TRACE ELEMENT GEOCHEMISTRY OF THE MILK RIVER AQUIFER GROUNDWATER, ALBERTA, CANADA

A Thesis Submitted to the

College of Graduate Studies and Research in Partial Fulfillment of the Requirements

ar i artiar i annancia or the requirements

for the Degree of Master of Science

in the Department of Geological Sciences,

University of Saskatchewan,

Saskatoon, Saskatchewan.

By M. Ashley Starzynski Spring, 1998

© Copyright M. Ashley Starzynski, 1998. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Masters of Science degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisors Drs. R. Kerrich and M. J. Hendry, or in their absence, by the head of the Department of Geological Sciences or Dean of Arts and Science. It is understood that any copying of this thesis, or parts thereof, shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and the University of Saskatchewan in any scholarly use which may be made of any material in this thesis.

Requests for permission to copy or make other use of material in this thesis, in whole or in part, should be addressed to:

Head of the Department of Geological Sciences 114 Science Place, University of Saskatchewan Saskatoon, Saskatchewan, S7N 5E2.

i

Abstract

Groundwater samples from 27 wells located along a 50 km flow path in the Milk River aquifer, Alberta, Canada, were analyzed for trace elements including rare earth elements (REEs). The objectives were to: 1) complete the suite of chemical elements determined for this extensively studied aquifer; 2) evaluate changes in concentrations of the trace elements and REEs along a hydraulically and chemically constrained section of the aquifer, and 3) observe the fate of these trace elements through a redox boundary.

The groundwater chemistry illustrates some similar trends to those reported by previous workers (Meyboom, 1960; Schwartz and Muelenbachs, 1979; Phillips et al., 1986; Hendry and Schwartz, 1988, 1990; and Hendry et al., 1991). There are small well defined increases in Na, Cl, Fe, Mg, Ca, Al, but a decrease in SO₄, as the groundwater migrates from recharge. Calcite dissolution accounts for the increase in alkalinity as the groundwater migrates downgradient from the recharge area.

Some trace elements (B, Rb, Ba) display slight increases as the groundwater evolves from the recharge area, consistent with progressive water-rock reaction. In groundwater studies uranium has been found to be an excellent element for tracing the evolution of waters, because of its low natural concentrations and multi-valent characteristics. Higher concentrations encountered along the flow path at 20 km and 32-33 km, may reflect the redox front boundary and post-redox front boundaries, respectively. Groundwater with intermediate uranium concentrations are probably the result of minor mixing between the oxic and anoxic water masses. Similar, trends are seen with other multi-valent elements including manganese.

Groundwater studies using trace elements as hydrogeochemical tracers show that the groundwaters inherit their trace element budgets, including REE signatures, via interaction with the aquifer rocks. Solution complexation can also significantly affect

the dissolved REE signatures. Shale-normalized plots show that systematic patterns exist in REEs and transition metals in the Milk River aquifer groundwater. There are clear chemical trends as the groundwater migrates downflow from the recharge area. REE plots for the groundwater samples are generally either flat [Type 1 groundwater] to slightly enriched in the heavy REEs (HREEs) [Type 2 groundwater].

Speciation modeling of REEs in the alkaline Milk River aquifer groundwater has been evaluated primarily to assess the importance of carbonate complexes. Carbonate complexation is the most important complex for REEs in the groundwater system. Dicarbonato complexes ($Ln(CO_3)_2$) are predicted as the dominant species in comparison to the carbonato complexes ($LnCO_3^+$). Heavy REE enriched shale-normalized REE patterns are due to the formation of more stable HREE CO₃ complexes than the light REE CO₃ complexes in the groundwater.

In addition to using REEs as potential hydrogeochemical tracers in groundwaters, their chemical similarities to the trivalent actinides provides a proxy for the chemical behavior of these radionuclides in natural waters, and therefore an analogue for modeling the behavior of nuclear waste in groundwater systems.

Acknowledgments

I would like to thank my advisor Dr. Rob Kerrich, for financial and technical support, and the opportunity to undertake this project. Financial support through Dr. Kerrich was made possible by NSERC operating grants. I also graciously acknowledge my cosupervisor Dr. Jim Hendry for his support both financially and intellectually.

I would also like to thank my advisory committee, Drs. Malcolm Reeves, Jim Basinger, and Ben Rostron for their critical review and comments. I'm grateful to Steve Taylor and Xuiping Yan for their help in the field, and in the lab. Assistance with ICP-MS analysis was provided by Brian Morgan, who also answered my many questions on the equipment and sample preparation techniques. Acknowledgment must be given to Dr. Kevin Johannesson (Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas) for generating the REE speciation modeling results. Special thanks are due to the lab personnel in the department of Geological Sciences, Dave Pezderic, Tom Bonli, Ray Kirkland and Blaine Novakovski for providing the essential knowledge, lab materials, space, and most importantly their time.

Other scientists who have contributed to my studies, through discussions and reviewing my work and parts of my thesis, include: E. Eberhardt, S. Balzer, C. Therens, A. Abeleira, R. Donahue, Y. Haiming, J. Dobrohoczki, P. Hollings, A. Polat, B. Reiter, and D. Schmid.

Finally, I acknowledge my wife Cori for making the ultimate sacrifice and putting up with my student lifestyle while inspiring me to finish my studies.

Table of Contents

Permission to Use	i
Abstract	ii
Acknowledgments	iv
Table of Contents	v
List of Tables	ix
List of Figures	х
Definition of Terms, Units, and List of Acronyms	xiii
1 Introduction and Scope	
1.1 Background	1
1.2 Rationale of Study	1
1.3 Trace Elements in Groundwater Studies	3
1.4 Structure of the Thesis	4
2 Geological and Hydrogeology Background	
2.1 Geology	9
2.2 Hydrogeology	11
2.3 Geochemistry	13
2.4 Proposed Geochemical Models	17
2.5 Halogens in the Milk River aquifer	21
2.6 Dissolved Gases	22
2.7 Age Dating Groundwaters	23
2.7.1 Radiocarbon and Stable Isotopes	23
2.7.2 Chloride and ³⁶ Cl Concentrations and Interpretations	25
2.7.3 Uranium-series Radionuclides	27
2.8 Summary	28

3 Methodology

3.1	Groundwater Sampling Protocol	29
3.2	Field Sampling and Analysis	31
3.3	Analytical Methodologies	33
	3.3.1 Instrumentation	33
	3.3.2 ICP-MS	33
	3.3.3 ICP-AES	34
	3.3.4 Advantages and Disadvantages of ICP-AES and ICP-MS	35
3.4	ICP-AES - ICP-MS Intercomparison	35
	3.4.1 Limits of Detection	37
	3.4.2 Elements Analyzed by ICP-MS and ICP-AES	37
3.5	Intercomparison of Field Filtered and Unfiltered Samples	38
3.6	Geochemical Modeling	42
	3.6.1 An Introduction to PHREEQC	42
	3.6.2 PHREEQC as a Speciation Code	45
	3.6.3 REE Speciation Modeling	46

4 Results and Discussion

4.1	Structure of Chapter 4	48
4.2	The Hydrogeochemistry of the Milk River aquifer Groundwater	49
	4.2.1 pH, Alkalinity, and Major Ion Chemistry of the Groundwater	49
	4.2.2 Initial Condition - Solution Modeling of the Groundwater	52
4.3	Oxidation - Reduction Sequences in Confined Groundwater Systems	56
	4.3.1 Redox Chemistry of the Milk River Groundwater	59
4.4	Select Trace Elements	65
	4.4.1 Trace Element Concentrations Along the Flow Path	65
4.5	Rare Earth Elements	75
	4.5.1 REE Concentrations Along the Flow Path	. 77
	4.5.2 Shale-Normalized REE Patterns	79

4.5.3 REE Speciation Modeling of the Milk River Groundwater	88
4.5.4 Behavior of REEs in the Milk River Groundwater	93
4.5.5 Mineral Sources of REEs	93
4.6 Additional Trace Elements	96
4.6.1 Trace Element Concentrations Along the Flow Path	96
4.6.2 Transition Metals	107
4.6.3 Alkali Metals and Alkali Earth Metals	107
5 Conclusions	
5.1 Introduction	111
5.2 Field Filtering	111
5.3 The Principal Findings From This Study	112
5.3.1 Summary of the Major Elements and Ions	112
5.3.2 Summary of the Trace Elements	113
5.3.3 Summary of the Rare Earth Elements	114
5.3.4 Summary of the Transition Metals	115
5.3.5 Summary of the Alkali Metals and Alkali Earth Metals	116
5.4 Speciation Modeling of the Milk River Aquifer Groundwater	116
5.4.1 PHREEQC Initial Conditions	116
5.4.2 REE Speciation Modeling	117
5.5 Implications of Study	117
5.6 Recommendations and Future Work	118
References	120
Appendices	
Appendix A 1995-1997 Sample Locations	136
Appendix B ICP-AES and ICP-MS Analyses	138
Appendix C Major Cations and Anions Analyses	158
Appendix D Water Standards and Quality of Analysis	160

Appendix E Detection of Selected Elements for ICP-AES and ICP-MS	
Appendix F The Effects of Field filtering on Select Elements	
Appendix G Concentrations of Select Trace Elements versus Distance	
From Recharge	171
Appendix H PHREEQC Initial Solution Calculations	
Appendix I Results of REE Speciation Modeling	

List of Tables

1.1 Select studies and papers based on trace and rare earth elements in		
	aqueous geochemistry, with sources.	5
3.1	Advantages and disadvantages of ICP-MS and ICP-AES.	36
4.1	Major anions and cations analyzed in the Milk River aquifer	
	groundwater.	50
4.2	Major elements analyzed in the Milk River aquifer groundwater.	50
4.3	Saturation index values from speciation modeling using PHREEQC	
	in the Milk River aquifer groundwater.	55
4.4	Oxidation states of select elements that occur in the Milk River aquifer	
	groundwater.	58
4.5	Trace elements analyzed in the Milk River aquifer groundwater.	67
4.6	REE ratios for comparing Light REE and Heavy REE shale-normalized	
	values.	86

List of Figures

2.1	Location of the Milk River aquifer in southern Alberta, Canada,	
	illustrating the flow path studied.	10
2.1	The Geology of the Milk River aquifer.	12
2.2	Geological evolution of the Milk River aquifer.	14
2.3	Piezometric surface in the Milk River aquifer.	15
2.4	Spatial variations in dissolved ions.	16
2.5	Spatial variations in field pH, and calculated pCO ₂ .	18
2.6	Conceptual models to explain the origin of the distribution of	
	chemical and isotopic species in the Milk River aquifer.	20
3.1	Sample locations in the Milk River aquifer and proposed flow paths.	30
3.2	Analysis of select filtered and unfiltered elements in the Milk River	
	aquifer groundwaters (Fe, Al).	39
3.3	Analysis of select filtered and unfiltered elements in the Milk River	
	aquifer groundwaters (Na, K, Mg, Ca).	40
3.4	Analysis of select filtered and unfiltered elements in the Milk River	
	aquifer groundwaters (U, Th).	41
3.5	REE plots displaying the effects of field filtering on groundwater	
	samples.	43
4.1	Field pH and alkalinity versus distance from recharge.	51
4.2	Cl ⁻ , Mg, and Al concentrations in the Milk River aquifer groundwater	
	versus distance along the flow path.	53
4.3	Ca, Na, and K concentrations in the Milk River aquifer groundwater	
	versus distance along the flow path.	54
4.4	PHREEQC initial condition - solution modeling of select phases in the	
	Milk River aquifer groundwater.	57
4.5	Concentrations of Fe, SO ₄ , and CH_4 in the Milk River aquifer	
	groundwater versus distance along the flow path.	61
4.6	U and Mn concentrations in the Milk River aguifer groundwater	

х

	versus distance from recharge.	63
4.7	PHREEQC initial condition - solution modeling of uraninite in the	
	Milk River aquifer groundwater.	64
4.8	Theoretical Eh values used in the speciation modeling, as determined	
	by redox reactions in the Milk River aquifer groundwater.	66
4.9	B and Mo concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	72
4.10	Rb and Ba concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	73
4.11	PHREEQC initial condition - solution modeling of barite in the	
	Milk River aquifer groundwater.	74
4.12	Li, Co, and Zn concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	76
4.13	Sum of REE concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	78
4.14	Light rare earth elements (LREEs) in the Milk River aquifer	
	groundwater versus distance from recharge.	80
4.15	Heavy rare earth elements (HREEs) in the Milk River aquifer	
	groundwater versus distance from recharge.	81
4.16	Shale-normalized REE patterns for groundwater samples from the Milk	
	River aquifer (MR139, MR122, and MR123).	83
4.17	Shale-normalized REE patterns for groundwater samples from the Milk	
	River aquifer (MR52, MR80, MR130, MR135, MR136 and MR129).	84
4.18	Shale-normalized REE patterns for groundwater samples from the Milk	
	River aquifer (MR131, MR134, MR133, MR137, MR127, MR138,	
	and MR123).	85
4.19	Lu/La, Er/Nd, and Eu/Eu* shale-normalized ratios versus distance for the	
	Milk River aquifer groundwater samples.	87
4.20	Results of speciation modeling plotted as percent dissolved REEs	

xi

	(% lanthanides) versus atomic number for groundwater samples (MR139,	
	MR122, and MR123)	90
4.21	Results of speciation modeling plotted as percent dissolved REEs	
	(% lanthanides) versus atomic number for groundwater samples (MR52,	
	MR80, and MR130).	91
4.22	Results of speciation modeling plotted as percent dissolved REEs	
	(% lanthanides) versus atomic number for groundwater samples (MR129,	
	MR132, and MR119).	92
4.23	Plot of Nd, Sm, and Dy versus pH for the Milk River aquifer groundwater	
	samples.	94
4.24	Plot of Nd, Sm, and Dy versus alkalinity for the Milk River aquifer	
	groundwater samples.	95
4.25	Sr, P, and As concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	98
4.26	Sr/Ca ratio in the Milk River aquifer groundwater along the flow path.	99
4.27	PHREEQC initial condition - solution modeling of strontianite in the	
	Milk River aquifer groundwater.	100
4.28	Ti, Pb, and W concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	101
4.29	Se, Ni, and Cu concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	103
4.30	Cd and Zr concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	104
4.31	Hf, Sc, and Ag concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	105
4.32	Sn and Ta concentrations in the Milk River aquifer groundwater	
	versus distance from recharge.	106
4.23	Specified transition metals normalized to PAAS for select groundwater	
	from the 1995, 1996, and 1997 field sampling seasons.	108
4.2.4		

4.34 Specified alkali and alkali earth metals normalized to PAAS

for select groundwater from the 1995, 1996, and 1997 field sampling seasons.

Definition of Terms, Units, and List of Acronyms

Piezometer

A basic device for measurement of hydraulic head is a tube or pipe in which the elevation of a water level can be determined.

Hydraulic Head (h)

The sum of the elevation of the point of measurement or elevation head (z), and the pressure head (ψ).

 $h = z + \psi$

Hydraulic Conductivity(K) It is a function of the porous medium and fluid. $K(LT^{-1})$

$$K = \frac{Cd^2 \rho g}{\mu}$$

Where: d = characteristic grain diameterC = sorting or packing coefficient $\rho = density$ g = acceleration due to gravity μ = dynamic viscosity

 $k = Cd^2$ (same as above)

Intrinsic Permeability (k)

Piezometric Surface

Aquifer

Aquiclude

Aquitard

(Potentiometric Surface) - If the water-level elevations in wells in a confined aquifer are plotted on a map and contoured, the resulting surface, which is actually a map of the hydraulic head in the aquifer is called the potentiometric surface.

 $k(L^2)$

A saturated permeable geologic unit that can transmit and store significant quantities of water under ordinary hydraulic gradients.

A saturated permeable geologic unit that is incapable of transmitting water under ordinary hydraulic gradients.

A less permeable geological unit which is capable of transmitting water but in not sufficient to allow the completion of production wells.

Transmissivity

Storativity

(Storage Coefficient)

Specific Storage

Evapotranspiration

Alkalinity

Colloids

mg/l

μg/l

REE

ICP-MS

ICP-AES

DIC

DOC

For a confined aquifer of thickness b, is defined as

T = Kb

Where: K = Hydraulic Conductivity (see above) b = Thickness of aquifer

For a confined aquifer of thickness b, is defined as

 $S = S_{b}$

Where: $S_s =$ Specific Storage (see below) b = Thickness of aquifer

In a saturated aquifer the volume of water that a unit volume of aquifer releases from storage under a unit decline in hydraulic head.

A combination of evaporation and transpiration from the soil by plants.

Is the measure of the capacity of a water to neutralize acid. In most natural water, the alkalinity is largely due to the presence of dissolved carbonate (CO_3^{2-}) and bicarbonate (HCO_3^{-}) ions (expressed as mg/l).

Particles having diameters in the range $\sim 10^{-5} - 10^{-8}$ m.

Milligrams of solute per liter of water, also equal to parts per million (**ppm**).

Micrograms of solute per liter of water, also equal to parts per billion (**ppb**).

Rare earth elements - in the periodic table elements 57 through 71.

Inductively coupled plasma - mass spectrometry

Inductively coupled plasma - atomic emission spectrometry

Dissolved inorganic carbon

Dissolved organic carbon

xiv

Chapter 1

Introduction and Scope

1.1 Background

The Milk River aquifer, Alberta, Canada was chosen for an International Atomic Energy Agency, Vienna (IAEA) sponsored study in 1985, given its relatively straightforward boundary conditions. This aquifer fits the definition of a confined groundwater system, dipping gently from the recharge area, and confined both above and below (Hendry et al., 1991; Schwartz and Muehlenbachs, 1979). A feature of this aquifer is that the groundwater becomes old (recent recharge to ~1 Ma) in a relatively short distance of 80 to 100 km downflow from the recharge area, making it appropriate for evaluating various groundwater dating techniques. As a result, the hydrogeology and geochemistry of the Milk River aquifer have been thoroughly studied. Notwithstanding the relatively well constrained boundary conditions, previous studies have revealed that the Milk River system is complex in terms of groundwater origin, and the evolution of its chemical and isotopic characteristics (Schwartz and Muehlenbachs, 1979; Schwartz et al., 1981; Domenico and Robins, 1985; Phillips et al., 1986; Hendry and Schwartz, 1988, 1990; and Hendry et al., 1991).

1.2 Rationale of This Study

Previous studies have established a large database on field pH and alkalinity, major anion and cation concentrations, dissolved gases, and stable and radiogenic isotopes (Hendry and Schwartz, 1990a; Andrews et al., 1991a; and 1991b; Drimmie et al., 1991;

Fabryka-Martin et al., 1991; Hendry et al., 1991; Ivanovich et al., 1991; Nolte et al., 1991). To date, however, the trace element geochemistry of the Milk River aquifer groundwater has not been studied. Accordingly, the primary objective of this project is to measure an extensive range of trace elements, including the rare earth elements (REEs), in the Milk River aquifer groundwater.

Due to limited studies on trace elements in terrestrial surface waters and groundwaters, the factors that control their concentrations and speciation are poorly understood. Therefore, for simplicity, this study focuses on the chemically and hydraulically, well constrained, south-eastern section of the Milk River aquifer. Sample sites were selected along a flow path identified in previous studies (Hendry and Schwartz, 1988; 1990a). The flow path starts near the recharge area, crosses a redox boundary, and continues downflow for a total of >80 km. This new data, coupled with existing data on the major ions and cations, pH, isotopes, and dissolved gases, will assist in understanding the water/rock interactions that influence the geochemical evolution of the Milk River groundwater.

A secondary objective of this study was to use the trace element data in the geochemical modeling code PHREEQC, utilizing the *Wateq4f* thermodynamic database, to evaluate geochemical interactions between the waters and the aquifer rocks. Ion-speciation and solid-phase solubility calculations have been used to develop a better understanding of the geochemical processes that control the chemical composition of aquifer waters. Geochemical modeling involves ion-speciation and solubility calculations, and the results are compared to the observed mineralogical assemblage of the aquifer rocks (Parkhurst, 1995). Correspondingly, speciation modeling of REEs in the Milk River aquifer groundwater has been evaluated primarily to assess the importance of carbonate $(LnHCO_3^{2+}, LnCO_3^+ \text{ and } Ln(CO_3)_2)$ and phosphate $(LnH_2PO_4^{2+}, LnHPO_4^+, Ln(HPO_4)_2^-$ and $LnPO_4^{0}$ complexes, where Ln stands for lanthanide. Traditionally, the elements have La-Lu have been referred to as lanthanides in the chemical literature, but as rare earth elements in geological usage.

1.3 Trace Elements in Groundwater Studies

Major cations (Ca²⁺, Mg²⁺, Na⁺, K⁺) and anions (HCO₃, SO₄²⁻, Cl⁻) have been used extensively to trace the geochemical evolution of groundwaters. Recently, however, evaluation of trace elements, as well as distributions in rock and minerals including the REEs, has proved to be a powerful tool in geochemical investigations (Deverel and Millard, 1988; Dickson and Herczeg, 1992; Duro et al., 1997; Edmunds et al., 1982; Fee et al., 1992; Frapporti et al., 1993; Gascoyne, 1997; Giblin and Dickson, 1992; Gosselin et al., 1992; Johannesson and Lyons, 1995; Johannesson et al., 1997; Kreamer et al., 1996; Miekeley et al., 1992; Möller et al., 1992; and Smedley, 1991). Minor attention has been paid to the occurrence of these trace elements in aqueous systems, principally due to their low abundances and the consequent difficulty of precise and accurate analysis. The advent of the inductively coupled plasma - mass spectrometer (ICP-MS) has enabled much more rapid analysis of aqueous solutions, and with much lower detection limits than conventional ICP-AES methods. These studies employ the concentrations of trace elements, including the rare earth elements (REEs), as a complementary tool to the major elements. Studies of aqueous REEs have primarily involved the examination of their concentrations in *seawaters* (e.g., DeBaar et al., 1983; Möller et al., 1992; Shabani et al., 1990; and Shimizu et al., 1994), rivers and lakes (Elderfield et al., 1990; Johannesson and Lyons, 1995; and Möller and Bau, 1993), and groundwaters (Smedley, 1991).

Knowledge of the distribution and chemical behavior of REEs in these natural terrestrial waters, including groundwaters, is still limited (Table 1.1). Studies show that waters primarily inherit their REE signatures from interactions with rocks in the aquifers, but they are also affected by solution complexation, and those with multiple oxidation states (Ce, Eu) are influenced by redox controls (Elderfield et al., 1990; and Gosselin et al., 1992). This study will add to the limited work on the REE geochemistry of nonsaline groundwaters in contact with host rocks for extended periods of time. Gosselin et al.

(1992) emphasized possible difficulties in interpreting these REE patterns, due to fractionation by processes such as complex formation, ion exchange, absorption/desorption, and colloid transport.

1.4 Structure of the Thesis

The geology, hydrogeology, and geochemical characteristics of the Milk River aquifer are synthesized from previous studies in Chapter 2. To provide background for the thesis Chapter 3 describes the methodology of sample collection and analysis, and geochemical modeling. A standardized groundwater sampling protocol in the field and lab conditions is important in order to ensure data quality. Chapter 3 also includes a discussion on the advantages and disadvantages of the inductively coupled plasma mass spectrometer (ICP-MS) and inductively coupled plasma - atomic emission spectrometer (ICP-AES) for analysis, and the complementary nature of employing both methods in groundwater studies. The trace element data for Milk River groundwater samples are reported in Chapter 4, which also includes a discussion on the hydrogeochemical characteristics of the waters through a redox boundary(ies) along the flow path. In addition, Chapter 4 incorporates the results of geochemical modeled trace element data, in an attempt to understand the hydrogeological and geochemical interactions that occur between the Milk River aquifer groundwater and the aquifer rocks. The final chapter (Chapter 5) summarizes the conclusions of this study, as well as the implications of the results obtained. The results and implications of this study may be of use to many other similarly confined aquifer systems.

Field Area/Study	Characteristics	Trace Elements	Methodology	Source
Natural water compositions	Global averages	Major and	Literature survey	1
and Post-Archean average		trace elements		
Australian Snale(PAAS)				
Trace metals in a river water	Rapid mutli-element	Trace elements	Lab - ICP-MS	2
reference material	analysis using ICP-MS			
Stable isotone dilution of water	Determine trace metals	Ni Cu Sr Cd Ba Ti	Lab - ICP-MS	3
samples by ICP-MS	in nonsaline waters	and Pb		Ū
Trace elements in shallow	Distribution and mobility of	Trace elements	Field and lab	4
groundwater of the western San	selenium and other trace		ASS and	
Joaquin vaney, Cantomia	elements		colorimetric	
Rare earth Elements in river	Measured and observed	REEs	Field and lab	5
waters	REE patterns in selected		sequential	
	rivers		ionization	
Geochemistry in river-groundwater	Geochemical changes	Major and trace	Field and lab	6
in Glattfeldon. Switzerland	along infiltration flow path	metals	Various methods	v
	wong minutation now paul	mound	, arrow motions	
Trace elements in surface	Applicability of ICP-MS	Trace elements	Lab - ICP-MS	7
waters	to determine trace	(n=49)		
DEE systematics in	elements in lakes	DEE and main	Field and I-b	٥
REE Systematics in	Removal and	REES and major	Field and lab	8
nyurðurðinnar nurus	during hydrothermal	elements	dilution	
	alteration			
Groundwater chemistry and water-	Granitic groundwater	Major and traces	Field and lab	9
rock interactions at Stripa	cnemistry measured and	elements	ICP-ES and	
	merpreteu		unect-current ES	
REEs in rivers, estuaries, and	Processes affecting	REEs	Field and	10
coastal seas and significance to	chemical continuity		literature survey	
the composition of ocean waters	between the crust, rivers			
	and sea water			
Aqueous geochemistry	Low-temperature data	REEs and Yttrium	Lab - various	11
of REEs and yttrium	for inorganic complexes		methods	
	and REE speciation in			
	natural waters			
Aqueous geochemistry	Speciation in hydrothermal	REFs and Vttrium	Lah - various	12
of REEs and yttrium	solutions to 350 °C at	ALLEN GIN I MIMI	methods	14
	saturation vapor pressure			
DEE Company Without			PLU IOD IO	
KEES IN Carmenellis area, southwest England	Controls on REE chemistry	REEs, trace, and	Field - ICP-MS	13
Souriwest Eligiana	chemisu y	major elements		
Modeling REEs in seawaters	Ionic interaction	REEs	Lab - modeling	14
and brines	models			
Deposition of trace elements and	Analyzed water in the	Trace and maior	ICD AES and	15
radionuclides. Lake Tyrrell Victoria	spring zone	elements including	AAS	13
Australia	spring zone	radionuclides	AAS	
Source, distribution and economic	Analyzed and modeled	Trace elements	ICP-AES	16
significance of trace elements in	waters for economic			
Lake Tyrrell, Victoria, Australia	potential			
REEs in Palo Duro Basin.	Inferring groundwater	REEs	Field -	17
Texas, USA	flow using REEs		Radiochemical	••
	-		neutron activation	
·			activation	

Table 1.1. Select studies and papers based on trace and rare earth elements in aqueous geochemistry, with sources.

Table 1.1. continued.

Field Area/Study	Characteristics	Trace Elements	Methodology	Source
Rare-earth elements from	REEs measured from the	REEs	Field and lab	18
mine groundwaters	Osumu mine and Morro do		ICP-AES	
	Ferro analogue study sites		preconc.	
	PoÇos de Caldas, Brazil			
Suspended particles and colloid	REEs concentrations from the	REEs	Field and lab	19
in mine groundwaters	Osumu mine and Morro do		ICP-AES	
	Ferro analogue study sites		preconc.	
	PoÇos de Caldas, Brazil,		•	
	waters - >450nm and			
	<450 nm			
REEs in seawater	Determine REE profiles	REEs	Field -preconc. Lab - ICP-MS	20
Trace metals in brines, from Lake	Effects of pH and Eh on	Fe, Mn, Pb, Cu,	Field and lab	21
Tyrell, Victoria, Australia	the concentration of trace	and Zn	GFAAS	
REEs in Lake Tyrell groundwaters.	Analysis of REEs and	REEs	Field and lab	22
Victoria, Australia	patterns plotted		ICP-MS	
Hydrogeochemistry of deep	Major elements analyzed	Major and trace	Field and lab	23
formation brines in the central Sichuan Basin, China	and brines identified	elements	method ?	
Water analysis using ICP-MS	round-robin evaluating	Major and trace	Labs -ICP-MS	24
and ICP-ES	quality of data from private sector labs	elements	Labs -ICP-AES	
Rare-earth elements in	REE patterns for alkaline	REEs	Field sampling	25
Lake Van, Turkey	waters			
Preconcentration and Purification	Determine REEs in	REEs	Lab - ICP-MS	26
of REEs in natural waters	water using isotope-			
	dilution ICP-MS			
Natural trace element	A conceptual stochastic	Trace elements	Lab - modeling	27
concentrations in groundwater	model - variability in trace		code	
	elements in groundwaters			
REEs in surface waters	Application of rapid	REEs	Lab - ICP-MS	28
	and cost effective method			
	in determining REEs in			
	waters			
REE geochemistry of Colour Lake	REE patterns and	Major and REEs	Field and lab	29
and a lake on Axel Heiberg Island	speciation modeling		ICP-MS - REEs	
Northwest Territories, Canada			and cations	
Hydrogeochemistry of the Fraser	Seasonal variations of	Major and trace	ICP-AES, Atomic	30
River, British Columbia	waters analyzed and	elements	Absorption, and	
	plotted		Colorimetry	

Table 1.1. References

1 Taylor and McLennan (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific. 312 p.

- 2 Beauchemin, D., McLaren, J. W., Mykytiuk, A. P., and Berman, S. S. (1987) Determination of trace metals in a river water reference material by inductively coupled plasma mass spectrometry. Anal. Chem. 59, 778-783.
- 3 Garbarino, J. R., and Taylor, H. E. (1987) Stable isotope Dilution Analysis of hydrologic samples by inductively coupled mass spectrometry. Anal. Chem. 59, 1568-1575.
- 4 Deverel, S. J., and Millard, S. P. (1988) Distribution and mobility of selenium and other elements in shallow groundwater of the western San Joaquin Valley, California. Environ. Sci. Technol 22, 697-702.
- 5 Goldstein, S. J., and Jacobsen, S. B. (1988) Rare earth elements in river waters. Earth and Planetary Science Letters 89, 35-47.
- 6 Jacobs, L. A., Von Gunten, H. R., Keil, R., and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochimica et Cosmochimica Acta 52, 2693-2706.
- 7 Henshaw, J. M., Heithmar, E. M., and Hinners, T. A. (1989) Inductively coupled plasma mass spectrometric determination of trace elements in surface waters subject to acidic deposition. Anal. Chem. 1989, 335-342.
- 8 Michard, A. (1989) Rare earth systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta 53, 745-750.
- 9 Nordstrom, D. K., Ball, J. W., Donahoe, R. J., and Whittemore D. (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochimica et Cosmochimica Acta 53, 1727-1740.
- 10 Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E. R. (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta 54, 971-991.
- 11 Wood, S. A. (1990) The aqueous geochemistry of rare-earth elements and yttrium. 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology 82, 159-186.
- 12 Wood, S. A. (1990) The aqueous geochemistry of rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure. Chemical Geology 88, 99-125.
- 13 Smedley P. L. (1991) The geochemistry of rare earth elements in groundwater from the Carmenellis area, southwest England. Geochimica et Cosmochimica. Acta 55, 2767-2779.
- 14 Millero, F. J. (1992) Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochimica et Cosmochimica Acta 56, 3123-3132.
- 15 Dickson, B. L., and Herczeg, A. L. (1992) Deposition of trace elements and radionuclides in the spring zone, Lake Tyrrell, Victoria, Australia. Chemical Geology 96. 151-166
- 16 Giblin, A. M., and Dickson, B. L. (1992) Source, distribution and economic significance of trace elements in groundwaters from Lake Tyrrell, Victoria, Australia. Chemical Geology 96. 133-149.
- 17 Gosselin, D. C., Smith, M. R., Lepel, E. A., and Laul, J. C. (1992) Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA. Geochimica et Cosmochimica Acta 56, 1495-1505.
- 18 Miekeley, N., Coutinho de Jesus, H., Porto da Silveira, C. L., Linsalata, P., and Morse, R. (1992) Rare-earth elements in groundwaters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, PoÇos de Caldas, Brazil. Journal of Geochemical Exploration 45, 365-387.
- 19 Miekeley, N., Coutinho de Jesus, H., Porto da Silveira, C. L., Linsalata, P., and Morse, R. (1992) Chemical and physical characterization of suspended particles and colloids in waters from the Osamu Utsumi mie and Morro do Ferro analogue study sites, PoÇos de Caldas, Brazil. Journal of Geochemical Exploration 45, 409-437.
- 20 Möller, P., Dulski, P., and Luck, J. (1992) Determination of rare earth elements in seawater by inductively coupled plasmamass spectrometry. Spectrochima Acta 47B, 1379-1387.
- 21 Lyons, W. B., Welch, S., Long, D. T., Hines, M. E., Giblin, A. M., Carey, A. E., Macumber, P. G., Lent, R. M., and Herczeg, A. L. (1992) The trace-metal geochemistry of the Lake Tyrrell system brines (Victoria, Australia). Chemical Geology 96, 115-132.

Table 1.1. continued.

- 22 Fee, J. A., Guadette, H. E., Lyons, W. B., and Long, D. T. (1992) Rare-earth element distribution in Lake Tyrrell groundwaters, Victoria, Australia. Chemical Geology 96, 67-93.
- 23 Xun, Z., and Cijun, L. (1992) Hydrogeochemistry of deep formation brines in the central Sichuan Basin, China. Journal of Hydrology 138, 1-15.
- 24 Hall, G. E. M. (1993) Capabilities of production-oriented laboratories in water analysis using ICP-ES and ICP-MS. Journal of Geochemical Exploration, 49. 89-121.
- 25 Möller, P., and Bau, M. (1993) Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters 117, 671-676.
- 26 Esser, B. K., Volpe, A., Kenneally, J. M., and Smith, D. K. (1994) Preconcentration and purification of rare earth elements in natural waters using silica-immobilized 8-hydroxyquinoline and a supported organophosphorous extractant. Anal. Chem. 66, 1736-1742.
- 27 Ramaswami, A., and Small, M. J. (1994) Modeling the spatial variability of natural trace element concentrations in groundwater. Water Resources Research 30, 269-282.
- 28 Hall, G. E. M, Vaive, J. E., and McConnell, J. W. (1995) Development and application of sensitive and rapid analytical method to determine the rare-earth elements in surface waters. Chemical Geology 120, 91-109.
- 29 Johannesson, K. H., and Lyons, W. B. (1995) Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Isalnd, Northwest Territories, Canada. Chemical Geology 119, 209-223.
- 30 Cameron, E. M. (1996) Hydrogeochemistry of the Fraser River, British Columbia: seasonal variation in major and minor components. Journal of Hydrology 182, 209-225.

Chapter 2

Geological and Hydrogeology Background

2.1 Geology

The Milk River artesian aquifer underlies more than 15,000 km² of southern Alberta, Canada (Hendry and Schwartz, 1988). The aquifer system consists of the Milk River Formation sandstone, shale of the Colorado Group (confined below), and the Pakowki Formation (confined above), all of Cretaceous age. The Colorado Group consists mainly of dark grey to black bentonitic marine shales which range in thickness from 500 to 650 m. The lower beds consist of several thin sandstone units, the most important of which in terms of gas and groundwater is the Bow Island sandstone (Hendry et al., 1990). The overlying Milk River Formation varies in thickness from 90 to 145 m; it crops out, or subcrops, in the southern part of the study area (Fig. 2.1). This formation's lower unit is referred to as the Milk River sandstone, a succession of massive marine sandstones interbedded with grey shales, which conformably overlies the Colorado Group. The upper unit consists of a thick succession (20-60 m) of cross-bedded, nonmarine sandstones, green shales, carbonaceous shales, thin coal seams, and thin sandstone units (Hendry et al., 1990). The Pakowki Formation unconformably overlies the Milk River Formation and consists of grey bentonitic shales with thin bentonite beds. In the northeastern part of the study area the Pakowki Formation is 120 m thick, but thins to the west. Near surface deposits consist of other fine-grained Cretaceous rocks and Quaternary glacial drift (Fig. 2.2; Hendry et al., 1990).

Figure 2.1. Location of the Milk River aquifer study area in southern Alberta, Canada, illustrating the flow path studied (modified from Hendry et al., 1988).

Development of the Sweetgrass Arch in south-central Alberta caused the strata to dip gently toward the north. Subsequent erosion of the Upper Cretaceous and Tertiary deposits during the Pliocene and Pleistocene exposed concentric outcrops of the Milk River sandstone around the Sweetgrass Hills (Fig. 2.1). Consequently these outcrops are the dominant recharge area for the Milk River aquifer (Meyboom, 1960). Hendry and Schwartz (1988) estimate that erosion exposed the aquifer ~0.5 Ma ago (Fig. 2.3).

2.2 Hydrogeology

Exploitation of water from the Milk River aquifer began in the early 1900's. However, by the 1960's, long-term withdrawals eventually lowered the piezometric surface, reversing the gradient in the east-central areas of the aquifer (Fig. 2.4). Given these perturbations to the piezometric surface, the best estimate is that the groundwater generally flows in the direction of the dip in the aquifer, towards the north, west and east (Hendry et al., 1990).

Transmissivity decreases from the south to the north, west and east. General thinning of the Milk River aquifer in these directions and a reduction in hydraulic conductivity toward the north due to an increase in shale content, are the likely causes of decreasing transmissivity values (Fröhlich et al., 1991). Vertical hydraulic conductivity for the Colorado Group shales was estimated by Hendry and Schwartz (1988) to range from 10¹⁰ to 10⁻¹⁴ m/s. Uniformity of lithology with the Colorado Group, taken with calculations based on groundwater model studies, yielded estimates for hydraulic conductivity for the Pakowki Formation to be about 10⁻¹³ m/s (Phillips et al., 1986; Hendry and Schwartz, 1988).

A range of estimates of residence time for the groundwater in the aquifer have been proposed Schwartz and Muehlenbachs, 1979; Phillips et al., 1986; Hendry and Schwartz, 1988. Schwartz and Muehlenbachs (1979) estimate the age as 300 ka based on hydraulic arguments. Phillips et al. (1986) used a flow model to calculate residence

Figure 2.2. The geology of the Milk River aquifer along flow path (modified from Hendry et al., 1991).

times of 500 ka for the flow to the northern margin of the aquifer. Hendry and Schwartz (1988) estimate the residence time at the end of two flow paths to be 250 and 510 ka respectively (Figure 1 from Hendry et al., 1991). Hendry et al. (1991) suggested that a northward decrease in hydraulic conductivity results in the much shorter residence times in the southern half of the aquifer, as compared to the northern half.

As noted above, the Milk River Formation is confined above and below by low permeability marine shales. The dominant mechanism for water loss from the aquifer is via leakage through the overlying Pakowki Formation. Based upon the hydraulic gradient measured with piezometers, the underlying Colorado Group shales may also act as a sink for water from the Milk River aquifer (Hendry and Schwartz, 1988). This may be a result of the elastic rebound of the shales, following Pliocene and Pleistocene erosion of >700m of land surface and glacial unloading (Tóth and Corbet, 1986).

2.3 Geochemistry

The geochemistry of the aquifer groundwater is important for understanding the process(es) that operate in the aquifer. Several examples of these processes include: ion exchange of Na⁺ on the solids for Ca²⁺ and Mg²⁺ in solution, sulphate reduction; methane fermentation; and carbonate dissolution (Hendry and Schwartz, 1990). A salient characteristic of the Milk River aquifer is the consistency in the distribution of major ions and isotopic composition of O and H (Hendry et al., 1991). Important dissolved major ions include Ca, Mg, Na, K, Cl, SO₄, HCO₃ and CO₃. Generally, the concentration of Cl, Na, and HCO₃+CO₃ are the lowest in the recharge area, but increase progressively along the flow path. Hendry et al. (1991) observed that Cl concentrations range from <0.05 mmol/L at the southern boundary of the study area to >30 mmol/L in the northwestern part of the aquifer, and similarly Na concentrations were ~15 mmol/L and >50 mmol/L respectively. Concentrations of HCO₃ + CO₃, which are dominated by HCO₃, ranged from <12 mmol/L to >12 mmol/L along the flow system (Fig. 2.5). Hendry et al. (1991) reported that both Ca and Mg ions show similar

Figure 2.3. Geological evolution of the Milk River aquifer: (a) initial conditions; (b) effects of erosion approximately 5×10^5 years ago; and (c) glaciation approximately 30,000 - 40,000 years ago (after Hendry and Schwartz, 1990a).

Figure 2.4. Piezometric surface in the Milk River aquifer (from Hendry and Schwartz, 1988).

patterns, and concentrations are typically <0.1 mmol/L. However, concentrations >0.1 mmol/L are found in the northeastern margin of the aquifer. In contrast, the distribution of SO₄ varies from >5 mmol/L in the south to <0.1 mmol/L throughout the remainder of the aquifer.

