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ABSTRACT 
 

Although agricultural activity is recognized to be associated with colorectal cancer (CRC) prevalence 

and incidence, little is known regarding the true prevalence and incidence or CRC risk factors related to 

farming. This study determines the prevalence of CRC both at baseline and follow-up among farm and non-

farm rural residents, estimates the incidence of CRC, and further identifies risk factors for CRC incidence 

and prevalence. Data from the Saskatchewan Rural Health Study (SRHS) was collected in 2009 and a four-

year follow-up in 2014 through completed questionnaires from 8,261 individuals (level 1) nested within 4,624 

households (level 2) at baseline and 4,867individuals within 2,797 households at follow-up. A modified 

version of Dillman’s methods for mail and telephone surveys was used to maximize response rates both at 

baseline (42%) and follow-up (63%). The study sample consist of 5,599 individuals at baseline and 3,933 at 

follow who were 50 years or older. 

Hierarchy in data was accounted for using the generalized estimating equations (GEE) approach 

using the exchangeable covariance structure and the within-cluster correlations due to the longitudinal design 

were also accounted for using the PROC GENMOD robust variance estimation. Multilevel marginal logistic 

regression models based on GEE were fitted to determine risk factors for CRC.  To determine risk factors for 

the incidence of CRC, the Cox proportional hazards (PH) regression model was used. The prevalence of 

CRC decreased over time among rural farm residents (baseline: 3.1%; follow-up: 1.3%, p<0.05), however 

increased among rural non-farm residents (baseline: 1.4%; follow-up: 2.0%, p>0.05). Individuals who spent 

their first year of life in a farm had higher risk of developing CRC that their counterparts who did not OR = 

1.64, p<0.05). A similar relationship was observed for individuals who ever lived on a farm at one point in life 

times (OR = 1.29, p<0.05). Occupational exposure to grain dust and radiation were significant (p<0.05) 

determinants of longitudinal changes in CRC prevalence after controlling for important confounders.  
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The crude incidence rate of 1.98 per 1,000 person-years (i.e. 27/13,632 total time under observation 

and at risk), resulting in a cumulative incidence of 0.8% during the study period (2010 - 2014). The results 

show that quadrant, use of natural gas, living on a farm in one’s first year of life, exposure to oil/gas well 

fumes and radiation, increasing age, increasing BMI, and female gender predict CRC incidence. We conclude 

that prevalence, longitudinal changes in the CRC prevalence among farming and non-farming rural residents 

as well as the incidence of CRC appear to depend on a complex combination of individual and contextual 

factors. 
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CHAPTER 1 – INTRODUCTION 
 
1.1 Rational 

 
Regression analysis is an important statistical analysis with a versatile application, which can be 

used to analyze cross-sectional, longitudinal and survival [time-to-event (TTE)] data [1]. In cross-sectional 

data, for each of " experimental units, there is only one response variable, #$	(' = 1,2, … , ") with a ./1 

vector of covariates denoted by	0,[0 = (/2, /3, … , /4), thus allowing for the measurement of the response 

and covariates at the same time [2]. However, in longitudinal data, for each experimental unit, there are 

repeated observations #$5	(' = 1,2, … , "; 7 = 1,2, … , .) with a .x1 vector of covariates over time 7, 

denoted by 09:, allowing for the measurement of changes in the same experimental units over a period of 

time, usually at baseline and follow-ups [2]. In survival data, the " experimental units are followed over a 

specified period of time (e.g. in days, weeks, bi-weekly, years, etc.), with a primary focus on the time at which 

an event of interest occurs [2].  

Statistical methods for analyzing cross-sectional data have been well-developed and are easily 

implemented through available commercial software such as SPSS1, SAS2, STATA3, R4, WESVAR5, and 

SUDAAN6. Depending on one’s objective(s)/research question(s) and type of outcome, there are different 

regression techniques [1]. Estimates obtained from regression models for cross-sectional data are computed 

via various statistical algorithms. For example, the computation of estimates of (i) linear regression for 

Gaussian outcomes are based on least squares; (ii) logistic regression for dichotomous outcomes are based 

on maximum likelihood theory; (iii) semi-parametric survival analysis for follow-up data are based on partial-

 
 
1 IBM Corp. Released 2017. Version 25.0 (http://www.ibm.com) 
2 SAS Institute, Inc. Cary, NC, version 9.1.3 (http://www.sas.com/) 
3 STATA, Stata Corp LP, 1996 (http://www.stata.com) 
4 R Development Core Team (2008) (http://www.r-project.com) 
5 WESVAR, Westat Inc., 2006 (http://www.westat.com/) 
6 SUDAAN, Research Triangle Institute, 2005 (http://www.rti.org) 
 



  

2  
 

maximum likelihood [3-4]. In medical research, alternative techniques for modeling cross-sectional data have 

also been developed. Some of these include; log-binomial regression, a generalized linear model (GLM) with 

logarithmic link function [5-6] and a complementary log-log model with a link function of the form 

log	(− log(1 − ?)) [7].   

Relative to the analysis of cross-sectional data, the analysis of longitudinal data is more complex. 

Repeated observations for each experimental unit over time tend to be correlated with each other. One 

therefore needs to account for the within-subject correlation (depending on its magnitude) when analyzing 

longitudinal data. For example, longitudinal studies with repeated measures and hierarchy in data require 

accounting for two layers of complexity: first, hierarchy in data [accounted for by generalized estimating 

equations (GEE)] and second, within-subject correlation due to repeated measures over time (accounted for 

by robust variance estimation techniques such as jackknife) [3-4, 8]. Moreover, missing observations or 

incomplete data (over time) for an experimental unit are not unusual in longitudinal studies, as not all 

experimental units are usually available to be measured, either at baseline or follow-up surveys, thus resulting 

in unbalanced data patterns. Such missing observations are said to be missing completely at random (MCAR) 

when the “missingness” is not related to the observed data, missing at random (MAR) when the “missingness” 

is dependent on the observed data [9]. However, when the “missingness” depends on both the observed and 

unobserved data, it is said to be missing not at random (MNAR) [9].  

Statistical methods for analyzing longitudinal data using GEE have been developed since the mid-

80s and became available in commercial software in the late 90’s. For example, the procedures GENMOD, 

GLIMMIX, and NLMIXED were incorporated into SAS in the late 90’s while MIXED procedure was available 

earlier. These SAS procedures including the “nlme” and “lme” functions in R and SPLUS all implement 

longitudinal data analysis. Estimates obtained from regression models for longitudinal data are based on the 

multivariate quasi-likelihood theory [3]. For Gaussian data, statistical methods such as the random effects 

model (REM), with estimated parameters based on the restricted maximum likelihood or iterative maximum 



  

3  
 

likelihood methods, have been developed [10]. However, for non-Gaussian data, additional information 

(resulting in nuisance parameters), together with the first two moments (mean and variance) is needed to 

determine the likelihood function [2]. In the presence of these nuisance parameters, estimating other model 

parameters using maximum likelihood methods is difficult [3].  

The GEE approach, re-invented by Liang and Zeger [3-4], based on multivariate quasi-likelihood 

theory, is capable of handling complexities in longitudinal/clustered data. In GEE approach, a multivariate 

generalization of the quasi-likelihood theory, coefficients are based on quasi-likelihood, by assuming a 

functional form of the marginal distribution at every time point (i.e.	#$@), making it suitable for non-Gaussian 

outcomes [3]. One advantage of GEE is that estimated coefficients are asymptotically Gaussian, and the 

model is still robust even when the correlation structure is incorrectly specified [4]. 

Traditional regression methods cannot be used to analyze survival data. In survival data analysis, 

the primary outcome of interest is not just whether or not an event occurred (as in traditional regression 

models), but also when the event occurred. The inability of traditional regression methods such as linear and 

logistic regression techniques to incorporate both the event occurrence and the time of occurrence make 

them unsuitable for survival data analysis. In addition, traditional regression methods do not have the capacity 

to handle censoring, a unique situation of missing observations in survival analysis, where, experimental 

units; (i) do not experience the event of interest before the end of the study or dropped out before the event 

occurs (right-censoring) or (ii) have already experienced the event of interest at the time they joined the study 

(left-censoring) or (iii) the specific time the event occurred is not known, but the first and last time the 

experimental unit was measured with and without the event respectively are available (interval-censoring).  

Statistical methods have been developed to analyze survival data. An important property of statistical 

methods for survival data is their ability to handle censoring, which is overlooked in traditional methods 

including two-sample t-test and analysis of variance (ANOVA) for comparing the survival times of two or more 
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groups respectively, and linear regression models. Moreover, statistical methods for survival data analysis 

have a higher statistical power to detect significant effects than methods for analyzing binary responses such 

as logistic regression [11]. Kaplan-Meier estimation [12] methods are used to estimate and graph survival 

times for different groups, by estimating survival probabilities using a product-limit formula. The computation 

of estimates from semi-parametric survival analysis for survival data is based on the partial-maximum 

likelihood theory. The log-rank test [13] is used to compare two survival curves by testing the null hypothesis 

of equivalent survival curves. Alternatives tests to the log-rank test include the Wilcoxon (also called Breslow 

test in SPSS), Flemington-Harrington, Peto, Tarone-Ware, and stratified log-rank tests, which are all 

variations of the standard log-rank test statistic by applying different weights at a specified failure time [14]. 

In STATA, the function “sts test” computes descriptive statistics for Kaplan-Meier curves, the log-rank 

statistics as well as other alternatives to the log-rank statistic. Similar to linear regression models, regression 

models in survival analysis allow for the determination of the effects of covariates on survival time. The Cox 

proportional hazards (PH) model [15], based on the proportional hazards assumption or the accelerated 

failure time model (AFT) [16], based on regressing logarithmic survival time on a covariate (and can be 

extended to a multivariable model [17-18]), are two common methods used to test covariates in survival 

regression model. The decision to choose between these two models depends on whether or not the PH 

assumption or the assumption that survival times follow a parametric distribution in the Cox PH and the AFT 

models respectively is met [11].  

The aforementioned methods are parametric statistical methods widely used to analyze a 

dichotomous outcome. In particular, dichotomous logistic regression may be used to determine the 

prevalence of disease outcomes such as CRC [6]. Using the GEE approach, longitudinal changes in 

prevalence of a disease are determined by accounting for within-subject correlation due to repeated 

measurements in a longitudinal design [3-4, 19-20]. Survival analysis techniques have been used to 

determine risk factors for the incidence of CRC [29-30].  
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Colorectal cancer (CRC) is a malignant tumor which starts in the cells of the colon or rectum and can 

spread or metastasize to nearby organs and other parts of the body [22].  Although in recent years, several 

advances in CRC research have been made in Canada, the prevalence and incidence of the disease have 

not been studied extensively in Saskatchewan. In fact, to the best of my knowledge, to date, I am not aware 

of any study in rural Saskatchewan investigating the prevalence and incidence of CRC. In 2017, CRC was 

the second most commonly diagnosed cancer in Canada (excluding non-melanoma skin cancers), 

accounting for about 26,800 incident cases, which represents 13% of all new cancer cases [23].  CRC 

incidence is higher amongst men than women in Canada [23]. In 2017, the age-standardized rate (ASR) of 

CRC was 79.6 and 54.9 per 100,000, with a 5-year net survival estimate of 63% and 65% in men and women 

respectively [23]. The reason for this unequal CRC statistics among men and women remains ill-defined in 

the literature. Current data show that the percentage of rural population in Saskatchewan is nearly two times 

the national proportion (Saskatchewan, 33% [24]; Canada, 18% [23]). The major occupation of these rural 

dwellers is farming. Further research is needed to examine the prevalence and incidence of CRC in rural 

Saskatchewan, by occupational exposure (farm and non-farm rural residents) using longitudinal data. 

In this thesis, the Saskatchewan Rural Health Study (SRHS), a longitudinal survey dataset was used 

analyzed. The primary aim of this thesis is to determine the prevalence and incidence of CRC in rural 

Saskatchewan using the GEE and survival analysis techniques respectively. 

The baseline survey of SRHS was conducted in 2010 with a follow-up in 2014.7 The primary aim of 

the SRHS was to test the hypotheses that, individual level (smoking, alcohol consumption, obesity) and 

contextual (access to health services and socio-economic) factors are associated with adverse health 

outcomes (CRC). To date, the SRHS dataset has not been analyzed to determine the prevalence, longitudinal 

 
 
7 Refer to section Chapter 3 for a detailed description of the SRHS dataset 
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changes in prevalence as well as significant risk factors for the prevalence and incidence of CRC using 

appropriate statistical methods.  

1.2 Objectives and Research Questions 
 
Overall objective: To determine the prevalence and incidence of CRC among rural dwellers in 

Saskatchewan. 

To address this objective, we will undertake the following specific questions: 

Research questions 

1. What is the prevalence of self-reported doctor-diagnosed CRC and associated risk factors in 

rural Saskatchewan using GEE and robust variance estimation techniques?  

2. What is the incidence of self-reported doctor-diagnosed CRC in rural Saskatchewan using 

survival analysis techniques? 

The remainder of this thesis is organized as follows: A review of relevant literature is presented in Chapter 2. 

In subsections 2.1, I present a literature review of existing methodology for analyzing CRC outcomes for 

prevalence, longitudinal changes in prevalence and incidence. In subsection 2.2, I present the epidemiology 

of CRC. I describe the SRHS dataset in chapter 3 while the statistical methods for data analysis are presented 

in Chapter 4. The results of this thesis are presented in Chapter 5. I provide a discussion and conclusion in 

Chapter 6. 
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CHAPTER 2 – LITERATURE REVIEW 
 

 In this chapter, I present a review of existing literature on the statistical methods for analyzing CRC 

outcomes for prevalence, changes in prevalence over time, and incidence. CRC data are often collected from 

cross-sectional, longitudinal and survival studies. The major difference among these is that cross-sectional 

data only allows for the determination of the covariate-outcome relationship at a single point in time while 

longitudinal data contain information of the same subjects, followed over a period of time extending beyond 

a single point in time [2]. As a result, observations from the different time points in the latter tend to be 

correlated with each other [2]. In survival analysis, subjects are followed over a period of time to determine if 

an event of interest occurs or not and also when it occurred. The outcome of interest in survival analysis is 

usually survival time [14]. Censoring usually occurs in survival data [14].  

 Depending on the data and the objective of one’s research, appropriate models are applied. 

Statistical methods for longitudinal data must account for the within-subject correlation and/or hierarchy in 

data while methods for survival data analysis must take into consideration follow-up time and censored 

observations [14]. Ignoring these needs may result in severely biased estimates of model parameters, further 

resulting in deceptive inferences. Statistical models presented in this chapter are grouped for cross-sectional, 

longitudinal and survival data. 

The remainder of this chapter is organized as follows: In section 2.1, I present statistical models for 

analyzing CRC outcomes. In section 2.1.1, I present a review of statistical methods for modeling CRC 

prevalence. In sections 2.1.2, a review of statistical methods for modeling longitudinal changes in prevalence 

and methods for modeling CRC incidence are presented in section 2.1.3. I present the epidemiology of CRC 

in section 2.2.  
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2.1 Statistical Methods for analyzing CRC outcomes 
 
2.1.1 Modeling CRC Prevalence using Cross-sectional Data  

 
Regression models are commonly used to analyze cross-sectional data to determine significant risk 

factors for CRC prevalence. Depending on the nature of the CRC outcome of interest (i.e. categorical, 

count/rate, or time-to-CRC), different regression models are available. In the early 1980s, stratification and 

standardization were also used to estimate prevalence and prevalence rate ratios (PRR) of disease with 

categorical outcomes [25]. In cross-sectional data analysis, logistic regression is used to model the 

relationship between a single binary outcome and a set of covariates. In particular, dichotomous logistic 

regression is used to model binary outcomes with only two levels/categories (e.g. presence or absence of 

CRC) [26]. The odds ratio (OR) which represents the odds that an event will occur given a particular covariate, 

compared to the odds of the event occurring in the absence of that covariate, is used to measure the 

association between the outcome and a covariate [26].   

 The Cox’s proportional hazards (PH) regression model [15], initially developed to estimate 

instantaneous conditional hazards ratio using censored could also be modified risk factors for the prevalence 

of disease outcomes in cross-sectional studies. In fact, Breslow [27] first suggested the use of Cox regression 

in analyzing cross-sectional data by imposing equal follow-up times for all experimental units. Subsequently, 

Lee and Chia [28] applied the Breslow’s modification of the Cox model, called the Breslow-Cox model, in a 

cross-sectional study of 236 employees occupationally exposed to cadmium, a CRC-causing chemical, to 

estimate the prevalence of cadmium while adjusting for confounding and effect modifiers. The Breslow-Cox 

model can easily be implemented using various software.2,8 The procedure PHREG can fit the Breslow-Cox 

model in SAS. In medical research, several alternative techniques for modeling cross-sectional studies are 

 
 
8 EPICURE, Hirosoft International Corp., (http://www.risksciences.com/project/epicure/) 
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discussed. Some of these include; log-binomial regression, a generalized linear model (GLM) with logarithmic 

link function and a complementary log-log model with link functions of the form log	(− log(1 − π)) [5-7]. 

Figure 2.1 summarizes some widely used regression models for analyzing cross-sectional data for CRC 

prevalence. 

Figure 2. 1 Common regression models for analyzing cross-sectional data for CRC prevalence 

 

  

 

   

 

 

    

 

 

 

 

 

  

 

2.1.2 Modeling Longitudinal Changes in CRC Prevalence using Clustered Binary Data 
 

 Research in longitudinal data analysis became popularized in the late 50s, with the advent of 

computational tools for statistical purposes [29]. Contributions from several authors including Box [30], 

Geisser et al [31], Rao [32-33], and Potthoff et al [34], and Grizzle and Allen [35] led to the development of a 
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rich class of regression models for only Gaussian outcomes [29]. The models developed during this period 

were largely based on the traditional maximum likelihood theory [29]. However, for non-Gaussian outcomes, 

there was little work done before 1986 particularly for binary outcomes [2]. This was due, in part, to the lack 

of the multivariate Gaussian distribution for the joint probability distribution of	#$5, the response for the '5B 

experimental unit at the 75B	(7 = 1,2, …"$) time [2]. Unlike in Gaussian longitudinal data analysis, in non-

Gaussian or discrete longitudinal data analysis, the first two moments (i.e. mean and variance) are not 

sufficient to fully specify the likelihood function [2]. Hence additional information (resulting in many nuisance 

parameters) is required [36-38]. For example, recall that if random variables C and D have binomial 

distribution with parameters " and E and Poison with parameter F	respectively, thenG(C) = "E,	HIJ(C) =

"E(1 − E) and G(D) = HIJ(D) = F. This functional interdependence of the mean and variance on each 

other makes it impossible to model them separately leading to difficulties in both computation and 

interpretation in non-Gaussian data analysis [29].  

 For the regression models developed prior to 1986, the traditional methods of maximizing the 

likelihood function could not be applied in this case because of the presence of too many nuisance 

parameters together with the regression coefficients [2]. Moreover, for non-Gaussian longitudinal data, the 

integral of the likelihood function does not have a closed-form, further making it impossible for the use of 

methods associated with its maximization [39]. Alternative likelihood methods were developed, but for only a 

few specific instances of non-Gaussian data. The marginal models developed by Bahadur [40], Bishop et al 

[41], and Fitzmaurice et al [38] are log-linear marginal models commonly used to formulate a probability 

model for multivariate binary data as a function of canonical parameters [41]. In particular, interpreting the 

canonical parameters in the model by specified by Bishop [41] was dependent on the number of responses.  

A fundamental challenge in using such log-linear models is that, since the number of responses often differ 

across subjects in a typical longitudinal study and may also increase rapidly with time, evaluating the 
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likelihood function becomes problematic. To unify the regression techniques discussed above, thus 

overcoming the complexities associated with longitudinal/clustered data analysis, Liang and Zeger [3] 

proposed the generalized estimating equations (GEE) for Gaussian and non-Gaussian data alike, based on 

the multivariate quasi-likelihood theory. The GEE method is reviewed next. 

2.1.2.1 Generalized Estimating Equations (GEE)  
 
 Liang and Zeger re-invented the GEE approach as a class of estimating equations for both Gaussian 

and non-Gaussian longitudinal data, based on the multivariate quasi-likelihood theory [3]. The quasi-

likelihood theory was proposed by Wedderburn [42]. GEE as proposed by Liang and Zeger, is a multivariate 

generalization of the work of Wedderburn [3]. While the GEE approach by Liang and Zeger unified the 

regression models for various Gaussian and non-Gaussian responses [3], the generalized linear models 

(GLMs) proposed by McCullagh and Nelder unified the regression models for various Gaussian and non-

Gaussian covariates regardless of the type of response variable [43]. In GLMs, the response variable 	#$ is 

assumed to follow an exponential family distribution such as linear, logistic, Poisson, Negative Binomial as 

well as some parametric survival regression models [43]. There are three components to GLMs; (1) a random 

component for identifying the response variable and its sampling distribution; (2) a systematic component for 

specifying the covariates	K2,	K3,	KL,…,K4 used in the linear predictor function 0$MN (defined as	OP +

O2	/2 + O3	/3 + OL	/L + ⋯+ O4	/4); and (3) a link function [η or g(µ)] for ‘linking’ the random and 

systematic components of the GLM [44]. The SAS procedure GENMOD fits GLMs and data analysts need 

to specify the appropriate link function in the LINK option and the distribution of the response in the DIST 

option (bin for binomial, poi for Poisson, negbin for negative binomial, and mult for multinomial distributions). 

Appendix B summarizes some common GLMs with all three components.  
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Liang and Zeger extended the univariate quasi-likelihood proposed by McCullagh and Nelder [45] to 

account for within-subject correlation due to the longitudinal design, using multivariate quasi-likelihood 

approaches [3]. A detailed discussion of quasi-likelihood methods is provided by elsewhere [42-45]. 

The GEE approach proposed by Liang and Zeger is a multivariate analog of the quasi-likelihood 

method [3]. GEE is proposed mainly for marginal modeling with GLM [3].  It ‘avoids’ the use of the multivariate 

Gaussian distribution but assumes a functional form for the marginal distribution of #$5 at every time point, 

making it also suitable for non-Gaussian outcomes [3]. In the GEE approach, the correct specification of the 

marginal means, variance, and the link function connecting covariates and marginal means are required [3-

4, 45]. One advantage of GEE is that solutions are consistent, and the model is still robust even when the 

correlation structure is incorrectly specified [4]. By “robust”, Zeger and Liang showed that sample variance-

covariance matrix produces a consistent estimate of the population variance-covariance matrix even when 

the “working” correlation matrix is incorrectly specified [4].  

In the past few decades, GEE has been applied to determine changes in different CRC outcomes 

over a period of time, while taking into account within-subject correlation due to the longitudinal design. 

Stevens et al. [46] investigated the effect of fecal occult blood testing (FOBT) for CRC on alcohol 

consumption, physical activity, smoking and fruit and vegetable consumption from the year 2008 to 2015 

using GEE approach. The effects of FOBT involvement, time and group-time interactions on these risk factors 

were determined while accounting for the within-group (FOBT participants vs. non-FOBT participants) 

correlation. Authors fitted five GEE models, each included two main effects for group and time, and a group-

time interaction effect, and controlled for education, occupation, ethnicity, retirement status, baseline wave, 

and chronic illness. Group-time interaction was significant for smoking behaviors over time (OR = 1.15; 95% 

CI: 0.90 – 1.47) [46]. The proportion of FOBT participants consuming fruits and/or vegetables did not 

significantly change (OR = 1.32; 95% CI: 0.91 – 1.90) [46]. Multivariable logistic regression with baseline and 

follow-up variables showed that retirement status at follow-up was positively associated with FOBT 
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participation for CRC (Odds ratio - OR = 1.99; 95% CI: 1.25 – 3.15) [46]. The proportion of current smokers 

and drinkers reduced over time from 19.9% to 12.7% (OR = 0.74; 95% CI: 0.62 – 0.89) and from 65.9% to 

61.6% (OR: 0.69; 95% CI: 0.53 – 0.91) respectively [46]. Over time, participants meeting physical activity 

guidelines did not change significantly at baseline (88.6%) and follow-up (85.5%) (n = 736; OR = 0.75; 95% 

CI: 0.49 – 1.15) [46]. 

Rabeneck et al. [47] applied GEE methodology to determine factors significantly associated with 

bleeding and perforation among individuals aged 50 to 75 years who underwent an outpatient colonoscopy 

in Ontario, Nova Scotia, British Columbia, and Alberta, Canada from April 1, 2002, to March 31, 2003. Authors 

used GEE models, with individual patients as the unit of analysis and two binary outcome variables (presence 

or absence of bleeding and perforation), while controlling for patient’s (age, gender, comorbidity based on 

hospital admission, having polypectomy) as well as endoscopic factors (endoscopic specialty and 

experience). For models using data from the four provinces, authors treated “province” as a cluster while for 

models which used data from only Ontario, “physician” was the cluster. Separate GEE models were fitted to 

determine risk factors for colonoscopy-related bleeding and perforation. Multivariable GEE models of patient 

factors showed that age (OR = 1.61; 95% CI: 1.20 – 2.16, p = 0.001), gender (male is reference category) 

(OR = 0.52; 95% CI: 0.36-0.74, p = 0.0003), polypectomy (OR = 10.32; 95% CI: 6.52 – 16.34, p < 0.0001) 

were significantly associated with colonoscopy-bleeding only except comorbidity score (OR = 1.69; 95% CI: 

0.33 – 8.65, p = 0.53) [47] . All but gender (OR = 1.21; 95% CI: 0.97 – 1.50, p = 0.09) were significantly 

related to colonoscopy-related perforation (p < 0.05) [47]. GEE models predicting bleeding or perforation 

showed that all patient factors were significant (p < 0.05) [47]. In Ontario, all endoscopic factors were 

significantly associated with bleeding and perforation (p < 0.05) [47]. Based on the individual GEE models, 

male gender, older age, having a polypectomy, and undertaking colonoscopy done by a low-volume 

endoscopist were significantly associated with higher odds of colonoscopy-related bleeding or perforation 

[47]. 
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Glanz et al. [48] used the GEE approach to identify significant determinants associated with the 

intention to undertake genetic counseling and CRC susceptibility testing among Caucasian, Japanese and 

Hawaiian ethnicities. Data collected on respondents included background information, familial history of 

cancer, interest in seeking counseling on genetic colon cancer and intention to undertake genetic testing for 

colon cancer. The outcome variables are dichotomous (interest in seeking genetic counseling and intention 

to undertake genetic testing for colon cancer). GEE approach was used to identify significant covariates by 

accounting for within-cluster correlations. The SAS procedure GENMOD to was used to calculate generalized 

models using GEE. After adjusting for covariates, family intraclass correlations of 0.06 and 0.09 were reported 

for individuals who had interest in going for counseling on genetic colon cancer as well as those who had the 

intention of undertaking colon cancer susceptibility testing respectively. About 45% and 26% of respondents 

declared an interest in seeking genetic counseling and intended testing for colon cancer respectively [48]. 

Binary logistic GEE regression models showed that, education (some college: OR = 1.76; 95% CI: 0.95 – 

2.27, p = 0.07; ≥college graduate: OR = 1.92; 95% CI: 1.02 – 3.60, p = 0.04), Hawaiian ethnicity (OR = 2.68; 

95% CI: 0.91 – 7.89, p = 0.07), cancer worry (OR = 2.94; 95% CI: 1.61 – 5.37; p = 0.001), and family support 

(colon cancer in first degree relative – FDRs, OR = 1.12; 95% CI: 0.63 – 2.02; total cancers in FDRs, OR = 

1.05; 95% CI: 0.78 – 1.41) were significantly associated with individuals who showed interest in seeking 

counselling for on genetic colon cancer [48]. Cancer worry (OR = 1.99; 95% CI: 1.16 – 3.42, p = 0.01), risk 

perception (OR = 1.84; 95% CI: 1.29 – 2.62, p = 0.001), and older age (OR = 1.28; 95% CI: 1.01 – 1.60, p = 

0.04) were positively,  and  Japanese ethnicity (OR = 0.36; 95% CI: 0.17 – 0.79, p = 0.01) was inversely 

related to the intention to undertake colon cancer susceptibility testing [48].  

In a prospective cohort study, Stürmer et al. [49] determined the risk of CRC after starting the use of 

nonsteroidal anti-inflammatory drugs (NSAIDs) in over 20,000 male physicians age 40 to 84 years from 1982 

to 1988 using the GEE method. GEE approach was used to estimate the propensity for regular (>60 

days/year) NSAID use [49]. To determine covariates associated with regular NSAID use, logistic regression 
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using GEE was used to account for an individual’s correlated use of NSAID at different time points [49]. 

Regular NSAID use increase from 2 to 56% over the period [49]. Logistic GEE regression models revealed 

that significant predictors of NSAID use included body mass index (BMI), age, medication use, alcohol 

consumption, gastrointestinal diseases, coronary artery disease (CAD), headache, arthritis, and hypertension 

(E < 0.05) [49]. In addition, at least five years of regular use of NSAID was associated with a relative risk 

(RR) for CRC of 1.0 (95% CI: 0.7 – 1.5) [49]. 

2.1.3 Modeling CRC Incidence Using Survival Analysis Techniques 
 

The standard regression techniques described in sections 2.1.1 and 2.1.2 cannot be used to analyze 

CRC survival data. This is because these methods do not take into consideration follow-up time and censored 

observations [14]. As a result, survival analysis techniques, which primarily studies the distribution of survival 

times (i.e. time to an event) as well as whether the event occurs or not, have been developed to overcome 

the limitations of traditional regression methods, which only studies the latter scenario [14]. 

No one knows when the concept of survival analysis was birthed, but it is believed to be one of the 

oldest statistical methods [50]. In the original stages of the transformation of survival analysis, the life-table 

methodology was used to estimate survival functions from subjects’ lifetimes with delayed entry or left 

truncation (i.e. when a subject is not observed at baseline but only from a subsequent follow-up) and right 

censoring (i.e. when the subject leaves the study before the occurrence of the event) [50]. Survival analysis 

did not appear to be integrated with statistics at the time [50]. As a result, several authors including 

Westergaard [11] highlighted major drawbacks in the life-table methodology including the fact that it did not 

account for sampling variability. In the 1950’s, the life-table methodology was presented to the statistical and 

medical community in very seminal surveys including that of Ederer and Cutler [52]. In these surveys, time 

was measured in discrete units [52]. As a result, survival frequencies from time 7 to (7 + 1)  are multiplied 

together to form the survival probability across these time periods [52].  However, there is a limitation to this 
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approach in that, developing approximations based on the discrete grouping of time (which is actually 

continuous) is very difficult [50]. To eliminate the need for such approximations, the Kaplan-Meier estimation 

(K-M) technique [12], a non-parametric method based on the work of Bohmer [53] was developed in 1958. 

