Isoamylase 

(10 units) were added to de-branch the gelatinized starch at 37 ◦C for 2 h. After 2 h of incubation, 

the reaction mixture was placed in a boiling water bath to inactivate isoamylase activity and stop 

the de-branching reaction.  The stopped reaction mixture was centrifuged at 3000 x g for 10 min 

and the supernatant was collected and deionized by filtration through an ion exchange resin (20-

50 mesh, Bio-Rad, Mississauga, Ontario, Canada).  An aliquot (50 µL) of the supernatant was 

dried in speed-vac (Thermo Savant, Holbrook, NY, USA) for 30 min. The dried sample was 

labeled with a fluorescent tag following manufacturer’s protocol (ProteomLabTM Carbohydrate 

Labelling and Analysis Kit manual (Beckman Coulter, CA, USA). Briefly, the dried sample was 

mixed with 3.5 μL each of a fluorophore, 8-aminopyrene 1,2,6-trisulfonate ( APTS) and sodium 

cyanoborohydride (1M solution in Tetrahydrofuran). The labeled samples were incubated 

overnight at 37 ◦C. The reaction was terminated next day with the addition of 43 μL of distilled 

water. The tubes were centrifuged at 3000 x g for 10 min, to remove insoluble material. To 5 μL 

of the labeled aliquot, 195 μL nano-pure water was added in the instrument sample vials and 

mixed before placing in the sample holder for capiilary electrophoresis.  Maltose was used as 

internal standard. G-20 glucose ladder was used to determine degree of polymerization with 

respect to the retention time.  

5.3.7 Resistant Starch Determination 

5.3.7.1 Starch hydrolysis 

Chickpea seed meal or purified starch was enzymatically hydrolyzed essentially as described 

(McCleary and Monaghan 2002), using a commercial Resistant Starch assay kit (K-RSTAR, 

Megazyme International Ireland Ltd., Wicklow, Ireland. Meal or starch (100 ± 5 mg) samples in 

screw-cap tubes (16x125 mm) were treated with 4.0 mL pancreatic α-amylase (10mg/mL) 
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containing amyloglucosidase (AMG) (3 U/ mL) in sodium maleate buffer (0.1M, pH 6), vortexed 

and incubated at 37 oC in a shaking water bath (~200 strokes min-1; 1290-00 Yamato Scientific 

Co., Japan) for 20 min, 80 min, 2 hr and 4 hr. These timings allowed the estimation of rapidly 

digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) after 2 and 4 hr, 

respectively (Englyst et al, 1992b). After the requisite incubation, 4.0 mL ethyl alcohol (95 % 

v/v) was added to the reaction mixture which was vortexed and centrifuged at 1300 x g for 10 

min without caps on. Supernatant was decanted and pellet was suspended in 2 mL ethyl alcohol 

(50 %, v/v) with vigorous vortexing. An additional 6 mL ethyl alcohol (50 % v/v) was added, 

vortexed and centrifuged at 1300 x g for 10 min. Supernatant was decanted and the pellet was re-

suspended in ethyl alcohol (50 %, v/v) and centrifugation step was repeated once more.  After 

decanting the supernatant, the tubes were inverted on absorbent paper to drain all the liquid.  The 

tubes were re-capped and, stored at 4 oC overnight.  

5.3.7.2 Measurement of non-hydrolyzed starch 

Each tube containing the non-hydrolyzed starch was suspended in 2 mL KOH (2M) and the 

contents were vigorously stirred with a magnetic stirrer (bars 5 x 15 mm) for 20 min. Starch 

slurry in each tube was mixed with 8 mL sodium acetate buffer (1.2 M, pH 3.8) followed by 

AMG (0.1 mL; 3300 U mL-1) mixed by vortexing, and incubated for 30 min at 50 oC with 

intermittent vortexing. With the assumption that resistant starch of chickpea samples were >10%, 

reaction mixtures were quantitatively transferred to a volumetric flask (100 mL) and volume 

adjusted to 100 mL with water. An aliquot (1 mL) from each assay mixture was centrifuged 

(1400 x g) for 10 min. After centrifugation, an aliquot (0.1 mL) of the supernatant was treated 

with glucose oxidase/peroxidase (GOPOD) reagent (3.0 mL) and incubated for 20 min at 50 oC. 

Blank reaction contained sodium acetate buffer (0.1mL, 0.1M, pH 4.5) and GOPOD reagent (3.0 

mL), whereas glucose standard reaction contained glucose (0.1 mL, 1 mg mL-1, w/v) and 

GOPOD reagent (3. 0mL). Absorbance of sample solutions was read at 510 nm against a reagent 

blank.  

5.3.7.3 Measurement of hydrolyzed starch 

Pooled supernatants from each sample after the starch hydrolysis step was adjusted to 100 mL 

with water in a volumetric flask and mixed vigorously by shaking.  Three aliquots (0.1 mL each) 
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were incubated with GOPOD reagent (3.0 mL) at 50 oC for 20 min. Absorbance was measured at 

510 nm wavelength against a reagent blank as described before. 

5.3.7.4 Calculations 

Resistant Starch (g/100g sample): 

= ΔE x F x 100/0.1 x 1/1000 x 100/W x 162/180= ΔE x F/W x 90 

Non-Resistant (Solubilized) Starch (g/100g sample): 

= ΔE x F x 100/0.1 x 1/1000 x 100/W x 162/180= ΔE x F/W x 90 

Total Starch = Resistant Starch + Non-Resistant Starch 

where: 

ΔE =   absorbance (reaction) read against reagent blank 

F  = conversion from absorbance to microgram (absorbance obtained for 100 μg of glucose in the 

GOPOD reaction is determined and F=100 (μg of glucose) divided by the GOPOD absorbance 

for this 100μg of glucose. 

100/0.1 = volume correction (0.1 mL taken from 100mL) 

1/1000   = conversion from microgram to milligrams 

W          = dry weight of sample analyzed 

100/W   = factor to present RS as a percentage of sample weight 

162/180 = factor to convert from free glucose, as determined, to anhydro-glucose as 

                 it occurs in starch 

5.3.7.5 Determination of starch hydrolysis index  

The kinetics of starch hydrolysis was described by a non-linear model proposed by Goni et al. 

