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Abstract

Workflow provenance is a crucial part of a workflow system as it enables data lineage analysis, error

tracking, workflow monitoring, usage pattern discovery, and so on. Integrating provenance into a workflow

system or modifying a workflow system to capture or analyze different provenance information is burdensome,

requiring extensive development because provenance mechanisms rely heavily on the modelling, architecture,

and design of the workflow system. Various tools and technologies exist for logging events in a software

system. Unfortunately, logging tools and technologies are not designed for capturing and analyzing prove-

nance information. Workflow provenance is not only about logging, but also about retrieving workflow

related information from logs. In this work, we propose a taxonomy of provenance questions and guided by

these questions, we created a workflow programming model ’ProvMod’ with a supporting run-time library to

provide automated provenance and log analysis for any workflow system. The design and provenance mech-

anism of ProvMod is based on recommendations from prominent research and is easy to integrate into any

workflow system. ProvMod offers Neo4j graph database support to manage semi-structured heterogeneous

JSON logs. The log structure is adaptable to any NoSQL technology. For each provenance question in our

taxonomy, ProvMod provides the answer with data visualization using Neo4j and the ELK Stack. Besides

analyzing performance from various angles, we demonstrate the ease of integration by integrating ProvMod

with Apache Taverna and evaluate ProvMod usability by engaging users. Finally, we present two Software

Engineering research cases (clone detection and architecture extraction) where our proposed model ProvMod

and provenance questions taxonomy can be applied to discover meaningful insights.
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1 Introduction

Workflow provenance maintains information about workflow processes, configurations, data propagation

and lineage through logging. The importance of provenance has been pointed out by different researchers [1, 2,

3, 4]. For business process analysis, knowledge management, process re-engineering, and business intelligence,

provenance is necessary [5]. Davidson et al. [6] clearly states, provenance is necessary for reproducibility and

it enables data analysis and further exploration through collaboration. Besides, provenance is necessary for

debugging, administration, error detection and fixes as well as security, data authentication, origin tracing,

storage management and anomaly detection [7, 8, 9]. As scientific workflow systems have evolved to tackle

Big Data in the cloud computing environment [7, 8], workflow provenance can make such systems efficient

and traceable. Automated provenance is necessary to go beyond humanly written queries, data exploration,

pattern mining, error detection, validation, diagnosis, collaboration to manage diverse or heterogeneous data

sources [8]. For data-centric performance measurements, provenance is required [10]. Causal lineage capturing

is important and can be done with provenance [8]. Real-time monitoring of provenance information makes

it possible to use already allocated resources to be used again for the failed processes and then fine-tuning

of a parallel process is possible [11]. Querying for identifying provenance graphs, overlaps among the graphs

and similarities among them is discussed by Karvounarakis et al. [12] which is an important research topic.

Above all, data visualization is also tightly coupled with any topic of provenance research [7, 8] to offer

complex insight.

Even though provenance is a crucial part of any workflow system, provenance mechanisms differ from

system to system [13, 14]. Cross-domain research and collaboration are now of paramount importance in

data science and big data analytics. Prominent workflow systems and their features are best modularized to

support modification and integration. Developers may need to modify or update the provenance mechanism

of any existing workflow system to meet certain goals. The design and mechanism of provenance highly

depend on the design, architecture, modelling, and orientation of the workflow systems. Thus modifying or

updating the provenance part of a workflow system is not a common task with a standard approach. Building

a new workflow system is also challenging and additional effort is necessary in order to integrate provenance

into a new system. There are different tools and technologies for capturing and logging events (Log4j for

Java, Logging for Python) but they were not built targeting provenance. So even though the developers

use them they still need to design and implement a provenance model which will be able to answer certain

provenance questions. Such development tasks are burdensome [15]. It is because provenance is not only

about logging events in any software system but also about retrieving information about the workflows from
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those logs.

To solve the stated problem, we propose a comprehensive taxonomy of workflow provenance questions

influenced by existing research. Standing on the proposed taxonomy and state of the art of workflow research,

we propose a workflow programming model ’ProvMod’ which is capable of automated logging and oriented

to answer a variety of provenance questions. Such automation is of high importance [15, 16, 17]. ProvMod

is provided as a library and can also be integrated with any existing workflow system. Such logs hold a

number of properties ranging from the workflow level to the OS level that is solely focused on answering

provenance questions from the taxonomy. The logs follow a simple JSON structure. Thus it can be adapted

to any NoSQL technology to fit into big data systems which is important [18]. Even the developers can add

or reduce properties in the log schema to capture the desired amount of information.

ProvMod is developed using an OOP (Object Oriented Programming) and thus easy to implement with

less learning curve. With a layered architecture (illustrated in Figure 1.1), every component stands separately

as a distinct service. Such architecture is inspired by existing work [18, 19]. On the OOP layer, there stands

the model. The tools stand on the model and there could be a DSL in the middle for domain specific

tasks. Logging configuration is also kept separate for custom logging with different logging levels. Such

customization is highly inspired [7]. The core services are illustrated in Figure 1.2. We implement the model

in Python. ProvMod leverages the power of Neo4j graph database to handle semi-structured heterogeneous

log data. A highly coupled graph database support is better for provenance [20]. It can be also be directly

used to represent workflows DAGs (Directed Acyclic Graphs). Above all, the end user also gets real-time

monitoring features in ELK Stack which is crucial for auditing a running system [5, 11]. Elasticsearch is used

in ProvMod for real-time log parsing and Kibana is used for monitoring, data visualization, and statistical

analysis.

Finally, in order to show that our model is adaptable to existing workflow systems and configurable,

ProvMod is integrated with Apache Taverna Workflow System [21] which is done with our provided simple

tool development template. It generates a new workflow system that we name ProVerna. ProVerna not only

has the Taverna front end and features for building workflows but also all the facilities of ProvMod. We also

compare Taverna, ProVerna, and variations of ProVerna to evaluate the overhead of the model from different

angles.
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Figure 1.1: A layer based architecture for our proposed programming model

1.1 Contribution

We try to touch every parts and phase of the workflow systems and executions. So, we have a number of

contributions that are distinct. We made the following contributions in this work:

1. We propose a provenance question taxonomy, that covers a number of provenance questions. The

taxonomy can even be extended.

2. We propose a workflow programming model named ProvMod, that is oriented to answer workflow

provenance questions.

3. ProvMod follows a layered architecture and SoC design principle to keep the workflow, provenance,

provenance database, tool database and visualization services of the model separate and independent.

4. We define a graph model for ProvMod that is highly adaptable to Graph Databases.

5. ProvMod is adaptable to existing tools. When adapted, all the features of ProvMod and the tools will

be available in the newly adapted tool.

6. Developing new tools from scratch is also supported in ProvMod in an easy fashion and minimal OOP

knowledge is required.
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7. Workflow implementation with ProvMod is designed with care and during the workflow implementation

developers do not need to focus on anything other than the pipeline.

8. Implemented workflows and tools can be reused or shared with other developers.

9. Workflows in ProvMod can support conditional module execution as well as multiple distinct inputs

and outputs.

10. Due to layered architecture, the user can create another custom layer between the workflow and Prov-

Mod to offer DSL (Domain Specific Language).

11. ProvMod captures workflow level provenance automatically as well as the user can generate their own

custom log at any step of the implementation at will.

12. Automated logging has small overhead and does not affect the data analysis.

13. The automated logging can be disabled or even modified based on the target domain.

14. Logging and the workflow modelling is completely separate in ProvMod. So, domain experts can

modify the log schema/configuration/model and developers/analysts can focus on only implementing

the workflows.

15. ProvMod is integrated with Neo4j Graph Database and the workflow provenance graphs support any

Cypher query for analysis.

16. Data visualization is the primary way of answering provenance questions in ProvMod. We offer a

number of real-time data visualizations that can answer a number of provenance questions.
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17. We use several modern technologies to ship the model such as, Python programming language for

workflow implementation, RESTful Web Service for cloud integration and separation of components

as services and security, JSON for logging and adaptation with NoSQL databases like Cassandra and

CouchDB, Elasticsearch for automated log management, data streaming and security, Kibana and D3

for data visualization, Neo4j for workflow graph management and analysis with Cypher query language.

18. We show how complete our provenance questions taxonomy is based on the state of the art research

works. We also describe the mechanism of ProvMod provenance and compare with other provenance

enabled systems. Again, we also compare the enhanced visualization features of ProvMod with existing

analytic provenance systems.

19. For ProvMod we show several use cases to present its application and advantages in other software

engineering topics.

20. We analyze our model with three different kinds of workflows that we define, sparse, large and deep

to observe the model performance behaviour from different angles. For these purposes, we implement

Bioinformatics and Phenotyping image analysis workflows.

21. We compare ProvMod with Apache Taverna Workflow System [21] for evaluating ProvMod using a

real-world Bioinformatics benchmark and evaluate the model.

22. We also integrate our model with Apache Taverna to offer a new model named ProVerna that offers

end user with the Taverna GUI and all the ProvMod features in the background.

23. We perform two separate user studies on implementing the programming model and the visualization

supports of ProvMod.
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2 Preliminaries

We present the definitions and overview of the research of several concepts for the readers’ simplicity here.

It will help them to get an overview and idea about the importance of this research.

2.1 Terms and Definitions

We present some basic definitions for several terms that we use throughout this thesis frequently.

2.1.1 Programming Model

A programming model is based on a theoretical concept that helps the developer to implement the theoretical

concept without implementing it from scratch.

2.1.2 Provenance

Provenance in computing means to save the relevant information whenever a data is processed and trans-

formed so that later on, using the saved logs the process details can be regenerated.

2.1.3 Workflow

A workflow is basically a directed graph that represents the data flow and propagation through different

data analysis tools. The graph contains different types of nodes to represent data and tools. The directed

edges represent the data flow direction. Workflows may or may not contain cycles that represent loops. Any

workflow that never has loop turns into a directed acyclic graph (DAG).

2.1.4 Workflow System

A workflow system is a system that offers various features and tools to implement pipelines and workflows to

implement data-flow and run them without building them from scratch. Workflow systems are more formally

known as workflow management systems. Workflow systems can be made for scientific or business domains.

Scientific workflow management systems are sometimes referred as SWFMS in short.

2.1.5 Module

In this thesis, with the term module, we refer to any data tool in a workflow system.
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2.1.6 Data Item

By data item, in this thesis, we refer to any data object in a workflow system.

2.1.7 Reporting

Reporting refers to present any final result using various forms such as data visualization and interactivity.

2.2 Importance of Provenance

The importance of provenance was strongly mentioned by different researchers. In this section, we present a

number of critical points that got attention from researchers in recent years. The following statements are

clearly mentioned in the existing works that provide motivation to our research.

1. For business process analysis, knowledge management, process re-engineering and business intelligence

provenance is necessary [5].

2. Davidson et al. [6] in their work states the importance of provenance. They also discuss clearly that,

it is necessary for reproducibility. It enables data analysis and further exploration. Data mining and

visualization are also tightly coupled with provenance research. Provenance enables collaboration.

3. Workflow has already entered into the domain of cloud computing thus entered provenance. For data-

intensive systems it is important [7, 8]. Provenance is necessary for debugging, administration, error

detection and fixation as well as security, data authentication, origin tracing, storage management,

anomaly detection [7, 8, 9].

4. The integration of provenance in Big Data is burdensome and thus it should already be there when

a data-intensive system is ported [15]. Automated provenance is necessary to go beyond humanly

written queries, data exploration, pattern mining, error detection, validation, diagnosis, collaboration

to manage diverse data sources.

5. For data-centric performance measurements of any system, provenance is required [10].

6. Provenance can also be used to analyze legacy systems [22].

7. For heterogeneous data management, provenance is required in cloud computing and data-intensive

systems [8].

8. Causal lineage capturing can be done with provenance [8].

9. Real-time monitoring makes it possible to use already allocated resources to be used again for the failed

processes [11] Fine tuning of parallel processes also becomes possible then. It also enables elasticity.
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10. Provenance can be shipped in two ways, lazy or eager and which way is better in which case is a matter

of evaluation [23, 10].

11. Provenance components from workflow systems were identified by Hartig et al. [24].

12. Querying for identifying provenance graphs overlaps among the graphs and similarities among them is

discussed by Karvounarakis et al. [12].

13. Workflow provenance and data provenance concepts are clearly distinguished and the importance of

workflow provenance can be found in the work of Amsterdamer et al. [25].

2.3 Important Features of Provenance

Various features of provenance were also mentioned by the recent researches that they emphasize for any

provenance enabled systems. Now we present a number of crucial features that is very important for any

provenance enabled systems. The following features, when present in a provenance enabled system, can make

it complete.

1. VanderAalst et al. and Costa et al. [5, 11] mention the importance of real-time monitoring in their

work as data-intensive processes takes time to finish and processes need to be investigated in the middle

of execution. Larger workflow management systems contain more noise due to human or system related

errors and thus it becomes more complex to mine provenance from such bigger systems [5].

2. The feature of conditional workflow is mentioned by Bahsi et al. [26].

3. Freire et al. [20] mentions that tightly coupled provenance facilities are better for workflow management

systems.

4. Davidson et al. [6] state, the need for simplicity and usability is very important for provenance.

Debugging system problem through visualization is also emphasized by their work.

5. Adaptability and custom configuration are necessary by provenance [7] since configuring logs require

domain knowledge and that is time-consuming as well as error prone.

6. Various level of user access is important for ensuring security and protection of data and the system

[7].

7. Overhead or performance is an issue to consider in provenance for data-intensive systems [15, 8, 18].

8. Security is another issue to consider in provenance [15, 8, 18].

9. Automation in provenance is required [15, 17, 16, 17].

10. A common log structure is necessary that is stated by Glavic et al. [10].
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11. User-oriented provenance model is emphasized in existing works [27]. User-based custom annotation is

preferred [18].

12. Provenance in an open world system rather than a closed one is preferred for heterogeneous data based

systems [22]. Heterogeneous data modelling should be supported [18].

13. Legacy system’s provenance capturing is also important [22].

14. The need of elasticity or adaptability of system tools is necessary for provenance [8].

15. We need APIs for application-specific provenance capturing to ensure extendability [8, 19].

16. Atomicity (the most elementary information) of provenance data is important for workflow systems [8].

17. Causal lineage ordering is necessary for provenance [8].

18. A layer-based architecture is preferred by researchers for provenance enabled workflow systems [18, 19].

19. Scalability is also necessary for provenance in data-intensive systems [18].

20. Data visualization and further data analysis features are important for provenance [18].

21. Graph database could be used in provenance for analyzing semi-structured or unstructured data [18].

22. Temporal and time-series data analysis is emphasized in provenance analysis to get a better under-

standing of the system and process changes [18, 23].

23. A need for a general standard in provenance research was mentioned by Buneman et al. [28].

24. Different levels of provenance information with properties were emphasized by researchers [9].

25. Provenance facilitated system should have query features [9, 19].

26. Fault tolerant database management is necessary for provenance [29].
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3 ProvMod: The Model

This section presents the theoretical definition of our model including different components. We define

the workflow, data, module, their properties, data flow, invocation and type. The model is oriented to answer

provenance questions. Different provenance questions with a proposed taxonomy are described in Chapter

4. Although the model is oriented to answer provenance questions, it is not fully dependent on the question

types and queries. It may create problem and limitation in the long run. To overcome such issues, we

introduce properties in the model. Any model component holds certain properties that are relevant to the

system domain. More properties can be added if necessary. So, in summary, any provenance question our

model answers, the answer is derived from the properties. For supporting different workflow systems, we

introduce the module and data items. Clearly, any further kind of workflow artifacts can be introduced.

3.1 Design Goals

When designing the model, we follow some simple design goals. They are:

1. The model is oriented to answer provenance questions.

2. Any workflow artifact will hold specific properties. Any information about the artifact has to be

retrieved from the properties of the artifact only.

3. Since, the artifacts’ information is solely retrieved from the properties, new properties can be introduced

in a new system.

4. The model has to be as simple as possible with respect to workflow implementation. So, it will offer

some familiar operations that are relevant to any workflow implementation.

5. The model will follow SoC to interact with other system components.

6. The model will offer automated logging.
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3.2 Definitions

In this section, the theoretical definitions of the model components are presented.

3.2.1 Workflow W

A workflow W = (V,E) is a Directed Acyclic Graph (DAG) V = {v : v ∈ D ∪M}, E = {e : e ∈ F} where D

denotes Data, M denotes Module and F denotes Dataflow.

3.2.2 Data D

Data is a workflow element from W = (V,E) where, D = {d : d ∈ V, d = (pi)
n
i=1 = (p1, p2, ..., pn), pi ∈ P}

and P denotes an ordered set to represent a number of properties of D.

3.2.3 Module M

Module is a workflow element from W = (V,E) where, M = {m : m ∈ V,m = (pi)
n
i=1 = (p1, p2, ..., pn), pi ∈

P} and P is an ordered set to represent a number of properties of M .

3.2.4 Properties P

Properties P = (pi)
n
i=1 = (p1, p2, ..., pn) is an ordered set associated with any data element d ∈ D or module

item m ∈M from a workflow W where Type(p) ∈ {Null, Any}.

3.2.5 Type

Type is a function that returns the data type of any property item p from the workflow when applied upon

it. The data type could be Null or Any. Any is a set that contains all possible data types from a particular

implementation of the workflow W .

3.2.6 Dataflow →

A dataflow F is an ordered tuple containing two workflow elements to represent a directed edge in a workflow

W where, F = (d,m)|(m, d), d ∈ D,m ∈ M . (d,m) and (m, d) are correspondingly considered as input

dataflow (written as d→ m) and output dataflow (written as m→ d).

3.2.7 Module Invocation

A module invocation K is an ordered tuple containing two dataflows where, K = {(f1, f2) : f1 = (di,m), f2 =

(m, do)}.
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There are several features that are supported by our model based on the model components’ definitions.

They are,

1. The users can be considered as a property any workflow components.

2. Properties can be modified for different components as well as systems.

3. Modules can not only have multiple inputs but also multiple outputs.

4. Multiple inputs or output data items can be different.

5. Modules can be incorporated with certain logical conditions and can generate default values when not

executed.

6. The model can be incorporated with any types from a certain implementation.

7. Module abstraction and invocation are conceptually separated from each other.

How the components are related to each other can be understood from the Figures 3.1. How a module

behaves with a condition is described in Figure 3.2.

