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ABSTRACT 

 

To address odour and gas problems generated by livestock facilities, air dispersion 

models have been used to determine reasonable science-based setback distances 

between the livestock operations and the neighbouring residences. However, none of the 

existing models consider diurnal, seasonal and climate variations of odour and gas 

(ammonia, hydrogen sulphide, carbon dioxide) concentrations and emission rates 

(OGCER), which may result in great uncertainties in setback distance calculations. Thus, 

the purpose of this project was to monitor and model diurnal and seasonal OGCER from 

swine grower/finisher rooms. Specifically, this research was conducted to: 1) 

characterize diurnal OGCER between two different flooring systems (fully and partially 

slatted floorings) under three different weather conditions (August, October and 

February); 2) identify seasonal OGCER over a 12-month measuring period; and 3) 

develop mathematical models to predict the OGCER. 

 

A two-factorial strip-block experiment was designed for measuring diurnal OGCER in 

two grower/finisher rooms. It was found that: 1) the diurnal OGCER in the fully slatted 

flooring system was 27.6 to 39.5% higher than that in the partially slatted flooring 

system; however, no significant differences in the diurnal OGCER were found between 

the two rooms, except for the NH3 concentrations in August, the NH3 and H2S 

concentrations and emissions in October, and odour concentrations and emissions in 
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February (P > 0.05), and 2) significant diurnal variations in the OGCER (except for the 

odour concentrations and H2S emissions) have been observed in August (P < 0.05); only 

gas emissions showed significant fluctuation patterns in October (P < 0.05); no 

significant variations in the OGCER (except for the CO2 concentrations and emissions) 

were found in February (P > 0.05).  

 

A repeated measurement method was used to monitor seasonal OGCER in four 

grower/finisher rooms over a period of 12 months. It was found that: 1) the seasonal 

OGCER from the fully slatted flooring system was 2.9 to 40.6% higher than that from 

the partially slatted flooring system; however, the seasonal OGCER (except for the NH3 

concentrations in October, November and January; the CO2 concentrations in August and 

the CO2 emissions in December) between the two different floors for each measuring month 

did not differ significantly (P > 0.05); and 2) the seasonal OGCER was significantly 

affected by the sampling month (P < 0.05), and no specific seasonal pattern was observed. 

 

The statistical models developed for each type of the flooring system determined the 

OGCER based on the room and ambient temperatures, the ventilation rates and the 

animal units. The predicted results showed good agreement with measured values for 

most of OGCER (r2: 0.67-0.95). In order to improve odour and gas prediction models, 

animal activity and dirtiness of pens should be further investigated.  
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1. INTRODUCTION  
 

Ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2) and odorous gaseous 

compounds are produced by livestock facilities. These gases may affect the health of 

animals and nearby residents, deteriorate equipment and buildings, and potentially cause 

damage to the environment (Kurvits and Marta, 1998; Ni et al., 2002). With the 

increasing number of disputes and lawsuits against intensive swine operations, odour 

and gas emissions from swine barns have become a major issue for the swine industry, 

which is an important sector of the agricultural economy in Saskatchewan, Canada.   

 

Over the last decade, some abatement methods and strategies have been developed and 

utilized to alleviate odour and gas problems. However, few of these technologies are 

adopted by swine producers (Zhou and Zhang, 2003). A simple approach that is widely 

practiced for addressing odour and gas matters is to maintain adequate setback distances 

between the swine operation and the neighbouring residences. At present, some of the 

existing setback distance guidelines in Europe, Australia, and the U.S.A are all based on 

experience (Schauberger and Piringer, 1997; Jacobson et al., 2000; Lim, et al., 2000; 

Guo et al., 2004). However, it should be noted that it is almost impossible and 

impractical to generate setback distances merely based on experiments since every 

odour and gas source is different, every surrounding area is different, and weather 

conditions change constantly. Therefore, in order to determine reasonable science-based 
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setback distances, air dispersion models should be used to estimate downwind odour and 

gas concentrations from livestock operations. A good prediction of downwind odour and 

gas using air dispersion models relies largely on source emission rate information which 

is highly variable with diurnal and seasonal variations, building characteristics, 

ventilation rate, animal size and density, weather conditions and manure handling 

systems. 

 

Although source odour and gas emission rates are basic and important input data for air 

dispersion modeling, none of the existing models consider the diurnal, seasonal and 

climate variations of the odour and gas emission rates from livestock operations. Some 

researchers simply use the mean or geometric mean of the data measured randomly 

during the daytime at any time of the year as the emission rates to be used for setback 

determination (Jacobson et al., 2000). Using randomly measured emission rates for 

setback distance calculation may result in great uncertainties. Thus, it is vital to monitor 

the diurnal and seasonal odour and gas emission profiles for determining setback 

distances and providing useful information to improve setback guidelines. Furthermore, 

identification of the diurnal and seasonal odour and gas emission profiles will help to 

develop odour abatement strategies targeting high odour emission periods.  

 

The purpose of the present project is to determine and model odour and gas 

concentration and emissions from swine operations in Saskatchewan as affected by time 

of day, season, type of flooring system, and environmental parameters. 
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     2. LITERATURE REVIEW 

 

This chapter summarizes previous findings on odour and gas concentration and emission 

from swine production facilities. It is divided into three sections that respectively focus 

on diurnal and seasonal odour emission measurement, odour and gas measurement, and 

ventilation rate measurement.        

 

2.1 Diurnal and Seasonal Odour Emission Measurement  

 

There are three papers dealing with diurnal and seasonal odour emission measurements. 

Schauberger et al. (1999) developed a simple steady-state heat balance model to 

calculate the diurnal and annual variation of odour emissions and gave approximate 

emission results which showed a distinct diurnal and seasonal variation of the odour 

concentration. They reported that the annual variation of the odour concentration of the 

outlet air calculated for a pig fattening unit was between 687 and 3226 OU m-3 (Odour 

units per cubic metre (CEN, 1999)). They also stated that during a clear-sky summer 

period the model predicted the night time odour concentration of about 4.6 times the 

daytime concentrations due to the large variability of the ventilation rates. In the 

conclusions of this paper, it was suggested that the annual and diurnal variation of the 

odour release should be taken into account for dispersion models in order to improve the 

calculation of odour concentrations, as well as long-term measurements of the odour 
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emissions from animal houses were necessary. However, Schauberger et al. (1999) did 

not make any attempt to measure odour concentrations and emissions from the livestock 

buildings and demonstrate the validity of their model. 

 

Hartung et al. (1998) studied the diurnal course of the odour emissions from two 

piggeries, one dairy house and two biofilters. Odour samples were taken every two 

hours between 0700 and 1900 h and for the remaining time every three hours. A total of 

four 24 hr measurements were conducted. It was found that: (1) odour emissions from 

swine buildings had a pronounced diurnal pattern; (2) no clear odour release pattern was 

observed for the dairy house, and (3) the odour reduction of biofilters was mainly 

affected by the odour concentration in the waste air. Although the authors mentioned 

that at least four to six odour samples per day needed to be monitored under summer and 

winter climate conditions, they only took samples during the summer period. It could be 

inferred that winter experiments might reveal different results of the diurnal variations 

for odour emissions from different livestock facilities.      

 

Zhu et al. (2000) monitored seven different animal facilities to determine daily 

variations in emissions of odour, ammonia, and hydrogen sulfide. In the experiment, air 

samples from five different swine buildings (finishing A, finishing B, gestation, 

farrowing and nursery), one dairy barn and one broiler barn were collected every two 

hours over a 12-hour period during the day for odour and gas measurement. It was found 

that a nursery building had the highest emission rates for odour and hydrogen sulphide 

(maximum: 50 OU m-2s-1 and 140 gµ  m-2s-1, respectively) and a naturally ventilated 
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swine finishing building had the highest ammonia emissions (maximum: 170 gµ  m-2 s-1) 

when the building was running at full capacity. However, this study had some 

limitations. First, in every animal building, only one 12- hour measurement was 

conducted. According to statistical principles (Townend, 2002), lacking replications in 

statistical model analysis would cause the results to be uncertain. Second, data were 

collected for just one month from the middle of September to the middle of October so 

it is unknown if some of the results could be applied to other seasons.  

 

2.2 Odour Concentration and Emission Measurement  

 

2.2.1 Odour Measurement Method 

 

Currently, the most common method for measuring odour is to use an olfactometer 

(Janni et al., 2002). This is a psychophysical method based upon the olfactory responses 

of individuals sniffing diluted odour samples presented by an olfactometer to determine 

odour concentration or intensity. Specifically, an olfactometer presents three air streams 

to the panellists. One of the air streams is a mixture of non-odorous air and an extremely 

small amount of odorous air from a sample bag. The other two air streams are only non-

odorous air. The panellists sniff each air stream and identify which air stream is 

different than the other two non-odorous air streams. Then the amount of odorous air is 

increased until 50% of the panellists correctly recognize the odorous air stream. The 

detection threshold is the flow rate of the non-odorous airflow rate divided by that of the 

odorous air when the panellists identify different air streams. The geometric mean of the 

panellists is taken as the odour concentration or odour detection threshold (OU: odour 
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units). The odour concentration of a sample is often expressed as odour units per cubic 

meter (OU m-3) for calculation of odour emission rate (CEN, 1999).  

 

During the odour measurement, the retrospective screening is carried out according to 

the European Standard for determining odour concentration by dynamic olfactometer 

(CEN 1999). Screening of odour panellists is performed on all of the assessors 

according to the European Standard (CEN 1999). Two panel selection criteria are: 1) the 

geometric mean of the individual threshold estimates expressed in mass concentration of 

the n-butanol gas had to fall between 20 to 80 ppb, and 2) the antilog of the standard 

deviation calculated from the logarithms of the individual threshold estimates, expressed 

in mass concentration of n-butanol gas, had to be less than 2.3 to ensure the consistency 

requirement. Although olfactometry is one of the most accepted means for evaluating 

odour samples, its measurement uncertainty is very large. Clanton et al. (1999) studied 

dynamic olfactometry variability in determining odour concentrations and found that the 

whole-panel variation ranged from a 22% to 50% difference in reported odour units for 

the same sample, and using two different airflow rate calibrations resulted in a 9% to 

28% difference in odour concentrations for the same sample.  

 

2.2.2 Previous Odour Concentration and Emission Research 

 

To allow comparison with other research results, odour emissions are often presented in 

two ways: 1) emissions are expressed on the weight and number of animals basis by 

dividing the total emissions by the animal units (1 AU = 500 kg live weight), and 2) 
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emissions are expressed on the building floor area basis by dividing the total emissions 

by the total floor area of the room.  

 

Jacobson et al. (1998) measured odour and gas reductions from sprinkling soybean oil in 

pig nurseries located in Minnesota between December and March. The average weight 

of pigs was 7-16 kg for two six-week growth cycles. It was observed that the mean 

odour concentrations of ventilation air samples taken in the control and treatment rooms 

were 461 and 251 OU m-3, respectively. However, the odour emissions were not 

reported in this study. 

 

Heber et al. (1998) monitored odour emissions from four mechanically ventilated swine 

finishing houses between April and August. The buildings had long-term manure 

storage beneath fully slatted floors. The mean odour concentration of 109 measurements 

was 142 OU m-3, and the mean odour emission rate was 36 OU AU-1 s-1. The geometric 

mean building odour emission rate was 3,990 OU/s, or 5.0 OU m-2 s-1. 

 

Lim et al. (2001) conducted research on odour emission rates from two commercial 

swine nurseries in Indiana during the months of March, April, and May. The nurseries 

housing 94 to 250 pigs were mechanically ventilated with long-term manure storage pits 

under wire floors. Five sampling visits were made to each nursery and nine or ten air 

samples were collected during each visit. They found that the mean odour emission rates 

of two nurseries were 18.2 and 62.5 OU AU-1 s-1 (1.1 and 2.7 OU m-2 s-1) respectively, 
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as well as the mean odour concentrations of ambient and ventilation exhaust air were 18 

and 199 OU/m3 respectively.  

 

Schmidt et al. (2002) studied the odour and gas emission rates from three naturally 

ventilated animal buildings (swine, dairy, and turkey). Ammonia and hydrogen sulfide 

were monitored continuously for a 10-day period during the summer and a 10-day 

period in the winter; while grab samples of odour were taken once during the summer 

measuring period. It was observed that the odour emission rate from the swine barn was 

55 OU AU-1 s-1 (15 OU m-2 s-1).      

    

Gay et al. (2003) observed odour levels emitted from more than 200 animal housing 

facilities in Minnesota. The odour emissions from naturally and mechanically ventilated 

finishing pig barns ranged from 0.071 to 745 OU m-2 s-1 with a geometric mean of 6.68 

OU m-2 s-1. They stated that odour emissions from swine facilities were generally higher 

than the emissions from beef, dairy, or poultry facilities and were highly variable in 

accordance with some observations due to the differences between sampling sites, 

seasons, ambient air temperature, and the methods used for estimating building 

ventilation rates.  

 

Hayes et al. (2003) investigated odour emission rates at three pig units: one was at the 

University College Dublin Research Farm with 72 finishing pigs; the other two were 

commercial scale integrated operations with 300 and 1300 sows from birth to finishing. 

They reported that the minimum odour emission rate in pig housing was 4.6 OU pig-1 s-1 
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for first stage weaners and the maximum was 66.4 OU pig-1 s-1 for farrowing houses.  

The mean odour emission rates for finishing pigs ranged from 6.0 to 10.7 OU pig-1 s-1.             

           

Study on measurements of odour and hydrogen sulfide emissions from ten swine farms 

in Canada by Zhou and Zhang (2003) showed that the average odour concentrations 

from barn exhaust ranged from 131 to 1842 OU m-3 and odour emissions from 12 to 39 

OU m-2 s-1. No apparent correlations were found between the odour concentration and 

the general farm characteristics, such as years of operation, type of operation, ventilation 

system, and manure handling system. 

  

2.3 Gas Concentration and Emission Measurement 

  

2.3.1 Gas Measurement Method 
 

Many measurement methods have been employed to measure ammonia, hydrogen 

sulfide and carbon dioxide concentrations from livestock facilities (Janni et al., 2002). 

To measure ammonia concentrations, the most common methods include the pH test 

paper method, gas detection tubes, Fourier transform infrared spectroscopy, non-

dispersive infrared gas analyzer, ultraviolet differential optical absorption spectroscopy, 

and chemiluminescence analyzing. To measure hydrogen sulfide concentrations, a 

portable electronic device, Jerome™ meter (JEROME 631-X, Arizona Instrument Co., 

Phoenix, AZ, USA) or a pulsed-fluorescence sulphur dioxide analyzer is often used. To 

measure carbon dioxide concentrations, a gas chromatograph is generally considered a 

measuring device.  
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2.3.2 Previous Gas Concentration and Emission Research 

 

Aarnink et al. (1995) studied the ammonia emission of growing pigs in buildings with 

partially slatted floors to determine its pattern and variation under practical conditions. 

Five groups of 40 weaned piglets and three groups of 36 fattening pigs were used. The 

results showed the mean ammonia emission was 0.87 g d-1 per rearing pig (range 

between groups 0.70-1.20 g d-1) and 5.8 g d-1 per fattening pig (range between groups 

5.7-5.9 g d-1), and a mean daily increase in emission of 30 mg d-1 per rearing pig and of 

85 mg d-1 per fattening pig. It was also investigated that the ammonia emission was 

higher during the day than during the night, by 10% for piglets and 7% for fatteners. The 

emission for rearing pigs was 56% higher during the summer period than the other 

periods of the year, but this was not found in fatteners.      

 

Groot Koerkamp et al. (1998) studied ammonia emissions from 14 livestock housing 

types for cattle, pigs and poultry in England, The Netherlands, Denmark and Germany. 

Concentrations of ammonia were measured at seven locations inside and one location 

outside in four replicates of each housing type over 24 h under summer and winter 

conditions. It was found that mean ammonia concentrations were between 5 and 18 ppm 

in the pig houses as well as ammonia emission rates from pig houses (sows, weaners, 

and finishers) varied between 22 and 1298 mg h-1 per animal or 649 and 3751 mg h-1 

(500 kg) live weight. The authors mentioned that these emissions should be used 

carefully even though they were based upon a very large survey because of large 

variation between countries, between commercial houses and between seasons. They 
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also stated that the possible disadvantage of the short measuring period (24 h) in each 

house was probably well overcome by the number of repetitions of measurements in 

four replicates of each housing type under summer and winter conditions when the 

measured results compared with the Dutch data. 

 

Ni et al. (2000a) measured NH3 emission rate from a finishing swine building. A total of 

88 days of data was obtained by taking continuous measurements during warm weather 

from June 26 with 887 19.4 kg-pigs to September 25 with 874 83.1 kg-pigs. The mean 

NH3 concentration was 3.9±0.3 mg m-3 and ranged from 1.9 to 7.4 mg m-3. The average 

daily mean building NH3 emission was 11.2±1 kg d-1 (equivalent to 145±10 g AU-1d-1). 

The emission rate per AU was higher than other reported values probably because of 

warm temperatures and high ventilation rates, and was correlated to total pig weight (r2 

= 0.49). The low value indicated that there was no significant relationship between the 

NH3 emission and the total pig weight. 

 

Ni et al. (2002) also reported hydrogen sulfide emission rates from two 1000-head pig-

finishing buildings in Illinois, USA. The emissions were monitored with a high-

frequency measurement system between March and September in 1997. Air sample 

streams were continuously taken from pit fans, wall fans and pit headspaces. Average 

building H2S emission rate was 591 g d-1 or 740 mg m-2 d-1 of pit surface area or 6.3 g 

AU-1 d-1. It was observed that hydrogen sulfide emission rate increased with temperature 

and building ventilation rate. 
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Zhu et al. (1999) measured the ammonia and hydrogen sulfide emissions at seven 

different animal facilities from the middle of September to the middle of October in 

1998. They reported that the nursery building had the highest hydrogen sulfide emission 

rates (140 gµ  m-2 s-1) and the highest ammonia emissions (170 gµ  m-2 s-1) occurred in 

the naturally ventilated swine finishing building. They also found that there was no 

significant difference in average ammonia and hydrogen sulfide concentrations over the 

12-h sampling period for all the animal facilities.             

  

Zhou and Zhang (2003) declared that the average H2S concentration and emission rate 

spanned from 148 to 927 ppb and from 6.4 to 25.1 mg m-2 s-1 of floor area, respectively, 

on all six farms. 

 

Osada et al. (1998) measured CO2 from pig units. Carbon dioxide presented a typical 

diurnal fluctuation pattern. At a constant indoor temperature of around 17 oC, the CO2 

emissions observed at the peak hours (1300-1400 h) was twice as high as that observed 

around 0600 h. The CO2 emission from pig units during a full 8-week finishing period 

was evaluated to 5540 g pig-1. It was also observed that the increase in CO2 production 

might also have some relationship with the pig excreting activities. 

 

Ni et al. (2000b) evaluated the relative contribution of under-floor 2.4-m deep manure 

storage pits to the global release rates of CO2, H2S, and NH3 from two commercial 

swine finisher barns. In the first test, a new manure additive was applied in the pit to 

reduce gas and odour emission. The pit ventilation mode was employed and the building 
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was heated for about 1 h. In the second test, the pit did not receive the additive 

application. The tunnel ventilation mode was used and the building was heated for about 

2 h. It was observed that the maximum CO2 release rates after heating were 3.4 kg h-1 in 

the first test and 7.0 kg h-1 in the second test, as well as the CO2 unit emission rates were 

within the range of 0.8 to 118.4 g m-2 h-1.  

 

2.4 Ventilation Rate Measurement Method 

  

Odour and gas emissions are usually calculated by multiplying ventilation rates by the 

concentration of an odour and gas in the exhaust airflow stream (Smith and Dalton, 

1999). The existing methods of ventilation rate measurement include the fan testing 

report method, velocity traverse method, carbon dioxide mass balance method, tracer 

gas method and heat balance method. However, it is very difficult to measure and obtain 

an accurate ventilation rate. The reason could be due to the fact that the ventilation rate 

is affected by a variety of factors including diurnal climate variations and animal 

activity causing frequent changing of fan running conditions, dust accumulation on fan 

shutters and blades, loose fan belts, changes in building static pressure, and changing of 

power supply to the fans (Bicudo et al., 2002). Up to now, the use of static pressure 

readings and the fan testing report method for mechanically ventilated buildings and 

carbon dioxide measurements for naturally ventilated or “hybrid” buildings can provide 

relatively accurate estimates of ventilation rate (Gay et al., 2003). 
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The fan testing report method is to estimate the airflow rates of all the fans by measuring 

the fan speeds and the static pressure of the room. Using the fan testing report obtained 

from the fan testing organizations or fan manufacturers and the measured fan speed and 

room static pressure, the air flow rates of each fan can be determined.  