(1997). The first order equation was used to determine the area under the hydrolysis curve 

(AUC) as follows: 

AUC =C∞ (tf-t0)- (C∞/k)[1-exp-k(tf-t0)] 
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Where C∞ is the concentration at equilibrium (t240), tf is the final time at 240 min, t0 is the initial 

time at 0 min, and k is a kinetic constant. Hydrolysis index was estimated by dividing the area 

under the hydrolysis curve of each sample by area of a reference sample. 

5.3.8 Statistical analysis 

Data was analysed using proc GLM of statistical analysis system (SAS version 9, SAS Institute 

Inc., Cary, NC, USA). Multivariate similarity and correlation coefficient distance analyses were 

done using Minitab (version 16).  

5.4 RESULTS AND DISCUSSIONS 

5.4.1 Screening chickpea genotypes for starch hydrolytic activity 

 Seed meal from nine desi-type chickpea genotypes grown at three different locations was 

assayed for starch hydrolytic activity.  Most of the genotypes exhibited similar starch hydrolytic 

activity, except CDC Cabri, which had considerably reduced starch hydrolytic activity (Figure 

5.1).  ICC9848 showed the highest and ICC12824 showed intermediate starch hydrolytic 

activity.  Seed meal starch hydrolytic activity did not show any relationship to starch amylose 

concentration as 28.1, 26.2 and 25.8 % amylose was observed in ICC12824, CDC Cabri and 

ICC9848, respectively (Table 5.2).   

 Screening of seed meal from nine kabuli-type chickpea genotypes also did not show 

much variation in starch hydrolytic activity.  Among the observed variation, FLIP97-133C 

showed the highest starch hydrolytic activity, followed by ICC2277 and ICC9862, which had the 

lowest starch hydrolytic activity (Figure 5.2).  As in desi-type chickpea, in kabuli types also 

starch hydrolytic activity was not related to seed starch amylose concentration (Table 5.2).  

These observations that starch hydrolytic acivity is not related to starch amylose concentration 

are similar to those in rice (Shu et al 2009). Therefore, within available variation in starch 

hydrolytic activities, three desi genotypes (CDC Cabri, ICC12824 and ICC9848) and three 

kabuli genotypes (FLIP97-133C, ICC2277 and ICC9862) were selected for analysis of starch 

granule size and composition and amylopectin structure determination and their influence on 

starch hydrolytic activities in seed meal and extracted starch. 
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Figure 5.1 Rate of meal starch hydrolysis of selected desi chickpea grown across three 
environments in Western Canada.  
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Figure 5.2 Rate of meal starch hydrolysis of selected kabuli chickpea grown across three 
environments in Western Canada.  
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Table 5.2. Mean (±sd) and ranges of starch and amylose concentration in selected chickpea 
genotypes. 
 

Market Class 
 

Genotype Total starch (%) Amylose (%) 

Desi 
 

CDC Cabri 51.6±2.9 
46.8-57.8 

26.2±1.3 
24.5-28.2 

Desi ICC9848 52.0±2.9 
49.7-54.1 

25.8±1.3 
24.1-27.2 

Desi ICC12824 48.2±2.9 
46.0-49.5 

28.1±1.3 
24.8-30.1 

Kabuli ICC2277 49.2±3.6 
47.3-52.1 

27.4±1.3 
25.8-28.2 

Kabuli ICC9862 48.0±3.6 
47.0-49.4 

25.2±1.3 
24.1-26.2 

Kabuli FLIP97-133C 49.0±3.6 
44.8-53.0 

26.6±1.3 
24.8-28.3 
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Table 5.3. Amylopectin chain length distribution in amylopectin fraction of selected chickpea 
genotypes. 
 

 
Type            Genotype      A[%] (6-12)     B1[%](13-25)   B2[%](26-35)  C[%](36-55) 

Desi  CDC Cabri                     7.61b                69.49a              19.23             3.67 

Desi ICC9848 23.31a               56.99b              15.41             4.30 

Desi ICC12824   8.62b               69.93a               17.38             4.07 

Kabuli ICC2277 10.88b               68.38a              16.52             4.22 

Kabuli ICC9862                          7.97b               69.50a              18.62             3.91 

Kabuli FLIP97-133C               20.39a              57.09b              17.11             5.41 

Lsd    4.42                    5.60                    2.69             1.42 

Sem    2.57                    3.26                    1.56             0.82 

Variation in different chickpea lines with respect to percent proportions of four different chains 
A (dp 6-12), B1 (dp 13-25), B2 (dp 26-35) and C (dp 36-55) was analyzed by ANOVA. 
Variation within each of the first two columns was evaluated, and numbers followed by same 
letter are not statistically different (P<0.05, Tukey’s HSD). Variations in percent proportions of 
B2 and C chain were not significant. 
Group 1----FLIP97-133C (Kabuli), ICC9848 (Desi). 
Group 2----ICC9862 (Kabuli), ICC2277 (Kabuli), CDC Cabri (Desi), ICC12824 (Desi). 
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5.4.2 Total starch and amylose concentration 

Seeds from the three desi (CDC Cabri, ICC9848 and ICC12848) and kabuli (ICC2277, ICC9862 

and FLIP97-133C) genotypes were analysed for total starch and amylose concentration.  The 

results are based on three technical replicates from two independent biological replicates. The 

total starch concentration among all the genotypes varied from 44 to 57% (Table 5.2).  The desi 

genotypes showed slightly higher starch concentration with average concentration varying from 

48 to 52%.  The kabuli genotypes showed an average starch concentration between 48 to 49%.  

The desi chickpea genotypes were dehulled before grinding therefore the starch concentration is 

slightly higher than kabuli genotypes.  The amylose concentration varied from 24 to 30% among 

all the chickpea genotypes.  However, the average amylose concentration did not significantly 

differ between the two market classes or individual genotypes (Table 5.2).  