In the area where the aquifer subcrops the patterns of ion concentrations differ somewhat from those discussed above. SO_4 , Na, Ca and Mg concentrations are higher than expected from trends farther north in the aquifer. Recent recharge (possibly <40ka B.P.) through the overlying glacial tills may account for these high concentrations (Hendry and Schwartz, 1990a). Field measurements of pH for the Milk River aquifer decreases from >9.0 in the south to 8.2 in the north. Where the aquifer subcrops values are <8.5 (Fig. 2.6; Hendry et al., 1991).

2.4 Proposed Geochemical Models

Accounting for the distribution of nonreactive ions and isotopes within the Milk River aquifer has been problematical. Four mechanisms have been suggested to explain the origin of the chemical and isotopic patterns: (1) megascopic dispersion (Schwartz and Muelenbachs, 1979; Schwartz et al., 1981), the introduction of connate formation water through the Colorado shale and mixing with infiltrating meteoric water; (2) a finite source of meteoric recharge mixing with more saline water in the aquifer (Domenico and Robbins, 1985); (3) membrane filtration (Phillips et al., 1986, 1990), a process of chemical and isotopic enrichment due to ion filtration; and (4) aquitard diffusion from the confining Colorado shales into the aquifer (Hendry and Schwartz, 1988, 1990b).

In the megascopic dispersion model it was proposed that the groundwater entered the aquifer from below and added chemically distinct water to the pre-existing water of the aquifer (Schwartz and Muehlenbachs, 1979: Schwartz et al., 1981). The inflow at the base coupled with the outflow along the top of the aquifer would eventually bring about the change in the water chemistry (Fig. 2.7.a). Toth and Corbet (1986) and Hendry and

Figure 2.6. Spatial variations in field pH, and calculated pCO_2 (from Hendry et al., 1990a).

Schwartz (1988) have shown that this model necessitates the advection of water and solutes through the Colorado shale in a direction that is most likely opposite to the measured hydraulic gradient.

Domenico and Robbins (1985) proposed a model in which fresh meteoric recharge enters only a fraction of the total inflow area, and that elsewhere the groundwater is more saline and isotopically enriched (Fig. 2.7b). Hendry and Schwartz (1988) argued that whereas this model explains to some extent the northward trending plume of fresher meteoric water, it does not account for the broad pattern of mixing that has fresh, isotopically depleted water in the southern end, and more saline and isotopically enriched waters in the northern end of the flow system separated by a transition zone. Neither of the above models can account in a simple way for the nonlinear relationship between Cl⁻ and δ^{18} O (Hendry and Schwartz, 1988).

Phillips et al. (1986) developed a model based on the hypothetical process of membrane filtration to account for the distribution of chemical and isotopic species in the Milk River aquifer (Fig. 2.7c). In this model the chemical and isotopic species, including Cl, δD , and $\delta^{18}O$ accumulate because the confining aquitards function as membranes when the groundwater passes through them. This process, operating through geologic time would produce a progressive increase in concentrations of ions such as Cl, and an isotopic shift to enriched δD and $\delta^{18}O$. However, Hendry and Schwartz (1988) reported data from one piezometer completed in the Colorado shale where porewaters have Cl concentrations, and δD and $\delta^{18}O$ values that are higher than in the water from the overlying aquifer. Therefore, if membrane filtration was occurring, the ground water in the aquifer should have higher concentrations than the water in the aquitards but this is not observed (Hendry and Schwartz, 1988).

The diffusion model proposed by Hendry and Schwartz (1988 & 1990b) explains the distribution of Cl in the aquifer groundwater as being the result of a diffusion gradient between saline water in the aquitard and the fresh recharge water in the aquifer (Fig.

2.7d). Accumulation of Cl is the result of the Colorado group and Pakowki Formation shales acting as semi-permeable membranes. The residual solution becomes enriched in Cl as the water leaks out of the aquifer. Fabryka-Martin et al. (1987) proposed a similar hypothesis to the diffusion model where they suggest that the Cl and Na in the aquifer waters diffuse from the clay units within the Milk River Formation.

2.5 Halogens in the Milk River aquifer

Fabryka-Martin et al. (1991) present data for Cl, Br and I in the Milk River aquifer. The three halogens show a similar spatial distribution and are highly correlated. Concentrations are low in the freshwater dominated recharge zone of hightransmissivity, but increase by as much as two orders of magnitude along the margins and the distal end of the aquifer. Ratios of Cl/I and Cl/Br are less than for seawater, and are consistent with an origin from the diagenesis of organic matter in the shales. Halogen ratios are near uniform moving down-gradient, suggesting the dominance of a common subsurface source for these ions. Halogen ratios also rule out unmodified seawater, or leakage and/or diffusion from the underlying Colorado Group, as major influences on the aqueous chemistry. Therefore, the above authors propose a fifth conceptual model to explain the distribution and origin of the halogens, as well as several aqueous species. In this model, the major sources of the halogens is from diffusion from less permeable sedimentary rocks within the aquifer, with their transport by advection and dispersion as modeled by Hendry and Schwartz (1988). This hypothesis of an internal source has important implications for solute sources in other aquifers affected by saline waters because it does not require the input of distant fluids (Fabryka-Martin et al., 1991).

Iodine-129/I ratios measured by Fabryka-Martin et al. (1991) were found to have a meteoric value in groundwater collected near the recharge area, but ratios for the downflow waters are only 8-70% of this value. Given that ¹²⁹I has a half-life of 16 Ma this data indicates that most of the increase in dissolved iodine cannot be of a meteoric

source by ion filtration, but rather must have a subsurface origin. Concentrations of ¹²⁹I produced in situ by spontaneous fission of ²³⁸U are only measurable in the older waters (ages $\geq 10^5$ a), in which it may account for nearly 90% of the total dissolved ¹²⁹I concentration.

2.6 Dissolved Gases

Andrews et al. (1991a) discuss in detail the geochemical relations among the noble gases, the 36 Ar/ 40 Ar isotope ratio, and N₂ contents of the Milk River aquifer groundwater. The origin of radiogenic He, radiogenic Ar and CH₄ in the Milk River aquifer groundwater is predominantly within the thick shale successions which form the bounding aquitards (Andrews et al., 1991a), or may also be from shale units within the aquifer, as discussed above for the halogens.

Stable isotope compositions of the Milk River aquifer groundwater suggest that the most recent recharge took place under cooler climatic conditions than earlier recharge episode(s). Estimates of recharge temperatures from noble gas data was only possible for samples with low CH_4 contents because of the outgassing effect of CH_4 on the dissolved noble gases. The inferred recharge temperature difference from the noble gas data of ~4-5°C is consistent with the stable isotope data (Andrew et al., 1991a).

The concentration of ⁴He in the groundwater varies with depth according to the concentration/depth profile for the Milk River sandstone and Colorado shale, and this indicates that the diffusion constant for He loss from the formation is ~0.00032 m²/a. The corresponding flux of He from the surface of this lithology is 1.2-1.8 ×10⁸ atoms/m²/s, which is <2% of independent estimates of the continental ⁴He flux (Andrews et al., 1991a). This discrepancy confirms that the ⁴He release from the continental crust must be a discontinuous process controlled by tectonic events (Torgersen, 1989) or aqueous transport.

22

Andrews et al. (1991b) determined that the fractional release of ²²²Rn produced *in situ* from the rock matrix to the groundwaters of the Milk River sandstone has a mean value of 0.0027. Variations in ²²²Rn concentrations throughout the aquifer are due to U content, porosity, and the proportion of fracture flow/efficiency which varies by <±25% over most of the aquifer (Andrews et al., 1991a).

Andrews et al. (1991) concluded from the ${}^{13}C/{}^{12}C$ ratio of CH₄ that the gas is biogenic and its δD isotopic composition shows that it has not been produced in association with the meteoric waters which are now present in the aquifer. Isotopic ratios suggest that the CH₄ was produced within the adjoining shales as their connate waters were diluted by meteoric water which infiltrated the aquifer.

2.7 Age Dating Groundwaters

2.7.1 Radiocarbon and Stable Isotopes

The Milk River aquifer groundwater is considered to be very old and beyond the limit of ¹⁴C dating by the end of the flow path (80-100 km). The understanding of the evolution of the carbon geochemistry and its effects on ¹⁴C concentrations are acquired from the interpretation of ¹⁴C data in terms of the water ages. Drimmie et al. (1991) summarize the distribution of δD and $\delta^{18}O$ in water, $\delta^{13}C$ and δD in CH₄, $\delta^{34}S$ and $\delta^{18}O$ in SO₄, $\delta^{13}C$ and ¹⁴C in dissolved inorganic carbon (DIC) as well as dissolved organic carbon (DOC), and tritium in the Milk River aquifer.

Radiocarbon was found to be measurable only approximately in the first 20 km from the recharge zone of the Milk River aquifer (Drimmie et al., 1991). Transformation of the measured concentrations to water ages was difficult due to the complex geochemical system. Comparison of DIC and DOC dates shows that the former are much older than the latter, but the difference in years between the wells for all three types of C were within 1000a. The DOC dates led to the conclusion that the initial DIC radiocarbon

content was as low as 30% modern when the water entered the Milk River aquifer. The water 20 km from the recharge zone was estimated at ~20 ka, giving a velocity of ~1 m/a, and ~0.1 m/a or less in the northern sections of the aquifer (Drimmie et al., 1991). This result is much higher than estimates by other techniques.

Drimmie et al. (1991) used the stable isotopes of H and O to obtain information on the history and origin of groundwater in the Milk River aquifer. Three sections were clearly identified along the flow path: (1) a section with uniform δ^{18} O values between -20 and -18‰, from the recharge zone for about 20 km; (2) a second area with only slightly higher δ D and δ O values which still reflects normal groundwater; (3) a third section where admixtures of isotopically modified water occurs (Drimmie et al., 1991). Groundwater in the second zone does not show a glacial signature and it was probably recharged under warmer climatic conditions. The water in the third zone is characterized by higher salinities and a pronounced oxygen and hydrogen isotope shift. A plausible conclusion would be mixing with the more saline formation waters in the Bow Island Formation. Drimmie et al. (1991) concluded that the shift resulted from diffusive processes involving the confining shales that would alter both the chemical and isotopic signatures.

Sulphate-S and sulphate-O isotope ratios were also used to indicate biological activity, which if present can perturb ¹⁴C dates. If bacterial reduction does occur this would influence the C isotope composition of the DIC. Data from Drimmie et al. (1991) suggest that the till is a source of SO₄. The S isotope data in the till and the recent high-S recharge water are consistent with these results implying that bacterial reduction is occurring.

The composition of CH_4 was measured to assist in determining its origin and the effect on the ¹⁴C results. Drimmie et al. (1991) found that methane is present in most of the well waters measured, and based on C and H isotope data, it has a biogenic origin. It is unclear whether the methane production occurs in the aquifer and/or it diffuses from the confining shales into the aquifer.

2.7.2 Chloride and ³⁶Cl Concentrations and Interpretations

Nolte et al. (1991) deduced flow velocities and ages from interpretation of ³⁶Cl and Cl concentrations via two approaches: (1) an interpretation of experimentally observed evolution of ³⁶Cl and Cl concentrations along the two flow paths, by a simple exponential decrease of ³⁶Cl and a linear increase of Cl with distance from the recharge area; and (2) the evolution of Cl and ³⁶Cl concentrations along the two flow paths by diffusion of both ³⁶Cl and Cl between the aquifer and the underlying confining Colorado shale without the *in situ* production of ³⁶Cl. The first approach assumes a constant flowrate whose value is a function of the *in situ* ³⁶Cl production. The second approach uses a flowrate which is inferred from a diffusion model and is assumed constant (Nolte et al., 1991).

Fröhlich et al. (1991) state that the ³⁶Cl input is greater than that which can be obtained from atmospheric fallout, even after adjusting for the 60% evapotranspiration suggested by Swanick (1982). Fabryka-Martin et al. (1991) proposed that a hundred-fold increase between halide concentrations in precipitation and recharge waters can be attributed to the effects of evapotranspiration, dry fallout, and a limited duration of recharge. Therefore, Fabryka-Martin et al. (1991) assume that the subsurface contributions of Cl are at least 90% of the total Cl in the distal portion of the aquifer. This results in ³⁶Cl-based ages being reduced from 2 Ma to ~1 Ma, which are somewhat higher than those ages produced by hydrodynamic modeling.

Alternatively, Andrews et al. (1991b) proposed that the input of ³⁶Cl may be due to the solution of salt from the shallow soil zone, a recharge zone where cosmic-ray irradiation would increase ³⁶Cl production. However, Fröhlich et al. (1991) questioned whether the residence time of salt in the soil zone is long enough for this mechanism to approach equilibrium.

Fröhlich et al. (1991) used the *in situ* production of ³⁶Cl in the two above models to obtain flowrates 75% lower than when zero *in situ* production is assumed. The flowrates from the diffusion model were only slightly higher than the values from the first model. From this, Nolte et al. (1991) concluded that radioactive decay of ³⁶Cl is the control of ³⁶Cl concentration in the groundwater during advective transport in the aquifer, rather than diffusive losses. Groundwater ages based on ³⁶Cl/Cl data, uncorrected for subsurface contributions, yield ages that range up to 2 Ma (Phillips et al., 1986). If subsurface Cl contributions are accounted for by low values in the fresh waters in the south, to high values in the older saline waters in the northern parts of the aquifer, then the maximum ages are reduced to <1 Ma, making them more consistent with those based on other isotope techniques (Fabryka-Martin et al., 1991).

Nolte et al. (1991) reported the measurements of ³⁶Cl/Cl ratios and tritium concentrations of groundwater samples from the Milk River aquifer. Although the Milk River aquifer is not a closed system, determining the concentrations of ³⁶Cl and Cl with respect to the distance to the recharge area allows for the estimation of flow velocities and ages of the groundwater. These velocities and ages were determined with and without consideration of diffusive losses. Nolte et al. (1991) demonstrated that if diffusive losses of ³⁶Cl are taken into account the values obtained are only slightly modified.

Based on *in situ* production Nolte et al. (1991) calculated flow velocities that were about 75% smaller than those values obtained without *in situ* production of ³⁶Cl. Flow velocities from the diffusion model yielded values that were larger by a factor of about 1.3 compared to those values found without consideration of diffusive losses of ³⁶Cl. The calculated flow velocities for the flow path were in the range 0.09-0.14 m/a. The corresponding ages of the groundwater at a distance of 80 km from the recharge area are in the range 0.6-0.9 Ma.

26

2.7.3 Uranium-series Radionuclides

Uranium isotope disequilibrium has been observed to occur in circulating groundwaters and associated rocks (Cherdyntsev, 1971; Ivanovich and Schwarcz, 1983). By monitoring groundwater U isotope concentrations it is possible to determine flowrates, or residence time of groundwaters in an aquifer, assuming a piston-type flow. However, a problem with U-series disequilibrium is the poorly constrained initial conditions, and subsequent water-rock interactions involving U isotope exchange (Ivanovich et al., 1991). Therefore, determination of residence times from U-series radionuclide data is possible only if the initial state of disequilibrium is known and the contents of the radionuclides do not change a result of mixing with isotopically different waters.

For the Milk River aquifer, Ivanovich et al. (1991) found that the U concentration decreases with distance from the recharge area. The groundwater was delineated into oxic (U content $\sim 10^{-5}$ mmol/l) and anoxic (U content $\sim 10^{-7}$ mmol/l) end-members, with the latter conditions being prevalent. There is also an intermediate group representing mixing between the two end-members (Ivanovich et al., 1991). Calculated values of saturation indices for uraninite, coffinite and rutherfordine indicated that the groundwater is undersaturated with respect to these minerals (Ivanovich et al., 1991).

Ivanovich et al. (1991) evaluated two models for the interpretation of U-series disequilibrium data obtained from the Milk River aquifer. The first model proposed by Andrews and Kay (1978) is a ²³⁴U excess decay model which assumes uniform dissolution rates of U, accompanied by recoil processes. The second model, proposed by Fröhlich and Gellermann (1987), is a phenomenological model for the evolution of U isotopic composition along groundwater flow paths, based on a transport equation incorporating radioactive decay and assuming that sorption processes affecting ²³⁸U, ²³⁴Th and ²³⁴U radionuclides in the decay chain obey first-order kinetics. The first model yielded a migration rate in the range of 0.1-0.2 m/a along the flow path identified in the hydraulic model of Hendry and Schwartz (1988). This is about two fold lower than the

hydraulic model flowrate of 0.3 m/a for the flow path (Hendry and Schwartz, 1988). Model 2 yielded an overall flowrate in the range of 0.2-0.6 m/a, which is in very good agreement with the hydraulic model.

2.8 Summary

Meteoric water recharges the aquifer in the southern section, with groundwater flow northward. Transmissivity decreases toward the north due to thinning of the Milk River sandstone unit and an increase in shale content. Groundwater is transported in the aquifer by advective and dispersive processes, and diffusive flow dominates in the Colorado and Pakowki shales (Hendry and Schwartz, 1988).

The Milk River aquifer displays consistent patterns in the distribution of major ions and isotopic composition of O and H (Hendry et al., 1991). Important dissolved major ions include Ca, Mg, Na, K, Cl, SO_4 , HCO_3 and CO_3 . Generally, the concentration of Cl, Na, and HCO_3+CO_3 are the lowest in the recharge area and the concentration increases progressively along the flow system.

Schwartz and Muehlenbachs (1979) estimate the age along the studied flow path to be approximately 300 ka, based on hydraulic arguments. Phillips et al. (1986) used a flow model to calculate residence times of 500 ka for the flow to the northern margin of the aquifer. Radiocarbon dates on the groundwater are estimated at >40,000 years ~32 km along the flow path (Drimmie et al., 1991). Hendry and Schwartz (1988) estimate the residence time at the end of the flow path to be 250 ka. Ages based on a combination of ¹⁴C and chloride dating methods for groundwater at the town of Foremost (~54 km from the recharge area) yield residence times of approximately 90-110 ka.

28

Chapter 3

Methodology

3.1 Groundwater Sampling Protocol

When sampling groundwaters, sources of variability are expected due to spatial and temporal fluctuation of chemical characteristics arising from coupled chemical and physical processes in aquifers. Added complexities may include: (1) transport by colloidal particles; (2) variable vertical and horizontal redox gradients; (3) dissolved organic materials, and biological catalysis and transformations; (4) kinetically inhibited reactions; and (5) possible contamination during water collection (Barcelona, 1990).

The sampling design for the Milk River aquifer was based on previous detailed hydrogeologic studies, such that well waters were only collected and analyzed from the hydraulically and chemically constrained southern section of the flow path (Figure 3.1). There are field sampling variables over which there is some control. These variables are the sampling well location, nature of construction, purging of stagnant waters from wells, and sampling protocols prior to analysis. The degree of reproducibility of data, and consistency with past site data are also significant for identifying variability in groundwater chemistry (Barcelona, 1990). According to Barcelona (1990), the most important steps in groundwater sampling are well design, purging of stagnant water, selection of sampling device and/or tubing, and sample filtration and preservation. All of these field variables were carefully documented in sampling for this study.

Figure 3.1. Sample locations in the Milk River aquifer and proposed flow path (after Hendry et al., 1991).

3.2 Field Sampling and Analysis

Sampling of groundwater from the Milk River aquifer for trace element analysis was carried out in October 1996 and May 1997. Field sampling in the Spring of 1997 was intended to complement the 1996 data, and establish inter-sampling variability of data, as well as to collect waters from additional well closer to the groundwater flow path. Groundwater samples collected in 1995 by M. J. Hendry and colleagues (University of Saskatchewan, Saskatchewan) were also used in the present study.

Samples were taken from the recharge area north of the Sweetgrass Hills along the flow path, extending northward 54 km to the town of Foremost (Fig. 3.1; Appendix A). Individual wells were selected for quality, and wells having substandard casing or a history of poor water quality were rejected, as were those that were chlorinated using chlorine tablets or "shock treated" using bleach. All wells were purged for approximately 30 minutes to collect a representative groundwater sample from the aquifer.

Filtration of water samples is necessary for analyses of dissolved chemical constituents, assuming that foreign contaminants are not introduced by drilling activities, grouts/seals or corroded casing (e.g. Barcelona, 1990). Colloidal species can be important in subsurface chemical mass balance and chemical transport in groundwater. The concentrations of chemical species transported either in a dissolved or suspended state may be under- or overestimated by filtration (Barcelona, 1990).

Extreme care must be taken when sampling and processing natural aqueous samples for trace elements if reliable data is to be obtained. Groundwater samples from the Milk River aquifer used for inductively coupled plasma-mass spectrometry (ICP-MS) analysis were filtered in the field through prerinsed 0.45 μ m millipore membrane filters, using a portable peristaltic pump and filter glassware in 1996, or a 2.4 liter Geotech® barrel filter with a foot pump in 1997. Once filtered, the samples were acidified 1% by

31

volume with doubly distilled 16N nitric acid (HNO₃), and stored in precleaned, acidwashed, low density linear polyethylene bottles at ~4 $^{\circ}$ C prior to analysis. A field trip blank of distilled deionized water (DDIW) and field blanks were also prepared and collected for analysis with the groundwater samples. The samples were analyzed by ICP-MS at the University of Saskatchewan (Appendix B).

The samples collected for analysis by inductively coupled plasma-atomic emission spectrometry (ICP-AES) were similarly field filtered, acidified 5% total volume with 16N HNO₃, and stored in precleaned, acid-washed low density linear polyethylene bottles. These samples were preconcentrated approximately ten times by evaporation in a clean hood. Analyses by ICP-AES were performed by geoanalytical services at the Saskatchewan Research Council (Appendix B). Reasons for using both ICP-MS and ICP-AES are outlined in Table 3.1.

Analysis of major anions (Cl and SO_4) and cations (Ca, Mg, Fe, Na) using Ion Liquid Chromatography and Atomic Absorption Spectrophotometery (AAS) respectively, was performed at the National Hydrology Research Institute (NHRI) in Saskatoon (Appendix C). Field filtration was identical, as noted above. Lab pH and alkalinity were also measured. These samples were collected in two separate acid washed bottles, one for cations and one for anions. All acidified samples were stored in a cooler on ice to minimize compositional changes such as adsorption of elements on sample bottle walls.

Field pH, alkalinity and temperature were measured at the time of sampling. The pH electrode was calibrated using 2 buffer solutions (pH=7, and pH=4), with the ambient groundwater temperature of ~10 °C. Alkalinity was determined by potentiometric titration of the sample immediately after its filtration (HACH model AL-DT-test kit using phenolphthalein indicator).

32

3.3 Analytical Methodologies

3.3.1 Instrumentation

Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry have been proven to be powerful analytical tools for trace element analysis. Both utilize an inductively coupled argon plasma: in ICP-AES as a source for optical emission, and for ICP-MS as a source of ions. Both instruments have similar configurations up to the argon plasma. AES uses characteristic photon emission spectra to identify elements, whereas the MS filters ions on the basis of mass/charge ratio. For a more detailed description of both methods see Potts (1987).

3.3.2 ICP-MS

A Perkin Elmer Sciex Elan 5000 ICP-MS was used in this study. The instrument was operated at a power setting of 1000 W. The argon plasma gas flow was set at 15 L/min. Auxiliary gas flow and nebulizer gas flow were 0.8 L/min. Sampler and skimmer cones are pure nickel tipped, with orifice diameters of 1.1 mm and 0.89 mm, respectively.

The 1995 ICP-MS data used a cross-flow nebulizer to introduce the sample into the argon plasma. This method loses approximately 95% of the sample to the drain in the spray chamber, resulting in lower sensitivity. The 1996-1997 waters were analyzed using a ultrasonic nebulizer, from Precision Instrumentation into the argon plasma. The sample aerosol is heated to ~140 °C and then cooled to ~5 °C. The increased amount of analyte injected per unit time results in about a 10-20-fold improvement in sensitivity, essential for analyzing low abundance trace elements. A sample delivery rate of 1.0 mL/min was used for the 1995 sample analysis, and 2.0 mL/min for the 1996-1997 analysis. The ultrasonic nebulizer does not work well with solutions having high total dissolved solids (TDS) because the salts tend to deposit in the cooling coil of the ultrasonic nebulizer and on the outer sampling cone.

The ICP-MS calibration protocol involves external calibration and standard additions (Hall, 1993). Pure elemental standards in solution were employed for external calibration. The external standards are measured for calculation of concentrations, and the internal standard is used to correct for matrix effects and drift. The internal standard for 1995 data was indium (⁴⁹In), and for the 1996-1997 ultrasonic nebulizer data, the internal standard contained beryllium (⁴Be), indium (⁴⁹In), and bismuth (⁸³Bi). To evaluate the accuracy of the data, the international reference water standards SLRS2 and SLRS3 were analyzed in duplicate. Appendix D reports the measured and recommended values, plots the data, and provides explanations for the selection of elements.

Corrections for isobaric interferences were determined by analyzing a barium solution and correcting for barium hydride (BaH) and barium oxide (BaO) interferences. The following isotopes were selected for intensity measurements to avoid isobaric interferences: ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁵¹Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁷³Yb, and ¹⁷⁵Lu. Examination of the results showed that the only significant isobaric overlaps are from ¹³⁸Ba hydride and ¹³⁵Ba oxide on ¹³⁹La and ¹⁵¹Eu respectively. Interferences on Sm and Gd were negligible.

3.3.3 ICP-AES

A Perkin Elmer Optima 3000 ICP Atomic Emission Spectrometer was used in this study. The instrument was operated at a power setting of 1300 W. The argon plasma gas flow was set at 15 L/min. Auxiliary gas flow and nebulizer gas flow were 0.5 L/min. A sample delivery rate of 1.0 mL/min was used.

To evaluate the accuracy of data, the international reference water standard, SLRS2 was analyzed. Absolute concentrations for SLRS2 are presented in Appendix B. Appendix D reports measured and recommended values, plots the data and provides explanations for the selection of elements.

3.3.4 Advantages and Disadvantages of ICP-AES and ICP-MS

Table 3.1 lists some advantages and disadvantages of the ICP-AES and ICP-MS methods. Dilute waters with low total dissolved solids (TDS) are ideal analytes for both of these techniques. Thus, the Milk River aquifer groundwater is ideal for analysis by either instrumental method. Seawaters and brines with high concentrations of dissolved salts may lead to matrix effects and clogging of the sample and skimmer orifices.

The sensitivity of ICP-AES for many elements such as heavy metals is inadequate for the direct measurement in most surface waters and groundwaters. Attempts have been made in the past to address this limitation by the use of: *chelation* (Sturgeon et al., 1981); *solvent extraction* (Sugiyama et al., 1986); *adsorption* onto activated charcoal (Koshima and Onishi, 1986); *precipitation* with *Ga* (Akagi et al., 1985); or *evaporation* (Thompson et al., 1982: Gorlach and Boutron, 1990). These methods usually involve preconcentration factors between 10-50, which result in a minimum volume of about 5 mL for nebulisation into the ICP-AES (Hall, 1993). The suite of elements which can be determined directly by ICP-AES in the majority of the waters sampled is Si, Al, Ti, Na, K, Ca, Mg, S, P, Ba, Sr, Fe, Mn, and Zn.

For this study a complementary approach was adopted using ICP-AES to determine selected major elements and light elements (Al, Fe, Ca, Mg, Na, and K) and ICP-MS to determine other trace elements, including REEs. A section on detection limits and interferences for ICP-AES and ICP-MS is presented in Appendices D and E.

3.4 ICP-AES - ICP-MS Intercomparison

The major elements including Al, Fe, Ca, Mg, K, and Na from ICP-AES were used in this study. For most trace elements, the data from the ICP-MS were favored over those obtained by ICP-AES. However good agreement between ICP-AES and ICP-MS was obtained for Li, Cr, Ni, Cu, Sr, Mo, Cd, Ba, and Pb (Appendix E).

ICP-AES	~ 40 elements/sample	ICP-MS	~ 70 elements/sample
Advantages	Disadvantages	Advantages	Disadvantages
Detection of	Detection limits	Detection limits	No detection of
⁴⁰ K and ⁵⁶ Fe	~ 0.1ppb - 100ppm	~ 0.0001ppb - 10ppm	⁴⁰ K
Low chemical and	Rich spectral	Few Interferences	⁴⁰ Ar ¹⁶ O interefence on
ionization interference effects	interferences and matrix sensitive	(isotopes free of interference for most elements)*	⁵⁶ Fe
Light elements analyzed	Dilution and concentration of samples	Isotope dilution	Poor detection limits for light elements ¹³⁸ BaH interference on ¹³⁹ La, and ¹³⁵ BaO on ¹⁵¹ Eu
		Laser ablation - spatial resolution in mineral analysis	Low tolerence for - high TDS
* with exception of indium	1 S omploy an industively one	nled argon plasma as a sou	
		AES for photon emission MS as a source ions	ice.

Table 3.1. Advantages and disavantages of ICP-MS and ICP-AES.

Inductively coupled plasma - mass spectrometry involves atomizing an aqueous analyte sample (exception - laser ablation) in an argon plasma and determining trace element characteristics based on mass/charge.

3.4.1 Limits of Detection

Hall (1993) published detection limits for numerous elements in waters by ICP-AES that lie between 1-10 ppb, whereas those by ICP-MS are generally in the range 0.01-0.1 ppb. Similar detection limits for select elements analyzed by ICP-AES and ICP-MS in this study are presented in Appendix E. Detection limits are not only a function of the signal-to-noise ratio achieved with the instrument, but are also due to the procedures used for calibration and blank subtraction, interference corrections, the quality of the lab environment, and purity of the reagents used.

3.4.2 Elements Analyzed by ICP-MS and ICP-AES

Listed below are the trace elements that were analyzed in the Milk River aquifer groundwater, by combined ICP-MS or ICP-AES.

Alkali metals

Li, Na, K, Rb, Cs

Alkaline earth metals

➢ Be, Mg, Ca, Sr, Ba

Transition Metals

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, Ag, Cd, Ba, Hf, Ta, W, Au, Hg

Groups III-VI

▶ B, Al, Ga

- Si, Sn, Pb
- ▶ P, As, Sb, Bi
- ≻ Se

➤ C1

3.5 Intercomparison of Field Filtered and Unfiltered Samples

Colloids can concentrate trace elements by sorption, and hence enhance their mobility by stabilization and migration though the aquifer rocks (Miekeley et al., 1992). When using geochemical models, it is important that water samples are filtered with minimal disturbance of the *in situ* conditions (Barcelona, 1990).

Waters from the 1995-1997 field sampling seasons were both field filtered and nonfield filtered to determine the effects of suspended particles and colloids on element concentrations. Filtering is likely to be important for this study due to the variables involved in the individual wells sampled. These include differences in submersible pumps, casings, screens and age of individual wells. All water data was plotted on diagrams of filtered versus unfiltered. Selected major and trace elements are plotted in Figures 3.2, 3.3, and 3.4 to illustrate those elements that are readily affected by filtration and those that are not.

Clays including kaolinite, illite, smectite, and chlorite make up to 40% of the total mineral inventory in the Milk River Formation sandstones (Longstaffe, 1984). Accordingly it is likely that these clays make up the majority of the suspended particles/colloids (> 0.45μ m) in the Milk River aquifer groundwater. Hydrous oxides of iron and aluminum are also probably significant in the transport and sorption of select trace elements. This is displayed in the filtered and unfiltered plots of iron and aluminum. Iron clearly shows higher concentrations in the unfiltered waters, and consequently it is present in the waters likely as hydrous Fe oxides or oxyhydroxides and/or Fe-clays (Fig. 3.2). For aluminum some samples display 'normal' patterns where unfiltered concentrations are higher than filtered, whereas several display

Figure 3.2. Analysis of selected filtered and unfiltered elements in the Milk River aquifer groundwater. Error bars are equal to 1 standard deviation.

Figure 3.3. Analysis of selected filtered and unfiltered elements in the Milk River aquifer groundwater.

Figure 3.4. Analysis of select filtered and unfiltered elements in the Milk River aquifer groundwaters.

'reversed' patterns where unfiltered concentrations are lower. This variability in aluminum concentrations is not presently understood. Miekeley et al. (1992), noted that U, Th, other actinides, and REEs are expected to be released in very low concentrations in true solution, but water-rock interaction may produce colloids of low solubility or these elements may sorb on naturally occurring colloids such as silicates, hydrous oxides of Fe and Al, and humic substances.

Most trace elements do not show any discrepancy between filtered and unfiltered samples, and accordingly they are not influenced by colloids (Fig. 3.3). However a few unfiltered groundwater samples from the Milk River aquifer contain a low to moderate load of suspended particles (>0.45µm), which have both Th and LREE concentrations higher than the corresponding filtrates (Fig. 3.4 and Appendix F). Uranium shows no discernible effects of filtering (Fig. 3.4). Miekeley et al. (1992b) concluded that (0.45 µm) particulate matter of amorphous ferric hydrous oxides, have a strong capacity for sorption of LREEs. Elderfield et al., (1990) demonstrated that Fe can exist as organically stabilized colloids in river waters and that there is a relationship between dissolved Fe and REEs in river waters. From this study it appears that suspended particles are important in the preferential sorption of LREEs (La, Ce, Pr, Nd, Sm), and less important in the MREEs (Eu, Gd, Tb, Dy) in the alkaline groundwater of the Milk River aquifer (Fig. 3.4 and Appendix F). The heavy REEs (Ho, Er, Tm, Yb, Lu) are unaffected by colloids/suspended particles (Fig. 3.5 and Appendix F). Filtered data is primarily reported and plotted in Chapter 4 except for a select few cases where the concentrations for REEs were below the ICP-MS detection limit on the filtered samples.

3.6 Geochemical Modeling

3.6.1 An Introduction to PHREEQC

Geochemical modeling is a tool which can be used to interpret and/or predict chemical reactions among solutions, minerals, gases, and organic matter in aqueous systems. The basic assumptions behind geochemical modeling is that the analysis of the water sample

Figure 3.5. REE plots displaying the effects of field filtering groundwater samples.

represents the chemistry of the groundwater from which it was taken. To successfully model the geochemical evolution of groundwaters it is necessary to have reliable water analyses, knowledge of the minerals involved and ambient conditions, adequate thermodynamic data, and a suitable modeling program.

In the last two decades, modeling has become an important tool to understand waterrock systems over a range of compositional, temperature, and pressure conditions (Parkhurst, 1995). A few applications of geochemical modeling include groundwater flow around nuclear waste repositories, hydrothermal systems, predicting acid mine drainage, and evaluating processes related to water-quality issues. The latter is of importance in this study, for a geochemical code is used to determine the redox effects on the transport of metals.

The geochemical code PHREEQC (pH-Redox EQuilibrium-Equations in C language) can be used to quantitatively describe the chemical evolution of water and rock along hypothetical or actual flow paths (Plummer, 1997). For example, the following concerns can be examined: (1) which minerals dissolve or precipitate; (2) spatial variations and mass transfer; (3) open vs. closed systems; (4) variations in temperature, pH, Eh; and (5) prediction of water quality of unstudied systems. A geochemical model is in the form of a balanced chemical reaction (Plummer, 1997).

PHREEQC calculates an ion activity product (IAP), which represents the concentration of select species in solution according to the analytical data. It then compares the activity product to the theoretical solubility product (K_{sp}) for the same specie under the

same input conditions. This comparison of IAP to K_{sp} produces the saturation index (SI):

$$SI = \log_{10} \left(\frac{IAP}{K_{sp}} \right)$$

Geochemical speciation modeling can provide a quantitative assessment of saturation indices (SI) for minerals and phases which may be reacting within the water-rock system. The rules for saturation indices are as follows: (1) If SI<0 and a specified mineral is present, the mineral could dissolve but cannot precipitate; (2) If SI>0, the mineral could precipitate but cannot dissolve; (3) If SI=0, the mineral could be precipitating or dissolving to maintain equilibrium. The most important factor is knowledge of the mineralogy, for a mineral cannot dissolve if it is not present.

3.6.2 PHREEQC as a Speciation Code

PHREEQC (version 1.0) by Parkhurst (1995) can be used as an initial solution (speciation) code to calculate saturation indices, distribution of select species, and determine total carbon using analytical data for pH, Pe, and total concentrations or total element valence concentrations. Aqueous speciation calculations are done using a limited set of equations. If pH and Pe are known, the Newton-Raphson equations are derived from the functions $f_{\rm m}$, $f_{\rm H_20}$, and f_{μ} , which are equations for mole balance for elements, valence states, activity of water, and ionic strength. A detailed description of the equations and analytical data used in the equations can be found in the User's Guide to PHREEQC - A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations by Parkhurst, 1995.

Chemical elements in the following two databases can be used to calculate individual element speciation: (1) *Phreeqc.dat* - Ca, Mg, Na, K, C, CO₂, CH₄, SO₄, total sulphur,

sulphate, sulphide, Cl, Si, Fe, Fe²⁺, Fe³⁺, P, Sr, F, Al, Li, N, N⁵⁺, N³⁺, N³⁻, B, Ba, Br, Mn, Cd, Cu, Pb, Zn; and (2) *wateq4f.dat* - Cs, Rb, I, Ni, Ag, As, As⁵⁺, As³⁺, Fulvate, Humate, Se, Se⁶⁺, Se⁴⁺, Se²⁻, U, U⁶⁺, U⁴⁺ (Ball and Nordstrom, 1991). Redox conditions adopted in the calculations may be determined by either using actual measured Eh(Pe) values, or alternatively can be determined using redox couples from the databases (e.g. S⁶⁺/S²⁻). For a detailed description of calculations, theory, and applications of PHREEQC refer to Parkhurst (1995).

Analytical data used in the speciation calculations included element concentrations, field pH and alkalinity values and Eh measurements converted to Pe (Pe = 16.904Eh at 25 °C). Values of Eh, where determined for specific wells modeled along the flow path by using measured values from Hendry et al. (1991), and theoretical values determined for this study. Theoretical values were determined by using known Eh (Pe) values in closed groundwater systems, where sulphate reduction and methane production occurs.

3.6.3 REE Speciation Modeling

Groundwaters probably inherit their dissolved REE signatures in part from the aquifer materials they react with (Duro et al., 1997; Johannesson et al., 1994; and 1997). Recently, solution complexation has been demonstrated as being important for controlling the dissolved REE signatures in waters. Therefore, it is important to understand both the effects of aquifer material chemistry and solution chemistry to determine their roles on controlling the REE signatures of water systems.

Speciation modeling of REEs in the Milk River aquifer groundwater were evaluated primarily to assess the importance of carbonate $(LnHCO_3^{2+}, LnCO_3^+ \text{ and } Ln(CO_3)_2^-)$ and phosphate $(LnH_2PO_4^{2+}, LnHPO_4^+, Ln(HPO_4)_2^-$ and $LnPO_4^{0})$ complexes, where Ln stands for lanthanides. Activity coefficients and stability constants have been calculated using a combined specific ion interaction and ion pairing developed by Millero (1992). For a

detailed description of the modified and stability constant updated Millero (1992) model used in this study, refer to Johannesson and Lyons (1994).

Chapter 4

Results and Discussion

4.1 Structure of Chapter 4

The pH, alkalinity and major ion data along the studied flow path are documented in section 4.2. This data is used to discriminate which well sites were located along the hydraulically and chemically constrained section of the flow path in the Milk River aquifer system, by comparison with previous studies on the Milk River aquifer groundwater. Geochemical modeling of the major phases (i.e. calcite, dolomite, gypsum and pCO_2) are presented and compared with the previous Milk River aquifer studies, to establish which phases are saturated or undersaturated with respect to the groundwater at select well locations along the flow path.

An introduction to redox reactions in groundwater studies is reviewed in section 4.3 because of its importance in understanding how these reactions control the concentration and mobility of select trace elements in groundwater systems. Redox sensitive methane, sulphate and select trace elements in the Milk River groundwater are reported at the beginning of section 4.3, followed by a discussion and interpretation of the hydrogeochemical characteristics of the groundwater along the flow path.

In section 4.4, select trace elements that display unique trends along the groundwater flow path are presented and examined. Geochemical modeling of strontianite, is also reported, and compared to earlier modeling by Armstrong (1994). Where possible, examples from previous groundwater studies are cited for select elements in the Milk River groundwater.

Section 4.5 documents how REEs are used as geochemical indicators in groundwater studies. Shale-normalized diagrams, and plots of concentration versus distance, pH, and alkalinity are presented and used sequentially to assist in the understanding of groundwater-rock interactions. The balance of the section is devoted to speciation modeling of the REEs in the groundwater to assess the importance of carbonate and phosphate complexes.

The remaining trace elements displaying minor or no observable trends are reported and discussed in section 4.6. Although these elements are not discussed in detail, it is important to document their concentrations and behavior to form a baseline for future groundwater studies. The final sections 4.6.3 and 4.6.4 display and discuss shale normalized plots of the transition metals, alkali metals and alkali earth metals.

4.2 The Major Hydrogeochemistry of the Milk River Aquifer Groundwater

4.2.1 pH, Alkalinity, and Major Ion Chemistry of the Groundwater

Results for major ion analyses for select groundwater samples in this study are presented in Tables 4.1 and 4.2. Sample sites were selected along the chemically and hydraulically constrained section of the aquifer flow path (Fig. 3.1). Samples from groundwater sites with conservative element (i.e. Cl, Na, K, Ca) concentration peaks are not included in this chapters discussions or figures. For consistency, only filtered data is used and discussed in the following sections.

