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ABSTRACT 

Legume seeds are usually inoculated with liquid or peat-based rhizobial 

inoculants, but the recent in~oduction of soil-applied granular inocuiants for chickpea 

(Cicer cuietimmr L.) in Saskatchewan has stimulated interest in this formulation, Field 

and growth chamber experiments with chickpea were conducted to assess the efficacy 

of granuIar inocdants compared to seed-applied liquid or peat-based inocuIants. 

In the field, granular inoculants were either placed in the seed furrow or side 

banded 2.5 or 8.0 cm below the seed. The nodule dry weight for the Kquid inoculant 

was lower than that for the peat or granuIar inoculants. NoduIe formation in the seed- 

inoculation treatments was restricted to the crown region of the root system. whereas 

soil inoculation in particular, below the seeding depth resulted predominantly in lateral 

root nodules. In the field, soil inoculation increased dry matter yield plant-' over seed 

inoculation, but the increase was minor in the growth chamber. In 1997 granular 

inocularit placed below seed increased kabuli seed yield by 36 and 14% over the liquid 

and peat-based inoculants, rrspectively, whereas desi seed yield increased 17 and 5%. 

respectively. However, yields were inconsistent in 1998- In the field, seed protein 

concentration, percentage N derived born atmosphere (%Ndfa) and amount of N2 

fixed for the seed were typically tower for the liquid inoculant than those for the peat 

and granular inoculants. Similar trend was observed for %Ndfa and N2 tixed in the 

growth chamber. The rate of Nz fhation in the growth chamber increased from the late 

vegetative stage (28 DM) to a peak at the early pod-filling stage (56 DM) and 

declined thereafter. The dry weight of lateral root nodules was highly correlated with 

both plant dry weight and seed yield but the relationship was inconsistent in kabuli in 

1998, presumably due to droughty conditions. Based on the field results. placing 

granular inocdaut 2.5 to 8.0 cm below the seed may be the optimum. 

The isotopic kctionation (p) values during N2 f~ation by desi and kabuli 

chickpeas, grown in N-fiee nutrient solution, were not influenced by the infecting 

rhizobial strain at the flowering stage, but the P values for the harvested seed in the 



desi were dependent on the chizobid strain. Nodule dry weight. plant dry weight and 

N accumuIation did not differ in either the desi or kabuli chickpea. except for plant N 

yield, which was'lower in the mixed-main inoculant in the kabuti chickpea. 

The swvival of Rhizobium ciceri on chickpea seed treated separately with 

Apron, Artest 75W, Crown or Captan, was examined under laboratory conditions 

Fungicide treatment decreased rhizobid viability on the seed. The toxicity of the 

hgicides in terms of rhizobid viability increased in the foilowing order: Control = 

Crown < Arrest = Apron < Captan. In the growth chamber. Crown reduced nodulation 

Nz fixation and shoot dry matter. Seed treated with Arrest and Captan decreased 

nodule dry weight and N2 fixation, but only Arrest reduced dry matter yield. Apron 

had no effect on any of the parameters measured at the early pod-tilling stage and may 

be compatible with chickpea inoculum. 
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1. INTRODUCTION 

Chickpea (Cicer arietinum L.) is one of the most important dryland pulse crops 

in the Indian sub-continent, Turkey and the Middle East. It has recently been 

introduced into Saskatchewan and currently is grown on nearly 140,000 ha 

(Saskatchewan Agriculture and Food, 2000). Like other legumes, chickpea can fix 

atmospheric Nz through a symbiotic association with an effective strain of Rhizobium, 

reducing its dependence on soil N. The chickpea-Rhizobium symbiosis is highly 

specific (Silsbury, 1989), and because western Canadian soils do not contain sufficient 

numbers or the specific rhizobia to establish an effective association, inoculation is 

essential to ensure that a large and effective rhizobial population is available in the 

rhizosphere of the plant to facilitate nodulation and Nz fixation (Hynes et d., 1995). 

The success of any inocdation program depends on many factors, including 

environmental conditions, rhizobial strain, inoculant carrier and inoculation method 

(Smith. 1992; Hynes et al., 1995). Most early research in the area of Rhizobium 

inoculant formulation focused on the carrier material, which included peat (Kremer 

and Peterson. 1982); coal (Crawford and Berryhill, 1983); clay. e.g., montrnorilIonite 

and vermiculite (Sparrow and Ham, 1983; Paau et al., 1990); alginate (Jung et d.. 

1982); polyacryIamide gel (Dommergues et d., 1979); and compost made From 

sawdust or rice husks (Khatri et at., 1973). Ideally, the carrier material should support 

large numbers of viable rhizobia for extended periods of time in a suitable 

physioIogicaI state to maintain the effectiveness of the rhizobia and to facilitate the 

ready formation of a symbiotic association with the host seedling (Paau et al., 1990; 

Paau, 1991). 

The most common inocdation method involves treating the seed with a peat- 

based or liquid inoculant prior to planting. Although this practice is widely accepted, 

its efficiency is questionable under severid situations (Bmkwell and Bottornley. 1995; 

Bmckwell et d., 1995). The folIowing have been identified as situations or conditions 



in which seed inoculation may not be suitable: (1) pre-emergence disease or insect 

attack may make it necessary to use seed dressings of fimgicides or insecticides, many 

of which are toxic to rhizobia (Brockwell, 1977; Brochell and Bottomley, 1995; 

Brockwell et al., 1995); (2) inocdation for Iarge-hectare sowings of pulse crops with 

high seeding rates is a major task, which restricts the seeding operation (Brockwell, 

1977; Prairie Agricultural Machinery Institute, 1991; Rennie et al., 1993); (3) seeds of 

crops, which push the seed coat and the cotyledons out of the soil during emergence 

(epiged emergence), in which case hizobia on the seed coat are not deposited in the 

mil (Brockwell, 1977; Jauhri and Rao, 1989); (4) seed coats of some legumes contain 

materials toxic to rhizobia (Thompson, 1960); (5) some seeds are extremely hgi le  

and over-handling can cause reduced germination and emergence (Wani et al., 1995); 

(6) the seed surface places a h i t  on the number of rhizobia which may be applied, a 

common problem when seed size is small (Brockwell et al., 1980; Clayton et al., 

1996); and (7) there is little protection from desiccation on the seed before planting 

and exposure to environmental stresses, including drought and high temperature after 

planting (Kremer and Peterson, 1982; Smith. 1992). 

As a consequence of the many limitations associated with seed inoculation. 

interest is growing in the use of granular inoculants because they are applied directly to 

the soil. Granular inoculation has advantages in tenns of storage. handling and ease of 

application and the fact that rhizobial rates can be increased far beyond those applied 

by conventional seed inoculation (Bezdicek et al,, 1978). Soil inoculation minimizes 

direct contact with chemically created seed and does not involve seed mixing which 

tnay disrupt delicate seeds (Smith, 1992). Granular inocu1ant.s are able to withstand 

low moisture conditions as compared to the powdered form (Dean and Clark, 1977). 

Furthermore, granular inoculant provides slow release of rhizobia over a longer period 

(Bashan, 1986). Although the superiority of direct .soil inoculation over seed 

hocdation is widely recognised littie information is available on this method of 

introducing rhizobia to the soil. Therefoe the main objectives of this research 

program were to: 



I .  Evaluate the effect of seed and soil inoculation methods on nodulation, N7 fixation 

and yield in chickpea; 

2. Determine the optimum placement depth for granular inoculum; 

3, Examine the contribution of Iateral root nodulation to Nz fixation and yield; 

4. Investigate the time-course of N2 fixation in chickpea; 

5. Examine the survival of Rhirobium ciceri strain CP39 inoculated onto fungicide- 

treated chickpea seeds, and the subsequent nodulation, N2 fixation and dry matter 

production of chickpea. 



2. LITERATURE REVIEW 

2.1 Chickpea 

Chickpea belongs to the family Leguminosae, subfamily Papilionoideae, and 

tribe Viceae (Saxena, 1984). It is an indeterminate herbaceous annual. According to 

Singh (1978), the IikeIy progenitor of the cultivated species is Cicer reticuIufum. The 

main cultivated types are the large-seeded, rounded and creamcoloured kabuli 

chickpea (also known as garbanzo), and the reIatively smalI-seeded, irregularly shaped 

and variously colotired desi chickpea, dso known as bengal gram (Smithson et d.. 

1985). As a resdt of its larger size and reduced pigmentation (tannin), the kabuli 

chickpea is regarded as more advanced through sustained selection (Smam, 1990). 

Although loss of pigmentation improves the nutritional qudity of chickpea it 

increases susceptibility to insects and diseases. For this reason, the disuiiution of the 

two types may be related in part to the distribution and severity of insects and diseases. 

The cultivated form of chickpea likely originated in Anatdia Turkey 

(Ladkinsky. 1975; Keatinge et ai.. 1995) and traditionally has been grown throughout 

the semi-arid regions of the Indian subcontinent and the Mediterranean (Singh and 

AuckIand. 1975). tt is the third most important pulse crop (after dry bean and pea). 

accounting for about 15% of the worId puke production (Saskatchewan M s e  Crop 

DeveIopment Board. 1997). India, Pakistan, Bangladesh and Nepal grow almost 90% 

of the total world area of chickpea (Minchin et d., 1980; Saxena, 1984). India is the 

Iargest chickpea producer with an annual production of about 4.5 million tomes from 

about 7.0 million ha (Amin et al., 1994), and Turkey is the largest chickpea exporter 

(Keatinge et al., 1995). 

Chickpea is also an important crop in Mexico. In Australia and North America. 

chickpea is a recent introduction. The 6rst commercial cdtivation of the kabuli 

chickpea in the United States began in 1981 and it is now grown in California and in 



the Palouse Region of Washington and northern Idaho (Kaiser and Muehlbauer. 1994). 

In Canada, both desi and kabuli chickpeas were introduced into the western Canadian 

agricultural system in the late 1980s (Vandenberg and Slinkard, 1996). The crop is 

best suited to the Brown and Dark Brown soil zones (Vandenberg and Slinkard, 1997). 

Chickpea is a cool season plant usually grown as a winter crop in India, the 

MiddIe East, Australia, and South and Central America and matures on residual soil 

moisture. It is very sensitive to excessive moisture, high humidity and cloudy weather 

which h i t  flower production, seed set and yield (Kay, I979), but increase the 

incidence of diseases (Saxena, 1984). Among the four major diseases (ascochyta 

blight. fksarium wilt, botrytis and stunt) of chickpea, ascochyta blight is the most 

serious and can destroy the entire crop (Smithson et al., 1985; Saskatchewan Puke 

Crop Development Board, 1997). 

2.2 Symbiotic nitrogen fuation 

Chickpea, like most legumes, establishes a symbiotic association with a 

compatible strain of Rhizobium. The Rhizobium-legume symbiosis is a well-organized 

system involving many steps: signal exchange and recognition of the symbiotic 

partners; attachment of the rhizobia to the plant root hairs; root hair deformation: 

invasion of the root hair by rhizobia; infection thread formation; nodule initiation; 

bacteriod development: and formation of &fixing nodules (e-g.. Vincent. 1980; 

Sprent. 1989; Hich.  1992; Mylona et d., 1995). Nodules are grouped into two main 

types; determinate and indeterminate (Hansen, 1994). In determine nodules [e.g., 

soybean (Glycine mar L. Men.), common bean (Phaseolur vulgaris L.)], cell division 

is over a short duration and the nodules are usually spherical. In contrast, 

indeterminate nodules [e.g., pea (Pisum satburn L.), alfalfa (Medicago sativa L.)] 

a metistem which gives rise to differentiated ceUs that may become infected 

with rhizobia Due to the continued cell division indeterminate nodules ate generally 

cyIindricaI in shape (Hansen, 1994). Chickpea nodules have not been studied in 

detziiled but based on the shape, they may be indeterminate. 



Once symbiosis is established the host piant provides carbon substrate as a 

source of energy; and the bacteria reduce atmospheric N2 to ammonia, which is 

exported to plant tissues for protein synthesis (Keyser and Li, 1992, Paul and Clark, 

1996). The effectiveness and efficiency of the symbiotic system is dependent markedly 

on the mutual compatibility of both partners (Keyser and Li, 1992). Thus, in many 

soils, sufficient numbers of the bacteria of the correct rhizobial species, and strain for 

the host cultivar must be introduced (Hynes et al., 1995). Despite the selection of 

effective rhizobial strains for use as inoculants, inoculation does not always lead to 

increased NZ fixation due to environmental stress and the inability of the inoculant 

strain to occupy a significant proportion of the nodules (McLoughlin et al., 1990a,b; 

Thies et al., 1991; Griffith and Rougidey, 1992; Carter et al., 1995; Issa and Wood, 

1995). 

2 3  Factors influencing the success of inoculation 

The success or failure of an inocdation technology is determined by a number 

of factors. Soil factors, such as moisture (Boonkerd and Weaver, 1982; Postma and 

van Veen, 1990: Griffith and Roughky, 1992; lssa and Wood, 1995), temperature 

(Munevar and Wollum, 1981; Roughky, 1985; KIuson et al., 1986), pH (Evans et al.. 

1990; Blarney et al., 1993; Flis et aI., 1993; Brady et d., 1994), salinity (Singleton et 

al.. 1982; Singleton, 1983; Elsheikh and Wood, I WOa,b; Zahran, 199 l), N avaiIability 

(Streeter, 1988; Minchin et al., 1989; Abaidoo et d., 1990; Kanayarna, 1990), climatic 

conditions (Roughley et al., 1993; Hansen, 1994), and the presence of competing 

indigeneous rhizobial popdations (E3oMwl and Schmidt, 1973; Singleton and 

Tavares, 1986; Thies et al., I99 1,l W), iduence the ability to achieve increased crop 

productivity through inoculation. Under adverse c h t i c  or soil conditions or when 

indigeneow rhizobial populations are high, soil inoculation out-performed the 

conventional seed-applied inoculant (Scudder, 1975; Dean and Clark, 1977; Bezdicek 

et al., 1978; BrockweU et al., 1980; Kamicker and Brill, 1987; Danso and Bowen, 

1989; Hardarson et aI., 1989; McDennoutt and Graham, 1989; Danso et ai., 1990; 

Rice and Olseu, 1992). In these studies, the sipificauce of high rates of inOCULum in 



achieving maximum survival of the introduced rhizobia was emphasized The success 

of soil inoculation in the field depends on the relative competitive advantage provided 

by the high rate of rhizobia application and the ability of the rhizobia to persist under 

unfavourable environmental conditions when applied as granular inoculant as 

compared to seed-applied inoculation. 

23.1 Effect of the inoculated seed 

For any inocdation method, the number of rhizobia applied and the number that 

survive are important factors that influence nodulation and N2 fixation. EvaIuation of 

seed-applied inoculation has revealed that in small seeded tegumes the surfbce area of 

the seed often cannot accommodate sufficient inocdant to obtain maximurn 

nodulation (BrockweU et al.. 1980). In addition, the numbers of infective rhizobia can 

drop dramatically between seed inoculation and plaating (Rodriguez-Navarro et al., 

199 1 ; Ramos and Ribeiro, 1993; Rougbley et al., 1993). In these studies, poor survival 

of inoculant rhizobia after their application to the seed was l i e d  to seed coat toxins. 

chemical treatments and other environmental factors. 

23.1.1 Seed size 
The inocdum potential of seed-applied inoculants is a hct ion of the number 

of rhizobia applied and their subsequent SUrYivaI ,both on the seed and before 

germination. In studies on the effect of inoculant rates on nodulation the numbers of 

rhizobia and quantities of carrier have been confounded (Roughley et d., 1993), 

making it Wcult to separate the individual effects- One important disadvantage of 

seed-applied inoculants is the limitation of the qwtity of rhizobial inoculum that can 

be placed on the surface of the seed (BrockweN et d., 1980, 1982; Smith, 1992; 

Clayton et aI., 1996). AIthough high rhizobia popuIations can be easily applied to 

large-seeded Iegumes (e-g., kabuli chickpea), the scope for this approach is Iimited 

because a large amount of the inoculant on the seed is unlikely to remain in pIace 

during passage through the seeder (BrockweU et d., 1988; RoughIey et al., 1993). 

According to BrockweU et al. (1988), inoculant losses in the range of 94-99% occurred 



between soybean inoculation and planting, attniutable, in part, to separation of 

inoculant and seed as it passed through the machinery. On the contrary, they observed 

no such loss of rhizobial viability with liquid inocuiants applied directly to the 

seedbed. 

2.3.1.2 Mode of seed germination 
Another downside of seed-applied inoculants is that in legumes with epiged 

germination the seed coat often adheres to the cotyledons when they are pushed above 

ground during seedling emergence, leaving only a portion of the inoculurn in the soil. 

In the case of crops grown on residual soil moisture, the introduced rhizobia cannot 

move downward with the gowing root fiom the dry d a c e  soil where the inocdum 

was placed (Wani et al., 1995). The only report on the influence of epigeal germination 

on inoculation is by Jauhri and Rao (19891, who evaluated the reduction in the 

inoculated rhizobial population due to epigeal germination and emergence in soybean 

(Glycine mar) seed. using different levels of gum arabic as adhesive. They found that 

the loss of rhizobia increased linearly with increasing concentration of gum arabic and 

decreased with increase in soil m o i w  or the depth of placement of inoculated seed 

in the moist soil. The results suggest hat increase concentration of gum arabic 

enhanced the binding of the inoculant rhizobia to the seed coat that eventually was 

carried above the soil surface. On the other hand, an increase in soil moisture as well 

as depth of sowing facilitated reIease of the rhizobia from the seed coat. 

2A1.3 Seed-coat toxins 
Toxic diffusates from seed coats affect the survival of rhizobial inoculum 

applied to legume seeds (Thompson, l%O; Materon and Weaver, 1984 Rodriguez- 

Navarro et al., 1991). Thompson (1960) showed that untreated and autoclaved seeds of 

subterranean clover (Trifofhm subremaneurn L.) and their e-ts inhibited the 

growth of Rhirobium rn3lii when piaced on the d a c e  of yeast mannit01 agar in petri 

dishes with a nupension of 5 x 10' rhimbia, but soaked seed did not. Further 

investigation showed that the inhliitor was associated with, and extractable from, the 

seed coat. The presence of inhiiitory compounds in the seed coat of subterranean 



clover was evident since soaking the seed before inocuIation and planting greatly 

improved nodulation by the applied inoculum. Furthermore, physical separation of the 

seed coat and the inoculum, by coating the seed with inert material before inoculation, 

improved nodulation of subterranean clover (Thompson, 1960). 

Bowen (1961) tested diced-sterilized seed of Centrosemu pubescens, 

subterranean clover and alfalfa (Medicago sativa L.) against seven Rhizobium strains 

isolated fiom a wide range of legumes. He found that the degree of inhibition varied 

markedly with Rhizobium strain and legume species. Generally, seed difkates fiom 

subterranean clover were more inhibitory than those h m  C. pubescens or alfaifa 

Moreover, aimost all of the antibacterial activity arose from the seed coat. The 

relationship between the inhi'bitory effect, identified by the agar-plate assay. and the 

multiplication of Rhirobium around the seeds in a more natural environment was 

studied by inoculating subterranean clover seeds and planting them in heat-sterilized 

sand or soil moistened to field capacity with plant nutrient solution. He found that R. 

aiji-uiii strain RTR IS1 multiplied on seed in sand, but did so to a much lesser extent 

than on glass beads used as the control. In the soil, a decline in population occurred 

aromd the seed, whereas a slight increase occurred around the beads. He concluded 

that seed cliffbates had an inhibitory effect on rhizobial growth. 

The inhibitory effect of seed diffusates of different legumes on rhizobial 

growth was also examined by placing surfaced-sterilized, soaked and unsoaked seeds 

in petri plates on which a rhizobid population had been estabIished (Dadarwal and 

Sen. 1973). The unsoaked seeds of all the legumes examined showed a dear growth 

inhibition zone around them, but the soaked seeds were not inhibitory. In addition, 

Dadarwal and Sen (1973) investigated the survival of rhizobia inoculated on surface- 

sterilized soaked (for 24 h) and unsoaked pea (Pimm sarivum) and desi chickpea 

seeds. For the unsoaked seeds, the applied rhizobial population deched by 40 and 

88% for the pea and desi chickpea, respectively, after 24 h. Seven days after 

inoculation, ody 10 and 6% of the initial numbers of rhizobia applied to the woaked 

pea and desi chickpea seeds, respectively, survived. In contrast, the rhizobial 
- population on the soaked seeds increased over the first seven days. In pot studies, they 



found that inoculation of unsoaked seeds increased pea yield by 28.7% and desi 

chickpea yield by 33.8%, whereas inoculation of soaked seeds increased pea yield by 

79.5% and desi chickpea yieM by 74.5%. 

Rodriguez-Navam et al. (1991) observed that the failure in the establishment 

in a new mlla (Hedysmum coronmium L.) field was associated with a decrease of 

viable rhizobia on the seeds before they germinated. The decline in viabiiity was 

attributed partially to seed coat toxicity. Similarly, Materon and Weaver (1984) 

reported a toxic seed coat effect on Rhuobium populations. For exampIe, a 10-fold 

decline in rhizobid numbers within one day was found for R trfolii peat inocdant on 

white c1over (Tnf'oliunr repens L.) seeds (Materon and Weaver, 1985). A 90% 

reduction in the number of viable cells of R meliloti and R frifolii occurred within one 

hour when peat-base inoculant was applied to alfalfa and white clover seeds (Burton, 

1976). SimiIarIy, significant losses of viabiIity of B. juponicum peat inoculum on 

soybean seeds were observed by other researchers. In these studies, a 10-fold deche 

was observed after one week (Davidson and Reuszer, 1978), after two days (Elegba 

and Rennie, 1984) and after one hour (Burton, 1976). 

The noddation failure of birdsfoot trefoil ( L o u  cornicuIu~rts) was attributed 

to a rapid decline in numbers of viable rhizobia on the seed due to seed coat toxicity, 

as only 5% of those applied were present 24 h after inoculation (Chapman et al., 

1990). Similarly, Lowther and Patrick (1995) observed that the survival of 15 strains 

of Rhizobium lod on birdsfoot trefoil seed 24 h after inoculation varied fimm I to 89%. 

Working with R legrcminosarum bv, tnBlii strains WU95, Bradyrhizobium japonicrrm 

strain CB 1809 and B. lupini strain WU425, Griffith and Roughley (1992) reported that 

numbers of viable rhizobia on seed dropped rapidly in the first 6 h, whereas on beads 

some multiplication occurred up to the third day. Thereafter, numbers deched with 

time, but were always significantly greater on beads than on seeds for the ikst 14 d 

after moculation- AAer storage for 28 d, this difference in survival diqpeared. While 

the rapid death rate on seeds compared with beads in the tkst 6 h after inoculation 

could be attributed to the effects of seed coat toxin, the effect of environmentd stress, 

such as desiccation, codd have been a complicating f ao r .  



23.2 Effect of environmental factors 

The environmental conditions during inoculation and planting can affect the 

survival and infectivity of rhizobia on the Iegume seed. Dehydration of inoculated seed 

and its exposure to high temperature have been identified as major factors limiting 

nddation success (Brockwell et al., 1987; Roughley et aI., 1993; Hansen, 1994). 

23.2.1 Moisture 

Inoculant carriers help stick the inoculum onto the seed surface and protect the 

rhizobia, to some extent, h r n  desiccation. However, desiccation of the seeds and 

adhering rhizobia is still a serious problem, when using conventional inoculation 

techniques (Hansen, 1994). Only a few studies have been conducted to examine the 

effect of dehydration on viability of rhizobia after seed inoculation and before 

planting. Roughley et al. (1993) determined the sUCVival of Bradyrhuobium sp. on 

narrow-leaf lupin (Lupinus angtrstifoolius L.) during seed inoculation, transport to the 

field, planting and on seed recovered fiom the soiI. Using the most probable number 

(MPN) method, they found that the number of viable bradyrhizobia declined by a 

factor of I0 after one hour. During the 3.75 h b t  elapsed, while the seed was augered 

into a tmck h m  the mixer, transported to the field and augered into the seed box. the 

number of viable rhizobia dedined to less than 1 % of the original number. Rapid death 

occurred in the air seeder where a fitrther decline of 40% occurred in 5 min. At the 

point of sowing, the number of viable rhizobia per seed decreased from logto 5.15 to 

3.83, an overall loss of 1.3 x lo5 rhizobia or 95% of the rate applied. Following the 

first day in the soil, 85% of the remaining rhizobia died as a resuit of desiccation. The 

quantity of peat within the range of 0,125 - 3 times the Australian recommendation for 

inocdating seed had no effect on the noddation of narrow-leaf lupin, indicating the 

carrier offered the rhizobia little or no protection h m  desiccation. 

The decline in viabfity of R nifolii strains WU1 and R meliloti W 9 6  was 

investigated during the first hour after inoculation of mung bean (Vignrr radiata) seeds 

(SaIema et aI., 1982). Besides using adhesive done for the inoculation, they included a 

treatment in which a mixture of sucrose and sodium glutamate was added to minimize 



desiccation of the rhizobiai ceiis. The d t s  indicated that, when the e b i a  on h e  

seed were unprotected, the decline in numbers occurred in distinct phases: a phase of 

relatively slow death rate, while the seed remained moist, followed by a very high 

death rate phase shortly after loss of visible moisture on the seed Following the 

second phase, numbers of viable rhizobia stabilized for about 15 min before a 

significant death rate resumed. On the other hand, the overall death rate was reduced 

when the rhizobia were protected against desiccation. 

Tolerance to desiccation varies considerably among rhizobia For example, 

slow-growing strains of Bradyrhimbium japonicum and the "cowpea miscellany" 

survived better than fast-growing R meliloti and R nijXii, when subjected to severe 

desiccation at 27°C or 50°C (van Rensburg and Strijdom, 1980). In contrast, a higher 

survivaI rate was recorded for the fast-growing strains than the slow-growing strains 

when subjected to mild desiccation (moisture tension of about 80 MPa) at 27°C. 

However, at this same moisture tension, the slow-growing strains survived in higher 

numbers than the fast-growing strains, when the temperature was increased to 40°C. 

Although the authors attributed the difference in behaviour of the Rhizobium species at 

different moisture tensions to differences in the internal water-retaining abilities of the 

cells, the fact that the slow-growing strains were more resistant to desiccation than the 

fast-growing strains at 40°C. but not at 27T, illustrates that temperature dso plays an 

important role in determining the survival of these Rhizobium strains on inoculated 

seed. 

23.2.2 Temperature 

Exposure of thizobid inoculant to high temperatures during traasportatios 

storage, and planting often resuIts in decreased numbers and N r h g  effectiveness of 

the rhizobia (Ayanaba, 1977; Kcerner and Peterson, 1983). In the tropics and 

subtropics, where high temperatures prevail during and after planting, poor survival of 

rhizobia ia peat-based inoculants appiied to seed is common (Scudder, 1975; Kremer 

and Peterson, 1982, 1983). For most rhizbbia, the optimum temperature for growth in 

culture is between 28 and 31°C, with many unable to grow below 10 or above 37°C 



(Graham, 1992). Somasegaran et ai. (1984) reported a decline in viability of 10 

inoculant strains during 8 weeks incubation at 37"C, while e x p a  to 46OC was lethal 

to alI strains in less than 2 weeks. Storage of cowpea rhizobia in peat-based, seed- 

applied inoculant at 35OC also decreased root infection (Wilson and Tang, 1980). 

The effect of temperature on the survival of rhizobia in soils has been 

extensively studied, but only a few researchers have examined the impact of excessive 

heat on rhizobia inoculated onto seed before planting. Inoculation of several legumes 

with different strains of rhizobia showed that rhizobial survival was better at 25°C than 

at 3S°C after 2, 7 and 28 d following inoculation (Herridge and Roughley, 1974). 

Brockweil et ai. (1987) reported that 99.9% of 3. japonicum on seed died between 

inoculation and the time the seed was planted, and attributed this to the high air 

temperature of 38OC. For these reasons, rhizobia in p u l a r  inoculant with the 

rhizobial cells entrapped in the carrier and passed through several hardening 

treatments (Bashan, 1986) should be able to withstand harsh environmental stresses. 

It is clear that significant losses of rhizobid cells can occur after seed 

inoculation and planting, decreasing the number of viable rhizobia available for 

noddation. Since the number of viabk rbizobia in the inoculum has an influence on 

noddation and seed yield, these iosses must be considered a possiiIe limiting factor in 

inoculation and underscore the significance of an aiternative method of inoculation to 

ensure the availability of d c i e n t  numbers of rhizobia for effective noddadon. 

233 Effect of fungicide seed treatment 

Seed treatment with fungicide is essential in the production of many legumes to 

prevent losses fiom seedborne pathogens and seedting damping-off (Bmkwell et al., 

1980; Phipps, 1984; Sinclair and Backman, 1989; Ramos and Ribeiro, 1993). 

Mthough some reports are conflicting, a number of studies have conclusively shown 

that some of these chemicals are incompatible with Rhizobium (Remie and D u k  

1984; Ramos and Ribeiro, 1993; Revellin et al., 1993). 



Ramos and Ribeiro (1993) used five fungicides: Beniate 50% [(methyl-l- 

butyL~bomoil~2-benzimidazolcarbamate], Vitavax 75% (5,6 dihydro-2 methyl-1,4- 

oxatbiin-3- carbaxanilide), Banrot 40% [3-(2-methy1piperidko)-propyl - 3,4- 

dichloro benzoate)], Difolatan 80% [ cis-N-(1,122- tetrachloroethytrio)4 

cyclohexme-12-dicarbximide] and Ridomil 25% [alpha-(2 chIoropheny1)- a l p b 4  

(cMoropheny1)-5-pyrimidinemethanol1 to evaluate fungicide effects on survival of 

Rhizobium on the seeds and subsequent nodulation of bean (Phaseolw vulguris L). 

They found that these hgicides had deleterious effects on rhizobial survival 24 h 

after fungicidal seed treatment, Furthermore, they observed that under field conditions 

Bedate seed treatment with seed inoculation resulted in reduced nodule occupancy, 

whereas Benlate seed treatment with inoculant applied in the seed h w  had no effect 

on survival of the inoculum. 

Curley and Burton (1975) found that Captan (N-tri-chIoromethylthio4 

cyclohexene-1,2dicarboximide) at 0.8 g kg-' seed significantly reduced the number of 

the rhizobia after 24 h incubation. In a pot experiment, Chamber and Montes (1982) 

aIso observed that Captan at 2.0 g kgm' seed reduced nodule mass and acetyiene- 

reducing activity, when 5. japonicum was either seed-applied or applied as a granular 

inoculant. However. they found that the number of nodules per plant was higher with 

grandar inoculation than with seed-applied inoculation. Aithough Captan did not 

affect seed yield in this study, protein concentration was lower, particularly with the 

seed-applied inoculant. Rennie and Dubet. (1984), in a two-year field study, 

concluded that Captan, Thhm [bis(dimetbyIthiwarbmoy1)disulfide] and Carbathiin 

(5,6-dihydro 2-methyl-1,4-oxathiin-3carboxanilide) had no effect on nodulation and 

Nz fixation when granular inoculant was applied. In other studies, Thirarn at 0.6 g kg" 

seed had no effect on numbers of viable rhizobia on the seed (Curley and Burton 

1979, but at 0.93 g kg-[ seed, it inhiiiited growth of B. jizponicunt (Tu, 1980, 1982) 

and reduced nodule mass and acetylene reduction activity over the entire seven weeks 

of a pot experiment (Tu, 1981). In contrast, Welty et al. (1988) observed that Thiram 

increased nodule weight and yield of chickpea. 



Catcow. and Arnaud (1991) showed that Carkndazim (methyl benzimidazol- 

2-yl carbarnate) decreased tbe survival of 3. japonicum on soybean seeds and also 

decreased nodulation and yield in the field, although early nodulation in the 

greenhouse was not affected. Similarly, Carboxin (5,6dihydro 2-methyl- 1,4-oxathiin- 

3-carboxanilide) decreased the number and weight of noduIes and growth of soybean 

in pot experiments (Curley and Burton, 1975: Mallik and Tesfai, 1985; Tesfai and 

Mallik, 1986). However, in a mixture with Thiram, Carboxin had no effect on 

chickpea noduiation (Welty et al., 1988). Iprodione [3-(33 dichloropheny1)-N- 

isopropyl-2,4-dioxoimidazolidine- 1 -carboxamide] also decreased the survival of B. 

japonicum (Evans et al., 1989), nodulation of hpins (Evans et al., 1986) and also 

decreased nodulation and yield of soybean in the field (Catroux and Amaud 1991). 

Revellin et al. (1993) reported decreased survival of B. japonicum and reduced 

nodulation and yield of soybean in both greenhouse and field studies using Germipro 

UFB (carbendazim and iprodione), Apron 35 J (metalaxyl [methyl N-(2 

methyoxyacetyl-l-cyclopenty1)-3-phenylurea}, and Tachigaren [hymexazol (5- 

methyl isoxazol-3-0 I)]. 

From the above discussion, it is clear that the deleterious effect of fimgicides 

on inoculum is a consequence of the direct contact of the bgicide and inocuiant when 

the latter is seed-applied. Therefore, granular inoculant. which avoids direct contact of 

the inoculant with the fungicide, may overcome the incompatibility problem between 

rhizobia strains and hgicides (Brockwell et aI., 1980; Chamber and Montes, 1982: 

Rennie and Dubetz, 1984; Rarnos and Rebeiro, 1993; Hamen, 1994). 

23.4 Effect of soil factors 

Soil environmentd factors influence legume inoculation directly by affecting 

the multiplication, sunrival and distribution of the inocdant rhizobia in the soiI and 

indirectly through their effects on the host plant. Thus, soiI conditions can influence 

various stages of the nodulation process, such as rhizobial attachment, infection and 

nodule formation (Vlassak and Vanderleyden, 1997). The major limiting factors may 



vary with location, but include moisture stress, high tempera-, soil acidity and high 

available soit nitrogen (Graham, 1985). 

23.4.1 Soil moisture stress 

Soil water affects the number of introduced rhizobia in the soil, their 

distribution down the soil profile and the susceptibility of the plant mot hairs to 

infection (Roughley, 1985). Gray and Williams (1971) pointed out that most 

microorganisms cannot multiply at matric potentials less than - I S  MPa, due to their 

inability to exert sufficient suction to empty pores of less than 0.2 pm dia (the 

maximum diameter of water-filled pores at mamc potential -1.5 MPa). Similarly, 

Amara and Miller (1986) found that the number of Rhizobium phaseoii declined at 

matric potentids less than -1.5 MPa Investigation on the population dynamics of 10 

strains of B. japonicum in loamy sand at water potentials between -1.5 and -0.OlMPa 

showed that numbers of all strains declined in proportion to the water content (Mahler 

and Wollurn, 1980). They observed that the numkrs of B, japonicum cells were 

between one and three orders of magnitude smaller under a matric potential of -1.5 

MPa than at or near field capacity. In a comprehensive study on the effect of soil water 

potential on growth and survival of mot noduIe bacteria in peat cdture and on seed, 

Griffith and Roughley (1992) observed that all strains ( R  leguminosarum bv. trifolii, 

B. japoninmt and B. lupin0 survived best at water potentials of -0.01 MPa compared 

to -0.25 MPa and -1 .O MPa PopuIations of chickpea and bean rhizobia were also 

higher at 4.03 MPa than at - 1 S MPa (Issa and Wood, 1995). 

However, differences in drought susceptibility exist among species of 

Rhizobium. For exampIe, Bushy and Marshall (1977) observed that fast-growing 

strains of Rhizobium declined by four orden of magnitude during drying of a sandy 

soil, but the slow-growing strains declined by only two orders of magnitude. Van 

Rensburg and Strijdom (1980) and Mary et al. (1994) also suggested that fast-growing 

rhizobia are more susceptiile to extreme desiccation in soil than the slow-growing 

rhizobia, although miIder desiccation had little effect on the fast-growing rhizobia 

relative to the slow-growing rhitobia 



Apart from survival and multiplication, water supply affects the movement of 

rhizobia in the soil. Since spatial distribution of introduced rhizobia in the soil is a 

major factor determining the onset and pattern of nodulation on legume roots (Worrall 

and RoughIey, 1976; Date, 1991), restricted movement of rhizobia during drought 

would affect Nz-fiation indirectly. G d b  and Quail (1968) suggested that moving 

bacteria require a continous water pathway in soil pores with neck radii less than 1 to 

1.5 pn, which represents a soil moisture potential of -0.09 MPa Harndi (1971) found 

that the downward movement of R trroIii in soiI is directly related to the amount of 

water applied. In Iaboratory studies, percolating water was a major factor affecting the 

dispersal of rhizobial inoculum (heitenbeck et al., 1988; Worrall and Roughiey, 

1991). Thus, nodulation of legumes planted in pady dry soils will likely be affected, 

due to the failure of the inoculurn to migrate away fiom the inoculated site. This effect 

has been observed in light-textured soiI, where seed germination and root penetration 

occurred without nodule development, although large numbers of rhizobia b m  the 

seed-applied inoculant were recovered h m  the inoculation site (Brockwell and 

Whdley. 1970). 

Although few of the studies presented above correlated the rhizobial survival 

and distribution with noduIation and Nz fixation, it is well established that the greater 

the number of the introduced rhizobia the better the nodulation and Nz fixation 

(Weaver and Frederick. 1974a.b). Athar and J o h n  (I 996) demonstrated that nodule 

occupancy by strains of R. meliloti declined h m  57% to 38% when water potentid 

decreased from -0.03 to -1.0 MPa The number of nodules was reduced by 42% and 

70% as water potential decreased fiom -0.03 to -0.5 MPa and fiom -0.5 to -1.0 MPa, 

respectively. 

For the above reasons, Bwkwell et al. (1987) suggested that high rates of 

inoculation should increase noddation and Nz fixation. In addition, placement of the 

inoculaut rhizobia in the soil zone, where infectable foci on the seedling roots formed 

should enhance nodulation and noduIe occupancy. As legume plants age, their roots 

extend beyond the zone of inoculation, particularly when the inoculant is seed-applied- 



However, the proportion of nodules occupied by the inoculant rhizobia would be low 

because rhizobial movement is restricted under low-moisture conditions. 

In low moisnue soils, Scudder (1975) obtained higher nodulation and Nz 

fixation with granular inoculation as compared to seed-applied inoculation. When 

rhizobia are introduced into low-moisture soil by seed inoculation, they are likely to 

remain at the depth of seeding, and be subjected to wide fluctuations in moisture and 

temperature stresses, unless distributed down the soil profile by rain or irrigation 

(Roughley, 1985). Therefore, placement of granular inoculant below the seeding depth 

would partly overcome the limited rhizobial mobility (Vance and Graham, 1995) and 

also enhance survival of the introduced rhizobia because of better moisture conditions. 

Furthermore. granular inoculant (e.g. ciay carriers) is in a dry solid state and is less 

susceptible to desiccation, increasing survival of the rhizobia (Jung et al., 1982; 

Kremer and Peterson, 1983; Sparrow and Ham, 1983; Materon and Weaver, 1985). 

2.3.4.2 High soil temperature 

High soil temperature influences the growth and survival of Rhirobium 

(Roughley, 1985), competition for nodule occupancy (Roughley et al.. 1980; KIuson et 

al., 1986; Graham, 1992). nodulation and nodule activity (Munevar and Wollum. 

1981; Kishinevsky et d.. 1992). At 28OC. Brockwell et al. (1987) recovered 4 5 %  of 

the viable soybean inoculum from the soil 24 h after sowing, but less than 0.2% 

survived sowing at 38OC. Different species of Rhirobium and different strains of the 

same species differ in their susceptibility to temperature. For example, the optimum 

temperature for growth of B. japonicum ranged from 27.4 to 35.Z0C (Munevar and 

Wollum, 198 l), whereas cowpea strains evduated by EagIesham and Ayaaaba (1 984) 

grew well at 40°C. Cowpea strain 20 1 survived better than strains 328 1, T-1 and TAL- 

309 at 3S°C (Boonkerd and Weaver, 1982). However, in mauy soils, the impact of 

high temperature on rhizobid survival is determined by the interaction between soil 

moisture and soil texture. [n general, the adverse effect of high temperature on 

rhizobial survival is more pronounced in soils with high water content (Chatel and 

Parker, 1973; Boonkerd and Weaver, 1982; Roughtey, 1985). 