5.4.3 Starch granule size 

The chickpea starch granules ranged in size from 5 to 80 µm, with no difference between the 

desi and kabuli genotypes.  Since granule size categorization is not very well established in 

literature, these were then grouped into four classes 5-20μm (GS5), 20-40μm (GS20), 40-60μm 

(GS40) and 60-80μm (GS60) (Figures 5.3 and 5.4).  In both desi and kabuli types more than 50 

% starch granules were in the GS5 group, followed by the GS20 group. In these two groups the 

genotypes did not significantly (P>0.05) differ from each other in the GS20 for desi and GS5 for 

kabuli.  The other two groups, GS40 and GS60 were less than 10% each in all the genotypes.  In 

the desi genotypes ICC12824 had the smallest percentage of both the 40-60 μm and 60-80 μm 

starch granules (Figure 5.3).  In the kabuli genotypes ICC9862 had the lowest number of starch 

granules with diameter larger than 40 μm whereas FLIP97-133C had the lowest number of starch 

granules with diameter larger than 60 μm.  However, using Laser light scattering particle size 

analyzer (1064 LD, CILAS, France), Sandhu and Lim (2008) reported chickpea granule size 

distribution to be in the range 0-50μm. The differences between our results and that of Sandhu 

and Lim (2008) may be explained by differences in genetic backgrounds, starch isolation 

procedures as well as instrument used to determine starch granule size. 
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Figure 5.3: Starch granule size distribution in selected desi chickpea genotypes. 
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Figure 5.4: Starch granule size distribution in selected kabuli chickpea genotypes. 
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 5.4.4 Amylopectin chain length 

The amylopectin chain lengths determined by FACE analysis were grouped into A, B and C 

chains (Hanashiro et al 1996). The A, B and C chains included polymers with DP 6-12, 13-35 

and 36 to 55 or higher, respectively (Table 5.3).  The B chains were further sub-divided into B1 

and B2 with DP 13-25 and 26-35, respectively.  In general both desi and kabuli type starch 

showed similar distribution, with least proportion of C chains, with increasing proportions of A, 

B2 and B1 chains, respectively.  However, desi genotype ICC9848 and kabuli genotype FLIP97-

133C showed higher proportion of A than B2 chains (Table 5.3).  Kabuli genotype FLIP97-133C 

was also unique because it had the highest proportion (5.41%) of C chains among all the 

genotypes studied.  Desi genotype ICC9848 had the highest proportion (4.3%) of C chains 

among the desi genotypes. ANOVA of amylopectin structure revealed two interesting groupings 

(P<0.05, Table 5.3) of chickpea types: FLIP97-133C (kabuli), ICC9848 (desi) in group 1 and 

ICC9862 (kabuli), ICC2277 (kabuli), CDC Cabri (desi) in group 2. Group 2 contains ICC2277 

(kabuli) and CDC Cabri (desi) both having comparatively lower rates of hydrolysis and potential 

prebiotic effects.   

5.4.5 Rate of starch hydrolysis 

A RS control supplied with the kit, showed maximum rate of starch hydrolysis after 20 min of 

incubation, with a considerably lower but similar rate of hydrolysis at subsequent time intervals 

of 80, 120 and 240 min, respectively.  In desi chickpea meal or extracted starch, also highest rate 

of hydrolysis was observed at the initial 20 min of incubation (Tables 5.4 and 5.5).  In two 

accessions ICC12824 and ICC9848 as compared to extracted starch, seed meal showed a higher 

rate of hydrolysis at 20, 80 and 120 min of incubation. At 240 min of incubation, rate of starch 

hydrolysis did not differ between meal and extracted starch in ICC9848, but compared to 

extracted starch, seed meal from ICC12824 showed slightly lower rate of hydrolysis (Tables 5.4 

and 5.5). CDC Cabri, a cultivar adapted to Saskatchewan growing conditions behaved 

differently.  At 20 min of incubation, as compared to purified starch the meal hydrolyzed starch 

at a lower rate which was also the lowest among the three genotypes studied (Tables 5.4 and 

5.5).  Whereas, CDC Cabri extracted starch at 20 min of incubation showed higher rate of 

hydrolysis and behaved similar to the two other genotypes (Table 5.5). 
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Table 5.4. Rate of hydrolysis (mg glucose produced per hour) of desi chickpea meal at 20, 80, 
120, and 240 minutes of incubation with pancreatic α-amylase and amyloglucosidase. 
 

 Time of incubation (min) 
 
Genotype                  20                              80                               120                                 240       
 
ICC12824 31.5a 21.8a 26.2a   9.2b 

ICC9848 34.6a 22.2a 30.4a 11.6a 

CDC Cabri             14.8b   6.9b   5.0b   3.6c 

RS control 11.4c   3.3c   3.5c   3.1c 

Mean 23.1 13.5 16.2   6.9 

s.e.m   5.8   4.9   7.0   2.1  
 
      s.e.m- standard error of the means. 
      Means followed by the same letter within a column are not significantly different (P<0.05). 
 
 
 
Table 5.5. Rate of hydrolysis (mg glucose produced per hour) of desi chickpea extracted starch at 
20, 80, 120, and 240 minutes of incubation with pancreatic α-amylase and amyloglucosidase. 
 

 Time of incubation (min) 
 

Genotype                20                               80                               120                               240 
 
ICC12824 21.8a 10.4a 18.0a  13.3a 

ICC9848 21.7a   8.3b 16.6a  10.2b 

CDC Cabri             23.5a  9.6ab 12.4b  10.9b 

RS control 11.4b  3.2c   3.5c    3.1c 

Mean 19.6  7.9 12.6    9.4 

s.e.m   2.8  1.6   3.3    2.2 
s.e.m- standard error of the means. 
Means followed by the same letter within a column are not significantly different (P<0.05). 
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Table 5.6. Rate of hydrolysis (mg glucose solubilized per hour) of kabuli chickpea meal at 20, 
80, 120, and 240 min of incubation with pancreatic α-amylase and amyloglucosidase. 
 