The pH of the groundwater generally decreases with increasing distance along the flow path (Fig. 4.1). Values range from >9.20 in the recharge area to <9.00 approximately 20 km downgradient, and remain constant up to 54 km from the recharge area. Alkalinity

Sample	MR139	MR122(96)	MR122	MR123	3(96)	MR52(96)	MR80(96)	MR130	MR136	MR129	MR137	MR127(96)	MR119(96)
(µg/ml)	fil.	fil.	fil.	fil.	fild.	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.
Ca		0.96		1.08	1.08	1.38	1.23					0.84	1.1
Mg		0.29		0.36	0.36	0.42	0.43					0.29	0.35
Fe		0.05		0.02	0.02	0.04	0.02					0.29	0.11
Na		310		381	362	437	425					388	437
Cl	13.8	1.92	1.60	5.92	5.91	10.0	14.9	18.2	20.1	20.1	42.8	57.9	72.6
SO4	115	152	137	171	171	297	277	241	217	221	14.6	<0.5	<0.5

Table 4.1. Major anions and cations analyzed in the Milk River aquifer groundwater.

Notes: 1) fil. = filtered data, fil.-d. = Filtered duplicate data

2) 1997 data presented unless indicated

Table 4.2. Major elements analyzed in the Milk River aquifer groundwater.

						-							
Sample	MR	139	MR122(96)	MR122	MR123(9)6)	MR123	MR52(96)	MR80(96)	MR130	MR135	MR136	MR129
(ppb)	fil.	fild.	fil.	fil.	fil.	fild.	fil.	fil.	fil.	fil.	fil.	fil.	fil.
Al			9.7		7.9	6.6		7.8	7.3				
Fe	10	10	54	10	37	42	10	42	33	10	60	10	40
Ca	1060	1090	989	950	1131	1127	1060	1414	1208	1240	1200	1200	1140
Mg	240	240	288	320	381	357	360	424	416	430	410	390	430
К	810	770	925	760	949	964	960	1080	1029	1140	1090	1150	1160
Na(ppm)	291	290	288	305	384	376	383	435	415	428	425	431	424
		MD121	100115/05	MD121		MD124	1/01/22	140132	10127/07	1012(05)	100120	MD110(0()	MD110/05)
Sample	MK110(95)	MRIJI	MR115(95)	MR131	MK114(95)	MR134	MR133	MR137	MR127(90)	MR12(95)	MRIJO	MK119(90)	MR119(95)
(ppb)	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.	fil.
Al	9.0		5.0	3.6	10				6.0	10.0		8.8	6
Fe	33	60	100	60	72	20	40	30	356	92	40	119	384
Ca	1287	1200	1041	1200	1448	990	1210	920	966	1039	900	1144	1252
Mg	481	450	353	450	636	350	470	320	329	409	320	347	438
ĸ		1260		1260		1040	1370	1070	1149		1090	1089	
Na(ppm)		463		463		410	457	401	422		393	435	

Notes: 1) fil. = filtered data, fil.-d. = Filtered duplicate data

2) 1997 data presented unless indicated

Figure 4.1. Field pH and alkalinity versus distance from recharge. Vertical dashed lines represent redox front and post-redox front boundaries. Cumulative plot of 1996-1997 data.

increases linearly along the flow path. Values range from 475 mg/L in the recharge area to 775 mg/L near the town of Foremost ~50 km from recharge (Fig. 4.1).

Major ions Cl, Mg, Ca, Na and K are plotted as a function of distance from the recharge area (Figs. 4.2 and 4.3). The data presented in these figures exhibit the same trends of those reported by previous workers (Meyboom, 1960; Schwartz and Muelenbachs, 1979; Phillips et al., 1986; Hendry and Schwartz, 1988, 1990; and Hendry et al., 1991). Plots display small but well defined increases in Cl, Mg, Ca, Na, and K up to 20 km along the flow path (Figs. 4.2 and 4.3). Magnesium, Ca, Na, and K concentrations remain constant after 20 km to 54 km, as the groundwater migrates downgradient. The trends of Cl, Na, Ca and K downgradient from the recharge area are controlled by diffusion from the underlying confining shale (Hendry and Schwartz, 1988). Aluminum concentrations are uniform from the recharge area to 54 km.

4.2.2 Initial Condition - Solution Modeling of the Groundwater

Hendry et al. (1991) used the computer code PHREEQE (Parkhurst et al., 1990) to determine the theoretical saturation states of calcite, dolomite, gypsum, and pCO_2 for the Milk River aquifer groundwater. Data indicated that the groundwaters are at or near equilibrium with respect to calcite and dolomite, which is consistent with these being the dominant carbonate minerals in the Milk River Formation (Meyboom, 1960; Longstaffe, 1984).

Utilizing PHREEQE, Armstrong (1994) concluded that the Milk River aquifer porewaters along the flow path are initially undersaturated with respect to calcite and dolomite, and approach equilibrium with increased residence time. Gypsum was also determined to be undersaturated, although water in the recharge area and tills was close to gypsum saturation. This confirmed the earlier conclusions that SO_4 in the porewaters are derived from gypsum in the tills (Hendry et al., 1986; Hendry and Schwartz, 1990).

Figure 4.2. Cl⁻, Mg, and Al concentrations in the Milk River aquifer groundwater versus distance along the flow path. Dashed vertical lines represent the redox front and post-redox front boundaries. Cumulative plot of 1996-1997 data. Square marker represents AAS (Mg) data or Liquid Chromatography data (Cl⁻). Circle marker represents ICP-AES (Al, Mg) data.

Figure 4.3. Ca, Na, and K concentrations in the Milk River aquifer groundwater versus distance along the flow path. Dashed vertical lines represent the redox front and post-redox front boundaries. Cumulative plot of 1996-1997 data. Square marker represents AAS (Ca, Na) data. Circle marker represents ICP-AES (Fe) data.

Sample	MR139	MR122	MR123	MR52	MR80	MR130	MR136	MR129	MR132	MR137	MR119
Distance (km)	1.5	2.0	7.5	15.0	20.0	22.0	23.5	24.0	31.5	44.0	54.0
Phase										-	
pCO ₂	-3.80	-3.77	-3.75	-3.69	-3.70	-3.50	-3.59	-3.56	-3.05	-3.54	-3.56
Calcite	-0.25	-0.25	-0.18	-0.12	-0.17	-0.21	-0.19	-0.23	-0.19	-0.16	-0.03
Dolomite	-1.00	-0.83	-0.69	-0.63	-0.64	-0.67	-0.70	-0.70	-0.73	-0.62	-0.44
Gypsum	-3.39	-3.34	-3.27	-2.97	-3.07	-3.11	-3.16	-3.18	-5.27	-4.38	-5.77
Uraninite	-18.79	-18.50	-18.65	-18.55	-18.30	-12.36	-12.20	-8.77	1.95	4.79	3.48
Barite	0.12	-0.01	0.29	0.03	-0.02	-0.14	0.03	3.08	-1.41	-0.33	-1.70
Strontianite	-0.99	-0.94	-0.75	-0.66	-0.74	-0.78	-0.76	-0.78	-0.74	-0.67	-0.05

 Table 4.3.
 Saturation index values from speciation modeling using PHREEQC, in the Milk River aquifer groundwater.

For purposes of comparison, PHREEQC (Parkhurst, 1995) was utilized to determine the theoretical saturation indices of calcite, dolomite, gypsum, and pCO₂ along the flow path (Fig. 4.4). Saturation indices for select minerals and phases that may be reacting in the Milk River aquifer groundwater are presented in Table 4.3. Consistent with the results of Hendry et al. (1991), data of this study indicates that the groundwaters are at equilibrium, or slightly undersaturated, with respect to calcite and dolomite, respectively. Calcite is very close to equilibrium in the groundwaters (mean SI = -0.18; n=11), and dolomite is slightly undersaturated in all the groundwaters along the flow path (mean SI = -0.70; n=11). Generally, the log pCO₂ values are less than the atmospheric pCO₂ of -3.5. Log pCO₂ values are slightly lower in the recharge area than the downgradient values (mean SI = -3.59; n=11). Saturation indices show that gypsum is undersaturated in the groundwater from the recharge area to 54 km downgradient (mean SI = -3.72; n=11).

4.3 Oxidation - Reduction Sequences in Confined Groundwater Systems

Hydrogeochemists have observed a decline in the measured potential, Eh, in groundwaters as they migrate from recharge to discharge areas in confined aquifers. This progressive change of the groundwaters, from an oxidized state at recharge to a reduced state at discharge, indicates that oxidation-reduction (redox) reactions have occurred in the aquifer (Champ et al., 1979). Associated changes in pH and concentrations of dissolved elements (O, N, Fe, Mn, S, and C) can also be accounted for by these redox reactions (Table 4.4).

Champ et al. (1979), proposed three redox zones in groundwater systems: (1) an oxygen-nitrate zone, (2) an iron-manganese zone, and (3) sulfide zone. The mobility and concentrations of multivalent metals (Co, Ni, Cu, U, Fe, and Mn) and multivalent non-metals (As, S, and N) vary in each of these zones. In the recharge area of a confined (closed system) aquifer the water is oxidizing, as it contains both dissolved oxygen and nitrate. Thus, the mobile elements are those which are soluble as higher

Figure 4.4. PHREEQC initial conditions - solution modeling of select phases in the Milk aquifer groundwater. Calculated saturation indices versus distance from recharge along the flow path. Dashed vertical lines represent redox front and post-redox front.

Element	Symbol	Proton Number	Oxidation states
		(atomic number)	
••••••••••••••••••••••••••••••••••••••			
Aluminum	Al	13	3+
Arsenic	As	33	3+,5+, (0)
Barium	Ba	56	2+
Boron	В	5	3+
Cadmium	Cd	48	2+
Calcium	Ca	20	2+
Carbon	С	6	4+, (0), 4-, 2-
Chlorine	Cl	17	1-
Chromium	Cr	24	6+, 3+
Cobalt	Co	27	2+, (3+)
Copper	Cu	29	2+, 1+, (0)
Iron	Fe	26	3+, 2+
Lead	Pb	82	2+, (4+), (0)
Lithium	Li	3	1+
Magnesium	Mg	12	2+
Manganese	Mn	25	2+, (3+), (4+)
Nickel	Ni	28	2+, (3+)
Phosphorus	Ρ	15	5+
Potassium	K	19	1+
Selenium	Se	34	6+, 4+, (0), 2-
Sodium	Na	11	1+
Strontium	Sr	38	2+
Sulphur	S	16	6+, 4+, 0, (1-), 2-
Thorium	Th	90	4+
Tin	Sn	50	4+
Titanium	Ti	22	4+
Tungsten	\mathbf{W}	74	6+
Uranium	U	92	6+, 4+
Vanadium	V	23	5+, 4+, 3+
Zinc	Zn	30	2+
REEs(Lanthinides)	La - Lu	57 through 71	3+
Europium	Eu	63	3+, (2+)
Cerium	Ce	58	3+. 4+

Table 4.4. Oxidation states of select elements that occur in the Milk River aquifer, groundwater (from Langmuir, 1997).

Note: Values in parentheses are found in mineral systems only

valent oxyanions (e.g. N, S, U, and Cr), whereas those which are immobile form higher valence insoluble metal oxides (e.g. Fe and Mn). When decaying organic matter isolated from atmospheric oxygen is present in the system, aerobic decay takes place, depleting all free O_2 and nitrate, and a more reducing environment develops - the Fe-Mn zone. The Fe(II) and Mn(II) valence states are more stable and soluble in this reduced zone compared to their corresponding Fe(III) and Mn(III) - Mn(IV) hydrous oxides; the latter dissolve, become reduced and are thus mobile as Fe(II) and Mn(II). Transition metals Zn, Co, Ni, and Cu may also appear in solution.

After the reduction of Mn and Fe, the groundwater becomes sufficiently reducing, and hence- the sulfide zone is created. The immobile elements in this zone are those which form insoluble metal sulfides in their reduced state (Fe, Mn, Co, Cr, Ni, Cu, and As). The Milk River aquifer fits the redox sequence documented by Champ et al. (1979). Therefore this study will use the major and trace element geochemistry of the groundwater to contribute to the understanding of the fate of trace elements, including the REEs, in groundwater flow systems.

4.3.1 Redox Chemistry of the Milk River Groundwater

Figure 4.5 displays how sulphate concentrations decrease rapidly along the flow path and at 32 km from recharge are at very low concentrations (<0.5 μ g/ml). Iron does not exhibit any appreciable concentration differences as the groundwater migrates down flow through the redox and post-redox front, but does display a small overall increase in dissolved concentrations (Fig. 4.5).

Methane data from Taylor (1996), displays a significant increase at 32 km where the sulphate concentrations drop below detection as predicted by redox reactions in closed aquifer systems. Geological changes can account for these values (Hendry et al., 1991). The first change was the erosion of the overlying confining beds in the recharge area about 5×10^5 years ago, allowing meteoric water with low Na⁺ and Cl⁻ concentrations to enter and displace the existing groundwater. The second change was the deposition of

glacial till about 30,000-40,000 years ago (Fig. 2.3). The water recharging through the till developed groundwater in the aquifer which was enriched in Na⁺, SO_4^{2-} , Ca^{2+} , and Mg^{2+} (Hendry and Schwartz, 1990).

The CH_4 -SO₄ redox transition has been commented on by Taylor (1996), and as well as the dependence on SO₄ availability being important in the role of methane oxidation. Methane does not form in the presence of dissolved sulphate. If found with sulphate it implies mixing in the well from different redox zone waters. Bio-fermentation to generate CH_4 is expected to occur after the reduction of sulphate in closed groundwater systems (Champ et al., 1979). The Milk River groundwater contains sulphate concentrations that are negligible at 32 km along the flow path. Methane concentrations become detectable at higher concentrations at approximately this point on the flow path and farther downgradient (Fig. 4.5; Taylor, pers. comm.).

Changes in the redox potential, and the reductive dissolution of Fe and Mn oxyhydroxides all play a role in mobilizing select metals and associated trace elements. Precipitation and/or adsorption will decrease concentrations of trace metals and dissolution and/or desorption will act to increase dissolved concentrations (Jacobs et al., 1988). Adsorption and desorption are pH dependent. Due to very slow groundwater velocities, the zone of high SO₄ concentration does not extend far beyond the subcrop area of the Milk River aquifer (Hendry and Schwartz, 1988).

In groundwater studies, *uranium* has been found to be an excellent element for tracing the evolution of waters because of its multi-valent characteristics. Uranium concentrations range overall from <0.02 ppb to 1.48 ppb, where the more distal water containing the lowest levels. Ivanovich et al. (1991) report uranium concentrations of similar magnitude in the western section of the Milk River aquifer. Because the groundwater samples have high SO₄ concentrations and no methane, oxic conditions were suggested (Ivanovich et al., 1991). Therefore, the higher concentrations encountered along the flow path at 20 km may be the redox front boundary, and at

Figure 4.5. Concentrations of Fe, SO_4 , and CH_4 in the Milk River aquifer groundwater versus distance along the flow path. Dashed vertical lines represent redox front and post-redox front boundaries. Cumulative plot of 1996-1997 data. Square marker represents AAS (Fe) data or Liquid Chromatography data (SO_4). Circle marker represents ICP-AES data (Fe). Methane data from (Taylor, pers. comm.).

the post-redox front boundary (Fig. 4.7). Therefore, it is unlikely that the groundwater with intermediate concentrations of uranium are probably the result of minor mixing between oxic and anoxic water masses as previously reported by Ivanovich et al. (1991).

Aqueous uranium transport has been well documented in roll-front type deposits. Uranium is leached from rock or soil, and then is transported in neutral to alkaline, oxidized waters as U^{+6} -carbonate complexes, until a redox interface is encountered and reduces the uranium to U^{+4} , precipitating as insoluble uranium bearing minerals such as uraninite or coffinite.

The uranium speciation of select groundwater samples in the Milk River aquifer was investigated by Ivanovich et al. (1991) utilizing PHREEQE geochemical modeling code (Parkhurst et al., 1980). The model calculated saturation indices for uraninite which were determined to be undersaturated (<-4) to slightly saturated (<0.7) in the groundwater. Similarly, in this study, uranium speciation in the groundwater was investigated using PHREEQC (Parkhurst, 1995). Uraninite (UO₂) is strongly undersaturated (SI <-18) in the recharge groundwater, but after the redox front (20 km) shifts toward saturation (SI >3) as the groundwater migrates downgradient (Fig. 4.6). The groundwater becomes oversaturated with respect to uraninite just after the post-redox front (~32-33 km) along the flow path.

Generally, total *manganese* values in the groundwater are lowest in the subcrop area at <3 ppb with only a slight increase downgradient, excepting MR139. There is a Mn concentration peak from 20 km to approximately 33 km along the flow path (Fig. 4.6). This progressive northward increase along the flow path to a maximum of 11.2 ppb may be due to a redox boundary at 20 km from recharge. Therefore, reductive dissolution of Mn oxide appears to be an important process. After the post-redox boundary, dissolved Mn concentrations drop, due likely to precipitation of Mn oxyhyroxides.

Figure 4.6. U and Mn concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Figure 4.7. PHREEQC initial conditions - solution modeling of uraninite in the Milk aquifer groundwater. Calculated saturation indices versus distance from recharge along the flow path. Dashed vertical lines represent redox front and post-redox front.

\$

Hendry and Schwartz (1990) presented Eh measurements. These authors determined that the Eh is above 300 mv in the recharge area, and it decreases quickly to about approximately 100 mv at well site MR80, 20 km from recharge, suggesting that redox conditions are low enough for sulphate reduction to occur (Champ et al., 1979). The lowest Eh (-68 mv) was obtained from MR113, 91 km from recharge, at the end of the flow path (Hendry and Schwartz, 1990). However, based on present knowledge of redox reactions and the data from this study, it appears that some of these Eh measurements are not consistent with the concentrations of select dissolved redox components (i.e. SO_4 reduction, and CH_4 production) measured in the groundwaters. Therefore, theoretical values have been determined at select wells where the Eh data is not known or is poorly constrained (Fig. 4.8). Eh values have and will be further discussed in this chapter, as they are useful for geochemical speciation modeling.

4.4 Select Trace Elements in the Milk River Aquifer Groundwater

4.4.1 Trace Element Concentrations Along the Flow Path

Table 4.5 lists the concentrations of select trace elements analyzed in the Milk River aquifer groundwater samples. The concentrations and mobility of trace elements depends on many factors including: (1) the abundance in the host rock and solubility of its minerals; (2) atmospheric inputs; (3) the nature and sequence of hydrogeochemical processes within the aquifer such as adsorption, desorption, precipitation, dissolution, and redox reactions; (4) the residence time; (5) biodegradation; and (6) anthropogenic sources (Edmunds et al., 1982; Smedley, 1991; Grenthe et al., 1992; Ramaswami, 1994; Gascoyne, 1997). These points will be discussed and assessed using analytical measurements of individual element concentrations coupled with hydrogeochemical modeling in the next chapter.

Boron is one of the trace elements with the highest concentrations, ranging from >100-500 ppb in the recharge area and increasing linearly along the flow path to 1400-1500

Figure 4.8. Theoretical Eh values used in the speciation modeling, as determined by redox reactions in the Milk River aquifer groundwater.

Sampl	e	MR	139		MR122(96)	MR122		MR123(96)		MR123	
(ppb)	filtered	fil-dup	unfiltered	unfil-dup	filtered	filtered	unfiltered	filtered	fil-dup	filtered	unfiltered
Ti	18.1	25.2	24.6	4.7	3.6	1.2	1.2	4.4	4.0	2.0	2.7
v	0.06	0.14	0.10	0.72	0.02	0.00	0.01	0.03	0.02	0.02	0.04
Cr	0.12	0.22	0.14	0.09	0.09	0.10	0.22	0.13	0.06	0.18	0.20
Mn	9.7	13.4	10.4	1.8		1.4	1.7			2.5	3.1
Co	0.066	0.068	0.083	0.063	0.018	0.015	0.012	0.010	0.010	0.011	0.014
Ni	0.06	0.12	0.06	0.86	0.12	0.06	0.10	0.01	0.02	0.01	0.03
L D	45.5	45.2	44.5	6.0	51.3	47.7	47.0	48.2	43.8	38.4	38.2
Be	2/2	175	205						077	47.4	421
B	302	4/5	307	11	119	241	229	290	257	404	431
1	0.20	0.19	0.22	0.30	0.10	0.14	0.13	0.22	0.23	0.21	0.21
ZF Nh	0.17	0.17	0.19	0.09		0.03	0.04		0.001	0.001	0.00
Te	0.04	0.04	0.05	0.002	n.u.	0.0002	0.001	n.u.	0.001	0.001	0.0005
H	0.005	0.004	0.003	0.0001	0.001	0.0003	0.001	0.001	0.002	0.001	0.0000
P	295	410	299	15	120	108	112	445	499	355	354
-				15	150	100					
La	0.087	0.079	0.105	0.028	0.010	0.002	0.003	0.014	0.015	0.003	0.017
Ce	0.175	0.158	0.211	0.053	0.010	0.003	0.005	0.007	0.006	0.002	0.032
Pr	0.023	0.021	0.026	0.007	0.001	0.001	0.001	0.001	0.001	0.001	0.005
Nd	0.091	0.088	0.111	0.028	0.012	0.002	0.005	0.011	0.008	0.003	0.021
Sm	0.022	0.022	0.025	0.005	0.005	0.001	0.002	0.004	0.003	0.002	0.007
Eu	0.005	0.004	0.004	0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.001
Gd	0.021	0.023	0.028	0.007	0.006	0.004	0.003	0.005	0.004	0.003	0.006
Тъ	0.004	0.003	0.003	0.0005	n.d.	0.001	0.001	0.001	n.d.	0.0004	0.001
Dy	0.017	0.016	0.020	0.006	0.005	0.003	0.003	0.005	0.004	0.005	0.006
Ho	0.004	0.003	0.004	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002
Er	0.010	0.010	0.014	0.004	0.006	0.004	0.006	0.008	0.009	0.006	0.007
Tm	0.002	0.002	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Yb	0.010	0.009	0.011	0.003	0.007	0.006	0.006	0.009	0.008	0.008	0.008
Lu	0.002	0.001	0.001	0.0003	0.001	0.001	0.001	0.002	0.001	0.001	0.001
Cs	0.025	0.023	0.026	0.003	0.040	0.034	0.029	0.060	0.050	0.033	0.035
Rb	0.72	0.69	0.69	0.38	0.79	0.78	0.75	0.84	0.83	0.86	0.85
Ba	27.1	23.9	26.7	98.2	15.5	16.4	15.8	30.4	30.7	32.0	30.8
Th	0.036	0.037	0.036	0.009	0.002	0.001	0.001	0.002	0.003	0.001	0.006
U	0.13	0.13	0.13	0.97	0.41	0.44	0.45	0.40	0.36	0.46	0.46
W	0.23	0.27	0.23	0.004	1.26	1.02	1.03	4.93	5.24	3.79	3.67
Sr	50.62	48.59	49.96	231.93	49.67	49.98	49.31	73.22	72.56	74.81	73.64
РБ	0.29	0.77	0.45	0.02	0.53	0.05	0.06	0.06	0.09	0.02	0.06
Ac	0.24	0.13	0.23	0.05	0.00	0.16	0.16	0.05	0.02	0 10	0.08
Sh	n.d	0.07	0.25 n.d	0.93	0.09	n.10	n.10	0.05	0.05 n.d	n.10	n d
Mo	1.4	1.49	1 54	0.15	0.07	0.06	0.06	0.01	0.06	0.06	0.05
Cd	0.014	0.009	0.002	0.008	0.010	0.006	0.007	0.010	n.00	0.004	0.001
Sn	0.43	0.17	0.33	0.01	0.010	0.09	0.04	0.010		0.08	0.04
Sc	0.56	0.81	0.60	0.71	1.86	0.73	0.74	1.75	1.92	0.84	0.91
Ga										-10-1	
Cu	0.59	0.53	0.33	0.93	1.07	0.46	0.69	0.57	0.59	0.44	1.41
Zn	0.89	0.79	1.18	0.13	2.26	1.87	2.48	1.56	1.42	1.58	8.14
Ag	0.0004	0.004	n.d.	n.d.	0.074	0.0001	0.001	0.020	0.051	0.014	0.007
Au					n.d.			n.d.	n.d.		
Se	0.04	0.23	0.01	0.19	0.06	0.28	0.03	0.31	0.17	0.04	0.03
Pd					0.02			0.03	0.04		
Hg	0.03	n.d.	0.06	n.d.		n.d.	n.d.			n.d.	n.d.

Table 4.5. Trace elements analyzed in the Milk River aquifer groundwater.(1997 data unless otherwise stated in parenthesis)

Table 4.5. continued.

(ppb) filtered filtered <t< th=""><th>Sample</th><th>MR52(96)</th><th>MR52(95)</th><th>MR</th><th>80(96)</th><th>MR80(95)</th><th>MR116(95)</th><th>MR115(95)</th><th>MR</th><th>R130</th></t<>	Sample	MR52(96)	MR52(95)	MR	80(96)	MR80(95)	MR116(95)	MR115(95)	MR	R130
Ti 12.7 4.1 12.5 11.8 5.1 2.9 0.2 2.7 3.4 C 0.01 1.00 0.18 0.07 1.00 1.10 1.20 0.04 0.25 Ma 1.4 1.2 1.4 4.7 9.4 13.5 Co 0.017 0.030 0.011 0.015 0.010 0.020 0.040 0.027 Li 9.3 37.0 4.5.1 46.3 55.0 42.0 44.0 37.7 35.1 Be 0.30 n.d. n.d. n.d. n.d. n.d. 0.02 0.05 0.17 0.20 V 0.26 0.02 0.02 n.d. n.d. n.d. 0.00 0.001	(ppb)	filtered	filtered	filtered	fil-dup	filtered	filtered	filtered	filtered	unfiltered
11 12.7 4.1 12.5 11.8 5.1 2.9 0.2 2.7 3.4 005 0.07 0.07 0.07 0.07 0.04 0.25 Min 1.4 1.2 1.4 4.7 9.4 0.032 Min 0.044 n.d. 0.015 0.010 0.029 0.040 0.009 0.032 Ni 0.044 n.d. 0.01 6.015 0.010 n.d. n.d. 0.62 6.2 Ni 0.044 n.d. 0.07 0.08 n.d. n.d. n.d. 0.62 0.2 6.2 0.65 0.02 0.65 0.02 0.65 0.02 0.05 0.02 0.02 0.01 0.001 0.002 0.02 0.04 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.										
V 0.05 0.07 0.07 1.00 1.10 0.20 0.04 0.25 Ma 1.4 1.2 1.4 4.7 9.4 13.7 Ca 0.017 0.030 0.011 0.015 0.010 0.0220 0.040 0.09 0.032 NI 0.04 n.d. 0.67 0.08 n.d. n.d. 0.41 n.d. 0.67 0.62 0.67 0.67 Bit 0.04 n.d. 0.67 0.05 0.02 0.04 n.d. n.d. 0.67 0.62 Y 0.26 0.03 0.26 0.28 0.05 0.02 0.01 n.d. 0.001 0.001 0.002 0.05 0.05 0.05 0.062 0.07 0.07 0.07 0.07 0.07 0.061 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.0	Ti	12.7	4.1	12.5	11.8	5.1	2.9	0.2	2.7	3.4
C- 0.01 1.00 0.13 0.04 0.04 0.04 0.03 Ma 1.4 1.2 1.4 4.7 5.4 0.009 0.030 NI 0.044 n.d. 0.07 0.08 n.d. n.d. n.d. n.d. 0.60 0.009 0.032 B 434 306 480 620 642 642 Y 0.26 0.03 0.02 n.d. n.d. n.d. n.d. 0.001 0.001 0.002 0.05 0.08 0.09 0.12 NN 0.01 n.d. 0.02 n.d. n.d. n.d. n.d. 0.001 0.002 TN 0.001 n.d. 0.002 n.d. n.d. n.d. 0.020 0.001 0.002 P 357 383 38	v	0.05		0.07	0.07				0.02	0.04
Mn 1.4 1.2 1.4 4.7 9.4 13.7 Cs 0.017 0.030 0.011 0.015 0.020 0.040 0.090 0.032 Ni 0.044 n.d. 0.07 0.08 n.d. n.d. n.d. 0.40 37.7 36.1 Be 0.30 0.26 0.03 0.26 0.05 0.02 0.05 0.11 0.20 642 Y 0.26 0.03 0.22 0.05 0.02 0.05 0.02 0.01 0.00 0.001 0.002 n.d. n.d. 0.001 0.002 n.d. n.d. 0.001	Cr	0.01	1.00	0.18	0.05	1.00	1.10	1.20	0.04	0.25
Cc 0.01 0.01 0.015 0.010 0.020 0.040 0.009 0.032 NI 0.04 a.d. 0.07 0.08 n.d. n.d. n.d. 0.07 Li 39.3 37.0 45.1 46.3 56.0 42.0 44.0 37.7 35.1 B 0.30 n.d. 0.50 0.02 0.05 0.17 0.20 Zr 0.011 0.08 0.05 0.02 0.06 0.001	Mn		1.4			1.2	1.4	4.7	9.4	13.7
Ni 0.04 n.d. 0.07 0.08 n.d. n.d. n.d. n.d. 0.07 Bit 0.30 n.d. 0.50 n.d. 0.50 n.d. Bit 0.31 0.03 0.26 0.22 0.05 0.02 0.05 0.07 0.20 620 642 Y 0.26 0.03 0.02 0.02 0.02 0.05 0.02 0.05 0.01 0.00 0.02 Zr 0.01 n.d. 0.02 0.02 n.d. n.d. n.d. 0.001 0.001 0.002 Fit 0.001 n.d. 0.023 n.d. n.d. 0.020 0.010 0.001 0.001 Fit 0.001 n.d. 0.043 0.039 n.d. n.d. n.d. 0.001 <t< td=""><td>Co</td><td>0.017</td><td>0.030</td><td>0.011</td><td>0.015</td><td>0.010</td><td>0.020</td><td>0.040</td><td>0.009</td><td>0.032</td></t<>	Co	0.017	0.030	0.011	0.015	0.010	0.020	0.040	0.009	0.032
Li 39.3 37.0 45.1 46.3 56.0 42.0 44.0 37.7 36.1 Be 0.30 n.d. 0.05 0.62 0.05 0.17 0.20 Y 0.26 0.03 0.26 0.28 0.05 0.62 0.05 0.61 0.069 0.17 0.20 Xr 0.011 n.d. 0.02 n.d. n.d. n.d. 0.001 0.001 0.001 0.002 0.011 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.001 </td <td>Ni</td> <td>0.04</td> <td>n.d.</td> <td>0.07</td> <td>0.08</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>n.d.</td> <td>0.07</td>	Ni	0.04	n.d.	0.07	0.08	n.d.	n.d.	n.d.	n.d.	0.07
Be 0.30 n.d. 0.50 n.d. 0.50 n.d. B 434 366 480 622 0.05 0.02 0.05 0.17 0.20 Zr 0.11 0.06 0.05 0.02 0.05 0.02 0.05 0.06 0.06 0.001 0.002 Nb 0.01 n.d. 0.02 n.d. n.d. n.d. 0.001 0.002 P 357 383 383	Li	39.3	37.0	45.1	46.3	56.0	42.0	44.0	37.7	36.1
B 434 306 480 622 605 602 605 608 0.09 0.12 Nb 0.01 n.d. 0.02 n.d. n.d. n.d. 0.001 0.002 Tb 0.002 n.d. n.d. n.d. n.d. 0.001 0.002 H 0.001 0.001 0.002 n.d. n.d. n.d. 0.001 0.002 H 0.001 0.001 0.002 n.d. n.d. 0.001 0.002 H 0.001 n.d. 0.015 n.d. n.d. 0.010 0.001 0.002 Nd 0.021 n.d. 0.079 n.d. n.d. n.d. 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.0001 0.0002 0.002 0.001 0.0001 0.0001 0.0002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Be		0.30			n.d.	0.50	n.d.		
Y 0.25 0.03 0.02 0.05 0.07 0.05 0.01 0.05 0.05 0.06 0.09 0.12 No 0.01 n.d. 0.02 n.d. n.d. n.d. 0.001 0.002 H 0.001 0.002 n.d. n.d. n.d. 0.001 0.002 P 357 383 383 365 394 La 0.011 n.d. 0.032 n.d. n.d. 0.001 0.002 P 357 383 383 365 394 La 0.012 n.d. 0.039 n.d. n.d. n.d. 0.001 0.004 0.021 n.d. 0.037 n.d. n.d. n.d. 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002	В	434		306	480				620	642
Zz 0.11 0.08 0.05 0.08 0.09 0.02 Nb 0.01 n.d. 0.02 n.d. n.d. 0.001 0.001 Fa 0.001 0.002 n.d. n.d. n.d. 0.001 0.002 P 357 383 383 383 383 383 383 385 365 394 La 0.015 n.d. 0.043 0.039 n.d. 0.020 0.010 0.009 n.d. 0.021 0.001 0.004 Ce 0.021 n.d. 0.079 n.d. n.d. n.d. n.d. 0.001 0.001 Nb 0.021 n.d. 0.015 0.002 0.003 0.001	Y	0.26	0.03	0.26	0.28	0.05	0.02	0.05	0.17	0.20
Nb 0.01 n.d. 0.02 n.d. n.d. n.d. 0.0004 0.001 Ta 0.002 n.d. 0.003 0.002 n.d. n.d. n.d. 0.001 0.002 P 357 383 383 365 394 La 0.015 n.d. 0.043 0.039 n.d. 0.020 0.010 0.004 Ce 0.021 n.d. 0.044 0.010 0.009 n.d. n.d. n.d. 0.001 0.004 Sm 0.007 0.015 0.009 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 <t< td=""><td>Zr</td><td>• • •</td><td>0.11</td><td></td><td></td><td>0.08</td><td>0.05</td><td>0.08</td><td>0.09</td><td>0.12</td></t<>	Zr	• • •	0.11			0.08	0.05	0.08	0.09	0.12
The 0.002 n.d. 0.01 0.002 n.d. n.d. n.d. 0.0004 0.0002 P 357 383 383 383 365 394 La 0.015 n.d. 0.043 0.039 n.d. 0.022 0.010 0.0004 0.001 P 357 383 383 n.d. n.d. n.d. 0.010 0.002 Ce 0.021 n.d. 0.044 0.010 0.0009 n.d. n.d. 0.001 0.0002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Nb	0.01	n.d.	0.02	0.02	n.d.	n.d.	n.d.	0.001	0.005
Hr 0.001 0.002 337 383 383 La 0.015 n.d. 0.023 n.d. 0.020 0.010 0.0001 0.0001 Ce 0.021 n.d. 0.037 0.079 n.d. n.d. n.d. 0.010 0.0001 0.0001 Pr 0.004 0.010 0.002 0.010 0.0001 0.0001 0.0001 Sm 0.007 0.015 0.009	Ta	0.002	n.d.	0.003	0.002	n.d.	n.d.	n.d.	0.0004	0.001
P 357 383 383 363 365 94 La 0.015 n.d. 0.039 n.d. 0.020 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 n.d. 0.001 n.d. 0.001 0.0001 0.0002 0.003 n.d. n.d. 0.001 0.0002 0.005 0.001 0.002 0.002 0.005 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.0	Hľ	0.001		0.001	0.002				0.001	0.002
La 0.015 n.d. 0.033 0.039 n.d. 0.020 0.010 0.001 0.004 Ce 0.021 n.d. 0.079 n.d. n.d. n.d. 0.001 0.007 Pr 0.004 0.010 0.009 n.d. n.d. 0.001 0.0001 0.0002 0.0001 0.0002 0.0001 0.001 0.0002 0.0001 0.001 0.001 0.001 0.002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 <	r	357		383	383				365	394
Ce 0.021 n.d. 0.078 0.079 n.d. n.d. n.d. n.d. 0.001 0.007 Pr 0.004 0.010 0.009 n.d. n.d. n.d. 0.001 n.d. 0.0001 Nd 0.007 0.015 0.009 0.001 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0001	La	0.015	n.d.	0.043	0.039	n.d.	0.020	0.010	0.001	0.004
Pr 0.004 0.010 0.009 nd. 0.000 Nd 0.020 0.042 0.048 0.0001 0.0002 0.005 Sm 0.007 0.015 0.003 0.0005 0.0005 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.001	Ce	0.021	n.d.	0.078	0.079	n.d.	n.d.	n.d.	0.001	0.007
Nd 0.020 0.042 0.048 0.001 0.001 0.001 Sn 0.007 0.015 0.009 0.001 0.001 0.001 Eu 0.001 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001	Pr	0.004		0.010	0.009				n.d.	0.000
Sm 0.007 0.015 0.009 0.001 0.001 0.005 0.0005 Eu 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.003 0.003 0.003 0.001 0.01 0.01 <td>Nd</td> <td>0.020</td> <td></td> <td>0.042</td> <td>0.048</td> <td></td> <td></td> <td></td> <td>0.0002</td> <td>0.005</td>	Nd	0.020		0.042	0.048				0.0002	0.005
En 0.001 0.002 0.003 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0001 0.002 0.0011 0.002 0.0011 0.002 0.0011 0.002 0.0011 0.002 0.0011 0.002 0.0011 0.002 0.0011 0.001 0.002 0.0011 0.001 0.01 0.01	Sm	0.007		0.015	0.009				0.001	0.001
Gd 0.005 0.016 0.011 0.002 0.002 0.0004 0.001 Tb 0.001 0.002 0.002 0.001 0.002 0.001 He 0.001 0.003 0.003 0.001 0.001 0.003 0.003 Fr 0.003 0.001 0.001 0.001 0.001 0.0001 0.0001 0.0001 Yb 0.005 0.020 0.011 0.010 n.d. 0.010 n.d. 0.0001 0.0001 Yb 0.001 0.002 0.002 0.002 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.01 0.01 0.01	Eu	0.001		0.002	0.003				0.0005	0.0005
Tb 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.01 0.01 0.01	Gd	0.005		0.016	0.011				0.002	0.001
Dy 0.003 0.007 0.007 0.002 0.002 0.003 He 0.001 0.003 0.003 0.003 0.003 0.003 Tm 0.001 0.001 0.001 0.001 0.001 0.003 0.003 Yb 0.005 0.020 0.011 0.010 n.d. 0.010 n.d. 0.001 0.001 Yb 0.005 0.020 0.002 0.002 0.002 0.001 0.0	Ть	0.001		0.002	0.002				0.0004	0.001
He 0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.003 0.003 Tm 0.005 0.020 0.011 0.001 0.001 0.002 0.001 0.003 0.003 0.003 Yb 0.005 0.020 0.011 0.001 n.d. 0.010 n.d. 0.001 0.003 0.003 Lu 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 Cs 0.050 0.050 0.050 0.050 0.050 0.051 0.036 0.037 0.001 0.0	Dy	0.003		0.007	0.007				0.002	0.004
Er 0.003 0.010 0.011 0.001 0.003 0.003 0.003 Tm 0.001 0.001 0.001 0.001 n.d. 0.001 0.0001 0.0001 Yb 0.005 0.020 0.010 n.d. 0.010 n.d. 0.001 0.001 0.001 Cs 0.050 0.050 0.050 0.022 1.00 1.10 1.00 1.00 0.97 1.01 Ba 12.3 12.0 12.2 12.4 14.0 52.0 61.0 11.6 13.4 Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. 0.001 0.005 U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.0 86.53 9.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.07<	Ho	0.001		0.003	0.003				0.001	0.001
Tm 0.001 0.01 0.01 0.01 0.01<	Er	0.003		0.010	0.011				0.003	0.003
Yb 0.005 0.020 0.011 0.010 n.d. 0.010 n.d. 0.001 0.004 0.008 Lu 0.001 0.050 0.050 0.050 0.051 0.036 0.037 Rb 0.94 1.00 0.92 1.00 1.10 1.00 1.00 0.97 1.01 Ba 12.3 12.0 12.2 12.4 14.0 52.0 61.0 11.6 13.4 Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. 0.001 0.005 U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.28 0.90 W 4.44 2.30 3.00 3.08 1.50 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.01 n.d. 0.02 0.01 n.d. n.d. n.d. Sb n.d. n.d.	Tm	0.001		0.001	0.001				0.0001	0.0001
Lu 0.001 0.002 0.002 0.001 0.001 0.001 Cs 0.050 0.050 0.050 0.036 0.037 1.01 Ba 12.3 12.0 12.2 12.4 14.0 52.0 61.0 11.6 13.4 Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. 0.001 0.005 U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 10.469 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 n.d. 0.10 0.02 0.38 As 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. 0.01 n.d. n.d. 0.02 0.38	Yb	0.005	0.020	0.011	0.010	n.d.	0.010	n.d.	0.004	0.008
Cs 0.050 0.050 0.036 0.037 Rb 0.94 1.00 0.92 1.00 1.10 1.00 1.00 0.97 1.01 Ba 12.3 12.0 12.2 12.4 14.0 52.0 61.0 11.6 13.4 Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. 0.001 0.005 U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 n.d. 0.10 0.02 0.38 K 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.40 0.60 0.30 0.15 <td>Lu</td> <td>0.001</td> <td></td> <td>0.002</td> <td>0.002</td> <td></td> <td></td> <td></td> <td>0.001</td> <td>0.001</td>	Lu	0.001		0.002	0.002				0.001	0.001
Rb 0.94 1.00 0.02 1.00 1.10 1.00 1.00 0.07 1.01 Ba 12.3 12.0 12.2 12.4 14.0 52.0 61.0 11.6 13.4 Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 n.d. 0.10 0.02 0.38 K 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d.	Cs	0.050		0.050	0.050				0.036	0.037
Ba 12.3 12.0 12.2 12.4 14.0 52.0 61.0 11.6 13.4 Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. 0.001 0.005 U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 n.d. 0.10 0.02 0.38 K 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d.	Rb	0.94	1.00	0.92	1.00	1.10	1.00	1.00	0.97	1.01
Th 0.007 n.d. 0.026 0.025 n.d. n.d. n.d. n.d. 0.001 0.005 U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 n.d. 0.10 0.02 0.38 K 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.02 0.01 n.d. n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. 0.01 n.d. n.d. </td <td>Ba</td> <td>12.3</td> <td>12.0</td> <td>12.2</td> <td>12.4</td> <td>14.0</td> <td>52.0</td> <td>61.0</td> <td>11.6</td> <td>13.4</td>	Ba	12.3	12.0	12.2	12.4	14.0	52.0	61.0	11.6	13.4
U 0.59 0.57 1.14 1.12 1.08 0.61 0.03 0.88 0.90 W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 nd. 0.10 0.02 0.38 K 0.08 0.20 0.07 0.08 0.40 0.66 0.30 0.15 0.15 Sb nd. nd. nd. 0.01 nd. 0.02 0.30 0.15 0.15 Sb nd. nd. nd. 0.01 nd. 0.02 0.01 nd. nd. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd nd. nd. nd. 0.01 nd. nd. nd. 0.02 0.30 0.11 0.43 0.23 0.32 0.39	Th	0.007	n.d.	0.026	0.025	n.d.	n.d.	n.d.	0.001	0.005
W 4.44 2.30 3.00 3.08 1.60 0.40 0.30 2.41 2.39 Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 nd. 0.10 0.02 0.38 As 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. 0.01 n.d. n.d. n.d. 0.02 0.09 n.d. Sn 0.03 0.20 0.60 0.90 1.10 0.91 0.94 Ga 0.30 0.91 4.60 0.80 1.20 0.48 0.81	U	0.59	0.57	1.14	1.12	1.08	0.61	0.03	0.88	0.90
Sr 104.69 101.00 86.53 93.12 85.00 83.00 57.00 92.90 96.86 Pb 0.04 0.20 0.11 0.17 0.10 nd. 0.10 0.02 0.38 As 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. Mo 0.466 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. n.d. 0.01 n.d. n.d. 0.02 0.08 0.32 0.39 Sc 1.87 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.660 0.90 0.048 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10	w	4.44	2.30	3.00	3.08	1.60	0.40	0.30	2.41	2.39
Pb 0.04 0.20 0.11 0.17 0.10 nd. 0.10 0.02 0.38 As 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. n.d. 0.010 n.d. n.d. n.d. 0.02 0.08 0.32 0.39 Sc 1.87 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.22 0.660 0.90 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023	Sr	104.69	101.00	86.53	93.12	85.00	83.00	57.00	92.90	96.86
As 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. n.d. 0.010 n.d. n.d. n.d. n.d. 0.02 0.08 0.32 0.39 Sn 0.03 0.02 0.08 0.32 0.39 0.70 1.10 0.47 0.48 Ga 0.03 0.02 0.08 0.32 0.39 n.d. n.d. n.d. n.d. Ga 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.03	Pb	0.04	0.20	0.11	0.17	0.10	n.d.	0.10	0.02	0.38
As 0.08 0.20 0.07 0.08 0.40 0.60 0.30 0.15 0.15 Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. 0.010 n.d. n.d. n.d. 0.02 0.08 0.32 0.39 Sn 0.03 0.02 0.08 0.32 0.39 0.70 1.10 0.47 0.48 Ga 0.03 0.02 0.08 0.32 0.39 0.31 0.91 0.91 0.91 0.91 0.94 Ga 0.30 0.21 2.23 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.91 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 0.021										
Sb n.d. n.d. n.d. 0.01 n.d. 0.02 0.01 n.d. n.d. n.d. Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. n.d. 0.01 n.d. n.d. n.d. 0.03 0.02 0.08 0.32 0.39 Sn 0.03 0.02 0.08 0.32 0.39 0.90 1.10 0.91 0.94 Ga 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.60 0.90 0.91 0.94 Ga 0.30 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.022 n.d. n.d. n.d. 0.13 0.25 Pd 0.06 0.05 0.05 0.05 0.17 0.29 1.10	As	0.08	0.20	0.07	0.08	0.40	0.60	0.30	0.15	0.15
Mo 0.46 0.60 0.37 0.39 0.70 1.50 1.10 0.47 0.48 Cd n.d. n.d. n.d. 0.01 n.d. 0.009 n.d. Sn 0.03 0.03 0.02 0.08 0.32 0.39 Sc 1.87 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.60 0.90 1.10 0.91 0.94 Ga 0.30 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.89 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.001 4.60	Sb	n.d.	n.d.	n.d.	0.01	n.d.	0.02	0.01	n.d.	n.d.
Cd n.d. 0.009 n.d. Sn 0.03 0.03 0.02 0.08 0.32 0.39 Sc 1.87 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.60 0.90 0.48 0.81 Cu 0.79 2.20 0.89 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.022 n.d. n.d. n.d. 0.0004 n.d. Au n.d. n.d. 0.001 0.017 0.29 0.13 0.25 Pd 0.06 0.05 0.05 0.05 1.01 1.01 1.01 Hg 0.05 0.05 0.05 0.05 1.05 1.05 1.05	Mo	0.46	0.60	0.37	0.39	0.70	1.50	1.10	0.47	0.48
Sn 0.03 0.03 0.03 0.02 0.08 0.32 0.39 Sc 1.87 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.60 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.60 0.90 1.10 0.91 0.94 Ga 0.30 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.023 0.021 n.d. n.d. 0.0004 n.d. Se 0.03 0.17 0.29 0.13 0.25 Pd 0.06 0.05 0.05 0.05 n.d. n.d.	Cđ	n.d.	n.d.	n.d.	0.010	n.d.	n.d.	n.d.	0.009	n.d.
Sc 1.87 0.70 2.14 2.33 0.90 0.90 1.10 0.91 0.94 Ga 0.30 0.20 0.60 0.90 0.60 0.90 Cu 0.79 2.20 0.89 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.022 n.d. n.d. n.d. 0.0004 n.d. Se 0.03 0.17 0.29 0.05 0.13 0.25 Pd 0.06 0.05 0.05 0.05 0.13 0.25	Sn		0.03			0.03	0.02	0.08	0.32	0.39
Cu 0.79 2.20 0.89 0.91 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.023 0.02 n.d. n.d. n.d. 0.0004 n.d. Se 0.03 0.17 0.29 0.13 0.25 0.13 0.25 Hg n.d. n.d.	SC	1.87	0.70	2.14	2.35	0.90	0.90	1.10	0.91	0.94
Cu 0.75 2.20 0.85 0.51 4.60 0.80 1.20 0.48 0.81 Zn 0.28 2.20 0.79 1.13 5.80 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.022 n.d. n.d. 0.0004 n.d. Au n.d. n.d. 0.001 58 0.03 0.17 0.29 0.13 0.25 Pd 0.06 0.05 0.05	- C	0 70	2.30	0.00	0.01	0.20	0.00	0.90	0.40	0.01
La 0.65 L20 0.77 1.13 5.60 19.30 10.10 6.70 59.88 Ag 0.023 n.d. 0.023 0.022 n.d. n.d. 0.0004 n.d. Au n.d. n.d. 0.001 0.13 0.25 Pd 0.06 0.05 0.05 n.d. n.d.	- Cu	0.79	2.20	0.89	0.91	4.00	0.80	1.20	0.48	U.81
Ag 0.022 n.d. n.d. n.d. 0.0004 n.d. Au n.d. n.d. 0.001 0.001 0.03 0.17 0.29 0.13 0.25 Pd 0.06 0.05 0.05 0.05 0.05 0.05 0.05	2.0	0.40	4.20 n d	0.79	1.13	5.80	19.30	10.10	0.70	37.88
Se 0.03 0.17 0.29 0.13 0.25 Pd 0.06 0.05 0.05 n.d. N.d. </td <td>Ang An</td> <td>v.025</td> <td>11.G.</td> <td>0.025 nd</td> <td>0.022</td> <td>11.Q.</td> <td>n.a.</td> <td>n.a.</td> <td>0.0004</td> <td>n.a.</td>	Ang An	v.025	11.G.	0.025 nd	0.022	11. Q .	n.a.	n.a.	0.0004	n.a.
Pd 0.06 0.05 0.05 Hg nd nd	Se	0.03		0 17	0.001				0 13	0.25
Hg nd nd	Pd	0.06		0.05	0.05				0.15	0.60
	Hg			0.00	0.00				n d.	nd

