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ABSTRACT 

  

The cost of new cultivar development is high due to long juvenile periods and 

large tree size in tree fruit breeding programs. For apples, sour cherries, and saskatoon 

berries, grafting seedling scions onto the tips of branches of mature plants was 

hypothesized to shorten the juvenile period and reduce land use under the Canadian 

prairie conditions.  

For apples, a tip grafting system (tip grafting onto mature crabapple rootstocks) 

was compared with the traditional grafting system (grafting onto young ‘Ottawa 3’ 

rootstocks). Apple scions of ‘Golden Delicious’, ‘McIntosh’, and ‘SK Prairie Sun’ 

which exhibit a range of inherent cold hardiness, were grafted in the spring of 2001. 

Over a two year period, winter survival of the scions was improved by 37% by the tip 

grafting system as compared to the traditional grafting system making it not feasible for 

evaluation of cold hardiness of scions. Vegetative growth of scions approximated the 

rootstocks on which the scions were grafted. Winter survival was highly correlated with 

shoot growth cessation (r = +0.83) and terminal bud stage (r = +0.85) observed around 

the time of first frost. 

  Juvenile seedlings of saskatoon berry and sour cherry hybrids were tip grafted 

onto mature plants of their own species in the spring of 2000. After two growing 

seasons, the tip grafting system in sour cherries had reduced flowering by 69.7%, shoot 

length by 84%, and shoot diameter by 76% compared with the juvenile seedlings on 

their own roots (scion donors). Tip grafting saskatoon berry seedlings increased 

flowering by 68%, shoot length by 257%, and shoot diameter by 42% compared with 



 

 iii

scion donors. For sour cherries, the tip grafting system reduced winter dieback by 

99.6%, hastened terminal bud development and leaf drop compared with the scion 

donors. Tip grafting of saskatoon berry seedlings had little effect on terminal bud 

development and cold hardiness of scions perhaps due to the cold hardy character of 

this species. 

For apples and sour cherries, the tip grafting system tested in this study 

enhanced cold hardiness of scions when combined with the appropriated rootstocks and 

may be useful for maintaining germplasm that otherwise would not be hardy in northern 

locations. 
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 1. INTRODUCTION 

 

 The long sunny days and the cool nights of the Canadian prairies are ideal for 

developing good colour and high sugar content in fruit. Fruits that can be mechanically 

harvested and those that can be produced organically have a high economic potential. 

The three fruit crops in this study, apple, sour cherry, and saskatoon berry fit one or 

both criteria (Bors et al., 2003). They have great potential as commercial fruit crops for 

the fresh fruit market and/or the processing industries. Approximately 550 cultivated 

hectares were reported for commercial fruit production in Saskatchewan in 2002 with 

saskatoon berry accounting for a cultivated area of 66% of this acreage (Anonymous, 

2003). However, apples and sour cherry are being widely tested throughout the prairies.   

The low acreage of tree fruit cultivation in Saskatchewan can be partly attributed 

to extremely low winter temperatures. Consequently, breeding and selection for 

improved winter survival have received a great deal of attention. Winter survival has 

been gradually improved and development of advanced varieties with good fruit quality 

has occurred in the tree fruit breeding programs at the University of Saskatchewan 

(Bors et al., 2003). The cost of new variety development in tree fruit crops, however, is 

very high due to long juvenile periods and large tree size.   

Shortening the juvenile period can reduce the selection cycle, thereby decreasing 

the associated costs of breeding programs. Tree fruit breeders have developed many 
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methods to accelerate flowering to obtain an earlier assessment of new seedlings. These 

methods include: girdling the tree trunks, pruning lateral branches, pruning the roots, 

reorienting branches horizontally, knotting the stems, and grafting inverted bark rings 

on the trunk or branches. None of these methods are capable of reducing the juvenile 

period if used on very young seedlings (Brown, 1975; Sherman and Lyrene, 1983).  

Shortening of the juvenile period was claimed when scions of sweet cherry 

seedlings were grafted onto the tips of the branches of mature cherry trees (Burbank, 

1921). It is possible that this grafting method allowed the scions to transform from a 

juvenile phase to an adult phase. Unfortunately, the tip grafted shoots were not 

compared to the control seedlings, nor was the age of the scions reported, so this claim 

cannot be substantiated.  

Tip grafting would reduce land requirements, thereby decreasing the cost to tree 

fruit breeders. This method has been used in pecan breeding programs for saving land 

requirement (Sherman and Lyrene, 1983). A reduction in tree size would also directly 

correlate to land requirements. Grafting of seedling scions onto dwarf rootstocks has 

been used successfully in apples to reduce the size of the trees (Zimmerman, 1972).  

The technique of tip grafting was developed for fruit trees in milder climates than 

the Canadian prairies. In Saskatchewan, the winters are extremely cold with lows of -35 

to -40oC. Only very cold resistant rootstocks can grow into mature trees under these 

conditions. Therefore, the tip grafting systems used in the breeding program at the 

University of Saskatchewan are based on very cold hardy rootstocks. Graft transmission 

of a variety of traits or agents from rootstock to scion has been reported in many plants. 

Traits transferred across grafts include: branching in poinsettia (Dole and Wilkins, 
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1992); virus resistance genes in tobacco (Smironv et al., 1997) and in sweetpotato 

(Okada et al., 2001); phytochrome-sensitive flowering in peas (Weller et al., 1997); and 

phloem protein transportation in heterografts of Cucurbitaceae (Golecki et al., 1998). 

Cold hardiness could also be graft transmitted from rootstocks to apple scions. Reports 

attributing enhanced cold hardiness of scions to the use of cold hardy rootstocks are 

found for cherry (Palonen and Buszard, 1997), peach (Layne, 1994; Layne and Jui, 

1994) and apple trees (Westwood, 1970). Unfortunately the extent of cold hardiness 

potentially induced by a tip grafting system is not known. 

The way that a tip grafting system enhances cold hardiness of the scions is 

probably through accelerated growth cessation as this growth cessation is a prerequisite 

for cold acclimation (Weiser, 1970; Hurme et al., 1997). In most woody deciduous 

perennials, the first stage of cold acclimation is induced by shortening the photoperiod, 

which causes growth cessation (Weiser, 1970). Low night temperatures trigger the 

second stage of cold acclimation. The transition from the first to the second stage of 

acclimation generally occurs during leaf fall (Weiser, 1970; Westwood, 1993). The 

ability of rootstocks to cease vegetative growth of scions and induce timely leaf drop is 

a potential index of cold hardiness. If there is a correlation between either the timing of 

terminal bud formation or leaf drop with cold hardiness, these cold acclimation factors 

could be used as physiological markers for the evaluation of cold hardiness.   

Vegetative growth responses of scions might be also important for cold 

hardiness, as too vigorous or too weak vegetative growth can affect the tree quality, 

thereby influencing the quality of cold acclimation. Consequently vegetative growth can 
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affect the cold hardiness. It is unknown how a tip grafting system affects the vegetative 

growth of scion and how the vegetative growth relates to cold hardiness of the scions. 

  The specific objectives of this study were: 

1. To compare the winter survival of apple scions either tip grafted onto mature 

crabapple rootstocks or traditionally grafted onto young ‘Ottawa 3’ rootstocks;  

2. To determine the relationship between winter survival and vegetative growth, 

terminal growth cessation and leaf drop in apple trees; 

3. To determine the effects of a tip grafting system on cold hardiness and juvenility 

of scions of sour cherries and saskatoon berries. 
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2. LITERATURE REVIEW 

 

2.1 Apples, Sour Cherries and Saskatoon Berries on the Canadian Prairies 

 The apple (Malus domestica Borkh.) is adapted to different climates and is 

grown commercially from the tropics to the high latitudes where winter temperatures 

may fall to -40oC (Lakso, 1994). The center of origin for apple is thought to be in either 

southern China or in Georgia and Armenia (Janick et al., 1996). There are more than 

10,000 documented apple cultivars, but only a few dozen of the cultivars are grown on a 

worldwide, commercial scale (Janick et al., 1996). The best known of these cultivars are 

from seedlings that appeared by chance, most of which were derived in North America 

(Janick et al., 1996). ‘Golden Delicious’ is a chance seedling which originated in West 

Virginia (Janick et al., 1996; Hampson and Kemp, 2003). ‘Golden Delicious’ is a tender 

cultivar with a low temperature limit for –26oC in November and –33.0oC in December 

tested in British Columbia, Canada (Chilton et al., 1994). ‘McIntosh’ is a chance 

seedling discovered in Ontario, Canada (Hampson and Kemp, 2003). This cultivar is 

cold hardy with a low temperature limit for  –33oC in November and –37.2 oC in 

December tested in BC, Canada (Chilton et al., 1994). Traditionally, apple cultivars are 

grafted onto standard rootstocks, such as crabapple seedling rootstocks to improve their 

winter hardiness, as crabapple rootstocks are very cold hardy (Palmer et al., 2003). 

There is no evidence suggesting ‘Golden Delicious’ or ‘McIntosh’ can grow on the 
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Canadian prairies even if grafted on cold hardy crabapple rootstocks. Most of the apple 

cultivars at the University of Saskatchewan are currently grafted onto ‘Ottawa 3’, a 

dwarfing clonal apple rootstock. ‘Ottawa 3’ can dwarf trees to approximately one fourth 

the size of trees on seedling rootstocks.  ‘Ottawa 3’ was developed at the Agriculture 

and Agri-Food Canada Research Station, Ottawa, Ontario by crossing ‘Robin’ and 

‘Malling 9 (M.9)’ (Webster and Wertheim, 2003) and it is moderately cold hardy 

(Palmer et al., 2003). In the 1960’s Dr. Nelson added ‘Ottawa 3’ to the Saskatchewan 

apple breeding program and it is now the major dwarf rootstock recommended for the 

Canadian prairies (Bors et al., 2003). In 1999, the domestic fruit development program 

at the University of Saskatchewan released the apple cultivar, ‘SK Prairie Sun’, which 

is cold hardy with high commercial quality and is propagated by grafting onto ‘Ottawa 

3’ rootstocks.  

Sour cherry (Prunus cerasus) is native to Southeast Europe (cold hardiness 

zones 6-10) and usually cannot survive in the Canadian prairies (cold hardiness zones 1-

3). Mongolian Cherry (Prunus fruticosa) is native to Siberia (cold hardiness zone 2) and 

grows only 30-60cm tall (Olden and Nybom, 1973). In the late 1940's, Dr. Lester Kerr 

at Agriculture and Agri-Food Canada’s Morden Research Centre, Manitoba (cold 

hardiness zone 3) began to intercross P. cerasus and P. fruticosa, which resulted in cold 

hardy sour cherry that grow 0.6 to 1.0m tall (Bors et al., 2003). In the 1970’s, Dr. 

Stewart Nelson and Rick Sawatzky at the University of Saskatchewan began evaluating 

hybrids of P. cerasus x P. fruticosa imported from Siberia. In the 1980's Dr. Kerr 

donated his germplasm to the University. The goals of the ongoing breeding program 

were to combine cold hardiness, dwarf stature and fruit quality through crossing 
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between P. cerasus and P. fruticosa. Progress in the area of introgressing cold hardiness 

from P. fruticosa into P. cerasus has occurred. Dwarf sour cherry lines bred in 

Saskatchewan now survive winter temperatures of -40°C (Bors et al., 2003). As the 

goals for cold hardiness and dwarf stature have been met, in the ongoing breeding 

program, fruit quality has become the new emphasis. 

The saskatoon berry (Amelanchier alnifolia Nutt.) is a native shrub that is 

widely distributed across North America. It produces a flavorful fruit, known as the 

saskatoon, saskatoon-berry, Juneberry, or serviceberry. The saskatoon berry was a 

dietary staple for aboriginal people (St. Pierre, 1999). Several cultivars of saskatoon 

berry have been selected from the superior native genotypes (Kaurin et al., 1984; 

Steeves and Steeves, 1990). The saskatoon berry is well adapted to the cold northern 

climates. The flower buds are able to escape low temperature injury (from -50 to -60oC) 

when at maximum cold hardiness (Kaurin et al, 1984). Several papers have been 

published on cold hardiness of this crop during cold acclimation (Karurin et al., 1984; 

Friesen and Stushnoff, 1989) and deacclimation (Junttila et al., 1983). The timing of 

cessation of growth, bud development and cold acclimation significantly affected cold 

hardiness in this crop (Junttila et al., 1983; Kaurin et al., 1984; Friesen and Stushnoff, 

1985; Friesen and Stushnoff, 1989). The cold hardy nature and cold acclimation 

patterns of this species make it a good model to study the relationship between 

phenological development and cold hardiness.   

The development of new cultivars of tree fruits, such as apples, sour cherries, 

and saskatoon berries, are desirable to broaden grower’s choices and/or better adapt to 

the low temperatures in cold hardiness zone 2. Breeding programs must screen many 
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plants to select improved cultivars. Due to the long juvenile period and large size of 

fruit trees, a more rapid and efficient method of evaluating seedling populations is 

needed.  

2.2 Cold Hardiness 

 Low temperature has profound effects on all aspects of tree fruit production. It 

determines the northern boundaries of production areas, controls the length of the 

growing season, and alters the rate of phenological development (Palmer et al., 2003).  

Freezing resistance is the ability of plants to maintain their functions following freezing 

temperatures and it involves freezing avoidance and freezing tolerance (Levitt, 1980). 

To survive low temperatures, most well-adapted plants respond to environmental 

stimuli in synchrony with the season for proper growth and development (Quamme and 

Stushnoff, 1983). During autumn and early winter, temperate trees undergo a transition 

from low to high level of freezing resistance (Levitt, 1980; Sakai and Larcher, 1987). 

Cold acclimation which involves both freezing avoidance and freezing tolerance (Sakai 

and Larcher, 1987) is used to describe the transition from tender to hardy status (Burke 

et al., 1976; Chen, 1994; Chen et al., 1995). Levitt (1980) defined cold acclimation as 

the exposure of plants to a low but non-freezing temperature that usually results in a 

greater ability to survive a lower temperature stress that otherwise would be lethal. 

