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ABSTRACT 

Climate change and food security are complex global issues that require multi-disciplinary 

approaches to resolve. A nexus exists between both disciplines, but little prior research has 

successfully bridged the divide. Climate data is usually coarse, outdated and challenging to 

acquire and work with, especially for farmers of West Africa. For impoverished nations, 

alleviating food insecurity, the inability to have access to safe and nutritious food year-round is a 

necessity. Accessing food is a significant challenge, as there exist many disconnects between 

farmers, marketers and consumers. If this disconnect can be bridged, new strategies can be 

undertaken to alleviate further stresses caused by food insecurity. Combining the struggles of the 

Benin Republic and Nigeria, the MicroVeg project set to create innovative strategies to help the 

farmers, across the entire food chain. MicroVeg established 102 research sites, and with a desire 

to continue scaling-up the project, a new approach was needed. Geographic information system 

(GIS) offered the solution, as large-scale visualization could be achieved. Through visualization 

tools, scaling-up could be achieved based on successes in the field. This technique also allowed 

for gaps and shortcomings of the research design to be identified, at the regional level. 

To achieve the goals of the GIS database, a comprehensive dataset needed to be acquired. Many 

organizations collect data that is pertinent to a food security study, but no publicly known 

database has compiled all the necessary data. The GIS database combined factors such as 

precipitation, temperature, elevation, soil, and hydrology for the research area. The database was 

designed for farmers; thus, climate data had to be extremely high resolution. The 

Intergovernmental Panel on Climate Change (IPCC) and subsequent global climate models are 

very coarse datasets; although comparatively high in resolution, a regional climate model may 

still be too coarse in resolution for the farmers. 

Once the necessary data was obtained, analysis using GIS techniques could proceed. Through the 

visualization, combination, and calculations of data, the potential capacity of each crop within 

the research project could be observed. These results can be used as communication and research 

tools. 

Though controversial, climate change is going to have some effect on the agricultural systems of 

the world. Moreover, if a region is already facing food insecurity before any effects of climate 



iv 
 

change, this can exacerbate the challenges to food security. Therefore, an assessment of how 

climate change effects may impact the region was undertaken. By adding climate estimates from 

IPCC to the visualization method, a model known as Scaling Agronomic Vegetable Innovations 

to Nurture Growth Sustainably, SAVINGS, was developed. Through the use of this model, 

researchers can develop a management strategy for the crops of interest. Additional benefits of 

the model are for farmers to understand the risk they may need to take to continue farming a 

specific crop, or by using a specific method. 

SAVINGS was designed to be a dynamic model, with improvements being made as data 

becomes available. Associated with the SAVINGS model are a series of calculations and 

datasets, which have been combined into an online interactive database, known as WebGIS. By 

using these resources as communication and management tools the farmers of West Africa, not 

just the Benin Republic and Nigeria, have the potential to alleviate food insecurity within a 

lifespan. 
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1 INTRODUCTION 

Climate change is a pressing global concern due to its implications for future life on Earth. As a 

result of intense research, long-term modeling of climate variables, such as temperature and 

precipitation, has become more common. Better modeling of these parameters means that they 

can now be used to develop more sophisticated climate change scenarios that have predictive 

value. It is understood that Africa, as a continent, may suffer more drastically from climate 

change than much of the world due to Africa’s reliance on agriculture for livelihood combined 

with the severity of current droughts and famines on Africa. For Sub Saharan Africa (SSA) and 

other areas of the developing world, food security operates under both knowledge and financial 

constraints; even when there is a desire to improve agricultural technology and communicate 

these innovations widely, there is no financial or technological method to realize those desires.  

The Food and Agriculture Organization (FAO) (2006) describes food security as "the stable 

access of individuals to sufficient quantities of safe and nutritious food." Per the FAO (2017) 

22.7% of the human population in SSA are considered undernourished; a value that has 

increased by 1.9% from 2015 to 2016, but is lower than the 28.1% of undernourished reported in 

2000. Low soil fertility and unreliable rainfall patterns make agricultural practices challenging 

for subsistence level farmers that comprise 90% of the population in SSA. One promising 

development innovation to improve agricultural productivity was fertilizer microdosing, a low 

technology method whereby fertilizer is directly placed in soil at reduced quantities that can 

simultaneously increase yields and profits for SSA smallholder farmers. Adams (2015) reviewed 

the current extent of literature surrounding microdosing throughout Africa and found that results 

from 126 microdosing research sites were published in peer-reviewed articles, from a wide 

variety of research projects that generally involved cereal crop production. Figure 1.1 shows the 

spatial distribution of these sites. Two areas of concentration for microdosing research are the 

highly undernourished areas of SSA and Zimbabwe. As reported by FAO in 2016, Zimbabwe 

had 44.7% of its population, or seven million people undernourished; an increase of 1.4% since 

2001 (FAO 2017).  
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Figure 1.1 Microdosing research sites from peer-reviewed journal articles 

These projects typically involve combining fertilizer microdosing with other agronomic practices 

such as rainwater capture in the Sahel and indigenous vegetable cultivation in more rainy 

climates. Fertilizer microdosing is a point-source fertilizer application technique that typically 

uses half of the recommended rate of broadcast fertilizer, while still producing comparable yields 

to the higher recommended application rates, due to improved nutrient and fertilizer use 

efficiencies (Adams et al. 2016).  
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Unlike the success of microdosing, climate change cannot be directly quantified and instead is 

analyzed via models. These models rely on complex, high-quality data that is ideally both recent 

and reliable. Many governmental and non-governmental institutions exist to model climate 

change. Globally, the most popular resource is the Inter-Governmental Panel on Climate Change 

(IPCC). The IPCC data outputs are essential determinants for global trends. Other models exist 

to describe regional, national, or local level issues affected by climate change. Climate change 

will not only have effects on surface materials but will also have a direct effect on ecological 

variables, including agricultural productivity. Indeed, the intersection between food production 

and climate change has been known for many years, but minimal research has been executed on 

this topic in developing nations. 

For developing nations, such as those in SSA, food security research is often synonymous 

projects and financial aid lasting less than 5 years. However, there exists concern that this style 

of external aid does not have long-lasting effects on food security for a variety of reasons. 

Projects are often short-lived, only provide aid while resources are available, and are limited in 

the ability to scale up their innovations (Hartmann and Linn 2007). For development 

interventions to have long-term success, scaling-up becomes fundamental and needs to occur 

without reliance on extremal aid and resources. Conventional scaling-up approaches include 

developing a method, field research, and finally dissemination and widespread adoption of the 

technique. 

The objective of the research in this thesis is to establish a model for understanding the nexus 

between the potential effects of climate change and food insecurity to the West African nations 

of the Benin Republic and Nigeria. The thesis is organized into two chapters, to achieve the 

above objectives. The first chapter constructs the foundations whereby the nexus can be 

examined. Compiling a portion of data from the Synergizing Fertilizer Micro-dosing and 

Indigenous Vegetable Production to Enhance Food and Economic Security of West African 

Farmers project (MicroVeg) a comprehensive Geographic Information System (GIS) database 

was created (Adebooye et al. 2018). This GIS database can then be used to establish a baseline 

for potential scaling-up to occur.. Three research sites (Ife, Ina, and Ogbomosho) had both 

agronomic and water management data, both of which were deemed essential values for the 

model. These three research sites became case studies. The second chapter develops a 

methodology for which climate change assessments can be made, in refernce to the long-term 
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scalability of the UIVs. The methodology, supported by the case studies as thresholds, was then 

integrated into the GIS database. The two research chapters follow a literature review intended to 

illustrate the various types of models available for assessing climate change and the wealth of 

recent knowledge gained regarding food security. Finally, a chapter on discussions and 

conclusions is used to help understand the complex nexus and offer recommendations to the 

involved groups. 
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2 LITERATURE REVIEW 

 Food Security in Sub Saharan Africa Under a Changing Climate 

2.1.1 Microdosing and Irrigation/Hydrology Management in the Sahel 

The droughts of 2005 and 2010 are two recent severe droughts to hit SSA; the mechanisms 

responsible for these drought conditions are not well known (Agnew and Chappell 1999; Dike et 

al. 2015; FAO 2013). What is clear is that both of these droughts led to food scarcity within the 

region  and that interventions to improve water use efficiencies and resilience to are necessary 

for SSA (Dike et al. 2015).  

To mitigate drought and combat poor soil fertility, a University of Saskatchewan-led research 

team has developed a package of agronomic innovations for West African farmers since 2011. 

This initiative, Integrated Nutrient Water Management (INuWaM) was designed to find 

innovative means to increase crop yields without further degrading low fertility soils of the 

region. INuWaM research focused on four SSA countries: the Benin Republic, Burkina Faso, 

Mali, and Niger (IDRC 2016). Figure 2.1 illustrates where the research sites were within the 

intervention zone. The project focused on water management and microdosing, particularly the 

long-term effects on cereal crops. Yields of research sites improved on average by 116%, 

without modifications to water management techniques (Adams et al. 2016; IDRC 2016). By 

conserving fertilizer use and increasing yields, farmers could become more food secure, and SSA 

smallholder agriculture could become substantially more profitable. 
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Figure 2.1 INuWaM research sites 

Adoption of microdosing is, at heart, a shift in fertilizer application techniques that are consistent 

with modern nutrient stewardship practices. Standard cultural practices are to broadcast fertilizer, 

which is generally inefficient but more so when irrigating crops. Issues with this practice include 

limited access to fertilizer and excessive runoff, which both result in low yields and high input 

costs per unit exported. In contrast with traditional practices, microdosing is a low-tech precision 

agriculture technique that delivers a controlled amount of fertilizer at the base of each plant seed.  

Microdosing also referred to as a reduced direct soil application, is not a new concept with 

research sites in West Africa, with some research sites having 30 years of results (Adams 2015; 

Minielly et al. 2015). Microdosing allows the user to increase yields while significantly reducing 

their input costs. Microdosing has the potential to triple the amount of harvest per plot compared 

to not applying mineral fertilization (Adams 2015). However, microdosing does increase the 

amount of labour needed, since each plant requires precise application of fertilizer. However, the 
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return from fertilizer addition is still significant compared to local practices. Despite the potential 

of microdosing, the literature indicates that there is only a 5% adoption rate throughout the 

region due to a range of factors (Bacon et al. 2014; Adams 2015; Adams et al. 2016).  

2.1.2 Indigenous Vegetable Production Using Microdosing 

Synergizing Fertilizer Micro-dosing and Indigenous Vegetable Production to Enhance Food and 

Economic Security of West African Farmers, here on in referred to as MicroVeg, was funded to 

build on the successes of INuWaM. The shift in the project to focus on vegetables rather than 

cereal crops was due to a combination of nutritional (traditional vegetables are incredibly 

healthy) and financial (vegetables are much more profitable than cereal crops) reasons.  

MicroVeg focused its efforts in the countries of the Benin Republic and Nigeria. This project has 

set up 102 research sites; many are less than 1ha (less than 100 m2) in size. Figure 2.2 illustrates 

the distribution of the research sites within the Benin Republic and Nigeria. Also notable is how 

the research sites are concentrated in the southwestern corner of Nigeria and throughout the 

Benin Republic. In Nigeria, the easternmost site is near the Niger River but does not cross the 

river. The Niger River serves as a political divide, from stable to unstable governments. 
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Figure 2.2 MicroVeg research sites 

The MicroVeg project has focused on four indigenous leafy vegetables, also known as Under-

utilized Indigenous Vegetables (UIVs). These UIVs are regularly produced using traditional 

methods, and they are commonly consumed throughout the Benin Republic and Nigeria but are 

referred to by different names. See Appendix A for a complete list. By focusing primarily on 

these crops, attempts are being made to improve regional food security, by using the local value 

chain as a starting point for intervention.  

As a result of approaching food security via the entire value chain, MicroVeg has been 

addressing many large-scale issues outside of agronomy, including marketing and gender issues. 

By the end of the project, stakeholders will have access to multiple innovations and strategies to 

promote local food security.  
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2.1.3 Stresses to Food Security in Sub Saharan Africa  

The population of both Benin Republic and Nigeria are expected to continue to rise over the next 

century and exacerbate the periodic food insecurity crises these countries currently experience. 

As of July 2017, the population was estimated to be 11,038,805 and 190,632,261, for the Benin 

Republic and Nigeria, respectively. With a growth rate of 2.71% and 2.43%, populations are 

expected to reach 23.9 million and 410.6 million, for the Benin Republic and Nigeria, 

respectively by 2050 (Central Intelligence Agency (CIA) 2018; The World Bank Group 2018). 

Nigeria’s percentage of the population, which is undernourished has decreased from 9.4 to 7.9, 

from 2001 to the 2014-2016 reporting year. Even with a decrease of 1.5%, total population 

growth has increased the total number undernourished to 14.3 million (2014-2016). During the 

same reporting period, Benin Republic dropped to 10.3%, or 1.1 million, from 22.6% of the 

population undernourished (FAO 2017). These numbers are low compared to the regional 

average of SSA, which is 21.3% (FAO 2017). By 2050, if the percentage of the undernourished 

population in SSA does not decrease, 92.5 million people would be classified as undernourished. 

Additionally, at the current rates, the Benin Republic and Nigeria could expect 16.6 million to be 

undernourished (The World Bank Group 2018). 

2.1.4 The Significance of the MicroVeg Project to Food Security 

Gender issues plague SSA, the Benin Republic and Nigeria are not exempt. With the joint efforts 

of INuWaM and MicroVeg, researchers were able to focus on women farmers that play a vital 

role in their families’ food security. An objective of the project is to incrementally increase the 

households that are utilizing microdosing to reach 225,000 farmers in the Benin Republic and 

Nigeria (Akponikpe et al. 2016). Rapidly scaling-up agronomic practices require data 

management approaches capable of assessing where resource allocation can be most effective. 

Although many graduate students have been involved in microdosing research throughout this 

project (IDRC 2015), each student’s research has focused on isolating a limiting variable or 

developing a novel approach for their specific sites rather than pursuing the root causes of 

regional-scale agricultural limitations. Graduate students and scholars alike argue that climate, 

though typically outside the scope of research projects, plays a significant role in the 

determination of a project’s success. Lobell (2008) attempted to illustrate globally how cropping 
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systems may be affected under the IPCC (2007a) scenarios. However, little research on the 

intersection of food security and climate change has to date been conducted in SSA. 

 Global Climate Models (GCMs) and Food Security 

Global Climate Models (GCMs) that represent data over a large area, usually globally or 

continentally, are useful for understanding large-scale changes. GCMs include variables such as 

annual precipitation, temperature, elevation, and greenhouse gas emissions. Satellites are the 

most common source for GCMs; often creating very low-resolution datasets. Satellites operate 

with specific objectives, such as measuring rainfall and are thus restricted to the variables they 

need. Some satellites involved with GCMs include Tropical Rainfall Measuring Mission 

(TRMM), for measuring rainfall, Global 30 Arc-Second Elevation Mission (GTOPO30), and 

Shuttle Radar Topography Mission (STRM) for elevation (U.S. Department of the Interior 1999; 

Fick and Hijmans 2017). 

GCMs have been used extensively in academia, primarily to illustrate gross global geographic 

variations of climate variables. For an analysis of projected food production, Lobell et al. (2008) 

utilized 20 unique GCMs to limit uncertainties within models and establish a holistic view. The 

data used by Lobell et al. (2008) are models that was interpolated using the IPCC Fourth 

Assessment Report (AR4) (IPCC 2007b), using a process that requires strong statistical 

knowledge.  

The resolution of global datasets had recently been improved from an older dataset which was 

55.6 km2 at the equator (Hijmans et al. 2005). Hijmans et al. (2005) noted that before their study 

the finest resolution global dataset contained cells representing 18.5 km2 at the equator; with 

their dataset improving the situation to 1km2 at the equator. The coarse resolution of these 

databases creates problems when trying to incorporate multiple diverse datasets.  

In this type of assessment, each cell is given one value based on the mean, or other statistical 

measures, and the cell represents uniformity. When data is presented in this manner, it is referred 

to as a raster. Depending on the resolution of the data, the results may represent a large area; 

therefore, essential characteristics may be oversimplified and specific points, such as a city, may 

not be captured via the model (Hijmans et al. 2005; Lobell et al. 2008). 
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2.2.1 Global Climate Models and Food Security 

When reviewing literature, no comprehensive database exists that explicitly contains elements of 

both food security and climate change. Hijmans et al. (2012) created a complex online database, 

with the primary use being in biological sciences research since the focus of their project was 

understanding plant genetics. The climate data used in the database was monthly average data 

from the 1970 - 2000 climate normal and was last updated in 2009. 