Genotype 
Time of incubation (min) 

20                               80                               120                                  240 

ICC9862 37.4b 25.5a 21.3b   9.7a 

ICC2277 38.7b 23.8a 28.4a 10.3a 

FLIP97-133C       55.6a 26.4a 31.7a 10.0a 

RS control 11.4c   3.3b   3.5c   3.1b 

Mean 35.8 19.7 21.2   8.3 

s.e.m   9.1   5.5   6.3   1.7  
s.e.m- standard error of the means. 
Means followed by the same letter within a column are not significantly different (P<0.05). 
 

 

Table 5.7. Rate of hydrolysis (mg glucose solubilized per hour) of kabuli chickpea extracted 
starch at 20, 80, 120, and 240 min of incubation with pancreatic α-amylase and 
amyloglucosidase. 

Genotype 
Time of incubation (min) 

 20                            80                                  120                         240 

ICC9862 37.0b 12.0b 22.5a 10.0a 

ICC2277 25.3c   9.0c 16.7b   9.2a 

FLIP97-133C       56.3a 16.5a 13.2b   9.3a 

RS control 11.4d   3.3d   3.5c   3.1b 

Mean 32.5  10.2 13.9   7.9 

s.e.m   9.5    2.8   4.0   1.6 
s.e.m- standard error of the means. 
Means followed by the same letter within a column are not significantly different (P<0.05). 



 

117 
 

 

Kabuli genotypes both meal and extracted starch showed the highest rate of hydrolysis at 

20 min of incubation.  FLIP97-133C showed the highest rate of starch hydrolysis 55.6 mg 

glucose h-1 solublized in meal, which was comparable to the amount of glucose solubilized in 

extracted starch (Tables 5.6 and 5.7).  In ICC2277, the amount of glucose solubilized at 20 min 

was higher in meal as compared to extracted starch (Tables 5.6 and 5.7).  In both meal and 

extracted starch, lowest rate of starch hydrolysis were observed at 240 min of incubation, except 

in ICC2277 extracted starch where the lowest rate of starch hydrolysis was observed at 80 min 

and with similar values at 240 min of incubation (Tables 5.6 and 5.7). 

 5.4.6 Starch digestibility studies and hydrolysis index (HI) 

Hydrolysis of meal and extracted starch was used to calculate the proportions of rapidly 

digestible starch (RDS), slow digestible starch (SDS), resistant starch (RS) and hydrolytic index 

(HI) for the kabuli and desi types of un-cooked chickpea.   In desi genotypes, the RS and SDS in 

desi seed meal ranged from 21.8-30.5% and 51.4-57.2%, respectively (Table 5.8). RS and SDS 

in extracted starch ranged between 40.0-43.8% and 41.6-44.9%, respectively (Table 5.9). No 

significant difference was detected among ICC 12824, ICC 9848 and CDC Cabri for both meal 

starch and extracted starch RS, RDS and SDS (Tables 5.8 and 5.9). The desi chickpea seed meal 

showed a broader HI ranging from 12.4-36.8 compared with extracted starch which had an HI of 

22.4-24.7.  CDC Cabri showed a lower HI both in meal and extracted starch.  However, the HI 

was considerably lower in meal (12.4) as compared to extracted starch (22.4) (Tables 5.8 and 

5.9).  In the other two genotypes, ICC12824 and ICC9848, as compared to extracted starch the 

meal had a higher HI (Tables 5.8 and 5.9). 

In kabuli chickpea genotypes, seed meal had lower concentrations of RS ranging from 

22.4 to 25.6, but the SDS highest concentration did not differ between seed meal and extracted 

starch (Table 5.10).  RS and SDS ranged from 30.0-38.9% and 40.5-53.5%, respectively in 

extracted starch (Table 5.11). However, ICC2277 and FLIP97-133C did show about 10% higher 

SDS in meal compared to extracted starch (Tables 5.10 and 5.11).  Both in meal and extracted 

starch FLIP97-133C had higher concentration of RDS as compared to the two other kabuli 

genotypes.  FLIP97-133C also had highest HI in seed meal and extracted starch, and the HI did 

not differ in meal of the ICC9862 and ICC2277.  However, extracted starch from ICC2277  
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Table 5.8: Digestibility of starch and starch fractions from meal of desi chickpea genotypes. 

 
Genotype              RS (%)                      Digested          starch (%)                          HI 

                                 RDS                         SDS 
ICC12824 

 30.5b 18.1a 51.4a 34.5b 

ICC9848 
 21.8b 21.0a 57.2a 36.8a 

 
CDC Cabri 26.1b 18.1a 55.8a 12.4c 

RS control 
 84.5a 5.5b 10.0b 9.6d 

RS, resistant starch after 4 hrs of hydrolysis; RDS, rapidly digestible starch; SDS, slowly 
digestible starch; HI, hydrolysis index. 
Means followed by the same letter within a column are not significantly different (P<0.05). 
 
 
 
Table 5.9: Digestibility of starch and starch fractions from extracted starch of different desi 
chickpea genotypes. 

 
Genotype                          RS (%)                  Digested          starch (%)                         HI         
                                                                       RDS                         SDS                                        
ICC12824 
 43.8b 12.5a 43.7a 24.7a 

ICC9848 
 40.7b 17.7a 41.6a 23.7b 

 
CDC Cabri 40.0b 15.1a 44.9a 22.4c 

RS control 
 85.0a 5.0b 10.5b 9.6d 

RS, resistant starch after 4 hrs of hydrolysis; RDS, rapidly digestible starch; SDS, slowly 
digestible starch; HI, hydrolysis index. 
Means followed by the same letter within a column are not significantly different (P<0.05). 
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Table 5.10: Digestibility of starch and starch fractions from meal of different kabuli mini core 
chickpea genotypes. 
 
 
Genotype                           RS (%)                    Digested            starch (%)                      HI 
                                                                          RDS                        SDS 
 
ICC 9862 25.6b 20.1b 54.3a 38.6b 

 
ICC 2277 25.2b 18.5b 56.3a 39.6b 

 
FLIP97-133C 22.4b 25.8a 51.8a 50.3a 

RS control 
 84.5a 5.5c 10.0b 9.6c 

RS, resistant starch after 4 hrs of hydrolysis; RDS, rapidly digestible starch; SDS, slowly 
digestible starch; HI, hydrolysis index. 
Means followed by the same letter within a column are not significantly different (P<0.05). 
 