Certain clays, such as bentonite, kaolinite and montmorillonite, protect 

rhizobia fiom death associated with drying and heat stress (Bushy and Marshall, 1977; 

Hartel and Alexander, 1984, Heijnen and van Veen, 1991; Heijnen et al., 1992; 

AbdelGadir and Alexander, 1997). Heijnen et al. (1992) suggested that a clay 

amendment to sandy soils improved the &val of rhizobia by increasing the 

protective micro-habitats available to the bacteria in the soil. Marshall (1964) found 

that clay amendment to Rhizobium inoculant prior to soil inoculation with peat-base 

inoculant protected mt-nodule bacteria against high temperatures. AbdeIGadir and 

Alexander (1997) modified the technique of Bashan (1986) and Smidsrod and Skjak- 

Braek (1990) to immobilize R leguminosarum bv. p h e o l i  cells in montmorillonite 

and kaolinite in a study on the survival and infectivity under heat stress. They found 

that the immobilized cells w i v e d  well and grew, whereas fiee cells added to the soil 

died rapidly at 43OC. Moreover, the isolates, which Survived 43OC, were effective at 

nodulating kidney bean, 

No one has specifically compared the performance of seed-applied inoculation 

to soiI inocuIation with granular inoculant under high soil temperatures, but it can be 

argued that clay-based granular inoculants would r e d t  in improved survival. Already 

some of the commerciaI granular inoculants (e.g., MicroBio RhizoGen. Saskatoon. 

Canada) use clay-amended carrier materials. 

The temperature at the surface of soils in the tropics and subtropics is often 

high and can cause rapid death of rhizobia For example, the maximum temperature in 

sandy soils of Western A u d i a  was Sg°C at 1.3 cm and 47'C at 5.1-cm depth (Chatel 

and Parker, 1973). Day et d. (1978) counted the number of cowpea rhizobia in the 

profile of soils at Samaru, northern Nigeria, where bare soil surface temperatures can 

exceed 60°C. In the upper 5 cm, 5 to 50 rhizobiai cells per g soil were present, and 

increased with depth, reaching 18,000 rhizobiai ceh per g soil at 20 to 25 cm. Thus, 

high temperatures can restrict rfiizobid numbers and, consequently, nodulation to the 

subswfiace region where temperatures are not extreme. AIfhIfk pIants grow in hot soil 

conditions in California formed few nodules in the top 5 cm of the soil, but noduIated 

extensively below this depth (Munns et al., 1977). In bean, Graham and R o w  (1978) 



a h  reported fewer nodules close to the surface in spaced plantings than in plantings 

with closed canopies and attributed these differences to soil temperature. 

Consequently, a method of inocdation which places the inoculant rhizobia at an 

optimum depth would undoubtedly maximize the benefit h m  inoculation. 

High soil temperature also influences the proportion of nodules formed by 

strains of 8. japonicum fiom different serogroups (Weber and Miller, 1972). Roughley 

et al. (1980) found that strains of other Rhizobium species were poor competitors with 

B. japonimm on the promiscuously nodulating soybean cultivar Malayan between 24 

and 33"C, but at 36OC they formed about 74 to 88% of the nodules. Graham (1992) 

suggested the use of higher than normal inoculation rates under such high temperature 

conditions. In Puerto Rico, Smith and del Roi Escurra (1982) reported that granular 

inocuIant at about 10 times the normal application rate was required for good 

nodulation. In another study, a seedapplied treatment, providing log 0.59 celIs cm". 

was not successful in forming nodules, whereas granular inoculant treatments. that 

provided between log 5.59 and log 6.59, produced significant nodulation (Smith et al., 

198 1). Similarly, Wey and Saint Macary (1982) demonstrated maximum noddation of 

soybean, when lot3 cells ha-' of USDA 138 were applied as a granular inoculant in a 

hot tropical soil in Senegal. 

23.43 SoiI acidity 

The influence of soil pH on the growth and survival of rfiizobia is we11 

documented (Graham, 1992; Jayasundara et aI., 1998), but its influence on competition 

for nodule occupancy has received little attention. In general, nodulation declines at 

soil pH below 5.0 in most species including lupin, which is regarded as relatively acid 

tolerant (Jayawndam et al., 1998). For inocdated legumes in low pH soils, problems 

often include death or failure of the inoculant strain to multiply, due to H', hhZC or 

Al* toxicity, and deficiencies of Ca, Mg or P (Coventry et al., 1987; O'Hara et al., 

1988; Richadson and Simpson, 1988; Evans et al., 1990, 1993; Carter et al., I995), 

fi'bition of root hair growth and infection (FIis et d., 1993) and inhi'bition of nodule 



functioning through reduced availabitity of molybdenum (Coventry et al., 1985; Rai, 

1991; Blarney et al., 1993; Brady et al., 1994). How these factors interact is not clear. 

DBereaces among rhizobial strains in pH tolerance alter the outcome of 

competition among strains. For example, Voss et al. (1984) found that nodule 

occupancy of the bean strains Car37 and Car43 was reduced fiom 22 and 65%, 

respectively, in soil of pH 5.1, to onIy 3 and 5% after the soil was limed to pH 6.7. On 

the other hand, nodule occupancy by Car04 increased fiom 12% at pH 5. I to 60% at 

pH 6.2. Similar results have been reported by others (Dugbn and Bottomley, 1983; 

Ramos and Boddey, 1987; Vargas and Graham, 1988). 

Several approaches have been used to increase nodulation when rhizobia are 

used in acid soils (Vance and Graham, 1995). These include liming the soil, which is 

expensive for low resource f m e r s  in the tropics, and pelleting the seed with lime. 

Although the latter technique is relatively inexpensive, it can interfere with planting 

operations. 

Increased inoculurn rates have enhanced nodulation response in some studies 

(Mums, 1968; Pijnenborg et al., 1991). On soil with pH 5.8, granular inoculant, 

applied with or below the alfalfa seed, produced more nodules with nodule occupancy 

between 87 and 98% compared to the seed-applied treatment which had a nodule 

occupancy of 49% (Rice and OIsen, 1988). The authors reported similar results in 

another experiment conducted at the same location in Aiberta (Rice and Olsen, 1992). 

Thus, soil inoculation, using granular inoculant, is one effective way to improve 

inoculation response in acid soils. 

23.4.4 High available s o l  nitrogen 

High levels of combined N inhibit root infection, nodde initiation, and nodule 

deveIopment and hc t i on  (Keyser and Li, 1992; Dopa and Dudeja, 1993; Biederbeck 

et al., 1996), but the precise mechanisms responsible for the inhibitory effects are 

poorly understood (Streeter, 1988). However, the'effect varies with the host plant 

(Chatifour and Nelson, 1983, the inoculant strain (McNeiI, 1982; Gibson and Harper, 

1985; La Favre and Eaglesham, 1987) and environmental fa~ors (Thies et al., 1991; 



Hardaxsun, 1993). Truchet and Dazzo (1982) observed that the addition of at least 18 

m M  of nitrate to the roots of alfalfa seedlings completely inhibited accumulation of R 

meliloti ceils on root hairs, root hair curling, infection thread development, and nodule 

formation, suggesting that nitrate may influence the signal-response between the two 

partners. Other studies also suggest that combined N alters nodule occupancy of strains 

of soybean Rhizobium (McNeiI, 1982). 

Thies et al. (1991) reported that, in the absence of indigenous rhizobia, the 

response to inoculation is directly proportional to the level of available soil N. A few 

reports (Bergensen et al., 1989; Brockwell et al., 1989) indicate that high rates of 

inoculation can improve inoculation response in the presence of high nitrate. Working 

with a high nitrate soil, ~ e m d ~ e  et al. (1984) observed that increasing the rate of 

inoculum d t e d  in higher soil niJmbers of rhizobia in the rhizophere, improved 

nodulation and N2 fixation, and a larger residual population of rhizobia the following 

year. The explanation advanced for these obsewations was that concentrations of 

nitrate in the soil water were not uniform and that the parts of the root system exposed 

to low concentrations of nitrate were nodulated. However, these conditions would 

most likely be satisfied when large populations of rhizobia were extensively 

distributed through the soil by applying heavy rates of inoculant. Spraying a water 

suspension of B. japonicum strain CB1809 directly into the seed bed (containing 

extractable mineral N from 37.6 to 18.5 mg N per kg dry soil) at 100 times the norma1 

rate, resuited in significant coIonization of the seedling rhizosphere by rhizobia and 

significant nodulation (Brockwell et al., 1989). Similar results were reported by 

Bergensen et al, (1989). Even though it is not economical to inoculate legume crops at 

such a high rate, this illustrates that the detrimental effect of combined N on 

nodulation and N2 fixation can be ameliorated by proper inoculation strategies. 



23.5 E f k t  of indigenous rhizobial population 

In most bacteria, including rhizobia, the ability to establish and maintain 

themselves in the soil depends on their ability to compete with the indigenous 

population (Hicks and Loynachan, 1989; Thies et al., 1991; Toro, 1996). Where 

naturalized rhizobia are few or absent, the introduction of a new strain by inocuIation 

of seed or soil is normally successful, provided other factors are favourable (Brockwell 

et al., 1995). In their investigations, George et al. (1987) and Abaidoo et al. (1990) 

concluded that in the absence of indigenous rhizobia, nodulation is a stable 

characteristic of the introduced rhizobial strains as long as plant growth conditions are 

favourable. On the other hand, where large populations of indigenous rhizobia occur, 

competition for nodule occupancy becomes a major factor determiniag the crop 

response to inocdation (Dowling and Broughton, 1986; Thies et al., 1991; Bottodey, 

1992; Keyser and Li, 1992; Thies et al., 1992; Brockwell et al., 1995). 

Indigenous rhizobia often occur in high numbers and are well adapted, giving 

them an advantage in certain aspects of competition, such as bacterial motility, 

attachment and nodule initiation (Keyser and Li, 1992; Thies et al., 1992). 

Consequently, indigenous strains dominate the nodules. and response to inoculation is 

usually not observed (Kapusta and Rouwenhorst, 1973; Kvien et al., I98 1 ; Ge and Xu. 

1982). For example, Ireland and Vincent (1968) observed that an inoculan~ supplying 

lo3 rhizobia seed", was inadequate to nodulate white clover (Tn3Iium repem) when 

the introduced strain was ournumbered by cIover rhizobia already present in the soil. In 

such situations, the application of massive inoculant rates can overcome the 

competition from indigenous rhizobia (Kapusta and Rouwenhom, 1973), but such a 

deIivery system would be more practical with soil inocuIation. 

23.51 Relationship between inocdum rate and nodule occupancy 

Increased inoculum rates enhance the competitive advantage of rhizobia 

introduced into soil, although a threshold value typically occurs above which 

additional inocdum did not increase the competitive success of the isolate (Ireland and 
- Vincent, 1968; Hiltbold et al., 1980; Brockwell et at., 1982; Singleton and Tavares, 



1986). Increasing inoculum rate within the range of loglo 0.32 to 6.28 per seed in 7 and 

10-fold increments improved colonization of lupin rhizospheres and increased 

nodulation (Roughley et al., 1993). They observed that, when the seed was inoculated 

with either loglo 6.27 or 5.27 bradyrhizobia per seed, more than 90% of the plants 

were nodulated after 43 d compared to 12,21 and 34% for plants inoculated with loglo 

127,227 and 327, respectively. 

Caldwell and Vest (1970) reported that the nodde occupancy of introduced 

rhizobia averaged 0.5 to 10% in soil with an established indigenous population. 

Others, however, have reported that nodule occupancy by introduced rhizobia can be 

increased, on the average, to 20% by increasing the inoculum rate (Kuykendail and 

Weber, 1978). Johnston et al. (1965) increased the proportion of inoculum-produced 

nodules from 5% with the standard rate of inoculum to as high as 25% with a rate 25 

times the standard rate. 

In a field trial, Weaver and Frederick (1974b) demonstrated that to achieve 

nodule occupancy greater than 50% in soybean, the bradyhkobial number must be at 

least 1,000 times greater than the estimated number of indigenous rhizobia. SimiIar 

results were obtained in soybean by Pinochet et al. (1 993) with B. japonicum in French 

soils. Recent field inoculation trials at five ecologically diverse sites, using several 

legumes, revealed that in the presence of an indigenous rhizobial population, the 

population of seed-applied B. japonicum must be 70 times that of the indigenous 

population to occupy S 15% of the soybean nodules (Thies et al., 1992). 

Brockwell et aI. (1987) used three closely dated strains of B. juponicum to 

inoculate each of three successive crops of soybean grown at the same site to evaluate 

the population dynamics of these strains. They found that in soil initially free of B. 

japonicum, rhizobial populations around the young seedlings were related to inoculum 

rates. AIthough nodule occupancies for the second and third years were dominated by 

naturalized B. juponicum strains, the magnitude of domination was reduced by 

increased rates of inoculum. 

Many models, relating nodule occupancy to the numbers of indigenous 

rhizobia and the number of rhizobia appIied as inoculant, have been proposed (Bohlool 



and Schmidt, 1973; Marques Pinto et al., 1974; Amarger and Lobreau, 1982; Thies et 

al., 1991). Bohloal and Schmidt (1973) observed that the percentage of nodules 

formed by a particular rhizobid strain varied proportionally with the logarithm of the 

number of rhizobia in the inoculum. For Rhizobiunz legruninoswium bv. phuseoli, 

Beattie et af. (1989) presented a model in which a linear relationship between the 

logarithm of the noduIe occupancy by the inoculant strain (A) and the logarithm of the 

ratio of inoculant strain (A) to the indigenous rhizobia (S) is described by the 

following equation: 

where, P., the proportion of nodules occupied by strain A; I .  is the number of rhizobial 

cells applied to the seed; Is is the number of indigenous R. leguminosmim bv. 

phaseoli cells per gram soil; CIA:s is the intercept, i.e., the competitive index. (a 

positive value indicates A is more competitive than S); and k is the slope. Similar 

models have been developed to assess and compare h e  competitiveness and 

noddation success of R. legminosariurn and R meliloti (Marques Pinto et al., 1974), 

various strains of R. leguminosurium bv. trfolii (Labandera and Vincent, 1975) and 

various rhizobial strains for faba bean and alfalfa (Amarger and Lobreau, f 982). 

In an extensive study at several locations in Hawaii, using various levels of 

availabte soil N and indigenous rfiizobial populations, Thies et al. (1991) observed that 

inoculation responses were inverseIy retated to the number of indigenous rhizobia. 

They deveIoped the foUowing equation describing the hyperbolic relationship between 

the yield response to inoculation and the size of the indigenous rhizobia population 

(determined by most probable number (MPN) plant infection assay): 

Y = (3 14.7 - 5.09 x Nmh) x (1 + number of indigenous rhizobia) ~ 2 2 1  

where Y is the percentage increase in yieId due to inoculation and N,, is N 

minerahtion potential (pg N g'l soil week"). The study demonstrated that the 

numbers of indigenous rhizobia accounted for 59% of the observed variation in 



inoculation response, indicating that the size of soil himbid populations had a strong 

influence on the success of inoculation. 

23.53 Effect of repeated inoculation on nodule occupancy 

The intense competition h m  the indigenous population of rhizobia bas made 

it mcult to establish introduced rhizobia strains in most soils. Most research on 

altering nodule occupancy is, therefore, directed at facilitating an immediate shift in 

strain distribution (Miller and May, 1991). As an ideal, producers would prefer to 

forgo inoculating every time they grow the same legume crop on the same field. 

However, this view is probably not shared by many Rhkobhm researchers and 

inoculant companies as better performing Rhizobiwn strains are being identified or 

constructed by various methods (Evans et al., 1987; Paau, 1989; Bosworth et al., 1994; 

Sharypova et al., 1994). 

Nevertheless, some rhizobid stmins introduced to the soil can persist for many 

years and many compete directly with subsequent inocdant rhizobia for noddation 

(Kamicker and BriIl, 1987). Dunigan et al. (1984) reported that repeated massive 

inodation with a competitive strain eventwily changed nodule occupancy in soil 

containing 3 K lo5 indigenous rhizobial ceIls g-' soil. In this seven-year study. 3. 

japonicum main USDA 110 was used as the soil inoculum at 1 x 10' cells per cm row 

for three successive years. The recovery of strain USDA 110 in soybean nodules was 

approximately 4,6. and 7% in the &st three years, respectively. However, recovery for 

the fourth year reached 17%, and 54% by the seventh year. McLoughh et al. (1990a) 

examined the establishment and persistence of six introduced B. japonicum strains 

over three years in Wisconsin soii with a low indigenous population of 3. jupunicum 

(I 10 rhizobial ceIls g' soil) h their study, application of liquid inoculum at a high 

rate of 1 x lo8 rhizobid cells per 2.5 crn row to the seed furmw produced 100% 

nodule occupancy in the first pwing season. Without fiuther inoculation in the 

second and third year, they found that 60% of the nodules h m  all pIots was formed 

by the introduced strains. 



In spite of the many successes achieved in incrertsing the nodule occupancy by 

inoculant mains with high doses of inoculum, massive inoculation does not always 

enhance nodute occupancy. For example, the nodule occupancy of R leguminosarum 

bv, rrifoolii strain 285 was not related to the inocuium concenlration, but to the high 

competitive ability of the strain (Martensson, 1990). In a similar manner, Kamicker 

and Brill (1987) reported that, in addition to increased inwulurn rate, inoculum 

placement also influenced nodule occupancy, 

23.5.3 Inoculum placement and nodule occupancy 

Rhizobia move through the soil either actively with their flagella or passively 

by water movement (Issa et al., 1993a,b). Rhizobial movement, however, is possible 

only when the soil is saturated or at a nearly sattmted water capacity (Vlassak and 

Vanderleyden. 1997). Bacterial movement is restricted below field capacity, since 

larger pores are filled with air and soil water occurs as a discontinuous film, 

(Chamblee and Warren, 1990; Worrall and Roughley, 1991). Madsen and Aiexander 

(1982) reported that B. japonicum did not move beyond 2.7 cm in the absence of 

percolating water. Consequently, it has been argued that a method of inoculation that 

provides a greater spatial distribution of introduced rhizobia would increase the 

chances of the inoculum coming into contact with the emerging root hairs of the host 

piant (Date, 199 1; Brockwell et al., 1995). 

Seed inoculation, either by peat or liquid inoculant, often results in a high 

density of rhizobial cells near the seed with nodulation restricted to the upper tap root 

( W o d  and RoughIey, 1976; Danso and Bowen, 1989; Hardarson et al., 1989; Danso 

et al., 1990; Ciafadini and Lombardo, 1991). Nodulatioa of the more distal parts of 

the tap root and the lateral mots by the inocuht  strain is reduced, due to the low 

density of this strain in the vast bulk of the soil (Weaver and Frederick, 1974qb; 

Wadisirisuk et al., 1989). Kamicker and Brill (1987) evaluated the abiiity of thee 

strains of B. japonicum to form nodules on field-grown soybean in soil with a highIy 

competitive indigenous B. japonicum population. They observed that increasing 

inocuium rates resulted in a higher proportion of the nodules being formed by the 



introduced inoculant strain. Moreover, the vertical distribution of the nodules, 

containing the inoculant strain, was affected by the method of adding the inoculant to 

t&e soil. In their study, a larger proportion of nodules, containing the inocdant strains, 

was formed in the lower part of the root when the inocdant was tilled into the soil as 

compared to when the same amount of inoculant was added to the seed h o w  only. 

They concluded that at least 10' rhizobial cells must be added to each seed and 

surrounding soil to form at least 50% of the nodules when the indigenous population 

was lo3 cells g-' soil. Rice and Olsen (1992) similarly observed that, on a moderately 

acid soil, granular inoculant applied with or below the seed redted in greater nodule 

occupancy than when applied in the seed row. In addition, granular inoculant applied 

with or below the seed was more effective at a site with a population of low 

indigenous R meliloti than at a site with a higher population. 

Competition for nodule occupancy is a complex phenomenon with interactions 

among the bacteria, the host and the environment. However, the above findings clearly 

indicate that the best way to establish a new strain of rhizobia within a naturally 

occurring population is to apply a heavy rate of effective, persistent inoculum 

strategically close to the growing legume roots. Such an inoculant delivery system is 

practical with soil inoculation, but the accuracy of the placement could be improved 

a d  the concentration increased by using seeding equipment with attachments that 

place the granular inoculant in the seed bed or below the seed (Muidoon et al., 1980; 

Brockwel et al.. 1987). 

2.1 Effect of inoculation method on nodule formation and activity, and yield 

Methods of rhizobial inoculation can have a great influence on the extent of 

nodulation (Smith and del Roi Escurra, 1982; Rice and Olsen, 1988; Danso et d., 

1990), nodulation pattern, the amount of N2 fixed (Kamicker and Brill, 1987; 

Hardarson et d, 1989; McDermott and Graham, 1989; Ciafardini and Lombardo, 

1991) and yield (Bezdicek et d., 1978; Muldoon et al., 1980). Increased inocuIum 

rates result in increased noduiation and N2 fixation, especially under stress conditions. 

Moreover, the depth of inoculum placement in the soil can affect the Iocation of the 



nodules on the root system (Wadisirisuk et al., 1989), subsequently inauencing the 

onset of nodule activity and the amount of Nz fixed over the entire growing season 

(Wadisirid et al., 1989; Hardarson, 1993). 

2.41 Nodulatioa and aadulatioa pattern 

The location of noddes on the mots depends to a large extent on the 

inoculation procedure, timing of application and depth of inoculum placement 

(Ciafardini and Barbieri, 1987; Kamicker and Brill, 1987; Danso and Bowea 1989; 

Hardarson et al., 1989; McDermott and Graham, 1989; Wadisirisuk et d., 1989; 

Danso et al., 1990; Ciafardini and Lombardo, 1991; Ocumpaugh and Smith, 199 I). 

Nodule formation is restricted to the vicinity of inoculum placement due to the limited 

movement of rhizobia in the soil and rhizosphere. Thus, with seed inoculation, most of 

the nodules occur at the crown region of the roots, whereas soil inoculation. 

pdcularly below the seed, results in the formation of nodules on the lower portion of 

the roots. For this reason, ZabIotowicz et al. (1991) suggested that more uniform 

dispersion of inoculum would be desirable, but this would requite the addition of 

higher levels of inoculum to the soil. Caetano-AnolIes et al. (1992). working on 

growth and movement of spot-inoculated R meliloci, concluded that the rate of 

movement and multiplication of rhizobia did not occur fast enough to keep up with the 

rate of root elongation. They observed that most of the nodules developed near the 

inoculation site, with more nodules at higher inoculum rates. 

Wilson (1975) placed a liquid suspension of rhizobial cells at 15, 10 and 20 

cm below the d a c e  of soil in pots in the greenhouse to evaluate the influence of 

inoculum placement on the nodulation pattern. He found that 84 and 83% of the 

nodules h m  the 10 and 20 cm inoculation, respectively, occuned deeper than 7.5 cm 

below the soil s&e, but only 15% of the nodules h m  the 1.5 cm inoculation was 

formed deeper than 7.5 cm Wow the soil surface- 

Using B. japonicrim strains 110 and 142 separately in peat, and in granular 

formulations, Bezdicek et aI. (1978) reported that granular inoculum enhanced 

noddation by strains 110 and 142 by 14 and 19%, respectively, over seed treatment 



with peat inoculant. They also observed that doubling the granular inoculum rate 

significantly increased nodulation, la groundnut (Arachis hypogaea), soil-applied 

inoculum produced 41.8 nodules per plant with nodule dry weight of 3-92 mg, whereas 

seed-applied inoculum resulted ia 25.5 nodules per plant with nodule dry weight of 

2.77 mg (Hedge and Brahmaprakash, 1992). Soil inoculation produced more than four 

times the number of nodules with about twice the dry weight on soybean roots 

compared to that for seed-app tied inoculant (Muldmn et al., 1980). 

Using a rkobial suspension for soil inoculation on soybean, Danso and 

Bowen (1989) observed that soil inoculation produced over 50% more nodules than 

seed-applied inoculation, although nodule weight was similar. They also found that 

seed inoculation produced 94% of the nodules at 0-5 cm Erom the stem base compared 

to 63% with soil inoculation. SimiIar results were reported subsequently by Danso et 

al. (1990). 

In a greenhouse study, inoculation of soybean seed resuIted in fewer nodules 

and the nodules were located predominantly on the tap and crown roots within 0-5 cm 

from the stem base as compared to treatments where the bradyrhizobia were 

distributed throughout the soil or placed at specific depths (Wadisirisuk et al., 1989). 

In general, they observed maximum nodulation at the 5cm zone immediately below 

the level at which the inoculum was placed. For instance, for the 5 and 10-cm 

placement, this zone developed 56 and 53% of the nodules, respectively, 75 days after 

planting. Similarly, Ocumpaugh and Smith (1991) examined early- and late-planted 

arrowleaf clover (Tr@?olium vesiculosum) in the field and observed that when granular 

inoculum was placed with untreated seed at planting, nodulation of tap and Iateral 

roots was superior to the seed-inoculated treatments. In greenhouse and field studies, 

Hardarson et aI. (1989) used different inoculation techniques, including peat-based 

seed inoculation, soil inoculation by mixing Bradyrhizobium with soil, inoculum 

placed at the Ievel of seeding a d  inocdm placed 5 cm below the seed. They reported 

that seed inoculation produced most of the nodules on the crown of the roots, in 

contrast to the p r o k  and welldistri'buted nodules when the inoculum was applied 

throughout the soil. Furthermore, most nodules were produced in the lower portions of 



the root when the inoculum was placed below the seed. In a similar study, Kamicker 

and Brill (1987) also found that inoculant added to the seed M w  produced nodules 

mainly in the top portion of the soybean root system, whereas inoculant incorporated 

into the soil produced nodules mostly in the lower portion of the root system. 

As a result of the enhanced nodulation with soil inoculation, Brockwell(1985) 

argued that inoculant, placed in the seed zone of the soil, is relatively far from the 

infectible region of the seedling roots. Moreover, this situation is compounded by the 

limited mobility of the inoculant rhizobia This is one of several reasons that justifies 

the use of alternative inoculation methods, such as the use of granular or liquid 

inoculant applied uniformly to the seed bed. 

2-42 Nz fuation 

Although estimates of N2 fixation in both greenhouse and field conditions are 

variable, soil inoculation usually results in enhanced N2 fixation as compared to seed- 

applied inoculant, particularly under unfavourable soils conditions (Scudder, I975; 

Hardarson et d., 1989; Danso et aI., 1990). Wadisirisuk et al. (1989), using an '%I- 

isotope-dilution method, showed that mixing inocdum with the soil or placement 

below the seed resulted in greater N2 tixation both in terms of the percentage and total 

N fmed at 55 and 75 days afler planting. In Ontario, the amount of Nz fixed, as 

estimated by acetylene reduction and averaged over three locations, was 94% greater 

for granular (soil-applied) inocuiant as compared to seed inoculation (Muldoon et al., 

1980). Methods of inoculation greatly influence the proportion or amount of Nz fixed 

by legumes through the effects on nodulation patterns @anso and Bowen, 1989; 

Wadisirisuk et al., I989), and the onset and duration (Zapata et al., 1987; Imsande, 

1989) of Nz hation. 



2.4.2.1 Crown vs. lateral root nodules 

While nodules at the crown region are active during the early stage of plant 

growth, N2 fixation declines early in the growing season. For example, Bergensen 

(1958) reported that N2 fixation in soybean declined significantly by 65 days after 

planting. Nodules on the lower root system and lateral roots are formed later and 

continue fixing Nz longer (Ciafardini and Barbieri, 1987; Hardarson, 1993). Therefore, 

nodulation on the lower part of the root system may be essential for maximum Nr 

fixation, in order to match the high N demand during pod fill (Imsande, 1989). 

In soybean, McDermoa and Graham (1989) demonstrated that crown root 

nodules accounted for 100% of the acetylene reduction activity at 20 days after 

planting, but the contribution declined to about 20% at 76 days after planting. 

Greenhouse and field experiments in another study also showed that the position of the 

nodules on the root system of soybean had a greater influence on the amount of N: 

fixed than the number or fiesh weight of nodules (Hardarson et al., 1989). In the 

greenhouse, Nr fixation was estimated by an '%-isotopcdilution method. Results 

indicated that all of the treatments in which the bradychizobia were inoculated into the 

soil. and which had most of the nodules formed at the 5 to I5 cm soil depth, derived 

more than 90% of their N from the atmosphere. In contrast, plants inoculated with a 

seed-applied inoculant had greater total nodule dry weight with most of the nodules in 

the top 5 cm of the root system, but derived only 15% of their N from the atmosphere. 

Although the response in the field was not as high as observed in the greenhouse. the 

trend was similar (Hardarson et al., 1989). 

Wolyn et al. (1989), using the non-quantitative acetylene reduction technique, 

similarly reported higher acetylene reduction values for common bean nodules on 

lateral roots at all growth stages beyond R3 (50% bloom) compared to that of the 

crown-mot nodules, even though average nodule weight did not differ at any stage. In 

addition, they found that the 1eghemogIobin concentration in the lateral-root nodules 

was greater than that in the crown-root nodules after the R3 stage. At the late pod- 

f i g  stage, lateral-root noddation scores conelated positively with acetylene 

reduction and leghemoglobin content (r = 0.72 and r = 0.66, respectively), whereas no 



correlation was detected for crown-root nodulation scores. En a field study with 

common bean, Vikman and Vessey (1992) also reported a sharp decline in acetylene 

reduction rates of the crown-root nodules of bean with the onset of pod filling in 

contrast with that of the non-crown-root nodules. The acetylene reduction rates for the 

non-crown-root nodules was maintained through the pod-filling stage and was four 

times higher than that of the crown-root nodules around the mid pod-filling stage. In 

another study, the authors observed a sharp drop in nitrogenase activity in the nodules 

on the top part of the root system to a third of its previous leve[ at 63 days after 

planting, whereas that of the nodules on the mid part of the root system remained 

unchanged or increased ( V i m  and Vessey, 1993). Apparentiy the lack of inocuIum 

at the distal parts of legume mots resulted in a decline in N2 fixation at the onset of 

pod filling. Thus. a method of inklation that delivers Rhizobium to the lower 

portions of the root system should enhance the proportion or amount of N2 fixed. 

2.4.2.2 Time course of nodule activity 

The amount of N2 fixed is affected by the length of time a legume actively 

supports N2 fixation (Hardy, I977), which, in turn, is influenced by inoculation 

method and the depth of placement of the inoculum. Nitrogen fixation generally 

reaches a peak at the early pod-filling stage and declines during the late reproductive 

phases (Latimore et al., 1977; Imsande, 1989). Pena-Cabrides et d. (1993) found that 

N2 fixation in common bean, as estimated by '% isotope dilution, increased up to 63 

and 77 days after pIanting for greenhouse and field-grown plants, respectively, and 

thereafter declined. Assessment of nitrogenase activity, using acetylene reduction 

assays, aIso indicted that the activity increased until the reproductive stages and then 

decreased to undetectable levels during the Iate pod-filling stage (Pena-Cabriales et al.. 

1993). As determined by the A-value method, the maximum rate of N2 fixation for 

soybean was observed between the RI and R3 growth stages (pod fill), after which the 

amount declined by half between the R.5 aud R7 growth stages (between pod filI and 

physiological maturity) (Zapata et d., 1987). 



Kumaga et d. (1994) found that N2 fixation in bambara groundnut (Vigrrcl 

subterrunea) reached its peak at the mid pod-filling stage; thereafter, Nt 6xation by 

cv. Ex-Ada declined to an undetectable level, whereas cv. CS-88-11 maintained Nz 

fixation up to physiological maturity. This cultivar difference may be due to the 

differences in growth habit, since Ex-Ada is a bunch type, whereas CS-88-11 is a 

slightly spreading type that matures two weeks later than Ex-Ada. In a growth chamber 

study, Vessey (1992) found that Nr hation, as estimated by nitrogenase activity, 

declined in field pea with the onset of pod filling in the determinate cultivar Express, 

whereas N2 hation in the indeterminate cultivar Century did not reach its peak until 

several weeks into the pod-filling stage. However, under field conditions, Nz fixation 

dropped sharply with the onset of pod filling in Century. This decline was attributed, 

in part, to environmental conditions, e.g., water stress. Graham aad Rosas (1977) and 

Rennie and Kemp (1983) also showed that indeterminate cuitivars of common bean 

fixed more N over the growing season than determinate cultivars. 

Although maintenance of N2 fixation into the @-filling period is dependent 

on genetic and environmental factors, it should be possibIe to enhance Nr fixation by 

inducing optimum nodulation on the lateral roots. [n all the studies discussed above, 

seed inoculation methods were used and it is IikeIy that dmost all of the nodules were 

formed at the crown region or top part of the root system. These nodules enter into a 

stage of senescence at reIarively early p h t  growth stages (Bergensen, 1958), and are 

also in the layer of soil that is subject to great fluctuation in both temperam and 

moisture (Wilson, 1975) with the onset of pod filling. Thus, it is Iikely that Nz fixation 

could be enhanced by a method of inoculation tbat provides deeper placement of 

inoculurn in the soil to minimize adverse environmental effects on nodules and also 

inoculates more of the mot system, instead of only the crown. Several studies have 

shown that Iateral-root nodules are cesponslile for maintaining or even increasing 

nitrogenase activity during the pod-filing stage (Wolyn et al., 1989; Vikrnan and 

Vessey, 1992,1993). 



2.43 Yield and quaLity 

Considerable yield increases have been reported in several studies with 

granular inoculants, particularly under adverse environmental conditions. Scudder 

(1975) obtained yield increases in soybean of up to 38% for granular-applied inoculant 

over seed-applied inoculant under hot and dry conditions in Florida on a field that had 

not been previously cropped to soybean. In contrast to this observation, Nelson et al. 

(1978) reported that yield and total N content in the leaves and grain of soybean were 

not affected by either granular or seed-applied inoculants. This suggests that the soils 

had an adequate population of rhizobia for nodulation and indicates that routine 

inoculation of soybean may not be necessary when soybean is grown frequently. 

In Ontario, granular inoculant increased soybean seed yields by 20% over seed- 

applied treatments and 48% over the non-inoculated control in a two-year study 

(Muldoon et al., 1980). The authors fitrther found that soil-applied inoculants 

increased seed protein content by 7%, while oil content decreased by 3%. Bmckwell et 

d. (1980) evaluated methods of inoculation with several legumes including chickpea, 

soybean and field pea. They concluded that soil inoculation was superior to seed 

inoculation in foliage dry weight when seeds were treated with fungicide. However, 

when fungicide was not used, responses to inoculation generally were equally good for 

all three forms of inoculation (granular, liquid, seed applied). They also demonstrated 

that increasing the rate of soil inoculation, which may not be practical with seed 

inoculation, often resulted in higher grain yield. Bezdicek et al. (1978) also reported a 

yield advantage for granular-applied inoculant over seed-applied inoculant with the 

same strain. In the study by Bezdicek's group, the yield for the soil-applied inoculant 

was 60% bigher than for the seed-applied inocuiant. 

High yield in soybean has been reported with the use of granular inocuIant, 

even when 160 kg ha-' N was applied (Dubetz et al., 1983). This indicates that the 

granular inoculum not only tixed enough N for optimum yield, but the '& data 

(Rennie et al., 1982) also showed that the soybean i6 a fixing mode apparently ignored 

the applied fertilizer N @ubetz et al., 1983). Chamber (1983) examined the innuace 

of severai methods for rhizobiat inoculation on nodulation and yieId of soybean in 



Spain. He found that, compared to seed inoculation, inoculating the furrow with solid 

inoculum gave good plant growth, which correlated positively with grain yield and 

protein concentration. In field trials, using faba bean (Vicia faba L.) in several 

locations in Manitoba, Dean md Clark (1977) observed that granular inoculum 

increased plant vigor from an early stage dative to seed-applied inocutum. They 

reported that when soil moisture was low, granular inoculant resulted in a yield 

enhancement of 730 kg ha" compared to seed-applied inoculant. 

Granular inoculants increased yield of lentil (Lens culinaris) in small plots and 

on - fm field trials by 16% and 36%, respectively, over seed inoculation (Stephens 

and Chamberlain, 1996). They also reported that granular inoculants provided a yield 

advantage of 13% above that of seed-applied hulants  for field pea over the period of 

1991 to 1995. 

Soil inoculation also increased yieId of alfaIfa on moderately acid soils (Rice 

and Olsen, 1988). In another study, Rice and Olsen (1 992) compared soil-applied 

inoculants with an uninocdated control and the conventional seed-applied inocdants. 

In this experiment, using alfalfa on a moderately acid soil (pH 5.8), it was concluded 

that granular inoculant applied with or below the seed resulted in a significant yield 

increase over the conventional seed-applied inocuIant at a site with a normal 

indigenous population. In arrowleaf clover, Ocurnpaugh and Smith (1991) found that 

granular inoculant with the seed resulted in more vigorous seedlings with nearly 

double the dry matter yield of those with the seed-applied inoculant 

It can be argued at this poht that the importance of delivering large numbers of 

rhizobia is a challenge, and the best system to date is the soil-applied grandar 

inoculants. Brockwell et a[. (1995) in a recent review concluded that soil inoculation is 

often better and never worse than conventional seed inoculation for initiating 

nodulation and N2 fixation. Soil inocuIation kilitates the application of large numbers 

rhizobia for more effective noddation and N2 thation, while providing a micro-habitat 

that helps protect the rhizobia fiom harsh environmental conditions- If Iegumes are 

cultivated on soiIs with low a d a b l e  soil moisture, high temperatnre, low acidity or 

other forms of adverse environmental conditions that affect the viability of the 



introduced rhizobia, then the use of granular inocdant may be the best agronomic 

practice. 



3. EFFECT OF INOCITLUM PLACEMENT ON NODULATION AND Nz 

FIXATION BY CHICKPEA 

3.1 Introduction 

Chickpea can obtain a significant pomon of its N requirement through 

symbiotic N2 fixation when grown in association with effective and compatible 

Rhizobium ciceri strains (Beck et al., 1991; Beck 1992). The crop is new to 

Saskatchewan, and, because the soils do not contain sufficient numbers of the specific 

rhizobia if present (ReMie et al., 1982; Hynes et al.. 1995), inoculation is necessary to 

provide sufficient numbers of the correct rhizobid strain for effective nodulation and 

N2 fixation. However, the success of inoculation often is limited by several factors. 

including environmental conditions (Bottomley, 1992; Graham. 1992). the number of 

infectious cells applied (Bissomette and Ldande. 1988; Brockwell et al.. 1995). the 

presence of competing strains of rhizobia (Thies et al., 199 I, 1992) and the inoculation 

methods (Brockweil and BottomIey, 1995; Tom, 1996). 

Several studies have shown that a large majority of the rhizobia applied to 

seed via conventional seed inoculation, die on the seed prior to seeding or shortly after 

placement in the soil due to exposure to seed treatment chemicals. seed coat toxins. 

dehydration or excessive heat (BmckweU et aI., 1980; Roughley et al.. 1993). 

Co~l~equentIy, a method of inoculation in which the inocuium can be applied directly 

to the soil in high doses, and at the same time remain protected from adverse 

environmental conditions, has received much attention (Wilson. 1975: Bezdicek et al.. 

1978). 

Scudder (1975), using granular inoculaut in the seed furrow. obtained a 38% 

yield increase over seed-appfied inoculant in soybein under hot and dry conditions in 

Florida. SimiIariy, Bczdicek et aI. (1978), working with soybean, found that placing 

granular inocuIant in the soil with the seed was superior to seed-applied inoculant. 