In K-M estimation, survival, as well as censored times, are known [12]. In a way, Kaplan and Meier [12] 

formalized the concept of delayed entry by adjusting for the risk set, the set of experimental units alive and 

are being measured at a specific point of the time variable in question. 

In the notation of Anderson and Keiding [50], let (KX2, KX3, … , KXY) be right-censored sample of 

observation times for (K2, K3, … , KY) respectively - the true survival times. Assume that K$, ' = 1,2… , " 

are independent and identically distributed (iid) nonnegative random variables with a common survival 

function	Z(7). Right-censoring is often common in survival data [50]. So, the only available information for a 

specific subject ' is a censoring time [$ (i.e. time lapsed by surviving till [$ without the event of interest 

occurring). More generally, any sample survival data includes	[\KX$, ]$^, ' = 1,2, … , "], where KX$ =

min	(K$, [$) and ]$ is the indicator, c(K$ ≤ [$) of being uncensored [50]. Under the assumption of 

independent or non-informative censoring [i.e. for any subject in the risk set (with exceptionally high or low 

risk of failing) the probability of being censored at time 7 should not depend on the subject’s prognosis for 

failure at time K$ > 7], the survival distribution function Z(7) is estimated by the Kaplan-Meier estimator (K-

M), denoted Z(7)f . Mathematically,  

Z(7)f =gh1 −
]$

C(KX$)
i

jXkl5

………………………………………… . (2.1) 

where C(7) = ∑ c(KX$ ≥ 7) is the number of subjects at risk just before time 7. The K-M estimator in 

equation (2.1) is a non-parametric maximum likelihood estimator (NPML) and is approximately normally 

distributed with mean Z(7) and variance o3(7)p  [50]. Peterson [54] showed that the K-M estimator, Z(7)f  is 
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a consistent estimator of Z(7). Greenwood [55] proposed a formula for estimating the variance of the K-M 

estimator o3(7), called the Greenwood’s formula using the delta-method as: 

o3(7)p = qZ(7)f r
3
s∑ tk

u(jXk)[u(jXk)v2]
jXkl5 w………………………………… . (2.2)   

Nelson [56-57] proposed an alternative non-parametric method, the cumulative survival function, 

denoted for estimating the survival distribution function Z(7). To estimate Z(7) with the new method, one 

may use the Nelson-Aalen estimator, which is defined as follow: 

x(7)p = y
]$

C\KX$^jXkl5

………………………………………… . . (2.3) 

Peterson [54] published the relationship between Z(7)f  and  x(7)p as x(7)p = −log	(Z(7)f . Although survival 

probabilities computed with K-M estimator are more interpretable, those obtained with the Nelson-Aalen 

estimator are more generalizable to multistate cases (i.e. modeling two or more life events simultaneously) 

beyond the traditional context of survival data [50].  

To compare the survival curves or distribution of two or more independent groups, Mantel [58] 

proposed the log-rank test. To date, it is the most commonly used non-parametric test used in this regard 

and it tests the null hypothesis that two more survival curves are the same [14, 50]. One advantage of the 

log-rank test is that we do not need to know the probability distribution or shape of the survival times [50]. 

So, in a way, the log-rank test is the survival analog of the Mann-Whitney U test of means. The above 

techniques discussed are univariate because they describe survival based on one covariate but ignore the 

impact of others [50]. To account for the impact of other covariates that may affect survival time but were left 

out in the univariate survival analysis, regression models for survival data analysis become useful [15]. In 

1972, Cox [15] extended the K-M life table by developing a multivariable survival regression model, called 

the Cox’s Proportional Hazards (PH) regression model to account for the impact of several covariates on 

survival, based on the assumption that, the effects of covariates on survival are constant over time. 
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Cox’s PH model relates a hazard function, an instantaneous rate of failure of an individual at time	7, 

with a given specification of a vector of 	E predictor variables, {9 = (K2, K3, … , K|)′ to a baseline hazard 

ℎP(7) through; 

F$(7, K$) = FP(7) exp(NÅ{9), ……………………… . . ……………(2.4) 

where FP(7) is the baseline hazard and O = (O2, O3, … , O|)′ is a vector of regression coefficients. Notice 

that when K$ = 0	(' = 1,2, … , E), F$(7, K$) = FP(7), This shows that, the baseline hazard describes a 

common distribution of survival time for all subjects while exp(NÅ{9), the relative risk (RR) function 

describes an individual subject’s hazard. The RR component of the PH model in equation (2.4) above is 

specified completely and so is modeled using parametric methods while the baseline hazard is unspecified, 

hence modeled using non-parametric methods [14]. This, therefore, makes the Cox’s PH model 

semiparametric (i.e. partly parametric). Given this semi-parametricity, inferences on the likelihood for O are 

drawn using partial likelihood theory [50]. In fact, Cox [15] provided a partial likelihood function for	O, called 

the Cox’s partial likelihood as; 

É(N) =gh
exp(NÅ{9)

∑ exp\NÅ{Ñ^@∈Ük

i
tk

…………………………………(2.5)

Y

$á2

 

where à$ = {ä: KX@ ≥ KX$} is the risk set of all subjects still alive and uncensored at time KX$ and ]$ is an 

indicator of not being censored. When O is equal to its maximum partial likelihood estimator (MPL), Nç, the 

cumulative baseline hazard denoted xP(7)p  using the Breslow estimator defined as; 

xP(7)p = y
]$

∑ exp\NÅf{Ñ^@∈ÜkjXkl5

.		………………… .……………… . (2.6) 

Since Cox [15] published the PH model, several extensions have been made to it. In instances where 

covariates are time-dependent, a modified Cox’s partial likelihood is obtained by replacing exp\NÅ{Ñ^ in 

equation (2.5) with expqNÅ{Ñ\{è9^r [50]. However, modifying the Breslow estimator to account for the 
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changing covariates is more complicated than simple replacement because, Cox’s equation does not model 

the extra randomness arising from the time-dependent covariates, as a result, model estimates are not 

directly interpretable [50]. In such situations, the use of a joint model for the time-dependent covariate and 

the hazard using joint modeling data techniques [59]. 

Several studies have applied survival analysis techniques to identify risk or prognostic factors for 

CRC outcomes. Rasouli et al. [60] to determine significant prognostic factors and their impact on CRC 

survival in Iran. In the univariate analysis, K-M estimation method and log-rank tests were used to determine 

survival among various subgroups for 335 CRC cases. Cox’s Proportional hazards model was used to 

determine the effect of CRC risk factors on survival. Authors reported a one- and five-year survival rate of 

87% and 33% respectively [60]. In the Cox’s multivariable analysis, age at diagnosis (65 years or older) (HR 

= 2.08; 95% CI: 1.17 – 3.71), being a worker (HR = 2.09; 95% CI: 1.22-3.58), wealthy economic status (HR 

= 0.51; 95% CI; 0.31 – 0.82), educational level (≤ Diploma) (HR = 0.61; 95% CI: 0.39 – 0.92), single patients 

(HR = 1.62; 95% CI: 1.10 – 2.40), and poor differentiation of tumor (HR = 2.25; 95% CI: 1.37 – 3.69) were 

significantly associated with CRC survival [60]. The log-rank test revealed no significant association between 

CRC survival and family history, sex, histology type, and tumor site (p > 0.05) [60]. However, age at diagnosis 

(p < 0.001), marital status (p < 0.001), place of residence (city vs. village) (p = 0.0023), level of education (p 

< 0.001), occupation (p = 0.003), comorbidity (p = 0.026), economic status (p = 0.002), smoking (p = 0.017), 

and tumor grade (p < 0.001) were significantly associated with CRC survival [60]. Wang et al. [21] reported 

higher CRC survival rate (HR = 0.94; 95% CI: 0.89 – 0.99) among persons 40- to 50-years in the univariate 

Cox’s Proportional Hazards regression model, while higher rates are reported elsewhere among patients 

younger than 40 years [61].  

In Malaysia, Hassan et al used survival analysis techniques to identify prognostic factors for CRC 

among 1,214 patients using data from the Malaysian Cancer Patient Registry – Colorectal Cancer [62]. 

Diagnosed CRC cases confirmed by histology were included in the study. Demographic information (i.e. age 
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ethnicity, gender, family history of CRC, diabetes status, and current status of patient – alive or dead), 

pathological features (e.g. tumor size, lymph nodes, and stage at diagnosis) and treatment modalities were 

analyzed. Three- and five-year survival rates were computed using the Kaplan-Meier method. The log-rank 

test was used in the univariate analysis of all variables as well as in comparing the survival rates of each 

variable. Significant variables were further analyzed using multiple Cox proportional hazards regression to 

determine the hazard ratio of associated factors on CRC-survival and the final model was adjusted for gender, 

age, and ethnicity. Variables with p-values less than 5% were considered statistically significant. The overall 

three- and five-year survival rates were 59.1% (95% CI: 56.4% - 61.9%) and 48.7% (95% CI: 45.8% - 51.7%) 

respectively [62]. In the univariate analysis, primary tumor size (p < 0.001), stage at diagnosis (p < 0.001), 

treatment modalities (p = 0.001), and involvement of lymph nodes (p < 0.001) were significant predictors of 

CRC-survival [62]. No socio-demographic variable was found significant [62]. In the multivariable Cox 

regression analysis, primary tumor size (p < 0.001), stage at diagnosis (p < 0.001), treatment modalities (p < 

0.001), and involvement of lymph nodes (p < 0.001) were significant prognostic factors for CRC-survival after 

adjusting for gender age and ethnicity [62]. Patients who only had a surgical resection as cancer treatment 

had the highest risk of dying from CRC as compared to those who underwent other methods of treatments 

(hazard ratio – HR = 1.71; 95% CI: 1.23 – 2.37) [62]. Overall, Malaysian patients with localized tumors had 

better CRC prognosis as compared to those with the disease at advanced stages [62]. 

 In a similar study, Yuan et al. [63] determined prognostic factors among 837 Chinese CRC patients 

between 1996 and 2006 using survival analysis techniques. Univariate analyses and Cox proportional hazard 

regression models were used to identify significant prognostic factors for CRC. Patients were followed at 

three-month intervals for first 2 years, and six-month for the 3rd-5th year and the median follow-up was 45 

months [63]. K-M method was used to plot survival curves while the log-rank test was used to compare 

differences in survival curves. Cox proportional hazard analysis was used to compute univariate hazard ratios 

for the identification of significant and independent prognostic factors for CRC-survival. The stepwise 
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procedure was set to a 5% threshold while a p-value of > 0.05 defined statistical significance [63]. Three-

year and five-year survival rates were reported at 74% and 68% respectively [63]. In the univariate analysis, 

age, tumor node metastasis, invasion of adjacent organs, lymphovascular invasion, tumor size, pathological 

type, the status of resection, histological grade, serum carcinogenic antigen level of diagnosis, preoperative 

obstruction were significant prognostic factors for CRC (p-value < 0.05) [63]. In the multivariable analysis, 

depth of bowel invasion, histological grade, and the number of metastatic lymph nodes significantly 

influenced CRC survival (p-value < 0.05) [63]. In particular, lymph node ratio (total positive lymph nodes 

divided by the total number of lymph nodes) was a strong predictor of stage III CRC (p < 0.0001) [63]. 

Elsewhere, Sharkas et al [64] identified determinants of CRC in a Jordanian population from 2005 to 

2010 and computed survival rates for the disease using survival analysis techniques. Similar to Hassan et 

al. [62] and Yuan et al. [63], Sharkas et al [64] estimated overall survival using K-M estimation method and 

also compared survival rates between groups using standard log-rank test. However, the authors reported 

5-year and 10-year survival rates of 58.2% and 51.8% respectively [64]. Over the six-year follow-up period, 

the 5-year survival rate for the under-50 age cohort decreased from 60.4% to 49.3% (p < 0.005) [64]. In Cox’s 

proportional hazards regression model, age, stage, grade and location of the tumor were significantly 

associated with CRC-survival (p < 0.005) [64]. In particular, increased age, advanced stage CRC, poor 

differentiation of tumor, and right-sided CRCs were significantly associated with lower CRC survival rates 

[64]. 
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2.2 Epidemiology of Colorectal Cancer (CRC) 
 
2.2.1 Colorectal Cancer Prevalence 

 
Like in many parts of the world, the availability of studies in the literature regarding CRC prevalence 

in Canada is limited. A meta-analysis of selected North American studies by Heitman et al reveal that, CRC 

prevalence ranged from 0 to 1.68% [142]. Reports that assessed CRC prevalence were located (See Table 

2.1). 

Table 2. 1 Major North American studies assessing CRC prevalence in a general Adult Population 

Study Mean Age (Years) Male (%) CRC Prevalence Year 

Spellman et al [143]a NR 46 0.48 2007 
Kim et al [144] 58.1 44.4 0.13 2007 
Rex et al [145] NR 62.5 0.20 1993 
Stevens et al [146] NR 49.8 0.37 2003 
Prajapati et al [147] 62.0 40.5 0.39 2003 
Johnson et al [148] 65.0 67.8 1.10 1990 
Imperiale et al [149] 68.6 44.6 0.70 2004 
DiSario et al [150] NR 41.2 1.68 1991 
Mehran et al [151] NR 49.5 1.10 2003 
Pickhardt et al [152] 57.8 59.0 0.16 2004 

NR, not reported 
a Abstract only 
 

It appears there is a variation of CRC prevalence within and between countries and across studies 

due to: (1) geographic differences in the distribution of CRC, (2) differences in methods used to identify CRC, 

(3) differences in the definitions of CRC across studies, and (4) the absence of standardized instruments in 

diagnosing CRC, and (5) differences in target populations. Within most regions and countries, CRC 

prevalence increases with age and is higher among men than among women [152]. Low Age-specific 

prevalence rates of CRC are reported for persons aged 50-54 years old (Male: 0.08 – 0.36%; Female: 0.05 
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– 0.23%) while higher rates are reported for older age groups across the world [153]. For instance, a 

prevalence rate about 0.13% among men aged 70-74 in Africa and South-central Asia while rates ranging 

between 1.4 – 1.8% are reported in Australia and Europe [153]. CRC is more prevalent in males than among 

females with an overall male-to-female prevalence ratio of 1.3 in South America (Male: 0.31%; Female: 

0.23%) as compared to a prevalence ratio of 1.9 in Southern Europe (Male: 0.84; Female: 0.44%) [153]. 

In 2017, greater variations were reported even within same geographical regions [153]. For instance, in 

Europe, an estimated overall CRC prevalence among men aged 50-74 years varied from 0.19% in Albania 

to about 1.01% in Slovenia [153]. Higher prevalence rates were reported among men in Czech Republic 

(1.13%), Slovakia (1.19%), and Hungary (1.27%), and among women, for Denmark (0.66%), Norway, and 

The Netherlands (0.64%, both) [153]. On the other hand, lower prevalence rates for CRC were recorded in 

Albania (Male: 0.19%; Female: 0.14%) [153]. 

2.2.2. International burden of CRC 
 

CRC is the third most frequently diagnosed cancer (after prostate and lung cancers) in the world 

among males (663,000 cases, 10%) and second (after breast cancer) among females (570,000 cases, 9.4%) 

[65]. It has an average of more than 1 million cases occurring annually [65]. Globally, CRC accounts for more 

than 9% of total cancer incidence [65-66], with more than 1.4 million cases in 2012 [66-67]. The incidence of 

CRC is expected to grow by 80% in 2035, with cases increasing (from the 2012 figure) to about 2.4 million 

worldwide, resulting in about 1.3 million people losing their lives [68]. In 2017, nearly half (44.6%) of the world 

incidence of CRC occurred in Asia, with China singularly contributing 18.6% of the global CRC incidence 

[68]. The Republic of Korea contributed the highest ASRs of CRC worldwide for both sexes combined, further 

highlighting the impact of Asia on the global CRC burden [68]. 

Australia, Europe, New Zealand, and North America have the highest rates of CRC incidence in the 

world [69] while the lowest rates are recorded in Central America, Africa, and South-to-Central Asia [66]. 
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There is evidence that some countries with historically low CRC incidence are currently experiencing 

increasing risks of the disease. For example, since the mid-90s, Thailand and Japan have been facing 

increasing CRC incidence [70], about the same time rates in the Philippines also started to increase [71]. 

Rates in Saudi Arabia have more than doubled since 1994 [72], and the incidence of CRC has been 

progressively increasing in Iran since 1980 [73]. 

Elsewhere to the East, CRC incidence is also reported to be gradually increasing in Jordan [74], 

Singapore, China, and South Korea [75]. The “Westernization” of many countries in the West Pacific Region 

(WPR) including the Philippines, China, Korea and Japan, shown by high prevalence of smoking, sedentary 

lifestyles, obesity, excessive meat consumption, and high calories intake are putative risk factors for the 

increasing risks of the disease in the region [76].  

In Sub-Saharan Africa (SSA), CRC is relatively rare, accounting for only about 2-6% of overall 

cancers [77]. When combined, the crude incidence of CRC in SSA is reported to be about 4.04 per 100,000 

persons (Males: 4.38; Females: 4.38) [77]. However, some countries within the region have rates 

lower/higher than these. For instance, in Zimbabwe and Gambia, the age-adjusted rates (per 100,000) varies 

from 1.5 and 2.5 to about 8.5 to 7.1 among men and women respectively [78]. For countries with historically 

low incidence within SSA, such as Nigeria and Ghana, CRC incidence has started increasing contributing 

about 10-50% of overall cancers [79-80]. 

CRC incidence rates are higher in men than in women [65-66] with an overall male-to-female ratio 

associated with the ASR of CRC being 1.4:1 for many countries [65]. The reason(s) for this variation is ill-

defined, but probably show complicated interactions between gender-specific exposure to risk factors and 

protective effects of endogenous and exogenous hormones as well as gender-specific variation in attitude 

towards screening for the disease [81].  
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2.2.3 CRC Incidence in Canada 
 

Currently, CRC is the second most common cancer diagnosed in Canada, accounting for about 

26,800 (Male: 14,900; Female: 11,900) incident cases, representing 13% of all new cancer cases in 2017 

[82]. Of this total, 9,400 Canadians, representing 12% of all cancer deaths, died from the disease. On 

average, about 73 Canadians were diagnosed with CRC every day in 2017 and of this number, 26 people 

died every day of the disease in the same year [82]. Nearly 1 in 13 Canadian men will develop CRC at a 

point in his lifetime and 1 in 29 will die of this disease while 1 in 16 Canadian women will develop the disease 

in her lifetime and 1 in 34 will die from same [82].  

In the same year, the incidence rate for this disease was 79.6 and 54.9 per 100,000 men and women 

respectively [82]. For the period 1988 to 2010, the ASR of CRC decreased by 11.3% and 14.5% among men 

and women respectively. It is projected that the incidence of CRC in Canada will increase by 79% in 2030 

[82]. 

2.2.4 CRC Incidence in Saskatchewan 
  

In 2017, CRC was the second (i.e. after prostate cancer) most frequently diagnosed cancer among 

males, with 500 new cases, representing 17.85% of all cancers diagnosed in Saskatchewan; third (i.e. after 

breast and lung cancers) among females, also with 380 new cases representing 13.57% [83]. Figure 2.3 

shows the ASIR (per 100,000) for CRC were 89.9 and 60.6 among men and women in Saskatchewan, 

respectively [82]. These were the second and third highest ASIR of the disease in Canada respectively, after 

that of Newfoundland and Labrador. Recent Saskatchewan data reveal that, the number of incident cases of 

CRC will increase from 880 in 2017 to 1120 in 2032, representing a 27.3% jump [82]. 
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Figure 2. 2 Incidence rates for CRC by province and gender, Canada 2017, age-standardized to the 2011 
Canadian population. Created by Watara using data from Canadian Cancer Registry (CCR) and National 
Cancer Incidence Reporting System (NCIRS) databases at Statistics Canada [123]. 

 

2.2.5 Etiology and Risk Factors of CRC 
 

Colorectal cancer appears to be a multifactorial disease whose etiology remains ill-defined in the 

literature. The incidence and prevalence of the disease also appear to depend on a complex interplay 

between ecological factors and genetic vulnerability. So far, aside from age, gender, and race, which have 

been generally established as risk factors of the disease, other factors are inconsistently reported.  

A large proportion (33%) of Saskatchewan residents are rural dwellers [24], which is higher than the 

national percentage (18%) [23]. A significant proportion of these rural dwellers in Saskatchewan are farmers. 

To the best of our knowledge, there is not enough information about the risk factors for CRC among farming 

and non-farming residents in rural Saskatchewan. Risk factors for CRC may be broadly categorized into two 
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groups, namely non-modifiable and modifiable risk factors. The former majorly comprise of genetic factors 

while the former is made up of environmental factors. The following sections present current knowledge 

regarding these factors. 

2.2.5.1 Non-modifiable Risk Factors/Non-sporadic CRC 
 
2.2.5.1.1 Age 
 

Age is a major risk factor for CRC. The risk associated with the disease increases with increasing 

age albeit it affects all ages [84]. However, CRC is rare among persons younger than 40 years of age [85] 

but increases significantly from 40 to 50 years, with age-specific incidence rates further increasing in each 

decade thereafter [85]. Over 90% of CRC cases are diagnosed persons aged 50 years or older [86]. CRC 

incidence is more than 50% higher among persons age 60-69 and 70-79 years than among persons younger 

than 40 years [86], even though some studies suggest an increasing incidence within the latter age cohort 

[87]. In fact, CRC is now none of the top 10 most frequently diagnosed cancers among individuals aged 20 

to 49 years in the United States [88]. 

Gender differences vary by age. Recent Canadian data show that, over this period 2009-2013, CRC 

incidence for age groups 15-29, 30-49, 50-69, 70-84, and 85+, new cases of CRC increased by 4%, 8%, 

11%, 15%, and 17% respectively, of all overall cancers in Canada [82]. For both genders combined, CRC 

was the most commonly diagnosed cancer (17%) in 2017, among persons aged 85 years and older in 

Canada [82]. More than half (54%) of all newly diagnosed CRC cases occurred individuals age 70 years or 

older in 2017 in Canada [82]. 

2.2.5.1.2 Ethnic and Racial Background 
 

Variations in CRC incidence among different races/ethnicities have been reported in the literature. 

For example, using CRC data from the Surveillance, Epidemiology and End Results (SEER) program in the 

United States for the period 1975-2002, Irby et al. [89] a reported higher incidence of CRC among Blacks 
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than Whites. It appears these differences depend on intricate interactions between screening and the 

predisposition to other etiologic factors, which, in turn, may depend on socioeconomic status (SES). In fact, 

the National Health Interview Survey (NHIS) in the United States reported that Whites had regular CRC 

screening than Blacks [90]. Moreover, Blacks had higher odds of developing CRC at a younger age of 

diagnosis and of the proximal type than Whites [89]. 

2.2.5.1.3 Personal History of Colorectal Polyps 
 

Polyps are benign growths on the inner walls of either the colon or rectum. Colorectal polyps also 

called adenomatous polyps, are precursor lesions in the development of CRC [91]. Almost all (95%) of CRC 

cases result from these adenomas [92]. Individuals with a personal history of adenomatous polyps have a 

higher risk of developing CRC, especially with multiple polyps when compared to individuals with no such 

history [93-94]. Adenomas take about 5-10 years to become malignant [94]. Detecting and removing an 

adenoma before it becomes malignant is reported to lower CRC risk [95] even though complete removal of 

an adenomatous polyps increases the risk of developing subsequent (metachronous) colorectal cancer [95]. 

In particular, a personal history of large (greater than 1cm) polyps, for example, tubulovillous adenoma (TVA), 

elevates the risk of developing CRC, with a relative risk (RR) estimated between 3.5 to 6.5 [95-96]. On the 

other hand, individuals with a personal history of at most 2 small polyps (smaller than 1cm), do not have a 

significant increase in the risk of developing metachronous CRC [96]. 

2.2.5.1.4 Family History of Adenomatous polyps  
 

More than 30% of individuals diagnosed with CRC have a past history of the disease in their family 

[97]. Individuals with first-degree relatives (such as a parent, child or sibling) who have had CRC in the past, 

have 2 to 4 times the risk of getting the disease when compared to individuals with no such family history, 

subject to the number of relatives affected and/or age at diagnosis [98]. In fact, individuals with first-degree 

relatives younger than 60 years or individuals with at least two first-degree relatives at any age who has been 

diagnosed of the disease, have elevated risks of developing CRC themselves [99]. There is emerging 
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evidence that familial risks associated with CRC go beyond first and/or second relatives [100].  The reasons 

for this variation in risk are incompletely known but may be influenced by hereditary and environmental factors 

or a complex interaction of them.  

2.2.5.1.5 Personal History of Inflammatory Bowel Disease (IBD) 
 

Inflammatory Bowel Disease (IBD) is a long-term condition is which involves the inflammation of the 

colon and/or rectum. The risk of developing CRC among individuals with IBD is twice the risk among IBD-

free individuals [101]. The two most common forms of IBD are ulcerative colitis (UC) and Crohn’s disease 

(CD), even though, UC is better understood than CD [102]. UC and CD elevate an individual’s risk of 

developing CRC [102]. In a meta-analysis of 116 studies, the total prevalence of CRC among UC patients is 

reported to be 3.7% (95% CI: 3.2 – 4.2) [103]. CRC risk increases with the degree, duration, and severity of 

the IBD [82-83]. The relative risk of developing CRC among individuals with IBD has been reported to be 4- 

to 20-fold [91] and further increase by 0.5 to 1.0% annually for 8 to 10 years after diagnosis [103].  

2.2.5.2 Modifiable Risk Factors 
 
2.2.5.2.1 Dietary habits 
 

Diet as a risk factor for CRC has been extensively studied in the literature. Improvements in dietary 

habits can reduce about 70% of CRC incidence [104]. Dietary habits may directly influence CRC risk through 

various dietary elements such as calcium, vitamin D, etc. and indirectly through obesity and over-nutrition 

[91]. Variations in dietary fiber is believed to influence geographic differences in CRC incidence rates [91].  

The WCRF and AICR, both have proposed that dietary variations are consequent for the differences in CRC 

rates between “Westernized” and African countries [105]. The intake of dietary fiber may increase stool 

volume and transit time which reduces CRC risk due to less exposure to carcinogens [105]. In an 

observational study, Negri et al [106] reported a negative relationship between the intake of dietary fiber and 

the risk of CRC [107]. However, recent randomized-control studies are inconclusive about whether or not 
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dietary fiber is a risk factor for CRC [107]. Inadequate levels of vitamin D in the blood is also associated with 

an increased risk of developing CRC, albeit some studies are still inconclusive [107].   

Studies assessing the potential association between the intake of fruits and vegetables and the risk 

of CRC have reported inconsistent results. In a meta-analysis evaluating the impact of several factors on 

CRC risk, a significant 15% reduction in CRC risk for 3 or more fruit servings per day was reported (p = 0.02) 

[108]. A similar conclusion was reached for vegetable consumption (RR = 0.86 per 5 servings/day) [108]. 

However, no association was observed between fruit/vegetable intake and CRC risk in a similar meta-

analysis [109]. Currently, such inconsistent results are not completely understood and remain ill-defined in 

the literature. 

Data implicating the consumption of red (e.g. beef, mutton, pork, goat, lamb/veal, horse) and/or 

processed meat (e.g. ham, bacon, sausage, hot dogs, deli or sandwich and any type of cured and smoked 

meat) as risk factors for CRC are generally not consistent in the literature. However, many studies, including 

Johnson et al have reported that excessive consumption of red meat and/or processed meat is associated 

with an increased risk for CRC [108]. Cancer site thus appears to be a source of variation. In fact, in a meta-

analysis, Johnson et al. reported a significant linear dose-response relationship between consuming red meat 

and developing colon cancer (p = 0.006) [108]. The authors also reported a significant positive relationship 

between consuming meat and developing the disease (p < 0.001), with a 13% increased CRC risk red meat 

(RR = 1.13; 95% CI: 1.09 – 1.16) consumers [108]. Recent data suggest that genetic susceptibility may be 

an effect modifier in the relationship between consuming processed meat and CRC risk [110]. In 2015, after 

aggregating and reviewing the evidence linking or dissociating the consumption of red and/or processed meat 

with increased CRC risk, the International Association of Research on Cancer (IARC) classified red meat as 

“probably carcinogenic to humans” and processed meat as “carcinogenic to humans” [110]. 
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2.2.5.2.2 Cigarette smoking 
 

The association between tobacco cigarette smoking and CRC has been recently established [111]. 

In November 2009, the IARC concluded that tobacco and cigarette smoking cause CRC [111]. It also appears 

that, being a current smoker, and/or smoking for longer pack-years increase CRC risk, thus revealing a dose- 

and time-dependent relationship. Johnson et al. [108] analyzed 7433 CRC cases from 15 studies and 

reported RR of CRC for smokers (vs non-smokers) at 1.06 (95% CI: 1.03 – 1.08), 1.11 (95% CI: 1.07 – 1.16), 

1.21 (95% CI: 1.13 – 1.29) and 1.26 (95% CI: 1.17 – 1.36) for 5, 10, 20 and 30 pack-years respectively. 

Huxley et al. [109] and Tsoi et al. [112] report a 16% and 20% increased CRC risk among current smokers 

as compared to non-smokers respectively while Liang et al. reported a 50% increased risk for 60 pack-years 

[113]. Individuals who smoke cigarettes have an earlier age of onset incidence of CRC [114].  

2.2.5.2.3 Physical inactivity and obesity 
 

Physical inactivity and excess body weight are two interrelated lifestyle-associated CRC risk factors 

that account for about 25% to 33% of all CRC [115]. Higher levels of physical inactivity are generally 

associated with higher CRC risk [115]. In a random-effects meta-analysis of 21 studies, physically active 

individuals had a 27% and 26% reduction in the development of both proximal (RR = 0.73; 95% CI: 0.66 – 

0.81) and distal tumors (RR = 0.74; 95% CI: 0.68 – 0.80) respectively when compared with least active people 

[116]. Elsewhere, such an association could not establish for rectal cancers (RR = 0.98; 95% CI: 0.88 – 1.08) 

[117]. It appears that, engaging in longer hours of physical activity reduces CRC risk among women [118]. In 

particular, women who engage in more than 21.5 hours per week of physical activity have a 25% lower risk 

of developing colonic cancer as compared to those who engage in less than 2 hours per week of physical 

activity (RR = 0.77; 95% CI: 0.58 – 1.01) [118]. 