Table 4.5. continued.

Sample	MI	R135	MF	R136	M	R129	M	R131	MI	R134	MR114(95)
(ppb)	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered
									······		
Ti	2.6	2.6	2.2	2.2	1.7	1.4	1.6	3.4	0.9	1.2	0.5
v	0.03	0.02	0.02	0.03	0.00	0.13	n.d.	0.07	0.00	0.05	
Cr	0.16	0.13	0.18	0.22	0.56	0.17	0.31	0.54	0.18	0.20	3.10
Mn	11.2	10.4	3.4	3.4	5.2	7.5	4.8	6.3	5.2	4.6	5.1
Co	0.009	0.011	0.007	0.013	0.003	0.007	0.020	0.030	0.004	0.006	0.060
Ni	0.004	0.02	n.d.	0.07	0.003	0.27	n.d.	0.05	n.d.	n.d.	1.00
ដ	36.6	37.6	38.9	38.4	38.8	40.7	40.9	39.4	39.0	38.9	55.0
Be											0.20
B	829	855	801	725	673	684	1092	1117	772	773	
Y	0.17	0.16	0.18	0.18	0.16	0.17	0.18	0.20	0.16	0.15	0.02
Zr	0.10	0.10	0.10	0.13	0.12	0.09	0.14	0.16	0.12	0.14	1.01
Nb	0.001	0.002	0.001	0.001	0.001	0.01	0.002	0.004	0.001	0.001	n.d.
Ta	0.0003	0.001	0.0003	0.0004	0.001	0.001	0.0001	0.0004	0.0002	0.0001	n.d.
Hf	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001	
Р	406	355	373	345	244	257	448	518	375	342	
La	0.002	0.005	0.002	0.015	0.003	0.005	0.004	0.044	0.003	0.003	0.030
Ce	0.002	0.002	0.002	0.007	0.002	0.009	0.004	0.116	0.001	0.003	0.010
Pr	0.0001	0.001	n.d.	0.004	0.0004	0.001	0.0002	0.011	n.d.	n.d.	
Nd	0.001	0.002	0.003	0.002	0.001	0.005	0.005	0.040	0.001	0.004	
Sm	0.002	0.001	0.001	0.002	0.001	0.002	0.002	0.006	0.001	0.001	
Eu	0.0003	0.0003	0.001	0.0005	0.001	0.001	n.d	0.001	0.001	0.001	
Gd	0.002	0.003	0.003	0.003	0.000	0.003	0.002	0.008	0.002	0.002	
Ть	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.001	
Dy	0.001	0.004	0.003	0.004	0.002	0.002	0.002	0.005	0.003	0.003	
Ho	0.0003	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
Er	0.002	0.008	0.004	0.004	0.003	0.004	0.002	0.003	0.004	0.004	
Tm	0.0003	0.0003	0.0003	0.0004	0.001	0.001	n.d	0.001	n.d.	n.d.	
Yb	0.002	0.003	0.003	0.003	0.003	0.005	0.002	0.003	0.005	0.005	0.020
Lu	0.0003	0.0004	0.001	0.001	0.001	0.001	0.0003	0.001	0.001	0.001	
C.	0.037	0.043	0.030	0.042	0.044	0.041	0.046	0.050	0.035	0.030	
Rb	1.01	0.97	1.04	1.06	1.05	1.02	1 09	1 13	0.055	0.055	1 30
Ba	15.8	15.9	16.6	16.5	18.9	18.9	52.8	50.8	36.2	36 3	89.0
Th	0.002	0.003	0.003	0.004	0.002	0.004	0.005	0.012	0.002	0.002	0.010
U	0.94	0.98	1.41	1.39	1.41	1.41	0.83	0.86	1.13	1.10	0.03
w	4.32	4.39	2.97	2.72	2.51	2.45	1.75	1.79	0.50	0.45	0.40
Sr	94.53	89.83	87.98	86.48	87.75	86.69	100.84	101.53	75.70	73.77	108.00
РЬ	0.10	0.10	0.17	0.20	0.09	0.29	0.01	0.12	n.d.	0.04	1.00
	0.15	0.17		0.15	0.00						
AS Sh	0.15	0.10	0.14	0.15	0.30	0.27	0.31	0.27	0.18	0.21	1.20
SU Ma	0.00	0.00	n.a.	0.00	n.a.	n.a.	n.d.	n.a.	n.a.	n.a.	0.03
Cd NIO	0.00	0.004	0.57	0.000	0.57	0.54	3.06	3.00	0.59	0.58	2.30
Cu 6-	0.003	0.004	0.003	0.055	0.030	0.002	0.007	0.005	0.004	n.a.	1.700
Su Sa	0.42	0.50	0.42	0.59	0.77	0.72	3.77	3.39	2.14	0.65	0.06
00 (~	0.90	0.00	0.80	0.82	0.49	0.58	0.71	0.84	0.76	0.70	1.00
- C-	0 55	0 00	914		0.47	2 00	0.34	0.54	0.00	A 44	1.00
7-	5 42	0.07	4.10 7 34	4.44	0.07	3.90	0.34	0.56	0.29	0.39	3.50
2n	0.002	0.011	0.001	13.09	2.40	42.90	1.24	82.51	0.79	8.18	49.10
Ag A	0.002	0.011	0.001	0.002	n.a.	n.d.	0.001	0.002	0.001	0.0001	0.070
AU 6-	0.25	0.22	0.20	014	0.17		0.5.4			.	
ot Pa	0.20	0.32	0.50	0.14	0.13	0.10	0.54	0.24	0.23	0.18	
ru He	n.d.	n d.	nd	nd	nd	nd	0.04	0.03			
		16.01	144.	11.4.		11 .u .	0.04	0.05	n.a.	n.a.	

Table 4.5. continued.

Sample	Μ	R133	M	R137	MR12	27(96)	MR12(95)	M	R138	MR119(96)	MR119(95)
(ppb)	filtered	unfiltered	filtered	unfiltered	filtered	fil-dup	filtered	filtered	unfiltered	filtered	filtered
Ti	0.8	13	0.4	13	0.6	07	0.8	0.2	0.6	11	07
v	0.03	0.03	0.02	0.07	0.03	0.03	0.0	0.04	0.05	0.04	0.7
Cr	0.24	0.18	0.27	0.40	0.20	0.30	1.30	0.26	0.35	0.13	2.10
Mn	4.1	4.6	2.8	3.0	0.20	0.50	2.7	2.3	2.3		4.5
Co	0.017	0.017	0.013	0.014	0.032	0.033	0.030	0.015	0.018	0.025	0.050
Ni	0.04	0.05	0.05	0.04	0.05	0.06	n.d.	0.01	0.02	0.18	n.d.
Li	42.9	43.0	36.4	34.8	39.1	39.2	47.0	34.5	33.5	39.0	37.0
Be							0.60				n.d.
B	9 96	1033	1652	1554	1217	1434		1547	1593	1371	
Y	0.18	0.19	0.16	0.17	0.17	0.17	0.06	0.13	0.13	0.23	0.02
Zr	0.16	0.17	0.14	0.17			0.20	0.19	0.16		0.19
Nb	0.001	0.001	0.001	0.003	0.002	0.002	n.d.	0.001	0.002	0.01	n.d.
Ta	0.0005	0.0003	0.0004	0.001	0.001	n.d.	n.d.	0.0004	0.0004	n.d.	n.d.
H	0.001	0.001	0.001	0.002	0.002	0.003		0.002	0.002	0.003	
P	370	376	419	424	433	422		230	241	643	
_											
La	0.003	0.004	0.004	0.012	0.022	0.022	0.050	0.004	0.005	0.033	0.040
Ce D-	0.002	0.005	0.002	0.019	0.005	0.006	0.050	0.004	0.008	0.011	n.d.
rr Na	n.a. 0.001	0.003	0.001	0.003	0.001	0.001		0.001	0.001	0.002	
Sm	0.001	0.003	0.001	0.010	0.010	0.008		0.004	0.004	0.007	
Eu	0.000	0.001	0.000	0.004	0.001	0.004		0.002	0.002	0.001	
Gd	0.001	0.002	0.003	0.005	0.004	0.005		0.002	0.002	0.005	
ть	0.001	0.001	0.000	0.001	n.d.	n.d.		0.000	0.000	0.001	
Dy	0.002	0.001	0.005	0.005	0.002	0.001		0.002	0.002	0.002	
Ho	0.001	0.001	0.001	0.001	0.001	n.d.		0.000	0.001	0.001	
Er	0.004	0.003	0.004	0.004	0.002	0.002		0.002	0.002	0.003	
Tm	0.0003	0.0005	0.001	0.0005	n.d.	n.d.		0.0002	0.0003	n.d.	
УЪ	0.002	0.003	0.004	0.004	0.002	0.002	n.d.	0.003	0.004	0.005	0.020
Lu	0.001	0.001	0.001	0.001	0.001	0.001		0.0004	0.0005	0.001	
Cs	0.041	0.042	0.040	0.040	0.050	0.050		0.042	0.044	0.060	
Rb	1.10	1.07	0.98	0.98	1.07	1.09	1.20	1.09	1.09	1.17	1.20
Ba	29.1	29.2	70.4	71.5	60.2	60.3	89.0	74.5	72.4	84.1	107.0
Th	0.002	0.004	0.003	0.006	0.004	0.003	0.010	0.004	0.005	0.004	0.020
U	1.37	1.48	0.42	0.42	0.00	0.00	0.03	0.03	0.03	0.02	0.03
W	0.56	0.58	0.96	0.90	1.98	1.90	0.90	1.23	1.28	1.63	0.70
DL.	90.00	96.03	72.70	72.94	67.85	69.09	74.00	70.59	69.00	95.97	99.00
ro	0.01	0.19	0.15	0.18	0.05	0.10	0.10	0.05	0.09	0.04	n.a.
Ar	0.10	0 17	0.10	0.16	0.27	0.25	0.20	0.59	0.40	0.14	0.30
Sh	nd	0.17 nd	n.19	0.10 nd	0.27	0.25	0.20	0.00 n.d	0.49 n.d	0.14	0.02
Ma	0.91	0.90	0.90	0.90	1 20	1 22	0.01	1 74	1.0.	8.08	10 30
Cd	0.004	0.001	0.012	0.006	nd.	0.010	0.050	0.005	n./2	0.030	0.060
Sn	1.68	1.87	0.76	0.78		0.010	0.04	2.82	2 52	0.000	0.05
Sc	0.80	0.76	0.62	0.66	1.71	1.59	1.00	0.36	0.37	1.58	0.80
Ga							1.20				1.20
Cu	0.34	0.78	0.38	0.56	0.10	0.19	2.20	0.89	0.18	0.33	0.30
Zn	0.91	9.40	1.57	2.22	0.36	0.69	38.50	1.53	20.23	0.40	4.20
Ag	0.025	0.019	0.075	0.021	0.040	0.043	0.010	0.006	0.007	0.013	n.d.
Au					0.001	n.d.				0.001	
Se	0.34	0.39	0.23	0.04	0.24	0.41		0.28	0.27	0.34	
Pd					0.05	0.03				0.05	
Hg	n.d	n.d.	n.d.	n.d.		_		0.02	0.01		

ppb 50 km downgradient (Fig. 4.9). Boron concentrations are typically higher in marine clays compared to continental clays, due to the greater abundance of boron in seawater (4440 μ g/l) than in freshwater and its adsorption onto marine organic matter (18 μ g/l) (Dominik and Stanley, 1993). The shales in the Milk River aquifer system are of marine origin, and therefore are likely the source of the high boron concentrations observed along the flow path. Diffusion from the shales is also interpreted from the conservative nature of boron as the groundwater evolves. Boron and chloride display similar well defined trends in the Milk River groundwater (Figs. 4.2 and 4.9).

Molybdenum concentrations show a slight increase as the groundwater evolves from 0.06 ppb in the recharge area to 10 ppb 54 km downgradient. The small but steady increase of Mo with age of the groundwater indicates progressive water-rock interactions for this element (Fig. 4.9).

Rubidium values increase from 0.75 ppb in the recharge area to 10 ppb 54 km downgradient. The uniform increase of Rb is similar to that of B and Cl (Fig. 4.10).

The concentration of *barium* displays constant values up to the redox front boundary (20 km) and then concentrations linearly increase as the water moves down the flow path to 54 km. Concentrations range from 20 ppb to >100 ppb respectively (Fig. 4.10). The Ba is likely derived from K-bearing clays, where Ba substitutes for K. If present, barite is extremely insoluble.

The barium speciation in the Milk River groundwater was investigated using PHREEQC geochemical modeling code (Parkhurst, 1995). Barite (BaSO₄) saturation indices are variable along the flow path. Generally the groundwater is slightly undersaturated or close to saturation equilibrium with respect to BaSO₄ (Fig. 4.11). The mean average SI is -0.01 which implies overall that BaSO₄ is near equilibrium in the groundwater along the flow path.

Figure 4.9. B and Mo concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Figure 4.10. Rb and Ba concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Lithium values remain relatively uniform in groundwaters with a minor overall net decrease as the groundwaters migrate along the flow path. Li values fall in the 35-50 ppb range (Fig. 4.12). Inputs may be due to rainfall as there is no apparent aquifer sources of lithium and there is no removal of lithium by any process during downgradient flow.

In Figure 4.12, *cobalt* displays low values in the fresh recharge groundwater (<0.02 ppb) and only a moderate increase as they migrate along the flow path (>0.03 ppb).

Similarly, *zinc* displays a minor concentration peak at approximately 20 km to 32-33 km downgradient, and then values return to similar concentrations as in the recharge zone (Fig. 4.12). Concentrations are <5 ppb in the recharge area and reach an upper limit at the redox boundary of 19 ppb. The decrease may reflect coprecipitation with Fe and/or Mn hydroxides.

4.5 Rare Earth Elements

Rare earth elements or REEs (also termed lanthanides) include lithophile elements with atomic numbers 57 through 71. REEs with even atomic numbers (i.e. Ce, Nd, Sm, Gd, Dy, Er, and Yb) are geochemically more abundant than neighboring REEs with odd atomic numbers (i.e. La, Pr, Pm, Eu, Tb, Ho, Tm, and Lu), which produces a "sawtooth" effect in REE plots of abundance, the so-called Odd-Harkins rule. This effect is usually eliminated by plotting REE analyses normalized to average REE abundances of chondrite or a specific rock such as post Archean Australian average shale (PAAS; Taylor and McLennan, 1985).

A review of the aqueous geochemistry of REEs is given by Wood (1990a &1990b). Coherent behavior of the REEs as a group make them of interest for interpreting groundwater systems. The REEs exist in the trivalent oxidation state. Ce can also exist

Figure 4.12. Li, Co, and Zn concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

in a +4 valence state under oxidizing conditions, and Eu in a +2 valence state under reducing conditions. Differences in oxidation states in waters can lead to significant anomalies which can be quantified. However in the temperature range of most groundwaters, divalent Eu is not significant (Brookins, 1989). REE solubility is strongly dependent on temperature and Eh. Tetravalent Ce is insoluble and hence under oxidizing conditions of near neutral to high pH, dissolved Ce concentrations are expected to be low (Smedley, 1991). Fractionation between the light REE (LREE) group (La-Gd) and heavy REE (HREE) group (Tb-Lu) occur as a result of certain geologic processes. These fractionations are attributed to differences in ionic radii and differential bonding capacity of these cations. Therefore, REEs provide constraints on the chemical controls of the compositions of the Milk River groundwaters because of their group behavior, differential behavior within the group, and redox control on Ce and Eu (Fee et al., 1992).

4.5.1 REE Concentrations Along the Flow Path

The results of REE analyses are reported in Table 4.5. Total REE concentrations $(\sum REE)$ of the Milk River aquifer groundwater tend to remain constant as it migrates along the flow path (Fig. 4.13). Although a decrease in REE concentrations is observed at the redox front boundary (20 km). Weak correlations between Fe and REEs with depth in lakes and oceans have been documented by DeBaar et al. (1988). However, there does not appear to be any correlation between these elements in the Milk River aquifer groundwater in this study.

Johannesson and Lyons (1994) have observed higher REE concentrations in more acidic waters, and have concluded that REE concentrations are pH dependent (Smedley, 1991, ~14-1595 nmol kg⁻¹; Fee et al., 1992, ~69-110 nmol kg⁻¹). Therefore, the high pH (~9.0) Milk River aquifer groundwater samples have, relatively low REE concentrations. Average Σ REE concentrations in the Milk River groundwater is 0.096 ppb.

Figure 4.13. Sum of REE concentrations in the Milk River aquifer groundwaters versus distance from recharge.

The absolute concentrations of LREEs are higher than HREEs. These observations are opposite to those reported by Johannesson and Lyons (1994) for Mono lake waters. However, some Milk River groundwater samples display higher HREEs compared to LREEs, which are similar to the observations reported for seawater, where REE concentrations decrease with increasing atomic number (Elderfield and Greaves, 1982).

Figures 4.14 and 4.15 present the LREE and HREE concentrations with distance. The HREEs display more uniform concentrations compared concentrations versus distance. These figures demonstrate that the LREEs have more scattered concentrations to the LREEs and less scatter from younger to older groundwater. This is most evident in Er, Tm, and Lu concentrations as the groundwater migrates downgradient. LREE concentrations display uniform increases up to the redox front and then decrease which may be the result of LREE co-precipitation with Fe oxyhydroxides. Residence time appears to be more of a factor in the preferential removal of HREEs compared to LREEs. Although, in section 3.5 it is noted how filtering tends to lower the LREE concentrations compared to the HREEs, due to preferential sorption of LREEs to (>0.45 μ m) suspended particles. Therefore, the scatter for some of the (filtered) LREEs is probably due to the concentrations being very close to analytical detection limits of the ICP-MS. Consequently, some care in interpretation of the data is needed.

4.5.2 Shale-Normalized REE Patterns

Shale-normalized REE profiles of groundwater data from the Milk River aquifer are presented in Figures 4.16, 4.17 and 4.18. World average river water from Taylor and McLennan (1985) is plotted as a reference. All the REE data presented and plotted in these figures is filtered in order to evaluate the REE concentrations in the <0.45 μ m fraction of the groundwater. Groundwater from this study are normalized to shales (PAAS - Post Archean average Australian shales) because the rocks in the Milk River aquifer are predominantly sandstones, and shales, and this is the convention in groundwater REE studies. The composite shale data used to normalize the groundwater REE data is from Taylor and McLennan (1985), Table 2.9. Data for duplicate samples

Figure 4.14. Light rare-earth elements (LREEs) in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries.

Figure 4.15. Heavy rare-earth elements (HREEs) in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries.

are plotted to shown the excellent reproducibility. Groundwater samples from the same well but different sampling years is also plotted displaying good replication. Some shale normalized samples exhibit saw-tooth patterns due to ICP-MS detection limit problems at the lowest concentrations.

Previous authors (Elderfield et al., 1990; Sholkovitz, 1993; Johannesson and Lyons, 1995; Johannesson et al., 1997) have found shale to be useful in the evaluation of geochemical processes responsible for fractionation of the REEs in terrestrial waters. Shale-normalized REE plots for these groundwaters are generally flat (Type 1- recharge and redox front groundwater) to slightly enriched in the HREEs (Type 2 - groundwater). HREE-enrichment in seawaters is attributed to the scavenging of LREEs by Fe-Mnoxyhydroxides and the formation of stable HREE carbonate complexes (De Baar et al., 1988). The groundwater shale-normalized Yb/Nd (average 10.2) and Er/Nd (average 8.9) ratios are greater than unity (Table 4.6), ranging from 1 to 51 for $(Yb/Nd)_{sn}$ and 0.9 to 35 for $(Er/Nd)_{sn}$. Similarly, Lu/La ratios (average 10.4) fall in the range >1 to 27, indicating enrichment in HREEs These ratios indicate that the shale-normalized values for the majority of the LREEs are depleted compared to HREE values. Figure 4.19 displays Er/Nd and Lu/La versus distance, respectively. Both plots display moderate to high values (HREEs/LREEs) in the recharge water, as well as similarly moderate to high values at the redox front and post-redox front boundaries (~20 km and ~32 km).

Open ocean waters usually display a well-developed negative Ce anomaly similar to the majority of Milk River groundwater samples. The Ce anomaly is probably in response to oxidative removal of Ce in its tetravalent state as CeO_2 or $Ce(OH)_4$, or due to adsorption onto particulate material (Smedley, 1991). Similarly, to the Milk River groundwater some ocean waters do not display any apparent negative Ce anomaly, which may be due to dissolution of Ce under reducing conditions (De Baar et al., 1988). Goldstein and Jacobsen (1988) concluded that the magnitude of Ce anomalies from the Indus and Mississippi rivers were directly proportional to pH. Due to the small pH

Figure 4.16. Shale-normalized REE patterns for groundwater from the Milk River aquifer groundwaters. PAAS and World Average River Water data from Taylor and McLennan, (1985). Sample distances from recharge: MR139=1.5km, MR122=2km, MR123=7.5km. [1996 and 1997 sampling seasons]

Figure 4.17. Shale-normalized REE patterns for groundwater from the Milk River aquifer groundwaters. PAAS and World Average River Water data from Taylor and McLennan, (1985). Sample distances from recharge: MR52=15km, MR80=20km, MR130=22km, MR135=23km, MR136=23.5km, MR129=24km. [1996 and 1997 sampling seasons]

Figure 4.18. Shale-normalized REE patterns for groundwater from the Milk River aquifer groundwaters. PAAS and World Average River Water from Taylor and McLennan, (1985). Sample distances from recharge: MR131=32km, MR134=32.5km, MR133=33.5km, MR137=44km, MR127=46km, MR138=49.5km, MR119=54km. [1996 and 1997 sampling seasons]

	MR139fil (97)	MR139d fil (97)	MR122fil (97)	MR122fil (96)	MR123fil (96)	MR123d fil (96)	MR52fil (96)
(Yb/Nd) _n	1.21	1.16	39.77	6.67	9.35	11.43	2.86
(Er/Nd) _n	1.27	1.22	26.28	5.52	8.03	12.41	1.66
(Lu/La) _n	1.65	1.38	32.92	8.84	12.62	5.89	5.89
(Eu/Eu*) _n	0.97	0.85	2.25	0.85	1.04	1.35	0.79
(Ce/Ce*) _n	0.85	0.82	0.66	0.40	0.25	0.24	0.53
(La/Sm) _n	0.58	0.52	0.43	0.29	0.52	0.74	0.32
(Gd/Yb) _n	1.33	0.53	0.05	0.14	0.10	0.08	0.29
(La/Yb) _n	0.67	0.49	0.08	0.09	0.11	0.13	0.42
			· · · · · · · · · · · · · · · · · · ·				
	MR80fil (96)	MR80d fil (96)	MR136fil (97)	MR134fil (97)	MR127fil (96)	MR127d fil (96)	MR119fil (96)
(Yb/Nd) _n	2.99	2.38	11.26	51.18	2.29	2.86	8.16
(Er/Nd) _n	2.63	2.53	13.37	34.87	2.21	2.76	4.73
(Lu/La) _n	4.11	4.53	24.68	27.27	4.02	4.02	2.68
(Eu/Eu*) _n	0.60	1.41	2.21	2.91	2.33	1.04	0.85
(Ce/Ce*) _n	0.80	0.80	0.25	0.24	0.15	0.20	0.32
(La/Sm) _n	0.42	0.64	0.32	0.57	3.24	0.81	0.81
(Cd/Vh)	0.54	0.36	0.03	0.02	0.07	0.08	0.15
$(Ou/ID)_n$	0.01	0.00	0.05	0.02	0.01	0.00	****

Table 4.6. REE ratios for comparing Light REE and Heavy REE shale-nomalized values.

Figure 4.19. Er/Nd, Lu/La, and Eu/Eu* shale-normalized versus distace for the Milk River aquifer groundwater. PAAS data is from Taylor and McLennan (1985).

variation in the Milk River groundwater, this dependence can not be commented on. In many fresh acidic water systems, the fractionation of Ce from the other LREEs is not observed because the pH is low enough to allow Ce to remain in its trivalent state.

Unlike the study by Möller and Bau (1993) of alkaline waters from Lake Van, Turkey, which display no Gd anomaly, some of the groundwater from the Milk River aquifer display small negative and positive Gd anomalies. Seawaters commonly demonstrate Gd anomalies, which may result from solution complexation with CO_3^{2-} or surface reaction complexation with aminocarboxylic acids on REE scavenging particle surfaces (Lee and Byrne, 1993).

4.5.3 REE Speciation Modeling of the Milk River groundwater

Groundwaters likely inherit their dissolved REE signatures in part from the aquifer materials they react with (Johannesson et al., 1994; Duro et al., 1997; Johannesson et al., 1997). Recently, solution complexation has been demonstrated as being important for controlling the dissolved REE signatures in waters. Therefore, it is important to understand both the effects of aquifer material chemistry and solution chemistry in order to determine the controls and roles of both on the REE signatures of water systems.

Two processes maybe responsible for relative HREE enrichment in the Milk River groundwater. Rare earth concentrations may reflect interactions with the aquifer rocks as the recharge water migrates downgradient (Smedley, 1991; Gosselin et al., 1992; Johannesson et al., 1994; and 1997). The other possibility which has earned much attention recently by Johannesson et al. (1995), Johannesson and Lyons (1994), Lee and Byrne (1992), Wood (1990a), is that the REE concentrations in waters are controlled primarily by complexation with major anions. Carbonate complexes have been implicated as being important in seawaters and brines (Millero, 1992), and carbonate or bicarbonate anions in near-neutral to alkaline conditions (Goldstein and Jacobsen, 1988). Discussions from these studies has shown that HREEs (Tb-Lu) form stronger complexes with carbonate ions than LREEs (La-Gd), as evidenced by the increase in

stability constants with increasing atomic number. Research on waters of moderate to high pH by Johannesson and Lyons (1995) indicate that REE complexation with carbonate ions will predominate in most waters where carbonate is a major component. Due to an increase in complexation constants with atomic number, HREEs form stronger complexes with carbonate ions than LREEs (Millero, 1992; and Lee and Byrne, 1993). Wood (1990) and Lee and Bryne (1992) have argued that the large stability constants of the LnPO₄⁰ species are likely important in forming phosphate complexes with REEs in water systems with high phosphate concentrations. However, Johannesson and Lyons (1994) concluded from speciation modeling that the phosphate species were not important in their higher phosphate Mono Lake waters. Therefore, phosphate complexes are not expected to be of importance in the Milk River aquifer groundwater where phosphorus is only a minor component, and likely because phosphates are extremely insoluble.

Speciation modeling of REEs in the Milk River aquifer groundwater have been performed and evaluated primarily to assess the importance of carbonate $(LnHCO_3^{2+}, LnCO_3^+ and Ln(CO_3)_2^-)$ and phosphate $(LnH_2PO_4^{2+}, LnHPO_4^+, Ln(HPO_4)_2^- and LnPO_4^0)$ complexes, where Ln stands for lanthanides. Activity coefficients and stability constants have been calculated using a combined specific ion interaction and ion pairing developed by Millero (1992). For a detailed description of the modified and updated Millero (1992) model used in this study refer to Johannesson and Lyons (1994).

The results of the speciation modeling to determine the REE complexes in the Milk River aquifer groundwater samples are presented in Appendix I. Figures 4.20, 4.21, and 4.22 display the REE speciation values for the dominant carbonate complexes, phosphate complex, and free metal ion species. From these figures it is clear that the $Ln(CO_3)_2$ species dominate the REE complexation in the Milk River groundwater. Consistently, 97-99% of the dissolved REEs are due to the $Ln(CO_3)_2$ carbonate complex whereas only 3-<1% is complexed as the $LnCO_3$ carbonate complex. The phosphate complex $LnPO_4$ only accounts for <0.05% and the free metal species Ln^{3+} accounts for

Figure 4.20. Results of speciation modeling plotted as percent dissolved rare earths (% lanthanides) versus atomic number for groundwater samples.

Figure 4.21. Results of speciation modeling plotted as percent dissolved rare earths (% lanthanides) versus atomic number for groundwater samples.

Figure 4.22. Results of speciation modeling plotted as percent dissolved rare earths (% lanthanides) versus atomic number for groundwater samples.
<0.0002% of the dissolved REE complexes. The LnHCO₃⁻ complex is negligible in all the Milk River Samples modeled. Similar values have been reported by Johannesson (pers. comm. 1997) in the alkaline lakes of the Great Basin in the western United States. The high alkalinities and pH values observed in the Milk River aquifer groundwater are likely responsible for these results.

4.5.4 Behavior of REEs in the Milk River Groundwater

Figures 4.23 and 4.24 are plots of pH and alkalinity versus neodymium, samarium, and dysprosium concentrations, for the groundwater samples. At least two distinct waters can be separated in these figures due to variations in Nd, Sm, and Dy concentrations. All three REEs exhibit an inverse relationships with alkalinity (highest REE concentrations in lowest alkalinity groundwater). At higher alkalinity values lower concentrations of Nd, Sm, and Dy are observed. The 'recharge' groundwater display the highest values. The groundwater samples taken after the recharge area are referred to as the 'Type 2 groundwater' or main group of 'Milk River groundwater' are represented by the lowest concentrations of all three REEs.

Similar plots by Johannesson et al. (1994) of pH versus all three REEs also displayed a similar relationship. Plots of the Milk River aquifer groundwater data display the distinct water groups described above, but there is not a clear relationship between pH and REE concentrations as such (lowest pH groundwater should correspond to the highest REE concentrations). This relationship may be masked due to the very small range of pH values (<0.5 pH difference) along the studied section of the flow path.

4.5.5 Mineral Sources of REEs

Groundwaters probably inherit their dissolved REE signatures from the rocks through which they flow, although solution complexation is also important in controlling the dissolved REE signatures in natural waters. Minerals in the Milk River aquifer that may be responsible for donating some of the REEs into solution are accessory mineral phases including kaolinite, smectite, illite, and chlorite (Longstaffe, 1984). REEs in the

Figure 4.23. Plot of Nd, Sm, and Dy versus pH for the Milk River aquifer groundwater. Different groundwater types have been identified based on the data.

Figure 4.24. Plot of Nd, Sm, and Dy versus alkalinity for the Milk River aquifer groundwater. Different groundwater types have been identified based on the data. Cumulative plot of 1996-1997 data.

groundwater may be derived from dissolution and ion exchange reactions involving the clays and dominant carbonate minerals including calcite and dolomite. Silicate minerals include biotite, muscovite, chert and feldspars, may also be important (Meyboom, 1960). Past studies have suggested that both rock source and solution chemistry play an important role in the dissolved groundwater REE signatures (Johannesson et al., 1996). Local geology in the Milk River aquifer appears to be of minor importance in controlling the processes and nature of REE profiles in the groundwater.

4.6 Additional Trace Elements

4.6.1 Trace Element Concentrations Along the Flow Path

Strontium concentrations in the recharge groundwater are generally low (~50 ppb), displaying a net increase downgradient (> 100 ppb). Strontium is chemically similar to calcium and from plots of concentration versus distance, it is shown that Sr and Ca display similar trends (Figs. 4.3 for Ca and 4.25). Concentrations of Sr drop off 20 km from recharge and then increase after approximately 30 km, where they drop off, increasing again after 40 km (Fig. 4.25). Armstrong (1994) found that Sr did not increase greatly in the porewaters over the first 40 km of the flow path. However, Sr did show an increase up to 100 km. Armstrong (1994) also noticed a consistent pattern with Ca, which he attributed to a similar source for these elements.

Further evaluation of the source and distribution of strontium may be done by comparing Sr/Ca ratios along the flow path. Mean Sr/Ca ratios of the aquifer, till, and shale porewaters are 0.13, 0.02, and 0.11, respectively, according to Armstrong (1994). The average Sr/Ca ratio for the groundwaters from this study is 0.07. Figure 4.26 illustrates the Sr/Ca evolution along the flow path. Except for the recharge wells the water evolving along the flow path varies very little, which may indicate a relatively consistent solute source material. Armstrong (1994) concluded that the distribution and evolution of Sr and Sr/Ca in the Milk River aquifer suggests two potential input sources

for the flow path from porewater mixing: (1) outcropping Milk River Formation sandstones and (2) a regional source which is probably influenced by the interbedded shales within and in contact with the aquifer.

Armstrong (1994) utilized PHREEQE to determine the saturation state of strontianite $(SrCO_3)$ and to characterize the carbonate dominated Milk River system. This study determined that the mean SI values for the groundwater to be -0.37 (n=21), indicating that the aquifer waters are undersaturated with respect to strontianite. Similarly in this study, groundwater along the flow path is also undersaturated with respect to strontianite having a mean SI value of -0.71 (n=11) (Fig. 4.27). The trend of SI for SrCO₃ along the flow path is shifting toward zero, or saturation (maximum SI value at 54 km = -0.05).

Phosphorus concentrations similarly remain fairly uniform along the flow path. Atmospheric inputs are probably responsible for the 300-500 ppb range of P, and implies there is no soluble source of phosphorus in the Milk River aquifer (Fig. 4.25).