 

The carbon dioxide mass balance method entails estimating the carbon dioxide 

production rate from the pigs and measuring CO2 concentrations of the incoming and 

exhausting air. Although this technique is less accurate due to the error in CO2 

production rate estimation, it has the advantage of being applicable in principle to 

ventilated houses. The ventilation rate was given by (Albright, 1990), 

   )10)/(( 6−×−= inout CCPV                                                                                          (2.1)   

where V  is the ventilation rate, m3 h-1; P  is the carbon dioxide production rate, m3 h-1; 

outC  is the outside carbon dioxide concentration, ppm; and inC  is the inside carbon 

dioxide concentration, ppm.  

 

2.5 Summary of Literature Review 

 

In the literature, very few research projects were related to diurnal and seasonal odour 

emission measurements as well as odour and gas emission prediction models. 

Specifically, (1) few projects were conducted to monitor diurnal and seasonal odour 

concentrations and emissions from swine production facilities; (2) little has been done to 

quantify the different of odour and gas concentrations and emissions for two different 
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flooring systems (fully slatted floors and partially slatted floors) in confined swine 

rooms, and (3) little has been done to develop odour concentration and emission models. 

  

On the other hand, odour and gas emission results from numerous experiments for 

different swine production facilities were widely discussed and presented. The large 

variability in concentration and emission data found in the literature clearly indicates 

that there exists a need to better determine the relative contributions of the different 

stages of swine production to the odour and gas concentrations and emissions. 

Additionally, it is considered that the area of grower/finisher pigs is the biggest in the 

experiment barn and grower/finisher pigs consume more than 60% of feed for all the 

pigs. Therefore, the purpose of the present project is to monitor and model diurnal and 

seasonal odour and gas emission profiles for swine grower/finisher rooms with partially 

and fully slatted floors. 
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3. OBJECTIVES 

 

The over-arching goal of this project is to monitor and model diurnal and seasonal odour 

and gas emissions from swine grower/finisher rooms in Saskatchewan.  

 

The first objective is to monitor diurnal profiles of odour and gas (ammonia, hydrogen 

sulfide, and carbon dioxide) concentrations and emissions (OGCER) for two different 

flooring systems (fully slatted floor and partially slatted floor) of confined swine 

finishing rooms, as well as to determine relationships among odour, ammonia, hydrogen 

sulfide, and carbon dioxide concentrations under different weather conditions. 

 

The second objective is to measure seasonal OGCER to identify the relationship 

between OGCER and inside and ambient temperatures, the age and weight of pigs, and 

different flooring systems of swine rooms. 

 

The third objective is to develop mathematical models for predicting OGCER as 

functions of diurnal, seasonal, and climate variations, ventilation rates, and animal units 

(representing pig size and density), etc. The result could provide the scientific basis for 

measuring, adjusting, and estimating OGCER at various times for swine grower/finisher 

facilities in Saskatchewan.  
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4. MATERIALS AND METHODS 

 

This research project was conducted at the PSC (Prairie Swine Centre) Elstow Research 

Farm Inc., 50 km away from Saskatoon, Saskatchewan, from August 2004 to July 2005.   

   

4.1 Description of Experimental Swine Rooms 

 

The PSC Elstow Research Farm consists of 16.2 hectares (40 acres) with an 

approximately square shape (408 m or 1340 ft per side). It included the main 600-sow 

farrow-to-finish barn, the earthen manure storage with a 400-day capacity, the feed mill 

with a capacity to produce 6000 tonnes of feed per year and the manager’s residence 

(Prairie Swine Center Inc., 2005).  

 

Odour and gas concentration and emission measurements were conducted in four 

identical mechanically ventilated growing/finishing rooms (rooms 6, 9, 10, and 11), 

which are controlled with integrated environmental control systems (Model-Supra, 

Phason Inc., Winnipeg, Manitoba, Canada). Each room is 19.7 m x 12.7 m with a 

flooring surface area of 250.2 m2, and has 16 pens, 8 on each side of a central alleyway. 

The pens are 5.8 m long by 2.4 m wide providing 0.88 m2 per pig (Figure 4.1).   
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Room 6 is located on the opposite side of rooms 9, 10 and 11. Room 9 is next to room 

10 and there is a small loading room (‘GL’) between rooms 10 and room 11.  Rooms 6 

and 9 have partially (37%) slatted floorings and rooms 10 and 11 have fully slatted 

floorings. 

  

Figure 4.1 Layout of the grower/finisher rooms (blue lines indicate slatted flooring; red 

lines present rooms 6 and 9 having partially slatted floorings; green lines present rooms 

10 and 11 having fully slatted floorings; small purple rectangle indicates the location of 

the environment measuring system in the hallway).  
 

In two growing/finishing rooms, manure gutters were designed to allow collection of 

slurry on a pen by pen basis. There are two individual isolated gutters under each of the 

16 pens in these two rooms. Concrete was added to the gutter bottoms to create a “Y” 

cross-sectional shape for more complete clean out.  

 

Figure 4.2 shows the layout (top view) of the swine growing/finishing room. The fresh 

air is supplied to the experiment room from the attic/ceiling.   
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Figure 4.2 Layout (top view) of the swine room (exhaust fan  ; odour and gas 

outlet sampling location ■; inlet gas sampling location●). 

 

The monitoring of diurnal odour and gas concentration and emission has been done in 

rooms 9 and 10 while the measurements of seasonal odour and gas emission rates have 

been in all four rooms 6, 9, 10 and 11.  

 

4.2 Odour and Gas Concentration and Emission Measurement Experiment Design  

 

4.2.1 Diurnal Measurement Experiment Design and Statistical Analysis   
  

The purpose of monitoring diurnal odour and gas concentration and emission was to 

obtain diurnal odour and gas concentration and emission profiles during different 

periods. Saskatoon climate information based on monthly averages for the 30-year 

period 1971-2000 is given in Table 4.1. 
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Table 4.1 Saskatoon climate information (World Meteorological 

Organization). 

Mean Temperature ( °C ) 
Month Daily Minimum Daily Maximum Monthly Average   

Jan -22.3 -11.8 -17.1 
Feb -18.2 -7.8 -13.0 
Mar -10.9 -0.7 -5.8 
Apr -1.9 10.6 4.4 
May 4.5 18.4 11.5 
Jun 9.4 22.6 16.0 
Jul 11.4 24.9 18.2 

Aug 10.2 24.4 17.3 
Sep 4.4 18 11.2 
Oct -1.9 10.8 4.5 
Nov -10.9 -1.5 -6.2 
Dec -19.4 -9.2 -14.3 

 

The climate information shown in Table 4.1 could be separated into three typical 

weather conditions: warm weather (May, Jun, Jul, Aug and Sep), mild weather (Apr, 

Oct) and cold weather (Jan, Feb, Mar, Nov and Dec). Thus, the diurnal measurements 

were conducted three times (once a month in August, October, and February) in rooms 

9 and 10 under the three typical weather conditions.   

 

In order to meet statistic validity requirements, sufficient repetition and replication are 

necessary (Townend, 2002). It should also be considered that odour and gas sampling 

and measuring are time consuming and costly (over $ 100 per sample). Hence, it was 

decided that a strip-block design would be appropriate for investigating the influence of 

different flooring systems, air temperature, ventilation rate, pig size and density, and 

swine management, etc. on the daily variations of odour and gas concentrations and 

emissions from the two types of swine rooms. In the strip-block arrangement, the 

experiment involves two factors, the ‘Flooring’ factor and the ‘Diurnal’ factor. The 
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‘Flooring’ factor was defined as a main-plot factor with two levels: fully slatted 

flooring system and partially slatted flooring system. The ‘Diurnal’ factor was treated 

as a function of ventilation rate, outside and room temperature, and swine management 

during different intervals per measurement day and was assigned to the sub-units (sub-

plots) in the whole-plot. It was decided that odour and H2S were measured once every 

three hours by continuously sampling the exhaust air to air sampling bags; while NH3 

and CO2 were measured hourly. Therefore, the ‘Diurnal’ factor had eight levels for 

odour and H2S concentrations and emissions, as well as twenty-four levels for NH3 and 

CO2 concentrations and emissions (A 24-hour period per day divided by every 3 hours 

or every hour produced eight or twenty-four time intervals). A total of two blocks (two 

consecutive measuring days) was used for each measurement.  Thus, the diurnal 

experiment was referred as a two-factorial design with 16 levels and 32 treatments for 

odour and H2S, as well as 48 levels and 96 treatments for NH3 and CO2. The detailed 

layout of the 2×8 strip-block plot for odour and H2S is illustrated in Table 4.2. 

Table 4.2 Detailed layout of the 2×8 strip-block plot design.* 

Day 1 (block 1)  Day 2 (block 2) 

Room 9 Room 10 Room 9 Room 10 
1800 – 2100h 1800 – 2100h 1800 – 2100h 1800 – 2100h 

2100 – 0000h 2100 – 0000h 2100 – 0000h 2100 – 0000h 

0000 – 0300h 0000 – 0300h 0000 – 0300h 0000 – 0300h 

0300 – 0600h 0300 – 0600h 0300 – 0600h 0300 – 0600h 

0600 – 0900h 0600 – 0900h 0600 – 0900h 0600 – 0900h 

0900 – 1200h 0900 – 1200h 0900 – 1200h 0900 – 1200h 

1200 – 1500h 1200 – 1500h 1200 – 1500h 1200 – 1500h 

1500 – 1800h 1500 – 1800h 1500 – 1800h 1500 – 1800h 

                            *This table is for odour and H2S experiment design. Room 9 has partially 
                              slatted floors and room 10 has fully slatted floors.           
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Statistic Analysis System (SAS) computer software (SAS Windows Version 8.02, Cary, 

NC) was employed to analyze the data to indicate the possibility of cause and effect 

relationships between variables (e.g. different flooring and diurnal effects) and odour 

and gas concentrations and emissions.   

 

In the SAS program, a model for the strip-block analysis can be expressed as: 

ijkikjkkijjiijk uY εαβγβθαρ +++++++= )()()(                                                       (4.1) 

where: ijkY is the odour and gas concentration or emission; u  is the overall mean; iρ  is 

the block effect; jα  is the effect of factor A (‘Flooring’); ijθ  is the random effect of the 

whole-plot units involving factor A; kβ  is the effect of factor B (‘Diurnal’); jkγ  is the 

random effect of the whole-plot units involving factor B; ik)(αβ  is the interaction effect 

for factor A and B (‘Flooring*Diurnal’), and ijkε  is the random effect of the sub-plot 

units. Table 4.3 gives the source of variation and degrees of freedom for the strip-block 

experiment. 

                           Table 4.3 Source of variation and degrees of freedom for 

the strip-block experiment.    

Source of Variation Degrees of Freedom  

Blocks (day)  1 
Factor A (flooring) 1 

Error (a) 1 
Factor B (Diurnal) 7(23) 

Error (b) 7(23) 
A * B 7(23) 

Residence Error 7(23) 
Total 31(95) 

                                       Note: Numbers in parenthesis indicate NH3 and CO2 data analysis. 
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Duncan’s Multiple Range test, Fisher-protected LSD test, PROC GLM and ANOVA 

(analysis of variance) table were used for data analysis. In the SAS output, the P-value 

was studied to examine the statistical significance of the effect of individual factors. If the 

value was less than α=0.05, then H0 was rejected (H0: null hypothesis, which means that 

there is no difference between two compared values), that is to indicate the means variance 

in one group was significant. If the value was greater than α=0.05, H0 was accepted, that is 

to indicate the means variance in one group was not significant. An ANOVA analysis was 

also completed to evaluate the individual factors and their effect on each other as well as 

to determine if there was an interaction between the two factors (the main-plot and sub-

plot factors). If there was no interaction between the factors, then the factors acted 

independent of each other and it was appropriate to compare the averages for each level 

of a single factor. If the effect of one factor was different depending on the level of 

another factor, then the factors were not independent of each other. When factors 

interacted, comparison of the main effects was inappropriate and study of the responses 

of the factor within each level of the interacting factor needed to be investigated.  

 

4.2.2 Seasonal Measurement Experiment Design and Statistical Analysis   
 

The purpose of monitoring seasonal odour and gas concentration and emission in this 

study was to obtain seasonal odour and gas concentration and emission profiles. 

According to statistical principles, it was decided to use a repeated measurement method, 

which was suitable for the same experimental unit over a period of time. Thus, the 

seasonal experiment had been designed over a period of 12 months from August 2004 to 

July 2005 in four growing/finisher rooms. Grab samples of odour and gas were made 
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once each month during the monitoring period. For each measurement, one air sample 

was collected from each room. The sampling work was conducted at 1000h due to 

higher pig activities at that time that could result in higher odour and gas generation.  

 

In statistical analysis, each sample month was treated as a repeat factor. The flooring 

system was a main factor having two levels, namely partially slatted flooring system and 

fully slatted flooring system. Each room with the same type of flooring system was 

considered as a block.  

 

In the SAS program, the model of a split-block in time analysis was introduced. It was 

composed of two parts, a treatment part and a time part. The model can be expressed as: 

ijkjkkijjiijk uY εαββεαρ ++++++= )()(                                                                (4.2) 

where: ijkY is the odour and gas concentration or emission; u  is the overall mean; iρ  is 

the block effect; jα  is the effect of main factor A (‘Flooring’); ijε  is the random effect 

of the whole-plot units involving main factor A; kβ  is the effect of the repeated measure; 

jk)(αβ  is the interaction effect for factor A and measurement month, and ijkε  is the 

random effect of the time portion. To apply the split-block model, it is assumed that 

there is equal variance for random effects among both subjects and across time intervals. 

Table 4.4 gives the source of variation and degrees of freedom for the repeated 

measurement experiment. 
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                       Table 4.4 Source of variation and degrees of freedom for 

the repeated measurement experiment. 

Source of Variation Degrees of Freedom 

Block(room) 1 
Flooring 1 

Block*Flooring 1 
Month 10 

Block*Month 10 
Flooring*Month 10 

Error 10 

Corrected Total 43 
 

‘Proc MIX’ and ‘Proc GLM’ were used for developing analysis models to evaluate if the 

odour and gas concentrations and emissions differed significantly between the two 

flooring systems over a 12-month sampling period. The SAS output analysis process 

had two steps. The first step was to examine whether the interaction of ‘Flooring’ and 

‘Month’ factors was significant or not. If the P-value of the interaction was greater than 

0.05, which indicated the relative performance of flooring system did not differ over the 

sampling months, then the next step was to conduct the means comparison of the four 

rooms’ seasonal odour and gas concentrations and emissions in time analysis. If the P-

value of the interaction was less than 0.05, which indicated the relative performance of 

flooring system differed significantly over the sampling months, then the next step was 

to analyze the effect of ‘Flooring’ factor on odour and gas concentrations and emissions 

under each month level. 
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4.2.3 Diurnal and Seasonal Odour and Gas Modelling Method  

 

Statistical models were developed for estimating odour and gas concentrations and 

emissions as a function of time of a day and season, ventilation rate, ambient and room 

temperatures and pig size and density, etc.  

 

To develop the models, odour and gas concentrations and emissions were regarded as 

the output component. As for the model input portion, Berckmans et al. (1994) 

considered three principal energy inputs for air quality models: 1) the energy inputs 

from the animals; 2) the energy inputs from the inside and outside environment; 3) the 

energy inputs from the ventilation systems. Specifically, animal number and weight can 

reflect the energy inputs from the animals. Room and outdoor temperatures can reflect 

the energy inputs from the inside and outside environment and the animal body. 

Ventilation capacities can reflect the energy inputs from the ventilation systems. Thus, 

animal units (AU = 500 kg animal mass), room and outside temperatures, and 

ventilation rates were deemed as important factors for model input variables that 

affected the odour and gas concentration and emission. In this study, all diurnal and 

seasonal odour and gas concentrations and emissions data were pooled together for the 

model development. 

 

Linear models were considered for the prediction models. In the SAS program for each 

odour or gas concentrations or emissions, several ‘GLM’ models were made and a best 
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prediction model was picked up according to their statistical analysis results. The 

detailed model development results are provided later in Section 5.3. 

 

4.3 Odour and Gas Emissions Measurement Methods  

 

4.3.1 A General View of Odour and Gas Measurement 

 

Odour and gas emission rate (E) was determined by multiplying the total airflow rate of 

the ventilation fans by the increase in odour and gas concentrations between the room 

ventilation inlet and outlet: 

                   CVE ∆=                                                                                                    (4.3) 

where: E is the total odour or gas emission rate from a room with unit of OU s-1 (odour 

unit per second), g d-1 (gram per day), or kg d-1 (kilogram per day). V is the room 

ventilation rate, m3 s-1 and C∆  is the difference in odour or gas concentrations between 

the room ventilation inlet and exhaust air, with unit of OU m-3 (odour unit per cubic 

metre), ppm, or mg m-3 (milligram per cubic metre). Odour and gas emission rates can 

be expressed on an animal unit basis or building floor area basis by dividing the total 

emissions by the total animal units in the room or total area of the room, i.e. OU AU-1 s-1 

(odour unit per animal unit per second), g AU-1 d-1 (gram per animal unit per day), or kg 

AU-1 d-1 (kilogram per animal unit per day),  OU m-2 s-1 (odour unit per square metre per 

second), or g m-2 s-1 (gram per square metre per second), or kg m-2 s-1 (kilogram per 

square metre per second).  
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Thus, in order to obtain odour, NH3, H2S and CO2 emission rates, the measurement of 

odour and gas concentration differences between the outgoing and incoming air was 

essential. There were two measurement locations inside a room: one was at the inlet for 

incoming air concentrations, and the other was near the exhaust fans for outgoing air 

concentrations. It should be noted that incoming odour concentrations were ignored due 

to very low ambient odour concentrations. Hence, odour concentration was only 

measured near the exhaust fans. H2S concentrations were also measured from the 

exhaust fans using the same air samples taken for odour concentration measurement 

because the outside H2S concentration was very low and the H2S meter could not be 

taken inside the barn due to the bio-security regulations of the barn. In this study, odour 

and gas concentration was the net concentration of odour and gas generated in the room.  

 

In order to get the total ventilation rates, the speeds of all running fans including 

variable speed fans and the on/off single speed fans were monitored. The static pressure 

of the room was also measured.   

 

Meanwhile, environmental parameters such as room and ambient temperature and 

relative humidity were also measured to obtain the barn and ambient climatic 

information. The room temperature and relative humidity sensors were located in the 

middle of the room 1.5 m above the floor. The ambient temperature sensor was located 

in the air inlet to measure the incoming air temperature. The locations of all sensors 

were the same for all experimental rooms, as shown in Figure 4.3.  
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Figure 4.3 Measurement locations in an experimental room (variable-speed fan ♦; 

single-speed fan ▲; exhaust air sampling locations ●; inlet air sampling and room 

temperature, relative humidity location ■). 

 

4.3.2 Odour Concentration Measurement 

 

As shown in Figure 4.3, odour samples were taken near the exhaust fans using 0.05 mm 

thick, 10-L Tedlar™ bags (Sample bags 232 series, SKC In., PA, USA). Before 

collecting a 6 to 7 L sample, the bag was flushed with 2 to 3 L of the sample air and 

emptied manually. For seasonal measurement, a commercial-made vacuum box was 

used to collect exhaust air in the sampling bags. An air pump was used to create a 

negative pressure in the vacuum box causing air to enter the sample bags without 

contamination from a mechanical pump. The amount of time to collect a sample (filling 
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a Tedlar™ bag) was about 2 to 5 minutes. Each sample, therefore, represents a 2 to 5 

minute average odour concentration at the desired time. For diurnal measurement, two 

identical air samples were taken every three hours by continuously pumping exhaust air 

into the sample bags using a peristaltic pump (Masterflex L/S tubing pump plus Model-

07017-52 pump head, Cole-Parmer Instrument Company, Illinois, USA). Therefore, it 

represented the average odour concentration of a 3-hour period. 