 
Table 5.11: Digestibility of starch and starch fractions from extracted starch of different kabuli 
chickpea genotypes. 

 
 
Genotype                          RS (%)                     Digested                 starch (%)                  HI        
                                                                          RDS                          SDS                                    
 
ICC 9862 30.0b 16.5b 53.5a 34.9b 

 
ICC 2277 38.9b 14.6b 46.5a 24.9c 

 
FLIP97-133C 35.5b 24.0a 40.5a 47.2a 

 
RS control 85.0a 5.0c 10.0b 9.6d 

 
RS, resistant starch after 4 hrs of hydrolysis; RDS, rapidly digestible starch; SDS, slowly 
digestible starch; HI, hydrolysis index. 
Means followed by the same letter within a column are not significantly different (P<0.05). 
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showed the lowest HI (24.9) followed by ICC9862 (34.9) and a maximum HI (47.2) was 

observed in FLIP97-133C (Table 5.11). 

The higher HI in meal starch could be attributed to inherent α-amylase in the chickpea 

meal. CDC Cabri had significantly lower HI in both meal starch and pure starch (P<0.05) 

making it the best desi chickpea as prebiotic. This is imperative as HI is highly significantly 

correlated with glycemic index (GI) in chickpeas (Sandhu and Lim, 2008).  Moreover with the 

exception of CDC Cabri which had HI of 12.4, HI values observed in these chickpea market 

classes for meal starch were higher than the 18 reported for chickpea genotypes from India 

(Sandhu and Lim 2008). 

5.4.7 Desi and kabuli starch characteristics   

Starch concentration, composition and structural characteristics in the three each of desi and 

kabuli genotypes (Table 5.12) showed two distinct clusters with 36.8% similarity (Figure 5.5).  

Starch concentration, which formed a cluster was related to starch granules (20 – 40 µm), but 

was very closely related (≥ 90%) to starch granules (40 – 60 µm).  Starch concentration was also 

related to ratio of A/C amylopectin chains.  The second cluster at ~58% similarity could be split 

into two clusters, one in which amylose concentration was related to the ratio of B1/B2 chains 

and very small starch granules (5- 20 µm). The second cluster in this group, included very large 

size starch granules (60 – 80 µm) which were closely related to fine amylopectin structure such 

as the ratio of B1/C, B2/C and B/A chains. The starch characteristics showed close to 95% 

similarity between all the six genotypes studied (Figure 5.6).  FLIP97-133C (a kabuli genotype) 

was the most distinct among all the six, and both the kabuli and desi genotypes were 

interspsersed between the clusters.   

A similar analysis for amylopectin structure revealed, that the ratio between A/C chains 

was most distinct in a cluster at 14.73% similarity (Figure 5.7).  The second cluster included A 

and B chains and the ratio between these chains. The amylopectin structure did not differ among 

the six genotypes much and showed two groups with 96% similarity (Figure 5.8). Cluster I 

genotypes were about 99% similar consisting of CDC Cabri (desi), ICC9862 (kabuli), ICC12824 

(desi) and ICC2277 (kabuli). CDC Cabri and ICC9862 were 100% similar for their amylopectin 

structures. Cluster II consisted of ICC9848 (desi) and FLIP97-133C (kabuli) which were more 

than 99% similar in their amylopectin structure mostly due to the closeness in their A and B1 
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chain length values. The limited results based on three genotypes of each class suggest that the 

desi and kabuli genotypes do not differ in their starch characteristics.   

5.4.8 Relationship between starch hydrolytic activities and starch characteristics in 

chickpea meal and extracted starch 

To study the relationship between starch characteristics and starch hydrolytic properties cluster 

analysis revealed two major groups with about 33.6% similarity (Figure 5.9).  Forty nine percent 

(49%) similarity existed among components of cluster I (Figure 5.9). Two sub-clusters occurred 

under cluster I. In the first sub-cluster I, RDS was strongly associated with or influenced by HI, 

and starch granules between (20 – 40 µm).  In the second sub-cluster I, starch was significantly 

affected by SGS40 and the ratio A/C chains in amylopectin. In the first sub-cluster II, Slowly 

digestible starch (SDS) was strongly influenced by starch granules (60 – 80 µm), amylopectin 

B1/C, B/C, B2/C and B/A. Resistant starch (RS) was strongly associated with amylose, B1/B2 

and starch granules (5- 20 µm).  

Seed meal, which contains starch, other non-starch polysaccharides, proteins and lipids when 

analyzed, also showed two major clusters with close to 35% similarity (Figure 5.10).  The 

Cluster I at 51.3% similarity was split in two sub clusters. In the first subcluster, RDS was 

strongly influenced by B1/B2 amylopectin chain length ratios, amylose, hydrolysis index (HI) 

and very small starch granules (5 - 20 µm). In the second sub cluster RS was strongly influenced 

by large starch granules (60 – 80 µm), amylopectin B1/C, B/C, B2/C and B/A.  Cluster II 

included SDS which was associated with amylopectin A/C, starch concentration and starch 

granules (40 – 60 µm).  Cluster III also consisted of SGS20 which had low influence and 

similarity (56.7%) on SDS. 
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Table 5.12 Summary of starch hydrolytic activity in meal / extracted starch and amylopectin 
structure in selected chickpea genotypes used for analyses presented in Figures 5.5 to 5.11. 
 

