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ABSTRACT 

Individual variability in immune responses to vaccination can result in vaccinated individuals who 

fail to develop protective immunity. These “vaccine low-responders” remain at risk for infection 

and compromise the protection achieved through herd immunity. Biomarkers of vaccine 

unresponsiveness could enable rapid identification of susceptible low-responders while discerning 

mechanisms of vaccine-induced immune responses. To investigate biomarkers of vaccine 

unresponsiveness, piglets (n=117) were vaccinated with a commercial Mycoplasma 

hyopneumoniae bacterin, and vaccine-induced serum IgG titers were quantified 35 days following 

vaccination. High (HR) and low (LR) vaccine responders within the 80th and 20th percentile of 

serum IgG titers were stratified, respectively, and split into discovery (n=12) and validation (n=8) 

cohorts. Within the discovery cohort, kinome analysis conducted on peripheral blood mononuclear 

cells collected from HR and LR revealed multiple differential phosphorylation events before and 

6-days following vaccination. Differential phosphorylation events before vaccination were 

enriched in cytokine signaling pathways, a result supported by the quantification of higher plasma 

interferon-gamma (IFNγ) and interleukin-1beta (IL-1β) in LR compared to HR before vaccination. 

Additionally, LR had lower birth weight than HR, thus establishing significant associations 

between vaccine responsiveness and kinase signaling, plasma cytokines, and birth weight. 

Analysis of the validation cohort verified the differential phosphorylation events identified within 

the discovery cohort, but there were no differences in birth weight or plasma cytokines between 

LR and HR. In a second trial, piglets (n=67) from a different facility were vaccinated with the 

same Mycoplasma hyopneumoniae bacterin to further evaluate plasma cytokines and birth weight 

as biomarkers of vaccine unresponsiveness. Piglets in the second trial all seroconverted, and serum 

IgG titers varied less than the first trial. While the second trial found no associations between 

vaccine unresponsiveness and either birth weight or plasma cytokines, it revealed piglets had age- 

and litter-dependent differences in plasma IFNγ and IL-1β concentrations within the first 2-months 

of life. Collectively, these data suggest that though plasma cytokines or birth weight can be 

associated with vaccine unresponsiveness, their temporal and individual variability can make them 

inconsistent biomarkers. Phosphorylation biomarkers offered consistent discrimination of HR and 

LR and provided insight into potential mechanisms regulating vaccine-induced immunity. 
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1. INTRODUCTION 1 

 2 

1.1 Vaccination and Disease Prevention 3 

Vaccination is one of the most effective and economical means of protecting humans and 4 

animals against infectious diseases. Vaccination aims to induce an immune response within the 5 

individual and establish immunological memory against a molecular fragment that mimics the 6 

pathogen (Zepp, 2016). This preemptive development of vaccine-specific immunity typically 7 

allows the individual to mount an immune response to the live-infectious agent (Pollard and Bijker, 8 

2021). However, biological variability among individuals can result in inconsistent vaccine 9 

immunogenicity, particularly within populations that are heterogeneous with respect to genetics, 10 

age, and health status. Individuals may develop weak vaccine-induced immune responses resulting 11 

in the immune system being incapable of preventing or minimizing infection by the vaccine-12 

associated pathogen. Therefore, individuals who are incapable of responding (termed “non-13 

responders”) or respond insufficiently (termed “low-responders”) to the vaccine are a potential 14 

detriment to the health of the population and require appropriate management. 15 

1.1.1 Individual Variability in Vaccine Responses 16 

Individual variation in vaccine responses is a natural occurrence that can result in low 17 

vaccine responders within a population. This phenomenon has been observed for multiple vaccine 18 

regimens in a range of species. For example, 5-10% of individuals vaccinated against hepatitis B 19 

virus (HBV) failed to develop protective levels (anti-HBs>10 mIU) of anti-HBV antibody 20 

(Averhoff et al., 1998; Poland and Jacobson, 2004; Walayat et al., 2015). Vaccines against the 21 

influenza virus can be an effective means of disease control, yet antibody responses following 22 

influenza virus vaccination consistently vary among populations, independent of influenza 23 

strain/season (Keitel et al., 2006; Levine et al., 2016; Nakaya et al., 2015). Within animal health, 24 

piglets vaccinated against tetanus toxoid can exhibit a range of seropositive and seronegative 25 

antibody responses 28-days following vaccination, suggesting inconsistent levels of protection 26 

(Adler et al., 2015). Recently, pigs vaccinated with a commercial Mycoplasma hyopneumoniae 27 

(M. hyopneumoniae) bacterin had highly variable M. hyopneumoniae-specific antibody responses, 28 

with only 80% of pigs having persistent antibody responses 118-days post-vaccination (Blanc et 29 

al., 2021). Others have observed variable antibody responses in populations vaccinated with both 30 
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commercial and experimental foot-and-mouth-disease virus (FMDV) vaccines (Braun et al., 2018; 31 

Jouneau et al., 2020; Knight-Jones et al., 2015). While factors influencing the magnitude of 32 

vaccine responses are explored later (Section 1.3), these previous studies demonstrate that a 33 

variety of vaccines used in both humans and animals can result in individuals classified as vaccine 34 

low-responders. 35 

1.1.2 Protection through Herd Immunity 36 

The protection afforded by vaccination is achieved at the level of the individual and the 37 

population. For individuals, vaccination programs usually prioritize either reducing infection 38 

susceptibility or promoting pathogen clearance, while from the population perspective, the priority 39 

is to reduce the incidence of exposure and limit infections (Rose and Andraud, 2017; Smith, 2010). 40 

A vaccine's effectiveness depends on multiple factors, including the pathogen transmission 41 

potential, vaccine coverage, and vaccine efficacy. If the transmission potential of the pathogen is 42 

high, the vaccine coverage must compensate to establish protection in the population. The basic 43 

reproduction number of a pathogen (R0) is the average number of secondary infections a single 44 

infectious individual infects within a susceptible population. R0 is directly proportional to the 45 

number of protected individuals needed to establish population-wide protection, known as herd 46 

immunity (Fine et al., 2011; Smith, 2010). Pathogens with a high R0, such as measles virus (R0 ~ 47 

12 to 18), require a higher vaccine coverage of the population than other pathogens with a lower 48 

R0, such as influenza virus (R0 ~ 1 to 2) (Biggerstaff et al., 2014; Guerra et al., 2017). The R0 is 49 

highly dependent on biological and sociodemographical factors but can be estimated using “P = 50 

1-(1/R0)”, where P = the proportion of the population to vaccinate to stop transmission (Guerra et 51 

al., 2017; Smith, 2010). So, when a sufficient proportion of the population has been vaccinated 52 

against the pathogen, pathogen transmission is hindered and reduces the probability of 53 

encountering unvaccinated and susceptible individuals (Rose and Andraud, 2017).  54 

Vaccine efficacy, the ability to reduce disease incidence, relies on vaccine 55 

immunogenicity, the vaccine's ability to trigger an immune response (Mahanty et al., 2015; Smith, 56 

2010). Therefore, factors that compromise vaccine immunogenicity inevitably reduce vaccines 57 

efficacy by promoting the development of vaccine non-responders (Weinberg and Szilagyi, 2010). 58 

In addition, vaccine non-responders challenge the achievement of herd immunity, requiring a 59 

higher vaccine coverage threshold (Fine et al., 2011; Heininger et al., 2012). Thus, not only do 60 
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non-responders impair protection of individuals, but they also compromise efforts to achieve herd 61 

immunity and should be identified and managed accordingly. 62 

1.1.3 Biomarkers of Vaccine Responses 63 

Identifying vaccine non-responders/low-responders usually requires quantifying surrogate 64 

metrics of vaccine outcomes, such as antigen-specific antibody titers or T-cell responses, in the 65 

weeks following immunization (Plotkin, 2001). This approach to quantifying vaccine responses 66 

has several practical limitations. First, there is a window of opportunity between vaccination and 67 

quantification of vaccine outcomes when pathogens may infect and be transmitted by non-68 

responders within the population. Second, quantifying these surrogate metrics requires additional 69 

time and economic cost to the health care system or livestock producer. This problem creates a 70 

need for more rapid and inexpensive identification of non-responders. Early identification of 71 

vaccine non-responders through biological markers (termed “biomarkers”) that reduce the time of 72 

identification and/or the cost of testing could provide a valuable tool for improving individual and 73 

population health. The discovery of biomarkers capable of predicting future vaccine responses 74 

could allow immediate identification of vaccine non-responders and facilitate strategic 75 

management decisions, such as revaccination, physical isolation, or, in the livestock industry, 76 

culling or genetic selection of individual animals (te Beest et al., 2011; Knight-Jones et al., 2015; 77 

Mallard et al., 2015). As well, biomarkers providing a molecular basis of vaccine unresponsiveness 78 

could be utilized to improve vaccine delivery strategies to minimize the frequency of vaccine non-79 

responders (Pulendran et al., 2010). Research into understanding the molecular events within the 80 

host immune system before and after vaccination may prove fruitful in discovering possible 81 

biomarkers of vaccine responsiveness.  82 

1.2 Immune Responses to Vaccination 83 

The primary objective of vaccination is to induce an immune response against a specific 84 

pathogen that can prevent clinical symptoms of infection (Zepp, 2016). A variety of pathogen 85 

components can act as vaccine antigens, including biomolecular components of the pathogen (e.g. 86 

protein subunits, peptides, toxins, polysaccharides, nucleic acids) or an inactivated/killed version 87 

of the pathogen itself. Alternatively, attenuated pathogens can be generated by removing the 88 

virulent effects that harm the host, but pathogens retain the ability to  cause infection so the immune 89 
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system can generate immunity (Pollard and Bijker, 2021). In either case, vaccination prepares the 90 

immune system to detect, mediate, and respond against a future attack by the pathogen. 91 

1.2.1 The Innate Immune Response 92 

The innate immune system represents the initial line of defense against invading pathogens 93 

and consists of phagocytic cells, protein complement, and physical barriers. Innate responses occur 94 

within minutes to hours of infections and are hallmarked by being relatively nonspecific and 95 

lacking immunological memory to recognize recurring infectious agents (Coffman et al., 2010). 96 

The breadth of detection by the innate immune system is derived from its ability to recognize a 97 

spectrum of bacteria, viruses, parasites, or tissue damage. Detecting infectious agents is facilitated 98 

by pathogen recognition receptors (PRRs) on host cells, including phagocytic dendritic cells. PRRs 99 

like Toll-like receptors (TLRs) recognize and bind pathogens through evolutionary distinct but 100 

highly conserved molecules called pathogen-associated molecular patterns (Pulendran and 101 

Ahmed, 2011; Rosadini and Kagan, 2017). PRRs bind a range of pathogen-associated molecular 102 

patterns (e.g. lipopolysaccharide, viral nucleic acids) to activate signal transduction events. PRR 103 

activation results in the expression of genes encoding proteins involved in defensive host activities 104 

including pro-inflammatory cytokine release, complement cascades, pathogen opsonization, and 105 

the recruitment of phagocytes (Mogensen, 2009; Takeda and Akira, 2004). These processes 106 

promote pathogen clearance, minimize damages to the host, and, importantly for vaccination, 107 

initiate antigen-specific responses. 108 

A critical cell type for transitioning from an innate immune response into an adaptive 109 

immune response are the dendritic cells. The dendritic cells sense, engulf, and lyse pathogens to 110 

present antigenic fragments on their extracellular surface (Pulendran and Ahmed, 2006). This 111 

stimulation of dendritic cells differentiates the cell into an antigen-presenting cell, where cytokine 112 

signals coordinate the migration of activated dendritic cell to the draining lymph nodes (Iwasaki 113 

and Medzhitov, 2004). Here, antigen-presentation cells prime and direct T-cell differentiation by 114 

presenting antigenic fragments on major histocompatibility complex (MHC), along with other 115 

costimulatory molecules, to naive T-lymphocytes (Iwasaki and Medzhitov, 2004; Reis e Sousa, 116 

2004). Vaccines must stimulate specific T- and B-lymphocyte responses to establish 117 

immunological memory and elicit a rapid, precise response against subsequent infection. 118 
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1.2.2 The Adaptive Immune Response  119 

Compared to the innate immune response, the adaptive immune response develops more 120 

slowly, is pathogen-specific, and leads to immunological memory. Pathogens have evolved 121 

mechanisms to evade innate immune responses, so establishing an adaptive immune response 122 

enables the immune system to recognize pathogen-specific antigens (Janeway et al., 2001). T-123 

lymphocytes deliberate effector and regulatory functions, while B-lymphocytes primarily mediate 124 

antigen-specific antibody responses (Zepp, 2016). T- and B-lymphocytes express clonal antigen 125 

recognition receptors, called T-cell receptors and B-cell receptors, respectively, that bind 126 

specifically to antigen peptides and lead to T- and B-lymphocyte activation and differentiation 127 

(Janeway et al., 2001; Pulendran and Ahmed, 2011). Recognizing the roles of lymphocytes and 128 

their activities within the vaccine-induced immune response may be critical for distinguishing 129 

responders from non-responders. 130 

1.2.2.1 T-lymphocytes and Cellular Responses 131 

T-cells have many functions that largely depend on their distinct functional  subset (Kumar 132 

et al., 2018). Nucleated cells intracellularly infected with a pathogen communicate their infection 133 

by processing, loading, and presenting antigenic fragments of the pathogen onto the cell surface 134 

through MHC class 1 proteins. MHC-I resides on the surface of all nucleated cells and bear both 135 

endogenous degradation of self and foreign antigens (Hewitt, 2003). T-cells bearing the surface 136 

protein CD8 (CD8+ T-cells) recognize foreign antigens through surface T-cell receptors and bind 137 

the antigen-MHC-I complex, leading to a cytotoxic response and killing infected cells with 138 

cytotoxic factors. Conversely, exogenously-derived foreign antigens are presented by antigen-139 

presenting cells on MHC Class II receptors which are recognized by T-cell receptors on T-cells 140 

bearing the surface protein CD4 (CD4+ T-cells) (Hewitt, 2003). Analyses of vaccine responders 141 

to HBV vaccination found recessive haplotypes of MHC-II human histocompatibility leukocyte 142 

antigen in non-responders, suggesting that there are associations between mutations in the MHC-143 

II presentation system and impaired vaccine responses (Alper et al., 1998; Kruskall et al., 1992). 144 

T-cell receptor stimulation, combined with co-stimulatory and cytokine signals, commits the 145 

CD4+ T-cell into one of many helper T-cell subsets. Helper T-cells have many supportive 146 

functions in activating innate immune cells, promoting T-cell differentiation, promoting antibody 147 

formation, adhesion and regulating inflammatory responses (Crotty, 2015; Hennecke and Wiley, 148 
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2001). Current vaccines must optimize the coordination among the vaccine antigen, helper T-cells, 149 

and B-cells to induce protective vaccine-specific immune responses. 150 

1.2.2.2 B-lymphocytes and Antibody Responses 151 

B-lymphocytes, are the primary cell of the humoral response due to their ability to generate 152 

and secrete antibodies specific to an antigenic fragment (Alberts et al., 2002). Antigen-specific 153 

antibody generation is initiated when whole proteins or antigenic fragments bind the B-cell 154 

receptor. Antigens can bind B-cell receptors either with (T-cell-dependent) or without (T-cell-155 

independent) co-stimulation from antigen-specific T-cells recognizing the same antigen, yet T-156 

cell-independent binding typically generates a weaker response and lacks memory (Pollard and 157 

Bijker, 2021; Pulendran and Ahmed, 2006).  T-cell-dependent activation leads to downstream 158 

signaling effectors that result in cytoskeletal rearrangement and the maturation and differentiation 159 

of the antigen-specific B-lymphocyte (Crotty, 2015; Janeway et al., 2001; Li et al., 2019). 160 

Activated B-lymphocytes produce antigen-specific antibody isotypes like immunoglobulin G 161 

(IgG) or IgA with high affinity and differentiate into antibody-producing plasma cells or memory 162 

B-cells. Memory B-cells differentiate with the help of CD4+ T-cells to provide rapid antibody 163 

responses following antigen re-exposure, while plasma cells continuously secrete antibodies into 164 

the circulation (Alberts et al., 2002; Pollard and Bijker, 2021; Zepp, 2016). However, the 165 

generation of antigen-specific antibodies may not protect against infections, as observed with 166 

intracellular pathogens like Mycobacterium tuberculosis or HIV (Siegrist, 2018). Therefore, 167 

vaccine optimization requires recognizing the antigen-specific effectors needed for protection 168 

against a given pathogen (Pulendran and Ahmed, 2011). 169 

Establishing innate and adaptive immune responses requires highly integrated cellular 170 

communication through various signaling cascades to achieve an effective, antigen-specific 171 

response. As a result, modulating the expression and activity of receptors, transcription factors, 172 

signaling molecules, or changes in cell frequencies can profoundly influence the immune response 173 

to vaccines. These modulations are known to be driven by vaccine, host, environmental, and 174 

developmental factors. 175 

1.3 Factors affecting Vaccine Responses 176 

Numerous vaccine and host factors modulate the immune response within both the innate 177 

and adaptive immune systems. Inconsistent vaccine responses can reflect inherent problems 178 
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related to the vaccine, such as antigen optimization, adjuvant selection, vaccine type, and 179 

administration method. In addition, the individual variation in vaccine-induced immune responses 180 

is primarily attributed to heterogeneity within a population determined by genetic differences, prior 181 

environmental exposures, perinatal factors, nutrition, and behavior, to name a few (Zimmermann 182 

and Curtis, 2019). Vaccination must overcome these factors to elicit an antigen-specific immune 183 

response. 184 

1.3.1 Vaccine-Dependent Factors 185 

1.3.1.1 Vaccine Adjuvants 186 

Adjuvants, such as mineral salts, oil and water emulsions, PRR ligands, and cytokines, 187 

modulate vaccine responses to increase vaccine antigen immunogenicity. Adjuvants enhance 188 

immune responses by multiple mechanisms. This includes stimulating the innate immune system, 189 

forming antigen depots and sustaining the release of the antigen, upregulating cytokines, activating 190 

inflammasomes, recruiting leukocytes to the injection site, or activating antigen-presenting cells 191 

(Awate et al., 2013). For example, AS03, an oil-in-water emulsion, enhances antigen uptake and 192 

antigen presentation by stimulating nuclear factor-κB transcriptional activity and cytokine and 193 

chemokine responses to activate monocytes into antigen-presenting cells at the site of injection 194 

(Coffman et al., 2010; Garçon et al., 2014). AS03 facilitates the activation of CD4+ T-cells to 195 

promote stronger adaptive immune responses in current influenza-virus vaccines (Garçon et al., 196 

2014). Furthermore, adjuvants in a vaccine formulation can strengthen vaccine-induced immune 197 

responses thereby reducing the incidence of vaccine non-responders. Within livestock, sheep 198 

vaccinated against FMDV revealed higher virus neutralization titers when vaccinated with a 199 

vaccine containing a water-in-oil emulsion adjuvant compared to an unadjuvanted vaccine antigen 200 

(Jouneau et al., 2020). In developing novel M. hyopneumoniae vaccines, researchers found that 201 

experimental vaccine formulations differing only in adjuvant selection (various PRR ligands or 202 

squalene-in-water emulsions) led to highly variable vaccine-specific IgG titers, CD4+, and CD8+ 203 

T-cell responses within vaccinated pigs (Matthijs et al., 2019). The selection of different adjuvants 204 

is just one method that allows vaccine manufacturers to modify the immune response required to 205 

combat a pathogen (Coffman et al., 2010).  206 
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1.3.1.2 Vaccine Type and Antigen Selection 207 

Vaccine type, antigen selection, and pathogen strain can also influence vaccine-specific 208 

immune responses. For example, a small cohort of humans vaccinated with trivalent influenza 209 

vaccine had statistically higher hemagglutination inhibition titers than a cohort vaccinated with 210 

live-attenuated influenza virus (Nakaya et al., 2011). Similarly, in a study by Jouneau et al. (2020), 211 

sheep vaccinated with an inactivated FMDV responded with higher post-vaccination virus-212 

neutralization titers over one year than sheep vaccinated with a replication-defective adenovirus 5 213 

vector expressing FMDV capsid proteins. This study suggested there are substantial differences in 214 

vaccine-induced immune responses depending on the vaccine type (Jouneau et al., 2020). As 215 

vaccine immunogenicity relies on the antigen’s ability to trigger the T- and B-cell receptors, 216 

optimal antigen selection is critical for developing vaccines that stimulate immune responses 217 

