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ABSTRACT 

Tissue engineering is an emerging field with the aim to produce artificial organs and 

tissues for transplant treatments. Cultivating cells on scaffolds by means of bioreactors is a 

critical step to forming the organ or tissue substitutes prior to transplantation. Among 

various bioreactors, the perfusion bioreactor is known for its enhanced convection 

through the cell-scaffold constructs. The enhanced convection will significantly increase 

the mass transport and at the same time, will increase the shear stress acting on the cells 

and scaffolds. To manipulate the scaffold-based cell culture process, knowledge of the 

mass transport and fluid flow (featured by flow velocity and shear stress) in bioreactors is 

required. Due to the complicated microstructure and multiphase flow involved in this 

process, the development of models for capturing the aforementioned knowledge has 

proven to be a challenging task. In this research, the mass transport and fluid flow in 

scaffolds cultivated in perfusion bioreactors was studied using numerical methods. In the 

first stream of this research, a novel mathematical model was developed to represent the 

nutrient transport and cell growth within three-dimensional scaffolds. Based on the 

developed model, the effect of such factors as the scaffold porosity, the culture time, and 

the flow rate were investigated. In the second stream, the flow field within the scaffold 

was studied with an emphasis on representing the shear stress distribution over the 

scaffold surface. The commercial computational fluid dynamics software ANSYS-CFX 

was used to simulate and represent the effect of factors, such as the diameter of the 

scaffold strand, the horizontal span between two strands, and the flow rate, on the shear 
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stress distribution. Results showed that the nutrient concentration and cell volume 

fraction are time dependent and sensitive to the porosity and flow rate. The diameters of 

the strands, the horizontal span and the flow rate affect the magnitude of the shear stress. 

The knowledge obtained in this study provides new insight into the scaffold-based cell 

culture process in perfusion bioreactors and allows for potential optimization of the cell 

culture process by regulating the process parameters as well as the scaffold structure 

during its fabrication.    
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

1.1.1 Tissue engineering 

   Tissue engineering is an interdisciplinary field that applies the principles of engineering 

and the life sciences to provide a new solution to tissue loss, replacement or restoration of 

tissue, or organ function with scaffold constructs that contain specific populations of living 

cells [1]. Fig.1 shows the five steps typically involved in the process of tissue engineering, 

which include:  

1) Isolating: cells are isolated from a living animal or obtained through human donation;  

2) Expanding: the isolated cells are expanded in the laboratory to have a sufficient number 

of cells for applications;  

3) Seeding: the cells are seeded into a three-dimensional (3D) polymeric scaffold;  

4) Culturing: cells are cultured in the scaffold using bioreactors or incubators. During this 

process, growth factors, enzymes, nutrients and/or mechanical stimulation may be added to 

the cultivating culture to increase cell growth, thus forming constructs with required 

biological functions; and  
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5) Implanting: the formed constructs are implanted into the in vivo environment, such as an 

animal or human body, to repair or replace the damaged/diseased tissues or organs [1, 2]. 

       

                    Fig. 1 Major steps involved in tissue engineering. 

    

   Obviously, the cell culturing process is a key step in the tissue engineering cycle. For its 

success, scaffolds are of great importance and must possess the properties as detailed in the 

following section.   

 

1.1.2 Scaffold and perfusion bioreactor 

   In tissue engineering, scaffolds play a critical role in supporting cell growth and 
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differentiation, cell migration, and eventually the formation of tissue constructs [3]. 

Generally speaking, tissue scaffolds should meet the following requirements [2]:  

1) the scaffold material must be biocompatible and biodegradable to match cell/tissue 

growth in vitro and in vivo;  

2) the scaffold surface must be suitable for cell attachment, proliferation and 

differentiation;  

3) the mechanical properties of the scaffolds should match the tissue at the proposed 

implant site; and  

4) the scaffold should be highly porous to allow cell growth and movement as well as the 

transport of nutrients and metabolic waste. 

   Typically, tissue scaffolds are made from either natural or synthetic material, such as 

chitosan, collagen, polyglycolic acid (PLA) and polycaprolactone(PCL). The scaffolds can 

be fabricated by different methods and as a result, many exhibit diverse inner structures. 

The following are common methods presently used in the scaffold fabrication:   

(i) Porogen leaching: a polymer solution with dispersed templates, such as particles, is 

gelled or fixed; and then the templates are removed, forming a scaffold with a porous 

structure [4]; 

(ii) Phase separation: a polymer solution can separate into two phases, the polymer-rich 

phase and polymer-lean phase, with the variation of thermal conditions due to the 

lower system energy in a thermodynamically unstable state. For example, cooling 

can result in phase separation of a polymer solution into high and low concentration 
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regions. The high concentration region (the polymer-rich phase) solidifies, while the 

low concentration region (the polymer-lean phase) forms the pores [1, 4];  

(iii) Gas foaming: A gas, such as CO2, can be pressurized in a molded polymer and then 

the pressure released, resulting in the nucleation and growth of air bubbles within the 

polymer [5]; 

(iv) Textile technology: the methods originally developed in the textile industry can be 

used in the fabrication of scaffolds, with a textile structure for tissue engineering 

applications [1]; 

(v) Solid free-form fabrication (SFF) and rapid prototyping (RP): in this method, the 

scaffolds are built through selectively adding materials layer-by-layer as controlled 

by computers [6]. 

   Among the above, the fabrication methods (i)-(iv) are referred as to conventional 

techniques in the literature and have been widely used to fabricate scaffolds with different 

porosities (a ratio of the void space to the entire volume of the scaffold) and pore sizes for 

various tissue engineering applications. Common features of these methods include that 

the inner pores of the scaffold are randomly distributed and that, by regulating the 

fabrication conditions, such as the temperature, pressure, etc., the level of porosity and 

range of pore size can be controlled. Nonetheless, the local porosity and pore geometry 

cannot be controlled accurately. Thus, the scaffolds fabricated with conventional methods 

have irregular internal structures (Fig. 2 (a)). In contrast to conventional methods, the SFF 

and RP methods can produce scaffolds with a regular inner structure (Fig. 2 (b)). With the 
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help of computers, the scaffold parameters can be adjusted and controlled readily and 

accurately. As such, the SFF and RP method has shown great promising in tissue 

engineering. 

 

           

Fig. 2 Scaffolds with: a) irregular inner structure [7, 8], and b) regular inner 

structure [9]. 

    

   The bioreactor plays a significant role in the in vitro experiments in tissue engineering. 

Bioreactors are generally defined as devices in which biological and biochemical processes 

develop under closely monitored and tightly controlled environmental and operating 

conditions. By using bioreactors, engineered tissue and cells can obtain adequate nutrient 

supply, timely waste removal, sufficient gaseous exchange, temperature regulation and 

mechanical simulation [3]. The main functions of bioreactors include improving cell 

seeding in a scaffold, increasing mass transfer during the cultivation process, providing 

mechanical stimuli, and eventually promoting the formation of tissues or organs [3, 10, 11]. 

Compared with steady-state cultivation, bioreactors can provide a dynamic environment to 

a b 
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stimulate cells and enhance proliferation and matrix secretion.  

   There are different types of bioreactors in terms of configuration or the mechanical 

stimuli methods employed, which include:  

(i) Spinner flask: Cells are seeded on the scaffolds that are placed on the side arms and 

during culture, the stir bar at the bottom stirs the flow to enhance mass transfer 

(Fig.3 (a)); 

(ii) Rotating wall vessels: Rotation provides a dynamic culture environment for 

constructs with low shear stresses and high mass-transfer rates (Fig.3 (b)); 

(iii) Holly-fibre systems: Mass transfer during the culture is enhanced by the systems for 

highly metabolic and sensitive cell types, such as hepatocytes (Fig. 3 (c)); 

(iv) Perfusion bioreactors: The medium flow is forced directly through the pores of the 

scaffold. As a result, the enhanced mass transfer occurs both at the periphery and 

within the internal pores of the scaffold, so that relatively uniform mass transfer 

occurs (Fig. 3 (d)); 

(v) Compression-loading systems: Controlled mechanical forces are applied to 

engineered constructs to simulate physiological loading conditions (Fig.3 (e)); 

(vi) Concentric cylinder bioreactors: Two concentric cylinders, an outer one and an  

inner one, move relative to each other in order to enhance mixing (Fig. 3 (f)) [3, 

12-14]; 

(vii) Non-perfusion bioreactors: Although there is no flow passing directly through the 

scaffold, the scaffold is immersed into an environment with uninterrupted nutrient 
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replenishment and waste removal (Fig. 3 (g)). 

 

Fig. 3 Bioreactors of different configurations: a) spinner flask [3], b) rotating wall 

vessel [3], c) holly-fibre system [3], d) perfusion bioreactor [3], e) 

compression-loading system [3], f) concentric cylinder bioreactor, and g) 

non-perfusion bioreactor[15]. 

 

   Among the above bioreactors, the perfusion bioreactor has been widely used in tissue 

engineering since it allows the culture medium to flow directly through the scaffold pores, 
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as seen in Fig. 4. As a result, a perfusion bioreactor can enhance mass transfer not only 

around the scaffold construct periphery as do some other kinds of bioreactors, but also 

within the internal pores [16]. However, due to the medium flow within the scaffolds, the 

shear stress level can be elevated in a perfusion bioreactor. 

 

a                                      b  

Fig.4 Perfusion bioreactors: (a) fluid flow in the vertical direction [16], and (b) fluid 

flow in the horizontal direction [17].   

 

   For in vitro cell culture, the nutrients including glucose and oxygen which are 

necessary for cell metabolism and proliferation must be supplied. If the supply of 

nutrients is inadequate [3] , then a hypoxic, necrotic center surrounded by a rim of viable 

cells may be formed, which was exemplified by R.M. Sutherlan [18]. Similar 

observations have been made for the cell culture in 3D scaffolds under static conditions 

[19, 20]. Besides, waste products, such as lactate may also accumulate within scaffolds, 

which can suppress cell growth and eventually cause non-uniform cell distributions in 

scaffolds [41]. Therefore, mass transfer must be adequate to provide sufficient nutrient 
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and eliminate waste materials within scaffolds in cell culture in vitro.  