Data

Input/s Module Output/s

Module 
Properties

Data 
Properties

   Can be       Can be

   Flows to    Flows to

Has 

Has 

Figure 3.1: Relation among components of ProvMod in a workflow
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The module components can also support conditionals that are already mentioned. When a module

condition is false, a default data flow can be generated in ProvMod.

Input/s

Default 
Output/s

Module
Module

Condition
Output/s   True

False

Figure 3.2: Module behavior with conditional

3.3 ProvMod, Graph and Graph Database

The very basic relational schema between data and module items (Figure 3.1) is indeed a graph. This graph

can be considered the most elementary workflow for our model. The graph is more specifically a DAG that

contains one data as input to a module and one data output from that module. From this observation,

we become encouraged to acquire graph database technology in our model ProvMod. A graph database is

one of the modern database technologies that is getting huge interest in the Big Data domain. Even many

relational database technologies are being replaced by NoSQL databases [30]. For example, Google’s BigTable

[31] and Facebook’s Cassandra [32] are coming into light. Graph database such as Neo4j offers a trivial way

to implement such graph data structure quickly [33]. Surely, such structure can be obtained and represented

through relational database tables, but that will add up another overhead of implementation to the model.

Graph database such as Neo4j also offers great performance and is lightweight [30]. Our model also being

property-centric, Neo4j is of great advantage to us. Neo4j also has other APIs available to work with for

different purposes. Thus the graph database can later be extended as we obtained Neo4j.

Based on the motivations presented, design goals and future goals we move forward to model the querying

features of our model ProvMod.
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3.4 Querying

We propose a set of 3 queries that can cover a number of provenance queries from the existing literature

and also can be used to derive more. The last two are derived from the first one. So, we consider them as

elementary queries and the first one to be an atomic query.

3.4.1 Decide: The First Elementary Query

We propose the first elementary query and name it Decide. It is named that way because this query is used

to retrieve the smallest information from the provenance graph. Such information could be for example, the

value of a target property of a target node.

The elementary query Q is a function of the workflow W that returns a collection of property p that

satisfies certain condition(s) C. So,

Q = f(W,C) where p ∈ P and C is a Boolean condition. In Cypher the query format should be,

MATCH (n:Type) WHERE Condition RETURN n;

3.4.2 Extension of the First Elementary Query

The first query Decide can be extended to generate workflow and pipeline module chains and data tables as

property to property mapping.

3.4.3 Module Chain Regeneration with Decide

A workflow could be regenerated using the elementary query Decide with a sequence of dataflows.

For example, Q1 = A→ B,Q2 = B → C,Q3 = C → D which gives A→ B → C → D.

3.4.4 Property Mapping with Decide

A dataset could be generated using the first elementary query Decide.

For example, Q1 = (x1, x2, ..., xn) and Q2 = (y1, y2, ..., yn) thus Q1 ↔ Q2 is an one-to-one mapping be-

tween the ordered sets that gives ((x1, y1), (x2, y2), (x3, y3)).

The two extensions can be used to create two other important queries that we consider as elementary

but derived from the first query Decide. Note, every node in the graph is also uniquely identified with an
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identifier property. So, querying that unique property is indeed getting nodes from the graph.

3.4.5 Time Sequence Mapping: The Second Elementary Query

Time-series analysis is an important issue in provenance and thus we consider it as an elementary query so

that it can be featured as a native facility in ProvMod and used for further analysis in a portable manner.

Using the extensions described above, the Time Sequence Mapping query structure in Cypher will be,

MATCH (n:Type) WHERE Condition RETURN n.p ORDER BY n.time;

We name this elementary query that way because it is used to retrieve a time-series data. Since time-series

is a very frequently used data analysis topic, we consider it as an elementary query.

3.4.6 Data Sequence Mapping: The Third Elementary Query

If we want to map between two different properties from the nodes of the graph, we can use this query to

derive a dataset for further analysis in general. The Data Sequence Mapping query structure in Cypher is,

MATCH (n1:Type1), (n2:Type2) WHERE Condition AND n1.p == n2.p RETURN n1.p1,

n2.p2;

Data to data mapping also being important and very frequently used data analysis topic, we also consider

this query as elementary and name it that way.
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4 Classifying Provenance Questions

In this chapter we demonstrate our proposed provenance questions taxonomy to classify them. For each

category from the classification, we mention a number of derived questions in the following sections. For all

the questions, we also provide the reader with a template so that they can implement it in a graph database

technology. We focus on Cypher query language primarily, though we present the queries in a possible generic

format. To get a clear idea for each query, the queries are accompanied with examples.

4.1 Methodology of Deriving Taxonomy

We follow a theoretical approach to derive such a taxonomy illustrated in Figure 4.1. The following matters

are considered when we create the taxonomy.

1. Whenever we ask a workflow provenance question, its answer can be directly retrieved from the prove-

nance graph.

2. We have already proposed a model that is based on three provenance queries. Those three queries are

related to the provenance graph.

3. Clearly, the question can be either about a particular data value (Decide query), or a time-series of

data values (Time-Sequence mapping), or a mapping between two kinds of data values (Data-Sequence

Mapping).

4. These three queries can be combined with each other to derive any other types of data mapping holding

multiple data items.

5. The graph related provenance questions are indeed to derive a desired dataset for further analysis. It is

because, if we have the dataset, we can answer relevant questions. So, we propose monitoring related

questions that works with aggregation.

6. We propose three basic aggregation types, Time-series, Proportional and Metric.

7. Finally, the question may involve multiple aggregation, that we call Statistical Analysis questions. This

kind of questions involves applying different tools and techniques for prediction, clustering and so on.

8. We classify Statistical Analysis type into further generic categories, Graph analysis, regression or clus-

tering and so on.
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Since we consider real-time monitoring, we also include real-time or fixed-time category in our taxonomy.

Again, if we find any general question type in future that is not already in the taxonomy, it can be added

in the relevant class to extend the taxonomy. Workflow provenance questions were mainly derived from the

graph related questions, but we also include analytic questions. Any aggregation is covered by Monitoring

questions and any tool application is covered by Statistical questions.

4.2 The Provenance Questions Taxonomy

Provenance questions and their answers are our main goal to be discovered in this work. So we discuss this

topic in a separate chapter. We categorize the question into three parts. A brief picture is in Figure 4.1.

They are as follows:

Figure 4.1: A classification of provenance questions in our work

1. Graph related questions: Graph related questions involve the workflow graph analysis at any time.

It is an offline mode of analysis and not real-time.
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2. Monitoring related questions: Monitoring questions involve any workflow graph/node related met-

ric (properties) analysis that is also real-time. It is related to simple aggregation on the provenance

graph data.

3. Statistical analysis related questions: Statistical analysis related question involve any kind of com-

plex analysis to find any statistical measurement of the workflow graph/node related metrics (proper-

ties). These questions involve the application of different statistical or machine learning based tools on

the provenance data. Such kind of analysis largely depends on the approach and available data.

4.3 Graph Related Questions

In this section, we present a number of provenance questions that we focus to answer in our work that is

related to workflow graph analysis in offline mode. The questions are from very basic to advanced level for

provenance and some of them were already discussed in recent works from different angles. Even some of the

existing works only focused on several of them. We categorize the queries into different classes and each of

them contains many questions that fall under provenance.

Also, since these questions are for graph analysis, we present the corresponding Cypher queries for their

retrieval in this section. The Cypher queries mentioned here are in abstract form to show the general structure

of them. For more details, the reader may refer to the Implementation section.

The very first question of workflow provenance is:

• What is the complete workflow DAG G?

Match (n) return n;

For example, this query can be used to retrieve the complete provenance graph collection until now

from the beginning of time the system was being used.

The first question can be used to derive several other provenance questions. They are as followed:

• What is the workflow DAG G containing node n1, n2, ... , nn? (Using Decide)

Match (n1), (n2), ... , (nn) Where n1.p = n1, n2.p = n2, ... , nn.p = nn return n1, n2, ... , nn;

For example, this query will retrieve a subgraph that has only some particular nodes identified by a

property. The property itself can be an unique identifier. The subgraph will also hold any edges if

there is any among the target nodes.

• What are the inputs of a module M in workflow DAG G? (Using Decide)

Match (i), (n) where (i)-[:INPUT]->(n) return i, n;

For example, this query will retrieve only the input and the target module nodes as a subgraph from

the full provenance graph. INPUT is a ProvMod keyword.

18



• What are the outputs of a module M in workflow DAG G? (Using Decide)

Match (O), (n) where (n)-[:OUTPUT]->(O) return n, O;

Similar to the previous query this query will retrieve the outputs and the target module node. OUTPUT

is a ProvMod keyword.

• What are the outputs of a module M in workflow DAG G? (Using Decide)

Match (i), (n), (O) where (i)-[:INPUT]->(n)-[:OUTPUT]->(O) return i, n, O;

This query will retrieve the input and output nodes and the target module node as a pipeline from the

full provenance graph.

• Does a node hold a property P in a workflow DAG G? (Using Decide)

Match (n:Type) where n.P1 <> Null return ”P”;

This query will check whether a property is held by a certain type of node.

• What is the value of property P of node N in a workflow DAG G? (Using Decide)

Match(n) return n.p;

For example, this query will retrieve how much CPU load was used for a module run which is saved as

one of its property.

• What is the collection of all workflow DAGs G1, G2, ..., Gn? (Using Decide)

Match(n) return n;

This query is the same as the very first query that we have already mentioned.

• What is the time ordered list of property P from workflow DAG collection G1, G2, ..., Gn?

(Using Time Sequence Mapping) Match(n) return n.P order by n.time;

For example, this query will retrieve all the module names from the full provenance graph with ascending

order of their creation time, so that we can find out, the serial order of modules that were executed one

after another.

• What is the property K ordered list of property P from workflow DAG collection G1, G2, ..., Gn?

(Using Data Sequence Mapping)

Match(n) return n.P order by n.K;

This query can, for example, retrieve the module names in ascending order by their CPU load, so that

we get an idea of- which module uses the most or least CPU during execution. Such a query can also

be used to create datasets from the full provenance graph. The previous query is also a derivation of

this query in a simple manner.

• What is the workflow DAG G holding a certain condition C? (Using Decide)

Match(n) where C return n;

To retrieve any subgraph from the full provenance we can use this structure of Cypher query.
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The graph related provenance questions and corresponding Cypher query can also be found in the Ap-

pendix.

4.4 Monitoring Related Questions

Provenance monitoring involves real-time observation of provenance-related properties such as system re-

sources, error occurrences and so on. With these questions, the user can get an idea of what is going on in

the workflow system. Here we present the question in a generic format that can be adapted to any workflow

model. Monitoring is highly related to data visualization in our work. The questions are also classified into

several categories.

4.4.1 Real-time Aggregation

Real-time Aggregation on Single Property

For any aggregation A on any property P, from time T, for workflow node group G:

• What is the real-time, time-series representation?

For example, we want to monitor the CPU load of a workflow system integrated with ProvMod. This

can be a line chart, area chart or even a bar chart. The X-axis is the time and the Y-axis is the CPU

load in this case. The time series chart may hold several CPU load indexes for several tools. They can

be distinguished by their colour. Since real-time, the chart changes over time.

• What is the real-time, proportional representation?

This kind of representation can be a pie chart or a donut chart for example. It is good for single nominal

properties such as module names and how many times they occurred as well as their proportional

frequency or occurrence.

• What is the real-time metric representation?

Based on the aggregation, this kind of representation provides the user with a value found from the

aggregation function applied.

• What is the real-time metric representation for nominal properties P1 and P2?

This kind of representation can be useful for comparing between two nominal properties such as tool

names and error types. They can be placed on a heat map and the heatmap colour can represent a

selected property CPU load for example.

Real-time Aggregation on Dual Property

For any aggregation A on two properties P1 and P2, from time T, for workflow node group G:
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• What is the real-time, time-series representation?

As explained before, this time-series can hold several properties with different line colours for compar-

ison.

• What is the real-time, proportional representation?

Two pie or donut charts can be bonded together to get an overall proportional measurement of the

selected properties based on the applied aggregation.

• What is the real-time metric representation?

Different metrics can be represented together beside each other.

4.4.2 Fixed-time Aggregation

Fixed-time Aggregation on Single Property

For any aggregation A on any property P, from time T1 to T2, for workflow node group G:

• What is the time-series representation?

This kind of representation is similar to the time series representation discussed above but is not

real-time and static based on the selected time range.

• What is the proportional representation?

• What is the metric representation?

• What is the metric representation for nominal properties P1 and P2?

Fixed-time Aggregation on Dual Property

For any aggregation A on two properties P1 and P2, from time T, for workflow node group G:

• What is the time-series representation?

• What is the proportional representation?

• What is the metric representation?

4.5 Statistical Analysis Related Questions

Statistical analysis related questions involve analyzing the provenance data in offline mode for getting certain

insight. It actually depends largely on the goal, system, domain and so on. It mainly covers the data analysis

that incorporates mining data using certain statistical, machine learning or deep learning tools for finding

insight. Here we present several statistical analysis questions that can be important for provenance research.

Please note, they may also fall under the fixed-time analysis criteria or not.
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4.5.1 Statistical Analysis Questions

For a time range T1 to T2:

• What is the similarity metric for a subgraph G1 and subgraph G2 from the complete

provenance graph collection G?

Such queries can be used to find similar subgraphs from the full provenance graph. It can lead to

finding the insight about what are the core pipelines that are being executed again and again over the

time.

• What is the cluster of nodes holding a certain condition of interest from the full provenance

graph?

For example, based on particular analysis criteria, we may try to find a cluster of nodes. Say, those

nodes are around a particular node, or similar in values and so on. This can lead to mining insight

about the usage scenario and patterns.

• What is the centrality of a workflow DAG G?

Such statistical measurement of graphs can be used for mining provenance graph.

• What is the correlation between two ordinal workflow properties P1 and P2?

The properties of different nodes from the full provenance graph can be used to prepare a mapped

dataset and find the correlation between them to discover further simple insights.

• What is the prediction of a workflow property P in a future time point F?

Based on the insights, for example, found from the previous correlation question, we may predict the

future CPU loads if a regular pattern is discovered. Another example could be, to predict the usage

time of certain users or how much resources they might be using so that the workflow system resource

management can be done in a smarter manner.

• What is the pattern of a workflow property P?

Such question insight can be used to discover anomalies in any system components, unexpected be-

haviour or even user or security breaches.

At the moment we do not put much emphasis on this type of questions because they involve different

goal and analysis that depends on the domain and problems goals. Our main goal is to create a generalized

workflow programming model for featuring and enhancing provenance related features but not any particular

data mining or analysis.
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5 Implementation

This chapter describes the architecture of ProvMod. It also describes the logging mechanism of the model

standing on a prominent research work of Cruz et al. [1]. Several technical model features are described,

such as- logging levels, services, log schema that we used along with their details. Finally how the model was

implemented and how it can be used for integration is also described.

5.1 System Architecture

The implementation of ProvMod is provided in Figure 5.1. The user uses a workflow through the user

interface. Through the user interface, they may use a DSL to implement their workflows that stands on

the ProvMod model. ProvMod stands on Python Interpreter at the core. The logging configuration can be

customized by a different user who is an expert in the domain. External tools can be integrated with Provmod

that can even be developed by other users. ProvMod also offers a number of tools as Library Tools. External

tools and Library Tools may have their own database facilities. The ProvMod, leveraging the power of Python

Programming Language and Logging Configuration, saves the logs in a Graph Database that we implemented

with Neo4j [33]. Through the user interface, the user may later submit a query through a query engine. The

query engine uses Cypher Query Language to parse logs from the Graph Database using Elasticsearch [34].

The query result is provided with Kibana [35] or D3 in a web browser. All the communication between each

pair of components is done through RESTful Web Services [36]. We also emphasize using NoSQL database

such as Cassandra [32] for Library Tools.

5.2 Logging Mechanism

Standing on the excellent workflow taxonomy from the work of Cruz et al. [1] we describe the provenance

mechanism of ProvMod. It is presented in Figure 5.4. To know more about the taxonomy of Cruz et al. the

reader may refer to 5.3. The taxonomy is described in the followings in details.
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Figure 5.1: Implementation of ProvMod and relation between other components of the whole

workflow system that we propose
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Figure 5.2: Lifecycle of workflow systems by Cruz et al. [1]

5.2.1 Taxonomy of Workflow Systems by Cruz et al.

Although the taxonomy is for workflow systems, it is oriented to classify the provenance mechanisms. There

are different criteria that Cruz et al. considered. Such as capture, access, subject and storage of provenance.

They are described in brief here.

Capture

Capture refers to the fashion of capturing any provenance event. They are also measured from several angles:

1. Tracing: The provenance may be traced in an eager or lazy fashion. The eager way is to capture the

provenance immediately as the event occurs. The lazy way is to capture the provenance data only when

necessary.

2. Levels: There are different levels of provenance information. Workflow level provenance holds informa-

tion only about the workflow which is retrieved from the workflow layer. Activity provenance is about

the internal information of any process. OS level provenance more information about the system being

used.

3. Mechanism: The provenance mechanism may be externally included to any system, or it may be

internally included.

4. Technique: Technique is classified into annotation and inversion. Annotation involves containing

important information with the data items, either by the user or the system. Inversion is to recreate

the data products which are expensive or inaccessible. The inversion method is used to regenerate the

data items.

Access

There are several ways to access provenance. They are:

1. Visual: Provenance can be represented visually which is very popular now.
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Figure 5.3: Taxonomy presented by Cruz et al. [1]

2. API: A system specific API can be used to access provenance data.

3. Query: Query can be performed over the provenance database. Also, the system can provide a way

to perform queries over the database.

4. Browse: Provenance information can be browsed for meeting user needs through such supporting

interface.

Subject

What information is being saved in provenance is a matter of concern. Based on this there are different

subjects of provenance:

1. Orientation: Provenance can be captured for process or it can also be captured for data items.

2. Phase: The provenance can be specifically captured in a particular phase of a workflow lifecycle state.

There are three phases of a workflow lifecycle (5.2). Composition phase refers to building any workflow

and even reuse it further. Execution phase is about executing the workflow and monitoring it. Analysis

phase involves visualization and querying to analyze provenance data.
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3. Granularity: Provenance information has two granularity levels. One is fine-grained or data prove-

nance and the other is coarse-grained or workflow provenance.

Storage

How provenance data is stored is another measurement for modern workflow systems. They are measured

with the following features:

1. Scalability: The provenance storage can be centralized or distributed. For distributed storage support,

it may support homogeneous data of a single structure or heterogeneous data of various structures.