(Mahanty et al., 2015). Also, diversity in the strain of pathogen used to formulate the vaccine can 218 

impact the vaccine-induced immune response, as evidenced in the development of influenza virus 219 

vaccines that use different strains than the pathogen circulating in the environment  (Keitel et al., 220 

2006; Levine et al., 2016; Maes et al., 2021). Indeed, all aspects of the vaccine, up to and including 221 

administration technique, should be optimized to generate a strong vaccine-induced immune 222 

response (Zhang et al., 2015). Nevertheless, the formulation of the vaccine does not explain why 223 

individuals given the same vaccine can generate highly variable vaccine responses. To further 224 

investigate this phenotype, host factors that influence the immune response need to be considered.  225 

1.3.2 Host-dependent Factors 226 

1.3.2.1 Genetics and Heritability 227 

Genetic factors can partially explain the heterogeneity of vaccine-induced immune 228 

responses in a population. In a meta-analysis by Posteraro et al. (2014), genes involved in antigen 229 

recognition and cytokine responses had single nucleotide polymorphisms (SNPs) that were 230 

associated with vaccine-induced antibody responses following measles virus, HBV, or 231 

meningococcus vaccination.  However, there was not a consistent set of genes common across all 232 

vaccine responses, suggesting individual genetic differences could have vaccine-specific effects 233 

(Posteraro et al., 2014). A high number of genetic associations were found between human 234 

histocompatibility leukocyte antigen gene polymorphisms in humans and their post-vaccination 235 

influenza-specific antibody titers, highlighting the importance of antigen-presentation proteins in 236 

developing the vaccine response (Poland et al., 2008). Further evidence that the magnitude of 237 
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vaccine-specific responses is associated with genetic polymorphisms was observed in 238 

investigations that follow measles virus vaccination. SNPs in the genes coding cell surface 239 

receptors, CD46 and signaling lymphocyte-activation molecule, have been associated with allele-240 

dependent variations in measles-specific antibody responses, while SNPs in TLR coding genes 241 

have been inconsistently associated with measles immunity (Dhiman et al., 2007; Ovsyannikova 242 

et al., 2011, 2014). Dairy cattle classified as either antibody-mediated immune responders or cell-243 

mediated immune responders were genotyped and revealed a high representation of SNPs in 244 

bovine MHC genes, complement protein genes, and cytokines associated with immune 245 

responsiveness (Thompson-Crispi et al., 2014). Altogether, there is strong evidence that gene 246 

polymorphisms in antigen presentation proteins, T-cell recognition proteins, and cytokine 247 

signaling genes are associated with variations in the vaccine response. 248 

Additional evidence suggests that genomic factors contribute to, but cannot fully explain, 249 

the total heterogeneity of vaccine responses. A study by Newport et al. (2004) evaluated the 250 

contributions of genetic and environmental factors on vaccine-induced immune responses using a 251 

cohort of dizygotic and monozygotic twins. Here, the heritability of vaccine-induced antibody 252 

responses was 44-78%, depending on the vaccine antigen (tetanus toxin, diphtheria toxin, oral 253 

poliovirus, and HBV) (Newport et al., 2004). Another large (n=210 pairs) human twin study that 254 

analyzed immune cell subsets and serum protein composition revealed that heritable factors 255 

contributed to <20% of the total variation in 61% of the measured cell populations and 69% of the 256 

measured serum proteins (Brodin et al., 2015). Genome-wide association studies of piglets 257 

vaccinated against M. hyopneumoniae identified multiple SNPs positively correlated to M. 258 

hyopneumoniae-antibody responses. The heritability of M. hyopneumoniae-antibody response in 259 

this population was determined to be between 0.46 and 0.57, further demonstrating that 260 

environmental and non-genetic factors must be determinants of variability in vaccine responses 261 

(Blanc et al., 2021). Finally, not all non-/low-responders are permanently incapable of responding 262 

to vaccines, as demonstrated by a study on human neonates with low (anti-HB titer<100 mIU/mL) 263 

antibody response following hepatitis B vaccination. This study revealed that revaccination of non-264 

responders and low-responders increased antibody titers after additional doses, suggesting vaccine 265 

unresponsiveness can be a temporal phenotype (Han et al., 2012). Thus, vaccine responsiveness is 266 

dynamic, and challenges to the immune system may critically influence the vaccine-induced 267 

immune responses. 268 
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1.3.2.2 Inflammation and Immune Activation 269 

Inflammation is a natural host response to pathogens, toxins, and cell damage (Chen et al., 270 

2018). While adjuvants may stimulate an acute inflammatory response to activate innate immunes 271 

cells and recruit cells to the site of danger, a chronic inflammatory condition can be detrimental to 272 

vaccine-induced immune responses by exhausting cytokines and lymphocytes and desensitizing 273 

antigen-presenting cells to PRR stimulation (Alter and Sekaly, 2015; Muyanja et al., 2014; Panda 274 

et al., 2010). This chronic inflammatory phenotype has been partially characterized by greater 275 

circulating inflammatory cytokines and increased immune activation, which contributes to a 276 

negative association with vaccine-induced immune responses (Frasca et al., 2014; Muyanja et al., 277 

2014).  278 

Much of the research relating to inflammation and vaccine unresponsiveness has been done in 279 

the context of aging. Vaccine-specific antibody responses to influenza vaccination consistently 280 

declines with age (Fourati et al., 2016; Lambert et al., 2012; Panda et al., 2010; Poland et al., 281 

2014). Investigations into the cause of this observation have identified a low-grade, chronic 282 

inflammation within older persons (termed “inflammaging”), as well as a reduced T cell repertoire 283 

(Lambert et al., 2012). Frasca et al. (2012) found that while B-cells collected from older (>65 284 

years) persons had baseline higher levels of TNFα expression compared to younger (≤64 years) 285 

persons, the B-cells from older person produced lower TNFα levels in response to 286 

lipopolysaccharide stimulation than the B-cells from younger persons. As well, incubating B-cells 287 

with TNFα before lipopolysaccharide stimulation decreases the expression and secretion of TNFα, 288 

demonstrating there are differences in immune responsiveness between older cells with greater 289 

exposure to pro-inflammatory cytokines and younger cells (Frasca et al., 2012a). Increased 290 

circulating pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) and 291 

interleukin (IL)-6 are observed in older individuals with poor B-cell responses to influenza virus 292 

vaccination compared to younger individuals with more robust B-cell responses (Frasca et al., 293 

2014; Trzonkowski et al., 2003). Poland et al. (2014) reviewed the possible effects of aging on the 294 

vaccine response, citing immunosenescence, diminished innate immunity responses, decreases in 295 

T-cell and B-cell receptor diversity, and dysregulated release of cytokines as significant factors 296 

(Poland et al., 2014). The age-related impairment of vaccine responses provides evidence that the 297 

vaccine responsiveness phenotype can differ over time. 298 
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Similar to aging, body weight, namely, excess adipose (obesity) and low birth weight, are other 299 

phenotypic markers associated with chronic inflammation and vaccine responsiveness. Obesity 300 

has been a risk factor for reduced vaccine responsiveness in humans following multiple 301 

vaccination programs (Eliakim et al., 2006; Painter et al., 2015; Weber, 1985). A common factor 302 

between the obesity and aging phenotype is the increased chronic inflammatory condition, as 303 

demonstrated by greater expression and circulating levels of TNFα, IL-1β, and IL-6 in obese 304 

humans and mice fed a high-fat diet (Frasca et al., 2016; Trayhurn and Wood, 2004). Following 305 

influenza vaccination, mice on a high-fat diet had lower neutralizing antibody titers and fewer 306 

influenza-specific CD8+ T-cells than normal-weight mice (Park et al., 2014). While the 307 

mechanisms by which the inflammatory condition affects vaccine responses are not exact, 308 

researchers have proposed that chronic inflammation can lead to immune cell tolerance, 309 

suboptimal macrophage functions, and impaired cytokine responses (Honce and Schultz-Cherry, 310 

2019; Park et al., 2014). 311 

Body weight at other time points in life, such as birth, may also have negative effects on 312 

vaccine responses. For example, a study of adolescent humans revealed that being small for 313 

gestational age (based on birth weight) resulted in the lowest probability of generating vaccine-314 

specific serum IgG titers to typhoid vaccination (McDade et al., 2001). These individuals with 315 

lower serum IgG titers had greater plasma concentrations of the pro-inflammatory marker, C-316 

reactive protein, than individuals with higher serum IgG (McDade et al., 2011). Thus, 317 

dysregulation of immune function due to variables like age, body weight, and polymorphisms in 318 

cytokine and inflammatory signaling genes appear to contribute to increased circulating 319 

inflammatory signals that might hinder the development of the vaccine-specific immune response. 320 

1.3.2.3 Microbiome and Antibiotic Use 321 

Gut microbiomes contain trillions of bacteria (that outnumber the eukaryotic cells of the 322 

host) and have the propensity to shape host processes, such as metabolism (Turnbaugh et al., 323 

2006), pharmacokinetics (Sousa et al., 2008), and immunity (Belkaid and Hand, 2014). For this 324 

reason, multiple research groups have begun to surmise the microbiome’s role in vaccine-induced 325 

immune responses. Evidence collected by Oh et al. (2014) revealed antibiotic-treated mice had 326 

reduced influenza-specific IgM and IgG following influenza virus vaccination. However, when 327 

vaccination of microbiota-deficient mice was combined with exogenous administration of the 328 
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TLR5 ligand, flagellin, IgG titers were restored to levels similar to that in mice untreated with 329 

antibiotics. These results support the hypothesis that microbial products can act as natural 330 

adjuvants to enhance host responsiveness against unadjuvanted vaccines (Oh et al., 2014). Further 331 

studies demonstrated that antibiotic treatment of mice at a young age diminished commensal 332 

bacteria and impaired vaccine-specific antibody responses to multiple vaccines. The reduction in 333 

vaccine-specific antibody responses could be reversed by fecal microbiota transfer of commensal 334 

bacteria to antibiotic-treated mice, providing further evidence for an essential role of gut 335 

microflora in modulating host vaccine responses (Lynn et al., 2018). The effect of antibiotic usage 336 

on vaccine responses in pigs vaccinated against M. hyopneumoniae was investigated as well, but 337 

there were no differences in vaccine-specific antibody responses when comparing antibiotic-338 

treated subjects and controls (Munyaka et al., 2019). Remarkably, microbiota analysis in an 339 

independent cohort of pigs vaccinated against M. hyopneumoniae revealed that pigs with the 340 

highest and lowest vaccine-induced antibody responses had differences in operational taxonomical 341 

units belonging to the genus Prevotella on the day of vaccination (Munyaka et al., 2020). Together, 342 

these studies illustrate that specific bacterial species may influence certain immune responses to 343 

vaccination.  344 

Only a few variables that influence vaccine responsiveness have been described here, yet 345 

many others have been studied, including environmental, behavioral, maternal, and nutritional 346 

factors (Zimmermann & Curtis, 2019). Each factor can contribute to variation in an individual’s 347 

cellular function (i.e. gene expression, cell population frequency, immune tolerance) (Brodin et 348 

al., 2015). Given the interactions among these factors, it can be challenging to identify a single 349 

cause for impaired vaccine responses using reductionist approaches. A systems biology approach 350 

may better identify the mechanisms driving vaccine-induced immune responses (Pulendran et al., 351 

2010).  352 

1.4 Systems Biology Analysis of the Vaccine Response 353 

Researchers employed systems biology approaches to elucidate the global molecular 354 

events and cellular responses of vaccine-induced immune responses. Some of the earliest work 355 

done in the field of “systems vaccinology” used global analysis techniques to characterize immune 356 

responses to vaccination with human vaccines (Pulendran et al., 2010). This emerging field aims 357 

to delineate the mechanisms and define predictive models of vaccine unresponsiveness. Both aims 358 
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generate knowledge behind the phenotype and influence the development of future vaccines 359 

(Wimmers and Pulendran, 2020).  360 

1.4.1 Correlates of Vaccine Outcomes Following Vaccination  361 

Early systems biology applications of vaccine responsiveness identified gene expression 362 

and cellular responses following vaccination. In a cohort of adults vaccinated against Yellow Fever 363 

17D, Gaucher et al. (2008) observed consistent patterns of gene expression, such as the expression 364 

of interferon pathway genes, complement system components, TLR-associated genes, and B-cell 365 

activation genes, at 3- and 7-days post-vaccination. Polychromatic flow cytometry of peripheral 366 

blood mononuclear cells (PBMCs) from vaccinated individuals identified an overall increase in T-367 

cells within 14 days of vaccination, while a cytometric bead assay identified unique PBMC 368 

cytokine responses to Yellow Fever-derived peptides at 60-days post-vaccination. Through 369 

combining transcriptomics, cytometry, and cytokine profiles, researchers obtained a 370 

comprehensive view of the Yellow Fever vaccine response (Gaucher et al., 2008). Querec et al. 371 

(2009) also conducted early research to identify gene networks associated with vaccine 372 

responsiveness following Yellow Fever vaccination. This study observed the expression of genes 373 

involved in complement cascades, T-cell activity, and virus-sensing responses early after 374 

vaccination against the Yellow Fever 17D virus (Querec et al., 2009). A study by Li et al. (2013) 375 

augmented this research by conducting a multi-cohort analysis exploring the gene expression 376 

events in blood leukocytes following vaccination against Yellow Fever 17D virus, influenza virus, 377 

and meningococcus to identify a potential “universal” vaccine response. This study found 378 

distinctive patterns of gene expression corresponding to the particulars of the vaccine, reinforcing 379 

that vaccine factors, such as strain or vaccine type, can influence the associated vaccine-specific 380 

immune responses (Li et al., 2014). Together, these studies demonstrate that systems biology 381 

approaches can identify correlates of various vaccine outcomes early after vaccination. However, 382 

these studies did not answer the question regarding the mechanism(s) underlying the vaccine non-383 

responder phenotype.  384 

1.4.2 Post-vaccination Events in Vaccine Non-Responders  385 

Given the ability of systems biology to describe the transcriptional and cellular changes in 386 

response to successful vaccinations, researchers sought to utilize these approaches to characterize 387 

what happens in vaccine non-responders. For example, in a study by Nakaya et al. (2011), 388 
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transcriptomic responses were evaluated before vaccination, and at 3- and 7-days following 389 

influenza virus vaccination. Microarray analysis was conducted on subjects classified as “high” 390 

and “low” responders based on hemagglutination-inhibition antibody titers 28-days following 391 

vaccination using PBMCs collected 0-, 3-, and 7-days post-vaccination. This analysis revealed 392 

differentially expressed genes capable of predicting independent vaccine responders with high 393 

(>85%) accuracy (Nakaya et al., 2011). These results indicated that systems biology approaches 394 

could identify molecular events associated with non-response and be instrumental in predicting 395 

unresponsiveness. Subsequent studies used similar strategies to investigate the differences 396 

between vaccine responders and non-responders following vaccination with influenza virus 397 

(Nakaya et al., 2015; Panda et al., 2010; Zimmermann et al., 2017), HBV (Bartholomeus et al., 398 

2018; Shannon et al., 2020), measles virus (Haralambieva et al., 2018), and M. hyopneumoniae 399 

(Munyaka et al., 2019). As a result, there is a growing body of work determining the gene 400 

expression signatures associated with non-responders following various vaccination programs. 401 

Research into the molecular mechanisms of vaccine unresponsiveness in livestock species 402 

using systems biology technology has been sparse. This is possibly due to curated databases 403 

containing the transcriptomes and proteomes of livestock species being not as well-annotated as 404 

model organisms such as humans and mice (Bick et al., 2019). Translating these technologies to 405 

livestock species such as cattle, pigs, or sheep, can substantiate research programs with large 406 

animal models that are highly comparative to human physiology and health (Facciuolo et al., 2020; 407 

Hein and Griebel, 2003). Transcriptional studies on PBMCs collected from pigs following tetanus 408 

toxoid (Adler et al., 2015) and M. hyopneumoniae vaccination (Munyaka et al., 2019) did not 409 

reveal significant differences in gene expression between high and low vaccine responders either 410 

before or after vaccination. Others have adapted computational analyses designed for humans to 411 

work on other species such as sheep and swine (Braun et al., 2018; Jouneau et al., 2020; Matthijs 412 

et al., 2019). These new computational frameworks were used in sheep vaccinated against FMDV 413 

to identify downregulated T-cell activities and platelet activation in high vaccine responders 414 

compared to low vaccine responders (Jouneau et al. 2020). The computational adaptation for 415 

different species, specifically livestock, has enabled a broader scope of systems vaccinology 416 

analyses for other model organisms. 417 
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1.4.3 Pre-vaccination Events of Vaccine Non-Responders 418 

In contrast to defining gene expression events and frequencies of cell populations that 419 

follow vaccination, few researchers have characterized how the immune environment of the host 420 

at the time of vaccination impacts vaccine-induced immune responses. Pre-vaccination factors 421 

such as genetic predispositions, inflammation, and microbiomes have been examined in isolation, 422 

but systems biology analyses could provide insight into the global host characteristics (i.e. cell 423 

populations and cellular processes) that influence the vaccine-induced immune response. Tsang et 424 

al. (2014) demonstrated that inter-individual differences in gene expression and cell population 425 

frequencies prior to influenza virus vaccination correlated with influenza-specific responses in 426 

humans. Metrics such as pre-vaccination serum IgG titers and subsets of lymphocytes had power 427 

for predicting post-vaccination influenza-specific responses and provided a model for future 428 

predictions (Tsang et al., 2014). A similar analysis found baseline predictors of vaccine 429 

responsiveness to influenza vaccination in elderly adults (60 to 89 years); transcription of 430 

apoptosis-related genes prior to vaccination was positively correlated with strong vaccine-specific 431 

antibody responses. (Furman et al., 2013). In a study of humans vaccinated against HBV, older 432 

individuals with lower HBV-specific antibody responses had multiple differentially expressed 433 

genes involved in inflammation prior to vaccination than younger individuals with high antibody 434 

responses (Fourati et al., 2016). However, transcriptional analysis of pre-vaccination blood 435 

leukocytes has not consistently identified correlates of post-vaccination vaccine responses 436 

(Munyaka et al., 2019). Thus, while an individual’s pre-vaccination immune state might not 437 

always predict their post-vaccination response, it remains a valuable control for describing 438 

individual variation prior to vaccination. 439 

1.4.4 Integrating Omic Analyses 440 

Transcriptional analyses have been a significant component of systems vaccinology 441 

research, yet these studies might not reflect the cell's phenotype. mRNA levels do not always 442 

directly correlate with protein abundance due to mRNA degradation, miRNA silencing, or protein 443 

half-lives, and provide little detail on a protein’s activity (Anderson and Seilhamer, 1997; 444 

Greenbaum et al., 2003; Liu et al., 2016). Proteomic approaches that quantify a protein’s 445 

abundance or characterize a protein’s activity can supplement the current understanding of 446 

vaccine-induced immune responses (Galassie and Link, 2015). For example, mass spectrometry 447 

of proteins extracted from whole blood of cattle vaccinated against Mycoplasma bovis identified 448 
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upregulation of proteins involved in TLR-signaling and JAK-STAT signaling compared to 449 

unvaccinated controls (Lopez et al., 2018). Others have conducted cytokine profiling of human 450 

subjects before and after vaccination to identify correlations between circulating cytokine 451 

concentrations with vaccine-induced immune responses (Fourati et al., 2016; Qiu et al., 2018; 452 

Querec et al., 2009). To discover vaccine responsiveness biomarkers, Furman et al. (2013) used 453 

peptide fragments of the hemagglutinin protein of the influenza virus to detect pre-existing 454 

antibodies against the viral protein. Individuals with lower vaccine-specific antibody responses 455 

had higher pre-existing antibodies against peptide fragments, suggesting pre-vaccination reactivity 456 

to these peptides could be a biomarker for rapidly identifying vaccine responders. (Furman et al., 457 

2013).  458 

Similarly, metabolomic analyses have been notable for describing immune processes by 459 

quantifying the changes in metabolic intermediates perturbed by vaccination or other stimuli 460 