 

Collected samples were transported overnight to the Olfactometry Laboratory at the 

University of Alberta for odour measurement within 30 hours. These odour samples 

were assessed by a dynamic-dilution, forced-choice olfactometer designed and built by 

the University of Alberta which meets the CEN (European standard) and ASTM 

olfactometry standards (ASTM, 1991). Eight screened odour panellists were used to 

determine the odour concentration that was expressed as the dilution-to-detection 

threshold (DT) or odour unit (OU). The detailed odour measurement method was 

discussed in Section 2.2.1.   

 

4.3.3 Gas Concentration Measurement  

 

Most ammonia, hydrogen sulfide and carbon dioxide concentration measuring devices 

provide direct reading on a volumetric basis. In this study, ammonia concentration was 

measured with an infrared NH3 analyzer (Chillgard RT refrigerant monitor, MSA 

Instrument Division, USA). The Chillgard RT refrigerant monitor uses photo-acoustic 

infrared sensing technology to achieve an accurate one ppm (part-per-million) resolution 
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of refrigerant gases or ammonia. The analyzer has a set measuring range of 0 to 100 

ppm with an accuracy of ±1 ppm. Hydrogen sulfide concentration was measured using a 

Jerome™ meter (JEROME 631-X, Arizona Instrument Corporation, Phoenix, AZ, USA). 

It offers an analysis range of 0.003 - 50 ppm for odour and corrosion control, safety, and 

leak detection in facilities such as wastewater treatment plants and in oil and gas 

production. The accuracy of the meter is ±0.003 ppm at 0.05 ppm, ±0.03 ppm at 0.5 

ppm and ±0.3 ppm at 5 ppm. The Jerome 631-X utilizes a patented gold film sensor. 

The sensor's selectivity to hydrogen sulfide eliminates interference from sulphur dioxide, 

carbon dioxide, carbon monoxide, and water vapours. Carbon dioxide concentration was 

measured using an infrared carbon dioxide monitor (Guardian Plus Infra-Red Gas 

Monitor, Edinburgh Sensors Limited, Hingham, MA, USA) with ± 2% accuracy of the 

range (0 to 3000 ppm) and a hand held carbon dioxide air quality monitor (Edinburgh 

Sensors Limited, Hingham, MA, USA) with ± 3% accuracy of the range (0 to 5000 

ppm). During each measurement, the gas concentrations were monitored three times. 

Then the average was obtained in order to decrease random error. In virtue of the 

characteristic of gas that varied very slowly within a period of time (ten minutes or so), 

the uncertainty of measurement was largely attributed to the accuracy of the meter used. 

So the error of gas data was tiny if the meter was properly calibrated and operated.         

 

4.3.4 Ventilation Rate Measurement  

 

There were five ventilation fans mounted on the back exterior wall for each experiment 

room. Three were variable-speed fans (TR24F, Prairie Pride Enterprises, Winnipeg, MB, 

Canada), which provided two ventilation stages (stages 1 and 2). The other two fans are 
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single-speed fans (TR36D01, Prairie Pride Enterprises, Winnipeg, MB, Canada), which 

formed the latter two ventilation rate stages (stages 3 and 4).  

 

For the variable speed fans, there were three steps to determine the ventilation rate: (1) 

using a fan speed sensor installed on each fan shaft to measure fan RPM and a pressure 

transducer to measure the static pressure difference between the inside and outside of 

the swine barn. Also, the ON or OFF state of the single speed fans was monitored, (2) 

using fan testing report from the BESS lab, University of Illinois (Bio-environmental 

and Structural Systems Lab, 2001) as well as the measured fan RPM and pressure data 

to estimate the ventilation rate, and (3) modifying the ventilation rate using the field-

based measurement results obtained by verifying the fans on site. The detailed fan 

model specifications and calibration results are given in Section 4.7.2.          

 

The variable–speed fan RPM was measured using a microswitch Hall Effect position 

sensor (SR3F-A1, Honeywell Inc., Freeport, Illinois, USA). It has an integrated circuit 

chip that contains the Hall element and signal conditioning electronics. The SR3F Hall 

sensor senses the field produced by the magnetic system. The magnetic system responds 

to the physical quantity (position) to be sensed through the input interface. The output 

interface converts the electrical signal from the Hall sensor to a signal that meets the 

requirements of the RPM phase-locked loop circuit (Figure 4.4). 

 

As Figure 4.4 shows, the output signal from the Hall sensor was a frequency signal. This 

signal was fed to a phase-locked loop circuit in order to lock this signal, multiply it by 
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100, synchronize a sweep or system timing to it, remove noise from it, and band pass-

filter it. In the circuit, a locally generated signal from a voltage-controlled oscillator 

(VCO) was provided. The output of the VCO was then routed to a divide-by-n counter. 

The output of the divide-by-n counter was compared to the input fan frequency in a 

phase detector. The output of the phase detector was a voltage that represented the error 

between the input-signal phase and the phase of the divided-down VCO signal. In turn, 

this error signal was filtered and used to control the frequency of the voltage-controlled 

oscillator. The final filter-to-VCO connection closed the loop, forcing the VCO to track 

and follow the input fan frequency so that the output signal was proportional to the fan 

RPM. Finally, an F-V circuit was designed to convert the output frequency to voltage 

signal.  

 

 

 

 

 

 

   Figure 4.4 Schematic RPM phase-locked loop circuit. 

A differential pressure transducer (Model 264, Setra System Inc, Boxborough, MA, 

USA) with an accuracy of ± 1% full scale (0 - ± 0.5 in. W. C.) was utilized to measure 

the static pressure difference between the outside and inside of the barn. It has two tubes, 

one connected to the outside, and the other connected to the middle of the swine room. 

The Setra pressure transducer can convert the sensed pressure difference to a 
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proportional high level analog output for both unidirectional and bidirectional pressure 

ranges.  

 

4.4 Environmental Parameters Measurement 

 

The environmental parameters such as temperature and relative humidity inside and 

outside the barn were measured using temperature sensors (TC 1047, Microchip 

Technology Inc., Chandler, AZ, USA) and a relative humidity sensor (HIH-3160, 

Honeywell Inc., Freeport, Illinois, USA). The temperature sensor was a linear voltage 

output sensor that can accurately measure temperature from -40°C to 125°C with ±0.5°C 

precision. The relative humidity sensor was a laser trimmed thermo set polymer 

capacitive sensing element with on-chip integrated signal conditioning. The accuracy of 

the RH sensor was ±2% (25°C, V = 5 VDC). The RH (relatively humidity) sensors were 

covered with PVC covers to filter dust and light out to protect the sensors. 

 

4.5 Embedded Microcomputer-based Environment Measuring System Design  

 

An embedded microprocessor-based environment measuring system was designed and 

built for this study (Appendix A). All the environmental parameter monitoring signals 

from the temperature sensors, relative humidity sensors, fan on/off event devices, 

pressure transducers, and their peripheral measuring circuits were connected to the 

embedded microprocessor-based environment measuring system. 
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The environment measuring system had three parts as showed in Figure 4.5. The first 

part (embedded system) was an embedded micro-computer system (TFX-11v2, Onset 

Corporation, USA), which included dual-microcomputers, ADC inverters, flash data 

EEPROM, RAM, and input/output interface, etc. The second part (signal monitoring 

and processing) was to use temperature and relative humidity sensors, pressure 

transducers, variable-speed fan sensors and signal-speed fan detectors to measure 

environment information, as well as design signal processing circuits to convert the 

electrical signal from those sensors to the signals that met the requirements (0-5 V or 4-

20 mA) of the microcomputer system. The third part (communication) was a 

communication network to send data (various sensor inputs) to a laptop computer. All 

the measuring data could be monitored and downloaded from the laptop. Figure 4.6 

shows the picture of part of environment measuring system. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Embedded microprocessor-based environment measuring system. 
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Figure 4.6 Picture of part of environment measuring system. 
 

4.6 Animal Management Information    

At the end of each measurement, pig weight was measured using the weighing station 

installed in the grower/finisher wing. A male pen and a female pen were chosen from 

each test room. The total weight of the pigs in those two pens was measured and the 

average pig weight was estimated. The pig numbers for each room were also recorded. 

Thus, the total of pig weight in each room was calculated by the average pig weight 

multiplied by the pig numbers, as well as the total animal unit in the room was obtained 

by dividing the total animal weight by 500 kg animal mass. 

 

According to the pig production management, the grower/finisher wing has 14 rooms 

allowing for 1 room to be emptied, cleaned and re-filled each week. This allows for a 14 

week room rotation. Therefore, after every 14 weeks production cycle, the temperature, 
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relative humidity sensors and electrical connection boxes were sealed with duct tape to 

avoid any potential damage when the room was cleaned by the power-washing.  

 

4.7 Calibration of the Sensors and Verification of the Fan Airflow Rate        

 

4.7.1 Calibration of the Sensors 

 

All the temperature sensors, relative humidity sensors, pressure transducers and fan 

sensors were calibrated in the lab before being installed in the pig barn. The angelantoni 

climatic systems (Massa Martana, Italy), Hydro-MZ dew point monitor (General Ester 

Co, USA), pressure meter (HHP-103, OMEGA, England), 50 MHZ pulse generator 

(Model 801, Wavetek, CA, USA) and 1.3 GHZ frequency counter (FC130A, Beckman 

Industrial Co., CA, USA) were used to calibrate temperature sensors, relative humidity 

sensors, pressure transducers and Hall fan sensors respectively. The calibration results 

are presented in Appendix B.  

        

4.7.2 Verification of the Fan Air flow Rate 

 

In this study, the fan curve method was employed to verify ventilation rates. The fan 

speed and differential static pressure between inside and outside the barn can be 

measured automatically by the embedded microcomputer-based environment measuring 

system. Then the real-time dynamic measurements of fan ventilation can be obtained 

from the readings of fan speed and static pressure according to the lab test sheet. 
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However, the fans have been operating in the barn since March 29, 2001 and could have 

been affected by the barn environment. The field performance of the fans was likely 

different from the lab testing results. Hence, the airflow rates obtained from the fan 

curve method need to be corrected in order to obtain the real airflow rates. Fan 

verification could provide field-based measurements for modifying the results obtained 

by the fan curve method.  

 

As shown in Figure 4.7, the single speed exhaust fan (Model: TR36D01) was made by 

Prairie Pride Polyfan Enterprise, Winnipeg, MB, Canada.  The fan size was 91.4 cm 

(36’’) diameter. It had a short straight duct having the same diameter as the fan and top 

of length 33 cm and bottom of length 23 cm.  There was a guard installed in the duct.  

The measurement plane was about 5 cm inside the bottom edge of the duct. The variable 

speed fan was a model TR24F, 63.5 cm (25’’) diameter. The measurement plane 

location was the same as for the TR36D01 fan.    

 

Figure 4.7 Model TR36D01 exhaust fan. 
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Fan airflow rates were verified using an anemometer with an accuracy of ± 1.5% at 

10.16 m s-1 (Model 8385, Velocicalc Plus air velocity meter, TSI Inc., MN, USA). A 

total of 24 points needed to be measured at the traverse fan plane based on the ASHRAE 

Standards (AMCA Standards Handbook 51). Figure 4.8 showed the measurement points 

in the cross section of the exhaust duct.  

 

Figure 4.8 Measurement points in the plane. 

The average of the four measurements in the traverse plane at 60º angles was measured 

to an accuracy of 0.2% D (D: diameter of the duct). Before starting calibration, the 

measurement points were marked at the guard according to Figure 4.8. Under each of 

the various static pressure control setups, the anemometer was used to measure the air 

exit speed at 24 points. Each point was measured three times. The fan ventilation rates 

were the product of the fan traverse plane area and the average air speed at that area. A 

total of three variable-speed fans (fan a, fan b, and fan c) and two single-speed fans (fan 

1 and fan 2) were tested in the field. It was found that the field fan performance was 4% 

and 6% lower than the fan lab testing data for the variable-speed fan and the single-

speed fan, respectively. 
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5. RESULTS AND DISCUSSION 

 

5.1 Diurnal Odour and Gas Concentration and Emission Profiles  

 
The purpose of diurnal odour and gas emissions monitoring was to obtain diurnal odour 

and gas emission profiles during different seasons. The measurements were conducted 

three times in swine rooms 9 and 10 in a year, once a month in August, October, and 

February. These three months represented three typical weather conditions (warm 

weather, mild weather and cold weather, respectively). During each measurement, 

odour and H2S samples were taken every three hours, NH3 and CO2 every hour for two 

consecutive days (48 hours). A two-factorial strip-block experiment design was used for 

investigating the influence of different flooring systems, air temperature, ventilation rate, 

pig size and density, and swine management, etc. on the diurnal variations of odour and 

gas concentrations and emissions from different swine rooms during different 

measurement periods.  

 

5.1.1 Diurnal Odour and Gas Concentration and Emission Profiles in August 

 

5.1.1.1 Odour Concentration and Emission 

 

The diurnal variation trend of ambient and room temperature, ventilation rate, odour 

concentrations and emissions in rooms 9 and 10 in August, 2004, are illustrated in 

Figure 5.1.   
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Figure 5.1 Odour concentrations, emissions, room and ambient temperatures, and     
ventilation rates for August 2 to 4, 2004. 
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As the graphs show, the diurnal patterns of room temperature and ventilation rate were 

much similar to those of ambient temperature since the daily mean room temperature 

was closely related to the ambient temperature during warm weather. When the diurnal 

variation of the outdoor temperature caused a corresponding variation of the room 

temperature, the ventilation rate was automatically controlled in order to maintain 

optimum room temperature; hence the ventilation rate was positively correlated with the 

room temperature. It can be further seen that the ventilation rate reached its maximum 

capacity and kept relatively constant from 0800 h to 2300 h due to the high ambient 

temperature, as well as odour concentrations were somewhat inversely related to the 

ventilation rate and ambient temperature; however, this inverse relationship was not 

pronounced. Two peaks of odour concentrations were observed during the daytime for 

both rooms when the ventilation rates were not changed: the first was 538 OU m-3 in 

room 9 from 1400 to 1700 h for measurement day 1 and the second was 664 OU m-3 in 

room 10 also from 1400 to 1700 h for measurement day 2. One possible explanation 

could be due to the management of the swine rooms in which the workers scraped the 

manure off the flooring to the pits from 1500 to 1530 h, resulting in more odour and gas 

release and an increase in pig activity. Another possible explanation could be attributed 

to the effects of the high ambient and room temperature that might be favourable for 

more odour and gas generating from manure. Another peak in odour concentration 

occurred in room 9 during 2300 to 0200 h interval, which was probably due to pig 

activity as the ventilation rate did not decrease, but this assumption could not be 

confirmed.   
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It can be visually seen that the odour emission rate curve nicely followed the ventilation 

rate curve. When the ventilation rate increased, the emission rate also increased and vice 

versa since the emission rate is the product of the odour concentration and the 

ventilation rate. While the ventilation rate stayed at relatively constant level during the 

daytime, the variation of odour emission rate largely depended on the variation of the 

odour concentration.  

 

5.1.1.2 Odour Concentration and Emission Statistical Analysis 

The three-hour means, standard deviations (S.D.) and range of measured odour 

concentrations and emissions, room and ambient temperature, ventilation rates and pigs’ 

weight are summarized for each room in Table 5.1. 

Table 5.1 Three-hour means, S.D. and ranges of measured variables in August. 

 Room 9* Room 10* 
Variables Mean (S.D.) Min Max Mean (S.D.) Min Max

Odour concentration (OU m-3)  406 (77) 275 538 464 (87) 362 664 
Odour emission rate (OU AU-1 S-1) 122.2 (47.7) 55.4 205.4 126.7 (50.8) 62.8 226.5
Odour emission rate (OU m-2 s-1) 18.1 (7.1) 8.2 30.4 19.5 (7.8) 9.7 34.9
Ventilation rate (m3 s-1) 11.70 (3.36) 5.66 14.31 10.96 (2.93) 5.98 14.22
Room temperature (°C) 23.1 (4.1) 18.5 30.5 23.0 (4.2) 18.2 30.5
Outside temperature (°C) 19.4 (6.4) 9.0 29.2 19.4 (6.4) 9.0 29.2
Pig inventory 261 246 
Average pig mass (kg) 70.9 78.3 
Total pig mass (kg) 18500 19300 
*Room 9: partially slatted flooring system; Room 10: fully slatted flooring system.  
  Number of odour sample: 16 for each room. 
 

Tables D.1 and D.2 in Appendix D give the statistical analysis results from the SAS 

output for odour concentration and emissions. It was found that: (1) odour 

concentrations did not differ significantly between rooms 9 and 10. Thus, it can be 
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concluded that different flooring systems in rooms 9 and 10 had no significant effect on 

the odour concentrations during warm weather; (2) no significant diurnal variations of 

odour concentrations were observed in rooms 9 and 10; (3) there was no interaction between 

the ‘Flooring’ factor and the ‘Diurnal’ factor for the odour concentration; (4) rooms 9 and 

10 were treated as the same type of swine room to calculate odour emissions as the 

‘Flooring’ factor had no significant effect on either of them; (5) the ‘Diurnal’ factor was 

statistically significant on the odour emissions. Since there was no significant difference 

in odour concentrations between rooms 9 and 10, the variation of odour emissions was 

mainly attributed to the ventilation rate. This large variation in odour emissions could be 

best explained by the large variation in ventilation rate due to large diurnal variations of 

ambient and room temperature, and (6) no interaction term found within ‘Flooring’ and 

‘Diurnal’ factors made possible to combine odour emission data from different rooms 

and compare their means together. Thus, during warm weather, the odour emissions had 

a geometric mean of 124.4 OU AU-1 s-1 (18.8 OU m-2 s-1) with a diurnal variation from 

55.4 OU AU-1 s-1 (8.2 OU m-2 s-1) to 226.5 OU AU-1 s-1 (34.9 OU m-2 s-1).  

 

5.1.1.3 Gas Concentration and Emission and Statistical Analysis 

The diurnal variations of NH3 concentration and emission measurements taken from 

rooms 9 and 10 are shown in Figure 5.2 with the error bars. It is noted that the error bars 

are not included in the other figures in order to make readers see the curves clearly.  

Moreover, the scales of the figures for the three diurnal odour and gas measurements are 

different in order to reflect the diurnal variations of the measured parameters during 

three different seasons. 
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         Figure 5.2 NH3 concentrations and emissions for August 2 to 4, 2004. 
 
The diurnal NH3 concentration variations can be seen during warm weather with NH3 

levels approaching 7 ppm (room 9) and 13 ppm (room 10) during night time and 

dropping down to 3 ppm (room 9) and 7 ppm (room 10) during the day due to the large 

fluctuations of ventilation rates and ambient temperature. As Figure 5.2 shows, the 

diurnal patterns in the NH3 emissions showed less variation than the concentrations, 

since the NH3 emission rate is usually calculated by multiplying building airflow rate by 

the concentrations of exhaust NH3.  

 

The diurnal variations of H2S concentration and emission measurements made in rooms 

9 and 10 are shown in Figure 5.3. There were less diurnal variations in H2S 
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concentrations for both rooms as compared to the NH3 concentrations. The H2S 

concentrations were consistently within the range of 0.019 – 0.024 ppm during the 

majority of measurement period but a sharp peak occurred in room 10 between 0500 and 

0800 h for the first sampling day. The explanation for this peak was probably due to the 

relatively low ventilation rate in the early morning combined with the increase of pig 

activity. 
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        Figure 5.3 H2S concentrations and emissions for August 2 to 4, 2004. 
 

The diurnal patterns of H2S emissions in rooms 9 and 10 were more apparent than the 

patterns of the concentrations. The reason may be attributed to the large variation of the 

ventilation rate during the daytime and night time.  
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The diurnal variations of CO2 concentrations and emissions released from rooms 9 and 

10 are shown in Figure 5.4. The variation pattern of CO2 concentrations in room 9 was 

very similar to the concentrations pattern of the room 10, with relatively high 

concentrations (greater than 700 ppm) during the night and low concentrations (less than 

430 ppm) during the day time. This diurnal trend was probably explained by the CO2 

concentrations varying inversely with the ventilation rate and ambient temperature.  
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        Figure 5.4 CO2 concentrations and emissions for August 2 to 4, 2004. 

The diurnal patterns of CO2 emissions for both rooms were almost the same due to the 

similar variations of ventilation rates and CO2 concentrations between those two rooms. 
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The hourly means, standard deviations (S.D.), and ranges of gas concentrations and 

emissions, ventilation rate, room and ambient temperature in August are listed for each 

room in Table 5.2. 