2. Coupling: Provenance can be highly coupled or loosely coupled with any workflow systems.

3. Persistence: It is about the conceptual modelling of the system that it uses to manage workflows.

Although different standards were proposed, still there is no well-accepted standard for workflow mod-

elling. Based on the modelling, the provenance data can be expressed in various ways. They can be

relational, XML based, OWL based or semi-structured.

4. Archiving: How provenance data is being stored is the matter of this measurement. Provenance data

can be captured immediately as the original log data which is known as the time-stamping approach.

Another approach is the sequence of Delta. This approach captures the changes and version information

between two consecutive provenance data states. So, later on, the difference between any two states

can be used to derive the target provenance information.

Based on this taxonomy, we describe the provenance mechanism of ProvMod in the following section.

5.2.2 Description of ProvMod Provenance Mechanism

Standing on the taxonomy of Cruz et al. [1], we describe the taxonomy of our proposed programming model

in Figure 5.4. For a quick look, a brief description of each mechanism category of ProvMod can be found in

Table 5.1.

5.3 Workflow Components

There are several component types (Figure 5.5) that are already implemented and supported by the ProvMod

while implementing any pipelines. The components are:

• Data: Data is a superclass type that has some basic features to represent any data item in the workflow.

• Object: An Object is a class of data that is inherited from the Data class. Object class is used

to represent any data item in the workflow using any direct value. For example, an integer, string,

number, a list, tuple and so on that comes with the programming language the developer is using to
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Figure 5.4: Description of ProvMod based on the taxonomy of Cruz et al. [1]

implement ProvMod. Primarily we use Python and it can work with any data types from Python

programming language. This class is very useful for representing intermediate data items that are

created in the middle of workflow runs and removed from the memory when the system exits the

workflow environment.

• File: A File class is used to represent a file object in the workflow. File class does not hold a file

itself but a file lookup reference to read the file or to write a new file in that reference. It is useful for

representing data that are saved in the disk.

• Document: Any NoSQL data item is represented with a Document class. It is similar to File class

but has a lookup reference to read data from a database system or to write in it.

• Module: Module is a class to represent any tool that takes Data items as inputs and creates Data

items as outputs.

• Edges: There are two types of workflow edges to represent the data flow. INPUT and OUTPUT.

INPUT represents a data flow from any data item into a Module and OUTPUT represents a data flow
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from any Module to new data items.

• Properties: There are several properties that are incorporated with the workflow components. They

are considered as workflow node properties and can be used for graph query to real-time monitoring.

The list and meaning of each property can be found in Table 5.2, 5.3, 5.4, 5.5, 5.6.

• User: User is a class in the workflow model ProvMod but is not directly used by the developer but is

automatically generated when the model is used.

Workflow

Data Module

Document

File

Object Module 
Properties

Object 
Properties

Document 
Properties

File 
Properties

Figure 5.5: ProvMod model components

5.4 Logging Levels

Different logging levels are supported in ProvMod that can also be tuned and even disabled or enabled

according to the will of the user. The logging levels are dependent on the base programming language that

is used to implement ProvMod. Here we used Python as thus have the following logging levels.

1. INFO: Info is a coarse level logging level. With this level, we will be analyzing any function or main

module (a python script that is directly run) but will not be looking into their internal details. So, any
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function or main scope is considered as a black box in this log level. We will get information about

inputs, parameters and outputs. Look at the figure that makes clear about the points where to use

Info.

2. DEBUG: Debug is more detailed than Info. We will look into more details like, how the parameter

values are affecting, how the internal states are being changed etc. So, any log level that is deeper than

Info will be of Debug level.

3. WARNING: If the developers think there might be a problem in any place of the program but that

is not creating an issue, then they could provide a warning levelled log with an appropriate message.

4. ERROR: Error level log is for that kind of error that properly cared with exception handler by the

programmer. So, it occurs often times but does not make the program to abort.

5. FATAL: Fatal errors are those errors that make the program to abort immediately.

5.5 Services

The ProvMod model, use different services to accomplish certain tasks. Different components are kept

separate. The components communicate with each other using RESTful Web Service.

The automated log generation is done with the configuration that is also a separate service. The model

makes use of it during any workflow execution.

External tools, any related databases involving them are considered as independent and separate services.

Tools that ship with the model are also separated by design and can be considered as distinct services.

The provenance database is not to be confused with the tool library database or any external tool database.

They are important for their operation where the provenance database is responsible for holding provenance

and workflow history. That is built on Neo4j Graph Database. So JSON is easily obtained here. The service

must be ready before the workflow run and any feature that comes with Neo4j can be used to analyze the

graph data later on without even using the model.

Log parsing and real-time monitoring is done by Elasticsearch. Elasticsearch has its own way of log parsing

and management in a cluster system. In our work, we use the default user mode of Elasticsearch and do

not focus on any distributed data management rather than the model. Easily, Elasistacsearch is configurable

in an HPC environment, and thus such HPC features will be shipped to the model if the developer wants.

Elasticsearch being a separate service, it must be ready before any workflow runs for log parsing. Note, logs

are parsed both to Neo4j during workflow run as provenance is highly coupled in our model as well as to

Elasticsearch index. The reason behind this is to enable real-time monitoring. On the other side, Kibana is

another front-end service for the user that communicates with Elasticsearch and offers real-time monitoring.

Kibana should also be ready before workflow execution.
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Figure 5.6: JSON log structure
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5.6 Log Schema

The log is in JSON format follows a JSON nested data structure.

Here we present the JSON structure in Figure 5.6. Note, the JSON schema is presented here is for file

and not exactly same as used in Elasticsearch. In Elasticsearch we use even a reduced version of it and only

the necessary properties for analysis and experiments.

5.7 Workflow Implementation

G

M

Entropy

import ProvModel, Tools

F = open(‘gene.txt’)

G = ProvModel.File(f)

M = Tools.Entropy(G)

Entropy = M.run()

print Entropy.ref

Pipeline Code in Provmod

Figure 5.7: Implementing a workflow

Although not a direct workflow system, ProvMod can be used to implement workflows very easily. The

technique is illustrated in Figure 5.7.

Simply we import the model as a Python library. The tools are also imported from the library. For any

file from the disk or other sources, we create an instance of File class from the model. Any tool that we

will be using, is taken from the tool library as a class. An instance of the target tool class is created to use

the tool. During tool instance creation, you initialize it with the specified input items. The tool invocation

is made with the run() command. Any tool invocation can return you with a number of objects that are

inherited from Data class in the model. Any data item’s data value can be read with the ref variable in our

model. There are other log properties that are automatically handled.
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5.8 Tool Development and Integration

To develop a tool the reader may refer to the detailed documentation in https://github.com/rayhan-ferdous/

Provmod/wiki. Here we present a simple and reusable template that can be used to implement and integrate

tools in workflow systems enabling ProvMod (Figure 5.8). An example of the template usage is discussed in

Chapter 11. There, the reader can also get examples of implementing existing tools in ProvMod.

Figure 5.8: Tool development and integration template
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Table 5.1: Provenance mechanism of ProvMod

Category Mechanism ProvMod Behavior Explanation

Capture

Capture Eager Provenance is logged immediately

Levels Activity and limited OS level
ProvMod can trace OS level activities through

permission and custom configuration

Mechanism Internal Logging is internally fused with ProvMod

Technique Annotation
Capture is done in annotation fashion for each

data items

Access

Visual Yes Visualization supported

API Yes API development and integration supported

Query Yes Querying through Cypher supported

Browse Yes
Browsing logs is supported through

Elasticsearch frontend

Subject

Orientation
Data and

Process
Both data and workflow steps are captured

Phase All
Provenance is captured in all phases of

provenance lifecycle

Granularity Coarse Coarse granularity rather than fine grained

Storage

Scalability
Distributed through the

support of relevant tools

Distributed systems can be integrated as

external tools to support scalability

Coupling High Provenance is highly coupled with ProvMod

Persistence Semistructured Graph Database support

Archiving Time-stamping Logs are accompanied by their own timestamps

Table 5.2: User Properties

Component Property Information

User

id Holds an unique ID for identification

name Holds the user name

event Holds the user invocation message USR-INVK

time Holds the time in UTC when the user was created
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Table 5.3: Object Properties

Component Property Information

Object

id Holds an unique ID for identification

user Holds the user ID

event Holds the user invocation message USR-INVK

time Holds the time in UTC when the user was created

value Holds the data item value

memory Holds amount of RAM used during creation in MB

CPU Holds amount of CPU used during creation in %

label holds the message ”object”

error Holds either ”success” or the error message OCE

Table 5.4: File Properties

Component Property Information

File

id Holds an unique ID for identification

user Holds the user ID

event Holds the file creation message FIL-CRTN

time Holds the time in UTC when the user was created

value Holds the data item value

memory Holds amount of RAM used during creation in MB

CPU Holds amount of CPU used during creation in %

label holds the message ”File”

error Holds either ”success” or the error message FCE

type Holds the type of file that should be ”file”

source Holds the path of the file as a string
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Table 5.5: Document Properties

Component Property Information

Document

id Holds an unique ID for identification

user Holds the user ID

event Holds the document creation message DOC-CRTN

time Holds the time in UTC when the user was created

memory Holds amount of RAM used during creation in MB

CPU Holds amount of CPU used during creation in %

label holds the message ”document”

error Holds either ”success” or the error message FCE

type Holds the type of the document, should be ”document”

address Holds the reference address of the document as a string

Table 5.6: Module Properties

Component Property Information

Module

id Holds an unique ID for identification

user Holds the user ID

event
Holds the module creation message MOD-CRTN

or run message MOD-RUN

time Holds the time in UTC when the user was created

memory init Holds amount of RAM used during creation in MB

cpu init Holds amount of CPU used during creation in %

label holds the message ”module”

error Holds either ”success” or the error message MIE or MRE

p@ Holds the parameter list

name Holds the source name

memory run Holds the RAM usage for Module run

cpu run Holds the CPU usage for Module run in %

duration init Holds the duration of time to create the Module

duration run Holds the duration of time to run the Module

o@ Holds the outputs as a list
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6 Experimental Analysis

In this chapter, we analyze the model for three different kinds of workflows. The first one is a sparse

workflow, then a large workflow and finally a deep workflow. Here we introduce them briefly:

1. Sparse Workflow: By sparse workflow, we refer such workflow that has different smaller workflows

in the workflow space. The different workflows are relatively very small (for example having at most

10 nodes) and not necessarily connected to each other. So, simply sparse workflows are a collection of

small disconnected DAGs in a workflow graph space.

2. Large Workflow: By large workflow, we refer to such workflow that is very large in a graph level.

That means a node may have thousands of child nodes which expands the full workflow but still keeps

the workflow’s depth shallow.

3. Deep Workflow: By deep workflow, we refer to such workflow that is deep according to the graph

level. That means the workflow has continuous trailing child nodes one after another. This way, the

workflow becomes a very long linear DAG.

For each kind of workflows we just mentioned, we implement and run them iteratively to increase the

provenance graph size. The sparse workflow is used to understand the performance behaviour of a random

usage scenario of the model for workflow implementation. Large workflow is implemented to specifically see,

what are the effects of graph level expansion on the model. Finally, the deep workflow is implemented to see

the effects of graph depth on the model.
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Figure 6.1: Experimental dataset overview
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Figure 6.2: First workflow for simulation
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Figure 6.3: Second workflow for simulation

6.1 Sparse Workflow

We run a simulation that has several tools, data items and also such items that can generate errors in some

of the times during the simulation. It helps us to populate log data and analyze the monitoring facility in

real time. We also use this simulation for user study. The purpose of this simulation is to create a simulated

usage pattern quickly and analyze the logs for the study.

We implement two different workflows from Bioinformatics. The first workflow is about counting DNA

letters from a genetic dataset. We also count the length of the gene. Based on the nucleotide base counts,

we can calculate the Entropy of the gene sequence. We also find out, which base is having the most and

least probability of occurrence over the full sequence to get an understanding of the full sequence along

with its entropy. In the second workflow, we run FastQC [37] over the datasets to generate FastQC results.

Note, in the simulation, a collection of genetic data is used that is described in Figure 6.1. The FastQC

files are only valid inputs for FastQC and generate error otherwise. In the simulation, to generate a user-

oriented usage scenario, we choose a data randomly from the dataset to input through the workflows. Also,

from the first workflow, only DNALetterCount is executed or DNALetterCount with Entropy is executed or

DNALetterCount with Entropy and MaxMinProv tools are executed. Otherwise, FastQC is executed with

random inputs. They are selected randomly. Between the executions, there is a random gap of 1 to 7 seconds.

From the simulation, we create a provenance graph of around 20,000 nodes that contains logs about FastQC

errors too. A portion with 300 nodes from the provenance graph is shown in Figure 6.4.

39



Figure 6.4: A portion of the provenance graph with 300 nodes generated by the simulation with

sparse workflow. Green nodes are different modules with module name as label. Red nodes are

intermediate Data Object items with data value as label. Blue nodes are Data File items with file

path as label. The edges are labeled with IN or OUT. IN is directed from data to module and OUT

is directed from module to data.
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6.2 Large Workflow

As mentioned earlier, we implement a workflow in this phase to see the effect of workflow graph level expansion

on the model. We select a plant phenotyping image analysis workflow. This workflow has a single module

named Sharpen. Sharpen module takes a phenotyping image as input and applies an image processing filter

to sharpen the image. This creates another image as output. So, simply the workflow has one input, one

module and one output to sharpen an image. The Sharpen module has a filter level parameter that specifies

how strongly the filter will be applied. The large workflow is shown in Figure 6.5.

Iteratively, we use the same input image data item and only one instance of Sharpen module with a

range of filter level parameter value. This lets us use only one input image and one module in a workflow to

generate a number of output images for different settings. Such a scenario is very useful to investigate the

distinct results of different settings and also to save them separately. The results can be used to select the

best workflow setting for such scenarios. Note, in our model, we are applying the same module again and

again here but that is still not creating any cycle or loop in the workflow. It is because ProvMod creates the

provenance graphs as DAGs and separate execution information is logged as property values. The workflow is

executed for thousands of times to create a reasonable number of nodes in the provenance graph. A snapshot

of the provenance graph after simulating this scenario with large workflow is in Figure 6.6.
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Figure 6.5: The large workflow used in our experimental analysis
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Figure 6.6: A portion of the provenance graph with 100 nodes generated by simulation with large
workflow. The red node is the Sharpen module labeled with tool name and all other green nodes are

generated output data from Sharpen. Green data nodes are labeled with an ID. There is only one
input to Sharpen in the full graph that is not highlighted here. The graph is expanded around the

single Sharpen node only.
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6.3 Deep Workflow

The deep workflow we implement consists of the same basic data item and module Sharpen from the previous

section. In this case, we use a module instance only once with the same filter level parameter setting. The

only difference is, the output of the previous run is used for the next run. This creates a linear pipeline with

repeated module invocations. The workflow is shown in Figure 6.7.

This kind of workflow is useful when an analysis needs multiple application and the complete analysis

run takes much time. So, the user can create all the intermediate results. Any intermediate result until

the last result or an error can be used anytime. The module setting remains fixed in this case, that can be

investigated to observe data propagation. This workflow is also executed thousands of times to create a large

number of nodes in the provenance graph.

In figure 6.8, we present a provenance graph portion generated by simulation with deep workflow.

image Sharpen . . .    . . .image
1 Sharpen image

2 Sharpen image
3

Figure 6.7: The deep workflow used in our experimental analysis
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Figure 6.8: A portion of the provenance graph with 100 nodes generated by simulation with deep

workflow. The red nodes are the different instances of Sharpen tool with same parameter setting.

Green nodes labeled with IDs are either an input or output data items. One generated data item is

used as input in the next module.
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6.4 Performance Analysis

For the analysis, we use a system with Ubuntu Linux 16.04 LTS, 16 GB DDR4 memory, Intel Core i7-7700HQ

CPU at 2.80GHz x 8 CPU, 256 GB SSD as secondary memory.

Figure 6.9: Execution overhead of sparse workflow

We analyze several things about our ProvMod model. The analyses are described below with the found

insights:

1. As our model is fused with the Graph Database, querying and adding nodes is always happening

throughout the execution. It can be easily turned off, but we are eager to see how much performance

overhead is occurring for that. In Figure 6.9, we can see, when there are around 20,000 nodes in the

simulated provenance graph, the tool execution time is around 2 seconds. In real-world workflows, a

workflow may contain around 10 nodes or so, but never thousands of nodes for a single user. So, our

ProvMod model shows good performance.

2. The query time will also increase as the graph is increased (the sparse workflow). We search the full

graph during the simulation at the end of every single simulation step and capture the time to collect

the full graph. We find that the full graph search is returned within 1.5 seconds when there are around

20,000 nodes in the provenance graph in Figure 6.10. This clarifies that our ProvMod model query is

not time-consuming and fast.
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Figure 6.10: Query overhead of sparse workflow

3. Finally, we compare the whole simulation with and without provenance and measure the performance

overhead the ProvMod logging is actually creating that we present in Figure 6.11. It becomes clear

that for such a huge graph with 20,000 nodes the provenance creates an overhead of around 0.5 seconds

on average.

4. From the found insights and analysis results from the sparse workflow, we apply the same technique on

the large workflow and deep workflow. The large workflow shows whether there is any effect on ProvMod

performance for any provenance graph level expansion. On the other hand, the deep workflow shows

whether there is any effect of provenance graph depth on the model. We can also compare the results

between them.

5. Figure 6.12 and 6.14 shows the execution overhead due to number of nodes. We can see, there is a

little execution time difference for the same number of nodes in them. But that both are having more

execution overhead than the sparse workflow (Figure 6.9). From this observation, we imply that the

execution time could be increased due to the number of connected nodes because the sparse workflow

has more disconnected nodes. Though this implication is not very strong because the sparse workflow

has error generating nodes in it too.