Excess body weight (i.e. body mass index – BMI ≥ 25kg/m2) is also associated with increased CRC 

risk [119]. Obese individuals (BMI ≥ 30kg/m2) have 20% increased risk of developing CRC as compared to 
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persons with normal weight [119]. Previous studies have reported that obesity is associated with 7-60% 

increased risk for CRC [120]. This association appears stronger among men than among women, and for 

colonic cancer than for rectal cancer [121]. Obese men have 50% elevated risk of colonic cancer and a 20% 

elevated risk for rectal cancer while obese women have 20% increased risk colonic cancer and a 10% 

increased risk for rectal cancer [121]. However, mechanisms that are potentially responsible for the 

association between excess body weight and CRC risk are incompletely known [121]. In addition, little is 

known about the interactive effects of obesity and physical activity on CRC risk [122]. 

2.2.5.2.4 Alcohol consumption 
 

Studies have linked excessive alcohol consumption to increased CRC risk. One such study is the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study [123]. In this study, 478,732 

people were followed for almost a decade, to determine the impact of baseline and lifetime alcohol 

consumption on the risk of developing CRC. Lifetime alcohol consumption was positively associated with 

increased CRC risk (hazard ratio, HR = 1.08 for 15 grams/day increase; 95% CI: 1.04 – 1.12), with an 

elevated risk in the rectum (HR = 1.12; 95% CI: 1.06 – 1.18) than the colon (distal: HR = 1.08; 95% CI: 1.01 

– 1.16; proximal: HR = 1.02; 95% CI: 0.92 – 1.12) [123]. Similar results were reported for baseline alcohol 

consumption [123]. 

Individuals who have a lifetime average of 2-3 alcoholic drinks daily have a 20% increase in CRC 

risk as compared to occasional drinkers and non-drinkers, while having more than 3 alcoholic drinks is 

associated with a 40% higher risk of the disease [124]. In addition, Fedirko et al. analyzed data from 34 case-

control and 27 cohort studies and reported RRs of 1.07 (95% CI: 1.04 – 1.10), 1.38 (95% CI: 1.28 – 1.50), 

1.82 (95% CI: 1.41 – 2.35) for a 10, 50 and 100 grams/day consumption of alcohol, respectively [125]. A 

meta-analysis of 14 cohort studies showed that alcohol consumption of 100 gram/week is associated with a 

19% increased risk for CRC (RR = 1.19; 95% CI: 1.14 – 1.27) [126]. These associations are generally 
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stronger in men than in women [127]. The reason(s) for such gender differences are still unclear but may be 

related to hormone-related differences in alcohol metabolism [127]. 

2.2.5.2.5 Occupation and Occupational Exposures 
 

One of the most suspected risk factors for CRC with inconsistent results in the literature is occupation 

and occupational exposures. In the last few decades, the role of farming/agricultural occupation in CRC risk 

has received significant attention [128-129]. In a case-control study, Fredriksson et al reported reduced risks 

for developing colon cancer among farmers (male: OR = 0.7, 95% CI: 0.4 – 1.0; female: OR = 0.8, 95% CI: 

0.5 – 1.2), albeit this was not significant [128]. However, being a gardener was associated increased risk of 

colon cancer (male: OR = 1.3, 95% CI: 0.5 – 3.5; female: OR = 2.5, 95% CI: 0.8 – 7.9) and this not significant 

either [128]. Somayeh et al. reported a significant increase in CRC risk among persons with farm-related jobs 

while controlling for rural-urban residency [adjusted OR = 7.0, 95% CI: 2.19 – 22.38, p-value = 0.001] [129]. 

In a cohort of female farm residents in New York State, Wang et al. reported that persons who have farm 

jobs and rural residents were associated with significantly lower CRC risk as compared to those with non-

farm jobs and urban residents respectively [130]. Carrozza et al. reported that CRC incidence tends to be 

high in regions with greater farming activity [131].  

Occupational exposures have been identified to be associated with CRC risk. Fredriksson et al. 

reported significant agents for increased CRC risk to include: asbestos (low grade: OR = 2.1, 95% CI: 0.8 – 

5.8), organic solvents (low grade: OR = 1.3, 95% CI: 0.8 – 2.0), White spirit (OR  = 1.1, 95% CI: 0.5 – 2.3), 

DDT (OR = 1.3, 95% CI: 0/8 – 2.1), thinners (OR = 1.2, 95% CI: 0.6 – 2.4) and pesticides (OR = 1.6, 95% 

CI: 0.8 – 3.0), albeit these are not significant [128]. Elsewhere, persons with a history of pesticide exposure 

had a significantly higher risk of developing CRC (OR = 2.6, 95% CI: 1.1 – 5.9) as well as persons who 

frequently eat food directly from farms (OR = 4.6, 95% CI: 1.5 – 14.6) [132]. El-Zaemey et al. reported no 

association between CRC risk and persons exposed to selected dust agents: animal dust (OR = 1.07, 95% 
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CI: 0.84 – 1.34), Quarts (OR = 0.91, 95% CI: 0.71 – 1.19), and wood dust (OR = 1.08, 95% CI: 0.74 – 1.57) 

[133]. 

In conclusion, based on the inconsistent results in the literature regarding farming and its associated 

occupational exposures and CRC risk, further research is needed to explore this association. In this thesis, I 

used data from the SRHS to investigate this relationship in rural Saskatchewan where farming is the 

predominant occupation. 
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CHAPTER 3 – DATASET DESCRIPTION 
 

In this chapter, I describe the Saskatchewan Rural Health Study (SRHS) data set used in this thesis. 

The study design and study population as well as the sampling methods used to obtain the study sample are 

presented in section 3.1 and 3.2 respectively. The tool used for data collection is presented in section 3.3. 

The theoretical framework as well as the description of the variables used in this thesis are presented in 

sections 3.4 and 3.5 respectively. 

3.1 Study design  
 
 The Saskatchewan Rural Health Study (SRHS) is a prospective cohort study of rural dwellers in 

Saskatchewan, Canada that was conducted in two phases, a baseline survey in 2010 and a four-year follow-

up survey in 2014 [134]. The baseline survey was conducted in three stages. In stage one, the southern half 

of Saskatchewan was partitioned into four quadrants [Southwest (SW), Southeast (SE), Northeast (NE), and 

Northwest (NE)] using a multistage sampling. Small towns and rural municipalities (RMs) were then selected 

from these quadrants using Statistics Canada guidelines [135]. A detailed description of the sampling strategy 

is published elsewhere [134]. In Stage two, a questionnaire was administered to the target population. In the 

third and final stage, a sub-population of the target population was selected for clinical assessments. 

Participants of the baseline survey were followed over a four-year period. Data on individual and contextual 

factors were collected from the baseline survey as well as from the follow-up surveys. This thesis is based 

on these two datasets. Self-reported doctor-diagnosed CRC cases were identified from the SRHS. The 

youngest age at diagnosis of the disease was 50 years. The primary group of interest was persons who self-

reported doctor-diagnosed CRC and the comparison group was those persons who did not report doctor-

diagnosed CRC.  
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3.2 Study population, Sampling and Recruitment 
 
 The SRHS sampled tax-paying households in towns and RMs in Saskatchewan based on a 

multistage sampling design [134]. The southern half of province was partitioned into quadrants based on 

Statistics Canada guidelines [135] and 12 RMs were selected in each of the four quadrants. Forty-eight (48) 

of 297 RMs and 16 of 145 towns located in rural Saskatchewan participated in the SRHS. Thirty-six (36) RMs 

(9 from each quadrant) were randomly selected. Thirty-two (32) out of the 36 RMs, representing 89% and 15 

out of 16 towns, representing 94% consented to participate in the baseline study and provided their mailing 

addresses to the research team. To maximize the response rate, a modified version of Dillman’s method for 

mail and telephone surveys [136] was used at baseline (RM = 41.9%, small-town = 42.2%) and follow-up 

(RM = 65%, small-town = 60.2%) surveys. Dillman’s method requires that a series of mail correspondence 

is maintained with all potential participants of the study. Thirty-two RMs [(SW (8), SE (7), NE (8), and NW 

(9)] and 15 towns [(SW (4), SE (3), NE (2), and NW (6)] in rural Saskatchewan participated in the baseline 

survey. Baseline questionnaires were mailed to 11,004 households deemed eligible for the study in 2010. Of 

this number, information was collected on 8,261 individuals aged 18 years or older, nested within 4624 

households. In the follow-up survey, information was collected on 4,867 individuals aged 18 years or older, 

nested in 2797 households via mailed-out questionnaires [137]. Of this number, 4,741 participated in both 

surveys. There were 126 new individuals who did not take part in baseline survey but participated in the 

follow-up survey. In the baseline and follow-up surveys, 5,599 and 3,933 individuals were aged 50 years or 

older respectively. Of these numbers there were 61 CRC cases in the baseline survey and 66 CRC cases 

(including baseline CRC cases) at follow-up. The present study is based on these CRC cases both at baseline 

and follow-up for a determination of the prevalence, longitudinal changes in prevalence, and incidence of 

CRC in rural Saskatchewan. The flow chart in figure 3.1 summarizes the selection of the study sample and 

sample size.  
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Figure 3. 1 Flowchart showing selection of the study sample and sample size 

 

 

 

 

 

 

 

 

  

 

 

 

3.3 Data Collection 
 
 A household survey questionnaire was developed and used to collect data. Two community 

members (one from a town and the other from a RM) and the SRHS research team developed the 

questionnaire. The questionnaire was designed to collect information on individual (e.g. alcohol consumption, 

cigarette smoking, and obesity), contextual [e.g. socioeconomic, location of home (farm or non-farm), water 

source, and fuel source], and principal covariates [e.g. demographic variables and body mass index (BMI)]. 

A pilot survey [134] was conducted to optimize the administration as well as the content of the baseline 

questionnaire. Based on the pilot survey, some questions were modified in the baseline questionnaire before 

it was mailed to respondents to be self-administered. A copy of the baseline questionnaire is attached in the 

appendix section of this thesis (see appendix A). 

Rural 
Saskatchewan 

Southwest (SW) Southeast (SE) Northeast (NE) Northwest (NW) 

48/297 RMs: 
SW:  12   NE: 12 

     NW: 12    SE: 12 
 

16/145 Towns Purposeful 
sampling 

36 RMs 
(9 from each quadrant) 

Random 
sampling 

≥50 
years	

32/36 (89%)  
agreed to participate 

SW (8), SE (7),  
NE (8), NW (9) 

Baseline: 
61 CRC cases 

5,538 Non-cases 

Follow-up: 
66 CRC cases 

3,867 Non-cases 
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3.4 Theoretical Framework 
 

To answer the research questions and achieve the study objective stated in section 1.2, we will use 

Health Canada’s “Population Health Framework” (PHF) [138]. The PHF proposes that the interaction of 

individual and contextual factors may produce different risk levels of an adverse health outcome. Figure 3.2 

is a schematic representation of a conceptual framework used to determine how some individual and 

contextual factors (discussed above) influence CRC risk. 

Figure 3. 2 Conceptual framework 

 
 

 

 

 

  

 
 
 Adopted and modified from [139], courtesy of Dr. Will Pickett of Queen’s University. 
 
3.5 Study Variables 
 
 The variables examined in this thesis were classified into contextual and individual factors as well as 

covariates. They were obtained directly from the self-administered baseline questionnaire with 

derivations/reclassification made to some of them where necessary. In the context of this thesis, contextual 

factors were those exclusive to the rural environment. They are comprised of socioeconomic status and those 

related to outdoor environmental conditions (e.g. water source, the location of home, etc.). On the other hand, 

individual factors primarily refer to those factors measuring individual exposures. These included a personal 

history of smoking and alcohol consumption, family history of cancer, personal history of diabetes, physical 

activity, and occupational rural exposures related to farming. Covariates included age, BMI, level of 

Covariates: 
1. Demographic 
2. Health Status 

Individual Factors: 
1. Genetic 
2. 
Lifestyle/behavioral 
3. Environmental 

Health outcome: 
1. Colorectal 
cancer 

Contextual factors: 
1. Socioeconomic 
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education, marital status, gender, and race/ethnic background. The outcome variable, whether or not an 

individual had ever been diagnosed with CRC by a doctor or primary caregiver (PCG) was determined from 

the baseline questionnaire. 

3.5.1 Operational definitions 
 

3.5.1.1 Contextual factors 
 
 Farm: This refers to the location of residences and/or workstations that produce agricultural products 

intended for sale. The “Farm” variable was derived from the responses to the question “Where is your home 

located?” and with responses “Farm, In-town, Acreage”. For the purposes of this thesis, the farm variable 

was dichotomized (i.e. “In-town” and “acreage” were combined to form “non-farm”) into “Farm” and “Non-

farm” based on question A-1 of the baseline questionnaire (see Appendix A). Categorizing the farm variable 

into farm and non-farm was necessary because, in rural populations, farming and non-farming exposures are 

uniquely different from each other.  

Household smoking: This was a categorical variable with 2 categories “Yes/No” indicating whether 

or not any household member use tobacco products including cigarette, cigars, and/pipes. It was obtained 

from the baseline questionnaire based on A-17 question: “Do any of the people in your house use any of the 

following tobacco products in your home?” with response options including “Cigarette (Yes/No/Don’t know)”, 

Pipes (Yes/No/Don’t know)” and Cigars (Yes/No/Don’t know)” (see Appendix A). 

 Socioeconomic status: Household income adequacy was used as a proxy measure for 

socioeconomic status. It was a derived variable with four categories created according to the definition of 

Statistics Canada [140] based on the total household income and the total number of people in the household 

based on questions A-2 and A-20 (see Appendix A). Table 3.1 provides a detailed description of the four 

categories of household income adequacy.  
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Table 3. 1 Household income adequacy level by income and size of household 

Coded value Income adequacy Income band Size of household 
 
1 

 
Lowest income 

< $15,000 1 or 2 persons 
< $20,000 3 or 4 persons 
< $30,000 5 or more persons 

 
2 

 
Lower middle income 

$15,000 - $29,000 1 or 2 persons 
$20,000 - $39,000 3 or 4 persons 
$30,000 - $59,000 5 or more persons 

 
3 

 
Upper middle Income 

30,000 - $59,000 1 or 2 persons 
$40,000 - $79,000 3 or 4 persons 
$60,000 - $79,000 5 or more persons 

4 Highest income ≥ $60,000  1 or 2 persons 
  ≥ $80,000  3 or 4 persons 

   

Quadrant: This refers to the geographical location of the households of participants. It was obtained 

directly from the baseline questionnaire. This variable was a categorical variable with four levels; SW, SE, 

NE, and NE that were coded 1 through to 4 respectively. Information on quadrant (i.e. whether RM or small 

town) was obtained from the 2006 census subdivisions. 

 Municipality: This refers to whether a household in question was located in a rural municipality (RM) 

or in a small town in rural Saskatchewan. 

Household fuel source - Natural gas and Propane: Information about household fuel source was 

collected by asking the question “What are the types of fuel sources used to heat your home” “natural gas 

(yes/no)” and “propane (yes/no)”. This was obtained from the questionnaire based on question A-7 (see 

Appendix A). 

Household water source: This variable had four categories and was a obtained from the 

questionnaire based on the question “What is the source of water supply for drinking purposes in your home?” 

with options “Bottled water”, “Deep well water (more than 100 feet)”, “Shallow well water (less than 100 feet)”, 

Spring, river or creek, Dugout or reservoir, Lake, and Other source”. A new “water source” variable was 

derived and had the categories “Bottled water, deep well water (more than 100ft), shallow well water (less 
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than 100ft)” and all the remaining categories were combined into “Other source”. This was based on question 

A-37 of the baseline questionnaire (see Appendix A). 

Mildew odor or musty smell: Information on the household indoor environment was collected using 

the question “Does your home (including basement) frequently have mildew or musty smell?” with answers 

“Yes/No”. This was obtained from the questionnaire based on question A-14 (see Appendix A). 

3.5.1.2 Individual factors 

 Personal history of smoking: Information about the individual history of smoking was collected. 

The smoking variable was a dichotomous variable and was self-reported. This was obtained from the 

questionnaire based on the question “Have you ever smoked cigarettes?” with responses “Yes/No” using 

question B-36. For the purpose of this thesis, the smoking variable was further categorized into 3 categories; 

current smoker, ex-smokers, and never-smoker. This was a derived variable and was obtained using 

questions B-37 through to B-45 (see Appendix A).  

 Alcohol consumption: Data about the history and frequency of alcohol consumption was collected 

by asking the question “During the past 12 months, how often did you drink alcoholic beverages?”. For the 

purpose of analysis in this study, a new alcohol variable was derived that categorized responses to this 

question into 3 categories which were “Never”, “Everyday” and all the remaining categories were combined 

to obtain the “Occasionally” category based on question B-46 (see Appendix A). 

Personal and Family history of cancer: Information about the personal as well as family history of 

cancer was also obtained. Personal history of cancer was obtained directly from the baseline questionnaire 

by asking the question “Has a doctor or primary caregiver ever said you have cancer?” with response options 

“Yes/No/Don’t know”. This was obtained from question B-50 (see Appendix A). On the other hand, family 

history of cancer was also obtained by asking “Have the following members of your biological family ever had 

cancer?” and the list included “Father, Mother and Brother/Sister” with response options (Yes/No/Don’t 

know)”. These were obtained directly from the baseline questionnaire using question B-56 (see Appendix A). 
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For the purpose of this thesis, a new variable was derived to recategorize the family history of cancer variable 

into four categories which included “Father cancer”, “Mother cancer”, “Both parents cancer”, as well as 

“Sibling cancer”. 

 Diabetes: Information about the personal history of diabetes was also collected. Personal history of 

diabetes was obtained directly from the baseline questionnaire by asking the question “Has a doctor or 

primary caregiver ever said you have diabetes?” with response options “Yes/No/Don’t know”. This was 

obtained from question B-50 (see Appendix A). 

 Physical activity: Personal of physical activity was collected by asking the question “Do you 

exercise?” with a dichotomous response option “Yes/No”. This was obtained from the baseline questionnaire 

using question B-27 (see Appendix A). 

 Early life exposure to farm: Information about early life exposure to a farming environment was 

obtained from the baseline questionnaire. To ascertain whether a respondent ever lived on a farm, the 

question “Have you ever lived on a farm?” with response options “Yes/No” was asked. On the other hand, 

“Did you live on a farm during your first year of life” was used to ascertain whether a respondent was exposed 

to a farming environment in their first year of life (“Yes”) or not (“No”). These were obtained using questions 

B-31 and B-32 (see Appendix A). 

Occupational rural exposure: Information about whether respondents were exposed to selected 

occupational exposures was collected by asking the question “Have you been exposed to any of the following 

in your workplace?”. The list of exposures was; livestock, stubble smoke, fungicides, herbicides, molds, 

oil/well fumes, radiation, solvent fumes, welding fumes, grain dust, wood dust, diesel fumes, asbestos dust, 

insecticides, mine dust, and other_specify. These were obtained from the baseline questionnaire based on 

question B-58 (see Appendix). 
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3.5.1.2 Covariates 
 
 Age: The SRHS collected data on individuals age 18 years or older at baseline. For the purposes of 

this thesis, individuals aged 50 years or older were extracted from the SRHS dataset. We chose this age cut-

off point because that was the youngest age of diagnosis for the CRC patients. Information about age was 

obtained directly from the baseline questionnaire and the age variable was continuous. Age was categorized 

into four categories which included 50-59 years (reference category), 60-69 years, 70-79 years and 80 years 

or older.  

 Body Mass Index (BMI): The BMI was derived from the baseline questionnaire. It was calculated 

using the formula:  

ê
ëí'ìℎ7	'"	.'îïìJIñó

(òí'ìℎ7	'"	ôí"7'ñí7íJó)3
ö X100,000 

Respondents self-reported their and weight in the baseline questionnaire. Participants were asked “What is 

your height? _kg or ft and in” and “What is your weight? _kg or lbs”. For the purpose of data analysis in this 

thesis, the baseline BMI was recorded into three (3) categories which included: normal weight (reference 

category) (0 - < 25kg/m2), overweight (25 - 30 kg/m2), and obese (more than 30 kg/m2). These were obtained 

from the baseline questionnaire using question B-6 and B-7 (see Appendix A). 

 Educational status: The level of education was self-reported by study participants and was obtained 

from the baseline questionnaire using the question “What is your highest level of education?” with response 

options “< high school”, “Completed high school”, “Completed university”, and “Completed post-secondary 

education other than above”. For the purpose of the present study, a new education variable was derived 

with two categories “Grade 12 or below” and “Beyond Grade 12”. The “< high school” and “Completed high 

school” were combined into “Grade 12 or below” while the “Completed university” and “Completed post-

secondary education other than above” categories were recoded into “Beyond Grade 12”. These were 

obtained from the baseline questionnaire using question B-4 (see Appendix A).  
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 Marital status: Respondents self-reported their status by answering the question “What is your 

marital status?” based on question B-8 (see Appendix A). 

 Gender: This was a dichotomous variable with categories “Male” (reference category) and “Female” 

using on question B-3 (see Appendix A). 

 Race/Ethnic background: Information about the race/ethnic background was asked all respondents 

using the question “What is your ethnic background?” and the response options included “Caucasian”, “First 

Nation”, “Metis”, and “Other_please specify”. The “Other_please specify” category included all those who did 

not belong to any of the other categories and those who also did not know their ethnic background. Due to 

small frequencies in the last three categories, the race variable was recoded into “Caucasian” or “non-

Caucasian”. “First Nation, Metis, Other_please specify” categories were combined to produce the “non-

Caucasian”. This achieved using question B-5 (see Appendix A). 

3.5.1.3 Outcome  
 

The primary outcome variable in this thesis was self-reported doctor/PCG-diagnosed colorectal 

cancer (CRC). This was obtained from the baseline questionnaire using the question “Has a doctor or primary 

caregiver ever said you have cancer? If yes, please specify cancer type”. For the purposes of analysis, the 

“colorectal cancer” variable was recoded into a dichotomous variable (“Yes/No”), such that CRC cases belong 

to the “Yes” category while CRC non-cases belong to the “No” category. This was achieved based on 

question B-50 (see Appendix A).  
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CHAPTER 4 – METHODS 
 

In longitudinal data analysis, appropriate methods must account for the within-subject correlations 

that may exist due to the presence of more than one observation per subject. In this chapter, models 

accounting for this within-subject correlations as used in this thesis are discussed. In particular, models for 

discrete longitudinal data analysis are presented and for each objective (see section 1.2 above), appropriate 

models are discussed. Marginal modeling for discrete longitudinal data was used to address objective 1 in 

order to determine significant risk factors for the prevalence of CRC. Cox’s PH and discrete PH models were 

used to address objective 2 in order to determine significant risk factors for the incidence of colorectal cancer.  

The remainder of this chapter is organized into Part I and II. Part I is organized as follows: In section 

4.1, models for longitudinal data analysis are provided and the univariate quasi-likelihood function is 

described in section 4.2. Generalized linear models (GLMs) to handle repeated measurements in longitudinal 

data are provided in section 4.3 with a particular focus of the multivariate quasi-likelihood function. We extend 

the GLMs in section 4.4 with a focus on marginal modeling for longitudinal data. Statistical application of 

these methods to determine significant factors for CRC prevalence is provided in section 4.5. In Part II, a 

discussion of models for survival analysis is provided in section 4.6.  
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PART I 

OUTCOME VARIABLE: DISCRETE/DICHOTOMOUS 
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4.1 Models for Longitudinal Data Analysis 
 
 In most medical and epidemiological studies, it is usually of interest to determine the relationship 

between a response/outcome variable	Y, and an explanatory or a set of explanatory variables	X. In cross-

sectional studies, classical/general linear models using the mathematical theory of normal distribution are 

developed to model independent and Gaussian responses [2]. However, to model independent responses 

for both Gaussian and non-Gaussian data, a specialized class of regression models called generalized linear 

models (GLMs) are used [43]. GLMs are based on the theory of quasi-likelihood and are used to extend the 

scope of determining the relationship between responses and explanatory variables [43]. This shows that 

general/classical linear models for independent data can be extended using GLMs for independent 

responses. Classical regression methods are not suitable for analyzing data from longitudinal studies 

because they do not account for the within-subject correlation that exists in longitudinal data [3]. In 

longitudinal studies, repeated measurements on the same subject tend to be correlated with each other and 

as a result, the independence assumption in GLMs is violated. In such instances, appropriate models are 

developed to take into account the inter-dependence among repeated measurements in order to make an 

accurate determination of the relationship between Y and X and any inferences thereof. Models based on 

the mathematical theory of multivariate Gaussian distribution are developed as an extension to classical 

linear models for longitudinal data [2]. On the other hand, models based on the mathematical theory of 

multivariate quasi-likelihood are developed as an extension to GLMs which are based on univariate quasi-

likelihood [2]. For example, the generalized estimating equations (see section 2.1.2.1) are based on the 

multivariate quasi-likelihood and can be used to model both Gaussian and non-Gaussian outcomes [3]. 

Figure 4.1 shows a schematic representation of statistical methods commonly used for independent and 

dependent outcomes in longitudinal data analysis.  
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Figure 4. 1 Statistical methods available for independent and dependent outcomes in longitudinal 
data analysis (adopted and modified from [2] with authors permission) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
 
4.2 The Univariate Quasi-Likelihood Function 
 
  Suppose we have a vector of responses,ù	(#$ = 1,2, …") which are independent with expectation 

û$ and variance ü(û$) where V is made up of some known functions. Also, suppose that û$ is a function of 

the regression coefficients N (i.e. N = O2,O3,…O4, …O|). Then for a single component of	ù, Wedderburn 

[42] defined the quasi-likelihood function †(#$, û$) by the relation: 

°†(#$, û$)
°û$

=
#$ − û$
ü(û$)	

…………………………… .………… . (4.1) 

or equivalently,  
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†(#$, û$) = ∫
£kv§

•
k

¶(§•k)

§k ßûÅ$ + some function of #$ ………………………… . (4.2) 

The univariate quasi-likelihood function †(#$, û$) has four properties which are similar to those of the log 

likelihood function (i.e. the score). These properties include; 

(i) ® ©™´
™§
¨ = 0 

(ii) ® ©™´
™≠k
¨ = 0 

(iii) ® ©™´
™§
¨
3
= −® ©™

Æ´

™§Æ
¨ = 2

¶(§)
, and 

(iv) ® Ø™´
™≠k

™´

™≠∞
± = −® Ø ™Æ´

™≠k™≠∞
± = 2

¶(§)

™§

™≠k

™§

™≠∞
 

  Details of the proofs to these properties and other relevant information about the quasi-likelihood 

function are provided by Wedderburn [57]. To obtain the quasi-likelihood estimating equation for	N, the 

regression coefficients, we differentiate	†(#$, û$). The resulting estimating equation is called the quasi-score 

function and can be written as; 

≤(O) = ≥Å¥v2(µ − û) = 0…………… .…………………… . (4.3) 

 where ] is an "	x	E matrix with the (', ä)5B element as ™§k
™≠∞

 and ü = Var(C$) is an "	x	" diagonal matrix 

with Var(û$) as its '5B diagonal entry. An alternative parameterization of equation (4.3) is given as; 

≤(O) =yØ
°û$
°O4

± [Var(C$)v2]

Y

$á2

(C$ − û$) = 0……………………… . . (4.4) 

  To account for the within-subject correlations, generalized linear models (GLMs) (based on the 

mathematical theory of quasi-likelihood) are ‘generalized’ or extended to take into account repeated 

measurements for each subject. Currently, the generalized estimating equations (GEE) (the multivariate 

analog of the quasi-likelihood) is used to account for the within-subject correlations arising due to the 

longitudinal design. 
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4.3 Generalized Linear Models (GLMs) for Longitudinal Data Analysis 
 
  Generalized Linear Models (GLMs) have been extended to handle repeated measurements in 

longitudinal data. Depending on how to account for the within-subject correlations, there are different 

regression models for longitudinal data analysis [2]. Three common extended models of the GLMs for 

longitudinal data analysis include; (i) marginal/population-average (P-A), (ii) transition/response conditional, 

and (iii) random effects/subject specific models [2-3]. For the purpose of this thesis, I focused on marginal 

models because my main interest is to model the mean CRC outcome of the population as a function of only 

the explanatory variables and covariates and not of any previous response or random effects. Because of 

this, I require only a regression model for the mean response (i.e. CRC outcome) and not the full distributional 

assumptions associated with the vector of repeated responses [2].  GEE is the multivariate analog of the 

univariate quasi-likelihood theory. The GEE approach is used to analyze a discrete CRC outcome (yes/no) 

in this thesis. A detailed formulation of the GEE methodology is reviewed next.  

4.3.1 The Generalized Estimating Equations (GEE) Methodology 
 

  In this section, I present the formulation of the GEE methodology. The notations and definitions of 

Liang and Zeger [3] will be adopted unless otherwise stated. To understand the mathematical theory 

presented in this section, the definitions for the notations of vectors and matrices are presented in Appendix 

C of this thesis. 

Let µ$5 = (#$2, #$3, … , #$Yk)	
π be a "$x1 vector of responses and	{$ = (/$2, /$3, … , /$Yk)	

π, the 

"$xE matrix of covariate for the '5B subject (' = 1,2… , †), then the marginal density of #$5 is given as; 

∫(#$5) = exp[{#$5ª$5 − I(ª$5) + º(#$5)}Ω]…………………… . . ……………(4.5) 

where ª$5 = ℎ(æ$5), and æ$5 = /$5O. The mean and the variance of #$5 are given by; 

®(#$5) = IÅ(ª$5)

var	(#$5) =
I¿(ª$5)

Ω¡
¬……………………………………… . (4.6) 
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Liang and Zeger formulated the ‘independence’ estimating equations based on a working 

assumption that, repeated observations for an experimental unit are independent of each other, which led to 

the estimation of regression parameters and their covariance matrices [4]. Under this “independence” working 

assumption, Liang and Zeger proposed that the score equations associated with the quasi-likelihood function 

are of the form  

[√(O) =yK$
M∆$Z$ = 0……………………………………… . . (4.7)

´

$á2

 

where ∆$=diag(ßª$5/ßæ$5) is an "x" matrix while Z$ = C$ − IÅ(ª$5) is an "x1 matrix for the '5B 

experimental unit [4]. The solution to this equation (i.e. Eq. 4.7) yields consistent estimates O«√ and HIJ(O«√) 

of O and HIJ(O) respectively only when the regression model for G(#) is correctly specified. Moreover, 

missing data should be missing completely at random (MCAR) for this ‘consistency’ to hold [4]. A primary 

drawback of O«√ is that it may not have high efficiency in instances where the autocorrelation is huge [4]. To 

overcome these limitations, Liang and Zeger extended the ‘independence’ estimating equations to the 

generalized estimation estimating equations (GEE) [4]. The GEE methodology accounts for the within-subject 

correlations, thus resulting in consistent estimators with higher efficiency as well [4]. To illustrate this, let 

à(») be an "x" “working” symmetric correlation matrix, where … is an óx1 vector fully characterizing	 (…). 