Brockwell et aL (1980) s m m a h d  the tesults of experiments with several legumes, 



including chickpea, where granular inoculant was used. They found that, when 

conditions were unfavourable for the survival of rhizobia, or when germination was 

delayed due to environmental conditions, soil inoculation d t e d  in better nodulation 

and often better plant growth and yieId than seed-applied inocdants. Other 

investigators working with soybean (Muldoon et al., 1980; Chamber, 1983), faba bean 

(Dean and Clark, 1977), armwieaf clover (Ocumpaugh and Smith, 1991) and alfalfa 

(Rice and Oslen, 1988,1992) have reported similar findings. 

The depth of inoculum placement is an important factor that can influence the 

benefits of granular inoculation. It is well established that movement of rhizobia in the 

soil is limited (Madsen and Alexander, 1982; Kamicker and Brill, 1987). This finding 

is supported by reports that seed-applied inoculum or granular inoculum at the seeding 

depth results in nodutation predominantly in the crown region of the root system 

(Danso and Bowen, 1989; Hardarson et al., 1989; Danso et al., 1990). Contrary to the 

belief that crown-mot nodules ate of supreme importance, McDermott and Graham 

(1989), WoLyn et 4. (1989) and Vikman and Vessey (1992), using the non- 

quantitative acety Iene reduction assay, have shown that lateral-mot nodules which 

were formed later are more active during pod filling and seed maturation and can 

provide significant fixed N during later reproductive stages of the plant as compared to 

crown nodules. Thus. inoculation strategies, aimed at positioning the inoculant 

rhizobia to intercept lateral roots, can improve nodulation of the [ower part of the root 

system and consequently, improve fiation. Hardarson et al. (1989) and Wadiiirisuk 

et at. (1989) demonstrated this in soybean by placing the inoculum below the seed. 

However. none of the studies examined the optimum placement depth for effective 

noddation and N2 &cation. Therefore, the objectives of this study were to: 1) evaluate 

the effect of seed and soil iaacuIation methods on noddation, Nz fixation and yield of 

chickpzq 2) determine the optimum placement depth for granular inoculum; and 3) 

examine the contribution of lateral-mot nodules to N2 fixation and yield. 



3.2 Materiala and methods 

3.2.1 Study sites and soil test 

In 1997, field experiments were conducted at four sites in Saskatchewan: near 

Elbow. Kenaston, Outlook and Watrous. Another site on the same fana near Outlook, 

as well as a site on the same farm near Watrous, were used for similar studies in 1998. 

The sites were located in the Dark Brown soil zone and were within commercial 

fields. The soils were classified as Orthic Dark Brown Chernozems, according to the 

Canadian System of Soil Classification (Soil Classification Working Group, 1998). 

These sites were selected because of low soil N levels and the absence of a history of 

chickpea production. Soil samphg was carried out prior to seeding at each location in 

the spring of 1997 and 1998. ChemicaI analyses of soil samples for pH and 

conductivity (determined on a 1:l soilmter suspension (Hogg and Henry, 1984)); 

NO3-N (calcium chloride extractable); P and K (sodium bicarbonate extractable (Olsen 

et al., 1954)) were performed by Enviro-Test Laboratories, Saskatoon, SK (Table 3.1). 

Soil moisture content was a h  determined. The soil at Kenaston was also sampled in 

the fat1 of 1997, but because the resuIts were similar to those obtained in the spring, 

data, are not presented. Chickpea was grown on samples of the soils obtained fiom 

each site (0-30 cm depth), but did not noddate after six weeks in a pot experiment in a 

growth chamber, conhnhg the absence of R ciceri. 

3.2.2 Experimental procedure 

A randomized complete block design with Four replications was used at all 

sites. Each experiment consisted of 11 inoculation treatments with either desi (cv. 

Myles) or kabuli (cv. Sanford) chickpea (Cicer arietimm L.). In 1997, the desi 

chickpea was pianted on May 14 at EIbow, Kenaston and Outlook, and on May 20 at 

Watrous. For the 1998 desi experiments, planting was on May 9 and 20 at Watrous 

and Outlook, respectively. Each plot was pianted with a double disc press drill with 

separate discs for seed and fertilizer placement (Fabro Ltd, Swift Current, SK) and 

consisted of 7 rows (six chickpea rows and one flax row) 12 m long and 15 cm apart, 

Duplicate experiments with kabdi chickpea were coaducted at both Kenaston and 

Watrous in 1997 and at both Outlook and W m u s  in 1998. The seeding rate for desi 



chickpea was 110 kg ha-' and 160 kg ha-' for kabuli chickpea (Saskatchewan Pulse 

Crop Development Board, 1997). 

Table 3.1. Soil test data (0-30 cm) from the experimental sites prior to seeding, 1997 

and 1998. 

Gravimetric E C  N03-N P K 

moisture pH (mS ~ m " ) ~  (kg ha*') (kg ha-') (kg ha-') 

Locations content (%) 

1997 

Elbow 9.5 7.9 0.33 8.8 11.2 440 

Kenaston 13.1 8.2 0.45 8.4 6.6 240 

Outlook 16.4 7.1 0.82 10.8 9.2 540 

Watrous 19.4 7.5 0.48 9.2 32.0 540 

1998 

Outlook 10.6 8.3 0.5 12.4 18.4 440 

Watrous 19.4 8.1 0.2 16.4 12.4 540 

'EC values c 2 indicate that salinity effects ace usuaily negIigible (Bower and Wilcox. 

L965). 

Six commercid inoculants of Rhizobium ciceri (Table 3.2) were applied each 

year at the recommended rate. Eleven inoculation treatments were used: 1) seed 

inoculation using two different peat inoculants (A or B brand) or two different liquid 

inoculants (A or B brand); 2) soil inoculation, with two granular inoculants (A or B) 

placed either in the furrow with the seed at planting, side banded 2.5 cm Mow the 

seed or 8 cm below the seed and 3) a non-inoculated controI. lnoculants with the same 

designation, e.g., A, indicate that the identical Rhizobium strain or strains were used in 

the different carriers. InocuIant A contained a single sttain, CP39 (ICARDA, Aleppo, 

Syria; and kindly formdated by MicroBio RhizoGen Corp., Saskatoon), whereas 

inoculant B contained a mixture of three strains, 27A2, 27A7 and 27A9 (LiphaTec 

Inc., Milwaukee, WT). The liquid formuiation of inocdant B was not available in 



1997; hence, an experimental liquid formulation (Tnoculant C), containing single strain 

27A2 (Agrium Bidogicals Inc., Saskatoon, SK), was used. 

Seed inoculation was performed by throughly mixing a measured amount of 

peat or liquid inoculant according to the rnanufa~nner's recommendation, with 1.5 kg 

seed and using 5 ml of 1% gum arabic solution as sticker in plastic bags immediately 

before seeding. The granular inoculants were soil-applied either in the seed row or to 

the side of the seed row at different depths, using a second set of discs (adjusted for 

the various depths). Triple superphosphate (0-45-0) was applied at planting in the seed 

row at the rate of 20 kg ha*' PzOr To m h h h  contamination, the non-inoculated 

plots were planted h t .  In addition, all treatments with the same rbobia  strain@) 

were planted consecutively before switching to other treatments to minimize the 

potential for inadvertently contaminating the treatments. Moreover, the planter was 

thomufly cieaned with a vacuum cleaner and then disinfected with 70% ethanol after 

planting each treatment plot. FIax was used as the reference crop for the assessment of 

percentage N derived h m  the atmosphere (%Ndfa). 

Weeds were controkd by hand hoeing during the growing season. The plants 

relied on nand  precipitation throughout the growing season. Mean monthly 

precipitation and mean maximum air temperature for the various sites for the I997 and 

1998 growing seasons are presented in Appendix 1. 



Table 3.2. Name, designation, manufacturw and the rates of commercial inoculants 

used in 1997 and 1998. 

Rhizobim strain Designation Manufacturer Application rate 

CP 39 Liquid A MicroBio RhizoGen 4.5 m k g  seed 

27A2 Liquid C' Agrium BioIogicals Inc. 4.5 mYkg seed 

27A2,27A7,27A9 Liquid B LiphaTec Inc. 4.5 mYkg seed 

CP 39 Peat A MicroBio RhizoGen 1 -95 g/kg seed 

27A2.27A7,27A9 Peat B LipbaTec Inc. 6.15 g/kg seed 

CP 39 Granular A MicmBio RhizoGen 9.0 kg/ha 

27A2,27A7,27A9 Granular B LiphaTec Inc. 5.6 kg/ha 

'Liquid formulation C was used in 1997 instead of Liquid I3 because it was not 

available. 

3 3 3  Sample collection and analysis 

In 1997, sampling was performed by randody excavating the root systems of 

five plants to a depth of approximately 20 cm hrn the central rows of each plot at the 

flowering and early pod-filling stages for desi chickpea and at the early @-filling and 

late pod-filling stages for kabuli chickpea Sod adhering to the roots was carefblly 

removed and the whole plants and dropped nodules were bagged and transported to 

the iaboratory. Roots were gently washed under nmning tap water and nodules were 

collected. Nodules from the crown region and laterd roots were separated and 

counted. The crown region was defined as that part of the root extending 3 cm in all 

directions h m  the stem base, whereas the lateral mots were defined as tbat part of the 

root system extending beyond 3 cm from the stem base. The nodules and the whole 

plants were dried in an oven at 60 "C for 7 d and dry weights were determined 

At maturity, a 1-in2 area of unsampled center rows of each plot was hand- 

harvested with a sickle. Whole plant samples were dried at 60°C for 48 h and 

subsequently weighed. Following biomass daerminatiou, the plants were threshed 

with a stationary thresher. Seeds were cleaued, weighed, and yields were calculated on 

a per hectare basis. The seed was milled to a < 2-mm partick size with a Wiey mill 



(Arthur H. Thomas Company, Philadelphia, PA) and then finely ground by passing 

through a cyclone mill (Tecator model Cyclotec 1093) equipped with a 0.4-mm sieve. 

Seeds of flax were ground with a mortar and pestle. Approximately 1-mg samples of 

ground seed were analyzed for total N and atom percent '%J excess with an isotope 

ratio mass spectrometer VG Micromass 602E (Isotech, Middlewich, England) (Bremer 

and van Kessel, 1990). Seed protein was determined by multiplying total N by the 

factor 6.25 (Tkachuk, 1969) and then expressed as protein concentration. Atom % '% 
excess was calculated with reference to the natural '%I abundance of the atmosphere 

(0.3663 atom % '5 (Rennie and Kemp, 1984). 

Data collection and analysis for the 1998 experiments were similar to the 

previous year except for the iirst sampling of the desi plots, which was done at the 

early pod-filling stage instead of the flowering stage, In addition, the plants were not 

sampled at the Iate pod-filling stage at the Outlook site since it was not possible to 

recover most of the nodules because the soil was too dry and difficult to excavate. 

3.2.4 Calculatioas 

NaturaI '%I abundance was calculated according to Bremer and van Kessel 

(1 990): 

P N =  [ atom % "N (sample) -atom % "N (stadad) 1 looO 

atom % "N (standard) 

where the standard is atmospheric Nz gas (0.3663 atom % '%I). 

The percent N derived h r n  the atmosphere (%Ndfa) was then calculated as follows: 

where x is 6% of seeds of plants deriving all their N from soil (in this case flax), y is 

the 6% in chickpea seed, and c is 5% of chickpea seeds from plants grown in an N- 

fk medium (for details of the experiment see chapter 4). The c values for desi 

chickpea were 1.0009 and 1.0005 for the single strain CP39 and mixed strain (27122, 

27A7 and 27A9), respectively. The value for kabuli chickpea and rhizobiaI strain 

combinations was 1 .OOO7. 



3.23 Statistical analyses 

Data for each site were analyzed separately, using the generai hear  model 

procedure of SAS (SAS Institute, 1996). The error terms for each year were examined 

for homogeneity of variance (Snedecor and Cochran, 1980), using Bdett 's test. For 

the 1998 data, Bartiett's test produced chi-squared values, which were not significant. 

Hence, the error terms for the Outlook and Wsrtrous sites for each cultivar were 

considered homogeneous. Similarly, the error terms for alI the parameters measured in 

the 1997 kabuli experiments were also homogeneous, according to Badett's test. On 

the other hand, some of the variances (e.g., for yield) for the 1997 desi experiments 

were heterogeneous. However, the vananances were not too distinct from each other 

and, according to Gomez and Gomez (1984), if the highest error MS is not three-fold 

larger than the smallest error MS, the error variances can be considered homogeneous. 

Dr. R I. Baker (personal communication) also argued that failure to correctly account 

for heterogeneous error variances would have IittIe effect on the estimation of, or 

comparisons among, main effects of a fixed factor. In the analyses, inoculation 

treatment was considered a fixed factor; hence, heterogeneity of variances would not 

have much affect on the comparisons among treatment means. Therefore, combined 

analyses were conducted separately for the 1997 and 1998 experiments. 

Significant differences among treatment means were evaluated with LSD at the 

5% probability level. Orthogonal contrasts (P I 0.05) were used to statistically 

compare inoculant formulations and inoculation methods. The combined analysis of 

data over years was not performed because, although four similar experiments were 

conducted at four locations in 1997, only two experiments, each at one Location were 

conducted for desi in 1998. For the kabuli, although two similar experiments were 

conducted in both years, one of the 1998 experiments was conducted at a site different 

h m  that of 1997. Moreover, liquid B was not available in 1997, so liquid C was used 

instead. therefore, one of the treatments was different between years. Correlation 

analyses of shoot dry matter per piant and seed yield ha-' averaged over sites were 

performed separately on dry weight of crown nodules and lateral root nodules per 

plant averaged over sites. 



3 3  Rezsttlts 

33.1 Individual plant data 

33.1.1 Plant growth and nodulatioa 

Moisture conditions at Watrous in both 1997 and 1998 favoured early seedling 

emergence, and plant growth was more vigorous than at the other sites (Appendix I). 

However, plant growth at Elbow in 1997 was restricted by low soil moisture at 

seeding (Table 3.1). but this apparently did not affect plant growth response to 

inoculation. On the other hand, in 1998, seeding at Outlook was eleven days later than 

at Wamus due to drought conditions, but no rain occurred during this delay. The 

Ourlook plots were seeded on 20 May and according to Environment Canada, average 

precipitation at Outlook for May 1998 was 57% less than normal (Appendix 1). As a 

result of the low soil moisture (Tabie 3.1)- seedling emergence was slow and plant 

stand was Iow, particularly in treatments where granular inoculants were placed below 

the seed. The soil was very dry and it was observed that the upper 30 cm was very 

hard and difficult to penetrate with a shovel. the resistance encountered by the disc 

openers for both the granular inocdant (i.e. 2.5 and 8.0 crn below seed placement) and 

the seed prevented the discs fiom penetrating to the desired depth. Hence the seeds 

were deposited just below the soil surface where the soil moisture content apparently 

was too low for optimum germination, particularly for the large-seeded kabuli. Dry 

conditions during the later part of the growing season at Outlook in I998 also made 

sampling for plant roots and attached nodules difficult and plans to sample roots at late 

pod-filling were abandoned. Inoculation treatments produced similar results for both 

desi and kabuli chickpeas at all locations. Therefore, genotype data were averaged 

over locations for each year. With the exception of for the Outlook plots in 1997 

(Appendices 2 and 3), limited (though sparse) noddation occurred on non-inoculated 

plots (appendices 4-19), despite the care taken to avoid contamination. 



Number of nodules per plant in 1997: Inoculation treatments and depth of inoculant 

placement significantly influenced numbers of nodules and nodulation patterns in both 

desi and kabuli chickpeas at all locations. For the 1997 growing season, averaged over 

locations, the peat-based inoculants produced more nodules per plant than for the 

liquid inoculants at both sampling dates in both desi chickpea (Tables 33-3.6) and 

kabuli chickpea (Tables 3.7-3.10). Furthermore, the average number of nodules for the 

liquid + peat-based inoculants was higher than the average for the six granular 

inoculants at both sampling dates. In the desi experiments, these differences in nodule 

numbers were significant at the 5% level at the flowering stage (Table 3.3, but the 

differences increased as the plants approached the early pod -Wg stage (Table 3.4), 

and were significant at the 1% level. 

In 1997, the total nodule numbers for the granular inocdants applied in the 

seed f-w were significantly higher than when the granular inoculants were placed 

below the seed at both sampling dates in desi chickpea (Tables 3.3-3.6). but the 

differences were significant only at the early pod-filling stage in the kabuli chickpea 

(Tables 3.7-3.10). Again, the differences in the desi chickpea increased h m  the 

flowering stage (P = 0.05) to the early pod-filling stage (P = 0.01). However. no 

significant differences in total nodule numbers were observed between the granular 

inoculant placed in the seed &ow and the peat-based inocuIant. Rhizobial strain or 

strains in the same formulation did not differ in number of nodules and the strain 

interactions were not significant in either the desi or the kabuIi chickpeas. 

Furthermore, the depth of placement of the granular inocuiant (2.5 cm and 8.0 cm 

below the seed) had no effect on nodule numbers. 

In 1997, the location x inoculation interaction for the total number of nodules 

per plant was significant only at the early pod-filling stage for the desi chickpea (Table 

3.6) and only at the late pod-filling stage for the kabuii chickpea (Table 3-10), due 

primarily to the higher number of noduIes for the liquid inoculant at Watrous for the 

desi chickpea (Appendix 4) and the Iow number of noduIes for the liquid inoculant at 

Watrous for the kabuli chickpea (Appendix S), dative to the peat-based inoculant. 

The signiiicant differences in totd number of nodules for the desi chickpea and the 

kabuli chickpea in 1997 reported above are due primatily to differences in number of 



noduIes in the crow area (Tables 3.3-3.10). Very few of the differences in number of 

nodules on the lateral roots were s iwcan t .  

Location had a significant effect on number of nodules in the desi experiments 

(Tabies 3.5 and 3.6), but the effect was not significant in the kabuli experiments 

(Tables 3.8 and 3.10). Total nodule numbers at both tbe flowering and earfy pod- 

filling stages for desi chickpea at Outlook (Appendices 2 and 3), Kenaston 

(Appendices 6 and 7) and Watrous locations (Appendices 4 and 8) were generally two 

to three and half times greater than those recorded at Elbow (Appendices 9 and IO). 

On the other hand, total nodule numbers for the kabuli cbickpea were similar at 

Waaous (Appendices 5 and 1 1) and Kenaston (Appendices 12 and 13). 

Nodule dry weight in 1997: For the 1997 experiments, nodule dry weight was ofien 

not consistent with the number of noddes produced in either the desi or the kabuli 

experiments at all locations (Appendices 2-13). Differences in number of nodules 

p l d '  often were not detected as Wermcs in nodule dry weight plant-'. For 

example, in the desi chickpea experiments, granular inoculants placed below the seed 

produced a Iower number of nodules, but the totaI dry weights were not significantly 

different from those for the peat inoculants (Tables 3.3-3.6). The orthogonal contrast 

of liquid + peat vs. ganular inoculant treatment indicated no significant differences in 

the nodule dry weight. Total nodule dry weights for the liquid inoculants were Iower 

than that for the peat inocdants at both the flowering and the early pod-flhg stages 

in desi chickpea (Tables 3.3 and 3.4). At the flowering stage, totaI nodule dry weight 

for the granular inoculant placed 2.5 cm beIow the seed was significantly (P = 0.03) 

higher as compared to that for pIacernent 8.0 cm below the seed. Total nodule dry 

weight for granular B inoculants at the earIy @-filling stage in the desi was 

significantly (P = 0.01) higher than for granular A inocdants. 



Table 3.3. Number o f  nodules, dry weight of nodules and dry matter production from 

various inoculation. treatments o f  Myles desi chickpea at the flowering stage, averaged 

over the Elbow, Kenaston, Outlook and Watrous locations, 1997. 

Nodule no. plant" Nodule dry wt. Shoot 
(mg dry wt- 

lnoculantt Crown Lateral Total Crown Lateral Total (g plant-') 
Non-inoc 0.15 1.09 1.24 2.3 2.9 5.2 1.23 
Liq A 
Liq C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(o.on 

contrasts: 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs. Liq C 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. p u  8.0 
G m  A vs. gran B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8.0 0.08 030  0.22 3.9 6.0 9.9 0.06 
*, ** Significant at the 0.05 and 0.01 levels, respectively. 
t  on-60c = non-inoculated, koc  = inoculate& Liq =liquid, Gran = grandar, m = 
with seed, bs = below seed, str = strain 

Differences between specified treatments. 



Table 3.4. Number of nodules, dry weight of nodules and dry matter production h m  

various inoculation treatments of Myles desi chickpea at the early pod-filling stage, 

averaged over the Elbow, Kenaston, Outlook and Watrous locations, 1997. 

Nodule no. piant" Nodule dry wt. Shoot 
(mg plant") dry wc- 

lnoculantt Crown Lateral Total Crown Lateral Total (p, plant*') 
Non-inoc 0.23 0.55 0.78 6.6 17.6 242 3.71 
Liq A 
Liq C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSQo.on 

contrasts: 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs. liq C 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. grafl 

Liq+peat vs. gran 
Grm ws vs. gran bs 
Gran 2.5 vs. graa 8.0 
Gran A vs. gran B 
G m  str x ws vs. bs 
Gran str x 2.5 vs. 8.0 0.03 0.18 0.20 8.0 2 6  10.6 0.47 
*, ** Significant at the 0.05 and 0.01 levels, respectively. 
t  on-imf = non-inonrlated, imf = inoculata Liq = Liquid, Gran = jpuular, ws = 
with seed, bs = below seed, str = strain. 
: Differences between specified treatments. 





Table 3.6. Mean squares from the analysis of variance fbr number of nodules, dry weight of nodules and dry matter production 

from various inoculation lreatmenls of Myles desi chickpea at the early pod-filling stage, at the Elbow, Kenaston, Outlook and 

Watrous locations, 1997. 

Mean squares 
Nodule number plant" Nodule dry WI. shoot dry wi. 

Source of variationt d.f. crown Lateral Total Crown Lateral Total 
Locations (L) 3 42.16* 52.30** 184.55** 0.027 0,023** 0.1 OO** 58.469** 
Reps in l&aiions 
Inoculation (1) 
Non-inoc vs. inoc 

Liq vs. peat 
Liq A vs. Iiq C 
Liq vs. gran 
Peat A vs, peat B 
Peat vs, g r v  
Liq-tpeat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8 
Gran A vs. gran B 
Gran str x ws vs, bs 
Gran str x 2.5 vs. 8 

L x l  
Error 
Total 175 
*, ** Significant at the 0.05 and 0.01 levels, respectively. ' Non-inoc = non-inoculated, inoc = inoculated, Liq = liquid, Gran = granular, ws = with seed, bs = &low seed, str = strain. 



Table 3.7. Number of nodules, dry weight of noddes and dry matter production h m  

various inoculation treatments of Sanford kabuli chickpea at the early pod-fiiling 

stages, averaged over the Kenaston and Watrous locations, 1997. 

Nodule no. plant-' Nodule dry wt. (mg plant*') Shoot 
dryw 

lnoculantt Crown Lateral Total Crown Lateral Total (g ppy 
0.45 0.43 0.88 9.5 13.0 22.5 6.18 Non-inoc 

Liq A 
Liq C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LsD(0.0~ 

contrasts: 
Non-inoc vs. inac 
Liq vs. peat 
Liq A vs. liq C 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. graa 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 0.21 0.10 0.1 1 5.1 14.6 19.8 0.44 
Gran A VS. gran B 0.13 0.58 0.71 5.9 1 9.0 13.1 0.22 
Gran str x ws vs. bs 0.37 0.07 0.29 18.1 7.5 25.6 0.17 
Gran str x 2.5 vs. 8.0 0.1 1 0.25 0. f 4 10.9 36.9* 47.8 0.25 
*, ** Significant at the 0.05 and 0.01 leveIs, respectively. 
t ~on-&c = wn-inoculated, inoc = inoculate& Liq liquid, G r a ~  = granular, ws = 
with seed, bs = bebw seed, str = strain. 
: Differences between specified treatments. 
g pi*' = g plant" 



Table 3.8. Number of noduIes, dry weight of nodules and dry matter production from 

various inoculation treaanents of Sanford kabuli chickpea at the late pod-filling stages, 

averaged over the Kenaston and Wamus locations, 1997, 

Noduie no. plantt1 Nodule dry wt. (mg plant") Shoot 
- - 

dry wt. 
hocuiantt Crown Lateral Total Crown Lateral Total (g pl-')4 
Non-inoc 0.48 0.50 0.98 18.0 33.0 51 .O 8.77 
Liq A 
Liq C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(o.os, 

contrasts: 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs. liq C 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gran B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8.0 0.14 0.67 0.80 10.7 16.5 5.7 1.63 
*, ** Significant at the 0.05 and 0,Ol levels, respectively. 
t Non-inoc = non-inoculated, inoc = inoculated, Liq = liquid, Gran = granular, ws = 
with seed, bs = below seed,  st^ = strain. 

Differences between specSed treatments. 
§ g pl-k = g plant-' 





Table 3.10. Mean squares from the analysis 01' variance for number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of Santbrd kabuli chickpea at the late pod-tilling stages, at the Kenaston and Walrous 

locations, 1997. 

. - - - - 

Mean squares 
Nodule number plant-' Nodule dry wt. Shoot dry wt. 

Source of variationt d.f. ~ , ~ m  Lateral Total Cram Lateral Total 
Locations (L) I 3.52 22.00 7.92 0.002 0.146** 0.181* 71.47 
Reps in localions 
Inoculation (I) 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs, liq C 
Liq vs, gran 
Peat A vs, peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs, gran bs 
Gran 2.5 vs. gran 8 
Gran A vs. gran B 
Oran slr x ws vs. bs 
Gran str x  2.5 vs. 8 

L x l  
Error 
Total 87 
*, ** Significant at the 0.05 and 0.01 levels, respectively. ' Non-inoc = non-inoculated, inoc = inoculated, Liq = liquid, Gran = ymnular, ws = with seed, bs = below seed, str = stwin. 



For the kabuli experiments in 1997, aadysis by contrast showed rhat the peat 

inoculants produced a higher total nodule dry weight than the liquid or granular 

inocdants at both the early pod-filling stage (Table 3.7) and the late pod-filling stage 

(Table 3.8). However, total nodule dry weight for the granular inoculant was higher 

than for the liquid inoculant at the early pod-filling stage. 

The interaction between inoculation treatment and location was not significant 

for total nodde dry weight for either chickpea type at either sampling date (TabIes 3 3, 

3.6,3.9 and 3.1 O), except for desi at the flowering stage, presumably due to the higher 

nodule dry weight for the liquid inoculation at Watrous (Appendix 8). Except for the 

early pod-filling stage in the kabuli experiments, Iocation had a significant effect on 

nodule dry weight due to the low nodule dry weight at Elbow (Appendices 9 and 10) 

and Outlook (Appendices 2 and 3) in the desi experiments, and the higher nodule dry 

weight at Kenaston (Appendix 13) as compared to Wmus (Appendix 5) in the kabuli 

experiments at the late pod-filling stage. The greatest nodule dry weight (263 mg 

in the desi experiments occurred with granular B inoculant placed 2.5 cm 

below the seed at Watrous at the early pod-tilling stage (Appendix 4). For the kabuli 

experiments, the greatest nodule dry weight was 389.5 mg ~lant-' for peat B inocuiant 

at Kenaston during the late pod-filling stage (Appendix 13). 

Number of noduiea in 1998: Udike the 1997 field season, the 1998 results at 

Outlook and Watrous indicated that the granular inoculants produced more nodules 

than the average of the peat and the Iiquid inoculants at the early pod-filling stage in 

both chickpea types (Tables 3.11-3.14). However, seed treatment with peat-based 

inocdants resulted in higher nodule numbers as compared to the liquid inoculants. 

Liquid A performed poorly and was not significantly different from the non-inocdated 

control in both the desi and kabdi chickpeas at the early pod-filling stage. Liquid B 

produced more nodules than liquid A at the early pod-filling stage in the kabuli 

experiment (Table 3-12), but not for the desi experiment (Table 3.1 1 ). 

The interaction between Iacation and inoculation was not significant for tom1 

noduIe numbers at the early pod-filling stage in eitber the desi or kabuli experiment 

(Tables 3.13 and 3.14). Similarly, location had no effect on total number of nodules- 



Sampling at the late pod-filling stage was performed at Wamus only due to dry soil 

conditions at Outlook, which made it difficult to excavate and recover mots and 

attached nodules. At the late pod-filliag stage, the total nodule numbers at Watrous 

were similar to those observed at the earIy pod-filling stage in both chickpea cultivars, 

and foUowed a trend similar to that in 1997 (Appendices 14 and 15). 

Nodule dry weight in 1998: The total dry weight of the nodules at the early pod- 

filling stage was greater in the peat and granular than the liquid inoculation treatments 

in both chickpea types (Tables 3.11-3.14). For the desi experiments, no significant 

difference in nodule dry weight was observed for the peat vs. granular inoculant, but 

the difference was significant in the kabuli experiments. Liquid B inoculant produced 

more total nodule dry weight than liquid A inoculant at the early pod-filling stage in 

the desi experiments (Table 3.1 I), but not in the kabuli experiments (Table 3.12). For 

the kabuli chickpea, granular inoculant B placed with the seed resulted in higher total 

nodule dry weight as compared to treatments in which the granular inoculant B was 

placed below the seed (Table 3.12). For both chickpea types, total nodule dry weight 

at the early pod-filling stage for the liquid A inoculant was not significantly different 

fiom the non-inoculated control. 

In 1998, no significant interaction was observed between location and 

inoculation for totaI nodule dry weight at the earIy pod-filling stage in the desi 

experiments (Table 3.13), but the interaction was significant (P = 0.02) in the kabuli 

experiments (Table 3-14), presumably due to the extremely low totaI nodule dry 

weight for the Liquid inoculants at OutIook. The effect of location on nodule dry 

weight was not significant for either the desi or the kabuli chickpeas. Desi chickpea 

plants grown h m  seeds inoculated with peat A inoculant produced the greatest total 

nodule dry weight (307.5 mg plant-') at the early pod-Wg stage at Outlook 

(Appendix I@, whereas granular A placed 8 cm below the seed resulted in the highest 

nodule dry weight (275.0 mg plant-') at the earIy pod-filling stage at Warnus 

(Appendix 17). For the kabuli chickpea, the highest nodule dry weight at Watrous 

occuned in the peat B treatment (3 17.5 mg  plant^') (Appendix 18), whereas at OutIook 

the highest noduIe weight of 206.0 mg plant-' was achieved for the peat A treatment 



(Appendix 19). At the Iate pod-filling stage, total nodule dry weight for the desi 

chickpea at Watrous (Appendix 14), lmlike the kabdi chickpea (Appendices 15 and 

18), was generally lower as compared to that observed at the early pod-filling stage 

(Appendix 17). 

Table 3.1 1, Number of nodules, dry weight of nodules and dry matter production from 

various inoculation treatments of Myles desi chickpea at the early pod-fillling stage, 

averaged over the Outlook and Watrous Locations, 1998. 

Nodule no. plantt' Nodule dry wt, (mg plant-') Shoot 
dryw 

lnocdantt Crown Lateral Total Crown Lateral Total (g 
Non-inoc 0 0.13 0.13 0 3 -0 3.0 4.70 
Liq A 0.18 0.35 0.53 9.5 16.0 25.5 4.16 
Liq B 2.00 1.40 3.40 76.3 48.0 124.3 4.73 
Peat A 3.27 2.38 5.65 193.3 70.8 264.0 5.13 
Peat B 3.88 2.30 6.18 150.5 41.0 191.5 5.39 
Gran A with seed 2.43 5.45 7.88 80.3 163.0 243.3 6.26 
Gran A 2.5 cm bs 1.13 6.23 7.35 21.8 182.3 204.0 5.94 
Gran A 8.0 cm bs 0.40 6.70 7.10 7.8 196.3 204.0 7.03 
Gran B with seed 2.13 4.70 6.83 87.3 t 34.5 221.8 5.59 
Graa B 2.5 cm bs 1.08 6.10 7.18 25.5 131.5 157.0 5.91 
Gran B 8.0 cm bs 0.60 4.95 5.55 19.0 134.5 153.5 6.33 
LSD(o.os1 1.72 1.92 3.03 45.9 76.2 943 0.97 

contrasts: 
Non-inoc vs. inoc 1.71* 3.93** 5.64** 67.1* 108.8** 175.9** 0.95** 
Liq vs. peat 2.49** 1.47** 3.95** 129.0L* 23.9 152.9** 0.82* 
Liq A vs. tiq B 1.82* 1.05 2.87 %.a** 32.0 98.P 0.57 
Liq vs. gan 0.21 4.81** 5.02** 2.6 125.0** [22.4** 1.74** 
Peat A vs. peat B 0.6 1 0.08 0.53 42.8 29.8 72.5 0.26 
Peat vs. gran 2.28** 335** 1.07 131.6** 101.1** 305 0.92** 
Liq+peatvs.gran 1.04** 4.08** 3.04** 67.1** 113,1** 45.9* 1.32** 
Gran ws vs. gran bs 1.48** 0.92 0.56 65.3** 12.4 52.9 0.38 
Gran 2.5 vs, gran 8.0 0.61 034 0.94 10.3 8.5 1.8 0.76* 
Gran A vs. gran B 0.05 0.88 0.92 7.3 47.0* 39.7 0.47 
Gran str x ws vs. bs 0.50 0.48 0.98 4.5 3 -8 8.3 0.28 
Gran str x 2.5 vs. 8.0 0.13 0.81 0.69 3.8 5.5 1.8 0.34 
*, ** S i p i f h u t  at the 0.05 and 0.0 1 levels, respectively. 
t Non-inoc = non-moculated, inoc = inoculated, Liq = liquid, Gran = granular, ws = 
with seed, bs = below seed, str = strain. 

Differences between specijied treatments. 
g p ~ '  = g plant-' 



Table 3.12. Number of nodules, dry weight of nodules and dry matter production from 

various inoculation treatments of Sanford kabuli chickpea at the early pod-filling 

stage, averaged over the Outlook and Watrous locations, 1998. 

Nodule no. plant" Nodule dry wt, (mg ~lant ' )  Shoot 
dry wt- 

hocdan? Crown Lateral Total Crown Lateral Total (g pl-')5 
Non-inoc 
Liq A 
Liq B 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(0.05) 

conuasts: 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs. liq B 
Liq vs. gran 
Peat A vs. peat I3 
Peat vs. graa 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gran B 
Gran str x ws vs. bs 
Gran str x 25 vs. 8.0 0.45 0.49 0.04 8.9 2.4 2.4 0.2 1 
*, ** Significant at the 0.05 and 0.01 levels, respectively. 
t  on-&c = non-inoculated, inoc = inoculated., Liq = liquid, G m  = granular. ws = 
with seed, bs = below seed, str = strain. = Differences between specified treatments. 
g = g 



Table 3.13. Mean squares from the analysis of variance for number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of Myles desi chickpea at the early pod-filling stage, at the Outlook and Watrous locations, 

1998. 

Mean squares 
Nodule number plant" Nodule dry wl. Shoot dry wt. 

Source of variationt Crown Lateral Total Crown Lateral Total 
Locations IL) 1 1.92 0.10 1.14 0.005 0,003 0.016 28.25 
Reps in !&ations 
Inoculation (1) 
Non-inoc vs. inoc 

Liq vs. peat 

z Liq A vs. liq B 
Liq vs. gran 
Peat A vs. peat B 
Peat vs, gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8 
Gran A vs, gran B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8 

L x l  
Error 
Total 87 
*, ** Significant at the 0,05 and 0.01 levels, respcctively. 
' ~ o n - i i w  = non-inoculated, inoc = inoculated,-liq = liquid, Grun = gmnulur, ws = with seed, bs = bclow seed, str = strain. 



Table 3.14. Mean squares from the analysis of variance for number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of Sanford kabuli chickpea at the early pod-filling stage, at the Outlook and Watrous loca~ions, 

1998. 

Mean sauares 
Nodule number planl-' Nodule dry wt. Shoot dry wt. 

Source of variationt d.f. cmwn Lateral Total Crown Lateral Total 

Localions (L) 1 35.89 93.69 245.56 0.034 0.077 0.2 14 270.16** 
~ e p s  in ~odaiions 
Inoculation (I) 
Non-inoc vs. inoc 
Liq vs, peat 
Liq A vs, liq B 
Liq vs, gran 
Peal A vs. peat B 
Peat vs, gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8 
Gran A vs, gran B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8 

L x l  
Error 
Total - 8 7 
*, ** Significant at the 0.05 and 0.01 levels, r&xlively. 
Non-inoc = non-inoculated, inoc = inoculated, Liq = liquid, Gran = granular, ws = with seed, bs = below seed, str = strain. 



Nodule distribution in 1997: hoculum placement significantly affected the 

distribution of nodules on the root system and the distniution was consistent across 

locations in both chickpea types. The peat and liquid inoculants produced majority of 

the nodules at the crown region, whereas the soil-applied (granular) inoculants 

produced mainly lateral root nodules, especially when the granular inoculum was 

placed below the seed (e.g., Tables 3.4 and 3.7). In the desi experiments averaged over 

locations for the 1997 field season, granular inoculant placed at 2.5 and 8.0 cm below 

the seed formed 72-97% of the nodules on the lateral roots (on nodule dry weight 

basis) compared to only 25-36% for the peat and liquid inoculants at the flowering and 

early pod-filling stages (Tables 3.3 and 3.4, respectively). Similarly, 87-97% of the 

nodules formed by grandar inoculant placed below the seed in kabuii were located on 

the lateral roots compared to 27-54% for the peat and Iiquid inoculants at the early and 

late pod-fiIling stages (Tables 3.7 and 3.8, re-veiy). 

Nodule distribution in 1998: The position of the nodules in 1998 experiments was 

similar to that in 1997. For example, based on dry weight, granular inoculants placed 

below the seed produced 79-96% of their nodules on the lateral roots in both chickpea 

types at the early pod-filling stage as compared to 21-39% in the peat inoculants 

(Tables 3.1 1 and 3.12). There were no marked differences among inoculant strains in 

either chickpea type in both years indicating that the pattern of nodule formation was 

due primarily to the depth of inoculant placement, 

33.1.2 Dry matter yield 

1997: At all sampling dates, averaged over locations, shoot dry matter was 

significantly affected by inoculation methods except for the flowering stage in desi 

chickpea, even though a s h h  trend was observed (Tables 3.3-3.10). For the 1997 

experiments, inoculation generally increased shoot dry matter per plant compared to 

the control, but dry matter yield increases were higher with the granular inoculants 

piaced beIow the seed than when placed in the seed row or for pa t  and liquid 

inoculants. Orthogonal contrasts confirmed that shoot dry weight in both desi and 

kabuli chickpeas were signiticantly higher for soil inoculation as compared to seed 



inoculation (Tables 3.3-3.10). Moreover, whereas the differences were detected at the 

5% level in the desi chickpea at the flowering stage (Table 3.3), the significauce 

increased to the 1% level at the early pod-filling stages (Table 3.4). Shoot dry weight 

for the kabuli plants grown from seeds treated with peat-based inoculants was 

si@cautly higher than that for the liquid formulated treatments at the early pod- 

filling stage (TabIe 3.7) and at the late pod-filling stage (Table 3.8). Peat B inoculation 

resuIted in higher shoot dry matter production than peat A inoculation in the kabuli 

chickpea at both the early pod-filling stage (Table 3.7) and the late pod-filling stage 

(Table 3.8). 

The interaction between location and inoculation for shoot dry weight was not 

significant at the eariy pod-filling stage (Tabies 3.6 and 3.9) En either chickpea type. 

However, a significant interaction was observed in the desi at flowering (Table 3 .3 ,  

presumably due to lack of significant differences among inocuIation treatments at 

Elbow (Appendix 9) relative to significant diffmnces at the other three sites 

(Appendices 2, 6 and 8). A significant interaction was also observed in the kabuli at 

late pod-filling (Table 3-10], presumably due to the low shoot dry matter for the 

granular B inoculant placed with the seed in 1997 at Watrous (Appendix 5) relative to 

the high dry matter yield at Kenaston (Appendix 13). Location had a significant effect 

on shoot dry matter at both sampling dates in the desi chickpea (Tables 3.5 and 3.6) 

but was significant only at the early pod-filling stage in the kabuli chickpea (Table 

3.9). 