The Hijmans et al. (2005) database has isolated five decades of temperature and precipitation 

data from 1950 - 2000. The data has been interpolated from various sources in a hierarchical 

methodology to eliminate duplication (Hijmans et al. 2005). The authors note that many 

advantages exist to their “very high resolution” data interpolation, which is a reference to data 

spatially being presented at 30 arc seconds or approximately 1 km2. Some of the advantages of 

Hijmans et al. (2005) include an increase in spatial resolution upwards of 400 times, 

incorporation of additional weather stations, and improved elevation data (Hijmans et al. 2005). 

Based on a comparison of several approaches, the authors interpolated the data as per a standard 

statistical practice; allowing for comparisons between datasets and variables to be made. The 

variable with the lowest resolution will limit the analysis, and thus set the limit on the resolution 

of any model built with this approach. 

Upon reviewing many databases, it was concluded that Hijmans et al. (2012) database is the 

most comprehensive ecological model available to the public. This project will be using the 

climate variables, independent of other analyses available through the above resources, to assess 

the interpolated data so that inferences can be made for regions within the project’s borders.  

Moreover, when combining data from multiple sources, no accepted standard protocol exists. 

Data in West Africa is sparse due to the above reasons. Therefore, GCMs are a reliable resource 

for reviewing available data in SSA (IPCC 2014; Attaway et al. 2016).  

2.2.2 The Intergovernmental Panel on Climate Change 

The IPCC serves as a proponent of multiple GCMs. One of the primary goals for the IPCC is to 

develop global awareness of several variables associated with climate change, including energy 

use, forestry and changes in temperature and precipitation regimes ((IPCC 2014)). 

Understanding the ethics, governance, and reasoning behind the model selection of the IPCC is 



12 

outside of the scope of this literature review. However, IPCC reports serve as a basis for 

academics to communicate with the public and they facilitate knowledge transfer (IPCC 2007b, 

2014).  

A potential limitation of IPCC reports is the frequency of their release. Many recent scholarly 

articles have been published using the 2007 or older data when new data was available, including 

O’Brien and Leichenko 2000; Kumar and Parikh 2001; O’Brien et al. 2004; Attaway et al. 2016. 

The IPCC has been releasing its climate change scenarios approximately every five years since 

1990. One of the most heavily sourced reports is the AR4, published in 2007 (IPCC 2007b). 

Even when new reports are released, publications still rely on the older data; this is especially 

apparent since the release of the Fifth Assessment Report (AR5) in 2014. Although based on 

AR4, Attaway et al. 2016, drew conclusions that are skewing the literature by distorting 

situations and using scenarios which are no longer relevant based upon the current IPCC model. 

The reliance on AR4 data further increases the challenges in comparing data from different 

years, scenarios, and models. 

In AR4, IPCC used a family of scenarios that are structured with strict assumptions on how 

society will adapt or perform in the future. These AR4 scenarios are based on the Special Report 

on Emissions and Scenarios (SRES) methodology, a complimentary report to AR4 (Alcamo et 

al. 2000). When the IPCC released the AR5 in 2014, they revised their approach on how they 

published their findings.  

First cited in 2009, Representative Concentration Pathways (RCPs) is the newest and most 

advanced approach to assessing climate change. Van Vuuren et al. (2011) describe this novel 

approach as being a collaboration of the entire scientific community. Additionally, they note that 

the IPCC requested that the RCPs be developed by the scientific community and not by the IPCC 

(van Vuuren et al. 2011). By using an RCP, the perspective changes and focuses not on 

"projections or predictions, but rather represent possible alternative ways in which the future 

may unfold" (van Vuuren et al. 2011).  

This conceptual change to RCPs eliminates the strict assumptions that were in place in the SRES 

models and replaces those assumptions with an estimate of how greenhouse gas concentrations 

may affect the environment. The RCP scenarios assess the factors that would be responsible for 

an increase in solar radiation. By looking at these factors, the scientific community established 
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four RCP scenarios, which were published as the key findings in the AR5 (van Vuuren et al. 

2011; IPCC 2014). The four RCPs are: 2.6, 4.5, 6, and 8.5, the values each represent an increase 

in radiative forcing, commonly referred to as solar radiation, and recorded as Wm-2. Radiative 

forcing is described as the energy in the earth system. Values greater than zero equate to a 

warming effect, while less than zero cools the earth (IPCC 2014). 

Within literature, it is agreed upon that RCP 2.6 will equate to a global change in temperature of 

2°C, by 2100. Using this notion, the United Nations drafted and signed The Paris Agreement. 

This agreement has goals to mitigate global temperatures so that temperatures do not increase by 

2°C compared to pre-industrial temperatures (Climate Focus 2015). Tellingly, even without 

using the term RCP, the Paris Agreement has set targets in line with RCP 2.6. In comparison 

with RCP 2.6, it is widely accepted that RCP 8.5 represents a catastrophic societal failure. 

Regarding a spectrum, RCP 4.5 and 6.5 are intermediate scenarios. 

2.2.3 IPCC Estimates and Food Security 

IPCC estimates are not the only climate change scenarios, but they are the most widely cited 

source. For our purposes, we do not want to challenge the reliability of the AR5 (IPCC 2014) 

forecasts. Instead, we want to incorporate the broad estimates into a localized environment to see 

what implications arise when the GCM assumptions are utilized at a regional scale. The focus of 

this research will be to understand if two scenarios released in the AR5 (RCP 4.5 and 8.5) could 

be used to construct a high-resolution model of climate change over the MicroVeg region and 

further inform food security research. 

 Regional Climate Models 

Regional-scale Climate Models (RCM) are complementary models to GCMs that exist to reduce 

the number of errors produced by other models. Literature suggests that RCMs are more data-

intensive, compared to GCMs, and must have a boundary in which to operate (Larsen et al. 

2013). After reviewing the estimates presented in the AR4 (IPCC 2007b), three known case 

studies (Abiodun et al., 2012; Dike et al., 2015; Kithiia and Dowling, 2010) have developed 

regionally-based models for countries that integrate climate change estimates. The Abiodun et al. 

(2012) study provided additional validation of IPCC’s regional climate model, version 3 

(RegCM3). This data was then used to show short-term effects (2030 - 2050) of climate change 
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on reforestation in West Africa. Dike et al. (2015) focused on changes in temperature in Nigeria 

but considered all of Africa in their analyses throughout 2073 - 2098. 

Reforestation has been one accepted method of mitigating climate change. Abiodun et al. (2012) 

created scenarios under eight different land cover patterns. The rationale behind their study was 

to validate earlier theories that local precipitation would increase, even under a warmer climate 

(Abiodun et al., 2012). The results of the study, however, remain inconclusive since the positive 

feedbacks of trees may offset the monsoons or affect total greenhouse gas emissions. For their 

study, Abiodun et al. (2012) used RegCM3 coupled with a global circulation model. This study 

further validated the RegCM3 model and additionally altered the boundaries of the model. This 

study did not provide any conclusive results. However, this study further illustrates a need to 

consider specific regions when trying to scale projects, as not all regions may respond similarly. 

Dike et al. (2015) developed a regional climate model that divided the African continent into 

four regions. To forecast future climate, the researchers needed to understand the present climate 

better. While considering the current African climate, they found that a GCM was unable to 

account for tropical rainfall by comparing modelled and observed data. Indicating a "deficiency" 

within their model, and it was especially present for Western and Eastern regions of Africa. To 

verify the model, it was rerun for Nigeria and focused on five cities. The modelled data was still 

unable to describe the variations in precipitation cycles, caused by seasonal monsoons, for two of 

the five cities; therefore, misrepresenting the local climate. However, their RCM had better 

quality outputs than GCM (Dike et al., 2015). The resulting model was inconclusive and requires 

further validation. 

The final case study using the AR4, targeted impacts that a small rise in sea-level could have on 

a coastal city in Kenya. Kithiia and Dowling (2010) developed an RCM for the coastal city of 

Mombasa, Kenya, currently 45 metres (147.6 feet) above sea level. The authors speculate that 

the city will be submerged with only a 30 cm increase in sea-level (Kithiia and Dowling 2010). 

Currently, IPCC models are indicating a minimum increase of sea level of 40 cm by the end of 

the century, and this sea level rise will not be consistent around the globe ((IPCC 2014)). The 

RCM was developed to give government officials a foundation to implement engineering 

precautions, in hopes of mitigating sea-level rise. The RCM also gives rise to a new, more 

collaborative approach to municipal development.  
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2.3.1 RCMs and Food Security 

The criteria established by Larsen et al. (2013) for RCMs suggest that the MicroVeg project 

could benefit from using an RCM. MicroVeg has a boundary to operate within, with substantial 

regional variability within the landscape; an RCM may be able to capture the variability (Bacon 

et al. 2014; Adams 2015; Minielly et al. 2015). From this perspective, RCMs would have the 

necessary tools and resolution to create a food security database based upon the MicroVeg 

project.  

By increasing resolutions, RCMs improve how data is disseminated. By focusing on a specific 

area, RCMs also can influence decisions and establish a dialogue with vulnerable groups. Giving 

RCMs more control of variables, but also necessitates the addition of more variables and higher 

resolutions, making these models more data intensive.  

 Application of Climate Models to Food Security 

2.4.1 Predicting Regional Temperature and Precipitation with GCMs 

Several GCMs exist (Hijmans et al. 2005; IPCC 2014; Dike et al. 2015; Fick and Hijmans 2017) 

that all have advantages or drawbacks, and limitations associated with data resolution and the 

years being reported (Hijmans et al. 2005; Lobell et al. 2008). Both GCMs and RCMs have 

positive attributes when attempting to model large-scale trends of West Africa. Running climate 

scenarios is essential to understanding the potential repercussions of climate-related actions. The 

basis for these scenarios needs to be the best available data. High-quality data does not exist 

explicitly for West Africa; therefore, global data is necessary. AR5 is the most reliable and 

highest resolution data available for West Africa. Each subsequent IPCC report improves 

resolution, yet even with these improvements, the resolution is today still 250 km2. In an attempt 

to overcome these limitations Hijmans et al. (2005) developed a multivariable database. By using 

various statistical methods, Hijmans et al. (2005) obtained temperature and precipitation 

monthly, and annually for a 30 year period, known as a climate normal. The resolution of this 

global data set is 30 arc seconds, which is approximately 1km2 at the equator. The Hijmans et al. 

(2005) dataset, which is available to the public, is the most comprehensive dataset for the 

MicroVeg, and West African, regions (fig. 2.3). 



16 

 

Figure 2-3 Climate normal (1970-2000) Top: mean annual temperature (°C). Bottom: total 

annual precipitation (mm) 
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2.4.2 Elements of Ecological Models 

When creating a database, multiple factors play significant roles in the success of the model. 

Databases include only the variables that are pertinent to the project; eliminating potentially 

useful data at the expense of finer spatial resolution. Common climate variables include 

temperature, precipitation, elevation, greenhouse gases, and sea-level rise. For a food security 

model, soil and agronomic data also become essential variables. 

2.4.2.1 Ecology 

The primary goal of biological and ecological models is to suggest the ecological services that a 

site or landscape may provide. Included in these databases, are variables such as plant 

communities, soil quality and type, interactions with water and slope (Mclaughlan et al. 2010, p. 

12). These ecological assessments are conducted on a fine scale and with a specific purpose. 

Landscape-level assessments usually fail to include fine details associated with specific plant 

communities. Therefore, the proposed model does not include ecological parameters. Instead, 

general ecological boundaries, referred to as ecoregions, have been used to help delineate large-

scale trends within the research areas.  

2.4.2.2 Ecoregions 

The World Wildlife Fund (WWF) has created a high-resolution GIS-based ecoregion map of the 

world. This map has amalgamated several sources of ecological and climatic data into one 

comprehensive database (Olson et al. 2001). The ecoregions for Africa originated from White 

(1983), whereby the author identified characteristics pertinent to plant growth. After 

amalgamating data from various sources, Olson created a map that encompassed all the global 

ecoregions and improved the resolution of the ecoregion polygons by increasing the spatial 

extent from an average of 740,000 km2 to 150,000 km2. This new database, shows a four-fold 

increase in resolution, resulting in 867 global ecoregions (Olson et al. 2001). This work has been 

heavily cited, making it an ideal foundation upon which to develop a GIS model.  

2.4.2.3 Topography 

Various methods exist for how to acquire elevation data necessary for topographical mapping. 

The most accepted method for large-scale images is the use of satellites. Alternatively, drones 

can be used to capture elevation data at extremely high resolutions at local scales; covering large 
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areas with drones is impractical and expensive. Resource limitations for countries, especially for 

West Africa, has led to no high-quality regional elevation maps of the research area. Therefore, 

to use topographical data, one is currently limited to satellite-based mission results of varying 

resolutions. Nonetheless, the topography data available publicly is becoming more refined. Three 

recent satellite missions have collected global topography data: GTOPO30, Global  

Multi-Resolution Terrain Elevation Data 2010 (GMTED2010), and STRM with highest available 

resolutions at 30, 7.5 and, one arc second (U.S. Department of the Interior 1996, 2015; Danielson 

and Gesch 2011). When satellite data is used for topography, the most common approach for 

published data is to assign the cells the average value obtained. STRM data is not user-friendly 

to download, and at a regional scale, the one arc second (or 30-metre cell size) is too fine of a 

resolution to visualize regional trends. Furthermore, the data is incomplete, as the satellite’s orbit 

does not entirely cover the globe, leaving large swaths of land unmapped. GMTED2010 gives 

users more download options, and at these scales can illuminate hills and mountain regions. 

Although comparatively weak in resolution, GTOPO30 provides elevation data at 1km2, which is 

compatible with climate data obtained by Hijmans et al. (2005) (fig. 2.4). 
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Figure 2.4 Topography of Benin and Nigeria as viewed from GTOPO30 

As described earlier, the data with the lowest resolution will limit the model’s resolution. 

Climatic variables within the model are at 1km2 resolution. The GMTED2010 data is 16 times 

finer compared to the climate data. To keep the resolution the same for both climate and climate 

topography the GTOPO30 data was used. At this resolution, the data is too coarse to see many 

variations in relief.  

2.4.2.4 Sea Level 

Sea level change is an essential variable for both climate change and food security since it can 

provide insights into zones where salinity (from saltwater impingement) could affect crops and 

areas likely to be flooded. IPCC (2014) does not indicate high confidence in their models, but 

rather in the fact that sea level rise will not be uniform, with estimates ranging from 0.26 to 0.82 

meters. Sea level rise is forecasted to cause severe flooding and famine. Although sea level may 

become a vital West African issue, it was omitted from the model because the necessary data 
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was not available. Additionally, the majority of West Africa is non-coastal, even though the 

largest cities in both Nigeria and the Benin Republic are coastal.  

 Scaling-Up 

MicroVeg operated at the regional level, encompassing both Nigeria and the Benin Republic, 

with a novel knowledge dissemination approach. This project established a cooperative 

innovation platform where farmers and marketers directed the research, which aided in the 

adaptation and dissemination. For technique demonstration and refinement, research sites were 

still valuable resources. Adebooye et al. (2018) showed significant increases in adaptation and 

collaboration with the innovation platform approach when compared to other projects (Adams et 

al. 2016; IDRC 2016). To further improve the scaling-up capabilities of the MicroVeg suite of 

GIS tools were introduced. A strength of GIS is the ability to actively update and analyze data, 

for any region of any size. The amounts of available data only limit GIS systems. 
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3 SCALING UP RESEARCH USING GIS AND WEBGIS SPATIAL TOOLS: CASE 

STUDY OF MICROVEG PROJECT 

 Preface1 

As of writing this thesis, the attached paper has been accepted for a special edition publication in 

Acta Horticulturae. Financial assistance, support and reviewing were provided by Derek Peak, 

Department of Soil Science and David Natcher, Department of Indigenous Land Management 

Institute, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Logistical support for 

the creation of the Web-based tools was provided by Winston (Weiping) Zeng and his team at 

the Social Sciences Research Lab (SSRL), University of Saskatchewan. 