(Diray-Arce et al., 2020). One investigation into the human immune response to shingles virus 461 

vaccination integrated transcriptomic with metabolomics data to elucidate vaccine response 462 

biomarkers. This investigation found early time point metabolites involved in inositol phosphate 463 

metabolism, glycerophospholipid metabolism, and sterol signaling correlated with vaccine-464 

specific T-cell and antibody responses (Li et al., 2017). Furthermore, patients given antibiotics 465 

following human influenza vaccination had decreased influenza virus-specific IgG1, secondary 466 

bile acid metabolites, and increased inflammasome activity compared to vaccinated controls. 467 

These metabolic changes between impaired and unimpaired vaccine responders demonstrated the 468 

combined use of metabolomic, transcriptomic, and microbiomic analyses for identifying a 469 

potential effect of gut dysbiosis on vaccine responsiveness (Hagan et al., 2019). 470 

While proteomic and metabolomic approaches have proven valuable in providing insights 471 

into the dynamic state of vaccine responsiveness, these approaches require expertise and 472 

sophisticated equipment, such as mass spectrometers, that are not available in many labs (Clish, 473 

2015). In addition, depending on the number of samples and analytes, metabolomic profiling can 474 

be highly expensive and time-consuming, potentially restricting their usage to well-funded 475 

laboratories or clinics (Diray-Arce et al., 2020). Therefore, there is need for techniques that can 476 

capture and describe the immediate phenotype of the cell, complement the use of other systems 477 
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biology approaches, yet remain cost-effective and do not require a high degree of technical and 478 

analytical specialization.  479 

1.5 Kinomics 480 

Post-translational modifications are covalent changes (i.e. additions, cleavages) to proteins 481 

that modulate aspects of their function, such as changes to activity, cellular localization, or 482 

interaction affinity. Phosphorylation is one of the most fundamental post-translational 483 

modifications for regulating protein function (Rauch et al., 2011). Protein phosphorylation is 484 

mediated by protein kinases that catalyze the transfer of a phosphate group from ATP to the 485 

hydroxyl group of serine, threonine, or tyrosine residues of cellular proteins (Ardito et al., 2017). 486 

Extracellular signals (e.g. pathogen-associated molecular patterns, cytokines) activate kinase-487 

mediated phosphorylation events that initiate intracellular phosphorylation-mediated signaling 488 

cascades and trigger cellular responses, such as gene transcription, cell division, cell motility, and 489 

differentiation (Mogensen, 2009; Rauch et al., 2011; Schroder et al., 2004). The kinetics of protein 490 

phosphorylation permit a rapid cellular response following stimulation. Given that 491 

phosphorylation is an essential mechanism for modulating protein function, there has been a focus 492 

on analyzing the global cellular kinase activity within the cell, or “kinome analysis”, to build upon 493 

the understanding of cellular phenotypes. 494 

One high-throughput approach for analyzing the kinome uses peptide microarrays to 495 

characterize the active kinases catalyzing phosphorylation reactions of kinase-substrates. Proteins 496 

are one such kinase substrate. The kinase’s specific phosphorylation site can be mimicked using 497 

short (15-amino acid) peptides containing the consensus target sequence (Kreegipuu et al., 1998). 498 

These peptides can be printed onto a solid-state array (termed “peptide arrays”) (Jalal et al., 2009). 499 

Biological samples containing active kinases phosphorylate the known peptide substrates on the 500 

peptide array, and the reactions can be quantified using either radiolabeled ATP, phosphorylation-501 

specific antibodies, or staining for phosphorylated residues with fluorescent dyes (Arsenault et al., 502 

2011). Peptide arrays containing a large number of unique peptide substrates have established a 503 

need for software to computationally quantify, transform, and visualize the kinome data (Li et al., 504 

2012; Trost et al., 2013a). Early experiments identifying phosphorylation events following 505 

lipopolysaccharide stimulation of human PBMCs provided proof-of-concept for the use of kinome 506 

analysis to delineate biological processes (Diks et al., 2004). Kinome analysis has since been 507 
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integrated for species-specific use, including applications in plants (e.g. barley, Arabidopsis), 508 

insects (e.g. honeybees), and livestock (e.g. cattle, swine, poultry) (Arsenault et al., 2012; Napper 509 

et al., 2015; Régnier et al., 2017; Ritsema et al., 2009; Robertson et al., 2014). Together, the 510 

development and employment of kinome analysis has facilitated the identification of immune-511 

related signaling events for understanding immune mechanisms and discovering drug targets or 512 

biomarkers (Facciuolo et al., 2020). 513 

1.5.1 Identifying Immune Mechanisms using Kinome Analysis 514 

One application of kinome analysis has been to decipher complex, polygenic immune 515 

mechanisms related to pathogenesis and host responses within livestock. For example, bovine 516 

monocytes were infected with Mycobacterium avium subsp. paraturberculosis and kinome 517 

analysis was conducted on lysates of infected and uninfected monocytes to better understand 518 

bacterial pathogenesis. M. avium subsp. paraturberculosis-infected monocytes revealed 519 

differential phosphorylation of proteins involved in interferon-gamma signaling (Arsenault et al., 520 

2012) and TLR9 mediated signaling (Arsenault et al., 2013) compared to uninfected monocytes, 521 

providing insight into the specific molecular mechanisms mediating this host-pathogen interaction. 522 

In a separate investigation, kinome analysis of Ebola virus-infected human liver cells revealed 523 

modulation of TGF-β signaling within host cells. This study led to the identification and 524 

application of kinase inhibitors that increased the survival of Ebola virus-infected mice compared 525 

to untreated, infected controls (Kindrachuk et al., 2014). Other in vitro and ex vivo kinome analyses 526 

have explored the pathogenesis of Mycoplasma bovis and bovine viral diarrhea virus infections in 527 

cattle and Salmonella Enteritidis and Salmonella Heidelberg infections in chicken (He et al., 2018; 528 

Mulongo et al., 2014; Van Wyk et al., 2016). Together, the details of various immune mechanisms 529 

have been elucidated through the analysis of kinase signaling. 530 

1.5.2 Identifying Biomarkers using Kinome Analysis 531 

Kinome analysis has also been pertinent in discovering biomarkers and predicting 532 

phenotypes in the context of stress and disease resilience. An investigation of the responses within 533 

PBMCs of cattle to restraint stress revealed signaling events implicating carbohydrate metabolism 534 

and apoptosis (Chen et al., 2016). This work supported the use of plasma glucose as a simple 535 

biomarker of stress in cattle. In another investigation, Robertson et al. (2014) used kinome analysis 536 

to discover a panel of phosphorylation events that correlated with the susceptibility of honeybees 537 
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to Varroa mite infestation. These phosphorylation events were subsequently used to predict the 538 

Varroa mite susceptibility of independent honeybee colonies prior to infestation, presenting proof-539 

of-concept that kinome analysis has value in predicting immunity-associated phenotypes 540 

(Robertson et al., 2014, 2020).  541 

1.5.3 Kinases Implicated in the Vaccine Response  542 

Previous transcriptomic investigations on vaccine responses have identified protein kinases 543 

as being differentially expressed when comparing vaccine responders and non-responders. For 544 

example, calmodulin-dependent kinase IV, a kinase involved in dendritic cell survival, was 545 

negatively correlated with humoral responses specific to influenza vaccination in humans (Nakaya 546 

et al., 2011). Similarly, following Yellow Fever-17D vaccination, the kinase eukaryotic initiation 547 

factor 2α-kinase 4 was included in gene expression signatures to predict CD8+ cell responses. 548 

(Querec et al., 2009). Kinases are heavily involved in immune response processes, such as 549 

cytokine and chemokine signaling, cell motility, and leukocyte proliferation and differentiation. 550 

However, aside from scarcely discovering gene expression events of kinases, there has been no 551 

exploration of global kinase activity within blood leukocytes before and after vaccination. Thus, 552 

there is a potential opportunity for kinome analysis to offer new perspectives into vaccine 553 

responses as was provided by other multi-omics studies (Régnier et al., 2017).  554 

1.6. Mycoplasma hyopneumoniae  555 

Mycoplasma hyopneumoniae (M. hyopneumoniae) is an intracellular bacterial pathogen 556 

that is a primary cause of enzootic pneumonia in pigs and also contributes to the porcine respiratory 557 

disease complex (Thacker, 2004). Infection with M. hyopneumoniae is characterized clinically by 558 

a chronic, unproductive dry cough. M. hyopneumoniae is also known to adhere to the ciliated 559 

epithelium of the respiratory tract, leading to a reduction in both cilia and ciliary activity (DeBey 560 

and Ross, 1994). M. hyopneumoniae infection has been found to predispose pigs to concurrent 561 

infections with other pathogens such as swine influenza virus, porcine reproductive and respiratory 562 

syndrome virus, or porcine circovirus type 2 (Thacker, 2004). These viral infections result in  563 

significant economic losses to the pig industry due to decreased performance, reduced growth, 564 

higher treatment costs, and increased mortality of pigs (Maes et al., 2018). Treatment with 565 

antimicrobials has been used to combat M. hyopneumoniae infections, reducing mycoplasmal 566 

pneumonia under experimental conditions (Thacker et al., 2006). However, due to the prevalence 567 
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of antimicrobial resistance, alternative options such as vaccination are being encouraged 568 

(Laxminarayan et al., 2013). 569 

1.6.1 Mycoplasma hyopneumoniae Vaccines 570 

Vaccination against M. hyopneumoniae has proven effective in decreasing clinical 571 

symptoms (e.g. lung lesions) of M. hyopneumoniae-infection (Maes et al., 2021; Thacker et al., 572 

1998). Many commercial and experimental vaccines for M. hyopneumoniae have used whole-cell 573 

inactivated bacteria (bacterins) or subunit antigens (Djordjevic et al., 1997; Matthijs et al., 2019; 574 

Thacker et al., 1998). For example, RespiSure-One (Zoetis, USA) is an inactivated M. 575 

hyopneumoniae bacterin vaccine containing the adjuvant, Amphigen. RespiSure-One can be given 576 

in one dose as early as 1-day of age to reduce the severity of colonization and shedding of M. 577 

hyopneumoniae. Vaccination using whole-cell bacterins stimulates both humoral and cell-578 

mediated responses (Bandrick et al., 2008). Vaccine-induced serum IgG titers were not correlated 579 

with a reduction in the severity of lung lesions in M. hyopneumoniae-infected piglets, suggesting 580 

that antibody responses are not fully protective against infection and T-cell responses are critical 581 

(Djordjevic et al., 1997).  582 

Piglets vaccinated with different M. hyopneumoniae vaccines have resulted in highly 583 

variable serum antibody responses (Blanc et al., 2021; Matthijs et al., 2019; Munyaka et al., 2020). 584 

As well, M. hyopneumoniae-specific antibodies have been detected in unvaccinated piglets 585 

farrowed from sows which were vaccinated against M. hyopneumoniae vaccines prior to 586 

farrowing, demonstrating piglets can passively acquire vaccine-specific antibody (Sibila et al., 587 

2008). Given that these M. hyopneumoniae vaccines induce variable magnitudes of antibody 588 

responses, they provide a valuable tool for evaluating vaccine immunogenicity. The ability of these 589 

vaccines to stimulate a range of readily quantifiable antibody responses provides an opportunity 590 

to discover biomarkers associated with vaccine responsiveness and interpret the mechanisms the 591 

vaccine-induced immune responses. 592 

  593 
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RATIONALE 594 

Variability in vaccine immunogenicity exists in both humans and livestock. This can result 595 

in vaccine non-responders who remain at risk for infection and threaten individual and population 596 

health. One solution to this problem is to identify biomarkers that can predict vaccine antibody 597 

responders and non-responders. Given the numerous factors that can influence vaccine-induced 598 

immune responses, combined with the necessity of cell signaling to coordinate the vaccine 599 

response, this thesis used kinome analysis to characterize the cell signaling events within 600 

peripheral blood leukocytes collected from pigs prior to vaccination and early after vaccination. 601 

This analysis may provide insight into the immune environment of the host and the resulting 602 

signaling events that follow perturbation, respectively. To establish high vaccine responders and 603 

low vaccine responders, the M. hyopneumoniae vaccine, RespiSure-One, is used to induce variable 604 

vaccine-specific antibody responses. While these antibody responses may not be considered 605 

protective against infection, they were utilized as a metric of vaccine immunogenicity for 606 

identifying early markers of low vaccine responsiveness. 607 

HYPOTHESIS 608 

There are differences in kinase-mediated signaling within porcine PBMCs both before and 609 

after vaccination that are significantly associated with vaccine-induced IgG responses. These 610 

differences in kinase activity can be used to infer molecular mechanisms involved in vaccine 611 

responsiveness and identify biomarkers for predicting an individual’s antibody response to 612 

vaccination. 613 

OBJECTIVES 614 

1. Using a phenotype-first approach, identify high and low vaccine responders to investigate 615 

biochemical and physiological differences that exist prior to and following vaccination as 616 

potential biomarkers for vaccine responsiveness in piglets. 617 

2. Evaluate the predictive capability of physiological and phosphorylation biomarkers within 618 

a second set of high and low vaccine responders. 619 

3. Validate and expand knowledge of the physiological associations identified between 620 

vaccine responsiveness and differences in birth weight and pro-inflammatory cytokines 621 

using a population of vaccinated pigs from an independent facility. 622 
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2. MATERIALS AND METHODS 623 

 624 

2.1 Reagent List 625 

All reagents and chemicals, their suppliers, and their supplier’s addresses are provided (Table 626 

2.1). 627 

Table 1: Reagent, supplier, and supplier address list. 628 

Reagent/Chemical Supplier 

Acetonitrile EMD Biosciences 

Aprotinin Sigma-Aldrich 

Adenosine triphosphate New England Biolabs 

Beta-glycerophosphate Sigma Aldrich 

Bio-Plex Pro magnetic COOH beads Bio-Rad 

Brij-35 Sigma Aldrich 

Bovine serum albumin Sigma-Aldrich 

Ethylene glycol tetraacetic acid (EDTA) Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EGTA) Sigma-Aldrich 

Glycerol GE Healthcare  

Ficoll Sigma-Aldrich 

Fluortrac 200 96F microplate Greiner Bio-One 

Leupeptin Sigma-Aldrich 

Magnesium chloride hexahydrate EMD Biosciences 

Microseal B Adhesive Seals BioRad 

New Zealand pig serum RMBIO 

Phosphate-buffered Saline (PBS) pH 7.4 Sigma-Aldrich 

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich 

ProQ Diamond phosphoprotein stain Invitrogen 

RespiSure-One Zoetis Canada Inc. 

Sodium acetate Sigma-Aldrich 

Sodium azide Sigma-Aldrich 

Sodium chloride Sigma-Aldrich 

Sodium fluoride Sigma-Aldrich 

Sodium pyrophosphate Sigma-Aldrich 

Sodium vanadate  Sigma-Aldrich 

Streptavidin R-phycoerythrin  Agilent Technologies 

Triton X-100 Sigma-Aldrich 

Tris Sigma-Aldrich 

Trypan blue Sigma-Aldrich 

Tween 20 Sigma-Aldrich 

Cytokine Supplier 

Interferon alpha (200 pg/mL) Genentech  

Interferon gamma (2000 pg/mL) VIDO-InterVac 

Interleukin 1 beta (IL-1β) 681PI010 (5000 pg/mL) R&D Systems 
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Interleukin 6 (IL-6) 686PI025 (5000 pg/mL) R&D Systems 

Interleukin 8 (IL-8) RP0109S-005 (200 pg/mL) Kingfisher Biotech Inc. 

Interleukin 10 (IL-10) PSC0104 (5000 pg/mL) Fisher Scientific  

Interleukin 12 (IL-12) 912PL025 (5000 pg/mL) R&D Systems 

Interleukin 13 (IL-13) RP0007S-005 (5000 pg/mL) Kingfisher Biotech Inc. 

Interleukin 17 alpha (IL-17α) RP0128S-005 (500 pg/mL) Kingfisher Biotech Inc. 

Tumor Necrosis Factor alpha (TNFα) 690PT025 (5000 

pg/mL) 

R&D Systems 

Capture Antibody Supplier 

Mouse anti-pig IFN-alpha antibody, GTX11408 GeneTex  

Mouse anti-pig IFN gamma antibody, Clone: P2F6, 

ENMP700 

Fisher Scientific 

Mouse anti-Porcine IL-1 beta/IL-1F2 Monoclonal Antibody 

IgG1 Clone # 77724, MAB6811 

R&D Systems 

Goat anti-Porcine IL-6, Polyclonal IgG, AF686 R&D Systems 

Rabbit anti-pig Interleukin-8 Antibody, AHP2392 Bio-Rad Laboratories 

Mouse anti-pig IL-10 Monoclonal Antibody, 

945A4C437B1 

Fisher Scientific 

Mouse anti-swine IL-12 p70 Monoclonal Antibody (clone 

G9), MA0413S 

Kingfisher Biotech Inc. 

Goat anti-swine IL-13 Polyclonal Antibody, PB0094S-100 Kingfisher Biotech Inc. 

Rabbit anti-swine IL-17A Polyclonal Antibody, KP0498S-

100 

Kingfisher Biotech Inc. 

Porcine TNF-alpha Antibody, Monoclonal Mouse IgG1 

Clone # 103304, MAB6902 

R&D Systems 

Detection Antibody Supplier 

Mouse anti-Porcine IFN-alpha Antibody, 27105-1 (200 

ng/mL) 

R&D Systems 

Rabbit anti-Porcine IFN gamma, Polyclonal Antibody, 

PIPP700 (400 ng/mL) 

Fisher Scientific 

Goat anti-Porcine IL-1 beta /IL-1F2 Biotinylated Antibody, 

BAF681 (500 ng/mL) 

R&D Systems 

Goat anti-Porcine IL-6 Biotinylated Antibody, BAF686 

(500 ng/mL) 

R&D Systems 

Goat anti- Porcine IL-8/CXCL8 Biotinylated Antibody, 

BAF535 

(400 ng/mL) 

R&D Systems  

Mouse anti-IL-10 Monoclonal Antibody Biotin, 

945A1A926C2 (500 ng/mL) 

Fisher Scientific 

Mouse anti-Porcine IL‑12/IL‑23 p40 Biotinylated Antibody, 

BAM9122 (500 ng/mL) 

R&D Systems 

Goat anti-Swine IL-13 Polyclonal Antibody – Biotinylated, 

PBB0096S-050 (500 ng/mL) 

Kingfisher Biotech Inc. 