1998: Shoot dry weight data for the 1998 field sewn again showed that the grandar 

inoculant treatments were signif?cantIy better at enhancing shoot dry weight as 

compared to the seed-applied inocdants in the desi (Tables 3.1 1 and 3.13), but not in 

the kabuli (Tables 3.12 and 3.14). Contrast analysis aIso indicated that placing the 

granular inocdant 8 cm bdow the seed resulted in higher shoot dry weight compared 

to 2.5cm below seed pIacement in the desi at the early pod-tilling stage (Tables 3.1 1 

and 3.13). In both chickpc:a types, the peat-based inocdants were superior to the liquid 

inocutants in enhancing shoot dry matter (Tables 3.1 1-3-14). 



As observed in 1997, the location x inoculation interaction was not significant 

for shoot dry mafter in either the desi or the kabuIi type at the early pod-filling stage, 

indicating that the inoculants performed similarly across locations (Tables 3.13 and 

3.14). In general, in 1998 shoot dry weight of both desi and kabuli chickpeas at 

Watrous were higher than those at Outlook at the early pod-filling stage (Appendices 

16-19). For example, the mean shoot dry weight for the kabuli chickpea at Watrous 

was 54% higher than the mean for the kabuli chickpea at Outlook (Appendices 18 and 

19). 

En 1998, shoot dry weight at the late pod-filling stage was evaluated only at 

Watrous. For the desi, dry mmer at this stage for the non-inoculated control was not 

significantly different fiorn those for the liquid inoculants and peat-based inoculant B 

(Appendix 14). As in the desi experiments, shoot dry matter in the kabuli experiments 

was lower in the liquid inoculant treatments than all the other hoculant treatments 

(Appendix 15). Although shoot dry weight was higher for the granular inoculants 

compared to the peat-based inoculants, they did not differ statistically. 

3 3 2  Plot data 

33.2.1 Biomass and seed yield 

1997: At final harvest in 1997, plant biomass and seed yield for both kabuli and desi 

types, averaged over Iocations, were significantly increased by inoculation (TabIe 3.15 

and 3.16, respectively). In particular, granular inoculant placed below the seed and 

seed inoculated with peat-based in&uIant A produced the highest yields (Tables 3.17 

and 3.18)- The diffefences in plant biomass and seed yield between granular 

inoculants placed in the seed firrrow and placement Mow the seed were significant for 

both kabuli (TabIe 3.15) and desi (Tkble 3-16), except for the seed yield in kabuii 

(Table 3.1 5). In each instance, granular inocuiant below the seed performed better than 

granular inoculant pIaced with the seed. 

The significaut location by inoculation interaction for plant biomass and seed 

yield in the desi experiments (Table 3.16), was due primarily to the relative lack of 

response to inoculation at Elbow (Appendix 20) and W o o k  (Appendix 21) as 

compared to the excellent response at Watrous and Kenaston (Appendices 23 and 25, 



Table 3.15, Mean squares tiom the analysis of variance for whole plant biomass, seed yield, seed protein concentration, percentage 

N derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for Sanford kabuli chickpea averaged over Kenaslon 

and Watrous locations, 1997, 

Mcan squares 
Sources of variationt d.f. Biomass Seed yield Protein conc. %Ndfa Nz fixed 
Locations (L) I 138501 8 934828 14.37 1 I 260** 479 
Reps in locations 
Inoculation (I) 
Non-inoc vs. inoc 
Liq vs, peat 
Liq A vs, liq C 
Liq vs. gran 
Peat A vs, peat B 
Peat vs. gran 
Liqtpeat vs. gran 
Gran ws vs, gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gran B 
Gran str x ws vs, bs 
Gran str x 2.5 vs, 8,O 

L x l  
Error 
Total 87 

*, ** Significant at the 0.05 and 0.01 levels, rcspctivcly, 
Non-inoc = non-inoculn~cd, inoc = inoculuwi, 1.iq = liquid. (irun = grunulitr. ws = w i ~ h  sccd, bs = k l o w  seed, sir = s~rain. 



Table 3,16. Mean squares from the analysis of variance for whole plant biomass, seed yield, seed protein concentration, percentage 

N derived from atmosphere for the seed (%Ndfa) and amount of seed N tixed for Myles desi chickpea averaged over Elbow, 

Kenastan, Oullook and Walrous locations, 1997, 

Sources of variationt d.t: 
Locations (L) 3 
R e p  in lofaions 
Inoculation (I) 
Nan-inoc vs, inac 
Liq vs. p a t  
Liq A vs. liq C 

3 Liq vs, gran 
Peat A vs, peat B 
Peat vs. gran 
Liqtpeat vs, gran 
Oran ws vs, &ran bs 
Oran 2.5 vs. gran 8.0 
Gran A vs. pan  B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8.0 

L x l  
Error 

Mean squares 
Biomass Seed yield Protein conc. %Ndfa N2 fixed 

56830089** 17182147** 79.2 1 ** 1 1  120" 1356!** 

Total 
d 

175 
*, ** Significant at the 0.05 and 0.01 levels, respectively, 
Non-inoc = non-inoculuted, i r w  = inoculated, I.iq = liquid, Grun = yrirtiulor, ws = wilh srrd, bs = helow seed, slr = strain. 



respectively). For both kabuli and desi experiments, biomass and seed yields were 

higher at Watrous (Appendices 22 and 23) than the other sites (Appendices 20,2 1,24 

and 25). 

Table 3.17. Whole plant biomass, seed yield, seed protein concentration, percentage N 

derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Sanford kabuli chickpea, averaged over Kenaston and Watrous locations, 1997. 

Biomass Seed yield h t e i n  conc. %Ndfa N2 Eked 
hocdantt (kg ha") (g kg-') (kg ha-') 
Non-inoc 1563 658 1 73 30.3 5.5 
Liq A 
Liq C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(o.on 

contrasts: 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs. liq C 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gran B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8.0 69 1 1 .O 1.2 

*, ** Significant at the 0.05 and 0.01 levels* respectively. 
t Nan-inoc = non-inoculated, inoc = inoculated, Liq = Liquid, = granular, = 
with seed, bs = below seed, str = strain. 
: Differences between specified treatments. 



Table 3.18. Whole plant biomass, seed yield, seed protein concentration, percentage N 

derived from atmosphere for the seed (%Ndfh) and amount of seed N fixed for Myles 

desi chickpea, averaged over Elbow, Kenaston, Outlook and Watrous locations, 1997. 

Biomass Seed yieId Protein conc. %Ndfa NNt fixed 
hoculantt (kg ha-') (kgL) (g kg1)  (kg ha-') 
Non-inoc 1757 962 176 32.8 
Liq A 
Liq C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
G m  B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(o.on 

contrastsf 
Non-inoc vs hoc 
Liq vs. peat 
Liq A vs. liq C 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gan B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8.0 - ~ 1 I 6 0.8 1.6 
*, ** Significant at the 0.05 and 0.02 levels, respectively. 
t Non-inoc = non-inoculated, inoc = inoculated, Liq = liquid, Gran = granular, ws = 
with seed, bs = below seed, m = strain. = Differences between specified matments. 



1998: Averaged over locations, seed inoculation with peat and granular inoculants 

placed with the seed in the kabuli chic- resulted in higher yields compared to the 

other treatments (Tabte 3.19). However, the contrast of tiquid or peat-based inocdant 

vs. granular inoculant was not significant for either biomass or seed yields. Biomass 

and seed yields in 1998 at the Outlook were affected by droughty conditions 

(Appendix I), and the effect was most severe in the treatments where the inoculants 

were placed below the seed in the kabuli experiment due to problems encountered 

with seed placement, as previously descn'bed. With granular inoculation, e.g., granular 

inoculant B placed 8 cm below the seed was the only treatment that reduced biomass 

and seed yield of kabuli signiswtly below the non-inoculated control treatment 

(Appendix 26). Inoculation did not affect biomass and seed yield at Watrous, except 

for the biomass yield enhancement due to granular A placed with the seed (Appendix 

27). Unlike the 1997 experiments and the desi experiments in 1998, biomass for the 

kabuli in 1998 was si@cmtly higher (P = 0.03) in granular A than granular B 

inoculants, although tbe difference in seed yield was not significant (Table 3.19). 

Desi biomass and seed yidds averaged over tocations were significantly higher 

in the inoculation treatments than in the controt (Table 3.20). On average, inocdating 

the soil with granular inoculants consistently increased biomass and seed yields over 

that for seed-applied liquid inoculant in the desi, but the contrast of peat vs. granular 

indicated no significant difference. The peat inocdation resulted in higher biomass 

and seed yieIds than liquid inoculation. At Outlook, desi biomass and seed yields were 

significantly increased by inoculation (Appendix 28), but unlike Watrous (Appendix 

29), both biomass and seed yields for granular hodants placed 8 cm betow seed 

were lower than the other granular inocuIant treatments and the peat inoculants, as was 

reported above for kabuli. At Watrous, the maximum biomass yield was obtained with 

granular A inoculant placed in the seed furmw at planting and was 1659 kg ha-' over 

the control, Similarly, the greatest increase in seed yiefd due to inocuIation was 644 kg 

ha" and occurred in granular B placed 8 cm below the seed Despite the apparent 

differences in the kabuIi experiments, no signiscant location x inoculation interactions 

were observed for biomass and seed yields m either chickpea type in 1998, although 



Iocation had significant effect on both parameters in desi and kabuli chickpeas 

(Tables 3.21 and 3 22) .  

Table 3.19. Whole plant biomass, seed yield, seed protein concentration, percentage N 

derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Sanford kabuIi chickpea averaged over Outlook and Watrous locations. 1998, 

Biomass Seed yield Protein conc. %Ndfa Nr fixed 
Inocdant' (kg ha") (kg ha-') (g kg-') (kg ha-') 
Non-inoc 
Liq A 
Liq B 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Grin A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LsD(o.09 

contrasts: 
Non-inoc vs inoc 
Liq vs. peat 
Liq A vs. liq B 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gran B 
Gran str x ws vs. bs 
Gran str x 2 5  vs. 8.0 IL  I . - 

*, ** Significant at the 0.05 and 0.0 1 levels, respectively. 
t Non-in- = non-inoculated, inoc = inoculated, Liq = liquid, Gran = graudar, ws = 
with seed, bs = below seed, sa = strain. 
= Differences between specfied treatments. 



Table 320. Whole plant biomass, seed yield, seed protein concentration, percentage N 

derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for Myles 

desi chickpea averaged over Outlook and Wacrous locations, 1998. 

Biomass Seed yield Protein conc. %Ndfa Nt fixed 
hocuIanrt (kg ha-') (kg-ha-') (g kg-') (& ha*') 
Non-inoc 2311 1222 156 172 6.7 
Liq A 
Liq B 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(o.on 

contrasts: 
Non-inoc vs. inoc 
Liq vs. peat 
Liq A vs. liq B 
Liq vs. gran 
Peat A vs. peat B 
Peat vs. gran 
Liq+peat vs. gran 
Gran ws vs. gran bs 
Gran 2.5 vs. gran 8.0 
Gran A vs. gran B 
Gran str x ws vs. bs 
Gran str x 2.5 vs. 8.0 
, ** Significant at the 0.05 and 0.01 levels, respectively. 

t Non-inoc = non-inoculated, inoc = inoculated, Liq = Liquid, Gran = granular, ws = 
with seed, bs = below seed, str = strain. = Differences between specified treatments. 





Table 3.22. Mean squares from the analysis of variance for whole piant biomass, seed yield, seed protein concentration, percentage 

N derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for Myles desi chickpea averaged over Outlook and 

Watrous locations, 1 998. 

Mean squares 
Sources of variationt d.f, Diamass Seed yield Protein conc. %Ndfa NZ fixed 
Locations (L) I 92194833** 10857137** 252.86** 1135" 7529* 
Reps in locations 6 516785+* 146772** 5.19 64 7 1 
lnoculalion (I) I0 1234088** 254555*+ 58.79** 1814** 996** 
Non-inoc vs, inoc I 8414125** 1688052 ** 1 89.62 * 8 1 34** 41 SO** 
Liq vs, peat I 2 164240* * S98965* 89.93 * 3033** 1 980" * 
Liq A vs. liq B I 2856 1 2730 0.97 2326** 495* 

ii! 
Liq vs, gran I 3057018** 659063** 293.90e* 728 1 ** 4849** 
Peat A vs. peat B I 14280 15068 22.75 84 203 
Peat vs. gran I 2844 18506 30.57 3 19 239 
Liqtpeat vs, gran I 1 149346* 182676* 205.62** 4260* * 2920** 
Gran ws vs, gran bs 1 237407 33675 66.78* I I 70 
Gran 2.5 vs. gran 8.0 I 69938 8065 0.1 1 9 6 
Gran A vs, gran B 1 164385 1302 1.75 243 77 
Gran str x ws vs, bs I 279720 1 782 1 1.07 26 4 
Gran str x 2.5 vs. 8.0 I 21528 5618 2.64 0 3 1 

L x I  10 19344 1 35706 8.47** 174* 9 1 
Error 60 152242 43289 3.15 82 48 
Total 87 

*, ** Significant at the 0.05 and 0.01 levels, respectively, ' Nan-inoc = non-inaculated, inoc = inoculated, Liq = liquid, Gran = granular, ws = with seed, bs = below seed, str = strain. 



3 3 3 2  Seed protein concentration, percentage N derived from atmasphere 

(%Ndfa) for the seed, and amount of seed N derived from fixation 

1997: Seed protein and proportion and amount of Nz ked for the seed averaged over 

locations in 1997 were significantly higher for inoculated plants in both chickpea 

types (Tables 3.15-3.18). The highest protein concentration, %Ndfa a d  amount of Nz 

fixed generally occurred for soil inocdation treatments, particuiarly granular inoculant 

A placed 2.5 crn below the seed but contrasts of peat vs. granular indicated no 

significance (Tables 3.1 5-3.18). For both kabdi and desi chickpeas, seed inoculated 

with liquid inoculants on average, resulted in iower %Ndfa, amount of N2 fixed and 

seed protein concentration than the average for the peat or granular inoculant 

treatment. However, except for tiquid A, the %Ndfa associated with liquid C 

statisticalIy was not different h m  all the other inoculation treatments in the kabuli 

(Table 3.17). In conuast to the general trend, seed inocuIation with peat A produced 

significantly higher seed protein concentration than that for peat B in the kabuli 

chickpea For the desi chickpea, placing the granular inocdants below the seed 

significantly increased %Ndfa N2 tixed and seed protein concentration compared to 

placement in the seed h o w  (Table 3.18). As was the case for the other yield 

parameters. no differences in Rhizobim strain were observed in either chickpea type. 

In the kabdi experiments, a significant location x inoculation interactions were 

observed for %Ndfa and Nr fixed (Table 3-15), due primarily to the low Nz fixation 

for the granular B inocdant relative to the granular A inoculant at Watrous (Appendix 

22) and the higher %NcEa for the peat B inoculant at Kenaston (Appendix 24). A 

significant location effect was also found for %Ndfa and amount of N2 fixed in the 

kabuIi chickpea as a r d t  of the higher hation at Kenaston (Appendix 24) than 

Watrous (Appendix 22). Among the desi experiments, no significaat location x 

inocuiation interactions for protein concentration, %Ndfa or N2 fixed was observed 

(Table 3.16). However, Iocation had a significant effect on protein concentration, 

%Ndfa md N2 fixed, due primarily to the higher seed protein concentxation at Outlook 

as compared to the other locatiom and the higher Nz fixation at Kenaston and Watrous 

relative to that at Elbow and Outlook (Appendices 20,21,23 and 25). 



1998: In 1998, %Ndf'a, amount of Nz fixed and seed protein concentration for both 

chickpea types foilowed a similar trend as observed in the 1997 experiments (Tables 

3.19 and 3.20). However, whereas the average %Ndfa was lower in 1998, the average 

seed protein concentration was higher in 1998 than 1997. Contrasts of peat vs. 

granular indicated no significant differences in %Ndfa, N2 fixed and seed protein 

concentration. As in the other parameters measured, the liquid inoculants were inferior 

to the other inoculation treatments in %Ndfa, amount of N2 fixed and seed protein 

concentration. 

In contrast to the 1997 experiments, significant interactions between location 

and inoculation were found for YoNdfa, N2 fixed and seed protein concentration in 

both kabuli and desi chickpeas, except for the Nz tixed in the desi (Tables 3.21 and 

3.22). However, the seed protein concentration at Outlook for the granular inoculant B 

placed below the seed was exceptionally high (Appendix 26). In the kabuli chickpea, 

%Ndfa for the granular inoculant placed below the seed was generally low at Outlook 

as compared to that at Watrous (Appendices 26 and 27). The amounts of N2 fixed in 

d l  treatments were also lower at Outlook than at Watrous. For the seed protein 

concentration, the values for the non-inoculated and the liquid inoculant treatments at 

Watrous were considerably higher than those obtained at Outlook. 

In the desi chickpea, seed protein concentration, %N&a and the amount of N2 

fixed were higher at Watrous as compared to Outlook (Appendices 28 and 29). The 

significant location by inoculation interaction for protein concentration was due 

primariIy to the low values for graauiar B treatment at Outlook (Appendices 28) 

relative those at Watrous (Appendix 29). The significant location by inoculation 

interaction for the %Ndfa was due primarily to the low %Ndfa values for the non- 

inoculation control and liquid A at Outlook (Appendix 28) relative to those for 

W m u s  (Appendix 29). 

3323 Correlations between crown or lateral root nodules and shoot dry matter 

production and seed yield 

1997: In both chickpea types averaged over locations, the dry weight of lateral root 

nodules on an individual plant basis was highIy positively conelated with plant dry 



matter production at the flowering (not shown), eady pod-filling and late pod-filling 

stages (Table 3.23). In contrast, the correlation between rhe dry weight of crown 

nodules and shoot dry matter production was weak and not significant. Similarly, seed 

yield was highly correlated with the dry weight of lateral root noduies, whereas tittle 

or no correlation existed between dry weight of the crown nodules and seed yield. 

Table 3.23. Correlations between the dry weight of lateral or crown nodules at early 

and late @-filling stages and seed yieid, and shoot dry matter. 

~haracter' -- Desi - Kabdi- 

r r 

Early pod-filling stage, 1997 

Shoot DM and lateral nodules 0.88** 0.92** 

Shoot DM and crown nodules 0.24 

Seed yield and lateral nodules 0.69* 

Seed yield and crown nodules 0.00 0.10 

Late pod-fiiling stage. 1997 

Shoot DM and lateral nodules ND; 0,82** 

Shoot DM and crown noddes ND 0.26 

Yield and Iateral nodules ND 0.80** 

Yield and crown nodules ND 0. 10 

Early pod-tilling stage, 1998 

Shoot DM and lateral nodules 0.91** 0,66* 

Shoot DM and crown nodules 0.14 0.33 

Yield and lateral nodules 0.66* 0.17 

Yield and crown noddes 0.48 0.66* 

*, ** Significant at the 0.05 and 0.01 Ievek, respectively. 
t DM = dry manet 
%ID = not determined. 



1998: Similar to the I997 d t s ,  shoot dry matter and the dry weight of Iateral root 

nodules at early pod-flbg was highly correlated but the correlation between shoot 

dry matter and dry weight of crown nodules was not significant in either chickpea type 

(Table 3.23). However, untike 1997, seed yield in the kabuIi chickpea was weakly 

correlated with the dry weight of lateral root nodules at the early pod-filling stage, due 

primarily to the delayed germination and reduced plant stand as r e d t  of the severe 

drought. In this case, the correlation between seed yieId and the dry weight of crown 

noddes at early pod-filling was significant, In the desi chickpea, dry weight of lateral 

root nodules at the early pod-filIing stage was positively correlated with seed yield, 

but dry weight of crown nodules was not correlated with seed yield. 

3.4 Discussion 

Initially, the experiments were planned only for desi chickpea but it was later 

decided to include kabuli chickpea in separate experiments. Because direct 

comparison between the two genotypes was not of major interest. separate 

experiments were conducted for each genotype. Nevertheless, the two genotypes 

responded similariy to the method of inoculation and the rhizobial strain 

combinations. Although reports on chickpea by Corbin et al. (1977) and Chandra and 

Pareek (1985) indicated no interaction between strains of rhizobia and genotype. 

Sornasegaran et al. (1988) demonstrated that, under certain soil conditions and with 

the use of mixed inoculant strains, a significant strain x genotype interaction can 

occur. The inoculant obtained fiorn MicroBio RhizoGen Corp.. designated A, and 

Agruim BioIogicals, designated C, consisted of single strains, whereas that obtained 

h m  LiphaTec, designated B, was a mixture of three strains. However, strains in 

similar formulations performed equally throughout the experiments and nothing 

indicated any differential response to rbizobid strains or between chickpea types in 

any of the parameters measured, 

Following inoculation and seeding, the course of rhizosphere and root 

colonization by inoculant strain and subsequent nodule formation and N2 fixation 

followed a predicted sequence (Brockwell et aL, 1985; Herridge et al., I988), subject 

to environmental conditions (Alexander, 1985). En these experiments, seeds were sown 



at moderate air temperatures and into good moisture, except at Elbow in 1997 and 

Outlook in 1998, where the avaiiabfe soil moisture levels were low. Hence, adequate 

available soil moisture favoured the establishment of a successll symbiosis. 

Nevertheless, a decline in rhizobia numbers might have occurred in the liquid 

inoculant treatments since nodulation was generally lower than that for the peat and 

granular inoculants. Peat, when used as inuculant carrier, protects rhizobia inoculated 

onto the seed to some extent from desiccation (Hansen, 1994). Hansen (1994) 

indicated that when rhizobia in liquid inoculant are inoculated onto the seed, they are 

relatively more susceptible to unfavourable environmental conditions, such as 

desiccation and excessive heat during and after seeding, Roughley et al. (1993) 

demonstrated the effect of desiccation on hizobia inoculated onto seed when 95% of 

the rhizobia originally present in the inoculant died during inoculation and sowing, 

and a further 85% of the remaining rhizobia lost viability during the foilowing day in 

the soil. Death of rhizobia on seed between inoculation and seeding due to high 

temperame was aiso reported by Brockwell et al. ( t  987). Although temperatures were 

not high during seediig, it was generally dry and windy, and survival of the rhizobia 

may ,have been affected by desiccation, contributing to the low nodulation in the liquid 

inoculant treatments as compared to the other inoculation treatments. 

The seeds were treated with fungicides (Apron and Crown) before inoculation 

and these treatments may have conm'buted to the low nodulation from the liquid 

inocdant by decreasing rhizobia survival. Several studies have shown that some seed- 

applied fimgicides are incompatible with thizobia (Ramos and Ribeiro, 1993; Revellin 

et al., 1993). However, compared to liquid f o d a t i o n  a peat formulation may help 

protect rhizobial strains to some extent from antagonistic components that would 

reduce their populations (Zdor and Pueppke, 1990). In greenhouse and field studies. 

Revelh et al, (1993) observed decreased survival of B. jrrponocum and reduced 

ndulation and yield of soybean when Apron was used as a seed treatment. The 

extremely poor nodulation in the liquid treatments at Outlook in 1998 (Appendices Id 

and 19) likely was the tesult of severe drought during and after seeding. On the other 

hand, the soil moisture status at Warnus in 1997 was relatively good, hence, 



nodulation in the liquid inoculant treatment was comparable to that of the other 

treatments (Appendices 4 and 8). 

Nodule numbers in the peat and granular inoculant treatments were not 

consistent over the years (Tables 33, 3.4, 3.7, 3.8, 3.1 1 and 3.12). In 1997 the peat 

inoculants produced more nodules than the granular inoculants, but in 1998 the 

granular inoculants formed more nodules than the peat inocuiants. No consistent 

relationship between total nodule dry weight and total nodule numbers existed. 

Despite the higher total nodule numbers in the peat inoculant treatments in 1997, the 

total dry weights were similar to those for the granular inoculants. This agrees with 

previous observations by Smith et al. (1981) and Danso and Bowen (1989). who 

reported that, when soybean plants have only a few nodules on their roots, the noduIes 

u d I y  grow much larger than on plants which have many nodules. 

In contrast to the results observed in 1997, the dry weights of the nodules for 

the peat-based inoculants in 1998 were generally greater than those for the granular 

inocuiants. This observation was, however, more pronounced at Outlook than 

Watrous. Planting at Outlook in 1998 was on 20 May, when the soil was dry. as mean 

monthly precipitation was 57% less than normal (Appendix I). As a result of the hard 

soil surface, the additional opener for the grandar inoculant pIaced betow the seed 

increased resistance of the soii to penetration, d t i n g  in deposition of the seeds just 

beiow the soil d a c e .  into an area too dry for optimum germination and emergence. 

Therefore, seed germination in treatments with granular inoculants below the seed did 

not occur until after a rain and well after seeding. Hence. at the time of sampling, 

nodule formation and development in these treatments were a little behind that in the 

peat treatments and the treatment with granular inoculant placed at the seeding depth. 

This Likely accounted for the lower dry weight of the treatments with grandes below 

the seed. 

NoduIation by the inocdant r k b i a ,  following delayed germination and 

growth of the chickpea seedlings, suggests that the strains survived well under the 

drought conditions. This is consistent with the report by Brackwell et aI. (1980), who 

stated ha t  when conditions are unfavourable for rhizobial survival, or when 

germination is delayed due to adverse environmental conditions, soil inoculation 



produced better nodulation than seed-applied inoculation. The kabuli chickpea was 

more affected by the drought than the desi because its larger seed requires more 

moisture for germination and noddation. Therefore, nodulation in the kabuii chickpea 

was lower at Outlook than Watrous in 1998 and, for this reason a significant site x 

inoculation interaction was observed for total nodule numbers and dry weight 

Although limited, some noddation was observed on the non-inoculated plants. 

This unexpected nodulation likely was due to low levels of plot-to-plot contamination. 

Growth chamber studies prior to seeding indicated that the soil tiom alI experimentid 

sites contained no native chickpea rhizobia Moreover, a nine-year cropping history of 

the sites indicated no legume or chickpea cultivation. Kamicker and Brill (1987) 

observed that some rhizobial strains introduced to soil can persist for many years and 

are capabIe of nodulating subsequent crops. Even if a legume crop had been grown on 

any of these sites in the recent past, it is not likely the resident rhizobia could noddate 

the chickpea plants due to their highly specific rhizobial requirements (Gaur and Sen, 

1979; Siisbury, 1989). However, nodulation in the control treatments was sparse 

compared to the inoculated treatments and had no significant effect on the results. 

In agreement with other researchers (Smith et al., 1981: Danso and Bowen. 

1989; Kahn and Stoffella, 1991), the dry weight of nodules was considered a more 

accurate measure of Nz-fixing potential than nodule numbers, due to the wide 

variation in nodule size. The location of nodule formation on the root system varied, 

depending on the inoculation method. Seed inoculation produced nodules 

predominantly at the crown region of the root, whereas soil inocuiation resulted in 

most of the nodules in the lower part of the root system, i.e., on the lateral roots. 

Inoculation with granular inoculant at the seeding depth resdted in substantial 

noddation on the IateraI roots, but this proportion increased as the granular inoculant 

was pIaced beIow the seed. The noduiation pattern observed in this study is consistent 

with data from other studies in which deeper placement of rhizobid inoculants in the 

soil resulted in substantid nodule formation Mow the topmost 10 cm region of the 

root (Wiion, 1975; Wadisirisuk et al., 1989). 

Danso and Bowen (1989) observed that nodule formation was restricted to the 

vicinity of the point of inoculurn placement. In soybean, they reported that, seed 



inoculation resulted in 94% of the nodules on the tap root and on the roots 0-5 crn 

born the stem base, whereas soil inoculation resulted in a lower proportion (i.e., 63%) 

of the nodules in this zone. In another study, Hardarson et al. (1 989) also reported that 

seed inoculation resulted in formation of 87% of the nodules on the tap roots 0-5 cm 

below the base of the stem, whereas soil inoculation resulted in only 2040% of the 

nodules in this zone. In the present study, less tfian 40% of the nodules in the seed- 

inoculated plants was located on the lateral roots, whereas as much as 97% of the 

nodules in the granular inoculant placed below the seed was fonned on the lateral 

roots. Kamicker and Brill (1987) observed that inoculant in the seed furrow produced 

nodules mainly in the upper region of soybean root system, whereas inoculant alled 

into the soil produced nodules primarily in the lower region of the root system. 

The preponderance of noddation in the root zone immediately below the 

position of inoculum placement indicates l i i ted migration by the rhizobia According 

to Madsen and Alexander (1982), B. juponicunr did not move more than 2.7 cm in the 

absence of intiltrating water. Hence, distriiution of nodules on the entire root system 

requires that the roots encounter the inocdant rbizobia in the soil and this may require 

relatively large populations (Zablotowicz et al., 1991). The higher number of lateral 

root nodules from placement of the granular inoculant in the seed Mow. compared to 

the seed-applied inoculants, fiuther indicates the poor mobility of rhizobia in the soiI. 

EarIy formed crown nodules generdIy suppress W e r  nodule formation on the 

younger roots (Kosslak and Bohlool, 1984: George et al.. 1992). However. the 

considerable nodulation at the crown region and on the lateral roots in the treatments 

with granular inoculant placed with the seed suggests that any suppression by early- 

formed nodules may be partial. Rather, the crown nodulation pattern with seed 

inoculation was due largely to the limited migration of the rhizobia to other infectible 

sites along the root. Caetano-AnolIes et al. (1992) attributed the crown nodulation 

pattern to the inability of the rhizobia to move with the developing root system. 

Higher shoot dry matter was produced at all sampIing dates when granular 

inoculants were used as compared to h e  peat and Liquid inoculants. However, the 

liquid was again inferior to the peat treatment in shoot dry matter production. Higher 

production of dry matter yields with graudar inoculants has been reported in a l f a  



(Rice and OIsen, 1988, 1992) and arrowleaf clover (Ocumpaugh and Smith. 199 1). In 

contrast, Hardarson et al. (1989) found that the higher N1 fiation following soil 

inoculation did not translate into increased plant dry matter yield as N was not a 

limiting factor in the soil used. Inoculation had little effect on shoot dry matter at 

either the flowering or the early pod-filling stage in desi chickpea at EIbow in 1997. 

However, the iow available soil moisture level at Elbow, compared to the other sites 

(Table 3.1), likely limited response to some of the individual inocdant treatments. 

Sprent (1972) and Durand et al. (1987) demonstrated the importance of 

adequate available soil moisture for maximum Nz fixation by grain legumes. 

Furthermore, Zapata et al. (1 987) showed that the highest rates of N2 fixation in field- 

grown soybean occurred during the periods of active sink development. This was later 

confkned by Danso et al. (I990), who showed that the highest rate of N accumulation 

from N2 6xation occurred between early pod development and physiological maturity 

in soybean. Dinitmgen fixation was not assessed in chickpea during these sampling 

dates, but it is possible that N2 fkation at the flowering and early pod-filling stages at 

Elbow was not high enough to cause significant differences in shoot dry matter among 

the inoculant treatments. This explanation is supported by the finding that shoot dry 

weight was higher for soil inoculation than seed inoculation at the 5% level of 

probability at flowering in desi chickpea, but at the early pod-fiIIing, this difference 

increased and was significant at the 1% level (Tables 3 3  and 3.4). Perhaps. plants 

with lateral root nodules were delayed in the onset of Nz Lixation because the nodules 

were formed relatively late and not fully developed by the flowering stage. However. 

at Outlook in 1998, the delayed emergence of the treatments with granular inocdants 

below the seed had Little effect on dry matter production as dry matter yieId per plant 

was in genera1 higher for soil inoculation than seed inoculation. The lower dry matter 

production with the liquid inoculant treatment. relative to the non-inoculated control, 

could not be adequately accounted for because in most cases the desi and kabuli 

chickpea pfants nodulated at both OutIook and Watrous. 

The value of inoctdation was demonstrated in seed yield and plant biomass at 

final harvest. Although, the yield increases in I997 were not consistently significant 

among inocuiation treatments and across locations in both types of chickpea, granular 



inoculants placed below the seed were superior to the other inoculant treatments. In 

1997, the maximum increase in seed yield averaged over locations in the kabuli 

chickpea was 633 kg ham' and occurred when granular inoculant A was placed below 

the seed followed by granular inoculant B placed below the seed (440 kg ha-') (Table 

3.17). Seed yield differences between the peat and granular inoculants were relatively 

low and insignificant. For example, for the kabuli chickpea. the average seed yield 

increases for granular inoculant below the seed were 15 1 (1 4%) and 320 kg ha-' (36%) 

greater than for the peat and liquid inoculants, respectively (Table 3.1 7). For the desi 

chickpea seed yield increases for the granular inoculants placed below the seed were 

64 kg h a '  and 209 kg ha" (5 and 17%, respectively) greater than for the peat and 

liquid inocuIants, respectively (Table 3.1 8). The limited yield increases associated 

with granular inoculant below the seed may be due, in part to better moisture 

conditions in this soil zone and extra protection from heat for the rhizobia and 

subsequently, for the nodules, favouring Nz fixation The formation of nodules later in 

the growing season and the greater duration of Nz fixation in these treatments also 

may have contributed to the higher yields. The plants inoculated with granular 

inoculant placed in the furrow with the seed were noddated adequately both at the 

crown and the lower part of the root system, and the proponion and amount of N7 

fixed were similar or higher than those for the seed-applied inoculants. Hence. the 

cause of the generally lower seed yield of this treatment as compared to the seed- 

applied inoculants, in particular the peat-based could not be adequately explained. 

In other studies, yield increases of 38% (Scudder. 1975). 60% (Bezdicek et d., 

1978) and 20% (Muldoon et al., 1980) were reported in soybean for granular inocuIant 

over seed-applied inoculant. Dean and Clark (1977) also reported a seed yield increase 

of 730 kg ha" over seed-applied inodant, when granular inocuiant was used in a 

study with faba bean. In the present study, the yield advantage for the granular 

inocdant was low, compared to that reported for soybean and faba bean. The reason 

for the limited yield increase may be related to the inoculation rate used. The 

beneficial effect of massive inocuIation is well documented (Weaver and Frederick, 

1974% b; Thies et d., 1991; RoughIey et al., 1993) and one of the major advantages of 

soiI inoculation is that the rhizobial application rate can be increased far beyond that 



applied by seed inoculation. Granular inoculants were used at the recommended rate in 

the present study, whereas rates higher than recommended were used by other workers 

(e.g., Bezdicek et d., 1978; Muidma et al., 1980). For example, Muldmn et d. (1 980) 

used three times the recommended rate of granuIar inoculant, whereas Bezdicek et al. 

(1978) used twice the recommended rate, although the latter observed limited yield 

increase when the recommended rate of inoculaat was used. 

Inoculating legme crops at such a high rate may not be economical 

considering the higher cost of the granular inoculants as compared to the seed-applied 

inoculants. The results of the 1997 study indicate that the extra cost for the granular 

inoculant was more than recovered for the granular inoculant placed below the seed in 

the kabuli. However, in the desi the value of the yieId increase was sIighdy more than 

the additional cost of the grandar inocdant. The results atso indicate that soil 

inoculation at the seeding depth was not economical. 

In 1998, only granular inoculant A placed in the seed furrow increased plant 

biomass significantly in kabuli chickpea at Watrous and inoculation had no significant 

effect on seed yield (Appendix 27). Available soil N was possibly not a limiting factor 

in this soil; hence, N2 fixation was not translated into biomass or seed yield. Soils at 

Watrous had a relatively high organic matter content (4.1%) and. given adequate 

moisture, may exhibit high rates of mineralization that provided sufficient soil N 

available to the plants. 

The dry soils reduced the seeding depth when granular inoculants were placed 

below the seed and resulted in uneven stands and delayed piant growth. precluding 

reaIistic yield results, partidarly with kabuli chickpea at Outlook in 1998. Scudder 

(1975) obtained higher seed yield under dry soil conditions in Florida with granular 

inocdation than seed-applied inoculation. BrockweII et al. (1980) also stated that, 

when conditions were unfavourabte for rhizobial survival. or when germination was 

delayed due to environmental conditions, soiI inoculation was superior to seed 

inoculation. However, this will only appIy if plant density is not affected and the 

Iength of time for active Nt fixation is not shortened. At Outlook the delayed 

gemination drastically reduced the Iength of the available growing season and 

reduced plant density, resulting in seed yields h m  granuIar B inoculant placed below 



the seed that were even lower than for the non-inoculated control (Appendix 26). Data 

on nodule dry weight and shoot dry matter per plant at the early pod-filIing stage 

confirmed that plant growth was not affected despite the delayed germination. Hence, 

the lower seed yield was primarily due to the lower number of plants per ha and the 

short growing season. Chickpea is a long season crop as compared to other grain 

Iegumes, such as common bean and pea (Saskatchewan Pulse Crop Development 

Board, 1997). However, low precipitation in July (e.g.. 32 % of normal at Elbow in 

I997 and 1 1 and 39 % of normal in 1997 and 1998, respectively. at OutIook) and 

relatively high temperatures in August (Appendix 1) resulted in terminal drought 

which shortened the ripening period. Since the onset of Nz fixation by nodules formed 

with granular inoculation may be delayed, these nodules could not hlly express their 

N2-fixing capacity under terminal drought. Thus. indeterminate cultivars of common 

bean typically have a longer growth cycle, fix more N and produce higher yields than 

determinate cultivars with a shorter growing season requirement (Rennie and Kemp, 

1983, t 984; Vessey, 1992). Ciafadhi and Lombardo ( 199 1 ), using cover inoculation 

(liquid inoculum applied to the soil with irrigation water) of previously seed- 

inoculated soybean plants, found that the benefits of cover inoculation on yield and 

seed protein concentration may decrease when the growth period is shortened. This 

may be another possible explanation for the improved. but limited, performance of the 

granular inoculant placed beIow the seed. 

Higher levels of seed protein concentration and seed N derived from the 

atmosphere were generally obtained with soil inoculation as compared to those for the 

seed inoculation with liquid inoculant and reflected the trend observed in plant 

biomass and seed yields. However, the differences in these traits between the soil 

inoculation and seed inoculation with peat-based inoculant were not sigrificant, 

atthough numerically, they were higher for the former. Previous reports on soybean 

indicate that soiI inoculation produced higher Nz &ation (Mddoon et al.. 1980; 

Dubetz et al., 1983; Hardarson et al., 1989) and seed protein concentration (Muldwn 

et aI., 1980) as compared to seed inocdation. With increasing granular inoculant rate, 

higher concentrations of seed protein were obtained by Muldoon et al. (1980), 

indicating that poor nodulation and N2 fixation limited protein production. In gened, 



the proportion of Nz derived from fixation was higher in 1997 than 1998 whereas 

protein concentration was higher in 1998 than 1997, due to the more favourable 

growth conditions in 1997. This supports the negative correlation between yield and 

protein concentration, which often occurs in grain legumes under "normal" growing 

conditions (Williams and Nakkoul, 1983). Westerman et al. (1985) observed an 

association between low seed yield in bean and high nitrogen concentration. 

Apparently, the decrease in seed yield due to moisture stress in 1998 was greater 

relative to seed nitrogen yield and resulted in a higher protein concentration. 

The results of the present study indicate that differences in yield parameters 

were likely influenced by the nodulation pattern rather than the number or dry weight 

of nodules. Several studies (e-g., Wolyn et al., 1989; Danso et al.. 1990) have shown 

that the widely held opinion that dense nodulation at the crown region is evidence of 

successll inoculation and, thus, high N2 futation (Vincent, 1970) is inconsistent in 

soybean and bean. Rather, lateral root nodulation is important in N2 fixation in 

soybean (Hardarson et al., 1989; McDermott and Graham, 1989) and common bean 

(Wolyn et at., 1989; Vikman and Vessey. 1992. 1993), particuiarly during the 

reproductive stage. Nodules at the crown region ate the !%st to be Formed and ace 

active during the early growth stages of plant. but. according to Bergensen ( 1958). the 

activity of such nodules in soybean persists for an average duration of 65 days. Hence. 

noduIes that develop later on the lateral roots may be essential since they remain 

active during the entire period of high N demand at pod-filling and seed maturation 

(Ciafardini and Barbieri, 1987; Zapata et al., 1987: Lmsande, 1989). 