During cold acclimation, phenological changes, such as cessation of growth and leaf 

drop occurs. If these phenological changes are closely related to cold resistance, they 

may be used as a physiological marker for early selection in a breeding program. 
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2.2.1 Freezing Injury   

 Frosts in the late spring and early fall, low mid-winter temperatures, long 

periods of low temperature, as well as rapid temperature changes can cause various 

types of injury in woody plants (Faust, 1989a). Among the most commonly recognized 

types of freezing injury are: sunscald on the trunks of thin-barked trees; blackheart and 

frost cracking in the xylem of trees; death of vegetative shoots in late maturing trees; 

and the death of buds and bark in plants which deharden rapidly during transient warm 

spells in winter. Flower buds may also be killed due to frost in spring occurring after the 

buds begin to grow (Faust, 1989a).   

The response of organs and tissues of woody plants to subzero temperature are 

both varied and complex. Leaves of deciduous fruit trees abscise and consequently do 

not need to cold acclimate. The lower part of the trunk is the least cold hardy among the 

organs above the ground because in the fall hardening progresses basipetally from the 

terminal shoots (Palonen and Buszard, 1997). Roots are less hardy than stems but snow 

cover can insulate the soil and thereby decrease damage to the roots (Faust, 1989a). 

Freezing resistance may change significantly with season and the stage of development 

(Burke et al., 1976). Quamme (1976) reported that different tissues within the same 

stem of apple and pear responded differently to low temperatures in different seasons. 

In the early autumn and the late spring, the xylem and pith were the hardiest tissue, but 

in the winter they were the most susceptible. Hardy trees and shrubs which can survive -

196oC in liquid nitrogen during winter dormancy may be killed at -3oC during active 

spring growth (Burke et al., 1976). 
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Freezing injuries are both directly and indirectly associated with the freezing of 

the water in plant tissues (Burke et al., 1976). When a specific plant tissue freezes, ice 

forms either inside (intracellular) or outside (extracellular) the cell walls (Burke et al., 

1976; Levitt, 1980). Intracelluar freezing is defined as ice formation in the living 

protoplasm (Burke et al., 1976; Sakai and Larcher, 1987). When the temperature drops 

below a tissue’s survival point, intracellular ice formation can occur suddenly causing 

the tissue to be injured. This injury probably results from cataclysmic mechanical 

stresses. Intracellular freezing destroys the plasmalemma, disrupts the integrity of the 

cells and is invariably lethal (Burke et al., 1976). This phenomenon is common in 

tender plants, such as tropical plants, which lack the capacity to acclimate. It also occurs 

in hardy plants if rapid freezing occurs before the plants have acclimated (Burke et al., 

1976). In temperate woody plants the causes of injury in woody tissues are generally 

attributed to intracellular freezing (Burke et al., 1976).  

Extracellular freezing is defined as ice formation between the protoplasm and 

the cell wall or in the intercellular space (Sakai and Larcher, 1987). Injury from 

extracellular freezing is due to dehydration of plant cells. As the ice crystals grow in the 

extracellular space, a water potential gradient is established between the extracellular 

ice and the intracellular solution. This gradient results in the outward flow of 

intracellular water through the plasmalemma to the growing extracellular ice crystal. 

The cell continues to dehydrate as the temperature decreases (Burke et al., 1976). 

Dehydration results in the denaturation of membrane-bound protein and the disruption 

of the plasma membrane (Burke et al., 1976; Wisniewski et al., 2003). Plants which are 

tolerant to freezing generally undergo extracellular freezing (Burke et al., 1976). The 
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freezing injury in bark tissues of temperate woody plants is usually caused by 

extracellular ice formation (Burke et al., 1976; Quamme and Stushnoff, 1983). Most 

freezing injury results from the severe cellular dehydration that occurs with freezing 

(Levitt, 1980; Thomashow, 1998). In nature, the air temperature rarely decreases more 

than a few degrees an hour. At such slow rates of freezing, ice forms first outside the 

cytoplasm of cells (Weiser, 1970).   

2.2.2 Mechanisms of Freezing Resistance 

The ability of a plant to survive freezing stress is a complex phenomenon. The 

mechanisms that plants use to survive freezing temperatures have been organized into 

two categories: freezing avoidance and freezing tolerance (Levitt, 1980).  

Avoidance mechanisms include the evasion of intracellular ice formation 

through desiccation, freezing point depression, supercooling, and deep supercooling 

(Burke et al., 1976). Annual plants with little or no frost resistance survive by means of 

dehydrated seeds which are very hardy (Burke et al., 1976).  Freezing point depression 

due to high solute concentrations within the cell can increase freezing avoidance by a 

few degrees (Burke et al., 1976). Some plant tissues maintain their cellular water in a 

deep supercooled state or metastable equilibrium, thus avoiding intracellular ice 

formation (Ashworth, 1986; Ashworth and Wisniewski, 1991; Ashworth et al., 1998). 

Deep supercooling can be defined as the ability of a population of cells or entire organs 

to retain cellular water in a liquid phase at subfreezing temperatures (Wisniewski et al., 

2003). Flower buds and xylem tissues in temperate woody fruit crops have the ability to 

maintain supercooled cellular water (Ashworth and Wisniewski, 1991). Deep 

supercooling of xylem tissues is a common characteristic of many temperate woody 
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plants (Wisniewski et al., 2003). The degree to which deep supercooling occurs in the 

xylem tissues appears to determine the northern limits of native woody plants (George 

et al., 1974), and the northern extent of temperate fruit trees (Burke et al., 1976; 

Quamme, 1991). 

Freezing tolerance is the ability to tolerate ice formation in tissues without injury 

(Levitt, 1980). Those tissues with freezing tolerance have the ability to lose cellular 

water to extracellular ice during freezing and are able to tolerate the resulting 

dehydration (Chen et al., 1995). The mechanisms responsible for freezing tolerance are 

not well understood but may include preventing freeze-induced denaturation of proteins, 

preventing molecules from precipitating, and lessening direct physical damage caused 

by the accumulation of intercellular ice (Thomashow, 1998). Bark tissues (cambium, 

phloem, cortex, and epidermis) exhibit freezing tolerance and can survive temperatures 

below -38oC, and in some cases as low as -196oC (Burke et al., 1976; Faust, 1989a; 

Ristic and Ashworth, 1997).     

2.2.3 Cold Acclimation 

In a natural environment, cold acclimation, a non-genetic adjustment of an 

individual organism in response to changing environmental conditions, is used to 

describe the transition from tender to hardy status (Chen et al., 1995). During active 

summer growth, woody plants are very susceptible to freezing, and injury can occur at  

-2 to -3oC. In the autumn and winter after acclimation, the plant tissues become more 

freezing resistant (Burke et al., 1976).  
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Weiser (1970) classified cold acclimation into two stages. The first stage of cold 

acclimation is triggered by short days and the second stage of cold acclimation is 

induced by low temperatures.  

The first stage involves two distinct events: growth cessation and initiation of 

metabolic changes (Weiser, 1970). Growth cessation is a necessary prerequisite to cold 

acclimation in woody plants as an actively growing woody plant does not acclimate 

(Levitt, 1980), and it is used as an indicator of the initiation of cold acclimation (Chen 

et al., 1995). Early winter freezes tend to injure the tissues that are last to start cold 

acclimation (Faust, 1989a). In apple trees, the cessation of growth in different parts of 

the tree is not synchronized. In these plants cessation of growth occurs early in some 

shoots, but vigorous shoots continue to grow until the late summer or early fall 

(Proebsting, 1978). These actively growing shoots are less hardy than those that have 

stopped growing (Arora et al., 1992). For visual observation, the cessation of vegetative 

growth is indicated by the terminal bud set since the cessation of shoot growth is 

generally concomitant with the formation of terminal buds (Guak and Fuchigami, 2001). 

In this thesis, the term of “terminal growth cessation” refers to cessation of active 

production of new leaves by the meristems located on the terminal ends of shoots.   

During the first stage of cold acclimation, carbohydrates accumulate (Pomeroy 

and Siminovitch, 1971; Coleman et al., 1992; Fujikawa et al., 1999; Gilmour et al., 

2000), osmotic pressure increases (Chen et al., 1995), the levels of fatty acid 

desaturation in membrane phospholipids increase (Wang and Faust, 1990; Thomashow, 

1998; Fujikawa et al., 1999), cell walls thicken (Ashworth et al., 1998), shoots become 

more rigid as the percentage of water declines (Coleman et al., 1992), and hydrophilic 
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proteins accumulate (Arora et al., 1992; Arora and Wisniewski, 1994; Arora et al., 1996; 

Lim et al., 1999). These metabolic changes facilitate the plant’s responses to low 

temperatures during the second stage of cold acclimation (Weiser, 1970).  

In the second stage, the hardiness promoting factors move from the leaves, 

through the bark to the overwintering stems (Fuchigami et al., 1970). Hardy plants 

become freeze resistant, tissue hydration decreases, but little metabolic activity occurs 

(Weiser, 1970). These events usually happen during leaf fall (Westwood, 1993). Early 

cold acclimation is often associated with low vigor and early natural defoliation (Guak 

and Fuchigami, 2001). Trees are less cold resistant if their leaves are killed by frost 

before they naturally abscise (Chandler, 1954; Faust, 1989a). Arora et al. (1992) 

reported that deciduous peach trees acclimated sooner and to a greater extent than 

evergreen ones, and consequently the deciduous trees attained a two-fold greater level 

of cold hardiness than the evergreen types.   

 The level of hardiness achieved by cold acclimation varies considerably among 

plant species and cultivars (Chen, 1994). Many temperate trees possess the ability to 

resist severe freezing stress, but lacking proper timing of acclimation limits their ability 

to survive winter (Weiser, 1970). The initiation of cold acclimation of plant species at 

high latitude is related to the timing of growth cessation (Hurme et al., 1997). At high 

latitudes where summers are short, the timing of growth cessation when freezing 

weather begins is more likely to be the determining factor for successful winter survival 

than at lower latitudes (Hurme et al., 1997). Trees native to warm regions usually 

cannot be moved to cold regions because they do not acclimate fast enough to survive 

and do not develop enough hardiness to cold (Kozlowski et al., 1991). Apple trees from 
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milder climates moved to northern areas typically grow vigorously until the late fall and 

then encounter cold injury. To increase the cold hardiness of apple trees modifications 

are required to accelerate growth cessation, trigger timely leaf fall, causing the apple 

trees to enter dormancy in synchrony with the season. 

2.2.4 Evaluation of Cold Hardiness 

The identification of cold hardy genotypes is an essential component in the 

success of fruit breeding programs with the objective of improving cold hardiness. Fruit 

breeders in cold climates usually have to screen many plants and conduct repeated 

cycles of selection to develop hardy cultivars, so an easy, rapid and efficient method of 

evaluating cold hardiness is required. Evaluation of cold hardiness can be done in the 

laboratory or field or both. 

 A widely used laboratory-based method of determining cold hardiness is to 

freeze plants or plant parts in controlled environment chambers and evaluate damage by 

recovery, tissue browning, and conductivity tests (Quamme and Stushnoff, 1983). 

Recovery from freezing injury can be directly observed after forcing the cold-stressed 

plants or plant parts under optimal growing conditions (Stushnoff, 1972). However, as 

temperate fruit trees have a chilling requirement for bud break, recovery testing cannot 

be used to evaluate seasonal cold hardiness and relative cold hardiness if the plants are 

in deep rest, because the plants or the detached parts of the plants cannot be forced 

(Quamme and Stushnoff, 1983).  

Browning of woody tissue due to the oxidation of polyphenols in the cell is an 

alternative method to measure cold injury. The degree of browning can be assessed 

visually and given a numerical rating (Quamme and Stushnoff, 1983). The evaluation of 
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browning requires the tissue to be cut, so this method is both time consuming and 

destructive. Calculating the ratio of discolored xylem to total xylem area on a weight 

basis has been used to compare the amount of blackheart injury among apple trees 

grafted on different rootstocks (Warmund et al., 1996; Palonen and Buszard, 1997), but 

scoring systems are subject to individual bias. Thus, objective methods such as 

conductivity tests have been developed to avoid scoring bias. 

Freezing stress results in the leakage of cellular electrolytes due to membrane 

damage (Quamme and Stushnoff, 1983). The conductivity test measures the electrical 

conductivity of the plant extract providing an estimate of cellular leakage and thus 

membrane damage from cold injury (Levitt, 1980). Although this method has been used 

widely (Stuart, 1941; Wilner, 1960; Ketchie et al., 1972; Brown, 1975; Raese, 1983; 

Coleman and Estabrooks, 1992), the correlation between electrolyte leakage and the 

survival of plant tissue after natural freeze is not consistent (Proebsting, 1978).   

Freezing resistance in plant tissues with the ability to undergo deep supercooling 

may be tested with exotherm analysis (Quamme, 1991). In these plant tissues, cold 

injury is associated with a sudden freezing of a supercooled fraction of water (Quamme 

et al., 1972, 1973). The sudden freezing releases heat of fusion which is measured as an 

exotherm (Quamme et al., 1972). Differential Thermal Analysis (DTA) has been used 

for detecting exotherms. In DTA, the temperature of the sample is compared to a dried 

reference during freezing (Quamme et al., 1972). When cold-hardened xylem tissues 

were exposed to subzero temperatures, two distinct freezing events were detected 

(Quamme et al., 1972). The first one, high-temperature exotherm (HTE), appears to 

correspond with the freezing of the water in the xylem vessels and extracellular spaces. 
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This exotherm occors at temperatures between -1oC to -4oC (in the field) or -5oC to -

15oC (in the laboratory). The second freezing event, the low-temperature exotherm 

(LTE), corresponds to the freezing of a fraction of supercooled water at temperatures 

between -37oC to -40oC, and is correlated to the injury in the living cells of the woody 

tissue (Quamme, 1976). Measurements of the LTE can provide a convenient way of 

studying freezing injury and resistance in xylem of woody plants (Quamme et al. 1972) 

and can be used to estimate the lowest survival temperature for many deciduous trees 

(Quamme, 1976; Quamme et al., 1982; Quamme 1991; Lindstrom et al. 1995). 