6. Figure 6.13 and 6.15 clearly shows that the query overhead is heavily increased in large workflow and

deep workflow than sparse workflow (Figure 6.10). Here, the query time only depends on the number
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Figure 6.11: Comparison of ProvMod execution time with and without provenance

of nodes in the provenance graph. So from this observation, we strongly imply that the query overhead

increases due to the number of connected nodes. Although, we do not see much difference between the

query overhead of large workflow and deep workflow.
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Figure 6.12: Execution overhead of large workflow

Figure 6.13: Query overhead of large workflow
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Figure 6.14: Execution overhead of deep workflow

Figure 6.15: Query overhead of deep workflow
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7 Reporting

Based on the experimental analysis done in the Experimental analysis chapter, we can now populate a

provenance graph with various nodes and properties in them. Here in this section, we try to answer the

provenance question we mentioned in an earlier provenance questions chapter. To answer the questions,

we use data visualizations. For example, to take advantage of existing technologies to visualize a scenario

that can answer a provenance question as well as some other basic questions too that are already in the

visualization.

Note that our goal is not to build a better chart or way of visualization but to use the existing methods

to visualize them in a good manner. The best way of visualization findings is another research topic and can

be incorporated with our work in the future. We try to attach a visualization service with our model since,

in the existing research works, the importance of visualization in provenance is stated. We create a number

of visualization representation to provide a dashboard as a service to the user. It makes the ProvMod model

to leverage the power of reporting for real-time monitoring for the end user.

7.1 Visualization for Graph Related Questions

In this section, we present a graph visualization using Neo4j technology and the ProvMod model’s notation

that can be used to answer a number of graph related provenance questions. The graph related questions

mentioned in earlier formal provenance questions chapter is more abstract and general. Here from Figure

7.1, we present an example that is already implemented in our work and can be used as simple examples.

From the graph representation, it is possible to answer these questions:

1. What is the full provenance graph?

2. What is the largest pipeline/workflow?

3. What are the inputs of a module?

4. What are the outputs of a module?

5. What are the anomalous modules with no input and output?

6. What are the anomalous modules that have only inputs but no output?

7. Are there any similar pipelines co-existing in the graph?
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8. Are the pipelines similar or nearly similar?

9. What is a property value of a selected node?

10. What the Time Sequence Mapping for a node type T for property P?

11. What is the Data Sequence Mapping for a node type T for property P1 and P2?

12. What is the pipeline path from selected nodes n1 to n2?

Figure 7.1: A graph visualization to answer graph related question that does not return a single
metric value, Objects are Blue, Modules are Red and Files are Yellow in color

7.2 Visualization for Time Series Monitoring Questions

In this section, we present a real-time or fixed time, time-series visualization technique using the Kibana

technology. The time-series visualizations can be used to answer several questions from the monitoring
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questions criteria:

1. What is the target property (here CPU load) value at time T for a module target M?

2. What is the target property value now for a module?

3. What is the maximum/minimum target property value within a time range for module M?

4. Is there any anomalous property value for a target property and module M (for example sudden zero

value in the X axis)?

5. Is there a regular pattern within a time range for property P and module M?

Figure 7.2: A time series visualization for representing real-time, time-series investigation of any
property

From Figure 7.3 we can also answer some other questions including the previous ones:

1. For module M1 and M2 is there any similarity for property P (CPU load here), over the time sequence?

2. What could be a possible property P value of another module M2, provided it is correlated to module

M1 and M1 has value V for that property?

3. What is the relation between two modules property values V1 and V2 (v1 is bigger or smaller or equal

to V2 and so on)?

Figure 7.3: A time series visualization for representing real-time, time-series investigation of
multiple properties
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7.3 Visualization for Monitoring Metrics

In this section, we provide a way to monitor metrics in two fashions. One is to monitor a metric’s direct

value and another is to monitor within a goal value. This is also real-time.

The questions we can answer from the Figure 7.4 are:

1. What is the metric or property value now for a module M?

2. What is the metric or property value in a fixed-time range for a module M?

3. Which module is showing the maximum/minimum value now?

4. Which module is having the maximum/minimum value in a fixed-time range?

5. Which module’s metric seems not to be changing over time?

6. Which module is seeming to be anomalous (by showing a static value or zero) over time?

Figure 7.4: An average of CPU load for a fixed-time range for different modules

The gauge chart in Figure 7.5 can answer several other questions including the previous ones:

1. Which module metric (here CPU load) or property is over or equal to a goal value?

2. Which module metric or property is below a goal value?

Figure 7.5: An average of CPU load for a fixed-time range for different modules with a goal of 50%
CPU load

7.4 Visualizing Proportional Measurements

In this section, we present a way to visualize the proportional measurements for nominal data. This feature

is real-time and can be used to get an idea of the ratio of a nominal property frequency/occurrence out of

another nominal property.
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In Figure 7.6 we can get to know the answer to the question:

1. What are the frequencies of possible values of property P now?

2. What are the frequencies of possible values of property P within a fixed-time range?

3. Are the frequencies changing over time or static?

Figure 7.6: Metric view of two nominal property frequency

The Pie chart in Figure 7.7 also gives another extra questions’ answer:

1. What is the frequency ratio of property P (here success or error type) out of all its possible occurrences

now?

2. What is the frequency ratio of property P out of all its possible occurrences within a fixed-time range?

3. Is the proportional ratio changing over time or static?

The Figure 7.8 representation can answer more questions by providing a bigger view:

1. For a certain category value K (here tool name), what is the ratio of a property P (here success or error

type) frequencies out of K now?

2. For a certain category value K, what is the ratio of a property P frequencies out of K within fixed-time

range?

3. Which category K has bigger proportion for any property value V?

7.5 Visualizing Nominal vs Nominal to Ordinal Monitoring

In this section, we present a way that can be used to monitor two nominal properties together while observing

another ordinal metric. This is also real-time and can answer several questions:

1. What is the value of the ordinal property P (CPU load for example) for category K1 (FastQC tool

name for example) and K2 (MRE error type for example) now?
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Figure 7.7: Pie chart to provide a proportional view of a nominal property (here success and MRE
or module run-time error)

2. What is the value of the ordinal property P for category K1 (FastQC tool name for example) and K2

for a fixed-time range?

3. Which heatmap portions are not changing over time?

4. Which heatmap portion are having zero or the lowest value spectrum?

5. Are two value portions in the heatmap correlated and occurring with the same colour altogether?

7.6 Visualizing Statistical Analysis and Monitoring

Although there are so many statistical measurements, we provide only two of them that are very common

and basic. First one is about the percentile distribution of any property and the later one is the standard

deviation of that. The statistical questing that can be answered from the Figure 7.11:
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Figure 7.8: Pie chart to provide a proportional view of two nominal property frequencies (here
success and MRE or module run-time error along with the module types)

1. What is the distribution of a property P (here CPU load) for a nominal category K (module name)

now?

2. What is the distribution of a property P (here CPU load) for a nominal category K within a fixed-time

range?

3. Which percentile has the highest/lowest property value for a category K occurrence now?

4. Which percentile has the highest/lowest property value for a category K occurrence within fixed-time

range?

5. In which direction the property P is highly/lowly deviated for category K now?

6. In which direction the property P is highly/lowly deviated for category K in a fixed-time range?

From Figure 7.12 we can answer:
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Figure 7.9: Heatmap to represent tool name vs error type to frequency of their occurrence

1. What is the highest and lowest standard deviated values of property P (CPU load) for a category K

now?

2. What is the highest and lowest standard deviated values of property P (CPU load) for a category K

within a fixed-time range?

3. In which direction a property value V is highly deviated for category K now?

4. In which direction a property value V is highly deviated for category K for a fixed-time range?
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Figure 7.10: Heatmap to represent tool name vs error type to CPU load

Figure 7.11: Percentile distribution of CPU load grouped by tool names
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Figure 7.12: Standard deviation of CPU load for different tools
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8 Integration and Performance Analysis

In this chapter, we describe how we integrate ProvMod with Apache Taverna and thus offer a new

improved version of our model naming ProVerna.

8.1 Integration with Apache Taverna

While integrating with Apache Taverna, our focus is not to get the hands dirty by modifying the source

codes of Taverna. it is because, we build our core model ProvMod in such a way that every component that

falls under it, is separated as a distinct service. It follows a plug-in architecture that is suitable for easy

adaptation with other services from third parties.

8.1.1 Fixed Routine for ProVerna

When we develop any tool including ProvMod for Taverna, to make things simple we follow a fixed routine

for each module. It is not mandatory to follow all the time and user may create their own routine but using

these routine makes it very easy to integrate ProvMod with Taverna.

The fixed routine for ProVerna:

1. A tool must take inputs as Objects,

2. The input Objects can hold input file paths or parameters,

3. The tool must write the result into a file,

4. The tool must generate an Object with the saved file path.

8.1.2 Coding Template

While doing the integration, every tool or function can be easily wrapped using ProvMod and be used as an

executable file in Taverna. We provide the developers with a coding template in Figure 8.1 that they can use

to create any Taverna tool from scratch, or use an existing tool while enabling ProvMod.

8.2 Benchmark for Comparison

We select a real-world Bioinformatics pipeline for evaluating and comparing our model with Taverna. In

Figure 8.2 we present the benchmark. For the analysis, we use a system with Ubuntu Linux 16.04 LTS, 16
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GB DDR4 memory, Intel Core i7-7700HQ CPU at 2.80GHz x 8 CPU, 256 GB SSD as secondary memory.

The benchmark takes an input as a .bed file. The file contains exon and SNP IDs for human chromosome

22 [38]. The bed file is converted into a CSV file for analysis. Then from the CSV file a target column ID is

selected with a variable that is in our experiment ’exonID’. Then the number of SNPs per exon is count. It

is similar to word count for example. Then the top exons are filtered by sorting the previous results. Finally,

the top exons and number of SNPs per exon are printed in the console in this pipeline.

8.3 Result Analysis

We run the benchmark for Taverna as well as for ProvMod integrated Taverna or ProVerna. We also run

ProVerna in different fashions. For example only keeping the file-based logging excluding the graph database

or ELK stack, only file and graph database excluding ELK and the complete ProvMod. The execution

iteration ranges from 500 to 5000 in our experiment until we find a significant outcome in our result. The

results are presented and discussed in the following.

8.3.1 System Performance Analysis

The comparison is done with Taverna as well as different versions of ProVerna as already mentioned in Figure

8.3. It is clear that, over the iterations, Taverna performance is static for the benchmark. Similarly, for only

file-based logging model PM-GDB-ELK, the performance is also static. When we add the graph database in

PM-ELK then over the time the performance overhead is increased. It is because the provenance is highly

coupled with ProvMod and performs some queries during workflow runs to build graphs. As the number of

nodes increases in the graph, small execution time overhead is added to the model. The addition of ELK

stack does not add any extra overhead because we can see, the performance line for PM and PM-ELK is

parallel to each other.

The execution time is affected by the number of nodes. Thus we also present how it is affected in the

model over the iterations in the benchmark. We run around 1000 iterations with the benchmark again and

record the execution time to generate Figure 8.4. We can see, the overhead for 1000 iterations is not even

more than 3000 milliseconds.

Does the model add any extra memory load to the system for provenance? As we are recording the

provenance data, it is always increasing in the graph database. For each iteration of a workflow run, how

much provenance data is recorded fully depends on the pipeline, how many nodes are there, the value of

Object nodes etc. However, that is totally the responsibility of the graph database to manage and it does

not affect the workflow system runs. In Figure 8.5 we compare the Taverna and ProVerna models with our

benchmark for 300 iterations and we can see, there is an extra load of memory or around 200MB for ProVerna

but that is not increasing over the iterations.
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8.3.2 Query Performance Analysis

We also analyze the two kinds of queries that are used during graph building. One is to create a new node

and another is to build relations between a new node and a previously existing one. We can see, the node

creation is static over iterations because it is only putting a new node in the graph database. However, the

relation building query is increasing over time for iterations. It makes clear that the overhead of ProVerna

and ProvMod is actually for the relationship building query during workflow run for populating provenance

logs.

For offline analysis, a full graph search will retrieve the full workflow provenance graph containing all the

nodes and edges. Obviously, as the number of nodes increases, it will increase too. This is explained with

Figure 8.7.

For offline analysis, we could use our proposed elementary queries to prepare datasets for data mining

and insight findings. How time-consuming are the queries? We present that answer with Figure 8.8. We

can see, for 3000 iterations, the Decide query can search a particular node with a very small amount of time

(nearly 0 seconds). On the other hand, the two other queries take longer and they increase over the number

of nodes in the provenance graph.

8.3.3 Notes on Performance Overhead

The performance overhead is due to the graph building features of our model during workflow runs. Although

it is not that high, we can still provide future researchers with some options that they can use to reduce the

overhead.

• The graph database can be integrated with an HPC environment,

• The graph database can be managed in a distributed manner,

• Particular logs from particular locations can be stored in particular graph database cluster,

• Processing power can be increased.
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Figure 8.1: A coding template for the developer that implements RemoveSpace function, to remove
any space in the file content
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Figure 8.2: A real-world pipeline as the benchmark for ProVerna
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Figure 8.3: Comparing ProVerna and Taverna

Figure 8.4: Execution time overhead based on the number of iterations
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Figure 8.5: Memory overhead based on the number of iterations

Figure 8.6: Time taken to build graph during workflow run for two kinds of queries

66



Figure 8.7: Full graph query time based on the number of nodes in the provenance graph

Figure 8.8: Performance of elementary queries Decide, Time Sequence Mapping and Data Sequence
Mapping
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9 Comparisons

This section is dedicated to present comparisons between ProvMod and different tools with respect to their

features. We also present the completeness of our provenance questions classification based on prominent

research works.

9.1 Provenance Mechanism Comparison

In Table 9.1 we compare the provenance mechanism of three candidate systems. The first one is an already

existing system Apache Taverna, then comes our ProvMod and finally, Taverna integrated ProvMod or

ProVerna. Note, Taverna is a complete workflow system that relies on a workflow model clearly. ProvMod is

only a model but directly not a workflow system. ProVerna, on the other hand, comes as a complete workflow

system inheriting all the features from Taverna and ProvMod. Our goal is to only compare the provenance

mechanism of these three. The reader can refer to the taxonomy of Cruz et al. for more explanation of the

benchmark for the comparison which is described in Figure 5.3.

9.2 Completeness of Provenance Questions Taxonomy

In this section, we present a comparison of our proposed provenance question taxonomy. The comparison

is illustrated in Figure 9.1. The upper portion of the Figure (boxes with orange outline) is the provenance

questions taxonomy proposed by our work. The lower portion contains the existing works (boxes filled with

grey colour) that were done by prominent researchers in provenance research domain. The directed arrows

are to represent which question can be derived from our proposed taxonomy. The blocks that are filled in

white color and having no arrows in our taxonomy, are not already covered by the existing works.

We can see, Bunenman et al. [39] only emphasized on the why and where provenance in their work. Ram

et al. present the importance of these two categories based on their work but it was not a comprehensive

approach to cover any kind of questions [40]. They proposed a model with seven questions categories. This

work mainly targets to provide a comprehensive question classification. Surprisingly, the questions are only

focused on the workflow graph but not any other kind of analyses. So, we can see all the questions are covered

only by the Decide query that we proposed. Besides, only the why query can be related to Data-sequence

mapping proposed by our work. Cuevas-Vicenttin et al. [41] proposed different categories of questions. Out

of four, three of them can be only be derived by the Decide query.
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Table 9.1: Provenance mechanism comparison of Taverna, ProvMod and ProVerna

Taverna ProvMod ProVerna

Capture

Tracing Eager Eager Eager

Levels Workflow
Activity

limited OS

Activity

limited OS

Mechanism Internal Internal Internal

Technique Annotation Annotation Annotation

Access

Visual Yes Yes Yes

API Yes Yes Yes

Query Internal Yes Yes

Browse Yes Yes Yes

Subject

Orientation Process
Data

Process

Data

Process

Phase
Composition

Execution
All All

Granularity Fine Coarse
Fine

Coarse

Storage

Scalability Central
Distributed

by support

Distribute

by support

Coupling High High for automation, low for services
High for automation,

low for services

Persistence RDF Semistructured
Semistructured

RDF

Archiving Time-stamping Time-stamping Time-stamping

Access

and

Language

TriQL Cypher
TriQL

Cypher
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Again the last one mapping is only related to Data-sequence mapping. Karvounarakis et al. [12] proposed

different categories of questions in their work without any formal definition but in a generic way. Three of the

four categories of questions can be derived from Decide and only one is related to our monitoring question

category. Ghoshal et al. [42] proposed three rules that can be related to our Decide and Data-sequence

mapping only.

So, we can see our proposed provenance question classification covers a whole lot of questions that are

found from existing works and even more. The classification can also be extended and many more questions

can be derived for any single category from the taxonomy.

Provenance
Questions

Graph
Related

Monitoring
Related Statistics

Related

From
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From
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Mapping
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Figure 9.1: Query coverage of proposed taxonomy with respect to existing works
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9.3 Comparison of Reporting Service

In Figure 9.2 we present a comparison of our visualization service with existing analytic provenance enabled

applications. Those candidate applications are, Taverna [21], ProbeIt [43], Provenance Browser [44], Pro

Viewer [45], VIEW [46], SensePath [47] and the work of Chen et al [48].

We can see, ProvMod supports graph visualization and the visualization supports from Taverna, ProbeIt,

Provenance Browser and the work of Chen et al. is already covered by our Neo4j graph view. The interactive

graph features of Pro Viewer not exactly similar to ProvMod graph view but that is also interactive. Also,

manual interactivity can be created at will. To offer the temporal view, we used Kibana for time-series

analysis. The spatial view is also supported but not implemented at the moment. Pro Viewer supports

such visualizations but that is a domain specific application. SensePath is a prototype but we also support

time-series and real-time analysis in ProvMod. Chen et al. only focused on network visualization but that

is also covered by ProvMod graph view. Any arrow with a solid line in Figure 9.2 means a certain feature is

directly supported in our model and such feature can be regenerated with ProvMod. A dotted arrow means,

such features is not directly supported in our model but can be offered using ProvMod. If there is no arrow

between a feature of ProvMod and any existing work’s feature, it means it is not supported by ProvMod at

the moment.
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Browser
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Figure 9.2: Visualization feature comparison with respect to existing analytic provenance research

works
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10 User Study

We perform different user studies to assess the usability of our model on how easy it is to learn and

implement and also to integrate with existing tools. Also, we perform user study for the visualizations so

that we can make sure the users find it friendly to answer provenance questions with the Kibana service. At

each step we asses the workload using NASA TLX [49] workload index. We have conducted the user study

on 11 users till now who ranges from basic programmers to professionals.

10.1 The Method

In this section, we describe each step of the whole user study in details. We conducted two user studies and

the first one has four different parts.