Arsenic concentrations in the Milk River groundwater remain uniform along the first 54 km of the flow path and in most cases are < 0.40 ppb (Fig. 4.25).

Concentrations of most other trace elements in the Milk River aquifer groundwater either remain static or display very minor net increases as the groundwater migrates along the flow path. An exception is *titanium*, where values decrease downgradient. Recharge values are generally <5 ppb and decrease to 1 ppb at 54 km (Fig. 4.28).

Lead is also detectable in the groundwater, the majority of the concentrations being below 0.2 ppb (Fig. 4.28). With the exception of two recharge groundwater samples, Pb values remain nearly uniform as the groundwater moves downgradient. A small net decrease is displayed by lead as it migrates downgradient. Mineral dissolution and redox boundary conditions do no appear to have a significant control on these elements.

Figure 4.25. Sr, P, and As concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Figure 4.26. Sr/Ca ratio in the Milk River aquifer groundwater along the flow path.

Figure 4.27. PHREEQC initial condition - solution modeling of strontianite in the Milk aquifer groundwater. Calculated saturation indices versus distance from recharge along the flow path. Dashed vertical lines represent redox front and post-redox front.

Figure 4.28. Ti, Pb, and W concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Tungsten concentrations are scattered between 0.2 and 5 ppb, displaying a tendency to decrease downgradient (Fig. 4.28). The fresh recharge wells MR122 and MR139 display low values <1.5ppb.

Arsenic and *selenium* have been studied in groundwaters because of their potential inimical health impacts associated with consumption by both humans and animals at elevated levels (Figs. 4.25 and 4.29). The majority of selenium concentrations are <0.40 ppb, but display a slight increase from younger to older groundwater. Johannesson et al. (1996) indicate that Se is a more conservative element than arsenic and that there is a strong relationship between Cl and Se. From this study Se appears to behave conservatively, similar to chloride, and may be used to help define the local groundwater flow regime (Figs. 4.2 and 4.29).

Nickel and *Cadmium* in the Milk River groundwater have low concentrations, at <0.12 ppb and <0.06 respectively, and both elements remain constant along the flow path (Figs. 4.29 and 4.30). Although *Copper* concentrations are higher (<5 ppb), but the majority of the groundwater analyzed similarly remain constant. Only a few wells display moderately higher values (Fig. 4.29).

Zirconium displays a uniform increase in concentration as the water flows northward, reaching values 0.19 ppb, with the exception of the anomalously high MR114 (Fig. 4.30).

The remaining trace elements listed in Table 4.5 may be sorted into two categories. In the first category, the element displays no increase as the groundwater migrates northward, indicating limited water-rock reaction for that element and the absence of redox control on solubility (Figs. 4.31 and 4.32). The second category of elements are those that display scatter, such as Hf, Sc, Ag, Sn, and Ta. These elements display no

Figure 4.29. Se, Ni, and Cu concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Figure 4.30. Cd and Zr concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data. Marker with triangle on both figures represents outlier data point and concentration value.

Figure 4.31. Hf, Sc, and Ag concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Figure 4.32. Sn and Ta concentrations in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

observable trends with distance and are difficult to interpret. In select cases the inconsistent concentrations versus distance may be due to detection limit problems at the ultra-low solute abundances.

4.6.2 Transition Metals

Transition metals, alkali metals, and alkali earth metals can be grouped together and normalized, similar to shale-normalized REE plots to observe differences in patterns as the groundwater migrates northward. Figure 4.33 presents the concentrations of select transition elements normalized to PAAS for the 1995, 1996, and 1997 field seasons. Samples from the same wells from year to year demonstrate excellent reproducibility. The general trends includes enrichments in Sc, Zn, and Cr compared to neighboring elements and small concentration increases in most elements, as the groundwater migrates downgradient. The 1997 groundwater samples display negligible differences between filtered and unfiltered samples, and the normalized patterns are similar. The transition metal patterns remain constant throughout the 54 km flow path studied for this research. Similarly, the 1995 groundwater duplicates well with the 1996 and 1997 samples. Sc and Ti are the most constant transitional elements in the evolving groundwaters. Nickel is the only element that is not detected in several groundwater samples (Fig. 4.33).

4.6.3 Alkali Metals and Alkali Earth Metals

Concentrations of alkali and alkali earth metals normalized to PASS are illustrated in Figure 4.34. Reproducibility in concentrations and pattern are good for the 1997 groundwater data, displaying troughs at K, Mg, and Ca relative to neighboring elements. Unlike the transition metals, normalized values for the alkali-earths show only minor increases or decreases in values or patterns as the waters move down flow. Barium is the most active of these displaying increases in values as the waters migrate from recharge. There are no apparent affects from filtering and non-filtering groundwater samples. The 1996 and 1997 samples have similar concentrations of Li, Na, Rb, Cs, Sr, and Ba; however potassium, magnesium and calcium display a higher degree of

Figure 4.33. Specified transition metals normalized to PAAS for select groundwater data from the 1995, 1996, and 1997 field sampling seasons. World Average River Water from Taylor and McLennan (1985).

Figure 4.34. Specified alkali and alkali earth metals normalized to PAAS for select groundwater data from the 1995, 1996, and 1997 field sampling seasons. World Average River Water from Taylor and McLennan (1985).

variability from differing years. The transition metals the alkali and alkali earth metal patterns remain constant from the recharge zone to the 54 km point of the flow path. Given the presence of carbonates and clays in the aquifer sandstones and abundant clays in shales, the Li, K, Rb, Cs and Ba are likely from K-bearing clays, and Ca and Sr from carbonates.

Chapter 5

Summary and Conclusions

5.1 Introduction

Over 50 trace elements including the REEs were measured in 27 groundwater samples along the most hydraulically and chemically constrained section of the Milk River aquifer along the studied flow path, from the recharge area over a distance of 54 km. Filtered and unfiltered samples were collected in the field for subsequent chemical analysis. Routine chemistry on the samples was performed for anions (Cl and SO₄) and cations (Ca, Mg, Fe, Na) using Ion Liquid Chromatography and Atomic Absorption Spectrophotometery (AAS), respectively. Major element analysis was performed at the Saskatchewan Research Council by ICP-AES, and trace elements including the REEs were analyzed by ICP-MS at the University of Saskatchewan.

5.2 Field Filtering

Most trace elements did not show any effects of colloids or particles when filtered samples were compared to unfiltered samples. However a few unfiltered groundwaters from the Milk River aquifer contain a low to moderate load of suspended particles (> 0.45μ m), which have Th and LREE concentrations higher than the corresponding filtrates. The 0.45 µm particulates of amorphous ferric hydrous oxides may have a strong capacity for sorption of REEs. From this study it appears that suspended particles are important in the preferential removal of LREEs (La, Ce, Pr, Nd, Sm), and

less important in the MREEs (Eu, Gd, Tb, Dy) within the alkaline groundwater of the Milk River aquifer. HREEs (Ho, Er, Tm, Yb, Lu) are unaffected by colloids or suspended particles.

5.3 The Principal Findings From This Study

5.3.1 Summary of the Major Elements, and Ions

- The groundwater chemistry (pH, alkalinity, and major cations/anions) determined in this study illustrates similar trends to those reported by previous workers (Meyboom, 1960; Schwartz and Muelenbachs, 1979; Phillips et al., 1986; Hendry and Schwartz, 1988, 1990; and Hendry et al., 1991).
- Generally, the pH values of the groundwater decrease with increasing distance along the flow path. Values range from ~9.14 in the recharge area to <9.0, 20 km down gradient.
- 3. Alkalinity increases linearly along the flow path. Values range from 475 mg/l in the recharge area to 775 mg/l near the town of Foremost (~50 km from recharge). Alkalinity appears to be controlled by calcite dissolution in the carbonate dominated groundwater system. Geochemical modeling determined that the groundwater is close to saturation equilibrium (SI = 0) with calcite, and undersaturated with respect to dolomite and gypsum (SI < 0).</p>
- 4. Sulphate concentrations decrease rapidly along the flow path and at 32 km from recharge are at very low concentrations (<0.5 μ g/ml). Methane data from Taylor (1996), displays a significant increase at 32 km where the sulphate concentrations drop below detection. Together they define a redox front boundary. Recent recharge through the overlying glacial tills can account for the high SO₄ values (10-15 km from the recharge area).

5.3.2 Summary of the Trace Elements

- 1. In groundwater studies uranium has been found to be a excellent element for tracing the evolution of waters, given its low natural concentrations and multi-valent characteristics. The higher concentrations encountered along the flow path at 20 km may reflect the redox front boundary, and at the 32-33 km, the post-redox front boundary.
- 2. Boron is one of the trace elements with the highest concentrations in the Milk River groundwater, ranging from 100 to 1500 ppb along the flow path. Boron is probably being contributed by the marine clays which are predominant in the Milk River system shales.
- 3. Generally, total manganese values in the groundwater are lowest in the subcrop area with only a slight increase downgradient. There is a Mn concentration peak from 20 km to approximately 33 km along the flow path. This progressive northward increase along the flow path may be due to a redox boundary similar to that displayed by uranium. Therefore, reductive dissolution of Mn oxide appears to be an important process. After the redox boundary, dissolved Mn concentrations drop which may reflect precipitation of Mn oxyhyroxides. Zinc also displays this concentration peak between the redox and post-redox front displayed by U and Mn.
- 4. Many other trace elements (i.e. B, Rb, Mo, Co) show only a slight increase of concentration as the groundwater evolves from the recharge area, which are likely due to progressive water-rock interactions.
- 5. The concentration of barium displays a linear increase as the waters move from the recharge area. The Ba is possibly derived from calcite, dolomite, and K-clays which occur as trace components in Milk River aquifer sandstones.
- 6. Some trace elements (i.e. Li, Ti, P) display uniform concentrations or slight overall decreases in concentrations as the groundwater evolves. Inputs may be due to atmospheric/rainfall and there is only minor to no removal of the select element by any process during downgradient flow.

- 7. Arsenic concentrations in the Milk River aquifer groundwater are uniform along the first 54 km of the flow path, whereas selenium displays a slight increase from younger to older groundwater. From this study, Se appears to behave conservatively, similar to chloride, and it may be used to help define the local groundwater flow regime.
- 8. Nickel and Cd concentrations in the Milk River groundwater concentrations are very low, and both elements remain at uniform concentrations along the flow path. Similarly, Copper concentrations remain uniform. With the exception of a couple recharge groundwater samples, Pb values also remain uniform as the groundwater moves downgradient. Mineral dissolution and redox boundary conditions do no appear to have a significant control on these elements, even across the sulfide zone.
- 9. A number of remaining trace elements can divided into two categories. The first category shows the elements that display no increase as the groundwater migrates northward, thus indicating insufficient water-rock reactions and/or no redox boundary affects. The second category of elements are those that are display scattered distributions (i.e. Hf, Sc, Ag, Sn, and Ta), with no observable trends with distance. This in some cases may be due to detection limit problems brought about by their ultra-low abundances.

5.3.3 Summary of the Rare Earth Elements

- Generally the high pH Milk River aquifer groundwater samples have low REE concentrations. Average ∑REE concentrations are 0.096 ppb. The absolute concentrations of LREEs are generally higher than HREEs. However, some groundwater samples display higher normalized HREEs compared to LREEs, due to LREE adsorption onto Fe oxyhydroxides.
- Shale-normalized REE profiles of groundwaters from the Milk River aquifer display two general patterns; flat (Type 1 - recharge and redox front groundwater) or slightly enriched in the HREEs (type 2 - groundwater).

- 3. Two processes are possibly responsible for the observed REE distributions in the Milk River groundwater. Interaction with the aquifer materials as the recharge groundwater migrates downgradient, and the REE concentrations in groundwater are controlled by complexation with major anions.
- 4. Plots of Nd, Sm, and Dy concentrations in the groundwaters versus alkalinity and pH reveal at least two distinct water types. All three REEs exhibit an inverse relationships with alkalinity. At higher alkalinity values, lower concentrations of Nd, Sm, and Dy are observed. The 'recharge' groundwater display the highest values. A 'transitional' group, which may represent the redox boundary groundwater, occurs at 20 km from recharge. The main population of samples with similar element concentrations and ratios referred to as the 'Milk River groundwater' is represented by the lowest concentrations of all three REEs.

5.3.4 Summary of the Transition Metals

- 1. Overall, the transition metals in the groundwater data from year to year gave reproducible shale-normalized patterns and concentrations. The general trends are relative enrichment in Sc, Zn, and Cr compared to neighboring elements, and small concentration increases in most elements as the groundwater migrates downgradient.
- 2. The 1997 groundwater data display only mild differences between filtered and unfiltered samples, and the normalized patterns are similar. The transition metal patterns remain constant along the 54 km flow path studied for this research.
- 3. Similarly, the 1995 groundwater samples repeat well with the 1996 and 1997 samples. Sc and Ti are the most uniform transition elements in the evolving groundwater. Nickel is the only element that is not detected in several groundwater samples.

5.3.5 Summary of the Alkali Metals and Alkaline Earth Metals

- 1. Reproducibility in the concentrations and patterns are good for the 1997 groundwater data, displaying normalized depletions in K, Mg, and Ca compared to neighboring elements.
- 2. Unlike the transition metals, normalized values for the alkali-earth and alkali metals show only minor increases or decreases in values or patterns, as the groundwater moves down the flow path. Barium increases the most in concentration as the groundwater migrates from recharge.
- 3. The 1996 and 1997 samples have similar concentrations of Li, Na, Rb, Cs, Sr, and Ba. However, K, Mg, and Ca all display a higher degree of variability from year to year.
- 4. As for the transition metals the shale-normalized alkali and alkaline earth metals patterns remain constant as the groundwater evolves along the flow path, Ba excepted.

5.4 Speciation Modeling of the Milk River Aquifer Groundwater

5.4.1 PHREEQC Initial Conditions

- 1. Data indicate that the Milk River aquifer groundwater samples are at equilibrium or slightly undersaturated with respect to calcite and dolomite. Saturation indices indicate that gypsum is undersaturated in the groundwater from the recharge area to 54 km. Calcite is close to approaching equilibrium in the groundwater samples (SI = -0.25 to -0.03; n = 11), and dolomite is slightly undersaturated in all the groundwater samples along the studied flow path (SI = -1.0 to -0.44; n = 11).
- 2. Generally, the calculated log pCO_2 values for the Milk River aquifer groundwater samples are less than atmospheric pCO_2 of -3.5. Values are slightly lower in the recharge area compared to downgradient values that are below or near atmospheric pCO_2 values (mean SI = -3.59; n = 11).

- 3. The groundwater along the flow path is also undersaturated with respect to strontianite (SI = -0.99 to -0.05; n = 11).
- 4. Uraninite (UO_2) is strongly undersaturated in the recharge groundwater, but trends toward saturation as the groundwater migrates downgradient. After the post-redox front (~32-33 km) the groundwater becomes oversaturated with respect to uraninite (SI = -18.79 to 4.79; n = 11).
- 5. Barite (BaSO₄) SI values are variable along the flow path. Generally the groundwater is slightly undersaturated or close to equilibrium with respect to $BaSO_4$ (SI = -1.70 to 3.08; n = 11).

5.4.2 REE Speciation Modeling

- 1. Speciation modeling of REEs in the Milk River aquifer groundwater have been evaluated primarily to assess the importance of carbonate $(LnHCO_3^{2+}, LnCO_3^{+})$ and $Ln(CO_3)_2^{-}$ and phosphate $((LnH_2PO_4^{2+}, LnHPO_4^{+}, Ln(HPO_4)_2^{-})$ and $LnPO_4^{0})$ complexes.
- 2. Carbonate complexation is the most important for REEs complex in the Milk River aquifer groundwater system.
- 3. Heavy REE enriched shale-normalized REE patterns are due to the formation of more stable HREE CO₃ complexes than the light REE (LREE) CO₃ complexes in the groundwater.
- 4. Moreover, dicarbonato complexes $(Ln(CO3)_2)$ are predicted as the dominant species in comparison to the carbonato complexes $(LnCO_3^+)$.

5.5 Implications of this Study

This study has shown that trace element data can be used as a complementary tool with major elements to map water-rock interactions in groundwater flow systems. Variations in the concentrations of trace elements, including the REEs, can further be used to discriminate different hydrogeological models in groundwater systems. The interactions with geologic materials have been shown to be an important source in the

groundwater chemistry. Recently, complexes of ligands (i.e. carbonate, phosphate, sulphate) have also been implicated as being important in the concentrations and patterns of REEs and trace elements.

In addition to using REEs as potential hydrogeochemical tracers in groundwaters, their chemical similarities for the trivalent radioactive actinides provides insight into the chemical behavior of the actinides in natural waters, and therefore a proxy for modeling disposal of nuclear waste.

5.6 Recommendations and Future Work

Sample protocols for groundwater studies are continuously developing and so are the instruments for analyzing water samples. It is also important that hydrogeologists constantly revise these sampling protocols to insure that the elements analyzed in water samples are in true solution, and not in colloidal form. In the past the operational cutoff size between colloidal particles and dissolved phase was defined as 0.45 μ m. Recently, it has been proposed that 0.20 μ m may be a more realistic filter size, to obtain a 'true' representative dissolved solute. This cannot be validated in this study, but the results may prove useful for a future groundwater sampling study of the Milk River aquifer groundwater.

Due to the limited database on trace elements and especially the REEs in groundwaters today, it is important to build on existing studies. Hence, future sampling and analysis of the Milk River aquifer would refine the understanding of the natural concentrations and patterns of trace elements including REEs in groundwater systems.

In addition to the refinement of the sampling protocol, continued improvement of instruments (i.e. ICP-MS) and techniques used in sample preparation (i.e. preconcentration, isotope dilution) will produce more precise and accurate water analysis. One such improvement in instrumentation is the operation of a flow injection

(Perkin Elmer FIAS400) coupled with the ICP-MS. Flow-injection, on-line separation and preconcentration would greatly improve the ICP-MS determination of trace elements and REEs in groundwaters as the high contents of dissolved solids (TDS) and other matrix effects could be removed.

References

- Akagi, T., Fuwa, K., and Haraguchi, H. (1985) Simultaneous multi-element determination of trace metals in sea water by inductively coupled plasma atomic emission spectrometry after coprecipitation with gallium. *Anal. Chim. Acta.* 177, 139-151.
- Andrews J. N., Drimmie R. J., Loosli H. H. and Hendry M. J. (1991a) Dissolved gases in the Milk River aquifer, Alberta, Canada. *Appl. Geochem.* 6, 393-403.
- Andrews J. N., Florkowski T., Lehmann B. E. and Loosli H. H. (1991b) Underground production of radionuclides in the Milk River aquifer, Alberta, Canada. Appl. *Geochem.* 6, 425-434.
- Andrews J. N., and Kay, L. F. (1978) The evolution of enhanced ²³⁴U/²³⁸U activity ratios for dissolved uranium and groundwater dating. In Short Papers of the Fourth Internat. Conf. Geochron. Cosmochron. Isotope Geol. (ed R. E. Zartman). U. S. Geol. Surv. Open File Rept. 78-701, 11-13.
- Armstrong, S. G. (1994) Porewater chemical evolution in the Milk River aquifer, Alberta: A strontium isotope study of rock-water interaction. Unpublished M.Sc. Thesis, University of Illinois. 102 pp.
- Ball, J. W., and Nordstrom, D. K. (1991) User's manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace, and redox elements in natural waters. U.S. Geol. Survey Open File Rept. 91-183.

- Barcelona, M. J. (1990) Uncertainties in ground water chemistry and sampling procedures. Chemical Modeling of Aqueous Systems II. ACS Symposium Series 416, 310-320.
- Beauchemin, D., McLaren, J. W., Mykytiuk, A. P., and Berman, S. S. (1987) Determination of trace metals in a river water reference material by inductively coupled plasma mass spectrometry. *Anal. Chem.* 59, 778-783.
- Buellen, T. D., Krabbenhoft, D. P., and Kendall, C. (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta 60, 1807-1821.
- Byrne, R. H., and Kim, K. (1990) Rare earth element scavenging in seawater. Geochim. Cosmochim. Acta 54, 2645-2656.
- Byrne, R. H., and Kim, K. (1993) Rare earth precipitation and coprecipitation behavior: The limiting role of PO_4^{3} on dissolved rare earth concentrations in seawater. *Geochim. Cosmochim. Acta* 57, 519-526.
- Cameron, E. M. (1996) Hydrogeochemistry of the Fraser River, British Columbia: seasonal variation in major and minor components. J. Hydrol. 182, 209-225.
- Champ, D. R., Gulens, J., and Jackson, R. E. (1979) Oxidation reduction sequences in ground water flow systems. *Can. J. Earth Sci.* 16, 12-23.
- Cherdyntsev, V. V. (1971) Uranium-234. Israel Program for Scientific Translations, Jerusalem.

- DeBaar, H. J. W., Bacon, M. P., Brewer, P. G., and Bruland, K. W. (1983) Rare earth distributions with a positive Ce anomaly in the western North Atlantic Ocean. *Nature*, 301, 324-327.
- DeBaar, H. J. W., German C. R., Elderfield, H., and Van Gaans, P. (1988) Rare earth element distributions in anoxic waters of Cariaco Trench. Geochim. Cosmochim. Acta 52, 1203-1219.
- Deverel, S. J., and Millard, S. P. (1988) Distribution and mobility of selenium and other elements in shallow groundwater of the western San Joaquin Valley, California. *Environ. Sci. Technol* 22, 697-702.
- Devi, P. R., Gangaiah, T., and Naidu, G. R. K. (1991) Determination of trace metals in water by neutron activation analysis after preconcentration on a poly(acrylamidoxime) resin. Analytica Chimica Acta 249, 533-537.
- Dickson, B. L., and Herczeg, A. L. (1992) Deposition of trace elements and radionuclides in the spring zone, Lake Tyrrell, Victoria, Australia. Chem. Geol. 96. 151-166.
- Domenico, P. A., and Robbins, G. A. (1985) The displacement of connate water from aquifers. Bull. Geol. Soc. Am. 96, 328-335.
- Dominik, J., and Stanley, D. J. (1993) Boron, beryllium and sulfur in Holocene sediments and peats of the Nile delta, Egypt: Their use as indicators of salinity and climate. *Chem. Geol.* 104, 203-216.
- Doussan, C., Poitevin, G., Ledoux, E., and Detay, M. (1997) River bank filtration: modelling of the changes in water chemistry with emphasis on nitrogen species. J. Contaminant Hydrology 25, 129-156.

- Drimmie R. J., Aravena R., Wassenaar L. I., Fritz P., Hendry M. J. and Hut G. (1991) Radiocarbon and stable isotopes in water and dissolved constituents, Milk River aquifer, Alberta, Canada. *Appl. Geochem.* 6, 381-392.
- Duro, L., Bruno, J., Gómez, P., Gimeno, M. J., And Wersin, P. (1997) Modelling of the migration of trace elements along groundwater flowpaths by using steady state approach: Application to the site at El Berrocal (Spain). J. Contaminant Hydrology 26, 35-43.
- Edmunds, W. M., Bath, A. H., Miles, D. L. (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. *Geochim. Cosmochim. Acta* 46, 2069-2081.
- Elderfield, H., and Greaves, M. J. (1992) The rare earth elements in seawater. *Nature*. **296**, 214-219.
- Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E. R. (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. *Geochim. Cosmochim. Acta* 54, 971-991.
- Erel, Y., Morgan, J. J. (1991) The effect of surface reactions on the relative abundances of trace metals in deep-ocean water. *Geochim. Cosmochim. Acta* 55, 1807-1813.
- Erel, Y., and Stolper, E. M. (1993) Modeling of rare-earth element partitioning between particles and solution in aquatic environments. *Geochim. Cosmochim. Acta* 57, 513-518.
- Esser, B. K., Volpe. A., Kenneally, J. M., and Smith, D. K. (1994) Preconcentration and purification of rare earth elements in natural waters using silica-immobilized 8-

hydroxyquinoline and a supported organophosphorous extractant. Anal. Chem. 66, 1736-1742.

- Fabryka-Martin J., Whittemore D. O., Davis S. N., Kubik P. W. and Sharma P. (1991) Geochemistry of halogens in the Milk River aquifer, Alberta, Canada. Appl. Geochem. 6, 447-464.
- Fee, J. A., Guadette, H. E., Lyons, W. B., and Long, D. T. (1992) Rare-earth element distribution in Lake Tyrrell groundwaters, Victoria, Australia. *Chem. Geol.* 96, 67-93.
- Fegan, N. E., and Long, D. T., Lyons, W. B., Hines, M. E., and Macumber, P. G. (1992) Metal partitioning in acid hypersaline sediments: Lake Tyrrell, Victoria, Australia. *Chem. Geol.* 96. 167-181.
- Frapporti, G., Vriend, S. P., and Van Gaans, P. F. M. (1993) Hydrogeochemistry of Shallow Dutch Groundwater: interpretation of the National Groundwater quality monitoring network. *Wat. Resour. Res.* 29, 2993-3004
- Freeze, R. A., and Cherry, J. A. (1979) Groundwater. Englewood Cliffs, NJ: Prentice-Hall, Inc. 603 pp.
- Fröhlich K., and Gellermann R. (1987) On the potential use of uranium isotopes for groundwater dating. *Isotope Geosci.* 65, 67-77.
- Fröhlich K., Ivanovich M., Hendry M. J., Andrews J. N., Davis S. N., Drimmie R. J.,
 Fabryka-Martin J., Flrkowski T., Fritz P., Lehmann B., Loosli H. H. and Nolte E.
 (1991) Application of isotopic methods to dating of very old groundwaters: Milk
 River aquifer, Alberta, Canada. *Appl. Geochem.* 6, 465-472.

- Garbarino, J. R., and Taylor, H. E. (1987) Stable isotope Dilution Analysis of hydrologic samples by inductively coupled mass spectrometry. *Anal. Chem.* 59, 1568-1575.
- Gascoyne, M. (1997) Evolution of redox conditions and groundwater composition in recharge-discharge environments on the Canadian Shield. *Hydrogeol. Journal.* 5, 4-18.
- Giblin, A. M., and Dickson, B. L. (1992) Source, distribution and economic significance of trace elements in groundwaters from Lake Tyrrell, Victoria, Australia. Chem. Geol. 96. 133-149.
- Goldstein, S. J., and Jacobsen, S. B. (1988) Rare earth elements in river waters. Earth and Planetary Science Letters 89, 35-47.
- Gorlach, U., and Boutron, C. F. (1990) Preconcentration of lead, cadmium, copper and zinc in water at the pg g-1 level by non-boiling evaporation. *Anal. Chim Acta*. 236, 391-398.
- Gosselin, D. C., Smith, M. R., Lepel, E. A., and Laul, J. C. (1992) Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA. Geochim. Cosmochim. Acta 56, 1495-1505.
- Grenthe, I., Stumm, W., Laaksunharju, M., Nilsson, A.-C. and Wikberg, P. (1992) Redox potentials and redox reactions in deep groundwater systems. *Chem. Geol.* 98, 131-150.
- Hall, G. E. M. (1993) Capabilities of production-oriented laboratories in water analysis using ICP-ES and ICP-MS. J. Geochemical Exploration, 49. 89-121.

- Hall, G. E. M, Vaive, J. E., and McConnell, J. W. (1995) Development and application of sensitive and rapid analytical method to determine the rare-earth elements in surface waters. *Chem. Geol.* 120, 91-109.
- Hendry M. J., and Schwartz F. W. (1988) A alternative view on the origin of chemical and isotopic patterns in groundwater from the Milk River aquifer, Canada. Wat. Resour. Res. 24, 1747-1763.
- Hendry M. J., and Schwartz F. W. (1990a) The chemical evolution of groundwater in the Milk River aquifer, Canada. *Ground Water* 28, 253-261.
- Hendry M. J., and Schwartz F. W. (1990b) Reply to comment on "An alternative view on the origin of chemical and isotopic patterns in groundwater from the Milk River aquifer, Canada." *Wat. Resour. Res.* 26, 1699-1703.
- Hendry M. J., and Schwartz F. W. and Robertson C. (1991) Hydrogeology and hydrochemistry of the Milk River aquifer system, Alberta, Canada: a review. Appl. Geochem. 6, 369-380.
- Henshaw, J. M., Heithmar, E. M., and Hinners, T. A. (1989) Inductively coupled plasma mass spectrometric determination of trace elements in surface waters subject to acidic deposition. *Anal. Chem.* 1989, 335-342.
- Hiscock, K. M. (1993) The influence of pre-Devensian glacial deposits on the hydrogeochemistry of the Chalk aquifer system of north Norfolk, UK. J. Hydrol. 144, 335-369.
- Ichihashi, H., Morita, H., and Tatsukawa, R. (1992) Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. *Environmental Pollution* 76, 157-162.

- Ii, I., and Misawa, S. (1994) Groundwater chemistry within a plateau neighboring Matsumoto city, Japan. Environ. Geol. 24, 166-175.
- Ivanovich M., Fröhlich K. and Hendry M. J. (1991) Uranium-series radionuclides in fluids and solids, Milk River aquifer, Alberta, Canada. *Appl. Geochem.* 6, 405-418.
- Ivanovich M., and Schwarcz, H. P. (1983) Uranium-series radionuclides. In Role of Isotope Techniques in the Hydrological Assessment of Potential Sites for the Disposal of Highly Radioactive Waste. IAEA, Vienna, Tech. Rept Ser. No. 228, 102-126.
- Jacobs, L. A., Von Gunten, H. R., Keil, R., and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. *Geochim. Cosmochim. Acta* 52, 2693-2706.
- Jacobson, G., Calf, G. E., Jankowski, J., and McDonald P. S. (1989) Groundwater chemistry and palaeorecharge in the Amadeous Basin, central Australia. J. Hydrol. 109, 237-266.
- Johannesson, K. H., and Lyons, W. B. (1994) The rare earth element geochemistry of Mono Lake water and the importance of carbonate complexing. *Limnol. Oceanogr.*, 39, 1141-1154.
- Johannesson, K. H., and Lyons, W. B. (1995) Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chem. Geol. 119, 209-223.
- Johannesson, K. H., Lyons, W. B., Fee, J. H., Gaudette, H. E, and McArthur, J. M. (1994) Geochemical processes affecting the acidic groundwaters of Lake Gilmore,

Yilgarn Block, Western Australia: a preliminary study using neodymium, samarium, and dysprosium. J. Hydrol. 154, 271-289.

- Johannesson, K. H., Lyons, W. B., Yelken, M. A., Henri, E. G., and Stetzenbach, K. J. (in press) Geochemistry of the rare earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare earth enrichments. *Chem. Geol.*
- Johannesson, K. H., Stetzenbach, K. J., and Hodge, V. F., Kreamer, D. K., and Zhou,
 X. (1997) Delineation of ground-water flow systems in the southern Great Basin using aqueous rare earth element distributions, *Ground Water* 135, 807-819.
- Johannesson, K. H., Stetzenbach, K. J., Kreamer, D. K., and Hodge, V. F. (1996) Multivariate statistical analysis of arsenic and selenium concentrations in groundwaters from south-central Nevada and Death Valley, California. J. Hydrol. 178, 181-204.
- Koshima, H., and Onishi, H. (1986) Adsorption of metal ions on activated carbon from aqueous solutions at pH 1-13. *Talanta* 33. 391-395.
- Kraynov, S. P. (1997) Thermodynamic models for groundwater chemical evolution versus real geochemical properties of groundwater: A review of capabilities, errors, and problems. *Geochemistry International* 35, 639-655.
- Kreamer, D. K., Hodge, V. F., Rabinowitz, I., Johannesson, K. H., and Stetzenbach, K.
 J. (1996) Trace element geochemistry in water from selected springs in Death Valley National Park, California. *Ground Water* 34, 95-103.
- Kwok-Choi, N., and Jones, B. (1995) Hydrogeochemistry of Grand Cayman, British West Indies: implications for carbonate diagenetic studies. J. Hydrol. 164, 193-216.
- Lahm T. D., Bair E. S., and Schwartz F. W. (1995) The use of stochastic simulations and geophysical logs to characterize spatial heterogeneity in hydrogeologic parameters. *Mathematical Geol.*, 27, 259-278.
- Langmuir, D. (1997) Aqueous environmental geochemistry. Upper Saddle River, NJ. Prentice-Hall. 600 pp.
- Lee, J. H., and Byrne, R. H. (1992) Examination of comparative rare earth complexation behavior using linear free-energy relationships. *Geochim. Cosmochim. Acta* 56, 1127-1137.
- Lee, J. H., and Byrne, R. H. (1993) Complexation of the trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. *Geochim. Cosmochim. Acta* 57, 295-302.
- Lehmann B. E., Loosli H. H., Rauber D., Thonnard N. and Willis R. D. (1991) ⁸¹Kr and ⁸⁵Kr in groundwater, Milk River aquifer, Alberta, Canada. *Appl. Geochem.* 6, 419-423.
- Longstaffe, F. J. (1984) The role of meteoric water in diagenesis of shallow sandstones: stable isotope studies of the Milk River aquifer and gas pool, southeastern Alberta. Am. Assoc. Petrol. Geol. Bull. 37, 81-98.
- Lyons, W. B., Welch, S., Long, D. T., Hines, M. E., Giblin, A. M., Carey, A. E., Macumber, P. G., Lent, R. M., and Herczeg, A. L. (1992) The trace-metal geochemistry of the Lake Tyrrell system brines (Victoria, Australia). *Chem. Geol.* 96, 115-132.
- Macumber, P. G. (1992) Hydrological processes in the Tyrrell Basin, southeastern Australia. Chem. Geol. 96. 1-18.

- Meyboom, P. (1960) Geology and groundwater resources of the Milk River sandstone in southern Alberta, *Alberta Res. Council, Edmonton, Alberta, Mem.* 2, 89 pp.
- Miekeley, N., Coutinho de Jesus, H., Porto da Silveira, C. L., Linsalata, P., and Morse,
 R. (1992) Rare-earth elements in groundwaters from the Osamu Utsumi mine and
 Morro do Ferro analogue study sites, Poços de Caldas, Brazil. J. Geochemical
 Exploration 45, 365-387.
- Miekeley, N., Coutinho de Jesus, H., Porto da Silveira, C. L., Linsalata, P., and Morse,
 R. (1992) Chemical and physical characterizatio of suspended particles and colloids in waters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil. J. Geochemical Exploration 45, 409-437.
- Millero, F. J. (1992) Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. *Geochim. Cosmochim. Acta* 56, 3123-3132.
- Möller, P., and Bau, M. (1993) Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. *Earth and Planetary Science Letters* 117, 671-676.
- Möller, P., Dulski, P., and Luck, J. (1992) Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry. *Spectrochima Acta* 47B, 1379-1387.
- Murphy E. M., Davis S. N., Long A., Donahue D., and Jull A. J. T. (1989) Characterization and isotopic composition of organic and inorganic carbon in the Milk River aquifer. *Wat. Resour. Res.* 25, 1893-1905.

- Neal, C., Smith, C. J., Jeffery, H. A., Jarvie, H. P., and Robson, A. J. (1996) Trace element concentrations in the major rivers entering the Humber estuary, NE England. J. Hydrol. 182, 37-64.
- Nolte E., Krauthan P., Korschinek G., Malosewski P., Fritz P. and Wolf M. (1991) Measurements and interpretations of ³⁶Cl in groundwater, Milk River aquifer, Alberta, Canada. *Appl. Geochem.* 6, 435-445.
- Nordstrom, D. K., Ball, J. W., Donahoe, R. J., and Whittemore D. (1989) Groundwater chemistry and water-rock interactions at Stripa. *Geochim. Cosmochim. Acta* 53, 1727-1740.
- Parkhurst, D. L. (1990) Ion-association models and mean activity coefficients of various salts. In Chemical modeling of aqueous systems II, ed D. C. Melchior and R. L. Bassett, Am. Chem. Soc. Symp. Ser. 416, pp. 30-43 Washington DC: Am. Chem. Soc.
- Parkhurst, D. L. (1995) User's Guide to PHEEQC-a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey. Water-Resources investigations Report 95-4227. 143 pp.
- Phillips F. M., Knowlton R. G., and Bentley H. W. (1990) Comment on "an alternative view on the orgin of chemical and isotopic patterns in groundwater from the Milk River aquifer, Canada" by M.J. Hendry and F. W. Schwartz. *Wat. Resour. Res.* 26, 1693-1698.
- Phillips F. M., Bentley H. W., Davis S. N., Elmore D., and Swanick G. B. (1986) Chlorine 36 dating of very old groundwater 2. Milk River aquifer, Alberta, Canada. *Wat. Resour. Res.* 22, 2003-2016.

Plummer, L. N. (1997) Principles and applications of modeling chemical reactions in ground water. International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado.

Postma, D., Boessen, C., Kristiansen, H., and Larsen, F. (1991) Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling. *Water Resources* 27, 2027-2045.

Potts, P. J. (1987) A handbook of silicate rock analysis. Blackie. 622 pp.

- Ramaswami, A., and Small, M. J. (1994) Modeling the spatial variability of natural trace element concentrations in groundwater. *Water Resour. Res.* **30**, 269-282.
- Ramesh, R., Kumar, K. S., Eswaramoorthi, S., and Purvaja, G. R. (1995) Migration and contamination of Major and trace elements in groundwater of Madras City, India. *Environmental Geol.* 25. 126-136.
- Robertson, G. (1988) Potential impact of subsurface irrigation return flow on a portion of the Milk River and Milk River aquifer in southern Alberta. Unpublished M.Sc. thesis. University of Alberta. 163 pp.
- Schwartz F. W., Muehlenbachs, K., and Chorley, D. W. (1981) Flow-system controls of the chemical evolution of groundwater. *J. hydrol.* **54**, 225-243.
- Schwartz, F. W., and Muehlenbachs, K. (1979) Isotope and ion geochemistry of groundwaters in the Milk River aquifer, Alberta. *Wat. Resour. Res.* 15, 259-268.
- Shabani, M. B., Akagi, T., Shimizu, H., and Masuda, A. (1990) Determination of trace lanthanides and yttrium in seawater by inductively coupled plasma-mass

spectrometry after preconcentration with solvent extraction and back-extraction. Anal. Chem. 62, 2707-2714.

- Shimizu, H., Tachikawa, K., Masuda, A., and Nozaki, Y. (1994) Cerium and neodymium isotope ratios and REE patterns in seawater from the North Pacific Ocean. Geochim. Cosmochim. Acta 58, 323-333.
- Sholkovitz, E. R. (1993) The geochemistry of rare earth elements in the Amazon River estuary. *Geochim. Cosmochim. Acta* 57, 2181-2190.
- Smedley P. L.(1991) The geochemistry of rare earth elements in groundwater from the Carmenellis area, southwest England. *Geochim. Cosmochim. Acta* 55, 2767-2779.
- Smellie, J. A. T., Laaksoharju, M., and Wikberg, P. (1995) Aspö, SE Sweden: a natural groundwater flow model derived from hydrogeochemical observations. J. Hydrol. 172, 147-169.
- Stetzenbach, K. J., Amano, M., Kreamer, D. K., and Hodge, V. F. (1994) Testing the limits of ICP-MS: Determination of trace elements in ground water at the part-pertrillion level. *Ground Water* 32, 976-985.
- Sturgeon, R. E., Berman, S. S., Willie, S. N., and Desaulniers, J.A.H. (1981) Preconcentration of trace elements from seawater with silica-immobilized 8hydroxyquinoline. *Anal. Chem.* 53, 2337-2340.
- Sugiyama, M., Fujino, O., Kihara, S. and Matsui, M. (1986) Preconcentration by dithiocarbamate extraction for determination of trace elements in natural waters by inductively coupled plasma atomic emission spectrometry. *Anal. Chim. Acta.* 181, 159-168.

- Swanick, G. R. (1982) The hydrogeochemistry and age of the water in the Milk River aquifer, Alberta, Canada. Unpublished M.Sc. thesis, University of Arizona. 103 pp.
- Taylor, W. S. (1996) Bacterial hydrocarbon gases in surficial aquitards and shallow bedrock aquifers in the Western Canadian Sedimentary Basin. Unpublished M.Sc. thesis. University of Toronto. 97 pp.
- Taylor, S. R., and McLennan, S. M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, 312 pp.
- Tellam, J. H. (1994) The groundwater chemistry of Lower Mersey Basin Permo-Triassic Sandstone Aquifer system, UK: 1980 and pre-indusrialisation-urbanisation. J. Hydrol. 161, 287-325.
- Thompson, M., Ramsey, M. H., and Pahlavanpour, B. (1982) Water analysis by inductively coupled plasma atomic emission spectrometry after a rapid preconcentration. *Analyst.* 107, 1330-1334.
- Torgersen T.(1989) Terrestrial helium degassing fluxes and the atmospheric helium budget: Implications with respect to the degassing processes of continental crust. *Chem. Geol. (Isot. Geosci. Sect.)* **79**, 1-14.
- Tóth, J., and Corbet T. (1986) Post-Paleocene evolution of regional groundwater flow systems and their relation to petroleum accumulations, Taber area, southern Alberta, *Canada. Bull. Can. Pet. Geol.* 34(3), 339-363.
- Wassenaar L., Aravena R., Hendry M. J., and Schwartz F. W. (1991) Radiocarbon in dissolved organic carbon, a possible groundwater dating methood: case studies from Western Canada. *Wat. Resour. Res.* 27, 1975-1986.