Danso et al. (1990), using the '% isotope dilution technique, demonstrated that 

seed inoculation, which formed mostly crown nodules, fixed more Nt than soil 

inoculation, which produced mainly Iateral root nodules at the early pod-filling stage, 

but this trend was reversed at physioIogicaI maturity. SimiIarly, McDermott and 

Graham (1989) found that crown nodules accounted for 100% acetylene reduction 

activity 20 days after planting (DAP), but the activity declined to less than 20%, at 76 

DAP (pod-fill), due to nodule senescence and the steady increase in nodule mass on 

the lateral roots. Therefore, granular inoculant permits the young lateral roots to come 

into direct contact with the inocuIant for infection and nodde formation. Thus, 



granular inoculant enhances lateral root noddatiou. which can contribute significantly 

to Nt fixation and yield. To test this hypothesis. shoot dry matter was correlated 

separately to dry weight of crown and lateral root nodules on an individual plant basis 

averaged over all locations. A significant positive correlation occurred between dry 

weight of the lateral root nodules at the early pod-filling and late pod-filling stages and 

shoot dry matter production or seed field in 1997 (Table 3-23), indicating tha 

increased lateral root nodulation was associated with high yields. Drought at Outlook 

during seeding in 1998 diminished the corrdation between lateral root nodules and 

crop yield in kabuli chickpea, but for desi chickpea the lateral root nodules was 

significantly correlated with shoot dry matter at early pod-filling and seed yield at 

maturity. Genedly, correlation between the crown root nodules and these traits was 

low and not significant. The strong association between yield (shoot dry matter and 

seed) and lateral root nodules indicates that these nodules often determine. to a large 

extent, the yield of nodulated legumes. This is because these lateral root nodules were 

formed later and remain active during the reproductive phase and. thus. have a greater 

effect on yield than crown nodules. 

The data highlight the need to improve the current method of inoculation to 

ensure d c i e n t  noddation of the lateral coots. Due to the limited migration of 

rhizobia in the so& seed inoculation often results in crown root nodulation. and as 

these nodules approach senescence, the plant may be dependent on nodules formed by 

indigenous strains which may be Iess efficient in N, fixation (Vance and Graham. 

1995). Soil inoculation below the seed is one possible way to enhance lateral root 

nodulation since the inoculum can be positioned in the soil zone to target the young 

deveIoping roots. Howieson and Ewing (1986), working with R. meliloti. found some 

evidence of differential mobility among strains of rhizobia Thus. nodulation away 

fiom the immediate vicinity of inoculum pIacement may be improved by using more 

motile inoculant strains (Ames and Bergman. 1981). AIthough differential responses 

to inoculation methods may be reduced in a year with optimum weather conditions, 

unfkvourable growing conditions are often unavoidabIe during and after seeding. 

Thus, granular inocdant fomulations, which protect the rhizobia ffom environmental 

stresses, may be superior to other inocdants in certain years. The ability to use higher 



inoculum rates with soil inoculation than with seed inocdation suggests that greater 

yield increases in chickpea could accrue fiom using higher rates of granular inoculants 

rather than liquid or peat inoculants, especially in first-time chickpea fields. 



4. ISOTOPIC FRACTIONATION DURING N2 FIXATION AND CHICKPEA 

GROWTH 

4.1 Introduction 

Estimation of atmospheric N2 fixation in plants by the 'j N natural abundance 

technique is based on the fact that the '%J/'*N ratio of the soil is slightly higher than in 

atmospheric N2 (Amarger et al., 1979; Kohl and Shearer, 1980. Shearer and Kohl. 

1986; Danso et al., 1993). Thus, an N2-fixing plant, which depends on both soil N and 

symbiotic & fixation, would be less abundant in '% than a non-fixing plant gown at 

the same site (Rennie et al., 1976; Kohl and Shearer, 1980). This small, but 

m d l e ,  difference in '% abundance between the symbiotic Nz-fixing and non- 

fixing plants has been used to quantify the contribution of atmospheric N:! to the total 

N of the N2-fixing plant (Bremer and van KesseI, 1990; Doughton et d.. t995: 

Herridge et al., 1995). Although the natural abundance of '% in the atmospheric N2 is 

constant (Mariotti, 1983), it can be altered by isotopic Fractionation during fixation 

(Kohl and Shearer. 1980; Steele et al., 1983). Therefore. it is necessary that the 

magnitude of isotopic fractionation during N2 fixation be established before 

calculating the propomon of N2 fixed, when the '%I natural abundance technique is 

used (Steele et al.. 1983; Shearer and Kohl, 1986; Ledgard, 1989). 

Severai studies have shown differences in '% natural abundance between plant 

parts (Shearer et al., 1980; Steele et al., 1983; Turner and Bergensen 1983; Bergensen 

et aI., 1986; Ledgard, 1989). For example, Turner and Bergensen (1983) found '%I 

enrichment of soybean plant parts in the following order: noddes > pods plus seeds > 

mots >whole plant > the foliage. This indicates that isotopic fractionation value for the 

part of the plant sampled should be determined for use in calculating the N2 k e d .  

Other factors that influence the '%J fiactionation include the host plant and the 

rhizobid strain used (Bergensen et al., 1986; Yoneyama et al., 1986; Ledgard, 1989). 

Steele et al. (1983) examined some Rhizobium strains on more than one host plant 



including soybean, siratro (Macroptiliu atropurpureum) and lotus (Lorus 

peduncularw L.) and found that the extent of isotopic hctionation was dependent on 

host plant and the infecting rbizobial strain. Ledgard (1989) inoculated white clover 

(Trifolium repens) and red clover (T. grateme) separately with a single rhizobial strain 

and a mixture of fieId isolates and reported similar results. For these reasons Shearer 

and Kohl (1986) and Ledgard (1989) pointed out that isotopic fhctionation during N2 

fixation should be determined for each host-Rhizobiiun combination. Therefore. the 

objective of this study was to determine the magnitude of isotopic fiactionation during 

N2 fixation for desi and kabuli chickpeas inoculated with Rhizobium ciceri strain CP39 

or a mixture of strains 27A2, 27A7 and 27A9. These rhizobial strains were used in 

field studies described in Chapter 3; thus, the isotopic fiactionation value for each 

host-Rhizobium combination is required in calcuIating the proportion of Nr fixed 

based on "N natural abundance method. 

4.2 Materials and methods 

4.2.1 Rooting medium and preparation of nutrient solution 

The experiment was conducted using Leonard jars (Vincent. 1970). consisting 

of a bottle (330 mi) with the bottom half cut off and inverted into a 1 litre Mason jar. 

A cotton lamp wick was inserted through the neck of the inverted bottle and extended 

from the top of the inverted bottle to the bottom of the Mason jar. A ham plug in the 

neck of the inverted bottle held the wick in place. The bottle was filled with washed 

Turface (Aimcor Consumer Products LLC. Buffdo Grove, [L). Each Mason jar was 

filled with 600 mI N-he  nutrient solution (Hoagland and Amon, 1938) consisting of 

the following: 1000 ml deionized HzO, 0.27 g WPOJ ,  0.35 g KtSO,. 1.0 g 

CaS04.2Hz0, 0.25 g MgS04.7H20, 4.0 mg H3BO3, 0.99 mg MnCl24H20. 0.58 rng 

ZnS04-M20, 0.125 mg CuSO4-SH20, 5.4 mg FeCI.6H20, and 0.10 mg 

NazMo04-2H20. Each assembled Leonard jar was wrapped in aluminum foil and 

autodaved for t h. The jars were cwied for 24 h before the seeds were planted. 



43.2 Seed steflit ion and inoculation treatment 

Seeds of Myles desi chickpea and Sanford kabuli chickpea were surface- 

sterilized by shsking with 70% alcohol for 3 min and then with 3% sodium 

hypochloride for 3 min. The seeds were rinsed six times with sterile water and dried in 

a sterile laminar airflow hood. Sterile seeds were inoculated with peat-based inoculant 

containing either CP39 (ICARDA, Aleppo, Syria; and kindly formulated by MicroBio 

RhizoGen, Saskatoon, SK) or a mixture of three strains 27A2, 27A7 and 27A9 

(LiphaTec hc., Milwaukee, WI) at the recommended rate (Table 3.2). One seed was 

sown per jar by carefidly punching a hole through the aluminum foil and placing the 

seed into the Turface with sterilized forceps. 

4 3 3  Plant growth conditions 

The experimental design was a randomized complete block with six 

repiications for each chickpea type. The plants were grown in a growth chamber 

(Model PGR 15, ConuolIed Environments Ltd, Winnipeg, MB) with a 164 daylength 

and mean day and night temperatures of about 25 and M°C. respectively. Relaiive 

humidity was maintained between 60 and 65%. The light source consisted of Cool 

White VHO and GRO-LUX VS VHO fluorescent lamps in a ratio of 3 to 1. supplying 

photosynthetically active radiation (PAR) of approximateiy 560 *10 pmol m" 9' at 

the top of the canopy. Nutrient solution was replaced every ten days. 

4.2.4 Harvesting and plant tissue anatysis 

Plants were harvested at flowering or physioIogical maturity. The roots were 

washed free of Turface under runuing tap water and the nodules were carefulIy 

removed. The whole plant and the nodules were dried at 60°C and weighed. The 

shoots b e s t e d  at flowering were mifled to a < 2-mm particle size in a Wiley mill 

(Arthur H. Thomas Company, PhiIadeIphia PA) and then passed through a cyclone 

mill (Tecator mode1 Cyclotec 1093) equipped with a 0.4-mrn sieve- Subsamples of 

ground materials were further finely ground in a rotating baII-bearing d l  and 

approximately 1-mg samples wae analyzed for total N and 'h nanwl abundance as 

descn'bed in section 3.2.3. For the harvest at physiological maturity, the seeds were 



ground for total N content and atom % '% excess. '%I natural abundance was 

calculated as in section 3.2.4. 

4.25 Statistid analysis 

Data for the desi chickpea and the kabuli chickpea were analyzed separately. 

using the General Linear Model (SAS Institute, 1996). The least significant diierence 

at 5% level was used for mean comparisons. 

4 3  Results 

The non-inoculated plants were not analyzed since few of these plants had 

nodufes. The dry weight of nodules formed by the inoculant strains did not differ 

significantiy in either the desi chickpea or the kabuli chickpea at the flowering stage 

(Table 4.1) or at physiological maturity (Table 4.2). Likewise, plant dry matter 

production did not differ between the inocdant strains at either sampting date. In the 

kabuli chickpea ody, N accumulation was lower in the mixed-strain inoculant than the 

single strain inoculant (CP39). although the difference was significant only at the 

flowging stage. 

The 8% values of the above-ground parts of both the desi chickpea and the 

kabuii chickpea at the flowering stage were not significantly different between the two 

inoculants (Table 4.1). However. the mixed inoculants resulted in a lower 6% values 

and a Iower isotopic fiactio~tion for the harvested seeds in the desi chickpea but not 

in the kabuli chickpea (Table 42). In all cases. the 6% values for the shoots (Table 

4.1) were lower than for tbe harvested seeds (Table 4.2). For example. inoculating the 

desi chickpea with the mixed-strains resulted in 8% values of -0.5475 for the 

harvested seeds compared to -1.3067 for the shoot harvested at flowering. Similarly, 

the correspondiig 6% values for the harvested seeds and shoot when desi chickpea 

was inoculated with strain CP39 were -0.9062 and -1.9226, respectively. 

The N h m  the seed h m  which the plants were grown represented about 

5.8% ofthe total plant N at physiological maturity. The 6% of the seed N for the desi 

- chickpea and the kabuli chickpea were 1507% and 2,1391, respectively. Hence, the 

6% values for the harvested seeds and shoots were adjusted for the initial seed N, 



using the following formula (Shearer and Kohl. 1993; S. F. Ledgard. personal 

communication): 

6'*~~lant  x Nplant  seed x Nseed 
= slC,,, 

Nplant - Nseed 

where 6'%Iplm is 6'- of the plant part, ti1%& is 6% of seed &om which the plants 

were grown, Nplant and Nd are the N yield of the plant and seed, respectively. Based 

on the adjusted 6% values, the isotopic hctionation coefficients (0) were estimated 

using the relationship suggested by Kohl and Shearer (1980). 

The 6'%,,,, is 6% of the atmospheric NL which is zero (Kohl and Shearer. 1980). 

The isotopic fractionation coeficient (p) for the single strain CP39 was higher 

than for the mixed strains for the desi chickpea at physiological maturity (Table 4.2). 

The values were higher at the flowering stage (Table 4.1) than at physiological 

manuity (Table 4.2). 



Table 4.1 Nodule dry weight, dry matter yield, N yield, '% abundance of above- 

ground parts and the isotopic fractionation factor for Nr fixation in desi and kabuli 

chickpea inoculated with inoculants containing either strain CP39 or a mixture of 

strains 27A2, 27A7 and 27A9. PIants were grown in N-he medium solution and 

harvested at the flowering stage. The '% abundance values were adjusted for the 6% 

and amount of N in the seed fiom which the plants were grown. 

Rhizobium Nodule dry wt Plant dry matter N yield S '% P 

Desi 

27A2+27A7+ 

27A9 153.62 1.83 48.83 -1.3067 1.0013 

CP 39 168.60 2.21 48.41 -1.9226 1.0019 

27A2+27A7+ 

27A9 152.97 1-83 43.55 * -2.8225 1.0028 

CP 39 234.40 3.3 I 8 1.97 -1.9496 1.0019 

* Differences between 27A2+27A7+27A9 and CP39 were significant at the 0.05 level. 



Table 4.2 Nodule dry weight, dry matter yield, N yield, '%J abundance of harvested 

seeds and the isotopic fractionation factor for Nz fixation in desi and kabuli chickpea 

inoculated with inoculants containing either strain CP39 or a mixture of strains 27A2, 

27A7 and 27A9. Plants were grown in N-kee medium solution and harvested at 

physioIogica1 maturity. The '%I abundance values were adjusted for the 6% and 

amount of N in the seed tkom which the plants were grown. 

Rhizobium Nodule dry wt Plant dry matter N yield 6 ' 5 ~  I3 
strain (mg (g plant'') (mg planf ') 

Desi- 

Kabuli 

* Differences between 27A2+27A7+27A9 and CP39 were significant at the 0.05 level. 

4.4 Discussion 

The data on nodulation and dry matter yield indicate that the inoculated plants 

grown hydroponically were comparable to field-grown chickpea inoculated with the 

same inoculant strains. n e  inoculant strain CP39 did not differ from the three-strain 

mixture in nodulation or dry matter yieId, confirming the earlier observations in the 

field. 

The 6% in the total N accumulated by the noddated chickpea reflects 

isotopic fractionation during the Nz-fixing process, if adjustments are made for the 

initial N present in the seeds from which the plants were grown and for any extraneous 

N that may have been assimilated by the pIant during culture (Bergensen et at.. 1988; 



Doughton et al., 1992). According to Shearer and Kohl (1986, 1993) the isotopic 

tiactionation factor (p) dwhg N2 &ation is given by: 

It is small but important, when the '% natufal abundance method is used to estimate 

the proportion of N derived from hation, In the present study, values for the isotopic 

htionation factor caIcuIated fiom the 6% values for the above ground portions at 

flowering and for the harvested seed at physioIogical maturity are shown in Tables 4.1 

and 4.2, respectively. None of the differences were significant at the flowering stage 

(Table 4.1). However, for the desi chickpea, inoculated with rhizo bid strain CP39 and 

multi-strain inocdant (27A.2, 27A7 and 27A9), the P ~ r f * a u o n  values after adjustment 

for the seed N were 1.0013 and 1.0019 at flowering. respectively. whereas the 

correspondiag values for the kabuli chickpea at flowering were 1.0028 and 1 -00 19, 

respectively. If the 6% values, averaged over chickpea genotypes are used. the P N ~  
riwion values are 1.0021 and 1.0019 for rhizobial strain CP39 and the multi-strain 

inoculant, respectively. These vdues are similar to those reported for shoots of the 

desi chickpea cuItivars Tyson and Amethyst (Doughton et al.. 1995 and Peoples and 

Turner [unpubl.. according to Herridge et al.. 19951). The 6% value for Tyson desi 

chickpea was -2.10960 (Doughton et al.. 1999, whereas that for Amethyst desi 

chickpea was -1.65%0 (People and Turner. cited by Herridge et al., 1995). giving P N ~  
timion values of 1.002 1 and 1 .OO 17, respectively. 

At physiological maturity. the harvested seeds were less depleted in '% 
abundance compared to the above-ground portion at flowering. Although this cannot 

be said of the above-ground parts at physiologicd maturity. various authors (e-g.. Kobl 

and Shearer. 1980; Turner and Bergensen. 1983; Bergensen et al.. 1988; Ledgard, 

1989) have shown differences in '% abuudance between plant parts. The P ~ r f i i o n  

values obtained for the harvested seed were 1.0005 and 1.0009 (significantly different) 

for the single strain and multi-strain inocdant, respectively in the desi chickpea (Table 

4.2). For the kabuli chickpea, the respective values are 1.0008 and 1.0007. If the mean 

6% values for the rhizobial strains are used, the f h ~ i o n  values are 1.0007 and 

1.0008 for strain CP39 and mixed strains (27A2, 27A7 and 27A9), respectively. No 



report is avidable in the literature on isotopic fractionation for chickpea seeds 

harvested &om hydroponically-grown plants, but these vdues are comparable to P N ~ -  
fmon values of 1 .OOO8, 1.0009 and 1 .OO 10 reported by Bergensen et al. ( 1988) for 

entire plants of the soybean cultivars Lincoln, Forrest and Bragg. 

Doughton et al. (1992) suggested that to account for seed N and extraneous N 

sources in isotopic hctionation estimation, non-inoculated plants should be grown in 

isolation from and under sirniIar conditions as the inoculated plants. The total N and 

'% abundance of the nodulated plants minus the vaIues from the non-nodulated plants 

provide adjustments for both the initid seed N and extraneous N. Although the initial 

seed N was accounted for in the present study, any extraneous N (from the putatively 

N-fiee culture medium), that might have been assimilated by the nodulated plants. was 

not accounted for because most of the non-inoculated plants did not grow beyond the 

expected stage from the nutrients provided by the seed. Thus. the isotopic 

hctionation factors in the present study assumed that the plants assimilated no or 

negligible amounts of extraneous N. In a similar study. KohI and Shearer (1980) 

concluded that the conmbution of extraneous N sources was essentially nil. Therefore. 

the p values reported in this study represent reliable isotopic bctionation factors for 

desi and kabuli chickpea nodulated by either rhizobial strain CP39 or a mixture of the 

strains 27A2,27A7 and 27A9. 

SeveraI investigators. including Steele et d. (1983). Yoneyama et al. (1986) 

and Ledgard (1989), have reported that host plants and rhizobial strain can iniluence 

isotopic fractionation during N2 fixation. For exampIe. in the study by Ledgard (1989), 

using white clover and red cfover inocdated with R. leguminosurum strain PDD 2668 

or a mixture of rhizobia isolated from the field. the 6% of the shoots was larger for 

the rhizobial strain from the field than for strain PDD 2668. Thus. Nz fixation wouid 

have been over-estimated. if the 6% vahe for PDD 2668 had been used in 

calculation fiom the field site. The 6% of the desi chickpea seed in the present study 

support this concIusion. The isotopic fractionation (P) d u e  was higher for the singIe 

strain CP39 than for the mixed strains (27A2,27A7 and 27A9) (Table 4.2). Thus, N 

derived from fixation for the seed would have been over-estimated, if the (P) value for 

the mixed strains had been used in calculations on p h t s  inoculated with the singIe 



strain. In contrast, the isotopic fractionation values for the kabuli chickpea and 

rhizobial strain combinations were similar, indicating that an accurate estimate of Nz 

fixation would have been obtained h m  any of the values. Furthermore. the P value of 

either the desi shoot or the kabuli shoots at flowering for each inoculant did not differ 

and would produce essentially the same proportion of Nz fixed. if any of the values is 

used in '% natural abundance calculation on chickpea shoots. 

In soits with indigenous rhizobia the strains of rhizobia that infect the host 

legume may vary (Ledgard, 1989; Doughton et al., 1992). Under those conditions. it is 

likely that the P value determined in the greenhouse or growth chamber may not be 

appropriate for estimating Nz fnation in the field. The fieid used in NpfLuation studies 

was free h m  indigenous rhizobia for chickpea (Rennie et al., 1982: Hynes et al., 

1995) and, since the chickpea-Rhizobium symbiosis is very specific (Silsbury. 1989). 

it is likely the plants were infected entirely by the inoculant strains. Thus. the isotopic 

&tionation factors that were used for the calculation of the proportion of Nz fixed, 

were appropriate. 

Although grouping the chickpea cdtivars in separate experiments prevented a 

direct comparison between the desi and the kabdi t)tpes. it was clear that the host 

genotype did not influence the isotopic Fractionation factor. This is contrary to 

previous observations (Steele et al., 1983: Ledgard. 1989). SteeIe st al. (1983). using a 

number of host plants and host-Rhizobium combinations. found considerable variation 

in isotopic firactionation among plant species. For example. in Lorn and ~l./r~roptilium 

grown with rhizobial strain PDD 4683. the isotopic Fractionation factors calculated for 

the foliage were 0.9995 and 1.0003. respectively. The results of the present study. 

therefore, suggest tbat the same P value would be appropriate for the calculation of the 

proportion of Nt derived from the atmosphere by MyIes desi and Sanford kabuIi 

chickpeas inoculated with the same rhizobial strain. 



5. TIME COURSE OF Nz FIXATION AND GROWTH OF CHICKPEA 

5.1 Introduction 

Most estimates indicate that chickpea can derive between 26 and 83% of its N 

requirements fiom fixation (Evans et al.. 1989: Beck et al., 1991; Hemdge et al., 

1995; Hossain et al., 1995). The Large variation in the proportion or amount of N2 

fixed is due to many interacting factors, including environmental variables. host 

genotype, rhizobial spain, root nodule position and the length of time the plant 

actively supports N2 fixation (Rennie and Kemp. 1984; George et al.. 1987: Hardarson 

et al., 1989; Vessey, 1992). 

Several studies have shown that N7_ fixation in nodulated grain legumes 

declines during seed development (e-g., Latimore et al.. 1977: Deibert et ai.. 1979: 

Imsande, 1989). Lawn and Brun (1974) and Quebedeaux et al. (1975) reported a 

marked decline in symbiotic N2-Luing activity at the onset of pod filling in soybean. 

On the other hand. Zapata et ai. (1987) reported low initial N2 hation levels in field- 

grown soybean until the beginning of the reproductive stage (74 d after planting), but 

this high level of fixation was maintained for only 20 days. SimiIar observations in the 

decline of Nz fixation during the early pod-fillkg stage have been reported for other 

legumes, including pea (Bethlenfdvay and Phillips, 1977: Dean and Clark. 1980; 

Vessey, 1992). common bean (BethIenfalvay and Phillips, 1977, Pena-Cabriales et al., 

1993) and bambara groundnut (Kumaga et ai.. 1994). This apparent decline has been 

I i e d  to the carbohydrate deprivation hypothesis. which attributes the decrease in 

nodule function to a diminished supply of photosynthate to the nodules (Lawn and 

Brun, 1974; Latimore et at., 1977; Quebedeaux et al., 1975). However. work on 

irrigated soybean (Bergensen et al., 1989; 1992) has shown that this may not be case, 

because high rates of N2 fixation continued throughout pod-fill. Contrary to the 

carbohydrate limitation hypothesis are also the recent findings by Stanforth et al. 



(1994) which indicated that total N accumulation rate and accumulation per unit dry 

weight of nodule of field-grown plants remained coastant or increased throughout the 

reproductive period in faba bean. In addition. considerable evidence indicates that N2 

fixation is maintained for longer periods into the reproductive stage in nodules located 

on the lower part of the root system compared to the crown region (McDermott and 

Graham, 1989; Wolyn et al, 1989; Vikrnan and Vessey, 1992, 1993). If lateral root 

nodules on chickpea roots maintain activity during the reproductive phase. it would be 

expected that a method of inoculation that induces lateral root nodulation would 

prolong the period of active Nz fixation and, thus, enhance both the amount of Nz 

fixed and the consequent seed yield. Therefore, the objective of the present study was 

to examine the time course of Nz fixation and growth of desi chickpea under a 

controlled-environment by comparing seed-inoculated plants to plants grown in soil 

inoculated with granular inoculant. 

5 2  Materials and methods 

5.2.1 Growth medium 

The study was conducted in growth chambers (Model PGV 36. Controlled 

Environments Ltd, Winnipeg, MB) in special pots constructed of 10-cm-diameter by 

36-cm-long sections of polyvinyl chloride (PVC) pipe. Cheesecloth and a paper coffee 

filter held in place by a rubber band supported the bottom of each pipe. The pot was 

then placed in a 2-cm-deep plastic saucer. The pots were filled with a mixture of soil. 

industrial sand (Unimin Corporation, New Caanan. CT) and vermiculite (Vil 

Vermiculite, Toronto, ON) in a 2:1:1 ratio (vtv). The soil was collected in August 

1998 fiom Outlook, SK, fiom one of the experimental sites used for the field studies 

(Chapter 3). After removing and discarding the top 3cm layer, tbe soil was excavated 

to a depth of about 15 cm. The soil was dried and sieved, using a 6-mm screen, before 

mixing with the required proportion of sand and vermiculite. Each pot contained 4.5 

kg of growth medium. 



53.2 Seed sterilization and inoculation treatment 

Seeds of desi chickpea cv. Myles were surface-sterilized by immersing in 70% 

alcohol for 3 min, followed by immersion in 3% sodium hypochloride solution for 3 

min. The seeds were then rinsed six times with steriIe water and, dried in a sterile 

laminar airflow hood. A sample of seeds was inoculated with either a liquid or peat- 

based inoculant hoculant preparations of Rhizobium ciceri strain CP39 (ICARDA, 

Aleppo, Syria; and kindly formulated by MicroBio RhizoGen. Saskatoon. SK) were 

applied at the recommended rates to deliver approximately 10' cells see&'. The four 

inoculation treatments were the non-inoculated control. seed-applied liquid inoculant, 

seed-applied peat inoculant or granular inocdant applied 2.5 cm below the seed. For 

the liquid formulation, the application rate was 4.5 ml kg-' seed. whereas the peat- 

based seed-applied formulation was applied at 1.95 g kg-' seed using 5 ml of 1% gum 

arabic solution as adhesive. For the 2.5 cm betow seed-placement maunent. soil to the 

desired depth was removed, and the grandar inoculant (60 mg pot-') was spread on the 

soil surface and the soil was then replaced. 

5.23 Growth conditions 

Four seeds were planted per pot at a depth of 3 cm. and the pots were placed in 

the growth chamber. Growth chamber conditions were maintained at a 16-h daylength 

abd a mean day and night temperatures of 25 and 18*C. respectively. Relative 

humidity was maintained between 60 and 70%. The light source was composed of 

Cool White VHO and GRO-LUX VS VHO fluorescent lamps at a ratio of 3 to 1. 

supplying photosynthetic active radiation (PAR) of approximately 560 *LO pmol m-2 

s-' at the top of the canopy. The pots were arranged in a randomized complete block 

design with four replications. After emergence. the seedlings in each pot were thinned 

to two after which a 25 mI solution, containing 10 mg of 10.5% '%I enriched 

'%&'%03, was applied to the surface of the soil of each pot. FIax was dso grown in 

separate pots for estimation of & hation by the '%-enrichment technique. The plants 

were maintained at field capacity by daily addition of tap water, and weekly addition 

of 100 d half-strength N-fiee HoagIand nutrient solution (Hoagiand and Amon, 

1938) pet pot. To minimize the passive downward washing of rbobial ceIIs by 



percolating water or nutrient solution fiom above. watering was by capillary rise of 

water or nutrient solution fiom the plastic saucer under each pot. 

The experiment was repeated with similar inoculation treatments and grown 

under similar conditions except that the 25 ml solution containing 10 mg 10.5% '%I 

enriched ' ~ ' % 0 3 ,  was applied by capillary rise from the plastic saucer under each 

pot at planting. 

52.4 Harvesting and plant tissue analysis 

The plants were harvested at 28, 42, 56, 70, 84 or 98 days afkr planting 

(DAP), corresponding to the late vegetative stage, flowering, eariy pod-filling. mid 

pod-Wig, late pod-filling and physiological maturity, respectively. The roots were 

carefully washed under cunning tap water, and the crown and lateral root nodules were 

removed separately. Nodules were counted and dried with the whole plant at 60°C for 

7 d. The dry weight of noduies and the plant dry matter yield were determined. The 

above-ground plant parts (leaves + stems, and pods in later harvests) of chickpea and 

flax were milled to a < 2-mm particle size in a Willey mill (Arthur H. Thomas 

Company, PhiIadelphia, PA) and then passed through a cyclone mill (Tecator model 

Cyclotec 1093) equipped with a 0.4-mm sieve. Subsamples of ground materials were 

M e r  finely ground in a rotating ball-bearing mill and approximately I-mg samples 

were analyzed for percentage N and atom percent '% excess. using continuous tlow 

isotope ratio mass spectrometer (Europa Scientific. Crewe. England) interfaced with 

Roboprep sample converter (~uropa Scientific). The working standard was '%- 
enriched pea residue with an atom %I% content of 0.6013 and standard deviation of 

0.0007. For the fmaI harvest, i.e., at physiological maturity. seeds of both chickpea 

and flax were also analyzed. Chickpea seed protein was determined by converting the 

total N to % protein using the fartor 6.25 (Tkachuk, 1969) and then expressed as 

protein concentration. The percentage of plant N derived h m  the atmosphere 

(%Ndfa) was estimated using the '% isotope dilution method and was calcuiated 

according to Rennie and Dubetz (1986) as follows: 

% ~ d f a = ( l -  atom% "NexcessNz-fixingcrop 
atom % ''N excess non - fixing crop 



52.5 Statistical analysis 

Data for each sampling date were anatyzed separately for each experiment in 

addition to the combined analyses over experiments for each sampling date. using the 

General Linear Model (SAS Institute, 1996). in the analyses, inocdation treatment 

was considered a fixed factor, whereas the experiments were considered random 

variables with replications nested within experiments. Planned comparisons among 

treatments were made, using contrasts. For some of the parameters measured. e.g., 

seed protein concentration and percent N derived tiom the atmosphere (%Ndfa) for 

the seed, the overall F tests for treatments were not significant. However. partitioning 

of the treatment degrees of tieedom into single degree of tieedom contrasts indicated 

that some of the treatments differed significantly. According to Chew ( 1977). it is not 

necessary to carry out an F test when comparisons among treatments means are 

pIanned; a view supported by Steel et al. (1997). In comparing treatments. the overall 

F test is averaged over the possible comparkons. Thus. if only one or two of these 

contrasts are significant, the overail F test is diluted or weakened by the non- 

significant contrasts and erroneously may give a non-significant F value. 

5.3 Results 

53.1 Nodulation 

The inoculation treatments produced similar results with no significant 

differences between the two experiments for total number of nodules (Table 5. I )  or 

nodule dry weight at any of the sampling dates (Table and 5.2). The interactions 

between experiment and inoculation treatment for nodule numbers and nodule dry 

weight at all sampling dates were not significant. except for nodule numbers and dry 

weight at physiological maturity (98 DAP) and early pod-filling (56 DM), 

respectively. Hence, the data were averaged over experiments (Table 5.3). Inoculation 

method significantly influenced the position of nodule formation on the roots in both 

experiments. The peat-based inoculants (appIied to the seed) produced nodules 

primarily at the crown region, whereas most of the nodules fotmed by the granular 

inoculant were located on the IateraI roots. The liquid-formulated inoculant (applied to 

the seed) formed about the same number of nodules on the lateral roots as on the 



crown region. Averaged over the two experiments, total nodule numbers were not 

significautly different between the peat and granular inoculants, but both were, in 

general, significantly higher than that for the liquid and the non-inoculated control. 

Total nodule numbers for the peat inoculant treatment increased from 2 plant" at the 

late vegetative stage (28 DAP) to 4.75 plant-' 56 DAP and then declined toward 

physiological maturity of the plant (Table 5.3). On the other hand the totat number of 

nodules formed by the granular inoculant increased over three-fold from 1 .O7 plant-' at 

28 DAP to 3.63 plant" during a Cweek period. and maintained a similar number of 

nodules to physiologicd maturity of the plant. 

Nodulation was generally poor as compared to that observed in field-grown 

Myles desi chickpea (Section 3.3.1.1, Chapter 3). particularly in Experiment I. In this 

experiment, no noddation was observed in the liquid inoculant treatments untii the 

mid pod-filling stage (70 DM),  when some nodules were found on the lateral roots 

(Appendix 30). In all the inoculant treatments and at d l  sampling dates. total nodule 

numbers were higher in Experiment 2 (Appendix 31) than Experiment I .  Unlike 

Experiment 1, the total number of nodules fonned by the granular inoculant in 

Experiment 2 after the late vegetative stage remained fairly constant until 

physiological maturity. 



Tables 5.1. Mean squares from the analysis of variance for nodule numbers of  desi chickpea from various inoculation treatments at 

different growth stages in two experiments. 

Sources of Days after planting (DAP)' 

variation d. f 2 8 42 56 70 84 98 

Reps in exp 6 0.67 0.62 3.88 3.91 3.49 0.5 1 

Inoculation 3 5.88 25.43* 28.72 30.09** 2 1.53* 26.67' 

Non-inoc. vs. inoc. I 8.46 29.26* 11.00 243.80+ 34,44** 30.94' 

Peat vs. Liquid I 9.00 40.64+ 70.14 11 1,47 2 3 -39' 25.00* 

Granular vs. pest 1 3.50 1.00 5 .06 62.53 0.63 3.06 

Granular vs. liquid 1 1,26 28.89* 37.52 340.98' 23,77* 45.56* 

Exp x inoc. 3 4.40 2.56 14.26 0.93 1.03 2.63** 

Error 18 0.20 1.12 6.2 1 2.75 1.86 0.54 

Total 3 1 - 
*.** Significant at the 0.05 and 0.01 levels, respectively, ' 28 DAP = late vegetative stage, 42 DAP = flowering, 56 UAf3 = early pod-tilling. 70 DAY = mid pod-tilling, 84 DAP = late pod- 
filling and 98 DAP = physiological maturity. 





Table 5.3. Nodule numbers of desi chickpea 60m various inoculation treatments at 

different growth stages, averaged over two experiments. 

Inoculation Days after planting (DAP)' 

treatment 28 42 56 70 84 98 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(0.05l 

Peat 

Liquid 

Granular 

Non-inoculation 

LSQ0.05) 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(0.05) 

 con^* 
Non-inoc vs. inoc 

Peat vs. liquid 

Granular vs. peat 

Granular vs. liquid 

Number of nodules ~lant" 
Crown nodules 

1.44 2.44 3 .SO 3.75 2.57 2.69 

0.25 0.07 0.19 0.19 0.25 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

ns 1.51 1.87 1.33 0.74 2.39 

-Lateral root nodules - 
0.56 1.06 125 0.63 0.75 0.25 

0.25 0.25 0.38 0.44 0.75 0.44 

1.07 3.00 3.63 3.19 3 .U 3.82 

0 0.07 1.63 0.44 0.19 0.13 

ns I.61 ns 2.09 1.91 1.79 

----- Total 

2.00 3.50 4.75 4.38 3.32 2.94 

0.50 0.32 0.57 0.63 1 .OO 0.44 

1.07 3.00 3.63 3.19 3 -44 3 -82 

0 0.07 1.63 0.44 0.19 0.13 

ns 2.55 ns 1.53 1.61 2.58 

*,** Signi6caut at the 0.05 and 0.01 levels, respectively- 
t 28 DAP = late vegetative, 42 DAP = flowering, 56 DAP = early pod-filling, 70 DAP 
= mid pod-filling, 84 DAP = late pod-filling and 98 DAP = physiological maturity. 
: Differences between specified treatments. 



Nodule dry weight data were similar to nodule number data Peat-based 

inoculant (applied to the seed) resulted in most of the nodule dry weight in the crown, 

granular inoculant (applied to the soil) resulted in most of the nodule dry weight on the 

lateral mots and nodule dry weight fhm the Iiquid inocuIant (applied to the seed) did 

not differ from the non-inoculated treatment (Table 5.4). The total nodule dry weight 

increased to a peak at late pod-filling (84 D M )  for all inoculant treatments and then 

decreased toward the physiological maturity of the plant. The greatest increase in total 

nodde dry weight for the peat inoculant occurred between the late vegetative and 

flowering stages (28 - 42 DM), whems that for the liquid and granular inoculants 

occurred between the mid pod-filling and late pod-fiILing stages (70 - 84 D M ) .  

During these periods, total nodule dry weight for the peat. liquid and granular 

inoculants increased by 68.5,56.4 and 77.4 mg plant*'. respectively. Total nodule dry 

weights were similar for the peat and granular inoculants until the mid pod-filling 

stage (70 DM) after which the granular inoculant treatment accumulated much more 

nodule dry matter than the peat inoculant. Seed inoculation with liquid-formulated 

inoculant produced low total nodde dry weight that was not significantly different 

from the non-inoculated control at ail sampling dates. Unlike the granular inoculant. 

total nodule dry weight for the peat and Liquid inoculants were generally lower in 

Experiment 1 (Appendix 32) than in Experiment 2 (Appendix 33). For granular 

inoculation, nodule dry matter in Experiment 2 was higher than in Experiment I at the 

initid growth stages, but the reverse was true from mid pod-tiIling onward. 



Table 5.4. Nodule dry weight of desi chickpea tiom various inocuIation treatments at 

different growth stages, averaged over two experiments. 

tnoculation Days after pIanting (DM) 

treatment 28 42 56 70 84 98 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(o.on 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(o.on 

Peat 

Liquid 

Granular 

Non-inoculation 

LsD(0.o~) 

contrasts~ 

Non-inoc vs. inoc 

Peat vs. liquid 

Granular vs. peat 

Granular vs. liquid 

--------------Crown nodules (mg plant")-- 

21.4 58.3 87.1 117.2 86.6 104.1 

7.9 2.3 14.7 15.2 4.0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

ns 36.9 55.0 70.7 17.9 40.4 

- - - - -  Lateral mot nodules (rng planf') 

4. i 32.5 47.1 18.6 67.6 29.7 

1.7 14.2 19.4 21.0 88.6 28.8 

24.8 93.3 151.3 121.4 200.8 183.2 

0 1.5 42.6 15.8 17.8 3 1.6 

11s 82.4 83.4 32.1 130.9 55.6 

------ Total nodule dry wt (mg plant*')- 

25.5 90.8 134.2 135.7 154.1 133.7 

9.6 16.4 34. I 36.1 92.5 28.8 

24.8 93.3 151.3 123.4 200.8 183.2 

0 1.3 42.6 15.8 17.8 31.6 

[1s 87.8 ns 36.3 126.9 75.8 

*,** Significant at the 0.05 and 0.01 levels, respectively. 
' 28 DAP = late vegetative, 42 DAP = flowering, 56 DAP = early pod-filling, 70 DAP 
= mid pod-filling, 84 DAP = late pod-filling and 98 DAP = physiological maturity. 
: Differences between specified treatments. 