 Abstract 

Sustainable intensification of agriculture is a pressing issue for the countries of the Benin 

Republic and Nigeria. Akponikpe et al. (2016) and Adebooye et al. (2018) note that for the 

Benin Republic and Nigeria amaranth (Amaranthus cruentus L.), solanum (Solanum 

macrocarpon L.), fluted pumpkin (Telfairia occidentalis f. Hooke), and parsley (Ocimum 

gratissimum L.) were identified as important indigenous vegetables with the potential to enhance 

food and household security in West Africa. An international collaboration known as MicroVeg 

was established in 2015 to scale up the production and consumption of these nutritious 

vegetables. Traditional agronomic field research has a relatively small spatial footprint; by using 

a GIS, we expanded the reach of MicroVeg research to a regional scale. A GIS database allows 

for data to be visualized using a variety of methods and to create larger inference spaces. With 

GIS, we can use the data to infer areas which are similar to the characteristics of a site. GIS data 

were stored, analyzed, compared, and extrapolated to infer where scaling-up of the MicroVeg 

agronomic package is likely to be most successful. GIS has enabled this project to expand 

potential areas from several research sites with an approximate total area of 50 ha, to a possible 

extent exceeding 100,000 km2 for each crop, independent of seasonal variation. As it is 

challenging to disseminate such information to audiences, we developed and implemented an 

                                                           
1 Minielly, C., Peak, D., Natcher, D., and Zeng, W.W. 2018. Scaling Up Research Using GIS and 

WebGIS Spatial Tools: Case Study of the MicroVeg Project. Acta Hortic. In Press. 
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interactive, online, database (WebGIS) of agronomic trial data designed for use with minimal 

GIS knowledge. The results of this project will be necessary for policymakers and agronomists 

who are scaling-up vegetable production in the Benin Republic and Nigeria. 

 Introduction 

Food security is a pressing issue facing humanity, especially in developing countries. The Food 

and Agriculture Organization (FAO) (2006) describes food security as "the stable access of 

individuals to sufficient quantities of safe and nutritious food." Food insecurities are attributed to 

a combination of social, economic, agricultural, and climatic components. Sub Saharan West 

Africa (SSA), is facing large-scale food security issues; it is the only region in the world where 

the per capita basis of food production is decreasing. In 2015, the “MicroVeg” project 

 (IDRC 2015) was established to address food security issues in the Benin Republic and Nigeria 

via scaling-up production of indigenous vegetables (Akponikpe et al. 2016). 

The MicroVeg project set a target to directly affect 255,000 food insecure households in rural the 

Benin Republic and Nigeria by 2018 (Akponikpe et al. 2016). To achieve this goal with limited 

time and resources, scaling-up needs to occur in many different aspects of the vegetable value 

chain. Current data suggests that scaling-up is occurring at an agronomic level due to an increase 

in yields, better water management, and an increase in the knowledge level. Scaling-up is also 

occurring due to market demands to the incorporation of vegetable extracts into fortification and 

value-added products (Adebooye et al. 2018). 

These scaling-up successes have put a strain on MicroVeg’s available resources; expansion of 

MicroVeg practices into additional areas will place further strain on non-governmental 

organizations (NGOs) and extension agents who are in the field consulting for and aiding 

farmers. Thus it is necessary to prioritize expansion in a data-driven manner. Understanding the 

factors that can facilitate or impede the scaling-up of the MicroVeg technology is necessary if 

the goal of reaching 255,000 farming households is to be reached. This understanding includes 

the spatial representation of where the adoption and scaling-up of MicroVeg may occur most 

successfully. 

GIS is a computer-based technology that has become the standard tool for capturing, 

manipulating, analyzing, and visualizing geographically referenced information. GIS has become 
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a mainstream tool for producing representations of data for many academic disciplines, 

governmental agencies, and commercial agricultural industries. GIS can be in a variety of forms, 

from static and dynamic maps to online interactive databases. The most commonly used GIS 

tools belong to a suite of tools known as ArcGIS (Environmental Systems Research Institute 

(ESRI), 2017). Today, examples of GIS tools can be found in almost every industry and city in 

the world. For example, both North America and Europe have well documented the use of GIS in 

cases ranging from forest fire management, flood mitigation, civic services, public health to 

precision agriculture. Using multiple research methods, organizations like the National Oceanic 

and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration 

(NASA), and the European Space Agency (ESA) have produced GIS resources which are freely 

and readily available, for a range of topics such as climate, soil, and population. These 

organizations have been making correlations between economics and agriculture and food 

security and other multi-disciplinary research using GIS approaches.  

Unlike North America and Europe, African nations have not invested many resources in GIS; 

thus, examples of African GIS projects are sparse. However, a few projects have been completed 

to illustrate the versatility and feasibility of GIS for African researchers. Examples include 

mapping Dengue Fever over the continent (Attaway et al. 2016), mapping potential impacts of 

climate to reforestation of West Africa (Abiodun et al. 2012), and establishing ecoregions and 

soil classification at a regional scale (Olson et al. 2001; Jones et al. 2013). 

Some of the above examples rely on newer tools, such as the Predictive Analysis Tools (ESRI 

2014), while other systems integrate computer sciences. To date, there is no accepted standard 

method for using GIS, especially when scaling-up projects. The objective of this paper is to 

describe how GIS can be used to infer potential areas in the Benin Republic and Nigeria where 

scaling-up of the MicroVeg agronomic package is likely to be most successful. Data from three 

research sites in the Benin Republic and Nigeria will be used as case studies.  

 Methods 

3.4.1 Data Sources 

This work builds on the work of Bacon et al. (2014) and Minielly et al. (2015). Datasets were 

managed and processed by ArcGIS 10.5 (ESRI 2017). Data came from various sources, in 
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various formats, and varying resolutions. Table 3.1 outlines the data sources and formats. Data 

resolution may limit the modelled outputs. A raster with smaller cell size, or higher resolution, 

would increase the model’s overall usability for the targeted audience, by giving a more 

localized perspective. The resolution of a raster is based on the data collection methodology; and 

is defined as a cell (ESRI 2016). Point data does not have any spatial attributes that would be 

limited to the database. In contrast, the resolution of polygon data is limited on how precise the 

inputted data is. For example, a city may have a simple polygon or be outlined precisely, 

depending on the data used or the purpose. Precipitation, temperature, and elevation are rasters 

with resolutions of 30 arc seconds which at the equator are approximately 1 km2. Elevation data 

originated from the GTOPO30 satellite mission and had a cell size, or resolution, of 1km2. (U.S. 

Department of the Interior 1996).  

Table 3.1 Data sources and formats utilized in the MicroVeg project 

Data type Format Data Source and Citation 

Ecoregion Polygon 
Terrestrial Ecoregions of The World (Olson et al. 

2001) 

Temperature Raster Worldclim.org (Hijmans et al. 2005) 

Precipitation Raster Worldclim.org (Hijmans et al. 2005) 

Elevation Raster/DEM USGS (U.S. Department of the Interior 1996, 2015) 

Political Boundary Polygon DIVA-GIS (Hijmans et al. 2012) 

Lake and River Polygon/polyline DIVA-GIS (Hijmans et al. 2012) 

Infrastructure Polyline/point DIVA-GIS (Hijmans et al. 2012) 

Soils of Africa Polygon European Union Soil Atlas (Jones et al. 2013) 

Airport Point Share Geo Open (Pope and Sietinsone 2017) 

3.4.2 Seasonal Variability  

Ojo and Olurotimi (2014) divided Nigeria’s weather into two seasons: the wet season (March to 

October) and the dry season (November to February). Precipitation and temperature vary 

significantly between seasons. Figure 3.1 illustrates that precipitation varies more in intensity, 

whereas temperature varies more with latitude. 

 

http://www.divagis.org/
http://www.divagis.org/
http://www.divagis.org/
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Figure 3.1 MicroVeg seasonal variability based on 1970-2000 climate normal of average 

precipitation and temperature 

3.4.3 Site Criteria 

Researchers in the project divided the Benin Republic and Nigeria into large agro-ecological 

areas. Colloquially, these agro-ecological zones, or ecoregions are referred to as forest, humid, 

and dry savanna, amongst other variations (Descroix et al. 2009; Scheiter and Higgins 2009; 

Ndehedehe et al. 2016; Adebooye et al. 2018). With the support of the World Wildlife Fund 

(WWF), Olson et al. (2001) created a global terrestrial ecoregion map. The ecoregion dataset 

served as a foundation for understanding differences among research sites in our project. 
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According to Olson et al. (2001), the Benin Republic and Nigeria contain a total of 15 unique 

ecoregions, within four biomes.  

Referring to the regions defined by Adebooye et al. (2017), the 15 ecoregions were grouped into 

three ecoregions, using the biomes as a guide for the reclassification. The ecoregions were then 

assigned the appropriate name within the project. The mangroves biome was merged with the 

rainforest, as there was no data. To ensure consistent terminology and complete coverage of the 

region, the names assigned to the ecoregions are rainforest, savanna, and sudano savanna. 

Similar to the seasonal precipitation and temperature figures, figure 3.2 illustrates that the 

ecoregions are drier and become harsher the further north from the Gulf of Guinea they lay. The 

next ecoregions, in northward progression, are the Sahel and the Sahara Desert, which are both 

sparse ecologically.  

 

Figure 3.2 Ecoregions of Benin and Nigeria  
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3.4.4 MicroVeg Agronomic Data 

Akponikpe et al. (2016) and Adebooye et al. (2017) conducted extensive agronomic trials at 

various sites. The trials consisted of comparisons amongst various factors including, but not 

limited to yield responses, fertilizer rates, fertilizer application techniques, and water 

management. Table 3.2 shows some key findings from three research sites, two in Nigeria (Ife 

Central and Ogbomosho South) and one in the Benin Republic (Ina).  

Additionally, Akponikpe et al. (2016)researched water management at these three sites. Data 

collected from these sites show the UIVs grown in the particular ecoregion, the optimum 

fertilizer rates, expected yields, and additional crop-specific water requirements. Yield data was 

collected in the dry season, after 3 harvests (Akponikpe et al. 2016). Multiple harvest and 

planting cycles, especially for vegetables are possible in West Africa. These results are the 

foundation of the agronomic recommendations for the MicroVeg Project (Adebooye et al. 2018).  

Table 3.2 Agronomic data for amaranth, solanum, fluted pumpkin, and parsley 

Site Name Ecoregion Indigenous  

Vegetable 

Optimum 

Fertilizer Rate 

Optimum 

Yield 

Crop Water 

requirement† 

(kg ha-1) (kg ha-1) (mm) 

Ife rainforest amaranth 40 12,000 209 

  solanum 40 5,500 157 

  fluted pumpkin 40 7,633 174 

Ogbomosho savana amaranth 40 11,667 430 

  solanum 40 5,367 303 

  parsley 40 12,550 544 

Ina sudano savana amaranth 20 13,000 980 

  solanum 40 33,000 980 

  parsley 60 27,000 980 

† Crop water requirement was recorded at the mid-season (Akponikpe et al. 2016)  

3.4.5 Logic Model for GIS Development 

A model for scaling-up was created to assimilate the various types of data, that originated from 

multiple organizations, see Table 3.1 for the complete list. The conceptual model shown in figure 

3.3 describes how the assimilated data was converted, or transformed, into a geodatabase for use 

within the scaling-up model. Although a variety of datasets were obtained, the primary datasets 
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used for the scaling-up model were ecological boundaries, precipitation, and temperature. The 

downloaded ecoregion dataset was stored as a polygon; while temperature and precipitation were 

stored as raster files. Having the three key datasets in different forms complicated the 

executability of the scaling-up model. The ecoregion data was converted into a raster that bore 

the same raster properties as precipitation and temperature. For the model and geodatabase to 

function, attributes such as the datum and projection needed to be set. The scaling-up model used 

the World Geodetic System 1984 (WGS 84) projection and datum. The spatial attributes of the 

rasters were also standardized. The chosen resolution, or cell size, was 0.0083333338, which 

equals approximately 1km2, at the equator. Additionally, this resolution matches the first 

precipitation and temperature data (Hijmans et al. 2005). 

 

Figure 3.3 Flowchart of the process of scaling-up MicroVeg results 
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Seasonal variability is one of the most constraining variables affecting food security in SSA. For 

the scaling-up model, each season was analyzed independently. The research sites were used as a 

reference to obtain the average precipitation, and temperature values were extracted from 

ArcGIS and utilized as the scaling-up model's thresholds. Using ArcGIS, the precipitation and 

temperature data was reclassified into categories, instead of the absolute values. These categories 

are used to visualize the differences between the two seasons. The scaling-up model utilized the 

categorical data, and further refined it into smaller classes, using the "remap/reclassify" function 

within ArcGIS. The temperature data was reclassified into seven classes; precipitation was 

reclassified into 11 categories. For temperature, the remapped value of five represented the mean 

average value of all three research sites. Although not directly used, precipitation was the 

function of irrigation requirements less the precipitation value. The irrigation data was both plant 

and ecoregion-specific, achieved by using the agronomic data.  The value shows how much of 

the total amount of supplemental water is needed to achieve optimal water supply. Based on the 

agronomic data, each research site had to be visualized differently on a map. Therefore, the 

model needed to retrieve the correct value from the model.  

By combining the remapped precipitation and temperature data to the ecoregion layers, the 

resulting data had 231 possible combinations.  Each variable was classified using a different base 

ten value. Precipitation was a value in % multiplied by ten, with a max value of 1,000, and the 

temperature was a remapped value multiplied by 10, with a max value of 100. 

Ecoregions were assigned a base ten value of one, with a max value of three. Even though 

ecoregions were assigned a value, the data was selected based on the ecoregion values, creating 

three separate layers. After clipping the appropriate crops and ecoregions together, the resulting 

data layers were combined into one map. The resulting data is a series of eight individual maps. 

Figure 3.4 shows the results of four out of the eight output maps, amaranth and solanum over 

both seasons. 

 Results and Discussion 

By utilizing all the players within the value chain, MicroVeg focused on developing and 

implementing solutions to alleviate food insecurity. Each research site had specific goals; the 

three chosen research sites reported optimal water usage data and yield potentials of each UIV.  
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The scaling-up model used a series of steps to create figures that contained the computed 

inference space of each UIV within each season. Cells that are illuminated in the figure were 

calculated to resemble the conditions of the research site. The research sites used for scaling-up 

were Ina, Ogbomosho South, and Ife Central. The latter two sites were a generalization of a 

cluster of research sites. 

Water availability was identified as the most limiting climatic variable. Using the optimal water 

usage, from the agronomic report, the model used a buffer of 10% for each UIV at each research 

site. This buffer is a theoretical value of the UIV’s ability to tolerate additional water and/or 

short-term droughts, which may occur during the growing season. This buffer can be modified in 

the model, by selecting different classes of data.  Table 3.3 describes the scaling-up potential, 

which suggests that the four UIVs can be expanded within country boundaries. The resulting 

maps from the model included each UIVs scaling-up potential in both seasons. Treating each 

season individually illustrates how crucial water availability is for certain UIVs. 

In total, MicroVeg research sites have an approximate area of 50 ha. In Benin and Nigeria, 

farmers are growing UIVs on an average of less than 0.02 ha and on plots that are 6 m2 

(Adebooye et al. 2018). Each cell is assumed to be 1 km2, the same as the inputted climate data. 

Based on the model, the scaling-up potential of each UIV exceeds 100,000 cells. Scaling-up 

potential does not imply that large Western-style commercial agriculture should occur, but rather 

that current farmers within the mapped areas should see results comparable to the research sites, 

as this is how the model has predicted the area. The dry season is expected to have a lower 

scaling-up potential compared to the wet season, but the UIV with the highest dry season 

potential is amaranth with 325,506 cells. Amaranth and solanum have the same potential for 

growth in the wet season, with 355,756 cells. 
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Table 3.3 Total potential area (in km2) for scaling-up amaranth, solanum, parsley, and fluted 

pumpkin 

  Amaranth Fluted Pumpkin Parsley Solanum 

  Dry1 Wet2 Dry1 Wet2 Dry1 Wet2 Dry1 Wet2 

Benin 76,812 73,456 - 16,113 76,812 57,343 76,812 73,456 

Nigeria 248,694 282,300 120,557 207,515 115,674 82,649 179,158 282,300 

Total 325,506 355,756 120,557 223,628 192,486 139,992 255,970 355,756 

1Dry season - November to February.  
2Wet season - March to October. 

The potential for scaling-up was calculated based on the optimum water requirements of each 

UIV in the respected ecoregion. For the savanna and sudano savanna, this was interpreted as an 

irrigation requirement. Since the rainforest receives sufficient rainfall, no irrigation was needed. 

The results of the scaling-up analysis favour development during the wet season, but it is also 

clear that substantial expansion of UIV’s can occur in the dry season. The results also suggest 

that even though the plants yield more when fertilizer is applied via microdosing, access to 

sufficient water will likely limit agriculture during the dry season. 