Coleman et al. (1992) analyzed shoot hardiness with DTA and found that the percent 

injury at a stress temperature of -25 or -35oC was closely related to the previous 3-day 

mean air temperatures. This indicates that DTA is sensitive to the time of tissue 

collection. Furthermore, Proebsting (1978) found the length and the diameter of stems 

influenced the DTA. This limits comparisons to the materials at the same physical 

parameters. The utility of DTA is limited by the need for sample specificity and the 

destructive and time consuming nature for large sample numbers (Quamme and 

Stushnoff, 1983).   

Because of the limitations of laboratory testing methods, cold hardiness testing 

for deciduous fruit trees is based mostly on evaluation of winter injury in the field, bud 

phenology and cold acclimation developed on woody species (Proebsting, 1978; 

Westwood, 1993; O’Neill et al., 2000).   

In the field, natural winter injury is visually assessed during the subsequent 

growing season (Proebsting, 1978). Despite the disadvantages of variability among 

locations, years and the lack of objectivity (Proebsting, 1978; Quamme and Stushnoff, 
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1983), assessment of the damage occurring in the field facilitates cultivar evaluation, 

determination of the nature of the injury and its frequency (Quamme and Stushnoff, 

1983). The major advantages of field testing are the potential for simultaneous testing of 

a large number of plants, the evaluation of whole plant rather than plant tissue 

performance, and the elimination of the risk of non-standardized laboratory systems. 

Winter survival is used to evaluate relative cold hardiness of a variety or cultivar by 

direct comparison with the known resistant and susceptible check cultivars (Van 

Adrichem, 1970). Cold hardiness is evaluated by visual observations after a natural 

freeze by scoring the degree of injury with a numerical rating system (Morrison et al., 

1963). Cold hardiness of a single shoot or cane can be assessed as the percent of bud 

death after spring flush (Morrison et al., 1963; Van Adrichem, 1970). For young 

seedlings, dieback as a percentage of shoot length is more practical and provides a 

better estimate of winter survival than percent bud death (Zatylny et al., 1996).  

Cold hardiness is achieved by cold acclimation and the two stages of cold 

acclimation are indicated by growth cessation and leaf drop (Weiser, 1970; Sakai and 

Larcher, 1987; Westwood, 1993). Timing of growth cessation may be an important 

indicator for comparing the relative cold hardiness of cultivars. In raspberries, the early 

growth cessation of raspberry canes was associated with increased cane survival in the 

field (Van Adrichem, 1970). Guak and Fuchigami (2001) reported that ABA applied to 

Fuji/M.26 apple nursery plants accelerated growth cessation and improved bud 

dormancy by the advancement of the early stage of bud cold acclimation. The time of 

leaf drop has also been proposed an indicator of cold hardiness. The percentage leaf 

drop in raspberries, calculated as the portion of the cane with leaf abscission out of the 
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total cane length, was associated with winter survival (Van Adrichem, 1970). Wood and 

Reilly (2001) reported that leaf retention based on the percentage of leaflets retained 

was usable as a symptom of cold damage to pecan. However, Zatylny et al. (1996) 

found the length of time required for half of the leaves in the upper third of the cane to 

abscise was not correlated with field survival. If there are high correlations between the 

cold acclimation indicators and cold hardiness, indicators of early acclimation are useful 

in ranking cultivars for cold hardiness. 

2.3 Phase Change 

Plants developed from seeds display four phases: the embryonic phase, in which 

the shoot and root meristems are formed; the juvenile phase, which is incapable of 

sexual reproduction; the adult vegetative phase, in which reproductive competency is 

established; and the adult reproductive phase distinguished by sexual reproduction 

(Jones, 1999). Phase change is defined as the events that occur when a young plant 

passes from the juvenile phase through a transitional phase to the adult phase (Brink, 

1962). The end of the juvenile phase is identified only by the production of flowers so 

that the transition period is commonly considered to be a part of the juvenile period 

(Visser, 1965; Zimmerman, 1972; Brown, 1975; Faust, 1989b).  

2.3.1  Developmental Basis of Phase Change  

There is considerable evidence that seedlings must attain a certain size before 

they can flower (Hackett, 1983), and therefore the most vigorous seedlings within a 

progeny population are likely to attain flowering size in the shortest time. There is a 

significant negative correlation between the length of the juvenile phase of a seedling 

and its vigor (Visser 1964). Vigorous growth, as measured by stem diameter of two and 
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three year-old apple and pear seedlings, is a reliable characteristic for the more 

precocious seedlings and it is possible to use stem diameter as a physiological marker 

for selection of precocity (Visser 1964, 1970).  

The transition from the juvenile to adult stages is more closely correlated with 

tree size and node number than with the chronological age (Zimmerman 1972; Hackett, 

1983; Poethig, 1990). Early fruiting of seedlings is correlated with large seedling size 

(Way, 1971), with the tallest plants flowering first (Jonkers 1971). Environmental 

conditions, weather, soil and cultural practices, which promote growth, tend to shorten 

the juvenile phase according to their influence on the time required to attain a certain 

minimum size (Visser, 1964). On crabapple seedlings, increasing the atmospheric 

concentration of carbon dioxide to 3000 ppm increased the height, number of nodes, as 

well as the number and the length of lateral shoots (Zimmerman et al., 1970). Growing 

seedlings in conditions that allow continuous growth (such as a greenhouse) greatly 

shortened the length of the juvenile phase. Apple seedlings were induced to flower 16-

20 months after germination under optimum continuous growth conditions in the 

greenhouse, otherwise 3-8 years was needed in the field (Zimmerman, 1971). 

Zimmerman (1977) found that vigor alone did not always predict early flowering in 

pear seedlings as plants with shorter juvenile periods were smaller at time of flowering 

than plants with longer juvenile period. This suggests that rapid growth is not the only 

factor contributing to a short juvenile period (Hackett, 1985). 

2.3.2 Phase Change and Cold Hardiness 

The cold hardiness of woody trees varies during the phase change from juvenile 

phase to physiologically mature phase. Lapins (1961) studied the cold hardiness of two 
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groups of apple trees propagated from the juvenile zone and the adult zone of the same 

seedlings onto 1- and 2-year-old ‘Jonathan’ seedling rootstock. Those results showed 

that trees propagated from the juvenile zone of the seedlings were hardier than those 

from the adult zone of the same seedlings. There are contradicting literatures on cold 

hardiness during phase change. Lim et al. (1999) compared mature ortets with juvenile 

cuttings in Rhododendron and found that freezing tolerance increased with both 

chronological age and developmental stage. Studies done on forest trees indicated that 

young seedlings were more prone to cold injury than older trees as young seedlings 

tended to continue growing longer and delayed in development of cold acclimation (Li 

and Adams, 1993). The variation of the cold hardiness during phase change may be due 

to the difference on the timing of cold acclimation. The age of a tree can modify the 

time of growth cessation of its shoots and thus affecting the timing of cold acclimation 

of the tree (Faust, 1989a; Guak and Fuchigami, 2001), consequently, it can affect the 

cold hardiness of the tree. The higher position of shoots in mature trees also has colder 

air temperature and earlier cold acclimation and hence greater cold hardiness than the 

shoots of young trees that are closer to the ground and have warmer temperatures and 

delayed cold acclimation (Sakai and Larcher,1987).   

2.4 Grafting 

Grafting is the technique of placing a scion onto a rootstock so that they grow 

together. Grafting is used to propagate plants, to substitute one part of a plant for 

another, to join plants each of which are selected for disease resistance or adaptability to 

special conditions of soil or climate, to repair damage, or to elucidate problems of 

structure, growth, and disease (Garner, 1993). The success in forming a permanent graft 
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union between plant parts depends on compatibility and cambial contact (Garner, 1993). 

The cambium is the secondary meristematic tissue that produces the vascular network, 

phloem and xylem. Graft incompatibility is identified by the breakage at the point of 

union, where the break is complete, smooth, and unsplintered. Garner (1993) proposed 

that unequal growth rates, the lack of essential metabolic substances such as enzymes or 

hormones, or the lack of interlocking fibers were potential causes of graft failure. 

Successful grafting is most likely to occur between closely related species or the same 

species. Even if the plant parts assembled are compatible, intimate cambial contact 

remains essential to success of the graft. It is simple to place the cambia in contact when 

the stems of the rootstock and scion are of similar size. More care is required to achieve 

cambial contact between stems of different size.       

2.4.1 Grafting Techniques 

Numerous grafting techniques have been described in the literature, but all 

existing grafting methods fall into two categories: approach grafting and detached scion 

grafting (Garner, 1993). Approach grafting is where the scion and the rootstock are not 

totally severed from the parent plant until a union is formed, such as inarching and 

bridge grafting. Detached scion grafting involves complete severance of the scions 

before the union is formed, such as cleft grafting, whip-and-tongue grafting, and bud 

grafting (budding). The simple, highly efficient and most widely used grafting 

techniques in woody fruit trees are cleft grafting, whip-and-tongue grafting; T-budding, 

and chip budding (Wertheim and Webster, 2003). 

 In cleft grafting, a tree limb is cut across and the scion with two slope cuts is 

inserted in the slit with cambium layer contact. This technique is commonly used with 
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large rootstocks. For whip-and-tongue grafting, two cuts are made on both the rootstock 

and the scion. The first one is a long sloping cut and the second cut is down the centre 

of the rootstock and the scion. To complete the graft the rootstock and the scion are 

pushed together to create an overlapping joint with cambium layer contact. The whip-

and-tongue grafting method is suited to scions and stocks less than 25 mm in diameter 

and of equal size (Garner, 1993). The scions for cleft grafting and whip-and-tongue 

grafting are from wood taken in the previous season, and they must be in a dormant 

condition when grafted.  

In T-budding, a T-shaped incision is cut into the bark of the recipient rootstock. 

The bark is peeled back and a shield of donor tissue with a single bud is affixed within 

the incision in the rootstock. This technique is employed during the growing season 

when the bark peels readily from the wood, where the portion of the stock to be budded 

are one or two years old, and where the bark is thin enough that manipulative 

difficulties do not occur. The scion-buds for T-budding are usually taken from shoots 

collected in the current season, and they exist in the axils of the leaves. Chip budding 

(Jones or Dry budding) replaces an oval shield shape piece of bark from the rootstock 

with a similarly shaped piece of scion containing a single bud. This technique requires 

particular attention to alignment of cambia. Chip budding does not require peeling bark 

at the time of budding, and is successful most of the year and in a wide range of 

moisture conditions (Garner, 1993).  

Grafting is usually done outdoors in spring or late summer but it can be done 

indoors on benches using dormant stocks. This is called bench grafting, regardless of 

the grafting techniques (Garner, 1993). Bench grafting is done from December to April 
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when the severe winter prevents outdoor operation. The bench grafts are stratified in 

boxes containing moist peat and stored at approximately 5oC until field planting in 

spring (Garner, 1993; Wertheim and Webster, 2003). 

Grafting can be conducted on both young rootstocks and established mature 

trees. For young rootstocks, grafting is performed on the base of the rootstocks, 10-15 

cm above the soil. For established trees, grafting is performed on the top of the trees, 

either grafting one or more new scion cultivars onto the established limbs or grafting 

many scions onto the tips of one- or two-year-old branches of established trees. The 

former method is usually called top grafting or top working (Wertheim and Webster, 

2003), and the latter was used by Burbank (1921) and is being called tip grafting in this 

thesis.  

2.4.2 Use of Tip Grafting for Space-Saving 

 In fruit breeding programs, 1000’s to 10,000’s of plants are often assessed to 

develop cultivars with improved traits. In the apple breeding program at the University 

of Saskatchewan, since the mid 1960s, 30,297 seedlings from controlled crosses have 

been evaluated. Only 8717 of these seedlings were selected for field planting (Bors, 

2003). Patterson (1936) recommended 20 x 20 feet spacing for apple trees, which 

represents 109 trees per acre. For 8717 seedlings on their own roots, 80 acres are 

required for approximately 10 years since the juvenile period is approximately 10 years.  

Grafting onto dwarfing rootstocks has been used in handling seedling 

populations in fruit breeding programs (Zimmerman, 1972). The breeding program at 

the University of Saskatchewan has been evaluating its selections on ‘Ottawa 3’ 

rootstock, which has similar vigor to M.9 (Domoto, 2003), which dwarfs trees to 
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approximately one fourth the size of trees on seedling rootstocks.  20 x 5 feet spacing 

was used for apple selections grafted onto ‘Ottawa 3’ rootstocks. If the 8717 seedlings 

were grafted onto ‘Ottawa 3’ rootstocks, only 20 acres would be required.  

Tip grafting onto mature trees has been used to save space in handling seedling 

populations in fruit tree breeding programs. Burbank (1921) grafted more than 500 

cherry seedlings onto the tips of branches of mature trees to simultaneously test all the 

seedlings. A similar method has been used in pecan breeding programs (Sherman and 

Lyrene, 1983). Crabapple varieties developed in Canada are very cold hardy and could 

be an alternative choice for saving space in the breeding program if multiple grafts are 

done on each tree. The University of Saskatchewan has a collection of ten year old 

crabapple trees. Each of these trees has hundreds of small branches that were suitable 

for grafting. If 50 seedlings were grafted on one mature crabapple tree, for the 8717 

seedlings, approximately 175 trees would be needed. If the crabapple trees are planted 

in the field at 20 x 20 feet spacing, less than two acres would be required. Obviously, tip 

grafting has the advantage of space-saving over grafting onto dwarfing ‘Ottawa 3’ 

rootstocks and growing as self-rooted seedlings. 