Genotype RDS SDS RS HI 
Amylopectin chain ratios 

B1/C B2/C B/C B1/B2 B/A A/C 

CDC 
Cabri 

18.1/
15.1 

55.8/
44.9 

26.1/
40 

12.4/
22.4 18.93 5.23 24.17 3.61 11.61 2.07 

ICC9848 21.0/
17.7 

57.2/
41.6 

21.8/
40.7 

36.8/
23.7 13.25 3.6 16.83 3.69 3.11 5.42 

ICC12848 18.1/
12.5 

51.4/
43.7 

30.5/
43.8 

34.5/
24.7 17.18 4.27 21.40 4.02 10.12 2.11 

ICC2277 18.5/
14.6 

56.3/
46.5 

25.2/
38.9 

39.6/
24.9 16.20 3.91 20.11 4.13 7.80 2.57 

ICC9862 20.1/
16.5 

54.3/
53.5 

25.6/
30.0 

38.6/
34.9 17.77 4.76 22.54 3.73 11.05 2.03 

FLIP97-
133C 

25.8/
24.0 

51.8/
40.5 

22.4/
35.5 

50.3/
47.2 10.55 3.16 13.71 3.33 3.63 3.76 
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Figure 5.5 Average linkage and correlation coefficient distance in characteristics of starch 
extracted from selected chickpea genotypes.  
 

 
Figure 5.6 Average linkage and correlation coefficient distance among chickpea genotypes based 
on extracted starch characteristics 
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Figure 5.7 Average linkage and correlation coefficient distance in amylopectin chains based on 
extracted starch from selected chickpea genotypes 
 

 
Figure 5.8 Average linkage and correlation coefficient distance among chickpea genotypes based 
on amylopectin structure of extracted starch.
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Figure 5.9 Average linkage and correlation coefficient distance in starch hydrolytic activities and 
starch characteristics based on extracted starch from selected chickpea genotypes.  
 

 
Figure 5.10 Average linkage and correlation coefficient distance in starch hydrolytic activities 
and starch characteristics based on meal prepared from selected chickpea genotypes. 
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Figure 5.11 Average linkage and correlation coefficient distance among chickpea genotypes 
based on meal starch hydrolytic activities and starch characteristics. 
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The multivariate analyses of starch characteristics and extracted starch hydrolytic 

properties did not show any difference between the desi and kabuli type genotypes.  Physical 

characteristics of extracted starch showed some interesting associations between starch 

concentration and starch granules (40 – 60 µm), ratio between A and C amylopectin chains and 

small starch granules (20 – 40 µm).  Similarly, amylose was associated with the ratio of B1/B2 

amylopectin chains and very small size starch granules (5 – 20 µm).  The very large size starch 

granules were associated with the ratio of B to C amylopectin chains.  These are interesting 

observations with a limited number of genotypes.  To further confirm these findings, the study 

has to be expanded with diverse genotypes to draw any firm conclusions.  

The starch hydrolytic properties revealed that RDS was closely associated with HI, and 

RS with amylose concentration.  A strong positive correlation between HI and RDS in kabuli 

corroborates the findings of Sandhu and Lim (2008) for chickpeas. SDS, the most desirable form 

of dietary starch which is completely but more slowly digested in the small intestine and 

attenuates postprandial plasma glucose and insulin levels (Jenkins et al. 1981), is shown to be 

associated with amylopectin structure (Figure 5.9).  This is an interesting observation because 

both long and short chains of amylopectin have been associated with maize SDS (Zhang et al 

2008).  

Meal is a complex mixture of protein, non-starch carbohydrates, lipids and other minor 

components.  The seed constituents alter the starch hydrolytic properties. The RDS was 

associated with amylose concentration, HI, very small starch granules and the ratio of B1/B2 

amylopectin chains.  RS was found to be associated with large size starch granules and 

amylopectin B and C chains.  SDS was found to be associated with starch concentration, ratio of 

short to long amylopectin chains and medium size starch granules.  The observed change in 

starch properties by interaction with seed meal constituents will have a major impact on chickpea 

seed utilization in food and feed applications.  Another important factor influencing chickpea 

utilization in food products is the change in meal components, starch structure and their 

interaction during cooking/food processing procedures.  Therefore, the results obtained in this 

study have predictive value only.    
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5.4.8 CONCLUSIONS 

The kabuli and desi-type chickpea genotypes used in this study had similar total starch and 

amylose concentrations.  In addition, the seeds of the two types of chickpea market classes did 

not differ in their starch granule sizes and/or amylopectin structure.  Determination of starch 

hydrolysis of extracted starch showed that RDS was associated with HI, medium size starch 

granules, and starch concentration, RS was associated with amylose concentration and amount of 

very small size starch granules.  SDS was closely associated with fine amylopectin structure. 

However, in seed meal starch hydrolytic activity determinations, the factors associated with 

RDS, SDS, HI and RS changed.  This suggests that both starch characteristics and seed meal 

constituents affect chickpea utilization in food product development using whole chickpea seeds. 
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

Chickpea is the third largest pulse crop in the world, which from the beginning of agriculture has 

been used for food and medicinal purposes (van der Masen, 1972).  Most of the chickpea 

improvement has been focused to improve its agronomic performance and grain yield.  

Improvement of chickpea grain quality is difficult, because seed constituent analysis requires 

laboratory analysis, which is tedious and time consuming.  In addition, deposition of seed storage 

constituents is strongly influenced by the environmental conditions and genetic factors (Wood 

and Grusak, 2007). Therefore, the first step towards grain quality improvement is to identify, and 

characterize seed constituents of interest, and study genotype by environment interaction for 

selected seed constituents of interest.  This study focused on chickpea grain quality with the 

following objectives: 

• Study variations, repeatability and genotype by environment interaction on thousand seed 

weight, starch, amylose and protein concentration of chickpea adapted to Saskatchewan’s 

environment; 

• Assess variations in global chickpea mini core for thousand grain weight, protein, 

      starch and amylose concentrations; 

• Characterize selected chickpea genotypes for their starch granule composition and 

structure and study their influence on starch hydrolysis, which is an important 

consideration for chickpea utilization for human nutrition and health benefits. 

Several studies have been conducted on genotype by environment interaction in chickpea but 

not much information exist on effect of genotype by environment interaction on chickpea grain 

quality attributes such as starch, amylose, protein and thousand seed weight (Wood and Grusak, 

2007). In this study, significant genotype, environment and genotype by environment interaction 

effects were detected for chickpea seed yield, thousand seed weight, starch, amylose and protein 

concentrations in both desi and kabuli varieties adapted to the western Canadian Prairies. 