In contrast, there is also a threshold where too much water, either within a period or over a 

season, is detrimental to vegetable production. The 10% buffer, from the optimal value, was used 

to be inclusive of areas that may have more access to water or slightly drier or wetter than the 

research site. Additional factors, such as limitations to accessing fertilizer or land, may need to 

be taken into consideration before proposing scaling-up at a specific location. 

Due to local preference, not all UIVs were grown in all regions; this limits the predictive power 

of our scaling-up model for some crops. For example, at the scaling-up research sites, parsley 

was only grown in the sudano-savanna. Data for parsley was only available at the Ina research 

site.  

The outputted values of the model represent the total count of cells. The total cell count for 

parsley was 192,486 and 139,992 for the dry and wet season, respectively. Restrictions in the 

model are the causation for a decreased scaling-up potential in the wet season. 
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The scaling-up potential for fluted pumpkin was also limited by the model, with the data being 

limited to the savanna and rainforest ecoregions. The potential scaling-up area for fluted 

pumpkin is 120,557 and 22,3628 cells, in the dry and wet season, respectively. This increase in 

potential growth can be attributed to Nigeria, where the area increased by 86,958 cells in the wet 

season compared to the dry season. The potential area for both seasons extends to the north and 

east portions of the Nigerian research sites. Because of geopolitical conflicts, these lands have 

not been explored within the project. Another scaling-up potential for fluted pumpkin comes 

from potential lands meeting the criteria during the wet season in the Benin Republic, which 

accounts for 16,113 cells (data is available online at www.microveg.ca). 

Amaranth and solanum are popular UIVs within the Benin Republic and Nigeria, and their 

scaling-up potential is significantly more significant than either parsley or fluted pumpkin. 

During the dry season, potential growth for amaranth and solanum are, respectively 325,506 and 

255,970 cells, or km2. In the wet season, amaranth and solanum have the same potential growth, 

at 355,756. Figure 3.4 illustrates the estimated areas for scaling-up of amaranth and solanum for 

the dry season and wet season. Currently, the research sites are clustered in the south-west 

portion of Nigeria and the southern portion of  the Benin Republic. Both amaranth and solanum 

have a high scaling-up potential in the central and eastern parts of Nigeria, which are outside the 

intervention zone of our project but important regions of Nigerian agricultural productivity. Our 

model also suggests a more northern expansion could occur with amaranth, suggesting that 

additional countries in sub-Saharan Africa may benefit from the adoption of MicroVeg practices 

for amaranth. Scaling-up of solanum might be most productive along the southern coast of 

Africa, where water is not as limiting. 

  

http://www.microveg.ca/
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Figure 3.4 Scaling-up potential of amaranth (A and B) and solanum (C and D) for dry and wet seasons, 

respectively.  

Elevation and soil type were considered as output variables for scaling-up but were omitted due 

to small variations in these factors. This is consistent with the work of Jones et al. (2013) who 
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concluded, at a scale of 1: 3,000,000, the regions where our project’s research occurred are 

relatively uniform. However, elevation and soil classification might also need to be taken into 

consideration in eastern Nigeria, where the sites may have different responses than the scaling-up 

research sites. Regionally, the soils vary considerably, and more information needs to be 

obtained to validate the relationship between soil classification, UIV yields, and effective water 

usage for eastern Nigeria. Elevation and slope are other variables that can be used to determine 

atmospheric limitations. A slope that is too steep can cause severe erosion and water degradation, 

which significantly increases the risk to farmers and would negate any progress in improving 

food security. The slope was omitted from our model because the data available at the time of 

analysis was too coarse. With a resolution of 1 km2, this digital elevation model (DEM) did not 

show any variation within the region, except along the southeast Nigerian border. A finer 

resolution DEM may be able to improve the model. An acceptable satellite mission may be the 

STRM, which has a cell size of 30m2 (U.S. Department of the Interior 2015). 

3.5.1 Disseminating Microveg with GIS 

Scaling-up cannot be achieved without a means of disseminating necessary data to the various 

groups involved. A Web-based GIS database, WebGIS, was developed to help disseminate 

project data. The WebGIS database was developed with the help of the Social Sciences Research 

Laboratories (SSRL), University of Saskatchewan and is hosted at http://www.microveg.ca. 

Traditional GIS databases have many drawbacks, including file size, software requirements and 

literacy, high cost of software licensing, and reliable internet access to maintain the databases. 

Our WebGIS database overcomes all of these limitations. WebGIS databases are not new, but at 

the time of conception, this was the only known open-sourced database for a research project to 

combine several international data sources for a food security project. Our WebGIS combines  

16 unique layers of GIS data into one interface. Together, these layers create an interactive tool 

for assistance in UIV production. 

Our WebGIS database contains three unique interfaces: homepage, map database, and profit 

calculator. The homepage is a source of project information, resources, and printable maps.  

The map interface uses ArcGIS Server and ArcGIS API for Javascript, to present multiple layers 

of data interactively, by allowing users to click and change information. Our map interface 

allows for various tools to be viewed, similar to ESRI’s ArcGIS interface. An extensive list of 

http://www.microveg.ca/
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options was created by Zeng et al. (2017). Upon clicking on a particular point, users are shown a 

detailed list of data, presented in a “data viewer.” This data viewer, figure 3.5, dynamically 

updates whenever the user changes the location.  

 

Figure 3.5 Sample View of the WebGIS data viewer  

As an extension tool, we created a gross profit calculator as a way to utilize the data viewer for 

NGOs, extension agents, and farmers. This calculator allows farmers to compare their current 

practices with the MicroVeg agronomic approach. Associated with this tabular data, we 

implemented a Gross Profit Calculator, figure 3.6. This profit calculator allows for site-specific 

assessment of the fertilizer microdosing technique (Akponikpe et al. 2016). The Gross Profit 

Calculator allows farmers or NGOs to input their data to see how much potential gains they can 

receive by adopting the MicroVeg agronomic package.  
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Figure 3.6 Screenshot of the gross profit calculator interface 

 Conclusion 

Developing a GIS database with agronomic trial data was the primary objective of scaling-up 

within the MicroVeg agronomic package; however, the WebGIS database also facilitated our 

scaling-up process by making the results useful for a wider audience. Not a lot of scaling-up 

research focuses on dissemination approaches and reaching new users. Finding new lands to 

grow crops and applying the scaling-up approaches is an inevitable requirement of scaling-up, 

but it is typically not a data-driven process. We demonstrated that GIS provides a means to 

understand landscape level relationships for a development project and GIS can also serve as a 

medium for scaling-up discussions. As an example, the MicroVeg project focused their project 

on four UIVs in a targeted region of the Benin Republic and Nigeria due to constraints of time 

and resources. Based purely on climatic variables, however, each UIV has the potential to be 

grown in over 100,000 cells, and the most significant area is 355,756 cells (1 cell = 1km2). To 

more readily share GIS results and disseminate our project’s findings on the Web, our WebGIS 

system includes downloadable resources, a map interface, and a profit calculator. Both GIS and 

WebGIS programs are limited only by the available data and the knowledge of the users and GIS 

programmers. These results suggest that data-driven GIS approaches can be an essential tool to 

address food insecurity for farmers not only in Sub Saharan Africa but also worldwide.  

 Addendum  

Grammatical changes, including the restructuring of some sections, and reformatting have 

occurred since the date of submission. 
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4 METHODOLOGY FOR CREATING 1KM2 RESOLUTION MODEL FOR CLIMATE 

CHANGE IN WEST AFRICA BASED ON IPCC RPC 4.5 AND 8.5 

 Preface2 

Climate change will continue to be a complex issue to both understand and mitigate. The 

complexity increases as we understand how food security and economics are connected to 

climate change. Tools for discussing and disseminating information are vital to alleviating 

hardships caused by climate change and food insecurities. Using GIS, the following manuscript 

developed a new set of tools for researchers in West Africa to understand, mitigate and plan for 

the uncertainties of climate change. 

 Abstract 

Climate modelling is becoming more accessible due to improvements in the availability of data 

and conceptual approaches from organizations such as the IPCC; it is now feasible to integrate 

climate modelling with practical research questions including food insecurity in developing 

countries. Large-scale climate models, such as IPCC models, are not particularly useful to a 

farmer who is facing food insecurities at a local scale; instead, the development of a fine-

resolution climate model would provide more useful data and information to farmers. These fine-

resolution climate models are not common throughout Africa due to a lack of investment and 

training. By using pre-existing agronomic and climatic data, we developed a fine-resolution 

model that relies on globally acquired data. The objective of this paper is to describe the newly 

conceptualized model. The outputs of this model are available for multiple disciplines to assess 

the likely outcomes of crop development under a changing climate. Furthermore, the model 

should be utilized as a means to disseminate climate and crop data, and as a multi-disciplinary 

communication tool to improve land management strategies. 

                                                           
2 Manuscript will be submitted to an academic journal (TBD) for publishing during thesis review 

process. Coauthors include D. Peak (provided financial assistance, and feedback), O. C. 

Adebooye (Principal Investigator of MicroVeg project, Nigeria research team), P.B. Irenikatche 

Akponikpe (Principal Investigator of MicroVeg project, the Benin Republic research team). 
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 Introduction 

Climate modelling is becoming a common research practice, but at the continental scale, Africa 

has significant portions which are not mapped using high-resolution methodologies. Some 

countries, however, have invested in technologies that make such mapping possible. Sub-

Saharan Africa, including the Benin Republic and Nigeria, is one of the regions for which high-

resolution climate data does not exist. 

To obtain high-resolution climate data for SSA, the use of a GCM is imperative. GCMs are 

large-scaled, coarse models used to model global trends. One of the most prominent proponents 

of GCMs is the IPCC. The first IPCC report was published in 1990, and since then both the 

available data and the resolutions continue to improve, by decreasing the cell size, which the 

model assesses. The most recent report by the IPCC was the AR5. In this report Representative 

Concentration Pathways (RCPs) were used to illustrate probable futures. This report created four 

RCPs: RCP 2.6, 4.5, 6 and 8.5. 

A countless number of models exist, which model various food security elements, but none 

illustrate the importance of the IPCC scenarios. Literature has noted the potential importance of 

RCP 2.6, 4.5 and 8.5 regarding both climate factors and food production. RCP 2.6 is the driving 

force behind large-scale intergovernmental agreements (Paris Agreement); RCP 8.5 would 

represent a catastrophic societal failure; RCP 4.5 is a key intermittent model. RCP 4.5 is also 

suggested to be our current societies most likely scenario (IPCC 2014; Adeniyi 2016) 

High-resolution climate models exist, known as RCMs. These models operate under strict spatial 

rules and operate at a significantly higher spatial resolution compared to CGMs (Larsen et al. 

2013). RCMs can be useful tools for creating a food security model under climate change but 

become more data-intensive the broader the spatial extent, and the resolution of data used.  

Primarily because of data availability, most published models use GCMs. However, for a food 

security study, using an RCM would prove more useful because of the finer details available in 

the data. Currently, no RCM exists over the region of the Benin Republic and Nigeria. Therefore, 

the objective of this paper is to create a methodology for a high-resolution climate model that 

resembles an RCM using globally acquired data. The model will predict climate until the end of 

the 21st century and hopefully will help in understanding if a temporal trend is occurring. The 
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goal of the paper is for the outputted model to serve as a communication tool to help alleviate 

food insecurity for SSA.  

 Methods 

The literature on how climate models, whether GCM or RCM, are developed is sparse; 

particularly when it comes to the methodologies used. Additionally, no literature was found 

which bridges GCMs and RCMs as complementary entities in the SSA region. To evaluate the 

effects on time and climate change scenario on the region, we required that the model be 

versatile and easy to run multiple times with variation in input parameters. ArcGIS was the 

primary tool used for data management and manipulation. However, to ensure that the inputs and 

parameters of the model were consistent between each iteration, scripts using Python 2.7 were 

created. The package of python scripts is known as Scaling Agronomic Vegetable Innovations to 

Nurture Growth Sustainably model (SAVINGS); the full script is available in APPENDIX B. 

SAVINGS is a continuation of Scaling-up model proposed by Minielly et al. (2018). SAVINGS 

was designed to be executed externally from ArcGIS to optimize computer processing power. 

However, subsets of the model can be executed within ArcGIS, via the python window. All 

calculations and data creation utilized the python scripts, ensuring replicability. Development of 

the tools and scripts was run within ArcGIS then replicated in python. Figure 4.1 shows how 

SAVINGS is structured and organized. 
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Figure 4.1 Simplified methodology for climate research 
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Determining the parameters was the first step in running the SAVINGS model. As a parameter, 

scaling-up refers to the input and output data from Minielly et al. (2018). Table 4.1 summarizes 

the parameters used in the scaling-up model originally published in Minielly et al. (2018). This 

model was built on agronomic data provided by (Akponikpe et al. 2016). Both the water and 

temperature needs are plant and research site specific. The next parameter to determine was the 

years for which to run the model. The scaling-up model was built on climate data from the year 

2000; SAVINGS added the years 2035, 2065, and 2099. For the end of the 21st century the year 

2099 is used. The chosen years were also reporting years for IPCC (2014) and Adeniyi (2016), 

though additional years could be used. The final parameter to determine, prior to running the 

model, is the climate change scenarios to be used; we used IPCC (2014) RCP 4.5 and 8.5, based 

on data availability. 

Table 4.1 Parameters used for SAVINGS model. 

Site Name UIV Water Needed Temperature  

  mm °C 

Ife 

amaranth 209 26.3 

solanum 157 26.3 

fluted pumpkin 174 26.3 

Ogbomosho 

amaranth 430 26.5 

solanum 303 26.5 

fluted pumpkin 544 26.5 

Ina 

amaranth 980 26.5 

solanum 980 26.5 

fluted pumpkin 980 26.5 

 

The second step to executing SAVINGS is preparing the data. Outputs of the scaling-up model, 

described by Minielly et al. (2018) served as the foundation for the SAVINGS model. 

Precipitation, temperature, ecoregions, and MicroVeg agronomic data were all used in 

SAVINGS. Data that pertained to climate change, precipitation, and temperature, originated 

from two sources, Adeniyi (2016) and IPCC (2014).  
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Adeniyi (2016) analyzed projected precipitation rates over West Africa for the years 2035, 2065 

and 2099. The published data makes projections for both RCP 4.5 and RCP 8.5. To run their 

model, Adeniyi (2016) delineated the region into five regions, which were not synonymous with 

the ecoregion layers. This inconsistency, shown in figure 4.1 as an intermediate step, required 

additional processing to occur before the data could be incorporated into SAVINGS. Figure 4.1 

also illustrates that Adeniyi (2016) also contained statistical data as a parameter. The analysis of 

the precipitation data yielded multiple statistical parameters, and it was determined that the 

minimum, maximum, and mean values would be run within SAVINGS.  

With medium confidence, IPCC (2014) published projections for temperature. The values 

presented by IPCC (2014) are global estimates but are the highest calibre of data available for 

SSA. The temperature had an intermediate step, in figure 4.1, which included populating tabular 

data from the IPCC reports into a structure that was readable by SAVINGS. 

After the intermediate steps were completed, the data from IPCC (2014) and Adeniyi (2016) data 

were converted from their respected reports into datasets to be used by SAVINGS, shown in 

figure 4.1 as grey cylindrical data sections. Included in the data section is administrative 

boundaries, which allows for statistics to be run based on a polygon. For this assessment, we 

used the third level of administrative boundaries. 

The next step in figure 4.1 is to run a series of raster calculations, illustrated as blue ellipses. A 

raster calculation, in its purest form, is a mathematical formula executed upon a specific cell, or 

pixel, in a dataset. The first raster calculation required, converting Adeniyi (2016) data from a 

polygon to a raster. After taking the precipitation and temperature data from Minielly et al. 

(2018), the respected climate change data was added to create the data for the model. Once the 

data was combined, via the SAVINGS model, the data was remapped and reclassified as needed 

to illustrate the areas of concern. Remapping the data allowed for discrete numbers to be turned 

into classes of data. The classes were defined by using the agronomic data from Minielly et al. 

(2018). The classes for precipitation ranged from 10 – 100, increasing by 10. Precipitation values 

represent the percentage of rainfall based on the case study site of that ecoregion and determined 

by equation 4.1. Water needed to be was derived from the agronomic data. SAVINGS ran this 

calculation for each UIV and each season. 
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Equation 4.1 Function to determine the amount of irrigation required for each case UIV. Data 

originally reported in (Akponikpe et al. 2016). Values recorded as percentages 

𝑉𝑎𝑙𝑢𝑒 =
𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑒𝑑 − 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑎𝑡𝑖𝑜𝑛

𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑒𝑑𝑒𝑑
∗ 100 

Classes for temperature ranged from 1 - 7, increasing by one. The ideal temperature range for the 

UIVs, as determined by the agronomic data, is 24 - 26°C, this range was remapped to class 5. 