Table 5.2 Hourly means, S.D. and ranges of measured variables in August.* 

 Room 9 Room 10 
Variables Mean (S.D.) Min Max Mean (S.D.) Min Max

NH3 concentration (ppm) 5.0 (1.0) 3.0 7.0 9.0 (2.0) 7.0 13.0
NH3 emission rate (g AU-1 d-1) 86.9 (27.5) 35.3 141.0 154.7 (33.9) 85.3 217.1

NH3 emission rate (g m-2 d-1) 12.9 (4.1) 5.2 20.9 23.8 (5.2) 13.1 33.4
H2S concentration (ppm) 0.106 (0.037) 0.064 0.190 0.158 (0.092) 0.093 0.450
H2S emission Rate (g AU-1 d-1) 3.9 (1.3) 2.2 6.8 5.1 (2.2) 2.1 10.1

H2S emission rate (g m-2 d-1) 0.6 (0.2) 0.3 1.0 0.8 (0.3) 0.3 1.6 
CO2 concentration (ppm) 508 (156) 310 875 544 (90) 410 755 
CO2 emission Rate (kg AU-1 d-1) 23.0 (4.7) 10.7 36.7 23.6 (5.2) 14.4 31.7

CO2 emission rate (kg m-2 d-1) 3.4 (0.7) 1.6 5.4 3.6 (0.8) 2.2 4.9 
Ventilation rate (m3 s-1) 11.7 (3.4) 5.7 14.3 11.0 (2.9) 6.0 14.2
Room temperature (oC) 23.1 (4.1) 18.5 30.5 22.9 (4.2) 18.2 30.5

Outside temperature (oC) 19.4 (6.4) 9.0 29.2 19.4 (6.4) 9.0 29.2
*Room 9: partially slatted flooring system; Room 10: fully slatted flooring system. g AU-1 d-1: gram per 
animal unit per day; g m-2 d-1: gram per square metre per day; kg AU-1 d-1: kilogram per animal unit per 
day; kg m-2 d-1: kilogram per square metre per day; Number of NH3, H2S and CO2 samples: 48, 16, 48 for 
each room, respectively.        
 

Tables D.3 to D.5 in Appendix D provide the statistical results from the SAS output for 

NH3, H2S and CO2 concentration, respectively. It was found that there was no significant 

difference for the H2S and CO2 concentrations between rooms 9 and 10, but the NH3 

concentration differed significantly between rooms 9 and 10, as well as the ‘Diurnal’ effect 

(a function of ambient and room temperature, ventilation rate, the swine management, etc.) 

had a significant effect on diurnal gas concentration. 

 

Tables D.6 to D.8 in Appendix D give the statistical results from the SAS output for 

NH3, H2S and CO2 emission, respectively. It was observed that there was no significant 
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difference for the NH3,  H2S and CO2 emissions between rooms 9 and 10; the ‘Diurnal’ 

effect (a function of ambient and room temperature, ventilation rate, the swine management, 

etc) had a significant effect on NH3 and CO2 emissions, but no significant effect on H2S 

emissions in August. 

 

5.1.2 Diurnal Odour and Gas Concentration and Emission Profiles in October 

The October odour and gas measurements had to be cancelled after the first sampling 

day due to the severe weather and road conditions and were resumed after a week. 

 

5.1.2.1 Odour Concentration and Emission 

The diurnal variation trend of ambient and room temperature, ventilation rate, odour 

concentrations and emissions in rooms 9 and 10 in October, 2004, are illustrated in 

Figure 5.5.  
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             Figure 5.5 Odour concentrations, emissions, room and ambient temperature and 
ventilation rates for October 17 to 18 and 25 to 26, 2004. 
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As shown in Figure 5.5, the trend of ventilation rate curve can be matched with the trend 

of the ambient temperature (r2 = 0.74), but the room temperature was kept fairly constant, 

suggesting that the ventilation rate was well controlled to maintain the room temperature 

setpoint with a cooler fall ambient temperature than summer. It can be further observed 

that the odour concentrations were still inversely related to the ventilation rate and 

ambient temperature for most of the measurement time. In room 10 from 0600 to 0900 h 

for the second sampling day, the odour concentration approached the maximum level 

because the ambient temperature and ventilation rate dropped down to the minimum. It 

is interesting to note that room 9 odour concentrations were characterized by a positive 

relationship with the ventilation rate and ambient temperature that occurred during 

0000-0900 h interval on October 18 and during 0000-1200 h interval on October 26. 

Conversely, room 10 odour concentrations were strictly inversely correlated with the 

ventilation rate. It is difficult to explain the difference of this situation under the same 

weather conditions. Figure 5.5 also shows the diurnal pattern of odour emissions, which 

was similar to the pattern of the ventilation rate.  

 

5.1.2.2 Odour Concentration and Emission Statistical Analysis 

The three-hour means, standard deviations (S.D.), and ranges of odour concentrations 

and emissions, room and outside temperature, ventilation rates and pigs weight are 

summarized for each room in Table 5.3.  
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Table 5.3 Three-hour means, S.D. and ranges of measured variables in October. 

 Room 9* Room 10* 
Variables Mean (S.D.) Min Max Mean (SD) Min Max

Odour concentration (OU m-3)  1053 (77) 645 1625 1345 (603) 630 2521
Odour emission rate (OU AU-1 S-1) 62.2 (23.1) 28.6 115.2 101.7 (39.5) 49.6 174.4
Odour emission rate (OU m-2 s-1) 7.6 (3.5) 3.2 15.3 12.3 (5.5) 5.7 22.4
Ventilation rate (m3 s-1) 1.89 (0.70) 1.22 3.50 2.35 (0.60) 1.77 3.84
Room temperature (°C) 18.8 (0.4) 18.3 19.7 17.9 (0.4) 17.2 18.4
Outside temperature (°C) -1.6 (3.4) -6.8 5.7 -1.6 (3.4) -6.8 5.7 
Pig inventory 257; 270* 240; 240* 
Average pig mass (kg) 53.9; 61.7* 59.5; 67* 
Total pig mass (kg) 13800; 16700* 14300; 16100* 
*Two measurements in October 18 and 26, respectively; Room 9: partially slatted flooring system; Room 
10: fully slatted flooring system. Number of odour samples: 16 for each room. 
 

Tables D.9 and D.10 in Appendix D provide the statistical results from the SAS output 

for odour concentration and emission in October, respectively. It was found that: (1) 

odour concentrations did not differ significantly between rooms 9 and 10. Thus, it can 

be concluded that the different flooring systems in rooms 9 and 10 had no significant 

effect on the odour concentrations; (2) no significant diurnal variation of odour 

concentrations was observed in rooms 9 and 10 in October; (3) there was no interaction 

between the ‘Flooring’ factor and the ‘Diurnal’ factor for the odour concentration; (4)  

rooms 9 and 10 could be considered as the same type of swine room for calculating 

odour emissions since the ‘Flooring’ factor had no significant effect on either of them; 

(5) the insignificant effect of ‘Diurnal’ factor on the odour emissions implies that they 

were not significantly different during a 24-hour period in October. It could be 

explained by the inverse relationship between the ventilation rate and the odour 

concentrations, which made the odour emissions vary within a small range, and (6) no 

interaction was found within ‘Flooring’ and ‘Diurnal’ factors so it was possible to 

combine the data of odour emissions from different rooms and compare their means 
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together. Thus, the odour emission rates had a geometric mean of 79.5 OU AU-1 s-1 (9.7 

OU m-2 s-1) with a diurnal variation from 28.6 OU AU-1 s-1 (3.2 OU m-2 s-1) to 174.4 OU 

AU-1 s-1 (22.4 OU m-2 s-1).  

 

5.1.2.3 Gas Concentration and Emission and Statistical Analysis 

 

The diurnal variations of NH3 concentration and emission measurements taken from 

rooms 9 and 10 are shown in Figure 5.6.  
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     Figure 5.6 NH3 concentrations and emissions for October 17 to 18 and 25 to 26, 2004. 
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As the graphs show, the diurnal hourly NH3 concentration in room 10 varied inversely 

with the ventilation rate. This trend was more pronounced in the second measurement 

day than the first day due to the relatively larger fluctuations of the ventilation rate and 

ambient temperature in day two. Conversely, the NH3 concentration in room 9 seemed 

to show much less variation, except for the rise of NH3 levels which was investigated at 

the end of the first day when the ventilation rate was increasing. The unique 

characteristic of this pattern was that higher NH3 concentration corresponding to higher 

ventilation rate was probably due to more gas generated from faecal materials and 

accumulated inside the room (Ni et al., 2000a). The NH3 concentrations from room 10 

within the range of 15 to 28 ppm were much higher than the concentrations from room 9 

with the range of 7 to 17 ppm.  

 

It can be further observed that the diurnal pattern of NH3 emissions showed somewhat 

variations with the time, especially for room 9. The combined effect of rising NH3 

concentrations and increasing ventilation rate during the end of the first sampling day 

resulted in an increase in NH3 emissions. 

 

The diurnal variations of H2S concentration and emission measurements made in rooms 

9 and 10 are shown in Figure 5.7.  
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     Figure 5.7 H2S concentrations and emissions for October 17 to 18 and 25 to 26, 2004. 

It is interesting to observe that the variations of H2S concentrations showed a positive 

relationship with the ventilation rate (Figure 5.5) for both rooms in the first sampling 

day and for room 9 in the second day, but an inverse relationship with the ventilation 

rate for room 10 in the second day. This pattern change was probably due to the H2S 

concentrations influenced by a variety of factors like the room and ambient temperatures, 

the activity of the pigs and the dirtiness of the pens, not only by the ventilation rate. The 

H2S emissions curves were very similar to the corresponding H2S concentrations curves 

that were positively related to the ventilation rate since the emissions were the product 

of the concentrations and the ventilation rate. 
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The diurnal variations of CO2 concentrations and emissions released from rooms 9 and 

10 are shown in Figure 5.8.   
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     Figure 5.8 CO2 concentrations and emissions for October 17 to 18 and 25 to 26, 2004. 

As shown in Figure 5.8, there were more apparent diurnal variations of CO2 

concentrations in the second measurement day than the first day due to the larger 

ventilation rate fluctuation which occurred in the second day. However, the same 

variability in CO2 emissions was not observed during that time. Rather, the CO2 

emissions were fairly constant since CO2 concentrations were inversely related to the 

ventilation rate. For the first day, the fluctuation pattern of CO2 emissions largely 

depended on the pattern of the concentrations. Higher CO2 emissions which occurred at 

the end of the day were the result of the increase of the ventilation rate. 
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The hourly means, standard deviations (S.D.), and ranges of gas concentrations and 

emissions, ventilation rates, room and ambient temperature in October are listed for each 

room in Table 5.4. 

Table 5.4 Hourly means, S.D. and ranges of measured variables in October.* 

 Room 9 Room 10 
Variables Mean (S.D.) Min Max Mean (S.D.) Min Max

NH3 concentration (ppm) 11.0 (2.0) 7.0 17.0 22.0 (3.0) 15.0 28.0
NH3 emission rate (g AU-1 d-1) 40.5 (15.3) 17.0 77.7 103.2 (14.5) 76.9 133.3

NH3 emission rate (g m-2 d-1) 5.0 (2.1) 1.9 10.3 12.5 (1.9) 9.2 16.5
H2S concentration (ppm) 0.090 (0.034) 0.049 0.170 0.201 (0.037) 0.130 0.250
H2S emission Rate (g AU-1 d-1) 0.67 (0.34) 0.30 1.42 1.92 (0.63) 1.01 3.22

H2S emission rate (g m-2 d-1) 0.08 (0.04) 0.04 0.19 0.23 (0.08) 0.13 0.41
CO2 concentration (ppm) 1966 (309) 1190 2505 2225 (335) 1295 2825
CO2 emission Rate (kg AU-1 d-1) 18.5 (3.3) 11.5 24.3 26.5 (4.1) 20.0 36.0

CO2 emission rate (kg m-2 d-1) 2.3 (0.5) 1.3 3.2 3.2 (0.5) 2.3 4.1 
Ventilation rate (m3 s-1) 1.90 (0.70) 0.96 4.22 2.36 (0.66) 1.65 4.38
Room temperature (oC) 18.8 (0.4) 18.3 19.8 17.9 (0.4) 17.2 18.7

Outside temperature (oC) -1.6 (3.5) -7.1 7.2 -1.6 (3.5) -7.1 7.2 
*Room 9: partially slatted flooring system; Room 10: fully slatted flooring system; Number of NH3, H2S 
and CO2 samples: 48, 16, 48 for each room, respectively. 
 

Tables D.11 to D.13 in Appendix D provide the statistical results from the SAS output 

for NH3, H2S and CO2 concentration in October, respectively. It was found that the NH3 

and H2S concentration (but not the CO2 concentration) differed significantly between rooms 

9 and 10; no significant diurnal variations of gas concentrations were observed in rooms 9 

and 10. 

 

Tables D.14 to D.16 in Appendix D give the statistical results from the SAS output for 

NH3, H2S and CO2 emission in October, respectively. It was observed that the NH3 and 

H2S emission (expect for CO2 emission) differed significantly between rooms 9 and 10, as 

well as the ‘Diurnal’ effect (a function of outside and room temperature, ventilation rate, 
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the swine management, etc.) had a significant effect on NH3 emissions, CO2 and H2S 

emissions in October.  

 

5.1.3 Diurnal Odour and Gas Concentration and Emission Profiles in February 

 

5.1.3.1 Odour Concentration and Emission 

 

The diurnal variation trend of ambient and room temperature, ventilation rate, odour 

concentrations and emissions in rooms 9 and 10 in February, 2005 are illustrated in 

Figure 5.9.  

 

As the graph shows, the average ambient temperature ranged from as low as -15 °C to as 

high as -1.5 °C during the monitoring period; while the room temperature was quite 

constant. The ventilation rate still varied with the ambient temperature, but the span of 

variation was very small. The ventilation rate was consistently controlled within the 

range of 1.3-2.1 m3 s-1, which supplied minimum ventilation requirement and 

maintained the setpoint room temperature for swine environment during cold weather. A 

couple of odour concentration peaks appeared when the average ambient temperature 

dropped off to -12 °C. Additionally, there was no apparent positive or negative 

correlation between the odour concentrations and the ventilation rate, except for some 

peak occurrences. The diurnal pattern of odour emissions was very similar to the pattern 

of odour concentrations due to less variation of the ventilation rate and high odour 

concentrations which resulted from low ventilation rate.  
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Figure 5.9 Odour concentrations, emissions, room and ambient temperature and   
ventilation rate for February 13 to 15, 2005. 
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5.1.3.2 Odour Concentration and Emission Statistical Analysis 

 

The three-hour means, standard deviations (S.D.), and ranges of odour concentrations 

and emissions, room and ambient temperature, ventilation rates and pigs’ weight are 

summarized for each room in Table 5.5. 

Table 5.5 Three-hour means, S.D. and ranges of measured variables in February. 

 Room 9* Room 10* 
Variables Mean (S.D.) Min Max Mean (S.D.) Min Max

Odour concentration (OU m-3)  1683 (515) 724 2896 3040 (1184) 1765 5792
Odour emission rate (OU AU-1 S-1) 77.1 (24.4) 26.7 138.4 134.5 (50.7) 73.2 235.4
Odour emission rate (OU m-2 s-1) 10.8 (3.4) 3.7 19.3 19.2 (7.2) 10.4 33.6
Ventilation rate (m3 s-1) 1.62 (0.30) 1.29 2.13 1.59 (0.20) 1.40 2.10
Room temperature (°C) 16.4 (0.4) 15.6 16.8 16.7 (0.2) 16.5 17.0
Outside temperature (°C) -9.7 (3.6) -14.4 -1.5 -9.7 (3.6) -14.4 -1.5
Pig inventory 264  257 
Average pig mass (kg) 66.3 69.4 
Total pig mass (kg) 17500 17800 
*Room 9: partially slatted flooring system; Room 10: fully slatted flooring system; Number of odour 
sample: 16 for each room.   

 

Tables D.17 and D.18 in Appendix D provide the statistical results from the SAS output 

for odour concentration and emission. It was found that: (1) room 10 odour 

concentration was statistically higher than that of room 9; (2) no significant diurnal 

variation of odour concentrations was observed in rooms 9 and 10; (3) there was no 

interaction between the ‘Flooring’ factor and the ‘Diurnal’ factor for the odour 

concentration; (4) the odour emissions differed significantly between rooms 9 and 10. This 

significant difference could be explained by the considerable odour release reduction 

from partially slatted flooring system (room 9) compared with fully slatted flooring 

system (room 10); (5) the ‘Diurnal’ factor (a function of ambient and room temperature, 

ventilation rate, the swine management, etc.) had no significant effect on diurnal odour 
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emissions during cold weather, and (6) no interaction term was found within the 

‘Flooring’ and ‘Diurnal’ factors for the odour emissions in February.  

 

5.1.3.3 Gas Concentration and Emission and Statistical Analysis 

 

The diurnal variations of NH3 concentration and emission measurements taken from 

rooms 9 and 10 are shown in Figure 5.10. As the graph shows, the NH3 concentrations 

varied diurnally with relatively high concentrations (greater than 34 ppm) and low 

concentrations (less than 25 ppm) for both rooms. These levels were inversely related to 

the ventilation rate since low air exchange rate resulted in high concentrations and the 

reverse case when the airflow rate was relatively high.  
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           Figure 5.10 NH3 concentrations and emissions for February 13 to 15, 2005. 
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The NH3 emissions showed much less diurnal variations during the measurement period 

since the emissions depended on the concentrations and ventilation rate. The ventilation 

rate seemed to compensate for the concentrations so the emissions were fairly constant. 

 

The diurnal variations of H2S concentration and emission measurements made in rooms 

9 and 10 are shown in Figure 5.11. The H2S concentrations in two measurement days 

were significantly different. The levels for the first day were as low as 0.015 ppm but 

approaching over 0.4 ppm suddenly for the second day. This might be due to the reading 

error of the measuring instrument or malfunction of H2S meter. It was also observed that 

the patterns of H2S emission were very similar to the patterns of H2S concentrations.  
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        Figure 5.11 H2S concentrations and emissions for February 13 to 15, 2005. 
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The diurnal variations of CO2 concentration and emission released from rooms 9 and 10 

are shown in Figure 5.12. The fluctuation pattern was shown for the CO2 concentration 

by only reaching 2000 ppm at the beginning of monitoring and then keeping increasing, 

finally arriving at maximum levels (6250 ppm for room 9 and 7045 ppm for room 10) at 

the end of the second day. The reason was probably due to gas accumulation in the room 

when minimum ventilation rates were maintained. CO2 emission curves followed the 

trend of CO2 concentrations since the CO2 concentrations were much dominant than the 

ventilation rate in the CO2 emissions.          
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        Figure 5.12 CO2 concentrations and emissions for February 13 to 15, 2005. 
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The hourly means, standard deviations, and ranges of gas concentrations and emissions, 

ventilation rates, room and ambient temperature are listed for each room in Table 5.6. 

Table 5.6 Hourly means, S.D. and range of measured variables in February. 

 Room 9 Room 10 
Variables Mean (S.D.) Min Max Mean (S.D.) Min Max

NH3 concentration (ppm) 27.0 (3.0) 24.0 35.0 32.0 (4.0) 22.0 39.0
NH3 emission rate (g AU-1 d-1) 81.4 (13.8) 48.4 113.5 87.2 (8.4) 62.2 108.3

NH3 emission rate (g m-2 d-1) 11.4 (1.9) 6.8 15.9 12.4 (1.2) 8.9 15.4
H2S concentration (ppm) 0.229 (0.228) 0.010 0.650 0.315 (0.328) 0.011 0.810
H2S emission Rate (g AU-1 d-1) 1.20 (0.18) 0.10 3.90 1.63 (1.70) 0.07 4.12

H2S emission rate (g m-2 d-1) 0.17 (1.27) 0.01 0.54 0.23 (0.24) 0.01 0.59
CO2 concentration (ppm) 3647 (1126) 1615 6250 4030 (1220) 1910 7045
CO2 emission Rate (kg AU-1 d-1) 26.5 (9.0) 14.9 50.1 27.8 (8.0) 16.7 46.8

CO2 emission rate (kg m-2 d-1) 3.7(1.3) 2.1 7.0 4 .0 (1.1) 2.4 6.7 
Ventilation rate (m3 s-1) 1.64 (0.34) 1.03 2.49 1.59 (0.26) 1.12 2.45
Room temperature (oC) 16.4 (0.5) 14.9 17.4 16.7 (0.2) 16.3 17.4

Outside temperature (oC) -9.6 (3.8) -15.5 1.7 -9.6 (3.8) -15.5 1.7 
*Room 9: partially slatted flooring system; Room 10: fully slatted flooring system; Number of NH3, H2S 
and CO2 samples: 48, 16, 48 for each room, respectively. 