 2.4.3 Effect of Rootstock on Cold Hardiness of Scions  

Significant rootstock-induced effects have been noted in peach trees. Rootstocks 

may influence trunk cross-sectional area, cumulative tree height and spread, winter 

injury, cold hardiness, and tree survival (Layne, 1994; Layne and Jui, 1994). It has been 

reported that rootstocks influenced the cold hardiness of scions in cherry (Palonen and 

Buszard, 1997) and apple trees (Rieger, 1989; Hiirsalmi and Sako, 1991). However, 

Stuart (1941) reported in their studies that the hardy apple rootstocks did not prevent the 
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tender varieties from injury while Ormrod and Layne (1974) found only a small 

rootstock influence on scion acclimation in peach trees.   

Graft transmission from rootstock to scion has been reported for a range of 

characteristics in many plants. Traits transferred across the graft union include: 

branching in poinsettia (Dole and Wilkins, 1992); virus resistance in tobacco (Smironv 

et al., 1997) and in sweet potato (Okada et al., 2001); phytochrome-sensitive flowering 

in peas (Weller et al., 1997); and phloem protein transportation in heterografts of 

Cucurbitaceae (Golecki et al., 1998). Studies by Fuchigami et al. (1970) on Cornus 

stolonifera Michx using genotypes differing in their ability to cold acclimate showed 

the enhanced acclimation of a less hardy scion after being grafted onto a hardier 

genotype. Although a translocatable hardiness promoting factor has not been identified, 

it is believed to be a growth inhibitor which indirectly influences hardiness by stopping 

growth, or a regulatory substance which regulates the metabolic pathway responsible 

for the first stage of acclimation (Weiser, 1970).  

Raese (1983) found hardiness was enhanced by treatments which promoted 

growth cessation in plants which otherwise tended to continue growing in the fall. 

Coleman & Estabrooks (1988, 1992) and Coleman et al. (1992) found that the plant 

growth regulator EL-500®, a growth retardant, increased cold hardiness levels in ‘Spur 

McIntosh’ apple trees than untreated controls. Cultural practices that promote timely 

growth cessation leading to earlier maturity can trigger cold acclimation, thus increasing 

cold hardiness (Westwood, 1970). The mature rootstocks on which tip grafting is 

performed may result in early growth cessation and influence the cold acclimation 

process of scions, thus affecting cold hardiness of the scions. 
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2.4.4 Effect of Rootstock on Phase Change 

Grafting seedlings onto dwarf rootstocks can considerably shorten the juvenile 

phase (Sherman and Lyrene, 1983; Brown, 1975; Zimmerman, 1972). The weak apple 

rootstock ‘MIX’ has been demonstrated to accelerate the onset of flowering of apple 

seedlings by 1.5 years (Campbell 1961; Visser 1964). Similarly, the average juvenile 

period was shortened by 1.25 years by top grafting onto 10-year-old established trees 

having ‘MIX’ rootstock (Way 1971). Hackett (1985) indicated that seedling scions 

grafted onto certain clonal apple dwarf rootstocks (‘M9’ and ‘M27’) flowered 2-4 years 

earlier than the seedlings from which they were taken. The ability of the rootstocks to 

induce early flowering of scions is determined by their specific precocity and not all 

dwarf rootstocks are capable of promoting early flowering (Visser 1973). 

Tip grafting of young seedlings onto mature trees has been recommended as a 

method to shorten the juvenile period (Burbank, 1921; Zimmerman, 1972), but 

experimental evidence was not provided to substantiate their claims, nor were 

experiments conducted to elucidate how mature trees affect the juvenile period of tip-

grafted seedlings. It is possible that tip grafting allowed the scions to transfer from a 

juvenile phase to an adult phase due to graft transmission. However, many studies 

showed that the duration of the juvenile phase of seedlings is related to their vegetative 

growth, as measures which promote the vegetative growth also reduce the juvenile 

period (Smeets 1956; Visser 1964; Zimmerman et al. 1970; Zimmerman 1971; Way 

1971; Jonkers 1971; Aldwinckle 1975; Hackett 1985). Conversely, those methods that 

restrict growth in young seedlings do not shorten but extend the duration of the juvenile 
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phase, resulting in delayed fruiting (Spinks, 1925; Brown, 1975; Sherman and Lyrene, 

1983).  
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3. EXPERIMENTAL SITE AND WEATHER CONDITIONS 

 

The experiments for this thesis were conducted at the Horticulture Field 

Laboratory of the University of Saskatchewan in Saskatoon (52°07’ North, 106°41’ 

West), Saskatchewan, Canada. Soil type at the field site is a Dark Brown Chernozem 

clay loam. This study was started in May 2000 and was completed by May 2003. Daily 

maximum and minimum air temperatures and rainfall during the study period from May 

2000 to April 2003 were obtained from University of Saskatchewan, Kernen Research 

Weather Station located approximately 1.5 km east of the experimental site. Daily 

snowfall during the study period was obtained from Saskatoon International Airport 

weather station (Environment Canada, 2003) located approximately 5 km northwest of 

the Horticulture Field Laboratory. Daily maximum and minimum temperatures are 

presented in Figure 3.1. Mean monthly maximum and minimum air temperatures were 

calculated (Table 3.1) along with total monthly rainfall and snowfall (Table 3.2).   

The first frost occurred on September 23, September 12, and September 24 in 

2000, 2001, and 2002, respectively. The lowest temperatures were –35oC in February,  

–35 oC in January, and –38oC in March for the years 2001, 2002, and 2003, respectively 

(Figure 3.1). In the experiment year 2001-2002, both the maximum and minimum 

temperatures in March and April were well below the long-term averages (Table 3.1).  
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Figure 3.1 Maximum and minimum daily air temperatures from May 1st to April 30th 
during the study period in Saskatoon, SK, Canada. 
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Table 3.1 Mean monthly maximum and minimum air temperature during the study 
period from May 2000 to April 2003 and long-term average at Saskatoonz. 

 Experiment year 
 2000-2001  2001-2002 2002-2003  30-yr averagez 

Month  Max Min  Max Min Max Min  Max Min 
May 16.8 2.1  19.6 3.5 13.2 -2.9  18.4 4.5 
June 19.4 6.6  21.8 8.2 22.6 8.1  22.6 9.4 
July 23.1 10.3  26.5 12.0 28.3 13.9  24.9 11.4 
Aug. 25.3 11.0  27.9 11.4 21.8 9.9  24.4 10.2 
Sep. 18.9 6.4  21.7 5.7 20.9 8.3  18.0 4.4 
Oct. 14.3 -2.4  8.6 -4.0 6.6 -4.2  10.8 -1.9 
Nov. 1.1 -9.3  4.0 -6.0 -0.8 -9.5  -1.5 -10.9 
Dec. -11.9 -21.5  -7.3 -18.6 -3.0 -13.3  -9.2 -19.3 
Jan. -4.1 -14.8  -9.7 -18.9 -11.3 -22.6  -11.8 -22.3 
Feb. -11.0 -23.6  -3.1 -13.9 -10.5 -21.4  -7.8 -18.2 
Mar. 2.8 -8.1  -7.8 -20.0 -4.1 -15.0  -0.7 -10.9 
Apr. 12.0 -2.9  4.7 -8.5 9.0 -0.8  10.6 -1.9 

z Long-term (1971-2000) average air temperature at Saskatoon International Airport 
(Environment Canada, 2003). 
 
 

Table 3.2 Total monthly rainfall and snowfall during the study period from May 2000 
to April 2003 and long-term average at Saskatoonz. 

 Experiment year 
 2000-2001  2001-2002 2002-2003  30-yr average  

Month  Rain 
(mm) 

Snow 
(cm)  

 Rain 
(mm) 

Snow 
(cm)  

Rain 
(mm) 

Snow 
(cm)  

 Rain 
(mm) 

Snow 
(cm) 

May 18.0 0.0  26.4 0.0   2.8 0.8  46.8   2.2 
June 54.8 0.0  35.6 0.0 50.2 0.0  61.1   0.0 
July 75.2 0.0  53.6 0.0 68.2 0.0  60.1   0.0 
Aug. 40.4 0.0  11.4 0.0 85.4 0.0  38.8   0.0 
Sep. 21.2 1.4  11.2 0.0 37.8 0.2  29.0   1.5 
Oct.   1.2 0.0    7.6 6.4 39.6 13.0    8.6   7.7 
Nov.   1.0 13.6    4.4 8.0   6.2 5.0    2.0 13.4 
Dec.   3.4 23.8    2.0 11.2   1.4 22.0    0.9 18.5 
Jan.   1.8 4.4    0.4 7.8   2.0 9.6    0.6 17.9 
Feb.   0.6 6.0    0.4 8.9   2.6 16.8    0.5 12.3 
Mar.   4.2 3.6    2.0 13.8   4.8 7.6    2.3 14.1 
Apr. 32.2 2.8    9.4 6.6 15.8 17.6  14.4   9.7 

z  Total monthly snowfall and long-term (1971-2000) average rainfall and snowfall at 
Saskatoon International Airport (Environment Canada, 2003). 
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Total rainfall from June to September in the study year 2001-2002 was much 

lower than the long-term average (Table 3.2). The 30 year average total rainfall is 265.2 

mm. The total rainfall was 254.0, 164.4, and 316.8 mm for the experiment year 2000-

2001, 2001-2002 and 2002-2003, respectively.  

The 30 year average snowfall is 97.2 cm. Although the snowfall in 2000-2001 

and 2001-2002 study years was lower than the average, the snowfall was heavy in 

December in those years and did not melt, so the snow cover was relatively uniform for 

the three experiment years. 
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4. FEASIBILITY OF A TIP GRAFTING SYSTEM FOR APPLE 

BREEDING       

 

4.1 Introduction 

Grafting onto mature trees (Sherman and Lyrene, 1983) or dwarfing rootstocks 

(Zimmerman, 1972) has been used to save space in handling seedling populations in 

fruit tree breeding programs. Burbank (1921) grafted more than 500 cherry seedlings 

onto the tips of branches on mature trees to simultaneously test all the seedlings. A 

similar method has been used in pecan breeding programs (Sherman and Lyrene, 1983). 

‘M.9’, the most popular dwarfing rootstocks for apple, is sensitive to winter cold 

(Webster and Wertheim, 2003). The apple breeding program at the University of 

Saskatchewan has been evaluating its selections on more cold hardy ‘Ottawa 3’ 

rootstock. ‘Ottawa 3’ has similar vigor to ‘M.9’ (Domoto, 2003), which dwarfs trees to 

approximately one fourth the size of trees on seedling rootstocks. ‘Ottawa 3’ is 

currently the most widely used rootstocks on the prairies, but is it is considered only 

moderately hardy in Saskatchewan. Crabapple varieties developed in Canada are very 

cold hardy and could be an alternative choice as rootstock particularly if multiple grafts 

are done on each tree. 

Graft transmission from rootstock to scion has been reported in many plants for 

a variety of traits including: branching in poinsettia (Dole and Wilkins, 1992); virus 

resistance in tobacco (Smironv et al., 1997); phytochrome-sensitive flowering in peas 
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(Weller et al., 1997); and phloem protein transportation in heterografts of Cucurbitaceae 

(Golecki et al., 1998). Cold hardiness could also be graft transmitted from rootstocks to 

apple scions. Reports attributing enhanced cold hardiness of grafts to the use of cold 

hardy rootstocks are found for cherry (Palonen and Buszard, 1997), peach (Layne, 1994; 

Layne and Jui, 1994) and apple trees (Westwood, 1970).   

The enhanced cold hardiness of the scions grafted onto the cold hardy rootstocks 

is probably related to cold acclimation. The first stage of cold acclimation in woody 

deciduous perennials involves growth cessation and formation of terminal buds. The 

transition from the first to the second stage of cold acclimation is triggered by low 

temperatures and occurs during leaf drop (Weiser, 1970). Terminal growth cessation 

has been used as an indicator of cold acclimation and cold hardiness (Proebsting, 1978; 

Guak and Fuchigami, 2001; O’Neill et al., 2000). Leaf retention has also been 

correlated with winter injury (Van Adrichem, 1970; Wood and Reilly, 2001). The 

ability of grafting systems to cause cessation in vegetative growth of scions before early 

frost and induce timely leaf drop is unknown and may be an important index of cold 

hardiness.   

A natural or artificial screening system for cold hardiness is required in apple 

breeding programs located in northern latitudes. In this study, two grafting systems 

were proposed for apple breeding: the first, tip grafting system, involved tip grafting 

scions onto the tips of branches of mature crabapple trees and the second, traditional 

grafting system, involved the more traditional approach of grafting the scions onto the 
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base of young ‘Ottawa 3’ rootstocks. The effect of these systems on growth and cold 

hardiness of scions is unknown.   

The objectives of this study were to determine if these two grafting systems 

influenced winter survival of the apple scions, and to determine if either system could 

be used for screening cold hardiness of apple scions. In addition, the relationship of 

winter survival to growth cessation, leaf drop, and vegetative growth was also evaluated. 

4.2 Materials and Method 

4.2.1 Plant Materials     

Two trees of each of four crabapple cultivars: ‘Dauphin’, ‘Garnet’, ‘Trailman’ 

and ‘Fushia Girl’, were used as rootstocks for tip grafts. These eight trees which were 

all on Siberian crabapple seedling rootstocks were ten years old. They showed no signs 

of winter damage, were of similar size, and were located in the same row in the orchard. 

These crabapple trees were used to represent cold hardy rootstocks for tip grafting while 

one-year-old ‘Ottawa 3’ was used as the rootstock for traditional grafting. ‘Ottawa 3’ is 

a dwarf rootstock developed in Ontario, Canada, and is considered less cold hardy than 

crabapple. 