Rabbit anti-Swine IL-17A Polyclonal Antibody – 

Biotinylated, KPB0499S-050 (500 ng/mL) 

Kingfisher Biotech Inc. 
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Mouse anti-Porcine TNF-alpha Biotinylated Antibody, 

BAM6903 (500 ng/mL) 

R&D Systems 

Supplier Supplier Address 

Agilent Technologies Mississauga, ON, CAN 

Bio-Rad Laboratories Mississauga, ON, CAN 

EMD Biosciences Oakville, ON, CAN 

Fisher Scientific Ottawa, ON, CAN 

GE Healthcare Mississauga, ON, CAN 

Genentech Mississauga, ON, CAN 

GeneTex Irvine, CA, USA 

Invitrogen Oakville, ON, CAN 

Kingfisher Biotech Inc. Burlington, ON, CAN 

New England Biolabs Whitby, ON, CAN 

R&D Systems Toronto, ON, CAN 

Rocky Mountain Biologicals, Inc. (RMBIO) Missoula, MT, USA 

Sigma-Aldrich Oakville, ON, CAN 

VIDO-InterVac Saskatoon, SK, CAN 

VWR Mississauga, ON, CAN 

Zoetis Canada Inc. Kirkland, Quebec, CAN 

 629 

2.2 Animal Housing and Animal Care 630 

This work was approved by the University of Saskatchewan Animal Care Committee (AUP: 631 

AUP20190084) and the University of Alberta Animal Care and Use Committee (AUP: 632 

AUP00001125) following Canadian Council of Animal Care guidelines. All piglets were under 633 

the attention and care of licensed veterinarians. Piglets were monitored for changes in weight gain, 634 

behaviour, and physical injury throughout each trial.  635 

Piglets were weaned at 21 ± 2 days of age and remained grouped with littermates. Piglets were 636 

vaccinated intramuscularly with one dose (1 mL) of RespiSure-One at 28 ± 2 days of age (Day 0) 637 

and received a booster vaccination (1 mL) at 52 ± 2 days of age (Day 24). The trial was terminated 638 

when piglets were 63 ± 2 days of age (Day 35).  639 

In both vaccine trials, M. hyopneumoniae-specific antibodies were not measured for sows. 640 

However, the facilities housing the sows and piglets had not used M. hyopneumoniae vaccines or 641 

infected animals with live M. hyopneumoniae for at least 5 years prior to this study to ensure 642 

vaccine-induced maternal antibodies were not transferred to the piglets used in this study. 643 
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The methods from the First Trial (2015) have been previously described in detail (Lipsit et al., 644 

2020) and any modifications made to these methods have been described below. 645 

2.2.1 First Trial (2015) 646 

All sows and piglets were housed and managed at the Swine Research & Technology Centre 647 

(Edmonton, Alberta). Twenty sows (parity = 3-8) bore litters from which 6 piglets (3 males and 3 648 

females) of average-litter birth weight were selected. Piglets that were not of average-litter birth 649 

weight were not monitored for this study. The selected piglets provided a population of 117 healthy 650 

M. hyopneumoniae-free piglets ((Large White × Landrace) × Duroc; 59 male, 58 female). Three 651 

piglets died before the end of the study and were excluded from analyses. Whole blood for PBMC 652 

isolation was collected at 28-(Day 0), 30- (Day 2) and 34- (Day 6) days of age. Plasma was 653 

collected at 28-days (Day 0) of age prior to vaccination, and serum was collected at 63-days of age 654 

(Day 35). Body weight was measured at birth, 24-days of age (weaning), and 63-days of age (Day 655 

35). A nasal swab taken from each piglet on Day 0 confirmed that all animals tested negative for 656 

M. hyopneumoniae.  657 

2.2.2 Second Trial (2020) 658 

All sows and piglets were housed and managed at Prairie Swine Centre (Saskatoon, 659 

Saskatchewan). Six Camborough Plus sows (parity = 0-3) bore litters (n=8-14 piglets/litter) for a 660 

total of 67 piglets (37 male; 30 female). Eleven piglets died prior to the end of this study and were 661 

excluded from analyses. Plasma was collected from piglets at 0-, 7-, 14-, 21-, 28- (Day 0), and 63-662 

days (Day 35) of age. Serum was collected on Day 0 (prior to primary vaccination) and Day 35 663 

(11 days after booster vaccination). Plasma collections consistently took place within the same 664 

two-hour period of the day each week to minimize possible effects of circadian rhythms on plasma 665 

cytokine concentration. Body weight was measured at 0- (birth), 7-, 14-, 21-, 24- (weaning), and 666 

63-days of age. 667 

2.3 Peripheral Blood Mononuclear Cell, Serum, and Plasma Isolation 668 

2.3.1 Peripheral Blood Mononuclear Cell Isolation 669 

Whole blood was collected from the jugular vein using 0.4% EDTA in Ca2+ and Mg2+-free 670 

phosphate-buffered saline (PBS) as an anticoagulant. Whole blood was centrifuged at 1400 x g for 671 

20 min without brake, and the buffy coat was collected and diluted 1:2 in PBS + 0.1% EDTA. 672 

Buffy coats were layered onto 15 mL Ficoll and centrifuged at 2000 x g for 20 min without break. 673 
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PBMCs were collected from the interphase of the Ficoll and the plasma, washed with cold PBS + 674 

0.1% EDTA and centrifuged at 300 x g at 4 °C for 8 min. PBMC pellets were washed with cold 675 

PBS and centrifuged at 300 x g, 4 °C for 8 min twice. PBMCs were counted using trypan blue 676 

exclusion using a hemocytometer. PBMC pellets of 10 x 106 cells were flash-frozen in liquid 677 

nitrogen and stored at -80 °C for kinome analysis. 678 

2.3.2 Serum and Plasma Isolation 679 

Whole blood from the jugular vein was collected into serum separation tubes and K2EDTA-coated 680 

Vacutainer tubes (Becton Dickinson) to isolate serum and plasma, respectively. Serum tubes were 681 

incubated at room temperature for 30 min. Serum and plasma tubes from the 2015 trial were 682 

centrifuged at 15,000 x g for 10 mins, 4 °C. Serum and plasma tubes from the 2020 trial were 683 

centrifuged at 2000 x g for 20 mins, 4 °C without break. Aliquots of serum and plasma were stored 684 

at −80 °C. 685 

2.4 Serum Mycoplasma hyopneumoniae-IgG Quantification 686 

2.4.1 First Trial (2015) 687 

One mL serum from each piglet collected on Day 35 was shipped to Biovet (Saint—Hyacinthe, 688 

Quebec, Canada), where serum M. hyopneumoniae-specific IgG titers were quantified using an 689 

IDEXX Mycoplasma hyopneumoniae Antibody Test Kit ELISA (IDEXX Laboratories, Inc.). M. 690 

hyopneumoniae-specific IgG titers were transformed using a z-score Log2 scale.  691 

Plasma collected on Day 0 from high (n=10) and low (n=10) responders was centrifuged (20,000 692 

x g, 30 min) and shipped to Prairie Diagnostic Services (Saskatoon, SK, Canada), and M. 693 

hyopneumoniae-specific antibody titers were quantified using an IDEXX Mycoplasma 694 

hyopneumoniae Antibody Test Kit ELISA (IDEXX Laboratories, Inc.). Samples were considered 695 

seronegative for M. hyopneumoniae-specific IgG if the S/P ratio (
𝑆𝑎𝑚𝑝𝑙𝑒𝐴650 −𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴650

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐴650−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐴650
) at a 696 

1:40 dilution was S/P<0.3 and seropositive if S/P>0.4, as per the manufacturer’s instructions. 697 

Positive and negative controls were commercially (IDEXX Laboratories, Inc.) provided porcine 698 

anti-M. hyopneumoniae serum and porcine serum non-reactive to M. hyopneumoniae, respectively. 699 

2.4.2 Second Trial (2020) 700 

One mL serum collected on Day 0 and Day 35 from each piglet was shipped to Prairie Diagnostic 701 

Services (Saskatoon, SK, Canada), and M. hyopneumoniae-specific antibody titers were quantified 702 
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using an IDEXX Mycoplasma hyopneumoniae Antibody Test Kit ELISA (IDEXX Laboratories, 703 

Inc.). Serum was considered seronegative for M. hyopneumoniae-specific IgG if the S/P ratio at a 704 

1:40 dilution was S/P<0.3 and seropositive if S/P>0.4, as per the manufacturer’s instructions. 705 

Serum M. hyopneumoniae-specific IgG titers were determined for each piglet on Day 35 and 706 

quantified using a modified endpoint titration ELISA (IDEXX M. hyo Ab Test Kit ELISA). 707 

Briefly, Day 35 sera were serially diluted 1 in 4 starting with an initial 1:40 dilution. ELISA 708 

reactions were quantified using A650 absorbance. Endpoint titers were calculated by subtracting 709 

the negative control A650 and taking the reciprocal of the highest dilution with an A650 absorbance 710 

greater than the mean negative control. Endpoint titration ELISAs were completed by Biovet 711 

(Saint-Hyacinthe, QC, Canada). 712 

2.5 Stratification of High and Low Responders 713 

2.5.1 First Trial (2015) 714 

Twelve piglets were stratified into a discovery cohort of low (LR; n=6) and high (HR; n=6) 715 

responders using the 10th percentile and 90th percentile of serum IgG titers, respectively. Eight 716 

additional piglets were selected from the 20th percentile and 80th percentile of serum IgG titers for 717 

a validation cohort of low (n=4) and high (n=4) responders, respectively. Multiple animals were 718 

excluded from LR and HR cohorts based on the availability of archived samples. These piglets 719 

were, however, included in the M. hyopneumoniae-specific IgG titer population analysis. HR5 (ID: 720 

“338B”) had usable Day 0 and Day 2 samples but not on Day 6. Therefore, HR5 was included in 721 

the validation cohort for Day 0 and Day 2 analyses but was substituted with another HR (ID: 722 

“893R”, HR11) for Day 6 analyses.  723 

2.5.2 Second Trial (2020) 724 

Twelve piglets within the 10th and 90th percentile of serum IgG titers, respectively, were stratified 725 

as LR (n=6) and HR (n=6) to match the discovery cohort of the first trial (2015).  726 

2.6 Kinome Array Experiment 727 

Frozen pellets of 10 x 106 PBMCs were lysed with ice-cold lysis buffer (20 mM Tris-HCl (pH 728 

7.5), 150 mM sodium chloride, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium 729 

pyrophosphate, 1 mM sodium vanadate, 1 mM sodium fluoride, 1 μg/mL leupeptin, 1 μg/mL 730 

aprotinin, 1 mM PMSF) and incubated for 10 min on ice. Lysates were centrifuged for 10 min at 731 

14,000 x g, 4 °C. Supernatant was combined with 8:1 activation mix (50% glycerol, 50 μM ATP, 732 
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60 mM MgCl2, 0.05% Brij-35, and 0.25 mg/mL bovine serum albumin) for 10 min on ice. Samples 733 

were incubated on the peptide array for 2 h at 37 °C. Arrays were washed with PBS + 1% Triton 734 

X-100, submerged in ProQ Diamond phosphoprotein stain, and incubated for 1 h with agitation. 735 

Arrays were destained with 20% acetonitrile + 50 mM sodium acetate, pH 4.0 for 10 min. Arrays 736 

were washed with distilled deionized water and centrifuged for 5 min at 800 x g to remove excess 737 

moisture. Phosphorylation intensity was collected using a GenePix Professional 4200A 738 

Microarray Scanner at 532 nm to 560 nm with a 580 nm filter. Images were captured using the 739 

GenePix Pro 6.0 software (MDS) to collect spot intensity. Kinome array experiments for each time 740 

point (Day 0, Day 2, and Day 6) were conducted independently. 741 

2.7 Kinome Array Data Transformation and Analysis 742 

2.7.1 Data Transformation 743 

Peptide microarrays (JPT Peptide Technologies, Berlin, Germany) with 282 unique peptides 744 

representing sequences surrounding selected phosphorylation sites within specific porcine proteins 745 

were utilized for this study (Jalal et al., 2009; Li et al., 2012). Each peptide was 15 amino acids in 746 

length and represented by 9 technical replicate spots on the peptide microarray. Individual 747 

phosphorylation intensities were determined by subtracting the background F632 intensity from 748 

the foreground F632 intensity using Platform for Integrated, Intelligent Kinome Analysis 749 

(PIIKA2) software (Trost et al., 2013a). PIIKA2 subtracted background intensities from 750 

foreground intensities and transformed differences using variance-stabilizing normalization 751 

(VSN). Arrays from the discovery cohort at all time points were transformed together, independent 752 

of the validation cohort. Arrays from the validation cohort at all time points were subsequently 753 

transformed with the discovery cohort datasets to allow for comparable scales. The technical 754 

replicates were averaged together and fold-change (FC) for each peptide phosphorylation 755 

intensities was calculated using Log2 values. FC=2^d, where “d = (average intensity of group y – 756 

average intensity of group x)”. The negative reciprocal of FC was calculated when d<1 for 757 

interpretation purposes.  758 

2.7.2 Principal Component Analysis 759 

Principal component analysis (PCA) was conducted and visualized using ClustVis version 1.0 with 760 

the parameters: transformation = “no transformation”, Row scaling = “unit variance scaling”, PCA 761 

method = “SVD with imputation” (Metsalu and Vilo, 2015). 762 
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2.7.3 Pathway Analysis 763 

Functional enrichment analysis of differential phosphorylation events was performed using 764 

gProfiler on default parameters (Raudvere et al., 2019). Results were considered statistically 765 

significant at a threshold of p≤0.05. 766 

2.8 Fluorescent Microsphere Immunoassay 767 

All incubations were done at room temperature with agitation at 750 rpm. Plates were covered in 768 

foil to reduce light exposure. Following each incubation, plates were washed with PBS pH 7.4 + 769 

0.5% Tween 20 using a Bio-Plex PRO II wash station (30-sec soak, 3 cycles). Antibodies for IFNα, 770 

IFNγ, IL-1β, IL-6, IL-8, IL-12, IL-13, IL-17α and TNFα were conjugated to individual BioPlex 771 

Max-Plex C magnetic beads (BioRad) using a method previously described (Christopher-772 

Hennings et al., 2013). TNFα multiplex analysis was conducted on a separate plate to avoid cross-773 

reactivity (Table 2.2). 774 

Cytokine standards were diluted 1:3 in New Zealand pig serum to account for serum inhibitory 775 

effects. Plasma samples from Trial 2015 were diluted 1:2 and 1:4 in porcine diluent (PBS, 1% 776 

New Zealand pig serum, 0.05% sodium-azide). Plasma samples from Trial 2020 were diluted 1:3 777 

in the porcine diluent. All plasma samples were run in triplicate. Plasma samples were incubated 778 

for 1 h with 1200 beads/well in a Fluortrac 200 96F microplate. After a wash, samples were 779 

incubated for 30 min with specific biotinylated antibodies specific to the corresponding cytokine. 780 

After another wash, samples were incubated for 30 min with 5 μg/mL streptavidin R-phycoerythrin 781 

conjugate. After a final wash, samples were incubated for 5 min with TE buffer (50 mM Tris, 782 

25mM EDTA, pH 8.0). Plates were read on a BioPlex 200 reader (Bio-Rad Laboratories Inc.) with 783 

the settings “50 beads per region, 45-second time-out, and 60 μL volume”. All replicates and 784 

dilution factors for each animal were averaged for a final sample concentration. Technical 785 

replicates below the lower limit of quantification were not calculated in the average result. Samples 786 

below the limit of detection were recorded as ½ the lower limit of quantification value. Lower 787 

limit of quantification values for all cytokines were: IFNα (1.57 pg/mL), IFNγ (14.4 pg/mL), IL-788 

1β (37.5 pg/mL), IL-6 (40.3 pg/mL), IL-8 (2.72 pg/mL), IL-12 (39.1 pg/mL), IL-13 (40.0 pg/mL), 789 

IL-17α (15.5 pg/mL), and TNFα (39.8 pg/mL). 790 
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Table 2: Porcine cytokine concentration, bead region, biotinylated antibody concentration. 792 

rPorc 

Cytokine 

Standard 

(starting 

concentration) 

Bead region Capture 

Antibody 

Biotinylated 

Antibody 

(concentration) 

Interferon 

alpha 

Genentech (200 

pg/mL) 

BioRad 

MC10045-01 

GeneTex 

GTX11408 

R&D 27105-1 

(200 ng/mL) 

Interferon 

gamma 

Fisher (2000 

pg/mL)  

BioRad 

MC10043-01 

Fisher 

ENMP700 

Fisher PIPP700 

(400 ng/mL) 

Interleukin 1 

beta 

R&D 681PI010 

(5000 pg/mL) 

BioRad 

MC10026-01 

R&D 

MAB6811 

R&D BAF681 

(500 ng/mL) 

Interleukin 6 R&D 686PI025 

(5000 pg/mL) 

BioRad 

MC10065-01 

R&D AF686 R&D BAF686 

(500 ng/mL) 

Interleukin 8 Kingfisher 

RP0109S-005 

(200 pg/mL) 

BioRad 

MC10027-01 

AbD Serotec 

MCA1660 

R&D BAF535 

(400 ng/mL) 

Interleukin 10 Fisher PSC0104 

(5000 pg/mL) 

BioRad 

MC10028-01 

Fisher 

ASC0104 

Fisher ASC9109 

(500 ng/mL) 

Interleukin 12 R&D 912PL025 

(5000 pg/mL) 

BioRad 

MC10036-01 

Kingfisher 

MA0413S 

R&D BAM9122 

(500 ng/mL) 

Interleukin 13 Kingfisher 

RP0007S-005 

(5000 pg/mL) 

BioRad 

MC10052-01 

Kingfisher 

PB0094S-100 

Kingfisher 

PBB0096S-050 

(500 ng/mL) 

Interleukin 17 

alpha 

Kingfisher 

RP0128S-005 

(500 pg/mL) 

BioRad 

MC10062-01 

Kingfisher 

KP0498S-100 

Kingfisher 

KPB0499S-050 

(500 ng/mL) 

Tumor 

Necrosis 

Factor alpha 

R&D 690PT025 

(5000 pg/mL) 

BioRad 

MC10034-01 

R&D 

MAB6902 

R&D BAM6903 

(500 ng/mL) 

 793 

 794 

2.9 Statistical and Data Analysis 795 

All data analysis and visualization were performed using GraphPad Prism version 9.0 796 

(GraphPad Software, San Diego, California USA). The correlation matrix (Fig. 12A) was created 797 

in R using the package corrplot (Wei and Simko, 2021). P-values were considered statistically 798 

significant at p≤0.05, and were considered to be a statistical trend at 0.05<p≤0.1. 799 

2.9.1 First Trial (2015) 800 

The Log2-transformed serum M. hyopneumoniae-specific IgG titer data and the variance-801 

stabilizing normalization-transformed kinome data were determined to be normally distributed 802 

(Kolmogorov-Smirnov test, p>0.1). The birth weight of the piglets was assumed to follow a normal 803 



 

31 

 

distribution as the sample size (n=117) was large, the samples were measured independently, and 804 

the mean (1.48 kg) was approximately the median (1.5 kg). Plasma cytokine concentrations from 805 

the discovery cohort and validation cohort were determined to not be normally distributed (one-806 

sample Kolmogorov-Smirnov test, p<0.1). A two-tailed unpaired Student’s t-test was conducted 807 

to analyze differences in Log2-transformed serum M. hyopneumoniae-specific IgG titer, and 808 

weight at birth, weaning, or the end of the trial, between HR and LR within the discovery cohort. 809 

A Mann-Whitney U-test was conducted to determine differences in cytokine concentrations 810 

between HR and LR in the discovery cohort. A Mann-Whitney U-test was conducted to analyze 811 

differences in Log2-transformed serum M. hyopneumoniae-specific IgG titer, plasma cytokine 812 

concentrations, birth weight, and weaning weight between HR and LR within the validation cohort. 813 

A Pearson linear regression was conducted for the correlation analysis of Log2-transformed serum 814 

M. hyopneumoniae-specific IgG titer and birth weight. A Spearman Rank Correlation was 815 

conducted to correlate Log2-transformed serum M. hyopneumoniae-specific IgG titer and plasma 816 

IFNγ concentrations.  817 

A repeated-measures two-way ANOVA with Geisser-Greenhouse correction was 818 

conducted using the average transformed intensity for each peptide with the factors “Day” and 819 

“Response” to determine differential phosphorylation events between HR and LR within the 820 

discovery cohort. Sidak’s multiple comparisons were conducted between HR and LR within the 821 

discovery cohort for each Day. A false-discovery rate (FDR) of 5% was applied using a Benjamini-822 

Hochberg Correction to P-values for each Day. Phosphorylation events were considered 823 

differentially phosphorylated under two criteria: there was an effect (p<0.05) of either the 824 

“Response” variable or the “Response x Day” variable, and there was a difference (FDR<0.05) 825 

between HR and LR after FDR-correction. A Mann-Whitney U-test was conducted to analyze 826 

differences in mean phosphorylation intensity between HR and LR in the validation cohort.  827 

2.9.3 Second Trial (2020) 828 

The Log2-transformed M. hyopneumoniae-specific serum IgG titer from the second trial 829 

was treated as normally distributed as the sample size (n=67) was large, samples were measured 830 

independently, and the mean (11.6) approximated the median (11.8). A two-sided Kolmogorov-831 

Smirnov test was used to test if the distributions of Log2-transformed M. hyopneumoniae-specific 832 