- Wood, S. A. (1990a) The aqueous geochemistry of rare-earth elements and yttrium. 1.
 Review of available low-temperature data for inorganic complexes and the inorganic
 REE speciation of natural waters. *Chem. Geol.* 82, 159-186.
- Wood, S. A. (1990b) The aqueous geochemistry of rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure. *Chem. Geol.* 88, 99-125.
- Xun, Z., and Cijun, L. (1992) Hydrogeochemistry of deep formation brines in the central Sichuan Basin, China. J. Hydrol. 138, 1-15.

Appendix A

1995-1997 Sample Locations

The following table lists the sampling sites selected for the 1995-1997 field seasons. Distances correspond to the location of wells from the area of recharge (distance measured north of the 49th parallel). Field and lab alkalinity and pH are presented for most wells. Where possible well depths and *in situ* groundwater temperatures were recorded.

Appendix A

1995-1996 Mail Magen		LSD	Distance (km)	Field pH	Lab pH	Field Alkalinity	Lab Alkalinity	Well Depth	Field
MR122 SW-9-1-10-W4 2 9.3 9.22 372 472 560 9.71 MR123 NW-20-1-10-W4 7.5 9.26 9.2 583 632 603 11.6 MR52 SE 228-10-W4 15 9.06 9 622 618 NA 9.2 MR80 SE 7.3-10-W4 20 9.08 9.06 NA 602 NA 11.1 MR125 NW-33-3-11-W4 27.5 - - - NA - MR126 SW-2-4-11-W4 28 9.35 9.27 704 696 -700 11.5 MR115 NW-12-4-11-W4 28 9.35 9.17 740 725 NA 11 MR124 SW-2-4-11-W4 32.5 - - - NA - MR128 NW-21-4-11-W4 32.5 - - - NA - MR128 NW-21-4-11-W4 34.5 9.01 8.75 724 709 -850 9.9 MR118 NW-21-4-11-W4 47 -	1995-1996		(KIII)			(111g/L)	(1116/12/	(ft)	(°C)
MR123 NW-20-1-10-W4 7.5 9.26 9.22 583 632 603 11.1 MR52 SE-28-2-10-W4 15 9.06 9 622 618 NA 9.2 MR80 SE-7-3-10-W4 20 9.08 9.06 NA 602 NA 11.1 MR116 SE-31-3-10-W4 20 9.08 9.06 NA 602 NA 11.1 MR125 NW-33-3-11-W4 27 9.34 9.19 775 703 NA 11.4 MR126 SW-24-11-W4 22 9.35 9.2 704 696 -700 11.5 MR115 NW-12-4-11-W4 32.5 - - - NA - MR124 SW-23-4-11-W4 32.5 9.01 8.75 724 709 -880 9.9 MR118 NW-9-5-11-W4 40 9.3 9.19 875 961 NA 10.3 MR127 NE-32-511-W4 46 9.19 9.06 784 774 -70 10.4 MR119 <td< td=""><td>MR122</td><td>SW-9-1-10-W4</td><td>2</td><td>9.3</td><td>9.22</td><td>372</td><td>472</td><td>560</td><td>9.7</td></td<>	MR122	SW-9-1-10-W4	2	9.3	9.22	372	472	560	9.7
MR52 SE-28-2-10-W4 15 9.06 9 622 618 NA 9.2 MR80 SE-7.3-10-W4 20 9.08 9.06 NA 602 NA 11.1 MR116 SE-31-3-10-W4 27 9.34 9.19 775 703 NA 11.4 MR125 NW-33-3-11-W4 27 9.34 9.19 775 703 NA 11.4 MR126 SW-2-4-11-W4 28 9.35 9.2 704 696 -700 11.5 MR115 NW-2-4-11-W4 32 9.3 9.17 740 725 NA 11 MR114 NE-24-4-11-W4 32.5 - - - NA - MR128 NW-21-41-W4 32.5 - - - NA 10.3 MR120 NW-21-41-W4 32.5 - - - NA 10.3 MR121 NW-25-5-11-W4 46 9.19 9.06 784 774 -790 10.4 MR121 NE-20-7-11-W4 61 -	MR123	NW-20-1-10-W4	7.5	9.26	9.2	583	632	603	11.6
MR80 SE-7-3-10-W4 20 9.08 9.06 NA 62 NA 11.1 MR116 SE-31-3-10-W4 26.5 - - - NA - MR125 NW-33-3-11-W4 27 9.34 9.19 775 703 NA 11.4 MR43 NE-33-3-11-W4 27 9.34 9.19 775 703 NA - MR126 SW-24-11-W4 28 9.35 9.2 704 666 -700 11.5 MR124 SW-23-411-W4 32 9.3 9.17 740 725 NA 11 MR128 SW-24-411-W4 32.5 - - - NA - MR128 SW-24-411-W4 32.5 - - - NA - MR128 SW-24-411-W4 34.5 9.01 8.75 724 709 16.40 - - - NA - MR128 NW-21-411-W4 46 9.19 9.06 784 774 -700 10.4 MR121	MR52	SE-28-2-10-W4	15	9.06	9	622	618	NA	9.2
MR116 SE-31-3-10-W4 26.5 - - - - - NA - MR125 NW-33-3-11-W4 27 9.34 9.19 775 703 NA 11.4 MR43 NW-33-3-11-W4 28 9.35 9.2 704 696 -700 11.5 MR126 SW-2-4-11-W4 28 9.35 9.2 704 696 -700 11.5 MR114 NW-12-4-11-W4 32 9.3 9.17 740 725 NA - MR118 NW-21-4-11-W4 32.5 - - - NA - MR128 NW-21-4-11-W4 34.5 9.01 8.75 724 709 -850 9.9 MR118 NW-9-5-11-W4 40 9.3 9.19 875 961 NA 10.3 MR122 SE-26-61-W4 54 9.08 8.89 833 849 NA 9.1 MR121 NE-20-7-11-W4 61 - - - - - - - - -	MR80	SE-7-3-10-W4	20	9.08	9.06	NA	602	NA	11.1
MR125 NW-33-3-11-W4 27 9.34 9.19 775 703 NA 11.4 MR43 NE-33-3-11-W4 27.5 - - - NA - MR126 SW-24-411-W4 28 9.35 9.2 704 696 -700 11.5 MR115 NW-12-4-11-W4 32 9.3 9.17 740 725 NA 11 MR124 SW-23-4-11-W4 32.5 - - - NA - MR128 NW-21-4-11-W4 34.5 9.01 8.75 724 709 -850 9.9 MR118 NW-9-5-11-W4 40 9.3 9.19 875 961 NA 10.3 MR127 NE-32-5-11-W4 46 9.19 9.06 784 774 -790 10.4 MR119 SE-20-7-11-W4 61 -	MR116	SE-31-3-10-W4	26.5	-	-	-	-	NA	-
MR43 NE-33-3-11-W4 27.5 - - - - - N N MR126 SW-24-11-W4 28 9.35 9.2 704 69 ~700 11.5 MR115 NW-12-4-11-W4 32 9.3 9.17 740 725 NA 11 MR114 NE-24-4-11-W4 32.5 - - - NA - MR128 NW-21-4-11-W4 34.5 9.01 8.75 724 709 ~850 9.9 MR118 NW-9-5-11-W4 40 9.3 9.19 875 961 NA 10.3 MR127 NE 32-5-11-W4 46 9.19 9.06 784 774 ~790 10.4 MR121 NE-25-5-11-W4 46 9.19 9.06 784 774 ~700 10.4 MR121 NE-20-5-11-W4 47 -	MR125	NW-33-3-11-W4	27	9.34	9.19	775	703	NA	11.4
MR12b SW-24-11-W4 28 9.35 9.2 7.04 996 -7.00 11.5 MR115 NW-12-4-11-W4 29 - - - NA - MR124 SW-23-411-W4 32 9.3 9.17 740 725 NA 11 MR114 NE-24-411-W4 32.5 - - - NA - MR128 NW-21-4-11-W4 40 9.19 875 961 NA 10.3 MR121 NE-25-511-W4 46 9.19 9.06 784 774 - NA - MR119 SE-26-611-W4 47 - - - - - - - - - - - - - - - - -<	MR43	NE-33-3-11-W4	27.5	-	-	-	-	NA	-
MR 113 NW-12-4-11 W4 25 - - - - - NA 1 MR 124 SW-23-4-11-W4 32.5 - - - NA - MR 128 NW-21-4-11-W4 32.5 - - - NA - MR 128 NW-21-4-11-W4 34.5 9.01 8.75 724 709 -850 9.9 MR 118 NW-9-5-11-W4 40 9.3 9.19 875 961 NA 10.3 MR 112 SE-46-61-W4 47 - - - NA - MR 119 SE-20-5-11-W4 64 9.08 8.89 833 849 NA 9.0 MR 121 NE-20-7-11-W4 61 -	MR120	SW-2-4-11-W4	28	9.35	9.2	704	040	~ 700	11.5
MR114 NR2-4+11-W4 32,5 9,17 70 72,5 NA 71,7 MR114 NR2-4+11-W4 32,5 - - - NA - MR128 NW-21-4+11-W4 32,5 - - - NA - MR128 NW-21-4+11-W4 32,5 9,01 8,75 724 709 -850 9,9 MR118 NW-9-5-11-W4 40 9,3 9,19 875 961 NA 10.3 MR121 NE-32-5-11-W4 46 9,19 9,06 784 774 -790 10.4 MR112 SE-26-6-11-W4 47 - - - NA - MR114 NE-12-8-12-W4 68 - 15 - - - - - - - - 15 9.11 <	MR115	SW-23-4-11-W4	29	-	- 017	-	- 725	NA NA	
Intrivio Intrio Intrio Intrio Intri	MR124	NE-24-4-11-W4	32 5	9.5	9.17	740	125	NA	
Initial Number 1 Numer 1 Numer 1 Nu	MR128	NW-21-4-11-W4	34.5	9.01	8 75	724	709	~ 850	9.9
MR127 NE-32-5-11-W4 46 9.19 9.06 784 774 -790 10.4 MR121 SE-46-11-W4 47 - - - - NA - MR119 SE-29-6-11-W4 54 9.08 8.89 833 849 NA 9.1 MR121 NE-20-7-11-W4 61 -	MR118	NW-9-5-11-W4	40	9.3	9.19	875	961	NA	10.3
MR12 SE-4-6-11-W4 47 - - - - NA - MR119 SE-29-6-11-W4 54 9.08 8.89 833 849 NA 9.1 MR121 NE-20-7-11-W4 61 -	MR127	NE-32-5-11-W4	46	9.19	9.06	784	774	~ 790	10.4
MR119 SE-29-6-11-W4 54 9.08 8.89 833 849 NA 9.1 MR121 NE-20-7-11-W4 61 -	MR12	SE-4-6-11-W4	47	-	_	-	-	NA	•
MR121 NE-20-7-11-W4 61 - - - - - - MR14 NE-12-8-12-W4 68 - - - - - - - MR25 SE-22-8-12-W4 73 -	MR119	SE-29-6-11-W4	54	9.08	8.89	833	849	NA	9.1
MR14 NE-12-8-12-W4 68 - - - - - - - MR25 SE-22-8-12-W4 73 -	MR121	NE-20-7-11-W4	61	-	-	-		-	-
MR25 SE-22-8-12-W4 73 -	MR14	NE-12-8-12-W4	68	-	-		-	-	-
MR17 SW-24-9-12-W4 81 - - - - - - - MR23 NW-25-9-13-W4 82 -	MR25	SE-22-8-12-W4	73	-	-	-	-	-	-
MR23 NW-25-9-13-W4 82 - 13.3	MR17	SW-24-9-12-W4	81	- 1			-	-	-,
MR113 SE-22-10-12-W4 91 - - - - - - - - - - 1 1997 MR139 SW-7-1-11W4 1.5 9.11 - 474 - - 11.3 MR122 SW-9-1-10-W4 2 9.13 - 542 - 585 11.8 MR 140 NW-9-1-11W4 2 8.19 - 339 - 325 10.5 MR130 NE-16-3-10W4 22 8.96 - 655 - 603 12.5 MR135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR136 NW-23-3-10W4 23.5 9.03 - 637 - 700 11.8 MR132 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR131 SE-19-4-9W4 31.5 8.58 - 763 - 800 11.8 MR131 SE-19-4-9W4 32. 8.93 - 712 -	MR23	NW-25-9-13-W4	82	-	· -	-	-	-	-
1997 MR139 SW-7-1-11W4 1.5 9.11 - 474 - - 11.3 MR122 SW-9-1-10-W4 2 9.13 - 542 - 585 11.8 MR 140 NW-9-1-11W4 2 8.19 - 339 - 325 10.5 MR123 NW-20-1-10-W4 7.5 9.14 - 586 - 603 12.5 MR130 NE-16-3-10W4 22 8.96 - 655 - 750 13.2 MR135 SW-24.3-10W4 23 9.01 - 631 - 700 16.3 MR136 NW-23-3-10W4 23.5 9.03 - 637 - 700 11.8 MR132 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR131 SE-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32.5 9.08 - 712 - 800 11.7 <	MR113	SE-22-10-12-W4	91	-	-	-	-	-	-
MR139 SW-7-1-11W4 1.5 9.11 - 474 - - 11.3 MR122 SW-9-1-10-W4 2 9.13 - 542 - 585 11.8 MR 140 NW-9-1-11W4 2 8.19 - 339 - 325 10.5 MR123 NW-20-1-10-W4 7.5 9.14 - 586 - 603 12.5 MR130 NE-16-3-10W4 22 8.96 - 655 - 750 13.2 MR135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR136 NW-23-3-10W4 23.5 9.03 - 637 - 700 11.8 MR132 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR131 SE-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 <td>1997</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1997								
MR122 SW-9-1-10-W4 2 9.13 - 542 - 585 11.8 MR 140 NW-9-1-11W4 2 8.19 - 339 - 325 10.5 MR 123 NW-20-1-10-W4 7.5 9.14 - 586 - 603 12.5 MR 130 NE-16-3-10W4 22 8.96 - 655 - 750 13.2 MR 135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR 136 NW-23-3-10W4 23 9.03 - 637 - 700 11.3 MR 132 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR 132 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR 131 SE-19-4-9W4 31.5 8.58 - 763 - 800 11.7 MR 133 SW-26-4-10W4 32.5 9.08 - 712 - 800 11.7 MR 133 SW-26-4-	MR139	SW-7-1-11W4	1.5	9.11	-	474	-	-	11.3
MR 140 NW-9-1-11W4 2 8.19 - 339 - 325 10.5 MR 123 NW-20-1-10-W4 7.5 9.14 - 586 - 603 12.5 MR 130 NE-16-3-10W4 22 8.96 - 655 - 750 13.2 MR 135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR 136 NW-23-3-10W4 23.5 9.03 - 637 - 720 11.3 MR 132 SW-26-3-10W4 24 9 - 639 - 800 10.8 MR 132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR 131 SE-19-4-9W4 32 8.93 - 712 - 800 11.7 MR 133 SW-26-4-10W4 32.5 9.08 - 712 - 800 11.7 MR 133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR 133	MR122	SW-9-1-10-W4	2	9.13	-	542		585	11.8
MR123 NW-20-1-10-W4 7.5 9.14 - 586 - 603 12.5 MR130 NE-16-3-10W4 22 8.96 - 655 - 750 13.2 MR135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR136 NW-23-3-10W4 23.5 9.03 - 637 - 700 11.3 MR129 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32 8.93 - 712 - 800 11.7 MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12	MR 140	NW-9-1-11W4	2	8.19	-	339	•	325	10.5
MR130 NE-16-3-10W4 22 8.96 - 655 - 750 13.2 MR135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR136 NW-23-3-10W4 23.5 9.03 - 637 - 720 11.3 MR129 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32 8.93 - 712 - 800 11.8 MR133 SW-26-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR123	NW-20-1-10-W4	7.5	9.14	-	586	-	603	12.5
MR135 SW-24-3-10W4 23 9.01 - 631 - 700 16.3 MR136 NW-23-3-10W4 23.5 9.03 - 637 - 720 11.3 MR129 SW-26-3-10W4 24 9 - 639 - 700 16.3 MR132 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32 8.93 - 763 - 800 11.8 MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR130	NE-16-3-10W4	22	8.96	-	655	-	750	13.2
MR136 NW-23-3-10W4 23.5 9.03 - 637 - 720 11.3 MR129 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32 8.93 - 790 - 800 11.8 MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR135	SW-24-3-10W4	23	9.01	-	631	-	700	16.3
MR129 SW-26-3-10W4 24 9 - 639 - 700 11.8 MR132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32 8.93 - 790 - 800 11.8 MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR136	NW-23-3-10W4	23.5	9.03	-	637	-	720	11.3
MR132 SW-19-4-9W4 31.5 8.58 - 763 - 800 10.8 MR131 SE-19-4-9W4 32 8.93 - 790 - 800 11.8 MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR129	SW-26-3-10W4	24	9	-	639	-	700	11.8
MR131 SE-19-4-9W4 32 8.93 - 790 - 800 11.8 MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR132	SW-19-4-9W4	31.5	8.58	- '	763	-	800	10.8
MR134 NE-21-4-10W4 32.5 9.08 - 712 - 800 11.7 MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR131	SE-19-4-9W4	32	8.93		790	-	800	11.8
MR133 SW-26-4-10W4 33.5 8.98 - 741 - 780-790 10.3 MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR134	NE-21-4-10W4	32.5	9.08	-	712	-	800	11.7
MR137 SE-18-5-10W4 44 9.06 - 784 - 840 10.2 MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR133	SW-26-4-10W4	33.5	8.98	-	741	-	780-790	10.3
MR138 NW-12-6-11W4 49.5 9.03 - 776 - 800 11.1	MR137	SE-18-5-10W4	44	9.06	-	784		840	10.2
	MR138	NW-12-6-11W4	49.5	9.03	-	776	-	800	11.1

Appendix B

ICP-AES and ICP-MS Analyses

The following table is a list of water samples analyzed in the 1995 -1997 field seasons by ICP-AES and ICP-MS. The samples and locations are listed in Appendix A. All data is reported in parts per billion (ppb) unless otherwise stated.

Sample		MR1	.38			MR	129	
	ICP	-AES	ICF	P-MS	ICP-	AES	ICP	-MS
	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered
Al			4.9	5.2			3.0	5.4
Fe	40	40	89	82	40	150	96	250
Ca	900	910	•		1140	1170		
Mg	320	300			430	430		
ĸ	1090	1110			1160	1160		
Na(ppm)	393	395			424	428		
T			0.21	0.41			1 71	1 45
V N			0.21	0.01			1.71	0.12
C.			0.04	0.05			0.00	0.15
Mn			2 22	2 20			5.18	7.54
Co			2.35	2.30			0.003	0.007
Ni			0.015	0.016			0.003	0.007
	40.0	20.0	0.010	22.5	45.9	45.0	39.9	40.7
E I	40.0	37.9	1547	1502	43.0	43.2	673	684
B V			0.12	0.12			015	0.17
1			0.13	0.15			0.10	0.00
Zr Nh			0.19	0.10			0.12	0.05
IND To			0.0015	0.0016			0.0007	0.0050
1 a 11e			0.0004	0.0004			0.0000	0.0007
			0.0021	0.0016			244	257
r			230	241			244	251
La			0.0037	0.0054			0.0026	0.0049
Ce			0.0044	0.0075			0.0022	0.0094
Pr			0.0010	0.0012			0.0004	0.0011
Nd			0.0040	0.0043			0.0006	0.0045
Sm			0.0017	0.0025			0.0014	0.0017
Eu			0.0001	0.0006			0.0011	0.0014
Gd			0.0017	0.0025			0.0003	0.0030
Тъ			0.0003	0.0003			0.0001	0.0004
Dy			0.0016	0.0022			0.0022	0.0025
Ho			0.0005	0.0006			0.0010	0.0009
Er			0.0019	0.0020			0.0028	0.0036
Tm			0.0002	0.0003			0.0007	0.0007
Yb			0.0030	0.0037			0.0027	0.0051
Lu			0.0004	0.0005			0.0007	0.0007
Cs			0.042	0.044			0 044	0.041
Rh			1 09	1 09			1.05	1.02
Ba	74 3	75 5	74 5	72 4	19.5	19.6	18.9	18.9
Th	74.5	15.5	0.0043	0.0045	19.5	19.0	0.0023	0.0044
TI I			0.0045	0.031			1 413	1 413
w			1 23	1 28			2 51	2 45
Sr	62.3	62.5	70.6	69.0	45.9	45.0	2.51	2J 86 7
Ph	02.5	02.5	0.05	09.0	45.0	43.7	0.00	0.29
10			0.05	0.09			0.09	0.23
As			0.58	0.49			0.30	0.27
Sb			n.d.	n.d.			n.d.	n.d.
Mo			1.74	1.72			0.57	0.54
Cd			0.005	n.d.			0.036	0.002
Sn			2.82	2.52			0.77	0.72
Sc			0.36	0.37			0.49	0.58
Cu			0.89	0.18			0.67	3.90
Zn			1.53	20.23			2.46	42.90
Ag			0.006	0.007			n.d.	n.d.
Se			0.28	0.27			0.13	0.16
Hg			0.020	0.010			n.d.	n.d.

Appendix B - 1997 Data

Sample		· · ·		MR139	· · · · · · · · · · · · · · · · · · ·		
		ICP-AES			ICF	P-MS	
•. •.•.•.•	filtered	filtered-dup	unfiltered	filtered	filtered-dup	unfiltered	unfiltered-dup
Al				4.1	3.5	3.5	4.8
Fe	10	10	10	39	51	44	51
Ca	1060	1090	1050	0,			51
Ma	240	240	240				
ĸ	810	770	740				
Na(ppm)	291	290	288				
19				18.06	25.20	24.62	4.74
• •				0.06	0.14	0.10	0.72
Cr				0.12	0.22	0.14	0.09
Mn				9.70	13.38	10.35	1.83
Co				0.066	0.068	0.083	0.063
Ni				0.061	0.121	0.065	0.858
Li	51.0	50.5	51.0	45.5	45.2	44.5	6.0
В				362	475	307	11
Y				0.20	0.19	0.22	0.36
Zr				0.17	0.17	0.19	0.09
Nb				0.042	0.041	0.050	0.0024
Та				0.0033	0.0041	0.0040	0.0001
Hf				0.0018	0.0072	0.0076	0.00014
P				205	410	200	15
-				275	410	477	15
La				0.0875	0.079	0.105	0.028
Ce				0.1747	0.158	0.211	0.053
Pr				0.0232	0.021	0.026	0.007
Nd				0.0912	0.088	0.111	0.028
Sm				0.0220	0.022	0.025	0.005
Eu				0.0045	0.004	0.004	0.0002
Gd				0.0215	0.023	0.028	0.007
Th				0.0039	0.003	0.003	0.0005
Dv				0.0039	0.005	0.005	0.0005
Ho				0.0103	0.010	0.020	0.000
Fr				0.0030	0.003	0.004	0.001
Tm.				0.0105	0.010	0.014	0.004
Vh				0.0019	0.002	0.002	0.0004
Lu				0.0096	0.009	0.011	0.003
Cs				0.025	0.023	0.026	0.003
Rb				0.72	0.69	0.69	0.38
Ba	26.7	26.3	26.3	27.1	23.9	26.7	98.2
Th				0.0360	0.0366	0.0364	0.0091
U				0.132	0.129	0.132	0.968
W				0.23	0.27	0.23	0.004
Sr	46.5	46.7	46.2	50.6	48.6	50.0	231.9
Pb				0.29	0.77	0.45	0.02
Ac				0.24	0.12	0.22	0.05
743 Sh				0.24	0.13	0.23	0.95
SD Ma				n.d.	0.07	n.d.	0.13
M10				1.54	1.49	1.54	0.99
Ca				0.014	0.009	0.002	0.008
Sn				0.43	0.17	0.33	0.01
Sc				0.56	0.81	0.60	0.71
Cu				0.59	0.53	0.33	0.93
Zn				0.89	0.79	1.18	0.13
Ag				0.0004	0.004	n.d.	n.d.
Se				0.04	0.23	0.01	0.19
Hg		1		0.030	n.d.	0.061	n.d.

Sample		MR1	31		MR132				
	ICP	-AES	ICF	P-MS	ICP-	AES	ICH	P-MS	
	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	
Al			3.6	31.3			n.d.	6.7	
Fe	60	130	198	320	330	420	831	1004	
Ca	1200	1230			2430	2420			
Mg	450	470			770	780			
к	1260	1260			1810	1820			
Na(ppm)	463	460			606	605			
Ti			1.64	3.37			0.06	0.63	
v			n.d.	0.07			0.08	0.12	
Cr			0.31	0.54			0.74	0.88	
Mn			4.80	6.32			16.87	17.53	
Co			0.020	0.030			0.051	0.058	
Ni			n.d.	0.052			0.008	n.d.	
Li	47.4	48.3	40.9	39.4	53.7	52.7	44.0	43.0	
В			1092	1117			1760	1781	
Y			0.18	0.20			0.29	0.29	
Zr			0.14	0.16			0.26	0.27	
Nb			0.0018	0.0036			0.0028	0.0042	
Та			0.0001	0.0004			n.d.	n.d.	
Hf			0.0023	0.0019			0.0027	0.0023	
Р			448	518			435	474	
La			0.0040	0.0436			0.0029	0.0104	
Ce			0.0036	0.1160			0.0037	0.0176	
Pr			0.0002	0.0109			n.d.	0.0020	
Nd			0.0046	0.0404			0.0011	0.0114	
Sm			0.0017	0.0062			0.0023	0.0021	
Eu			0.0000	0.0010			0.0001	0.0006	
Gd			0.0017	0.0075			0.0011	0.0031	
Ть			0.0001	0.0009			n.d.	0.0003	
Dy			0.0016	0.0046			0.0015	0.0023	
Ho			0.0006	0.0009			0.0003	0.0007	
Er			0.0015	0.0031			0.0010	0.0031	
Tm			0.0000	0.0007			n.d.	n.d.	
Yb			0.0022	0.0034			0.0027	0.0041	
Lu			0.0003	0.0005			0.0002	0.0004	
Cs			0.046	0.050			0.057	0.058	
Rb			1.09	1.13			1.48	1.51	
Ba	50.1	52.3	52.8	50.8	163.8	163.2	134.1	136.5	
Th			0.0048	0.0121			0.0055	0.0077	
U			0.830	0.857			0.014	0.014	
w			1.75	1.79			0.55	0.52	
Sr	88.2	89.0	100.8	101.5	163.8	163.2	189.5	191.6	
Pb			0.01	0.12			0.15	0.21	
As			0.31	0.27			0.46	0.44	
Sb			n.d.	n.d.			0.02	0.02	
Mo			3.06	3.06			3.37	3.23	
Cd			0.007	0.005			0.026	0.014	
Sn			3.77	3.39			13.34	12.00	
Sc			0.71	0.84			0.74	0.83	
Cu			0.34	0.56			0.24	0.30	
Zn			1.24	82.51			0.77	11.16	
Ag			0.001	0.002			0.004	0.002	
Se			0.54	0.24			1.43	1.93	
Hg			0.040	0.033			n.d.	n.d.	

Sample		MR	134		MR140			
_	ICP-	AES	ICF	P-MS	ICP-	AES	IC	P-MS
	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered
Al			n.d.	n.d.			n.d.	81.3
Fe	20	30	141	146	120	440	349	810
Ca	990	970			22940	17710		
Mg	350	340			7710	5540		
ห้	1040	1030			2060	1820		
Na(ppm)	410	405			266	280		
Ti			0.91	1 21			6.04	10.23
v			0.00	0.05			0.02	0.26
Cr			0.18	0.00			0.14	0.43
Mn			5 24	4 57			55.31	47.28
Co			0.004	0.006			0.016	0.037
Ni			n.d.	nd			0.062	0.031
Li	47.2	46.9	39.0	38.9	84.5	78.6	70.2	64.0
В			772	773	0.112		394	386
Ŷ			0.16	0.15			0.70	0.70
Zr			0.12	0.14			0.03	0.17
Nb			0.0007	0.0014			0.0007	0.0108
Та			0.0002	0.0001			0.0001	0.0008
Hf			0.001	0.001			0.001	0.003
Р			375	342			142	173
La			0.0025	0.0030			0.0013	0.0788
Ce			0.0010	0.0032			0.0009	0.1637
Pr			n.d.	n.d.			n.d.	0.0190
Nd			0.0012	0.0042			0.0015	0.0884
Sm			0.0007	0.0007			n.d.	0.0184
Eu			0.0006	0.0007			0.0002	0.0044
Gd			0.0016	0.0017			0.0017	0.0201
Tb			0.0004	0.0013			0.0004	0.0031
Dy			0.0027	0.0030			0.0020	0.0151
Ho			0.0008	0.0011			0.0013	0.0037
Er			0.0038	0.0044			0.0037	0.0117
Tm			n.d.	n.d.			0.0002	0.0010
Yb			0.0053	0.0053			0.0059	0.0112
Lu			0.0008	0.0008			0.0008	0.0018
Cs			0.035	0.039			0.046	0.056
Rb			0.98	0.96			1.50	1.41
Ba	39.3	39.4	36.2	36.3	24.6	27.7	21.3	24.4
Th			0.0016	0.0024			0.0018	0.0317
U			1.130	1.100			0.390	0.268
W			0.50	0.45			0.11	0.22
Sr	68.4	68.2	75.7	73.8	514.0	400.2	521.0	402.8
Pb			n.d.	0.04			0.00	0.11
As			0.18	0.21			0.18	0.15
Sb			n.d.	n.d.			n.d.	n.d.
Mo			0.59	0.58			0.84	0.84
Cđ			0.004	n.d.			0.001	0.003
Sn S-			2.14	0.65			0.12	0.12
50			0.76	0.70			1.33	1.15
Cu 7-			0.29	0.39			0.59	0.43
20			0.001	81.6			0.99	3.38
Ag Sa			0.001	0.0001			0.0002	n.d.
Ha			v.40 nd	0.10			1.43	00.U
							ш.ü.	11.U.

Sample		MR1	30			MR	136	
	ICP-	AES	IC	P-MS	ICP-	AES	ICI	P-MS
-	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered
Al			n.d.	n.d.			n.d.	4.4
Fe	10	260	31	565	10	10	33	37
Ca	1240	1230			1200	1190		
Mg	430	430			390	400		
K	1140	1200			1150	1170		
Na(ppm)	428	428			431	432		
Ti			2.72	3.35			2.25	2.17
v			0.02	0.04			0.02	0.03
Cr			0.04	0.25			0.18	0.22
Mn			9.35	13.66			3.43	3.38
			0.009	0.032			0.007	0.013
[N]	44.2	42.0	n.d.	0.075	45 /	45.2	n.d.	0.068
Li D	44.5	43.8	37.7	30.1	45.0	45.2	38.9	38.4
v			020	0.20			0.18	0.18
7r			0.17	0.20			0.18	0.18
Nb			0.09	0.12			0.0012	0.0010
Та			0.0004	0.0006			0.0003	0.0004
Hf			0.001	0.002			0.001	0.001
Р			365	394			373	345
I.a			0.0010	0.0035			0.0021	0.0150
Ce			0.0010	0.0055			0.0021	0.0070
Pr			n.d.	0.0004			nd	0.0042
Nd			0.0002	0.0050			0.0035	0.0018
Sm			0.0009	0.0013			0.0010	0.0019
Eu			0.0005	0.0005			0.0008	0.0005
Gd			0.0016	0.0014			0.0030	0.0028
Ть			0.0004	0.0005			0.0007	0.0006
Dy			0.0018	0.0036			0.0026	0.0038
Но			0.0008	0.0013			0.0011	0.0007
Er			0.0025	0.0034			0.0042	0.0044
Tm			0.0001	0.0001			0.0003	0.0004
Yb			0.0037	0.0076			0.0034	0.0030
Lu			0.0005	0.0007			0.0006	0.0007
Cs			0.036	0.037			0.039	0.042
Rb			0.97	1.01			1.04	1.06
Ba	13.3	14.8	11.6	13.4	18.4	18.5	16.6	16.5
- In T			0.0014	0.0054			0.0027	0.0040
W			0.880	0.899			1.407	1.387
** S=	81.2	82.2	2.41	2.39	79.0	70.1	2.97	2.12 94 E
Pb	01.2	04.5	0.02	0.38	76.9	79.1	0.17	0.20
			0.02	0.36			0.17	0.20
As			0.15	0.15			0.14	0.15
Sb			n.d.	n.d.			n.d.	0.00
M10			0.47	0.48			0.57	0.56
			0.009	n.d.			0.003	0.033
50			0.32	0.39			0.42	0.39
Cu			0.91	0.94			0.80	0.82
Zn			670	50 88			2.10 7 24	4.44
Ao			0.0004	n d			7.34 0.001	0.002
Se			0.13	0.25			0.30	0.14
Hg			n.d.	n.d.			n.d.	n.d.

Sample		MR133			MR122				
	ICP	-AES	ICI	P-MS	ICP	AES	ICF	P-MS	
	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	
Al			1.2	2.6			1.6	2.7	
Fe	40	80	125	196	10	10	33	39	
Ca	1210	1250			950	950			
Mg	470	480			320	320			
ห้	1370	1360			760	780			
Na(ppm)	457	457			305	304			
Tĭ			0.83	1 27			1 10	1 16	
v			0.03	0.03			0.002	0.01	
Cr			0.24	0.18			0.10	0.22	
Mn			4.09	4.63			1.36	1.69	
Co			0.017	0.017			0.015	0.012	
Ni			0.039	0.054			0.057	0.096	
Li	51.8	51.7	42.9	43.0	55.2	54.6	47.7	47.0	
B			996	1033	00.2	0	241	229	
Ÿ			0.18	0.19			0.14	0.13	
Zr			0.16	0.17			0.03	0.04	
Nh			0.006	0.0007			n d	0.007	
Ta			0.0005	0.0007			0.0003	0.0004	
Hf			0.0005	0.0005			0.0005	0.0004	
P			370	376			108	112	
-			570	510			100	110	
La			0.0027	0.0038			0.0025	0.0025	
Ce			0.0021	0.0046			0.0032	0.0051	
Pr			n.d.	0.0027			0.0005	0.0010	
Nd			0.0010	0.0028			0.0018	0.0054	
Sm			0.0017	0.0024			0.0008	0.0020	
Eu			0.0005	0.0009			0.0008	0.0006	
Gd			0.0013	0.0023			0.0036	0.0028	
Ть			0.0005	0.0007			0.0014	0.0005	
Dy			0.0021	0.0014			0.0034	0.0031	
Ho			0.0009	0.0005			0.0013	0.0012	
Er			0.0039	0.0034			0.0042	0.0059	
Tm			0.0003	0.0005			0.0012	0.0010	
Yb			0.0022	0.0034			0.0062	0.0064	
Lu			0.0007	0.0007			0.0009	0.0009	
Cs			0.041	0.042			0.034	0.029	
Rb			1.10	1.07			0.78	0.75	
Ba	32.8	32.5	29.1	29.2	18.5	17.9	16.4	15.8	
Th			0.0019	0.0038			0.0009	0.0011	
U			1.368	1.478			0.445	0.453	
w			0.56	0.58			1.02	1.03	
Sr	88.0	88.3	96.5	96.0	46.7	46.4	50.0	49.3	
Pb			0.01	0.19			0.05	0.06	
As			0 10	017			0.16	0.16	
Sh			nd	n.d			n d	n.10	
Mo			0.91	0.90			0.04	0.04	
Cd			0.004	0.001			0.00	0.007	
Sn			1 68	1 87			0.000	0.007	
Sc			0.80	0.76			0.09	0.74	
Cu			0.34	0.79			0.75	0.74	
Zn			0.01	0.70 Q <u>/</u> 0			1 97	2 49	
40			0.025	0.010			1.0/	£.40 0.001	
<u>5</u> Se			0.34	0.017			0.0001	0.001	
Ho			n d	0.37 n d			v.20 n d	cu.u n d	
6				n.u.			n.u.		

Sample		MR1	35		MR137			
	ICP-	AES	ICP	-MS	ICP-A	AES	ICF	P-MS
	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered
Al			0.4	n.d.			2.9	7.9
Fe	60	60	188	184	30	40	161	177
Ca	1200	1220			920	930		
Mg	410	410			320	350		
ĸ	1090	1120			1070	1070		
Na(ppm)	425	424			401	399		
Ti			2.64	2.57			0.36	1.27
v			0.03	0.02			0.02	0.07
Cr			0.16	0.13			0.27	0.40
Mn			11.16	10.40			2.77	2.99
Co			0.009	0.011			0.013	0.014
Ni			0.004	0.015			0.048	0.042
Li	43.9	43.3	36.6	37.6	42.5	42.0	36.4	34.8
В			829	855			1652	1554
Y			0.17	0.16			0.16	0.17
Zr			0.10	0.10			0.14	0.17
Nb			0.0006	0.0019			0.0015	0.0035
Ta			0.0003	0.0008			0.0004	0.0008
Hf			0.001	0.001			0.001	0.002
Р			406	355			419	424
La			0.0020	0.0047			0.0040	0.0118
Ce			0.0015	0.0020			0.0016	0.0195
Pr			0.0001	0.0006			0.0012	0.0025
Nd			0.0006	0.0024			0.0012	0.0096
Sm			0.0017	0.0008			0.0015	0.0041
Eu			0.0003	0.0003			0.0004	0.0008
Gd			0.0016	0.0026			0.0026	0.0049
ТЪ			0.0008	0.0010			0.0004	0.0005
Dy			0.0015	0.0044			0.0045	0.0049
Ho			0.0003	0.0018			0.0009	0.0011
Er			0.0020	0.0077			0.0037	0.0042
Tm			0.0003	0.0003			0.0007	0.0005
Yb			0.0022	0.0025			0.0045	0.0043
Lu			0.0003	0.0004			0.0008	0.0013
Cs			0.037	0.043			0.040	0.040
Rb			1.01	0.97			0.98	0.98
Ba	18.3	17.6	15.8	15.9	79.4	80.0	70.4	71.5
Th			0.0025	0.0035			0.0030	0.0059
0			0.943	0.982			0.424	0.421
w			4.32	4.39		· · · · · · · · ·	0.96	0.90
Sr	84.3	83.1	94.5	89.8	67.1	66.5	72.7	72.9
Pb			0.10	0.10			0.13	0.18
As			0.15	0.16			0.19	0.16
Sb			0.00	0.00			n.d.	n.d.
Mo			0.60	0.58			0.90	0.90
Cd			0.003	0.004			0.012	0.006
Sn			0.42	0.30			0.76	0.78
SC			0.98	0.80			0.62	0.06
Cu 7-			0.55	0.89			0.38	0.56
2n			5.42	8.51			1.57	2.22
Ag Sa			0.002	0.011			0.075	0.021
эе На			0.25	0.32			0.23	0.04
**8			n.a.	n.a.			n.a.	n.a.

Sample		MR1	23	Blanks			
	ICP-AES		ICI	P-MS		ICP-MS	
	filtered	unfiltered	filtered	unfiltered	Fieldbk1	Fieldbk2	Tripbk
Al			3.9	10.0	0.3	4.7	0.7
Fe	10	30	45	126	n.d.	n.d.	n.d.
Ca	1060	1080					
Mg	360	380					
ĸ	960	960					
Na(ppm)	383	378					
Ti			2.05	2.70	n.d.	n.d.	n.d.
v			0.02	0.04	n.d.	n.d.	n.d.
Cr			0.18	0.20	n.d.	n.d.	0.03
Mn			2.48	3.10	0.03	0.07	0.16
Co			0.011	0.014	n.d.	n.d.	0.005
Ni			0.011	0.028	0.038	0.031	0.119
Li	46.1	45.3	38.4	38.2	0.0	0.0	0.0
В			464	431	0.5	0.4	n.d.
Y			0.21	0.21	0.001	0.001	0.000
Zr			0.05	0.06	0.02	0.01	0.002
Nb			0.0008	0.0011	n.d.	n.d.	n.d.
Та			0.0006	0.0005	n.d.	n.d.	n.d.
Hf			0.001	0.001	n.d.	0.011	n.d.
P			355	354	n.d.	n.d.	0.8
La			0.0029	0.0167	n.d.	n.d.	n.d.
Ce			0.0016	0.0319	n.d.	n.d.	n.d.
Pr			0.0007	0.0046	n.d.	0.0010	n.d.
Nd			0.0027	0.0209	n.d.	0.0010	0.0010
Sm			0.0018	0.0066	n.d.	n.d.	0.0010
Eu			0.0002	0.0007	n.d.	n.d.	n.d.
Gd			0.0029	0.0058	n.d.	n.d.	n.d.
ТЬ			0.0004	0.0007	n.d.	n.d.	n.d.
Dy			0.0046	0.0059	n.d.	n.d.	n.d.
Ho			0.0017	0.0017	n.d.	n.d.	n.d.
Er			0.0063	0.0068	n.d.	n.d.	n.d.
Tm			0.0009	0.0012	n.d.	n.d.	n.d.
Yb			0.0077	0.0077	n.d.	n.d.	n.d.
Lu			0.0010	0.0012	n.d.	n.d.	n.d.
Cs			0.033	0.035	n.d.	n.d.	n.d.
Rb			0.86	0.85	n.d.	n.d.	n.d.
Ba	34.9	35.1	32.0	30.8	0.1	0.7	2.8
Th			0.0011	0.0060	n.d.	n.d.	n.d.
U			0.458	0.461	n.d.	n.d.	0.001
W			3.79	3.67	n.d.	n.d.	0.02
Sr	68.0	67.9	74.8	73.6	0.1	0.4	0.05
Pb			0.02	0.06	0.01	0.00	0.04
As			0.10	0.08	0.04	0.02	0.41
Sb			n.d.	n.d.	n.d.	n.d.	0.01
Мо			0.06	0.05	n.d.	n.d.	0.03
Cd			0.004	0.001	0.058	0.022	0.060
Sn			0.08	0.04	n.d.	n.d.	n.d.
Sc			0.84	0.91	n.d.	n.d.	n.d.
Cu			0.44	1.41	0.10	0.03	1.50
Zn			1.58	8.14	1.18	0.71	7.14
Ag			0.014	0.007	n.d.	n.d.	n.d.
Se			0.04	0.03	n.d.	n.d.	n.d.
Hg			n.d.	n.d.	n.d.	n.d.	n.d.