Enhancing nutrient transport in scaffolds is the most attractive feature of the perfusion 

bioreactor. For optimal control of the cell culture process in a perfusion bioreactor, 

knowledge of nutrient transport and the corresponding cell response in scaffolds is desired. 

Unfortunately, due to the complicated scaffold structure and the different phases or 

components (i.e., solid, fluid, and gas) involved in the cell culture process, capturing such 

knowledge becomes difficult. Nowadays, research based on numerical methods, in 

addition to experimental methods, has shown promise in providing knowledge on nutrient 

transport within the scaffolds.  

   Besides the enhanced nutrient transfer, the other unique characteristic of perfusion 

bioreactors is the increase in shear stress on the cells and scaffolds due to the perfused 

flow through the scaffold pores. Depending on applications, the shear stress might have 

either positive or negative effects on the cell culture process. Previous studies [19, 21] 

show a moderate shear stress is essential to cell growth and metabolism since it can help 

shape the engineered tissue and glycosaminoglycan (GAG) in cartilage tissue engineering. 

In contrast, if the shear stress exceeds the physiological range, negative effects may 

become apparent, causing the decrease in matrix synthesis, damaging cell structure or 

even killing the cells [22]. Negative cell response to the flow-induced shear stress may 

also include the changes in cell shape and alignment at the earlier stage. With the increase 

in the magnitude of shear stress and exposure time, cell metabolism varies and the cell 

viability become an issue in the cell culture process [15, 22, 23]. Another negative effect 
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of higher shear stress is that cells may not be able to adhere on the surfaces of the 

scaffolds and, instead, be washed away from the scaffold. As such, to ensure the shear 

stress is at an appropriate level for a given application, knowledge of mass transfer and 

shear stress in cell culture process in perfusion bioreactors is desired. The capture of such 

knowledge is the focus of the present study. 

 

1.2 Literature review 

In this section, a literature review is presented on the following aspects of this field of 

study: experimental methods versus computational methods, and the mass transfer and 

fluid flow within scaffolds cultivated in bioreactors.   

 

1.2.1 Experimental methods and computational methods 

In order to study mass transfer and fluid flow in scaffolds cultured in perfusion 

bioreactors, both experimental and computational methods have been used in the past.  

For mass transfer in 3D tissue scaffolds, source insight comes from cell culture 

experiments. In several experimental studies [19, 21, 24-26], cells were seeded in 

scaffolds and then cultured in bioreactors; after a period of time, changes in the cell 

density and metabolism component concentration, such as the glycosaminoglycan (GAG), 

in the tissue scaffold were examined. To investigate fluid flow in a bioreactor, particle 

image velocimetry (PIV) and laser-doppler velocimetry (LDV) have been used to measure 
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the fluid velocity in bioreactors [27-30]. For the flow field within the scaffold, micro 

particle image velocimetry (μ-PIV) has been applied to capture the flow characteristics in 

the inner pores [31].  

Computational fluid dynamics (CFD) is a method to solve the equations governing 

the fluid flow based on numerical methods. It has proven to be a powerful tool for 

studying the fluid flow in such diverse areas as aerospace engineering, chemical 

engineering, and civil engineering [32]. In tissue engineering, the application of CFD has 

shown promise for studying the flow phenomena in bioreactors, thus providing detailed 

information and insight that is difficult, even impossible, to obtain through experiments. 

CFD is reviewed in the following sections in terms of mass transfer and fluid flow in cell 

culture applications.  

 

1.2.2 Mass transfer in a scaffold 

 Cell culture in vitro is a key process for tissue engineering, in which the cells are 

expanded on the scaffolds to form the constructs, for implantation to the animal or human 

patients. For success, nutrients and growth factors have to be provided adequately to the 

cells. Researchers have applied different methods to study the cell culture process in an 

attempt to understand and characterize the process qualitatively and quantitatively. 

Experimental methods are perhaps most widely used to investigate the mechanism of cell 

culture within the scaffold in bioreactor. Freed et. al. [33-35] developed empirical 
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equations based on the cell culture in Petri dish and bioreactors. Experimental data, such 

as cell density and composition are the most reliable for evaluating the cell culture 

process. However, the experimental results are of limited value when experimental 

parameters and conditions are changed.  

Modeling the mass transfer in a tissue scaffold is a challenging task due to the 

complicated scaffold microstructure. Local volume average theory (LVA), which only 

considers the average properties of each representative element volume instead of the 

specific distribution in each phase, provides one approach to meet this challenge. Based 

on LVA, Galban and Locke developed a model to represent the distribution of glucose 

and cell density [36, 37]. With a focus on the effective diffusivities for biofilms and 

tissues, Wood et. al. also used the volume average principle to predict the effective 

diffusivity of a cellular system [38, 39].  

As a multiphase porous medium, a tissue scaffold includes a solid phase which is the 

scaffold frame, a liquid phase which is the nutrient solution, and a gas phase which is 

necessary for cell metabolism, such as oxygen. In contrast to other porous media, the 

tissue scaffold includes a special phase, i.e., the cell phase, so modeling mass transfer in 

the tissue scaffold becomes more challenging. Lemon and King [40] developed a 

multiphase model to describe the growth tissue comprising motile cells and water in a 

solid frame. A limitation of this model is the neglect of the gas phase. Tristan et al. [41] 

considered the effect of the cell density on the effective oxygen diffusivity in their model.  

Yu et al. developed a mathematical model to represent fluid flow and oxygen 
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transport in a micro-bioreactor [42]. They also used an improved model to examine the 

influence of cell density and relate it to the permeability [43]. However, the cell 

responses to the transport of the nutrients, including cell growth, cell migration and cell 

apoptosis, were not considered in their study.  

Cell response is another challenge for modeling. This is due to the complexity of 

biological processes in the tissue scaffold. Chung et al. [44] developed a mathematical 

model to describe cell growth in a porous scaffold considering cell mortality, cell growth 

rate and cell nutrient consumption rate. However, in their research, the scaffold was 

assumed to be cultivated in a steady-state environment, which only involved diffusion 

mass transfer without the consideration of convection. The same research group made an 

effort to improve the numerical models to give more realistic description of cell culture 

process in the scaffolds.  The highlights of their research are: including convection 

transfer in the model, treating extracellular matrix (ECM) and cells separately, and 

considering the influence of chemotaxis [45-47].   

A major drawback of these studies is that the porosity of the scaffold is assumed to be 

higher than 95% so that the solid frame of the scaffold can be ignored. This is further 

limited by ignoring the scaffold degradation. For improvement, Coletti et. al. developed a 

mathematical model for the cell culture in a three-dimensional perfusion bioreactor 

including the solid phase. However, their work is still limited by the fact that the effect of 

the initial porosity and the degradation of the solid frame is not included [48]. It is known 

that one major function of scaffolds is to provide mechanical support for cell attachment 
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and growth. A higher porosity (>90%) may provide a greater pore volume for cell 

infiltration and extracellular matrix formation, but conversely it decreases the mechanical 

properties [49]. As such, scaffolds designed with a higher porosity may not be 

appropriate for some tissue engineering applications. As such, the porosity and 

degradation of the scaffold need to be considered in the mathematical models developed 

for the cell culture process in a bioreactor. 

In the present research, the existence of the solid phase and its degradation will be 

included in the model development with a focus on the effect of porosity on the mass 

transfer. Also, the environment is considered to be a multiphase one which includes the 

response to both glucose and oxygen. The detailed modeling process of mass transfer in 

the scaffold in a perfusion bioreactor is discussed in a paper documented in Chapter 2 In 

this paper, the effects of porosity, cell culture time and flow rate are considered. 

 

1.2.3 Fluid flow in bioreactors 

With enhanced mass transfer in a perfusion bioreactor due to convection, increased 

shear stress levels can exist on the surfaces of the scaffold. Due to the tiny size and the 

complicated internal structure of the tissue scaffold, it is difficult and expensive to use the 

sensors to measure the surface shear stress on a scaffold strand. However, this knowledge 

of shear stress distribution is crucial for researchers and engineers because it is used to 

identify the shear stress on the cells which can significantly impacts cell distribution and 
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metabolism. 

Originally, scaffolds were treated as impermeable constructs in a development of 

CFD models. Based on simulation results, an improved design of the bioreactor and 

scaffold construct was reported by assuming that the shape of the pore is sphere [29, 

50-52]. The drawback of these studies is that while the shear stress on the external 

surfaces is represented, there is no description of the shear stress at the surfaces of the 

pores inside the scaffold where the cells are actually attached.  

In the following studies, the structure inside the scaffold was taken into consideration. 

For the irregular scaffolds fabricated by conventional fabrication methods, 

micro-computed tomography (μCT) was used to reconstruct a 3-D model from 2-D 

images in the model development [16, 17, 53-55]. However, because of the random 

internal structure, the models established in this way can only describe the shear stress 

magnitude and distribution on the specific areas where the 2-D images are taken. 

Moreover, for a different scaffold, a new model has to be established through the use of 

μCT reconstruction. 

Another strategy to deal with the irregular internal structure is to limit the study to the 

specific pores in the scaffold and in this way, the irregular pores can be treated as the 

regular ones [56, 57]. Computer aided design methods can be used to establish geometric 

models of these specific pores, referred as to as the region of interest (ROI). To avoid 

imposing boundary conditions directly on the ROI, Boschetti et al. [56-58] included the 

neighbor cells of the ROI in their research and developed a model to study flow inside a 
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scaffold in a perfusion system. For such models, details of the shear stress magnitude and 

distribution can be captured with the use of defined numerical meshes. However, the 

accuracy of the simulation becomes questionable due to the following two reasons. 