If  (…) is actually the true correlation matrix for the responses (i.e. µ$ ’s), then cov(µ9) =ü$, where ü$ is 

defined as; 

ü$ =
x$

2
3à(»)x$

2
3

Ω
……………………… . . …………………(4.8) 

where x$ = diag{I¿(ª$5)} and Ω	is a scale parameter. As a result, Liang and Zeger [4] defined the general 

estimating equation as; 
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y]$
π

´

$á2

ü$
v2Z$ = 0,…………………………… . . ………… . (4.9) 

where                              																					]$ =
ß{IÅ$(ª)}

ßO¡ = x$∆$K$ ………… . . ……………… . (4.10) 

 x$ is a diagonal matrix with I¿(ª$5) as elements along the main diagonal. 

It is worthy of note that, when à(») is specified as the identity matrix, the estimating equation 

specified in (Eq. 4.9) easily reduce to the “independence” estimating equation. 

For a univariate GLM, the estimating equation for quasi-likelihood is of the form; 

yØ
°–$
°N

±
π

= ¥v2{–9(N), …—}[#$ − –9(N)] = 0

´

$á2

…………………… . . (4.11) 

where û$ = (û$2, û$3, … , û$Yk)
Å and »“ = (»Å, Ω)Å and Ω is an unknown dispersion parameter. 

Liang and Zeger developed the multivariate generalized equation analog of equation (4.11) as; 

y]$
πü$

π

´

$á2

[#$ − –$(N)] = 0,………………………………………… . (4.12) 

where ]$ is defined in equation (4.10). 

Liang and Zeger [3], as the number of clusters increases infinitely, the regression estimator derived 

through the GEE approach, denoted	N”‘‘ , is asymptotically multivariate Gaussian with mean zero and 

covariance matrix	(’), defined by ¥”‘‘  [i.e.	N”‘‘~◊(0, ¥”‘‘)]. ¥”‘‘  is defined as; 

¥”‘‘ = lim
´→Ÿ

†\∑ ]$
πü$

v2]$
´
$á2 ^

v2
⁄∑ ]$

πü$
v2cov(C$)

´
$á2 ü$

v2]$¤\∑ ]$
πü$

v2]$
´
$á2 ^

v2
. … . (4.13)            

The variance of N”‘‘ , (denoted ¥”‘‘) is easily obtained by replacing cov(C$) by Z$Z$π as well as replacing 

N, Ω,  and » by their respective estimates in equation (4.13) above. For Nç”‘‘  and ¥ç”‘‘  to be consistent, 

one must correctly specify only the mean since the choice of	à is inconsequential. Zeger and Liang [4] 

presented a review of statistical methods for analyzing longitudinal data analysis using discrete and 
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continuous outcomes.  The GEE approach discussed above is based on the multivariate quasi-likelihood 

function which is presented next. 

4.3.2 The Multivariate Quasi-Likelihood Function 
 

  The multivariate quasi-likelihood function as proposed by Liang and Zeger [3] is a generalization of 

the univariate quasi-likelihood proposed by Wedderburn [42]. Let ‹$	(' = 1,2, … ,ñ) be an "$x"$ vector 

of responses C$, associated with à$, an  "$/"$ correlation matrix. If ü@	2/3(ä = 1,2, … , "$) is a diagonal 

matrix whose ä5B diagonal entry is ›[Ωü(û$@) such that üIJ\C$@^ = Ωü(û$@) and üIJ(C$) = ‹9 =

ü$
2/3R$ü$

2/3, then the multivariate quasi-likelihood function is given as; 

≤(O) =yØ
°û$
°O4

± [‹$(α)]v2
‡

$á2

(C$ − û$) = 0……………………………(4.14) 

where ™§k
™≠

= [(°û$@/°O4)] (. = 1,2, … , E) is a Ex"$ matrix, ‹$(α) = ü$
2/3R$ü$

2/3 is an "$x"$ matrix, 

and C$ − û$ is an "$x1 vector. Over dispersion is accounted for and is estimated by the dispersion parameter 

Ω using Ω· = 2

‚v|
„∑ ∑

£k∞v§k∞

‰[¶ÂÊ(§k∞)

Yk
@á2

‡
$á2 Á where ◊	is the total number of observations is and E is the 

number of regression coefficients. Also, ®\#$@^ = û$@  and ì\û$@^ = æ$@ = {Å$@N where	K$@ =

q(K$@2, K$@3, … , K$@|)r
Å, and ì(∙) is the link function. Given these, the multivariate quasi-likelihood 

estimating equations or GEEs are given as; 

yÈ
°û$
°O@

Í [‹$(α)]v2
‡

$á2

(C$ − û$) = 0.		. …………………………………(4.15) 

Equation (4.15) is the multivariate generalization/extension of the univariate quasi-likelihood function in 

equation (4.2) above. 
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4.4 Marginal models for Longitudinal Data Analysis 
 

  When inferences about population-averages are of interest, marginal models are the most 

appropriate [38, 187]. The term “marginal” is used to highlight the fact that the mean or population-average 

response modeled is a function of only the covariates and does not depend on other responses or random 

effects. Marginal models provide group-level (as against individual-level) information and the regression 

coefficients are interpreted for the group rather than the individual coefficients [187]. In marginal modeling, 

the regression model for the mean and the within-subject association (e.g. covariance) are modeled 

separately [187]. 

  Let C$@  be a continuous, binary, or a count response variable for the '5B subject at the ä5B time 

denoted 7$@ . For "$ repeated measurements obtained on the  '5B subject, there exist a Ex1 vector of 

covariates	K$@ , associated with each C$@ . Given these, the marginal model has the following three-part 

specification [187]: 

1. The marginal expectation of C$@ , denoted G\C$@^ = û$@ , depends on only the covariates through 

a specified link function given by; 

  ì\û$@^ = OP + O2K2$@ + O3K3$@ + ⋯+ O|K|$@ = {Å$@N…………… . . (4.16) 

where ì(∙) is the link function (e.g. identity for Gaussian responses, logit for binary outcomes, 

and log for counts). 

2. The marginal variance of each C$@ , given the covariates, depends on the marginal mean through  

üIJ\C$@|{$@^ = ΩH\û$@^……………………………………… . (4.17) 

where H\û$@^ is a known variance function and Ω is a dispersion parameter which explains the 

variation in the C$@ ’s that is not explained by H\û$@^. Ω may be known or estimated.    
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3. The within-subject association or covariance among the vector of repeated measurements is a 

function of the marginal means and also of an additional association parameter » (that may also 

need to be estimated) as; 

ÏïH\C$@, C$4^ = Ì\û$@, û$4, »^				(ä < .	), ……………………… . (4.18) 

where Ì is some known function. In particular, when » represents the pairwise correlations 

among the C$@ ’s, the covariances among the C$@ ’s depend on Ω, û$@(O), and » through; 

ÏïH\C$@, C$4^ = ó. ß	\C$@^ÏïJJ\C$@, C$4^ó. ß(C$4) 

                  = h‰ΩH\û$@^i qÏïJJ(C$@, C$4)rq›ΩH(û$4)r 

        where  ó. ß	\C$@^ represents the standard deviation of C$@ .  

4.4.1 Marginal Models for Discrete Outcomes 
 
  As mentioned in section 4.4, marginal models allow for the modeling of the marginal mean or 

expectation of the	C$@ ’s, G\C$@^ as a function of only the covariates and not other responses or random 

effects. Traditional logistic regression models for dichotomous and polytomous outcomes and Poisson 

regression for counts/rates are two commonly used models for analyzing discrete outcomes. In this thesis, 

marginal models were fitted to a dichotomous CRC outcome. 

  Let C$@  a binary outcome variable (e.g. presence or absence of CRC) for the '5B subject (' =

1,2, … ,ñ) corresponding to the ä5B time point (ä = 1,2, … , "$). In addition, let {$@  be a 1xE matrix of 

covariates such that the first element is 1, thus representing the intercept. If	G\C$@^ = û$@ = ÓJ(C$@ = 1), 

then the marginal or P-A model for the binary C$@  is a logistic regression model of the form; 

îïì'7qG\C$@^|{$@r = îïì'7\û$@^ = îïì'7qÓJ\C$@ = 1^|{$@	r = {Å$@N. ……………(4.19) 

  The regression coefficients in the marginal model specified in equation (4.19) have population-

averaged interpretations where the averaging is over all subjects within the different subgroups of the 
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population [187]. Each element of N represents the change in the log-odds of developing a specified outcome 

resulting from a per unit change in the particular covariate, for all the other known subgroups and fixed 

covariate values. In general, the interpretation of any of the components of	N, say O4 is in terms of the 

changes in the population-averaged response or the marginal expectation of the	C$@ ’s for a unit change in 

the associated covariate [187]. In this case, í≠Ô  measures the prevalence odds ratio (POR) which is the ratio 

of the odds of developing the outcome (e.g. disease) among persons who have a specified condition to the 

odds of developing the outcome among persons who do not have the condition [28]. Mathematically, we write 

the POR as; 

 í≠Ô = ÓÊ\uk∞á2|jk∞Ôá2^/ÓÊ\uk∞áP|jk∞Ôá2^

ÓÊ\uk∞á2|jk∞ÔáP^/ÓÊ\uk∞áP|jk∞ÔáP^
≡

ÓÊ\uk∞á2|jk∞Ôá2^ÓÊ\uk∞áP|jk∞ÔáP^

ÓÊ\uk∞á2|jk∞ÔáP^ÓÊ\uk∞áP|jk∞Ôá2^
. ……… . (4.20)  

Worthy of note is the fact that, the within-subject association (e.g. correlation) between the	C$@ ’s does not 

alter the interpretation of N [for instance, a compound symmetry correlation for count data 

i.e.	ÏïJJ\C$@, C$4^ = α]. 

The details of the GEE approach for marginal modeling are provided by Liang and Zeger [3] and Diggle [20]. 

4.5 Research Question One (1): Marginal Modeling Approach 
 
  The main focus of the first objective in this thesis was to determine the crude and adjusted prevalence 

of self-reported doctor-diagnosed CRC and associated risk factors among farm and non-farm residents of 

rural Saskatchewan using the SRHS data set. The method used to calculate the crude prevalence rates is 

presented below. 

4.5.1 Statistical Application: Research Question One (1) 
 

4.5.1.1 Estimating Crude Prevalence of CRC 
 
  Prevalence proportion is defined to be “the proportion of people in a population that has a disease” 

[141]. Mathematically, prevalence proportion can be written as; 
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‚Ò‡ÚÛÊ	Ùı	|ÛÙ|ˆÛ	˜BÙ	BÂ¯Û	5BÛ	˘$˙ÛÂ˙Û	$Y	5BÛ	|Ù|ÒˆÂ5$ÙY	(˚)

¸Ù|ÒˆÂ5$ÙY	˙$˝Û	(‚)
x	100……………… . . (∗)  

The above formula was used to calculate crude prevalence rates of CRC for farm and non-farm rural 

residents each of the four quadrants of rural Saskatchewan, both at baseline and follow-up. 

4.5.1.2 Estimating adjusted Prevalence of CRC 
 
  The adjusted prevalence of CRC was estimated by fitting a dichotomous regression model adjusted 

for covariates. Marginal logistic regression models using the generalized estimating equations (GEE) 

approach were fitted using the SAS procedure GENMOD to identify significant risk factors for colorectal 

cancer (CRC) prevalence both at baseline and follow-up. The GEE approach is based on the mathematical 

theory of multivariate quasi-likelihood. The clustering effects arising from having more than one subject per 

household was accounted for using GEE, assuming an exchangeable correlation matrix. This was achieved 

by specifying TYPE=EXCH option in the REPEATED statement. The exchangeable correlation structure 

assumes that the correlation between two (2) repeated outcome measurements are the same and entries of 

the principal diagonal of the covariance matrix are the same.  

 I also determined longitudinal changes in the prevalence of CRC by fitting marginal logistic regression 

models to account for two layers of complexity: first, the effects of having more than one individual in a 

household; and second; the repeated measures over time. To do that, a new SAS code was written using 

the GENMOD procedure to simultaneously account for these two layers of complexity by nesting the within-

subject effect in the repeated measurements variable and specifying that in the REPEATED SUBJECT 

statement.  Prior to that, baseline and follow-up data were combined and restructured into a long format. A 

dichotomous index variable was then created with two categories 0 and 1 representing baseline and follow-

up respectively. This index variable was specified in the within subject statement.  

 A univariable logistic regression model used to examine the association between the location of 

residence (farm or non-farm) and CRC risk. A multivariable logistic regression model was used to assess the 
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relationship between a binary CRC outcome (presence/absence) and a set of predictor variables. Multilevel 

logistic regression models based on GEE [individual (1st level) nested within households (2nd level)] was also 

used to assess the relationship between individual and contextual factors. Standard model building strategies 

were employed to select the final model. In the univariable analysis, variables with p-values <0.25 were 

candidates for the multivariable analysis. Overall, statistical significance was determined at 5% and only 

variables with p-values<0.05 were included in the final multivariable model. Important covariates such as 

gender and BMI were retained in the multivariable model even if they were not statistically significant in the 

univariable analysis stage. Testing for potential interactions and confounders was conducted in the model 

building process. The QIC (quasi-likelihood under the independence model criterion) was used to select the 

most parsimonious model in this thesis. Odds ratios (ORs) and their corresponding 95% confidence intervals 

(CI) were used to describe the strength of associations. 
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PART II 

OUTCOME VARIABLE: TIME-TO-EVENT/SURVIVAL TIME 
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4.6 Models for Survival Data Analysis 
 

4.6.1 Introduction 
  

  Survival data frequently arise in epidemiological studies and clinical trials where data are collected 

prospectively until an event of interest occurs. In such studies, the time-to-event (TTE) is usually the outcome 

variable. This outcome variable is called failure time, event time or survival time. To determine the relationship 

between covariates and survival time, survival analysis techniques are used [14]. Survival data analysis refers 

primarily to a set of methods for analysing survival data to study the distribution of lifetimes or survival times 

(i.e. the time until the occurrence of a specified event of interest) [14]. The event of interest can be death, 

development of a disease, relapse of disease after treatment, etc. and the survival time may be measured in 

days, weeks, bi-weekly, months, quarterly, years, etc. For example, in this thesis, the event of interest is 

colorectal cancer (CRC) and the survival time is the time (in years) until an individual develops CRC. So why 

not use ordinary linear regression (OLR) modelling techniques to model survival time as a function of 

covariates? Three reasons [14-15]: (i) survival times are always positive values and OLR may not be the 

ideal choice of a method unless the survival times are transformed in such a way that this restriction is 

eliminated, (ii) the distribution of survival data is often asymmetric (skewed) and thus techniques including 

OLR which are based on the Gaussian distribution cannot be used directly, and (iii) most importantly, OLR 

cannot efficiently handle survival data due the presence of censored observations [14].  

  In the aforementioned techniques, survival times are independent and the variance of the regression 

coefficients obtained from the Cox proportional hazards (PH) regression model are consistent [15]. In section 

4.6.2, survival analysis techniques for analysing cross-sectional independent data are provided. 

Terminologies commonly used in survival analysis are defined in sections 4.6.2.1 through to 4.6.2.4. Details 

of the Cox proportional hazards (PH) regression model are provided in section 4.6.2.5. The discrete PH 

model and discrete survival with logit and complementary log-log links are provided in sections 4.6.2.5.1 and 
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4.6.2.5.2 respectively. The statistical application of survival analysis techniques to answer objective 2 of this 

thesis is provided in section 4.6.3. 

4.6.2 Survival Analysis Techniques for Cross-sectional Independent Data 
 

  Survival analysis techniques are used to analyse time-to-event data. Collecting survival data for 

incident cases often span over (relatively) longer study periods in order to gather enough cases for 

meaningful analysis [154]. In studies that collect survival data, groups of subjects are followed over a 

specified period of time to determine the occurrence of an event of interest. For example, a disease-free 

cohort is followed over a period of time to determine the occurrence of colorectal cancer. In survival analysis, 

several terminologies including survival time, probability density function (pdf) of the survival time, censoring, 

survival function, hazard function, hazard rate, and hazard ratio are often used. A description of these 

terminologies is provided in the following sections and the details of which are given by kleinbaum and Klein 

[14] and Cox [15]. 

4.6.2.1 Survival time 
 
  In survival analysis, the time until the occurrence of a specified event is called survival time (ˇ) [14-

15]. As stated earlier (see section 4.6.1), survival time may be measured in days, weeks, bi-weekly, months, 

quarterly, or years until the event occurs which is typically called failure [14]. There are unique features of 

survival time [14-15]. First, survival times are always non-negative and usually have skewed distributions 

[14]. For instance, in a study evaluating the time to relapse of colorectal cancer among high-risk patients, the 

majority of failures (relapses) are likely to occur earlier in the follow-up with relatively few failures occurring 

later. However, in a study evaluating the time to death, the majority of failures (deaths) may occur later in the 

follow-up. Statistical methods based on the Gaussian distribution cannot be used to analyse the survival time 

[2]. Non-parametric methods could however be used [12, 14]. Complete information (actual time to event 

data) is often not available for each subject and those who enrol earlier in the study may be followed for a 
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longer period while those who enrol later may be followed for a shorter period (and the opposite may be true 

too) probably because study participants may have moved, withdrawn from the study or died (assuming the 

outcome of interest is not death) [14]. Each of these scenarios will result in incomplete data for some 

participants and the true survival/failure time will not be known because the study ended or because the 

event of interest does not occur when the subject dropped out of the study. This results in survival times for 

some for subjects that are greater than their last recorded/observed follow-up time. These times are termed 

censored times [14].  

4.6.2.2 Censoring 
 
  A unique feature that distinguishes survival data from data collected in other fields of statistics is the 

presence of censoring in the former. Censoring occurs when there is incomplete knowledge about the survival 

time of some subjects [14-15]. This may arise because some subjects are lost to follow-up or withdraw from 

the study without experiencing the event of interest or the event does not occur for some subjects at the end 

of the study period. There exist different types of censoring mechanisms in survival data analysis and these 

include right censoring, left censoring, and interval censoring [14-15, 50]. Right censoring occurs when an 

individual does not experience the event of interest before the end of the study or dropped out before the 

event occurs and so their last observed/recorded follow-up time is less than their time to the event [14, 50]. 

Right censoring is sometimes called administrative censoring [14]. For left censoring, the individual would 

have already experienced the event of interest at the time they joined the study [14, 50]. Unlike right and left 

censoring, interval censoring occurs when the specific time the event occurred is not known, but the first and 

last time the experimental unit was measured with and without the event respectively are available [50]. For 

the survival analysis conducted in this thesis, we assumed that interval censoring is non-informative i.e. the 

time of censoring (of survival time) is independent of the time of occurrence of CRC that otherwise would 

have been observed given the covariates used in this thesis. 
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  Mathematically, let $̌ be a non-negative random variable representing survival time and Ï$ be the 

random variable representing censorship for the '5B person in a sample of " subjects. If	K$ = ñ'"( $̌	, Ï$	), 

then we define an indicator variable !$ such that; 

!$ = "1 if	 $̌ ≤ Ï$
0 if	 $̌ > Ï$

 

where !$ = 1 indicates that the '5B individual is uncensored and the event of interest has occurred and !$ =

0 indicated censorship for the '5B individual and the event of interest has not occurred [50]. 

4.6.2.3 Functions of Survival time (adopted and modified from [2] and [14]) 
 
  Survival function [Z(7)]: This is the probability that an individual survives beyond some specified 

time	7. Mathematically, the survival time is defined as; 

Z(7) = ÓJ(ˇ ≥ 7), 0 ≤ 7 ≤ ∞. 

Some theoretical properties of the survival function Z(7) include: As	7 ∈ (0,∞), 

1. The survival function is monotonically non-increasing. 

2. At time = 0,	 Z(7) = 1. This means that the probability of surviving beyond time 0 is 1. In other words, 

the no event can occur before the study starts and everybody survives (with probability 1) at time	7 = 0. 

3. When	7 = ∞, Z(7) = Z(∞) = 0. Theoretically, this means that as the study time increases to infinity, 

the survival curve reaches zero (0). In other words, if the study time was to be increased infinitely, all 

subjects will eventually experience the outcome (i.e. failure will occur for all subjects). 

  The survival function Z(7) is also referred to as the cumulative survival rate, the graph [Z(7) on the 

y-axis and time 7 on the x-axis)] of which is used to determine the 50th percentile, also known as the median 

survival time. 

  Probability density function (pdf) [%(:)]: The pdf of the survival time ˇ is the distribution of 

survival times which describes the probability of failing within an infinitesimally small interval [7, ∆7] per unit 



  

64  
 

time. Mathematically, ∫(7) is defined as the limit of the probability that an individual experiences the event 

of interest in the interval [7, ∆7] per unit width ∆7 and we write 

∫(7) = î'ñ
∆5→P

ÓJ(7 ≤ ˇ ≤ 7 + ∆7)	
∆7

 

Some theoretical properties of the ∫(7) include: 

1. The density function ∫(7) is non-negative. That is ∫(7) ≥ 0,∀	7 ≥ 0 and ∫(7) = 0 for 7 < 0. 

2. The total area under the density curve is 1. 

  Hazard function [F(7)]: This is the conditional failure rate. It is also called hazard rate, failure rate 

or force of mortality. The hazard function [F(7)] describes the probability of experiencing the outcome in a 

small interval of time [7, ∆7] assuming an individual survived to the beginning of the specified interval. 

Mathematically, F(7) is the limit of the probability of failing within a small interval per unit time given that an 

individual survived to the beginning of the interval and we write; 

F(7) = î'ñ
∆5→P

ÓJ(7 ≤ ˇ ≤ 7 + ∆7|ˇ ≥ 7)	
∆7

 

The hazard function F(7) may reduce, increase, or remain unchanged and has no upper limit. It is not a 

probability value (so it can be more than 1) and also depends on the unit of time. Appendix C summarises 

the computational definitions for these functions of survival time when ˇ either continuous or discrete. 

4.6.2.4 Hazard Ratio (HR) 
 
  The hazard ratio describes the instantaneous relative hazard/risk of an event occurring per unit time 

for a subject when a specified risk factor is present compared to hazard/risk of the event occurring per unit 

time for another subject when the risk factor is not present when both subjects have survived to a specified 

time 7. For a continuous explanatory variable, the hazard rate is defined as: 

F(7|/$ + ∆)
F(7|/$)

= í≠k∆, 
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whereas for a categorical explanatory variable, the hazard rate is defined as: 

F(7|/$ = 1)
F(7|/$ = 0)

= í≠k. 

A numeric value of the hazard ratio indicates the relative hazard/risk reduction achieved when the specified 

explanatory variable is present as compared to the hazard/risk reduction when the explanatory variable is 

not present. 

4.6.2.5 The Cox Proportional Hazards (PH) Regression Model  
 
  Cox [15] introduced a large family of models that are directly focused on the hazard function. The 

simplest member of this family of models is the proportional hazards model. In the proportional hazards 

model, the hazard at time 7 for the '5B subject with a set of covariates {$ (excluding the constant term) is 

assumed to be F$(7|{$) and defined as follows: 

F$(7|{$) = FP(7)exp	({Å$N) = exp(O2K2 + O3K3+…+O|K|)……………… . . (4.21)    

where FP(7) represents the baseline hazard function and describes the risk associated with individuals with 

{$ = 0 (i.e. the reference group), and exp{{Å$N} is the relative risk measuring the proportionate change 

(i.e. increase or reduction) in the risk associated with {$. This change in risk is the same at all times	7.  

  To juxtapose the two risk components, consider a two-sample scenario where K$ is a binary dummy 

variable serving only to distinguish between the two groups [say groups zero (0) and one (1)]. Then the 

appropriate model is; 

F$(7|{$) = "FP(7) 					if	{9 = 0
FP(7)' 		if	{9 = 1

……………………………………(4.22)                              

where FP(7) represents the risk associated with group 0 at time 7 and ' = exp(O) represents the ratio of 

the risk associated with group one relative to the risk associated with group zero at any time 7. In particular, 

when ' = 1 (or O = 0), the risks are the same for the two groups. However, assuming age is the covariate 

in question, when ' = 2 (or O = 0.6931), the risk associated with a person in group one at any given age) 
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is two times the risk associated with a person in group zero who has the same age. The model in equation 

(4.22) separates the effects of the covariates {$ from the effects of time. Simple manipulation of equation 

(4.21) reveals that the proportional hazards model is an additive model for the log of the hazards. To show 

this, we take the natural logarithms of the proportional hazards models in equation (4.21) as; 

ln[F$(7|{$)] = ln	[FP(7)exp{{Å$N}] 

                                                                            = ln[FP(7)] + {Å$N 

		= »P(7) + {Å$N………………………………… . (4.23) 

where »P(7) = ln[FP(7)] is the log of the baseline hazard. Note that »P(7) is independent of the	K’s and 

thus show that the effects of the covariates are constant/same at all times 7. To compare the hazards rates 

of two individuals with two covariate vectors {$ and {@  respectively, we use the hazards ratio defined as: 

F2(7|{$)

F3\7({@^
=
FP(7)exp	(K$O)
FP(7)exp	(K@O)

= expqO\K$ − K@^r………………………………(4.24) 

where F2(7|{$) and F3\7({@^ are the hazards rates for the two individuals. Equation (4.24) assumes that 

hazard rates for any two individuals are proportional and does not depend on time; 

         Closely related to the proportional hazards in equation (4.21) is the cumulative hazards which 

are also proportional (see equation 4.25) [14-15]. The cumulative hazards, Λ$(7|K$), is derived from 

proportional hazards by integrating the latter over [0, 7] as follows: 

Λ$(7|X$) = * FP(+)exp	({Å$N)ß+
5

P

 

                                                                       = exp	({Å$N) ∫ FP(+)ß+5
P

 

                          = exp({Å$N)ΛP(7), ……………… .……………… . (4.25) 

where ΛP(7) = ∫ FP(+)ß+5
P

 is the cumulative baseline hazard. 
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           One of the advantages of the Cox model lies in its ability to incorporate coefficients and covariates 

that change over time [15]. Time-dependent coefficients and time-dependent covariates are two extensions 

of the Cox model used to model non-proportional hazards [14]. Equations (4.26) and (4.27) describe time-

dependent coefficient and time-dependent covariate models respectively. Equation (4.28) combines both 

equations (4.26) and (4.27) to produce a generic version of the hazard rate model which models both the 

time-dependent coefficient and time-dependent covariate simultaneously [14]. 

F$(7|{$) = FP(7) exp[{Å$N(7)]…………………………………………… . (4.26) 

F$(7|{$(7)) = FP(7) exp[{Å$(7)N]…………… .………………………………(4.27) 

F$(7|{$(7)) = FP(7) exp[KÅ$(7)N(7)] …………… .…………… . . ………… . . (4.28) 

where KÅ$(7) is a vector of time-dependent covariates for the '5B subject at time 7 and N(7) is a time-

dependent vector of coefficients. 

4.6.2.5.1 The Discrete Proportional Hazards (PH) Model 
 
         In survival analysis, the outcome of interest is the time until the occurrence of an event of interest. In 

the Saskatchewan Rural Health Study (SRHS) dataset, the exact time to the occurrence of colorectal cancer 

(CRC) is not known. However, only the time interval in which the disease could have occurred is known. This 

becomes a discrete process which results in interval censored variables. Survival data collected through a 

discrete process may be called interval censored data and can be analyzed using discrete-time modeling 

techniques for a determination of the hazard or failing or surviving.  

             Let	 $̌, a non-negative random variable taking values 72, 73, … be the time until the occurrence of 

CRC. Then the discrete-time hazard function	E5k , is the probability that the '5B subject is diagnosed with CRC 

in a specified interval given that the individual was not diagnosed with CRC before the start of the period in 

question [188]. That is the conditional probability of failing in the interval given that the individual survived till 

the start of the period. The discrete-time hazard function [188] is given as; 
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E5k = ÓJq $̌ ∈ \7$
P, 7$

ı^( $̌ ≥ 7$
Pr……………………………………… . (4.29) 

where 7$P is the time of origin (in this thesis, it is the start of the baseline survey in 2010) and 7$
ı is the endpoint 

time (in this thesis, it is the end of the follow-up survey in 2014). E5k  is a discrete-time approximation to the 

continuous-time function (described in section 4.6.2.3). It is not too difficult to observe from equation (4.29) 

that in order for an individual can survive to time 7$
ı, the person must first survive through 72, then the person 

must survive to 73 given that he/she has survived through 72, and so on and  so forth, finally surviving through 

7$
ıv2 given that he/she has survived up to that point. 

             We obtain the baseline hazard for the time interval \7$P, 7$
ı^ by manipulating the discrete-time hazard 

function E5k  using the complement of the hazard function	(1 − E5k). To show this, let F$@  be a discrete 

hazard which represents the probability of the '5B subject failing in interval (ä, ä + 1) given that the person 

survived to the start of ä and we write; 

F$@ = 1 − E5k  

= 1 − ÓJq $̌ ∈ \7$
P, 7$

ı^( $̌ ≥ 7$
Pr 

= 1 − exp	[− * F$(7|{$)

5k
,

5k
-

ß7] 

= 1 − exp	

⎩
⎨
⎧
− * [FP(7)exp	({Å$N)]

5k
,

5k
-

ß7

⎭
⎬
⎫

 

= 1 − exp	

⎩
⎨
⎧
− * FP(7)

5k
,

5k
-

ß7

⎭
⎬
⎫
456	({•kN)

 

1 − F$@ = exp	 "−∫ FP(7)
5k
,

5k
- ß77

456	({•kN)
 . 
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Taking logs of both sides of the last equation, we have 

log	(1 − F$@) = log

⎩⎪
⎨
⎪⎧
exp	

⎩
⎨
⎧
− * FP(7)

5k
,

5k
-

ß7

⎭
⎬
⎫
456	({•9N)

⎭⎪
⎬
⎪⎫

 

−log	(1 − F$@) = exp	({Å$N) * FP(7)

5k
,

5k
-

ß7 

Taking logs of both sides again, we have 

logq− log\1 − F$@^r = log

⎩
⎨
⎧
exp	({Å$N) * FP(7)

5k
,

5k
-

ß7

⎭
⎬
⎫

 

																																																												= log	(exp({Å$N) + log

⎩
⎨
⎧
* FP(7)

5k
,

5k
-

ß7

⎭
⎬
⎫

 

																																																																												= ({Å$N) + log

⎩
⎨
⎧
* FP(7)

5k
,

5k
-

ß7

⎭
⎬
⎫
………………… . (4.30) 

where the quantity ∫ FP(7)
5k
,

5k
- ß7 is the baseline risk for the interval \7$P, 7$

ı^. If FP(7) does not vary rapidly 

over \7$P, 7$
ı^, then ∫ FP(7)

5k
,

5k
- ß7 ≅ FP:::(7$ı − 7$P), where FP::: represents the mean baseline hazard. Given 

this, equation (4.30) is be modified as; 

logq− log\1 − F$@^r = ({Å$N) + logqFP:::\7$ı − 7$P^r 

                                                                        = ({Å$N) + log\FP:::^ + log\7$ı − 7$P^									 

                                                                        = ({Å$N) + αP + log\7$
ı − 7$

P^, . . ……………… . . (4.31) 
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where αP = log\FP:::^ (i.e. the log of the mean baseline hazard). Equation (4.31) is used in studies with 

independent non-recurrent events. However, it (equation (4.31)) is modified to account for the repeated 

observations in longitudinal studies where separate measurements exist for the '5B subject at the different time 

points [188]. The longitudinal version of equation (4.31) is given as; 

logq− log\1 − F$@^r = \{Å$@N^ + αP@ + log\7$@
ı − 7$@

P ^……………………… . (4.32) 

where 7$@
ı − 7$@

P  represents the risk time and αP@  quantifies any variation among the baseline hazards across 

the different time points (in our case, across the baseline and follow-up surveys) [188]. 