Ecoregion data was remapped by Minielly et al. (2018), the classes used range from  

1,000 – 3,000 increasing by 1,000. All the remap values were then reclassified based on UIV and 

season. Data that was not within the accepted range was automatically set as null. By setting the 

data to null removes all other classes of data, only leaving the accepted classes.  

The fourth step of SAVINGS is to combine all the parameters. The reclassified values for 

temperature and precipitation were used and combined with appropriate ecoregion and 

agronomic data. Additionally, the climate change scenarios, RCP 4.5 and 8.5, are introduced into 

the outputted data. To allow for the climate change scenarios to be used, data is extracted from 

tabular versions of precipitation and temperature. SAVINGS differentiates between the climate 

scenarios. This process selects the correct precipitation, temperature, ecoregions, and UIV in 

accordance to the RCP and time series. This combine function outputted 144 unique maps. These 

output maps, step five, show how each UIV may respond to a climate scenario at a specific time 

and during a specific season. Included in the output maps are statistical values for mean, 

minimum and maximum. Only mean values are used, reducing the number of outputs to 48 

maps. 

The final step of the model was to run zonal statistics. By overlaying the administrative 

boundaries at the commune and state boundaries for the Benin Republic and Nigeria, 

respectively, SAVINGS extracted the number of cells contained within the administrative 

boundaries. By using the data from the combining step, each UIV, climate change year, and 

climate scenario are present.  The resulting data is saved as a table and can be viewed and 

manipulated within various software programs. 

 Results 

The maps that resulted from the SAVINGS model use data from the three research sites and a  

+/-10% buffer of the sites to create an inference space, that resembles the outputs from Minielly 
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et al. (2018). Thus, the areas illustrated are regions where scaling-up most likely will succeed, 

strictly based on the climatic variables of the research sites. By using research data, SAVINGS 

extrapolated data into 2100. Using the current agronomic data, from 2015, the estimates from 

2035 onward become less confident, as illustrated by a decrease in mapped areas. Areas outside 

of the range can still grow the UIVs at the discretion of farmers. However, this land is not 

favourable for Scaling-up as is not expected to be as profitable and may incur additional costs 

such as fertilizer, labour, and water. 

By combing the input constants, SAVINGS outputted 144 maps based on three statistical terms, 

four UIVs, two seasons, two climate change scenarios, and three years. Each of the input 

variables is viewable within GIS software. Ecoregion and agronomic data were crucial variables 

for understanding the output maps. The agronomic data was used to determine the optimal 

growing conditions based upon respective scaling-up research site. Each scaling-up research site 

was contained within a different ecoregion (Adebooye et al. 2018). 

By using a case study approach, the resulting data represents the most likely outcome for  

scaling-up to occur until 2100 at each of the research sites. By using the scaling-up research sites 

directly, each output map would contain a maximum of three values, each value corresponding to 

the respective site for the ecoregion. By applying a 10% variation to each research site, this 

creates a larger inference space. Water is the most limiting resource for these crops to grow; 

therefore, 10% buffer was added or subtracted from the remapped precipitation values. The 

buffer is a parameter within the model that can be modified. For example, the average remapped 

precipitation value for Ife was 50, adding the inference area allowed us to view 40 and 60 

classes. This larger inference space represents a buffer for the optimal growing conditions of 

each UIV, allowing for more realistic estimates.  

By assessing each UIV independently from season and RCP, the research years show a 

decreasing trend in arable land, suited to sustain each UIV. By using the tabular data created 

during the zonal statistics, the trend for amaranth, as an example, can be viewed under any 

combination of season, years or RCP. The tabular data, also allows for specific regions to be 

reviewed, at all three administrative boundaries, as described by Hijmans et al. (2012). 

SAVINGS operated at a resolution of 30 arc seconds, and in literature, this equates to 1km2, at 

the equator. The output from zonal statistics considers the total cells within a polygon. These 
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cells, which represent 1 km2, will be referred to as the scaling-up potential. By viewing the zonal 

statistic tables at the country level, table 4.2 and 4.3 illustrate how each UIV responded to the 

SAVINGS model.  

Table 4.2 Climate change scenarios for Benin Republic research for amaranth, parsley, solanum, 

and fluted pumpkin, shown values represent cells (km2) 

   RCP 4.5  RCP8.5 
 

 2000† 2035 2065 2099 2000† 2035 2065 2099 

Amaranth 
Wet 73,456 20,443 206 10 73,456 20,443 3 - 

Dry 76,812 14,063 - - 76,812 14,063 - - 

Parsley 
Wet 57,343 18,764 134 6 57,343 18,764 - - 

Dry 76,812 - - - 76,812 13 - - 

Solanum 
Wet 73,456 20,443 206 10 73,456 20,443 3 - 

Dry 76,812 14,063 - 0 76,812 14,063 - - 

Fluted Pumpkin 
Wet 16,113 1,679 72 4 16,113 1,679 3 - 

Dry - - - - - - - - 

†The year 2000 represents the current maximum extent for scaling-up. Derived from the 1970-

2000 climate normal. Originally published in Minielly et al. (2018)
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Table 4.3 Climate Change scenarios for Nigeria research for amaranth, parsley, solanum, and fluted pumpkin, shown values represent 

cells (km2) 

      RCP 4.5   RCP8.5 
  2000† 2035 2065 2099 2000† 2035 2065 2099 

Amaranth 
Wet 282,300  232,684  87,819  50,040  282,300  232,903  40,315  7,018  

Dry 248,694  172,692  152,074  166,775  248,694  172,955  172,263  76,531  

Parsley 
Wet 82,649  63,404  24,973  11,764  82,649  63,623  9,065  34  

Dry 115,674  -  -  -  115,674  -  -  -  

Solanum 
Wet 282,300  232,684  87,819  50,040  282,300  232,903  40,315  7,018  

Dry 179,158  144,767  130,995  151,809  179,158  143,861  161,203  70,495  

Fluted Pumpkin 
Wet 207,515  169,280  62,846  38,276  207,515  169,280  31,250  6,984  

Dry 120,557  72,639  41,948  27,429  120,557  72,374  21,698  6,550  

†The year 2000 represents the current maximum extent for scaling-up. Derived from the 1970-2000 climate normal. Published initially 

in Minielly et al. (2018). 
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The scaling-up potential of MicroVeg agronomic recommendations for the Benin Republic, 

across all UIVs, was significantly lower than compared to Nigeria, based on the total number of 

cells within MicroVeg, Benin Republics scaling-up potential was 20 and 26% of the MicroVeg 

total, for the wet and dry season respectively. When tables 4.3 and 4.4 are compared to each 

other, SAVINGS predicts that by 2035, the Benin Republic will only contribute to 8 and 7%, wet 

and dry season respectively, of the regions scaling-up potential. This decrease is modelled to be 

the same for RCP 4.5 and 8.5.  

After 2035, the scaling-up potential for the Benin Republic becomes negligible, based solely on 

cell count.  For the Benin Republic, SAVINGS predicts that under RCP 4.5, in 2065 the wet 

season will have 618 cells, or 618 km2, which are acceptable for growing the UIVs; while 2099 

will have 30 cells. The scaling-up the potential for the Benin Republic in the dry season is 

modelled to be zero cells, after 2035. Under RCP 8.5 the total cell count for the Benin Republic 

decreases to zero after 2035 regardless of season, except 2065 where the modelled cell count is 

six. 

SAVINGS is showing a preference for Scaling-up to occur in Nigeria. SAVINGS shows that 

Nigeria will be affected by climate change. Since Nigeria is more abundant in the area, more 

climate variability allows for the modelled output to move through the country. Nonetheless, 

Table 4.3 shows how the total cell count decreases over time. Summing all UIVs per season, 

current potential for Nigeria is 854,764 and 664,083 cells, for wet and dry season respectively. 

RCP 4.5 is expected to yield a milder climate by 2100, compared to RCP 8.5. The total scaling-

up area under RCP 4.5 is modelled to decrease to 18% of the current scaling-up potential by 

2099. The same scenario for RCP 8.5 is modelled to see a decrease to 2% of the current scaling-

up potential.  

In contrast, the dry season is modelled to decrease to 52 and 23% of the current potential, for 

RCP 4.5 and 8.5 respectively. For RCP 4.5, there is a slight increase in total cells from 2065 to 

2099. The UIVs that are responsible for the shift are amaranth, solanum, and fluted pumpkin. 

The net changes in cell counts are 14,701, 20,814, -14,519, respectively from 2065 to 2099. 

Total cell count, or total land, is expected to decrease by 2099. SAVINGS shows that each UIV 

will decrease at a different rate. Overall, the scaling-up potential in the wet season will decrease 

faster than the dry season. This decrease might be attributed to an excess in precipitation rather 
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than a shortage (Adeniyi 2016). The decrease in 2099 for the wet season is modelled to be 

150,150 (-86%) and 21,054 (-98%) cells for RCP 4.5 and 8.5, respectively. For the dry season, 

the decrease is modelled to be 34,6013 (-61%) and 15,3576 (-83%) for RCP 4.5 and 8.5, 

respectively. 

SAVINGS does not only predict a decrease in total land area but suggests that the land that is 

meeting the criteria will move. As an example figures 4.2-4.5 belong to a series of maps outputs 

for amaranth. Each panel represents a year within the seasonal and climate modelled scenario. 

Amaranth was chosen as an example UIV, as it is abundant between both countries and widely 

consumed. The colours in this figure indicate three classes for each research site: the research 

site, +/- 10% precipitation. Each figure in the series shows the years 2000, 2035, 2065 and 2099. 

The year 2000 is the modelled output from Minielly et al. (2018). Figures 4.2 and 4.3 show the 

scaling-up potential for amaranth under  RCP 4.5 for the dry season and wet season respectively. 

Figures 4.4 and 4.5 show how RCP 8.5 will impact amaranth differently for both the wet and dry 

seasons, respectively.   
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Figure 4.2 Dry season scaling-up potential of amaranth RCP 4.5 
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Figure 4.3 Wet season scaling-up potential of amaranth RCP 4.5 
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Figure 4.4 Dry season scaling-up potential of amaranth RCP 8.5 
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Figure 4.5 Wet Season Scaling-Up Potential of Amaranth RCP 8.5 
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All four figures in this series show a spatial shift in the location for ideal growing conditions for 

amaranth. Prominently, especially for the dry season, of both RCP 4.5 and 8.5 is a northeastern 

shift of the scaling-up potential. Current scaling-up potential of amaranth in the dry season is 

325,506 cells. By 2099, dry seasons have been modelled to decrease to 166,775 (-49%) and 

76,531 (-76%) cells, for RCP 4.5 and 8.5 respectively. Additionally, the dry season scaling-up 

potential for RCP 4.5 is modelled to have a noticeable shift by 2099. The modelled potential is 

along the shores of Lake Chad. This shift is present in RCP 8.5, but with drastically reduced 

potential. 

SAVINGS has modelled the decrease to be more drastic in the wet season compared to the dry 

season for amaranth. The current modelled Scaling-up the potential for amaranth in the wet 

season is 355,756 cells. This is modelled to decrease by up to 50,050 (-86%) and 7,018 (-98%) 

cells, for RCP 4.5 and 8.5 respectively. SAVINGS is modelling the scaling-up potential shift for 

the wet season, similar to the dry season. Spatially, this shift is modelled to extend northeastward 

until 2065, where it will recede to the north-central part of Nigeria. This shift is apparent in both 

RCP 4.5 and 8.5. 

Solanum has a similar scaling-up potential, with many of the cells overlapping with amaranth. 

Under both RCPs the dry seasons scaling-up potential is slightly lower than compared to 

amaranth, but the scaling-up potential is the same for the wet season.  

The UIV that sees the most substantial decrease is parsley, with zero cells being modelled any 

time after 2035 for the dry season, for both RCPs. By 2099, wet season potential for parsley is 

reduced from 139,992 to 11,770, and 34 cells, for RCP 4.5 and 8.5 respectively.  

Fluted pumpkin has been modelled to have a significant decrease by 2099. Under RCP 4.5 the 

modelled area will decrease by 77 and 83%, of its current scaling-up potential, for dry and wet 

seasons, respectively. Under RCP 8.5 this decrease is modelled to be 95 and 97%, for dry and 

wet seasons, respectively. 

 Discussion 

Climate change will introduce new complexities within the agricultural sector, especially for 

farmers of West Africa. Combatting food insecurity requires research to occur and for the 

research to be scaled quickly and efficiently. The use of GIS allows for a scaling-up perspective 
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not available by conventional measures. The GIS approach has incorporated climate models, 

which shows an estimate where research resources may be better spent and allow for an 

understanding of the possible duration by which land may remain viable for a particular UIV. 

This information can be related back to food security by reviewing the agronomy data. As the 

modeled areas diminish, communication on land tenure and crop management will become 

increasingly important. Vegetable crops, such as the UIVs, can be harvested multiple times 

within a season, strategies may need to be developed to enhance the amount harvested (in total or 

per harvest) or different varieties if  other limitations are unfeasible. 

The objective of this research was to develop a new tool for combatting food insecurity through 

knowledge dissemination, SAVINGS. Operating as a package of python scripts SAVINGS is a 

versatile tool that can consecutively run multiple iterations, with minimal expertise in GIS 

software being required. By modifying key elements within the script different scenarios, 

countries, and crops can be inputted. The model is now able to serve as a communication and 

dissemination platform for agricultural development in the Benin Republic and Nigeria. 

The absolute values of each UIVs scaling-up potential are less important than the visualization 

from the SAVINGS model that illustrate where scaling-up should occur. SAVINGS illustrates 

data constraints and physiological limitations expected from each UIV and ecoregion. Data from 

Minielly et al. (2018) and Adebooye et al. (2017), suggest that water is the most limiting variable 

within the system. By using the same parameters as Minielly et al. (2018), SAVINGS suggests 

where and approximately the scale at which scaling-up can occur for each UIV. By restricting 

precipitation and temperature parameters used, SAVINGS matched the outputs of the three 

research sites, which were used as case studies in Minielly et al. (2018). SAVINGS was able to 

show where water resources may become scarcer. The projected precipitation patterns were 

determined by Adeniyi (2016), and contradict the moisture regimes of the region reported by 

Adebooye et al. (2017). The year 2099 is modeled to have vast expanses of land which may 

receive too much precipitation. Temperature changes are being modelled to be less drastic 

compared to precipitation. However, a rise in forecasted temperature may play a more significant 

role for the UIVs, which is contrary to the scaling-up model (chapter 3).  

Areas not highlighted by the SAVINGS model (grey backgrounds) can still grow UIVs. 

However, these areas did not meet the criteria determined by Adebooye et al. (2017) and are not 
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expected to produce similar yields compared to the case study research sites. Economically these 

sites are not expected to perform well; farmers at these sites may even lose money if they use the 

MiroVeg tools.  

The SAVINGS model is designed to be actively updated. However,there exists a need for the 

model to be validated and calibrated. Currently, data limitations are restricting the model from 

under going any validation methods. 

When new climate and agronomic data is available, the model can be easily updated to reflect 

the new data. Also, IPCC data or estimates for future climate can be updated directly in the 

model's code. The design of the model allows for the addition of new parameters, new crops 

(indigenous or western varieties), and additional countries. Moreover, the SAVINGS model can 

serve as a multi-discipline, multi-national communication tool to develop a plan for climate 

change mitigation and to improve food security. 

 Conclusion 

The SAVINGS model is a crucial tool for understanding expected yields and the success of 

microdosing and the MicroVeg project, in its entirety. The objective of this study was to create a 

model about food security, under the pretense that the climate will experience some degree of 

change. The focus of this model was to be on the West African countries of the Benin Republic 

and Nigeria. The SAVINGS model produced data in tables and maps and used the best available 

data for the region, including climate data and agronomic data. By using two RCPs, from the 

IPCC, the SAVINGS model forecasted the scaling-up potential of each of the UIVs within the 

study. From the outputted data two trends emerged. First, it is expected that all four UIVs will 

decrease in land area by 2099. Secondly, geographically the land that is suitable for growing the 

UIVs shifts in a northeasterly pattern from the current research sites. This shift may become 

problematic, as the areas which are modelled to grow the UIVs by 2099 are not currently being 

used for agriculture, and to convert the land and cultural practices may take longer than the 

model can predict. Thus, the SAVINGS model can serve as a communication tool and advocate 

for better land management strategies or stewardship, which may contradict local cultural 

practices. However, if intervention starts early enough, these options may be viable 
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After 2035 the model predictions become poor. The inputted data suggests that temperature will 

play a more important role than precipitation. Future research needs to focus on the roles that 

temperature and precipitation, and other variables. 