Firstly, the model geometry itself is an approximation of the realistic scaffold pores 

which appeared randomly in fabrication process. Secondly, applying the boundary 

conditions on the neighboring cells is an acceptable approach for the unit in the center of 

the scaffolds. However, it is not accurate for the pores near the surfaces or for the 

scaffolds within which the flow field varies significantly. An example of the latter 

situation is a scaffold which has a small scale in one dimension, where the boundary 

conditions for cells in different locations vary dramatically. As a result, this method may 

not be reliable. 

For the scaffolds with a regular internal structure, the models can be developed by 

means of the computer aided design method. Singh et al. [59, 60] utilized commercial 

CFD software to create models of such scaffolds in bioreactors and studied the influence 

of mechanical stimuli on the velocity and shear stress distribution. Unfortunately, their 

studies are limited to non-perfusion bioreactors.  

From the discussion above, it can be seen that models representative of the complete 

scaffolds are needed to study the fluid flow and shear stress distribution. This is of 

particularly significance for regular scaffolds fabricated by means of SFF RP fabrication 

techniques.   
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1.3 Objectives 

    The aim of this research work is to carry out a comprehensive study on the 

scaffold-based cell culture process in perfusion bioreactors using CFD. The two research 

objectives to be achieved in this research are presented below, along with the methods 

used. 

The first objective is to develop a model to represent the mass transfer process in the 

tissue scaffolds in perfusion bioreactors. For this, a mass transfer model will be developed 

by taking into account scaffold degradation and cell response to both glucose and oxygen. 

Based on the developed models, the effect of porosity, culture time and flow rate on the 

mass transfer will be studied and examined. 

   The second objective is to develop a CFD model to represent the fluid flow through the 

scaffolds in perfusion bioreactors and to provide quantitative information of the velocity 

and shear stress distribution within the scaffold. By taking advantage of commercial 

software, simulations are to be carried out to determine the shear stress distribution over 

the scaffold surfaces. The effect of parameters which can be controlled in the scaffold 

fabrication process and cell culture process, such as the diameter of the strand, the 

horizontal span between the two strands and the flow rate, are also to be investigated. 

  

1.4 Thesis organizations 

In this thesis, the study of mass transport and fluid flow in tissue scaffold in perfusion 

bioreactors is carried out using numerical methods. The layout of the thesis consists of 
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four chapters that include two journal manuscripts. The present chapter introduces the 

research background, literature review and objectives. Chapters two and three contain the 

two journal manuscripts that address the two objectives of the thesis as follows. Chapter 

two presents the model development for mass transfer in tissue scaffolds cultured in 

bioreactors. Chapter three presents a numerical study on the flow field and shear stress 

within the scaffold cultured in perfusion bioreactor based on commercial software. 

Chapter four presents the conclusions that are drawn from the present study and a 

discussion of future work. An explanation of some of the technical terms used in tissue 

engineering is presented in Appendix A.  

The journal manuscripts included in Chapter 2 and Chapter 3 are co-authored by Xin 

Yan, Prof. Bergstrom and Prof. Chen. All of the research work documented in the 

manuscripts was performed by Xin Yan with Prof. Bergstrom and Prof. Chen providing 

some technical guidance and advice. The first draft of each manuscript was also written 

by Xin Yan. 
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Submitted as 

X. Yan, D. J. Bergstrom, and X. B. Chen, Modeling of cell cultures in perfusion 

bioreactors, IEEE Transactions on Biomedical Engineering, 2011 

 

 

Contribution of this Chapter to the Thesis 

   The research work presented in this chapter aims at achieving the first objective of the 

thesis. More specifically, the chapter addresses the model development for mass transfer 

within the scaffold in a perfusion bioreactor. The effect of porosity and flow rate are 

investigated. 
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ABSTRACT 

 Cultivating cells and tissue in bioreactors is a critical step to forming artificial organs or 

tissues prior to transplantation. Among various bioreactors, the perfusion bioreactor is 

known for its enhanced convection through the cell-scaffold constructs. Due to the intrinsic 

complexity of biological systems, knowledge of the mass transfer process is required for 

better moderating cell culture in vitro. In this research, a novel mathematical model is 

developed to describe nutrient transport and cell growth in a three-dimensional scaffold 

cultivated in a perfusion bioreactor. Numerical methods are employed to solve the model 

equations, with a focus on identifying the effect on cell cultures of such factors as porosity, 

culturing time, and flow rate, which are controllable in the scaffold fabrication and 

culturing process. To validate the new model, the results from the model simulations were 

compared to experimental data reported in the literature. With the validated model, further 

simulations were carried out to investigate the glucose and oxygen distributions and the 

cell growth within the cell-scaffold construct in a perfusion bioreactor, thus providing 

additional insight into the cell culture process.  
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NOMENCLATURE 

〈Cg〉
c 

〈Cg〉
f 

〈Co〉
  

Dc 

Dcell 

Deffcell 

Df 

Dgeff
  

Dgeffm
  

Do 

Doeff 

Doeffm
  

dd 

K eq 

Kgm 

Kom 

Rd 

Rg 

average glucose concentration in cell phase, kg/m
3
 

average glucose concentration in fluid phase, kg/m
3
 

average oxygen concentration in fluid phase, mol/m
3
 

molecular diffusivity of glucose in cell phase, m
2
/s 

cell diffusivity (random walk coefficient), m
2
/s 

effective cell diffusivity, m
2
/s

 

molecular diffusivity of glucose in fluid phase, m
2
/s            

effective glucose diffusivity in the tissue scaffold, m
2
/s 

effective diffusivity of glucose in the fluid and cell phase, m
2
/s 

molecular diffusivity of oxygen, m
2
/s 

effective diffusivity of the oxygen in the tissue scaffold, m
2
/s 

effective diffusivity of oxygen in the fluid and cell phases, m
2
/s 

diameter of the inlet, m 

equilibrium coefficient 

saturation coefficient of glucose, kg/m
3
 

saturation coefficient of oxygen, mol/m        

cell death rate, 1/s 

cell growth rate, 1/s 
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Rgm 

Rom 

uD 

Vc 

Vf 

〈v〉f 

 

maximum glucose metabolic rate, kg/(m
3·s) 

maximum oxygen metabolic rate, mol/( m
3
·s) 

Darcy velocity, m/s 

cell phase volume, m
3
 

fluid phase volume, m
3
 

average medium velocity, m/s 

Greek Symbols 

𝜀𝑐 

𝜀𝑓 

𝜀𝑜 

𝜇𝑚𝑎𝑥 

𝜌𝑐𝑒𝑙𝑙 

𝜎 

𝜏 

 

          

cell volume fraction 

fluid volume fraction 

initial porosity 

maximum cell growth rate, 1/s   

single cell mass density, kg/m
3 

degradation rate, s 

tortuosity of the scaffold 

          

           

2.1 Introduction 

Tissue engineering is an interdisciplinary field that applies the principles of 

engineering and life sciences to provide new solutions to tissue loss, replacement or 

restoration of tissue, or organ function with scaffold constructs that contain specific 
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populations of living cells [1]. By providing a favorable environment with controlled 

mechanical and chemical stimuli, bioreactors play an important role in the in vitro 

experiments of cell-based tissue engineering. The perfusion bioreactor, in which the 

culture medium is controlled to flow through the pores of the scaffold, is superior 

compared to other non-perfusion or static bioreactors by enhancing mass transfer within 

the scaffold. As such, the scaffold in the perfusion bioreactor can obtain adequate nutrient 

supply, timely waste removal, and sufficient gaseous exchange, thus promoting the cell 

growth and proliferation on the scaffold. 

To properly design the cell culture process, it is of paramount importance to obtain 

knowledge of flow and transport phenomena in bioreactors. While experiments have 

shown the advantages of perfusion bioreactors in improving cell seeding and increasing 

nutrient transfer [2-4], mathematical modeling of the cell culture process has proven 

promising to quantitatively describe the complex chemical, mechanical and biological 

mechanisms behind the improvement and at the same time to cast light on further 

experimental design.  

In a bioreactor, the cell-scaffold construct is exposed to a multiphase environment 

which involves a solid phase which is the scaffold frame, a liquid phase which is the 

nutrient solution and a gas phase - such as oxygen - which is necessary for cell 

metabolism. Distinct from other porous media, the tissue scaffold includes one more 

phase, i.e., the cell phase. As such multiphase models are required to represent the cell 

culture process in bioreactors [5].  
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Development of models to represent the mass transport in the scaffolds in bioreactors 

has attracted the attention of numerous researchers. Yu et al. developed a mathematical 

model to describe fluid dynamics and oxygen transport in a micro-bioreactor using the 

finite volume method [6]. However, the cell response was not considered in their study. 

They also used an improved model to examine the influence of cell density and relate it 

to the permeability [7]. Cell response to mass transport and distribution of cells is another 

important phenomenon in a tissue scaffold. It is known that cell growth and distribution 

can be affected by the supply of glucose and oxygen, cell density, pH values, etc. Due to 

the complexity involved, modeling the cell response has proven to be a significant 

challenge. Chung et al. [8] developed a mathematical model to describe cell growth in a 

porous scaffold considering cell mortality, cell growth rate and cell consumption rate of 

nutrients. On this basis, further studies have been carried out to develop a more 

comprehensive transport model by considering convection transfer, treating extracellular 

matrix (ECM) and cells separately, and including the influence of chemotaxis [9-11]. A 

major drawback of these studies is that the porosity of the scaffold is assumed to be 

higher than 95%，and the existence of the scaffold is ignored as well as the degradation of 

the scaffold. It is known that one major function of scaffolds is to provide mechanical 

support for cell attachment and growth. A high porosity (>90%) may provide a greater 

pore volume for cell infiltration and extracellular matrix formation, but may conversely 

decrease the mechanical properties [12]. As such, scaffolds designed with a higher 

porosity may not be appropriate for some tissue engineering applications. Hence, the 
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actual porosity and degradation of the scaffold need to be considered in the mathematical 

models developed for the cell culture process in a bioreactor.  From the aspect of 

scaffold design, a good scaffold design should provide an appropriate channel for nutrient 

transport and a relatively low shear stress environment for cell attachment. The most 

suitable porosity of the scaffold needs to be determined, and then ensured during the 

scaffold fabrication process. Thus, there is a compelling need to study the effect of 

porosity on the cell culture process. 