 

Tables D.19 to D.21 in Appendix D provide the statistical results from the SAS output 

for NH3, H2S and CO2 concentration, respectively. It was found that there was no 

significant difference for the gas concentrations between rooms 9 and 10, as well as the 

‘Diurnal’ factor (a function of ambient and room temperatures, ventilation rate, the 

swine management, etc.) had no significant effect on NH3 and H2S concentration but 

had a significant effect on CO2 concentration.  

  

Tables D.22 to D.23 in Appendix D give the statistical results from the SAS output for 

NH3, H2S and CO2 emission, respectively. It was observed that the gas emissions 

between rooms 9 and 10 did not differ significantly, as well as the ‘Diurnal’ factor (a 

function of ambient and room temperature, ventilation rate, the swine management, etc.) 
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had no significant effect on the NH3 emissions and H2S emissions, but a significant 

effect on CO2 emissions.  

 

5.1.4 Summary of Diurnal Odour and Gas Concentration and Emission 

 

The means of diurnal odour and gas concentration and emission in rooms 9 and 10 

during three sampling seasons are illustrated in Figures 5.13 to 5.20. The summary table 

is presented in Table D.25 of Appendix D. 
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                         Figure 5.13 The means of diurnal odour concentrations during 

three measurement months. 
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                            Figure 5.14 The means of diurnal Odour emissions during 

three measurement months. 
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                          Figure 5.15 The means of diurnal NH3 concentrations during 

three measurement months. 
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                           Figure 5.16 The means of diurnal NH3 emissions during 

three measurement months. 
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                             Figure 5.17 The means of diurnal H2S concentrations during 

three measurement months. 
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                              Figure 5.18 The means of diurnal H2S emissions during 

three measurement months. 
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                             Figure 5.19 The means of diurnal CO2 concentrations during 

three measurement months. 
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                              Figure 5.20 The means of diurnal CO2 emissions during 

three measurement months. 
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As shown in Figures 5.13 to 5.20, obviously, room 10 odour and gas concentration and 

emission were higher than room 9 for three measurement seasons. Since the ventilation 

rate and animal units between rooms 9 and 10 were very similar, these higher 

concentration and emission should be due to different flooring systems. The fully slatted 

flooring system had larger exposed manure area than the partially slatted flooring 

system, which resulted in more odour and gas release. Thus, it can be concluded that 

partially slatted flooring systems could reduce odour and gas concentration inside the 

barn and the rate of emission to the environment as compared with fully slatted flooring 

systems. 

 

The highest mean odour and gas concentration occurred in February; while the lowest 

odour and gas levels appeared in August. The main reason was the large differences in 

the ventilation rate and ambient temperature during winter and summer. Low 

concentrations under warm weather conditions were attributed to strong dilution effect 

and better indoor air mixing due to high ventilation rates; conversely, low ventilation 

rate during cold weather caused odour and gas accumulation inside the swine room. 

Therefore, it can be concluded that the ventilation rate plays a key role in indicating 

odour and gas concentration.  

 

During a majority of measurement periods, the odour concentration was inversely 

related to the ventilation rate and ambient temperature. However, it was not the case 

when the ventilation rate was maintained at relatively steady level, e.g. in the summer 

when the ventilation rate was at its maximum value and in the winter when the 
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ventilation rate variation was very small. The odour concentrations could be positively 

or inversely correlated with the ventilation rate; even some spikes were often observed. 

These changes might be caused by some activities that resulted in more odour release, 

such as increase of animal activities, disturbing animals by stockman working inside the 

room, etc. Thus, it should be concluded that any activities in swine rooms when or 

before the air samples were taken may have more and less effect on the measured odour 

concentration.  

 

Generally, the diurnal variations of NH3 levels were inversely related to the variations of 

the ventilation rate. However, it was observed in the afternoon in October that higher 

NH3 concentration in room 9 corresponded to higher ventilation rate. This was probably 

due to more gas generated from faecal materials and accumulated inside the room. It is 

interesting to note that the diurnal patterns of H2S concentrations during three 

measurement seasons presented three different relationships with the ventilation rate and 

ambient temperature. In August, although the fluctuation of the ventilation rate was 

large, there seemed to be less diurnal variations in H2S concentrations for both rooms. In 

October, the variations of H2S concentration showed a positive relationship with the 

ventilation rate for both rooms in the first sampling day and for room 9 in the second 

day, but an inverse relationship with the ventilation rate for room 10 in the second day. 

In February, H2S concentration in both rooms in two sampling days differed 

significantly. The levels for the first day were as low as around 0.015 ppm but increased 

over 0.4 ppm for the second day. This may be due to the reading error of the measuring 

instrument or malfunction of H2S meter. The CO2 concentration showed diurnal 
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variations that reversely related to the ventilation rate and ambient temperature, except 

for during cold weather.  

 

Statistical t-test method was used to compare the means of odour and gas concentration 

and emission for three measurement seasons. The comparison results are given in Table 

5.7.  

Table 5.7 Mean comparison of odor and gas concentration and 

emission during three measurement seasons. 

Variables  Month Room 9 Room 10 
 Aug - Oct S S 

Odour concentration  Oct - Feb S S 
 Aug - Feb S S 
 Aug - Oct S NS 

Odour emission rate            Oct - Feb NS S 
         Aug - Feb S NS 
 Aug - Oct S S 

NH3 concentration  Oct - Feb S S 
 Aug - Feb S S 
 Aug - Oct S S 

NH3 emission rate  Oct - Feb S S 
 Aug - Feb NS S 
 Aug - Oct NS NS 

H2S concentration  Oct - Feb S NS 
 Aug - Feb S NS 
 Aug - Oct S S 

H2S emission rate  Oct - Feb NS NS 
 Aug - Feb S S 
 Aug - Oct S S 

CO2 concentration  Oct - Feb S S 
 Aug - Feb S S 
 Aug - Oct S S 

CO2 emission rate  Oct - Feb S NS 
 Aug - Feb S S 

Note: ‘S’ means that the concentration or emission between the two measuring 
months differed significantly; ‘NS’ means that there was no significant difference 
for those two months. 
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As shown in Table 5.7, although the odour and gas concentration (expcept for the H2S 

concentration) were significantly different under different climate conditions, as well as 

the ventilation rates being quite different for most of the sampling period (Table D.25), 

odour and gas emissions were not significant different for all three measurement seasons 

when expressed on per animal unit or per square metre bases, i.e., the variability in 

odour and gas emissions was relatively small for each room. This is mainly because the 

odour or gas emission rate is calculated by multiplying building ventilation rate by the 

odour or gas concentration and these two factors had an inverse relationship.  

 

Table 5.8 provides the effects of ‘Flooring’ and ‘Diurnal’ factors on the diurnal odour 

and gas concentration and emission from rooms 9 and 10 during three measurement 

seasons.  

Table 5.8 Effects of ‘Flooring’ and ‘Diurnal’ factors on the odour and gas 

concentration and emission during three sampling seasons. 

Flooring Factor  Diurnal Factor 

Variables August October February August October February

Odour concentration NS NS S NS NS NS 

Odour emission rate NS NS S S NS NS 

NH3 concentration S S NS S NS NS 

NH3 emission rate NS S NS S S NS 

H2S concentration NS S NS S NS NS 

H2S emission rate NS S NS NS S NS 

CO2 concentration NS NS NS S NS S 

CO2 emission rate NS NS NS S S S 
Note: ‘S’ means that the ‘flooring’ and ‘Diurnal’ factors had a significant effect on the 
concentration or emission from rooms 9 and 10; ‘NS’ means they had no significant effects 
on the concentration or emission from rooms 9 and 10. 
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This study did not find significant differences in odour and gas concentrations and 

emissions (except for the NH3 concentration) between rooms 9 and 10 in August; 

conversely, in February, only odour concentrations and emissions differed significantly 

between those two rooms. In October, there were no significant differences in odour and 

CO2 concentrations and emissions between rooms 9 and 10 (note: there seems a 

disagreement between the SAS analysis and the measurements that the Figures 5.14 and 

5.20 are showing. This is probably explained by the fact that a set of data was limited 

and standard deviations were large).  

 

It was found that significant diurnal variations in odour and gas concentrations and 

emissions (except for odour concentration and H2S emission) were observed in August; 

while in February, only CO2 concentrations and emissions showed significant 

fluctuation patterns. In October, the significant diurnal fluctuations of gas emissions 

have been found.    

 

Pearson correlation matrices (Townend, 2002) were computed to determine possible 

correlations of odour, NH3, H2S, and CO2 concentrations under different weather 

conditions.  

Table 5.9 Pearson correlation matrix coefficients (r) for odour and gas 

concentrations under different weather conditions. 

August  October  February 
 Room 9 Room 10  Room 9 Room 10  Room 9 Room 10

Odour-NH3 0.23 -0.14 0.19 0.64 0.03 -0.25 
Odour-H2S -0.40 -0.27 -0.08 -0.25 0.29 0.06 
Odour-CO2  -0.14  0.04   0.53  0.60   0.31  0.19 
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As Table 5.9 shows, in October, Pearson correlation matrix indicates a significant (p < 

0.05) moderate (r = 0.64) correlation between odour and NH3 concentrations in room 10 

and significant (p < 0.05) moderate (r = 0.53 and r = 0.60) correlations between odour 

and CO2 concentrations in rooms 9 and 10, respectively. No other significant 

relationships between odour and gas concentrations were found in this research. 

 

5.2 Seasonal Odour and Gas Concentration and Emission Profiles 

Seasonal odour and gas samples were taken from four grower/finisher rooms (rooms 6, 

9, 10 and 11) over a period of 12 months from August of 2004 to July of 2005. Grab 

samples of odour and gas were made in the morning around 1000 h due to higher pig 

activities and gas generation after feeding. There were no data collected from room 6 in 

January because the room was empty for a new pig growth cycle during that 

measurement period. June sampling was also cancelled due to the unavailability of the 

odour lab.  

 

5.2.1 Seasonal Odour and Gas Concentration and Emission    

 

Table 5.10 summarizes the average and standard deviation (S.D.) of odour and gas 

concentrations and emissions from two types of rooms in each sampling month. 
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Table 5.10-1 Average and standard deviation (S.D.) of odour concentrations and 

emissions from two types of rooms in each sampling month. 

Troom Tout AU VR Odour OER1 OER2 
Date Room oC oC   m3 s-1 OU m-3 OU AU-1 s-1 OU m-2 s-1 

23.8 22.2 30.6 14.9 487(c d) 242(a) 28.9(a) 
6,9 (0.3)   (9.1) (1.1) (69) (127.1) (6.2) 

23.6 22.2 41.3 13.1 689(y z) 218.9(x) 36.0(x) 
03-Aug-04 10,11 (0.6)   (3.9) (0.6) (145) (36.3) (9.3) 

19.7 16.1 42.6 16 221(d) 84.4(c) 14.1(c) 
6,9 (0.7)   (10.5) (1.4) (32) (41.3) (3.3) 

20.5 16.1 42 13.1 347(z) 106.8(x) 17.9(x) 
02-Sep-04 10,11  (0.0)   (4.5) (2.7) (52) (4.8) (1.1) 

18.2 -2.4 24.7 1.4 967(b c d) 52.0(c) 5.1(c) 
6,9  (0.6)   (4.2) (0.6) (238) (19.9) (1.1) 

18.1 -2.4 31.6 1.9 1722(y z) 104.2(x) 13.1(x) 
18-Oct-04 10,11  (0.1)   (4.2) (0.2) (713) (37.6) (6.6) 

15.3 -6.5 43.4 2.2 1663(b) 87.8(c) 16.5(c) 
6,9  (0.4)   (5.1) (0.4) (-) (-) (-) 

14.9 -6.5 48.4 2.3 2435(x y) 116.5(x) 22.5(x) 
21-Nov-04 10,11  (0.4)   (2.9) (0.5) (600) (12.4) (1.1) 

15.6 -0.6 45.4 3.5 912(b c d) 68.9(c) 12.3(c) 
6,9  (0.3)   (13.1) (1.5) (301) (12.3) (1.4) 

14.4 -0.6 24.1 1.3 2169(x y z) 116.2(x) 11.1(x) 
19-Dec-04 10,11  (0.3)   (0.2) (0.3) (535) (55.9) (5.5) 

17.3 -10.2 23 0.7 1290(b c) 39.3(c) 3.6(c) 
6,9     (-) (-) (-) (-) (-) 

19.1 -10.2 25.7 1.6 2169(x y z) 133.4(x) 13.6(x) 
23-Jan-05 10,11  (0.6)   (3.0) (0.5) (535) (57.6) (7.6) 

16.5 -15.2 34.5 1.6 1351(b c) 62.9(c) 8.7(c) 
6,9  (0.8)   (0.7) (0.2) (132) (11.0) (1.7) 

17.2 -15.2 39.3 2.1 3637(x) 189.3(x) 29.6(x) 
14-Feb-05 10,11  (0.6)   (5.0) (0.3) (1927) (96.2) (11.0) 

14.3 -6.5 51.7 2.6 1439(b) 72.0(c) 14.9(c) 
6,9  (1.6)   (1.1) (0.5) (13) (10.1) (2.4) 

14.9 -6.5 54.4 3 2435(x y) 132.7(x) 28.8(x) 
20-Mar-05 10,11  (1.1)   (4.8) (0.8) (600) (59.2) (15.6) 

13.6 -0.6 14.8 1.1 2964(a) 201.4(a b) 11.8(a b) 
6,9  (0.8)   (1.8) (0.6) (1076) (11.8) (2.2) 

18.9 -0.6 18.9 1 3822(x) 208.2(x) 15.7(x) 
27-Apr-05 10,11  (0.1)   (2.3) (0.04) (1518) (49.9) (5.7) 

18.9 9.8 28.5 4.0 818(b c d) 116.6(b c) 13.2(b c) 
6,9  (0.9)   (4.3) (0.4) (142) (51.6) (3.7) 

19 9.8 35.4 5.0 1370(y z) 194.5(x) 27.4(x) 
25-May-05 10,11  (0.1)   (3.7) (0.6) (276) (3.8) (2.4) 

26.5 23.7 51.8 14.9 480(c d) 138.1(b c) 28.5(b c) 
6,9  (1.1)   (6.4) (2.2) (117) (72.5) (11.3) 

26.3 23.7 52.1 14.9 422(y z) 121.3(x) 25.2(x) 
05-Jul-05 10,11  (0.4)   (3.7) (0.5) (110) (18.8) (5.7) 

18.2 23.7 35.5 5.7 1145 105.9 14.3 
6,9  (4.0) (13.2) (12.3) (6.2) (752) (64.3) (8.1) 

18.8 23.7 37.6 5.4 1929 149.3 21.9 
Annual mean 10,11  (3.7) (13.2) (11.7) (5.5) (1175) (43.9) (8.2) 

Note: Troom: Room temperature; Tout: Outside temperature; AU: Animal units; VR: Ventilation rate; ER: Emission Rate.  
Means with the same letter designator are not significantly different at the p<0.05 level per Duncan’s Multiple range Test within each 
month. Letters a, b, c, d, e and f are used for rooms 6 and 9; Letters x, y, z, u, v and w are used for rooms10 and 11.   
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          Table 5.10-2 Average and standard deviation (S.D.) of gas concentrations and      

emissions from two types of rooms in each sampling month. 

NH3 NH3ER1 NH3ER2 H2S H2SER1 H2SER2 CO2 CO2ER1 CO2ER2
Date Room ppm gAU-1d-1 gm-2d-1 ppm  gAU-1d-1 gm-2d-1 ppm kgAU-1d-1 Kgm-2d-1

5(e f) 146.1(a) 16.5(a) 0.114(b) 7.1(a) 0.83(a) 398(f) 32.0(a) 3.8(a) 
6,9 (1) (74.2) (3.8) (0.008) (2.1) (0.01) (25) (9.8) (0.1) 

7(u v) 137.2(x y) 22.4(x y) 0.139(y) 5.5(x) 0.89(x) 483(w) 24.3(y z) 4.0(y z) 
03-Aug-04 10,11 (1) (33.6) (3.5) (0.004) (0.1) (0.07) (18) (0.2) (0.3) 

3(f) 57.3(b) 9.7(b) 0.059(b) 2.8(b) 0.46(b) 295(f) 17.6(b c) 3.0(b c) 
6,9 (1) (2.8) (1.9) (0.002) (0.8) (0.02) (64) (2.1) (0.4) 

6(v) 112.4(x y z) 18.8(x y z) 0.093(y z) 3.6(y) 0.59(y) 330(w) 16.2(u v) 2.8(u v) 
02-Sep-04 10,11 (1)  (15.1) (0.5) (0.011) (0.1) (0.05) (28) (3.1) (0.8) 

11(c d e f) 36.9(b) 3.6(b) 0.083(b) 0.6(c d e) 0.06(c d e) 2038(c) 19.0(b c) 1.8(b c) 
6,9 (3)  (13.1) (0.6) (0.004) (0.3) (0.02) (18) (11.0) (0.8) 

26(y) 96.1(x y z u) 12.3(x y z u) 0.305(x) 2.3(z u) 0.29(z u) 2138(y z) 20.6(z u) 2.6(z u) 
18-Oct-04 10,11 (4)  (10.9) (3.0) (0.078) (0.5) (0.10) (301) (3.9) (0.1) 

13(b c d e) 40.4(b) 7.1(b) 0.050(b) 0.3(d e) 0.05(d e) 2068(c) 16.5(c) 2.9(c) 
6,9 (3)  (11.6) (2.8) (0.007) (0.0) (0.00) (60) (1.6) (0.6) 

16(z) 47.8(u) 9.3(u) 0.050(y z) 0.3(v) 0.06(v) 2278(y z) 17.3(u v) 3.4(u v) 
21-Nov-04 10,11 (3)  (14.8) (3.4) (0.001) (0.0) (0.01) (124) (1.5) (0.5) 

16(b c d) 68.5(a b) 11.4(a b) 0.029(b) 0.3(d e) 0.05(d e) 1473(d) 17.7(b c) 3.3(b c) 
6,9 (11)  (38.7) (3.4) (0.006) (0.0) (0.01) (88) (3.7) (1.6) 

28(y) 90.7(y z u) 8.8(y z u) 0.036(z) 0.3(v) 0.03(v) 1503(u) 13.0(v) 1.3(v) 
19-Dec-04 10,11 (2)  (13.6) (1.3) (0.001) (0.1) (0.01) (67) (3.5) (0.4) 

19(b c) 35.5(b) 3.3(b) 0.024(b) 0.1(e) 0.01(e) 2945(b) 14.2(c) 1.3(c) 
6,9 (-) (-)  (-) (-) (-) (-) (-) (-) (-) 

36(x) 135.3(x y) 14.1(x y) 0.026(z) 0.2(v) 0.03(v) 3190(x) 31.2(x) 3.3(x) 
23-Jan-05 10,11 (1)  (26.9) (4.3) (0.001) (0.0) (0.01) (156) (4.0) (0.8) 

33(a) 94.8(a b) 13.1(a b) 0.018(b) 0.1(e) 0.02(e) 3847(a) 28.3(a b) 3.9(a b) 
6,9 (3)  (15.3) (2.4) (0.001) (0.0) (0.01) (422) (0.9) (0.0) 

36(x) 113.4(x y z) 17.8(x y z) 0.017(z) 0.1(v) 0.02(v) 3387(x) 27.9(x y) 4.4(x y) 
14-Feb-05 10,11 (1)  (0.1) (2.3) (0.001) (0.0) (0.00) (325) (2.1) (0.2) 

23(b) 70.9(a b) 14.7(a b) 0.365(a) 2.3(b c) 0.48(b c) 2260(c) 18.2(b c) 3.8(b c) 
6,9 (6)  (30.0) (6.5) (0.148) (1.3) (0.27) (262) (4.7) (1.1) 

23(y) 78.1(z u) 17.2(z u) 0.390(x) 2.7(y z) 0.59(y z) 1923(z) 16.9(u v) 3.7(u v) 
20-Mar-05 10,11 (1)  (19.7) (5.7) (0.057) (0.9) (0.24) (124) (4.3) (1.3) 

16(b c d) 68.4(a b) 4.1(a b) 0.041(b) 0.4(d e) 0.02(d e) 1155(e d) 12.7(c) 0.8(c) 
6,9 (1)  (22.1) (1.8) (0.002) (0.2) (0.01) (113) (4.0) (0.4) 

22(y) 72.9(z u) 5.5(z u) 0.096(y z) 0.6(v) 0.05(v) 2448(y) 21.0(z u) 1.6(z u) 
27-Apr-05 10,11 (4)  (2.9) (0.8) (0.076) (0.4) (0.04) (421) (0.4) (0.2) 

7(d e f) 60.3(b) 6.6(b) 0.017(b) 0.3(d e)  0.04(d e) 895(e) 20.7(b c) 2.3( b c) 
6,9 (2)  (33.9) (2.8) (0.002) (0.1) (0.01) (42) (4.0) (0.4) 

12(z u) 105.8(x y z) 14.8(x y z) 0.021(z) 0.4(v) 0.06(v) 995(v) 22.1(y z u) 3.2(y z u) 
25-May-05 10,11 (0)  (23.2) (1.7) (0.001) (0.1) (0.01) (226) (0.2) (0.4) 

5(e f) 82.6(a b) 16.7(a b) 0.056(b) 2.1(b c d) 0.43(b c d) 300(f) 13.3(c) 2.8(c) 
6,9 (1)  (34.4) (5.0) (0.028) (1.6) (0.26) (99) (0.8) (0.5) 

9(u v) 152.0(x) 31.3(x) 0.034(z) 1.2(u v) 0.25(u v) 383(w) 17.3(u v) 3.6(u v) 
05-Jul-05 10,11 (2)  (52.9) (8.8) (0.042) (1.3) (0.30) (67) (1.2) (0.6) 

14 69.2 9.7 0.078 1.5 0.22 1607 19.1 2.7 
6,9 (9)  (31.6) (5.1) (0.100) (2.1) (0.28) (1151) (6.0) (1.0) 

20 103.8 15.7 0.110 1.6 0.26 1733 20.7 3.1 Annual 
Mean 10,11 (11)  (31.0) (7.2) (0.125) (1.8) (0.30) (1087) (5.4) (1.0) 
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The seasonal room temperature, ambient temperature and ventilation rate for four rooms 

are illustrated in Figure 5.21.  
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                 Figure 5.21 Seasonal room and ambient temperatures and ventilation 

rates in four rooms. 