53.2 Dry matter accumuiation in desi chickpea 

Dry matter production of desi chickpea in Experiment 1 did not differ from 

that in Experiment 2 until the late pod-filling stage (84 DAP) (Table 5.5). when it was 

higher in Experiment 1 than Experiment 2 (Appendices 34 and 35). In general. dry 

matter yield of the chickpea plant increased throughout the growth cycle in ali the 

treatments (TabIe 5.6). Averaged over experiments. the increase in dry matter 

accumulation was greatest between the late vegetative (28 D M )  and the early pod- 

tilling (56 DM) stages. Dry matter accumulation after the early pod-filling stage (56 

DAP to 98 DAP) was higher for the granular inoculant than for the other inoculant 

treatments. Significant diierences among inoculation treatments for dry matter yield 

were observed at the late vegetative (28 DAP) and late pod-filling stages (84 DAP) 

(Tables 5.5 and 5.6). The experiment by inoculation treatment interaction was not 

significant, except at physioIogica1 maturity (Table 5.5'). due primarily to the high 

yield for the non-inoculated control in Experiment 1 (Appendix 34). relative to the 

Experiment 2 (Appendix 35). 



Table 5.5, Mean squares from the analysis of variance for dry matter production of 

desi chickpea from various inoculation treatments at different growth stages in two 

experiments 

Source of Days after planting (DAP) ' 

Reps in Exp 6 0.024 0.209 0.435 0.435 0.356 0.5 14 

Inoculation 3 0.035 0.101 0.861 0.985 3.387** 4.368 

Non-inoc vs. inoc 1 0.0 12 0.025 0.838 2.036* 5.541 ** 1.838 

Peat vs. liquid 1 0.052 0.143 0.929 0.874 1.815* 3.303 

Gran vs. peat 1 0.003 0.017 0.090 0.081 0.603 1.894 

Gran vs. liquid 1 0.082* 0.259 1.597 0.424 4.510** 10.200 

Exp x inoc. 3 0.007 0.034 0.172 0.209 0.097 1 .285* 

Error 18 0.023 0.1 13 0.309 0.429 0.167 0.314 

Total 3 1 

*,** Significant at the 0.05 and 0.01 levels respectively. 
t Non-inoc = non-inoculated, inoc = inoculated. Gran = granular 
: 28 DAP = late vegetative, 42 DAP = flowering. 56 DAP = early pod-filling, 70 D M  
= mid pod-filling, 84 D M  = late pod-filling and 98 DAP = physiological maturity. 



Table 5.6. Dry matter production of desi chickpea from var*ous inocuIatioa treatments 

at different growth stages, averaged over two experiments. 

Inoculation Days after planting (DAP)' 

treatment 28 42 56 70 84 98 

Peat 1.11 2.06 3.02 3.69 3.77 4.12 

Liquid 

Granular 

Contrasts: 

Non-inoc vs. inoc 0.04 0.06 0.37 0.58+ 0.96** 0.69 

Peat vs. liquid 0.1 1 0.19 0.48 0.47 0.68* 0.91 

Granular vs. peat 0.03 0.07 0.15 0.14 0.39 0.69 

Granular vs. Liquid 0.14* 026 0.63 0.33 1.07** 1.60 

*, * * Significant at the 0.05 and 0.0 1 levels, respectively. + 28 DAP = late vegetative. 42 DAP = flowering, 56 DAP = early pod-filling, 70 DAP 
= mid pod-fiIling, 84 DAP = late pod-filling and 98 DAP = physiological maturity. 
: Differences between specified treatments. 

533 Nz fixstion 

The proportions and the amounts of N2 fixed did not differ sigaificantly 

between the two experiments (Tables 5.7 and 5-81, except for the %Ndfa at the initial 

sampling date (28 DAP) (Table 5.7) which was higher in Experiment 1 than 

Experiment 2 (data not shown). The experiment by treatment interactions for %Ndfa 

and amount of Nz fixed were also not signiflait at any of the sampling dates. 

Therefore, data for the combined anaiyses are presented in Tables 5.9 and 5.10. 



Table 5.7. Mean squares from the analysis of variance for percentage N derived from 

the atmosphere throughout the growth cycle by desi chickpea from various inoculation 

treatments in two experiments. 

Source of Days after planting (DM) ' 
variation df 28 42 56 70 84 98 

E ~ P  1 2105** 51 881 3392 43 29 1 

Reps in exp 6 75 239** 293* 664** 436* 197 

Inoculation 3 284* 417 764 783* 738 838** 

Non-inoc vs. hoc I 460* 772 1300 975* 1X4* IS95** 

Peat vs. liquid 1 262 4 428 446 384 570* 

Granular vs. peat 1 3 3 17 105 250 79 35 

Granular vs. liquid 1 3 2 *  396 955 I364* 813 321 

Exp x inoc. 3 3 1 90 174 74 I38 34 

Error 18 42 42 101 86 I21 116 

Total 3 1 

*,** Significant at h e  0.05 and 0.0 1 levels. respectively. + 28 DAP = Iate vegetative, 42 DAP = flowering, 56 DAP = early pod-tilling. 70 DAP 
= mid pod-filling, 84 DAP = Iate pod-filling and 98 DAP = physiological maturity. 



Table 5.8. Mean squares fiom the analysis of variance for amount of N derived from 

the atmosphere throughout the growth cycle by desi chickpea from various inoculation 

treatments in two experiments. 

Source of Days after planting (DAP) ' 
variation d.f 28 42 56 70 84 98 

E ~ P  
Reps in exp 

Inoculation 

Non-inoc vs. inoc 

Peat vs. Iiquid 

Granular vs. peat 

Gmuiar vs. liquid 

Exp x inoc. 

Error 

Total 

*,** Significant at the 0.05 and 0.01 levels, respectively. 
t 28 DAP = late vegetative, 42 DAP = flowering. 56 DAP = earIy pod-tilling. 70 D M  
= mid pod-filling, 84 DAP = late pod-filling and 98 DAP = physiological maturity. 



Table 5.9. Percentage N derived h r n  the atmosphere throughout the growth cycle by 

desi chickpea h m  various inoculation treatments averaged over two experiments. 

Inoculation Days after planting (DM) ' 
Treatment 28 42 56 70 84 98 

Peat 20.6 17.0 31.6 32.7 30.5 36.2 

Liquid 12.5 16.0 212 22.2 20.6 24.2 

Granular 21.5 25.9 36.7 40.6 34.9 33.2 

contrasts: 

Non-inoc vs. inoc 8.8* 11.3 14.7 12.7* 15.1* 17.8** 

Peat vs. liquid 8.1 1 .O 10.4 10.5 9.9 13.0* 

Gran vs. peat 0.9 8.9 5.1 7.9 4.4 3.0 

Gran vs. liquid 9.0* 9.9 15.5 18.Jt 14.3 9.0 

*,** Significant at the 0.05 and 0.01 levels. respectively. 
t 28 DAP = Iate vegetative stage. 42 DAP = flowering. 56 DAP = early pod-filling, 
70 DAP = mid pod-filling, 84 D M  = late pod-filling and 98 DAP = physiological 
maturity. 
: Differences between specified treatments 



Table 5.10. Amount N derived fiom the atmosphere throughout the growth cycle by 

desi chickpea h m  various inoculation treatments averaged over two experiments. 

Inoculation Days after planting (DAP)' 

Treatment 28 42 56 70 84 98 

Peat 4.8 6.4 18.5 19.4 20.6 20.3 

Liquid 2.3 4 2  6.6 9.6 8.5 9.3 

contrasts: 

Non-inoc vs. inoc 2.1 4.2* 15.F 12S* 12.4** 11.4 

Peat vs. liquid 3.2 2.2 1 1.9* 9.8 12.1* 11.0 

Gran vs. peat 0.7 3.1 3.2 5.7 5.0 3 -3 

Gran vs. liquid 2.5 5.3 15.1' 15.5* 17.1** 14.0 

*,** Significant at the 0.05 and 0.01 levels, respectively. 
t 28 DAP = late vegetative stage, 42 DAP = flowering, 56 DAP = early pod-filling. 
70 DAP = mid pod-filling, 84 DAP = late pod-filling and 98 DAP = physiological 
phuiB* 

D E m c e s  between specified treatments 

Among the inocuiated treatments, %Ndfa differed significantIy at 18. 70 and 

98 DAP (Tables 5.7 and 5.9), whereas differences in the amount of N:! fixed were 

sigTllfics11lt at 56,70 and 84 DAP (Tables 5.8 and 5.10), due to the low values for the 

liquid i n d a n t  treatment (Tables 5.9 and 5.10)- The proportions and amounts of Nz 

derived fiom W o n  were not different between the peat and granuIar inocdant 

treatments at all sampling dates. Averaged over experiments. the patterns of %Ndfa 

and N2 fixed throughout the growth cycle of the inocdated and non-inoculated control 

treatments (Table 5.8) were War to that of dry matter yieId (Table 5.6). Generally, 

%N& increased progressively fiom the late vegetative stage (28 DM) to the mid 
- 

pod-filling stage (70 DAP) and d e c W  during the next growth stage (late pod- 



tXing). At the mid pod-filling stage. the %Ndfa for the granular inoculation was about 

double that for the liquid inoculant and the non-inoculation treatments. 

In general, little Nz was fixed by the [ate vegetative stage (28 DM) in a i l  

treatments but increased four and almost six times for the seed-applied and soil 

inoculation treatments, respectively, by physiological maturity. The highest daily Nz 

fixation rate (0.9 mg p l a d )  in the peat and granular inoculant treatments occurred 

between the flowering and early pod-filling sages (42-56 DM). with little or no 

fixation after the early pod-fiIling stage. For the liquid inoculant. the highest daily Nz 

fixation rate (0.23 rng planttt) occurred between the earty and mid pod-filling stages 

(56-70 DAP). 

5.4 Discussion 

Chickpea is often reported to have a tow capacity for N2 fixation among the 

legume crops grown in a rotation-based cropping system (Papastylianou 1987; Smith 

et al., 1987; Keatinge et al., 1988). The %Ndfa can range from 0 to 83%. depending 

on the method of assessment. host genotype. rhizobial strain. method of inoculation 

and environmental variables (Rennie and Dubetz 1986; Papastylianou 1 987: Smith et 

d., 1987; Keatinge et al., 1988: Beck et d.. 1991: Beck 1992; Herridge et al., 1995; 

Hossain et al., 1995). In the present study. nodutation was delayed and generally was 

poor, which was reflected in low N2 fixation in all the inoculation treatments. 

Four weeks after seeding (late vegetative stage), the peat. liquid and granular 

inocuIant had resulted in the formation of only 2.0. 0.5 and 1.0 nodules, respectively 

(Table 5.3), compared to an average of I3 and 27 reported by Silsbury (1989) and 

Minchin et al. (1980), respectively, for desi chickpea of the same age. Several factors 

may have contriiuted to the low levek of noduiation. For example, high temperature 

can cause the rapid death of rhizobia limiting nodule formation (Day et al.. 1978; 

Graham and Rosas, 1978). Minchin et aI. (1980) reported a drastic decIine in nodule 

numbers in three chickpea genotypes when grown at 30/18°C compared with 22/1S°C. 

Using cv. ChaEa desi chickpea inoculated with Rhkobium strain CC 1192, 



Rawsthome et al. (1985) also found that high temperature (325°C clay/ 18°C night) 

delayed nodulation and nodule activity. 

In the present study, the plants were grown at 25/18OC, not too high to affect 

nodulation adversely. Thus, the reason for the [ow nodulation could not be accounted 

for. However, the extremely poor nodulation observed in the liquid inoculant 

treatment indicated that environmental factors might have played a major role. 

Growing the chickpea in the growth room dso may have resulted in sub-optimum 

conditions for growth and N2 fixation. Hansen (1994) argued that the rhizobial strain 

is much more exposed to unfavourable environmental factors with liquid-formulated 

inocdurn thaa peat-formulated inoculum. The data from field experiments, using the 

same chickpea cultivar and inoculants, also support this observation (Chapter 3). 

Totd nodule numbers were genedy  higher in the peat treatment than the 

granular inoculant treatment until the late pod-filling stage. At this stage. nodulation of 

the former declined, whereas that for the latter remained virtually the same or 

increased. The decline in total nodule numbers after h e  early pod-filling stage in the 

peat iaoculant treatment was also evident in the liquid-inocufant treatment. indicating 

that, although noduie formation ceased during the later part of the growing cycle when 

the inoculant was seed-applied. nodulation continued in the soil-inoculated treatment. 

Thus, nodule formation ia the soil-inoculation treatment was delayed relative to the 

seed-inoculation treatment. but this delay was compensated for by larger nodule dry 

weight. Smith et al. (198 t )  and Danso and Bowen ( 1989) also found that. when few 

nodules are produced on soybean roots, the nodules often grow much larger than when 

many nodules are formed It is not surprising that root infection by the inoculant strain 

added to the soil was delayed because the inoculum was deposited 2.5 cm below the 

seed, and a time lag occurred before the developing legume root contacted the 

rhizobia Unlike the seed inoculated plants, h e  lateral roots of plants gown in the soil 

iuoculated treatment noddated iater in the growing season due to the availability of 

inoculant rhizobia at that soil depth. The 2.5-cm inocdant placement depth was 

chosen, based on the results of previous field study (Chapter 3). The study indicated 

that granular inaculant placed either 2.5 cm or 8 cm below the seed was superior to 

placement with the seed. 



Nodule dry weight increased gradually from the late vegetative stage (28 D M )  

to a maximum at the late pod-filling stage (84 DAP) and thereafter decreased during 

the find growth stage (Table 5.4). The decline in nodule dry weight during the later 

part of the growth cycle may be attributed to nodule senescence and a decrease in the 

availability of photosynthates for nodule metabolism. Such decreases may be due to 

the increased demand of developing fruits for assimilates (Rawsthorne et al.. 1985). 

In common bean cv. FIor de Mayo. nodule dry weight decreased after 69 DAP (28 d 

before physiological maturity), whereas in cv. Bayocel. nodule dry weight was 

maintained until the find harvest (97 DAP) (Pena-Cabriales et al., 1993). Kumaga et 

al. (1994) also found that nodule dry weight of two bambara groundnut (Vigna 

subterrimeu) cdtivars declined after the mid pad-filling stage (120 DAP). In the 

present study, the highest nodule dry matter accumulation for the peat-based inoculant 

occurred between the late vegetative and the flowering stages (2842 D M ) .  whereas 

that for the liquid and granular inoculants occurred between the mid pod-filling and 

late pod-filling stages (70-84 DAP). These results are in contrast to nodulation of 

soybean (Danso et d.. 1990) and bambara groundnut (Kumaga et al.. 1994). In these 

studies the period of pronounced nodule growth in soybean was between the flowering 

and early pod-filling stages. whereas nodule growth in bambara groundnut was 

greatest between the late vegetative and early pod-filling stages. This illusmtes the 

differences among legumes, among cultivars within the same crop or possibly among 

inoculant placements. 

Differences in the growing conditions could also play a part in the observed 

differences in the nodule growth pattem. Total nodule dry matter for the peat inoculant 

was essentially the same as that for the granular inoculant by the mid pod-filling stage. 

Thereafter, nodule dry weight for the granuiar inocuIant although not significant. was 

over 30% higher than that for the peat. emphasizing the fact that nodules produced by 

the former were younger and either had a higher dry matter accumulation rate or a 

lower rate of senescence than the latter. This contention is retlected in the nodulation 

pattern observed for the seed-applied inoculation and that for soiI inoculation, 

An aspect of the study was to examine the influence of inoculation method on 

the d i s t n i o n  of the nodules on the root system. On this basis. pots for growing the 



chickpea plants were constructed from PVC pipes to obtain greater soil depth. This 

was to avoid a possible upward growth of the roots after they have reached the bottom 

of the pot, which could confound the position of the nodules in relation to the method 

of inoculation. In support of the tield studies (Chapter 3) and that of others (Hardarson 

et al., 1989; Wadisirisuk et al., 1989; Danso and Bowen 1989: Danso et al.. 1990). 

inoculating the seed, particularly with peat inoculant. produced nodules predominantly 

at the crown region of the root, whereas inoculating the soil at 9.5 cm below the seed 

resulted in the formation of all the nodules at the lower part of the root system. On a 

nodule dry weight basis, the peat inoculant formed. on the average. between 64 and 

86% of their nodules at the crown region throughout the growth cycle (Table 5.4). 

This compares well with Hardarson et al. (1989) who reported that inocuiating 

soybean seed caused the formation of 87% of the nodules on the upper 5-cm section of 

the tap root, whereas inoculating the soiI at the seeding level or 5 cm below the seed 

produced only 2040% of the nodules at this root section. The position of the nodules 

observed in this study indicates that nodule formation is restricted to the vicinity of 

inoculant placement as suggested by Danso and Bowen ( 1989). 

Nodulation results fmm the exposure of the rhizobial strain to root hairs of the 

host. Therefore. either the rhizobia must move to contact the root or the root must 

grow toward the rhizobia. It is well documented that Rhizohium do not move through 

the soil over large distances (Madsen and Alexander. 1982: ChambIee and Warren. 

1990; W o d l  and Roughley. 1991): thus the emerging root hairs of the host plant 

must contact the rhizobia (Date. 1991: BrockweII et al.. 1995). Studies on the mobility 

of rhizobia in the rhizosphere have shown that percolating water plays a major rde in 

the dispersal of rhizobial inoculum (Hamdi. 1971: Breitenbeck et al.. 1988: WorralI 

and Roughley, 1991). In the present study. watering the plants from the bottom of the 

pot m b h k e d  passive movement of inocufant strain with flowing water. It can, 

therefore, be argued that inoculating the soil may increase the spatial distribution of 

the inoculant strain and possibly improve the chances of the developing root hairs 

contacting the inoculum, Failure of the inoculant to migrate away tkorn the inoculated 

site was demonstrated in a dry soil by Brockwell and WhaIley (1970). In this study, 

the authors observed that seed germination and root growth occurred without nodule 



development, although large numben of the inoculant rhizobia applied to the seed 

were recovered fiom the inoculated site. 

The position of the nodules on the root system, rather than the number or fiesh 

weight of nodules, influenced the amount of Nt fixed by soybean plants (Hardarson et 

al., 1989). This observation has been associated with the age of the nodules, 

suggesting that nodules on the lower part of the mot system or on lateral roots (which 

are often formed Iater than those at crown region) contribute significantly to N2 

fixation during the reproductive or later part of the growth cycle. In the present study. 

the differences in the proportions and amounts of Nz fixed between the soil inocdation 

treatment with all the nodules Located on the lateral roots and the seed inoculation with 

most of the nodules at the crown region were not signiscant at all sampling dates. 

Similarly, the dry matter yield was not different between the peat and the granular 

inoculant treatments at all sampling dates. These observations are consistent with the 

conclusion of Brockwell et al. (1988) that neither seed inoculation with peat-based 

inoculant nor soil inoculation with iiquid inoculant is better than the other when 

environmental conditions are not limiting. The [ow N2 fixed in the Iiquid inoculant 

treatment is most IikeIy due to poor nodulation. The low Nt fixation translated into 

lower dry matter yield at some growth stages. 

The N demands of grain Iegumes are greatest during seed development (Lawn 

and Brun, 1973; Zapata et al. 1987; lmsande, 1989). However, several studies have 

shown that Nt fixation declines with the onset of pod-fiIling (Lawn and Brun, 1974. 

Westennann et aI., 1981; Wolyn et al., 1989; Vessey 1992). Using the acetylene 

reduction technique, Minchin et al. (1980) reported that Nt fixation in chickpea 

reached a maximum around 45 DAP after which it declined to relatively low levels 

between 67 and 81 DAP. SimiIarIy, Dart and Krantz (1977) observed that chickpea 

nodules showed a reduced nitrogen~~e activity soon after flowering. Evans (1982), 

using five chickpea genotypes grown in a controlled environment, found that 

maximum nitrogenase activity occurred during flowering and prior to. or during, 

initid seed formation. The data for the present shldy showed that N2 fixing activity in 

cv. Myles desi chickpea increased h m  the bite vegetative stage (28 DM), generally 



reaching a maximum at the early pod-filling stage (56 DAP) in both the inoculated and 

non-inoculated control plants, and then declined thereafter (Table 5.10). 

The inconsistencies between the present study and others regarding the period 

of maximum Nz fixation could be due to the methodological differences in the 

measurement (Attewell and Bliss, 1989, genotypic differences (Evans, 1982; Vessey. 

1992) and the enviromnental conditions under which the plants were grown (Vessey, 

1992). In all the studies mentioned above, Nt fixation was assessed by the acetylene 

reduction technique. During sampling for acetylene reduction assay, some of the 

nodules on the lateral mots which contribute significantly to Nz fixation during the 

reproductive phase (Wolyn et al., 1989; McDermon and Graham, 1989, Hardarson, 

1993) could be lost. In the present study, however, the '% isotope enrichment method 

was used and, thus, concerns regarding loss of nodules during sampling do not appiy. 

Although chickpea genotypes CP 156288, CP17ll8O and CP156296-b were 

similar in flowering, the peak nitrogenase activity for the former extended for a longer 

period than the other two (Evans, 1982). This was attributed to prolonged vegetative 

growth of CP156288 relative to the other two cultivars. A possible implication is that 

it would be advantageous to select cdtivars having a longer vegetative phase in areas 

with a longer growing season, thus, prolonging the period of maximum nitrogenase 

activity (Rennie and Kemp, 1984). 

The decline in N2 fixation in soybean during the reproductive phase has been 

associated with the development of the pods as a compedng sink thereby Limiting 

carbohydrate availability to the mot nodules (Lawn and B m ,  1974; Latimore et al.. 

1977). As in soybean, chickpea pods develop a strong sink for assimilates and this 

may decrease the available carbohydrate necessary to sustain nodule function and 

activity (Evans, 1982). 

Nodule senescence could partly explain the decline in N2 fixation, particulariy 

in the crown nodules after the mid pod-6lhg stage, as suggested by other workers 

(e.g., McDennott and Graham, 1989; WoIyn et d., 1989). During the period h m  mid 

pod-filhg to physiological m a w ,  total dry weight of the nodules for the seed 

inoculation treatments declined, whereas that for the soil inoculation treatment 

accumuIated 59.8 mg dry matter (Table 5.4). Notwithstanding the drop in Nz fixation 



in all the treatments, the granular-inoculant treatment accumulated 1.26 g plant dry 

matter during the last two growth phases compared to less than 0.43 g by the seed- 

inoculated treatments (Table 5.6). The nodulation in the non-inoculated control 

prevented defmitive comparisons as to the extent to which low soil N limited growth. 

but it is apparent that available N limited plant growth in the seed inoculation 

compared to the soil inoculation. 

It should be emphasized that in these studies. it was impossible to simulate 

field conditions. Although the pots used in this study permitted deeper soil depth. the 

pot size could restrict root activities and, therefore. become an influencing factor. It 

was evident from the present study, as well as from the field study with the same 

chickpea cultivar (Chapter 3), that root development was different under the two 

growth conditions. In the field. chickpea produced few. but thick and long. lateral 

roots which appeared suberized. whereas in the growth chamber it produced many 

lateral roots which appeared white, tender and spongy. The root morphology revealed 

in the field study was similar to other reports, which indicated that chickpea produces 

thick and long laterals with a low frequency of lateral branching (Mia ct al.. 1996. Rao 

and Ito, 1998). The root morphology and possibly anatomical change observed in the 

growth chamber might have been an adaptation to explore greater soil volume in order 

to exploit limited soil resources. It is well known that the morphological and 

anatomicd differences in the component roots of a complex root system are related to 

their activity and functional differentiation (Yamauchi et al.. 1996). 

Nevertheless. it is clear that soil inoculation was superior to seed inoculation. 

particularly when the seed was inoculated with liquid-formulated inoculant. It is also 

evident that any inoculation strategy. such as inoculum placement should be 

confirmed under field conditions. 



6. EFFECT OF FUNGICIDE SEED TREATMENT ON RHIZOBIAL 

SURVIVAL AND NODULATION OF CHICKPEA 

6.1 Introduction 

Chickpea seeds are often treated with hgicides to prevent losses due to seed- 

borne pathogens and damping off. In addition. rhizobia are applied to the seeds to 

ensure effective nodulation and subsequent Nz fixation. Although reports are 

conflicting, several studies have conclusively shown that some of these chemicals are 

incompatible with Rhizobium (e.g.. Welty et al., 1988; Ramos and Ribeiro. 1993) 

In an experiment on the survival of B. japonicum on chemically treated 

soybean seed, Revellin et al. (1993) found that Apron reduced viabIe rhizobia by 6 1% 

after one hour following seed inoculation. Similarly. Captan and 

pentachloronitroknzene (PCNB) reduced viable B. japonicum by 18 and 78%, 

respectively, during a I-h exposure (Curfey and Burton. 1975). Graham et al. ( 1980). 

working with R phmeoli. also observed that on seeds treated with Captan, less than 

10% of the rbizobia survived after 14 h bgicide-rhizobia contact compared to more 

than 90% survival in a non-fungicide-treated control- The toxic et'fects of thiram on 

rhizobid survival have been reported (Grabam et al., 1980: Tu 1980: Hashem rt al.. 

I997), but Curley and Burton (1975) found no adverse effect on the survival of B. 

japoninmt. 

In field studies, Captan adversely affected nodulation in inoculated chickpea 

(Thomas and Vyas, 1984; WeIty et al., 1988). soybean (Graham et al.. 1980: Chamber 

and Montes, 1982; Tes& and MaIlik, 1986) and pea (Rennie et al.. 1985). but Rennie 

and Dubetz (1984) found no effect on soybean nodulation in a two-year field study, 

although shoot N yield at anthesis was reduced. Thomas and Vyas (1984) and WeIty et 

al. (1988) observed no detrimental effect of thiram or metalaxyl on nodulation and 

yield in inoculated chickpea. On the contrary, Bhattacharyya and Sengupta (1984) 

found that seed treatment with thiram reduced noduiation 40 D M  in inoculated 



chickpea. Revellin et al. (1993) similarly noted a significant decrease in nodulation 

and yield of soybean when the inoculated seeds were treated with Apron (metdaxyl). 

Similar hamdid effects of thiram and rnetalaxyl application on nodulation were 

reported for inoculated pea and faba bean (Rennie et al., 1985). It was demonstrated 

that different species and strains of the same species of Rhizohium differed in their 

sensitivity toward various hgicides (Mallik and Tesfai. 1983). Thus. the 

compatibility of these chemicals with chickpea Rhizobium must be evaluated. The 

objective of this study was to examine the effect of four commercial hgicides, 

~~ ron ' ,  Arrest 75@, crown@, and Captan on: 1) the survival of Rhizobium ciceri 

strain CP39 inoculated onto chickpea seeds: and 2) nodulation. nitrogen fixation, and 

dry matter production of inoculated chickpea in the growth chamber. 

6.2 Materials and methods 

6.2.1 Seed sterilization and treatment 

Seeds of desi chickpea were surface sterilized by immersing the seeds for 3 

min in 70% alcohol, followed by a 3 min treatment with 3% sodium hypochloride. 

The seeds were rinsed six times with steriIe water. dried in a sterile laminar airflow 

hood and treated separately with one of the four fungicides at the manut8cturers' 

recommended application rate. The Formuiation. active ingredients and the rate of 

application of the bgicides are listed in Table 6. I. 



Table 6.1. List of hgicides used to treat chickpea seeds. 

Rare 

Twatment Formulation Active ingredient (per kg seed) 

~ p n ~ - F l .  Powder 28.35% metalaxy [N 2.6-dimethylpheny) -N-(rnethoxyacetyl) alanine 2-59 

Arrest 7 5 p  Powder 50% thiram (tetramcthyl thiuram disultide) L8g 

Captan 50 W' Powder 50% N-[tri-chloromethy Ithio~-J-Cyclohexene- 13dicarboxirnide 2-08 

~mwn' Liquid 92 g r' a h h i i n  (5,bdihydro 2-methyl-1.4 oxathiin-3-carboxanitide) 18ml 

' Uniroyal Chemical Ltd 
t 

United A@ Products, Dorchester. Ontario. 

The hgicide-treated seeds were stored for 7 days and then inoculated with 

peat-based inoculant containing Rhizobiuin ciceri strain CP39 (ICARDA. AIeppo. 

Syria; and kindly formulated by MicroSio RhizoGen. Saskatoon. SK) at the 

recommended rate of 1.95 g kg*' seed using 5 rnl of 1% gum arabic solution as sticker 

to deliver approximately 10' Rhizobium cells sees'. The seeds were stored in sterile 

containers at 4 O C  in preparation for the survival experiment and for evaluation of 

chickpea growth in a controlled-environment. Non-fungicide treated seeds were also 

inoculated and stored as before. 

6.2.2 Rhizobial survival on treated seeds 

At 4, 12,24 or 48 h after inoculation, 40 seeds h m  each fungicide treatment 

were removed and divided into four subsamples of 10 seeds each. Each subsample 

wijs transferred into test tubes containing 10 ml sterile water. The test tubes were 

shaken vigorously for 30 s to wash the inoculum off the seeds. One ml of the resultant 

suspension in each test tube was taken and serial dilution made tiom each subsample 

(Somasegaran and Hoben, 1994). Then, 0.1 ml of each dilution was plated by the 

spread-plate method on yeast extract-mannit01 agar (YMA) (Vincent, 1970), 

containing Congo Red to aid in detecting contaminants. The YMA consisted of 1000 



ml distilled water, 0.5 g K2HP04, 0.2 g MgS04.7H20. 0.1 g NaCI. 0.5 _g CaCO,, 0.5 g 

yeast extract, 15 g agar and 10.0 g mannitol and was adjusted to pH 6.8. The plates 

were incubated at 26OC and rhizobial colonies counted after 8 d. The experiment was 

repeated, using the same fungicides and inoculant. 

6.23 Growth chamber study of nodulation and dry matter yield of chickpea 

At each plating time (i.e., 4, 12,24 or 48 h after inoculation). four seeds (fiom 

the seed sample stored for use in the rhizobial survival experiment) fiom each 

treatment were planted into a 2.5 L plastic pot containing a mixture of soil. sand and 

vermiculite in a 2: 1:I ratio (v/v). The soil was collected in August 1997 fiom a site 25 

km east of Saskatoon, which had low mineral N levels and no history of chickpea 

production. After removing and discarding the top 3-cm layer. the soil was excavated 

to a depth of approximately 15 cm. The soil was dried and sieved using a 6-mm 

sclpen, before mixing with the required proportion of sand and vermiculite. Each pot 

contained about 3.5 kg soil mixture. 

The pots were arranged in a randomized complete block design with four 

replications. The plants were grown in a controlled-environment cabinet (Model PGV 

36, Controlled Envuonments Ltd. Winnipeg. MB) with 16-h daylength and a mean 

day and night temperature of 25 and 18"C. respectively. The relative humidity was 

maintained at 60 and 65%. The light source was composed of Cool White VHO and 

GRO-LUX VS VHO fluorescent lamps at a ratio of 3 to I.  supplying 

photosynthetically active radiation (PAR) of approximately 560 *I0 pmol m') i' at 

the top of the canopy. M e r  emergence. the plants in each pot were thinned to two 

after which a 25 mI solution, containing 20 mg of 10.5% '% enriched ' % h 1 % 0 3 ,  

was applied to the surface of the soil in each pot. Flax was also grown as a reference 

crop in separate pots for the assessment of Nz futation by the '%-enrichment 

technique. The plants were watered on a daily basis with tap water to maintain field 

capacity, and at 1 4 4  intervals with 100 ml half-strength N-fiee Hoagland nutrient 

solution (Hoagland and Amon, 1938) per pot- A second experiment using seeds from 

the second rhizobial survival experiment was conducted under similar growth 

conditions. 



6.2.4 Harvesting and plant tissue analysis 

Harvesting was done at the late vegetative stage for the first experiment to 

assess dry matter yield Nodulation was poor and was not assessed. For the second 

experiment, the plants were harvested at the flowering and early pod filling stages to 

examine nodufation and to determine dry matter yield. Nitrogen fxation was 

estimated on aboveground parts of the plants using the '% isotope dilution method as 

described in Section 5.2.4. 

6.25 Statistical analysis 

The plate counts for the two survival experiments were subjected to log 

transformation, The data were analyzed separately and the combined anaiyses 

performed, using the General Linear Model software developed by SAS Institute 

(1996). The bgicide treatments and hgicide-Rhkobium contact periods were 

considered fixed factors. In the combined analyses. experiments were considered 

random variables, whereas replications were nested within experiments. For the 

growth chamber study, data for all sampling times were analyzed separately. Like the 

rhizobid survival experiments. the fungicide treatments and the titngicide-Rhimbium 

contact periods before planting were considered fixed factors. Significant dit'ferences 

between treatment means were evaluated using single degree of freedom contrasts 

(described previoudy in Section 5.2.5) at the 5% 1eveI of probabiiity. 

63 Results 

63.1 Rhizobial survival on treated seeds 

The survival of rhizobia on hgicide-treated seeds in the two experiments 

followed a similar trend although the numbers that s u ~ v e d  were higher in 

Experiment 1 as compared to Experiment 2 (Appendices 36 and 37). Whereas the 

dec1i.e in rhizobial numbers during the period between 4 and 24 h following 

inoculation was generally gradual in Experiment 1. it was drastic in Experiment 2. In 

both experiments hizobial numbers stabilized between 24 and 48 h afier inoculation, 

except for the decrease in the Captan treatment in Experiment I mci the slight increase 

in the Arrest treatment in Experiment 2. 



Averaged over experiments, hgicide treatments reduced the number of viable 

rhizobia on the chickpea seeds, although rhizobial Sunrival on the non-fungicide 

control and the Crown treated seeds did not differ significantly (Table 6.2 and Fig. 

6.1). Generally, Arrest, Apron and Captan reduced the numbers of rhizobia 

dramaticalIy after 4 h of initial bgicide-Rhitobium contact a s  compared to the 

control. Both Apron and Captan significantly reduced the number of viable rhizobia 

even further during the 4 to 12 h contact period- In general, the toxicity of the 

fungicides increased in the following order: Control = Crown < Arrest = Apron < 

Captan. 

Although the number of viable rhizobia recovered from inoculated seeds 

decreased with contact time (Fig. 6.1), the hgicide-Rhirobium contact period after 

the first 4 h had no significant effect on survivd (TabIe 6.2). No significant interaction 

was observed between hgicide treatment and contact period. The significant 

experiment by fungicide interaction was due primariiy to the differential response to 

the Arrest treatment in the two experiments (Appendices 36 and 37). The significant 

experiment x contact time interactions was due primarily to the Lower recovery of 

viable rhizobial cells in Experiment 2 relative to Experiment 1. 



1 -- -- 
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- + -Crown - Apron 

Arrest - Captan 

Fig. 6.1. Survival of R ciceri strain CP39 on seeds treated separately with one of four 

bgicides seven days prior to inoculation as compared to the inoculated. but 

fungicide-he, control. combined over two experiments. Each point is the mean of 

eight replications, with vertical bars representing the standard error. 



Table 62  Mean squares fiom the analysis of variance for the log-transformed data on 

viable rhizobia on chickpea seeds, combined over two experiments. 

Source of variation d. f, Mean square 

Replications in experiments 6 0.10 

Fungicide treatment (F) 4 16.34* 

Fungicide-Rhizobium contact time (T) 5 2.26 

Exp x F 4 1.52** 

Exp x T 3 0.92* * 
F x T  12 0.16 

ExpxFxT  12 0.1 3** 

Error 174 0.05 

Total 3 19 

*, ** Significant at the 0.05 and 0.0 1 levels. respectively. 

63.2 Nodulation, Nt fmation and dry matter production 

Nodulation in Experiment 1 was poor and was not assessed when the plants 

were harvested at the late vegetative stage. At this stage. seed treatment with Apron 

and Arrest had no significant effect on shoot dry weight. but Crown- and Captan- 

treated plants accumulated less biomass (Tables 6.3 and 6.4). Only Apron seed 

treatment reduced the proportion and amount of Nz derived fiom fixation compared to 

the non-fungicide treated control. 

In Experiment 2, the effect of fungicide treatment on nodulation was assessed 

at the flowering and early pod Nling stages. At the flowering stage, the Crown, Apron 

and Captan seed treatments produced fewer nodules than the non-fitngicide control but 

the Arrest treatment did not differ h m  the non-fungicide control (Tabks 6.5 and 6.6). 

The Arrest seed treatment produced a higher nodule dry weight than the Crown or 

Captan seed treatment. Seed treatment with Crown significantly reduced shoot dry 

matter yield. At the early pod-lilIing stage. only the Captan seed treatment reduced the 

number of nodules relative to the non-fungicide control or the Apron treatment 



(Tables 6.7 and 6.8). Contrasts between the non-fungicide control and the hgicide 

treatments individually showed that Crown and Arrest reduced nodule dry weight and 

shoot dry weight, whereas Captan reduced nodule dry weight only. 

The %Ndfa at the flowering stage was not affected by hgicide treiitrnent and 

ranged from 72.5% in the control treatment to 63.6% in the Captan treatment (Tables 

6.5 and 6.6). However, the amount of Nz fixed at this stage was significantly Iess for 

the seed treatment with Crown than for the control. At the early pod-filling stage ail 

the fungicides, except Apron, significantly reduced %Ndfa and amount of N2 fixed 

(Tables 6.7 and 6.8). Like the rhizobial survival experiment. the period of fungicide- 

Rhizobium contact after the initial 4-h exposure had no significant effect on number of 

nodules, nodule dry weight, shoot dry matter yield, %Ndfa or the amount of Nr fixed 

in either experiment or at either sampling date (Tables 6.6 and 6.8). These results 

suggest that the major deleterious effects of the fungicides on rhizobial survivd and 

plant growth occurred during the initid 4-h period of fungicide-Rhkabium contact. No 

fungicide x time interaction was detected for any of the parameters measured. 

indicating that the effects of the hgicides were similar for all the treatments over 

time. 



Table 6.3. Dry matter production, percentage N derived horn the atmosphere and 

amount of Nt fixed at the late vegetative stage of chickpea plants grown h m  seeds 

treated with fungicide seven days prior to inoculation and the inoculated. but 

fungicide-k, control in Experiment I .  

Treatment Shoot dry wt (g plant-') % Ndfa N1 fixed (mg 

Control 2.72 39-9 35.0 

Crown 2.65 34.6 32.2 

Apron 

Arrest 

Control vs. Crown 0.07* 5 -3 2.8 

Control vs. Apron 0.06 7.4** 7.1* 

Control vs. Amst 0.04 2.4 0.8 

Control vs. Captan O.IO** 4.3 3.4 

*, ** Significant at the 0.05 and 0.0 1 levels. respectively. 
t Differences between specified treatments. 



Table 6.4. Mean squares From the analysis of variance for dry matter production, 

percentage N derived from the atmosphere and Nz fixed at the late vegetative stage of 

chickpea plants grown from seeds treated with hgicide seven days prior to 

inoculation and the inoculated, but fungicide-free, control in Experiment 1. 

Source of variation 

Mean squares 

d.f Shoot dry wt %Ndfa N2 fixed 

Replications 3 O.lOS** 15 12* 3916** 

Fungicide treatment (F) 4 0.020* 130 123 

Contrast 

Control vs. Crown 1 0.038* 23 1 62 

Control vs. Apron 1 0.028 j** 403 * 
Control vs. Arrest 1 0.010 46 5 

Control vs. Captan 1 0.070** 146 93 

Fungicide-Rhizobium contact time (T) 3 0.013 129 138 

F x T  12 0.0 10 40 76 

Error 57 0.008 69 88 

Total 79 

*, ** Significant at the 0.05 and 0.01 levels. respectively. 



Table 6.5. Number of nodules, nodule dry weight, dry matter production, percentage N 

derived h r n  the atmosphere and the amount of N2 fixed at the flowering stage of 

chickpea plants grown from seeds treated with hgicide seven days prior to 

inoculation and the inoculated, but h g i c i d e - k ,  control in Experiment 2. 

No. of Nodule Shoot 

nodules d r y w  dryw N-, fixed 

Treatment (plant-') (mg plant-') (g plant-') % Ndfa (mg plant-') 

Control 0.8 6.35 1-51 72.5 25.7 

Crown 

Apron 

Arrest 0.7 1 1.05 1 -13 70.3 25.0 

contrastst 

Control vs. Crown 0.6" 4.30 0.43 * 7 .O 12.6* 

Control vs. Apron 0.5 * 1-15 0.12 4.0 5.4 

Control vs. Arrest 0.1 4-70 0.08 -.- 7 7 0.7 

Control vs. Captan 0.5* 3.80 0.23 8.9 6.8 

*, ** Significant at the 0.05 and 0.01 Ievels. respectively. 
t Differences between specified treatments. 