 ‘Golden Delicious’, ‘McIntosh’, and ‘SK Prairie Sun’ were chosen to represent 

apple cultivar scions with a range of inherent cold hardiness. ‘SK Prairie Sun’, a 

cultivar developed at the University of Saskatchewan, was the cold hardiest cultivar 

investigated. ‘McIntosh’, originally selected in Ontario, Canada, represented the 

intermediate cold hardy cultivar. ‘Golden Delicious’, originally selected in West 

Virginia, USA, was the least cold hardy cultivar studied. ‘Ottawa 3’ and the crabapples 

were self and reciprocally grafted as controls.  
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In February 2001, budwood of ‘Golden Delicious’ and ‘McIntosh’ was obtained 

from the Canadian Clonal Genebank, Harrow, Ontario. Budwood of ‘SK Prairie Sun’, 

‘Ottawa 3’ and crabapple was collected in February 2001 from the University of 

Saskatchewan Orchard. The budwood was wrapped with moist paper towels covered 

with polyplastic film and stored at 5°C in a cold room until used in grafting. ‘Ottawa 3’ 

rootstocks were obtained from Treeco Nurseries (Oregon, USA) in February 2001. The 

rootstocks were mixed with moist sawdust and stored at 5oC until grafting. At the end of 

April, buds were chip-budded onto ‘Ottawa 3’ rootstocks and returned to the cold room. 

These were planted in mid-May with the basal grafted buds facing North. In early May, 

buds were chip budded onto the tips of the branches of crabapple trees, with the tip 

grafted buds facing up. Budding was done by hand using Parafilm® (American National 

CanTM, Chicago, IL) to hold buds in place and retain moisture. The stem above the graft 

union was cut in both basal and tip grafts during the 3rd week of May. In 2001, the basal 

grafted trees were irrigated once a week until late August. The crabapple trees were 

watered twice in July and August. In 2002, the basal and tip grafted trees were watered 

twice in July and August. 

4.2.2 Data Collection 

Grafts that were successfully established during the initial growing season were 

recorded on August 17, 2001 (Appendix 1-1). Non-established grafts were considered 

missing data in the analysis.  

Data were collected on apical shoots over a two-year period after grafting, 

except for shoot diameter which was measured as a cumulative variable in 2002. Winter 

survival was calculated as a percentage of the previous season’s growth that had bud 
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break in late-May. Cumulative percentage of terminal growth cessation in each 

experimental unit was recorded in mid-August and again in mid-September, the latter 

being around the first frost. Terminal growth cessation was defined as the point where 

‘apical meristematic tissues were free of visually-recognized leaves’ (Guak and 

Fuchigami, 2001). In 2002, the stage of terminal bud development was also assessed 

using a numerical rating system: 0 = apical meristematic tissues visible with new leaves 

being formed; 1 = apical meristematic tissues with no new leaves being formed; 2 = 

green bud visible, the terminal two leaves fully expanded; 3 = bud tip turned brown; 4 = 

bud scales visible; 5 = bud scales totally formed and brown (Figure 4.1). Under this new 

classification system, terminal growth cessation as defined by Guak and Fuchigami 

(2001) could be classified as stage 1.  Leaf number was counted in mid-September after 

growth cessation and before leaf drop. The number of leaves retained on the shoots was 

determined in both early and late November. Percent leaf drop was calculated from total 

leaf number and leaves retained on the shoots. Shoot length and shoot diameter were 

measured in mid-November. In 2001, shoot length was measured from the grafted bud 

scale scar to the shoot tip using a rubber ruler. In 2002, shoot length was measured from 

the previous year’s terminal bud scale scar to the shoot tip. Shoot diameter was 

measured at the grafted bud scale scar using an electronic digital caliper. Leaf number 

to shoot length ratio was calculated. 

4.2.3 Statistical Analysis 

The experimental design was a split-plot design with four replications, two 

grafting systems as main plots and five scions as sub-plots. Crabapple cultivars were 

nested in different replicates, so differences between the crabapple cultivars were not  
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                                     0                                                                 1 

                                 2                                                                      3                                                           

                               4                                                                         5 

Figure 4.1 Terminal bud stage of apple grafts. 0 = apical meristematic tissues visible 
with new leaves being formed; 1 = apical meristematic tissues with no new leaves being 
formed; 2 = green bud visible, the terminal two leaves fully expanded; 3 = bud tip 
turned brown; 4 = bud scales visible; 5 = bud scales totally formed and brown. 
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analyzed. For each treatment within a replication, 20 buds were taken alternately from 

the budwood and chip budded onto either crabapple rootstocks or ‘Ottawa 3’ rootstocks. 

The SAS program (SAS Institute, 1999) was used for statistical analysis. 

Analysis of variance (ANOVA) was conducted on winter survival and vegetative 

growth using a split-split-plot model, adding year as a source of variation, in the                       

General Linear Model (GLM) program. When the year effect was significant, data were 

analyzed separately for each year, using a split-plot model. ANOVA on terminal growth 

cessation and leaf drop was conducted using a split-split-plot model, adding year as a 

source of variation, using the data from each observation time as a separate variable. 

Means of treatments were separated using a least square means (lsmeans) multiple 

comparison procedure. Percentages of terminal growth cessation and leaf drop were 

subjected to square root arc sine transformation before data analysis as the percent was 

between 0 and 100%. This transformation did not alter the significance of the variable 

affects in AVOVA, nor did it alter the means separation groupings, therefore, the 

untransformed original data were presented in tables. 

Linear regression analysis was done using percentage of winter survival as a 

dependent variable and vegetative growth, terminal growth cessation, terminal bud 

stage, or leaf drop as an independent variable. Vegetative growth was based on leaf 

number, shoot length, leaf number to shoot length ratio, and shoot diameter. Regression 

analysis was done separately for each year using the means of each experimental unit.   
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4.3 Results 

4.3.1 Winter Survival 

The years in which the data were collected did not significantly affect winter 

survival. Differences between scions, grafting systems, and the interaction between 

scions and grafting systems were significant for winter survival (Appendix 1-2). 

Replications were not significantly different for winter survival. 

Autografts of crabapple (crabapple scions onto tip grafting system) had 27.6% 

higher winter survival than autografts of ‘Ottawa 3’ (‘Ottawa 3’ scions onto traditional 

grafting system) (Table 4.1). The tip grafting system significantly increased winter 

survival of apple scions over the traditional grafting system, especially for the cold 

susceptible cultivars. On average, the tip grafting system had 37.1% greater winter 

survival than the traditional grafting system (Table 4.1). With the traditional grafting 

system, winter survival of apple scions was significantly different between cold hardy 

and cold sensitive scions. The cultivar ranking for winter survival within the traditional 

grafting system was: ‘SK Prairie Sun’ > ‘McIntosh’ > ‘Golden Delicious’. By contrast, 

under the tip grafting system, scions of ‘Golden Delicious’ had significantly lower 

winter survival than the other scions (Table 4.1). The tip and traditional grafting 

systems were only moderately correlated for winter survival (r = 0.52, P = 0.0001, n = 

40). 
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Table 4.1 Winter survival (%) of five apple scion cultivars as affected by the tip and 
traditional grafting systems on apical shoots over two years (2001 and 2002) at 
Saskatoon.     

Grafting system Scion 
 Crabapple Ottawa 3 Prairie Sun McIntosh Golden 

Delicious 
Tip grafting system     95.5 az 94.9 a 97.5 a 95.0 a 76.4 bc 
Traditional grafting 
system 

84.8 b 67.9 c 76.2 bc 34.6 d 10.5 d 

z Mean separation by lsmeans multiple comparison procedure at P = 0.05 level. 
Numbers followed by different letters were significantly different.  
 

4.3.2 Cold Acclimation Factors 

Terminal growth cessation was measured twice. Repeated measures analysis 

showed that the pattern of terminal growth cessation for apple cultivars was 

significantly affected by the types of grafting systems over time. There was also a 

significant difference between the results from 2001 and 2002 (Appendix 1-3). Within 

each year, terminal growth cessation differed for the two observation times. Grafting 

systems, scions, and their interaction were significant for terminal growth cessation but 

replication was not a significant factor (Appendix 1-4).  

The terminal growth cessation of scions in the traditional grafting system 

occurred earlier in 2002 than in 2001. In both years, the tip grafting system resulted in 

earlier terminal growth cessation than the traditional grafting system. By mid-August of 

both years, terminal growth cessation had occurred in more than 96% of the test 

samples with the tip grafting system, versus only 25.9% and 53.3% using the traditional 

grafting system in 2001 and 2002, respectively (Figure 4.2). By mid-September, more 

than 98% terminal growth cessation was achieved on scions in the tip grafting system, 

versus 53.8% and 90.3% on scions in the traditional grafting system in 2001 and 2002, 
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respectively. The terminal growth cessation was not significantly different between 

different scions in the tip grafting system. Within the traditional grafting system, 

‘Golden Delicious’, the most tender cultivar, consistently had the lowest percentage of 

terminal growth cessation in the fall relative to other cultivars; ‘McIntosh’, the second 

most cold sensitive cultivar, had the second lowest percentage of terminal growth 

cessation in both years (Figure 4.2). 
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Figure 4.2 Terminal growth cessation (%) of apical shoots of scions for five apple 
cultivars as affected by the tip and traditional grafting systems in mid-August and mid-
September in 2001 and 2002 at Saskatoon. Vertical bars indicate SE.   
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Terminal bud stage was also significantly different for the two observation times. 

Grafting system, scion, and their interaction all showed significant differences, but 

replication was not significant for terminal bud stage (Appendix 1-4). During the 

evaluation period, the tip grafting system induced more advanced terminal bud 

development compared with the traditional grafting system for all five scions (Figure 

4.3). At the end of evaluation period, the tender cultivar ‘Golden Delicious’ had the 

least number of developed terminal buds in both systems. Within the traditional grafting 

system, ‘Golden Delicious’ had the least, ‘McIntosh’ had the second least, and ‘SK 

Prairie Sun’ had the most developed terminal buds.  
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Figure 4.3 Terminal bud stage in apical shoots of scions of five apple cultivars as 
affected by the tip and traditional grafting systems in mid-August and mid-September in 
2002 at Saskatoon. Vertical bars indicate SE. Terminal bud stage: 0 = apical 
meristematic tissues visible with new leaves being formed; 1 = apical meristematic 
tissues with no new leaves being formed; 2 = green bud visible, the terminal two leaves 
fully expanded; 3 = bud tip turned brown; 4 = bud scales visible; 5 = bud scales totally 
formed and brown (Figure 4.1).    
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Percentage of terminal growth cessation was positively correlated with winter 

survival at both observation times and in both years, but the correlation in mid-

September of 2001 was higher than at the other sampling dates (Table 4.2). In 2002, 

terminal bud stage was positively correlated with winter survival at both sampling times 

but with a higher correlation in mid-September (r=0.71 and 0.85 in mid-August and 

mid-September, respectively). 

 

Table 4.2 Estimated correlation (r) between winter survival (%) and various 
independent variables of scions of five apple cultivars in the tip and traditional grafting 
systems in 2001 and 2002 at Saskatoonz. 

Year Independent variable  Observation time 
2001 2002 

Terminal growth cessation (%) mid-Aug.   0.76 ***   0.76 *** 
  mid-Sep.   0.90 ***   0.75 *** 
Terminal bud stage  mid-Aug.    --------   0.71 *** 
 mid-Sep.    --------   0.85 *** 
Leaf drop (%) early-Nov.   0.43 **   0.19 ns 
  late-Nov.   0.54 ***   0.43 ** 

Leaf no. mid-Sep. -0.73 *** -0.63 *** 
Shoot length (cm) late-Nov. -0.73 *** -0.72 *** 
Leaf no./shoot length  mid-Sep./late Nov.  0.66 ***  0.51 *** 
Cumulative shoot diameter (mm) late-Nov.    -------- -0.45 ** 
z Estimated correlation was obtained with regression analysis done separately for each 
year using the means of each experimental unit. Data were sampled in the apical shoots 
of grafted scions except for cumulative shoot diameter which was sampled at the 
grafted bud scale scar.  
ns,  **, and *** not significant at P = 0.05 level, and significant at P = 0.01, 0.001 level, 
respectively. 
 

 

Percentage of leaf drop was significantly different for both years and 

observation times (Appendix 1-5). When analyzed separately for each year, cultivar 

scion had a significant influence on leaf drop both in 2001 and in 2002. The influence 
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of grafting system on leaf drop was significant in 2001 but not in 2002. The interaction 

between grafting system and scion was significant only in 2001. Replication was not 

significant in 2001 but was significant in 2002 (Appendix 1-6). 

Leaf drop of scions was greater in the tip grafting system than the traditional 

grafting system in 2001, but in 2002, leaf drop in these two grafting systems was similar 

(Figure 4.4). Crabapple scions had the highest leaf drop within each grafting system in 

both years. Within the tip grafting system, ‘Golden Delicious’ and ‘McIntosh’ had the 

least leaf drop; in contrast, within the traditional grafting system, ‘Ottawa 3’ and 

‘McIntosh’ had the least leaf drop (Figure 4.4). 

Figure 4.4 Leaf drop (%) of apical shoots of scions for five apple cultivars as affected 
by the tip and traditional grafting systems in early and late November in 2001 and 2002 
at Saskatoon. Vertical bars indicate SE.   
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The correlation between winter survival and leaf drop was only moderate (Table 

4.2). In 2001, leaf drop was positively correlated with winter survival, with a higher 

correlation in late November (r = 0.54) than in early November (r = 0.43) (Table 4.2). In 

2002, leaf drop was positively correlated with winter survival only in late November (r 

= 0.43).  

4.3.3 Growth Factors 

 Significant sources of variation for leaf number, shoot length, and leaf number 

to shoot length ratio are summarized in Appendix 1-7. Significant sources of variation 

for cumulative shoot diameter are presented in Appendix 1-8.   