10.1.1 Learning ProvMod

In this user study, we make the user read some simple documentation with examples. It also teaches the user

about the basic concepts of ProvMod and how to implement it. Then we let them implement some already

provided examples so that they can feel confident that they learn the model implementation property. Then

we assess the workload.

The documentation is in https://github.com/rayhan-ferdous/User-Study/wiki. It contains the de-

scription of the user study steps.

10.1.2 Implementing ProvMod

We let them implement a pipeline with ProvMod without any assistance but only the documentation. Then

assess the workload for this task.

This step involves using an already ProvMod enabled tool, using a provided function to implement in

ProvMod, and implementing a tool in ProvMod from scratch. It is done so that the study can ensure that

the user can now implement ProvMod from every angle.

The task can be found in https://github.com/rayhan-ferdous/User-Study/wiki/4.-Using-ProvMod.
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10.1.3 Inspecting Log Schema

This step makes sure the user is aware that logs are generated automatically. They are asked to inspect the

log properties. Also, we take their suggestions on how more log properties can be included.

10.1.4 Learning Taverna

In this step, the user is taught to use the Taverna GUI with a simple example. They learn to run a runnable

program via Taverna. Then they are taught to run ProvMod enabled tool in Taverna. After finishing this

step, the workload is assessed.

The tutorial can be found in

https://github.com/rayhan-ferdous/User-Study/wiki/7.-Learn-Integrating-ProvMod-with-Taverna.

The codes users get in this step, can be used as coding templates for next steps. So, no serious coding

intended to problem-solving is necessary during the user study. It is only intended to make the user use the

model.

10.1.5 Using ProVerna

This phase provides the user to use ProvMod inside Taverna with a simple coding template. Thus the user

learns only the coding schema and immediate implements a new pipeline with ProVerna. In the test pipeline,

they use an already existing function to wrap with ProvMod and use an already existing tool for ProVerna.

They run the pipeline and we assess the workload.

The task can be found in

https://github.com/rayhan-ferdous/User-Study/wiki/8.-Using-Proverna

10.1.6 User Information and Task Load Assessment

During the task load assessment, we take different in formations from the user. They are described below:

1. Fluency level of Python programming,

2. Experience level of working with JSON, and

3. Experience level of working with workflow systems.

Next, we ask them to score on six different questions for each phase stated above (learning model, using

model, learning integration and using integration). For this purpose, as already mentioned- we use the NASA

TLX workload index for six criteria. They are scored out of 1 to 10. Any score that is close to 1 refers to a

very low amount of that criteria. Any score that is close to 10 refers to a higher amount. The six criteria can

be measured in various ways based on the goal of the study. Here we describe, how a criterion is measured

for each of them:
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1. Mental demand: How much mental and perceptual activity was required? Was the task easy or

demanding, simple or complex?

2. Physical demand: How much physical activity was required? Was the task easy or demanding, slack

or strenuous?

3. Temporal demand: Was the pace slow or rapid?

4. Confusion level: How unsuccessful were you in performing the task? How unsatisfied were you with

your performance? How confused were you about the task?

5. Effort: How hard did you have to work (mentally and physically) to accomplish your level of perfor-

mance?

6. Frustration level: How irritated, stressed, and annoyed versus content, relaxed, and complacent did you

feel during the task?

10.2 Evaluating Dashboards

This section is about assessing the visualizations we provide using Neo4j Browser and Kibana to make sure the

user is fully getting the real-time monitoring support, graph query support with visualizations, and statistical

views of the log data. This is also to assure that, the user can get the provenance questions’ answers.

10.2.1 Assessing Graph Visualization

We present the user with the graph visualization and let them answer the graph related provenance questions.

We also let them create datasets by using two query templates in Cypher. Then we assess the workload for

that.

We present the user a graph of a workflow simulation running in the background. They remain completely

unaware of the workflow pipeline structure. There are also such modules that create an error at different

time points. We present them the graph visualization of that simulation and ask the following questions:

1. What is the output of module Entropy?

2. What is the input of module FastQC?

3. For a selected module Div, what is the cpu run property value?

4. run query: match(n:Module) return n.time, n.NAME order by n.time : do you get a dataset?

5. From the query, can you answer which module invocations occurred serially over time?

6. match(n:Module) return n.time, n.NAME order by n.time - can you use this query template to get a

time-ordered dataset for n.cpu run property?
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7. What is the cpu run property value for a module at the beginning of the time point?

8. run query: match(n:Module) return n.cpu run, n.memory run : do you get a dataset?

9. Can you use the dataset to map data for analysis (e.g. to find the correlation between cpu run and

memory run or to draw a scatter plot for cpu run vs memory run)?

10. From any selected node DNALetterCount to node Entropy, write the pipeline path (e.g. n1-¿n2-¿n3).

11. Name 2 or 3 modules that lie in similar graph patterns from the full graph.

12. Name 2 or 3 modules that lie in the longest pipeline(s) in the full graph.

13. Name a module that is lonely (no edges from or to it).

14. Name 1 or 2 module that seems to be anomalous to you in any way.

15. For a selected module named Div, what is the error property value?

In the questions mentioned above, every term is relevant to the provenance graph showed to the user.

The main goal of asking these questions is to ensure that the users can use the graph visualization to answer

the mentioned provenance questions. We are not assessing the correctness of the answers here because they

can always answer the questions in a correct manner. Rather, we are assessing the workload to answer them.

10.2.2 Assessing Monitoring Visualizations

This step is about letting the user use the time-series, pie, bar, donut or such charts and metric views that

has real-time data streaming capability.

We also let the user use the visualizations related to statistical analysis and answer related provenance

questions. Then let them answer the questions related to monitoring and assess the workload.

We present them with several dashboards and ask the following questions:

1. What is the maximum CPU load for FastQC in a selected time range?

2. What is the value of CPU load at a selected time point for Div?

3. Name 2 modules that have a co-occurring pattern for CPU load?

4. Name a module that seems to you anomalous in any way.

5. What is the avg CPU load out of 50% CPU for Div module now?

6. Which module is having the highest CPU load out of 50

7. For the last 50 modules, what is the avg. CPU load for Entropy?
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8. Is the last 50 modules’ avg. CPU load (from metric view) and current CPU load (from gauge meter

view) similar for tool Div?

9. If yes, is the tool Div, executing in a uniform manner with respect to CPU usage?

10. How many MRE errors occurred until now for the time range?

11. How many FastQC tool invocation occurred until now for the time range?

12. For only module FastQC, what is the frequency of MRE error (in number or %)?

13. For only module FastQC, what is the ratio of MRE error (out of only FastQC invocations)?

14. Name a module that has 100% MRE error.

15. Out of all module invocations, what is the invocation ratio of module Entropy?

16. What is the MRE/(MRE+Success) ratio over the time range now?

17. What is the frequency of Entropy module’s MRE error occurrence?

18. For module Div, for MRE error, what is the cpu load?

19. Name a module, for which MRE error frequency is within 0-20%.

20. For FastQC, which quartile has the highest CPU load distribution?

21. For FastQC, what is the 3rd quartile for CPU load?

22. In which quartile, the Entropy module’s CPU load is highly deviated?

23. What is the upper standard deviation of Div module’s CPU load?

24. In which direction the CPU load is highly deviated for Div module?

25. Are the charts are real-time?

26. Can the charts be used to select a time range?

27. Can multiple properties and parameters be compared using the charts?
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10.3 User Information and Skill Level Demonstration

We present the user information to make the reader aware of the users experience and skill level. The figures

in 10.1, 10.2, 10.3, 10.4 and 10.5 presents their skill and experience level.

Figure 10.1: Python programming fluency of different users

Figure 10.2: Workflow experience
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Figure 10.3: Experience level with JSON

Figure 10.4: Feedback on the question: Is the coding template reusable?
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Figure 10.5: Feedback on the question: Is the documentation simple, concise and to the point?

10.4 NASA TLX Score

The average NASA TLX workload index is presented in Table 10.1. Each category of the six measuring

criteria is basically measuring a negative metric for the system. So, a higher value in any metric refers to a

bad quality of the system. From the table we can see, the mental demand, physical demand for the model

related tasks are always less than 4. A lower value (less than 3) in temporal demand for the model related

tasks means the tasks were fast to complete. Lower value in confusion (less than 1.5) means that the users

had high confidence and success rate for the given tasks. They also need a low effort to learn and use the

model as a whole (effort score is lower than 3.5 for each case). They are also not that much frustrated while

learning and using the model.

For visualization, we can see it has only a higher mental demand score than any other tasks, but that is

even lower than 4.5. It is because, while using the visualizations, it was their first time. Over the time it

can be decreased if they become familiar to the system. However, all the users could properly answer all the

visualization related questions. So, it is clear that the visualizations of different provenance questions are

relevant and clear. The other scores are low in value as usual. Our goal is not to provide the best visualization

techniques, but to answer provenance questions using visualizations while offering modern auditing features.
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Table 10.1: Average TLX score out of 10 from the user study. Scale 0 to 10 refers to low to high

score.

Metric
Learn

ProvMod

Implement

ProvMod

Learn

ProVerna

Implement

ProVerna
Visualization

Mental

Demand
3.6 3 3.4 2.6 4.3

Physical

Demand
2.2 2 2.2 2.1 2.3

Temporal

Demand
2.5 2 1.8 1.8 2.3

Confusion 1.4 1.3 1.4 1.2 1.5

Effort 3.3 2.8 2.7 2.6 2.9

Frustration 3.7 3.7 3.6 3.6 1.6

In Table 10.2 we present the median of the users’ scores to present the centrality of the scores. By

comparing between the corresponding scores from Table 10.1 and 10.2, we find a low difference. So, the

average score can be taken as a good measure of task load in most of the cases that we can imply.

Again, to represent the sparsity of users’ scores, we present Table 10.3 that shows the Standard Deviation.

Standard Deviation is not a very good statistic measure to represent the sparsity, but as our number of users

is not very large, we think sticking with this metric at the moment is a good idea and makes things simpler.

Table 10.2: Median for TLX scores from the user study

Metric
Learn

ProvMod

Implement

ProvMod

Learn

ProVerna

Implement

ProVerna
Visualization

Mental

Demand
3.5 3 3 2.5 4

Physical

Demand
2 2 2 2 2

Temporal

Demand
2 2 2 1.5 2

Confusion 1 1.5 1 1 1

Effort 3 3 2 2 3

Frustration 2 2.5 2 2 1
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Table 10.3: Standard Deviation for the TLX scores from the user study

Metric
Learn

ProvMod

Implement

ProvMod

Learn

ProVerna

Implement

ProVerna
Visualization

Mental

Demand
1.26 1.05 1.58 1.26 2.07

Physical

Demand
1.03 .67 1.48 1.52 1.65

Temporal

Demand
1.08 .67 1.03 1.55 1.71

Confusion 1.17 1.06 1.17 1.23 1.65

Effort 0.82 1.14 1.42 1.65 1.63

Frustration 3.4 3.43 3.72 3.72 2.54

10.5 Limitations of The Study and Future Goals

We admit that performing the user study only on 11 users is not a good choice. Indeed, we had to exclude

two users’ data (13 users took part in total). It is because one user left the study in the middle of the

participation. Another user was providing the scores randomly in a very fast manner that we noticed which

gave us false data. Another concern was, the user study setup was made completely ready for the users and

they had to come to the setup to take part. It gave us the chance to ensure that the users were participating

properly and the system is also functioning as expected. Due to other time limitations, we could not increase

the number of users at this time.

In the future, we have a plan to provide the complete system as a web-based software system and conduct

the study online with a lot of users. That will not only make the study to be parallel for multiple users, but

also few false data will not affect the study score that much.
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11 End User Features

There are several user-based features that we would like to describe in this paper in brief in the following

sections.

11.1 Tool Development

To develop an existing tool such as FastQC we can code like Code snippet in Figure 11.1.

To develop the tool MaxMinProb (that takes the length and count of four bases as five distinct inputs and

outputs the bases name with maximum and minimum probability), we refer the reader to see code snippet

in Figure 11.2.

Further details and tutorial is in https://github.com/rayhan-ferdous/Provmod.

Figure 11.1: Implementing existing tool FastQC in ProvMod
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Figure 11.2: Developing a tool from scratch
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11.2 Workflow Implementation

G

M

Entropy

import ProvModel, Tools

F = open(‘gene.txt’)

G = ProvModel.File(f)

M = Tools.Entropy(G)

Entropy = M.run()

print Entropy.ref

Pipeline Code in Provmod

Figure 11.3: A pipeline to implement the tool Entropy from ProvMod library with input file
gene.txt, to produce a data item with the entropy value in it

To implement a pipeline very easy and few steps could be followed from Figure 11.3. The steps are:

1. Import the model in Python,

2. Create model-based data instance,

3. Create a tool instance with input instance,

4. Run the tool.

11.3 Logging Configuration

The logging schema is presented in Figure 5.6. The logging schema is configurable (expandable or reducible)

from the configuration files in ProvMod and is JSON structured to adapt to any kind of NoSQL database

technology. Expert users can use Elasticsearch to do such things.
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11.4 Tuning Log Levels

The user can tune the log levels according to their needs and can even disable it. They can also enable or

disable any services involved in ProvMod but it is not recommended to disable any service other than log

level tuning.

11.5 End User Reporting

The reporting is done through a Kibana front-end in our implementation. The dashboard is a domain/goal

specific and user-oriented topic in Kibana. Different users can even make their own dashboards within the

same working team. So, rather than presenting the dashboard, we present the visualizations of several

provenance questions that is discussed already in Reporting Chapter.

11.6 Integration

The user can easily integrate the workflow programming model ProvMod with any existing workflow system.

All that existing system need is to allow any executable programs to run within it. The logging features and

automation in logging and log management is integrated by default. The user also gets real-time monitoring

all ready to run and use. If they want to develop any tool from existing sources, they can easily follow the

coding template that we provide. The steps are:

1. Import or write the logic,

2. Wrap the logic with ProvMod,

3. Make it executable.
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12 Two Software Engineering Use Cases of

ProvMod

In this section, we present two different use cases of ProvMod. The first one is about clone detection and

visualization. The second one is about architecture extraction from legacy systems at functional dependency

level. Both the works extend our model to the data provenance level and make use of our proposed elementary

questions.

The questions we are answering in this approach involves data provenance, not workflow provenance.

Since our model is built focusing on workflow provenance, custom instrumentation and development may

be necessary to adopt any approach with the model. The questions now involve the data product which is

taken to the workflow visualization space for analysis. So, using elementary queries, we can answer different

questions.

12.1 Clone Detection Meets Provenance

To perform the clone analysis we create a parser to analyze any clone detection results from a clone detector.

We choose NiCad [50, 51] to do that. Then using the parser, we create different code fragments as nodes in

the graph. Now, using the Decide and/or Data-sequence mapping query and from the results of NiCad, we

build a graph for different clones.

The full process is illustrated in Figure 12.1.

In Figure 12.2 we present a clone visualization for a subject system JHotDraw [52] which is considered as

a very good software that was designed by following software design principles. The nodes are tagged with

an ID found from the result of NiCad.

We also apply the technique to analyze BioBlend- a Python library for working with Galaxy [53] API.

The result is shown in Figure 12.3. Finally, we show the application of this method even on a mobile version

of Apache Taverna workflow system which is illustrated in Figure 12.4.
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Figure 12.1: Specialized clone analysis approach with the elementary queries

12.1.1 Questions about Clone Analysis

We can answer several questions with this approach that is related to clone research. They are:

1. What are the clone clusters of any subject system?

The answer is the graph itself holding the function level clusters.

2. For any clone cluster, how many clones are there?

The visualization simply presents the number of function level clones with the number of nodes in the

graph.

3. Is the system containing a higher amount of clones?

From the visualization, if we find that most of the clusters are having a high density of nodes, then the

answer yes.

4. For any node, which is a unique code fragment, what is the filename?

We can use the interactive visualization to get the corresponding filename of any node.

5. For any node, what is the starting and ending line number?

We can again use the interactive visualization to retrieve this answer that is saved as a property for

each node.

6. What is the ID of a code fragment from NiCad?

For any code fragment, the visualization is directly representing it with a node labelled with that ID.
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Figure 12.2: JHotDraw clone visualization. JHotDraw is a notable tool for its adherence to design

principles. The nodes are function level code fragments labeled with an ID from the NiCad results.

All clones are clustered in the graph. Any node connected to another means that they are both

clones to each other.
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Figure 12.3: Bioblend - A Galaxy library’s clone visualization

89



Figure 12.4: Taverna Mobile clone visualization
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Figure 12.5: Specialized functional dependency extraction approach with the elementary queries

12.2 Architecture Extraction of Legacy Systems

We also apply our model in a specialized approach to analyze a legacy system for basic architecture extrac-

tion. We use a legacy subject CRHM [54] which was developed using Borland C++ and it cannot be used

in a modern environment. So, architecture extraction to promote migration is necessary. Function level de-

pendency extraction is one of the very first problems of architecture extraction using dynamic analysis. The

process is illustrated in Figure 12.5. We perform some code injection or instrumentation to create process

logs. These logs are captured when a function is executed or exited in the program. Using the logs, we use

the Decide and Data-Sequence Mapping queries to create a graph view of the logs using a special parser.

A simple scenario that we considered is to open the system and open any project after CRHM starts. The

full function dependency graph can be found in Figure 12.6. Inside the graph view, we can use the Neo4j to

filter only the root node that is labelled as ’crhm’ in Figure 12.7. With the Neo4j interaction now, we can

trace a directed path of interest for the function call dependency. It is marked with the red line in Figure

12.7.

12.2.1 Questions about Architecture Extraction

We can answer several questions from the graph view that we extracted. They are:

1. What is the entry point of the system?

Here, the entry point of the system is the node labelled with ’crhm’ in the visualization. Entry point

means, the system’s call graph starts from that node and it is acting as root.

2. Which functions are executed immediately after the program starts?

Any node that is directly connected to the root node labelled with ’crhm’ are the answers to the
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question.

3. Which function is responsible for a certain GUI activity?

For any particular usage of the system, if we immediately extract a graph then that graph is the answer

to this question. The directed edges will also answer the order of different operations from the usage.

So, we simply use the system for any GUI related task and answer this question.

4. What is the functional dependency path from function A to B?

For any node A to another node B, the directed graph paths are the answers. There could be multiple

numbers of paths based on the system design.

5. Is there any function that is executed recursively?

If any node has a directed edge that is actually creating a self-loop, then it is used recursively.