Oxygen availability throughout the tissue is also of importance in the development of 

tissue-engineered constructs. The oxygen distribution in the tissue scaffolds has been 

shown to vary with time [13]. However, some of the existing studies ignored the mass 

transport of oxygen, or treat it separately without considering the effect of other nutrients. 

This paper presents the development of a novel mathematical model, by taking into 

account the multi-phase mass transfer within a scaffold in a perfusion bioreactor. Based 

on the improved model, simulations were carried out to investigate the effect of 

parameters which are controllable in the scaffold design and fabrication (i.e., scaffold 

porosity) and during the cultivation process (i.e., flow rate) on the cell culture process. 

 

2.2 Model development 

2.2.1 Governing equations 

Consider a scaffold in a perfusion system, as shown in Fig. 1a, with a diameter of 10 
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mm (D) and a height of 3 mm (H). The local volume average (LVA) theory was adopted 

for the model development, by which the average properties in each representative 

elemental volume (REV) of characteristic length (ℓ) are considered instead of the specific 

property at each point [14]. In order to apply the LVA method, the characteristic length 

must be much smaller than the scale of the scaffold (H) and greater than the internal 

structure scale (d). In this research, the length scale of the cell colony (d) varies from 

several nanometers to more than fifty micrometers, and the minimum length in the three 

spatial dimensions (L) is H. Taking 100µm as the characteristic length of a REV, then d < 

ℓ << L , so that the LVA approach is valid.  

In the present study, the following assumptions are made: 1) the cell phase comprises 

both cells and extracellular matrix (ECM) and the difference in the mass diffusivity 

between them is neglected; 2) cells are uniformly seeded on the scaffold before culturing; 

3) the velocity is uniform within the scaffold; 4) the volume of the gas phase is ignored 

since the gas is assumed to be dissolved in solution; 5) once entering the cell phase, 

oxygen is immediately consumed; 6) the tissue scaffold is symmetric about the center 

line such that cylindrical coordinates can be used (Fig. 1b); 7) convection has no 

influence on cell attachment and the cells are only distributed within or on the scaffold; 8) 

convection in the r-direction is ignored; and 9) the glucose transfer across the interface of 

the fluid and cell phases is much faster than diffusion, so that there is an equilibrium 

relationship between the intercellular glucose concentration and extracellular glucose 

concentration. The average properties over the volume of the phase are defined by   
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           〈Cg〉
c =

1

Vc
∫ Cg dV
 

Vc(t)
                       (1) 

                〈Cg〉
f =

1

Vf
∫ Cg dV
 

Vf(t)
                       (2) 

〈Co〉
 =

1

Vf
∫ Co dV
 

Vf(t)
                       (3) 

 

where 〈Cg〉
c is the average glucose concentration in the cell phase; 〈Cg〉

f is the average 

glucose concentration in the fluid phase; and 〈Co〉 is the average oxygen concentration 

in the fluid phase. Vc and Vf are the phase volume of cell phase and fluid phase, 

respectively.  

 

               

                        a                                 b 

Fig. 1.  a) schematic of a perfusion system, and b) solution domain with center line 

and boundary surfaces labeled.  

 

Glucose is the primary energy source for cell metabolism and appears in both the cell 

phase and fluid phase. The continuity equation for glucose includes diffusive transport in 

both phases and is governed by  
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∂

∂t
[εc〈Cg〉

c+εf〈Cg〉
f] + 〈v〉f

∂[εf〈Cg〉
f]

∂y
=

1

r

∂

∂r
(Dgeff

 r 
∂〈Cg〉

f

∂r
) +

∂

∂y
(Dgeff

 

 

∂〈Cg〉
f

∂y
) − S1   (4) 

 

According to Assumption 9, 〈Cg〉
f and 〈Cg〉

c in the above equation can be related by 

〈Cg〉
c =  K eq〈Cg〉

f, in which K eq is the equilibrium coefficient. In Equation (4), εc and 

εf are the volume fraction of the cell and fluid phases and are defined by εf =
Vf

V
 and 

εc =
Vc

V
, respectively. It is noted that εf + εc = ε , where ε is the total volume fraction of 

cell and fluid. Due to the degradation of the scaffold frame with time, the value of ε is not 

constant, but increases during the cell culture process. 

Let the initial porosity of the scaffold is denoted by εo  and assume that the 

degradation of the scaffold is described by ε = 1 − (1 − εo)ℯ
−
t

σ  based on a previous 

study [15]. In this equation, σ is the degradation coefficient. Fig. 2, for example, shows 

the degradation profile and porosity profile of Polyglycolic acid (PGA) in a cell culture 

process (in which σ is degradation coefficient). When t = 0, ε is equal to the initial 

porosity εo, and as t approaches  infinity, ε becomes close to 1, which implies that the 

scaffold has completely degraded.   
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Fig. 2. Solid degradation profile and porosity profile in cell culture process. 

 

In Equation (4),  Dgeff
   is the effective glucose diffusivity in the tissue scaffold, 

which represents the effective diffusivity in the fluid and cell phase modified to 

incorporate the structural effects of the tissue scaffold [16]. The effective diffusivity in 

the fluid and cell phases (Dgeffm
 ) depends on the cell and fluid phase properties, and the 

equilibrium constant. The relationship between the effective diffusivity in the fluid and 

cell phase and the effective diffusivity in the scaffold is given by: 

 

 Dgeff
 =

Dgeffm
 ∙ε

τ
                            (5) 

 

where Dgeffm
  is evaluated from the Maxwell formula [17], i.e., 

Dgeffm
 = Df

3α−2(εf/ε )(α−1)

3+(εf/ε )(α−1)
, where α =

KeqDc

Df
 , and  Df  and  Dc are the molecular 

diffusivities of glucose in the fluid phase and cell phase, respectively. In Equation (5), τ  
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is the tortuosity of the scaffold which can be modeled as a function of the porosity ε [18], 

i.e., τ =
(2−ε)2

ε
. In this way, the effect of the solid frame on the diffusivity is included in 

the model through the porosity ε and tortuosity τ.   

In Equation (4),  S1  is a term to describe the consumption of glucose as given by 

the Michaelis-Menten kinetics [9], i.e., S1 =
Rgm〈Cg〉

f
 

Kgm+〈Cg〉f
εc , where Kgm is the saturation 

coefficient of glucose and Rgm is the maximum glucose metabolic rate.  

The gas phase, oxygen, is also included in the model, and the transport of oxygen is 

governed by  

 

  
∂

∂t
〈Co〉

 + 〈v〉f
∂〈C 〉

∂y
=

1

r

∂

∂r
(Doeff

 r 
∂〈C 〉

 

∂r
) +

∂

∂y
(Doeff

 
 

∂〈C 〉
 

∂y
) − S2         (6)                                                           

 

In the above equation, Doeff  is the effective diffusivity of the oxygen in the tissue 

scaffold, which is related to the diffusivities of oxygen in the fluid and cell phase by the 

expression, 

 

 Doeff
 =

D effm
 ∙ε

τ
.                          (7) 

 

Here Doeffm
  is the effective diffusivity in the fluid and the cell phases which can be 

calculated from Doeffm
 =

D ∗2(1−εc/ε )

2+εc/ε 
 [17], and Do  is the molecular diffusivity of 

oxygen in the medium. The effective diffusivities of both glucose and oxygen in the fluid 

and cell phase are evaluated from the Maxwell formula. The difference in the way these 
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two terms are calculated is due to their respective transport characteristics in the fluid and 

cell phase. For glucose, the mass transfer across the interface of the fluid phase and cell 

phase is much faster than diffusion (Assumption 9). However, for oxygen, it is assumed 

that the extracellular transport is faster then trans-membrane transport [17].  

In Equation (6), S2 is used to represent the cell consumption of oxygen and is also 

specified by the Michaelis-Menten kinetics: S2 =
R m〈C 〉

 
 

K m+〈C 〉 
εc  in which Rom  is the 

maximum oxygen metabolic rate and Kom  is the saturation coefficient of oxygen. 

Similar to the glucose conservation equation, via the diffusivity and source terms, the 

conservation of oxygen is coupled to mass conservation of cells.  

In both Equation (4) and Equation (6), the second term on the left is the convection 

term where 〈v〉f is the Darcy velocity (〈v〉f = uD), which can be calculated from the 

flow rate, i.e., uD =
4Q

πdd
2. Here dd is the inlet diameter, which equals to 10 mm for the 

bioreactor considered in the present study. The flow rate is a controllable parameter for 

culturing in perfusion bioreactors.  

Cell proliferation and migration are affected by both oxygen and glucose. The 

conservation of cells is governed by 

 
∂εc

∂t
=

1

r

∂

∂r
(Deffcellr

∂εc

∂r
) +

∂

∂y
(Deffcell

∂εc

∂y
) + [Rg − Rd]εc        (8) 

 

where Deffcell is the effective cell diffusivity and Deffcell =
Dcell∙ε

τ
, where Dcell is the 

cell diffusivity, which can be represented using a random walk model [19]; Rg is the cell 

growth rate, which is mediated by both glucose and oxygen concentrations as 
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        Rg = μmax ∙
〈C 〉

Kcρcellεc+〈C 〉
∙

〈Cg〉
f

Keq
−1Kcρcellεc+〈Cg〉

f               (9)  

 

where μmax is the maximum cell growth rate; and Rd in Equation (8) is the dying rate 

of cells used to describe cell apoptosis. 