 Rootstocks influenced growth responses of the scions (Table 4.3). Shoots in the 

tip grafting system averaged 15 cm shorter than those in the traditional grafting system. 

Leaf numbers were lower for tip grafts by approximately 10 leaves. Within the 

traditional grafting system, ‘Golden Delicious’ and ‘McIntosh’ had the longest shoot 

lengths and highest leaf numbers; in contrast, within the tip grafting system, leaf 

numbers were not significantly different among the cultivar scions (Table 4.3).  

Although the tip grafting system decreased both shoot length and leaf number of 

the apple scions, the mean leaf number to shoot length ratio under this system was 3.2 

times greater than in the traditional grafting system. Within the tip grafting system, 

‘Ottawa 3’ scions had the highest leaf number to shoot length ratio (6.7) and crabapple 

had the lowest (3.4). There was no significant difference in leaf number to shoot length 

ratio within the traditional grafting system (Table 4.3). Scions of crabapple in the tip 

grafting system and ‘Ottawa 3’ in the traditional grafting system had the smallest and 
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largest shoot diameter, respectively. The tip grafting system decreased shoot diameter 

by 50% over two years (4.59 mm vs. 9.09 mm).  

Leaf number, shoot length, and shoot diameter were negatively and leaf number 

to shoot length ratio was positively correlated with winter survival in both years, but the 

correlation was low for leaf number, leaf number to shoot length ratio and shoot 

diameter (Table 4.2). 

 

Table 4.3 Leaf number, shoot length, leaf number/shoot length and cumulative shoot 
diameter of scions of five apple cultivars as affected by the tip and traditional grafting 
systems over two years (2001 and 2002) at Saskatoonz. 

Grafting system Scion 
 Crabapple Ottawa 3 Prairie Sun McIntosh Golden 

Delicious 
 -----------------------------Shoot length (cm)-------------------------- 
Tip grafting system     7.3 ey   4.0 fg   3.3 g   3.6 fg   5.6 ef 
Traditional grafting 
system 

19.7 c  17.9 cd 15.6 d 25.8 b 35.3 a 

 ------------------------------Leaf number-------------------------------- 
Tip grafting system   10.0 ey 10.0 e   9.2 e   8.5 e   9.7 e 
Traditional grafting 
system 

15.3 d  18.8 bc 17.4 cd 20.9 ab 23.6 a 

 -------------------------Leaf number/shoot length --------------------- 
Tip grafting system   3.4 cy 6.7 a 5.5 b 5.3 b 3.8 c 
Traditional grafting 
system 

1.3 d  1.5 d 1.7 d 1.2 d 0.8 d 

 ----------------------Cumulative shoot diameter (mm)----------------
Tip grafting system   3.80 ey 4.70 de 4.86 d 4.67 de 4.93 d 
Traditional grafting 
system 

8.88 bc  11.04 a 8.41 bc 7.93 c 9.20 b 

z  Data were sampled in apical shoots and pooled over two years, except for cumulative 
shoot diameter which was sampled at the grafted bud scale scar only in 2002.  
yMean separation by lsmeans multiple comparison procedure at P = 0.05 level. Numbers 
followed by different letters were significantly different. 
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4.4 Discussion  

4.4.1 Winter Survival  

The winter survival of scions agreed with expectations of the inherent 

differences in the relative hardiness ranking of the three cultivars studied: ‘SK Prairie 

Sun’ > ‘McIntosh’ > ‘Golden Delicious’, with the differences more profound in the 

traditional grafting system than the tip grafting system. This study found that the 

average winter survival of the apple scions was greatly increased by the tip grafting 

system (91.9%) as compared with the traditional grafting system (54.8%). As shown in 

Table 4.1, the increase tended to obscure differences in the inherent cold hardiness of 

the scions. Tip grafting improved winter survival of scions of ‘McIntosh’ from 34.6% to 

95.0%, reaching a level with no detectable difference from ‘SK Prairie Sun’ (97.5%). 

The results indicated that selection for inherent cold hardiness of scions cannot be done 

based on the tip grafting system using hardy crabapple trees as rootstocks. 

 Unexpectedly, tip grafted ‘Golden Delicious’ had an average of 76% winter 

survival over two years compared to the traditionally grafted ‘Golden Delicious’ that 

had only 10.5% winter survival.  There are no previous reports that indicated ‘Golden 

Delicious’ had survived -38oC as had occurred in 2002 although ‘Golden Delicious’ 

was found to have a T10 of -33oC when properly acclimated (Chilton et al., 1994). These 

results suggested that tip grafting onto crabapple trees could be a valuable method for 

maintaining non-hardy germplasm for breeding programs. It could also be used to 

maintain hybrids that are the results of hardy parents crossed to non-hardy parents, thus 

assisting in the introgression of genes into hardy germplasm.  
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The results agreed with other studies that cold hardiness of scions can be 

affected by rootstocks (Layne, 1994; Lu and Bors, 2004; Westwood, 1970), but the 

exact cause of enhanced winter survival is a complicated issue. Some of the differences 

between the two systems were likely due to inherent cold hardiness differences between 

‘Ottawa 3’ and crabapples, which were demonstrated by data from autografts and 

reciprocal grafts in this study. Another difference is the relative sizes of scions to 

rootstocks. With the traditional grafting system, scions and rootstocks have similar 

biomass, but with the tip grafting system the scions make up less than 1% of the tree’s 

biomass. Under the tip grafting system, chemicals being freely translocated between 

rootstocks and scions would be primarily from the rootstocks, with less influence from 

the scions. If cold hardiness can be so dramatically altered by tip grafting, perhaps it can 

be a useful tool for studying other translocated factors and signal transduction. While 

dramatically improved, the tip grafting system did not increase the survival of ‘Golden 

Delicious’ to the level of the other cultivars, which suggests that not all factors involved 

in cold hardiness are translocated.   

There are also different microclimates for scions under the two systems. The 

traditional grafts are located close to the ground and would be more influenced by 

ground temperatures, radiant heat and snow cover, whereas the tip grafts are more 

influenced by air temperatures. Air temperatures are much colder than soil temperatures 

in winter and the tip-grafts would be more exposed to wind and subsequent desiccation.  

These later factors should have contributed to decreased winter survival of tip grafts but, 

evidently, other factors had a greater influence on winter survival.   
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4.4.2 Cold Acclimation Factors Related to Winter Survival 

 Tip grafting onto crabapple trees induced early termination of growth and 

advanced terminal bud development for all the scions (Figure 4.2, Figure 4.3). In 

contrast, terminal growth cessation and bud development under the traditional grafting 

system varied according to the inherent cold hardiness of the scions. Cold sensitive 

scions had delayed terminal growth cessation, while cold hardy scions expressed early 

terminal growth cessation. ‘Golden Delicious’, a cold sensitive cultivar, ceased 

vegetative growth late in the season. ‘McIntosh’, a more cold hardy cultivar, had an 

intermediate terminal growth cessation. ‘SK Prairie Sun’, a cold hardy cultivar 

developed in the high latitudes, stopped growing early. A similar phenomenon for 

terminal growth cessation was observed with Douglas firs obtained from various 

latitudes (Hurme et al., 1997).  

By mid-September in 2002, 99.5% of scions under the tip grafting system had 

terminal growth cessation, but the developmental stages were different. For example, 

the tip grafts of ‘McIntosh’ and ‘Golden Delicious’ had 100% terminal growth cessation, 

but the terminal bud stages were less advanced compared with those scions of other 

cultivars. The terminal bud stage had a higher degree of correlation with winter survival 

(r = 0.85) than the percentage of terminal growth cessation (r = 0.75). Therefore, the 

terminal bud stage was a more accurate indicator of winter survival. In this study, an 

advanced terminal bud stage in mid-August and mid-September was closely related to 

increased winter survival. The first frost usually occurs in early September in the study 

area, so terminal bud stage around the first frost would appear useful for predicting 

winter survival.  
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Leaf drop evaluated in late November had only a moderate positive correlation 

with cold hardiness, and early November observations had even lower correlations. In 

raspberries, researchers have had conflicting results correlating leaf drop with winter 

hardiness (van Adrichem, 1970; Zatylny et al., 1996). The results in the current study 

indicated that leaf drop in apple is not as reliable as terminal growth cessation and 

terminal bud stage for predicting winter survival. The less cold hardy cultivar ‘Golden 

Delicious’ had higher leaf drop than ‘McIntosh’ in this study.  

For practical applications in breeding, terminal bud developmental stage is much 

easier to use than leaf drop; it can be done earlier in the season than leaf drop and it 

requires only one observation at the time of frost. Conversely, leaf drop data requires 

two observations; to establish a baseline and later to determine leaves remaining.   

4.4.3 Growth Factors Related to Winter Survival 

Both the tip grafting system using crabapple trees and the traditional grafting 

system using ‘Ottawa 3’ rootstocks resulted in the growth factors of the scions, such as 

shoot length, leaf number, leaf number to shoot length, and shoot diameter, 

approximating the growth responses of their respective rootstocks. This result was in 

agreement with that found on sour cherry and saskatoon berry, in which the vegetative 

growth of scions approximated the rootstocks (Lu and Bors, 2004). Dole and Wilkins 

(1991, 1992) found the free branching characteristic in poinsettia was altered by the 

rootstocks, and a similar result was found on leaf morphology changes induced by the 

rootstock in tomato (Kim et al., 2001). It is safe to conclude that the growth factors 

were influenced by the rootstocks regardless of the types of grafting system used. 
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  Tip grafting shortened shoot length, which may due to the induced early 

terminal growth cessation. Shoot length is also related to dwarfing characteristics. 

Crabapple had longer shoot length but higher winter survival than ‘Ottawa 3’. The other 

growth factors, such as leaf number to shoot length ratio and shoot diameter were only 

moderately correlated with winter survival. For example, basal grafts of ‘Ottawa 3’ 

were not the cold hardiest, but they had the highest leaf number to shoot length ratio 

and shoot diameter. In contrast, scions on the tip system on crabapple rootstocks had the 

highest winter survival, but they had the smallest shoot diameter. Overall, the growth 

factors are not as feasible as terminal bud stage as indicators for cold hardiness, because 

it is more difficult to measure the growth factors than terminal bud stage and the 

correlation was lower.  

4.4.4 Graft Transmission of Cold Hardiness   

The results from this study indicated that cold hardiness can be graft transmitted 

from rootstocks to scions. The rootstocks were 10-year-old crabapple and 1-year-old 

‘Ottawa 3’ in the tip grafting system and traditional grafting system, respectively. 

Compared to autografts, the less cold hardy ‘Ottawa 3’ scions grafted onto the cold 

hardy mature crabapple trees (cold hardy rootstock) showed increased winter survival. 

On the other hand, the cold hardy crabapple scions grafted onto the less cold hardy 

young ‘Ottawa 3’ rootstocks (less cold hardy rootstock) showed decreased winter 

survival. Graft transmission also influenced terminal growth cessation and terminal bud 

stages, cold acclimation factors that are closely related to winter survival.  

It has long been known that viruses use the phloem to establish a systemic 

infection. Long-distance transmission of phytohormones (Jackson, 1997), mRNA (Kim 
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et al., 2001), and structural phloem proteins (Golecki et al., 1998) was observed through 

the phloem in reciprocal grafts. Molecular studies have identified many genes that are 

induced or upregulated by cold acclimation. A generic pathway for the transduction of 

cold acclimation signals in plants starts with signal perception, followed by the 

generation of secondary messengers, and finally targets proteins directly involved in 

transcription factors controlling specific sets of stress-regulated genes (Xiong et al., 

2002). Heterografting systems indicated transmission of mRNA signals in plants (Kim 

et al., 2001; Haywood et al., 2002). It is reasonable to speculate that in a grafting system 

the alteration of cold hardiness of a scion by a rootstock is through the transduction of 

cold acclimation signals.   

4.5 Conclusions 

Tip grafting onto crabapple trees increased winter survival of apple scions 

significantly compared to the traditional grafting system of grafting scions onto ‘Ottawa 

3’ rootstocks. Regardless of the types of grafting system, cold hardiness was graft 

transmitted from rootstocks to scions. The tip grafting system could be used to conserve 

less cold hardy parental materials and handle seedling populations in breeding programs. 

The traditional grafting system of grafting onto ‘Ottawa 3’ rootstocks was better able to 

differentiate between varieties for cold sensitivity and may be a better screening tool 

than tip grafting onto crabapple trees for predicting cold hardiness of scions in a 

breeding program.   

The tip grafting system accelerated terminal growth cessation and induced early 

leaf drop of scions relative to the traditional grafting system. This likely resulted in 

earlier onset of cold acclimation and enhanced winter survival. Terminal growth 
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cessation and terminal bud developmental stage were positively correlated with winter 

survival in this study compared with leaf drop and vegetative growth factors. This 

indicated that under natural conditions, cold acclimation factors, especially terminal bud 

developmental stage, can be used to predict the initiation and extent of cold acclimation 

and winter survival.   
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5. EFFECT OF A TIP GRAFTING SYSTEM ON JUVENILITY AND 

COLD HARDINESS IN SOUR CHERRY HYBRIDS AND SASKATOON 
BERRY SEEDLINGS 

 
  

 5.1 Introduction 

 To develop new fruit cultivars, breeders need to evaluate fruit and tree 

characteristics as early as possible. A long juvenile period represents a major 

impediment to rapid screening. Shortening the juvenile phase can shorten the selection 

cycle and thus decrease the costs of a breeding program. Burbank’s (1921) success with 

tip grafting cherry seedlings onto mature trees presents a method which may promote 

early transition from the juvenile to the adult phase, but his study did not mention 

details such as seedling age or size, nor were proper controls utilized. Vegetative 

growth is closely related to reproductive development (Buban and Faust, 1982) and the 

vigor of vegetative growth as measured by trunk diameter is negatively correlated with 

the juvenile period of apple and pear seedlings (Visser, 1964). The vegetative growth of 

the scions can be affected by the rootstocks, thereby influencing the juvenility of the 

scions. In tip grafting systems, the effects of rootstocks on vegetative growth and 

juvenility of scions are unknown. 