IgG titers were different between the first and second trials. A two-tailed, unpaired Student’s t-test 833 
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with Welch’s correction was used to determine differences in titers of HR between trials and 834 

differences in titers of LR between trials (F-test of equality of variances, p<0.05). Plasma cytokine 835 

concentrations were not normally distributed on individual days (Kolmogorov–Smirnov test, 836 

p<0.1). Therefore, a Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons was 837 

used to detect differences in IFNγ and IL-1β concentrations when comparing among days. Plasma 838 

cytokine concentrations were normally distributed when grouped by litter (Kolmogorov–Smirnov 839 

test, p>0.1). Therefore, a two-way ANOVA with a Geisser-Greenhouse correction was conducted 840 

using the factors “Litter” and “Day”. Tukey’s multiple comparisons were conducted between 841 

litters on each Day due to the effect of “Litter x Day” (p<0.001). A one-way ANOVA was 842 

conducted to detect a mean difference in Log2-transformed M. hyopneumoniae-specific IgG titers 843 

between litters. A Spearman Rank Correlation was conducted to correlate Log2-transformed M. 844 

hyopneumoniae-specific IgG titer and plasma cytokine concentrations. The body weight of all 845 

piglets at birth, weaning, and at the end of the trial were determined to be normally distributed 846 

(Kolmogorov–Smirnov test, p>0.1). A two-tailed, unpaired Student’s t-test with Welch’s 847 

correction was conducted to analyze mean differences in birth, weaning, and end of trial weight 848 

between HR and LR and mean differences in Log2-transformed M. hyopneumoniae-specific IgG 849 

titer between the highest and lowest birth weight piglets. 850 

  851 
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3. RESULTS 852 

 853 

3.1 Identifying Vaccine Response Biomarkers in a Discovery Cohort 854 

Results from Section 3.1 have been previously described (Lipsit et al., 2020). Modifications to 855 

statistical tests, sample cohorts, and visualizations have been made and are described here. 856 

3.1.1 Variation of M. hyopneumoniae-specific IgG Titers following Vaccination 857 

A population of piglets (n=117; 58 male, 59 female) selected from 20 litters (6 piglets/litter; 858 

3 male, 3 female) were vaccinated with a commercial M. hyopneumoniae vaccine (RespiSure-One; 859 

Zotetis) at 28- and 52-days of age (Day 24). Serum M. hyopneumoniae-specific IgG titers were 860 

quantified at 63-days of age (Day 35) using an IDEXX M. hyo Ab ELISA. Piglets exhibited a 861 

broad variation in serum M. hyopneumoniae-specific IgG titers 11-days following the booster 862 

vaccination (range, 5.85-13.67; median, 9.96) (Fig. 1A). No sex-dependent effect was observed 863 

when comparing serum IgG titers (p=0.34; Student’s T-test with Welch’s correction). Samples 864 

were collected from piglets in 4 batches and no batch-dependent effect was observed (p>0.99; 865 

ordinary one-way ANOVA). There was a mean difference in serum IgG titers among the 20 litters 866 

selected for this study (p=0.047; ordinary one-way ANOVA). However, multiple comparisons 867 

among all litters failed to identify significant differences between any two litters (p>0.11; Tukey’s 868 

multiple comparisons) and all litters were included in subsequent analyses. To classify piglets as 869 

seronegative (S/P<0.3), suspected (0.3<S/P<0.4), and seropositive (S/P>0.4), thresholds of serum 870 

IgG titers were calculated at Log2 values of 9.27 (S/P=0.3) and 9.72 (S/P=0.4) based on 871 

instructions from the ELISA manufacturer (IDEXX). Thus, this trial population consisted of 36 872 

seronegative, 65 seropositive, and 16 suspected animals for M. hyopneumoniae on Day 63. 873 

Within this trial, high (HR) responders (n=6; titer range = 12.13-13.67; median = 12.81) 874 

and low (LR) responders (n=6; titer range = 5.85-7.65; median = 7.19) were stratified based on 875 

serum IgG titers at Day 35 to establish a “discovery cohort” (Fig. 1B). HR from this discovery 876 

cohort had a 48-fold greater (p<0.001) median serum M. hyopneumoniae-specific IgG titers than 877 

LR. While other piglets (empty shapes) shown in (Fig. 1A) may have had higher titers than HR 878 

and lower titers than LR subjects, they were excluded from HR and LR cohorts due to a lack of 879 

PBMCs required for kinome analysis. HR and LR were seronegative (S/P<0.1) for M. 880 

hyopneumoniae-specific IgG titers prior to vaccination.  881 
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 882 

Figure 1: Defining high and low responders among vaccinated piglets (Trial 2015) using 883 

Mycoplasma hyopneumoniae-specific IgG titers 11-days following booster RespiSure-One 884 
vaccination. A. Variability of M. hyopneumoniae-specific IgG titers among piglets in Trial 2015 885 

(n=117; open and solid symbols). Solid symbols indicate high (HR; n=6; circles) and low (LR; 886 

n=6; squares) responders selected for further study. B. Comparison of median M. hyopneumoniae-887 

specific IgG titers of HR and LR selected for the discovery cohort. Dashed and dotted lines 888 

represent the threshold for seropositive and seronegative cutoffs, respectively. P-values were 889 

determined using a two-tailed, unpaired Student’s t-test. Figures 1A and 1B are modified from 890 

Lipsit et al. (2020). 891 
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3.1.2 Kinome Analysis of Pre-vaccination PBMCs 893 

Kinome analysis was performed on PBMCs collected immediately prior to vaccination 894 

(Day 0) and 2- and 6- days post-vaccination (Days 2 and 6) from HR and LR within the discovery 895 

cohort that were to determine the phosphorylation events within blood leukocytes associated with 896 

vaccine responses. PBMC lysates were incubated over peptide microarrays containing 282 unique 897 

peptide targets representing known phosphorylation sites of porcine proteins. The magnitude of 898 

phosphorylation of each peptide target was quantified to generate a kinome profile for each piglet.  899 

3.1.2.1 Principal Component Analysis of Global Kinome Profiles 900 

Principal component analysis (PCA) was conducted on HR and LR for each Day using the 901 

282-phosphorylation event kinome profile. PCA is a method of unbiased cluster analysis that 902 

separates samples with a large number of variables into fewer dimensions (called “principal 903 

components”) that retain the variability of the original data (Jolliffe and Cadima, 2016). There was 904 

a high intra-group similarity within LR subjects on Day 0, suggesting similar kinome activities 905 

prior to vaccination. In contrast, HR displayed greater variability when considering the 906 

phosphorylation events of all 282 peptide targets (Fig. 2A). Kinome profiles on Day 2 did not 907 

cluster separately based on vaccine responsiveness phenotypes and showed overlapping 95% 908 

confidence intervals between LR and HR kinome profiles (Fig. 2B). Finally, PCA of Day 6 kinome 909 

profiles revealed that PC1 (23.3%) could separate HR and LR kinome profiles when considering 910 

the 282-kinome profile, suggesting multiple phosphorylation events were different between HR 911 

and LR (Fig. 2C). Comparative analysis of individual HR and LR phosphorylation events was 912 

conducted to reveal specific phosphorylation biomarkers that strongly associated with vaccine 913 

responsiveness.  914 

  915 
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 916 

Figure 2: Principal component analysis of the high and low responders from the discovery 917 
cohort. Principal component analysis of high (HR; n=6; green) and low (LR; n=6, orange) 918 

responders using phosphorylation events of 282 peptides on A. Day 0, B. Day 2, and C. Day 6. 919 

The two principal components (PC) with the highest variance (%) are shown. Ellipses represent 920 

95% confidence intervals for each phenotypic group. 921 

  922 
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3.1.2.2 Comparative analysis of high and low responders  923 

A repeated-measures two-way ANOVA using the factors “Response” (High vs Low) and 924 

“Time” (Day 0 vs Day 2 vs Day 6) was conducted using a post-hoc Sidak’s multiple comparisons 925 

test to identify significantly different phosphorylation events between HR and LR. A false-926 

discovery rate (FDR) of 0.05 (5%) was applied to the 282 tests on each time point using the 927 

Benjamini-Hochberg method. FDR corrections are helpful in big data analyses to reduce the 928 

number of false-positive results from conducting multiple hypothesis testing.  929 

3.1.2.3 Differences prior to vaccination (Day 0) 930 

On Day 0, 10 differential (FDR-corrected P-value<0.05) phosphorylation events were 931 

identified between HR and LR on Day 0 (Table 3). Eight of the 10 phosphorylation events had 932 

higher levels of phosphorylation (FC>1) in LR compared to HR. Within the Day 0 list, there was 933 

differential phosphorylation of peptide targets representing mediators of immune-function such as 934 

B-cell linker protein (BLNK), IL-6 receptor (IL6ST), TNF receptor-associated factor 6 (TRAF6), 935 

and cell signaling mediators such as AKT1, protein phosphatase 2 catalytic subunit alpha 936 

(PPP2CA), and calmodulin (CALM1).  937 

3.1.2.4 Differences following vaccination (Day 2 and 6) 938 

No individual phosphorylation events were significantly different between HR and LR at 939 

an FDR of 5% on Day 2 (Table 3). However, on Day 6, 11 differential (FDR-corrected P-940 

value<0.05) phosphorylation events were identified between HR and LR (Table 3). Within the 941 

Day 6 list, differential phosphorylation events were observed on peptide targets representing 942 

proteins involved in mediating cell signaling, such as phosphoinositide-3-kinase regulatory 943 

subunit 1 (PIK3R1) and receptor of activated C kinase 1 (RACK1), cytoskeletal proteins like 944 

stathmin 1 (STMN1) and PPP2CA, and proteins with known immunological signaling functions 945 

like TRAF6, SYK, and nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). Seven of the 946 

11 differential phosphorylation events had higher levels of phosphorylation (FC>1) in the LR than 947 

the HR. 948 

In comparing the biomarkers determined on Day 0 and 6, three identical phosphorylation events 949 

(TRAF6_Y353, STMN1_S15, and PPP2CA_T304) were consistent over time with similar fold-950 

changes at each time point. Together, these results demonstrate that molecular differences between 951 

HR and LR can be detected both before and after vaccination.  952 
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Table 3: Differential phosphorylation events within PBMCs between low and high 953 

responders on Day 0 and Day 6 in the discovery cohort. 954 

 Target Name Target Site UniProt ID FDRa q-value FCb 

Day 0 

TRAF6 Y353 Q9Y4K3 0.014 -2.33 

AKT1 T308 P31749 0.021 -2.10 

PPP2CA T304 P67775 0.016 -2.04 

STMN1 S15 P16949 0.014 -1.89 

STAT4 S722 Q14765 0.025 -1.88 

FGFR1 Y653 P11362 0.016 -1.70 

CALM1 Y99 P0DP23 0.016 -1.66 

RPS6KB1 S447 P23443 0.040 -1.62 

BLNK Y178 Q8WV28 0.016 1.55 

IL6ST S782 P40189 0.016 1.75 

 

Day 6 

STMN1 S37 P16949 0.014 -2.66 

TRAF6 Y353 Q9Y4K3 0.014 -2.16 

PPP2CA T304 P67775 0.014 -1.96 

RAB5A T202 P20339 0.014 -1.84 

RACK1 Y194 P63244 0.025 -1.80 

PIK3R1 Y556 P27986 0.014 -1.65 

STMN1 S15 P16949 0.014 -1.62 

KEAP1 Y141 Q14145 0.036 1.27 

SMAD1 S214 Q15797 0.014 1.40 

SYK Y348 P43405 0.036 1.48 

NFATC1 S245 O95644 0.014 2.41 
 955 

a False-discovery rate (FDR) was applied to Sidak’s multiple comparison tests between high and 956 

low responders on each time point. FDR was set at 0.05.  957 

b Fold-change (FC) is calculated as a change from low responders (x) to high responders (y). 958 

  959 
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3.1.3. Pathway analysis with Gprofiler 960 

To determine potential functions associated with differentially phosphorylated peptides 961 

between HR and LR, a functional enrichment analysis using Gprofiler (version 962 

e104_eg51_p15_3922dba), an online software for conducting over-representation analysis, was 963 

performed for each time point. Functional enrichment analysis finds statistically significant cell 964 

signaling pathways and processes involving the genes/proteins within the query set. Thus, it may 965 

provide insight into the function of the differential phosphorylation events. Fold-changes and 966 

target sites of peptides were not included in the analysis because the function of all phosphorylation 967 

sites are not curated in the databases being queried. 968 

3.1.3.1 Pathway analysis of Day 0 969 

Functional enrichment of the protein IDs corresponding to the differential phosphorylation 970 

events contributed to numerous immune-associated signaling pathways, including “Signaling by 971 

Interleukins” (Reactome; p=3.1x10-4), “Cytokine Signaling in the Immune System” (Reactome; 972 

p=3.5x10-3), IL-6 signaling pathway (WikiPathways; p=1.8x10-3), and Interleukin-11 Signaling 973 

Pathway (WikiPathways; p=1.9x10-3). The protein IDs contributing to the enrichment pathways 974 

included TRAF6, BLNK, IL6ST, PPP2CA, AKT1, and STAT4. Overall, there was a high 975 

representation of pathways implicating differential phosphorylation of proteins involved in 976 

cytokine signaling within PBMCs prior to vaccination. 977 

3.1.3.2 Pathway analysis of Day 6 978 

Repeating the functional enrichment analysis with the differential phosphorylation events 979 

on Day 6 revealed pathways such as “Fc epsilon receptor (FCERI) signaling” (Reactome; 980 

p=4.4x10-3), “RANKL/RANK (Receptor activator of NFKB (ligand)) Signaling” (WikPathways; 981 

p=4.5x10-5) and “B cell receptor signaling pathway” (KEGG; p=6.1x10-3). The protein IDs that 982 

contributed to these enrichments included TRAF6, NFATC1, PPP2CA, and PIK3R1. However, 983 

the enrichment analysis of the Day 6 differential phosphorylation events did not elude biological 984 

processes that could be verified with readily available plasma samples. 985 

The Day 0 functional enrichment analysis suggested differential cytokine signaling 986 

between HR and LR prior to vaccination. Multiplex assays have been developed and validated in 987 

swine to quantify an array of analytes in parallel, including panels of cytokines (Lawson et al., 988 
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2010) Together, this led to the investigation of plasma cytokines concentrations prior to 989 

vaccination within HR and LR. 990 

3.1.4 Multiplex Plasma Cytokine Analysis 991 

The numerous cytokine signaling pathways identified in the functional enrichment analysis 992 

of HR and LR PBMCs prior to vaccination suggested there could be differences in cytokine 993 

signaling. To determine if cytokine signaling pathways were differentially active in HR and LR 994 

prior to vaccination, nine cytokines (IFNα, IFNγ, IL-1β, IL-6, IL-8, IL-12, IL-13, IL-17α, and 995 

TNFα) were quantified in plasma collected on Day 0. LR had a higher (p=0.016) plasma 996 

concentration of IFNγ compared to HR (Fig. 3A). Furthermore, within the HR and LR, there was 997 

a significant (p=0.028) negative (r=-0.64) correlation between plasma IFNγ concentrations on Day 998 

0 with vaccine-induced serum IgG titers on Day 35 (Fig. 3B). There was also a trend of higher IL-999 

1β (p=0.06) plasma concentrations within LR compared to HR (Fig. 3A). Additional samples are 1000 

needed to determine if there were a difference in plasma TNFα (p=0.12) between HR and LR (Fig. 1001 

3A). HR and LR showed no significant difference (p>0.05) in IFNα, IL-6, IL-8, IL-12, IL-13, or 1002 

IL-17α plasma concentrations on Day 0 (Fig. 3C). Correlation analyses were not conducted for 1003 

IL-1β and TNFα due to the low number of data points available for these cytokines in the HR and 1004 

LR cohorts. These data suggest that elevated pro-inflammatory cytokines circulating in the blood 1005 

prior to vaccination negatively associate with vaccine responses.  1006 

  1007 
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Figure 3: High and low responders differ in plasma concentration for multiple pro-1009 
inflammatory cytokines prior to vaccination. A. Comparison of median plasma concentrations 1010 

of IFNγ, IL-1β, and TNFα between high (HR; n=6; open circles) and low (LR; n=6; closed circles) 1011 

responders on Day 0 (prior to vaccination). B. Correlation analysis between M. hyopneumoniae-1012 

specific IgG titers and Day 0 IFNγ plasma concentrations within HR and LR. Best fit lines 1013 

determined using Spearman Correlation. C. Comparison of median plasma concentrations of 1014 

IFNα, IL-6, IL-8, IL-12, IL-13, and IL-17α between HR and LR on Day 0. P-values were 1015 

determined using a Mann-Whitney U-test. Figures 3A and 3B are modified from Lipsit et al. 1016 

(2020). 1017 
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3.1.5 Body Weight Analysis of Vaccine Responders 1019 

Body weight is a common metric for evaluating livestock health and their likelihood of 1020 

animal survival (Milligan et al., 2002a). Therefore, piglet body weight at birth, weaning (24-days 1021 

of age), and at the end of the trial (63-days of age) were investigated for potential relationships 1022 

with vaccine responsiveness.  1023 

There was considerable variation in birth weights (range, 1.0-1.9 kg; mean, 1.5 kg), 1024 

weaning weights (range, 4.6 – 10 kg; mean, 6.9 kg), and trial end weights (range, 19 – 38 kg; 1025 

mean, 25 kg) among piglets. LR had lower birth weight (p=0.002) and lower weaning (p=0.035) 1026 

weight compared to HR (Fig. 4A). At the end of the experiment (63-days of age), there was no 1027 

difference (p=0.28) in weight between HR and LR, which suggests that LR did not have inherent 1028 

long-term growth impairments compared to the HR (Fig. 4A). Within the HRs and LRs, there was 1029 

a significant (p=0.002) positive (r=0.63) correlation between birth weight and serum IgG titer (Fig. 1030 

4B). However, a strong (p=0.024; r=0.04) correlation between birth weight and serum IgG titer 1031 

was not evident within the entire (n=117) trial population (Fig. 4C). Therefore, associations 1032 

between vaccine responsiveness, plasma IFNγ concentrations, and birth weight observed within 1033 

the highest and lowest vaccine antibody responders are not apparent across the entire population. 1034 

  1035 
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 1036 

Figure 4: Body weight is associated with vaccine responsiveness in high and low responders 1037 
prior to vaccination. A. Comparison of median body weight between high (HR; n=6; open 1038 

circles) and low (LR; n=6; closed circles) responders at birth, weaning (24-days of age), and at the 1039 

end of the trial (63-days of age). B. Correlation analysis between M. hyopneumoniae-specific IgG 1040 

titers and piglet birth weight of HR and LR. C. Correlation analysis between M. hyopneumoniae-1041 

specific IgG titers and piglet birth weight for the trial population. P-values were determined using 1042 

a two-tailed, unpaired Student’s t-test. Best fit lines determined using Pearson Correlation. Figures 1043 

4A, 4B, and 4C are modified from Lipsit et al. (2020). 1044 
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3.1.6 Conclusions to Section 3.1 1046 

Vaccinating a trial population of piglets with a two-dose regimen of RespiSure-One 1047 

resulted in broad variation in vaccine-induced antibody responses. Approximately 31% of piglets 1048 

were considered seronegative for M. hyopneumoniae-specific antibodies at 11-days following 1049 

booster vaccination. High and low vaccine responders were apparent and revealed multiple 1050 

variables associated with vaccine responsiveness. Kinome analysis of PBMCs collected from HR 1051 

and LR highlighted molecular differences among vaccine responders immediately before and 6-1052 

days after vaccination. The pre-vaccination differential phosphorylation events were associated 1053 

with cytokine signaling pathways and elevated plasma IFNγ and IL-1β within LR compared to HR 1054 

were consistent with kinome data. These data align with the observations of others who identified 1055 

higher concentrations of serum cytokines in low vaccine responders at the time of vaccination 1056 

(Fourati et al., 2016; Frasca et al., 2014; Trzonkowski et al., 2003). Also, LR and HR had 1057 

differences in body weight prior to vaccination, specifically at birth and weaning. Similar 1058 

observations between birth weight and vaccine responsiveness were reported for human infants 1059 

and adolescents following typhoid vaccination (McDade et al., 2001; Moore et al., 2004). These 1060 

data support using birth weight and plasma cytokine levels as biomarkers for detecting likely low 1061 

responders in a herd of piglets. Further exploration of whether these variables are host 1062 

characteristics that affect vaccine responsiveness or are indicators of immunological mechanisms 1063 

that affect vaccine responsiveness is required. Since validation that these biomarkers are consistent 1064 

in other vaccine responders was needed, the relationships between vaccine responsiveness, 1065 

phosphorylation events, plasma cytokines, and body weight were investigated in a second cohort 1066 

of high and low vaccine responders. 1067 

3.2 Validating Vaccine Response Biomarkers in a Validation Cohort 1068 

3.2.1 Establishing a Validation Cohort of High and Low Responders 1069 

A second cohort of HR (n=4) and LR (n=4) corresponding to the 80th and 20th percentile 1070 

of serum IgG titers were stratified as a validation cohort to test the predictive capability of the 1071 

biomarkers identified in the discovery cohort. HR and LR within the validation cohort were 1072 

seronegative (S/P<0.1) prior to vaccination. HR within the validation cohort had higher (p=0.038) 1073 

serum IgG titers than the LRs in the validation cohort. When comparing HR between the discovery 1074 

and validation cohorts, validation HR had a lower rank-sum difference (p=0.029) than discovery 1075 