6. Which function is very common or highly related to other functions having many nodes?

If any node has a higher number of the adjacent node connected to it, then it is very common or highly

related to other target functions.

7. Which function did run as a completely distinct service?

If a node is completely lonely (has no edge from it or to other nodes), then the function corresponding

to the node was executed but totally as a distinct service.
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Figure 12.6: A functional dependency graph for a specific usage scenario of CRHM. The system
starting point is the yellow root node labeled with ’crhm’. Nodes system functions. Those are

categorized and colored on the basis of their source file name. The nodes are connected with directed
edge labeled ’calls’. So, if node A calls node B, there is a directed edge from A to B.
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Figure 12.7: A dependency graph for selected functions from the graph for a specific scenario
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13 Related Works

In this chapter, we discuss the works related to our research. We categorize them into several categories

for the readers’ convenience.

13.1 Surveys

There have been different surveys on the state of the art of provenance research. Such survey works provide

a broad overview of this topic. These works also help to identify the open problems of this research topic,

present challenges, state of the art and so on.

Introducing several workflow systems to the reader could be helpful at first. Such systems are Galaxy [53],

Apache Taverna [21], Kepler [55] and so on. Learning and playing with these systems can let the user know

about their domains, features and goals. Galaxy and Kepler are solely made for bioinformatics research where

Taverna is a general purpose workflow system. All of them are very prominent workflow systems. Taverna

also has many plug-ins later developed for improving the workflow system to be applicable to other domains

of research. We describe and refer to these systems because to best understand our work, the reader must

have some basic experience with the workflow systems.

A taxonomy of WFMSs was presented in the work of Yu et al. [56]. Note, taxonomies differ based on

the researchers and various taxonomies were proposed by different researcher groups over the decades till

now for WFMSs. They classify WFMSs based on their elements, structure, model, composition system,

Quality of Service (QoS) constraints and QoS assignments. In brief, differences of design in WFMSs have

already started at the time of this study. Style of information retrieval and feature of fault tolerance were

also focused on designing WFMSs. Directed Acyclic Graph (DAG) of Non-DAG based workflows have

already been introduced. Different constraints such as, time, cost, fidelity, reliability and security were also

marked to be necessary which are mandatory parts of any data-intensive systems. Based on their study, the

authors also considered a number of WFMSs and compared among them. A multi-dimensional classification

model was proposed by Ramakrishnan et al. [57] with respect to different aspects and angles. Such criteria

are size of workflows (based on number of tasks, length of workflow chain, parallel tasks), resource usage

(computation time, data sizes, maximum task processor width), structural pattern (sequential, parallel,

mesh or their combinations), data patterns (data reduction, production or processing) and usage scenarios

(interactive, event-driven or user-oriented). They also provide various examples of different workflow models

from different domains and compare them based on their proposal. Another taxonomy is presented by Yu et
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al. [58]. that characterizes and classifies different approaches related to WFMSs based on their modelling and

implementation. They present a concise taxonomy where workflow design (structured with DAG or Non-

DAG), support of parallelism, job scheduling, architecture (centralized or decentralized), fault tolerance,

data management and related points are considered. Based on their taxonomy, they also compare different

workflow systems in their study. Studying such taxonomies helped us get an idea of different important

angles and components of any workflow systems. After considering such important components, we can

move forward to design a workflow programming model where no important point will be missing.

Mining workflow systems using transaction logs, different approaches to mining them and issues were

presented by Van der Aalst et al. [5]. They present a life cycle of workflows consisting of four phases (design,

configuration, enactment and diagnosis). It presents the relations between workflow modelling and mining

as well as mining and logging where mining depends on logging but mining is not biased by modelling at

the first place. This work mentions the importance of closely monitoring workflow events at run-time (that

is real-time monitoring in other words) enables Delta analysis that finds any difference between the design

implementation and actual execution of a system. The work also mentions workflow mining is important in

Business Process Analysis, Knowledge Management, Business Process Re-engineering, Business Intelligence

and so on. However, they do not distinctly focus on workflow modelling from the core, rather only collects

event logs without any details of the workflow process. They mention, for larger workflow models, mining

becomes more difficult and workflow logs contain noise. Such noise could be generated by any system errors

for many reasons. This statement simply projects the importance of error detection using workflow logs.

They also proposed a common XML log format. With the help of this work, we get the motivation of a close

monitoring system in any workflow system. Such a feature can be guaranteed with provenance and we also

feature it in our model. A common log format is necessary but never complete and perfect for any kind of

system. To overcome this issue, we offer a customizable and simple log schema in our model.

A survey on data provenance research for e-science was conducted by Simmhan et al. [2]. They pro-

pose taxonomies based on different use cases, modellings and structure of provenance systems and features.

Depending on that study we come to know about the applications of provenance in data quality measure-

ment, audit trailing, replication and re-usability, attribution and ownership as well as information retrieval.

Another topic is the subject of provenance that defines the level of granularity in any provenance enabled

system which can be either fine-grained or coarse-grained. The subject could also be data-oriented or process-

oriented. The representation of provenance could hold syntactic or semantic information as well as contents.

The representation scheme could also be of type annotation or inversion. In annotation type, the provenance

data carries more detailed annotated information while in inversion type (a lazy approach in other words),

carries compact information to derive necessary information later on. Provenance storage is another crucial

topic which could be scaled or stored locally as overhead to the system. Different dimensions are also impor-

tant in provenance, the visual graph of the queries and APIs for offering services. These dimensions define

important implementation goals to design a provenance enabled system. Based on their taxonomy, they
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also compare existing provenance systems. From this study, we get the idea about provenance granularity.

Our programming model is about coarse-grained provenance. It obtains an eager approach to provenance.

Finally, the importance of graph analysis, querying and service-oriented architecture is emphasized in our

model and we incorporate each of them in the model.

Bahsi et al. [26] only focuses on conditional workflow management, a feature of WFMSs that enables

the user to apply a logical condition, surveys different workflow systems and analyze them. Consequently,

the loop feature was also discussed. It states different workflow systems support conditionals (from their

first or later versions) in different ways of modelling but the basic conditional structure can be used in other

complex cases. Our programming model offers a way to feature conditional workflow building. Such a feature

is neglected in many previous works.

A survey focusing on provenance is conducted by Freire et al. [20] for computational tasks in workflow

systems. They present the concept of prospective and retrospective provenance. Prospective provenance is

basically known as workflow provenance and retrospective provenance is another term for data provenance.

They also state the importance of causal relation derivation using provenance data. The work presents

different capturing mechanisms. For example, fusing or attaching provenance with workflow system itself,

process-based capturing with instrumentation, OS based provenance. It becomes clear from the study that

there are several advantages of workflow provenance where the provenance facility is tightly coupled with

the system, pretty straightforward and can leverage the support of system APIs. Process-based provenance

is target process oriented and instrumentation is a must. They also present a layer based provenance model

and compares a number of workflow systems. We take the recommendation from this work and make the

provenance management portion of our programming model tightly coupled with the programming model.

Note, we only couple the provenance management service with the programming model but not any workflow

system. If a workflow system is integrated with our programming model, the provenance facility is automat-

ically supported. To provide a simple tool development process, we offer a simple tool development template

and such tools can be run as independent programs. They can be adapted to any platform (cloud service,

docker and so on) consequently.

The work of Davidson et al. [6] explains the importance of provenance and particularly focuses on

the challenges and opportunities in their work. They describe the overview of this research, supports in

existing systems, emerging applications and finally outline the open problems with directions. They state

capturing, modelling, storing and querying are all important features of a provenance enabled system. The

first usefulness of provenance information is the reproducibility in research that they mention that is also

associated with further findings. They mention that provenance simplifies data analysis and exploration by

enabling flexible re-use of workflows, scaling it a larger dimensional space. Comparing data products become

much easier. Provenance also enables collaboration and that promotes social analysis to discover the wisdom

of the crowd. Data mining and visualization research are also tightly coupled with provenance research.

The open problems they mention at the end of this work touches every angle of provenance research. The
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need for handling large volumes of heterogeneous data in a distributed manner is clearly mentioned. Also,

it needs to offer usability through simplicity to the user which is of paramount importance. Analysis and

creation of insightful visualizations from provenance data are crucial for debugging and better understanding

which is another open problem. This could lead to data pattern mining and discovery. Such processes are

extremely hard and time-consuming that involves workflow design and refining. To provide interoperability,

it is also necessary to combine provenance information from different systems and models which is an open

problem. Such a provenance system that lets the user treat data models from databases and workflow modules

uniformly is another open problem in this research. Our programming model can offer reproducibility for

already developed tools. Different workflow systems can make use of the model at a single time. The model

uses a single graph database to manage the provenance data which is separate from other tool related database

systems. Thus we can solve the first issue. We also treat data and modules as simple nodes in our model.

Thus we solve the second issue in our programming model.

Provenance already entered cloud computing and faces challenges that are discussed in the work of

Abbadi et al. [7] based on different cloud services. Provenance is important for data-intensive scenarios that

is clearly mentioned in this work that is necessary for debugging, administration, error detection and security

which is facilitated through logging, data forensics, monitoring and so on. Logs and provenance are highly

demanding in cloud computing. Although log and provenance are two different things but closely related

because provenance depends on logs. Provenance refers to the origin and lineage of any data product where

logs refer to event tracing. The work also presents a taxonomy of cloud and their components. Finally, the

work mentions several challenges such as- provenance support needs adaptability and custom configuration

for new systems; configuring log structure requires domain knowledge which is time-consuming and error-

prone and automated logging is necessary to overcome them; user access to the cloud facility is necessary

for trust issue; logs need security protection. In our programming model, the log structure can be modified

or extended. The mechanism to manipulate any new log properties can be modified in the model too. Both

of these is independent of any tool developers. Also, the model does not depend on any workflow system

architecture at all. So, either an existing system or a new workflow system, our programming model can be

easily integrated with automated provenance support with it.

A very compact but concise introductory discussion is done in the work of Carata et al. [15]. They

discuss the source of provenance data and the target users of such data to shed light on the importance of

provenance. They mainly focus on data quality and provenance capturing mechanism in a very brief and

descriptive manner. They also describe different components of a provenance system, levels of provenance

and Big Data-enabled provenance systems. Alongside different properties of provenance system, they also

discuss the necessity of integrating provenance into existing workflows which is important. They mention,

such a matter is burdensome and different systems focus on different motivations to manage the integration

process. To answer provenance questions either exploratory analysis (when users have no idea about data

pattern) or directed analysis (using database queries to obtain patterns from aggregation) could be performed.
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Sometimes, even a hybrid approach of both of them could be done. There is also overhead associated

with a provenance enabled system. The temporal overhead and spatial overhead, as well as security, are

important topics in a provenance system that they also mention. Finally, they state research challenges and

opportunities. They mention, querying and visualization is an important domain and needs to go even further.

Automation is important to go beyond humanly managed queries, data exploration, pattern finding, error

detection, validation and diagnosis is another part where tremendous research is necessary. Collaboration

with distributed systems is also vital that they mention to manage heterogeneous data and offer long-term

storage and Big Data support. Security, as well as privacy, should also not be compromised. To reduce the

burden of provenance integration with any workflow system, we design our programming model ProvMod

following SoC [59] design principle where every component is considered as distinct service. Provenance is

handled automatically and provenance through visualization is offered. In the long run, provenance collection

will convert into big data for any big system. Such big data with heterogeneous data structure is handled

with JSON data structure. JSON is adaptable to any NoSQL database technology which is suitable for big

data applications.

Provenance for big data is discussed by Glavic [10] that the author claims, the topic did not get much

attention. However, provenance is a major requirement for big data applications. The work mentions trans-

formation and data provenance. Again, transformation provenance is another term for workflow provenance.

Based on granularity, the work also mentions coarse-grained (workflow provenance) and fine-grained (data

provenance) provenance. The work projects the importance of provenance on debugging, trust and security

and probabilistic data. The term ’Big provenance’ is stated in this work. The work also presents several

challenges for Big provenance such as- due to heterogeneous data in big data, a common structure is neces-

sary; big data systems tend to use simpler programming models while distributing data and processes and

performance information could also be required to include with provenance data; data sources may vary for

data products and source related information is necessary to be included with Big provenance. The work

also mentions two ways of provenance tracking- to ship important provenance queries answers with the data

products to the end user or the actual provenance with the data products. The author also states, data-

centric performance measure as well as monitoring and profiling are also important and need provenance

facility. Our programming model is based on workflow provenance or coarse-grained provenance. We pro-

vide a simple coding template to implement any tool with ProvMod. Thus the automated provenance and

provenance analysis services are easily integrated with any tools. If any tool already supports big data and

scalability, ProvMod will also support those features with all of its own features.

The work of Liu et al. [60] conducted a survey on data-intensive scientific workflow systems. They

also proposed a layered architecture (that is of five layers) and a taxonomy based on parallelization and

scheduling algorithms. Based on these contributions, they evaluate and compares different workflow systems.

The workflow provenance, data modelling challenges and different approaches are discussed by Bowers et al.

[61] where they also emphasize usability, extendability and several OPM supporting features. We also design
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our model following a layered architecture so that it can support the mentioned recommended features such

as- usability and extendability.

13.2 Automated Logging

Automated logging is of great importance in provenance. Although logging and provenance are two different

matters, provenance is never complete without automated logging. Logging involves capturing raw events of

any system. On the other hand, provenance involves the analysis of those raw logs and gathering insights

about workflow or data.

On log management and exploration for e-science, we can mention the work of Zhao et al. [62]. They

mention different levels of logs from abstract views. They are the organization (user, design and hypothesis

of an experiment), process (workflow design, configuration, input and output, source and time-related infor-

mation), data (lineage information derived from process logs) and knowledge level (annotations in form of

structured or semi-structured format) logs. They present a Web of provenance that is connected through

”Semantic Glue”. The work particularly focuses on the Bioinformatics domain and designs the research

methodology accordingly. We introduce event tags in our model and all the logs remain on the same log

space. At any time, from the provenance graph- the logs can be obtained and filtered based on the need of

analysis. This makes the implementation not only simpler, but also new systems do not need to adapt to

any further log levels.

An user-oriented data provenance model is proposed by Bowers et al. [27]. After introducing necessary

terms and concepts on workflows and provenance, they propose the model from a mathematical background

that is capable of capturing simple to complex workflow transactions. They also discuss querying workflow

traces by explaining different provenance questions for a particular scenario. In contrast, we consider any user

as a single property of any log event. Any log event can be created by any data item or module invocation

in our model, independent of the users or systems. So, whether the system is being used by multiple users

or not- they are directly logged as a property. Each user is identified by a unique ID in our model.

The work of Allen et al. [22] focuses on heterogeneous data based systems and gaining provenance from

new applications in an open world rather than a closed world system. In defining open world systems they

consider several properties such as, multiple systems with no prior control, legacy systems without prior

provenance support and capturing application (process) level interaction. They rely on Java Messaging

Service (JMS), SOAP and so on that are basically for enterprise level web services. They also integrate their

model with MULE [63]. Their model is inspired by OPM [64]. To support the heterogeneous data sources

we introduce a JSON based log structure in our model. As already mentioned before, JSON can be used for

any NoSQL database technology. For web service based information transactions, we only rely on REST,

which is lightweight, simple and widely popular now.

In the scenario of cloud computing, how data tracking should be done is studied in the work of Zhang et
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al. [8]. They review the current tracking mechanisms with provenance supports and proposes a classification

of provenance with respect to granularities. They proposed a model and mentioned the challenges in such a

scenario. They clearly mention that provenance is of extreme importance in cloud computing. To verify the

authenticity of data products, provenance is necessary due to anonymity on the cloud. Reproducibility and

re-usability have to be featured from provenance. Origin and fault detection is necessary for cloud systems

as well as storage management, anomaly detection, searching, access control and so on. Confidentiality and

auditing such matter are the challenges for cloud computing adoptions. Other than these they also propose

a view of provenance granularities that ranges from the application itself to a virtual machine, physical

machine, cloud system and finally the Internet. For each of them, they present the required components. For

the cloud computing perspective, they introduce several challenges. They describe, Elasticity is a challenge

introduced by virtualization that is a feature promised by cloud computing. Other common challenges are

diverse structures of data that leads to unstructured data from heterogeneous sources. Their availability and

configuration differ. Hardware failure is normal for cloud systems and fault tolerance is necessary. At different

levels of granularity, different challenges also occur. A well-designed user interface and better API is required

to offer custom annotation and application-specific capturing of provenance. Virtual machines’ performance is

a very critical issue while considering provenance. Virtual to physical mapping creates a further challenge for

provenance on the cloud. On the cloud data communication among different network groups are necessary

and its provenance is also necessary. The work also mentions the major requirements and properties for

cloud provenance. The requirements are coordination between storage and computer facilities, adaptable

and extendable provenance API for custom tools, security elements to ensure integrity of data, auditability,

confidentiality, provenance data consistency to pertain data retrieval, atomicity by saving atomic provenance

information with data to pertain data storage, causal lineage ordering using provenance, data independent of

long-term persistence to discover removed data, and efficient querying. They also propose their own approach

and compare it with other few cloud provenance systems. Our programming model ProvMod adapts atomic

logging by only capturing workflow events with a simple JSON schema. The schema holds only a key-value

pair based information that is kept as simple as possible. Any further information discovered from the logs

is done through graph data analysis and real-time monitoring services. Causal lineage is easily obtained by

provenance graph.

To create a universal data provenance framework Gessiou et al. [65] proposed an approach using dynamic

instrumentation. They implemented their proposed model on top of DTrace [66] and evaluated for different

scenarios (file systems, database transactions and HTTP requests). They claim their instrumentation ap-

proach to be generic at system and function call level. They capture very basic information through code

injection to generate logs. Their work is based on the relational database technique (SQLite [67]). Their sce-

nario is focused on provenance querying thus for web browser based evaluation, they try to correlate between

a search term and a final URL. So, a search term is the provenance for the URL that the user is seeking in

their work. Our model adopts graph database for managing provenance of the workflow system but keeps
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the tool related database separate from the provenance database. Consequently, ProvMod not only remains

independent of any particular database technology but also gets all the features of the graph database to

manipulate provenance data.