In most woody perennials, cold hardiness is developed through cold acclimation. 

The cessation of vegetative growth is a prerequisite for cold acclimation in woody 

perennials and maximum hardiness occurs after leaf abscission (Weiser, 1970; 

Fuchigami et al., 1971; Arora et al., 1992). Consequently, terminal bud formation and 
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leaf drop could be used as indicators of cold acclimation and cold hardiness (Proebsting, 

1978; Guak and Fuchigami. 2001; Wood and Reilly, 2001).  

Sour cherry and saskatoon berry were selected for this study because they are 

important bush fruit in Saskatchewan, the former being intensively tested as a new crop 

and the latter having the largest acreage in Saskatchewan. Both sour cherry and 

saskatoon berry plants have relatively short juvenile periods that make them suitable 

models to study the effect of a tip grafting system on juvenility. Saskatoon berry plants 

are native and widely distributed in western North America. They are well adapted to 

cold northern climates. Sour cherry is not native to Saskatchewan. Through breeding it 

had been adapted to this area, but it represents the northern most limit of where sour 

cherry is grown in North America. The cold hardy nature and cold acclimation patterns 

of these two species make them useful to study the phenological development related to 

cold hardiness.   

The objectives of this study were to determine the effect of a tip grafting system 

on juvenility and cold hardiness of scions of sour cherry and saskatoon berry seedlings. 

The response of tip grafted scions associated with juvenility and cold hardiness were 

also evaluated. 

5.2 Materials and Methods 

5.2.1 Plant Materials and Experimental Design 

Two types of sour cherry hybrid seedlings were chosen as scion donors and 

rootstocks, respectively (Figure 5.1). In Figure 5.1 it can be observed that the seedling 

used for rootstocks has a higher percentage of ancestors from cold regions and it is 

expected that these rootstocks would be more cold hardy than the scion donors. ‘Kerr’s 
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Easy Pick’ is considered the hardiest as it was selected in Prince Albert, Saskatchewan 

after particularly cold winters in the 50’s and has the hardy species P. fruticosa in its 

linkage. ‘Cacanski Rubin’ may be the next most hardy genotype as it was selected in 

Poland followed by ‘Northstar and lastly ‘Erdi Jubileum’.   

 

 

Figure 5.1 Pedigree of the two types of sour cherry hybrid seedlings used as rootstocks 
and scion donors in this study. These plants were bred at the University of 
Saskatchewan. Names in parentheses indicate origin.   
 

 

In spring 2000, three reproductively mature eight-year-old rootstock seedlings 

on their own roots that displayed uniform vegetative growth and no winter kill 

symptoms were chosen to receive tip grafts. The juvenile seedlings on their own roots 
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(scion donor) were grown in the field with a spacing of 0.33 m between plants within 

rows. Thirty one-year-old, juvenile scion donor seedlings were randomly chosen for 

collecting scions. Three buds from each scion donor were individually tip grafted onto 

the three rootstocks in early May 2000 (tip grafts). 

In spring 2000, the scion donors for saskatoon berry plants were the open 

pollinated progeny of the variety ‘Nelson’. This variety is a multi-stemmed, compact 

shrub that grows to 1.5 m. The one-year-old, juvenile seedlings were grown in 210mm 

x 210 mm sized pots and 40 seedlings were randomly selected as scion donors. Three 

reproductively mature six-year-old trees of the saskatoon berry cultivar ‘Pembina’, on 

their own roots, were chosen as rootstocks based on their uniform vegetative growth. 

Both ‘Nelson’ and ‘Pembina’ are native to Saskatchewan, widely grown by growers, 

and considered to be very cold hardy in this location. Three buds from each juvenile 

seedling were individually tip grafted onto the three mature rootstocks in early May 

2000 (tip grafts). After grafting, the juvenile seedlings on their own roots (scion donors) 

were transplanted into the field with a spacing of 0.33 m between plants within rows.  

For both sour cherry and saskatoon berry, chip budding was done by hand using 

Parafilm® to hold buds in place and retain moisture. The stems above the graft unions 

were cut off immediately after budding. All the scion donors and rootstocks with tip 

grafts were irrigated when needed.  

A completely random design was used with three sampling populations: 

rootstocks, tip grafts, and scion donors. One shoot on each juvenile seedling on its own 

roots that had similar vigor to the shoot from which the three buds were taken was 

sampled for each scion donor. In scion cherry plants, one non-grafted shoot at a similar 
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height and vigor to the shoot on which the scion was grafted was sampled corresponded 

to one tip graft. Of the 90 scions grafted in sour cherry, only 41 were established 

including 26 scion donors. Therefore, 26 scion donors, 41 tip grafts, and 41 non-grafted 

shoots in rootstocks (rootstocks) were evaluated. In saskatoon berry plants, six non-

grafted shoots on each rootstock at a similar height and vigor to the shoots on which the 

scions were grafted were chosen to gather data for each rootstock. There were 31 scion 

donors, 40 tip grafts, and 18 non-grafted shoots in rootstocks (rootstocks) evaluated. 

5.2.2 Data Collection 

Data were gathered from the three sampling populations two growing seasons 

after grafting. In the spring of 2002, flowering and winter dieback were evaluated. 

Flowering was assessed when flower buds were at approximately the full bloom stage. 

The shoots were scored as either one (with more than one flower) or zero (with no 

flowers) and the flower number was also recorded. Winter shoot dieback in sour cherry 

was assessed as the percentage of shoot length that had dieback. In saskatoon berry 

plants, since the winter dieback was present only in terminal buds, terminal bud survival 

was assessed on apical shoots as dead (one) or alive (zero). This binomial system was 

also used on the sour cherry plants.  

Terminal bud stage was assessed on apical shoots in mid-September for sour 

cherry and in mid-July for saskatoon berry in 2001 by scoring the buds using the 

following six stages, as shown in Figure 4.1:   

0 = apical meristematic tissues visible with new leaves being formed;  

1 = apical meristematic tissues with no new leaves being formed;  
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2 = green bud visible, the terminal two leaves fully expanded;  

3 = bud tip turned brown;   

4 = bud scale visible;  

5 = bud scale totally formed and brown.  

Total leaf number was counted in September after the terminal buds had 

completely formed. Leaf retention was quantified by the percentage of leaves retained 

on the shoots in late October. Percent leaf drop was calculated from leaf retention. 

Vegetative growth was assessed by measuring shoot length and shoot diameter in 

November 2001 after leaf fall. Shoot length was measured on apical shoots from the 

bud scale scar to the shoot tip from each growing season and was added up for total 

shoot length of two growing seasons. Shoot diameter was measured at the bud scale 

scar of two-year-old shoots from 2000.   

5.2.3 Statistical Analysis 

SAS program (SAS institute, 1999) was used for statistical analysis. All 

binomial data were analyzed using the GENMOD procedure. Other data, e.g. vegetative 

growth, terminal bud stage and leaf drop were analyzed using the GLM procedure. 

Means were separated using the lsmeans multiple comparison procedure.  

5.3 Results   

5.3.1 Flowering and Winter Dieback 

Tip grafting significantly affected flowering in sour cherry (Appendix 2-1, 

Appendix 2-2) and saskatoon berry (Appendix 2-3, Appendix 2-4). All the non-grafted 

shoots on the mature rootstocks flowered in both sour cherry and saskatoon berry 
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(Table 5.1). In sour cherry, four times more shoots with flowers were found on the scion 

donors compared to the tip grafts (42.3% vs. 9.8%). The flower number for sour cherry 

was also much higher on the scion donors (1.4) than on tip grafts (0.2). In contrast, in 

saskatoon berry the tip grafts had more shoots with flowers compared to scion donors 

(70.0% vs. 22.6%). The number of flowers produced was much higher on the tip grafts 

(10.2) than the scion donors (2.0). 

 

Table 5.1 Floweringz of rootstocks, tip grafts and scion donors of sour cherry and 
saskatoon berry plants two growing seasons after grafting in the spring of 2002 at 
Saskatoon.  

 Sour cherry  Saskatoon berry 
Sample 
populations 

n Shoots with 
flowers (%) 

Flower no.  n Shoots with 
flowers (%) 

Flower no.

Rootstocks   41   100 ay 2.5 a  18 100 a  6.3 a 
Tip grafts   41   9.8 c 0.2 c  40 70.0 b 10.2 a 
Scion donors  26 42.3 b 1.4 b  31 22.6 c   2.0 b 
z Data were sampled on shoots over two growing seasons.  
y Numbers followed by different letters within a column were significantly different at  
P = 0.05 level. 
 
 
 

In sour cherry plants, the tip grafting system significantly reduced winter 

dieback as measured by shoot length dieback (Appendix 2-1) and terminal bud death 

(Appendix 2-2). No shoot winter dieback symptoms were found on the mature 

rootstocks and there was no significant difference in winter dieback between tip grafts 

and rootstocks (Table 5.2). Significantly fewer terminal buds died in the tip grafts than 

the scion donors (4.9% vs. 69.2%). The percent dieback of individual shoots was also 

lower in tip grafts relative to scion donors (0.5% vs. 3.4%).  



 

 62

In saskatoon berry, the tip grafting system had no significant effect on cold 

hardiness as measured by percent shoots with dead terminal buds (Appendix 2-4). There 

was no terminal bud death on the mature rootstocks, and the percentage of terminal bud 

death was similar between the tip grafts and scion donors, at only approximately 12% 

(Table 5.2). 

Table 5.2 Winter dieback z of rootstocks, tip grafts and scion donors of sour cherry and 
saskatoon berry plants two growing seasons after grafting in the spring of 2002 at 
Saskatoon.  

 Sour cherry Saskatoon berry 
Sample 
populations 

n Terminal bud 
death (%) 

Shoot dieback 
(%) 

n Terminal bud 
death (%) 

Rootstocks   41 0.0 by 0.0 b 18 0.0 a 
Tip grafts   41 4.9 b 0.5 b 40 12.4 a 
Scion donors   26      69.2 a 3.4 a 31 12.9 a 
z Data were sampled on one-year-old apical shoots.     
y Numbers followed by different letters within a column were significantly different at  
P = 0.05 level. 
 
 

5.3.2 Terminal Bud Stage and Leaf Drop  

In sour cherry plants, the effects of tip grafting on terminal bud stage and leaf 

drop were significant (Appendix 2-1). The tip grafting system enhanced terminal bud 

development (Table 5.3). The scion donors continued to grow into September, while the 

terminal buds on the rootstocks and tip-grafts had formed by mid-August (data not 

shown). Data collected in mid-September indicated that the terminal buds of rootstocks 

and tip grafts were more advanced than those of scion donors.   

In saskatoon berry plants, tip grafting had no significant effect on terminal bud 

stage but leaf drop was significantly different among the three sampling populations 

(Appendix 2-3). The tip grafting system appeared to delay terminal bud development in 
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saskatoon berry seedlings, although this effect was not significant at P = 0.05 level 

(Table 5.3). The terminal buds of the shoots from the three sample populations had all 

formed by the end of July.  

The tip grafting systems on both sour cherry and saskatoon berry plants 

enhanced leaf drop over scion donors. In general, leaf drop of rootstocks > tip grafts > 

scion donors (Table 5.3).  

 
 
 
Table 5.3 Terminal bud stagez and leaf drop of rootstocks, tip grafts and scion donors of 
sour cherry and saskatoon berry plants on one-year-old apical shoots two growing 
seasons after grafting in the fall of 2001 at Saskatoon.  
 Sour cherry Saskatoon berry 
Sample 
populations 

n Terminal bud 
stage 

(14-Sep) 

Leaf drop 
(%) 

(31-Oct) 

n Terminal bud 
stage        

(14-July) 

Leaf drop 
(%) 

(19-Oct) 
Rootstocks  41   5.0 ay 96.6 a 18 4.0 a        100 a  
Tip grafts  41  4.7 a 78.7 b 40 3.8 a 42.9 b 
Scion donors 26  2.7 b 47.8 c 31 4.2 a 31.4 c 
z Terminal bud stage: 0 = apical meristematic tissues visible with new leaves being 
formed; 1 = apical meristematic tissues with no new leaves being formed; 2 = green bud 
visible, the terminal two leaves fully expanded; 3 = bud tip turned brown; 4 = bud 
scales visible; 5 = bud scales totally formed and brown (Figure 4.1).    
y Numbers followed by different letters within a column were significantly different at  
P = 0.05 level. 

 

5.3.3 Vegetative Growth   

The tip grafting system significantly affected the vegetative growth in both sour 

cherry (Appendix 2-1) and saskatoon berry plants (Appendix 2-3). The vegetative 

growth of tip grafts corresponded with the bushes onto which they were grafted (Table 

5.4). In sour cherry plants, tip grafts had an 84% decrease in shoot length and a 76% 

decrease in shoot diameter relative to the scion donors. In saskatoon berry plants, the tip 
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grafting system increased shoot length by 257% and shoot diameter by 42% compared 

with scion donors. 

 

Table 5.4 Shoot length and shoot diameterz of rootstocks, tip grafts and scion donors of 
sour cherry and saskatoon berry plants two growing seasons after grafting in the fall of 
2001 at Saskatoon.  

   Sour cherry  Saskatoon berry  
Sample 
populations 

n 
 

Shoot 
length 
(cm) 

Shoot 
diameter 

(mm) 

 n 
 

Shoot  
length 
(cm) 

Shoot 
diameter 

(mm) 
Rootstock  41   13.1 by   2.48 b  18 30.2 a 4.02 b 
Tip grafts 41   12.4 b   3.01 b  40 34.7 a 4.62 a 
Scion donors 26 101.6 a 12.53 a  31   9.7 b 3.26 c 

z Data were sampled on apical shoots over two growing seasons for total shoot length 
and at the base of two-year-old shoots for accumulative shoot diameter.  
y Numbers followed by different letters within a column were significantly different at  
P = 0.05 level. 
 