The SAVINGS model is versatile, in its early stages of development, for use by different groups, 

and in a multi-disciplinary team to view the scaling-up potential of the UIVs, or other crops 

outside the scope of the project. The SAVINGS model can be easily modified and updated. 

Additionally, the SAVINGS model can run multiple iterations consistently, thus reducing the 

amount of expertise required to run a complex model.   
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5 DISCUSSION  

Although GIS is a powerful tool for scaling-up agricultural research, it had some limitations that 

became apparent when writing this thesis. First of all, crop type was kept independent in the 

model, and specific water requirement for UIVs was converted into an irrigation percentage 

value. This conversion creates an apparent overlap in data, especially when reviewing the 

outputs from SAVINGS model. The most apparent overlap comes from amaranth and fluted 

pumpkin. As an example, amaranth and fluted pumpkin may occupy a similar region near 

Ogbomosho. Overlapping cells may be beneficial, depending on the management strategies. 

However, if the plant needs are different, according to Adebooye et al. (2018), cultural 

experience or supplier, this complicates recommendations for farmers. Therefore, treating UIVs 

independently allows for stronger management strategies to be conceptualized separating the 

crops into different administrative boundaries.  

Combining the data into fewer maps, showing and allowing for overlap, will visually simplify 

the maps. One way this can be achieved is to rerun the data (using the same model, or an 

additional sub-model) only to include sites which are 100% similar to the research sites, and then 

combine all four UIVs into one map. This was out of scope for this research. Furthermore, this 

would visually simplify the climate change maps and modelling. This simplified approach would 

be useful if the absolute count of cells for any UIV is important. However, the model needs to be 

calibrated and validated in order to know if the modeled areas are sustainable. As the resulting 

data stands, this simplified approach would not be beneficial, as this model is being used to 

understand how each UIV may be independently scaled-up within the region.  By using the 

inference area created by the buffers,  different adoption strategies may be developed over larger 

areas for each UIV or a particular administrations. 

Resolution of precipitation and temperature in available datasets is an additional limitation. 

Without finer resolutions, homogeneity is assumed within each value. Adeniyi (2016) subdivided 

West Africa into smaller regions, thereby increasing the data resolution. Temperature data from 

IPCC (2014) was not available at a regional or continental level; thus, the resulting data may be 

an overestimation or underestimation for the region. The accuracy of the model can be refined, if 

temperature estimates became more region specific.  
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The two manuscripts illustrate the versatility and practicality of using a GIS approach for 

scaling-up development research. Models have been used within climate change and food 

security projects, but a comprehensive database illustrating the nexus between food security and 

climate change does not exist. SAVINGS was designed to bridge the gap in literature, by using 

research data and public datasets. By reviewing related literature, we can start to understand the 

complexities of these models and the associated elements.  

Fick and Hijmans (2017) is the most comprehensive model of climate change and biodiversity. 

Available, and pertinent, data includes annual temperature, and precipitation data at a resolution 

of 1 km2, data represents the 1970-2000 climate normal. Many other databases and resources 

exist with similar, but varying in the publication year, source and data resolution. By combining 

multiple resources, including (Fick and Hijmans 2017), FAO and other, we were able to create 

the most comprehensive food security database available.  

Climate change models differ from food security models in many ways. A climate change model 

requires sea level rise, ice coverage, and other elements. The duration of data is usually more 

extended, and it can establish a different trend. The IPCC is a leading resource on climate 

modelling and predictions on future climate. With the most recent report released, the AR5 

illustrated four likely outcomes. These likely outcomes, or RCPs, are designed with a global 

perspective. This global perspective makes the data coarse, but with each successive report 

release, the IPCC makes great strides in improving resolution. Data collected and presented by 

the IPCC comes from a vast collection of global research groups, who operate with GCMs and 

design the future estimates from those specialize models. 

Higher resolution climate data exist in some areas of the world. An average resolution of data 

used by RCMs is 50 km2, which is twenty-five times finer than AR5. Municipal governments use 

this sharper resolution data for planning and disaster prevention strategies. Data for RCMs can 

be either obtained by statistically downscaling coarser GCMs, or via other data collection 

methods. 

An essential element, often overlooked, in many predictive models is scaling-up or an indication 

of how a model may respond if a factor such as time were modified. This idea of scaling-up 

allows for inference spaces to be compared. Various methods and techniques exist to create these 
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inference spaces and to scale-up, but data type, sample population and sample resolution force 

these methods to be data and time intensive. 

The inherent nature of the IPCC models makes it challenging to disseminate data for food 

security. Moreover, the multitude of sources, time series, and the complexity of climate and food 

security models have added to the challenge of hybridizing a comprehensive database. Factoring 

in the scaling-up element, no combination of methods and methodologies publicly exist to create 

a food security model, geared toward poor farmers in the developing nations of West Africa.  

The first step to creating this model was to understand all possible elements that could be used in 

the creation of the database, as well as where the sources of data originate. Upon completion of 

this step synthesis of our model commenced. Designed with a farmer’s perspective, we used 

climate data at a resolution of 1km2. At this resolution, our outputs can be used by local farmers, 

not directly, but via knowledge dissemination. Added into this model was research data from 

three research trials. At these research sites, Akponikpe et al. (2016) and Adebooye et al. (2018) 

collected yield and water data on the projects four UIVs, during the dry season. Additional data 

was collected from the research sites, using the sites geographic location. 

The model then combined the climate data and the research trials, using GIS to create a visual 

perspective of the possible spatial capacity of the research data. This model has the versatility to 

add and modify variables. This knowledge and model were used to illustrate gaps in the research 

and to understand better how each UIV can be scaled. To better understand both the impacts of 

climate change and the scalability of each crop into the near future, the model was refined and 

converted into a python script whereby multiple iterations were run simultaneously. SAVINGS 

then became an innovation. The SAVINGS model simplifies the technical experience required of 

the users. With a few modifications the model can be used with any GIS software. This fluidity 

of the model is a significant advantage, as the model has been designed to support researchers 

and NGOs who work closely with the smallholder farmers in West Africa. 

Reviewing the inputted agronomy data, provided by Akponikpe et al. (2016) and Adebooye et al. 

(2018), modeled food security outputs by 2100 do not look promising. There is only confidence 

in the model to recommend adoption of the MicroVeg tools until 2035. After 2035, temperature 

and precipitation change in importance. The climate is being modelled as warmer and wetter 
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than current conditions, and the model is not responsive enough to capture this change. Under all 

climate change scenarios ran by the model, land management and cultural issues will need to be 

addressed for the region to become food secure. Both the scaling-up and SAVINGS models can 

be executed for neighbouring countries. With collaborations from additional countries, and 

shifting crop production between countries, the region may be able to become food secure. 

Moreover, the outputs of the models can show regions that may benefit from being converted 

from agriculture to other land management practices, such as agroforestry. 

A vital component of the model's success will be measured by the ability of farmers NGOs, and 

researchers in West Africa to use and improve the model. For many groups in Africa, access to 

resources such as climate and yield data is limited. To overcome this obstacle, the SAVINGS 

model was placed in part on an interactive online database. This webGIS platform allows for the 

further and more detailed dissemination of the data, further aiding to the alleviation of food 

insecurity. 

The SAVINGS model and the accompanying webGIS are not designed to be stagnant entities. 

As new climate data, and finer resolution data, becomes available it should be reflected in the 

model to give users the best-modelled outcome available. Future research needs to include 

calibration and validation of the model. This validation should first reflect the webGIS interface, 

then the updated in the SAVINGS code. Calibration of the model needs to include refining the 

yield and water estimates and the consideration of additional crops and countries. Refining of 

yield and water data could be as simple as new estimates or as complicated as subdividing the 

ecoregions if other variables are driving the water usage. Future research should include soil and 

elevation, which are important variables but because of poor data resolution were omitted. Soil 

and elevation both will influence food security and crop production in various ways. Having 

additional data, regarding resolution and tabular descriptions, would allow these variables to be 

used in the model. Other variables should be considered. If any variable has high quality and 

reliable data, it should be introduced into the SAVINGS model. 



61 

WORKS CITED 

Abiodun, B.J., Adeyewa, Z.D., Oguntunde, P.G., Salami, A.T., and Ajayi, V.O. 2012. Modeling 

the impacts of reforestation on future climate in West Africa. Theor. Appl. Climatol. 110: 

77–96. Springer Wien. doi:10.1007/s00704-012-0614-1. 

Adams, A.M. 2015. Long-Term Effect of Reduced Fertilizer Rate and Integrated Soil Fertility 

Management Practices On Soil Properties in Sahelian West Africa. 

Adams, A.M., Gillespie, A.W., Kar, G., Koala, Saidou, Ouattara, B., Kimaro, A.A., Bationo, A., 

Akponikpe, P.B.I., Schoenau, J.J., and Peak, D. 2016. Long term effects of reduced 

fertilizer rates on millet yields and soil properties in the West-African Sahel. Nutr. Cycl. 

Agroecosystems 106: 17–29. Springer Netherlands. doi:10.1007/s10705-016-9786-x. 

Adebooye, O.C., Akponikpe, P.B.I., Oyedele, D.J., Peak, D., and Aluko, E.R. 2018. Synergizing 

fertilizer micro-dosing and indigenous vegetable production to enhance food and economic 

security of West African farmers. Ottawa, Canada. 

Adeniyi, M.O. 2016. The consequences of the IPCC AR5 RCPs 4.5 and 8.5 climate change 

scenarios on precipitation in West Africa. Clim. Change 139: 245–263. 

doi:10.1007/s10584-016-1774-2. 

Agnew, C.T., and Chappell, A. 1999. Drought in the Sahel. GeoJournal 48: 299–311. 

doi:10.1023/A:1007059403077. 

Akponikpe, P.B.I., Oyedele, D.J., Adebooye, O.C., and Peak, D. 2016. Agronomic trial of 

fertilizer micro-dosing technology on traditional leafy vegetable. 

Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Griibler, A., Yong Jung, 

T., Kram, T., Lebre La Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, 

H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, 

P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z. 2000. Special Report on 

Emissions Scenarios. Cambridge, UK. [Online] Available: 

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=579BB70EC50A60643D18C429F

16B991C?doi=10.1.1.260.1482&rep=rep1&type=pdf [2018 Aug. 23]. 

Attaway, D.F., Jacobsen, K.H., Falconer, A., Manca, G., and Waters, N.M. 2016. Risk analysis 

for dengue suitability in Africa using the ArcGIS predictive analysis tools (PA tools). 

ACTA Trop. 158: 248–257. doi:10.1016/j.actatropica.2016.02.018. 

Bacon, K., Harding, L., Minielly, C., Weir, B., and Willness, R. 2014. Using ArcGIS to Promote 

Innovative Solutions for Food Security in the Sahel Region of Africa. Univ. Saskatchewan 

[Unpublished]. 

Central Intelligence Agency, Central Intellegence Agency, and Central Intelligence Agency 

2018. CIA Factbook. [Online] Available: https://www.cia.gov/library/publications/the-

world-factbook/ [2018 Aug. 18]. 

Climate Focus 2015. The Paris Agreement. Summary. : 1–6. [Online] Available: 

http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. 

Danielson, J.J., and Gesch, D.B. 2011. Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010). Reston, Virginia. [Online] Available: 



62 

https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf [2018 Aug. 22]. 

Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., Olivry, J.C., Albergel, J., 

Amogu, O., Cappelaere, B., Dessouassi, R., Diedhiou, A., Le Breton, E., Mamadou, I., and 

Sighomnou, D. 2009. Spatio-temporal variability of hydrological regimes around the 

boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. J. Hydrol. 

375: 90–102. Elsevier B.V. doi:10.1016/j.jhydrol.2008.12.012. 

Dike, V.N., Shimizu, M.H., Diallo, M., Lin, Z., Nwofor, O.K., and Chineke, T.C. 2015. 

Modelling present and future African climate using CMIP5 scenarios in HadGEM2-ES. Int. 

J. Climatol. 35: 1784–1799. doi:10.1002/joc.4084. 

ESRI 2014. ArcGIS Predictive Analysis Tools Add-In is available | ArcGIS Blog. [Online] 

Available: https://blogs.esri.com/esri/arcgis/2014/03/12/the-arcgis-predictive-analysis-tools-

add-in-is-available-for-download/ [2016 Dec. 7]. 

ESRI 2016. How Raster Calculator works—Help | ArcGIS Desktop. [Online] Available: 

http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-raster-

calculator-works.htm [2016 Dec. 7]. 

ESRI 2017. ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute, 

Redlands, CA. 

FAO 2006. Food Security and Protracted Crisis. [Online] Available: 

http://www.fao.org/forestry/en/ [2018 Jan. 7]. 

FAO 2013. Drought: A slow, creeping natural disaster. 

FAO 2017. AFRICA REGIONAL OVERVIEW OF FOOD SECURITY AND NUTRITION: 

The food security and nutrition-conflict nexus: building resilience for food security, 

nutrition and peace. [Online] Available: www.fao.org. 

Fick, S.E., and Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces 

for global land areas. Int. J. Climatol. 37: 4302–4315. doi:10.1002/joc.5086. 

Hartmann, A., and Linn, J.F. 2007. 2020 FOCUS BRIEF on the World’s Poor and Hungry 

People SCALING UP A Path to Effective Development. [Online] Available: 

https://www.brookings.edu/wp-content/uploads/2016/06/200710_scaling_up_linn.pdf [2018 

Aug. 9]. 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. 2005. Very high resolution 

interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978. 

doi:10.1002/joc.1276. 

Hijmans, R.J., Guarino, L., and Mathur, P. 2012. DIVA-GIS. [Online] Available: 

http://www.geocities.com/SiliconValley/Network/2114/ [2018 Aug. 9]. 

IDRC 2015. West African farmers boost yields and profits with less fertilizer. [Online] 

Available: https://www.idrc.ca/en/project/scaling-fertilizer-micro-dosing-and-indigenous-

vegetable-production-and-utilization-west [2018 Jan. 7]. 

IDRC 2016. Integrated Nutrient and Water Management for Sustainable Food Production in the 

Sahel (CIFSRF) | IDRC - International Development Research Centre. [Online] Available: 

https://www.idrc.ca/en/project/integrated-nutrient-and-water-management-sustainable-food-



63 

production-sahel-cifsrf. 

IPCC 2007a. Climate Change 2007 Synthesis Report. Intergovernmental Panel on Climate 

Change [Core Writing Team IPCC. doi:10.1256/004316502320517344. 

IPCC 2007b. Climate Change 2007: Mitigation. Edited ByB. Mertz and O. Davidson. Cambridge 

University Press, Cambridge, United Kingdom. 

IPCC 2014. Climate Change 2014 Synthesis Report. Edited ByC.W. Team, R.K. Pachauri, and 

L.A. Meyer Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II 

and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 

Geneva, Switzerland. doi:10.1017/CBO9781107415324. 

Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Gallali, T., 

Hallett, S., Jones, R., Kilasara, M., P., L.R., Micheli, E., Montanarella, L., Spaargaren, O., 

Thiombiano, L., Van Ranst, E., Yemefack, M., and Zougmoré, R. 2013. Soil Atlas of 

Africa. Soil Atlas of Africa. Publications Office of the European Union, Luxembourg. 

doi:10.2788/523191. 

Kithiia, J., and Dowling, R. 2010. An integrated city-level planning process to address the 

impacts of climate change in Kenya: The case of Mombasa. Cities 27: 466–475. Elsevier 

Ltd. doi:10.1016/j.cities.2010.08.001. 

Kumar, K.S.K., and Parikh, J. 2001. Indian agriculture and climate sensitivity. Glob. Chang. 

Biol. 11: 147–154. 

Larsen, M.A.D., Thejll, P., Christensen, J.H., Refsgaard, J.C., and Jensen, K.H. 2013. On the role 

of domain size and resolution in the simulations with the HIRHAM region climate model. 

Clim. Dyn. 40: 2903–2918. doi:10.1007/s00382-012-1513-y. 

Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., and L., N.R. 2008. 

Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science (80-. ). 

319. 

Mclaughlan, M.S., Wright, R.A., and Jiricka, R.D. 2010. Field Guide to the Ecosites of 

Saskatchewan’s Provincial Forests. Saskatchewan Ministry of Environment, Prince Albert, 

SK. [Online] Available: http://www.environment.gov.sk.ca/forests [2018 Aug. 22]. 