The graph shows a large fluctuation of the ambient temperature throughout the year, which 

varied from below -15 °C in February up to 24 °C in July, but seasonal variations of 

room temperature were relatively small. During a majority of the measurement period 

(October 2004 to May 2005), room temperatures remained around the setpoints during 

each pig production cycle. However, during warm weather, room temperatures often 

exceeded the setpoints due to the high ambient temperature. It can be further seen that 

the seasonal ventilation rate curve presented a “concave” shape, with the low ventilation 

rate (0.7 to 4.6 m3 s-1) occurring during mild and cold weather when the ambient 
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temperature was below 0°C as well as the high ventilation rate (11 to 17 m3 s-1) during 

warm seasons.     
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                Figure 5.22 Seasonal variations of odour concentrations and emissions   

in four rooms. 

Figure 5.22 reveals the seasonal odour concentrations and emissions in four rooms over 

the 12-month measuring period. As can be seen, the odour concentrations varied 

seasonally with relatively high concentrations from Oct. 2004 to May 2005 due to 

relatively low ventilation rates, as well as low concentrations in warm seasons due to 

high ventilation rates. Some spike concentrations were observed in April when the 

ambient temperature rose to -0.6°C. These spikes should be due to the fact that before 

the sampling, some pigs which achieved market weight had been moved to the ‘GL’ 

room for shipment. This process caused much more odour generation. It was also found 

that the odour concentration in rooms 10 and 11 was higher than rooms 6 and 9 

throughout the year (annual geometric mean 1929 vs. 1145 OU m-3). The main reason 
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was that the fully slatted flooring systems (rooms 10 and 11) that had larger exposed 

manure area than partially slatted flooring systems, which resulted in more odour and 

gas release than partially slatted flooring systems (rooms 6 and 9).    

 

The odour emission showed a similar seasonal trend as the odour concentration from 

Oct. 2004 to May 2005 since the odour emission variations largely depended on the 

corresponding odour levels when the fluctuation of the ventilation rate was relatively 

small during that period. In contrast, under warm weather conditions, because of the 

dominant effect of the ventilation rate, the odour emission pattern nicely followed the 

trend of the ventilation rate. 

 

Figure 5.23 shows the seasonal variations of NH3 concentrations and emissions from 

four rooms over a 12-month monitoring period. Like odour concentrations, there was a 

clear seasonal cycle with high NH3 concentrations (> 30 ppm) during the cold seasons 

and low concentrations (< 10 ppm) during the warm seasons. These levels were still 

inversely correlated to the ventilation rates since low ventilation rates resulted in high 

NH3 concentrations while low concentrations were presented when the ventilation rates 

were high. It is interesting to observe that the NH3 levels from rooms 10 and 11 in 

November did not continue to increase but dropped down to around 15 ppm when the 

total pig weight was greater and ambient temperature was lower than the temperature in 

October. The main reason was due to the higher ventilation rate in November than in 

October as indicated in Figure 5.21. It was found that fully slatted flooring systems 

(rooms 10 and 11) had higher NH3 concentrations than partially slatted flooring systems 
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(rooms 6 and 9). One exception was that the NH3 concentrations measured in room 6 

were slightly higher than the NH3 levels in rooms 10 and 11 in March. Since those 

rooms had essentially same ventilation rates during the monitoring period, the exception 

was probably attribute to the increase of pig activity in room 6 when the samples were 

taken.  
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               Figure 5.23 Seasonal variations of NH3 concentrations and emissions 

in four rooms. 

As Figure 5.23 shows, there was less variation of NH3 emissions observed compared to 

the fluctuations of NH3 concentrations. NH3 emissions were quite constant for four pig 

rooms over the 12-month monitoring period since the NH3 emissions were the product 

of the concentrations and the ventilation rate. 
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Figure 5.24 reveals the seasonal variations of H2S concentrations and emissions in four 

rooms over a 12-month monitoring period.  
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                 Figure 5.24 Seasonal variations of H2S concentrations and emissions 

in four rooms. 

As the figure shows, the H2S concentrations were consistently within a range of 0.01-

0.15 ppm during most of measuring period, but with two sharp peaks (0.36 ppm and 

0.47 ppm) occurring in Oct. 2004 and Mar. 2005. These high H2S concentrations can be 

probably explained by the lowest ventilation rate in October and the highest pig weights 

in March compared to other sampling months. However, it should be noted the 

generation of H2S in pig rooms was affected by many factors, which included manure 

production and storage, airflow rate, manure anaerobic decomposition activity, manure 

disturbance, room and ambient temperature, air exchange rate in the manure storage 

head space, and animal total weights, etc. During the 2 or 3-minute seasonal H2S 

sampling period, it was hard to know which factors had significant effects on the H2S 
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concentrations. Thus, the seasonal H2S concentration variations showed some very 

interesting results especially when the ambient temperature dropped below 0°C and/or 

the minimum ventilation rate was maintained. It was found that lower H2S 

concentrations were observed in the winter instead of the summer. 

    

The H2S emission patterns were very similar to the patterns of H2S concentrations. High 

emissions (1.2 to 7.1 g AU-1 d-1) with relatively high ventilation rates during the warm 

season from June to September were observed and then decreased to lower levels (0.1 to 

0.9 g AU-1 d-1) from October 2004 to May 2005 (except for March 2004).  

 

Figure 5.25 exhibits the seasonal variations of CO2 concentrations and emissions in four 

rooms over a 12-month monitoring period.  
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                  Figure 5.25 Seasonal variations of CO2 concentrations and emissions 

in four rooms. 
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The fluctuations of the CO2 concentrations show a very clear seasonal trend with 

relatively high concentrations (3000 to 3500 ppm) for four pig rooms in January and 

February as well as low concentrations (less than 500 ppm) in July, August and 

September. It can be further seen that the CO2 concentrations in all rooms were quite 

similar except for the levels from rooms 10 and 11 in April perhaps due to the pigs’ 

management for shipping as discussed earlier.   

 

Although the seasonal CO2 concentrations and ventilation rates were quite different for 

most of the sampling period, this same variability in CO2 emissions was not found. 

Rather, the CO2 emissions varied in a relatively small range of 9.9-38.9 kg AU-1 d-1. The 

maximum value occurred in August 2004 and the minimum appeared in April 2005.  

 

5.2.2 Seasonal Odour and Gas Concentration and Emission Statistical Analysis        

 

Seasonal odour and gas data analysis was conducted by the repeated measures method. 

In the SAS program, the ‘Proc MIX’ and ‘Proc GLM’ were used for developing analysis 

models to evaluate if the odour and gas concentrations and emissions differed 

significantly between the two flooring systems over a 12-month sampling period. The 

analysis process had two steps as discussed in Chapter 4. Three important source 

parameters should be specially noted and analyzed. The first is the interaction of two 

factors: ‘Flooring’ and ‘Month’ factors using a ‘MIX’ model. The other two are the 

‘Flooring’ factor and the ‘Month’ factor using a ‘GLM’ model. The significances of the 

effects were determined at the 5% level.  
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Tables D.26 and D.27 in Appendix D give the statistical results of seasonal odour 

concentrations and emissions. It was found that: (1) the relative performance of the 

flooring systems for odour concentrations and emissions did not differ over a 12-month 

sampling period; (2) odour concentrations and emissions between the two different 

flooring systems for each measuring month did not differ significantly, and (3) the 

seasonal odour concentrations and emissions were significantly affected by the monitoring 

month.  

  

Tables D.28 and D.29 in Appendix D present the statistical results of seasonal NH3 

concentrations and emissions. It was observed that: (1) the relative performance of 

flooring systems for the NH3 concentration did change with the sampling time, but the 

relative performance of the flooring systems for the NH3 emissions did not differ over a 

12-month sampling period; (2) the ‘Flooring’ factor had a significant effect on the seasonal 

NH3 concentrations in October, November and January. During other sampling months, 

NH3 concentrations from different flooring systems did not differ significantly; (3) the NH3 

emissions from different flooring systems for each measuring month did not differ 

significantly, and (4) the seasonal NH3 concentrations and emissions were significantly 

affected by the monitoring month. 

 

Tables D.30 and D.31 in Appendix D provide the statistical results of seasonal H2S 

concentrations and emissions. It was found that: (1) the relative performance of flooring 

systems for the H2S concentrations did change with the sampling time, but the relative 

performance of the flooring systems for H2S emissions did not differ over a 12-month 
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sampling period; (2) the H2S concentrations and emissions from different flooring systems 

in each measuring month did not differ significantly, and (3) the seasonal H2S 

concentrations and emissions were significantly affected by the monitoring month. 

 

Tables D.32 and D.33 in Appendix D give the statistical results of seasonal CO2 

concentrations and emissions.  It was found that: (1) the relative performance of flooring 

systems for the CO2 concentrations and emissions did change with the sampling time; (2) 

the CO2 concentrations and emissions from different flooring systems in each measuring 

month did not differ significantly (except for the concentration in August and the emissions 

in December), and (3) the seasonal CO2 concentrations and emissions were significantly 

affected by the monitoring month. 

    

5.2.3 Summary of Seasonal Odour and Gas Concentration and Emission   

 

It was clear to see that rooms 10 and 11 had higher odour and gas concentrations and 

emissions than rooms 6 and 9 for a 12-month sampling period. The main explanation 

was attributed to fully slatted flooring systems (rooms 10 and 11) that had larger 

exposure manure area than partially slatted flooring systems (rooms 6 and 9), which 

resulted in more odour and gas release than partially slatted flooring systems.              

 

Table 5.11 summarizes the statistical results whether the ‘Flooring’ factor and the 

‘Month’ factor had a significant or no significant effect on the odour and gas 

concentrations and emissions for the four rooms over a 12-month monitoring period.  
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Table 5.11 ‘Flooring’ and ‘Month’ factors on seasonal odour   

and gas concentrations and emissions. 

Variables Flooring  Month 

Odor concentration NS S 

Odor emission rate NS S 

NH3 concentration NS (except for Oct., Nov., and Jan.) S 

NH3 emission rate NS S 

H2S concentration NS S 

H2S emission rate NS S 

CO2 concentration NS (except Aug.) S 

CO2 emission rate NS (except Dec.) S 
Note: S=significant; NS= no significant. 

The ‘Flooring’ factor had no significant effect on seasonal odour and gas concentrations and 

emissions, except for NH3 concentrations in October, November and January, CO2 

concentrations in August and CO2 emissions in December, i.e., odour and gas 

concentrations and emissions between different flooring systems for each measuring month 

did not differ significantly. The ‘Month’ factor affected significantly on the seasonal odour 

and gas concentrations and emissions. 

Although some seasonal conclusions were not completely consistent with the diurnal 

conclusions about the significant or insignificant effects of the factors on odour and gas 

concentrations and emissions, it should be noted that the seasonal conclusions were suitable 

for grab samples from the four rooms over the year; while the diurnal conclusions were 

applicable to multiple samplings during the day under different weather conditions.  
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5.3 Modelling Diurnal and Seasonal Odour and Gas Concentration and Emission   

5.3.2 Odour and Gas Concentration and Emission Modelling   

 

Odour and gas concentration and emission models were separated into two parts 

(“partially slatted flooring” models and “fully slatted flooring” models) based on the 

different flooring systems of rooms 6, 9 and rooms 10, 11.  Each model considered 

diurnal and seasonal variation, ventilation rate, ambient and room temperature, and 

animal units. A total of 14 prediction odour and gas models were generated as follows, 

(Ti =Room temperature; V =Ventilation rates; To =Ambient temperature; AU =Animal 

units). 

 

Table 5.12 provides the SAS output results of odour and gas models for the partially 

slatted flooring system. 

                Table 5.12 SAS results of odour and gas models for   

the partially slatted flooring system. 

Independent variable r2 C.V. Root MSE Ti V To AU 

OdourCon (OU m-3) 0.78 32.58 357.91 S NS S S 

OdourER (OU s-1) 0.85 22.65 769.80 S S S S 

NH3Con (ppm) 0.90 23.87 3.46 S S S NS 

NH3ER (mg s-1) 0.73 25.24 7.16 S NS S NS 

H2SCon (ppm) NA NA NA NA NA NA NA 

H2SER (mg s-1) 0.70 62.25 0.47 NS NS NS NS 

CO2Con (ppm) 0.88 25.36 497.41 NS S S NS 

CO2ER (g s-1) 0.60 23.12 2.06 NS S S NS 

Note: Con=concentration; ER=emission rate; S=significant (P < 0.05);  
NS=not significant (P > 0.05); NA=not available; C.V. =Coefficient of variation;  
Root MSE= Root of the mean square error.    
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1) Odour concentration (OdourCon, or OC) Model: (r2 = 0.78) 

AUToAUVToVAUTiToTi
VTiAUToVTiOC

*96.7*02.6*83.8*76.15*27.1
*87.236.29386.25489.33188.56314.12108

−+++−
−−+−−=

 

2) Odour emission rate (OdourER, or OE) Model: (r2 = 0.85) 

 
AUToAUVToVAUTiToTi

VTiAUToVTiOE
*67.8*09.11*21.7*54.25*05.22

*83.8646.34191.70286.99376.111799.18533
−−−+−

+−+−−=
 

3) NH3 Concentration (NH3Con, or NC) Model: (r2 = 0.90) 

AUToAUVToVAUTiToTi
VTiAUToVTiNC

*03.0*1.0*04.0*05.0*07.0
*04.042.022.388.301.335.55

+−+++
−−−+−=

 

4) NH3 emission rate (NH3ER, or NE) Model: (r2 = 0.73) 

 
AUToAUVToVAUTiToTi

VTiAUToVTiNE
*02.0*14.0*12.0*06.0*1.0

*15.015.088.262.613.451.58
+−−++

+−−+−=
 

5) H2S emission rate (H2SER, or HE) Model: (r2 = 0.70) 

AUToAUVToVAUTiToTi
VTiAUToVTiHE

*0006.0*004.0*007.0*002.0*003.0
*02.006.004.002.0005.055.0
+−−−−

+++−−−=
 

6) CO2 concentration (CO2Con, or CC) Model: (r2 = 0.88) 

AUToAUVToVAUTiToTi
VTiAUToVTiCC

*14.6*45.10*69.1*76.1*55.14
*35.199.4975.62718.87072.7538.516

+−−−+
−+−++−=

 

7) CO2 emission rate (CO2ER, or CE) Model: (r2 = 0.60) 

 
AUToAUVToVAUTiToTi

VTiAUToVTiCE
*015.0*04.0*09.0*0001.0*06.0

*03.016.087.146.404.027.4
+−−−+

−+−++−=
 

 

Figure 5.26 shows the measured and predicted odour and gas concentration and 

emission from room 9 (the partially slatted flooring system). X axis indicates No. of 

samples (odour and H2S model’s X axis: No.1 to 48 are diurnal data; the rest are 
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seasonal data. NH3 and CO2 model’s X axis: No.1 to 144 are diurnal data; the rest are 

seasonal data).  
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    Figure 5.26 The measured vs. predicted odour and gas concentration and emission for 

the partially-slatted flooring system (X axis indicates No. of samples).  
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Table 5.13 provides the SAS results of odour and gas models for the fully slatted 

flooring system. 

                Table 5.13 SAS results of odour and gas models for   

the fully slatted flooring system. 

Independent variable r2 C.V. Root MSE Ti V To AU 

OdourCon (OU m-3) 0.67 47.33 852.87 NS NS NS NS 

OdourER (OU s-1) 0.41 32.13 1770.84 NS NS NS NS 

NH3Con (ppm) 0.95 10.90 2.31 S S NS S 

NH3ER (mg s-1) 0.90 13.06 6.12 S S NS S 

H2SCon (ppm) NA NA NA NA NA NA NA 

H2SER (mg s-1) 0.54 69.51 0.74 NS S NS NS 

CO2Con (ppm) 0.87 26.12 569.15 NS S S S 

CO2ER (g s-1) 0.50 19.26 1.96 NS S NS NS 

Note: Con=concentration; ER=emission rate; S=significant (P < 0.05);  
NS=not significant (P > 0.05); NA=not available; C.V. =Coefficient of variation;  
Root MSE= Root of the mean square error.    

 
 

8) Odour concentration (OdourCon, or OC) Model: (r2 = 0.67) 

AUToAUVToVAUTiToTi
VTiAUToVTiOC

*75.5*78.14*87.31*5.4*22.21
*44.8929.12916.32409.67882.4563.3440

−++++
−−−++=

 

9) Odour emission rate (OdourER, or OE) Model: (r2 = 0.41) 

 
AUToAUVToVAUTiToTi

VTiAUToVTiOE
*64.12*21.15*6.43*44.18*82.33

*32.16111.25955.3241.207847.096.2147
−++++
−−−++=

 

10) NH3 Concentration (NH3Con, or NC) Model: (r2 = 0.95) 

AUToAUVToVAUTiToTi
VTiAUToVTiNC

*01.0*06.0*15.0*13.0*01.0
*16.002.256.087.238.34.79

−−++−
−−−+−=

 

11) NH3 emission rate (NH3ER, or NE) Model: (r2 = 0.90) 

 
AUToAUVToVAUTiToTi

VTiAUToVTiNE
*02.0*2.0*27.0*27.0*05.0

*31.08.346.134.1036.729.115
−−−+−

+−++−=
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      12) H2S emission rate (H2SER, or HE) Model: (r2 = 0.54) 

AUToAUVToVAUTiToTi
VTiAUToVTiHE

*0005.0*006.0*007.0*0006.0*01.0
*06.002.027.043.115.058.3
+−+++

−+−++−=
 

13) CO2 concentration (CO2Con, or CC) Model: (r2 = 0.87) 

AUToAUVToVAUTiToTi
VTiAUToVTiCC

*01.0*22.9*34.24*53.14*21.8
*25.577.21526.34969.110551.21919.5089

+−+++
−−−+−=

 

14) CO2 emission rate (CO2ER, or CE) Model: (r2 = 0.50) 

 
AUToAUVToVAUTiToTi

VTiAUToVTiCE
*009.0*05.0*027.0*056.0*01.0

*01.076.015.086.21.196.16
−−−+−

+−++−=
 

 

Figure 5.27 shows the measured and predicted odour and gas concentration and 

emission from room 10 (the fully slatted flooring system). X axis indicates No. of 

samples (odour and H2S model’s X axis: No.1 to 48 are diurnal data; the rest are 

seasonal data. NH3 and CO2 model’s X axis: No.1 to 144 are diurnal data; the rest are 

seasonal data).  
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    Figure 5.27 The measured vs. predicted odour and gas concentration and emission for   

the fully-slatted flooring system (X axis indicates No. of samples).  