However, protein concentration did not show genotype by environment interaction in kabuli 

class. In desi, seed yield ranged from 1120 (Myles) to 1710 (ICC-12512-9) kgha-1. CDC 

Vanguard recorded the lowest protein (185.4gkg-1) whilst Myles recorded the highest protein 
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(211.5gkg-1) concentration. Myles had the lowest starch of 420.2gkg-1 whilst CDC Cabri had the 

highest starch concentration of 451.6gkg-1. This finding is in agreement with values reported 

previously (Wood et al., 2008). CDC Cabri had the lowest amylose concentration of 263.8gkg-1 

and CDC Anna recorded the highest amylose of 276.4gkg-1. Total starch, amylose and protein 

showed less variation in desi. In general, amylose concentration in both desi and kabuli is lower 

than that reported (Wood et al., 2008; Chibbar et al., 2010; Hoover et al., 2010). We used SEC-

HPLC method, which determines the actual amount of amylose molecules (Demeke et al., 1999), 

in debranched starch compared with iodine-based spectrophotometric methods that determine 

apparent amylose concentration. 

In kabuli, overall seed yield and protein were comparatively lower than desi. However, 

kabuli varieties had higher total starch concentration than desi. This was not unexpected since 

kabuli seed size (8-10mm) was larger than desi (<8mm). Kabuli chickpea varieties had higher 

amylose concentration than desi varieties.  Amylose concentration of 26.8-29.0 % reported in 

this study agrees with that of Singh et al. (1956) but inconsistent with 33.5 and 36.3 % reported 

for kabuli and desi by Saini and Knights (1984). 

Positive and significant relationships between starch concentration and seed yield in desi 

and between starch concentration and seed weight in kabuli will offer plant breeders the 

possibility of indirect selection. However the negative relationship between starch and protein 

concentrations across chickpea market classes will require a compromise and indirect selection. 

A principal component analysis (PCA) plot revealed CDC Anna to be the most stable and 

high yielding cultivar for both amylose and starch concentration in most environments while 

316B-42 was the most stable and high-protein cultivar. Stability and yield of desi starch 

concentration was inconsistent when PCA plot result was compared with mean values across 

locations. This inconsistency was because PCA plots do not explain 100% of genotype and 

genotype by environment interaction (Yan, 2002). FLIP98-135C was a top yielder and most 

stable cultivar for amylose and starch concentration whilst Sandford was among the most stable 

for protein. PCA plots revealed that no single trait had a positive effect on seed quality in all 

environments. It will therefore not be feasible to improve quality by selecting for any specific 

trait in these varieties and environments. 
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Repeatability and heritability are genetic and phenotypic parameters required for efficient 

running of crop improvement programmes. Repeatabilities of all the traits were in a range of 

0.12-0.94 (Desi rapprox) and 0.07-0.91 (Kabuli rapprox), being lower compared with heritabilities of 

0.53-0.99 (Desi H broad sense) and 0.36-0.97 (Kabuli H broad sense). This trend disagrees with Falconer 

and Mackey (1996) proposition that repeatability sets upper limit to heritabilities in broad sense. 

Results are however supported by Dohm (2002) proposal that repeatability estimates may not set 

the upper limits to heritability if significant genotype by environment interaction is present. 

The ICRISAT chickpea mini core collection of 211 accessions (209 accessions used in 

our study) reported to capture 70% of the useful genes in the entire core collection (Upadhaya 

and Ortiz, 2001) in addition to 12 advanced breeding lines from the Crop Development Centre of 

Canada and ICC15606 (desi), ICC3182, ICC32795 (all from India) were screened for amylose, 

total starch, protein, thousand seed weight, seed diameter and seed colour. Desi mini core mean 

concentrations of proteins, starch, amylose, seed colour, seed diameter and thousand seed weight 

were 26.2±1.3%, 51.2±2.2%, 27.6±1.2%, 33.8±6.2, 5.7±0.5mm and 158.1±31.6g, respectively. 

Interestingly, desi mini core starch and protein contents were the only quality traits that were 

higher than the 43.5% and 19.5%, respectively reported earlier in the varieties adapted to the 

western Canadian Prairies. This is an indication that desi mini core has the potential to be used 

for starch and protein improvement in chickpea. In kabuli, mean protein, starch, amylose, seed 

colour, seed diameter and thousand seed weight were 22.5±1.6%, 47.6±3.0%, 27.0±1.1%, 

47.8±6.1, 6.8±0.5mm and 237.8±50.2g, respectively. Amylose concentration across mini core 

was comparable to 26.0-28.0% reported earlier in the varieties adapted to western Canada and 

elsewhere (Guillon and Champ, 2002). Almost all the accessions that had above average score 

seed diameter in both desi and kabuli also had above average score for thousand weight. This 

confirms the strong significant relationship between seed diameter and thousand seed weight in 

chickpea (Bicer, 2009). Both the extrinsic and intrinsic grain quality traits showed a high 

Shannon-Weaver Diversity index.  This suggested that within the genotypes there was a high 

allelic diversity for the analyzed traits, therefore, detailed analysis can help to identify accessions 

of interest.  However, the allelic diversity was limited to the narrow phenotypic diversity 

observed in this mini core collection.  This emphasizes the need to develop a specialized mini 

core collection with large phenotypic diversity of grain quality traits.     
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In chickpea two distinct market classes, desi and kabuli are recognized.  The desi has 

angular dark coloured seeds, while kabuli has owl-head shaped light coloured seeds.  Seed 

constituent analysis did not reveal any difference between the two desi and kabuli-type chickpea.  

Starch digestibility is a major factor, affecting grain utilization.  Compared to cereals, pulses are 

known to have less starch digestibility, and among pulses chickpea has one of the lowest rates of 

starch digestibility (Jenkins et al., 1980). Starch digestibility has been associated with starch 

amylose concentration.  Elevated amylose diets are reported to have prebiotic effects on human 

beings as well as controlling obesity, cardiovascular diseases and colon cancer (Brown, 1996; 

Topping and Clifton, 2001). It is also reported that starch structure (amylose: amylopectin ratio, 

starch granule size and shape and amylopectin chain length distribution) affects its rate of 

hydrolysis (Shu et al., 2007; Tatsumi et al., 2007; Lee et al., 2008). For instance Stevnebo et al. 