Minielly, C., Peak, D., Natcher, D., and Zeng, W.W. 2018. Scaling Up Research Using GIS and 

WebGIS Spatial Tools: Case Study of the MicroVeg project. Acta Hortic. In Press. 

Minielly, C.M., Rehman, D., Bachmann, E., Natcher, D., Peak, D., and Yates, T. 2015. 

Visualizing relationships in interdisciplinary research with Geographic Information 

Systems: A case study utilizing food security research in Sahelian West Africa. USURJ 

Univ. Saskatchewan Undergrad. Res. J. 2. doi:10.32396/usurj.v2i1.111. 

Ndehedehe, C.E., Agutu, N.O., Okwuashi, O., and Ferreira, V.G. 2016. Spatio-temporal 

variability of droughts and terrestrial water storage over Lake Chad Basin using 

independent component analysis. J. Hydrol. 540: 106–128. Elsevier B.V. 

doi:10.1016/j.jhydrol.2016.05.068. 

O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., Javed, A., 

Bhadwal, S., Barg, S., Nygaard, L., and West, J. 2004. Mapping vulnerability to multiple 

stressors: Climate change and globalization in India. Glob. Environ. Chang. 14: 303–313. 



64 

doi:10.1016/j.gloenvcha.2004.01.001. 

O’Brien, K.L., and Leichenko, R.M. 2000. Double exposure : assessing the impacts of climate 

change within the context of economic globalization. Glob. Clim. Chang. 10: 221–232. 

Ojo, J.S., and Olurotimi, E.O. 2014. Tropical Rainfall Structure Characterization over Two 

Stations in Southwestern Nigeria for Radiowave Propagation Purposes. J. Emerg. Trends 

Eng. Appl. Sci. 5: 116–122. [Online] Available: 

http://jeteas.scholarlinkresearch.com/articles/Tropical Rainfall Structure.pdf [2017 May 12]. 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, 

E.C., D’amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., 

Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., and Kassem, K.R. 

2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 51: 

933. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. 

Pope, A., and Sietinsone, L. 2017. Airports, [Dataset]. University of Edinburgh. 

doi:http://dx.doi.org/10.7488/ds/1913.. 

Scheiter, S., and Higgins, S.I. 2009. Impacts of climate change on the vegetation of Africa: An 

adaptive dynamic vegetation modelling approach. Glob. Chang. Biol. 15: 2224–2246. 

doi:10.1111/j.1365-2486.2008.01838.x. 

The World Bank Group 2018. DataBank: Population estimates and projections. [Online] 

Available: http://databank.worldbank.org/data/source/population-estimates-and-

projections#advancedDownloadOptions [2018 Aug. 18]. 

U.S. Department of the Interior 1996. GTOPO 30 DEM of the Globe. U.S. Geological Survey. 

[Online] Available: https://earthexplorer.usgs.gov. 

U.S. Department of the Interior 1999. GTOPO30 Documentation. [Online] Available: 

https://webgis.wr.usgs.gov/globalgis/gtopo30/gtopo30.htm [2017 Jan. 17]. 

U.S. Department of the Interior 2015. Shuttle Radar Topography Mission (STRM) 1 Arc-Second 

Global. [Online] Available: https://lta.cr.usgs.gov/STRM1Arc [2018 Jan. 11]. 

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., 

Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, 

S.J., and Rose, S.K. 2011. The representative concentration pathways: An overview. Clim. 

Change 109: 5–31. doi:10.1007/s10584-011-0148-z. 

White, F. 1983. The Vegetation of Africa. United Nations Educational, Scientific and Cultural 

Organization, Paris. doi:10.15713/ins.mmj.3. 

Zeng, W.W., Yaun, S., Tang, F., Minielly, C., and Peak, D. 2017. MicroVeg WebGIS User 

Manual. University of Saskatchewan, Saskatoon, SK. 

 



65 

 

APPENDIX A: LIST OF UIVS NAME WITHIN THE BENIN REPUBLIC AND NIGERIA 

Linnaean Name Name Used 
Benin Republic 

Common Name 

Nigeria  

Common Name 

Amaranthus cruentus L. 
Amaranth Fotete Tete 

Solanum macrocarpon L. 
Solanum Gboma Igbagba 

Telfairia occidentalis f. Hooke 
Fluted Pumpkin N/A Ugu 

Ocimum gratissimum L. 
Parsley Tchayo or Tchiayo N/A 
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APPENDIX B: “SAVINGS” MODEL SCRIPT 1 

print "Welcome to SAVINGS. created by the University of Saskatchewan." 2 

print "Loading Libraries" 3 

#import time extensions 4 

import os, datetime, time 5 

start_delta = datetime.datetime.now() 6 

pause = 0 7 

from time import sleep 8 

sleep = time.sleep(pause) 9 

 10 

import arcpy 11 

from arcpy import env 12 

from shutil import copyfile 13 

from arcpy.sa import * 14 

arcpy.CheckOutExtension("Spatial") 15 

 16 

# THIS Is the only file to edit ## 17 

#try: 18 

    #os.stat(Save_folder_name) 19 

#except: 20 

 #os.makedirs(Save_folder_name) 21 

#out_folder_path = "C:\Users\Soilchem\Desktop\SAVINGS_model\\" + Save_folder_name 22 

 23 

# output log file 24 

log_existing_i = 1 25 
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log_new = "C:\Users\Soilchem\Desktop\SAVINGS_model\Log\SAVINGS_run_" + str(log_existing_i) + 26 

".log" 27 

while True: 28 

 if not (os.path.isfile(log_new)): 29 

  break 30 

 else: 31 

  log_existing_i = log_existing_i + 1 32 

  log_new =  "C:\Users\Soilchem\Desktop\SAVINGS_model\Log\SAVINGS_run_" + 33 

str(log_existing_i) + ".log" 34 

 35 

log_file = open(log_new, "w") 36 

log_file.write(str(start_delta) + "\n") 37 

 38 

def calcDelta(msg): 39 

 secs = datetime.datetime.now() - start_delta - datetime.timedelta(seconds=pause) 40 

 log_file.write(msg + str(secs)[:-3] + "\n") 41 

 print msg + str(secs)[:-3] 42 

 43 

calcDelta("library loaded time: ") 44 

 45 

 46 

#Constants 47 

crops = ['Amaranth', 'Solanum', 'Telfairia', 'Ocimum'] 48 

param_rcp = ["R4", "R8"] 49 

param_year = ["Y3", "Y6", "Y9"] 50 

param_stat = ["Min", "Mean", "Max"] 51 
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#MicroVeg seaons 52 

param_season = ["wet", "dry"] 53 

wet_months = range(3,10+1) 54 

dry_months = [1,2,11,12] 55 

#Temperature projections 56 

proj_temp = { 57 

 "Y3" : {"R4": 0.7, "R8": 0.7}, 58 

 "Y6" : {"R4": 1.4, "R8": 2.0}, 59 

 "Y9" : {"R4": 1.8, "R8": 3.7} 60 

} 61 

#precipitaion projections 62 

season_CC = {"S1": [4,5,6,7,8,9], "S2": [1, 2, 3], "S3": [10, 11, 12], "S4": range(1,12+1)} 63 

#defined by Adeniyi (2016) 64 

#remap values 65 

lut_prcp = { 66 

 #New value: Original From, To 67 

 0: [-2500,0], 68 

 10: [0,10], 69 

 20: [10,20], 70 

 30: [20,29], 71 

 40: [29,40], 72 

 50: [40,50], 73 

 60: [50,60], 74 

 70: [60,70], 75 

 80: [70,80], 76 
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 90: [80,90], 77 

 100: [90,4000] 78 

} 79 

 80 

lut_temp = { 81 

 #New value: Original From, To 82 

 1: [0,20], 83 

 2: [20,22], 84 

 3: [22,24], 85 

 4: [24,26], 86 

 5: [26,27], 87 

 6: [27,30], 88 

 7: [30, 50] 89 

} 90 

 91 

lut_water_needed = { 92 

 #New value: Original From, To 93 

 0: [-2500, 0], 94 

 10: [0,10], 95 

 20: [10,20], 96 

 30: [20,30], 97 

 40: [30,40], 98 

 50: [40,50], 99 

 60: [50,60], 100 

 70: [60,70], 101 
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 80: [70,80], 102 

 90: [80,90], 103 

 100: [90,200] 104 

 105 

} 106 

 107 

# Define ALL workspaces 108 

#original datasources 109 

inputs_workspace = "C:\Users\Soilchem\Desktop\SAVINGS_model\Inputs.gdb" 110 

prcp_workspace = "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Precip_2000.gdb" 111 

temp_workspace = "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Temp_2000.gdb" 112 

ecoregion_workspace = "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Ecoregions.gdb" 113 

crop_workspace = "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Crop.gdb" 114 

#cliamte change datasources 115 

workspace_precipCC = "C:\Users\Soilchem\Desktop\SAVINGS_model\Run_10_01_04\Precip.gdb" 116 

# Execute CreateFileGDB 117 

##arcpy.CreateFileGDB_management(out_folder_path, "Precip.gdb") 118 

##workspace_precipCC = out_folder_path + "\Precip.gdb" 119 

 120 

workspace_tempCC = "C:\Users\Soilchem\Desktop\SAVINGS_model\Run_10_01_04\Temp.gdb" 121 

##arcpy.CreateFileGDB_management(out_folder_path, "Temp.gdb") 122 

##workspace_tempCC = out_folder_path + "\Temp.gdb" 123 

 124 

workspace_outputCC = "C:\Users\Soilchem\Desktop\SAVINGS_model\Run_10_01_04\ScalingUp.gdb" 125 

##arcpy.CreateFileGDB_management(out_folder_path, "ScalingUp.gdb") 126 
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##workspace_outputCC = out_folder_path + "\ScalingUp.gdb" 127 

 128 

#used with scaling up and join flag 129 

workspace_excel_CSV= "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Excel_DBF" 130 

 131 

csv_crop = 'remap_scalingUp' 132 

# path_scalingup = 133 

"C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Climate_Change\CC_ScalingUp1.gdb" 134 

path_scalingup = workspace_outputCC 135 

#workspaces for join and save flags 136 

path_adm2= "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\CountryBoundaries.gdb" 137 

#Output Location 138 

workspace_zonal = "C:\Users\Soilchem\Desktop\SAVINGS_model\Run_10_01_04\zonal.gdb" 139 

 140 

##arcpy.CreateFileGDB_management(out_folder_path, "zonal.gdb") 141 

##workspace_zonal = out_folder_path + "\zonal.gdb" 142 

 143 

#workspace_save = out_folder_path + "\Zonal" 144 

 145 

calcDelta("environments loaded time: ") 146 

 147 

# Zonal Stats Constants 148 

## the clean_template.dbf and some attributes we need 149 

clean_dbf = "clean_template" 150 

clean_dbf_path = workspace_excel_CSV + "\\" + clean_dbf + ".dbf" 151 

# count of fields for the clean_template.dbf, should be 9 152 
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count_field_clean_dbf = len(arcpy.ListFields(clean_dbf_path)) 153 

#settings for zonal stats 154 

zones_table = path_adm2 + "\\" + "Microveg_ADM2_cc" 155 

file_pattern = 'Scaling_up_CC_*' 156 

stat_type = "ALL" 157 

count_stats_field = 13 158 

#List of options: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/zonal-159 

statistics-as-table.htm 160 

index_count_field = 2 # 2nd, with index starts from 1 161 

 162 

#Determine Flags 163 

#several layers can be run in order or individually. Trunig a flag on will run the associated script 164 

overwrite      = True 165 

# True means new file to be made 166 

# False requires new output locations or names ## 167 

#preapare prcp 168 

prcp_rasterize_flag = False 169 

prcp_flag      = False 170 

#prepare temperature 171 

tmp_flag   = False 172 

#run SAVINGS model 173 

SAVINGS_flag  = False 174 

#Run Stats and Scaling up 175 

scalingUp_flag   = False 176 

zonal_flag    = True 177 

join_flag    = True 178 
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exporting_flag   = True 179 

 180 

#automatically overwrite output, use with caution!!! 181 

arcpy.env.overwriteOutput = overwrite 182 

 183 

print "Model has been modified to run under climate change" 184 

print "\n Model Variables" 185 

print "True values will be executed in the next iteration" 186 

print start_delta 187 

print "The time stamps will be saved in: SAVINGS_run_" + log_new 188 

 189 

print "Automatically overwrite files: " + str(overwrite) 190 

 191 

print "\nPreperation of precipitaion raster" 192 

print "    Convert csv to feature class: Must be done in ArcGIS" 193 

print "    Convert to Raster: \t" + str(prcp_rasterize_flag) 194 

print "    Run precipitaion calculations: " + str(prcp_flag) 195 

 196 

print "\nPreparation of temperature raster" 197 

print "    temperature: " + str(tmp_flag) 198 

 199 

print "\nSAVINGS model: \t\t" + str(SAVINGS_flag) 200 

 201 

print "\nZonal Statistics will be run next" 202 

print "Scaling up Value selection: \t" + str(scalingUp_flag) 203 
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print "zonal: \t\t" + str(zonal_flag) 204 

print "join: \t\t" + str(join_flag) 205 

print "exporting: \t" + str(exporting_flag) 206 

#pause the process 207 

 208 

print "\nSAVINGS is paused for " + str(pause) + " seconds to allow you to check variables" 209 

 210 

 211 

print "SAVINGS processing is commencing!!!" 212 

 213 

#projected Precipitation 214 

if prcp_rasterize_flag: 215 

 ###################### produce 72 rasters from the joined table 216 

 env.workspace = inputs_workspace 217 

 joined_fc = 'MicroVeg_Precip_Regions_RCP' 218 

 arcpy.CopyFeatures_management(joined_fc, workspace_precipCC + 219 

"\\MicroVeg_Precip_Regions_RCP") 220 

 env.workspace = workspace_precipCC 221 

 bound_fields = arcpy.ListFields(joined_fc) 222 

 # First cells are default values, and there are 7 fields. 223 

 # Therefore, the offset needs to start after that point. 224 

 # Since 72 fields are needed, ofset will be 7 to 72+7-1 225 

 offset = 7 226 

 for i in range(offset, 72+ offset): 227 

  arcpy.FeatureToRaster_conversion(joined_fc, bound_fields[i].name, "r_" + 228 

bound_fields[i].name, 0.0083333333) 229 
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else: 230 

 print "Precipitaion Raster prep is....... SKIPPED" 231 

 232 

calcDelta("Precip rasterized time: ") 233 

 234 

if prcp_flag: 235 

 236 

 # define output workspace 237 

 workspace_output = workspace_precipCC 238 

 # "C:\Users\Soilchem\Desktop\Africa_FoodSecurity\Precip_CimateChange.gdb" 239 

 240 

 # _rcp: climate model 241 

 # _year: projected year in future (2035, 2065, 2099) 242 

 # _stat: stat terms of projected model 243 

 def calc_projected_single_model(_rcp, _year, _stat): 244 

  # find the season for a month 245 

  def find_season(_month): 246 

   for i in range(0, len(season_CC)): 247 

    key = season_CC.keys()[i] 248 

    val = season_CC.values()[i] 249 

    if(_month in val): 250 

     return key 251 

   return None 252 

 253 

  ## calc prcp raster for wet season 254 
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  wet_prcp = 0 255 

  for m in wet_months: 256 

   # grab original prcp as `prcp1` 257 

   # grab projected prcp as `projected1` from 72 projected rasters 258 

   prcp1 = arcpy.Raster(prcp_workspace + "\\Precip_MicroVeg_" + str(m).zfill(2)) 259 

   projected1 = arcpy.Raster("r_" + _rcp + "_" + _year + "_" + _stat + "_" + 260 

find_season(m)) 261 

   wet_prcp = wet_prcp + prcp1 * (1 + projected1 * 1.0 / 100) 262 

 263 

  # export wet raster 264 

  wet_prcp.save(workspace_output + "/r_" + _rcp + "_" + _year + "_" + _stat +"_wet") 265 

  print "\t [OK] wet raster generated" 266 

 267 

  ## calc prcp raster for wet season 268 

  dry_prcp = 0 269 

  for m in dry_months: 270 

   # grab original prcp as `prcp1` 271 

   # grab projected prcp as `projected1` from 72 projected rasters 272 

   prcp1 = arcpy.Raster(prcp_workspace + "\\Precip_MicroVeg_" + str(m).zfill(2)) 273 

   projected1 = arcpy.Raster("r_" + _rcp + "_" + _year + "_" + _stat + "_" + 274 

find_season(m)) 275 

   dry_prcp = dry_prcp + prcp1 * (1 + projected1 * 1.0 / 100) 276 

 277 

  # export dry raster 278 

  dry_prcp.save(workspace_output + "/r_" + _rcp + "_" + _year + "_" + _stat +"_dry") 279 