Sample	Standards								
	ICP-	MS							
	SLRS3	SLRS3							
Al	33.9	30.7							
Fe	102	98							
Ca									
Mg									
K									
Na(ppm)									
Ti	1.37	1.36							
V	0.27	0.28							
Cr	0.32	0.29							
Mn	3.91	3.68							
Co	0.033	0.032							
Ni	0.844	0.831							
Li	0.5	0.5							
В	3.5	2.4							
Y	0.17	0.17							
Zr	0.09	0.09							
Nb	0.0036	0.0025							
Ta	0.0002	0.0001							
Hſ	0.002	0.002							
P	5.4	5.7							
La	0.24	0.24							
Ce	0.28	0.27							
Pr	0.06	0.06							
Nd	0.23	0.25							
Sm	0.05	0.05							
Eu	0.01	0.01							
Gd	0.04	0.04							
Тъ	0.004	0.004							
Dy	0.02	0.02							
Ho	0.004	0.004							
Er	0.01	0.01							
Tm	0.002	0.002							
Yb	0.01	0.01							
Lu	0.002	0.002							
Ce	0.007	0.006							
Ph	1.66	1.67							
Ro Bo	13.9	12.07							
ља ТЪ	0.0102	10.0022							
11 11	0.0102	0.0092							
w	0.040	0.045							
TT	31 6	32.0							
Pb	0.08	0.07							
As	0.80	0.76							
Sb	0.15	0.15							
Mo	0.22	0.22							
Cd	0.014	0.008							
Sn	0.01	0.01							
Sc	0.30	0.28							
Cu	1.34	1.50							
Zn	0.78	1.03							
Ag	0.001	n.d.							
Se	0.19	0.03							
Hg	n.d.	n.d.							

Appendix	В-	1997	Data	continued

Appendix B - 1996 Data

Sample		MR122	· · · ·	MR123				
	ICP	-AES	ICP-MS		ICP-	AES		
	filtered	unfiltered	filtered	filtered	filtered-dup	unfiltered	unfiltered-dup	
Si								
Al	9.7	6.2	6.9	7.9	6.6	6.3	6.3	
Fe	54	99		37	42	41	62	
Ca	989	10261		1131	1127	1070	1062	
Mg	288	301		381	357	338	344	
K	925	757		949	964	905	896	
Na(ppm)	288	301		384	376	369	300	
Ti	0.019	0.025	3.60	0.025	0.025	0.025	0.025	
v	0.011	0.011	0.020	0.011	0.011	0.011	0.011	
Cr	0.250	0.322	0.090	0.495	0.409	0.427	0.386	
Mn	1.18	1.21		1.83	1.58	1.56	1.64	
Co	0.036	0.036	0.018	0.036	0.036	0.036	0.036	
Ni	3.06	1.39	0.12	1.52	1.36	1.13	1.27	
Li	61.4	66.5	51.3	61.6	55.7	61.2	53.0	
Be	0.025	0.027		0.022	0.019	0.019	0.014	
В			119					
Zr	2.63	0.74		1.06	0.04	0.35	0.04	
Nb	4.05	1.18	n.d.	0.76	0.09	0.22	0.09	
Ta	3.62	1.05	n.d.	0.53	0.26	0.72	0.26	
Hf	0.07	0.07	0.001	0.07	0.07	0.07	0.07	
Р	6.29	1.97	119.5	163.2	135.0	124.5	126.9	
La	0.011	0.010	0.010	0.010	0.010	0.010	0.022	
Ce	0.294	0.230	0.010	0.126	0.132	0.076	0.195	
Pr	0.045	0.045	0.001	0.045	0.045	0.045	0.045	
Nd	0.097	0.021	0.012	0.023	0.021	0.017	0.021	
Sm	0.334	0.234	0.005	0.248	0.295	0.268	0.260	
Eu	0.007	0.007	0.001	0.007	0.007	0.007	0.007	
Gd	0.062	0.072	0.006	0.048	0.032	0.042	0.047	
Ть	0.046	0.019	n.d.	0.003	0.028	0.023	0.038	
Dy	0.003	0.003	0.005	0.003	0.003	0.003	0.003	
Ý	0.025	0.036	0.156	0.062	0.058	0.059	0.059	
Ho	0.264	0.270	0.001	0.328	0.320	0.290	0.313	
Er	0.006	0.006	0.006	0.006	0.006	0.006	0.006	
Tm	0.015	0.015	0.001	0.020	0.011	0.042	0.021	
Yb	0.001	n.d.	0.007	0.005	0.006	0.006	0.005	
Lu	0.016	0.018	0.001	0.014	0.017	0.010	0.014	
Cs			0.04					
Rb			0.79					
Ba	17.3	17.9	15.5	36.1	35.6	34.7	34.1	
Th	0.28	0.24	0.00	0.36	0.26	0.11	0.25	
U	0.62	0.86	0.41	0.47	0.56	0.18	0.75	
W	1.54	0.46	1.26	4.16	2.48	3.05	1.94	
Sr	46.0	48.9	49.7	71.6	71.4	69.4	68.0	
Pb	1.04	0.30	0.53	0.37	0.76	0.50	0.41	
As			0.09					
Sb			n.d.					
Mo	0.68	0.68	0.07	0.68	0.68	0.68	0.68	
Cd	0.50	0.49	0.01	0.56	0.42	0.48	0.50	
Sn	0.17	0.17		0.17	0.17	0.17	0.17	
Sc	0.01	0.001	1.86	0.001	0.001	0.001	0.001	
Ga	0.01	0.16		0.18	0.17	0.14	0.12	
Cu	0.59	0.07	1.07	0.20	0.24	0.36	0.53	
Zn	2.09	2.03	2.26	2.07	1.89	2.86	2.92	
Ag	0.20	0.20	0.07	0.20	0.20	0.20	0.20	
Au			n.d.					
Se			0.06					
Pd			0.02					

Sample	MR	123		MR52	2	MR80			
· · · · · · · · · · · · · · · · · · ·	ICP	-MS	ICP-	AES	ICP-MS	ICP	AES	ICP	-MS
	filtered	filtered-dup	filtered	unfiltered	filtered	filtered	unfiltered	filtered	filtered-dup
Si	22	47	70	60	21	72	69	25	5 2
Fe	2.5	4.7	1.0 42	48	2.1	23	0.8 41	5.5	5.5
Ca			1414	1440		1208	1234		
Mo			474	425		416	420		
ĸ			1080	1090		1029	1027		
Na(ppm)			435	445		415	413		
Т	A A0	4.00	0.025	0.025	12 70	0 204	0.038	12 50	11.80
v	0.025	4.00	0.025	0.025	0.050	0.204	0.038	0.070	0.074
Cr	0.130	0.060	0.401	0.429	0.030	0.476	0.475	0.180	0.050
Mn	0.100		1.33	1.25	0.010	2.06	2.04	0.100	
Co	0.010	0.010	0.036	0.036	0.017	0.036	0.036	0.011	0.015
Ni	0.01	0.02	1.31	1.34	0.04	1.39	1.29	0.07	0.08
Li	48.2	43.8	59.6	59.7	39.3	61.1	61.1	45.1	46.3
Be			0.027	0.023		0.030	0.028		
B	290	257			434			306	480
Zr			0.42	0.35		0.36	0.36		
Nb	n.d.	0.001	0.16	0.05	0.01	0.19	0.09	0.02	0.02
Ta	n.d.	0.001	0.26	0.26	0.002	0.11	0.23	0.003	0.002
Hſ	0.001	0.002	0.07	0.07	0.001	0.07	0.07	0.001	0.002
P	444.5	498.6	74.9	77.4	357.3	86.3	85.7	383.0	383.1
La	0.014	0.015	0.010	0.010	0.015	0.010	0.002	0.043	0.039
Ce	0.007	0.006	0.029	0.125	0.021	0.182	0.280	0.078	0.079
Pr	0.001	0.001	0.045	0.045	0.004	0.045	0.045	0.010	0.009
Nd	0.011	0.008	0.003	0.021	0.020	0.021	0.021	0.042	0.048
Sm	0.004	0.003	0.304	0.255	0.007	0.317	0.310	0.015	0.009
Eu	0.001	0.001	0.007	0.007	0.001	0.007	0.007	0.002	0.003
Gd	0.005	0.004	0.065	0.045	0.005	0.051	0.061	0.016	0.011
Tb	0.001	n.d.	0.036	0.022	0.001	0.033	0.013	0.002	0.002
Dy	0.005	0.004	0.003	0.003	0.003	0.003	0.003	0.007	0.007
Y	0.221	0.226	0.005	0.004	0.257	0.064	0.070	0.258	0.279
Ho	0.002	0.002	0.316	0.293	0.001	0.275	0.295	0.003	0.003
Er	0.008	0.009	0.006	0.006	0.003	0.006	0.006	0.010	0.011
I M Vh	0.001	0.001	0.018	0.012	0.001	0.022	0.016	0.001	0.001
Lu	0.009	0.008	0.001	0.002	0.005	0.008	0.003	0.002	0.002
C.	0.06	0.05			0.05			0.05	0.05
Rh	0.00	0.83			0.03			0.05	1.00
Ro	30.4	30.7	137	11.9	12.3	137	13.2	12.2	12.4
Th	0.002	0.003	0.13	0.24	0.01	0.29	0.26	0.03	0.03
U	0.40	0.36	0.79	0.90	0.59	1 38	1.05	1 14	1.12
w	4.93	5.24	2.55	1.60	4.44	0.12	0.26	3.00	3.08
Sr	73.2	72.6	99.4	101.5	104.7	81.1	81.5	86.5	93.1
Pb	0.06	0.09	0.62	0.31	0.04	0.72	0.45	0.11	0.17
As	0.05	0.03			0.08			0.07	0.08
Sb	0.01	n.d.			n.d.			n.d.	0.01
Mo	0.08	0.06	0.01	0.32	0.46	0.03	0.04	0.37	0.39
Cd	0.01	n.d.	0.50	0.51	n.d.	0.61	0.46	n.d.	0.01
Sn			0.17	0.17		0.17	0.17		
Sc	1.75	1.92	0.001	0.001	1.87	0.001	0.001	2.14	2.33
Ga			0.31	0.19		0.36	0.25		
Cu	0.57	0.59	0.39	0.44	0.79	0.24	0.65	0.89	0.91
Zn	1.56	1.42	1.03	0.92	0.28	1.82	1.63	0.79	1.13
Ag	0.02	0.05	0.20	0.20	0.02	0.20	0.20	0.02	0.02
Au	n.d.	n.d.			n.d.			n.d.	0.001
50 10-1	0.31	0.17			0.03			0.17	0.29
10	0.03	0.04			0.00			0.05	0.05

filter Si Al 8.7 Fe 34 Ca 891 Mg 283 K 992 Na(ppm) 382 Ti 0.02 V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.22 Li 52.4 Be 0.01 B 2 Zr 0.14 Nb 0.00 Ta 0.22 Hf 0.00	ICF d filtered-dup 8.7 52 893 280 965 380 5 0.025 1.0.011 0.0.315 1.56 5 0.036 1.37 5.4.0 8 0.024 1.25 0.09	P-AES unfiltered 17.1 78 874 279 975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	unfiltered-dup 7.2 42 997 307 1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	ICP- filtered 6.2 1.80 0.025 0.090 0.013	MS filtered-dup 5.7 1.90 0.029 0.090 0.012	ICP- filtered 10.0 77 955 300 949 380 0.025 0.011 0.340 3.00	-AES unfiltere 8.2 287 1005 306 1011 397 0.025 0.011 0.412 3.65
filter Si Al 8.7 Fe 34 Ca 891 Mg 28: K 992 Na(ppm) 382 Ti 0.02 V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.22 Li 52 Be 0.01 B 2r Zr 0.14 Nb 0.00 Ta 0.22 Hf 0.00	d filtered-dup 8.7 52 893 280 965 380 5 0.025 1 0.011 0 0.315 1.56 0.036 5 0.024 8 0.024 0 0.25 0.09 0.09	unfiltered 17.1 78 874 279 975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	unfiltered-dup 7.2 42 997 307 1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	filtered 6.2 1.80 0.025 0.090 0.013	filtered-dup 5.7 1.90 0.029 0.090 0.012	filtered 10.0 77 955 300 949 380 0.025 0.011 0.340 3.00 0.025	unfiltere 8.2 287 1005 306 1011 397 0.025 0.011 0.412 3.65
Si Al 8.7 Fe 34 Ca 891 Mg 28: K 994 Na(ppm) 382 Ti 0.02 V 0.01 Cr 0.25 Mn 1.4' Co 0.03 Ni 1.2 Li 52.' Be 0.01 B 2r Nb 0.00 Ta 0.2 Hf 0.00	8.7 52 893 280 965 380 5 0.025 1 0.011 0 0.315 1.56 0.036 5 0.024 8 0.024 9 0.09	17.1 78 874 279 975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	7.2 42 997 307 1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	6.2 1.80 0.025 0.090 0.013	5.7 1.90 0.029 0.090 0.012	10.0 77 955 300 949 380 0.025 0.011 0.340 3.00	8.2 287 1005 306 1011 397 0.025 0.011 0.412 3.65
Fe 34 Ca 891 Mg 28: K 994 Na(ppm) 38: Ti 0.02 V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.2 Li 52. Be 0.01 B 2r Zr 0.13 Nb 0.00 Ta 0.2 Hf 0.0	52 893 280 965 380 50.025 1.00.315 1.56 50.036 1.37 54.0 80.024 1.37 54.0 80.024	78 874 279 975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	42 997 307 1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	1.80 0.025 0.090 0.013	1.90 0.029 0.090	0.025 0.011 0.340 3.00	287 1005 306 1011 397 0.025 0.011 0.412 3.65
Ca 899 Mg 28: K 994 Na(ppm) 38: Ti 0.02 V 0.01 Cr 0.25 Mn 1.44 Co 0.03 Ni 1.22 Li 52. Be 0.01 B Zr 0.14 Nb 0.0 Ta 0.2 Hf 0.0 P 114	893 893 280 965 380 380 5 0.025 1 0.011 0 0.315 1.56 0.036 5 0.024 8 0.024 9 0.09	874 279 975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	997 307 1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	1.80 0.025 0.090 0.013	1.90 0.029 0.090	955 300 949 380 0.025 0.011 0.340 3.00	1005 306 1011 397 0.025 0.011 0.412 3.65
Mg 28% K 994 Na(ppm) 38% Ti 0.02 V 0.01 Cr 0.25 Mn 1.44 Co 0.03 Ni 1.22 Li 52. Be 0.01 B Zr 0.14 Nb 0.00 Ta 0.22 Hf 0.00 P 114	280 965 380 5 0.025 1 0.011 0 0.315 5 0.036 5 0.036 5 0.036 5 0.036 5 0.024 8 0.024	279 975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	307 1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	1.80 0.025 0.090 0.013	1.90 0.029 0.090	300 949 380 0.025 0.011 0.340 3.00	306 1011 397 0.025 0.011 0.412 3.65
K 994 Na(ppm) 38; Ti 0.02 V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.22 Li 52.2 Be 0.01 B Zr 0.13 Nb 0.0 Ta 0.2 Hf 0.0 P 114	965 380 5 0.025 1 0.011 0 0.315 1.56 5 0.036 1.37 5 4.0 8 0.024 6 0.25 0.09	975 375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	1085 415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	1.80 0.025 0.090 0.013	1.90 0.029 0.090	949 380 0.025 0.011 0.340 3.00	1011 397 0.025 0.011 0.412 3.65
Na(ppm) 387 Ti 0.02 V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.24 Li 52 Be 0.01 B 2r Zr 0.14 Nb 0.00 Ta 0.22 Hf 0.00 P 114	380 5 0.025 0 0.315 1.56 0.036 1.37 54.0 8 0.024 9 0.25 0 0.39	375 2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	415 0.025 0.011 0.316 1.47 0.036 1.09 57.0	1.80 0.025 0.090 0.013	1.90 0.029 0.090	380 0.025 0.011 0.340 3.00	397 0.025 0.011 0.412 3.65
Ti 0.02 V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.21 Li 52.4 Be 0.01 B 2r Zr 0.14 Nb 0.00 Ta 0.22 Hf 0.00	5 0.025 1 0.011 0 0.315 1.56 5 0.036 1.37 5 4.0 8 0.024 1 0.25 0.09	2.45 0.011 0.328 1.89 0.036 1.21 51.0 0.022	0.025 0.011 0.316 1.47 0.036 1.09 57.0	1.80 0.025 0.090 0.013	1.90 0.029 0.090	0.025 0.011 0.340 3.00	0.025 0.011 0.412 3.65
V 0.01 Cr 0.25 Mn 1.4 Co 0.03 Ni 1.21 Li 52.3 Be 0.01 B Zr 0.11 Nb 0.00 Ta 0.22 Hf 0.00 D 114	1 0.011 0 0.315 1.56 0.036 5 0.036 1.37 54.0 8 0.024 9 0.25 9 0.09	0.011 0.328 1.89 0.036 1.21 51.0 0.022	0.011 0.316 1.47 0.036 1.09 57.0	0.025 0.090 0.013	0.029 0.090	0.011 0.340 3.00	0.011 0.412 3.65
Cr 0.25 Mn 1.4 Co 0.03 Ni 1.21 Li 52.3 Be 0.01 B 2 Zr 0.13 Nb 0.00 Ta 0.22 Hf 0.00 P 114	0 0.315 1.56 5 0.036 1.37 5 54.0 8 0.024 0.25 0.09	0.328 1.89 0.036 1.21 51.0 0.022	0.316 1.47 0.036 1.09 57.0	0.090 0.013	0.090	0.340 3.00	0.412 3.65
Mn 1.4 Co 0.03 Ni 1.2 Li 52.3 Be 0.01 B 2 Zr 0.13 Nb 0.00 Ta 0.22 Hf 0.00 P 1146	1.56 0.036 1.37 54.0 8 0.024 0.25 0.09	1.89 0.036 1.21 51.0 0.022	1.47 0.036 1.09 57.0	0.013	0.012	3.00	3.65
Co 0.03 Ni 1.2 Li 52.3 Be 0.01 B 2 Zr 0.11 Nb 0.00 Ta 0.22 Hf 0.00 P 1142	5 0.036 1.37 5 54.0 8 0.024 9 0.25 0.09	0.036 1.21 51.0 0.022	0.036 1.09 57.0	0.013	0.012	c	0.00
Ni 1.2 Li 52. Be 0.01 B 2r 0.11 Nb 0.00 Ta 0.22 Hf 0.00 D 114	1.37 54.0 0.024 0.25 0.09	1.21 51.0 0.022	1.09			0.036	0.036
Li 52. Be 0.01 B Zr 0.11 Nb 0.0 Ta 0.2 Hf 0.0 P 114	54.0 8 0.024 0.25 0.09	51.0 0.022	57.0	0.01	0.01	1.33	1.12
Be 0.01 B 2r 0.11 Nb 0.00 7 Ta 0.21 114 Hf 0.00 9 114	8 0.024 0.25 0.09	0.022	J1.0	43.0	35.3	53.3	54.4
B Zr 0.14 Nb 0.00 Ta 0.24 Hf 0.00	0.25		0.025			0.017	0.020
Zr 0.1 Nb 0.0 Ta 0.2 Hf 0.0 P 116	0.25 0.09			662	453		
Nb 0.0 Ta 0.2 Hf 0.0 P 116	0.09	0.19	0.27			0.22	0.26
Ta 0.2 Hf 0.0 P 114		0.09	0.09	0.001	0.001	0.09	0.09
Hf 0.0 P 116	0.26	0.26	0.26	0.001	n.d.	0.26	0.26
D 112	0.07	0.07	0.07	0.002	0.002	0.07	0.07
r 110.	5 111.2	112.2	116.7	332.4	353.9	136.6	141.0
La 0.01	0.010	0.010	0.010	0.023	0.024	0.010	0.010
Ce 0.24	5 0.089	0.233	0.110	0.010	0.009	0.065	0.069
Pr 0.04	5 0.045	0.045	0.045	0.001	0.001	0.045	0.04
Nd 0.02	1 0.021	0.021	0.021	0.011	0.007	0.021	0.02
Sm 0.25	5 0.261	0.283	0.226	0.004	0.004	0.274	0.268
Eu 0.00	7 0.007	0.007	0.007	0.001	0.001	0.007	0.00
Gd 0.04	3 0.051	0.049	0.042	0.008	0.005	0.054	0.104
Tb 0.01	2 0.025	0.035	0.011	0.001	n.d.	0.027	0.011
Dy 0.00	3 0.003	0.003	0.003	0.004	0.004	0.003	0.003
Y 0.04	1 0.037	0.038	0.036	0.191	0.200	0.061	0.070
Ho 0.27	1 0.290	0.285	0.268	0.002	0.002	0.290	0.282
Er 0.00	6 0.006	0.006	0.006	0.009	0.007	0.006	0.00
Tm 0.01	3 0.016	0.010	0.016	0.001	0.001	0.018	0.014
Yb 0.00	2 0.001	0.002	0.003	0.008	0.006	0.004	0.003
Lu 0.00	7 0.010	0.011	0.012	0.001	0.001	0.008	0.014
Cs				0.07	0.05		
Rb				0.98	0.94		
Ba 71.	3 71.3	70.9	79.7	58.9	60.1	70.7	76.1
Th 0.1	3 0.14	0.12	0.19	0.00	0.00	0.17	0.14
U 0.8	3 0.90	1.26	0.75	0.59	0.65	0.17	1.37
W 0.4	5 0.46	0.46	0.46	0.40	0.44	0.46	0.46
Sr 67.	66.8	65.7	74.3	68.0	68.3	69.7	73.4
Pb 0.2	0.57	0.58	0.66	0.02	0.01	0.40	2.24
As				0.14	0.11		
Sb				0.01	n.d.		
Mo 0.6	3 0.68	0.33	0.01	0.42	0.42	0.25	0.11
Cd 0.4	3 0.52	0.53	0.41	0.02	n.d.	0.52	0.45
Sn 0.1	7 0.17	0.17	0.17			0.17	0.17
Sc 0.00	1 0.001	0.001	0.001	1.56	1.87	0.001	0.00
Ga 0.4	0.40	0.26	0.33			0.40	0.41
Cu 0.1	7 0.16	0.08	0.08	0.23	0.23	0.24	6.45
Zn 2.3	2 2.56	3.10	3.22	1.69	1.35	4.65	56.9
Ag 0.2	0.20	0.20	0.20	0.02	0.01	0.20	0.20
Au				n.d.	n.d.		
Se				0.33	0.10		

Appendix B - 1996 Data contin	ued
-------------------------------	-----

Sample	MR125		MR124			MR128			
	ICI	P-MS	ICP	-AES	ICP-MS	ICP	-AES	ICP-MS	
	filtered	filtered-Dup	filtered	unfiltered	filtered	filtered	unfiltered	filtered	
Si	• •	•				-			
Ai E	2.9	7.3	34.0	11.8	12.4	7.1	15.0	n.a.	
Fe			82	120		353	308		
Ca Ma			1044	1062		3344	3376		
wig K			1020	1091		2006	2681		
Na(ppm)			378	404		676	932		
TS	2.00	2 30	0 790	0.025	0.600	0.025	0.025	2.60	
v	0.021	0.038	0.799	0.025	0.000	0.025	0.025	0.186	
Cr	0.200	0.430	0.395	0.430	0.150	1 1 37	1.723	0.890	
Mn	0.200	0.450	3 55	2.99	0.150	22.34	19.72	0.070	
Co	0.016	0.014	0.036	0.036	0.013	0.036	0.036	0.074	
Ni	0.05	0.07	1.32	1.42	0.04	2.07	1.74	0.43	
Li	47.2	38.7	51.8	54.8	35.8	82.2	110.4	89.8	
Be			0.022	0.031		0.024	0.016		
В	774	699			674			1212	
Zr			0.35	0.33		0.40	0.27		
Nb	0.003	0.003	0.09	0.09	0.001	0.09	0.11	0.01	
Та	0.001	0.002	0.03	0.26	n.d.	0.26	0.01	0.001	
Hf	0.002	0.002	0.07	0.07	0.002	0.07	0.07	0.01	
P	285.6	385.9	166.9	163.3	399.0	124.8	118.5	379.2	
La	0.022	0.028	0.012	0.010	0.024	0.002	0.031	0.108	
Ce	0.013	0.013	0.264	0.190	0.011	0.081	0.112	0.007	
Pr	0.002	0.003	0.045	0.045	0.002	0.009	0.057	0.001	
Nd	0.015	0.016	0.021	0.021	0.008	0.021	0.021	0.010	
Sm	0.008	0.004	0.214	0.222	0.004	0.318	0.388	0.010	
Eu	0.001	0.001	0.007	0.007	0.001	0.007	0.007	0.001	
Gd	0.008	0.008	0.038	0.054	0.004	0.093	0.109	0.014	
ТЪ	0.001	0.001	0.025	0.051	n.d.	0.040	0.062	0.001	
Dy	0.006	0.006	0.003	0.003	0.002	0.003	0.003	0.002	
Y	0.220	0.243	0.048	0.042	0.174	0.001	0.001	1.006	
Ho	0.002	0.003	0.276	0.274	0.002	0.278	0.270	0.001	
Er	0.009	0.008	0.006	0.006	0.006	0.006	0.006	0.003	
Tm	0.001	0.002	0.020	0.019	0.001	0.026	0.021	n.d.	
Yb	0.007	0.007	0.003	0.002	0.006	0.001	0.001	0.008	
Lu	0.001	0.001	0.006	0.012	0.001	0.024	0.031	0.001	
Cs	0.09	0.05			0.06			0.15	
Rb	1.11	0.93			0.97			2.56	
Ba	60.0	61.0	55.8	64.7	45.8	284.4	514.6	412.7	
Th	0.01	0.00	0.19	0.15	0.00	0.23	0.30	0.00	
U	0.43	0.46	0.54	0.05	0.05	1.10	1.00	0.01	
W	0.75	0.87	0.46	0.46	0.90	0.46	0.46	0.54	
Sr	74.5	73.8	62.3	67.3	61.4	274.0	484.3	514.8	
Pb	0.07	0.09	0.96	0.51	0.12	0.51	0.28	0.25	
As	0.14	0.09			0.29			0.63	
Sb	n.d.	0.01			0.01			0.07	
Mo	0.51	0.49	0.37	0.28	0.67	2.94	3.06	3.60	
Cd	n.d.	n.d.	0.47	0.55	n.d.	0.44	0.41	0.06	
Sn			0.17	0.17		0.17	0.17		
Sc	1.07	1.82	0.001	0.001	1.49	0.001	0.001	1.93	
Ga			0.45	0.44		0.29	0.48		
Cu	0.44	0.37	1.62	2.65	1.07	0.66	0.50	0.33	
Zn	4.83	3.56	6.85	25.17	4.64	22.72	57.92	22.75	
Ag	0.02	0.02	0.20	0.20	0.01	0.20	0.20	0.06	
Au	0.001	0.001			n.d.			0.003	
Se	0.18	0.22			0.18			2.78	
Pd	0.03	0.04	-		0.04			0.28	

Sample		MR	R118			MR1	27	
-	ICP	-AES	IC.	P-MS	ICP	-AES	ICP	-MS
Si	mercu	unnered	Intered	Intered-Dup	Intered	difficied	Indica	Intered-Dap
Al	6.4	27.4	3.4	7.9	6.0	3.8	3.0	5.8
Fe	152	407			356	375		
Ca	1812	1829			966	895		
Mg	595	601			329	316		
к	1837	1795			1149	1089		
Na(ppm)	619	609			422	413		
Ti	0.025	0.026	1.00	1.10	0.025	0.025	0.600	0.700
v	0.011	0.011	0.079	0.078	0.011	0.011	0.027	0.026
Cr	0.734	0.671	0.510	0.240	0.418	0.367	0.200	0.300
Mn	10.38	11.67			8.37	6.25		
Co	0.036	0.036	0.025	0.026	0.036	0.036	0.032	0.033
Ni	1.26	1.31	0.09	0.08	1.47	1.17	0.05	0.06
Li	88.1	86.6	79.4	68.1	55.3	53.5	39.1	39.2
Be	0.018	0.018			0.014	0.011		
B			2045	1887			1217	1434
Zr	0.41	0.36			0.19	0.16		
Nb	0.09	0.09	0.003	0.01	0.09	0.09	0.002	0.002
Ta	0.01	0.02	0.001	0.002	0.11	0.26	0.001	n.d.
Hf	0.07	0.07	0.01	0.01	0.07	0.07	0.002	0.003
P	141.9	143.8	428.2	398.8	149.5	164.3	432.5	421.6
La	0.010	0.010	0.047	0.042	0.010	0.001	0.022	0.022
Ce	0.092	0.146	0.016	0.007	0.222	0.075	0.005	0.006
Pr	0.045	0.045	0.002	0.002	0.045	0.045	0.001	0.001
Nd	0.021	0.021	0.016	0.015	0.021	0.021	0.010	0.008
Sm	0.351	0.321	0.006	0.005	0.258	0.198	0.001	0.004
Eu	0.007	0.007	0.001	0.001	0.007	0.007	0.001	0.001
Gd	0.071	0.118	0.007	0.007	0.094	0.085	0.004	0.005
ТЪ	0.026	0.033	0.001	0.001	0.037	0.037	n.d.	n.d.
Dy	0.003	0.003	0.002	0.001	0.003	0.003	0.002	0.001
Y	0.001	0.001	0.333	0.337	0.001	0.001	0.165	0.165
Но	0.237	0.241	0.001	0.001	0.255	0.236	0.001	n.d.
Er	0.006	0.006	0.004	0.002	0.006	0.006	0.002	0.002
Tm	0.014	0.019	n.d.	0.001	0.012	0.015	n.d.	n.d.
Yb	0.001	0.001	0.005	0.005	0.001	0.001	0.002	0.002
Lu	0.003	0.014	0.001	0.001	0.001	0.006	0.001	0.001
Cs			0.10	0.07			0.05	0.05
Rb			2.15	2.03			1.07	1.09
Ba	149.9	154.9	131.2	131.8	72.5	76.5	60.2	60.3
Th	0.21	0.23	0.01	0.01	0.19	0.18	0.004	0.003
U	0.35	0.33	0.02	0.02	0.83	0.55	0.003	0.004
W	0.46	0.46	1.81	1.80	0.46	0.46	1.98	1.90
Sr	143.4	142.0	157.6	156.8	68.8	68.8	67.9	69.1
Pb	0.33	0.35	0.08	0.09	0.42	0.77	0.05	0.10
As			0.41	0.37			0.27	0.25
Sb			0.05	0.05			0.03	0.02
Mo	2.03	1.68	2.37	2.42	0.99	0.63	1.20	1.22
Cd	0.45	0.48	0.04	0.03	0.48	0.37	n.d.	0.01
Sn	0.17	0.17			0.17	0.17		
Sc	0.001	0.001	1.81	1.94	0.001	0.001	1.71	1.59
Ga	0.26	0.24			0.21	0.30		
Cu	0.15	1.16	0.11	0.08	0.10	0.06	0.10	0.19
Zn	1.20	2.33	0.02	0.13	2.06	1.65	0.36	0.69
Ag	0.20	0.20	0.06	0.06	0.20	0.20	0.04	0.04
Au			0.001	0.001			0.001	n.d.
Se			0.99	1.05			0.24	0.41

Sample		MR119			Standards and Blanks						
	ICP-	AES	ICP-MS	ICP-AES		ICP	-MS				
	filtered	unfiltered	filtered	SLRS3	SLRS3	SLRS3	SLRS3	SLRS2			
Si	0.0	15.0	5.0	25.4	22.0		21.0	86.2			
- Al Fa	0.0 110	15.9	5.0	35.4	32.0	51.1	51.0	00.2			
re	1144	1201		7096							
Ma	347	1391		2118							
ту К	1089	1331		2118							
Na(ppm)	435	543		5							
Ti	0.025	0.025	1.10	0.025	1.50	1.70		2.30			
v	0.011	0.011	0.042	0.011	0.270	0.281	0.300	0.220			
Cr	0.345	0.503	0.130	1.424	0.260	0.240	0.300	0.440			
Mn	2.33	2.33		4.17							
Co	0.036	0.036	0.025	0.036	0.032	0.038	0.027	0.086			
Ni	1.28	1.53	0.18	0.62	0.70	0.84	0.83	0.97			
Li	49.2	61.5	39.0	3.5	0.6	0.5		0.6			
Be	0.013	0.021		0.007							
в	0.00		1371	<u>.</u>	n.d.	0.1		n.a.			
Zr	0.29	0.39		n.d.							
ND	0.09	0.09	0.01	0.08	0.003	0.002		0.01			
1a	0.26	0.26	n.d.	0.12	n.d.	0.001		n.d.			
HI	0.07	0.07	0.003	0.07	0.00	0.002		0.003			
P	228.4	241.9	643.4	9.67	2.70	5.20		10.90			
La	0.010	0.006	0.033	0.304	0.250	0.258		0.418			
Ce	0.113	0.143	0.011	0.511	0.300	0.306		0.578			
Pr	0.045	0.045	0.002	0.374	0.064	0.063		0.107			
Nd	0.021	0.021	0.007	0.149	0.276	0.280		0.459			
Sm	0.163	0.192	0.006	0.008	0.054	0.062		0.111			
Eu	0.007	0.007	0.001	0.006	0.008	0.009		0.014			
Gd	0.048	0.062	0.005	0.044	0.047	0.051		0.073			
Тb	0.009	0.035	0.001	0.003	0.004	0.004		0.007			
Dy	0.003	0.003	0.002	0.012	0.016	0.016		0.021			
Y	0.001	0.002	0.229	0.119	0.153	0.175		0.201			
Ho	0.262	0.293	0.001	0.004	0.005	0.004		0.007			
Er	0.006	0.006	0.003	0.056	0.012	0.013		0.019			
1m	0.010	0.018	n.d.	0.003	0.002	0.002		0.002			
ID In	0.001	0.000	0.005	0.009	0.012	0.012		0.017			
Lu	0.001	0.001	0.001	0.013	0.002	0.002		0.003			
Cs			0.06		0.01	0.01		0.01			
Rb			1.17		1.62	1.72		1.62			
Ba	94.3	121.4	84.1	18.4	12.2	12.3	13.4	12.5			
Th	0.20	0.12	0.004	0.08	0.02	0.02		0.02			
U	0.53	0.26	0.02	0.64	0.04	0.04	0.05	0.05			
w	0.46	0.46	1.63	0.46	n.d.	0.01		n.d.			
Sr	88.5	108.8	96.0	42.2	31.5	33.3	28.1	29.8			
РЬ	0.25	0.45	0.04	0.56	0.04	0.05	0.07	0.12			
As			0.14		0.73	0.75	0.72	0.77			
Sh			0.01		0.15	0.15	0.12	0.32			
Mo	7 96	8 89	8.98	0.68	0.32	0.13	0.12	0.18			
Cd	0.38	0.48	0.03	0.02	0.03	0.03	0.01	0.04			
Sn	0.17	0.17	0.00	0.17	0.00	0.00	0.01	0.04			
Sc	0.001	0.001	1.58	0.001	0.52	0.66		0.68			
Ga	0.10	0.29		0.43		0.00					
Cu	0.55	0.68	0.33	1.67	1.23	1.43	1.35	2.77			
Zn	2.90	1.61	0.40	2.10	0.94	0.91	1.04	3.36			
Ag	0.20	0.20	0.01	0.20	0.00	n.d.		n.d.			
Au			0.001		n.d.	n.d.		n.d.			
Se			0.34		0.12	0.08		0.12			
Pd			0.05		0.01	0.01		0.01			

Sample		Standa	rds and	Blanks	
4		·	ICP-MS		
	SLRS2	Tripbk	Tripbk	Fieldbk	Fieldbk
Si	04.4				
AI	84.4	0.2	0.6	0.6	1.5
ге Са					
Me					
ĸ					
Na(ppm)					
Ti		0.100	n.d.	n.d.	0.100
v	0.250	0.003	0.002	0.003	0.002
Cr	0.450	n.d.	n.d.	0.030	n.d.
Mn	0.070	0.001	0.007	0.007	0.000
CO NI:	1.02	0.001	0.003	0.003	0.002
T I	1.05	0.07 n.d	00.00 n.d	0.02 n.d	0.00 n.d
Be		<i>n.</i> a.	11.4.	11. U .	n.u.
B		9	10	0	16
Zr					-
Nb		n.d.	n.d.	n.d.	n.d.
Та		n.d.	n.d.	n.d.	n.d.
Hf		n.d.	n.d.	n.d.	n.d.
Р		1.60	2.90	1.00	1.80
Le		د م		.	<i>د</i>
La		n.a.	n.a.	n.a. n.d	n.d.
Pr		n.u.	n d	n.u. p.d	n.d.
Nd		n.d.	n.d.	n.d.	n.d.
Sm		n.d.	n.d.	n.d.	n.d.
Eu		n.d.	n.d.	n.d.	n.d.
Gd		n.d.	n.d.	n.d.	n.d.
Tb		n.d.	n.d.	n.d.	n.d.
Dy		n.d.	n.d.	n.d.	n.d.
Y		n.d.	n.d.	n.d.	n.d.
Ho		n.d.	n.d.	n.d.	n.d.
Er		n.d.	n.d.	n.d.	n.d.
Tm		n.d.	n.d.	n.d.	n.d.
YD Ta		n.d.	n.d.	n.d.	n.d.
Lu		n.d.	n.d.	n.d.	n.d.
Cs		n.d.	n.d.	n.d.	n.d.
Rb		n.d.	0.01	n.d.	0.01
Ba	13.8	0.01	0.01	0.02	0.01
Th		n.d.	n.d.	n.d.	n.d.
U	0.05	n.d.	n.d.	0.00	n.d.
W		0.01	n.d.	n.d.	0.01
Sr	27.3	0.01	n.d.	0.01	0.02
Pb	0.13	n.d.	n.d.	n.d.	0.01
Ac	0.77	nd	nd	nd	n 4
Sb	0.26	n d	n d	n d	n.d.
Mo	0.16	n.d.	n.d.	n.d.	n.d.
Cd	0.03	n.d.	n.d.	n.d.	n.d.
Sn	·				
Sc		n.d.	n.d.	n.d.	n.d.
Ga					
Cu	2.76	0.10	0.13	0.04	0.06
Zn	3.33	0.06	0.07	0.11	0.13
Ag		n.d.	n.d.	n.d.	n.d.
Au		n.d.	n.d.	n.d.	n.d.
~			- 4	. m. d	

Sample	MR52	MR80	MR43	MR116	MR115	MR114	MR118
Dampio							
Si	3348	4625	4804	3988	5037	4277	4845
A	6.0	8.0	14.0	9.0	5.0	10.0	15.0
Fe	64	20	22	33	100	72	19
Ca	1322	1457	1141	1287	1041	1448	1709
Mg	447	577	405	481	353	636	711
Ti	4.10	5.10	1.80	2.90	0.20	0.50	1.30
v	n.d.	0.20	0.20	0.20	0.10	0.80	0.70
Cr	1.00	1.00	1.10	1.10	1.20	3.10	2.70
Mn	1.40	1.20	0.20	1.40	4.70	5.10	2.90
Co	0.03	0.01	0.00	0.02	0.04	0.06	0.04
Ni	n.d.	n.d.	n.d.	n.d.	n.d.	1.00	n.d.
Li	37.0	56.0	45.0	42.0	44.0	55.0	78.0
Be	0.30	n.d.	n.d.	0.50	n.d.	0.20	n.d.
B							
Zr	0.11	0.08	0.07	0.05	0.08	1.01	0.75
Nb	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Ta	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
P							
La	n.d.	n.d.	0.04	0.02	0.01	0.03	0.08
Ce	n.d.	n.d.	0.01	n.d.	n.d.	0.01	n.d.
Pr							
Nd							
Sm							
Eu							
Gd							
Ть							
Dy			· · · · · · · · · · · · · · · · · · ·			·	
Y	0.030	0.050	0.100	0.020	0.050	0.020	0.030
Ho							
Er							
Yh	0.020	nd	0.010	0.010	nd	0.020	0.030
Lu	0.020	n.a.	0.010	0.010	<i></i>	0.020	0.050
Cs							
Rb	1.00	1.10	0.90	1.00	1.00	1.30	2.00
Ba	12.00	14.00	79.00	52.00	61.00	89.00	131.00
Th	n.d.	n.d.	0.01	n.d.	n.d.	0.01	0.02
U	0.57	1.08	0.54	0.61	0.03	0.03	0.04
w	2.30	1.60	0.30	0.40	0.30	0.40	0.80
Sr	101.0	85.0	76.0	83.0	57.0	108.0	133.0
Pb	0.20	0.10	0.10	n.d.	0.10	1.00	1.40
As	0.20	0.40	0.20	0.60	0.30	1.20	1.00
SD M-	n.d.	n.d.	n.d.	0.02	0.01	0.03	0.06
Mo	0.60	0.70	1.80	1.50	1.10	2.30	2.50
	n.a.	n.a.	0.06	n.d.	n.d.	1.70	1.00
on Se	0.03	0.03	0.04	0.02	0.08	0.06	0.13
G	0.70	0.90	1 10	0.50	1.10	1.00	1.10
Cu	2.20	4 60	2.40	0.00	1 20	3.50	1.50
Zn	2.20	5.80	3.00	19 30	10 10	49 10	1.90
Ag	n.d.	n.d.	p.d.	n.d.	n.d.	0.07	n.d.
Au					-24-924	5.07	
Se							
ra H~	nd	3 40	0.50	0.00	1 50	3.00	4.00
н <u>у</u> ті	n.u. 0.02	3.40 0.00	0.50	0.00	1.50	3.80	4.50
	0.02	0.09	0.09	0.10	0.08	0.00	0.00