 
4.6.2.5.2 Discrete-Time Survival Analysis (DTSA) and the Logit Link  
 
            Cox [15] extended proportional hazards modeling techniques for discrete time by working with the 

conditional odds of failing at each time 7@  given that an individual survived to this time point. He proposed the 

model 

F(7@|{$)
1 − F(7@|{$)

=
FP(7@)

1 − FP(7@)
exp({Å$N), …………………………… . (4.33) 

where F(7@|K$) represents the hazard at time 7@  for the '5B subject with a set of covariate values {$, FP(7@) 

represents the baseline hazard at time 7@ , and exp({Å$N) measures the relative risk associated with K$. 

We obtain a logit model for the hazard of failing at each time 7@  given that an individual survived to this time 

point by applying logs to (4.33) as; 

log ; F(7@|{$)
1 − F(7@|{$)

< = log =; FP(7@)
1 − FP(7@)

< exp({Å$N)¬ 

                                                                     = log " >-(5∞)
2v>-(5∞)

7+ ({Å$N) 

logitqF(7@|K$)r = »@ + ({Å$N)……………………………………… . . (4.34) 
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where »@ = log " >-(5∞)
2v>-(5∞)

7 represents the logit of the baseline hazard and {Å$N is the effect of the covariates 

{$ on the logit of the hazard. The model specified in equation (4.34) considers time as discrete by introducing 

the parameter »@  for each possible failure time	7@ . The regression coefficients N are interpreted just as in a 

classical logistic regression model. 

4.6.2.5.3 Discrete-Time Survival Analysis (DTSA) and the Complementary Log-Log (C-Log-Log) Link 
 
            An alternate extension of the Cox’s proportional hazard model to include discrete time lie in the 

expression of the survival function. In a proportional hazard framework, the survival function is expressed as; 

Z\7@({$^ = ZP(7@) exp({Å$N), 

where Z\7@({$^ represents the probability the '5B subject with a set of covariate values {$ will survive to 

time 7@  and ZP(7@) represents the baseline survival function. By expressing the survival function in terms of 

the hazard and applying a similar approach to that used in deriving equation (4.30), we obtain an analogous 

relationship for the for the complement of the hazard function as; 

1 − F\7@({$^ = ⁄1 − FP\7@^¤
456\{•kN^, 

and further, obtain the hazard for the '5B subject failing at time point 7@  as 

													F\7@({$^ = 1 − ⁄1 − FP(7@)¤
456\{•kN^. 

The complementary log-log (c-log-log) transformation is used to linearize F\7@({$^ as a function of 

parameters to obtain the model 

log @−log⁄1 − F\7@({$^¤A = »@ + {Å$N, …………………… .………………… . . (4.35) 

where »@ = log @1 − ⁄1 − FP(7@)¤A represents the c-log-log transformation of FP(7@), the baseline hazard. 

The Cox proportional model can, therefore, be fitted to discrete survival data by using a binary response GLM 

with binomial error structure and a c-log-log link. This means that, under non-informative sampling, both the 
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binomial likelihood as well as the discrete time survival likelihood hold for the logit and complementary log-

log links. 

The choice of a link function in survival analysis depends on how time is measured. If time is measured as a 

discrete variable, then the logit link is more appropriate. However, if time is measured as a continuous 

variable that it truly is, then c-log-log link is a better choice. 

4.6.3 Objective Two (2): Survival Analysis 
 

 Cox’s proportional hazard (PH) model was used to determine the adjusted incidence of CRC in rural 

Saskatchewan. The crude incidence rate was computed using the cumulative incidence formula (see section 

4.6.3.1.1). To study the effects of individual and contextual factors as well as covariates on CRC incidence, 

the proportional hazards model (see section 4.6.2.5) is used. 

4.6.3.1 Statistical Application: Objective Two (2) 
 
4.6.3.1.1 Crude Incidence of CRC 
 
 In this thesis, we adopt the definition of incidence as “the number of new events of a specific disease 

during a specified period of time in a specified population” [155]. The incidence rate is “the rate at which new 

events, or new cases, occur in a specified time in a defined population that is at risk of experiencing the 

condition or event” [155]. The incidence rate was computed using the formula below; 

c"ô'ßí"ôí	JI7í =
#	ï∫	"íC	ôIóíó	'"	óEíô'∫'íß	EíJ'ïß

#	ï∫	EíïEîí	I7	J'ó.	'"	7ℎí	óEíô'∫'íß	EíJ'ïß x	100……………(∗∗) 

Using this formula, we calculated the crude incidence rate, also known as the cumulative incidence rate [155] 

of CRC as follows; 

Figure 4.2 is a schematic representation of the selection of new CRC cases and a valid samples size for 

incidence analysis. 
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Figure 4. 2 Illustrative representation of selecting new CRC cases in the SRHS data set 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

4.6.3.1.2 Adjusted Incidence of CRC 
 
             Before commencing the data analysis to determine risk factors for CRC incidence, the data set 

needed to be rearranged to be able to perform survival analysis. Two (2) new variables were created and 

denoted as incidence and time-to-event (CRC) variables. The incidence variable was a dichotomous variable 

assuming values 0 or 1. When an individual is diagnosed with CRC during follow-up, the incidence variable 

was assigned a value of 1 and 0 otherwise. On the other hand, the time-to-event variable represents the time 

an individual is followed until he/she develops CRC. The baseline survey will be the time of origin and the 

follow-up will be the time-to-an-event (i.e. CRC incident cases). In this thesis, the exact time of the occurrence 

The SRHS data set 

4,741 individuals participated in both the 
baseline and follow-up surveys 

≥ 50 years 3,416 had complete data at 
baseline and follow-up 

8 CRC cases at baseline 
were missing at follow-up 

3408: valid sample size for 
the “incidence” 

Prevalence at baseline 
34/3408 = 1.0% 

Prevalence at follow-up 
61/3408 = 1.8% 

New CRC cases 
1.8% - 1.0% = 0.8% 
27 incident cases 
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of colorectal cancer (CRC) is not known. However, the time interval in which the disease could have occurred 

is known. This becomes a discrete process which results in interval censored variables with follow-up time 

for censored cases being four (4) years. Censoring will occur when an individual was not diagnosed with 

CRC at the end of follow-up.  

 The PH model was used to determine risk factors for the incidence of CRC. The primary aim of using 

the PH model was to identify the most parsimonious model to describe CRC incidence between the baseline 

and follow-up surveys. Standard model building techniques were used in the selection of the final 

multivariable model [26]. Crude hazard rates were calculated in the univariable analysis and variables with 

p-value <0.25 were candidates for the multivariable model. Biologically relevant such as gender and BMI 

were retained in the multivariable analysis even though they were not significant in the univariable analysis. 

The proportional hazards model assumptions as well as the model fit were tested using Schoenfeld residuals 

[14]. 

 Before fitting the proportional hazards model, the STSET command in STATA was used to declare 

the CRC incidence data as survival-time data [14]. To fit the proportional hazards model, the STCOX 

command was used [14]. The STCOX command fits a PH model based on the maximum likelihood theory 

[189]. Clustering effects of more than one individual in a household was accounted using the clustered 

estimator VCE(CLUSTER HOUSEID) command, where HOUSEID is the within subject variable in this study. 

The STPHTEST command was used to test the proportional hazards model assumption. 
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CHAPTER 5 – RESULTS  
5.1 Introduction  
 
 The primary goal of this thesis was to determine the prevalence and incidence of self-reported doctor-

diagnosed CRC and associated risk factors in rural Saskatchewan using appropriate statistical methodology 

models to analyze survey data with a binary outcome. The remainder of this chapter is organized follows; 

Section 5.2 describes the sample population in this study while Section 5.3 provides some descriptive 

statistics. Research questions one and two are answered in Sections 5.4 and 5.5 respectively. Sections 5.6 

summarizes the methods used to analyze the data used in this thesis. 

5.2 Sample population 
 
 The SRHS contains information of 8,261 participants nested within 4,624 households at baseline 

and 4,867 participants nested within 2,797 households at follow-up. A subset of the SRHS data was extracted 

and used for the analysis contained in this thesis. A total of 5,599 individuals at baseline and 3,933 at follow-

up aged 50 or older were included in the present analysis because (1) this is the population we considered 

at risk and (2) the youngest person diagnosed with CRC in this study was 50 years old.  

5.3 Descriptive Characteristics 
 
 Table 5.1 gives the population characteristics stratified by farm and non-farm residence status and 

survey. There was a reduction in the number of participants from baseline to follow-up. This reduction 

occurred in both the farm and non-farm sub-categories. The majority (44.6%) of farming residents were in 

their 50s as compared to 33.6% of non-farm residents at baseline. On the other hand, a majority (36.1%) of 

non-farm residents were aged 70 years or older as compared to 22.6% of farm residents. A similar trend was 

observed at the end of the follow-up survey (Table 5.1). Approximately 30% of both farm and non-farm 

residents were of normal weights and obese respectively both at baseline and follow-up. About the same 

percentage of both farm and non-farm residents were over weighted (≈ 43%). This trend continued at follow-
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up (farm residents: 41.5% vs. non-farm-residents: 42.3%) (Table 5.1). At baseline, more non-farm residents 

(34.8%) completed Grade 12 or higher as compared to farm residents (32.1%). The study population 

contained an approximately equal number of males and females both at baseline as well as at follow-up 

(Table 5.1).  

 Shallow well was the source of household water supply to a majority (34.6%) of farm residents as 

compared to non-farm residents (9.7%) at baseline. This trend persisted during the four-year follow-up period 

(farm residents: 31.7% vs. non-farm residents: 9.8%). More farm households (27.8%) use bottled water as 

compared to non-farm households (26.2%). A similar trend was observed among farm households (29.9%) 

as compared to non-farm households (26%) at follow-up. The percentage of non-farm residents (88.2%) 

were more than twice higher than the percentage of farm residents (39.2%) who reported natural gas as their 

major source of fuel to their households at baseline. A similar two-fold percentage occurred at follow-up 

(Table 5.1). More non-farm residents (15.6%) smoked in their homes when compared to farm residents 

(12.4): an observation which sufficed at follow-up (non-farm residents – 11.1% vs. farm residents – 8.8%. 

About 9% of farm residents were current smokers as compared to 11.4% of non-farm residents.  

 We also observed that a higher number of non-farm residents consume alcohol daily than farm 

residents (Table 5.1). About 80% of non-farm residents ever lived on a farm while about 70% of them lived 

on a farm in their first year of life (Table 5.1). Only 10.2% of farm residents had a previous history of cancer 

as compared to 11.7% of non-farm residents. About 30% of both farm and non-farm residents had a family 

history of cancer (i.e. either the father, mother or sibling ever had a previous history of cancer) (Table 5.1). 

More farm residents were exposed to diesel and welding fumes, fungicides, grain dust, pesticides, livestock, 

molds, oil/gas well fumes, stubble smoke, and wood dust at their workplaces than non-farm residents (Table 

5.1). 
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 Before data analysis, race/ethnic group was studied. However, preliminary data analysis revealed 

that 98% of the study population in this thesis were Caucasian while only 2% were non-Caucasian. A decision 

was made to exclude race from all analysis. 
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Table 5. 1 Population Characteristics stratified of rural residents (≥ 50 years) by farm and non-farm residence status, Saskatchewan 

 Baseline (N = 5599) Follow-up (N = 3933) 
Description Farm Non-farm Missing Farm Non-farm Missing 

 N = 2339 N = 3212 N = 48 N = 1676 N = 2236 N = 21 
 n (%) n (%) n (%) n (%) n (%) n (%) 
CONTEXTUAL FACTORS       
Socioeconomic   670 (12.0)   464 (11.8) 

Some money 1267 (61.6) 1725 (60.1)  1046 (71.6) 1335 (66.5)  
Just enough money 368 (17.9) 640 (22.3)  254 (17.4) 411 (20.5)  
Not enough money 422 (20.5) 507 (17.7)  161 (11.0) 262 (13.0)  

Quadrant   52 (0.9)   98 (2.5) 
South West 372 (15.9) 656 (20.4)  257 (15.6) 448 (20.5)  
South East 439 (18.8) 720 (22.4)  317 (19.3) 476 (21.70  
North East 856 (36.6) 867 (27.0)  587 (35.7) 603 (27.5)  
North West 672 (28.7) 965 (30.1)  485 (29.5) 662 (30.2)  

Environmental:       
Household smoking   79 (1.4)   21 (0.5) 

Yes 288 (12.4) 499 (15.6)  147 (8.8) 248 (11.1)  
No 2043 (87.6) 2690 (84.4)  1529 (91.2) 1988 (88.9)  

Household structure:       
Water source   48 (0.9)   87 (2.2) 
          Bottled Water 651 (27.8) 840 (26.2)  497 (29.9) 569 (26.0)  
          Deep well water (more than 100ft) 524 (22.4) 854 (26.6)  348 (21.0) 566 (25.9)  
          Shallow well water (less than 100ft) 809 (34.6) 311 (9.7)  527 (31.7) 214 (9.8)  
          Other source 355 (15.2) 1207 (37.6)  289 (17.4) 836 (38.3)  
Fuel source – Natural gas   62 (1.1)   31 (0.8) 
          Yes  916 (39.2) 2824 (88.2)  656 (39.2) 1975 (88.6)  
          No 1419 (60.8) 378 (11.8)  1017 (60.8) 254 (11.4)  

Mildew odor or musty smell in home   227 (4.1)   124 (3.2) 
          Yes 429 (19.1) 352 (11.3)  305 (18.7) 311 (14.3)  
          No 1819 (80.9) 2772 (88.7)  1323 (81.3) 1870 (85.7)  
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INDIVIDUAL FACTORS       
Smoking Status   85 (1.5)   56 (1.4) 
          Current Smoker 205 (8.8) 364 (11.4)  125 (7.6) 219 (9.9)  
          Ex-smoker 840 (36.1) 1419 (44.5)  625 (37.8) 986 (44.4)  
          Never smoker 1283 (55.1) 1403 (44.0)  905 (54.7) 1017 (45.8)  
Alcohol consumption   75 (1.3)   48 (1.2) 
          Never 442 (19.0) 718 (22.5)  319 (19.1) 416 (18.8)  
          Less than once a month 492 (21.1) 704 (22.0)  338 (20.3) 462 (20.8)  
          At most 2-3 times a month 629 (27.0) 715 (22.4)  411 (24.6) 514 (23.2)  
          At most 2-3 times a week 516 (22.2) 645 (20.2)  389 (23.3) 491 (22.1)  
          Everyday 250 (10.7) 413 (12.9)  211 (12.6) 334 (15.1)  
Physical activity   244 (4.4)   117 (3.0) 
          Yes 1280 (56.5) 1781 (57.7)  856 (52.2) 1213 (55.7)  
          No 986 (43.5) 1308 (42.3)  783 (47.8) 964 (44.3)  
Diabetes    135 (2.4)   131 (3.3) 
          Yes 213 (9.2) 448 (14.2)  118 (389) 271 (12.5)  
          No 2097 (90.8) 2706 (85.8)  1517 (92.8) 1896 (87.5)  
Early life-exposures:       
Ever-lived on a farm   65 (1.2)   25 (0.6) 
          Yes 2280 (97.5) 2554 (79.9)  1660 (99.1) 1801 (80.7)  
          No 58 (2.5) 642 (20.1)  15 (0.9) 432 (19.3)  
Lived on a farm in first year of life   116 (2.1)   52 (1.3) 
          Yes 1917 (82.8) 2146 (67.7)  1391 (83.3) 1537 (69.5)  
          No 397 (17.2) 1023 (32.3)  278 (16.7) 675 (30.5)  
Hereditary:        
Familial History of cancer:       
Personal history of cancer   129 (2.3)   132 (3.4) 
         Yes 237 (10.2) 370 (11.7)  132 (8.1) 223 (10.3)  
         No 2077 (89.8) 2786 (88.3)  1501 (91.9) 1945 (89.7)  
Father ever had cancer   596 (10.6)   396 (10.1) 
          Yes 724 (33.7) 915 (32.0)  507 (33.1) 659 (32.9)  
          No 1423 (66.3) 1941 (68.0)  1026 (66.9) 1345 (67.1)  
Mother ever had cancer   504 (9.0)   325 (8.3) 
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          Yes 580 (26.6) 856 (29.4)  419 (26.8) 614 (30.0)  
          No 1600 (73.4) 2059 (70.6)  1142 (73.2) 1433 (70.0)  
       
Sibling(s) ever had cancer   978 (17.5)   648 (16.5) 
         Yes 550 (28.0) 889 (33.5)  358 (25.2) 553 (29.7)  
         No 1417 (72.0) 1765 (66.5)  1064 (74.8) 1310 (70.3)  
Occupational Exposures:       
At work, ever exposed to:       
Asbestos dust   191 (3.4)   150 (3.8) 
         Yes 132 (5.7) 240 (7.8)  92 (5.6) 160 (7.5)  
         No 2192 (94.3) 2844 (92.2)  1547 (94.4) 1984 (92.5)  
Diesel fumes   191 (3.4)   150 (3.8) 
         Yes  1706 (73.4) 1537 (49.8)  1220 (74.4) 1075 (50.1)  
         No 618 (26.6) 1547 (50.2)  419 (25.6) 1069 (49.9)  
Fungicides (to treat grain)   191 (3.4)   150 (3.8) 
         Yes  1088 (46.8) 851 (27.6)  785 (47.9) 598 (27.9)  
         No  1236 (53.2) 2233 (72.4)  854 (52.1) 1546 (72.1)  
Grain dust   191 (3.4)   150 (3.8) 
          Yes 2045 (88.0) 1773 (57.5)  1439 (87.8) 1225 (57.1)  
          No  279 (12.0) 1311 (42.5)  200 (12.2) 919 (42.9)  
Pesticides (to kill plants and insects)   48 (0.9)   21 (0.5) 
          Yes  1725 (73.7) 1548 (48.2)  1230 (73.4) 1070 (47.9)  
           No  614 (26.3) 1664 (51.8)  446 (26.6) 1166 (52.1)  
Livestock   191 (3.4)   150 (3.8) 
          Yes 1642 (70.7) 1327 (43.0)  1157 (70.6) 893 (41.7)  
           No 682 (29.3) 1757 (57.0)  482 (29.4) 1251 (58.3)  
Mine dust   191 (3.4)   150 (3.8) 
           Yes  123 (5.3) 190 (6.2)  85 (5.2) 129 (6.0)  
           No  2201 (94.7) 2894 (93.8)  1554 (94.8) 2015 (94.0)  
Molds   191 (3.4)   150 (3.8) 
          Yes 1095 (47.1) 841 (27.3)  795 (48.5) 625 (29.2)  
          No 1229 (52.9) 2243 (72.7)  844 (51.5) 1519 (70.8)  
Oil/Gas well fumes   191 (3.4)   150 (3.8) 
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          Yes  543 (23.4) 689 (22.3)  387 (23.6) 467 (21.8)  
          No 1781 (76.6) 2395 (77.7)  1252 (76.4) 1677 (78.2)  
Radiation   191 (3.4)   150 (3.8) 
          Yes 196 (8.4) 263 (8.5)  142 (8.7) 198 (9.2)  
          No 2128 (91.6) 2821 (91.5)  1497 (91.3) 1946 (90.8)  
Stubble smoke   191 (3.4)   150 (3.8) 
          Yes 1250 (53.8) 1113 (36.1)  881 (53.8) 775 (36.1)  
          No 1074 (46.2) 1971 (63.9)  758 (46.2) 1369 (63.9)  
Solvent fumes   191 (3.4)   150 (3.8) 
          Yes 910 (39.2) 974 (31.6)  668 (40.8) 722 (33.7)  
          No 1414 (60.8) 2110 (68.4)  971 (59.2) 1422 (66.3)  
Welding fumes   191 (3.4)   150 (3.8) 
          Yes 1230 (52.9) 988 (32.0)  874 (53.3) 708 (33.0)  
          No 1094 (47.1) 2096 (68.0)  765 (46.7) 1436 (67.0)  
Wood dust   191 (3.4)   150 (3.8) 
          Yes 1071 (46.1) 1078 (35.0)  752 (45.9) 801 (37.4)  
          No 1253 (53.9) 2006 (65.0)  887 (54.1) 1343 (62.6)  
COVARIATES       
Age (yrs.)   48 (0.9)   21 (0.5) 
          50-59 1044 (44.6) 1078 (33.6)  631 (37.6) 660 (29.5)  
          60-69 767 (32.8) 975 (30.4)  590 (35.2) 689 (30.8)  
          70+ 528 (22.6) 1159 (36.1)  455 (27.1) 887 (39.7)  
BMI (kg/m2)   332 (5.9)   248 (6.3) 
          Normal (0-<25) 610 (27.4) 841 (27.7)  453 (28.7) 619 (29.4)  
          Overweight (25-30) 961 (43.1) 1304 (42.9)  656 (41.5) 890 (42.3)  
          Obese (>30) 659 (29.6) 892 (29.4)  470 (29.8) 597 (28.3)  
Education   130 (2.3)   80 (2.0) 
											≤ Grade 12 1569 (67.9) 2059 (65.2)  1051 (63.7) 1330 (60.3)  
											> Grade 12 742 (32.1) 1099 (34.8)  598 (36.2) 874 (39.7)  
Marital status   78 (1.4)   33 (0.8) 

  Married/common law/living together 2070 (88.8) 2481 (77.8)  1504 (90.1) 1772 (79.5)  
Widowed/Divorced/separated/single/never 

married 
261 (11.2) 709 (22.2)  166 (9.9) 458 (20.5)  
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                   # Due to missing observations, row (variable) totals may not sum to column totals 
 

 

Sex   48 (0.9)   22 (0.6) 
          Male 1256 (53.7) 1542 (48.0)  884 (52.7) 1055 (47.2)  
          Female 1083 (46.3) 1670 (52.0)  792 (47.3) 1180 (52.8)  
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5.3.1 Population characteristics by quadrant 
 

 Tables 5.2 and 5.3 provide the distribution selected population characteristics stratified according to 

the four quadrants of Saskatchewan at baseline and follow-up respectively. With the exception of the South-

western corner of the province, the percentage of study participants from the remaining quadrants were 

higher in rural municipalities (RM) as compared to small towns at baseline (Table 5.2). Gender proportions 

in all four quadrants appear not overly skewed or biased towards a particular quadrant (Table 5.2). While SW 

(31.4%) and NE (31.5%) had the highest percentage of study participants aged 70 or older, SE (29.5%) and 

NW (29.3%) had the least. It is observed that the eastern corner of the province contributed the highest 

percentage [SE (39.8%)] of the youngest study participants as well as the least [NE (36.7%)] (Table 5.2). In 

all four quadrants, the majority (> 50%) of study participants were non-farm residents as compared to farm 

residents (Table 5.2). Table 5.3 provides an analogous description/analysis of the scenario at follow-up. 

 
Table 5. 2 Population characteristics by quadrant at baseline 

Characteristics# Quadrant*  
 South West South East North East North West P-value 
 N = 1034 N = 1175 N = 1735 N = 1651  

Municipality, n (%)      
             RM 477 (46.1) 601 (51.1) 1188 (68.5) 853 (51.7) <0.001** 
             Town 557 (53.9) 574 (48.9) 547 (31.5) 798 (48.3)  
Gender, n (%)      
             Male 107 (48.0) 170 (53.5) 133 (51.6) 185 (49.2) 0.504 
             Female 116 (52.0) 148 (46.5) 125 (48.4) 191 (50.8)  
Age-groups, n (%)      
             50-59 401 (38.8) 468 (39.8) 636 (36.7) 629 (38.1) <0.001** 
             60-69 308 (29.8) 360 (30.6) 553 (31.9) 539 (32.6)  
             70+ 325 (31.4) 347 (29.5) 546 (31.5) 483 (29.3)  
Location of home, n (%)      
             Farm 372 (36.2) 439 (37.9) 856 (49.7) 672 (41.1) <0.001** 

Non-Farm 656 (63.8) 720 (62.1) 867 (50.3) 965 (58.9)  
                 # Due to missing observations, variable totals may not sum to 5955 
                 ** p<0.05 
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Table 5. 3 Population characteristics by quadrant at follow-up 

Characteristics# Quadrant* P-value 
 South West South East North East North West  
 N = 710 N = 799 N = 1198 N = 1149  

Municipality, n (%)      
            RM 341 (48.0) 435 (54.4) 845 (70.5) 606 (52.7) <0.001** 
            Town 369 (52.0) 364 (45.6) 353 (29.5) 543 (47.3)  
Gender, n (%)      
            Male 355 (50.0) 392 (49.1) 598 (49.9) 575 (50.0) 0.610 
            Female 355 (50.0) 407 (50.9) 600 (50.1) 574 (50.0)  
Age-groups, n (%)      
            50-59 256 (36.1) 281 (35.2) 354 (29.5) 373 (32.5) <0.001** 
            60-69 212 (29.9) 267 (33.4) 377 (31.5) 412 (35.9)  
            70+ 242 (34.1) 251 (31.4) 467 (39.0) 364 (31.7)  
Location of home, n (%)      
            Farm 257 (36.5) 317 (40.0) 587 (49.3) 485 (42.3) <0.001** 

Non-Farm 448 (63.5) 476 (60.0) 603 (50.7) 662 (57.7)  
                # Due to missing observations, variable totals may not sum to 5955 
               ** p<0.05 
 

5.3.2 Distribution of colorectal cancer (CRC) by residence status 
 

 The presence or absence of CRC was determined from the baseline and follow-up questionnaires 

respectively. From-here-on-in, we will define cases to be individuals who self-reported a previous diagnosis 

of CRC by a PCG or a doctor and non-cases as individuals who self-reported otherwise. On average, cases 

were older than non-cases (Data not shown). The mean (± standard deviation) age of cases at baseline was 

69 (± 9.8) years as compared to that of non-cases of 64 (± 10.4) years. Similarly, the mean age of cases at 

follow-up was 71 (± 10.2) years and that for non-cases was 65 (± 10.3) (Data not shown). Table 5.4 provides 

the number of study participants (%) stratified by CRC status and wave (i.e. baseline and follow-up). Overall, 

there was an increase in the number of CRC cases from baseline to follow-up. The percentage of CRC cases 

showed an increase from 29.5% at baseline to 31.8% at follow-up. However, the percentage of non-CRC 

cases slightly declined from 70.5% at baseline to 68.2% at follow-up. 
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Table 5. 4 Location of home by CRC cases and non-cases at baseline  

 Baseline (2010) Follow-up (2014) 
Location of home Cases  

(%)* 
Non-Cases  

(%) 

Total  
(%) 

Cases (%) Non-Cases (%) Total  
(%) 

Farm 18 (29.5) 2321 (42.3) 2339 (42.1) 21 (31.8) 1655 (43.0) 1676 (42.8) 
Non-Farm 43 (70.5) 3169 (57.7) 3212 (57.9) 45 (68.2) 2191 (57.0) 2236 (57.2) 
Total 61 5490 5551 66 3846 3912 

* One CRC case could not be identified by the location of home (farm or non-farm);  
 

5.3.3 Baseline and follow-up characteristics of participants by CRC status 
 

 The baseline and follow-up characteristics of study participants stratified by CRC status are 

presented in Table 5.5. Stratifying individuals diagnosed with CRC by age groups revealed that CRC was 

more common in older age groups. At baseline, the majority (1.8%) of the people diagnosed with CRC were 

70 years of age or older, followed by persons in their 60’s (1.2%), and the least number of CRC cases 

occurred in the youngest age category (0.4%). A similar trend of increasing prevalence of CRC among older 

age groups was observed at follow-up; 50 – 59 (0.5%), 60 – 69 (1.6%), and 70+ (2.9%). Obese individuals 

have the highest percentage of CRC cases both at baseline and at follow-up (Table 5.5). Individuals with the 

highest education being Grade 12 had the highest percentage of CRC cases. By stratifying CRC cases by 

marital status, the percentage of CRC cases was lower among married/common-law or cohabiting individuals 

(1.0%) as compared to widowed/divorced or single individuals (1.8%). This observation lasted at follow-up. 

A slightly higher percentage of females (1.3%) were diagnosed with CRC than males (1.0%). 

 Of the total number of individuals who answered “yes” to having being diagnosed with CRC 

previously in 2010, 0.8% were farm residents while 1.3% were non-farm residents. About 1.1% of CRC cases 

either ever lived on a farm or lived on a farm in their first year of life at baseline (Table 5.5). A higher 

percentage of CRC cases had mildew odor or musty smell in their homes (1.7%) as compared to those who 

did not at baseline (1.0%). This trend reversed in 2014 (Table 5.5). When CRC cases were stratified 

according to smoking status at baseline, 0.9% of them were current smokers, 1.3% of them were ex-smokers, 
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while 1% of them never smoked. About 0.6% of the total number of CRC cases were daily consumers of 

alcohol at baseline while 0.9% of them never consumed alcohol (Table 5.5).  

 Personal and family history of cancer among CRC cases were also studied at baseline. It was 

realized that all 62 CRC patients had a previous personal history of cancer. About 1.2% of them had fathers 

with a history of cancer and while and 1.8% had mothers with a previous history of cancer. About 1.4% of 

individuals diagnosed with CRC had siblings with a previous history of cancer.  

 Since occupational exposure was of primary concern in this thesis, it was studied among individuals 

diagnosed with CRC. By stratifying CRC cases according to occupational exposure, it was realized that 1.0% 

of them were exposed to the following at work; wood dust, livestock, diesel fumes, fungicides, and grain dust 

respectively at baseline. A slightly lower percentage of CRC cases were exposed to oil and gas well fumes 

(0.7%), asbestos dust (0.8%), solvent fumes (0.9%) at work (at baseline). Approximately, 1.1% of CRC cases 

were exposed to molds and stubble smoke respectively, 1.2% of them were exposed to pesticides and 

welding fumes (respectively) during the same period. A high percentage of CRC cases were exposed to mine 

dust (1.3%), with an even higher percentage of them being exposed to radiation (2.2%) at their workplaces 

(at baseline). 