Capturing as well as querying provenance of workflows in real-time is also very important that becomes

clear from the work of Costa et al. [11]. Such systems that leverage the power of workflow implementation,

are mainly data-intensive systems and may take weeks to finish execution in high-performance computing

environments. Consequently, runtime provenance analysis becomes necessary even before the tasks are fin-

ished. For fine-tuning parallel processing, it is also necessary. For large scale systems, error detection and

management is necessary as it takes time and only waiting for the jobs to finish will be devastating to the ex-

periment. The real-time monitoring also helps not to compromise performance and reliability of any parallel

processes. They state their main idea to be, to re-execute any failed job inside already running environments.

Such an approach helps a lot in performance management because those failed jobs can easily make use of

the extra resources that are already allocated for them beforehand. Also, it allows staying within the same

running workspace on the cloud. Such feature is called elasticity. Throughout the time-consuming execution,

users are also able to be aware of the status of the system. Another issue is to map among different tasks

in a distributed system. They also propose a model for runtime monitoring of provenance with querying

features but that model is based on relational database SQL. ProvMod on the other hand, can inherit all the

features of any tool and also offers automated provenance. So, if any cloud system or tool offers elasticity,

ProvMod enabled tool will also offer that. For run-time analysis and monitoring, ProvMod also comes with

a visualization support. It answers every possible provenance questions and the user does not need to write

complex queries afterwards. Still, they can create their own dashboards, visualizations with their own queries

and aggregations.

How provenance could be captured from logs while considering it as a big data problem is discussed by

Ghoshal et al. [42]. They propose a rule-based approach. The main contribution of their work is, they propose

to get the most out of existing logs while compromising the completeness of logs to reduce instrumentation

and increase the ease of provenance capturing. Their model focuses on capturing provenance from logs while

such logs are not intentionally created to capture provenance. The rules are for event capturing as well

as provenance derivation. An XML based rule language is proposed that can be used to map provenance

events from logs into structured provenance events. There are different levels of log and that could be used to

capture different provenance granularities that they claim. They also classify the provenance that is processed

provenance and data provenance. The rule engine has three rules that are used to extract provenance from

raw log files which work depending on XML specification. They propose Match-Select Rule for direct selection

of data value for a provenance event, Link Rule to specify links between two different provenance events and

Remap Rule create a rule-based alias. The main problem with this approach is, if any information about the

target data is completely absent in the log files, it is never possible to retrieve any provenance information

from the logs. Logs also need to be managed to reduce any redundant information beforehand which makes
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the impression that, the log structure was already designed to capture provenance (which is actually not).

Consolidating logs from various sources in distributed systems is also another challenging problem for this

approach. Our model, in contrast, offers an easy way to integrate it with any tools and existing systems.

The work of Ghoshal et al. do not target direct provenance oriented logs in their approach. ProvMod,

on the other hand, works with such logs that are oriented to provenance. The properties of those logs are

also followed by a recommended JSON schema. The properties in the JSON schema is necessary to answer

provenance questions that we mention. Also, they proposed three rules to analyze the logs. We propose a

provenance question taxonomy which can even be extended further. Their work also relies on a certain level

of instrumentation while compromising provenance, but our model does not rely on instrumentation and does

not compromise workflow level provenance.

Imran et al. [18] proposed a layer based reference architecture for provenance and visualization from

Big Data perspective. The layers are separated into storage, application and access layer. Other than

presenting the use cases, they also present their design goals. The design goals are to prioritize less overhead

for provenance, user-based custom annotation support, visualization support, scalability, heterogeneous data

models support, security and flexibility in data cleaning. They present different user roles. For database

support, they also consider graph database alongside relational database. While the relational database is

useful for structured data, the graph database is useful for semi-structured to unstructured data items that

they clearly mention. They state meaningful data (which’s structure or pattern is known or discovered)

items could be published to High-Performance Computing for further analysis. NoSQL based data sources

are referred for data storage. It is also encouraged to use JSON or BSON documents for data management.

For querying CLI based interface could be used for users who are comfortable with command line tools.

Visualization could be offered from different angles by their reference. User-based visualization focuses on

visualizing user-centric information. They also project importance on time-based information that generally

produces a time series analysis. We also adapt the graph database in ProvMod to provide structured or semi-

structured data support. Visualization is taken as the primary way of answering a number of provenance

questions in our work rather than plain text.

A provenance middleware which is also claimed to be generic is proposed by Arab et al. [68]. They

represent an algebraic graph of database operations in their work as well as declarative and rewritable rule

specification language, multiple database background support and also query optimizer. An optimizer applies

heuristic and cost rules that are used to rewrite the queries into SQL and later optimized by the core database

system. They also mention their query language is extensible through rewrite specification language (RSL).

Although extendable, their work depends on SQL based database technology. On the other hand, we rely on

non-relational graph database technology that is tightly coupled with ProvMod.
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13.3 Data Provenance and Querying

There has been a tremendous amount of research over the last decade on data provenance. Although our

work is not focused explicitly on data provenance, we still present a brief review of data provenance as it

is always related to workflows and provenance research. Data provenance research is important mainly for

getting an idea of the state of the art of provenance querying. Different research and techniques were emerged

on this matter to query data provenance. Also, data provenance research comes before workflow provenance

research. So, to fully understand the work presented in this paper and move forward, we need to study data

provenance research. Querying is highly related to provenance, no matter that is about data provenance or

workflow provenance. So, to cover every aspect of provenance questions/queries, we study data provenance.

Buneman et al. [28] raise some technical issues of data provenance that are emerged by the ongoing

research. The issues they mention are basically created due to heterogeneous data sources, types and struc-

tures. They state a need for querying with multiple database sources and citing them with a general fashion.

They also mention the general data citation approach received very little attention. Version controlling and

management of data using such versioning is also necessary that becomes clear from their discussion. Such

management could be used to regenerate lost data in case of any error or failure. Finally, they project the

importance of a general standard in data provenance.

The work of Foster et al. [69] presents different case studies for handling replicated data for offering data

synchronization for provenance. They describe the use cases of Lenses [70] and Orchestra [71] to discuss how

they handle replicated data. They discuss how Lenses manage ordered data and data chunks. Orchestra

is a collaborative data sharing system and in their work, they present the methods Orchestra uses to offer

security and incremental maintenance of data. Program slicing is an old technique to understand and debug

the program where the program is broken into multiple result parts that contribute to generating the final

result of the program. The work of Cheney et al. [72] proposes their ideas on program slicing that could be

used to understand provenance in databases. To overcome the manual recording or capturing of provenance

Vansummeren et al. [73] presented an automated way of provenance recording for SQL database technology.

They present from a theoretical background, how provenance querying and updating support could be offered

in an automated way for relational database systems.

The issues that occur while building a practical provenance systems are discussed in the work of Chapman

et al. [9]. The features they present that should be present in a provenance system are choice of granularity,

exact provenance capturing for each particular data item not any generic information, variation in provenance

data content based on the application (configurability in other words to remove unnecessary data from logs),

capturing non-automated processes that are required and falls under the question ’How much provenance to

capture?’. Under system issues, they mention- unique property to identify data items, provenance storage size,

execution information in detail, inter-system based provenance information are required. To offer usability-

users ability to configure provenance information from different levels, queriability with data, error detection
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and fixation are necessary that they clearly state in their work. They target on two issues and proposed their

idea on how they could be solved. First one is capturing a non-automated process that could be tweaked

by using an appropriate architecture, to force the user to use the system in a systematic manner. The

second issue is to reduce the provenance store that can be achieved by using the approach of Chapman et

al. [74]. This method uses a family of Factorization algorithms and Inheritance algorithms to break down

data produces into smaller pieces and decrease redundancy. Inheritance algorithms could be used to reduce

dataset properties and represent them in a compressed fashion.

A categorization of existing approaches in data provenance is done by Glavic et al. [75]. Provenance

models are categorized in terms of the model world, provenance identification, transformation and their

representation or support, source representation or destination. Each category is again categorized into

further classes. Query and manipulation functionalities are further criteria of their categorization where

different data manipulation operations are mentioned. For storage and recording, different strategies are also

mentioned. Based on their categorizations, they also compare different existing systems.

ProvMod does not work with the data provenance level though, it can offer user-based annotation in the

data item while building pipelines. Such custom annotation based information can be later used to derive

versions. Also, ProvMod can be adapted to support different systems and consequently heterogeneousity.

ProvMod also supports automation. So, if the model is extended to support data provenance in future,

data provenance automation will be available in the model. Again, ProvMod supports non-relational graph

database to manage provenance. On the other hand tool databases are kept separate. Error detection and

fixation is based on workflow provenance in ProvMod. Certain data items involved with certain errors can

be traced back using the workflow provenance of ProvMod.

The research problems in data provenance are again discussed by Tan et al. [23]. We come to know

about the sequence-of-delta and timestamping approach to capture provenance. Sequence-of-delta approach

records the difference between two consecutive versions at once and in timestamping approach, provenance

is recorded with event occurrence time. The applications of provenance they mention are- trustworthiness

of data, sharing knowledge via annotations and data verification. For future research, they also provide

some guidelines. They state, it is necessary to investigate whether the lazy or eager approach is better

than one another in capturing provenance. To query provenance, query extension support is necessary.

Classical minimum difference capturing was used to save data with well-structured data semantics. Such a

compact result at the end is not always complete and enough. So provenance information must be completely

preserved or easily regenerated when needed. Historical queries to the archive can also be saved for later

repeated use which is another complementary approach in this issue. ProvMod during provenance capturing

follows the timestamping approach. It also holds provenance information as minimal as possible in the logs.

The provenance information is also captured immediately at the occurrence of an event and thus ProvMod

adopts an eager approach.

A virtual data provenance model is proposed by Zhao et al. [76]. The virtual model proposed by
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them is integrated with the system alongside semantic annotations with powerful query capability. They

present a schema for provenance annotations by considering different data related logical elements. They

also present a general model for provenance and various annotation queries but that is for SQL or XML

database technologies, which are structured. ProvMod on the other hand, specifically designed to support

unstructured provenance data.

Buneman et al. [77] discussed why and where questions for characterizing data provenance. They tried to

follow a syntactic approach that can lead to a general data model but applied to relational and hierarchical

database systems. The ”why” provenance refers to any source data that influence the target data product

generation and where provenance refers to the location from which the target data product was generated.

They discuss the topic from a mathematical and modelling background. A new semantics of data provenance

is presented by Ram et al. [40]. They name it W7 model where the provenance questions are framed using

7 query phrases- ”What”, ”When”, ”Where”, ”How”, ”Who”, ”Which” and ”Why”. They claim the model

is general and extensible enough that can capture provenance semantics for so many domains. In general,

their model is an ontology that they present. They base their work on Bunge’s theory [78] where some of the

important properties are defined to be highly coupled with any provenance data. Such properties are ’state,

event and history’ (that says an event is a change of state in any entity), ’action, agent, time and space’ (that

says an event occurs when it acts upon another entity and happens in a time-space). The W7 model further

explains the meaning of all Ws besides defining provenance (that provenance is a tuple of all Ws). They

mention, ”What” denotes any event that affects any data item. ”Where” means the location information of

the event. Clearly, ”When” refers the event time. ”Who” refers to the agent involved and which refers to

the program information related to the event. ”How” and why are a bit confusing. In W7 model, how refers

to the action (for example a user executed the workflow in a high-performance environment) that generated

the event but ”Why” refers to the reason (for example the reason to an error could be a file exception) to

that event. They show an example of their model for Wikipedia.

Our workflow programming model ProvMod covers all the questions and categories mentioned in these

works with even simpler provenance query classification through our proposed taxonomy.

Provenance information for Web data is discussed by Hartig et al. [24]. They proposed a model that

is suitable for the web. They present another ontology for Web provenance that considers actor, execution,

artifact and other attributes as entities. Their ontology describes the internal relations among those entities.

They also present the relationships for data access and creation. Accessing provenance-related metadata

is one of their proposal to obtain provenance information. They also presented a number of provenance

vocabularies that is from Dublin Core Metadata Terms [79]. They also state that heterogeneous data sources

create problems in distinguishing between different providers and find a relation among them, which is the

first open question they present. The lack of provenance metadata also generates provenance incompleteness

that is mentioned as the second open question in their work. To solve this problem, we present a simple

JSON log structure. We consider all the logs in the same log space and users are only identified with a unique
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ID. Different sources can also be identified with another property if wanted.

To bridge workflow and data provenance, Koop et al. [80] presented a work that makes use of strong links.

The work is mainly on storing intermediate data states that can later be used for data source verification,

data reproducibility, caching and sharing. Such a work is the work of Asterdamer et al. [25] that proposed

a database style workflow provenance. It is discussed in the next section and our model is influenced by the

capabilities of that model.

Querying data provenance is only focused by Karvounarakis et al. [12]. They present a tuple based

semiring provenance [81] and develop a query language. Their query language ProQL is based on compact

graph-based representation. They present a translation scheme from ProQL to SQL. They present four use

cases of graph queries. The use cases are- 1) the derivation of a provenance tuple (or graph), 2) relationships

between tuples, 3) results that could be derived from a given mapping and 4) identification of overlapping

provenance between two graphs. They also present a number of use cases for tuple annotation computation.

They involve- 5) incremental maintenance, 6) lineage, 8) trust issue, 9) rank and 10) access control. Their

work only focuses on graph query. On the contrary, ProvMod tries to cover every aspect of provenance

questions possible.

The Open Provenance Model (OPM) that was born due to the Provenance Challenge [64]. The first

Provenance Challenge was focused to provide the community to give an understanding of provenance en-

abled systems’ capabilities. The second Provenance Challenge was focused on establishing interoperability

of systems while exchanging provenance data. This actually gave birth to the OPM in the work of Moreau

et al. [19]. The scopes of OPM that the authors describe are- 1) information exchange between systems

(through a compatibility layer that offers shared facility), 2) allow developers to extend by building and

sharing their tools on that model, 3) defining the model, 4) to offer digital representation of any provenance

entity that could be generated by any kind of systems, 5) defining core rules set to apply on provenance to

perform any provenance related queries. Other than only presenting the requirements, they also present some

non-requirements. Those are- 1) OPM does not focus on the internal representation of the system, 2) OPM

does not focus on any computer parsable-syntax related to provenance, 3) it does not focus on specifying any

protocol concerning data storage, 4) it does not focus to specify any querying protocol over provenance any

repository. The core overview of OPM can be found in [19]. They define nodes as Artifact (immutable piece

of state), Process (action or series of actions) and Agent (any entity as a catalyst of a process or control) as

well as relationships between them. They define a number of dependencies such as- 1) causal relationship

(represented by a directed edge), 2) artifact used by a process, 3) artifacts generated by a process, 4) process

triggered by a process, 5) artifact derived from an artifact, and 6) process controlled by agent. They also

define Role. The overlapping and hierarchical description and temporal constraints and observation time

are also discussed. The third Provenance Challenge showed the need to extend provenance information in

OPM entities which is basically necessary for interoperability purposes. So they also present an annotation

framework. In our paper, we also discuss which design requirements ProvMod follows or not.
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To infer fine-grained data provenance from scientific workflows, a declarative rule-based approach is

proposed by Bowers et al. [82]. The work offers a high-level language to apply user-defined rules explicitly

on the workflow execution traces. They claim to take the burden of determining provenance dependencies

in their work and provide the user to work solely on discovering provenance dependencies. Simply speaking,

they try to separate the querying facility completely from other components of the system that is adaptable

to OPM [64] and W3C Prov [83]. Inspired by this work, we also keep the provenance analysis portion of

ProvMod separate besides offering both offline and real-time analysis.

Several rule-based data provenances tracing algorithms are presented by an approach of Zhang et al.

where the algorithms could be applied to trace actual data provenance upon files that were under the threat

of breaking customer data protection [84]. Distributed data provenance for large-scale and data-intensive

computing systems got the attention of Zhao et al. [85]. They name FusionFS [86] and SPADE [87].

FusionsFS implements distributed metadata management and SPADE uses a graph database to manage and

provide support for provenance features. As already mentioned, the use of a graph database can be scaled

to big data. Here the difference is, SPADE and FusionFS are focused on data provenance where ProvMod is

focused on workflow provenance.

13.4 Workflow Provenance and Querying

Workflow provenance research is the main goal of this work. Here in this section, we present different

recent prominent and influential works. Since this section is about (workflow) provenance again, provenance

querying is highly involved in this matter again.

Automatic generation of workflow provenance and its importance is discussed in Barga et al. [17]. They

argue that workflow provenance data should be automatically generated and proposed a layer-based model.

In their work, they mention different levels labelled with L. L0 represents abstract service descriptions where

L1 for service instantiation, L2 for data instantiation of workflow, and L3 for run-time provenance for work-

flow execution. Each level captures abstract activities with a predefined semantics that consists of several

components including relations among them. Automatic provenance capture got further attention by Barga

et al. [16] where they present an approach the captured information in a relational database system (SQL).

They focus on several provenance questions from different angles and proposed a layered model for resulting

provenance. Being relational database dependent, their provenance model architecture and schema are very

structured for each layer and levels that they consider. On the contrary, our model does not rely on a par-

ticular structured log schema. Besides, we take the recommendation of layered architecture and automation

in provenance logging.

How to store and query on workflow provenance metadata using RDBMS is discussed in the work of

Chebotk et al. [88]. The work presents two schema mapping algorithms to map OWL provenance ontology

based on relational databases, two mapping algorithms to map provenance RDF metadata to relational
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databases and finally, a schema-independent SPARQL to SQL translation algorithm. Although they present

a schema-independent SPARQL schema, it is useful when the system is intended for SQL. ProvMod here

targets NoSQL.

Provenance in scientific workflow systems and certain issues are discussed in the work of Davidson et

al. [89]. They also try to focus on getting meaningful provenance information through different user views.

The goal is to manage provenance of nested scientific data and to understand the difference in provenance

for similar data products. They make use of a nested tree structure of XML named as collection-oriented

modelling and design (COMAD) [90] to achieve this. A hybrid querying system to analyze nested data and

lineage graph is explored by Anand et al. [91]. They claim the existing systems before them, ignored the

over structured data including XML. They also try to propose a generic provenance model to handle nested

data to can update the semantics whenever necessary. XML is not directly adopted in ProvMod but JSON

schema can easily be transformed into XML. Big data systems tend to follow a simpler structure and over

structured data will increase the development burden in the long run. So, we try to keep the log schema and

structure as simple as possible.

Frame Logic based query language (FLOQ) is proposed in Zhao et al. [92] based on some selected

characteristics of workflow provenance. They also describe different queries for retrieving lineage, virtual

data relationship, annotation, aggregation and modification. ProvMod does not explicitly propose any query

language because it might be felt limited in the long run. So, we give a way to incorporate any query language

with ProvMod and show the implementation with Cypher.