In Equation (9), the second part on the right side describes oxygen regulation using 

Contois kinetics while the last part, glucose regulation, is a modified Contois kinetics for 

cell growth [20, 21] 

 

2.2.2   Boundary conditions and initial conditions 

As shown in Fig. 1b, surface 1 is the inlet and surface 2 is the outlet. The scaffold is 

symmetric about the center line, implying use of symmetric boundary conditions for 

surface 3.  Surface 4 is the lateral external face of the scaffold and the nutrients are 

diffused through this surface. The concentrations of glucose and oxygen are fixed at their 

supply values at this surface, and according to Assumption 7, cells are confined in the 

space enclosed by this surface. Homogeneous cell seeding is assumed to have resulted in 

an initial cell volume fraction of 0.00868 [22] prior to the culturing process, and initially 

there is no oxygen and glucose inside the scaffold. The mathematical statement of the 

boundary and initial conditions is given in Table 1. 
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Table 1. Boundary and initial conditions 

Surface 〈Cg〉
f 〈Co〉 εc 

1 〈Cg〉
f = Cglu 〈Co〉 = Coxy 

∂εc

∂r
= 0   

2 
∂〈Cg〉

f

∂y
= 0   

∂〈C 〉

∂y
= 0  

∂εc

∂y
= 0  

3 ∂〈Cg〉
f

∂r
= 0  〈Co〉 = Coxy   

∂εc

∂r
= 0  

4 〈Cg〉
f = Cglu  〈Co〉 = Coxy 

∂εc

∂r
= 0  

Initial condition 〈Cg〉
f = 0 〈Co〉 = 0 εc = εc0 

 

2.2.3 Computational method and parameter values  

An implicit finite difference method was used to discretize the governing equations. 

MATLAB was used to write an in-house code which solves the discrete equation set using 

the Gauss-Seidel method. The values for the transport coefficients and other model 

parameters were adopted from the literature and listed in Table 2. The culturing solution is 

Eagle's minimal essential medium (DMEM), which is typically used in tissue engineering.  

 

Table 2. Values of main coefficients 

Definition Value Reference 

Glucose diffusivity in fluid phase Df = 1.0 × 10−9m2 s⁄   [20] 

Glucose diffusivity in cell phase DC = 1.0 × 10−10m2 s⁄  [20] 

Equilibrium coefficient Keq = 0.1  [23] 

Cell random walk coefficient DCell = 1.7 × 10−14m2 s⁄  [24] 
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Oxygen diffusivity in fluid phase Do = 3.093 × 10−9m2 s⁄  [25] 

Maximal cell growth rate μmax = 3.7 × 10−6 1 s⁄  [22] 

Cell diameter dcell
 = 2 × 10−5m  [26] 

Maximum glucose consumption 

rate  
Rgm = 8 × 10−3 kg (m3 ∙ s)⁄  [27] 

Saturation coefficient of glucose Kgm = 6.3 × 10−2 kg m3⁄  [28] 

Maximum oxygen consumption 

rate  
Rom = 1.77 × 10−3mol (m3 ∙ s)⁄  [25] 

Saturation coefficient of oxygen Kom = 6 × 10−3mol m3⁄  [25] 

Contois saturation coefficient Kc =  0.154  [9] 

Single cell mass density ρcell = 182kg/m3 [29, 30] 

Cell death rate Rd =3.3×10−7 1 s⁄  [10] 

Degradation constant σ=2098800 s [15] 

  

2.2.4 Numerical solution 

The solution domain as shown in Fig. 1b) was divided into 120 elements in the r direction 

and 90 elements in the y direction. The first element and last element in each coordinate 

direction are fictitious nodes used only to set up the boundary conditions at the exterior 

surfaces. 

 

2.3 Model validation 

The average cell volume fraction was simulated with the developed model and 

aforementioned method. This simulation was carried out under the same conditions as the 
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experiments reported in [22], in which Freed et al. investigated the growth kinetics of 

chondrocytes in polymer implants with different thicknesses. The simulation results are 

presented in Fig. 3, along with the experimental data reported in [22] for comparison. Freed 

et al. did the experiment with different scaffold heights; the red triangle with the error bar is 

the experimental data for the scaffold with the height of 0.307 cm. Similarly, the purple 

triangle with the error bar and the brown triangle with the error bar are the data for the 

scaffold with heights of 0.168 cm and 0.116 cm, respectively. Based on the experimental 

data, the average cell volume fraction kept increasing during most of the culture time, 

however, at the end of the experiment, the growth rate is reduced and even becomes 

negative which means that the cell volume decreased somewhat. Overall, the simulation 

results agree with the experimental results. The blue line which is the simulation for the 

scaffold with the height of 0.307 cm agrees well with the experimental data during most of 

the culture time except the final period.  For different scaffold heights, the simulation 

model captures the main feature of the experimental results as given by the green line 

(scaffold height of 0.168) and the sky blue line (scaffold height of 0.116). The difference 

between the simulation and experiment is caused by the influence of such factors as 

collagen, which was not included in the present model but was measured in the experiment. 

The experimental results indicate that the collagen played a dual role in cell growth, as a 

promoter when it was first secreted by the cells and as an inhibitor when collagen gradually 

increases in amount [31, 32].  Another possible reason for the discrepancy between the 

simulation and experimental results in the final period may be the role of oxygen, since the 
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oxygen concentration in the cell culture was not documented in Freed’s study [22].   

   

Fig. 3.  Comparison of cell volume fraction between the model predictions and the 

data reported in [15]. 

 

2.4 Simulation results and discussion 

With the validated model, additional simulations were carried out, in which the 

scaffold was assumed to have an initial porosity of 80%, and then due to degradation 

increase to 94.17% by the end of test period (720 hours).  In this case, the culturing 

solution was DMEM with a constant glucose concentration of 4.5 kg/m
3
 and oxygen 

concentration of 0.119 mol/ m
3
. The results of mass transfer at the end of the test period are 

shown in Fig. 4. The effects of perfusion can be clearly seen with strong convective mass 

transfer along the y-direction, resulting in a high concentration of oxygen (Fig. 4a) and 

glucose (same trend as oxygen, not shown) at the inlet, and a high cell volume fraction (Fig. 
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4b) in the same region. Note that Fig. 4a also shows a steep gradient near the outer lateral 

surface (r = 0.005 m), suggesting that diffusion is also an important transport mechanism 

within the scaffold. Finally, the cell volume fraction drops significantly near the outlet, 

which agrees with the effect of the lower glucose and oxygen concentrations.     

                     

                      

Fig. 4. Oxygen concentration (a) and cell volume fraction (b) distribution for a 

scaffold in perfusion bioreactor after 720 hours.  

 

   The average glucose concentration and average cell volume fraction within the scaffold, 

simulated by the model as a function of time, are shown in Fig. 5. The average quantities 

a 

b 
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are obtained by averaging each property over the entire construct. The glucose 

concentration (blue line) initially increased at the beginning of culturing until it reached a 

maximum value, and then decreased slowly due to the increase in cell volume fraction (red 

line).   

 

Fig. 5. Variation of glucose concentration and cell volume fraction with time over test 

period. 

 

As mentioned previously, cell culture is a time-dependent process: the details are shown 

in Fig. 6. The data is for the center line location (i.e., the red dashed line in Fig. 1b) of the 

scaffold. In Fig. 6a, the initial glucose concentration in the scaffold is zero. Due to the 

strong convection along the y-direction, the area near the inlet reaches almost the same 

concentration as the exterior medium. The glucose concentration keeps increasing along 

the center line until around 360 hours and at this time the glucose concentration is almost 

uniform. However, after 480 hours, the glucose concentration begins to decrease with time 
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and a possible reason is the increase in the cell numbers (cell volume fraction show in Fig. 

6c) and corresponding glucose consumption. The oxygen concentration which is shown in 

Fig. 6b behaves somewhat differently. Similar to the inchoate period of the glucose 

concentration, the oxygen concentration increases over time. Turning attention to the cell 

volume fraction (Fig. 6c), originally, it is uniform with a value of 0.00868. As cell culturing 

proceeds, the cell volume fraction increases in the area near the inlet because of the 

relatively abundant nutrient supply; conversely, at the area near the outlet, the cell volume 

fraction decreases. After around 480 hours, strong convection brings the nutrients, 

especially the oxygen, throughout the scaffold, and the cells all across the scaffold begin to 

proliferate dramatically. For the case considered in the simulation, the oxygen supply is the 

main restriction for cell culture.  

      
a 
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Fig. 6. Temporal variation of glucose concentration (a), oxygen concentration (b) and 

cell volume fraction (c) along the center line. 

 

Recall that in the present simulation, the scaffold porosity increased in time due to the 

scaffold material degradation. For a variation in the porosity from 30% to 97%, the 

effective diffusivities of glucose, oxygen and cells (cell random walk coefficient), are 

affected significantly, as shown in Fig. 7. For the effective glucose diffusivity (Fig. 7a) and 

b 

c 
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effective oxygen diffusivity (same trend as glucose, not shown), the increase in porosity 

(which means more space for the fluid medium) has a significant effect. Even for the same 

porosity, take the case of 30% initial porosity as an example (pink line), when the solid 

frame degrades over time, the porosity increases as shown in Fig. 2, and the corresponding 

effective diffusivity increases as well. In contrast to the effective glucose/oxygen 

diffusivities, the effective cell diffusivity (Fig. 7b) reduces with the increase in porosity. 

The probable reason for this interesting phenomenon is that the reduced solid frame 

provides less surface area for cells to attach. For a given initial porosity value, the effective 

cell diffusivity decreases as the solid frame degrades with the elapse of time. Note that the 

effective cell diffusivity in Fig. 7b is represented by a logarithmic scale, so that the 

difference between 97% porosity and 30% porosity is almost 1000 times. Such a dramatic 

variation in properties indicates that the effect of porosity on diffusivity cannot be ignored.   

     
a 
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Fig.7. (a) Variation of effective glucose diffusivity with time for different porosities; 

(b) Variation of effective cell diffusivity variation with time for different porosities 

(the values are bulk values at any instant of time).   