 Details of the above population characteristics at follow-up are described in the last column of Table 

5.5 and describes the percentages of CRC cases associated with the various population characteristics. 

Table 5.6 present the characteristics for cases and non-cases at both baseline and follow-up respectively. 
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Table 5. 5 Population characteristics stratified by CRC status and survey 

 Baseline (2010) Follow-up (2014) 
Description Ever diagnosed with CRC Ever diagnosed with CRC 
 Yes/Total % Yes/Total % 
CONTEXTUAL FACTORS     
Socioeconomic     
 Some money 42/3018 1.4 31/2392 1.3 
 Just enough money 9/1011 0.9 14/671 2.1 
 Not enough money 7/938 0.7 8/423 1.9 
Quadrant     
 South West 8/1034 0.8 6/710 0.8 
 South East 15/1175 1.3 18/799 2.3 
 North East 23/1735 1.3 24/1198 2.0 
 North West 16/1651 1.0 16/1149 1.4 
Environmental:     
Household smoking     
 Yes 6/791 0.8 5/395 1.3 
 No 55/4771 1.2 61/3538 1.7 
Location of home      
 Farm  18/2339 0.8 21/1676 1.3 
 Non-farm 43/3212 1.3 45/2236 2.0 
Household structure:     
Water source     
 Bottled Water 16/1501 1.1 18/1075 1.7 
 Deep well water (more than 
100ft) 

11/1391 0.8 13/919 1.4 

 Shallow well water (less than 
100ft) 

7/1134 0.6 8/747 1.1 

 Other sources 28/1570 1.8 27/1126 2.4 
Fuel source – Natural gas     
 Yes 51/3763 1.4 49/2637 1.9 
 No 11/1815 1.1 16/1277 1.3 
Mildew odor or musty smell in home     
 Yes 13/785 1.7 6/619 1.0 
 No 48/4628 1.0 57/3209 1.8 
INDIVIDUAL FACTORS     
Smoking Status     
 Current Smoker 5/571 0.9 3/344 0.9 
 Ex-smoker 30/2279 1.3 33/1617 2.0 
 Never smoker 26/2710 1.0 30/1937 1.5 
Alcohol consumption     
 Never 10/1166 0.9 14/738 1.9 
 Less than once a month 19/1208 1.6 17/804 2.1 
 At most 2-3 times a month 15/1355 1.1 17/938 1.8 
 At most 2-3 times a week 14/1174 1.2 11/881 1.2 
 Everyday 4/668 0.6 6/545 1.1 
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Physical activity     
 Yes 33/3084 1.1 34/2081 1.6 
 No 26/2313 1.1 31/1756 1.8 
Diabetes      
 Yes 10/663 1.5 7/391 1.8 
 No 52/4846 1.1 57/3432 1.7 
Early life-exposures:     
Ever-lived on a farm     
 Yes 54/4875 1.1 60/3481 1.7 
 No 8/705 1.1 6/448 1.3 
Lived on a farm in first year of life     
 Yes 46/4095 1.1 55/2942 1.9 
 No 16/1432 1.1 11/959 1.1 
Hereditary:      
Familial History of cancer:     
Personal history of cancer     
 Yes 62/611 10.1 37/357 10.4 
 No 0 - 27/3465 0.8 
Father ever had cancer     
 Yes 19/1652 1.2 22/1172 1.9 
 No 35/3395 1.0 40/2383 1.7 
Mother ever had cancer     
 Yes 26/1448 1.8 24/1040 2.3 
 No 34/3691 0.9 38/2587 1.5 
Sibling(s) ever had cancer     
 Yes 21/1451 1.4 22/916 2.4 
 No 32/3208 1.0 32/2387 1.3 
Occupational Exposures:     
At work, ever exposed to:     
Asbestos dust     
 Yes 3/375 0.8 3/255 1.2 
 No 56/5079 1.1 61/3549 1.7 
Diesel fumes     
 Yes 33/3266 1.0 37/2304 1.6 
 No 26/2188 1.2 27/1500 1.8 
Fungicides (to treat grain)     
 Yes 19/1951 1.0 25/1387 1.8 
 No 40/3503 1.1 39/2417 1.6 
Grain dust     
 Yes 37/3846 1.0 39/2676 1.5 
 No 22/1608 1.4 25/1128 2.2 
Pesticides (to kill plants and insects)     
 Yes 38/3293 1.2 38/2308 1.6 
 No 24/2306 1.0 28/1625 1.7 
Livestock     
 Yes 31/2994 1.0 36/2057 1.8 
 No 28/2460 1.1 28/1747 1.6 
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Mine dust     
 Yes 4/315 1.3 3/214 1.4 
 No 55/5139 1.1 61/3590 1.7 
Molds     
 Yes 21/1952 1.1 25/1427 1.8 
 No 38/3502 1.1 39/2377 1.6 
Oil/Gas well fumes     
 Yes 9/1243 0.7 13/858 1.5 
 No 50/4211 1.2 51/2946 1.7 
Radiation     
 Yes 10/465 2.2 10/343 2.9 
 No 49/4989 1.0 54/3461 1.6 
Stubble smoke     
Yes 27/2383 1.1 31/1664 1.9 
No 32/3071 1.0 33/2140 1.5 
Solvent fumes     
          Yes 18/1897 0.9 24/1397 1.7 
          No 41/3557 1.2 40/2407 1.7 
Welding fumes     
          Yes 26/2234 1.2 26/1589 1.6 
          No 33/3220 1.0 38/2215 1.7 
Wood dust     
          Yes 22/2157 1.0 25/1556 1.6 
          No 37/3297 1.1 39/2248 1.7 
Covariates     
Age (yrs.)     
 50-59 9/2134 0.4 7/1296 0.5 
 60-69 22/1762 1.2 20/1287 1.6 
 70+ 20/1116 1.8 39/1350 2.9 
BMI (kg/m2)     
 Normal (0-<25) 16/1465 1.1 20/1078 1.9 
 Overweight (25-30) 26/2284 1.1 19/1554 1.2 
 Obese (>30) 19/1560 1.2 23/1074 2.1 
Education     
 ≤ Grade 12 43/3656 1.2 46/2395 1.9 
 > Grade 12 16/1857 0.9 19/1478 1.3 
Marital status     

  Married/common law/living together 44/4586 1.0 47/3294 1.4 
Widowed/Divorced/separated/never 

married 
18/981 1.8 19/627 3.0 

Sex     
 Male 27/2824 1.0 33/1950 1.7 
 Female 35/2774 1.3 33/1982 1.7 
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Table 5. 6 Population Characteristics for CRC Cases and Non-cases at Baseline and Follow-up 

 Baseline (2010) Follow-up (2014) 
Description CRC CRC 
 Cases (%) Non-cases (%) Cases (%) Non-cases (%) 
CONTEXTUAL FACTORS     
Socioeconomic     
 Some money 42 (72.4) 2976 (60.6) 31 (58.5) 2361 (68.8) 
 Just enough money 9 (15.5) 1002 (20.4) 14 (26.4) 657 (19.1) 
 Not enough money 7 (12.1) 931 (19.0) 8 (15.1) 415 (12.1) 
Quadrant     
 South West 8 (12.9) 1026 (18.5) 6 (9.4) 704 (18.6) 
 South East 15 (24.2) 1160 (21.0) 18 (28.1) 781 (20.6) 
 North East 23 (37.1) 1712 (30.9) 24 (37.5) 1174 (31.0) 
 North West 16 (25.8) 1635 (29.5) 16 (25.0) 1133 (29.9) 
Environmental:     
Location of home      
 Farm  18 (29.5) 2321 (42.3) 21 (31.8) 1655 (43.0) 
 Non-farm 43 (70.5) 3169 (57.7) 45 (68.2) 2191 (57.0) 
INDIVIDUAL FACTORS     
Smoking Status     
 Current Smoker 26 (42.6) 566 (10.3) 3 (4.5) 341 (8.9) 
 Ex-smoker 30 (49.2) 2249 (40.9) 33 (50.0) 1584 (41.3) 
 Never smoker 5 (8.2) 2684 (48.8) 30 (45.5) 1907 (49.8) 
Early life-exposures:     

Ever-lived on a farm     
Yes 8 (12.9) 697 (12.6) 60 (90.9) 3421 (88.6) 
No 54 (87.1) 4821 (87.4) 6 (9.1) 442 (11.4) 

Lived on a farm in first year of life     
Yes 46 (74.2) 4049 (74.1) 55 (83.3) 2887 (75.3) 
No 16 (25.8) 1416 (25.9) 11 (16.7) 948 (24.7) 

Familial History of cancer: Ever had cancer     
Personal      

Yes 62 (100) 549 (10.1) 37 (57.8) 320 (8.5) 
No 0 (0.0) 4904 (89.9) 27 (42.2) 3438 (91.5) 

Father      
Yes 19 (35.2) 1633 (32.7) 22 (35.5) 1150 (32.9) 
No 35 (64.8) 3360 (67.3) 40 (64.5) 2343 (67.1) 

Mother      
Yes 26 (43.3) 1422 (28.0) 24 (38.7) 1016 (28.5) 
No 34 (56.7) 3657 (72.0) 38 (61.3) 2549 (71.5) 

Sibling(s)      
Yes 21 (39.6) 1430 (31.0) 22 (40.7) 894 (27.5) 
No 32 (60.4) 3176 (69.0) 32 (59.3) 2355 (72.5) 

Occupational Exposures:     
At work, ever exposed to:     

Asbestos dust     
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Yes 3 (5.1) 372 (6.9) 3 (4.7) 252 (6.7) 
No 56 (94.9) 5023 (93.1) 61 (95.3) 3488 (93.3) 

Diesel fumes     
Yes 33 (55.9) 3233 (59.9) 37 (57.8) 2267 (60.6) 
No 26 (44.1) 2162 (40.1) 27 (42.2) 1473 (39.4) 

Fungicides (to treat grain)     
Yes 19 (32.2) 1932 (35.8) 25 (39.1) 1362 (36.4) 
No 40 (67.8) 3463 (64.2) 39 (60.9) 2378 (63.6) 

Grain dust     
Yes 37 (62.7) 3809 (70.6) 39 (60.9) 2637 (70.5) 
No 22 (37.3) 1586 (29.4) 25 (39.1) 1103 (29.5) 

Pesticides     
Yes 38 (61.3) 3255 (58.8) 38 (57.6) 2270 (58.7) 
No 24 (38.7) 2282 (41.2) 28 (42.4) 1597 (41.3) 

Livestock     
Yes 31 (52.5) 2963 (54.9) 36 (56.3) 2021 (54.0) 
No 28 (47.5) 2432 (45.1) 28 (43.8) 1719 (46.0) 

Mine dust     
Yes 4 (6.8) 311 (5.8) 3 (4.7) 211 (5.6) 
No 55 (93.2) 5084 (94.2) 61 (95.3) 3529 (94.4) 

Molds     
Yes 21 (35.6) 1931 (35.8) 25 (39.1) 1402 (37.5) 
No 38 (64.4) 3464 (64.2) 39 (60.9) 2338 (62.5) 

Oil/Gas well fumes     
Yes 9 (15.3) 1234 (22.9) 13 (20.3) 845 (22.6) 
No 50 (84.7) 4161 (77.1) 51 (79.7) 2895 (77.4) 

Radiation     
Yes 10 (16.9) 455 (8.4) 10 (15.6) 333 (8.9) 
No 49 (83.1) 4940 (91.6) 54 (84.4) 3407 (91.1) 

Stubble smoke     
Yes 27 (45.8) 2356 (43.7) 31 (48.4) 1633 (43.7) 
No 32 (54.2) 3039 (56.3) 33 (51.6) 2107 (56.3) 

Solvent fumes     
Yes 18 (30.5) 1879 (34.8) 24 (37.5) 1373 (36.7) 
No 41 (69.5) 3516 (65.2) 40 (62.5) 2367 (63.3) 

Welding fumes     
Yes 26 (44.1) 2208 (40.9) 26 (40.6) 1563 (41.8) 
No 33 (55.9) 3187 (59.1) 38 (59.4) 2177 (58.2) 

Wood dust     
Yes 22 (37.3) 2135 (39.6) 25 (39.1) 1531 (50.9) 
No 37 (62.7) 3260 (60.4) 39 (60.9) 2209 (59.1) 

Covariates     
Age (yrs.)     
 50-59 9 (14.5) 2125 (38.4) 7 (10.6) 1289 (33.3) 
 60-69 22 (35.5) 1740 (31.4) 20 (30.3) 1267 (32.8) 
 70+ 31 (50.0) 1672 (30.2) 39 (59.1) 1311 (33.9) 
BMI (kg/m2)     
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 Normal (0-<25) 16 (26.2) 1449 (27.6) 20 (32.3) 1058 (29.0) 
 Overweight (25-30) 26 (42.6) 2258 (43.0) 19 (30.6) 1535 (42.1) 
 Obese (>30) 19 (31.1) 1541 (29.4) 23 (37.1) 1051 (28.8) 
Sex     
 Male 27 (43.5) 2797 (50.5) 33 (50.0) 1917 (49.6) 
 Female 35 (56.5) 2739 (49.5) 33 (50.0) 1949 (50.4) 

 
5.4 Research Question One (1): Prevalence Analysis 
 
 In this section, I provide results for the first research question of this thesis, which is; 

“What is the prevalence of self-reported doctor-diagnosed CRC and associated risk factors in rural 

Saskatchewan using GEE and robust variance estimation techniques?” 

5.4.1 Crude Prevalence Rate Calculation 
 

 Using equation (*) stated in section 4.5.1.1, the crude prevalence of CRC was computed. The overall 

crude prevalence of CRC was 1.1% at baseline and 1.7% at follow-up. When stratified by farm and non-farm 

residence, it was observed that the crude prevalence of CRC was almost two times lower among farm 

residents than among non-farm residents (0.8% vs. 1.3%) at baseline (Table 5.7). Among farmers who self-

reported doctor-diagnosed CRC, the highest prevalence occurred in SE (1.4%) while the least occurred in 

SW (0.3) and NW (0.3) respectively (Table 5.7). Among non-farm residents, CRC prevalence was highest in 

NW (1.5%) and least in SW (1.1%) (Table 5.7). Overall, CRC was more prevalent in the eastern part of the 

quadrant [SE (1.3%) and NE (1.3%)] as compared to the western part [(SW (0.8%) and NW (1.0%))] at 

baseline. 
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Table 5. 7 Prevalence of Colorectal Cancer Stratified by Geographic Location and Farm/Non-Farm 
Residence at Time-point 1 (Baseline). 

 Farm Dwellers Non-farm Dwellers  Total 
Quadrant of 
Saskatchewan 

Doctor-diagnosed 
self-reported 

Colorectal cancer 

Doctor-diagnosed 
self-reported 

Colorectal cancer 

Total number of 
missing 
Observations 

 
Ever-diagnosed 

Colorectal Cancer 
 Yes/Total (%) Yes/Total (%) n Yes/Total (%) 

South West 1/372 0.3 7/656 1.1 6 8/1034 0.8 
South East 6/439 1.4 9/720 1.3 16 15/1175 1.3 
North East 9/856 1.1 13/867 1.3 12 23/1735 1.3 
North West 2/672 0.3 14/965 1.5 14 16/1651 1.0 
Not identified 0/0 - 0/4 0 4 0/4  0 
Total  18/2339 0.8 43/3212 1.3  62/5599 1.1 

Due to missing observations in variables, totals may not sum to 5599  
  

 Table 5.8 provides the crude prevalence estimates of CRC stratified by quadrants at follow-up. 

Overall, SE (2.3%) reported the highest prevalence of CRC, followed by NE (2.0%) while SW (0.8%) reported 

the lowest. In particular, the highest prevalence of CRC occurred in NW and SE among farm (2.2%) and non-

farm (3.2%) residents respectively (Table 5.8). It was also observed that CRC prevalence was lowest in SW 

among both farm and non-farm rural residents (0.4% and 0.8%) respectively. 

Table 5. 8 Prevalence of Colorectal Cancer Stratified by Geographic Location and Farm/Non-Farm 
Residence at Time-point 2 (Follow-up). 

 Farm Dwellers Non-farm Dwellers  Total 
Quadrant of 
Saskatchewan 

Doctor-diagnosed 
self-reported 

Colorectal cancer 

Doctor-diagnosed 
self-reported 

Colorectal cancer 

Total number 
of missing 

Observations 

Ever diagnosed 
Colorectal Cancer 

 Yes/Total % Yes/Total % n Yes/Total (%) 
South West 1/257 0.4 5/453 1.1 5 6/710 0.8 
South East 3/317 0.9 15/476 3.2 6 18/799 2.3 
North East 13/587 2.2 11/603 1.8 8 24/1198 2.0 
North West 3/485 0.6 13/662 2.0 2 16/1149 1.4 
Not identified 1/30 - 1/47 2.1 77 2/77 2.6 
Total* 21/1676 1.3 45/2236 2.0  66/3933 1.7 

*  Overall, there is a significant difference between the prevalence of CRC among farm and non-farm dwellers using the chi-squared test 
statistic (p < 0.05). 
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 Over time, the prevalence of CRC among farm residents increased from 0.8% at baseline (Table 

5.7) to 1.3% at follow-up (Table 5.8), representing a 62.5% increment in CRC prevalence. On the contrary, 

CRC prevalence among non-farm residents increased by 43% from 1.4% at baseline to 2.0% at follow-up. 

5.4.2 Adjusted Prevalence of CRC using Marginal Modeling Approach 
 

 Adjusted prevalence of CRC was determined by fitting marginal logistic regression models (adjusted 

for covariates) using the generalized estimating equations (GEE) approach. The GEE approach is based on 

the mathematical theory of multivariate quasi-likelihood. The SAS procedure GENMOD (with a clustering 

option) was used to identify significant risk factors for CRC prevalence both at baseline and follow-up 

separately as cross-sectional studies by accounting the clustering effect of individuals within a household. 

The GENMOD procedure was also used to determine the significant risk factors for the longitudinal changes 

in CRC prevalence by accounting for two layers of complexity: first, the clustering effects of more than one 

individual in a household; second, the within-subject correlation due to repeated measures over time. The 

following sections provide the results of these methods. 

5.4.2.1 Marginal Modeling Approach for Cross-sectional Data 
 
 Baseline and follow-up survey data were separately analyzed as cross-sectional data to identify risk 

factors for CRC at the two time-points. As indicated in section 5.3.3, all the CRC cases had a previous 

personal history of cancer at baseline resulting in a frequency of zero (0) for the cell representing CRC cases 

without a previous history of cancer in a crosstab analysis. This resulted in a quasi-complete separation 

problem in the model fitting process. To avoid this, a decision was made to exclude participants’ personal 

history of cancer in all the regression models contained in this thesis. Table 5.9 provides the univariable 

associations between baseline and follow-up characteristics and CRC risk. 

 CRC cancer risk was assessed at baseline. A dose-response relationship was observed for age. 

Individuals aged 60 – 69 years were almost 3 times more likely to develop CRC as compared to those in 
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their 50’s. Adults who were 70 years or older were 4.38 times more at risk of developing CRC than adults 

aged 50 – 59 years. Marital status was protective for CRC (Table 5.9). Individuals exposed to radiation at 

work were 2.22 times more likely to develop CRC as compared to non-exposed individuals. Oil/Gas well 

fumes (OR = 0.61) and grain dust (0.70) were associated with a lower CRC risk (Table 5.9). Individuals 

whose mothers had a previous history of cancer were about 2 times more likely to be diagnosed with CRC 

as compared to individuals whose mothers had no such history (OR = 1.97). A similarly elevated risk was 

observed among individuals with a sibling(s) who had a previous history of cancer when compared with 

individuals with siblings having no such history (OR = 1.46). The use of natural gas as a household source 

of fuel more than doubled the risk of developing CRC (OR = 2.25). Increased risk of developing CRC was 

observed among individuals whose homes had mildew odor or musty smell as compared to others whose 

homes did not have such odor (OR = 1.61). 

 Households’ source of water supply was found to significantly influence the risk of CRC. Among 

households whose source of water was deep and shallow wells (as compared with bottled water), a reduced 

risk of CRC was observed (OR = 0.74 and 0.58 respectively). However, a higher risk was found among 

individuals whose households water supply was from lakes, dug-outs, rivers, etc. (OR = 1.94). Individuals 

with “just enough money” left at the end of the month were 0.64 times less likely to be diagnosed with CRC 

as compared to those with “some money”. Among individuals with “not enough money”, a similarly low risk 

of CRC was observed (OR = 0.53), although not statistically significant. 

 A similar univariable analysis was done at follow-up. Like at baseline, a dose-response relationship 

between CRC risk and age was found (Table 5.9). Individuals in their 60s were 2.91 times more likely to 

develop CRC as compared to those in their 50s. When compared with individuals aged 50 – 59 years, the 

risk of developing CRC among 70 year- or older adults was more than five-fold (OR = 5.48). Obese individuals 

were slightly more likely to develop CRC as compared to normal-weighted individuals (OR = 1.16).  Married 

or common-law partners had a reduced risk of developing CRC as compared to widowed/divorced/separated 
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or individuals who never married (OR = 0.46). Individuals with the highest education attained being Grade 

12 were more likely to be diagnosed with CRC as compared to those with higher education. While exposure 

to radiation increased CRC risk, grain dust was found to lower CRC risk (OR = 1.90 vs. OR = 0.65). Having 

a mother or sibling with a history of cancer increased the risk of developing CRC cancer as compared to 

having a mother and/or sibling with no such history (OR = 1.59 and OR = 1.81 respectively). Living on a farm 

in one’s first year of life was associated with a higher risk of developing CRC (OR = 1.64). In households 

where natural gas was the source of fuel, an increased CRC risk was observed (OR = 14.9). Quadrant was 

found to increase the risk of CRC. For example; residents of SE, NE, and NW were 2.70, 2.40, and 1.66 

times (respectively) more likely to develop CRC as compared to residents of SW (Table 5.9).  

Table 5. 9 Univariable Analysis of the Dependency of Colorectal Cancer on Contextual Factors, 
Individual Factors, and Covariates by Odds Ratio (OR), 95% CI, and P-value by Time-point 

Predictor Baseline (2010) Follow-up (2014) 
 
Description 

Unadjusted  
Odds Ratio 

(OR)* 
(95% CI) 

P-value# Unadjusted  
Odds Ratio 

(OR)* 
(95% CI) 

P-value# 

CONTEXTUAL FACTORS     
Socioeconomic  0.19  0.27 
 Some money 1.00  1.00  
 Just enough money 0.64 (0.31, 1.31)  1.62 (0.86, 3.06)  
 Not enough money 0.53 (0.24, 1.19)  1.47 (0.67, 3.21)  
Quadrant  0.50  0.13 
 South West 1.00  1.00  
 South East 1.66 (0.70, 3.94)  2.70 (1.07, 6.83)  
 North East 1.72 (0.77, 3.86)  2.40 (0.98, 5.88)  
 North West 1.25 (0.54, 2.94)  1.66 (0.67, 4.24)  
Environmental:     
Household smoking  0.33  0.50 
 Yes 0.66 (0.28, 1.53)  0.73 (0.29, 1.83)  
 No 1.00  1.00  
Location of home   0.05  0.07 
 Farm  0.57 (0.33, 0.99)  0.62 (0.37, 1.04)  
 Non-farm 1.00    
Household structure:     
Water source    0.15 
 Bottled Water 1.00 0.02 1.00  
 Deep well water (more than 100ft) 0.74 (0.34, 1.60)  0.84 (0.41, 1.72)  
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 Shallow well water (less than 100ft) 0.58 (0.24, 1.40)  0.64 (0.28, 1.47)  
 Other sources 1.69 (0.91, 3.12)  1.44 (0.79, 2.63)  
Fuel source – Natural gas  0.02  0.17 
 Yes 2.25 (1.17, 4.33)  1.49 (0.85, 2.63)  
 No 1.00    
Mildew odor or musty smell in home  0.13  0.15 
 Yes 1.61 (0.87, 2.97)  0.54 (0.23, 1.26)  
 No 1.00  1.00  
INDIVIDUAL FACTORS     
Smoking Status  0.42  0.25 
 Current Smoker 0.91 (0.35, 2.38)  0.56 (0.17, 1.84)  
 Ex-smoker 1.38 (0.81, 2.33)  1.32 (0.81, 2.18)  
 Never smoker 1.00  1.00  
Alcohol consumption  0.34  0.51 
 Never 1.00  1.00  
 Less than once a month 1.85 (0.86, 3.99)  1.12 (0.55, 2.28)  
 At most 2-3 times a month 1.30 (0.58, 2.89)  0.95 (0.47, 1.95)  
 At most 2-3 times a week 1.40 (0.62, 3.15)  0.65 (0.30, 1.45)  
 Everyday 0.70 (0.22, 2.23)  0.58 (0.22, 1.50)  
Physical activity  0.85  0.85 
 Yes 0.95 (0.56, 1.59)  1.08 (0.49, 2.38)  
 No 1.00  1.00  
Diabetes   0.32  0.75 
 Yes 1.41 (0.71, 2.79)  0.92 (0.57, 1.51)  
 No 1.00  1.00  
Early life-exposures:     
Ever-lived on a farm  0.95  0.55 
 Yes 0.98 (0.46, 2.06)  1.29 (0.55, 3.01)  
 No 1.00    
Lived on a farm in first year of life  0.99  0.14 
 Yes 1.01 (0.57, 1.78)  1.64 (0.86, 3.15)  
 No 1.00    
Hereditary      
Familial History of cancer:     
Father ever had cancer  0.70  0.67 
 Yes 1.12 (0.64, 1.96)  1.12 (0.66, 1.89)  
 No 1.00  1.00  
Mother ever had cancer  0.01  0.08 
 Yes 1.97 (1.18, 3.28)  1.59 (0.95, 2.65)  
 No 1.00    
Sibling(s) ever had cancer  0.18  0.03 
 Yes 1.46 (0.84, 2.54)  1.81 (1.05, 3.13)  
 No 1.00  1.00  
Occupational Exposures:     
At work, ever exposed to:     
Asbestos dust 0.72 (0.23, 2.32) 0.59 0.68 (0.21, 2.18) 0.52 
Diesel fumes 0.85 (0.51, 1.42) 0.53 0.89 (0.54, 1.47) 0.65 
Fungicides (to treat grain) 0.85 (0.49, 1.47) 0.57 1.12 (0.68, 1.86) 0.66 
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Grain dust 0.70 (0.41, 1.19) 0.19 0.65 (0.39, 1.08) 0.10 
Pesticides (to kill plants and insects) 1.11 (0.66, 1.86) 0.69 0.96 (0.58, 1.56) 0.85 
Livestock 0.91 (0.54, 1.52) 0.72 1.09 (0.66, 1.80) 0.73 
Mine dust 1.19 (0.43, 3.30) 0.74 0.82 (0.26, 2.65) 0.74 
Molds 0.99 (0.58, 1.69) 0.96 1.07 (0.64, 1.77) 0.80 
Oil/Gas well fumes 0.61 (0.30, 1.24) 0.17 0.87 (0.47, 1.61) 0.67 
Radiation 2.22 (1.11, 4.40) 0.02 1.90 (0.95, 3.76) 0.07 
Stubble smoke 1.09 (0.65, 1.82) 0.75 1.21 (0.74, 1.99) 0.45 
Solvent fumes 0.82 (0.47, 1.43) 0.49 1.03 (0.62, 1.72) 0.90 
Welding fumes 1.14 (0.68, 1.91) 0.63 0.95 (0.58, 1.58) 0.85 
Wood dust 0.91 (0.53, 1.54) 0.72 0.93 (0.56, 1.54) 0.76 
Covariates     
Age (yrs.)  <0.001  <0.001 
 50-59 1.00  1.00  
 60-69 2.99 (1.37, 6.50)  2.91 (1.23, 6.90)  
 70+ 4.38 (2.08, 9.21)  5.48 (2.44, 12.28)  
BMI (kg/m2)  0.95  0.17 
 Normal (0-<25) 1.00  1.00  
 Overweight (25-30) 1.04 (0.56, 1.95)  0.66 (0.35, 1.23)  
 Obese (>30) 1.12 (0.57, 2.18)  1.16 (0.63, 2.12)  
Education  0.29  0.14 
 ≤ Grade 12 1.37 (0.77, 2.44)   1.50 (0.88, 2.58)  
 > Grade 12 1.00  1.00  
Marital status  0.02  0.01 

  Married/common law/living together 0.52 (0.30, 0.90)  0.46 (0.27, 0.79)  
Widowed/Divorced/separated/single/never 

married 
1.00  1.00  

Sex  0.28  0.95 
 Male 1.00  1.00  
 Female 1.32 (0.80, 2.20)  0.98 (0.60, 1.60)  

* Clustering within households was accounted using multi-level dichotomous logistic regression using generalized estimating 
equations (GEE);  
# Statistical significance is determined at p<0.25. P-values of ORs significantly different from 1 are bold-faced. 
 

 Significant variables including important covariates in the univariable analysis were retained for the 

multivariable analysis. After adjusting for covariates, significant risk factors for the prevalence of CRC risk at 

baseline include quadrant, farm residence, water source, smoking status, family history of cancer, grain dust, 

radiation, age, BMI, education, marital status, and gender. Clustering effects of more than one individual 

within a household were accounted for using multi-level dichotomous logistic regression based on 

generalized estimating equations (GEE) approach. Table 5.10 provides the results for the multivariate 



  

99  
 

analysis of the dependency of colorectal cancer on contextual factors, individual factors, and covariates by 

adjusted odds ratio (OR), 95% CI by time-point. The last column of Table 5.10 provides the adjusted OR for 

significant determinants of CRC risk at follow-up. 