Appendix B - 1995 ICP-MS Data

Sample	MR12	MR119	MR121	MR14	MR25	MR25-dup	MR17
I						· •	
Si	4590	3704	4425	5081	4404	4296	4099
Al	10.0	6.0	6.0	22.0	6.0	5.0	5.0
Fe	92	384	59	16	74	77	19
Ca	1039	1252	1051	1771	2119	1940	1291
Mg	409	438	428	481	933	943	551
Ti	0.80	0.70	0.90	1.10	3.20	3.20	0.10
v	0.10	0.30	0.20	0.40	0.80	1.10	0.20
Cr	1.30	2.10	1.60	0.80	2.90	4.00	1.40
Mn	2.70	4.50	1.60	15.10	1.10	1.20	0.80
Co	0.03	0.05	n.d.	0.09	0.02	0.05	0.03
Ni	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Li	47.0	37.0	48.0	57.0	82.0	82.0	59.0
Be	0.60	n.d.	0.90	n.d.	n.d.	0.10	1.40
В							
Zr	0.20	0.19	0.20	0.23	0.41	0.39	0.43
Nb	n.d.	n.d.	n.d.	0.01	0.01	0.02	0.01
Та	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Hf P							
I.a.	0.05	0.04	0.02	0.07	0.07	0.00	0.04
La	0.05	0.04 n.d	0.02	0.03	0.07	0.09	0.04
Се Р.,	0.05	n.a.	n.a.	0.01	0.02	0.04	n.a.
Nd							
Sm							
Fu							
Gd							
Ծա							
Dv							
Y Y	0.060	0.020	0.030	0.030	0.040	0.040	0.020
Ho	0.000	0.020	0.050	0.050	0.040	0.040	0.020
Er							
Tm							
Yb	n.d.	0.020	0.020	n.d.	0.020	0.010	n.d.
Lu							
Cs							
Rb	1.20	1.20	1.00	1.20	2.00	1.90	1.40
Ba	89.00	107.00	87.00	85.00	284.00	280.00	142.00
Th	0.01	0.02	n.d.	n.d.	0.02	0.03	0.01
U	0.03	0.03	0.07	0.06	0.03	0.04	0.03
W	0.90	0.70	1.00	1.00	0.70	0.90	1.00
Sr	74.0	99.0	76.0	79.0	193.0	194.0	110.0
Pb	0.10	0.00	0.10	0.10	0.50	0.50	0.00
As	0.20	0.30	0.20	0.40	1.50	1.60	0.50
Sb	0.01	0.02	n.d.	0.06	0.01	0.02	0.03
Mo	0.90	10.30	1.00	0.90	0.80	1.20	0.90
Cd	0.05	0.06	0.10	0.14	2.17	3.19	0.45
Sn	0.04	0.05	0.05	0.00	0.19	0.12	n.d.
Sc	1.00	0.80	1.00	1.10	0.90	1.10	1.00
Ga	1.20	1.20	1.20	1.10	3.00	3.20	1.60
Cu	2.20	0.30	0.40	0.50	19.20	19.30	6.10
Zn	38.50	4.20	8.70	1.90	4.80	5.20	1.70
Ag	0.01	n.d.	n.d.	n.d.	n.d.	n.d.	0.01
Au							
Se							
Pd	•						
Hg	0.30	1.00	1.10	1.40	47.40	1.30	0.20
TI P'	0.10	0.20	0.20	0.20	0.80	0.90	0.30
BI	n.d.	n.d.	n.d.	n.d.	0.03	0.01	0.01

Appendix B - 1995 ICP-MS Data continued

Appendid	(D - 1993	DICP-MS	Data con	unuea	
Sample	MR23	MR113	SLRS2	SLRS2	
Si	4574	4465	2066	2124	
Al	7.0	15.0	81.5	85.7	
Fe	21	1341	135	131	
Ca	1238	2373	5061	5280	
Mg	665	1285	1460	1449	
Ti	0.60	1.40	2.10	2.90	
v	0.40	1.20	0.20	0.20	
Cr	2.50	4.70	0.80	0.90	
Min	0.20	7.50	10.60	10.60	
C0	0.02	0.02	0.05	0.07	
	n.a.	n.d.	1.00	1.00	
LI	72.0	115.0	1.0	1.0	
De	0.40	0.60	n.d.	n.a.	
B 7r	0.49	1 11	0.07	0.04	
Nh	0.45 nd	1.11	0.07	0.00	
Ta	n.u. n.d	0.05	0.01 nd	0.01	
Hf	m.u.	11.4.	11.4.	11.4.	
P					
La	0.05	0.09	0.41	0.39	
Ce	n.d.	0.01	0.51	0.49	
Pr					
Nd					
Sm					
Eu					
Gd					
ТЪ					
Dy					
Y	0.030	0.030	0.180	0.190	
Ho					
Er					
Tm			'		
Yb	n.d.	0.020	0.010	0.020	
Lu					
Cs					
KD	1.60	2.00	1.60	1.60	
Ba	180.00	388.00	14.00	14.00	
10	0.01	0.05	0.01	0.01	
W	0.02	0.01	0.05	0.05	
** Sr	116.0	242.0	20.0	n.a. 20.0	
Ph	0.10	0.30	29.0	29.0	
10	0.10	0.50	0.10	0.20	
As	0.40	1.60	0.80	0.90	
Sb	0.01	n.d.	0.25	0.29	
Mo	3.60	1.40	0.20	0.20	
Cd	0.50	3.72	n.d.	n.d.	
Sn	0.06	0.11	0.04	0.02	
Sc	1.10	1.10	0.50	0.40	
Ga	2.20	4.50	0.20	0.20	
Cu	1.20	0.60	3.30	2.90	
Zn	2.40	2.50	3.70	4.60	
Ag	n.d.	n.d.	n.d.	n.d.	
AU					
эе ра					
Hø	0.70	2.60	n d	n 4	
6 TI	0.30	1 10	0.02	0.03	
Bi	n.d.	0.02	n.d.	n.d	

A	ppendix	B -	1995 IC	CP-MS Data	continued

Appendix C

Major Cation and Anion Analyses

Routine chemistry on the samples was performed at the National Hydrology Research Institute in Saskatoon, Saskatchewan, for anions (Cl and SO₄) and cations (Ca, Mg, Fe, Na) using Ion Liquid Chromatography and atomic absorption respectively. All data are reported in ppm (μ g/ml).

Appendix C							
Sample 1996	Anal. No.	Ca	Mg	Fe	Na	Cl	SO4
MR122	E702	0.96	0.29	0.05	310	1.92	152
MR123	783	1.08	0.36	0.02	381	5.92	171
MR123dup	784	1.08	0.36	0.02	362	5.91	171
MR52	785	1.38	0.42	0.04	437	10	297
MR80	786	1.23	0.43	0.02	425	14.9	277
MR125	788	0.93	0.29	0.07	362	26.3	67.2
MR126(Taylor)	787	0.81	0.27	0.02	358	23.2	64.9
MR126	789	0.87	0.27	0.04	366	22.2	67
MR124	790	0.9	0.31	0.02	354	44.5	<.3
MR128	791	3.9	1.4	<.02	784	701	<.5
MR118	792	1.65	0.56	0.13	592	236	<.5
MR127	793	0.84	0.29	0.29	388	57.9	<.5
MR119	794	1.1	0.35	0.11	437	72.6	<.5

Sample 1997	Anal. No.	Cl	SO_4
MR130	E465	18.2	241
MR129	466	20.1	221
MR137	467	42.8	14.6
MR140	468	6.44	196
MR136	469	20.1	217
MR132	470	441	<.8
MR139	471	13.8	115
MR122	474	1.6	137
Milk River	472	1.1	22.8

Appendix D

Water Standards and Quality of Analysis

The water standards SLRS2 and SLRS3 were analyzed with unknowns for both ICP-MS and ICP-AES (Figure AP-1). Most the elements run in the standards are well within accepted values. ICP-AES displays good precision for the majors and the more abundant trace elements (i.e. Al, V, Ni, Cu, Sr, Cd, and Ba). Accordingly for the purpose of this study AES data was used for major elements and a select group of trace elements. Similarly, compliance for SLRS2 and SLRS3 for the ICP-MS is also excellent. The anomalously high values for Cd and Mo are most likely due to the very low concentrations of both elements which makes accurate and precise determinations difficult. Another possible explanation is that the recommended value is not correct for this standard. Note that many elements are not reported for SLRS-2 and 3.

Figure AP-1. Standards SLRS2 and SLRS3 measured versus recommended values for ICP-AES and ICP-MS.

Appendix E

Detection of Selected Elements for ICP-AES and ICP-MS

To evaluate the optimum values for specific elements a series of test were conducted as part of this study. Detection limits of selected elements are presented in the following table for ICP-MS and ICP-AES. Detection limits are defined as 3σ of procedural blanks. Figure AP-2 shows ICP-AES vs. ICP-MS data for several different elements. Figures AP-2A and AP-2F shows that ICP-AES is better suited for light elements (Mg, Na) or elements with isobaric interferences (i.e. ⁴⁰Ca, ⁴⁰K, and ⁵⁶Fe). Figures AP-2B, 2C, and 2E display a good correlation between the two methods for the more abundant and heavier elements Sr, Ba, and Mo. Figure AP-2D shows that ICP-AES.

Similarly figure AP-3, shows variations between ICP-AES and ICP-MS. Figure AP-3A and AP-3B indicates a detection limit problem by AES for Co below 0.04 ppb, and a scatter for Cr. Artificially low detection limits for AES, were cited by SRC, all samples were below 0.05 ppb as determined by MS, for several trace elements including REEs (Fig. AP-3A and D). Thorium appeared to be a problem for both methods, due to low concentrations (Fig. AP-3C). Therefore ICP-AES was used for the lighter elements or major elements and ICP-MS was used for the REEs.

Detection limits for ICP-AES and ICP-MS employing the ultrasonic nebulizer are present for comparison.

Figure AP-2. Analyses of select elements by ICP-AES and ICP-MS (units in ppb).

Appendix E

		iu ici -ALO.
Element	ICP-MS (ppb)	ICP-AES (ppb)
Li	0.08	0.001
P	1.4	3.0
Ca	1021	0.2
Sc	0.006	0.002
Ti	0.09	0.05
\mathbf{V}	0.003	0.02
Cr	0.05	0.04
Co	0.01	0.07
Ni	0.1	0.1
Cu	0.07	0.08
Zn	0.2	0.07
Sr	0.03	0.001
Y	0.001	0.003
Zr	0.01	0.1
Nb	0.001	0.2
Mo	0.01	1.4
Ag	0.003	0.4
Cd	0.05	0.09
Sn	0.02	0.3
Ba	0.02	0.001
La	0.001	0.02
Ce	0.001	0.1
Pr	0.001	0.09
Nd	0.002	0.04
Sm	0.001	0.02
Eu	0.001	0.01
Gd	0.0005	0.006
Tb	0.0003	0.002
Dy	0.0004	0.005
Ho	0.0003	0.003
Er	0.001	0.01
Tm	0.0007	0.007
Yb	0.002	0.002
Lu	0.001	0.002
Hf	0.001	0.1
Ta	0.0003	0.5
W	0.002	0.9
Pb	0.005	0.2
Th	0.0005	0.02
U	0.001	0.5

Detection limits for ICP-MS employing the ultrasonic nebulizer and ICP-AES.

Appendix F

The Effects of Field Filtering on Select Elements

The following figures present the remaining major and trace elements that were discussed in Chapter 3.6, *Intercomparison Field Filtered and Unfiltered Samples*. Some of these elements did not display any appreciable effects due to filtering as shown by similar concentrations in filtered and unfiltered samples.

Figure AP-4. Analysis of select trace elements in filtered and unfiltered Milk River aquifer groundwater.

Figure AP-5. Analysis of select trace elements in filtered and unfiltered Milk River aquifer groundwater.

Figure AP-6. Analysis of select trace elements in filtered and unfiltered Milk River aquifer groundwater.

Figure AP-7. Analysis of select trace elements in filtered and unfiltered Milk River aquifer groundwater.

Appendix G

Concentrations of Select Trace Elements *versus* **Distance From Recharge**

Figures AP-8 and AP-9 present the remaining trace elements discussed in Chapter 4.4.1. Trace Element Concentrations Along the Flow Path. These elements did not display any appreciable trends along the studied flow path in the Milk River aquifer, and consequently were not included in the discussion.

Figure AP-8. Concentrations of V, Cr, and Y in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Figure AP-9. Concentrations of Nb, Th, Cs, and Sb in the Milk River aquifer groundwater versus distance from recharge. Dashed vertical lines represent redox front and post-redox front boundaries. Arrow on left margin is value of select element for average world river water from Taylor and McLennan (1985). Cumulative plot of 1996-1997 data.

Appendix H

PHREEQC Initial Solution Calculations

The following lists the initial solution conditions for select samples in the Milk River aquifer modeled in Chapter 4.

 Solution composition			
Elements	Molality	Moles	
Al	1.521e-07	1.521e-07	
Alkalinity	4.740e-03	4.740e-03	
As	3.206e-09	3.206e-09	
В	3.355e-05	3.355e-05	
Ba	1.974e-07	1.974e-07	
Ca	2.647e-05	2.647e-05	
Cd	1.247e-10	1.247e-10	
Cl ·	3.896e-04	3.896e-04	
Cs	1.883e-10	1.883e-10	
Cu	9.293e-09	9.293e-09	
Fe	1.792e-07	1.792e-07	
K	2.073e-05	2.073e-05	
Li	7.361e-06	7.361e-06	
Mg	9.881e-06	9.881e-06	
Mn	1.767e-07	1.767e-07	
Na	1.265e-02	1.265e-02	
Ni	1.040e-09	1.040e-09	
Р	9.542e-06	9.542e-06	
Pb	1.401e-09	1.401e-09	
Rb	8.432e-09	8.432e-09	
S(6)	1.198e-03	1.198e-03	
Se	5.070e-10	5.070e-10	
Sr	5.782e-07	5.782e-07	
U	5.551e-10	5.551e-10	
Zn	1.363e-08	1.363e-08	

-----Description of solution-----

pH = 9.110 pe = 6.330Activity of water = 1.000 Ionic strength = 1.147e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 4.462e-03 Total CO₂ (mol/kg) = 4.462e-03 Total CO₂ (mol/kg) = 4.462e-03 Temperature (deg C) = 10.000 Electrical balance (eq) = 5.215e-03 Charge Balance Error = 9.1% Iterations = 10 Total H = 1.110167e+02 Total O = 5.552453e+01

Flaments	Molality	Moles	
Elements	Wiolanty	MOICS	
Al	5.936e-08	5.936e-08	
Alkalinity	5.421e-03	5.421e-03	
As	2.138e-09	2.138e-09	
В	2.234e-05	2.234e-05	
Ba	1.195e-07	1.195e-07	
Ca	2.373e-05	2.373e-05	
Cd	5.343e-11	5.343e-11	
Cl	5.421e-05	5.421e-05	
Cs	2.561e-10	2.561e-10	
Cu	7.246e-09	7.246e-09	
Fe	1.792e-07	1.792e-07	
K	1.946e-05	1.946e-05	
Li	6.881e-06	6.881e-06	
Mg	1.318e-05	1.318e-05	
Mn	2.551e-08	2.551e-08	
Na	1.326e-02	1.326e-02	
Ni	1.705e-09	1.705e-09	
Р	3.497e-06	3.497e-06	
Pb	2.416e-10	2.416e-10	
Rb	9.135e-09	9.135e-09	
S(6)	1.584e-03	1.584e-03	
Se	3.550e-09	3.550e-09	
Sr	5.701e-07	5.701e-07	
U	1.892e-09	1.892e-09	
Zn	2.909e-08	2.909e-08	

-----Description of solution-----

pH = 9.130 pe = 6.330Activity of water = 1.000 Ionic strength = 1.272e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 5.103e-03 Total CO₂ (mol/kg) = 5.103e-03 Temperature (deg C) = 9.700 Electrical balance (eq) = 4.715e-03 Charge Balance Error = 4.5% Iterations = 11 Total H = 1.110173e+02 Total O = 5.552794e+01

 	solution compos	11011	
Elements	Molality	Moles	
Al	1.447e-07	1.447e-07	
Alkalinity	5.861e-03	5.861e-03	
As	1.336e-09	1.336e-09	
В	4.298e-05	4.298e-05	
Ba	2.333e-07	2.333e-07	
Ca	2.698e-05	2.698e-05	
Cd	3.563e-11	3.563e-11	
Cl	1.672e-04	1.672e-04	
Cs	2.486e-10	2.486e-10	
Cu	6.932e-09	6.932e-09	
Fe	1.793e-07	1.793e-07	
K	2.458e-05	2.458e-05	
Li	5.540e-06	5.540e-06	
Mg	1.482e-05	1.482e-05	
Mn	4.556e-08	4.556e-08	
Na	1.670e-02	1.670e-02	
Р	1.146e-05	1.146e-05	
Pb	9.664e-11	9.664e-11	
Rb	1.007e-08	1.007e-08	
S(6)	1.782e-03	1.782e-03	
Se	5.072e-10	5.072e-10	
Sr	8.548e-07	8.548e-07	
U	1.926e-09	1.926e-09	
Zn	2.420e-08	2.420e-08	

-----Description of solution-----

pH = 9.140 pe = 6.330Activity of water = 1.000 Ionic strength = 1.511e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 5.484e-03 Total CO₂ (mol/kg) = 5.484e-03 Temperature (deg C) = 9.700 Electrical balance (eq) = 7.213e-03 Charge Balance Error = 11.3% Iterations = 11 Total H = 1.110177e+02 Total O = 5.552997e+01 ---

 	Solution compos	ition	
Elements	Molality	Moles	
Al	2.895e-07	2.895e-07	
Alkalinity	6.223e-03	6.223e-03	
As	1.069e-09	1.069e-09	
В	4.016e-05	4.016e-05	
Ba	8.954e-08	8.954e-08	
Ca	3.533e-05	3.533e-05	
Cl	2.824e-04	2.824e-04	
Cs	3.767e-10	3.767e-10	
Cu	1.245e-08	1.245e-08	
Fe	7.531e-07	7.531e-07	
K	2.766e-05	2.766e-05	
Li	5.671e-06	5.671e-06	
Mg	1.746e-05	1.746e-05	
Mn	2.424e-08	2.424e-08	
Na	1.893e-02	1.893e-02	
Ni	6.822e-10	6.822e-10	
Р	1.155e-05	1.155e-05	
Pb	1.933e-10	1.933e-10	
Rb	1.101e-08	1.101e-08	
S(6)	3.096e-03	3.096e-03	
Se	3.805e-10	3.805e-10	
Sr	1.196e-06	1.196e-06	
U	2.482e-09	2.482e-09	
Zn	4.289e-09	4.289e-09	

-----Description of solution-----

pH = 9.100 pe = 6.330Activity of water = 1.000 Ionic strength = 1.895e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 5.848e-03 Total CO₂ (mol/kg) = 5.848e-03 Temperature (deg C) = 9.200 Electrical balance (eq) = 6.369e-03 Charge Balance Error = 6.5% Iterations = 11 Total H = 1.110180e+02 Total O = 5.553631e+01

Solution composition			
Elements	Molality	Moles	
Al	2.709e-07	2.709e-07	
Alkalinity	6.022e-03	6.022e-03	
As	9.355e-10	9.355e-10	
В	4.443e-05	4.443e-05	
Ba	9.055e-08	9.055e-08	
Ca	3.019e-05	3.019e-05	
Cd	8.908e-11	8.908e-11	
Cl	4.208e-04	4.208e-04	
Cs	3.767e-10	3.767e-10	
Cu	1.402e-08	1.402e-08	
Fe	5.988e-07	5.988e-07	
K	2.635e-05	2.635e-05	
Li	6.508e-06	6.508e-06	
Mg	1.713e-05	1.713e-05	
Mn	3.718e-08	3.718e-08	
Na	1.808e-02	1.808e-02	
Ni	1.194e-09	1.194e-09	
P	1.238e-05	1.238e-05	
Pb	5.316e-10	5.316e-10	
Rb	1.078e-08	1.078e-08	
S(6)	2.887e-03	2.887e-03	
Se	2.156e-09	2.156e-09	
Sr	9.889e-07	9.889e-07	
U	4.796e-09	4.796e-09	
Zn	1.731e-08	1.731e-08	

-----Description of solution-----

pH = 9.100 pe = 6.330Activity of water = 1.000 Ionic strength = 1.810e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 5.640e-03 Total CO₂ (mol/kg) = 5.640e-03 Temperature (deg C) = 11.000 Electrical balance (eq) = 5.980e-03 Charge Balance Error = 6.1% Iterations = 10 Total H = 1.110178e+02 Total O = 5.553487e+01

 Solution composition			
Elements	Molality	Moles	
Alkalinity	6.553e-03	6.553e-03	
As	2.005e-09	2.005e-09	
В	5.747e-05	5.747e-05	
Ba	8.450e-08	8.450e-08	
Ca	3.098e-05	3.098e-05	
Cd	8.018e-11	8.018e-11	
Cl	5.140e-04	5.140e-04	
Cs	2.712e-10	2.712e-10	
Cu	7.564e-09	7.564e-09	
Fe	1.793e-07	1.793e-07	
K	2.919e-05	2.919e-05	
Li	5.440e-06	5.440e-06	
Mg	1.771e-05	1.771e-05	
Mn	1.713e-07	1.713e-07	
Na	1.866e-02	1.866e-02	
Р	1.179e-05	1.179e-05	
Pb	9.666e-11	9.666e-11	
Rb	1.136e-08	1.136e-08	
S(6)	2.512e-03	2.512e-03	
Se	1.649e-09	1.649e-09	
Sr	1.062e-06	1.062e-06	
U	3.702e-09	3.702e-09	
Zn	1.026e-07	1.026e-07	

-----Description of solution-----

pH = 8.960 pe = 3.380Activity of water = 1.000 Ionic strength = 1.793e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 6.222e-03 Total CO₂ (mol/kg) = 6.222e-03 Temperature (deg C) = 13.200 Electrical balance (eq) = 6.692e-03 Charge Balance Error = 7.0% Iterations = 12 Total H = 1.110185e+02 Total O = 5.553514e+01

 Solution composition			
Elements	Molality	Moles	
Alkalinity	6.373e-03	6.373e-03	
As	1.871e-09	1.871e-09	
В	7.416e-05	7.416e-05	
Ba	1.214e-07	1.214e-07	
Ca	2.998e-05	2.998e-05	
Cd	2.673e-11	2.673e-11	
Cl	5.677e-04	5.677e-04	
Cs	2.938e-10	2.938e-10	
Cu	3.404e-08	3.404e-08	
Fe	1.793e-07	1.793e-07	
К	2.945e-05	2.945e-05	
Li	5.613e-06	5.613e-06	
Mg	1.606e-05	1.606e-05	
Mn	6.197e-08	6.197e-08	
Na	1.877e-02	1.877e-02	
Р	1.205e-05	1.205e-05	
Rb	1.218e-08	1.218e-08	
S(6)	2.262e-03	2.262e-03	
Se	3.804e-09	3.804e-09	
Sr	1.005e-06	1.005e-06	
U	5.919e-09	5.919e-09	
Zn	1.124e-07	1.124e-07	

-----Description of solution-----

pH = 9.030 pe = 3.380Activity of water = 1.000 Ionic strength = 1.747e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 6.014e-03 Total CO₂ (mol/kg) = 6.014e-03 Temperature (deg C) = 11.300 Electrical balance (eq) = 7.428e-03 Charge Balance Error = 9.6% Iterations = 12 Total H = 1.110183e+02 Total O = 5.553357e+01

 	Solution compos	ition	
Elements	Molality	Moles	
Al	1.113e-07	1.113e-07	
Alkalinity	6.393e-03	6.393e-03	
As	4.010e-09	4.010e-09	
В	6.231e-05	6.231e-05	
Ba	1.381e-04	1.381e-04	
Ca	2.848e-05	2.848e-05	
Cd	3.207e-10	3.207e-10	
Cl	5.677e-04	5.677e-04	
Cs	3.315e-10	3.315e-10	
Cu	1.056e-08	1.056e-08	
Fe	7.172e-07	7.172e-07	
K	2.971e-05	2.971e-05	
Li	5.599e-06	5.599e-06	
Mg	1.771e-05	1.771e-05	
Mn	9.478e-08	9.478e-08	
Na	1.845e-02	1.845e-02	
Ni	5.117e-11	5.117e-11	
Р	7.888e-06	7.888e-06	
Pb	4.350e-10	4.350e-10	
Rb	1.230e-08	1.230e-08	
S(6)	2.304e-03	2.304e-03	
Se	1.649e-09	1.649e-09	
Sr	1.003e-06	1.003e-06	
U	5.944e-09	5.944e-09	
Zn	3.768e-08	3.768e-08	

-----Description of solution-----

pH = 9.000 pe = 1.690Activity of water = 1.000 Ionic strength = 1.750e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 6.054e-03 Total CO₂ (mol/kg) = 6.054e-03 Temperature (deg C) = 11.800 Electrical balance (eq) = 7.279e-03 Charge Balance Error = 8.3% Iterations = 13 Total H = 1.110183e+02 Total O = 5.553380e+01

 	Solution compos	ition
Elements	Molality	Moles
Alkalinity	7.637e-03	7.637e-03
As	6.151e-09	6.151e-09
В	1.631e-04	1.631e-04
Ba	9.782e-07	9.782e-07
Ca	6.074e-05	6.074e-05
Cd	2.317e-10	2.317e-10
Cl	1.246e-02	1.246e-02
Cs	4.297e-10	4.297e-10
Cu	3.784e-09	3.784e-09
Fe	5.920e-06	5.920e-06
K	4.637e-05	4.637e-05
Li	6.353e-06	6.353e-06
Mg	3.173e-05	3.173e-05
Mn	3.082e-07	3.082e-07
Na	2.639e-02	2.639e-02
Р	1.407e-05	1.407e-05
Pb	7.253e-10	7.253e-10
Rb	1.735e-08	1.735e-08
S(6)	8.343e-06	8.343e-06
Se	1.814e-08	1.814e-08
Sr	2.166e-06	2.166e-06
U	5.892e-11	5.892e-11
Zn	1.180e-08	1.180e-08

-----Description of solution-----

pH = 8.580 pe = -3.550Activity of water = 0.999 Ionic strength = 2.352e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 7.479e-03 Total CO₂ (mol/kg) = 7.479e-03 Temperature (deg C) = 10.800 Electrical balance (eq) = 6.518e-03 Charge Balance Error = 3.0% Iterations = 13 Total H = 1.110202e+02 Total O = 5.552919e+01

Solution composition				
Eler	ments	Molality	Moles	
Al		1.076e-07	1.076e-07	
Alk	alinity	7.843e-03	7.843e-03	
As		2.539e-09	2.539e-09	
В		1.530e-04	1.530e-04	
Ba		5.133e-07	5.133e-07	
Ca		2.298e-05	2.298e-05	
Cd		1.069e-10	1.069e-10	
Cl		1.209e-03	1.209e-03	
Cs		3.013e-10	3.013e-10	
Cu		5.987e-09	5.987e-09	
Fe		5.379e-07	5.379e-07	
K		2.740e-05	2.740e-05	
Li		5.252e-06	5.252e-06	
Mg		1.318e-05	1.318e-05	
Mn		5.103e-08	5.103e-08	
Na		1.746e-02	1.746e-02	
Р		1.356e-05	1.356e-05	
Pb		6.282e-10	6.282e-10	
Rb		1.148e-08	1.148e-08	
S(6)	1.522e-04	1.522e-04	
Se		2.917e-09	2.917e-09	
Sr		8.308e-07	8.308e-07	
U		1.784e-09	1.784e-09	
Zn		2.405e-08	2.405e-08	

-----Description of solution-----

pH = 9.060 pe = -5.070Activity of water = 1.000 Ionic strength = 1.391e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 7.382e-03 Total CO₂ (mol/kg) = 7.382e-03 Temperature (deg C) = 10.200 Electrical balance (eq) = 8.204e-03 Charge Balance Error = 9.7% Iterations = 10 Total H = 1.110198e+02 Total O = 5.552947e+01

Elements	Molality	Moles	
Al	3.266e-07	3.266e-07	
Alkalinity	8.334e-03	8.334e-03	
As	1.871e-09	1.871e-09	
В	1.270e-04	1.270e-04	
Ba	6.128e-07	6.128e-07	
Ca	2.858e-05	2.858e-05	
Cd	2.673e-10	2.673e-10	
Cl	2.051e-03	2.051e-03	
Cs	4.521e-10	4.521e-10	
Cu	5.200e-09	5.200e-09	
Fe	2.132e-06	2.132e-06	
K	2.789e-05	2.789e-05	
Li	5.628e-06	5.628e-06	
Mg	1.430e-05	1.430e-05	
Mn	4.247e-08	4.247e-08	
Na	1.896e-02	1.896e-02	
Ni	3.070e-09	3.070e-09	
Р	2.080e-05	2.080e-05	
Pb	1.933e-10	1.933e-10	
Rb	1.371e-08	1.371e-08	
S(6)	5.212e-06	5.212e-06	
Se	4.312e-09	4.312e-09	
Sr	1.097e-06	1.097e-06	
U	8.414e-11	8.414e-11	
Zn	6.127e-09	6.127e-09	

-----Description of solution-----

pH = 9.100 pe = -5.070Activity of water = 1.000 Ionic strength = 1.511e-02 Mass of water (kg) = 1.000e+00 Total carbon (mol/kg) = 7.817e-03 Total CO₂ (mol/kg) = 7.817e-03 Temperature (deg C) = 9.100 Electrical balance (eq) = 8.677e-03 Charge Balance Error = 9.5% Iterations = 10 Total H = 1.110201e+02 Total O = 5.553014e+01

Appendix I

Results of REE Speciation Modeling

Select REE complex results are reported for select groundwater samples in the Milk River aquifer derived from speciation modeling using the modified version of Johannesson and Lyons (1994) of the Millero (1992) REE speciation model. The speciation of each REE in the water sample is presented in the form of a fraction out of 1. Multiplication of each REE species fraction by 100 converts values into percentage.

WIK139				
	LnCO ₃	$Ln(CO_3)_2$	LaPO₄	Ln ³⁺
_			0.000.000	
La	0.03155	0.9677	0.000649	1.440E-05
Ce	0.01467	0.9849	0.000389	1.320E-06
Pr	0.01117	0.9884	0.000365	1.850E-06
Nd	0.00953	0.9900	0.000365	1.230E-06
Sm	0.00812	0.9914	0.000410	6.464E-07
Eu	0.00890	0.9906	0.000493	6.026E-07
Gd	0.00741	0.9920	0.000529	6.771E-07
Tb	0.00631	0.9931	0.000542	4.477E-07
Dy	0.00550	0.9939	0.000542	3.321E-07
Но	0.00538	0.9940	0.000568	2.960E-07
Er	0.00418	0.9953	0.000473	1.958E-07
Tm	0.00364	0.9958	0.000462	1.419E-07
Yb	0.00296	0.9966	0.000403	9.388E-08
Lu	0.00258	0.9970	0.000385	7.990E-08

· · · · · · · · · · · · · · · · · · ·	LnCO ₃	$Ln(CO_3)_2$	LaPO₄	Ln ³⁺
	<u> </u>			· · · · · · · · · · · · · · · · · · ·
La	0.02672	0.9730	0.000178	1.070E-05
Ce	0.01123	0.9874	0.000106	2.605E-06
Pr	0.00943	0.9904	0.000100	1.372E-06
Nd	0.00804	0.9918	0.000100	9.080E-07
Sm	0.00685	0.9930	0.000112	4.760E-07
Eu	0.00751	0.9923	0.000135	4.440E-07
Gd	0.00625	0.9935	0.000144	4.990E-07
Tb	0.00533	0.9945	0.000148	3.302E-07
Dy	0.00464	0.9952	0.000148	2.440E-07
Но	0.00454	0.9953	0.000155	2.183E-07
Er	0.00353	0.9963	0.000129	1.444E-07
Tm	0.00307	0.9967	0.000126	1.040E-07
Yb	0.00249	0.9973	0.000109	6.920E-08
Lu	0.00218	0.9977	0.000105	5.890E-08

	LnCO ₃	$Ln(CO_3)_2$	LaPO₄	Ln ³⁺
La	0.02444	0.9750	0.000483	9.470E-06
Ce	0.01132	0.9883	0.000288	2.302E-06
Pr	0.00862	0.9911	0.000270	1.212E-06
Nd	0.00734	0.9923	0.000270	8.022E-07
Sm	0.00626	0.9934	0.000304	4.212E-07
Eu	0.00686	0.9927	0.000365	3.937E-07
Gd	0.00571	0.9938	0.000391	4.411E-07
Tb	0.00486	0.9947	0.000400	2.916E-07
Dy	0.00424	0.9953	0.000401	2.160E-07
Ho	0.00414	0.9954	0.000420	1.920E-07
Er	0.00322	0.9964	0.000349	1.270E-07
Tm	0.00280	0.9968	0.000341	9.240E-08
Yb	0.00228	0.9974	0.000297	6.110E-08
Lu	0.00199	0.9977	0.000285	5.202E-08

MR123

	LnCO ₃	$Ln(CO_3)_2$	LaPO ₄	Ln ³⁺
	·····			· · · · · · · · · · · · · · · · · · ·
La	0.02513	0.9743	0.000470	1.085E-05
Ce	0.01164	0.9881	0.000281	2.637E-06
Pr	0.00886	0.9908	0.000263	1.389E-06
Nd	0.00755	0.9922	0.000263	9.191E-07
Sm	0.00644	0.9932	0.000295	4.826E-07
Eu	0.00705	0.9925	0.000355	4.499E-07
Gd	0.00587	0.9937	0.000381	5.054E-07
Tb	0.00500	0.9946	0.000390	3.341E-07
Dy	0.00436	0.9952	0.000390	2.478E-07
Но	0.00426	0.9953	0.000408	2.200E-07
Er	0.00331	0.9963	0.000340	1.460E-07
Tm	0.00288	0.9967	0.000333	1.050E-07
Yb	0.00235	0.9973	0.000290	7.000E-08
Lu	0.00204	0.9976	0.000270	5.960E-08

MR80				
	LnCO ₃	$Ln(CO_3)_2$	LaPO₄	Ln ³⁺
La	0.02592	0.9734	0.000540	1.130E-05
Ce	0.01202	0.9876	0.000322	2.760E-06
Pr	0.00915	0.9905	0.000302	1.456E-06
Nd	0.00780	0.9918	0.000302	9.630E-07
Sm	0.00664	0.9930	0.000339	5.050E-07
Eu	0.00728	0.9923	0.000408	4.717E-07
Gd	0.00606	0.9934	0.000437	5.299E-07
Tb	0.00516	0.9943	0.000448	3.500E-07
Dy	0.00450	0.9950	0.000448	2.590E-07
Ho	0.00440	0.9951	0.000469	2.310E-07
Er	0.00342	0.9961	0.000391	1.530E-07
Tm	0.00298	0.9966	0.000382	1.110E-07
Yb	0.00242	0.9972	0.000333	7.340E-08
Lu	0.00211	0.9975	0.000318	6.200E-08

	LnCO ₃	Ln(CO ₃) ₂	LaPO ₄	Ln ³⁺
La	0.03150	0.9679	0.000498	1.685E-05
Ce	0.01465	0.9850	0.000298	4.110E-06
Pr	0.01115	0.9885	0.000279	2.160E-06
Nd	0.00951	0.9902	0.000280	1.433E-06
Sm	0.00810	0.9915	0.000314	7.530E-07
Eu	0.00888	0.9907	0.000377	7.020E-07
Gd	0.00739	0.9921	0.000405	7.880E-07
Tb	0.00630	0.9932	0.000414	5.210E-07
Dy	0.00549	0.9940	0.000415	3.860E-07
Ho	0.00536	0.9941	0.000434	3.440E-07
Er	0.00417	0.9954	0.000362	2.280E-07
Tm	0.00363	0.9960	0.000354	1.650E-07
Yb	0.00295	0.9967	0.000308	1.090E-07
Lu	0.00258	0.9971	0.000294	9.300E-08

MILLIOU				
• <u>•</u> •••••	LnCO ₃	$Ln(CO_3)_2$	LaPO₄	Ln ³⁺
		······		
La	0.02811	0.9713	0.000520	4.220E-06
Ce	0.01305	0.9866	0.000311	3.220E-06
Pr	0.00993	0.9897	0.000291	1.700E-06
Nd	0.00847	0.9912	0.000292	1.120E-06
Sm	0.00722	0.9924	0.000328	5.900E-07
Eu	0.00791	0.9916	0.000394	5.500E-07
Gd	0.00658	0.9929	0.000422	6.180E-07
Tb	0.00561	0.9939	0.000433	4.090E-07
Dy	0.00489	0.9946	0.000433	3.030E-07
Но	0.00478	0.9947	0.000454	2.700E-07
Er	0.00371	0.9959	0.000378	1.780E-07
Tm	0.00324	0.9963	0.000370	1.296E-07
Yb	0.00263	0.9970	0.000322	8.500E-08
Lu	0.00229	0.9973	0.000308	7.300E-08

MR129	LnCO ₃	$Ln(CO_3)_2$	LaPO₄	Ln ³⁺
· · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-, <u> </u>	
La	0.02971	0.9698	0.000360	4.700E-06
Ce	0.01380	0.9859	0.000216	3.605E-06
Pr	0.01050	0.9892	0.000202	1.890E-06
Nd	0.00896	0.9908	0.000202	1.250E-06
Sm	0.00763	0.9921	0.000227	6.600E-07
Eu	0.00836	0.9913	0.000273	6.150E-07
Gd	0.00697	0.9927	0.000293	6.910E-07
Tb	0.00594	0.9937	0.000300	4.570E-07
Dy	0.00517	0.9945	0.000300	3.390E-07
Но	0.00506	0.9946	0.000314	3.020E-07
Er	0.00393	0.9958	0.000262	1.990E-07
Tm	0.00342	0.9963	0.000256	1.440E-07
Yb	0.00279	0.9969	0.000223	9.580E-08
Lu	0.00242	0.9973	0.000213	8.160E-08

MR136

	LnCO ₃	$Ln(CO_3)_2$	LaPO ₄	Ln ³⁺	
				· ·	
La	0.05987	0.9391	0.000832	6.890E-05	
Ce	0.02829	0.9711	0.000507	1.708E-05	
Pr	0.02161	0.9778	0.000477	9.030E-06	
Nd	0.01845	0.9810	0.000478	5.980E-06	
Sm	0.01575	0.9836	0.000538	3.140E-06	
Eu	0.01724	0.9820	0.000646	2.930E-06	
Gd	0.01438	0.9849	0.000694	3.300E-06	
Tb	0.01226	0.9870	0.000711	2.180E-06	
Dy	0.01070	0.9885	0.000712	1.620E-06	
Но	0.01040	0.9887	0.000746	1.440E-06	
Er	0.00814	0.9912	0.000622	9.500E-07	
Tm	0.00709	0.9922	0.000608	6.940E-07	
Yb	0.00578	0.9936	0.000531	4.590E-07	
Lu	0.00503	0.9944	0.000507	3.910E-07	

MR132

	LnCO ₃	Ln(CO ₃) ₂	LaPO ₄	Ln ³⁺
	<u> </u>			
La	0.01950	0.9800	0.000454	2.020E-06
Ce	0.00901	0.9907	0.000270	1.475E-06
Pr	0.00685	0.9928	0.000253	7.763E-07
Nd	0.00584	0.9939	0.000253	5.135E-07
Sm	0.00497	0.9947	0.000284	2.690E-07
Eu	0.00545	0.9942	0.000342	2.513E-07
Gd	0.00454	0.9950	0.000366	2.823E-07
Tb	0.00386	0.9957	0.000375	1.866E-07
Dy	0.00337	0.9962	0.000375	1.383E-07
Ho	0.00329	0.9963	0.000393	1.233E-07
Er	0.00256	0.9971	0.000327	8.150E-08
Tm	0.00222	0.9974	0.000319	5.900E-08
Yb	0.00181	0.9979	0.000279	3.900E-08
Lu	0.00158	0.9981	0.000266	3.300E-08