 

The temporal variation of the glucose concentration during the cell culture process as a 

function of porosity is shown in Fig. 8a, while the variation of the oxygen concentration is 

given in Fig. 8b. The corresponding cell volume fraction is presented in Fig. 8c. It is 

interesting to note in Fig. 8a that the lower porosity gave a higher average concentration of 

the glucose in the scaffold up until approximately 600 hours. Thereafter, the concentration 

of glucose in the scaffold with the higher porosity is slightly higher than for the scaffold 

with the lower porosity. For oxygen, the behavior is similar, except that the peak 

concentration is not reached within the test period for porosities of 70% or greater.  One 

possible explanation for this behavior is that as the porosity increases, the time required to 

b 
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saturate the water within the scaffold with the nutrient component increases.  The cell 

volume fraction showed similar behavior with respect to porosity: with an increase in 

porosity, the cell volume fraction decreased. Note that in Fig. 8, the maximum difference 

due to porosity (i.e., the maximum difference between the parameter value for 97% 

porosity and the value for 30%, normalized by the variation of parameter value over the 

whole scaffold) is 86.75% for the glucose concentration, 71.76% for the oxygen 

concentration and 44.28% for the cell volume fraction. This suggests that the influence of 

the solid frame is important and should be considered in model development, especially for 

the scaffolds with lower porosities (70% or less). 

 
a 
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Fig. 8. Variation of glucose concentration (a), oxygen concentration and (b) cell 

volume fraction (c) with time for different porosities (the values are bulk values at 

any instant of time). 

Finally, the flow rate is an important parameter to modulate the cell culture process in a 

bioreactor. Fig. 9 shows the variation of nutrient concentration and cell volume fraction 

along the center line for three different flow rates, i.e., 0.05ml/min, 0.10ml/min, and 0.15 

ml/min. It is seen that both the glucose and oxygen concentrations increase with flow rate 

(Fig. 9a), which leads to a more uniform distribution of cell volume fraction as shown in 

b 

c 
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Fig. 9b. On the other hand, any substantial increase in flow rate may also cause large shear 

stresses within the scaffold, which may in turn wash out the attached cells, influence the 

cellular metabolism, and even cause physical damage to the cells. Thus, the optimal flow 

condition should provide a compromise between enhanced mass transfer and sufficiently 

low shear stress. This issue is currently being pursued by the authors.  

       

           

Fig. 9. Effect of flow rate on glucose concentration (solid line) and oxygen 

concentration (dash line) (a), and cell volume fraction (b) for scaffold in perfusion 

bioreactor after 720 hours. 

a 

b 
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2.5 Conclusions 

This paper reports on the development of a novel mathematical model to describe mass 

transfer in tissue scaffolds cultured in a perfusion bioreactor, by taking into account mass 

transfer and scaffold degradation. The model was validated using data extracted from the 

literature. Simulations were then carried out for cell culture typically taking place in a 

perfusion bioreactor. The results demonstrate that perfusion bioreactors with enhanced 

convection transport can increase mass transfer rates inside the tissue scaffold. The results 

also show that the nutrient concentration and cell volume fraction are time dependent, but 

in different fashions. Specifically, in contrast to the steady increase in cell volume fraction 

over the test period, a peak or maximum value appears in the profile of the nutrient 

concentration. The effects of controllable factors in scaffold fabrication and cell culturing 

were also investigated using the numerical model. It was found that an increase in porosity 

can reduce the inhibiting effect of the solid scaffold on nutrient transport represented by an 

increase in the nutrient effective diffusivity. In addition, increasing the flow rate can 

enhance convection, thus promoting a more uniform distribution of both nutrient 

concentration and cell volume fraction. The contribution of this research pertains to the use 

of a comprehensive model to explore and explain the complex temporal transport in a 

perfusion bioreactor. The knowledge obtained based on the model simulations provides 

insight into the cell culture process, which would not be possible to obtain from 

experiments. This insight can be used to significantly improve the design of in vitro cell 



53 
 

culture. 
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CHAPTER 3 

MODELING OF THE FLOW WITHIN SCAFFOLDS IN PERFUSION 

BIOREACTORS 
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Contribution of this Chapter to the Thesis 

   The research work presented in this chapter aims at achieving the second objective 

of the thesis. More specifically, the chapter addresses the model development for fluid flow 

within scaffolds in perfusion bioreactors. The effect of the diameter of the strand, the 

horizontal span and the flow rate are investigated.  
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ABSTRACT 

Tissue engineering aims to produce artificial organs and tissues for transplant 

treatments, in which cultivating cells on scaffolds in bioreactors is of critical importance. 

To control the cultivating process, the knowledge of the fluid flow inside and around a 

scaffold in the bioreactor is essential. However, due to the complicated microstructure of 

a scaffold, it is difficult, or even impossible, to gain such knowledge experimentally. In 

contrast, numerical methods employing computational fluid dynamics (CFD) have 

proven promising to alleviate the problem. In this research the fluid flow in perfusion 

bioreactors is studied with numerical methods. The emphasis is on investigating the effect 

of the controllable parameters in both the scaffold fabrication (i.e., the diameter of 

scaffold strand and the distance between two strands) and cell culture process (i.e., the 

flow rate) on the distribution of shear stress within the scaffold in a perfusion bioreactor. 

The knowledge obtained in this study will allow for improved control strategies in 

scaffold fabrication and cell culturing experiments. 
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NOMENCLATURE 

D 

hxy 

hz 

Q 

Y 

 

strand diameter, mm 

horizontal distance, mm 

vertical pore size, mm 

flow rate, mL/min 

horizontal span, mm 

 

Greek Symbol

ε 

τe      

porosity 

elastic limit stress, Pa 

 

3.1 Introduction 

Tissue engineering is an emerging field with the aim of repairing or creating new 

tissues. It is evident that the scaffold plays a critical role in forming the required 

constructs in a bioreactor [1]. In bioreactors, biological and biochemical processes occur 

under closely monitored and tightly controlled environmental or operating conditions. As 

such, bioreactors play a significant role in the in vitro experiments of cell-based tissue 

engineering [2]. The perfusion bioreactor, in which the culture medium continuously 

flows through the pores of the scaffold, is superior compared to other bioreactors (e.g. the 

spinner flask bioreactor and the rotating wall vessel bioreactor) since mass transfer is 
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enhanced within the scaffold. The scaffold in a perfusion bioreactor can have  adequate 

nutrient supply, timely waste removal, and sufficient gaseous exchange, thus promoting 

cell growth and proliferation within the scaffold [3]. However, increased flow rates can 

create large shear stresses on the scaffold strands, which can in turn wash away the 

attached cells, adversely influence the cellular metabolism, and even damage the cells. It 

is noted in the literature [4, 5] that a moderate shear stress is highly beneficial to the 

formation of glycosaminoglycan (GAG) and thus cartilage tissues. Therefore, a 

compromise between the mass transfer and the shear stress must be made in the cell 

culture for a given application.  

   Due to the lack of adequate sensors, it is difficult, even impossible, to measure the 

local shear stress distribution within a scaffold [6]. Computational fluid dynamics (CFD) 

shows promise in solving this problem. CFD has been widely used in various fields 

because it often requires less time and fewer resources than experiments. In tissue 

engineering, CFD has recently shown promise in visualizing the flow phenomena within 

bioreactors, thus providing the detailed information and insight, which would be difficult 

to gain by experiments.  

   The local volume average approach is one method to evaluate the average shear 

stress in a porous media, for which specific mathematical models are required [6]. The 

limitation of this method is that only the averaged shear stress, rather than its distribution, 

can be obtained. To overcome this limitation, various approaches have been developed 

and reported in the literature, though at their early stage. In the earliest studies, scaffolds 
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were treated as impermeable constructs in the development of CFD models. Based on 

simulation results, improved designs for bioreactors and scaffold constructs were reported 

[7-10]. In subsequent studies, the scaffold structure was taken into consideration. For 

scaffolds with irregular structures such as those fabricated by means of conventional 

fabrication methods, micro-computed tomography (μCT) was used to create 

3-dimensional (3D) geometric models [3, 11-13]. In addition to μCT, another method to 

deal with irregular geometry is to treat the inner structure as a repetitive pattern of units 

by means of computer-aided-design (CAD) methods. The shear stress distribution in such 

a unit has been studied with the identified effect of pore size and porosity on it [6, 11, 14]. 

In these studies, the scaffolds with irregular internal structures were simplified for the 

model development, thus contributing to the errors in the following simulation. Currently, 

scaffolds manufactured by rapid prototyping (RP) techniques have shown promising in 

various tissue engineering applications due to their controllable microstructure [15, 16] 

For such scaffolds, the structure is regular and the geometry can be readily modelled by 

CAD methods. Singh et al. [17, 18] utilized commercial CFD software to create models 

of such scaffolds in bioreactors and studied the influence of mechanical stimuli on the 

velocity and shear stress distribution. Unfortunately, their studies were limited to 

non-perfusion bioreactors. 

In this research, a cylindrical section of a regular scaffold structure, fabricated 

through the RP technique, is modelled under both perfusion and non-perfusion situations. 

This study specifically focuses on the flow field within the scaffold and the influence on 
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the wall shear stress distribution of the controllable parameters in scaffold fabrication and 

cell culture process. 

  

3.2 Methodology 

3.2.1 Bioreactor configuration 

Both the perfusion and non-perfusion bioreactors considered in this study are shown 

schematically in Fig. 1, with the difference in the inlet and outlet locations. A cell seeded 

tissue scaffold is placed between the two struts and the chamber allows for circulation of 

the fluid medium. A perfusion system occurs when the inlet flow comes directly through 

the channel inside the struts and enters the bottom surface of the scaffold (Fig.1 (a)). A 

non-perfusion system occurs when the inlet is located at the wall of the chamber (Fig. 

1(b)). In the present study, the inlet diameter is 10 mm and the height, length and width of 

the chamber are 140, 50 and 50 mm, respectively. Taking advantage of the symmetry of 

the chamber, only one-fourth of the bioreactor chamber is modeled to reduce the 

computational time. 
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           a                                             b         

    Fig. 1 Schematic of bioreactors: (a) perfusion bioreactor, and (b) non-perfusion 

bioreactor. 