Table 5. 10 Multivariable Analysis of the Dependency of Colorectal Cancer on Contextual Factors, 
Individual Factors, and Covariates by Odds Ratio (OR), 95% CI, and P-value by Time-point 

 Baseline (2010) Follow-up (2014) 
 
Predictor 

 
#$[&'(#$)] 

Adjusted 
Odds Ratio 

(OR)* 
(95% CI) 

 
#$[&'(#$)] 

Adjusted  
Odds Ratio 

(OR)* 
(95% CI) 

CONTEXTUAL FACTORS     
Quadrant     
 South West Ref.  Ref. - 
 South East 0.58 (0.53) 1.79 (0.63, 5.09) 0.54 (0.64  1.72 (0.50, 5.98) 
 North East 0.16 (0.54) 1.18 (0.41, 3.62) 0.69 (0.59) 1.99 (0.62, 6.36) 
 North West 0.52 (0.52) 1.69 (0.61, 4.64) 0.40 (0.66) 1.50 (0.41, 5.47) 
Environmental:     
Location of home      
 Farm  -0.45 (0.39) 0.64 (0.30, 1.34) 0.01 (0.49) 1.01 (0.39, 2.64) 
 Non-farm Ref. - Ref. - 
Household structure:     
Water source     
 Bottled Water - - Ref. - 
 Deep well water (more than 100ft)   -0.07 (0.53) 0.93 (0.33, 2.62) 
 Shallow well water (less than 100ft)   -0.14 (0.55) 0.89 (0.30, 2.52) 
 Other sources   0.19 (0.49) 1.21 (0.46, 3.20) 
Fuel source – Natural gas     
 Yes - - 0.30 (0.52) 1.35 (0.49, 3.74) 
 No   Ref. - 
Mildew odor or musty smell in home     
 Yes - - -0.27 (0.55) 0.76 (0.26, 2.26) 
 No   Ref. - 
INDIVIDUAL FACTORS     
Smoking Status     
 Current Smoker 0.66 (0.54) 1.94 (0.68, 5.52) -0.45 (0.73) 0.64 (0.15, 2.68) 
 Ex-smoker 0.26 (0.36) 1.30 (0.64, 2.65) 0.48 (0.38) 1.62 (0.77, 3.42) 
 Never smoker Ref.  Ref. - 
Lived on a farm in first year of life     
 Yes - - 0.34 (0.44) 1.40 (0.59, 3.30) 
 No   Ref. - 
Hereditary:      
Familial History of cancer:     
Father ever had cancer     
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 Yes 0.07 (0.33) 1.08 (0.57, 2.04) - - 
 No Ref.    
Mother ever had cancer     
 Yes 0.87 (0.33) 2.40 (1.26, 4.57) 0.14 (0.37) 1.15 (0.55, 2.40) 
 No Ref.  Ref. - 
Sibling(s) ever had cancer     
 Yes -0.04 (0.35) 0.96 (0.48, 1.89) 0.51 (0.35) 1.67 (0.84, 3.28) 
 No Ref.  Ref. - 
Occupational Exposures:     
At work, ever exposed to:     
Grain dust -0.35 (0.39) 0.71 (0.33, 1.51) - - 
Radiation 0.84 (0.44) 2.31 (0.99, 5.41) - - 
Covariates     
Age (yrs.)     
 50-59 Ref.  Ref. - 
 60-69 1.20 (0.49) 3.31 (1.26, 8.66) 0.72 (0.60) 2.05 (0.63, 6.69) 
 70+ 1.75 (0.48) 5.73 (2.22, 14.74) 0.58 (0.58) 1.78 (0.57, 5.52) 
BMI (kg/m2)     
 Normal (0-<25) Ref.  Ref. - 
 Overweight (25-30) -0.13 (0.40) 0.88 (0.40, 1.94) -0.51 (0.50) 0.60 (0.23, 1.61) 
 Obese (>30) 0.21 (0.41) 1.23 (0.56, 2.74) 0.15 (0.47) 1.16 (0.46, 2.91) 
Education     
 ≤ Grade 12 0.27 (0.37) 1.31 (0.63, 2.74) 0.01 (0.41) 1.01 (0.45, 2.23) 
 > Grade 12 Ref.  Ref. - 
Marital status     

  Married/common law/living together -0.36 (0.33) 0.70 (0.36, 1.36) -0.52 (0.41) 0.60 (0.27, 1.34) 
Widowed/Divorced/separated/single/never 

married 
  Ref. - 

Sex     
 Male Ref.  Ref. - 
 Female 0.02 (0.35) 1.02 (0.52, 2.01) -0.64 (0.42) 0.53 (0.23, 1.19) 

* Clustering within households was accounted using multi-level univariable dichotomous logistic regression using generalized 
estimating equations (GEE);  
# Statistical significance is determined at p<0.25. P-values of ORs significantly different from 1 are bold-faced. 
 

 At the end of the model building process, the following two final models were arrived at, one 

for the baseline and follow-up analysis respectively. No significant interactions and/or confounders 

were found. 
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Final Model 1: Probability of CRC at Baseline 

+,-./[01(CRC = 1)] = 0.72 + 0.58*(SE) + 0.16*(NE) + 0.52*(NW) – 0.45*(Farm) + 0.66*(Current 

smoker) + 0.26*(Ex-smoker) + 0.07*(Father ever had cancer) + 0.87*(Mother ever had cancer) – 

0.04*(Sibling ever had cancer) – 0.35*(Exposure to grain dust) + 0.84*( Exposure to radiation) + 

1.20*(Age 60 – 69) + 1.75*(Age ³ 70) – 0.13*(Overweight) + 0.21*(Obese) + 0.27*(£ Grade 12) – 

0.36*(Married or common-law) + 0.02*(Female gender) (Table 5.10). 

Final Model 1: Probability of CRC at Follow-up 

+,-./[01(CRC = 1)] = - 0.54 + 0.54*(SE) + 0.69*(NE) + 0.40*(NW) + 0.01*(Farm) – 0.07*(Deep well) – 

0.14*(Shallow well) + 0.19*(Other source) + 0.30*(Natural Gas) – 0.27*(Mildew odor or musty smell in home) 

– 0.45*(Current smoker) + 0.48*(Ex-smoker) + 0.34*(Lived on farm in first year of life) + 0.14*(Mother ever 

had cancer) + 0.51*(Sibling ever had cancer) + 0.72*(Age 60 – 69) + 0.58*(Age ³ 70) – 0.51*(Overweight) + 

0.51*(Obese) + 0.01*(£ Grade 12) – 0.52*(Married or common-law) – 0.64*(Female gender) (Table 5.10). 

 For the purposes of prediction, a decision was made to fit a model containing only variables with 

p<0.05 or borderline significance and variables of rural exposure importance such as location of home (farm 

vs non-farm and rural geographical location (quadrant). The resulting model for baseline variables is shown 

below in Table 5.11 and no significant interaction was found. The corresponding model for follow-up was not 

fitted because no variable had p<0.05 or borderline significance.   

Table 5. 11 Predicting Probability of CRC at baseline 

 Baseline (2010) 
 
Predictor 

 
#$[&'(#$)] 

 
P-value 

Adjusted 
Odds Ratio (OR)* 

(95% CI) 
Intercept -3.18 (0.44) <0.001 0.04 (0.02, 0.10) 
Quadrant    
 South West Ref.   
 South East -0.18 (0.44) 0.68 0.83 (0.35, 1.98) 
 North East 0.21 (0.39) 0.59 1.23 (0.58, 2.62) 
 North West 0.30 (0.34) 0.38 1.35 (0.69, 2.64) 
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Location of home     
 Farm  0.40 (0.30) 0.18 1.49 (0.84, 2.65) 
 Non-farm Ref.  - 
Age    
 50 - 59  Ref.  - 
 60 - 69  -1.66 (0.40) <0.001 0.19 (0.09, 0.41) 
 70+ -0.66 (0.30) 0.03 0.52 (0.29, 0.93) 
Gender    
 Male Ref.  - 
 Female -0.18 (0.27) 0.02 0.55 (0.33, 0.94) 
Exposure to Radiation    
 Yes -0.62 (0.37) 0.10 0.54 (0.26, 1.12) 
 No Ref.  - 

 

The logit form of the model contained in Table 5.11 is thus written as follows: 

Final Model 1 for Prediction: Probability of CRC at Baseline 

+,-./[01(CRC = 1)] = -3.18 – 0.18*(SE) + 0.21*(NE) + 0.30*(NW) – 0.40*(Farm) – 0.59*(Mother ever had 

cancer) – 0.62*(Exposure to radiation) – 1.66*(Age 60 – 69) – 0.66*(Age ³ 70) – 0.18*(Female gender). 

5.4.2.2 Marginal Modeling Approach for Longitudinal Changes in CRC Prevalence 
 
 To determine the longitudinal changes in CRC prevalence, the marginal modeling approach used for 

analyzing cross-sectional data was extended to longitudinal data analysis. Information on baseline and 

follow-up characteristics were combined into a single longitudinal data file using PERSON ID as the matching 

variable. ORs were calculated with the help of the GENMOD procedure in SAS using the GEE approach. An 

exchangeable correlation matrix was specified, and the corresponding convergence criteria satisfied with the 

Hessian matrix being positive definite. 

 Standard model building procedures were used in the selection of variables for the final model. 

Univariable analysis was done using a dichotomous CRC outcome (yes/no) with putative risk factors for CRC 

prevalence. Variables with p<0.25 together with biological or clinical relevance were candidates for the 

multivariable model. Table 5.12 provides the crude and adjusted ORs associated with determinants of the 

longitudinal changes in CRC prevalence. 
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 In the final multivariable model, significant determinants of CRC prevalence included quadrant, 

location of home (farm or non-farm), water source, use of natural gas, smoking status, having a mother or 

sibling with a previous history of cancer, exposure to grain dust and radiation, age, BMI, educational and 

marital status, and gender.  

 The odds of developing CRC among residents in SE, NE, and NW were 2.06, 1.72, and 1.18 

(respectively) times higher as compared to residents in SW. Farm residents were at a higher risk of 

developing CRC as compared to non-farm residents (OR = 1.26). Deep well (OR = 0.70) and Shallow well 

(OR = 0.76) water were associated with a lower risk of developing CRC as compared to bottled water. 

However, the consumption of water from rivers, springs, dugouts, and lakes had a higher risk of developing 

CRC as compared to the consumption of bottled water (OR = 1.27). Households using natural gas as fuel 

were 1.74 times more likely to be diagnosed with CRC as compared to those who did not. Being a current 

smoker was associated with slightly low risk while ex-smokers had an elevated risk of being diagnosed with 

CRC as compared to never smokers (OR = 0.98 vs. 1.74). Individuals with mothers or siblings with a previous 

history of cancer were 1.62 and 1.29 (respectively) more likely to be diagnosed with CRC as compared to 

individuals having mothers/siblings with no such history. While exposure to radiation was associated with 

higher odds of developing CRC (OR = 1.79; 95% CI: 0.87, 3.69), exposure to grain dust was associated with 

lower odds (OR = 0.76; 95% CI: 0.42, 1.39), although these associations were not statistically significant.  

 A significant dose-response relationship between CRC risk and age was observed. Individuals aged 

60 – 69 were about two-and-a-half times more likely to be diagnosed with CRC as compared individuals aged 

50 – 59 years (OR = 2.40; 95% CI: 1.30 – 4.44). Similarly, individuals aged 70 years or older had an even 

higher risk of developing CRC relative to those aged 50 – 59 (OR = 3.73; 95% CI: 1.99 – 6.98). Obese 

individuals were 1.17 times more likely to be diagnosed with CRC as compared to normal-weighted 

individuals (Table 5.12). Lower education status was associated with a higher risk of developing CRC when 

compared with higher education status (OR = 1.05). Marital status was found to be protective against CRC 
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risk (OR = 0.61). Females were associated with lower risk of being diagnosed with CRC as compared to 

males although this association was not significant (OR = 0.84) (Table 5.12). 

Table 5. 12 Longitudinal Determinants of CRC Prevalence by Odds Ratio (OR), 95% CI, and P-value 

 Univariable  Multivariable 
 
Predictor at baseline and follow-up 

Crude  
Odds Ratio (OR)* 

(95% CI) 

P-value Adjusted  
Odds Ratio (OR)* 

(95% CI) 
CONTEXTUAL FACTORS    
Socioeconomic  0.78  
 Some money 1.00   
 Just enough money 0.98 (0.64, 1.51)  - 
 Not enough money 0.83 (0.48, 1.41)   
Quadrant  0.07  
 South West 1.00  1.00 
 South East 2.18 (1.02, 4.66)  2.06 (0.88, 4.82) 
 North East 1.99 (0.96, 4.12)  1.71 (0.77, 3.81) 
 North West 1.30 (0.59, 2.84)  1.18 (0.48, 2.90) 
Environmental:    
Household smoking  0.18  
 Yes 0.66 (0.37, 1.21)  - 
 No 1.00   
Location of home   0.05  
 Farm  0.69 (0.46, 1.03)  1.26 (0.64, 2.48) 
 Non-farm 1.00  1.00 
Household structure:    
Water source  0.02  
 Bottled Water 1.00  1.00 
 Deep well water (more than 100ft) 0.87 (0.49, 1.56)  0.70 (0.43, 1.14) 
 Shallow well water (less than 100ft) 0.68 (0.41, 1.13)  0.76 (0.41, 1.38) 
 Other sources 1.57 (1.02, 2.46)  1.27 (0.83, 1.94) 
Fuel source – Natural gas  0.08  
 Yes 1.47 (0.91, 2.39)  1.74 (0.88, 3.43) 
 No 1.00  1.00 
Mildew odor or musty smell in home  0.30  
 Yes 1.28 (0.85, 1.95)  - 
 No 1.00   
INDIVIDUAL FACTORS    
Smoking Status  0.03  
 Current Smoker 0.62 (0.22, 1.70)  0.98 (0.40, 2.44) 
 Ex-smoker 1.53 (0.99, 2.37)  1.37 (0.79, 2.39) 
 Never smoker 1.00  1.00 
Alcohol consumption  0.33  
 Never 1.00   
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 Less than once a month 1.39 (0.82, 2.35)  - 
 At most 2-3 times a month 1.20 (0.66, 2.19)   
 At most 2-3 times a week 0.79 (0.37, 1.67)   
 Everyday 0.84 (0.42, 1.67)   
Physical activity  0.42  
 Yes 0.86 (0.61, 1.23)  - 
 No 1.00   
Diabetes   0.60  
 Yes 1.20 (0.64, 2.26)  - 
 No 1.00   
Early life-exposures:    
Ever-lived on a farm  0.82  
 Yes 1.07 (0.60, 1.92)  - 
 No 1.00   
Lived on a farm in first year of life  0.29  
 Yes 1.30 (0.77, 2.22)  - 
 No 1.00   
Hereditary:     
Familial History of cancer:    
Father ever had cancer  0.68  
 Yes 1.10 (0.69, 1.77)  - 
 No 1.00   
Mother ever had cancer  0.03  
 Yes 1.70 (1.08, 2.66)  1.62 (0.96, 2.74) 
 No 1.00  1.00 
Sibling(s) ever had cancer  0.14  
 Yes 1.48 (0.91, 2.42)  1.29 (0.76, 2.18) 
 No 1.00   
Occupational Exposures:    
At work, ever exposed to:    
Asbestos dust 0.69 (0.25, 1.97) 0.42 - 
Diesel fumes 0.87 (0.56, 1.35) 0.53 - 
Fungicides (to treat grain) 0.95 (0.61, 1.50) 0.85 - 
Grain dust 0.69 (0.44, 1.08) 0.13 0.76 (0.42, 1.39) 
Pesticides (to kill plants and insects) 0.73 (0.51, 1.04) 0.04 - 
Livestock 0.98 (0.64, 1.52) 0.94 - 
Mine dust 1.20 (0.54, 2.69) 0.68 - 
Molds 0.99 (0.63, 1.57) 0.98 - 
Oil/Gas well fumes 0.75 (0.44, 1.28) 0.25 - 
Radiation 2.18 (1.22, 3.91) 0.05 1.79 (0.87, 3.69) 
Stubble smoke 1.15 (0.75, 1.78) 0.53 - 
Solvent fumes 0.93 (0.59, 1.47) 0.77 - 
Welding fumes 1.04 (0.67, 1.61) 0.87 - 
Wood dust 0.99 (0.63, 1.55) 0.97 - 
Covariates    
Age (yrs.)  <0.001  
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 50-59 1.00  1.00 
 60-69 3.07 (1.67, 5.66)  2.40 (1.30, 4.44) 
 70+ 4.82 (2.59, 8.99)  3.73 (1.99, 6.98) 
BMI (kg/m2)  0.27  
 Normal (0-<25) 1.00  1.00 
 Overweight (25-30) 0.83 (0.49, 1.39)  0.86 (0.50, 1.52) 
 Obese (>30) 1.22 (0.66, 2.24)  1.17 (0.62, 2.18) 
Education  0.21  
 ≤ Grade 12 1.34 (0.81, 2.24)  1.05 (0.60, 1.87) 
 > Grade 12 1.00   
Marital status  0.01  

  Married/common law/living together 0.51 (0.32, 0.80)  0.61 (0.37, 1.01) 
Widowed/Divorced/separated/single/never 

married 
1.00   

Sex  0.66  
 Male 1.00   
 Female 1.10 (0.72, 1.68)  0.84 (0.49, 1.45) 

* Repeated measurements for individuals was accounted for using PROC GENMOD using generalized estimating             
equations (GEE) 
 

For the purposes of prediction, a decision was also made to fit another model that will include only 

variables with p<0.05 or borderline significance as contained in the model of Table 5.10. The resulting 

model is presented Table 5.13 below. No significant interactions were found. 

Table 5. 13 Predicting Probability of CRC for Longitudinal Changes 

 
Predictor 

 
#$[&'(#$)] 

 
P-value 

Adjusted 
Odds Ratio (OR)* 

(95% CI) 
Intercept -6.24 (0.49) <0.001 0.002 (0.0008, 0.005) 
Quadrant    
 South West Ref.  -  
 South East 0.75 (0.39) 0.06 2.11 (0.98, 4.51) 
 North East 0.65 (0.37) 0.08 1.91 (0.93, 3.92) 
 North West 0.06 (0.41) 0.88 1.06 (0.47, 2.38) 
Location of home     
 Farm  -0.15 (0.27) 0.59 0.86 (0.50, 1.47) 
 Non-farm Ref.  -  
Age    
 50 - 59  Ref.  -  
 60 - 69  1.06 (0.34) <0.001 2.90 (1.49, 5.64) 
 70+ 1.64 (0.34) <0.001 5.20 (2.67, 10.13) 
Gender    
 Male Ref.  -  
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 Female 0.10 (0.22) 0.67 1.10 (0.71, 1.71) 
Exposure to Radiation    
 Yes 0.60 (0.31) 0.06 1.83 (0.99, 3.39) 
 No Ref.  -  
Natural Gas   -  
 Yes 0.35 (0.31) 0.26       1.41 (0.77, 2.60) 
 No Ref.  -  

 

Final Model 1 for Prediction: Probability of CRC for Longitudinal Changes 

+,-./[01(CRC = 1)] = –6.24 + 0.74*(SE) + 0.65*(NE) + 0.06*(NW) – 0.15*(Farm) + 0.37*(Mother ever had 

cancer) + 0.60*(Exposure to radiation) + 1.06*(Age 60 – 69) + 1.65*(Age ³ 70) + 0.10*(Female gender) + 

0.35*(Natural gas). 

5.5 Research Question Two (2): Incidence Analysis 
 
 In this section, I provide results for objective 1 of this thesis, by answering the research question; 

“What is the incidence of self-reported doctor-diagnosed CRC in rural Saskatchewan 

using survival analysis techniques?” 

5.5.1 Crude Incidence Calculation 
 

 Using equation (**) specified in Section 4.6.3.1.1, the crude incidence rate of CRC was calculated. 

For the incidence analysis, the focus was on self-reported doctor diagnosed new CRC cases over the four-

year period (2010 – 2014). Figure 4.2 illustrates the selection of the valid sample size for the calculation of 

the crude incidence rate. Table 5.14 provides incident cases of CRC stratified by time-point/wave. The results 

show that, at the end of the follow-up survey, 27 newly diagnosed CRC cases (i.e. incident cases) were 

observed. There were 3,381 censored observations at this period. The crude incidence rate of CRC is 

therefore computed as; 

Crude incidence	= 45
6789 	x	100 = 0.8%. 

 



  

108  
 

Table 5. 14 New CRC cases stratified by time-point/waves 

Time-point/Wave  Event/New cases  Censored cases Total 
Baseline (2010) * 3,435 3,435 
    
Follow-up (2014) 27 3,381 3,408 
    
Total 27 6,816 6,843 

 

5.5.2 Adjusted Incidence Analysis using Cox’s Proportional Hazards Regression Model 
 

 To determine risk factors for the incidence of CRC, the Cox proportional hazards (PH) regression 

model was used. The PH model used primarily to establish the most parsimonious relationship between CRC 

incidence and risk factors. At the univariable stage, the proportionality assumption was satisfied for all 

covariates and crude hazard rates were calculated.  Variables with p-value <0.25 were candidates for the 

multivariable Cox PH regression model. Clinically relevant variables were retained in the multivariable models 

even when they were not significant during the univariable analysis. Standard model building techniques 

were used in the selection of the final multivariable model. Statistical significance was defined at p-value 

<0.05. Fitted models were tested using Schoenfeld residuals. 

 Various STATA commands were used to perform the survival analysis. The STSET was used to 

declare the CRC incidence data as survival-time data. The STCOX command was used to fit the proportional 

hazards model. Clustering effects of more than one individual in a household were accounted for using the 

clustered estimator command VCE(CLUSTER HOUSEID), where HOUSEID is the within-subject variable in 

this study. The STPHTEST command was used to test the proportional hazards model assumption.  

 In this thesis, the exact time of the occurrence of colorectal cancer (CRC) was not known. However, 

the time interval in which the disease could have occurred is known. This becomes a discrete process and 

results in interval censored variables. As a result, a discrete-time survival analysis where each person is 

followed equally for four (4) years was conducted. The results show that quadrant, use of natural gas, living 
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on a farm in one’s first year of life, exposure to oil/gas well fumes and radiation, increasing age, increasing 

BMI, and female gender predict CRC incidence. Table 5.15 provides the crude and adjusted hazard ratios 

(HR) associated with risk factors for the incidence of CRC.  

 When adjusted for other covariates in the PH model, a dose-response relationship was observed 

between age and the time-to-CRC. The hazard ratio increased by 1.13 and 3.22 times in individuals aged 60 

– 69 and 70 or older respectively as compared to people aged 50-59. The HR of CRC incidence for 

overweight individuals reduced marginally by 9% compared to normal weighted individuals (HR = 0.91). This 

reduction was not statistically significant (Table 5.15). The HR of CRC was 1.29 times higher among obese 

individuals as compared to normal weighted individuals. The HR of CRC among residents of SE, NE, and 

NW were 3.2, 4.10, and 1.71 times higher than among residents in the SW (Table 5.15). 

 The impact of occupational exposure on the time until the development of CRC was investigated. 

Exposure to oil/gas well fumes almost doubled the HR of CRC (HR = 1.81). A similar elevated HR of CRC 

was associated with exposure to radiation as compared (HR = 1.69) individuals who were not exposed. Living 

on a farm during one’s first year of life increased the HR of CRC by 1.55 times relative to individuals who did 

not live their first year of life on a farm. The HR of CRC among households that use natural gas was 1.62 

times higher than those that did not. There was a significant interaction between quadrant and gender. 

However, the confidence interval associated with this interaction term was very wide and also rendered the 

Cox PH regression coefficients highly unstable. A decision was made to exclude the interaction from the final 

Cox’s PH multivariable model and the results not presented.  
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Table 5. 15 Cox PH regression analysis of CRC incidence during 4 years of follow-up according to 
baseline characteristics  

 Univariable  Multivariable 
 
Predictor at baseline 

Crude  
HR  

(95% CI) 

P-value Adjusted  
HR 

(95% CI) 
CONTEXTUAL FACTORS    
Socioeconomic  0.99  
 Some money Ref.  * 
 Just enough money 2.86 (0.84 – 13.66)   
 Not enough money 3.82 (1.26 – 21.52)   
Quadrant  0.16  
 South West Ref.  Ref. 
 South East 3.09 (0.64 – 14.78)  3.2 (0.68 – 15.18) 
 North East 3.74 (0.84 – 16.45)  4.10 (0.95 – 17.72) 
 North West 1.52 (0.30 – 7.80)  1.71 (0.33 – 8.86) 
Environmental:    
Household smoking  0.92  
 Yes 0.94 (0.38 – 3.10)  * 
 No Ref.   
Location of home   0.41  
 Farm  0.72 (0.33 – 1.57)  * 
 Non-farm Ref.   
Household structure:    
Water source  0.68  
 Bottled Water Ref.  * 
 Deep well water (more than 100ft) 0.95 (0.37 – 2.45)   
 Shallow well water (less than 100ft) 0.57 (0.18 – 1.83)   
 Other sources 0.61 (0.21 – 1.82)   
Fuel source – Natural gas  0.23  
 Yes 1.75 (0.71 – 4.31)  1.62 (0.64 – 4.14) 
 No Ref.  Ref. 
Mildew odor or musty smell in home  0.16  
 Yes 0.24 (0.03 – 1.75)  * 
 No Ref.   
INDIVIDUAL FACTORS    
Smoking Status  0.85  
 Current Smoker 1.33 (0.38 – 4.62)  * 
 Ex-smoker 0.92 (0.41 – 2.06)   
 Never smoker Ref.   
Alcohol consumption  0.29  
 Never Ref.  * 
 Less than once a month 0.38 (0.12 – 1.23)   
 At most 2-3 times a month 0.40 (0.14 – 1.17)   
 At most 2-3 times a week 0.63 (0.24 – 1.69)   
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 Everyday 0.32 (0.07 – 1.49)   
Physical activity  0.33 * 
 Yes 0.68 (0.32 – 1.47)   
 No Ref.   
Diabetes   0.57  
 Yes 0.67 (0.18 – 2.80)  * 
 No Ref.   
Early life-exposures:    
Ever-lived on a farm  0.44  
 Yes 1.76 (0.42 – 7.41)  * 
 No Ref.   
Lived on a farm in first year of life  0.21  
 Yes 1.98 (0.68 – 5.71)  1.55 (0.53 – 4.52) 
 No Ref.   
Hereditary:     
Familial History of cancer:    
Father ever had cancer  0.52  
 Yes 1.31 (0.58 – 2.98)  * 
 No Ref.   
Mother ever had cancer  0.32  
 Yes 0.60 (0.22 – 1.63)  * 
 No Ref.   
Sibling(s) ever had cancer  0.30  
 Yes 1.63 (0.65 – 4.12)  * 
 No Ref.   
Occupational Exposures:    
At work, ever exposed to:    
Asbestos dust 0.53 (0.07 – 3.92) 0.54  
Diesel fumes 1.11 (0.51 – 2.42) 0.78  
Fungicides (to treat grain) 1.36 (0.64 – 2.89) 0.42  
Grain dust 0.83 (0.37 – 1.83) 0.64  
Pesticides (to kill plants and insects) 0.95 (0.44 – 2.04) 0.90  
Livestock 1.02 (0.48 – 2.19) 0.95  
Mine dust 1.31 (0.31 – 5.48) 0.72 * 
Molds 0.71 (0.31 – 1.62) 0.41 * 
Oil/Gas well fumes 1.71 (0.77 – 3.80) 0.19 1.81 (0.77 – 4.29) 
Radiation 2.24 (0.85 – 5.89) 0.10 1.69 (0.62 – 4.64) 
Stubble smoke 1.35 (0.64 – 2.87) 0.43 * 
Solvent fumes 1.4 (0.66 – 2.99) 0.38 * 
Welding fumes 0.83 (0.38 – 1.80) 0.63 * 
Wood dust 0.99 (0.45 – 2.13) 0.98 * 
Covariates    
Age (yrs.)  0.01  
 50-59 Ref.  Ref. 
 60-69 1.19 (0.39 – 3.69)  1.13 (0.37 – 3.44) 
 70+ 3.72 (1.45 – 9.54)  3.22 (1.21 – 8.58) 
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BMI (kg/m2)  0.89  
 Normal (0-<25) Ref.  Ref. 
 Overweight (25-30) 0.91 (0.35 – 2.33)  0.97 (0.36 – 2.64) 
 Obese (>30) 1.12 (0.42 – 3.01)  1.29 (0.43 – 3.89) 
Education  0.54  
 ≤ Grade 12 Ref.  * 
 > Grade 12 0.77 (0.34 – 1.77)   
Marital status  0.59  

  Married/common law/living together 0.77 (0.29 – 2.02)  * 
Widowed/Divorced/separated/single/never 

married 
Ref.   

Sex  0.57  
 Male Ref.  Ref. 
 Female 0.81 (0.38 – 1.72)  1.01 (0.43 – 2.37) 
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5.6 Conclusion: Summarizing methods used for data analysis 

 
 The methods used to answer the research questions in this thesis are summarized in Table 5.16. 

Table 5. 16 Summarizing methods used for data analysis 

 Methodology Methods of 
parameter 
estimation 

Software Procedure/Command 

Research question 1     
Crude prevalence X individuals in population with 

CRC at a given 
time)/(population) 

 
* 

Manually 
by hand 

 
* 

     
Adjusted prevalence 
(for cross-sectional 
and longitudinal data) 

Generalized estimating 
equation (GEE) with an 
exchangeable correlation 
matrix 

Multivariate 
quasi-likelihood 

SAS 
SPSS 

GENMOD 
GENLIN 

     
Research question 2     
     
Crude incidence Newly diagnosed 

cases/population at risk 
* Manually 

by hand 
* 

     
Adjusted Incidence Cox’s proportional hazard 

model 
Partial-likelihood STATA STSET 

STCOX 
VCE(CLUSTER _) 
STPHTEST 
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CHAPTER 6 – DISCUSSION  
6.1 Introduction 
  
 The Saskatchewan Rural Health Study (SRHS) was a prospective cohort study with a baseline survey conducted 

in 2010 and a four-year follow-up in 2014. Individuals aged 50 years or older were selected because that is the population 

we considered to be at risk and also the youngest CRC case was aged 50 years. Baseline and follow-up data sets were 

first analyzed separately to determine; (1) the crude prevalence of CRC and (2) risk factors for the adjusted prevalence of 

CRC at the two time-points. The data sets were then combined to determine the longitudinal changes in CRC prevalence 

over the period 2010 to 2014. Crude and adjusted incidences of CRC incidence were also estimated using the SRHS data 

set. Data analysis contained in this thesis was based on Health Canada’s “Population Health Framework” (PHF) which 

proposes that individual and contextual factors may interact to produce different risk levels of an adverse health outcome 

[138]. The following sections summarize/discuss the results of the current study. Section 6.1 and 6.2 respectively discuss 

results for the prevalence and longitudinal changes in CRC prevalence as well as risk factors associated with them. A 

similar discussion for CRC incidence is provided in Section 6.3. The study strengths and limitations are stated in Section 

6.3 while the conclusion is provided in Section 6.4. 

6.2 Prevalence 
 
 In total 62 CRC cases were reported at baseline and 66 at follow-up. Majority of the CRC cases were farm resident 

at both time-points. The crude prevalence of CRC cancer in the current study was 1.1% at baseline and 1.7% at follow-up. 