HR (Fig. 5). Similarly, the validation LR had a higher rank-sum than the discovery LR (p=0.010). 1076 
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Thus, the validation cohort consists of high and low responders with a more moderate phenotype 1077 

than the discovery cohort. 1078 
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Figure 5: High and low responders from the validation cohort have less divergent serum IgG 1081 

titers 11-days following booster RespiSure-One vaccination than the discovery cohort. 1082 

Median M. hyopneumoniae-specific IgG titers of high (HR; empty shape) and low (LR; filled 1083 

shape) responders within the discovery cohort (squares; n=6/cohort) and the validation cohort 1084 

(circles; n=6/cohort). Dashed and dotted lines represent the threshold for seropositive and 1085 

seronegative cutoffs, respectively. P-values were determined using a Mann-Whitney U-Test. 1086 
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3.2.2 Biochemical and Physiological Markers within the Validation Cohort  1088 

In the discovery cohort, LR had higher levels of plasma IFNγ, IL-1β, and TNFα on Day 0 1089 

than HR (Fig. 3A). The discovery cohort also revealed LR had lower body weight at birth and 1090 

weaning than HR (Fig. 4A). Therefore, these plasma cytokines and body weights were quantified 1091 

in HR and LR within the validation cohort prior to vaccination to test their capability of 1092 

discriminating vaccine responders.  1093 

There were no differences in IFNγ (p=0.68), IL-1β (p<0.99), or TNFα (p<0.99) between 1094 

HR and LR within the validation cohort (Fig. 6A). When comparing HR and LR within the 1095 

validation cohort, there was also no difference in either birth weight (p=0.58) or weaning weight 1096 

(p=0.74) (Fig. 6B). Similar to the cytokine observations, this may indicate that as the vaccine 1097 

responsiveness phenotype becomes less extreme, physiological differences in body weight 1098 

between vaccine responders are less apparent. 1099 
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Figure 6: Plasma cytokines at Day 0 and body weight of the validation cohort do not differ 1102 

between high and low responders within the validation cohort. A. Median plasma cytokine 1103 

concentrations of IFNγ, IL-1β, and TNFα of high (HR; n=4; empty circles) and low (LR; n=4; 1104 

filled circles) within the validation cohort prior to vaccination. B. Median body weight of HR 1105 

(empty circles) and LR (filled circles) at birth and weaning (24-days of age). P-values were 1106 

determined using a Mann-Whitney U-Test. 1107 
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3.2.3 Validation of Phosphorylation Biomarkers  1109 

To validate the robustness of the vaccine responsiveness phosphorylation biomarkers 1110 

identified in the discovery cohort, the capability of the biomarker phosphorylation events to cluster 1111 

HR and LR kinome profiles was tested using PCA. Subsequently, a comparative analysis was 1112 

conducted to determine if individual biomarker phosphorylation events showed consistent 1113 

phosphorylation patterns between HR and LR of the validation cohort as was observed in the 1114 

discovery cohort.  1115 

3.2.3.1 Validation of Phosphorylation Biomarkers on Day 0 1116 

PCA of HR and LR within the validation cohort on Day 0 using the untargeted, 282-peptide 1117 

kinome profile did not clearly separate kinome profiles based on vaccine responsiveness 1118 

phenotype (Fig. 7A). Then, piglets within the validation cohort were given new IDs to blind 1119 

vaccine response phenotypes, and only the phosphorylation intensities of the 10 phosphorylation 1120 

events determined from the discovery cohort were used for PCA. The cluster analysis using the 10 1121 

phosphorylation biomarkers alone suggests that PC1 (52%) reduces the inter-group overlap 1122 

between HR and LR within the validation cohort compared to the untargeted kinome profile (Fig. 1123 

7B). Together, these cluster analyses suggest that a signature of 10 biomarker phosphorylation 1124 

events better separates HR and LR phenotypes than the complete array of phosphorylation events. 1125 

Next, phosphorylation intensities of the 10 biomarker phosphorylation events between the 1126 

discovery HR and LR were quantified within the validation cohort. This analysis revealed that 1127 

multiple phosphorylation biomarkers observed in the discovery cohort were consistently (similar 1128 

direction of change) differentially phosphorylated between HR and LR within the validation 1129 

cohort. (Fig. 7C). Differential phosphorylation events of peptide targets such as STMN1_S15, 1130 

TRAF6_Y353, and PPP2CA_T304 were consistently differentially phosphorylated (p=0.029) in 1131 

the discovery cohort. CALM1_Y99 showed a trend (p=0.057) of being differentially 1132 

phosphorylated, while the remaining phosphorylation events did not show a trend (p>0.1) between 1133 

HR and LR in the validation cohort. Altogether, multiple phosphorylation events observed in the 1134 

discovery cohort on Day 0 persist between HR and LR within the validation group, even when 1135 

plasma cytokines or body weight did not significantly associate with vaccine responsiveness. 1136 
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Figure 7: Biomarker phosphorylation events between high and low responders within the 1138 
discovery and validation cohorts on Day 0. Principal component analysis of the high (HR; n=4; 1139 

green) and low (LR; n=4, orange) responders within the validation cohort using A. 282 peptide 1140 

phosphorylation events represented on the kinome array and B. 10 peptide phosphorylation events 1141 

determined to be differentially phosphorylated between HR and LR within the discovery cohort 1142 

on Day 0. Principle components (PCs)  with the highest variance (%) are shown. Ellipses represent 1143 

95% confidence intervals. C. Phosphorylation intensities of the 10 differentially phosphorylated 1144 

peptides on Day 0 of LR (circles) and HR (squares) within the discovery (filled shape) and 1145 

validation (empty shape) cohorts. The horizontal line represents the group median. P-values in C 1146 

are only shown for comparisons between LR and HR within the validation cohort. P-values were 1147 

determined using the Mann-Whitney U-test. 1148 

  1149 
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3.2.3.2 Validation of Phosphorylation Biomarkers on Day 6 1150 

Similar to the Day 0 analyses, the discriminatory capability of the vaccine response 1151 

biomarkers identified within the discovery cohort on Day 6 was evaluated using PCA and 1152 

comparative analysis. One piglet classified as HR in the validation cohort (“388B”) on Day 0 did 1153 

not have PBMCs collected on Day 6 and was substituted with another HR (“893R”) for subsequent 1154 

Day 6 validation cohort analyses. 1155 

On Day 6, PCA of the validation HR and LR using the 282-peptide kinome profile revealed 1156 

indistinct clustering of HR and LR, suggesting the complete array of peptide phosphorylation 1157 

events cannot differentiate the vaccine responsiveness phenotype (Fig. 8A). As with the Day 0 1158 

analysis, the PCA was repeated using only the 11 biomarker phosphorylation events identified in 1159 

the discovery cohort. Reducing the consideration to the 11 biomarker phosphorylation events on 1160 

Day 6 shows a combination of PC1 (45%) and PC2 (21.7%) can separate HR and LR within the 1161 

validation cohort (Fig. 8B). This improvement from overlapping 95% CIs using the untargeted 1162 

kinome profile to completely distinct 95% CIs using the 11 biomarker phosphorylation events 1163 

supports the conclusion that these biomarkers are associated with the magnitude of vaccine 1164 

responsiveness. 1165 

Comparative analysis of the 11 phosphorylation events identified in the discovery cohort 1166 

revealed consistent differences between HR and LR in the validation cohort (Fig. 8C). 1167 

Specifically, the peptide targets STMN1_S15 and Nuclear factor of activated T-cells, cytoplasmic 1168 

1 (NFATC1)_S245 were differentially phosphorylated (p=0.029), while Kelch-Like ECH-1169 

Associated Protein 1 (KEAP1)_Y293/5, and SYK_Y348 were close to the threshold of a trend 1170 

(p=0.11) for having consistent differential phosphorylation. These 4 phosphorylation events 1171 

demonstrate highly similar patterns of direction and magnitude of change in each cohort. For the 1172 

other biomarker phosphorylation events, there are no significant differences in intensity between 1173 

the HR and LR of the validation cohort, indicating not all phosphorylation events are consistently 1174 

different in less extreme phenotypes. 1175 
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Figure 8: Biomarker phosphorylation events between high and low responders within the 1177 
discovery and validation cohorts on Day 6. Principal component analysis of the high (HR; n=4; 1178 

green) and low (LR; n=4, orange) responders within the validation cohort using A. 282 peptides 1179 

phosphorylation events represented on the kinome array and B. 11 peptide phosphorylation events 1180 

determined to be differentially phosphorylated between HR and LR within the discovery cohort 1181 

on Day 6. Principle components (PCs) with the highest variance (%) are shown. Ellipses represent 1182 

95% confidence intervals. C. Phosphorylation intensities of the 11 differentially phosphorylated 1183 

peptides on Day 6 of LR (circles) and HR (squares) within the discovery (filled shape) and 1184 

validation (empty shape) cohorts. The horizontal line represents the group median. P-values in C 1185 

are only shown for comparisons between LR and HR within the validation cohort. P-values were 1186 

determined using the Mann-Whitney U-test. 1187 
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3.2.4 Conclusions to Section 3.2 1189 

Using an independent subset of high and low vaccine responders, phosphorylation events 1190 

had greater discriminatory capabilities than physiological factors such as circulating plasma 1191 

cytokine concentrations or birthweight, at least within this trial population of piglets. Multiple 1192 

differential phosphorylation events found in the discovery cohort were also differentially 1193 

phosphorylated in the validation cohort; these phosphorylation events improved cluster separation 1194 

of HR and LR compared to an untargeted kinome profile. HR and LR within the validation cohort 1195 

did not reveal differences in plasma cytokines or body weight, suggesting that phosphorylation 1196 

biomarkers better discern vaccine responsiveness than these physiological markers. Following 1197 

these studies, a second vaccine trial was initiated to again evaluate the use of plasma cytokines and 1198 

body weight as biomarkers of vaccine responsiveness and explore the dynamics of circulating 1199 

cytokines and piglet growth prior to vaccination. 1200 

 1201 

3.3 Validating Plasma Cytokine and Body weight Biomarkers in a Second Trial 1202 

A second vaccination trial (“Trial 2020”) was modelled after the first vaccine trial (“Trial 1203 

2015”) to test the hypothesis that plasma cytokines and body weight are associated with vaccine 1204 

responsiveness. Piglets (n=67; 30 female, 37 male) born from multiple litters (n=6 litters; 8-14 1205 

piglets/litter) were vaccinated (RespiSure-One) at 28-days of age (Day 0) and given a booster at 1206 

52-days of age. M. hyopneumoniae-specific serum IgG titers were quantified prior to vaccination 1207 

and at 63-days of age (Day 35) using the commercial IDEXX M. hyo Ab ELISA (IDEXX 1208 

Laboratories, Inc.). All piglets within this trial (n=67) were seronegative (S/P<0.3) for M. 1209 

hyopneumoniae-specific serum IgG prior to vaccination and all piglets were seroconverted 1210 

(S/P>0.4) on Day 35.   1211 

3.3.1 Variability of Vaccine Responses between Trials 1212 

To quantify vaccine-induced antibody responses, post-vaccination serum was serially 1213 

diluted 5-fold, and endpoint serum IgG titers were calculated. There was an 8-fold difference 1214 

between the highest and lowest Log2 serum IgG titers (titer range = 10.0 –13.2; median (95% CI) 1215 

= 11.8 (11.0 – 12.1)). In contrast with piglets within the first trial (titer range = 5.85 – 13.67; 1216 

median (95% CI) = 9.96 (9.65 – 10.2)) described in Section 3.1, piglets within the second trial had 1217 

a greater distribution (p<0.001) of serum IgG titers (Fig. 9A). Within the second trial, there was 1218 
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no sex-dependent (p=0.13; Mann-Whitney U-test) effect on post-vaccination serum IgG titers. 1219 

Serum samples from piglets within the second trial were collected in two batches (3 litters/batch) 1220 

on different experimental days, and no batch-dependent (p=0.35; Mann-Whitney U-test) effect 1221 

was observed. Altogether, piglets from the second trial had higher serum IgG titers with less 1222 

variation than piglets from the first trial.  1223 

Similar to the first trial, piglets from the second trial representing the 90th percentile and 1224 

10th percentile of serum IgG titers on Day 35 were stratified into HR (n=6) and LR (n=6), 1225 

respectively, to establish cohorts of piglets with the most extreme differences in serum IgG titers. 1226 

When comparing the post-vaccination serum IgG titers of HR and LR between trials, there was no 1227 

difference (p=0.89) between HR of the second (mean ± SD = 12.9 ± 0.18) and first (mean ± SD = 1228 

12.9 ± 0.64) trials (Fig. 9B). In contrast, all LR within the second trial were seropositive (S/P>0.4) 1229 

and had significantly higher (p<0.001) post-vaccination serum IgG titers (mean ± SD = 10.3 ± 1230 

0.11) than the seronegative LRs within the first trial (mean ± SD = 5.85 ± 0.71) (Fig. 9B). Thus, 1231 

the LR within the second trial did not phenotypically represent seronegative non-responders. LR 1232 

from the second trial more appropriately represent seropositive vaccine responders with lower 1233 

serum IgG titers than the HR. However, since LR from the second trial had statistically lower 1234 

serum IgG titers than the HR from the second trial, they were used to test the previously identified 1235 

associations between vaccine-induced antibody responses and either plasma cytokines or birth 1236 

weight.  1237 

  1238 
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Figure 9: Mycoplasma hyopneumoniae-specific serum IgG titers of piglets from the first 1240 

(Trial 2015) and second (Trial 2020) trials 11-days following booster RespiSure-One 1241 
vaccination. A. Median (±95% confidence interval) M. hyopneumoniae–specific serum IgG titers 1242 

of piglets from the first (n=117; open circles) and second (n=67; solid circles) trials. Differences 1243 

were determined using a 2-sample Kolmogorov–Smirnov test. B. Mean M. hyopneumoniae–1244 

specific serum IgG titers of the high (HR) and low (LR) responders within the first (n=6/cohort; 1245 

open circles) and second (n=6/cohort; closed circles) trials. The horizontal bar represents the group 1246 

mean. Dashed and dotted lines represent the threshold for seropositive and seronegative cutoffs, 1247 

respectively. Differences were determined using a two-tailed, unpaired Student’s t-test with 1248 

Welch’s correction.  1249 
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3.3.2 Plasma Cytokines and Vaccine Responsiveness in the Second Trial  1251 

Associations between plasma cytokines and vaccine-induced antibody responses were 1252 

identified in the first trial. To test the relationship between Day 0 plasma cytokine concentrations 1253 

and vaccine-induced antibody responses further, correlation and comparative analyses were 1254 

conducted on piglets from the second trial. Here, Day 0 plasma IFNγ levels prior to vaccination 1255 

did not reveal a significant (ρ=0.10, p-value=0.41) correlation with Day 35 serum IgG titers among 1256 

all piglets (n=67) (Fig. 10A). Similarly, Day 0 plasma IL-1β levels prior to vaccination and Day 1257 

35 serum IgG titers were not significantly correlated (ρ=0.13, p-value=0.28) (Fig. 10B). Limiting 1258 

the analysis to only the HR (n=6) and LR (n=6) within the second trial revealed no rank-sum 1259 

differences in Day 0 plasma IFNγ (p=0.34) between HR and LR and a trend towards higher plasma 1260 

IL-1β (p=0.12) in HR than LR (Fig. 10C). Overall, no associations between pre-vaccination 1261 

plasma cytokine concentrations and post-vaccination vaccine-induced serum IgG titers were 1262 

identified in the second trial. There were no significant differences (p=0.81) in post-vaccination 1263 

serum IgG titers among litters (Fig. 10D). While plasma IFNγ and IL-1β concentrations at the time 1264 

of vaccination were associated with vaccine responsiveness within HR and LR from the first trial, 1265 

these data suggest the elevated plasma cytokine concentrations do not always correlate with the 1266 

magnitude of vaccine-induced antibody responses. 1267 
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 1268 

Figure 10: Plasma cytokine concentrations do not correlate with Mycoplasma 1269 

hyopneumoniae-specific IgG titers in the second trial. A. Correlation analysis of post-1270 

vaccination M. hyopneumoniae-specific serum IgG titers with Day 0 plasma IFNγ and B. Day 0 1271 

plasma IL-1β concentrations within piglets of the second trial (n=67). Best-fit lines were 1272 

determined using Spearman Rank Correlation. C. Mean Day 0 plasma concentrations of IFNγ 1273 

(circles) and IL-1β (squares) in low (LR; n=6; solid symbol) and (HR; n=6; open symbol) within 1274 

the second trial. Differences were determined using a Student’s t-test with Welch’s correction. D. 1275 

Mean (±SEM) Log2 M. hyopneumoniae-specific serum IgG titer of piglets from the second trial 1276 

grouped by the factor “Litter”. Differences were determined using a one-way ANOVA. 1277 

  1278 
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3.3.3 Dynamic Concentrations of Plasma Cytokines  1279 

The first trial revealed that piglets with lower vaccine-induced antibody responses had 1280 

elevated plasma cytokines, specifically IFNγ and IL-1β, prior to vaccination compared to age-1281 

matched piglets with higher vaccine-induced antibody responses. However, these plasma 1282 

cytokines were measured only at the time of vaccination (28-days of age; Day 0), and it is unknown 1283 

if differences in cytokine concentrations persisted at different time points. Though plasma 1284 

cytokines were not associated with vaccine responsiveness in piglets from the second trial, the 1285 

opportunity remained to investigate additional time points to evaluate the stability of plasma 1286 

cytokines in young piglets for future reference. 1287 

3.3.3.1 Temporal Variability of Plasma Cytokine Concentrations in Piglets 1288 

Plasma IFNγ and IL-1β were measured at 7-day intervals beginning at birth to 28-days of 1289 

age (primary vaccination) as well as at 63-days of age to determine the temporal stability of 1290 

cytokine biomarkers prior to and following vaccination. Within the second trial, there was a 1291 

significant time-dependent effect (p<0.001) on plasma IFNγ and IL-1β concentrations within all 1292 

piglets. Plasma IFNγ concentration was highest at birth and decreased significantly (p<0.001) by 1293 

14-days of age. Piglets had the lowest concentrations of plasma IFNγ at 63-days of age (p<0.001) 1294 

(Fig. 11A). In contrast, IL-1β did not show age-dependent changes between birth and 28-days of 1295 

age. However, IL-1β concentrations were significantly lower (p<0.001) at 63-days of age than at 1296 

birth (Fig. 11B). Temporal variation in plasma cytokines following birth could limit the use of 1297 

plasma IFNγ or IL-1β as vaccine response biomarkers if they do not consistently associate with 1298 

vaccine-induced immunity. 1299 

3.3.3.2 Litter-specific differences in Plasma Cytokines 1300 

Piglets were grouped within litters and a two-way mixed-effects ANOVA with Tukey’s 1301 

multiple comparisons was conducted using the factors “Litter” and “Time” to account for litter-1302 

dependent variability in plasma IFNγ and IL-1β concentrations among litters at each time point. 1303 

There was a significant (p<0.001) interaction between “Litter” and “Time” for mean plasma IFNγ 1304 

concentrations. One litter, “653-3E” (n=11), had consistently higher levels of plasma IFNγ than 1305 

the other 5 litters at 0-, 7-, 14-, 21- (p<0.001), and 28-days of age (p<0.01) (Fig. 11C). This 1306 

difference in plasma IFNγ levels between Litter 653-3E and the other 5 litters waned and was not 1307 

significant at 63-days of age. Few litter-dependent differences were revealed among other litters 1308 
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as Litter 720-1E (n=12) had higher (p<0.05) plasma IFNγ than 3 other litters at birth, but these 1309 

differences were not consistent at subsequent time points. Differences in plasma IFNγ 1310 

concentration among litters were not observed at 63-days of age except for few individual 1311 

differences that were not consistent with other time points. All litters had lower (p<0.05) plasma 1312 