Table 6.6. Mean squares born the analysis of variance for number of nodules. nodule 

dry weight, dry matter production, percentage N derived tiom the atmosphere and Nz 

fixed at the flowering stage of chickpea piants grown From seeds treated with 

fungicide seven days prior to inoculation and the inoculated. but hngicide-free, 

control in Experiment 2. 

Mean squares 

No. of Nodule Shoot 

Source of variationt d.f nodules dry wt dry wt %Ndfa NZ fixed 

Replications 3 2.858** 428.5** 0,988* 263 425 

Fungicide trt (F) 4 1.158* 208.5* 0.425 205 11 7 

Contrasts 

Control vs. Crown 1 3.125** 149.3 1.463* 394 1259* 

ControI vs. Apron I 2.000* 1 1.3 0.1 13 13 1 228 

Control vs. Arrest 1 0.195 173.8 0.050 3 8 3 

Control vs. Captan 1 2.258* 1 17.8 0.4 15 632 3 70 

F-R contact time (T) 3 0.325 32.0 0.210 I 48 1 I7 

F x T  12 0.265 37.8 0.208 264 65 

Error 57 0.420 77.0 0.340 510 204 

Total 79 

*, ** Significant at the 0.05 and 0.01 levels, respectively. 
t F-R = Fungicide-Rhizobium 



Table 6.7. Nodulation, dry matter production, percentage N derived h m  the 

atmosphere and the amount of N2 f i e d  at the early pod-filling stage of chickpea plants 

gtown from seeds treated with bgicide seven days prior to inoculation and the 

inoculated, but fungicide-free, control in Experiment 2. 

No. of Nodule Shoot 

nodules dry wt dryw Nz fixed 

Treatment @[ant-') (mg plant-') (g plant-') % Ndfa (mg ~~lanf ' )  

Control 

Crown 

Apron 

Arrest 

captan 

LWon 
contrastst 

Control vs. Crown 

Control vs. Apron 

Control vs. Arrest 

Control vs. Captan 

*, ** Significant at the 0.05 and 0.0 1 levels. respectively. 
t Differences between specified treatments. 



Table 6.8. Mean squares h r n  the analysis of variance for number of nodules, noduie 

dry weight, dry matter production, percentage N derived h m  the atmosphere and Nz 

fixed at the early pod-filiig stage of chickpea plants grown from seeds treated with 

hgicide seven days prior to inoculation and the inoculated, but fungicide-k, 

control in Experiment 2. 

Mean squares 

No. of NoduIe Shoot 

Source of variation+ d.f. nodules dry wt dry wt %Ndfa Nz fixed 

Replications 3 43.36 1 1592 1.36 603* 687* 

Fungicide trt (F) 4 61.19* 11904 1.20 4I3* 641* 

Contrasts 

Control vs. Crown I 69.03 32261* 4.33** 537* 2096** 

Control vs. Apron 1 4.50 23107 0.9 I 239 749 

Control vs. Arrest 1 47.53 35718* 2.29* 839* 1608** 

Control vs. Captan 1 1 14.38* 2393 1 * 1.90 I437** 1223* 

F-R contact time (T) 3 8.00 4023 0.45 1 22 155 

F x T  12 35.62 5769 0.58 224 328 

Error Sf 19.31 6156 0.5 1 1 60 198 

Total 79 

*, ** Significant at the 0.05 and 0.01 Ievels. respectiveIy. 
t F-R = Fungicide-Rhkobium. 



6.4 Discussion 

Rhizobia die rapidly on seeds following inoculation from exposure to adverse 

environmental conditions, such as excessive heat. dehydration and the presence of 

toxic substances (Kremer and Peterson, 1982: Griffith and Roughley. 1992; Hansen, 

1994). The slow rate of decline in viable rhizobia in the inoculated, fungicide-free 

treatment 4 h after inoculation indicates that the decline in rhizobial s u ~ v a l  was due 

primarily to the toxicity of the various bgicides. The treated and inoculated seeds 

were kept at 4OC, an optimum temperature for inoculant storage. At this temperature 

dehydration also was minimal. The high recovery of viable R ciceri from seeds 

treated with Crown fungicide codd possibly be that more Rhkobium inoculant 

adhered to the seed coat since it was the only hgicide applied in liquid formulation 

which contained additional adhesive. Although aII treatments. including the Crown- 

treated seeds, were dried prior to inocuiation, the gum arabic included in the 

formulation remained on the seeds and additiond sticker solution used during the 

inoculation process probably made it stickier than the other treatments. Another 

possible explanation for the minimal effect of Crown on rhizobial viability could be 

that R ciceri strain BCF 32 is tolerant to carbathiin and thiabendazole, the active 

ingredients in Crown. 

The decline in the number of viable R ciceri with Apron fungicide treatment 

agrees with the results of Revellin et al. (1993). who observed a sharp decline in the 

sunrival of B. japonicum on soybean seeds during a 24-h exposure to the fungicide. In 

conaast to this observation, Diatloff (1986) and Edmisten et al. (1988) found no 

adverse effect of Apron (metaIaxyl) on the viability of B. japonicum and R. melilori 

when hgicide-treated soybean and alfaIfa seeds, respectively, were inoculated. The 

discrepancy in the results. reported by the various authors, may be due to the 

concentrations of the hgicides used, Rhkobium strain or the methods by which the 

inoculant was applied For example, the product used by Diatloff (1986) contained 

25% active ingredient, whereas that used by Revellin et al. (1993) was 35% as 

compared to 28.35% in the present study. Atthough the rate of fungicide application 

was not specifTed by Diatloff (I986), it is tikeiy the rate was lower compared to that 

used by ReveIIin and coworkers which was double the rate used in the present study. 



Also, in the study reported by Diatloff (1 9861, the soybean seeds were fust inoculated 

and allowed to dry prior a fungicide treatment. Revellin et al. (1993) argued that with 

this metbod the fungicide-Rhkobiurn contact would not be very intimate, due to the 

absence of moisture as compared to a situation where fimgicide-treated seeds were 

inoculated with peat k u l a n t  slurry. Inconsistencies among results of various 

d e r s  codd also arise because of considerable differences in tolerance among 

species and miins of hizobia to different fimgicides. as reponed by several 

investigators (Faizah et al., 1980; Mallik and Tesfai, 1983)- 

The rapid loss of viability due to Captan exposure is consistent with previous 

reports of deleterious effects of this chemical on rhizobia including B- japonicum 

(e.g., CurIey and Burton, 1975; MalIik and Tesfai, 1983), R phaseoli (Graham i t  al, 

1980) and peanut Bra&hizobiwn sp. (Hashem et al., 1997). Arrest (thiram + 

carbathiin + oxycarboxin) showed a limited toxicity which supports the findings of 

others workers (e.g., Graham a al., 1980; ReveIlin ef al., 1993, Hashem et al., 1997). . 
In contrast, Curley and Burton (1975) found no adverse effect of thiram on B. 

japonicum on soybean seeds. 

According to the evaluation of toxicity, using the standard plate counts one 

might conclude that Crown is compatible with R ciceri, but evaluation based on 

subsequent nodulation and dry matter yieId data suggest differently. Although Apron 

was toxic to rhizobiai sUNival, it did not affect nodule dry weight and dry matter 

production at the early pod-filling stage as evaluated in Experiment 2. However. the 

chemical inhibited nodulation when evalwed at the flowering stage and reduced 

%Ndfa and amount of Nz 6xed at the late vegetative stage. In field experiments, 

Castm et d. (1997), working with the hgicide mancozeb. also obsewed a significant 

decrease in dry weight of peacut plants at the R1 and R6 phenologicai stages 

compared to the non-hgicide treated control, but this difference disappeared by the 

final harvest. Other workers also reported the temporary effcet of fungicides on 

nodulation, N2 fixation and diy matter yield in soybean (Tu, 1977; Widin and 

Kennedy, 1983) and chickpea (Bhattacharyya and Sengupta 1984). The trend 

observed in the present study suggests that the toxicity of Apron may have persisted in 

the soil for only a shoa time period, after which the remaining viable cells tapidy 



multiplied and resulted in increased nodulation. This is possible because the soil 

environment can act as a buffer, reducing the potentially toxic effect by dilution of this 

chemical (Tu, 1977; Castro et d., 1997). In addition. the inoculant strains may have 

migrated away fcom the toxic zones (Aiexander, 196I), reducing the effect of the 

chemicals on the chickpea-Rhirobium symbiosis. 

When evaluated at the late vegetative stage. Apron seed treatment significantiy 

decreased Nz fixation, as determined by the '%I isotope dilution technique. but this 

was not reflected in dry matter yield, indicating &at the soil provided suficient N 

(Table 63). On the other hand, the significant decline in shoot dry matter at the 

vegetative stage due to Captan seed treatment in the first experiment a h  indicated 

that the relatively high Nt fixation was not translated into dry matter yield 

None of the fungicide seed-treatments hiid a significant influence on %Ndfa in 

Experiment 2 when evaluated at the flowering stage but Crown seed treatment reduced 

the amount of N2 fixed (Table 6.5). However, by the early pod-filling stage (Table 

6.7), the proportions and amounts of Nz f ~ e d  for all the hgicide treatments, except 

Apron, were Iower than for the non-fungicide w e d  controt (Tables 6.5 and 6-7). 

Crown and Arrest d trcatrnents also reduced shoat dry matter production. The lack 

of any detrimental effects from the Apron seed treatment supports reports by several 

authors, who found that seed treatment with metalaxyl had no detrimental effect on 

noduIation and Nz W o n  (Rennie et al., 1985; DiatlotX 1986; Edmisten et al.. 1988). 

In contrast, others have reported that Apron decreased nodulation (Revellin et at., 

1993; Hashem et d,, 1997), resuIting in a significant reduction in shoot dry matter, 

plant N content (Hashem et al., 1997) and seed yield (Revellin et d., 1993). Simiiariy, 

the reduced noddation and N2 fixation h m  Captan treatment are in agreement with 

previous reports (Graham et d, 1980; Chamber and Montes. 1982; Thomas and Vyas, 

1984; Rennie et at., 1985; Tesfai and Mdlik, 1986; Wetty et al., 1988; Hashem et al., 

1997). However, the effect of Captan on shoot dry weight at h e  earty pod-filiing sage 

contradicts results of Hashem et aI. (1997). who reported a significant reduction in 

shoot weight of peanut plants due to Captan treatment. Graham et al. (1980) reported 

that the main effeft of Captan was to reduce the survival of seed-applied W b i a  in 

contact with i t  



Arrest, as  a seed coat dressing, had a limited toxicity effect on the viability of R 

ciceri, but in the growth chamber. nodulation, shoot dry matter and Nz fixation were 

reduced at the early pod-filling stage. SirniIarly. Crown had no influence on rhizobial 

viability 48 h prior to planting, but significantly reduced nodulation. shoot dry weight 

and N2 fixation when evaluated in the growth chamber experiment. These results 

suggest that the correlation of viable counts to nodulation, N2 fixation or yield may be 

unreliable because W b i a  can lose their ability to induce nodulation before they lose 

their ability to multiply (Curley and Burton. 1975). AIthough Crown did not affect the 

viability of R ciceri, it may have had a negative impact on some functional aspect of 

the rhizobial cells that subsequently reduced their ability to noddate the plant roots. 

Other authors have also reported contradictory results between laboratory evaluation 

of fungicides and field performance. For example, Curley and Burton (1975) found 

that Captan and Carboxiin were not harmful to B. japonicum survival. but in field 

studies, these chemicals reduced nodulation. Similarly, peanut seed treated with 

Vitavax did not affect the viable number of rhizobial strain USDA 3456, but it 

severely reduced nodule mass, shoot dry weight and plant N content (Hashem et al., 

1997). These findings demonstrate that the viabiIity test alone only provides a partial 

measure of compatibility and must be correlated with growth chamber or field data. 

Nevertheless, the data for Arrest (50% tfiiram) is consistent with previously 

published reports. Tu (1981) found that thiram reduced soybean nodule mass and 

acetylene reduction activity in a greenhouse study. In greenhouse and field studies, 

Hashern et al. (1997) also observed that seed treatment with thiram significantly 

reduced nodule formation, shoot dry matter. plant N content and seed yield. However, 

in field studies with chickpea seed treatment with thiram increased nodulation and 

seed yield (Thomas and Vyas, 1984; Wetty et d.. 1988). It must be noted that the 

studies, which reported beneficial effects of thiram as a seed coating dative to the 

non-fungicide control. were conducted on fields heavily infested with Pythium. Hence, 

the higher seed yield was primariIy due to the increase in plant stand. Indeed, this does 

not indicate whether the fungicide was harmhl or compatible with the inoculant 

strains. If the hgicide was detrimental to rhizobii survivd or effectiveness, any 

advantage for not treating the seeds may have been masked by the destruction caused 



by the pathogen. It is also possible that t h i m  may have reduced the competition 

between the inoculant chizobia and other soil organisms. resuIting in increased 

noddation. 

The present study indicated that the toxic effect of the fungicides on the 

survival of rhizobia on seeds increased with contact time (Fig. 6.1; Appendices 37 and 

38), although the numbers from the standard plate counts did not differ significantly 

among the contact times (i.e.. 4. 12. 14 or 48 h) (Table 6.3). This corresponded we11 

with nodule numbers and dry weight as well as other parameters. such as plant dry 

weight, %Ndfa and Nz fixed in the growth chamber (Tables 6.4.6.6 and 6.8). Curley 

and Burton (1975) also reported no significant differences in noduIe numbers 

evaluated on 2-wk old plants grown fmm hiram-, Captan- or PCNB-treated soybean 

seeds planted 1, 4 or 24 h after inoculation. Similarly, Revellin et al. (1 993) found no 

significant differences in B. juponinun survivd or soybean nodulation after a I or 4-h 

exposure of Bradyrhizobium to five hgicides. including Apron, when assessed in the 

greenhouse 28 DAP. However, in contrast to the present study. this report indicated 

significant deleterious effects of the fimgicides between 4 and 24 h of contact, The 

discrepancy could be attributed to the storage conditions of the fungicide-treated seeds 

after inoculation and prior to the SUVival tests and planting. For example, in the 

present study the seeds were stored at 4'C, whereas the seeds used by RevelIin et al. 

(1993) were stored at 20°C. Despite the disagreements between the results of this 

study and others, the r d t s  highIight the fact that fungicide-wed seeds shouId be 

sown as soon as possible after inoculation. 

The discrepancies between the present study and previous reports and the 

contradictions in the [itemure indicate the complexity of the subject. Hence, care must 

be taken in the interpretation of such results. The respective effect of each fungicide 

will probably depend on the Rhkobim species or strain, Rhkobium-fungicide contact 

period prior to planting, concentration of the fungicide and the environmental 

variables- This highlights the importance for examination and selection of fungicides 

for a specific Rhizobium strain. 

AIthough the length of time the Rhkobium were exposed to the hgic ide  

before planting had no influence in the present study because of the conditions of 



storage, others (e.g. Curley and Burton. 1975; Graham et al., 1980) have demonstrated 

its importance in assessing compatibiIity. Hence, when chemically-treated seeds arc 

inoculated, they must be planted immediately in the field to minimize the effect of the 

chemical on the inoculum. 

Rhizobium strains display different sensitivities to different fungicides (Mallik 

and TesfBi, 1983) and the tolerances of strains differ with regard to their compatibility 

with fimgicides (Tesfai and Mallii 1986). Odeyemi and Alexander (1977) reported 

that thirarn-resistant strains of R meliluti, in the presence of thiram, enhanced 

nodulation, dry weight and N content of ptants compared to the treatment in which the 

inoculant strain was not resistant to the fungicide. This area certainly needs further 

studies in order to develop hgicide-resistant strains for use as chickpea inocdants. 

Anothet approach to overcome the h a d  effects of bgicides is to adopt an 

alternative method of inoculation which avoids direct fungicide-Rhizobium contact. 

Granular inoculant, applied to the soil, avoids intimate contact with the fungicide and 

has been effective in some studies (Brockwell et al.. 1980; Graham et d., 1980; 

Ramos and Ribeiro, 1993). A granular inoculant could be useful in kabuli chickpea 

production in Saskatchewan because fungicide seed-treatment is required. Therefore, 

ftrther research is needed to examine the use of gtanuiar inoculant in combination 

with the fungicides tested in the present studies in field-grown chickpea. Because 

laboratory or growth chamber conditions do not precisely reflect the conditions in the 

field, it is suggested that the present experiment be repeated in the field to confirm the 

rcsults. 



7. GENERAL DISCUSSION 

A growing awareness of the benefits of including pulses in rotations in 

Saskatchewan has created interest in growing new pulse crops, including chickpea, in 

the Dark Brown and Brown soil zones (Vandenberg and Slinkard, 1996). The 

compelling need to exploit the PIt-fixing potential of these leguminous crops has 

focused attention on Rhizobiwn inoculation technologies. Until recently, most of the 

Iegume inoculants available on the market were formulated as liquids or peat-bad 

powders that are applied to the seed before planting. However, granular inoculants 

with peat- or cIay-based canier materials have been introduced recently. The granular 

iwcdants are applied to the soil and have given good results as compared to the seed- 

applied inoculants in some studies (Scudder, 1975; Dean and Clark, 1977; Bezdicek a 

al., 1978; Muldoon et al., 1980: Hardarson et al., 1989). This study was undertaken to 

assess granular inoculants for chickpea with special interest in inoculant piacernent 

and its effccts on nodule distribution and the time course of Nz fixation. 

Chickpea was cham for the study for two teasons, F i y ,  being a new crop 

in Saskatchewan, the soil is free of indigenous chickpea chizobial strains resulting 

fiom previous inoculations. Secondly, the chickpea-Rhizobium symbiosis is highly 

specific (Gaur and Sen, 1979; Silsbury, l989), and should prevent cross noddation in 

the presence of other resident rhizobia Many indigenous rhizobia are ineffective in N2 

fixation, but outcompete the introduced strain in nodule formation (Zdor and Pueppke. 

1990). Hence, the presence or absence of a native rhizobial population in a field can 

a f k t  inoculation success. Thus, chickpea in Saskatchewan provides an excellent 

model to examine response to inoculation because the confounding effects of 
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indigenous W b i a  arc necessariiy minimized. Both desi and kabdi chickpeas were 

used in the field studies (Chapter 3), but only desi chickpea was used in the p w t h  

chamber expctiments (Chaptets 5 and 6) because both chickpea types responded 

similarly to inocdation treatments a d  rhizobid strain combinations in the fieid In 

addition, no himbid strain interactions were evident for any of the traits, such as 



nodule dry weight, shoot dry weight, plant biomass and seed yield Desi chickpea was 

selcctcd for the growth chamber d i e s  because it is less susceptible to insects and 

diseases than the kabdi chickpea (Smartt, 1990; Singh, 1991; Saskatchewan Pulse 

Crop Development Board, 1997). 

The method of inoculation had a marked influence on the noddation, Nz 

fixation and yield of chickpea In field (Chapter 3) and growth chamber studies 

(Chapter 5), the liquid-formulated inacutants were inferior to the peat-based and the 

&ran& hodants in ail traits. Bissomette and Lalande (1988) observed that the 

carrier material for the inoculum affected the survival of the rfiitobia during stress, 

suggesting that the rhizobiai strains in the liquid inoculaats were much more exposed 

to unfavourable stresses after inoculation onto the seed than those on the peat-based 

inoculants. Although both the liquid and the peat-based inoculants were applied to the 

seed, data on nodule numbers and dry weight indicate that the peat allowed rhizobia to 

Sunrive on the seeds to a greater extent than the tiquid inoculant, Rice et al. (1998) 

stated that rhitobia in a granular inocuiant can multiply after planting whereas viable 

rhizobia in a pest or Liquid inoculant on the seed deche after seeding. Zdor and 

Pueppke (1990), working with Iiquid and peat inwdant carriers, indicated that a peat 

formulation may help protect the rhizobial strains h m  antagonistic components that 

would reduce their populations. Thus, a peat carrier, in contrast to a liquid camer, may 

increase strain survival by reducing desiccation or heat stress of the cells, a major 

factor involved in the establishment of rhizobia in soil (Hansen, 1994). 

Although total nodule number and dry matter yieid &data for the peat-based 

inocuiants generaIIy did not differ significantly h m  that for the grandar inocdants in 

the present study, several workers have recognized many [imitations associated with 

seed inoculation. For example, RoughIey et al- (t993), using peat-based inoculant, 

reported that 95% of the Brudyrhuobiwn, otigidly present in the inacuIant applied to 

lupin seed, died during inoculation and sowing, due to desiccation. BmckweIl et al. 

(1988) also observed that substantid loses of inocdm viablity of up to 99.9% 

occurred between inoculation and sowing when soybean seed was inoculated with 

peat-bascd inocuIants, partly due to separation of the inocdant and the seed, as it 

passed through the machinery. 



Other factors, such as pesticide seed treatment, adversely affect nodulation in 

inoculated chickpea (Bhattacharyya and Sengupta, 198Q; Thomas and Vyas, 1984; 

Welty et al., 1988). The results of the growth chamber study (Chapter 6) confirmed 

these reports, suggesting that treating the seeds used for the field experiments (Chapter 

3) with Apron and Crown may have reduced nodulation in the seed-applied inocdant 

treatments. The impact of the fungicide likely wai greatest for the treatments in which 

the seeds were inoculated with liquid inoculants. The study on the effect of hgicide- 

Rhirobium interactions also revealed three important facts. Firstly. some hgicides 

may directly affect the number of viable rhizobia inoculated onto the seed. but may 

not affect nodulation, Nt fixation or plant growth significantly, as observed when the 

seeds were treated with Apron. In such instances, the inhibitory effect may be apparent 

during the early growth stages of the plant, but disappear during the later part of the 

growth cycle. Secondly, some fungicides, such as Crown, may not have an obvious 

effect on the number of viable rfiizobia on the seed, but may severeIy reduce nodde 

number and dry weight, N2 fixation and plant dry matter production. Presumably, the 

ability of the rhizobia to noddate decreased on contact with the ftngicide, even 

though the cells SUrYived and were recovered in the viability test. The results suggest 

that the viability test must be comlatcd with growth chamber or field data in order to 

have a reliable measure of fungicide-Rhizobium compatibility. Thirdly, the number of 

viable rbizobia on the seed in each of the firngicide treatments dropped drasticaily in 

the f h t  four hours and continued to decline with the length of time the rhizobia were 

exposed to the fungicide. Although the decline after the initial 4 h of hgicide- 

Rhbobium contact was not significaut, these results suggest that ttngicide-treated 

seeds should be planted as soon as possible after inoculation. 

Although the sensitivity of different rhizobial strains to the various fungicides 

was not assessed, seved investigators (e-g., Mallik and Tesfai. 1983; Hashem et al., 

1997) demonstrated that different species and strains of the same species of Rhirobium 

differed in their sensitivity toward various ftngicides. This evidence suggests that the 

compatibility of each specific bgicide-Rhirobium combination must be evaluated. In 

a review, Howieson (1995) suggested five strategies to overcome hgicide-Rhirobiwn 

incompatibility: 1) selection of fhgicide-tolerant rhizobial strains; 2) selection of 



persistent strains of chizobi to avoid repeated inoculation; 3) seiection of legume 

cultivars which are resistant or tolerant to d i m ;  4) the use of spray inoculation 

(liquid inoculant sprayed directly into the soil); and 5) the use of seed coating 

materials which physically separate the rhiiobia tiom the fungicide. Although some of 

these strategies have been studied, they have had limited success. emphasizing the 

need for a critical look at the use of granular inocdants which can be applied to the 

soil below the seed, thereby. Iimiting the impact of the hgicide on nodulation and Nz 

fiation. 

Although total nodule number and dry weight data for the granular inoculant 

generally were not statistically different h m  that for the peat-based inoculant 

(Chapters 3 and 5), the fundamental difference in nodulation between seed-applied 

inoculants (liquid and peat-based) and soiEapptied inoculant (granular) was the 

distribution of the nodules on the root system. The granular inoculants. particularly, 

those placed below the seed, produced most of their nodules on the lateral roots in the 

lower part of the root s y m .  In contrast, the seed-appIied inuculants formed nodules 

predominantly at the mwn region of the coot system- This finding supports previous 

reports @anso and Bowen, 1989; Hardarson et al., 1989; Wadisirisuk et al., 1989; 

Danso et al., 1990) and suggest that, the position of the nodules on the root system 

depended to a large extent on the depth of inoculum placement. The data for the 

granular inoculant also indicated that in addition to mwn nodulation. inoculation of 

the soiI at the seeding depth enhanced laterid root noduiation. This contradicts the 

view that earlier-formed tap and mwn nodules suppress noddation on the younger 

roots, at the lower part of the mot system (Kosslak and Bohlool, 1984; George et al., 

1992). The fewer nodules formed an the lateral roots by the seed-applied inoculant 

may be associated with the remiction of the rhizobia to the vicinity of the seed and the 

inability of the rhizobia to contact the younger toots at the lower part of the root 

system. Rhizobia movement in the soil is restricted (Madsen and Alexander. 1982; 

Chamblee and Warren, 1990; Worrall and Roughley. 1991; Issa et al., I993a.b); 

hence, the inoculum should be strategicdiy placed to colonize the hizosphere and to 

form nodules as the roots extend out and down the soii profile. 



A consequence of placing granular inoculant below the seed is delayed 

nodulation, although more nodules may form as the plant ages and the root system 

becomes more extensive (Bhuvaneswari et d, 1981; Brockwell et al., 1988). In 

contrast, seed-applied inoculation induces eariy nodulation. which may increase only 

slightly during the later part of the growth cycle. This was particulady evident in the 

growth chamber study (Chapter 5) because nodule evaluation began relatively early, 

during the vegetative stage (28 DM) and was performed at two-week intervals, until 

physiological maturity. The dry weight of the lateral root nodules increased steadily 

over the growing season and the increase was greater than for the crown nodules. 

Similar observations were reported for soybean (Brockwell et al., 1988) and cowpea 

(Kahn and StoffeIa, 1991). 

Likewise, a pattern similar to that for nodule dry weight has been reported for 

N2 hation, measured as acetylene reduction activity or by the '% isotope technique 

(Hardafton et al., 1989; McDermott and Gcaham, 1989; Wolyn et al., 1989; Danso et 

al., 1990). In h e  present study, & hation was assessed by the '% isotopic 

enrichment and %I natural abuudance techniques. The growth chamber study, using 

the '% isotope dilution technique (Chapter S), indicated that the %Ndfa and N2 fixed 

for the granular and peat-based inoculants did not differ h m  the late vegetative stage 

to physiological maturity. However, at the late vegetative stage. the granular- 

i n d a t e d  plants derived the same proportion and amount of N from fixation as the 

plants grown fiom seeds inoculated with the peat-based inocuiants, but then soil 

inoculation resulted in a slightly greater %Ndfa and Nz tixed than seed inoculation 

until physiological maturity, This my be an indication that the lateral root nodules 

were increasingly more active after the late vegetative stage in comparison to the 

crown nodules, which were predominantiy formed by the seed-applied inoculants. 

However, the magnitude of the increase in Nz fixation in the soil-inoculation 

trcatmcnts was low and could be due to sufficient available soil N IeveIs (Hardarson et 

al., 1989) and the good growing conditions in the growth chamber. Bmkwell et aI. 

(1988) concluded that neither inoculation procedure was better than the other. and that 

any observed superiority of either was the result of environrnentai conditions at 

pianting and during pIant growth. 



For the field experiments, Nr fixation was assessed for the harvested chickpea 

seed udng cbc '% natural abundance method An important advantage of this method 

is that it required no '%-labelled fertilizer application and time-consuming fieldwork 

was avoided, making it relatively inexpensive. However, it was necessary to establish 

the magnitude of isotopic fractionation during N2 fiiation for the part of the plant 

sampled (Steele et al., 1983; Bergensen et al., 1986; Ledgard, 1989). Furthennore, 

both the host plant and the rhizobiai strain can influence the isotopic fractionation 

value (Bergensen et al., 1986; Yoneyarna et al.. 1986; Ledgard, 1989). Hence, a 

hydroponic experiment was conducted in a growth chamber. using desi and kaSuli 

chickpeas inoculated with the same rhiiobial strains used in the fieId studies (Chapter 

4). For the desi chickpea, the isotopic fractionation (P) vaiue was higher for the single 

strain CP39 than for the mixed strains (27A2.27A7 and 27A9). Thus, %Ndfa for the 

sced and the amount of seed N fixed would have been under-estimated, if the (P) value 

for the single strain had been used in calculations on plants inoculated with the mixed 

strains. In contrast, the isotopic tiactionation vaIues for the kabuli chickpea and 

thizobial strain combinations were similar, indicating that an accurate estimate of the 

proportion and amount of N fixed for the seed would have been obtained fiom any of 

the values. The results indicated that %Ndfa for the seed and the amount of seed N 

hcd were generally greater for soil inoculation than for seed inoculation. supporting 

previous reports (Muldoon et ai., 1980; Dubetz et al., 1983). The environmental 

conditions in the field were variable as compared to those in the growth chamber; 

hence, it is not surprising that the differences in %Ndfa between the seed and soil 

inoculations were large fibm the field data than tiom the growth chamber data. 

Moreover, this substantiates the conclusion that it is the environment that dictates the 

differences in inoculation response (BmkweII et aI., 1988). 

The Nz fixation data from the different expetiments (Chapters 3, 5 and 6) 

varied, presumably due in part to differences in environmental variables under which 

the piants were grown and method of measurement. Nevertheless, these studies 

(Chapters 3 and 5 )  indicated that the laterd mot nodules made an important 

contriiution to Nz fixation. particularly during the reproductive stages- For the field 

study, the relationship between noduIation pattern and N2 fixation was assessed 



indirectly by correlating the dry weight of crown or latcral root nod& to plant dry 

matter at the flowering, early pod-filling and late pod-filling stages, and also to seed 

yield The d t s  revealed that the dry weight of the lateral root nodules was 

positively correlated with dry matter yield and seed yieIci, consistent with the data 

fiom the growth chamber study (Chapter 5) and data of others (McDermott and 

Graham, 1989; Wolyn et d., 1989; Danso et at., 1990; Vikman and Vessey, 1992, 

1993; Hardarson, 1993). The relationship was firrther substantiated by data on shoot 

dry matter at flowering in the desi field cxpcriment, where soil inoculation was 

signiticantly greater than the seed inoculation at the 5% level, but the differences 

increased to the 1% level at the early pod-6lling stage. For the growth chamber 

experiment (Chapter 5), the plant dry matter accumulation pattern was similar to tht 

NZ fixation pattern, and most importautly, the soil-inoculation treatment accumulated a 

greater plant biomass during the later pare of the growth cycle than the seed- 

inoculation treatments. Ekviously, the Nz-fixing potential of nodules on the la!eraI 

mots and the lower part of the root system had been disregarded and considered less 

important than the nodules fonned at the crown or on the topmost part of the mot 

system (Hardarson, 1993). The results of the present study highlight the n d  for 

carell consideration of the nodules on the lateral roots or at the lower part of the root 

system in N2 tixation assessment, either by nodule rating or acetylene reduction assay. 

These nodules usually fall off during excavation of the field-grown plants or often arc 

not sampled. 

Generdly, the results of these studies indicate that the greater yields achieved 

from the granular inoculants wen due to the preponderartcc of relatively young lateral 

root nodules which maintained activity during the later part of the growing season. 

This was particdarly evident when the granular inoculant was p 1 d  below the s e d  

In 1998, the cornlatian between dry weight of the lateral root nodules and seed yield 

for h e  kabuli chickpea expcrimmts was poor, due primarily tn the delayed 

germination aad reduced plant stand as a result of the severe drought. In this case, the 

hard mi1 surface h m  the drought, coupled with the additional opener for deep 

placement of the granular inoculant, incnased nsistance of the soil to penetration and 

resulted in shallow pIanting. As a conscqucnce, the seed was placed in a laya too dry 



for optimum germination and emergence. Although the plants in these treatments, 

which germinated later, were comparabIe with those in the other treatments, the 

deIayed germination reduced the growth period for optimum yield. In Saskatchewan, 

the growing season is relatively short and sometimes exacerbated by terminal drought 

as in 1997 and 1998. Thus, any delay in plant establishment likely will reduce the 

tength of time for Nz fixation, pod-filling and seed maturation. Even in this situation, 

where yields were not increased by granular inoculants. the seed protein concentration 

was enhanced as in the other granular inocuiant treatments. in comparison to that for 

the seed-applied inoculants. 

In a year with unfavourable weather conditions, placing granular inocuiant 

below the seed without affecting the seeding depth may be superior to seed 

inoculation. Normal seeding depth into good moisture should minimize temperature 

fluctuation in that soil zone, both of which are important for rhizobial survival and 

nodule formation. Alternatively, when environmental conditions are good during and 

after planting, seed or soil inoculation is equally likely to establish a successfut 

symbiosis (Brockwell ct al., 1988). However, where the seed-applied inoculum faiIs to 

form noddcs on the lower part of the rwt system, i.e., on the lateral roots, due to the 

limited migration of the inoculant strain. soil inoculation may enhance N2 fixation and 

improve yield and seed quality. 

The nodules on the lateral roots or tower part ofthe root systems are young and 

more active than the crown nodules during pod-filling (McDermott and Graham, 

1989; Wolyn et al., 1989). During this growth phase, the soil mineral N levels are 

usually depleted, reducing the N uptake rate (Imsande, 1989; Vessey. 1992). Thus, the 

nodules formed on the lower or iaterd roots contribute significant amounts of fixed N 

to the plant during seed formation. 

With the appropriate seeding equipment, chickpea and other legumes grown in 

the Brown and Dark Brown soil zones in Saskatchewan could benetit fiom soil 

inoculation. In cases where yield responses are not observed, N concentration in the 

grains or pIant pacts may increase over that From seed-applied inoculants. 



8. SUMMARY AND CONCLUSlONS 

The depth of inoculurn placement signifiantiy influenced the position of the 

nodules on the root system. The granular inoculants, in particular, when placed below 

the seed, formed nodules mainly on the IateraI mots, whereas the nodules produced by 

the seed-applied inoculants (liquid and peat-based) were located predominantly at the 

crown rrgion. The total number of nodules in all treatments was not always consistent 

with total nodule dry weighf but based on dry weight. the liquid inoculant was 

generally inferior to the peat or the granular inoculants. 

Treating the seed with hgic ide  intluenced aoduiation by decreasing the 

n u m k  of viabie rhizobia on the seed. Seed treatment with Crown fungicide did not 

a f f i  survival of the rbizobia, but reduced nodule dry weight, %Ndfa, amount of N2 

fixed and dry matter yield. h e s t ,  Apron and Captan were harmful to rhizobial 

survival on the seed with Captan being the most toxic. However, the inhibitory effect 

of these hgicides was not obvious when evaluated at the late vegetative and 

flowering stages, except for the lower shoot dry matter and N2 fixation for the Captan 

and Apron treatments, respectively, at the Iate vegetative stage. 

At the early pod-filling stage, Anest and Captan reduced nodule dry weight, 

%Ndfa and N2 fixed, but only Arrest reduced shoot dry matter production. Seed 

treatment with Apron was not detrimental to the chickpea-Rhkobium symbiosis at the 

early pod-filling stage. The inconsistency between the standard plate count and the 

growth chamber study reveals that a reliable measure of hngicide-Rhizobitrm 

compatibility must involve both a viability test and growth chamber or field data. The 

most important information revealed by the study was that the major deleterious effect 

of the fungicides on rbizobial survival and plant growth occurred during the initial 4-h 

period of bgicide-Rhkobim contact. Therefore, d e n  rhizobia are inoculated onto 

seed they must be planted immediately to reduce the effect of environmental variables 

including sccd-tmtd fungicides. 



In the field and in the conmUed-environment studies, nodule formation was 

delayed in treatments where the granular inoculant was placed below thc seed, due to 

the time lag that occurred before the growing root contacted the inoculant rhizobia 

TotaI nodule dry weight for all trratments in the pwth  chamber experiments 

increased to a peak at the Iatc pod-filling stage and then declined However, the 

granular-inoculant treatment accumulated greater nodule dry matter after the mid pod- 

f i h g  stage than the seed-applied treatments. 

The position of the nodules (associated with the age of nodules), rather than 

the weight of the nodules, influenced the yield parameters. In the field study, the dry 

weight of the lateral root nodules was positively correlated with p k t  dry matter on an 

individual plant basis at tkeflowning, early pod-filling and late pod-fihg stages. 

SimiIarly, the dry weight of the lateral root nodules was positively correlated with 

seed yield In contrast, the relationships between these traits and dry weight of the 

crown nodules were weak However, the shallow seeding depth for the granular 

inoculant placed below the seed in 1998, due to the hard soil d e ,  diminished the 

relationship between the l a t d  root nodules and the seed yield in the kabuli chickpea 

in that year. Thus, inoculating the soil with granular inocularit was superior to seed 

inoculation with either peat or liquid in&& in plant dry matter production and 

seed yield, although this was not the case when the efficiency of the seeding 

equipment was affected by the mi1 conditions. Furthermore, granular inoculants 

placed below the seed were better than granuIar inoculants placed in the seed furrow 

in 1997, but not in 1998, when shallow planting a c e d  in the matmeat where the 

granular inoculant was pIaced btlow the seed. 

In the controlled environment, the differences in dry matter pduction, % W a  

and N2 fixed among the inoculated treatments w m  not si@cant, except for a few 

differences that occurred, particuIarly bctwe~~ l  the liquid and the granular inoculants. 

However, these parameters were generally greater for the granular inoculant and like 

the nodule dry weight data, the granular i n d t  treatment accumulated a substantiat 

portion of its dry matter during the later part of the growth cycle as compared to the 

seed-applied inoculant treatments. The %N& i n d  progressivcIy from the late 

vegetative stage to a maximum at the mid-pod fillinP stage, but the highest hation 



rate occurred benveen the flowahg and the early pod-flllhg stages with little or no 

N2-fixing activity thereafter until physiological maturity. In the field the granular and 

peat-based inoculants resulted in higher seed protein concentration, %Ndfa for the 

seed and amount of seed N fixed compared to the liquid inmulant. The field and 

growth chamber data indicate that the peat and granular inoculants ate equalIy 

effective in establishing successful symbiosis when environmental conditions arc not 

limiting. 

Notwithstanding the limited yield advantage of soil inoculation over seed 

inoculation, inoculating the soil 2.5 to 8 cm below the seed will be more beneficial 

than inoculating the seed. In that soil zone, the inoculant sttains are placed in a more 

conducive environment, and physically xprvratcd from seed-mated pesticides. The 

young growing roots of the host plant are more likely to encounter the inoculant 

strains at that soiI depth for infection and subsequent nodule f o d o a  These later- 

formed nodules may be important in supplying tixed N2 to the plant at a period when 

the N requirement is at its maximum, 

Suggested inos for ktPn rtscrrch 

I. The inabifi~ of the inuculam msin to move with the developing root systm b a 

major factor limiting nodulation and Nz fixation. Thacfore, future studits should 

include selection of inoculant mains which an more motile to enhance nodulation 

on the entire root system of the hod and not just the crown area 

2. The greater, but Limited, yield advantage hr the granular inoculant may be 

associated with the inocdum application rate. Therefore, field shrdies using higher 

than recommended rates should be evaluated, particularly in first-time fields. 

3. Accurate placement of both seed and inoculum into moist soil is essential for 

estabtishing an effective N2-fixing association. F d  banding of the granular 

inoculant codd ensme placement of the inoculant amin into moishac; thmfoxc, 



MI inoculation of first-time fields for the following spring planting should be 

investigated. 

4. Under field conditions, soil inoculation enhanced seed protein concentration, even 

in situations where seed yield did not differ among inoculant treatments. This 

should be expIorcd in relation to cooking and canning quality. 