 

5.3.3 Summary of Odour and Gas Concentration and Emission Modelling   

 

Table 5.14 summarizes the effects of input factors (the measured room and ambient 

temperatures, the ventilation rate and animal units) on odour and gas concentration and 

emission models.  
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    Table 5.14 Effects of input factors on odour and gas models.*  

Model Output Model Input Rooms 6 and 9 Rooms 10 and 11
 Room temperature S NS 
 Ventilation rate NS NS 

Odour concentration Ambient temperature S NS 
 Animal unit S NS 
 Model R-square 0.78 0.67 
 Room temperature S NS 
 Ventilation rate S NS 

Odour emission rate Ambient temperature S NS 
 Animal unit S NS 
 Model R-square 0.85 0.41 
 Room temperature S S 
 Ventilation rate S S 

NH3 concentration Ambient temperature S NS 
 Animal unit NS S 
 Model R-square 0.9 0.95 
 Room temperature S S 
 Ventilation rate NS S 

NH3 emission rate Ambient temperature S NS 
 Animal unit NS S 
 Model R-square 0.73 0.90 
 Room temperature NS NS 
 Ventilation rate NS S 

H2S emission rate Ambient temperature NS NS 
 Animal unit NS NS 
 Model R-square 0.69 0.54 
 Room temperature NS NS 
 Ventilation rate S S 

CO2 concentration Ambient temperature S S 
 Animal unit NS S 
 Model R-square 0.88 0.87 
 Room temperature NS NS 
 Ventilation rate S S 

CO2 emission rate Ambient temperature S NS 
 Animal unit NS NS 
 Model R-square 0.60 0.48 

Note: S=significant; NS=not significant; Rooms 6 and 9 had partially slatted floorings; 
Rooms 10 and 11 had fully slatted floorings.   

 

As shown in Table 5.14, some factors had more and less effects on the odour and gas 

concentrations and emissions. However, these factors did not always show the same 
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effects on the concentrations or emissions from rooms 9 and 10 due to different flooring 

types. According to the r2 of each model, the odour concentrations and emissions (except 

for room 10 emissions), the NH3 concentrations and emissions, and the CO2 

concentrations can be nicely predicted by the models; while the precision of the models 

for the room 10 odour emissions, H2S emissions and CO2 emissions was relatively poor. 

This lack of precision could be explained by the fact that odour and gas concentration 

and emissions depend on many factors including temperature, ventilation rates, animal 

units as well as the activity of the pigs and the level of pen hygiene that were not 

considered in the models. Therefore, animal activity and dirtiness of pens should be 

investigated to improve prediction precisions of odour and gas statistical models. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

Ammonia, hydrogen sulphide, carbon dioxide, and odorous gaseous compounds 

produced by livestock facilities are a great concern in many communities throughout 

Canada due to their environmental and health effects on animal, workers, and nearby 

residents, as well as social and economic impacts on animal industry and local 

communities. Researchers, local units of government and livestock producers are 

reviewing policies and developing advanced technologies to address odour and gas 

problems. Up to now, a simple approach widely practiced is to maintain adequate 

setback distances between the livestock operation and the neighbouring residences. In 

order to determine science-based setback distance, air dispersion models are used to 

estimate downwind odour and gas concentrations from an animal source. A good 

prediction of downwind odour and gas using air dispersion models relies largely on 

source emission rate information which is highly variable with diurnal and seasonal 

variations, building characteristics, ventilation rate, animal size and density, weather 

conditions, manure handling systems, etc. Therefore, the purpose of this project was to 

monitor and model diurnal and seasonal odour and gas emission profiles for swine 

grower/finisher rooms.  
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6.1 Summary and Conclusions 

 

The following presents the primary conclusions drawn from the diurnal and seasonal 

measurements and modelling of the odour and gas concentration and emission by this 

research project. The diurnal conclusions were applicable to multiple samplings during the 

day under different weather conditions; while the seasonal conclusions were suitable for 

snapshot measurements from the four rooms over the year.  

 

6.1.1 Diurnal Odour and Gas Concentration and Emission 

 

1. Odour and gas concentrations and emissions from the fully slatted flooring 

system (room 10) were higher than those from the partially slatted flooring 

system (room 9) for three measurement seasons, since the fully slatted flooring 

system had larger exposed manure area than the partially slatted flooring system, 

which resulted in more odour and gas release (average reduction between the 

fully and partially slatted floors: 27.6 and 30.3% for diurnal odour 

concentrations and emissions, respectively; 33.3 and 39.5% for diurnal NH3 

concentrations and emissions, respectively; 36.9 and 34.5% for diurnal H2S 

concentrations and emissions, respectively). However, this study did not find 

significant differences in odour and gas (NH3, H2S, and CO2) concentrations and 

emissions (except for the NH3 concentration) between the two different flooring 

types (rooms 9 and 10) in August (P > 0.05); while in February, only odour 

concentrations and emissions differed significantly between those two rooms (P 
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< 0.05). In October, there were no significant differences in odour and CO2 

concentrations and emissions between rooms 9 and 10 (P > 0.05). 

 

2. Although the odour and gas concentrations (except for the H2S concentrations) 

were significantly different (P < 0.05) under different climate conditions, as well 

as the ventilation rates being quite different for most of the sampling periods, 

odour and gas emissions did not differ significantly (P > 0.05) for all three 

measurement seasons when expressed on per animal unit or per square metre 

bases. Again, this is mainly because the odour or gas emission rate is calculated 

by multiplying building ventilation rate by the odour or gas concentration and 

these two factors had an inverse relationship.  

 

3. Significant diurnal variations in odour and gas (NH3, H2S, and CO2) 

concentrations and emissions (except for the odour concentration and H2S 

emission) were observed in August (P < 0.05); while in February, only CO2 

concentrations and emissions showed significant fluctuation patterns (P < 0.05). 

In October, significant diurnal variations (P < 0.05) of gas (NH3, H2S, and CO2) 

emissions have been found.  

 

4. Pearson correlation matrix indicated a significant (P < 0.05) moderate (r = 0.64) 

correlation between October odour and NH3 concentrations from room 10 and 

significant (P < 0.05) moderate (r = 0.53 and r = 0.60) correlations between 

October odour and CO2 concentrations from rooms 9 and 10, respectively. No 
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other significant relationships between odour and gas concentrations were found 

in this research. 

 

6.1.2 Seasonal Odour and Gas Concentration and Emission 
 

5. The fully slatted flooring systems (rooms 10 and 11) had higher seasonal odour 

and gas concentrations and emissions than the partially slatted flooring systems 

(rooms 6 and 9) for a 12-month measurement period (average reduction between 

fully and partially slatted floors: 40.6 and 29.1% for seasonal odour 

concentration and emission, respectively; 30.0 and 33.3% for seasonal NH3 

concentration and emission, respectively; 2.9 and 6.1% for seasonal H2S 

concentration and emission, respectively). However, odour and gas concentrations 

and emissions (except for NH3 concentrations in October, November and January, 

CO2 concentrations in August and CO2 emissions in December) between different 

flooring systems for each measuring month did not differ significantly (P > 0.05).  

 

6. Seasonal odour and gas concentrations and emissions were significantly affected 

by the sampling month and ambient temperature (P < 0.05). However, no 

specific seasonal pattern was observed.   

 

6.1.3 Odour and Gas Concentration and Emission Modelling 

 

7.  The statistical models were developed to predict diurnal and seasonal odour and 

gas concentrations and emissions for each flooring type as determined by room 
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and ambient temperatures, ventilation rates, and animal units. The models’ 

predictions were in close agreement with measured values (except for the room 

10 odour, H2S, and CO2 emissions). The r2 of those models were within the range 

of 0.67 to 0.95.   

 

6.2 Recommendations for Further Study 

 

1. The source odour and gas emission rates are basic and important input data for 

the air dispersion models to calculate setback distances between the livestock 

operations and the neighbouring residences. If significant diurnal variations in 

odour and gas emissions are found under a certain weather condition, the 

emissions during different intervals per measurement day must be monitored and 

then considered in the air dispersion models. The purpose is to decrease great 

uncertainties of setback determination using the mean or geometric mean of the 

data measured randomly during the daytime at any time of the year. Additionally, 

identification of the diurnal and seasonal odour and gas emission profiles can 

help to develop odour and gas abatement strategies targeting high odour and gas 

emission periods.  

 

2. Long-term odour and gas measurements and appropriate repetition are needed to 

be able to obtain more reliable statistical analysis results since how accurate the 

statistical description depends partly on the size of the sample used. Moreover, 
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standardized air sampling protocols should be established to facilitate comparison 

of results from numerous experiments.  

 

3. Odour and gas concentrations and emissions are affected by some other factors 

such as building characteristics, activity of the pigs, and levels of pen hygiene. 

Regarding the lack of precision of some models, animal activity and dirtiness of 

pens should be further investigated to improve prediction precisions of odour and 

gas statistical models. Furthermore, experiment measurements should be 

conducted again to validate those models.  
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APPENDIX A      SWINE ENVIRONMENT MEASURING SYSTEM 

 

 

Figure A.1 The environment measuring system made and tested in the lab. 

 

                Figure A.2 The Measuring system installed in the swine barn. 
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APPENDIX B      CALIBRATION OF THE SENSORS 

 

B.1 Calibration of the Temperature Sensors 
   

 
Figure B.1 The temperature sensors. 

 
               Figure B.2 Calibration of the temperature sensors using the     

angelantoni climatic system. 
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The temperature sensor (TC 1047, Microchip Technology Inc., Chandler, AZ, USA) is a 

linear voltage output sensor that can accurately measure temperature from -40°C to 

125°C with ±0.5°C precision. The calibration results presenting the relationship between 

the output voltage of the sensor and the temperature are given in Table B.1.  

              Table B.1 The calibration results of the temperature sensors. 

Temperature Sensor  Conversion Equation r2 

Room 6 room T sensor V=104.81T-53.348 0.9986 

Room 6 outside T sensor V=99.556T-48.967 0.9995 

Room 9 room T sensor V=103.9T-52.592 0.9982 

Room 9 outside T sensor V=101.28T-49.903 0.9992 

Room 10 room T sensor V=101.83T-51.009 0.9991 

Room 10 outside T sensor V=101.85T-51.052 0.9994 

Room 11 room T sensor V=103.19T-51.855 0.9991 

Room 11 outside T sensor V=103.01T-51.902 0.9993 
                            Note: V is the output voltage of the sensors; T is the temperature (°C). 
 
 
B.2 Calibration of the Relative Humidity Sensors 
 
 

 

      Figure B.3 The relative humidity sensors covered with PVC covers.   
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              Figure B.4 Calibration of the relative humidity sensors using the 

Hydro-MZ dew point monitor. 

             
The relative humidity sensor (HIH-3160, Honeywell Inc., Freeport, Illinois, USA) is a 

laser trimmed thermo set polymer capacitive sensing element with on-chip integrated 

signal conditioning. The accuracy of the RH sensor is ±2% (25°C, plyVsup = 5 VDC). It is 

covered with PVC covers to filter dust and light out to protect the sensor. The 

calibration results presenting the relationship between the output voltage of the sensor 

and the relative humidity are given in Table B.2.  

                     Table B.2 The calibration results of the relative humidity sensors. 

Relative Humidity Sensor Conversion Equation r2 

Room 6 RH sensor V=32.653RH-28.555 0.9987 

Room 9 RH sensor V=32.381RH-29.809 0.9992 

Room 10 RH sensor V=32.587RH-28.982 0.9982 

Room 11 RH sensor V=32.541RH-29.161 0.9991 
                     Note: V is the output voltage of the sensors; RH is the relative humidity (%). 
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B.3 Calibration of the Pressure Transducers 
 
 

 
              Figure B.5 The pressure transducers and calibration of the sensors   

using the OMEGA pressure meter and pump. 

       
The pressure transducer (Model 264, Setra System Inc, Boxborough, MA, USA) with an 

accuracy of ± 1% full scale (0 - ± 0.5 in. W. C.) is shown in Figure B.5. The calibration 

results are given in Table B.3. 

Table B.3 The calibration results of the pressure transducer. 

Pressure Transducer  Calibration Equation r2 

Room 6 P transducer V=0.0922P-0.0703 0.9908 

Room 9 P transducer V=0.2662P-0.6186 1.0000 

Room 10 P transducer V=0.2014P-0.4847 0.9998 

Room 11 P transducer V=0.1798P-0.5338 0.9996 
   Note: V is the output voltage of the sensors; P is the pressure (inch water). 
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B.4 Calibration of the Hall Fan Sensors 
 

 
        Figure B.6 Calibration of the Hall fan sensors using the 50-MHz pulse 

generator and 1.3-GHz frequency counter. 

 
The variable–speed fan RPM sensor is a micro switch Hall Effect position sensor 

(SR3F-A1, Honeywell Inc., Freeport, Illinois, USA). The calibration equation was 

0451.65.367 −= FV (V is the output voltage of the sensors; F is the frequency) with r2 = 

1. 
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APPENDIX C      VERIFICATION OF THE FAN AIR FLOW RATE 

 

During the test, inlet opening was adjusted at four steps 100%, 50%, 25%, and 10% so 

the according differential pressure was 18.4 Pa, 23.4 Pa, 37.1 Pa, and 61.0 Pa, 

respectively. All the tested fans were running at 100% full speed.    

 

Tables C.1 and C.2 give the average airflow rates obtained using the fan manufacturer 

data method and the field measuring method on three tested fans. Figure C.1 shows the 

average airflow rates on three variable-speed fans.  

 

Table C.1 Airflow rates of the three tested fans using fan manufacturer data. 

Air flow Rate (m3 s-1) -Fan Curve Method   
Inlet Opening Difference Pressure Fan a Fan b Fan c Average 

100% 18.4 2.38 2.57 2.60 2.52 
50% 23.4 2.31 2.52 2.29 2.37 
25% 37.1 2.09 2.31 2.08 2.16 
10% 61.0 1.69 1.68 1.70 1.69 

         Note: The unit of the pressure is the Pascal. 

Table C.2 Airflow rates of the three tested fans using field calibration data. 

Air flow Rate (m3 s-1) - Field Measurement  
Inlet Opening Difference Pressure Fan a Fan b Fan c Average 

100% 18.4 2.28 2.47 2.53 2.43 
50% 23.4 2.15 2.41 2.25 2.27 
25% 37.1 2.12 2.34 2.12 2.19 
10% 61.0 1.65 1.77 1.77 1.73 

         Note: The unit of the pressure is the Pascal. 
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         Figure C.1 Results of airflow rates on three variable-speed fans. 

It can be concluded under this study that field fan performance was 4% lower than fan 

manufacturer data.  

  

The airflow rates from single-speed fans are listed in Tables C.3 and C.4.  

Table C.3 Airflow rates and environment parameters on single-speed fan-1. 

  Single Speed Fan 1 
Fan On/Off Airflow (Fan Curve) Airflow (Field) T room T outside RH

State m3/s m3/s ( C) ( C ) %
On 4.48 4.05 26.2 25.1 47.7

 

Table C.4 Airflow rates and environment parameters on single-speed fan-2. 

  Single Speed Fan 2 
Fan On/Off Airflow (Fan Curve) Airflow (Field) T room T outside RH

State m3/s m3/s ( C) ( C ) %
On 4.48 4.37 26.4 25.7 45.7

 

It can be concluded under this study that field fan performance was 6% less than fan 

manufacturer data on single-speed fans. 
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APPENDIX D      ODOUR AND GAS DATA STATISTICAL ANALYSIS  

 

D.1 Diurnal Odour and Gas Concentration and Emission Statistical Analysis     

  

The statistical results from the SAS output for diurnal odour and gas concentrations and 

emissions are presented in Tables D.1 to D.24. In each ANOVA table, three important 

source parameters should be specially noted and analyzed. One is ‘Flooring’ factor, 

another is ‘Diurnal’ factor, and the third is the interaction of those two factors. The 

significance of the effects and interactions were determined at the 5% level.  

 

If the P-value of ‘Flooring’ factor was greater than 0.05, it indicated that there was no 

significant difference between the odour and gas concentrations and emissions from the two 

experimental rooms, and vice versa. If the P-value of ‘Diurnal’ factor was less than 0.05, it 

suggested that the ‘Diurnal’ effect (a function of ambient and room temperature, ventilation 

rate, the swine management, etc.) had a significant effect on odour and gas concentrations 

and emissions, i.e., significant diurnal variations of odour and gas concentrations and 

emissions were observed, and vice versa. If the P-value of ‘Flooring’ *‘Diurnal’ was 

greater than 0.05, it meant that there was no interaction between the ‘Flooring’ factor and 

the ‘Diurnal’ factor; hence the means of odour and gas concentrations or emissions from 

different rooms could be compared without considering their interaction terms.  
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D.1.1 Statistical Analysis Results for Diurnal Odour and Gas Concentrations and 

Emissions in August 

Table D.1 ANOVA table for odour concentration in August. 

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 13820 13820 1.13 0.48 
Flooring 1 27554 27554 2.26 0.37 

Day*Flooring 1 12207 12207 1.65 0.24 
Diurnal 7 54951 7850 1.04 0.48 

Day*Diurnal 7 52750 7536 1.02 0.49 
Flooring*Diurnal 7 20582 2940 0.40 0.88 

Error 7 51710 7387   
Corrected Total 31 233573    

Note: Analysis Model: Pr>F=0.53; R2=0.78.   
 

Table D.2 ANOVA table for odour emission in August.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 5398 5398 4.11 0.29 
Flooring 1 178 178 0.14 0.78 

Day*Flooring 1 1313 1313 1.35 0.28 
Diurnal 7 49317 7045 7.74 0.0075

Day*Diurnal 7 6375 911 0.94 0.53 
Flooring*Diurnal 7 3537 505 0.52 0.80 

Error 7 6810 973   
Corrected Total 31 72926    

Note: Analysis Model: Pr>F=0.08; R2=0.9.   
 

Table D.3 ANOVA table for NH3 concentration in August. 

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 1.76 1.76 1.00 0.50 
Flooring 1 490.51 490.51 278.63 0.04 

Day*Flooring 1 1.76 1.76 1.69 0.21 
Diurnal 23 98.74 4.29 3.09 0.0046

Day*Diurnal 23 31.99 1.39 1.33 0.25 
Flooring*Diurnal 23 22.24 0.97 0.93 0.57 

Error 23 23.99 1.04   
Corrected Total 95 670.99    

Note: Analysis Model: Pr>F=0.0001; R2=0.96.   
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Table D.4 ANOVA table for H2S concentration in August.   

Source DF Sum of Square Mean of Square F Value Pr>F

Day 1 22419 22419 2.68 0.35 
Flooring 1 21788 21788 2.61 0.35 

Day*Flooring 1 8353 8353 4.93 0.06 
Diurnal 7 68517 9788 4.09 0.04 

Day*Diurnal 7 16761 2394 1.41 0.33 
Flooring*Diurnal 7 20157 2880 1.70 0.25 

Error 7 11858 1694   
Corrected Total 31 169853    

Note: Analysis Model: Pr>F=0.035; R2=0.93.   
 

Table D.5 ANOVA table for CO2 concentration in August. 

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 76501 76501 43.69 0.10 
Flooring 1 29751 29751 16.99 0.15 

Day*Flooring 1 1751 1751 0.91 0.35 
Diurnal 23 1205011 52392 17.46 0.0001

Day*Diurnal 23 69011 3001 1.56 0.15 
Flooring*Diurnal 23 147711 6422 3.34 0.003 

Error 23 44161 1920   
Corrected Total 95 1573899    

Note: Analysis Model: Pr>F=0.0001; R2=0.97.   
 