  print "\t [OK] dry raster generated" 280 



77 

 281 

  ## calc prcp raster for wet season 282 

  annual_prcp = 0 283 

  for m in wet_months: 284 

   # grab original prcp as `prcp1` 285 

   # grab projected prcp as `projected1` from 72 projected rasters 286 

   prcp1 = arcpy.Raster(prcp_workspace + "\\Precip_MicroVeg_" + str(m).zfill(2)) 287 

   projected1 = arcpy.Raster("r_" + _rcp + "_" + _year + "_" + _stat + "_" + 288 

find_season(m)) 289 

   annual_prcp = annual_prcp + prcp1 * (1 + projected1 * 1.0 / 100) 290 

  for m in dry_months: 291 

   # grab original prcp as `prcp1` 292 

   # grab projected prcp as `projected1` from 72 projected rasters 293 

   prcp1 = arcpy.Raster(prcp_workspace + "\\Precip_MicroVeg_" + str(m).zfill(2)) 294 

   projected1 = arcpy.Raster("r_" + _rcp + "_" + _year + "_" + _stat + "_" + 295 

find_season(m)) 296 

   annual_prcp = annual_prcp + prcp1 * (1 + projected1 * 1.0 / 100) 297 

 298 

  # export annual raster 299 

  annual_prcp.save(workspace_output + "/r_" + _rcp + "_" + _year + "_" + _stat 300 

+"_annual") 301 

  print "\t [OK] annual raster generated" 302 

 303 

 i_n = len(param_rcp) 304 

 j_n = len(param_year) 305 

 k_n = len(param_stat) 306 

 307 
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 i = 0 308 

 for p_rcp in param_rcp: 309 

  i = i + 1 310 

  j = 0 311 

  for p_year in param_year: 312 

   j = j + 1 313 

   k = 0 314 

   for p_stat in param_stat: 315 

    k = k + 1 316 

    prog = ((i-1)*j_n*k_n + (j-1)*k_n + k) * 100.0 / (i_n * j_n * k_n) 317 

    print "Progress:%.1f%%"% prog 318 

    calc_projected_single_model(p_rcp, p_year, p_stat) 319 

 print "Precipitation data is prepared" 320 

else: 321 

 print "Precipitaion calculations are ....... SKIPPED" 322 

 323 

calcDelta("Precip calculations time: ") 324 

 325 

#projected temperature 326 

# Value used from IPCC AR5 Report (https://www.ipcc.ch/pdf/assessment-327 

report/ar5/syr/SYR_AR5_FINAL_full.pdf, page 10) 328 

# RCP models used RCP 4.5 (R4) and RCP 8.5(R8) 329 

if tmp_flag: 330 

 331 

 param_season_length = {"Wet": 8, "Dry": 4} # in months 332 

 parm_time = 10.0/100 # years in a decade 333 
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 env.workspace = workspace_tempCC 334 

 335 

 def calc_projected_single_model(_rcp, _year): 336 

  delta = proj_temp[_year][_rcp] 337 

 338 

  # grab original temp as `temp2000` 339 

  wet2000 = arcpy.Raster(temp_workspace + "\\Temp_MicroVeg_Wet") 340 

  dry2000 = arcpy.Raster(temp_workspace + "\\Temp_MicroVeg_Dry") 341 

  def annual2000(): 342 

   r_sum = 0 343 

   for m in range(1,13): 344 

    r_sum = r_sum + arcpy.Raster(temp_workspace + "\\Temp_MicroVeg_" 345 

+ str(m).zfill(2)) 346 

   return r_sum 347 

  #Tmean wet season 348 

  wet_temp_mean = wet2000 + delta 349 

  wet_temp_mean.save(env.workspace + "\\" + "r_" + _rcp + "_" + _year  + "_wet") 350 

  print "\t [OK] wet Tmean generated" 351 

 352 

  #Tmean dry season 353 

  dry_temp_mean = dry2000 + delta 354 

  dry_temp_mean.save(env.workspace + "\\" + "r_" + _rcp + "_" + _year  + "_dry") 355 

  print "\t [OK] dry Tmean generated" 356 

 357 

  ## Tmean annual 358 

  annual_temp_mean = annual2000()/ 12 + delta 359 
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  annual_temp_mean.save(env.workspace + "\\" + "r_" + _rcp + "_" + _year  + "_annual") 360 

  print "\t [OK] annual Tmean generated" 361 

 362 

 n_rcp = 2 363 

 n_year = len(proj_temp) 364 

 i_year = 0 365 

 for p_year in proj_temp: 366 

  i_year = i_year + 1 367 

  i_rcp = 0 368 

  for p_rcp in proj_temp[p_year]: 369 

   i_rcp = i_rcp + 1 370 

   prog = ((i_year-1)*n_rcp + i_rcp) * 100.0 / (n_year * n_rcp) 371 

   print "Progress:%.1f%% (%s%s)"% (prog, p_rcp, p_year) 372 

   calc_projected_single_model(p_rcp, p_year) 373 

 print "Temperature data is prepared" 374 

else: 375 

 print "Temperature Raster prep is....... SKIPPED" 376 

 377 

calcDelta("Temperature Raster time: ") 378 

 379 

##SAVINGS 380 

if SAVINGS_flag: 381 

 env.workspace = workspace_outputCC 382 

 383 

 def SAVINGS_func(_prcp, _temp, _ecoregion, _output_name): 384 
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  # define water usage lookup table 385 

  def dict2array(dict): 386 

   lut_tmp = [] 387 

   for k in sorted(dict.keys()): 388 

      lut_tmp.append([dict[k][0],dict[k][1],k]) 389 

   return RemapValue(lut_tmp) 390 

 391 

  lut_prcp_array = dict2array(lut_prcp) 392 

  lut_temp_array = dict2array(lut_temp) 393 

  lut_water_needed_array = dict2array(lut_water_needed) 394 

 395 

  # grab crop's water_needed layers 396 

  rast_crops = {} 397 

  for crop_id in range(0, len(crops)): 398 

   rast_crops[crops[crop_id]] = arcpy.Raster(crop_workspace + "\\" + 399 

crops[crop_id]) 400 

 401 

  remap_temp = Reclassify(_temp,"Value", lut_temp_array, "NODATA") 402 

  remap_prcp = Reclassify(_prcp, "Value", lut_prcp_array, "NODATA") 403 

 404 

  # 9 rows, each is a tuple in the format of (season, crop, water_needed) 405 

  #index=0 is for ecoregion type, index=1 is crop type, index=2 is water_needed 406 

  for plant_id in range(0, len(crops)): 407 

   print "\tcrop:" + crops[plant_id] 408 

   water_needed = rast_crops[crops[plant_id]] 409 

   # wet season 410 
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   # calc %age for dry season and reclassify it 411 

   outRaster = (water_needed - _prcp) / water_needed * 100 412 

   remap_water_needed = Reclassify(outRaster, "Value", lut_water_needed_array, 413 

"NODATA") 414 

   rast_out = _ecoregion * 1000 + remap_temp + remap_water_needed 415 

   arcpy.BuildRasterAttributeTable_management(rast_out, "NONE") 416 

 417 

   # save the output 418 

   rast_out.save(workspace_outputCC + "/" + _output_name + "_" + 419 

crops[plant_id]) 420 

   #ensure tables exist 421 

 422 

 ### load all layers ### 423 

 # grab 2 temp rasters 424 

 ecoregion = arcpy.Raster(ecoregion_workspace + "\\" + "Microveg_raster") 425 

 426 

 #####Run SAVINGS### 427 

 env.workspace = workspace_outputCC 428 

 429 

 i_n = len(param_rcp) 430 

 j_n = len(param_year) 431 

 i = 0 432 

 for p_rcp in param_rcp: 433 

  i = i + 1 434 

  j = 0 435 

  for p_year in param_year: 436 
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   j = j + 1 437 

   prog = ((i-1)*j_n + j) * 100.0 / (i_n * j_n) 438 

   print "Progress:%.1f%%"% prog 439 

   print "-------- wet season ------" 440 

   temp = arcpy.Raster(workspace_tempCC + "\\" + "r_" + p_rcp + "_" + p_year + 441 

"_wet") 442 

   for p_stat in param_stat: 443 

    prcp = arcpy.Raster(workspace_precipCC + "\\" + "r_" + p_rcp + "_" + 444 

p_year + "_" + p_stat + "_wet") 445 

    print "\t --%s,%s,%s --"% (p_rcp, p_year, p_stat) 446 

    SAVINGS_func(prcp, temp, ecoregion, "CC_" + p_rcp + "_" + p_year + 447 

"_" + p_stat + "_wet") 448 

 449 

   print "-------- dry season ------" 450 

   temp = arcpy.Raster(workspace_tempCC + "\\" + "r_" + p_rcp + "_" + p_year + 451 

"_dry") 452 

   for p_stat in param_stat: 453 

    print "\t --%s,%s,%s --"% (p_rcp, p_year, p_stat) 454 

    prcp = arcpy.Raster(workspace_precipCC + "\\" + "r_" + p_rcp + "_" + 455 

p_year + "_" + p_stat + "_dry") 456 

    SAVINGS_func(prcp, temp, ecoregion, "CC_" + p_rcp + "_" + p_year + 457 

"_" + p_stat + "_dry") 458 

 print "SAVINGS has finished" 459 

 460 

else: 461 

 print "SAVINGS has been..... SKIPPED" 462 

 463 

calcDelta("SAVINGS completion time: ") 464 
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 465 

### Run Stats 466 

 467 

#run scaling up value selection 468 

# this will only select the values which match the critera. This is to represent the research sites while 469 

being expanded to +/- 10% of the sites value. This can be changed by modifying the input CSV 470 

 471 

if scalingUp_flag: 472 

 #target CSV 473 

 import glob 474 

 import csv 475 

 import ntpath 476 

 477 

 env.workspace = workspace_outputCC 478 

 479 

 lut_csv = {} 480 

 481 

 # remap 482 

 csvs = glob.glob(workspace_excel_CSV + "\\remap_scalingUp*") 483 

 for remap_csv in glob.glob(workspace_excel_CSV + "\\remap_scalingUp*"): 484 

  values = [] 485 

  with open(remap_csv, 'rb') as csvfile: 486 

   read = csv.reader(csvfile) 487 

   h = 0 488 

   for row in read: 489 

    if h == 0: 490 
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     h = 1 491 

    else: 492 

     values.append(row[2]) 493 

  lut_csv[ntpath.basename(remap_csv).lower()] = list(set(values)) 494 

 495 

 # set null 496 

 cc_rasters = arcpy.ListRasters('CC*') 497 

 i_n = len(cc_rasters) 498 

 i = 0 499 

 for cc_r in cc_rasters: 500 

  i = i + 1 501 

  print "progress:%.1f%%"% (i * 100.0 / i_n) 502 

  lut_name = csv_crop + cc_r.split('_')[5] + '_' + cc_r.split('_')[4] + '.csv' 503 

  lut = lut_csv[lut_name.lower()] 504 

  outRaster = SetNull(cc_r,  cc_r, "Value NOT IN(" + ",".join(lut)  + ")") 505 

  outRaster.save(path_scalingup + "\\Scaling_up_" + cc_r) 506 

 print "Scaling up Value selection is Done!" 507 

else: 508 

 print "Scaling up Value selection was SKIPPED!" 509 

 510 

calcDelta("Scaling up Value selection time: ") 511 

 512 

if zonal_flag: 513 

 env.workspace = path_scalingup 514 

 # zonal stats Loop (don't edit) 515 
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 cc_s = arcpy.ListRasters(file_pattern) 516 

 i_n = len(cc_s) 517 

 i = 0 518 

 #Scaling_up_CC_R4_Y3_Max_dry_Amaranth 519 

 print "processing Zonal" 520 

 for cc_i in cc_s: 521 

  i = i + 1 522 

  print "progress:%.1f%%"% (i * 100.0 / i_n) 523 

  ZonalStatisticsAsTable(zones_table,'ID_2', cc_i, workspace_zonal + "\\" + "zonal_" + 524 

cc_i, "DATA", stat_type) 525 

 print 'Zonal Stats are...........DONE!' 526 

else: 527 

 print 'Zonal Stats are...........SKIPPED!' 528 

 529 

calcDelta("Zonal Stats time: ") 530 

 531 

if join_flag: 532 

 env.workspace = workspace_zonal 533 

 # clean_dbf = workspace_excel_CSV + "\join11_zonal.dbf.bak" 534 

 for each_rcp in param_rcp: 535 

  for each_season in param_season: 536 

   output_dbf = "Join_" + each_rcp + "_" + each_season 537 

   arcpy.Delete_management(output_dbf) 538 

   arcpy.TableToGeodatabase_conversion(clean_dbf_path, env.workspace) 539 

   arcpy.Rename_management(clean_dbf, output_dbf) 540 

 541 
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   # grab external dbf files and do join 542 

   zoneTables = arcpy.ListTables("zonal_Scaling_up_CC_" + each_rcp + "_*_*_" + 543 

each_season + "_*") 544 

   for zone_join in zoneTables: 545 

    strFields = zone_join.split('_') 546 

    print "Progress:%s%s%s%s%s"% (each_rcp, each_season, strFields[5], 547 

strFields[6], strFields[8]) 548 

    arcpy.JoinField_management(output_dbf, 'ID_2', zone_join, 'ID_2') 549 

 print "Joins are .........Done" 550 

else: 551 

 print "Joins are .........SKIPPED" 552 

 553 

calcDelta("Joins time: ") 554 

 555 

# clean the huge join table output and export as external csv 556 

if exporting_flag: 557 

 env.workspace = workspace_zonal 558 

 559 

 for each_rcp in param_rcp: 560 

  for each_season in param_season: 561 

   join_tab_name = "Join_" + each_rcp + "_" + each_season 562 

 563 

   print "-- working on " + join_tab_name 564 

   zoneTables = arcpy.ListTables("zonal_Scaling_up_CC_" + each_rcp + "_*_*_" + 565 

each_season + "_*") 566 

 567 

   # delete garbage fields 568 
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   old_fields = arcpy.ListFields(join_tab_name) 569 

   if len(old_fields) == count_field_clean_dbf + count_stats_field * 570 

len(zoneTables): 571 

    print "-- we have correct number of fields" 572 

   else: 573 

    raise Exception("field deletion failed!!!!!!") 574 

 575 

   offset_skip = count_field_clean_dbf 576 

   fields_to_be_deleted = [] 577 

   for table_i in range(0, len(zoneTables)): 578 

    # index of ID_2* field for this table 579 

    inx_id = offset_skip + table_i*count_stats_field + 0 580 

    # push its name to the list 581 

    fields_to_be_deleted.append(old_fields[inx_id].name) 582 

    # index of useless stats fields for this table 583 

    for j in range(2, 13): # useless fields range from 2 to 11 584 

     index_useless =  offset_skip + table_i*count_stats_field + j 585 

     fields_to_be_deleted.append(old_fields[index_useless].name) 586 

 587 

   print "-- deleting fields..." + str(join_tab_name) 588 

   arcpy.DeleteField_management(join_tab_name, fields_to_be_deleted) 589 

 590 

   # rename all count fields properly 591 

   print "-- renaming fields..." 592 

   old_fields = arcpy.ListFields(join_tab_name) # get fields 593 

 594 
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   for i in range(0, len(zoneTables)): 595 

    strFields = zoneTables[i].split('_') 596 

    strYear = strFields[5] 597 

    strStat = strFields[6] 598 

    strCrop = strFields[8] 599 

    # print "-- rename, new name:%s%s%s"% (strYear, strStat, strCrop) 600 

    old_field_index = count_field_clean_dbf + i 601 

    new_field_name = strYear + "_" + strStat + "_" + strCrop # + "_count" 602 

    # print "----join_table_name: " + join_tab_name 603 

    # print "----old_field_index: " + str(old_field_index) 604 

    # print "----new_field_name: " + new_field_name 605 

    arcpy.AlterField_management(join_tab_name, 606 

old_fields[old_field_index].name, new_field_name) 607 

else: 608 

 print "Exporting has been.... SKIPPED" 609 

 610 

calcDelta("Exporting time: ") 611 

 612 

print "SAVINGS has finished running !!!!!!!!!!!!" 613 

print "All file saved in gdb: " + workspace_zonal 614 

print "################" 615 

 616 

calcDelta("End time: ") 617 

end_time = datetime.datetime.now() 618 

log_file.write (str(end_time) + "\n") 619 

log_file.close() 620 