A meta-analysis by Heitman et al reveals that crude prevalence rates of CRC range from 0 to 1.68% [142]. Our crude 

prevalence rate of CRC is consistent with this finding. Johnson et al [148] and Mehran et al [151] both reported a crude 

prevalence rate of 1.1% which matches the estimate at baseline in the current study. Similarly, the crude prevalence of 

CRC at follow-up (1.7%) reported in this thesis is similar to the 1.68% reported by Disario et al [150]. Our observations 

show a slightly higher crude prevalence of CRC as compared to recently reported rates several major North-American 

studies. Spellman et al [143], Kim et al [144], Rex et al [145], Stevens et al [146], Prajapati et al [147], Imperiale et al [149] 

and Pickhardt et al [152] reported crude CRC prevalence rates as 0.48, 0.13, 0.20, 0.37, 0.39, 0.70, and 0.16 respectively. 

The reason for the difference in crude prevalence estimates might be due to differences in the definition of CRC and the 
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age distribution of study participants. For example, Kim et al [144] defined CRC based on the detection of advanced 

neoplasia (i.e. adenomas and carcinomas) as well as the number of identified polyps while Imperiale et al [149] identified 

CRC cases by first subjecting study participants to a standard Hemoccult II test and then colonoscopy. However, in the 

current study, CRC status was self-reported doctor diagnosed. On the other hand, Heitman et al [142] reported a crude 

prevalence of CRC of 0.7% in a study population aged 65 years or older while in the current study, participants aged 50 or 

older were analyzed. We discuss below risk factors for CRC. 

6.2.1 Risk factors for CRC prevalence and longitudinal changes in prevalence 
  

6.2.1.1 Environmental/Contextual factors  
 
 At baseline, the prevalence of CRC among farm residents was 0.8% among farm residents and 1.4% among non-

farm residents. At follow-up, the prevalence of CRC among farm residents increased to 1.3% and that among non-farm 

residents increased to 2%. Although numerical differences in the crude prevalence of CRC was observed between farm 

and non-farm residents, a statistically significant difference could not be established (p>0.05). In the univariate analysis, 

farm residence was significantly associated with lower CRC risk both at baseline and at follow-up. A similar relationship 

was found between farm residence and CRC prevalence at baseline in the multivariable analysis after accounting for other 

covariates even though not significant (OR = 0.64, 95% CI: 0.30, 1.34). We hypothesized that farm residence would 

increase the risk of CRC cancer. After the multivariable adjustment, our results did not support our original hypothesis.  

 Quadrant was found to influence CRC risk. CRC was found to be more prevalent in the eastern part of the Province 

of Saskatchewan as compared to the western part. The reason for this trend is remains unknown although we suspect it is 

due to the fact that majority (51.92%) of the older adults live in Eastern part as compared to those living in the Western 

part (48.08%). This reflects differences in the distribution of CRC prevalence within the same geographic region. This 

finding was supported by other studies that reported greater variations in CRC prevalence within the same geographical 

regions [153]. For instance, in Europe, an estimated overall CRC prevalence among men aged 50-74 years varied from 

0.19% in Albania to about 1.01% in Slovenia [153]. Higher prevalence rates were reported among men in The Czech 

Republic (1.13%), Slovakia (1.19%), and Hungary (1.27%), and among women, for Denmark (0.66%), Norway, and The 

Netherlands (0.64%, both) [153]. In the multivariable analysis, there was a higher risk of CRC in the Eastern quadrants 
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than the western quadrants although this relationship was not statistically significant. The reason for these differences is 

not completely understood. To the best of our knowledge, this is the first study in Canada to explore the prevalence of CRC 

in rural Saskatchewan. 

 CRC was more prevalent in non-smoking households than in-home smoking households. Having a householder 

member who smoked within the household was associated with a lower risk of CRC at baseline and follow-up (OR = 0.66 

and OR = 0.73 respectively). This relationship was not significant in the univariable analysis. Our findings contradicted 

findings in recent studies that linked exposure to second-hand smoke (SHS) to a higher risk of developing CRC [156 – 

158]. In all three studies, higher risks were reported among never smokers who were exposed to higher volumes of SHS. 

It is been argued that carcinogen from cigarette and tobacco smoke can reach the bowel through circulation after transoral 

uptake [159] or by directly inhaling smoke from cigarette [160].   

 In the current study, we observed that the consumption of shallow well reduced the risk of CRC although this was 

not significant in the multivariable analysis (OR = 0.89, 95% CI: 0.30 – 2.52). This relationship contradicted the findings of 

one study [161]. Zhou et al reported that the consumption of “surface water” was a risk factor for CRC [161]. Our observation 

also showed that drinking water from rivers, ponds, and/or dugouts was associated with an increased the risk of CRC 

though this relationship was not statistically significant. This was supported by findings from different studies including 

Zhou et al [161]. In [161], the authors reported higher CRC risk for people who drink river (RR = 7.94) and pond (RR = 

7.70) water. This could be due to the microcystins (a blue-greenish algal toxin) in water from ponds, lakes, and dugouts 

that causes CRC [161]. The positive detection rate (>59pg/ml) of microcystin in pond and river water is reported to be 

17.14% and 36.23% respectively. 

6.2.1.2 Lifestyle/individual factors 
 
 After the multivariable adjustment, a dose-response relationship was found between CRC risk and smoking. Ex- 

and current smokers were 1.30 and 1.94 times more likely to be diagnosed with CRC as compared to non-smokers. Our 

implication of smoke as a risk factor for CRC risk was supported by similar studies in the literature. For instance, Huxley et 

al. [109] and Tsoi et al. [112] reported a 16% and 20% increased CRC risk among current smokers as compared to non-

smokers respectively. Liang et al. reported a 50% increased risk among smokers as compared to non-smokers [113].  
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6.2.1.3 Early life exposures 
 
 In a univariable analysis, we observed that individuals who ever lived on a farm or lived their first-year of life on a 

farm at follow-up were associated with higher prevalence of CRC. After adjusting for other variables in a multivariable 

model, individuals who lived their first year of life on farm were still associated with increased CRC prevalence although 

the relationship was not significant. For the purposes of the current study, to my knowledge, I could not find any previous 

study that showed the direct relationship between living one’s first year of life on a farm and the prevalence of CRC.  

6.2.1.4 Occupational Exposures 
 
 Our study showed that exposure to grain dust, oil/gas well fumes, and radiation were associated with the 

prevalence of CRC in a univariable analysis. However, when we adjusted for variables in the model, only exposure to grain 

dust and radiation were found to be associated with CRC prevalence still, even though these relationships were not 

statistically significant. Individuals who were exposed to grain dust were less likely to be diagnosed with CRC than 

individuals who did not. We could not find a similar study in the literature to support or challenge this finding. However, in 

a subtle contradiction, Peters et al [162] reported that colorectal cancers were associated with jobs at which fumes, and 

dust are inhaled especially if jobs were held for longer periods. Radiation was associated with elevated risk of CRC 

prevalence. Our finding was supported by other studies in the literature including that of the American Gastroenterological 

Association (AGA), which reported that radiation is a risk factor in the natural history of CRC [163]. 

6.2.1.5 Family history of Cancer 
 
 In a univariable analysis, we observed that individuals whose first-degree relatives (FDR) (i.e. father, mother, and 

sibling) had a previous history of cancer were more likely to be diagnosed with CRC than individuals with FDR who had no 

such history both at baseline and follow-up. This agreed with the findings in other studies. One study used data from the 

Swedish Family Cancer database and reported that a parent with a history of cancer (especially CRC) was associated with 

a 2-fold risk of being diagnosed with CRC, and the risk triples if the parent was diagnosed before 60 years [164]. After 

adjusting for other variables, only persons with mothers having a history of cancer were significantly associated with CRC 

prevalence. Similar to the findings of this study, a Chinese study of women reported a significant association between CRC 
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prevalence and having a parent with a history of CRC [165]. However, no association was found between CRC prevalence 

and having a sibling who has a history of CRC [165]. 

6.2.1.6 Other risk factors (Increasing age and gender) 
 
 After a multivariable adjustment, our observations revealed a significant (p<0.05) dose-response relationship 

between age and CRC prevalence at baseline. This finding agrees with findings reported in other studies [84-86]. In the 

current study, 100% of CRC cases were 50 years older, which is in tandem with a report that over 90% of CRC cases 

occur in individuals aged 50 years or older [86]. However, there is an emerging body of knowledge reporting that CRC 

prevalence is increasing for younger age cohorts (i.e. among individuals aged 40 or younger). The mean age at diagnosis 

was 69 years at baseline and 71 at follow-up (males and females combined). This is similar to the mean age at diagnosis 

of CRC reported by Howlader et al [166] to be 68 years in males and 72 years in females. In a univariable analysis, it was 

observed that females were more likely to be diagnosed with CRC than males. However, in a follow-up survey, this 

association reversed. The reasons for the gender differences are not fully understood but are reported to reflect variations 

in exposure to CRC risk factors and the impact of female-specific hormones [92]. 

6.3 Incidence 

 In the current study, we observed an incidence rate of 1.98 per 1,000 person-years (i.e. 27/13,632 total time under 

observation and at risk), resulting in a cumulative incidence of 0.8% during the study period (2010 - 2014). Generally, our 

risk estimate was lower than a hazard ratio of 1.7 associated with incident CRC in a similar cohort study [171]. In the Health 

Professional Follow-up and the Nurses’ Health studies, a relative risk of incident cancer was reported at 1.7 which is 

numerically higher than the risk estimate in the current study [172]. Our study shows that CRC incidence is low in a province 

where farming is the predominant activity, which is in sharp contrast with the finding by Carrozza et al. [131] reported that 

CRC incidence tends to be high in regions with greater farming activity.  

 Our study also shows that the incidence of CRC is low in an under-developed region. This was consistent with the 

findings in a similar study where the crude incidence of CRC in SSA (a developing region) is reported to be about 4.04 per 

100,000 persons [77]. Several studies of cancer incidence have consistently reported a lower risk for tobacco- and 

cigarette-related cancers related [167-169] (such as CRC) among agricultural populations. Reduced CRC incidence has 
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been linked to these favorable risk factor profiles which include high levels of physical activity [167-169]. However, in the 

current study, physical activity was not significant in the univariable analysis. Given that our study showed a relatively small 

increase in CRC incidence in rural residents of Saskatchewan aged 50 years or older, more aggressive colonoscopy and 

other forms of CRC detections would likely increase CRC incidence rates. 

6.3.1 Risk factors for CRC Incidence 
 

6.3.1.1 Environmental/contextual factors 
 
 Our observation showed that quadrant was associated with CRC incidence in both the univariable and multivariable 

Cox’s proportional hazard model. When adjusted for other variables in the Cox model, it was observed that the adjusted 

hazards ratio for CRC incidence was highest in NE and least in NW. These associations were however not statistically 

significant. Household use of natural gas was significantly associated with CRC incidence in univariable Cox regression 

analysis. However, after adjusting for other variables in the multivariable models, natural gas was no longer a determinant 

of CRC risk. Studies implicating household use of natural gas as a risk factor for CRC incidence could not be found. 

6.3.1.2 Lifestyle/individual factors 
 
 Lifestyle factors included in the current study were smoking status and alcohol consumption. It was observed that 

none of these was significantly associated with CRC incidence in the univariable Cox’s regression analysis and therefore 

excluded from all multivariable analysis. However, the authors of European Prospective Investigation into Cancer and 

Nutrition (EPIC) study found an increased hazard ratio of alcohol consumption on the incidence of CRC [123]. In 2009, the 

IARC announced that smoking cigarette causes CRC [111]. In the current study, we found that being a current smoker was 

associated with higher hazards of CRC incidence, this was not statistically significant. Our implication of CRC to be 

associated with cigarette smoking was consistent with findings from a similar study [108]. 

6.3.1.3 Early life exposures 
 
 The role of exposure to farm environment (especially at an early age) in CRC incidence was investigated. We 

found that farm residents had a lower hazard of CRC incidence in the univariable analysis. However, after the multivariable 

adjustment, we observed that farm residence was no longer a significant predictor of CRC incidence. Our finding that farm 

residents had a lower hazard of CRC incidence was consistent with findings in a similar study [130]. In a study of cancer 
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incidence among a cohort of female farm residents in New York State, Wang et al. reported that persons who have farm 

jobs and rural residents were associated with significantly lower CRC risk as compared to those with non-farm jobs and 

urban residents respectively [130]. However, another study found increasing hazards of CRC among farm residents [170]. 

This could be explained that farm residence is proxy for exposure to pesticides which causes CRC [130].   

6.3.1.4 Occupational exposure 
 
 Our observation showed that exposure to oil/gas well fumes and radiation were associated with higher hazards of 

CRC in the Cox univariable regression models. These occupational exposures still recorded higher hazard ratio for CRC 

incidence in the multivariable analysis even though statistical significance could not be established. Our findings should be 

interpreted with a caution since the literature implicating exposure to oil/gas well fumes and radiation as risk factors for 

CRC incidence is limited. Nevertheless, the possibility of an existential association between certain forms of radiation and 

oil/gas well fumes deserves further evaluation. Our study did not find exposure to pesticides to be associated with CRC 

incidence. However, pesticides exposure has been implicated to be positively associated with CRC incidence [128]. 

6.3.1.5 Family history of Cancer 
 
 Little is known regarding the change in risk pathways conferred by a family history of CRC [171] because most 

studies investigating family history-related CRC incidence are retrospective and case-control studies [173-175]. Our 

prospective cohort study observed that family history of cancer was not associated with CRC incidence in Cox’s 

proportional hazards regression model. Our findings of no association were inconsistent with the findings of a similar 

prospective cohort study [171]. In a randomized controlled prospective CRC study, Schoen et al [171] reported significantly 

higher hazards ratio of CRC incidence among individuals with a family history of cancer. The authors reported a dose-

response relationship between an increasing number of FDRs and CRC incidence [172], a relation that was not explored 

in the current study.  

 Park et al [176] found a family history of CRC to be a determinant of advanced adenoma multiplicity. They reported 

that individuals with FDRs with history CRC were 2 times at a higher risk of developing CRC or precursor lesions adenoma 

polyps as compared to individuals with FDRs with no such history [176]. The risk is even higher (i.e. 4 times) for individuals 

with more than one FDRs with a history of CRC [176]. This could be explained with the fact that a family history of CRC 
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may convey genetic susceptibilities that facilitates the formation of new lesions and/or enhances the transition from 

adenomas to carcinomas [176]. 

6.3.1.6 Other risk factors (Increasing age and BMI; gender) 
 
 In the present study, we observed a dose-response relationship between CRC incidence and age and BMI. After 

a multivariate adjustment in a Cox’s proportional hazard regression model, individuals aged 60–69 years were associated 

with a high hazard of CRC incidence. An even higher hazard ratio was observed among persons aged 70 or older. Our 

findings regarding a dose-response relationship were inconsistent with findings from two recent studies. Siegel et al (2019) 

and Davis et al (2011) reported decreasing CRC incidence among individuals aged 50 or older [177-178]. However, there 

is mounting evidence that CRC incidence was increasing in younger adults. Recent data from the United States 

Surveillance, Epidemiology, and End Results Reporting (SEER) database show that CRC incidence is increasing among 

the under-40 age cohort [177-178] which was not supported by the current study because the minimum age at diagnosis 

was 50. There is also emerging knowledge of increasing CRC incidence among young adults aged 20-39 years even 

though the absolute increase is lower than among older adults [179]. Although the rising incidence of CRC among the latter 

group was not the focus of the current study, we concede a possibility of this phenomenon in various parts of 

Saskatchewan. 

 Obese (BMI >30) individuals were associated with a higher hazard ratio of CRC incidence (although not statistically 

significant) after adjusting for other variables in a multivariable Cox’s regression model. Implicating higher BMI as a risk 

factor for CRC incidence in the current study was consistent with the findings of a similar cohort study of CRC incidence 

among Swedish women [180]. Mechanisms that are potentially responsible for the association between excess body weight 

and CRC risk are completely not known [121]. However, certain biologic correlates of obesity such as decreased insulin 

sensitivity and increased circulating estrogen, which are associated with excess body adiposity and not overall body 

adiposity [94] have been implicated. However, some studies report that overweight- and obese-related CRC risk does not 

merely result from increased energy intake but may be due to individual differences in metabolic efficiency [94]. Recent 

studies suggest that persons who burn energy efficiently may be associated with lower CRC risk [181]. 
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 After adjusting for other variables and covariates in the Cox’s PH multivariable regression model, female gender 

was associated with a higher hazard ratio as compared to male gender although this was not statistically significant. The 

reason for this is not completely known but may be due to the intricacies of female hormones [182]. 

6.4 Study Strengths and limitations 
 
6.4.1 Study Strengths 

 
 A major strength of this study is the extensive information collected on individual and contextual factors including 

important covariates using mail-out self-administered questionnaires at baseline and follow-up surveys [134, 137]. The 

content of the baseline questionnaire was optimized using a pilot survey [134]. Based on the pilot survey, some questions 

were modified in the baseline questionnaire before it was mailed to respondents to be self-administered. A mailed 

questionnaire was the most feasible and prudent option because the sampled population lived in the farthest corners of 

the Province of Saskatchewan (See Appendix D). Several authors have discussed the practicality of mail questionnaires 

and concluded that, with the increasing cost of interviews and data collection in surveys, a mail questionnaire is the best 

option for collecting data in far and wide geographical regions [136, 183]. The study was based on Health Canada’s 

“Population Health Framework” (PHF) [138], which was successful in a similar cohort study [184]. 

 The SRHS employed an interdisciplinary approach from the conceptualization of the study until the completion of 

the follow-up survey. Geographers, nurses, project managers, epidemiologists, biostatisticians, etc. were brought together 

as part of the SRHS team. The Rural municipality and small town’s council members were involved in every step of the 

decision-making process. The composition of the team led to rich discussions and feedback based on a one-health 

paradigm as evidenced by the overall success of the study and response rate (42%) for a mail-out survey. At baseline, the 

participation among farm and non-farm rural residents were approximately equal, 42.2% and 41.9% respectively. 

 Our study identified risk factors for the prevalence, incidence as well as the risk factors for the longitudinal changes 

in the prevalence of CRC in a rural population. Our results show that age had a dose-response relation between longitudinal 

changes in CRC prevalence and incidence. Majority of our results were consistent with most results from already published 

literature.  
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              The prevalence of CRC was based on the question, “Has a doctor of PCG ever said you have……colorectal 

cancer?”, a criterion widely used in medical studies [185]. This self-reported pathological diagnosis would reduce the 

possibility of falsely classifying persons who had polyps or in situ cancer as having CRC. 

6.4.2 Study Limitations 
 

 Our current study was not without limitations. One of the main limitations of this study is the small number of CRC 

cases in both the baseline (62/5,599) and follow-up (63/3,933) surveys. As a result of this sample size, the power of 

statistical tests and models was low and might not be able to detect real differences where indeed there are true differences. 

This may be evidenced by the many statistically not-significant associations found in this study and so many interactions 

could not be investigated. 

 Although ethnicity or race is a widely published risk factor associated with CRC prevalence and incidence, this 

relationship could not be explored in this study because 97% or our study population were Caucasians. As a result, the 

findings of this study are not a true representative of the rural population of Saskatchewan and/or Canada that have more 

diverse ethnicity. For the purposes of external validity, the results of this study can only be generalized to similar rural 

settings in Canada and elsewhere where farming is the predominant occupation. 

 Regarding occupational history and exposures, there is a possibility of recall bias because participants were 

required to go back in time to remember whether or not they were exposed to radiation, molds, grain dust, fungicides, 

asbestos dust, wood dust, diesel fumes, etc. This could result in the misclassification and underestimation of CRC 

prevalence. On the other hand, this study may have overestimated CRC prevalence if individuals without the disease (i.e. 

non-cases) were less likely to return a completed questionnaire. The response rate (i.e. 42%) was low in this study. In 

addition, incidence and prevalence rates were calculated based on self-reported CRC cases. We did not link our study 

data to the Saskatchewan Cancer Registry (SCR) to confirm the diagnosis of CRC. The response rate (i.e. 42%) was also 

low in this study both at baseline and follow-up and this could affect the prevalence and incidence. It is also important to 

mention that the prevalence and incidence analysis and conclusions contained in this thesis is only for a cohort of people 

aged 50 or older and cannot be generalized to people younger than 50. 
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 The BMI variable in this study was derived from self-reported height and weight of respective participants. This 

results in the possibility of heights being over-reported and weights under-reported. Nonetheless, a self-reported BMI is 

shown to be a valid and sufficient estimate of disease prevalence among obese and overweight individuals [186]. The 

presence of mold in a household was also self-reported and required independent and objective confirmation, which was 

not done in this study.  

 Due to the low prevalence and incidence of CRC in rural Saskatchewan, in future, we would consider using a case-

control design to analyze the data. In addition, we would also consider including people younger than 50 years in all 

analysis since it has been reported that CRC risk is increasing in this age cohort. A spatial analysis would also be done in 

future to understand the real reasons for the variations in the prevalence and incidence rates across the quadrants of 

Saskatchewan. 

6.5 Conclusion 
 
 The overall crude prevalence of CRC was 1.1% at baseline and 1.7% at follow-up. When stratified by farm and 

non-farm residence, the crude prevalence of CRC was almost two times lower among farm residents than among non-

farm residents (0.8% vs. 1.3%) at baseline. Among farmers who self-reported doctor-diagnosed CRC, the highest 

prevalence occurred in SE (1.4%) while the least occurred in SW (0.3) and NW (0.3) respectively. Among non-farm 

residents, CRC prevalence was highest in NW (1.5%) and least in SW (1.1%). Overall, CRC was more prevalent in the 

eastern part of the quadrant [SE (1.3%) and NE (1.3%)] as compared to the western part [(SW (0.8%) and NW (1.0%))] at 

baseline.  

 The crude incidence rate of 1.98 per 1,000 person-years (i.e. 27/13,632 total time under observation and at risk), 

resulting in a cumulative incidence of 0.8% during the study period (2010 - 2014). 

 Prevalence and longitudinal changes in prevalence as well as incidence of CRC among farm and non-farm rural 

residents appear to depend on a complex combination of individual and contextual factors. 
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Appendix A: The SRHS Baseline Questionnaire  
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Appendix B – GLMs with random and systematic components with link functions  
 

Model Random component Systematic component Link function 

Analysis of variance (AVOVA) Normal Identity Categorical 

Analysis of covariance (ANCOVA) Normal Identity Mixed 

Linear regression Normal Identity Continuous 

Logistic regression Binomial Logit Mixed 

Log-linear regression Poisson Log Categorical 

Poisson regression Poisson Log Mixed 

Multinomial response Multinomial Generalized logit Mixed 

Adopted and modified from Agresti [44]. 
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Appendix C – Notations of Vectors and Matrices 
 
  Suppose there are " (# = 1,2, … ,") subjects and )* (+ = 1,2, … , )*) measurements on the	#-. subject taken 

at times /*0 < /*2 < ⋯ < /*45  in a longitudinal study. If 6*7  is the observed responses for the #-. subject measured at 

the /*7 , then 

8

9*0
9*2
⋮
9*45

; is the )*x1 column vector of )* responses for the #-. subject, and 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
9*0
902
⋮

904@
920
922
⋮

904A
9B0
9B2
⋮

9B4C⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 is the (∑ )*
B
*I0 )x1 column vector of responses for all the " subjects. 

In addition, if K*70, K*72, … , K*7L are specific observations measured on the set of M covariates (K0, K2, … , KL) at time /*7  

for the #-. subject, then the +-. measurement associated with the #-. subject at time /*7  is given by; 

K*7 =

⎝

⎛

K*70
K*72
⋮

K*7L⎠

⎞ is a Mx1 column vector of covariates and 

the design matrix  

K* =

⎣
⎢
⎢
⎡
KR*0
KR*2
⋮

KR*45⎦
⎥
⎥
⎤
=

⎣
⎢
⎢
⎡
K*00, K*02, … , K*0L
K*20, K*22, … , K*0L

⋮
K*450, K*452, … , K*45L⎦

⎥
⎥
⎤
 is an )*xM matrix of covariates (for the #-. 

subject) whose row entries represent the covariate measurements at the different times /*7  and the column entries 

represent different covariates. 

S* = 8

S*0
S*2
⋮
S*45

; is an )*x1 vector of random errors associated with the #-. subject. 
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  Since the )* outcome measurements (6*0, 6*2, … , 6*45) for the #-. subject tend to be correlated in a longitudinal 

study, we account for all the possible intra-class/within-subject correlations using the following notations. Let T* be the 

correlation structure for outcome measurements (6*0, 6*2, … , 6*45) for the #-. subject, then  

T* =

⎣
⎢
⎢
⎡ 1 UVWW(6*0, 6*2) ⋯ UVWW(6*0, 6*45)

UVWW(6*2, 6*0) 1 ⋯ UVWW(6*2, 6*45)
⋮

UVWW(6*45, 6*0)
⋮

UVWW(6*45, 6*2)
⋮
⋯

												 ⋮
		1
										⎦

⎥
⎥
⎤
 is an )*x)* symmetric matrix of within-subject 

correlations resulting in )*()* − 1)/2 possible pairwise correlations for each unique pair of outcome measurements. In 

particular, the +-. row and Z-. column entry of T* corresponds to UVWW(6*7, 6*[). In longitudinal data analysis, one should 

necessarily take into consideration, the appropriate structure of T* for each of the " subjects (and the variations between 

them). This, therefore, requires us to characterize the variance-covariance matrix Σ* of the outcome measurements 

(6*0, 6*2, … , 6*45) for the #-. subject. By definition, UVWW]6*7, 6*[^ = UV_(6*7, 6*[)/ `abcW]6*7^(6*[)	d. So T* is 

related to Σ* through Σ* = b*
0/2R*b*

0/2 where b* is defined as; 

b*
0/2 =

⎣
⎢
⎢
⎢
⎢
⎡fbcW(6*0) 0 		⋯ 														0		

0 fbcW(6*2) ⋯		 								0									

⋮
0

⋮
0

⋱ 										⋮								

⋯ abcW]6*45^ ⎦
⎥
⎥
⎥
⎥
⎤

= i#cj[fbcW(6*0),fbcW(6*2), … ,fbcW(6*0)], and 

we write  

Σ* =

⎣
⎢
⎢
⎡ bcW(6*0) UV_(6*0, 6*2) ⋯ UV_(6*0, 6*45)

UV_(6*2, 6*0) bcW(6*2) ⋯ UV_(6*2, 6*45)
⋮

UV_(6*45, 6*0)
⋮

UV_(6*45, 6*2)
⋱
⋯

												
⋮

		bcW(6*45)
										⎦

⎥
⎥
⎤
. 

  In longitudinal data analysis, there are several covariance structures to choose from. Five (5) commonly available 

covariance structures in software packages are; (i) exchangeable, (ii) independence, (iii) unstructured, (iv) autoregressive 

first order [AR(1)] assuming equally space sample units, and (v) autoregressive first order assuming unequally space 

sample units. For the purpose of this thesis, we only focus on the exchangeable type because we assumed that the 

correlation between any two outcome measurements on the #-. subject is the same. However, I produced the variance-

covariance matrices of the remaining four for convenience. 



  

153  
 

1. Exchangeable variance-covariance (also known as compound symmetry or sphericity): when the correlation 

between two (2) repeated outcome measurements are the same. Time ordering is irrelevant in this case. 

T* =

⎣
⎢
⎢
⎢
⎡
1 m m ⋯ m
m 1 m ⋯ m
m
⋮
m

m
⋮
m

1
⋮
m

⋯
⋱
⋯

m
⋮
1⎦
⎥
⎥
⎥
⎤

 

2. Independence variance-covariance: repeated outcome measurements at different times are not correlated. 

T* =

⎣
⎢
⎢
⎢
⎡
1 0 0 ⋯ 0
0 1 0 ⋯ 0
0
⋮
0

0
⋮
0

1
⋮
0

⋯
⋱
⋯

0
⋮
1⎦
⎥
⎥
⎥
⎤

 

3. Unstructured variance-covariance (aka unspecified.): correlation between repeated outcome measurements 

at different times are unknown and are estimated separately.  

T* =

⎣
⎢
⎢
⎢
⎡
1 m0,2 m0,n ⋯ m0,4
m2,0 1 m2,n ⋯ m2,4
mn,0
⋮
m4,0

mn,2
⋮
m4,2

1
⋮
m4,n

⋯
⋱
⋯

mn,4
⋮
1 ⎦
⎥
⎥
⎥
⎤

 

4. Autoregressive first order [AR(1)]: decreasing correlation for farther time points 

(i) When the follow-up time points (/0, /2, … , /4) are equal spaced (e.g. one-year intervals). i.e. |/*p0 −

/*| = |/*p2 − /*p0|, ∀# = 1,2, … , ) 

T* =

⎣
⎢
⎢
⎢
⎡
1 m m2 ⋯ m4r0

m 1 m ⋯ m4r2

m2

⋮
m4r0

m
⋮

m4r2

1
⋮

m4rn

⋯
⋱
⋯

m4rn

⋮
1 ⎦
⎥
⎥
⎥
⎤

 

(ii) When the follow-up time points are not equally spaced.  

i.e. |/*p0 − /*| ≠ |/*p2 − /*p0| 

T* =

⎣
⎢
⎢
⎢
⎢
⎡ 1 m|-@r-A| m|-@r-t| ⋯ m|-@r-u|

m|-Ar-@| 1 m|-Ar-t| ⋯ m|-Ar-u|

m|-tr-@|

⋮
m|-ur-@|

m|-tr-A|

⋮
m|-ur-A|

1
⋮

m|-ur-t|

⋯
⋱
⋯

m|-tr-u|

⋮
1 ⎦

⎥
⎥
⎥
⎥
⎤
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Appendix D – Computational definitions when v is continuous or discrete 
 
Definition/Function v is continuous and takes only non-negative values 

Survival function w(/) = xW(y ≥ /) where w(0) = 1 and w(∞) = 0 

Probability density function (pdf) |(/) = }#"
∆-→Ä

xW(/ ≤ y ≤ / + ∆/) ∆/⁄ = −wR(/) = ÑR(/) 

Cumulative density function (cdf) Ñ(/) = xW(y < /) = 1 − w(/) 

Hazard function ℎ(/) = |(/) w(/)⁄ , / ≥ 0 

Cumulative hazard function 
Ü(/) = á ℎ(à)

-

Ä
âà 

Definition/Function v is discrete and takes values äã, äå, … such that äç < äçpã 

Survival function |(/) = ∑|*é(/* < /) where é(è) = ê1, if	è	is	true
0, otherwise 

Probability density function (pdf) |(/) = ê
|* #|	/ = /*
0 #|	/ ≠ /*

 where |* = 	xW(y = /*) 

Cumulative density function (cdf) Ñ(/) =õ|*é(/* < /) = 1 − w(/) 

Hazard function ℎ(/) = |(/) w(/)⁄ , / ≥ 0 

Cumulative hazard function Ü(/) =õℎ(/*)é(/* ≤ /) 
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Appendix E – Rural municipalities located in the four study quadrants of the SRHS Study. 
 

 

 
 

 
 

 