Table D.6 ANOVA table for NH3 emission in August.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 4576 4576 3.68 0.31 
Flooring 1 107575 107575 86.46 0.07 

Day*Flooring 1 1244 1244 2.71 0.11 
Diurnal 23 59571 2590 5.56 0.0001

Day*Diurnal 23 10718 466 1.02 0.49 
Flooring*Diurnal 23 4115 179 0.39 0.99 

Error 23 10555 459   
Corrected Total 95 198355    

Note: Analysis Model: Pr>F=0.0001; R2=0.96.   
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Table D.7 ANOVA table for H2S emission in August.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 13.26 13.26 1.79 0.41 
Flooring 1 12.5 12.5 1.69 0.42 

Day*Flooring 1 7.41 7.41 6.16 0.042 
Diurnal 7 48.93 6.99 3.62 0.06 

Day*Diurnal 7 13.5 1.93 1.6 0.27 
Flooring*Diurnal 7 8.02 1.15 0.95 0.52 

Error 7 8.42 1.2   
Corrected Total 31 112.04    

Note: Analysis Model: Pr>F=0.04; R2=0.92.   
 

Table D.8 ANOVA table for CO2 emission in August.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 17.94 17.94 595.93 0.03 
Flooring 1 3.88 3.88 128.89 0.06 

Day*Flooring 1 0.03 0.03 0.00 0.95 
Diurnal 23 1682.78 73.16 5.49 0.0001

Day*Diurnal 23 306.79 13.34 2.02 0.049 
Flooring*Diurnal 23 186.28 8.10 1.23 0.31 

Error 23 151.86 6.60   
Corrected Total 95 2349.56    

Note: Analysis Model: Pr>F=0.0001; R2=0.94.   
 

D.1.2 Statistical Analysis Results for Diurnal Odour and Gas Concentrations and 

Emissions in October 

Table D.9 ANOVA table for odour concentration in October.     

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 2438736 2438736 5.37 0.26 
Flooring 1 1098162 1098162 2.42 0.36 

Day*Flooring 1 454105 454105 5.17 0.06 
Diurnal 7 728317 104045 0.43 0.86 

Day*Diurnal 7 1713469 244781 2.79 0.10 
Flooring*Diurnal 7 657854 93979 1.07 0.47 

Error 7 614714 87816   
Corrected Total 31 7705357       

Note: Analysis Model: Pr>F=0.05; R2=0.92.  
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Table D.10 ANOVA table for odour emission in October.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 17340 17340 11.88 0.18 
Flooring 1 14574 14574 9.99 0.20 

Day*Flooring 1 1459 1459 2.04 0.20 
Diurnal 7 2673 382 0.74 0.65 

Day*Diurnal 7 3618 517 0.72 0.66 
Flooring*Diurnal 7 1284 184 0.26 0.95 

Error 7 5001 714   
Corrected Total 31 45949       

Note: Analysis Model: Pr>F=0.12; R2=0.89. 
 

Table D.11 ANOVA table for NH3 concentration in October.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 0.09 0.09 9.00 0.20 
Flooring 1 3396.26 3396.26 100000 0.0001

Day*Flooring 1 0.01 0.01 0.01 0.92 
Diurnal 23 148.74 6.47 0.86 0.64 

Day*Diurnal 23 172.66 7.51 7.94 0.0001
Flooring*Diurnal 23 338.49 14.72 15.57 0.0001

Error 23 21.74 0.95   
Corrected Total 95 4077.99    

Note: Analysis Model: Pr>F=0.0001; R2=0.99.   
 
 

Table D.12 ANOVA table for H2S concentration in October. 

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 3445 3445 6.33 0.24 
Flooring 1 101025 101025 185.54 0.047 

Day*Flooring 1 545 545 0.33 0.59 
Diurnal 7 11686 1669 2.01 0.19 

Day*Diurnal 7 5803 829 0.50 0.81 
Flooring*Diurnal 7 5671 810 0.49 0.82 

Error 7 11633 1662   
Corrected Total 31 139808    

Note: Analysis Model: Pr>F=0.0582; R2=0.92.   
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Table D.13 ANOVA table for CO2 concentration in October.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 12353 12353 0.26 0.70 
Flooring 1 1679840 1679840 35.58 0.11 

Day*Flooring 1 47215 47215 5.71 0.03 
Diurnal 23 3813334 165797 0.69 0.81 

Day*Diurnal 23 5553707 241466 29.21 0.0001
Flooring*Diurnal 23 206441 8976 1.09 0.42 

Error 23 190120 8266   
Corrected Total 95 11503010    

Note: Analysis Model: Pr>F=0.0001; R2=0.98.   
 

Table D.14 ANOVA table for NH3 emission in October. 

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 533 533 0.89 0.52 
Flooring 1 97244 97244 162.62 0.05 

Day*Flooring 1 598 598 5.37 0.03 
Diurnal 23 11926 518 6.98 0.0001

Day*Diurnal 23 1708 74 0.67 0.83 
Flooring*Diurnal 23 3674 160 1.43 0.20 

Error 23 2561 111   
Corrected Total 95 118242    

Note: Analysis Model: Pr>F=0.0001; R2=0.98.   
 

Table D.15 ANOVA table for H2S emission in October.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 0.0003 0.0003 0.04 0.87 
Flooring 1 12.63 12.63 1616.04 0.02 

Day*Flooring 1 0.01 0.01 0.04 0.85 
Diurnal 7 4.81 0.69 7.08 0.01 

Day*Diurnal 7 0.68 0.10 0.49 0.82 
Flooring*Diurnal 7 0.73 0.10 0.52 0.79 

Error 7 1.39 0.20   
Corrected Total 31 20.25    

Note: Analysis Model: Pr>F=0.0338; R2=0.93.   
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Table D.16 ANOVA table for CO2 emission in October.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 33 33 0.19 0.74 
Flooring 1 1588 1588 9.33 0.20 

Day*Flooring 1 170 170 25.26 0.0001
Diurnal 23 626 27 2.42 0.02 

Day*Diurnal 23 259 11 1.67 0.11 
Flooring*Diurnal 23 105 5 0.68 0.82 

Error 23 155 7   
Corrected Total 95 2936    

Note: Analysis Model: Pr>F=0.0001; R2=0.95.  
 

D.1.3 Statistical Analysis Results for Diurnal Odour and Gas Concentrations and 

Emissions in February  

Table D.17 ANOVA table for odour concentration in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 1129129 1129129 192.72 0.046 
Flooring 1 17153689 17153689 2927.73 0.01 

Day*Flooring 1 5859 5859 0.01 0.94 
Diurnal 7 2684068 383438 0.40 0.87 

Day*Diurnal 7 6657243 951035 0.91 0.55 
Flooring*Diurnal 7 7255274 1036468 1.00 0.50 

Error 7 728679 1040897   
Corrected Total 31 42171542       

Note: Analysis Model: Pr>F=0.34; R2=0.83 
 

Table D.18 ANOVA table for odour emission in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 264 264 3.34 0.32 
Flooring 1 30387 30387 384.33 0.03 

Day*Flooring 1 79 79 0.05 0.84 
Diurnal 7 5300 757 0.37 0.90 

Day*Diurnal 7 14433 2062 1.19 0.41 
Flooring*Diurnal 7 15167 2167 1.25 0.39 

Error 7 12179 1740   
Corrected Total 31 77811       

Note: Analysis Model: Pr>F=0.28; R2=0.84. 
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Table D.19 ANOVA table for NH3 concentration in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 59 59 0.82 0.53 
Flooring 1 334 334 4.65 0.28 

Day*Flooring 1 72 72 29.22 0.0001
Diurnal 23 545 24 1.64 0.12 

Day*Diurnal 23 339 15 6.00 0.0001
Flooring*Diurnal 23 139 6 2.47 0.0174

Error 23 56 2   
Corrected Total 95 1553    

Note: Analysis Model: Pr>F=0.0001; R2=0.96.   
 

Table D.20 ANOVA table for H2S concentrations in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 1739113 1739113 143.85 0.05 
Flooring 1 75855 75855 6.27 0.24 

Day*Flooring 1 12090 12090 0.93 0.37 
Diurnal 7 49149 7021 0.60 0.74 

Day*Diurnal 7 81407 11630 0.89 0.56 
Flooring*Diurnal 7 108930 15561 1.19 0.41 

Error 7 91265 13038   
Corrected Total 31 2157808    

Note: Analysis Model: Pr>F=0.0078; R2=0.96.   
 

Table D.21 ANOVA table for CO2 concentrations in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 73132959 73132959 894.23 0.02 
Flooring 1 3365257 3365257 41.15 0.10 

Day*Flooring 1 81783 81783 3.21 0.09 
Diurnal 23 38313265 1665794 11.15 0.0001

Day*Diurnal 23 3435868 149386 5.87 0.0001
Flooring*Diurnal 23 538211 23401 0.92 0.58 

Error 23 585148 25441   
Corrected Total 95 119452493    

Note: Analysis Model: Pr>F=0.0001; R2=0.995.  
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Table D.22 ANOVA table for NH3 emission in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 169 169 1.06 0.49 
Flooring 1 631 631 3.97 0.30 

Day*Flooring 1 159 159 2.13 0.16 
Diurnal 23 3875 168 1.33 0.25 

Day*Diurnal 23 2923 127 1.70 0.10 
Flooring*Diurnal 23 2539 110 1.48 0.18 

Error 23 1715 75   
Corrected Total 95 12009    

Note: Analysis Model: Pr>F=0.041; R2=0.86.   
 

Table D.23 ANOVA table for H2S emissions in February.   

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 58.16 58.16 48.41 0.09 
Flooring 1 1.19 1.19 0.99 0.50 

Day*Flooring 1 1.20 1.20 3.55 0.10 
Diurnal 7 1.43 0.20 1.05 0.47 

Day*Diurnal 7 1.36 0.19 0.58 0.76 
Flooring*Diurnal 7 2.43 0.35 1.03 0.49 

Error 7 2.37 0.34   
Corrected Total 31 68.14    

Note: Analysis Model: Pr>F=0.004; R2=0.97.   
 

Table D.24 ANOVA table for CO2 emissions in February.    

Source DF Sum of Square Mean of Square F Value Pr>F 

Day 1 2719 2719 131.81 0.06 
Flooring 1 28 28 1.36 0.45 

Day*Flooring 1 21 21 2.61 0.12 
Diurnal 23 3070 133 9.76 0.0001

Day*Diurnal 23 315 14 1.73 0.10 
Flooring*Diurnal 23 259 11 1.43 0.20 

Error 23 182 8   
Corrected Total 95 6593    

Note: Analysis Model: Pr>F=0.0001; R2=0.97.   
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D.1.4 Summary of Means (S.D.) of Diurnal Measured Variables 

Table D.25 Summary of means and standard deviations (S.D.) of diurnal 

measured variables during three measurement seasons. 

Variables  Month Room 9 Room 10 
 August 406 (77) 464 (87) 

Odour concentration (OU m-3) October 1053 (77) 1345 (603) 
  February 1683 (515) 3040 (1184) 
 August 122.2 (47.7) 126.7 (50.8) 

Odour emission rate (OU AU-1 s-1)      October 62.2 (23.1) 101.7 (39.5) 
  February 77.1 (24.4) 134.5 (50.7) 
 August 18.1 (7.1) 19.5 (7.8) 

Odour emission rate (OU m-2 s-1)        October 7.6 (3.5) 12.3 (5.5) 
  February 10.8 (3.4) 19.2 (7.2) 
 August 5 (1) 9 (2) 

NH3 concentration (ppm) October 11 (2) 22 (3) 
  February 27 (3) 32 (4) 
 August 86.9 (27.5) 154.7 (33.9) 

NH3 emission rate (g AU-1 d-1) October 40.5 (15.3) 103.2 (14.5) 
  February 81.4 (13.8) 87.2 (8.4) 
 August 12.9 (4.1) 23.8 (5.2) 

NH3 emission rate (g m-2 d-1) October 5.0 (2.1) 12.5 (1.9) 
  February 11.4 (1.9) 12.4 (1.2) 

 August 0.106 (0.037) 0.158 (0.092) 
H2S concentration (ppm) October 0.090 (0.034) 0.201 (0.037) 

  February 0.229 (0.228) 0.315 (0.328) 
 August 3.9 (1.3) 5.1 (2.2) 

H2S emission rate (g AU-1 d-1) October 0.67 (0.34) 1.92 (0.63) 
  February 1.20 (0.18) 1.63 (1.70) 
 August 0.6 (0.2) 0.8 (0.3) 

H2S emission rate (g m-2 d-1) October 0.08 (0.04) 0.23 (0.08) 
  February 0.17 (1.27) 0.23 (0.24) 
 August 508 (156) 544 (90) 

CO2 concentration (ppm) October 1966 (309) 2225 (335) 
  February 3647 (1126) 4030 (1220) 
 August 23.0 (4.7) 23.6 (5.2) 

CO2 emission rate (kg AU-1 d-1) October 18.5 (3.3) 26.5 (4.1) 
  February 26.5 (9.0) 27.8 (8.0) 
 August 3.4 (0.7) 3.6 (0.8) 

CO2 emission rate (kg m-2 d-1) October 2.3 (0.5) 3.2 (0.5) 
  February 3.7 (1.3) 4.0 (1.1) 
 August 11.7 (3.4) 11.0 (2.9) 

Ventilation rate (m3 s-1) October 1.9 (0.7) 2.4 (0.6) 
  February 1.6 (0.3) 1.6 (0.2) 
 August 37 38.5 

Animal units (AU) October 27.7; 33.3* 28.6; 32.2* 
  February 35 35.7 

Note: means of odour concentrations and emissions are all geometric means. 
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D.2 Seasonal Odour and Gas Concentration and Emission Statistical Analysis  
 

The statistical results from the SAS output for seasonal odour and gas concentrations 

and emissions are given in Tables D.26 to D.33. In each ANOVA table, three important 

source parameters should be specially noted and analyzed. The first is the interaction of 

the two factors: ‘Flooring’ and ‘Month’ factors. The other two are the ‘Flooring’ factor 

and the ‘Month’ factor. The significances of the effects were determined at the 5% level.  

 
The SAS output analysis process had two steps. The first step was to examine whether 

the interaction of ‘flooring’ and ‘month’ factors was significant or not. If the P-value of 

the interaction was greater than 0.05, which indicated the relative performance of 

flooring system did not differ over the sampling months, then the next step was to 

conduct the means comparison of the four rooms’ seasonal odour and gas concentrations 

and emissions in time analysis. If the P-value of the interaction was less than 0.05, 

which indicated the relative performance of flooring system differed significantly over 

the sampling months, then the next step was to analyze the effect of ‘flooring’ factor on 

odour and gas concentrations and emissions under each month level. 

 
Table D.26 ANOVA table for seasonal odour concentrations in four pig rooms.

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month          0.23 

Room 1 617859 617859 2.93 0.34 
Flooring 1 7523219 7523219 35.63 0.11 

Room*Flooring 1 211143 211143 0.70 0.42 
Month 10 37615014 3761501 6.89 0.0026

Room*Month 10 5456463 545646 1.82 0.18 
Flooring*Month 10 4872398 487240 1.62 0.23 

Error 10 3006145 300614   
Corrected Total 43 59302241    

Note: Analysis Model: Pr>F=0.031; R2=0.95.   
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Table D.27 ANOVA table for seasonal odour emissions in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month          0.57 

Room 1 4711 4711 1.60 0.43 
Flooring 1 20645 20645 7.02 0.23 

Room*Flooring 1 2941 2941 0.97 0.35 
Month 10 104739 10474 7.62 0.002

Room*Month 10 13749 1375 0.45 0.89 
Flooring*Month 10 27010 2701 0.89 0.57 

Error 10 30273 3027   
Corrected Total 43 204067    

Note: Analysis Model: Pr>F=0.18; R2=0.85.   
 

Table D.28 ANOVA table for seasonal NH3 concentrations in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month   0.03 

Flooring (August) 1 6.25 6.25 25.00 0.13 
Flooring (September) 1 12.25 12.25 49.00 0.09 

Flooring (October) 1 225.00 225.00 225.00 0.04 
Flooring (November) 1 9.00 9.00 99999.99 0.0001
Flooring (December) 1 144.00 144.00 4.00 0.30 
Flooring (January)  1 272.25 272.25 1089.00 0.02 

Flooring (February) 1 6.25 6.25 1.00 0.50 
Flooring (March) 1 0.25 0.25 0.01 0.94 
Flooring (April) 1 36.00 36.00 9.00 0.20 
Flooring (May) 1 30.25 30.25 13.44 0.17 
Flooring (July) 1 16.00 16.00 4.00 0.30 

 

Table D.29 ANOVA table for seasonal NH3 emissions in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month          0.30 

Room 1 8 8 0.00 0.96 
Flooring 1 13124 13124 6.31 0.24 

Room*Flooring 1 2080 2080 2.59 0.14 
Month 10 27819 2782 3.72 0.03 

Room*Month 10 7487 749 0.93 0.54 
Flooring*Month 10 11312 1131 1.41 0.30 

Error 10 8027 803   
Corrected Total 43 69855    

Note: Analysis Model: Pr>F=0.078; R2=0.89.   
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Table D.30 ANOVA table for seasonal H2S concentrations in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month   0.04 

Flooring (August) 1 0.00065 0.00065 104.04 0.06 
Flooring (September) 1 0.0012 0.0012 28.17 0.12 

Flooring (October) 1 0.05 0.05 17.96 0.15 
Flooring (November) 1 0.00000025 0.00000025 0.01 0.93 
Flooring (December) 1 0.00004 0.00004 2.09 0.39 
Flooring (January)  1 0.000004 0.000004 4.00 0.30 

Flooring (February) 1 0.0000023 0.0000023 1.00 0.50 
Flooring (March) 1 0.0006 0.0006 0.03 0.89 
Flooring (April) 1 0.003 0.003 1.00 0.50 
Flooring (May) 1 0.00002 0.00002 3.24 0.32 
Flooring (July) 1 0.00046 0.00046 4.19 0.29 

 
Table D.31 ANOVA table for seasonal H2S emissions in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month          0.19 

Room 1 1.84 1.84 1.27 0.46 
Flooring 1 0.02 0.02 0.02 0.92 

Room*Flooring 1 1.45 1.45 3.61 0.09 
Month 10 142.93 14.29 27.60 0.0001

Room*Month 10 5.18 0.52 1.29 0.35 
Flooring*Month 10 7.09 0.71 1.76 0.19 

Error 10 4.03 0.40   
Corrected Total 43 162.54    

* Analysis Model: Pr>F=0.0001; R2=0.98.   

 
Table D.32 ANOVA table for seasonal CO2 concentrations in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month   0.0001

Flooring (August) 1 7225 7225 289.00 0.04 
Flooring (September) 1 1225 1225 0.29 0.69 

Flooring (October) 1 10000 10000 0.20 0.73 
Flooring (November) 1 44100 44100 2.61 0.35 
Flooring (December) 1 900 900 4.00 0.30 
Flooring (January)  1 60025 60025 4.96 0.27 

Flooring (February) 1 211600 211600 44.44 0.09 
Flooring (March) 1 113906 113906 1.53 0.43 
Flooring (April) 1 1670556 1670556 35.31 0.11 
Flooring (May) 1 10000 10000 0.59 0.58 
Flooring (July) 1 6806 6806 0.49 0.61 
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Table D.33 ANOVA table for seasonal CO2 emissions in four pig rooms. 

Source  DF Sum of Square Mean of Square F Value Pr>F
Flooring*Month   0.02 

Flooring (August) 1 59.29 59.29 1.28 0.46 
Flooring (September) 1 1.96 1.96 4.00 0.30 

Flooring (October) 1 2.56 2.56 0.10 0.80 
Flooring (November) 1 0.64 0.64 64.00 0.08 
Flooring (December) 1 22.56 22.56 1002.78 0.02 
Flooring (January)  1 287.30 287.30 35.37 0.11 

Flooring (February) 1 0.16 0.16 0.25 0.70 
Flooring (March) 1 1.69 1.69 0.04 0.87 
Flooring (April) 1 68.06 68.06 7.32 0.23 
Flooring (May) 1 1.96 1.96 0.11 0.80 
Flooring (July) 1 15.60 15.60 7.42 0.22 

 

 

 

 

                                                      

 

 

 

 

 