IFNγ at 63-days of age than birth, except for Litter 269-2F (n=8), which only showed a trend 1313 

towards (p=0.07) lower concentrations (Fig. 11C). 1314 

A two-way mixed-effects ANOVA using the factors “Litter” and “Time” was conducted 1315 

to identify differences in mean plasma IL-1β concentrations among litters within the second trial. 1316 

There was a significant (p<0.001) interaction between “Litter” and “Time” on IL-1β 1317 

concentrations. A comparison among litters revealed Litter 653-3E had significantly higher plasma 1318 

IL-1β concentrations than the other 5 litters at birth (p<0.005), four litters at 7- and 14-days of age 1319 

(p<0.005), and four litters at 21- and 28-days of age (p<0.05) (Fig. 11D). At 63-days of age, all 1320 

litters had lower (p<0.01) plasma IL-1β concentrations than at birth. Four litters had lower 1321 

(p<0.05) plasma IL-1β concentrations at 63-days of age than all other time points. Litter 423-3E 1322 

(n=12) had significantly lower (p<0.005) mean plasma IL-1β concentration than three other litters 1323 

at 63-days of age, but this difference was not observed at other time points.  1324 

Routine monitoring and clinical assessment of piglets throughout the current study did not 1325 

identify clinical signs of infection, physical injury, or trauma, supporting the conclusion that illness 1326 

did not cause the elevated plasma IFNγ and IL-1β, specifically within Litter 653-3E. To determine 1327 

if this difference in litter-specific plasma cytokines was related to the number of times a sow had 1328 

given birth, we investigated the parity of sows and the level of plasma cytokines in piglets at birth. 1329 

Sows used in this study had a parity of 0-3, and no relationship between parity and cytokine 1330 

concentrations was found. Observing a litter (Litter 653-3E) with elevated plasma cytokines 1331 

compared to other litters with unimpaired vaccine-induced serum IgG titers showed that high 1332 

cytokine concentrations at the time of vaccination did not always classify piglets as low vaccine 1333 

responders. However, the elevated IFNγ and IL-1β within this biologically-related litter from the 1334 

second trial may have different roles than the individual LR piglets from the first trial. Data from 1335 

the two trials suggest that the plasma cytokines biomarkers may be situationally dependent for 1336 

predicting vaccine responders. 1337 
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Figure 11: Plasma cytokine concentrations of piglets within the second trial from birth to 63-1339 
days of age at weekly intervals. A. Mean (±SEM) plasma interferon-gamma (IFNγ) and B. 1340 

interleukin 1-beta (IL-1β) concentrations measured weekly from piglets within the second trial 1341 

(n=67) from 0-days of age until 28-days of age and at 63-days of age. Differences were determined 1342 

using a Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons. C. Mean (±SEM) 1343 

plasma IFNγ and D. IL-1β concentrations of piglets from the second trial were quantified weekly 1344 

from 0-days to 28-days of age and at 63-days of age grouped by the factor “Litter” (n=8-14/litter). 1345 

Differences were determined using a two-way mixed-effects ANOVA with Tukey’s multiple 1346 

comparisons. Asterisks designate differences in mean cytokine concentration among all litters. 1347 

Only P-values representing the differences across all multiple comparisons among litters are 1348 

shown. n.s.p>0.05, *p<0.05; **p<0.01; ***p<0.005; ****p<0.001. 1349 
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3.3.4 Birth weight and Vaccine Responsiveness in the Second Trial 1351 

As the first trial revealed a positive correlation between piglet body weight and vaccine-1352 

induced antibody responses, the hypothesis that there were associations between body weight and 1353 

serum IgG titers was tested further in the second trial. A Pearson correlation analysis was 1354 

conducted to determine if body weight and average daily gain (ADG) were associated with 1355 

vaccine-induced antibody responses. Piglets from the second trial had positive (r>0.4) Pearson 1356 

correlations (p<0.05) among body weights at 0- (birth), 7-, 14-, 21-, 24- (weaning), and 63-days 1357 

of age (Fig. 12A). Additionally, piglets had positive correlations between all body weights and 1358 

their ADG from 0- to 24-days of age (birth to weaning) and from 0- to 63-days of age (birth to end 1359 

of the trial) (Fig. 12A). There were no significant correlations (p>0.10) between Day 35 serum 1360 

IgG titers and body weights or ADGs of piglets within the second trial (Fig. 12A). In the first trial, 1361 

LR had lower birth weight and lower weaning weight than HR, but there was no difference in body 1362 

weight at 63-days of age (Fig. 12C). In the second trial, there was no difference in body weight 1363 

between HR and LR at birth (p=0.91) or the end of the trial (p=0.95) (Fig. 12B). While there was 1364 

a trend of LR having a higher weaning weight than HR (p=0.097), this trend was not consistent 1365 

with other time points (Fig. 12B).  1366 

When comparing HR and LR between trials, there are no differences in body weights 1367 

between HR of the first and second trials. Though LRs from the second trial have higher (p=0.033) 1368 

body weight than LRs from the first trial at weaning, this difference is not observed at other time 1369 

points (Fig. 12C). To further test if birth weight was associated with vaccine responsiveness, post-1370 

vaccination serum IgG titers between the highest (n=6) and lowest (n=6) birth weight piglets were 1371 

analyzed. This analysis revealed no difference (p=0.48) in serum IgG titers between the largest 1372 

and smallest piglets at birth (Fig. 12D). Altogether, there were no significant associations between 1373 

body weight at birth or weaning with vaccine-induced antibody responses in the second trial. 1374 



 

62 

 

Birth Weight Weaning Weight End Weight

0

5

10

15

20

30

40

Trial 2020

W
ei

g
h
t 

(k
g
)

LR

HR

0.097

20
20

 L
R

20
15

 L
R

20
20

 H
R

20
15

 H
R

20
20

 L
R

20
15

 L
R

20
20

 H
R

20
15

 H
R

20
20

 L
R

20
15

 L
R

20
20

 H
R

20
15

 H
R

0

10

20

30

W
ei

g
h
t 

(k
g
)

Birth

Weaning

End

0.033

Lowest 
Birth Weight

Highest 
Birth Weight

5

10

15

L
o
g

2
M

. 
h

yo
p

n
eu

m
o

n
ia

e-

sp
ec

if
ic

 s
er

u
m

 I
g
G

 t
it

er

B

C D

A

 1375 

Figure 12: High and low vaccine responders in the second vaccine trial do not differ 1376 
significantly in body weight. A. Pearson correlation matrix of body weights at 0- (BW_0), 7-, 14-1377 

, 21-, 24-, and 63-days of age, pre-weaning average daily gain (ADG_0_24), total average daily 1378 

gain (ADG_0_63) and Log2 M. hyopneumoniae-specific serum IgG titer (Log2Titer_63) of piglets 1379 

from the second trial (n=67). Scale represents Pearson correlation coefficients between 1380 

comparisons. Crosses designate insignificant (p>0.05) Pearson correlations. B. Mean (±SEM) 1381 

body weight (kg) of low (LR; n=6; filled circles) and high (HR; n=6; empty circles) at birth, 1382 

weaning, and end of trial time points experiment. C. Mean (±SEM) body weight (kg) of LR (n=6) 1383 

and HR (n=6) within the second and first trials at birth, weaning, and end of trial time points. D. 1384 

Mean (±SEM) Log2 M. hyopneumoniae-specific serum IgG titer of animals with the lowest (n=6) 1385 

and highest (n=6) weight at birth. P-values were determined using a two-tailed, unpaired Student’s 1386 

t-test with Welch’s correction.  1387 
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3.3.5 Conclusions to Section 3.3 1389 

The second vaccine trial provided multiple insights on using physiological markers as biomarkers 1390 

of vaccine responsiveness. First, plasma cytokines such as IFNγ and IL-1β show time-dependent 1391 

and litter-dependent effects in young piglets. Thus, a cytokine biomarker may need to account for 1392 

these temporal changes. Second, piglets with the highest plasma cytokines concentrations at the 1393 

time of vaccination did not have impaired vaccine responses. This suggests that while elevated 1394 

plasma cytokines can be associated with impaired vaccine responses, they may not always be 1395 

indicative of low vaccine responders. This is consistent with literature demonstrating that cytokine 1396 

profiling of low vaccine-induced antibody responders does not always reveal correlations with 1397 

IFNγ and IL-1β (Fourati et al., 2016; Qiu et al., 2018). As well, piglets with the lowest birth 1398 

weights did not have lower vaccine responses, which was hypothesized as a risk factor for impaired 1399 

immune responsiveness in humans and piglets (Bæk et al., 2020; McDade et al., 2001; Milligan 1400 

et al., 2002a). Since LR piglets selected in the first trial were seronegative and LR piglets selected 1401 

in second trial were seropositive, the inconsistencies between vaccine trials could result from the 1402 

definition of “low responder”. Further analysis is needed to verify whether seronegative low 1403 

responders have elevated plasma cytokines and lower birth weight compared to seropositive 1404 

responders. Together, data from the second trial provides further understanding of the immune-1405 

environment of piglets prior to vaccination and reveals situational-dependencies for utilizing 1406 

physiological vaccine responsiveness biomarkers. 1407 

  1408 
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4. DISCUSSION  1409 

 1410 

Vaccination remains one of the most effective methods for minimizing disease outbreaks 1411 

and reducing infectious disease incidence in human and animal populations. Antibiotics are 1412 

another tool for managing infectious diseases caused by bacterial infection, although antibiotic use 1413 

(and misuse) can contribute to the rise of antibiotic resistance in pathogens (Potter et al., 2008). 1414 

Other strategies such as genetic selection could facilitate the development of a healthier population 1415 

by selectively breeding for livestock with more protective immune responses and increased disease 1416 

resistance (Mallard et al., 2015). However, identifying highly heritable traits that correlate with 1417 

disease resistance and other immune traits requires further optimization (Samorè and Fontanesi, 1418 

2016). One potential limitation to the effectiveness of vaccination is that variations in vaccine 1419 

immunogenicity among individuals can result in unresponsive, susceptible individuals within the 1420 

population. Low vaccine responders have the potential for contracting and transmitting disease 1421 

agents, which compromises the protection afforded to the population by herd immunity. 1422 

Identifying effective biomarkers that predict vaccine-induced immune responses is one potential 1423 

solution to this problem. This thesis demonstrates complementary explorations for discovering and 1424 

validating potential biomarkers of vaccine responsiveness.  1425 

4.1 Pre-vaccination Phosphorylation Biomarkers of Vaccine Responsiveness 1426 

Pre-vaccination biomarkers of vaccine responsiveness are beneficial in two ways: their 1427 

detection could help identify low responders in a population, and they may provide insight into the 1428 

molecular mechanisms of the vaccine responsiveness phenotype. Therefore, a phenotype-first 1429 

approach identified high (HR) and low (LR) vaccine responders, and kinome analysis was 1430 

conducted on PBMCs collected from piglets prior to, and following, vaccination to identify the 1431 

signaling events associated with vaccine-induced antibody responses. Kinome analysis revealed 1432 

numerous differences in phosphorylation prior to vaccination when comparing HR and LR within 1433 

a discovery cohort. Differential phosphorylation of peptide targets representing proteins like 1434 

BLNK, TRAF6, IL6ST, and the others (Table 1) suggest differential signaling events within 1435 

PBMCs might influence processes involved in vaccine-induced antibody responses.  1436 

In an independent analysis that used the same vaccine responders from the first trial 1437 

described in Section 3.1, RNA-seq was conducted on PBMCs collected from high and low 1438 

responders at identical time points (Day 0, 2, and 6) (Munyaka et al., 2019). Munyaka et al. (2019) 1439 
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found no differences in gene expression between HR (n=15) and LR (n=15) on Day 0. While 1440 

Munyaka et al. (2019) used a larger sample size (n=15/phenotype) than the kinome analysis 1441 

(n=6/phenotype), their results suggested that HR and LR had identical transcriptional processes at 1442 

the time of vaccination, which contrasts with the kinome analysis of the same subjects. These 1443 

discrepancies could reflect different levels of sensitivity with each technology or the ability of the 1444 

kinome analysis to identify phenotypic differences that do not require changes in gene expression. 1445 

However, other transcriptional analyses have identified pre-vaccination differences in gene 1446 

expression that correlate with vaccine-induced responses in piglets. Functional enrichment 1447 

analysis of the gene expression events within PBMCs collected from 28-day old piglets prior to 1448 

M. hyopneumoniae vaccination found processes and functions such as cell junction and adhesion, 1449 

the extracellular matrix, signal transduction, and inflammation, were associated with vaccine-1450 

specific responses at 118-days post-vaccination (Blanc et al., 2021). Future vaccine responsiveness 1451 

investigations utilizing genomic or transcriptomic approaches might gain complementing 1452 

perspectives on the immune environment by incorporating systems analyses of protein post-1453 

translation modifications. 1454 

A previous kinome investigation conducted on PBMCs collected from humans and pigs 1455 

demonstrated that individuals have temporally stable phosphorylation patterns that were unique to 1456 

each individual, suggesting that individuals possess consistent signaling events independent of 1457 

immune stimulation (Trost et al., 2013b). The hypothesis that the baseline state of the immune 1458 

system affects immune responsiveness has been an area of recent exploration. Pre-vaccination 1459 

gene expression of apoptotic genes were positively correlated with vaccine responses in a previous 1460 

transcriptional analysis of humans vaccinated with an influenza virus vaccine, illuminating 1461 

potential baseline gene expression markers of vaccine responses (Furman et al., 2013). Tsang et 1462 

al. (2020) proposed that further understanding of an individual’s baseline state can direct new 1463 

methods of vaccine administration that modulate the immune system prior to vaccine delivery for 1464 

improved responsiveness (Tsang et al., 2020). However, this study uses young (28-day old) piglets 1465 

undergoing developmental changes similar to neonates in other species, such as changes in blood 1466 

leukocyte populations, cytokine production, and the transition from passive to active immunity 1467 

(Chase et al., 2008; Nguyen et al., 2007; Talker et al., 2013). Therefore, the “baseline” immune 1468 

state at Day 0 might not model the baseline states described in studies investigating mature, human 1469 

adults (Furman et al., 2013; HIPC-CHI Signatures Project Team and Consortium, 2017; Tsang et 1470 
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al., 2014). More accurately, this work revealed novel phosphorylation events when comparing 1471 

high and low vaccine responders, suggesting that differences in cellular activity at the time of 1472 

vaccination can influence vaccine-induced antibody responses.  1473 

4.2 Post-vaccination Phosphorylation Markers of Vaccine Responsiveness  1474 

The molecular events of vaccine responsiveness have been primarily characterized through 1475 

genomic, transcriptomic, cytometric, and microbiomic analyses to characterize the biological 1476 

mechanisms associated with vaccine responses. In this study, kinome analysis of PBMCs collected 1477 

from HR and LR at 2- and 6-days post-vaccination revealed a panel of 11 differential 1478 

phosphorylation events at 6-days post-vaccination, yet there were no differences at 2-days post-1479 

vaccination. The inability to detect differences between HR and LR at a particular time point may 1480 

result from strict statistical criteria for detecting differential phosphorylation events or could 1481 

accurately reflect kinase signaling changes within PBMCs following vaccination. Also, the kinome 1482 

array used in these analyses consisted of 282 phosphorylation events representing 148 proteins, a 1483 

small fraction of the complete porcine proteome. The kinome array did not represent all possible 1484 

protein targets involved in the innate immune signaling events 2-days post-vaccination. The most 1485 

significant number of temporal phosphorylation changes within LR occurred between 2- and 6-1486 

days post-vaccination, suggesting that active processes occurring within the PBMCs may not have 1487 

been captured on Day 2, but occurred between these two time points.  1488 

Compared to the transcriptional analysis by Munyaka et al. (2019), there were no 1489 

differential gene expression events between high and low vaccine responders at either 2- or 6-days 1490 

post-vaccination. However, a discrimination analysis was capable of partially discriminating high 1491 

and low responders using gene expression events at 2-days post-vaccination only. Proteins 1492 

encoded by the genes contributing to the distinction of high and low responders on Day 2 were not 1493 

represented on the kinome array used in the analyses reported in this thesis (Munyaka et al., 2019). 1494 

Therefore, it was not possible to directly compare the RNAseq data with the biomarkers identified 1495 

in the kinome study, emphasizing differences in the scope of these two analyses. Ultimately, HR 1496 

and LR selected in the first trial only had detectable phosphorylation differences, but no 1497 

transcriptional differences, at 6-days post-vaccination. The kinetics of kinase signaling and gene 1498 

expression likely influence their detection; signaling cascades can activate and decay within 1499 

minutes of stimulation, while mRNAs may take tens of minutes or hours to accumulate (Ben-Ari 1500 
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et al., 2010; Lemmon et al., 2016). Paired with the regulation of signal cascades and mRNA 1501 

abundance, finding kinomic or transcriptomic changes within HR and LR could be highly 1502 

dependent on the time of sample collection (Rauch et al., 2011).  1503 

Independent studies have observed transcriptomic changes that associate with antibody 1504 

responses in other vaccination trials and at other post-vaccination time points within piglets. For 1505 

example, Matthijis et al. (2019) demonstrated that gene expression of inflammatory and antigen 1506 

presentation networks occur within PBMCs of piglets vaccinated with experimental M. 1507 

hyopneumoniae vaccine formulations as early as 24-hours post-vaccination (Matthijs et al., 2019). 1508 

Furthermore, although there were no differences in gene expression prior to vaccination, high and 1509 

low antibody responders vaccinated against tetanus toxoid showed differences in gene expression 1510 

between 2-4 weeks post-vaccination (Adler et al., 2015). Together, these studies show that high 1511 

and low vaccine responder piglets can exhibit unique molecular changes at the transcriptomic level 1512 

that correlate with vaccine outcomes. The post-vaccination kinome data provides additional 1513 

evidence of molecular changes within PBMCs following vaccination.  1514 

4.3 Validation of Phosphorylation Biomarkers 1515 

Kinome analysis was performed on HR and LR representing the extremes of vaccine 1516 

responses, namely, subjects within the 80th and 20th percentile of vaccine-induced antibody 1517 

responses, respectively. One potential study design would utilize all 10 HR and 10 LR in a single 1518 

discovery cohort to discover differential phosphorylation events. While such a study design would 1519 

increase the statistical power to identify positive results with high confidence, it would lack the 1520 

ability to validate any discovered phosphorylation events. Therefore, the data was split into a 1521 

discovery cohort with 60% of vaccine responders (6 HR and 6 LR) and a validation cohort with 1522 

the remaining 40% of vaccine responders (4 HR and 4 LR). Piglets from the validation cohort 1523 

represented vaccine responders of less extreme phenotype compared to the discovery cohort. 1524 

Among the differential phosphorylation events identified in the discovery cohort, multiple 1525 

phosphorylation events were similarly differentially phosphorylated in the validation cohort. 1526 

Indeed, the small sample size of the validation cohort could result in lower statistical power for 1527 

detecting differences between HR and LR. As well, the difference in magnitude of vaccine 1528 

responses between discovery and validation cohorts may explain the incomplete agreement in 1529 

biomarker phosphorylation levels. Similar results were observed in an investigation using 1530 
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phosphorylation biomarkers to predict the susceptibility of honeybees to Varroa mite infestation 1531 

(Robertson et al., 2014, 2020). When applying phosphorylation biomarkers discovered in subjects 1532 

of the most extreme phenotype, the phosphorylation biomarkers had markedly less intensity within 1533 

the independent subjects of lesser phenotype.  1534 

A variety of other models used in systems vaccinology studies utilize sophisticated feature 1535 

selection, novel algorithms, independent populations for testing the model, and methods of 1536 

evaluating the model (Gonzalez-Dias et al., 2020). For example, a 10-fold cross-validation method 1537 

was used to develop predictive models for predicting CD8+ T-cell responses to Yellow Fever 1538 

vaccination and humoral responses to influenza vaccination in humans using gene expression data 1539 