The importance of fault tolerance mechanism in provenance is presented in Crawl et al. [29]. The different

usages of provenance are very clearly presented in this work. Fault tolerance is a process for error or exception

handling in workflows. When a sub-workflow produces an error, all executions that are under a certain actor-

is stopped. The actor handles the error itself. In brief, the fault tolerance mechanism is discussed in this work

for Kepler [93] system. We do not directly attach any fault tolerant mechanism other than graph database for

provenance, but it can easily support any fault-tolerant database with the tool library. So, any fault tolerant

data item that is necessary to be read or written, can adapt with such database (CouchDB for example).

A taxonomy of provenance for WfMSs is proposed by Cruz et al. [1]. They also present the lifecycle of

provenance that is one of the first of its kinds. They mention composition, execution and analysis are the

three phases of workflow lifecycle. Conception and reuse fall under composition phase where distribution

and monitoring fall under execution, and visualization and query fall under analysis phase. Such phases

not only gives us information about the lifecycle of workflows but also sheds a light of importance on each

topic in SWfMs. Later a taxonomy is discussed from every possible angle of a workflow management system.

They are about provenance capturing mechanism, accessing such information, subject systems and storage

mechanism of provenance. Each topic is described in further details in their work. They also compare

a number of workflow systems based on the proposed taxonomy. We highly rely on this taxonomy to

describe our model’s provenance mechanism and to compare with other notable workflow system’s provenance
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mechanism. The reader should remind that ProvMod is not a workflow system but holds an automated

provenance mechanism. On the other hand, different workflow systems supporting provenance also comes

with a provenance mechanism. So, we consider this taxonomy of Cruz et al. to compare the provenance

mechanism of ProvMod and any other workflow system’s provenance.

Database style workflow provenance is discussed in the work of Amsterdamer et al. [25]. They make use

of Pig Latin technology to expose the module functionalities. This way they capture the internal states and

fine-grained dependencies of such modules. Their approach also makes it possible to transform a number

of graph operations (ZoomIn and ZoomOut) that allow choosing expected granularity. The queries they

present are formed in Pig Latin framework. Based on the provenance graph definition, they present the

Zoom operation as well as Deletion Propagation. In this work, three different workflows are considered as

benchmarks for evaluation and the proposed model is evaluated from different angles. The work relies on

SQL database model which is structured but ProvMod is different in that case. The implementation also

has to follow Pig Latin framework primarily. So adapting this model with any new system might not be

supported after all due to architecture and orientation of a workflow system.

A provenance repository is proposed by Cuevas-Vicenttin et al. [41]. They call it PBase and based on

ProvONE and extends the W3C PROV standard [83]. It leverages the power of Neo4j graph database [33]

and offers querying provenance through it. ProvONE was added to VisTrails [94] through XML serialization.

Other workflow systems can be supported by ProvONE but need the use of necessary wrappers. They

introduce several query categories such as- lineage, execution analysis, search and statistical queries. They

incorporate their work with NoSQL database technology and thus integrates Neo4j as it is focused on graph

data. Several Cypher query specification is provided in this work. They mention finding an unsatisfactory

performance of Neo4j when querying large traces. An alternative could be of adding new indexing and

encoding techniques that the state. They achieved major performance by applying tree cover encoding for

readability queries by Agarwal [95]. Their prototype only supports VisTrails exported XML trace files for

creating new databases. PBaseGUI can be used through RESTful Web Services [36]. The user interface can

be used to query the stored traces. They mention finding graph similarity and complex keyword search to

be their future work. They also plan to support other workflow systems as well as RDF/SPARQL graph

databases as alternatives. PBase has some similarity with ProvMod in a sense that it made use of Neo4j

graph database. Although, it depends on XML in some of the parts. ProvMod does not depend on any such

data structure other than JSON at all. Also, they propose a set of provenance questions categories. They

do not strictly define how to put any questions under a certain category but only provide some examples

for each category. Our proposed provenance question taxonomy not only covers those questions but more

about provenance in any system. Also, most of the questions proposed in this work fall under only the graph

related questions in our work. They also provide Cypher queries which seem to be deprecated in the latest

version of Neo4j. We provide our questions on a template basis so that such a situation can be avoided in

the future.
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13.5 Analytic Provenance: Querying with Visualization

Analytic provenance is another topic that has emerged from workflow provenance and involves data visual-

ization, which is also another research domain. It is highly related to auditing a workflow system in real-time

or so. Important data visualization and better way to visualize any information are also important research

topics in this research category.

One of the earliest works (specifically applications) on analytic provenance is VisTrails by Callahan et

al. [96] that clarifies the importance of visualization in data analysis and exploration. VisTrails captures

the provenance information about the visualization process and manipulated data, it offers reproducibility.

It is focused on the visualization pipelines and processes, but not directly provenance modelling. Rather it

makes use of provenance in another sense for visualization. VisTrails takes care of the data and metadata

of visualizations. So, it works with the provenance of visualization. It is generally good for direct image

processing pipeline based research. ProvMod may consider any tool or process as a module in the provenance

graph from any domain.

Rio et al. [43] in their work, shed light on the importance of visualization support for provenance. The

combination of provenance and visualization is very crucial to get an intermediate and final understanding

of the derived results from the systems in an easy manner, although rarely done together that they mention.

Alongside, they also propose tool Probe-It for scientific provenance visualization. The tool provides different

views for provenance visualization. Result view (for the final and intermediate data results), justification

view (for metadata with process traces) and provenance view (for source and usage information). Their work

seems to be the very beginning of provenance visualization although not that older. The views represent

three basic provenance questions from another angle. ProvMod covers all the questions proposed by their

work and even more. The visualization of ProvMod is also designed as a service and can be ported to any

new system.

A visual scientific workflow management system is proposed by Lin et al. [46]. They propose such a tool

with a reference architecture. They mention seven key architectural requirements for any scientific workflow

management systems. They are- user interaction support with interface customizability, reproducibility,

heterogeneous service and software tool integration, heterogeneous data management, high-end computing

support, workflow monitoring and failure management and interoperability. They also present the reference

architecture in a layered manner. Their proposed system VIEW has several advantages that they state;

such as- services are loosely coupled, services are given abstraction and autonomy, can be reused, services

are discoverable and interoperable. Although they focus on building a visualization supported system, they

mention it to be very primary and only contains workflow status based information in the reporting. Our

model comes with Kibana for offering visualization. The visualizations can be used to create dashboards,

shared and reused later by other users. Kibana also relies on Elasticsearch for real-time log streaming and

that is managed through distributed data management. These two services are also loosely coupled with the
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model.

A navigation model for exploring workflow graphs is proposed by Anand et al. [97]. The model focuses on

visualizing provenance traces only, with directed graphs using provenance browser [93]. Provenance Browser

proposed by Anand et al. [44, 98] supports high-level query language QLP [99] but again, it is only limited to

presenting the workflow graph in a basic manner. ProvMod, on the other hand, offers workflow regeneration

through graph database features. So, advanced queries and graph analysis is possible beyond simple and

limited features. Also, only graph related provenance is emphasized in Provenance Browser but no other

monitoring features.

Pro Viewer is a graph visualization tool that enables interactive exploration of provenance data, proposed

by Kohwalter et al. [45]. This tool provides several visualization features related to graph (graph merge,

collapses and filters, temporal and spatial layout). Basically, the tool is built for visualizing geolocation

based provenance data. The visualization features of Pro Viewer is limited and the questions the features are

answering is already covered by our proposed taxonomy. Such limited visualization might not fit into every

problem scenario.

Only network data visualization is focused by Chen et al. [100] where the graph is of great advantages. Big

data provenance and visualization are focused on the work of Chen et al. [48] where the graph visualization

is again promoted. The history chain to show the relationship between different data products is done by

complex graphs. Another feature is partition provenance that presents information about partial provenance

graph and rearranges the graph components in temporal order. This work again focuses on only the graph

related question from our proposed provenance question classification. It also emphasizes only one instance

of that category that is about searching clusters in the provenance graph.

Survey of analytics provenance is performed by Nguyen et al. [101]. They present some survey on

provenance capturing mechanism. For visual provenance analytics, we come to know about different methods

(representation of states, actions and layouts of actions). How time can also be encoded with a provenance

graph is well referenced in this work. They also present thy way of integrating provenance space and data

space by replacing graph nodes with visual blocks. Reasoning process visualization is also discussed. The

referred approaches try to create compact visualizations which is a matter of further study and evaluation.

To support analytic reasoning, such systems should offer navigation and less recalling should be needed. Also,

systems should be able to reuse performed analysis. Reasoning processes can also be graphically documented

inside the systems. Such visualization services should also support collaboration and presentation. SensePath

is a tool for analytic provenance created by Nguyen et al. [47] that features several views to help user working

with provenance such as, timeline (for temporally ordered visualization), browser view (web page where a

certain action was performed), replay (to show screen capture video) and transcription (detailed information

about a selected action) view. The work is more of a tool (superficially prototype) than a provenance model

and an approach to offer a generic user action capturing system emphasized on HCI. Comparing with our

provenance question taxonomy, SensePath is also limited in what it is offering to answer provenance questions.
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Provenance in visual data analysis was characterized by Ragan et al. [102] for helping researchers with

organizing their work. First, they discuss the importance of provenance in workflows systems. The different

perspectives of provenance they mention are- better workflow management, tracing data, graphically repre-

senting the provenance, the provenance of interaction and discovering insights from provenance data. An

organizational framework that they propose classifies provenance information into data (history of changes

in the system), visualization (history of visualizations), interaction (history of user actions), insight (history

of discoveries) and rationale (history of reasoning). The purposes of provenance are also classified into re-

call (maintenance of memory/awareness related to states), replication (reproducibility of different steps and

components), action recovery (maintenance of action history), collaborative communication (sharing informa-

tion), presentation (displaying insights) and meta-analysis (reviewing the process). They also review recent

works based on their framework. The analytic provenance, its process, interaction and insight all these topics

are discussed by North [103] briefly but very concisely and states, this visual analytics is related to other fields

such as scientific information visualization, and Human-Computer Interaction (HCI). They state, the final

results of any analysis are of great value, but the intermediate analysis of data products is also not negligible.

They contain important insights into the reasoning of the process. Analytic provenance can be considered

as a foundation of the science of visual analytics that they also mention. While discussing this topic, there

are several key questions researchers can ask. They are, Perceive (how is information visually provided to

the end-user for better reasoning?), capture (what type of user interaction to be captured and the level of

semantic information to be saved?), Encode (How to save the user interaction and what is the mechanism?),

recover (how to recover the user’s reasoning process?) and reuse (how a visual analytics system can help user

through learning?). These works can lead to creating better and relevant visualization technique which is a

future work of ProvMod.

13.6 Software Engineering

We also present further deeper use cases of our approach. To do so, we consider two very important problems.

One of them is clone detection is software systems. Clone detection is a very important research problem. It

is important for ensuring a better design for optimized security and fewer bugs in any system. The important

is discussed widely by Roy et al. [104, 105].

We take into account, the NiCad clone detector tool [50, 51]. It is a prominent tool for clone detection.

We use the latest version of NiCad (version 5 at the time of writing) in our work to merge clone analysis

with our approach.

Besides, we consider another bigger problem domain about software architecture extraction from legacy

systems. This is a research topic of high demand and different methods are also present. One such method

is dynamic analysis [106].

Again, for the very basic architecture extraction, we follow some of the steps of Fittaku et al. [107]. We
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follow the approach of instrumentation for modifying the target system and get live traces fo to function

calls. Then using our proposed approach, we analyze the extracted information. We choose CRHM as the

legacy system [54]. It is a legacy system and no more supports a modern computing environment. It was

developed in Borland C++.
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14 Discussions

The programming model ProvMod we proposed is oriented to answer provenance questions. One of the

fundamental goal of our work was to gather all kinds of provenance questions from every possible angle in

a formal manner, but not just randomly collecting them from existing works. That was done by proposing

an extendable provenance question taxonomy. The taxonomy classifies provenance questions based on a very

simple criterion. The principal category in this taxonomy is ’graph related questions’ that proposed three

elementary queries. These queries are generated by observing the most basic provenance graph model. These

queries can be further used and combined to derive many other provenance graph related questions.

The model ProvMod leverages the proposed provenance question taxonomy and stands on an automated

provenance graph based programming model. Being automated, the users can easily implement workflow

while getting automated provenance logs. The workflow programming model being oriented to answer any

provenance questions, any new tools or service based workflow systems can be integrated with our model.

All ProvMod features are then brought to the target system. We show the ease of integration by integrating

ProvMod with Apache Taverna and call the whole new system ProVerna. Although the developers have full

Independence to use ProvMod, we provide them with a tool integration coding template to help develop tools

faster.

The performance of ProvMod is analyzed from various angles, using three kinds of workflows. We specif-

ically investigate whether there is any effect on the model due to a certain type of graph expansion. Also,

a benchmark is used for evaluating every system components of our model. For all these purposes, we use

different workflows from Bioinformatics and Plant Phenotyping research. We also evaluate the completeness

the provenance questions taxonomy, which is the most important part.

Our model is implemented using cutting-edge technologies such as Neo4j Graph Database, ELK Stack

(Elasticsearch and Kibana specifically) and so on. Based on the implementation, we demonstrate the prove-

nance mechanism standing on prominent works. The implementation features are also evaluated. Finally,

we also evaluate the usability of our system for different use cases and find a good score.

Although the work covers a wide range of topics, the work is just a beginning. Provenance, workflow,

data analytics and visualization, graph analytics, log analytics and programming model design are not an

easy task and has their own grand areas of research. So due to different limitations, we cannot claim our work

is the most perfect or best of its kind. We rather figured out different points that immediately leads to very

important future research. For example, the architecture we proposed can be implemented with a variety

of protocols. The protocols can be selected targeting the network data and user goals. So, which protocol
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is best for a certain use-case is an important research matter. We incorporate NoSQL Database technology

with our work and fault tolerance is a big concern for Big Data. Also, different graph database support can

be incorporated to perform a comparative study to see which one gives the best performance. We do not

provide the users with different tools, but an interface to integrate existing tools while offering automated

provenance and modern provenance analytic features. For that reason, we do not focus on distributed

computing tools. Still, the log analytics can be done in a distributed manner through ELK Stack. That is

more of a configuration than research. Still, there may be important questions about analyzing provenance

logs in a distributed manner. Finally, we presented visualization techniques for each provenance questions.

Here our goal was to answer them with visualizations but not to find the best visualization technique, which

could be another important future research.
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15 Conclusion and Future Work

We propose a comprehensive provenance query classification based on prominent research works in prove-

nance. Based on the taxonomy of provenance questions, we build a workflow programming model ProvMod

that is oriented to answer workflow provenance questions. During the design and implementation of the

model, a number of recommended features to design such a model is taken into account from the state of

the art research works. We also evaluate the model after integrating ProvMod with Apache Taverna. Prov-

Mod offers reduced burden in designing workflow, integrating provenance in any workflow system, graph

database support, custom and NoSQL logging, less performance overhead and real-time monitoring and data

visualization services to answer provenance questions. Alongside the theoretical model we proposed, we

also implemented the model using various cutting-edge technologies. We integrated the model with existing

prominent workflow system Apache Taverna. A comprehensive comparison of the completeness of the pro-

posed provenance query classification and different features were performed from different angles. We also

conduct a performance analysis of the model with several Bioinformatics and Phenotyping analysis workflows.

A user study was conducted engaging users from various levels of experience to assess the usability of the

model. The model can also be used to extend various research. We show two such use case by applying our

model on clone detection in software systems and architecture extraction of legacy systems.

Our proposed work can lead to different long term research contributions in the field of Data Science, Big

Data, Data Analytics, Data Mining, Machine Learning, Deep Learning, Software Engineering and so on. As

our immediate next work, we planned to implement the model in R. It will offer language-specific flexibility

to use the model and can even ignore some implementation layers. Thus the model may work even faster

for the target environment. Java and other prominent programming languages can be also the targets of

implementation.

Although that is a good idea, language-centric implementation is burdensome. So, we emphasize creating

an automated wrapper framework that will keep using the proposed model and convert existing tools into a

ProvMod module. Our proposed coding template can be used to do so with ease. The developers can also

build their own template at will.

Our model is solely based on Graph Database. It is a matter of fact that, users who are likely to use SQL

or SQL based databases may find using the model bit complex at first. Besides, Graph Database might not

show the expected performance in all the cases. So, in the future, we plan to work on integrating SQL based

databases with the support of distributed computing.

Another point of view is, other Graph Databases may outperform Neo4j Database technology. Finding
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the answer to the question- ’which Graph Database is best in which scenario?’ can lead to a comparative

study.

ProvMod used only the HTTP protocol in its architecture for the initial implementation and experimen-

tation. For certain scenario and data pipeline categories, ’which protocol works best?’ is another important

research question if we want to ship the model completely to the cloud platform to offer a cloud service.

Next, a whole number of users can be engaged to use the model over a quite large amount of time. Such

usage will provide us with big crowd data. Analyzing that data will result in important usage patterns for

a better user-oriented recommendation, job handling and resource management. Again, such usage data

also holds workflow execution information which is important. It can be used to figure out certain pipeline

configuration to error, configuration to data products and configuration to performance information. For

both of these two research goals, Machine Learning and Deep Learning techniques will be of great necessity.

A large number of users can also be engaged in user studies that will represent a solid and stronger usability

score of our model.

Integrating our model with other prominent workflows can be another applied topic of future research

works. It may lead to a generic and easy to plug-in workflow architecture for future data science domain.

Ultimately, cross-domain research will be even more flexible. While different domains cross together, we can

justify- how complete our provenance questions taxonomy is.

In this work, we recommended different possible data visualization techniques for different provenance

questions. We completely give the users to customize or select the visualizations. However, it is an important

topic of HCI research to find out which visualization is best for a certain type of questions. It will also lead

to a backward regeneration of the provenance questions taxonomy on the basis of data visualization.

Finally, as we showed our model’s application on two Software Engineering use cases (clone detection and

architecture extraction), the research can also be taken to such core Software Engineering topics. Graph-

based clone detection in software systems using graph metadata generated by the model could be very useful.

Such graph metadata can also be used to extract even granular or high-level software architecture standing on

the basis of our study. In conclusion, the research study we present in this thesis and the outcome ’ProvMod’

can heavily contribute to future research.
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