 

3.2.2 Scaffold used for model development   

The scaffold for the model development which can be fabricated through RP 

techniques is shown in Fig. 2; the strand diameter (D) and the horizontal span (Y) are 

controllable during the scaffold fabrication [16]. Also shown in Fig. 2 are the distance 

between two adjacent horizontal (hxy) and vertical (hz) strands, which together represent 

the pore size.  While both the vertical pore size (hz) and the horizontal distance (hxy) are 

associated with the strand diameter (D) and the horizontal span (Y), respectively, the 

vertical pore size (hz) is also affected by the scaffold material properties due to the fusion 
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of the two strands. Based on previous research in our group [16], the vertical pore size (hz) 

is determined by the diameter of the strand (D), the density of the scaffold material (ρ), 

the elastic limit stress (τe), the horizontal span (Y) and the angle between the two layers 

(θ) (Fig. 2). The approximate relationship can be described as follows: 

hz = D ∙ √1 −
ρgY

2τe
∙ sin θ 

   The values of the density (ρ) and elastic limit stress (τe) are different for different 

scaffold materials. In the present study, a chitosan solution with 40% hyroxylapatite (HA) 

gel (40g HA in 100 mL water) is assumed to be used for the scaffold fabrication and its 

elastic limit stress (τe) is 11.0 Pa as identified in [16]. In the present study, the strand 

diameter D was varied from 0.2 to 0.4 mm, while the horizontal span Y was varied from 

0.5 to 0.9 mm. The corresponding vertical pore sizes are given in Table 1. With this 

information, the geometric model was constructed in SOLIDWORKS. From the 

geometric model, the porosity, which is defined as the ratio of the void volume to the 

total volume, was calculated for each scaffold. The calculated porosity values are also 

listed in Table 1. 

  

[1] 
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Fig. 2. Geometric parameters for tissue scaffold. 

 

 

Table 1. Pore size, hz, and porosity, ε, for different scaffolds  

 

Horizontal Span, Y (mm) 

  

Strand Diameter, D (mm) 

0.2 0.3 0.4 

hz (mm) ε (%) hz (mm) ε (%) hz (mm) ε (%) 

0.5 0.179 66.9 0.268 49.9 0.358 34.0 

0.7 0.170 75.8 0.255 63.9 0.340 51.7 

0.9 0.160 80.6 0.240 71.3 0.320 61.2 

 

3.2.3 Computational method  

    When a tissue scaffold is submerged in the fluid environment within a perfusion 

reactor, the fluid not only flows around the outside of the scaffold but also within the 

scaffold itself. The fluid deformation then results in the development of fluid stresses: of 

specific interest in this study are the shear stresses exerted on the surface of the strands of 

the scaffold. The model geometry created in SOLIDWORKS was imported into the 

commercial CFD package ANSYS-CFX, which was used to solve the Navier-Stokes 

equations to determine the velocity field and also the shear stress exerted on the scaffolds. 

In this case, the flow was treated as three-dimensional, incompressible flow of a 

Newtonian fluid. 

   CFX-Mesh as used to create three unstructured meshes with 284681, 622261 and 

1142781 elements, respectively. The difference in the calculated maximum wall shear 

stresses between the last two meshes was approximately 1.5%. Therefore, the mesh with 

622261 elements, shown in Fig 3(b), was assumed to be fine enough to accurately 
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determine the flow field. The simulation used a non-uniform unstructured mesh or grid in 

which the element size was varied for different parts of the bioreactor.  Local grid 

refinement was used to resolve the tissue scaffold geometry, as shown in Fig. 3(c). Near 

the scaffold surface, the grid size ranged from 0.1 to 0.15 mm, while the maximum grid 

length near the wall of the bioreactor chamber was 7 mm. 

 

 

 Fig. 3 a) Geometric model, b) mesh, and c) refined mesh around tissue scaffold. 

 

3.2.4 Boundary conditions  

As shown previously in Fig.1 (a), for a perfusion bioreactor, the fluid enters the 
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scaffold through the bottom strut. A constant mass flow rate boundary condition was 

specified at an inlet section located upstream of the scaffold within the supporting strut. 

In this way, the flow can develop within the channel inside the channel to simulate the 

actual experimental condition. Note that the internal flow can connect with the fluid 

outside the scaffold through the open channels of the scaffold, and in this way, the 

internal fluid creates a small disturbance in the fluid contained in the bioreactor. The 

outlet was placed at an exit plane located within the channel inside the strut. In this case, 

the average pressure at the outlet was set to zero. The walls of the chamber the struts and 

the scaffold were assumed to be no-slip, solid walls. 

The simulations were first performed for a scaffold with D = 0.3 mm and Y = 0.7 mm. 

To investigate the effect of flow rate, three different flow rates were considered: 

0.05ml/min, 0.1ml/min and 0.15ml/min. In order to assess the effect of geometry, 

additional simulations explored scaffolds in which the strand diameter (D) and horizontal 

span (Y) were independently varied, as shown in Table 1.   

 

 

3.3 Results and Discussion 

3.3.1 Comparison of flow field for perfusion and non-perfusion bioreactors 

Simulations were initially carried out for a tissue scaffold with a strand diameter of D 

= 0.3 mm and horizontal span of Y = 0.7 mm, for the case of both perfusion and 

non-perfusion bioreactors. Fig. 4 shows the simulation results for the case of the 
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perfusion bioreactor. In this figure, it is seen that the majority of the streamlines go 

through the tissue scaffold, implying that there is strong perfusion inside the scaffold. In 

contrast, Fig. 4(a) shows that there is minimal fluid motion in other areas of the 

bioreactor. As a result, the strong perfusion produces relatively high shear stresses on the 

surfaces of the strands in some regions of the scaffold as shown in Fig.4(c). The shear 

stress typically is larger near the outer edge of the scaffold. This suggests that when 

seeding cells, one strategy might be to seed more cells in the center area of the scaffold to 

avoid the regions of high shear stress created by the perfusion flow. 

 

Fig. 4 Simulation results for the scaffold with D = 0.3 mm and Y = 0.7 mm  in  a 

perfusion bioreactor: a) velocity streamlines in bioreactor, b) velocity streamlines 

around the tissue scaffold, and c) surface shear stress distribution in the scaffold.  
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To better highlight the flow characteristics of a perfusion bioreactor a simulation of 

the same scaffold in the non-perfusion bioreactor, was carried out as shown in Fig. 5.  

Recall that for the non-perfusion bioreactor, the inlet and outlet were located in the wall 

of the bioreactor chamber, as shown in Fig.1 (b). It is seen from Fig. 5(a) that the flow 

occurs throughout the bioreactor. The average velocity in the scaffold area is 5.84×10
-11

 

m/s and the average Reynolds Number based on the diameter of the scaffold strand is 

6.54×10
-8

. For the relatively low velocity levels near the scaffold, the shear stress in Fig. 

5 (b) is almost zero. 

Based on the comparison between Fig. 4 and 5, it is seen that in the perfusion 

bioreactor, the convection and hence mass transfer enhanced, which also results in 

increased levels of shear stress on the internal walls. These results suggest that for cell 

culture, the most suitable bioreactor depends on the specific situation and cell type. For 

example, if the cells require more nutrients and growth factors during the cell culture 

process, the perfusion bioreactor is more effective; however, the non-perfusion bioreactor 

is a safer choice if the cells are especially sensitive to the shear stress level. If the 

perfusion bioreactor is used, then the flow rate must be set to ensure acceptable levels of 

wall shear stress within the scaffold. In this context, the factors which affect the shear 

stress distribution and magnitude are considered in the next section.   
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Fig. 5 Simulation results for the scaffold with D = 0.3 mm and Y = 0.7 mm in a 

non-perfusion bioreactor: a) velocity streamlines, and b) wall shear stress 

distribution in the tissue scaffold. 

 

3.3.2 Flow field within the scaffold in the perfusion bioreactor  

With the help of CFD, the flow field within the internal pores of the scaffold can be 

captured. The average velocity in the scaffold is 3.4768×10
-4

 m/s and the average 

Reynolds Number based on the diameter of the scaffold strand is 1.17×10
-2

. In order to 

illustrate the details of the fluid motion within the scaffold, the velocity fields for 

cross-sections at two different locations were investigated. As shown in Fig.6, section I is 

a b 



71 
 

a plane section through the scaffold strand and represents the flow which is blocked by 

the scaffold strands; section II represents a plane section located between the two lines of 

strands and hence represents the flow which has a direct path through the scaffold 

channel. The simulation results presented below are for the case in which D = 0.3 mm 

and Y = 0.7 mm. 

   

 

Fig. 6The location of the two sections used to visualize the flow. 

 

To visualize the local flow, the velocity vectors in section I and section II are 

presented in Fig. 7 (a) and (b), respectively. Note that small arrows are used to show the 

local flow directions and the colors represent the magnitude. For section I, due to the 
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obstruction of the scaffold strands, fluid is squeezed out near the lateral surfaces of the 

scaffold, especially near the top and bottom of the scaffold, which are also the locations 

of enhanced velocity. Some fluid is observed to exit the scaffold and then re-enter the 

scaffold prior to exiting the outlet channel of the bioreactor located within the strut. For 

section II, the open channel within the scaffold provides a direct passage for the perfused 

medium. The local velocity magnitude is shown by color contours in Fig. 7 (c) and (d) for 

section I and section II, respectively. From these simulation results, it is seen that due to 

the shielding provided by the scaffold strands in section I, the velocity in the area 

between two horizontal strands is relatively low, implying that that this area would be 

suitable for cell attachment. In contrast, from Fig. 7 (d), it is clear that strong perfusion 

exists in the channel between two series of strands, which creates relatively high local 

velocities. Based on a comparison between Fig.7 (c) and (d), the region enclosed by the 

red line in Fig. 7(c) would be a favorable area for cells to adhere due to the lower flow 

velocity levels. When seeding cells, if priority is given to seeding in this area, especially 

on the top and bottom walls of the strands, the cells will have less likelihood to be 

washed out by the perfused medium. 
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Fig. 7 Velocity distribution for two cross-sections at different locations within the 

scaffold: a) velocity vectors in section I, b) velocity vectors  in section II, c) velocity 

magnitude in section I, and d) velocity magnitude in section II. 