(Gaucher et al., 2008; Nakaya et al., 2011). In both studies, multiple independent trials were used 1540 

to discover predictive biomarkers of the vaccine response and validate the sets of biomarkers. In 1541 

comparison to observations reported in this thesis, the validation methods here included a 1542 

comparative analysis of phosphorylation events, the clustering of the independent vaccine 1543 

responders, and replication of the vaccine trial in an independent population to evaluate 1544 

biomarkers. These validation methods might be improved in future trials with larger sample sizes. 1545 

4.4 Comparing Vaccine Responses between Trials 1546 

The two vaccine trials utilizing age-matched piglets exhibited different levels of 1547 

seroconversion and range of antibody responses following vaccination with the same commercial 1548 

vaccine. In the first trial (n=117), there was a 64-fold range in serum IgG titers resulting in both 1549 

seropositive and seronegative piglets. Comparatively, piglets from the second trial (n=67) had less 1550 

variance in serum IgG titers 11-days following booster vaccination than piglets from the first trial; 1551 

only an 8-fold range in serum IgG titers was observed between HR and LR in the second trial. 1552 

Interestingly, all the piglets from the second trial were considered seropositive (S/P<0.4) post-1553 

vaccination, demonstrating highly different distributions in vaccine responsiveness when 1554 

comparing the two vaccine trials. There are several factors to consider when comparing the 1555 

antibody responses of these two trials. 1556 

The first trial consisted of 117 piglets selected from 20 different litters, whereas the second 1557 

trial had almost half the number of piglets (n=67) selected from only 6 different litters. The larger 1558 

sample size in the first trial may have provided a higher probability of encountering vaccine non-1559 

responders that failed to seroconvert. Recently, a large population (n=182) of piglets from 47 sows 1560 
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was vaccinated with an inactivated M. hyopneumoniae vaccine (Stellamune; Elanco) at 28-days of 1561 

age. Broad variation of M. hyopneumoniae-specific IgG titers were observed at 21-, 35-, and 118-1562 

days post-vaccination. In agreement with the second vaccine trial described here, Blanc et al. 1563 

(2021) reported almost all pigs to be seropositive (S/P>0.4) 11-days following booster vaccination. 1564 

Only 19 piglets were seronegative (S/P<0.4) at 118-days post-vaccination (Blanc et al., 2021). 1565 

This study provides further evidence that piglets often exhibit variable M. hyopneumoniae-specific 1566 

responses following vaccination, albeit at a later post-vaccination time point than analyzed in the 1567 

first vaccine trial described here. 1568 

Another potential issue is that the two vaccine trials reported in this thesis were conducted 1569 

at different pig production facilities and there was a 5-year interval between studies. Both trials 1570 

used RespiSure-One with Amphigen adjuvant (lot numbers not recorded), and there was no 1571 

evidence that vaccine formulation changed within this timeframe (based on personal 1572 

communication with the Associate Director of Zoetis, USA). The two facilities may have 1573 

environmental differences, different animal handling practices that triggered a stress response, or 1574 

have differences in diet and microbiome composition that could modulate the magnitude of 1575 

antibody responses (de Groot et al., 2001; Tuchscherer et al., 2000). For example, the gut 1576 

microbiota composition of weaned piglets has been found to vary among facilities (Luise et al., 1577 

2021) and may impact humoral responses similar to other studies conducted in mice, humans, and 1578 

pigs (Hagan et al., 2019; Munyaka et al., 2020; Oh et al., 2014). Vaccine failure, a result of spoiled 1579 

vaccine or improper injection, may result in poor vaccine-induced responses. However, this is 1580 

unlikely to have occurred in the first trial because piglets were vaccinated in 4 batches (28-30 1581 

piglets/batch), and each batch contained both seropositive and seronegative vaccine responders. 1582 

Taken together, the two vaccine trials provide novel findings. First, vaccination with 1583 

RespiSure-One can result in variable vaccine-induced antibody responses. Second, the level of 1584 

seroconversion can either be complete, as in the second trial, or insufficient, as in the first trial. 1585 

The implications of this are that the LR subpopulations defined in the first and second trials may 1586 

not be biologically similar. For example, the LR selected for the first vaccine trial were 1587 

seronegative, but the LR selected for the second vaccine trial were seropositive. Thus, the 1588 

biomarkers discovered with piglets from the first trial might not be capable of identifying the LR 1589 

selected in the second trial. However, LR from the second trial had significantly lower antibody 1590 
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responses than the high responders and were utilized to evaluate the use of the pre-vaccination 1591 

biomarkers in the second trial. 1592 

4.5 Body weight as Biomarkers of Vaccine Responsiveness 1593 

Birth weight is considered a predictor of overall health and survival within piglets; low 1594 

birth weight piglets have a lower growth rate and a greater likelihood of pre-weaning mortality 1595 

(Milligan et al., 2002a; Quiniou et al., 2002). In the first trial, only piglets of average litter weight 1596 

were included to reduce inter-animal variability and ensure survival. Nevertheless, even with this 1597 

selection criteria, LR piglets still had lower body weight at birth and weaning than HR piglets. 1598 

Low birth weight had previously been associated with reduced vaccine outcomes in humans. For 1599 

example, multiple cohorts of persons vaccinated against hepatitis B virus or typhoid vaccines 1600 

demonstrated that reduced serum antibody titer was negatively associated with subject birth weight 1601 

(Han et al., 2012; Moore et al., 2004). In a study of adolescents vaccinated with typhoid vaccine, 1602 

low birth weight was significantly associated with reduced serum typhoid-IgG titers (McDade et 1603 

al., 2001). Incidentally, individuals with reduced serum typhoid-IgG titers also had higher pro-1604 

inflammatory C-reactive protein concentrations in plasma later in life than adolescents with higher 1605 

serum IgG titers (McDade et al., 2011). However, McDade et al. (2001, 2011) studied intra-uterine 1606 

growth restricted individuals. Since intrauterine growth restriction is not strongly correlated with 1607 

birth weight, McDade et al.’s conclusions may not implicate all individuals with low birth weight 1608 

alone (McDade et al., 2001, 2011). This relationship between birth weight and vaccine responses 1609 

is not fully understood, yet it is possible that pre- and postnatal factors have the potential to imprint 1610 

an offspring’s immune system. For example, piglets of lower birth weight receive less colostrum 1611 

after birth than higher birth weight littermates, which has been observed to have consequences on 1612 

a piglet’s developing immune functions (Bæk et al., 2020; Milligan et al., 2002b). Additional 1613 

experiments demonstrating an effect of piglet birth weight on vaccine-induced responses are 1614 

needed to support the biological relevance of these empirical associations. Overall, findings from 1615 

the first vaccination trial led to the hypothesis that low birth weight in piglets could provide a 1616 

simple biomarker of impaired vaccine-induced antibody responses.  1617 

In contrast, the second vaccine trial did not reveal significant associations between either 1618 

growth or weight with antibody responses in HR and LR piglets. To this effect, piglets with the 1619 

lowest birth weight in the second trial had similar antibody responses than to the highest birth 1620 
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weight piglets. Other studies have found that preterm infants and infants with low birth weight do 1621 

not have lower vaccine-induced antibody responses than healthy weight controls (D’angio et al., 1622 

2011; D’Angio et al., 1995; Saari, 2003). These studies suggest that while being a metric of 1623 

development and survival, birth weight does not always predispose individuals to fail to respond 1624 

to vaccination. A recent study found that high antibody responders to M. hyopneumoniae 1625 

vaccination had lower birth weights than low antibody responders, proposing a trade-off between 1626 

immunity and growth in piglets (Blanc et al., 2021). While trial-specific differences (e.g. facility, 1627 

animal handling) could have led to events that impacted vaccine responsiveness in low birth weight 1628 

piglets, the identification of piglets with low birth weight who developed seropositive antibody 1629 

responses in the second vaccine trial highlight the limitations of this biomarker. 1630 

4.6 Cytokines as Biomarkers of Vaccine Responsiveness 1631 

While prediction models have been valuable for identifying low vaccine responders, there 1632 

is an equal necessity to understand the root mechanisms leading to reduced vaccine 1633 

responsiveness. To gain insight into the immune mechanisms differentiating HR and LR, pathway 1634 

analysis was conducted on the differentially phosphorylated peptide targets prior to vaccination, 1635 

which implicated various cytokine signaling pathways. The differential phosphorylation of peptide 1636 

targets that contributed to cytokine pathway enrichment included TRAF6, part of the NF-κB 1637 

signaling pathway, IL6ST, a receptor for the pro-inflammatory IL-6 signaling pathway, and 1638 

STAT4, a transcription factor activated through IL-12 and type-1 interferon-mediated signaling. 1639 

As validation, cytokine analysis of plasma collected from HR and LR within the first vaccine trial 1640 

revealed that LR had greater plasma concentrations of IFNγ and IL-1β than HR. This observation 1641 

supported the hypothesis that pro-inflammatory environments at the time of vaccination can 1642 

negatively impact vaccine-induced antibody responses.  1643 

Systemic, baseline inflammatory processes have been associated with poor vaccine 1644 

responsiveness, which has been best defined in vaccine trials with older humans. For example, 1645 

higher levels of serum TNFα were negatively associated with influenza-specific hemagglutination 1646 

inhibition titers in older humans following influenza virus vaccination (Frasca et al., 2012b). Older 1647 

humans vaccinated with an HBV vaccine had reduced anti-hepatitis B antibody responses, higher 1648 

gene expression of genes involved in type II interferon signaling and complement pathways, and 1649 

increased activation of innate immune cell populations compared to adult controls (Fourati et al., 1650 
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2016). Munanja et al. (2014) found that greater frequencies of pro-inflammatory monocytes, 1651 

natural killer cells, and natural killer T-cells were present in circulation prior to vaccination against 1652 

Yellow Fever virus 17D within an African cohort showing impaired humoral and cellular vaccine 1653 

responses in comparison to a Swiss cohort showing unimpaired vaccine responses (Muyanja et al., 1654 

2014). The negative impact of inflammation on vaccine responses has also been observed in 1655 

investigations comparing older and obese mice with younger and healthy-weight mice, 1656 

respectively (Frasca et al., 2014; Park et al., 2014). Altogether, there is strong evidence that pre-1657 

vaccination inflammatory processes can negatively affect the magnitude of vaccine-induced 1658 

antibody responses.  1659 

The second vaccine trial further explored the dynamics of plasma cytokines as robust, 1660 

reliable biomarkers of vaccine responsiveness and revealed that plasma concentrations of IFNγ or 1661 

IL-1β at the time of vaccination were not significantly correlated with vaccine-induced antibody 1662 

responses. There was no difference in plasma IFNγ or IL-1β concentrations between the HR and 1663 

LR within the second trial. While the LR of the second trial did not represent seronegative vaccine 1664 

responders, the presence of seropositive piglets with high IFNγ and IL-1β concentrations at the 1665 

time of vaccination indicates these cytokines have limitations as biomarkers of impaired vaccine 1666 

responses. Indeed, cytokine profiling of vaccine responders has not always revealed correlations 1667 

between pre-vaccination pro-inflammatory cytokines and vaccine-induced antibody responses 1668 

(Fourati et al., 2016; Qiu et al., 2018). Other studies identifying an association between 1669 

inflammatory conditions and vaccine-induced responses were conducted in adult mice and humans 1670 

and may not translate to young, developing piglets.  1671 

However, it is possible that the cytokines detected within LR of the first trial and within 1672 

Litter 653-3E of the second trial had different biological functions. Inflammation can be viewed 1673 

on a spectrum, with basal, homeostatic levels at the lower end and disease-inducing levels at the 1674 

upper end (Chovatiya and Medzhitov, 2014). Elevated pro-inflammatory cytokines can reflect both 1675 

harmful (tissue damage, autoimmunities, necrosis) and beneficial (increased microbial killing, 1676 

response to pathogenic stimuli) inflammatory mechanisms (Bent et al., 2018; Schroder et al., 1677 

2004). Perhaps, high IFNγ, IL-1β, and TNFα within genetically different LR of the first trial 1678 

reflected innate immune-activation associated with poor vaccine-specific humoral responses, 1679 

while high IFNγ and IL-1β within Litter 653-3E of the second trial implicated homeostatic 1680 
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processes unrelated to vaccine responsiveness. In the future, seronegative low responders are 1681 

necessary to thoroughly test the hypothesis that low responders have greater pro-inflammatory 1682 

cytokines than high responders. If birth weight and plasma cytokines are associated with vaccine-1683 

induced antibody responses, it would suggest that low birth weight or elevated plasma cytokines 1684 

do not immediately predispose animals to impaired vaccine responses. 1685 

4.7 Plasma Cytokines at an Early Age 1686 

Within the second trial, there were litter-specific differences in cytokine concentrations at 1687 

birth. Specifically, there were consistent differences in IFNγ and IL-1β at various time points 1688 

among litters. The most prominent difference was found in a litter of 11 piglets with 2-3x higher 1689 

plasma IFNγ concentrations than the other 5 litters over multiple weeks. This litter of piglets was 1690 

presumably not impacted by an external stimulus, such as infection or injury. Plasma cytokine 1691 

concentrations may have been regulated by a maternal factor, such as genetics or epigenetics, or 1692 

an immunomodulatory environmental factor, such as stress, that specifically affected Litter 653-1693 

3E (Tuchscherer et al., 2000). These differences were not apparent at 63-days of age, suggesting 1694 

that elevated plasma cytokine concentrations reach a baseline level regardless of the concentration 1695 

at birth. Such litter-dependent effects have been observed on other immune parameters in piglets, 1696 

such as PBMC stimulation responses (de Groot et al., 2005). The presence of an entire litter of 1697 

piglets with elevated plasma cytokines, yet unimpaired vaccine responses, was further evidence 1698 

that plasma cytokines are not always associated with vaccine-induced antibody responses.  1699 

The second trial also revealed that plasma IFNγ and IL-1β exhibit temporal changes within 1700 

the first 9 weeks of a piglet’s life; specifically, plasma IFNγ concentrations declined after birth 1701 

and this decline was evident by 14 days of age. Both IFNγ and IL-1β concentrations were lower at 1702 

9 weeks of age compared to concentrations at birth. These results augment previous work by 1703 

Nguyen et al. (2007) who found piglets had decreasing serum concentrations of cytokines such as 1704 

IFNγ, IL-4, and IL-6, within the first 2 weeks of life. Reasons for these decreases are not entirely 1705 

understood but could reflect exogenous absorption of maternal cytokines and colostral cells via 1706 

colostrum from the sow, followed by endogenous production by the piglet as it develops (Nguyen 1707 

et al., 2007; Williams, 1993). Serum IL-1β and IL-6, but not TNFα, concentrations were elevated 1708 

in human infants at 1-day of age and then significantly declined between 1- and 40-days of age 1709 

(Sarandakou et al., 1998). The time-dependent and litter-dependent plasma cytokine 1710 
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concentrations in piglets from the second trial further restrict the feasibility of using plasma 1711 

cytokines as a possible biomarker of vaccine responsiveness. 1712 

4.8 Limitations and Future Directions 1713 

This research introduced new avenues for advancing the understanding of vaccine 1714 

responsiveness and for recognizing the limited circumstances of biomarkers of vaccine 1715 

responsiveness. However, these projects also possess limitations in their analysis that must be 1716 

addressed when pursuing future investigations. 1717 

This research uses vaccine-specific antibody responses as the metric of vaccine 1718 

responsiveness. Antibody-mediated immune responses to M. hyopneumoniae are not considered 1719 

protective against infection (Djordjevic et al., 1997). Thus, a vaccine response does not equate to 1720 

protection in this study. Possibly, LR developed strong cell-mediated responses that were not 1721 

measured here yet would be considered a vaccine response in other studies. In the second 1722 

vaccination trial, piglets had varying concentrations of cytokines but this had no significant effect 1723 

on vaccine-specific antibody responses. It remains unknown whether elevated plasma IFNγ or IL-1724 

1β impedes vaccine-specific cell-mediated responses. Therefore, future investigations should 1725 

incorporate cytometric techniques for investigating the heterogeneity of cell populations (ex. 1726 

monocytes, natural killer cells, or naive T- and B-cells) and quantify cellular responses, as in other 1727 

vaccine responsiveness studies (Gaucher et al., 2008; Li et al., 2017). Insight into cell populations 1728 

may also provide context for the results of the kinome analysis. Since the kinome analysis in the 1729 

first vaccination trial was conducted on an assorted population of PBMCs, different proportions of 1730 

immune cell subpopulations may contribute to unique phosphorylation patterns.  1731 

When validating the phosphorylation biomarkers detected in the first vaccination trial, 1732 

cluster analysis and statistical methods were used to evaluate if differential phosphorylated events 1733 

consistently appeared in multiple cohorts. The opportunity remains to utilize more advanced 1734 

techniques to classify ‘vaccine responders’ vs ‘vaccine non-responders’. Others have developed 1735 

pipelines and models for predicting vaccine responsiveness using transcriptomic data, and a similar 1736 

approach can be taken using phosphorylation intensity data (Furman et al., 2013; Lee et al., 2016; 1737 

Nakaya et al., 2011; Querec et al., 2009; Tsang et al., 2014). Predictive capabilities become more 1738 

robust as they are tested on independent populations, which is a vital component of this project; 1739 

using the panels of phosphorylation biomarkers to predict vaccine responses in an independent 1740 
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population of pigs would be an ideal test of reproducibility. As this kinome analysis focused on 1741 

using vaccine responders with the highest and lowest serum IgG titers as verification, the inclusion 1742 

of average/median vaccine responders may provide additional perspectives on the accuracy of 1743 

these phosphorylation biomarkers (HIPC-CHI Signatures Project Team and Consortium, 2017; 1744 

Thompson-Crispi et al., 2013). HR and LR from the first trial could be utilized to identify 1745 

differential phosphorylation changes between vaccine responders following vaccination if the trial 1746 

included age-matched, unvaccinated controls to account for the developmental immune changes 1747 

independent of vaccination. Lastly, biomarkers must be tested using a different vaccine type, given 1748 

that Li et al. (2014)  found that different human vaccines can  have unique vaccine type-specific 1749 

transcriptional responses (Li et al., 2014). 1750 

The second vaccination trial evaluated the results of the first trial by testing plasma 1751 

cytokines and birthweight as biomarkers for vaccine responsiveness in an independent trial 1752 

population. The second trial provided results that provoked additional questions for understanding 1753 

the immune physiology of neonate piglets. Are there physiological consequences of having greater 1754 

circulating IFNγ at a young age? If so, what role in immunity and development do these cytokines 1755 

play? Do these cytokines represent endogenous production from the piglet? Were cytokines 1756 

transferred from the sow at or before birth? Or was it a combination of endogenous production 1757 

directed by maternal factors? Future directions that investigate these questions should consider 1758 

collecting a comprehensive set of samples from sow and offspring at time points immediately at 1759 

and following birth. With archived cells such as PBMCs collected at a young age, there is an 1760 

opportunity to measure IFNγ-stimulated genes if IFNγ concentrations are high in plasma. In 1761 

addition, blood and colostrum samples collected from the sow may provide insight into the source 1762 

of plasma cytokines in piglets. Finally, a longitudinal analysis of litters from the same sow may 1763 

answer whether litter-specific differences in plasma cytokines represent a maternally-derived 1764 

effect or a consequence of environmental factors. 1765 

  1766 
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5. CONCLUSIONS 1767 

Low and non-responders to vaccination create a challenge to achieving protective 1768 

immunity, both in individuals and the population. The identification and subsequent management 1769 

of low responders could have tremendous benefits for achieving a healthier livestock population 1770 

and improving vaccination programs. This thesis identifies birth weight and elevated plasma 1771 

cytokines at the time of vaccination as biomarkers that were not consistently associated with 1772 

impaired vaccine responses in piglets. Plasma cytokines demonstrate highly variable 1773 

concentrations between subjects and over time, suggesting their use as a stand-alone biomarker 1774 

should be heeded. However, phosphorylation events had increased potential for prediction of 1775 

vaccine responsiveness and may complement other systems approaches by offering a novel 1776 

perspective of the host immune response to vaccination. Together, these data provide insight into 1777 

molecular events that may be associated with vaccine responses within a critical livestock species 1778 

and evaluate the feasibility of using specific physiological factors as biomarkers of vaccine 1779 

responsiveness.   1780 
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