(2006) reported that barley cultivars with low level of amylose had higher degree of starch 

hydrolysis than cultivars with normal and high amylose contents for all time intervals. In this 

study, rate of starch hydrolysis had no relationship with amylose concentration in chickpea. The 

reason could be that there was no difference between the amylose concentration of the accessions 

analyzed due to genetic bottlenecks. 

Rate of starch hydrolysis of chickpea meal was higher than purified starch at all times 

(contrary to expected, Stevnebo et al. 2006) and the higher amount of α-amylase content of the 

meal could be the reason. However, chickpea has been reported to have slowly digestible starch 

concentration only second to that of mung bean among all the legumes (Sandhu and Lim, 2008). 

Rate of starch hydrolysis was relatively lower for both desi meal and pure starch when compared 

with kabuli meal and pure starch. The small magnitude of the significant positive correlation 

between amylose concentration and both slowly digestible starch and resistant starch after 4 hour 

of hydrolysis (rdesi=0.31, rkabuli=0.28, p<0.05) between desi and kabuli could partly explain this. 

This trend could also be explained by differences in the amylose structure (Fitzgerald and 

Blanchard, 2005). Kabuli accessions had higher 5-20μm, 20-40 μm but lower 40-60 μm and 60-

80 μm granule size volume percent than desi and that may account for the relatively slower rate 

of starch hydrolysis in desi genotypess. This observation supports the hypothesis that due to a 

higher surface area and lower crystallinity, small starch granules are degraded at a higher level 

than large granules (Stevnebo et al. 2006). Interestingly, accessions which had significantly 
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lower 60-80 µm granule volume percent had their granule size significantly affected by the 

environment. 

The proportion of side-chains with DP<12 (A chains), DP13-25 (B1 chains), DP26-35 

(B2 chains), and DP36-55 (C chains) in desi were in a range of 7.61-23.31%, 56.99-69.93%, 

15.41-19.23%, 3.67-4.30%, respectively. In kabuli, side-chains with DP<12 (A chains), DP13-25 

(B1 chains), DP26-35 (B2 chains), and DP36-55 (C chains) ranged from 7.97-20.39%, 57.09-

69.50%, 16.52-18.62%, 3.91-5.41%, respectively. Two interesting groups of amylopectin 

structures emerged across chickpea types: FLIP97-133C (kabuli), ICC9848 (desi)-(group 1); and 

ICC 9862 (kabuli), ICC 2277 (kabuli), CDC Cabri (desi)-group 2). Group 1 and 2 were 

significantly different (P<0.05) from each other. Amylose had strong relationship with resistant 

starch in kabuli pure starch, desi pure starch, and desi meal starch when multivariate analysis 

was done. SDS, the most desirable form of dietary starch which completely but more slowly 

digest in the small intestine and attenuates postprandial plasma glucose and insulin levels 

(Jenkins et al. 1981), negatively correlated with HI in both pure starch and meal starch of desi 

and kabuli. The strong positive correlation between HI and RDS in kabuli corroborates the 

findings of Sandhu and Lim (2008) in chickpea. There was positive relationship between B2 

chains of amylopectin and slowly digestible starch of pure starch and meal starch (except 

kabuli). However, B1 fraction of amylopectin chain length distribution significantly correlated 

with RS in both kabuli and desi meal starch as revealed by PCA. The low digestibility property 

of the studied chickpea genotypes may be attributed to the degree of crystalinity, enzyme 

inhibitors, soluble dietary fibre constituents and antinutrients such as polyphenols and phytic 

acid. 

6.1 FUTURE RESEARCH DIRECTIONS 

Since all carbohydrates are derived from simple sugars, reducing or increasing one carbohydrate 

component will affect others as a direct consequence of change in partitioning of sugars. If 

genetic variation cannot be found within existing germplasms, it will then be necessary to create 

it either by mutagenesis, introductions from gene banks especially current ICRISAT holdings, 

functional genomics strategies (Ganeshan et al., 2010) such as TILLING (Targeting Induced 

Local Lesions IN Genomes) (McCallum et al., 2000) or introduction of novel genes from other 

less commonly grown pulses (Chibbar et al., 2010). The degree of crystalinity, soluble dietary 
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fibre constituents and antinutrients such as polyphenols and phytic acid as they affect starch 

hydrolysis in these accessions must be investigated in the future. Chickpea starch biosynthetic 

enzymes should be profiled. This will allow for transcriptional characterization, an effort that can 

enhance the biochemical and molecular understanding of these enzymes towards a step in a 

direction of increasing starch quantity and quality during chickpea development. Future studies 

should also characterize in detail the environmental factors influencing and hampering quality 

improvement in chickpea.  It will be of interest to study the changes in meal components, starch 

composition and structure during the food processing and cooking procedures to precisely 

evaluate the starch enzymatic hydrolysis potential of chickpea based food products.   

6.2 CONCLUSIONS 

• Variations occurring among seed composition of chickpea cultivars adapted to the 

western Canadian prairies was low. 

• Significant genotype by environment interaction occurred for starch, amylose, protein 

(except for kabuli) concentrations, seed yield and thousand seed weight indicating that 

testing over a wide range of environments will be required. 

• Repeatabilties of starch, amylose, and protein concentrations were low and inconsistent 

across chickpea market class. 

• Broad sense heritability was higher than repeatability across all traits for all market 

classes implying that repeatability estimates does not set the upper limits to heritability if 

significant genotype by environment interaction is present. 

• Negative relationship between seed constituents and yield indicates that selection for 

chickpea cultivars with desired seed composition may require compromise for yield and 

indirect selection. 

• All the mini core accessions that had above average score seed diameter in both desi and 

kabuli also had above average score for thousand weight 

• Amylose had strong relationship with resistant starch but not rate of starch hydrolysis. 

• B1 fraction of amylopectin chain length distribution strongly influenced RS in both 

kabuli and desi meal starch. 
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