 

3.3.3 Wall shear stress within the scaffold in the perfusion bioreactor  

The local wall shear stress within the scaffold can be affected by the scaffold 

geometric parameters including the strand diameter and the horizontal span as well as the 

flow rate of the circulated medium. Numerical simulations were performed for the cases 

presented in Table 1 and the results were compared to illustrate the effect of D and Y on 

a b 

c d 
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the wall shear stress distributions. Fig. 8 presents the discrete probability distribution for 

the magnitude of the wall shear stress for different values of D and Y. From the results, it 

is seen that the level of the wall shear stress values mostly appear in the bin centred on 1 

mPa. With an increase in D (from top to bottom), the distribution tends to extend to 

higher pick values and the mean values also increases. Looking Fig.8 from left to right 

for a given value of D, with an increase in the value of Y, the wall shear stress has 

probability of appearing in the bin centred on 1 mPa. A similar conclusion can be drawn 

from Fig. 9, which shows the dependence of the average surface shear stress for scaffolds 

with different values of D and Y. This suggests that scaffolds with a smaller strand 

diameter can be used in cell culture in a perfusion bioreactor to limit the wall shear stress 

levels within the scaffold. Another summary conclusion is that so long as the mechanical 

strength criterion is satisfied, the horizontal span can be used to adjust the shear stress 

level within the scaffold. Specifically, for a given flow rate, a larger span will result in a 

reduction in the average shear stress level. 
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Fig. 8 Distribution of surface shear stress for scaffold in perfusion bioreactor. 

 Fig. 9 Average shear stress distribution versus D and Y. 
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 Fig. 10 demonstrates the variation of the wall shear stress with the flow rate of 

circulated medium for the scaffold with D = 0.3 mm and Y = 0.7 mm.  The discrete 

distribution function indicates that as the flow rate increases, the  wall shear stress 

values become smaller in magnitude (Fig. 10 (a)-(c)).This results in a decrease in the 

average wall shear stress (Fig. 10 (d)) , which has a linear relationship with volume flow 

rate. The approximate expression in Fig.10 (d) for the dependence of the shear stress 

magnitude on flow rate can be used to select the appropriate operating condition for a 

perfusion bioreactor for the specific scaffold parameters being considered.  

  

Fig.10 Shear stress distribution within scaffolds with different flow rates (Q): a) Q = 

0.05 mL/min, b) Q = 0.10 mL/min, c) Q = 0.15 mL/min, and d) average wall shear 

stress versus Q. 

c d 

b a 

Q=0.05mL/min Q=0.10mL/min 

Q=0.15mL/min 
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3.4 Conclusions 

The fluid flow inside and around a scaffold in a bioreactor is complex. This paper 

reports an investigation into such a flow within scaffolds cultured in both perfusion and 

non-fusion bioreactors. The simulation results demonstrate that the perfusion bioreactor 

provides a strong flow within the tissue scaffold, thus increasing the shear stress on the 

scaffold surface as compared to the non-perfusion bioreactor. The results also show that 

the value of the strand diameter and horizontal span affect the shear stresses on the 

scaffold surface. Generally, with an increase in the diameter, the shear stress level also 

increased; with an increase in the horizontal span, the shear stress decreased. The effect 

of flow rate, a controllable parameter in the cell culture process, was also investigated 

and it was found that the average shear stress level increased linearly with flow rate. 

The knowledge obtained from this research provides insight into the velocity field 

within the scaffold and the corresponding shear stresses that occur during cell culture in a 

perfusion bioreactor. The effects of the controllable factors described here can be used to 

guide future scaffold design, as well as experimental studies. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 

4.1 Summary and conclusions 

This thesis presents a study on the scaffold-based cell culture process using numerical 

methods, with a focus on modeling the mass transport and fluid flow. The main work and 

conclusions of this research are summarized as follows. 

(i) In Chapter 2, a novel mathematical model to describe mass transfer in tissue scaffolds 

cultured in a perfusion bioreactor was developed, by taking into account the mass 

transfer and scaffold degradation. The model was validated using the data extracted 

from the literature. Based on the new model, simulations were carried out for the cell 

culture typically taken place in a perfusion bioreactor. The results demonstrated 

perfusion bioreactors can increase mass transfer within the tissue scaffold due to 

enhanced convection. The nutrient concentration and cell volume fraction are time 

dependent, but in different fashions. The controllable factors during both scaffold 

fabrication and cell culturing, such as porosity and flow rate, have a significant effect 

on the mass transport and cell distribution. It was found that an increase in porosity 

can reduce the inhibiting effect of the solid scaffold on nutrient transport, resulting in 
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an increase in the nutrient effective diffusivity. In addition, increasing the flow rate 

can enhance convection, thus promoting a more uniform distribution of both nutrient 

concentration and cell volume fraction. By means of the model developed, the 

nutrient transport and cell distribution can be predicted quantitatively. 

(ii) Chapter 3 studied the flow within the scaffolds being cultured in both perfusion and 

non-fusion bioreactors by means of commercial CFD software. Also the effects of 

scaffold geometrical properties such as the diameter of the strands and the horizontal 

span, which can be accurately controlled in fabrication process, are investigated with 

the developed model. The results demonstrate that higher shear stress occurs on the 

surface of the scaffold strands in perfusion bioreactors compared to those cultured in 

non-perfusion bioreactors. The results also show that the strand diameter and 

horizontal span have a significant effect on the shear stress distribution within the 

scaffold. Specifically, the magnitude of shear stress increases with the strand diameter, 

while the shear stress is distributed with the lower magnitude as the horizontal span 

increases. The effect of flow rate, a controllable parameter in the cell culture process, 

was also investigated. It was found that the flow rate had a large effect on the 

maximum magnitude of shear stress. Based on the model developed, the shear stress 

magnitude and distribution can be predicted for different scaffolds and culture 

conditions.  
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4.2 Future work 

   To overcome the limitation of the present work, future work would be generally 

carried out from two streams: one stream is to improve the current model developed for 

the scaffold-based cell culture process and the other one is to conduct experiments to 

validate the simulation results.  

    In the present model, scaffold degradation was assumed to be a function of time; 

however, the degradation is also affected by the nutrient concentration, cell distribution, 

and temperature. Thus, the mass conservation equation of the solid frame needs to be 

included in the future research, along with the mass conservation equations of glucose, 

oxygen and cell. Other factors such as temperature and pH value also have an effect on 

mass transport and cell growth, so these factors need to be included in the model 

development.  

   To validate the simulation results from the present research, two types of experiments 

need to be carried out. For the mass transport in tissue scaffolds as presented in Chapter 2, 

one way to validate the simulation is to conduct the corresponding cell culture tests on 

the scaffolds, which are fabricated with the same structure as the one used in simulation 

and seeded with chondrocytes. For the cell culture tests, the medium with the desired 

glucose and oxygen concentration will be perfused through the scaffold under the flow 

rate specified in Chapter 2. The Bose biodynamic test machine may be used as the 

perfusion bioreactor and its boundary conditions are established in Chapter 2. If the 

experimental conditions, such as the material of the scaffold, the concentration of the 



83 
 

nutrients, the culture time are different from those used in the present study, the 

corresponding changes need to be made in the simulation.  

   To validate the simulation results of fluid field presented in Chapter 3, experiments 

are also required. To measure the flow velocity profile, the advanced micro velocimetry, 

such as micro particle image velocimetry (micro PIV), will be appropriate for use. 

Particles with a diameter of several hundred nm are suggested for use to capture the fluid 

characteristics in the scaffold pores, which are in the range 150 - 300 μm. To ensure the 

laser can go through the bioreactor and the scaffold, the scaffolds for experiments and the 

chamber of bioreactor need to be fabricated from the transparent material, e.g., acrylic. 

The flow rate can be controlled by regulating the pump that supplies the media for 

circulation. The velocity field measured by the micro PIV can be used to validate the 

results from numerical models.  

 

 

 



84 
 

APPENDIX A 

 

The following explanations may be useful for mechanical engineers not familiar with 

tissue engineering terminology:  

Apoptosis: the normal, genetically regulated process leading to the death of cells, 

triggered by the presence or absence of certain stimuli, such as DNA damage.  

Chemotaxis: oriented movement toward or away from a chemical stimulus. 

Extracellular matrix (ECM): the intercellular substance of body tissue. 

Hypoxic: relating to a deficiency in the amount of oxygen delivered to the body tissues. 

Lactate: salt or ester of lactic acid. Lactate is a product of fermentation and is produced 

during cellular respiration as glucose in broken down. 

Glycosaminoglycan (GAG): any of a group of polysaccharides with high molecular 

weight that contain amino sugars and often form complexes with proteins.  
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APPENDIX B 

 

The following documents are the reprint permissions for some of the figures in Chapter 1 

which come from other sources. The permissions are attached in the following order: 

Reprint permission for Fig. 2 (a)_1 

Reprint permission for Fig. 2 (a)_2 

Reprint permission for Fig. 2 (b) 

Reprint permission for Fig. 3 (a)-(e) 

Reprint permission for Fig. 3 (g) 

Reprint permission for Fig. 4 (a) 

Reprint permission for Fig. 4 (b) 
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This is Xin, a master student in university of Saskatchewan, Canada. I would like to ask a permission to use a
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Master student
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_____________________________________
ManXela T. Raimondi
DepaUWmenW of SWUXcWXUal EngineeUing
PoliWecnico di Milano
hWWp://ZZZ.labVmech.polimi.iW/inde[.php?id=119
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