5. Laboratory and growth chamber conditions often do not reflect actual field 

conditions; hence, field investigation is required to confirm the results of the 

laboratory and growth chamber studies on fimgicide-Rhuobium compatibility. The 

study should include the use of granular inoculant in combination with the 

fungicides tested. 
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Appendix I. Mean monthly precipitation and mean maximum temperature data for the 

experimental locations during the 1997 and 1998 growing seasons. 

Precipitation (mm) Temperature (OC) 

Month 1997 1998 Normal 1997 1998 Normal 

Elbow 

49.0 

53.3 

56.9 

35.8 

Outlook 

30.2 

60.4 

54.5 

34.2 

Watrous 

51.2 

69.1 

59.0 

37.6 

  avid son' 
40.6 

58.3 

55.8 

38.7 

Source: Environment Canada, Saskatoon, SK 
t Data for Kenaston were not avaiiabIe, hence, data for Davidson (nearest station) are 

presented. 



Appendix 2. Number of noddes, dry weight of nodules and dry matter production 

fiom various inoculation treatments of Myles desi chickpea at the flowering stage, at 

Outlook, 1997. 

Nodule no. plant" Nodule dry wt. (mg plant'') Shoot dry wt. 
hoculant) Crown Lateral Total Crown Lateral Total (g p i a d )  
Non-inoculated 0 0 0 0 0 0 1.23 
Liquid A 0.60 4.80 5.40 12.0 11.5 23.5 1.24 
Liquid C 0.45 5.25 5.70 1.5 8.5 10.0 1 .07 
Peat A 1.50 4.40 5.90 11.0 9.0 20.0 1.25 
Peat B 3.00 6.80 9.80 18.5 19.0 37.5 1.04 
Gran A ws 1.70 1.70 3.40 12.0 10.0 22.0 1.35 
Gran A 2.5 crn 0.15 4.60 4.75 4.5 34.0 38.5 1.40 
Gran A 8.0 cm 0.70 3.50 4.20 11.0 27.0 38.0 1-15 
Gran B ws 2.25 8.35 10.60 14.0 26.5 40.5 1.05 
Gran B 2.5 cm 0.35 4.05 4.40 3.5 38.5 41.5 1.40 
Gran B 8.0 cm 0.45 4.35 4.80 8.5 41.5 50.0 1.39 
LsDto.0~ 1.55 5.24 5.66 11.1 18.9 25.3 0.33 
Gran = granular, ws = with seed. 

Appendix 3. Number of nodules, dry weight of nodules and dry matter production 

fiom various inoculation treatments of Myles desi chickpea at the early pod-filling 

stage at Outlook, 1997. 

Nodule no. plant'' Nodule dry wt. (mg plant-') Shoot dry fit. 
hoculantt Crown Lateral Total Crown Lateral Total (g plant-i) 
Non-inoculated 0 0 0 0 0 0 3.70 
Liquid A 1.05 0.85 1.90 26.0 3 1.0 57.0 4.14 
Liquid C 2.10 1.90 4.00 37.0 24.0 61.0 4.34 
Peat A 4.55 2-85 7.40 88.5 52.5 141.0 4.87 
Peat B 2.65 1.80 4-45 72.5 19.5 92.0 4.78 
Gran A ws 1.30 2.40 3.70 46.5 45.5 92.0 4.92 
GranA2.5 cm 0.65 1.80 2.45 44.5 88.0 132.5 5.66 
Gran A 8.0 cm 0 2-65 2.55 0 125.5 125.5 4.90 
Gran B ws 1.95 2.65 4.60 68.0 47.5 115.5 4.54 
Gran B 2.5 cm 1.55 2.15 3.70 79.5 90.0 169.5 5.36 
Gcan B 8.0 cm 0.60 3.25 3.85 16.5 108.0 124.5 6.05 
LSD(o.on 1.56 1.22 2.47 65.7 55.0 84.7 1.44 
' Gran = granular, ws = with seed. 



Appendix 4. Number of nodules, dry weight of nodules and dry matter production 

h m  various inoculation treatments of Myles desi chickpea at the early pod-filling 

stage at Watrous, 1997. 

Nodule no. plant'' NoduIe dry wt. (mp, planttL) Shoot dry wt. 
hoculantt Crown Lateral Total Crown Lateral Total (g plant") 
Non-inoculated 0.55 1.45 2.00 12.0 30.0 42.0 4.74 
Liquid A 5.80 3.90 9.70 
Liquid C 7.10 1.75 8.85 
Peat A 4.75 2.30 7.05 
Peat B 6.00 2.25 8.25 
Gran A ws 4.00 4.05 8.05 
Gran A 2.5 cm 0.75 3.75 4.50 
Gran A 8.0 cm 1.25 3.95 5.20 
GranBws 3.55 6.85 10.40 
Gran B 2.5 cm 0.55 4.00 4.55 
Gran B 8.0 cm 1.40 4.00 5.40 
LSDfo.on 2.14 2.46 3.02 89.4 58.9 88.7 1.83 

Gran = granular, ws = with seed. 

Appendix 5. Number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of Sanford kabuli chickpea at the late pod-filling 

stage at Watrous, 1997. 

Nodule no. plant" Nodule dry wt. (mg plant'') Shoot dry wt. 
hocuIantt Crown Lataal - Total Crown Lateral Total (E olant-I) 

Liquid A 3.15 3.40 6.55 70.0 
Liquid C 2.90 2.00 4.90 51.0 
Peat A 7.05 5.50 12.55 171.0 
P a  B 5.80 4.40 10.20 185.5 
Gran A ws 3.25 6.30 9.55 68.0 
Grau A25 cm 0.80 4.90 5.70 44.0 
Gran A 8.0 cm 0.25 4.40 4.65 2.0 
Gran B ws 230 3.50 5.80 55.0 
Gran B 2.5 cm 0.25 3.80 4.05 14.0 
Gnu B 8.0 cm 0.25 2.55 280 19.0 
LSDro.on 1.68 2.11 3.20 603 67.6 88.0 3.56 
Gran = granular, ws = with seed 



Appendix 6. Number of noddes, dry weight of nodules and dry matter production 

fiom various inoculation treatments of Myles desi chickpea at the flowering stage at 

Kenaston, 1997. 

Nodule no. plant" Nodule dry wt (mg plant") Shoot dry wt. 
lnoculantt Crown Lateral Total Crown Lateral Total (g plant') 
Non-inoculated 0.10 3.60 3.70 2.0 8.5 10.5 1.39 
Liquid A 1.05 2.45 3.50 12.0 15.0 
Liquid C 1.30 2.30 3.60 16.5 16.5 
Peat A 2.50 3.80 630 53.0 42.0 
Peat B 4-30 2.00 6.80 81.0 16.5 
GranAws 1.30 4.15 5.45 29.5 67.5 
Gran A 2.5 cm 0.50 4.35 4.85 6.0 70.0 
Gran A 8.0 cm 0.40 2.45 2.85 8.0 75.5 
GranBws 1.85 4.95 6.80 24.5 41.5 
Gran B 2.5 cm 0.65 3.85 4.50 21.5 67.5 
Gran B 8.0 cm 0.35 2.25 2.60 9.0 42.0 
LSDro.on 1.30 2.94 3.19 28.3 40.6 41.5 0.41 
' Gran = granular, ws = with seed. 

Appendix 7. Number of nodules, dry weight of nodules and dry matter production 

f?om various inocuIation treatments of Myles desi chickpea at the early pod-filling 

stage at Kenaston, 1997. 

Nodule no. planti Nodule dry wt. (mg plant-') Shoot dry wt. 
~noculant' Crown Lateral Total Crown Lateral Total (g plant") 
Non-inoculated 0.20 0.35 0.55 10.0 26.0 36.0 2.96 
Liquid A 1-95 1.00 2.95 39.5 14.0 53.5 2-52 
Liquid C 2.55 1.15 3.70 75.5 25.0 100.5 2.63 
Peat A 3.65 1.20 4.85 120.5 38.5 159.0 3.69 
Peat B 5.10 2.05 7.15 112.5 39.0 151.5 3.17 
Gran A ws 1.95 1.50 3.45 53.0 45.0 98.0 2.51 
Gran A 2.5 cm 0.40 2.05 2-45 15.0 98.5 113.5 3.79 
Gran A 8.0 cm 0.25 1.00 1.25 2.5 29.5 32.0 3.65 
GranBws 2.60 2.75 5.35 51.0 56.0 107.0 3.74 
Gran B 2.5 cm 0.30 2.50 2.80 5.0 105.5 110.5 3.52 
Gran B 8.0 cm 0.15 1.75 1.90 11.5 106.5 118.0 4.73 
LsD(0.o~ 1-40 1.41 2.05 45.2 602 72.3 0.83 
' Gran = granular, ws = with seed. 



P-ppendi.~ 8. N u m k  of nodules, dry weight of nodules and dry matter production 

h r n  various inoculation rreatments of Myles desi chickpea at the flowering stage at 

Nodule no. plant'' Nodule dry wt. (mg pIant") Shoot dry wt. 
~noculant' Crown Lateral Total Crown Lateral Total (g plant') 

Liquid A 3.60 2.20 5.80 47.0 13.0 60.0 
Liquid C 2.45 4.30 6.75 68.5 16.0 84.5 
Peat A 2.35 2.95 530 44.5 22.0 66.5 
Peat B 2.65 3.45 6-10 54.5 20.0 74.5 
Grim A ws 1.85 2.25 4.10 34.0 27.0 61.0 
GranA2.5 cm 0.55 3.35 3.90 21.0 50.0 71.0 
Gran A 8.0 cm 0.25 2.00 2.25 9.0 30.0 39.0 
Gran B ws 0.90 2-75 3.65 19.0 35.0 54.0 
Gran B 2.5 cm 0.65 3.15 3.80 26.5 58.0 84.5 
Gran B 8.0 cm 0.35 2.30 2.65 5.5 25.5 31.0 
LSD(o.on 1.46 1.86 238 41.3 28.3 48.2 0.40 
' Gran = granular, ws = with seed. 

Appendix 9. Number of nodules, dry weight of nodules and dry matter production 

fiom various inoculation treatments of MyIes desi chickpea at the flowering stage at 

Elbow, 1997. 

Nodule no. plant" Nodule dry wt, (mg planf l)  Shoot dry wt. 

lnoculantt Crown Lateral Total Crown Lateral Total (g plant-') 
Non-inoculated 0.05 0.10 0. I5 1.0 1.5 2.5 0.88 
Liquid A 0.25 0.25 0.50 2.5 1.0 3.5 0.81 
Liquid C 0.50 125 1.75 5.0 5.5 10.5 1-04 
Peat A 1.05 1.20 225 26.5 8.5 35.0 0.87 
Peat B 1-65 1.05 2.70 21.5 8.0 29.5 0.88 
Gran A ws 0.55 0.75 130 10.0 3.5 13.5 0.84 
GranA2.5cm 0.40 1.00 1.40 11.5 15.0 26.5 0.87 
Gran A 8.0 cm 0 0.50 050 0 13.5 13.5 0.93 
Gran B ws 1.25 2.00 3.25 16.0 13.0 29.0 0.89 
Gran B 2.5 cm 0.65 1.65 230 21.0 24.5 45.5 0.97 
Gran B 8.0 cm 030 1.30 1.60 3.5 8.0 11.5 0.97 
LSD~aos 0.84 1.20 1.52 16.4 11.3 22.2 ns 
' Gran = granular, ws = with seed. 



Appendix 10. Number of nodules, dry weight of nodules and dry matter production 

&om various inoculation treatments of Myles desi chickpea at the early pod-filling 

stage at Elbow, 1997. 

Nodule no. p ~ a d  Nodule dry wt, (mg plant-') Shoot dry wt. 
hocdad Crown Lateral Total Crown LateraI Total (R 

Liquid A 0.30 030 0.60 19.5 15.0 34.5 3 -08 
Liquid C 0.45 0.65 1.10 6.0 9.0 15.0 3.88 
Peat A 2.10 0.70 2.80 40.5 18.0 58.5 3.00 
Peat B 3.50 1.15 4.65 80.0 35.0 115.0 3 -45 
Gtaa Aws 0.75 1.00 1.75 10.0 42.0 52.0 3-68 
Gran A 2.5 cm 0.55 1.40 1.95 225 615 84.0 3.44 
GranA8.0cm 0 0.70 0.70 0 48.5 48.5 3.74 
Gran B ws 1.80 1.20 3.00 50.0 21.0 71.0 3.59 
Gran B 2.5 cm 0.70 1.05 1.75 16.0 44.0 60.0 3.58 
Gran B 8.0 cm 0.30 1.40 1.70 5.5 77.5 83.0 4.02 
LsDto.os, 0.95 0.73 126 20.8 38.0 6.7 11s 

Gran = granular, ws = with seed, 

Appendix 1 I. Number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of Sanford kabdi chickpea at the early pod-filling 

stage at Watrous, 1997. 

Nodule no. plantt' Nodule dry wt. (ma pl&'l) Shoot dry wt. 

lnoculantt Crown Laterai Total Crown Lateral Total (g p~ant-') 
Non-inoculated 0.50 0.45 0.95 5.5 18.0 23.5 7.74 
Liquid A 2.80 2.30 5.10 70.5 42.0 112.5 7.62 
Liquid C 5.20 2.50 7.70 103.5 34.0 137.5 7.25 
Peat A 7.00 3.65 10.65 138.5 53.0 191.5 726 
Peat B 7.55 5.20 12.75 180.0 79.5 259.5 9.5 1 
Gran A ws 2.65 7.75 10.40 48.5 119.5 168.5 7.71 
Gran A 2.5 cm 0.40 4.20 4.60 32.0 164.0 196.0 8.94 
Gran A 8.0 cm 0.30 6.05 6.35 2.0 128.5 130.5 8.94 
Gran I3 ws 2.80 6.30 9.10 48.5 95.0 143.5 8.6 I 
Graa B 2.5 cm 0.95 4-15 5.10 35.5 165.0 200.5 9.56 
Gma B 8.0 cm 0.75 3.35 4.10 29.0 143.5 1725 9.16 
LSDro.on 2.65 3.09 3.98 88.5 62.9 105.6 ns 
'  ran = granular, ws = with seed. 



Appendix 12. Number o f  noddes, dry weight of  nodules and dry matter production 

h m  various inoculation treatments of Sanford kabuli chickpea at the early pod-filling 

stage at Kenaston, 1997. 

Nodule no. planttL Nodule dry wt. (mg plat-I) Shoot dry wt, 
Inoculantt Crown Lateral Total Crown Lateral Total (n plani') 
Non-inoculated 0.40 0.40 0.80 13.5 8.0 21.5 4.63 
Liquid A 2.40 1.70 4.10 58.0 74.0 132.0 
Liquid C 2.60 1.45 4.05 57.0 73.0 130.0 
Peat A 4.45 2.40 6.85 219.0 81.0 300.0 
Peat B 7.10 3.20 10.30 262.5 96.5 359.0 
Gran A ws 3.20 3.30 6.50 115.0 113.0 228.0 
Gran A 2.5 cm 0.60 6.75 7.35 8.5 184.5 193.0 
GranA 8.0 cm 0.50 4.60 5.10 6.5 117.0 123.5 
Gran B ws 1.70 4.80 6.50 27.5 151.0 178.5 
Gran B 2.5 cm 0.55 4.55 5.10 9.5 160.0 169.5 
Gran B 8-0 crn 0.10 6.05 6.15 27.5 226.0 253.5 
LSDfo.osl 1.99 2.51 3.61 83.3 97.2 139.0 1.97 
? Gran = granular, ws = with seed. 

Appendix 13. Number of nodules. dry weight of nodules and dry matter production 

h m  various inoculation treatments of Sanford kabuli chickpea at the late pod-filling 

stage at Kenaston, 1997. 

Nodule no. plant" Nodule dry wt. Imp, p1ant") Shoot dry wt. 
Inoculad crown Lateral Total Crown LateraI Total (g plant-') 
Non-inoculated 0.75 0.25 1.00 32.0 50.0 82.0 6.9 1 
Liquid A 135 1.75 3.10 65.5 97.5 163.0 7.66 
Liquid C 425 2.45 6.70 158.5 199.5 358.0 9.32 
Peat A 4.95 3.20 8.15 179.5 105.5 285.0 10.45 
Peat B 4.80 6.50 11.30 184.0 205.5 389.5 10.77 
GranA ws 2.65 4.45 7.10 855 225.5 311.0 11.33 
Gtan A 2.5 cm 0.75 9.15 9.90 24.0 212.5 236.5 14.05 
Gran A 8.0 cm 0.05 5.55 5.60 2.5 186.0 188.5 13.15 
Gran B ws 1.55 8.00 9.55 30.0 222.5 252.5 14.00 
Gran B 2.5 cm 0.70 5.70 6.40 25.5 230.5 256.0 12.65 
Gtaa B 8.0 cm 0 5.50 5.50 0 219.0 219.0 16.05 
L=h-t.osl 1.12 1.90 2.28 73.1 103.6 138.2 3.02 
G m  = granular, ws = with seed 



Appendix 14. Number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of MyIes desi chickpea at the late pod-filling stage 

at Watrous, 1998. 

Nodule no.plantt' Nodule dry wt. (mg plant*') Shoot dry wt. 
Inoculant Crown Lateral Total Crown Lateral Total (n 
Non-inoculated 0 0.60 0.60 0 17.5 17.5 5.94 
Liquid A 0.50 1.70 2.20 19.0 46.5 65.5 7.17 
Liquid B 0.75 0.90 1.65 30.0 22.5 52.5 6.00 
Peat A 2.50 1.75 425 68.0 40.0 108.0 8.75 
Peat B 330 1.30 4.60 87.0 19.0 106.0 6.65 
Gran Aws 3.00 4.15 7.15 77.5 84.5 162.0 11.09 
Gran A 2.5 cm 0.90 6.30 7.20 14.5 11 1.5 126.0 11.33 
GranA 8.0 crn 0 5.60 5.60 0 92.0 92.0 8.45 
GtanB ws 2.15 3.70 5.85 30.5 70.5 101.0 7.65 
Gran B 2.5 cm 1.00 4.50 5.50 20.5 81.5 102.0 8.56 
Gran B 8.0 cm 0.65 6.10 6.75 7.5 108.5 116.0 9.39 
LSD(o.on 1.05 1.58 2.12 28.6 41.7 52.1 2.04 
' Gran = granular, ws = with seed, 

Appendix 15. Number of nodules, dry weight of nodules and dry matter production 

firom various inoculation treatments of Sanford kabuli chickpea at the late pod-filling 

stage at Watrous, 1998. 

Nodule no. plant'' Nodule dry wt. (mR plant'') Shoot dry WL 

Inoculant Crown Lateral Total Crown ~ a t e s ~ o t a l  (g plant-') 
Non-inoculated 0 2.45 2.45 0 76.0 76.0 10.35 
Liquid A 3.30 1.65 4.95 29.0 44.0 73 -0 9.83 
Liquid B 2.00 3.20 5.20 79.0 89.0 168.0 11.73 
Peat A 3.60 1.65 5.25 1515 52.5 204.0 12.82 
Peat B 6.25 3.40 9.65 126.5 68.5 195.0 12.44 
GranAws 2.80 5.00 7.80 69.5 101.0 170.5 13.99 
Gran A 2.5 crn 0.85 7.05 7.90 11.5 138.5 150.0 13.66 
Gran A 8.0 cm 0.35 10.00 10.35 14.5 195.5 210.0 14.72 
Gran B ws 3.50 735 10.85 88.0 157.5 245.5 14.27 
GranB 2.5 cm 1.85 8.05 9.90 34.5 179.0 213.5 13.56 
Gran B 8.0 cm 0.25 8.25 8.50 11.0 142.0 153.0 12.75 
LSDro-on 2.90 2.51 3.51 45.9 57.8 77.1 2.96 
' Gran = granular, ws = with seed. 



Appendix 16. Number of nodules, dry weight of nodules and dry matter production 

h m  various inoculation treatments of Myles h i  chickpea at the early pod-filling 

stage at Outlook, 1998. 

Nodule no. plant*' Nodule dry wt. (& plaat') Shoot dry wt. 
Inoculant Crown Lateral Total Crown Lateral Total (g plant-') 
Non-inoculated 0 0.10 0.10 0 3.5 3.5 4.15 
Liquid A 0.05 0 0.05 4.0 0 4.0 3.75 
Liquid B 2.40 1.35 3.75 88.5 50.0 138.5 4.45 
Peat A 4.15 2.75 6.90 217.5 90.0 307.5 4.30 
Peat B 4.40 3.35 7.75 130.5 45.5 176.0 4.55 
GtaaAws 2.00 6.45 8.45 60.0 169.5 229.5 5.05 
Gran A 2.5 cm 0.20 6.20 6.40 3.5 200.5 204.0 5.85 
Gran A 8.0 cm 0 5.75 5.75 0 133.0 133.0 6.40 
Gran B ws 1.65 4.85 6.50 713 113.5 185.0 5.20 
Gran B 2.5 cm 0.60 5.45 6.05 13.0 105.5 118.5 5.50 
Gran B 8.0 cm 0 4.80 4.80 0 144.0 144.0 5.75 
LSD(o.on 1.1 1 2.65 2.86 67.9 70.4 89.6 1.46 
' Gran = granular, ws = with seed. 

Appendix 17. Number of nodules, dry weight of nodules and dry matter production 

fiom various inoculation treatments of Myles desi chickpea at the early pod-filling 

stage at Watrous, 1998. 

Nodule no. piantt1 Nodule dry wt. (mp; plant-') Shoot dry wt. 
Inoculant Crown Lateral Total Crown Lateral Total (g plant") 
Non-inoculated 0 0.15 0.15 0 2.5 2.5 5.24 
Liquid A 0.30 0.70 1.00 15.0 32.0 47.0 4.57 
Liquid B 1.60 1.45 3.05 64.0 46.0 110.0 5.0 1 
Peat A 2.40 2.00 4.40 169.0 51.5 220.5 5.96 
Peat B 3.35 1.25 4.60 
Gran A ws 2.85 4.45 7.30 
G m A  2.5 cm 2.05 6.25 830 
Gran A 8.0 cm 0.80 7.65 8.45 
Gran B ws 2.60 4.55 7.15 
Gran B 2.5 cm 1.55 6.75 830 
Gran B 8.0 cm 1.20 7.65 6.30 
LsDto.0~ 1.40 2.46 2.97 763 76.2 96.3 2.57 
'  ran = p u l a , ,  ws = with seed 



Appendix 18. Number of nodules, dry weight of nodules and dry matter production 

from various inoculation treatments of Sanford kabuli chickpea at the early pod-filling 

stage at Watrous, 1998. 

Nodule no. plant'' Nodule dry wt. (mg plant") Shoot dry wt. 
1nocula.t + Crown Lateral Total Crown Lateral Total (g 
Non-inoculated 0.10 0.85 0.95 3.0 30.0 33.0 8 -06 
Liquid A 0.70 2.15 2.85 38.5 99.0 137.5 9.06 
Liquid B 3.35 3.90 7.25 100.5 107.5 208.0 7.72 
Peat A 3.65 3.00 6.65 157.5 105.0 262.5 10.65 
Peat B 6.00 3.50 9.50 226.5 91.0 317.5 11.27 
Gran A ws 3.95 6.65 10.60 91.5 128.0 219.5 9.28 
GranA 2.5 cm 1.60 9.75 11.35 21.0 175.5 196.5 10.30 
GranA8.0cm 1.15 8.60 9.75 17.5 183.5 201.0 10.74 
Gran B ws 4.30 5.90 . 10.20 125.0 188.0 313.0 10.15 
Gran B 2.5 cm 1.55 720 8.75 43.5 185.5 229.0 10.53 
GranB8.0cm 0.40 9.05 9.45 20.5 221.5 242.0 11.51 
LSD(o.on 1.10 3.28 3.57 49.9 69.8 82.2 2.22 
Gtan = granular, ws = with seed. 

Appendix 19, Number of nodules, dry weight of nodules and dry matter producdon 

h m  various inoculation treatments of Sanford kabuli chickpea at the early pod-filling 

stage at Outlook, 1998. 

Nodule no. plant-' Nodule dry wt. (mg planf') Shoot dry wt. 

hoculant Crown Lateral Total Crown Lateral Total (g  plant-') 
Non-inoculated 0 0.15 0.15 0 13.0 13.0 5.0 1 
Liquid A 0.40 0.10 0.50 14.5 2.5 17.0 6.50 
Liquid B 1.55 1-55 3.10 38.0 38.5 76.5 5.06 
Peat A 2.85 235 5-20 130.5 75.5 206.0 6.13 
Peat B 3.75 3.00 6.75 103.5 67.5 171.0 7.33 
Gran A ws 1.05 3.45 4.50 26.5 102.0 128.5 6.45 
Gran A 2.5 cm 0.15 7.00 7.15 11.0 153.5 164.5 7.41 
Gran A 8.0 cm 0 7.20 7.20 0 162.5 162.5 6.40 
Gran B ws 1.70 4.30 6.00 59.5 113.5 173.0 7.80 
Gtan B 2.5 cm 1.25 4.80 6.05 27.0 81.5 108.5 7.5 1 
Gran B 8.0 cm 0 3.95 3.95 0 53.0 53.0 5.1 1 
LsD(o.on 0.92 2.67 2.73 47.9 46.4 62.5 2.42 
Gran = granular, ws = with seed. 



Appendix 20. Whole plant bomass, seed yield, seed protein concentmion, percentage 

N derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Myles desi chickpea at Elbow, 1997. 

Biomass Seed yield Protein conc. %Ndfa NI fixed 
h o d a n t '  (kg hd') (kg hi-') (g kg'') (kg ha-') 
Non-inoculated 1195 755 182 28.2 6.0 
Lquid A 
Liquid C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSDto.on 678 355 33 16.5 10.8 
' Gran = granular, bs = below sced 

Appendix 21- Whole plant biomass, seed yield seed protein concentration, percentage 

N derived h m  atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Myles desi chickpea at Outlook 1997. 

Biomass Seed yield Pmtein conc. %Ndfa NZ fixed 
Inoculantt (kg ha-') (kg h i ' )  (g kg-') (kg ha") 
Non-inoculated 1143 653 187 10.8 2.2 
Liquid A 1628 875 199 32.8 9.1 
Liquid C I310 750 215 14.8 4.6 
Peat A 1803 I100 213 44.9 16.8 
Peat B 1260 773 216 48.1 13.6 
Gran A with seed 14 1 3 843 210 22.6 7.5 
Gran A 2.5 crn bs 1755 1045 227 40.0 16.1 
Gran A 8.0 cm bs 1610 923 224 48.6 17.4 
Gran B with seed 1498 860 212 36.9 11.2 
Gran B 2.5 cm bs 1498 888 216 38.7 12.1 
Gran B 8.0 cm bs I535 915 22 1 44.0 14.6 
LsD(o.0~ ns 373 22 17.6 8.6 
Gran = granular, bs = below seed. 



Appendix 22- Whole plant biomass. seed yield seed protein concentration. percentage 

N derived h m  atmosphere for the seed (%Ndfal and amount of seed N fixed for 

Sanford kabuli chickpea at Watrous. I 997, 

Biomass Seed yield Protein conc. %Ndfa NZ fixed 
~noculant' (kg ha*') (kg ha-') (B kg*') (kg ha-') 
Non-inoculated 1823 820 [ 71 23.8 6.0 
Liquid A 
Liquid C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs - . - 

LSD{o.on 59 1 3 16 17 13.3 8.8 
Gran = granular. ws = with seed. 

Appendix 23. Whole plant biomass, seed yieid. seed protein concentration. percentage 

N derived from atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Myles desi chickpea at Watrous. 1997. 

Biomass Seed vieid Protein conc. %Ndfa NI fixed 
hocdantt (kg h i1 )  (kg h i ' )  (g kg") (ke ham') 
Non-inoculated 3200 I468 187 53.2 18.5 
Liquid A 
Liquid C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LsDt0.o~ 822 323 4 1 16.1 335 
Gran = granular, ws = with seed. 



Appendix 24. Whole plant biomass, seed yieId, seed protein concentration. percentage 

N derived fiom atmosphere for the seed (%Ndfa) and the amount of seed N fixed for 

Sanford kabuli chickpea at Kenastctn, 1997. 

Biomass Seed yield Protein conc. %Ndfa Nz fixed 
lnoculantt (kg havi) (kg ha") (R kg-') (kg ha-') 
Non-inoculated 
Liquid A 
Liquid C 
Peat A 
Peat B 
Gran. A with seed 
Gran A 2.3 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSQo.on 497 282 I7 10.1 8.9 
' Gran = granular. ws = with seed. 

Appendix 25. Whole plant biomass. seed yieid seed protein concentration, percentage 

N derived fiom atmosphere for the seed (%Ndfa) and amount of seed N tixed for 

Myles desi chickpea at Kenaston, 197 .  

Biomass Seed yield Protein conc. %Ndfa Nz tixed 
lnoculantt (kg ha") (kg ha*') (g kg-') (kg ha") 
Non-inoculated 1490 708 147 38.8 6.5 
Liquid A 
Liquid C 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
G m  B 8.0 cm bs 
LSDto.on 388 216 45 14.7 11.8 
Gran = granular, ws = with seed. 



Appendix 26. Whole plant biomass, seed yield, seed protein concentration. percentage 

N derived fiom atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Sanford kabuli chickpea at Outlook, 1998. 

Biomass Seed yield Protein conc. %Ndfa N, fixed 
inoculantt (kg ha-') (kg ha-') (R kg*') (kg h a t )  
Non-inoculated 2220 909 179 4.0 1.0 
Liquid A 
Liquid B 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LsD~o.on 478 224 22 8.7 -1.8 
Gran = granular, bs = below seed. 

Appendix 27. Whole plant biomass, seed yield, seed protein concentration. percentage 

N derived fiom atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Sanford kabuli chickpea at Watrous, 1998. 

Biomass Seed yield Protein conc. %Ndfa N2 tixed 
lnoculantt (kg ha*') (kg ha-') (g kc') (kg ha-') 
Non-inoculated 5265 1528 20 1 1 1 . 1  5.5 
Liquid A 5128 1560 237 35.4 30.9 
Liquid B 5278 1563 237 58.4 23 -0 
Peat A 5708 1733 237 4 1.7 27.0 
Peat B 5585 I71 I 247 12.7 28.7 
Gran A with seed 6433 I800 25 1 40.1 29. I 
Gran A 2.5 cm bs 5675 1624 243 46.3 29.5 
Gran A 8.0 cm bs 5823 1654 237 3 7.7 23.3 
Gran B with seed 5648 1715 236 44-7 29.0 
Gran B 2.5 cm bs 5685 1617 248 41.9 27.0 
Gran B 8.0 cm bs 5318 1552 248 41.5 25. I 
LSD(o.on I079 ns 11s 10.5 7.7 
? Gran = granular, bs = below seed. 



Appendix 28. Whole plant biomass, seed yield, seed protein concentration. percentage 

N derived fiom atmosphere for the seed (%Ndfa) and amount of seed N fixed for 

Myles desi chickpea at Outlook, 1998. 

Biomass Seed yield Protein conc. %Ndfa N2 fixed 
hoculantt (kg haL) (kg ha") (g kg-[) (kg ha*') 
Non-inoculated 1486 846 1 43 6.6 1.4 
Liquid A 
Liquid B 
Peat A 
Peat B 
Gran A with seed 
Gran A 2.5 cm bs 
Gran A 8.0 cm bs 
Gran B with seed 
Gran B 2.5 cm bs 
Gran B 8.0 cm bs 
LSD(o.on 55 1 318 26 14.2 8.9 
Gran = granular, bs = below seed. 

Appendix 29. Whole plant biomass, seed yield, seed protein concentration, percentage 

N derived h m  atmosphere for the seed (%Ndfa) and amount of seed N fixed For 

Myles desi chickpea at Watrous, 1998. 

Biomass Seed yield Protein conc, %Ndfa N2 fixed 
hoculant' (kg ha1) ~1 (g.kg-') (kg ha-') 
Non-inoculated 3204 1598 1 70 27.7 12.1 
Liquid A 3993 1886 184 27.9 16.3 
Liquid B 3906 I839 202 St -7 31.5 
Peat A 4369 2 147 219 46.4 54.5 
Peat B 4615 2048 249 58.1 47.5 
Gran A with seed 4863 2148 215 58.4 43.7 
Gran A 2.5 cm bs 4410 1993 245 57.8 44.8 
Gran A 8.0 cm bs 4557 2070 226 60.6 45-4 
Gran B with seed 4552 2099 222 63.8 47.5 
Gtan B 2.5 cm bs 4569 2051 234 54.3 41.7 
Gran B 8.0 cm bs 4770 2242 . 250 56.1 502 
LSD(o.on 575 282 25 12.0 10.9 
Gran = granular, bs = below seed. 



Appendix 30. Nodule numbers of desi chickpea fiom various inoculation treatments at 

different growth stages for Experiment 1. 

Inoculation Days after planting (DM) ' 
treatment 28 42 56 70 84 98 

I 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(0.05) 

Peat 

Liquid 

Gmular 

Non-inoculation 

LSD(o.on 

Peat 

Liquid 

Granuiar 

Non-inoculation 

LsD(o.09 

Crown nodules 

0.25 1.75 2.63 3.13 2.25 1.63 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

ns 0.70 1.58 2.00 1.65 0.89 

-Lateral mot nodules - 
0 0.50 0.25 0.63 0.63 0.13 

0 0 0 2.13 1.38 0.13 

0.50 2.25 3 .25 0.25 3.13 3 .OO 

0 0.13 3.00 0.1 3 0 0 

0.46 0.98 11s 1.75 2.53 0.71 

--- Total 

0.25 2.25 2.85 3.75 2.88 1.75 

0 0 0 0.25 1.38 0.13 

0.50 2.25 3.25 2-13 3.13 3.00 

0 0.13 3 .OO 0.13 0 0.25 

11s 1.63 ns 2.74 2.72 0.93 

? 28 DAP = late vegetative, 42 DAP = flowering, 56 DAP = early pod-- 70 DAP 
= mid pod-filling, 84 DAP = late pod-fihg and 98 DAP = physiological maturity. 



Appendix 31. Nodule numbers of desi chickpea from various inocdation treatments at 

differwt growth stages for Experiment 2. 

Inoculation Days after planting @AP) ' 
treatment 28 42 56 70 84 98 

Number of noduIes plant" 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(0.0Sl 

Peat 

Liquid 

Granular 

Non-inoculation 

LsD(o.09 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(0.0S) 

-- Crown nodules 

2.63 3.13 4.38 4.38 2.88 3.75 

0.50 0.13 0.38 0.38 0.50 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0.7 1 1 .09 2.05 2.16 1.17 1.25 

Lateral root nodule 

1.13 1.63 2.25 0.63 0.88 0.38 

0.50 0.50 0.75 0.63 0.13 0.75 

1.63 3.75 4.00 4.25 3 -75 4.63 

0 0 0.25 0.75 0.38 0 

0.97 1 .52 2.05 2.15 1.3 1 1-32 

--- -Total 

3.75 4.75 6.63 5.00 3.75 5-13 

1.00 0.63 1.13 1 .OO 0.63 0.75 

1.63 3.75 4.00 4.25 3.75 4.63 

0 0 0.25 0.75 0.38 0 

0.85 1.76 3.49 2.57 1.46 1.89 

28 DAP = iate vegetative, 42 DAP = flowering, 56 DAP = early pod-mg,  70 DAP 
= mid pod-filling, 84 DAP = late pod-mg and 98 DAP = physiologicai maturity. 



Appendix 32. Nodule dry weight of desi chickpea fiom various inoculation treatments 

at diffmnt growth stages for Experiment 1. 

Inoculation Days after planting PAP)? 

treatment 28 42 56 70 84 98 

Peat 

Liquid 

Granular 

Non-inoculation 

LsD(o.0~) 

Peat 

Liquid 

Granular 

Non-inoculation 

LSD(o.on 

Peat 

Liquid 

Granuiar 

Non-inoculation 

LSD(o.os, 

Crown nodules (mg plant-')-- 

0.8 41.3 62.1 842 78.3 86.1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

ns 15.7 60.6 54. I 52.3 58.2 

Lateral root nodules (mg plant-') 

0 15.9 34.9 18.6 92.0 45.0 

0 0 0 14.7 52.2 33.0 

10.2 50.7 162.5 108.5 218.3 210.5 

0 2.9 62.0 1.5 0 63 2 

ns 27.6 95.2 84.1 200.5 139.8 

Total nodule dry wt (mg plant*') 

0.8 57.2 97.0 102.3 170.8 131.2 

0 0 0 14.7 52.2 33.0 

10.2 50.7 162.5 108.5 231.8 210.5 

0 2.9 62.0 1.5 0 63 2 

ns 41.4 96.2 85.8 197.5 143.1 

28 DAP = late vegetative. 42 DAP = flowering, 56 DAP = early pod-filling, 70 DAP 
= mid pod-filling, 84 DAP = late pocl-tlhg and 98 DAP = physiological maturity. 



Appendix 33. Nodule dry weight of desi chickpea from various inoculation treatments 

at different growth stages for Experiment 2. 

Inoculation Days after planting (DM) ' 
treatment 28 42 56 70 84 98 

-town nodules (mg plant") 

Peat 42.0 75.3 112.2 105.2 94.9 122.0 

Liquid 15.8 4.5 29.4 30.3 7.9 0 

Granular 0 0 0 0 0 0 

Lateral root nodules (mg plant-')-------- 

Peat 8.3 49.2 59.4 18.5 42.7 14.3 

Liquid 3.4 28.3 38.9 27.3 125 .O 24.5 

Granular 39.5 136.0 140.2 138.3 183.3 155.8 

Total nodule dry wt (mg plant-')---------- 

Peat 50.3 124.4 171.5 168.9 137.5 136.3 

Liquid 19.2 32.3 683  57.5 132.9 24.5 

Granular 39.5 136.0 140.2 138.3 183.3 155.8 

Non-inoculation 0 0 232 30.2 35.5 0 

LsD(o.09 42.3 53.5 483 90.1 11s 50.6 

28 DAP = late vegetative, 42 DAP = flowering, 56 DAP = early pod-flliag, 70 DAP 
= mid pod-tilling, 84 DAP = late @-filling and 98 DAP = physioIogical maturity. 



Appendix 34. Dry matter production of desi chickpea fiom various inoculation 

treatments at different growth stages for Experiment 1. 

Inoculation Days after pIanting PAP) ' 
treatment 28 42 56 70 84 98 

g p~ant-' 

Peat 0.95 2.16 3 22 426 4.60 4.82 

Liquid 0.88 2.03 3.09 4.00 4.14 3.88 

Granular 1.04 2.26 3.57 4.07 5.08 6.03 

Non-inoculation 0.93 221 2.97 3.77 3.52 4.84 

LsD(o.09 11s 11s 11s 11s 0.72 1.03 

28 DAP = late vegetative, 42 DAP = flowering, 56 DAP = early pod-fWng, 70 DAP 
= mid pod-filling, 84 DAP = late pod-fiIIing a d  98 DAP = physiological maturity. 

Appendix 35. Dry matter production of desi chickpea h m  various inoculation 

treatments at different growth stages for Experiment 2. 

Inoculation Days after planting PAP) 

treatment 28 42 56 70 84 98 

Peat 

Liquid 

g plant" 

Granular 123 1-99 2.78 

Non-inoculation 1.14 1-70 2.1 1 

LSDto.os, ns ns 0.48 0.75 0.59 0.74 

28 DAP = late vegetative, 42 DAP = flowering, 56 DAP = early pod-filing, 70 DAP 
= mid pod-filling, 84 DAP = late pod-filling and 98 DAP = physiological maturity. 
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Appendix 36. Survival of R. ciceri strain CP39 on seeds treated separately with one of 

four hgicides seven days prior to inocdation as compared to the inoculated. but 

fungicide-he, control ia Experiment 1.  Each point is the mean of four replications. 

with vertical bars representing standard error. 
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Appendix 37. Survival of R. ciceri strain CP39 on seeds treated separatety with one of 

four hgicides seven days prior to inoculation as compared to the inoculated. but 

fungicide-free, control in Experiment 2. Each point is the mean of four replications, 

with vertical bars representing standard error. 