 
 
 5.4 Discussion 

5.4.1 Effect of Tip Grafting System on Cold Hardiness   

In sour cherry plants, the rootstocks used in the tip grafting system were very 

cold hardy and the cold hardiness of tip grafts was significantly increased by the 

rootstocks relative to the scion donors. This finding was in agreement with that of 

Chapter 4 that regardless of grafting systems used, rootstocks affected the cold 

hardiness of scions. The effect of the tip grafting system on enhancing cold hardiness 

could be due to early growth cessation and leaf drop. Terminal bud stage and leaf drop 

were negatively correlated with winter shoot dieback (r = -0.50 and -0.40, respectively, 

p = 0.0001, n= 108). Earlier growth cessation and leaf drop lead to an earlier initiation 

of cold acclimation and decrease the risk of cold injury (Weiser, 1970), because the 
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most severe low temperature injury to fruit trees usually occurs in late fall or early 

winter. Under such conditions cold acclimation is of prime importance (Westwood, 

1970). Since tip grafting increased the cold hardiness of sour cherry seedlings, it can be 

used for conservation of non-hardy germplasm, but it would not be useful for screening 

of cold hardiness of scions.   

 In saskatoon berry plants, the tip grafting system had no significant influence on 

winter dieback. In both the tip grafts and scion donors, approximately 12% of the shoots 

had terminal bud death. The fact that tip grafting had little effect on cold hardiness of 

saskatoon berry plants is likely due to the inherent cold hardy nature of this species. 

Saskatoon berry plants, native to the Canadian prairies, are well adapted to our climate. 

Terminal buds had formed by early July in both the tip grafts and scion donors (Table 

5.3). Kaurin et al. (1984) also found that the time of onset of vegetative maturity (the 

stage of development at which removal of leaves will no longer stimulate lateral bud 

break (Seibel and Fuchigami, 1978)) in the saskatoon berry cultivar ‘Smoky’ occurred 

very early in summer (29 May) and the initiation of cold acclimation was correlated 

with the cessation of growth. In 2001, the first frost occurred on September 12; 

therefore, there was enough time for cold acclimation development in the shoots from 

all the three sample populations in saskatoon berry plants. This early cessation of 

terminal growth results in the adaptation to cold environmental stress of this native 

species.  

5.4.2 Effect of Tip Grafting System on  Juvenility   

The rootstocks in both tip grafting systems all flowered, but the flowering 

responses of tip grafts were crop-dependent. In sour cherry plants, the tip grafting 
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system reduced flowering by 77%, decreased shoot length by 84% and shoot diameter 

by 76% compared to scion donors. In saskatoon berry plants, the tip grafting system 

enhanced flowering by 68%, increased shoot length by 257% and shoot diameter by 

42% relative to the scion donors. These results indicated that the effect of the tip 

grafting systems on flowering may not be through graft transmission of mature status 

but rather though graft transmission of vigor from the rootstock to scions. For young 

seedlings, the flower bud induction may be closely related to vegetative growth. Any 

reduction in vegetative growth may restrict flower bud induction, while improved 

vegetative growth enhances flower bud induction. Visser (1964) also concluded that 

there was a significantly negative correlation between the juvenile period and the vigor 

of the seedling (as measured by trunk diameter). The finding that the vigor of young 

seedlings influenced flowering of the young seedlings is in agreement with results in 

other species, such as apples and pears (Visser, 1964; 1965; Visser et al., 1976; 

Zimmerman et al., 1970; Zimmerman, 1971, 1977). In young seedlings, the juvenile 

period could be shortened by promoting their vegetative growth. If the young seedlings 

show good vigor of vegetative growth then tip grafting is not necessary, but if they lack 

vigor, tip grafting might be beneficial. 

5.5 Conclusions 

In the sour cherry experiment, the tip grafting system reduced the vegetative 

growth of the scions and accelerated growth cessation when compared with scion 

donors. The shoots were delayed in attaining the minimum size for flower initiation, 

and consequently, floral bud development was retarded. It is known that earlier growth 

cessation leads to an earlier onset of dormancy and decreases the risk of cold injury. 
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While the tip grafting system did not enhance flowering, it did increase cold hardiness 

of the sour cherry seedlings. Thus tip grafting is not suitable for the purpose of early 

evaluation of fruit quality but is beneficial in conservation of non-hardy germplasm in 

the sour cherry breeding program.  

Tip grafting of saskatoon berry increased vegetative growth compared with scion 

donors and consequently enhanced flower bud induction. The tip grafting system on 

saskatoon berry plants provided fruit one year earlier compared to the scion donors. The 

tip grafting system appeared to have no effect on cold hardiness of scions as the scions 

and rootstocks had similar cold hardiness. The very cold hardy characteristic of this 

species is likely due to the very early growth cessation. 
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6. GENERAL DISCUSSION AND FUTURE RESEARCH 

 

 6.1 General Discussion and Conclusions 

When breeding woody fruit species, early selection for precocity, cold hardiness, 

and fruit quality is very important due to the long juvenile period and large plant size. 

This study was initiated to test the feasibility of a tip grafting system for evaluation of 

cold hardiness of scions for apple breeding and to study the effect of tip grafting on 

juvenility and cold hardiness of scions in sour cherry hybrids and saskatoon berry 

seedlings. It was also intended to determine the correlation of cold hardiness with 

vegetative growth and cold acclimation factors in an effort to identify the physiological 

markers for cold hardiness.  

The experiments indicated that regardless of types of grafting systems used, 

rootstocks can affect the cold hardiness and juvenility of scions of all three species 

tested in this study. The effects of rootstocks on cold hardiness and juvenility of scions 

are probably due to the induction of early cessation of vegetative growth associated 

with the timing of cold acclimation and influence of vegetative growth on precocity.   

In Chapter 4, two grafting systems (tip grafting onto mature crabapple trees and 

traditional grafting onto dwarf ‘Ottawa 3’ rootstocks) were tested for screening cold 

hardiness of apple scions varying in low temperature sensitivity. In both grafting 

systems, the rootstocks affected the winter survival of scions. The crabapple rootstocks 
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used in the tip grafting system were very cold hardy and the ‘Ottawa 3’ rootstocks used 

in the traditional grafting system were only moderately cold hardy (Table 4.1). As a 

result, the grafts in the traditional grafting system represented the inherent cold 

hardiness levels of the cultivar scions, so the traditional grafting system would be 

feasible for screening cold hardiness of scions. Compared with the traditional grafting 

system, the cold hardiness of scions was improved significantly by the rootstocks used 

in the tip grafting system, so the tip grafting system can be used for conservation of 

sensitive breeding materials. Due to very cold hardy characteristics of crabapple 

rootstocks, the tip grafting system improved the cold hardiness of scions to a similar 

level. The correlation on winter survival between the two systems was only moderate   

(r = 0.52, P = 0.0001, n = 40). Therefore, the tip grafting system tested is not feasible 

for evaluation of cold hardiness of scions in apple breeding programs. 

 In the sour cherry experiment, the rootstocks were more cold hardy than the 

scion donor seedlings. As a result, the tip grafting system in sour cherry increased the 

cold hardiness of scions compared to the self-rooted scion donor seedlings. This result 

is similar to that in apple trees in which the cold hardiness of scions was improved by 

the cold hardy rootstocks. 

The tip grafting system in saskatoon berry plants had little influence on winter 

survival of scions, likely due to the very cold hardy nature of this species. The cultivars 

released are naturally selected from superior native genotypes with most cultivars 

originating from the Canadian prairies (Kaurin et al., 1984; Steeves and Steeves, 1990). 

Most cultivars are cold hardy and the rootstocks and scions in this study have similar 
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cold hardiness, so the cold hardiness of scions cannot be changed very much by the 

rootstocks. 

The tip grafting system affected timing of cold acclimation. This may be the 

major factor involved in enhancing the cold hardiness of the scions. Earlier cessation of 

terminal growth leads to an earlier onset of dormancy and decreases the risk of cold 

injury. In all three species, early termination of bud development improved winter 

survival. The tip grafting system induced earlier terminal bud development than the 

traditional grafting system in apple trees (Chapter 4). Tip grafting sour cherry 

accelerated terminal bud formation which was associated with an 85.3% decrease in 

winter dieback (Chapter 5). The very cold hardy nature of saskatoon berry may be also 

due to the fact that the terminal bud formation in saskatoon berry was fulfilled by July.  

Terminal bud development can be used as an indicator of the initiation of cold 

acclimation and potential for winter survival. Leaf drop was not consistently related to 

winter survival in apple (Chapter 4), sour cherry and saskatoon berry plants (Chapter 5), 

so it is not recommended as an indicator of cold hardiness. 

The tip grafting system could affect the juvenility of scions depending on how 

the vegetative growth was influenced by the rootstocks used in the systems. Vegetative 

growth of scions approximated that of the rootstocks on which the scions were tip 

grafted, which is in agreement with the result for vegetative growth in Chapter 4. In 

sour cherry plants, rootstocks were less vigorous as measured as shoot length and 

diameter than the scion donors, and consequently the tip grafts had decreased vegetative 

growth compared with the scion donors. In contrast, in saskatoon berry plants, 

rootstocks were more vigorous than the scion donors and the tip grafts consequently had 
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increased vegetative growth relative to the scion donors. For young seedlings, the 

reduced vegetative growth has a restriction for flower bud induction, while the 

improved vegetative growth enhances flower bud induction. 

6.2 Future Research 

The apple cultivar comparisons (Chapter 4) indicate that cold hardiness is graft 

transmitted from the rootstocks to the scions. The rootstock effect was not diluted after 

two growing seasons, as the cold hardiness of the less cold hardy scions was maintained 

on the cold hardy rootstocks. In the future it would be valuable to test the stability of the 

enhanced cold hardiness of tip-grafted ‘Golden Delicious’ and ‘McIntosh’.    

It is likely that the mature trees used as rootstocks can cause maturation of the 

tip grafted scions in all three species. The mature rootstocks can modify the time of 

cessation of growth of scions. The earlier growth cessation induced by the mature 

rootstocks would enhance the development of cold acclimation. If cold hardiness can be 

so dramatically altered by tip grafting, perhaps it can be a useful tool for studying other 

translocated factors and signal transduction, thereby providing a better understanding of 

the physiological mechanisms of graft transmission of cold hardiness from rootstocks to 

scions. In the future, grafting test should be done on mature and young rootstocks using 

the same genotype to test the effect of tip grafting on the cold hardiness of the scions.  
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APPENDICES 

 
 Appendix 1-1 Grafting survival rate (%) of scions for five apple cultivars as affected 
by the tip and traditional grafting system in 2001 at Saskatoonz.   
Grafting system Scion  
 crabapple Ottawa 3 Prairie Sun McIntosh  Golden 

Delicious 
Traditional grafting 
system 

67.5 50.0 75.0 61.3 76.3 

Tip grafting system  81.3 92.5 100 96.3 98.8 
z Means were based on 20 buds for each experimental unit within each treatment, which 
was replicated four times.   
 

 

 
Appendix 1-2 Analysis of variance for the effect of grafting systems and scion cultivars 
on the winter survival of apple grafts over two years (2001 and 2002) at Saskatoon.   
Source    DF Mean Square  F value  
Replication (R)       3     369      1.29 ns 
Grafting system (G)       1 27421   95.79 ** 
Error a       3     286       
Scion (S)       4   5979   73.24 *** 
G*S       4   2420   29.64 *** 
Error b     24       82     
Year (Y)       1     378     2.48 ns 
Error c       6       95     
Y*G       4       36     2.60 ns 
Y*S       1     396     0.23 ns 
Y*G*S       4     232     1.52 ns 
Error      24     152   
 ns, *, **, *** not significant at P = 0.05 level, significant at P = 0.05, 0.01, 0.001 level, 
respectively. 
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Appendix 1-3 Analysis of variance for the effects of grafting systems and scion 
cultivars on the terminal growth cessation (%)z of apple grafts for two observation times 
(mid-August and mid-September) over two years (2001 and 2002) at Saskatoon.  

Between subjects effects  Within subjects effects 
Source  DF Mean 

square 
 Source  DF Mean square 

    Year (Y)   3   9972*** 
Replication (R)   3     262 ns  Y*B   1     118 ns 
Grafting system (G)   1 70639 **  Y*G   3 10439 *** 
Error a   3     567   Y*R*G   4       95 ns 
Scion (S)   4   3220 ***  Y*S   4     331 ns 
G*S   4   2251 ***  Y*G*S 24     293 ns 
Error b 24     118   Y*R*G*S   1     131 ns 
Time (T)   1 11813 ***  Y*T   6     359 ns 
Error c   6     248   Y*T*R*G   1     325 ns 
T*G   1   9464 ***  Y*T*G   4     102 ns 
T*S   4       30 ns  Y*T*S   4     425 ns 
T*G*S   4       11 ns  Y*T*G*S 24     315 ns 
Error  24       99  Error(Y) 24     157 
ns, * , ** and *** not significant at P = 0.05 level, significant at P = 0.05, 0.01 and 
0.001 level, respectively. 
z percent of terminal growth cessation as apical meristem visually free.   
 
 
Appendix 1-4 Analysis of variance for the effects of grafting systems and scion 
cultivars on the terminal growth cessation (%) and terminal bud stage of apple grafts for 
two observation times (mid-August and mid-September) in 2001 and 2002.  
Source DF Mean squares 
      2001  2002 

  

Terminal 
growth 
cessation   

Terminal 
growth 
cessation  

Terminal 
bud stage 

Replication (R)   3     119 ns      261 ns   0.29 ns 
Grafting system (G)   1 67695 ***  13384 *** 95.92 ** 
Error a   3     376       287    0.90  
Scion (S)   4   1312 ***    2239 ***   6.27 *** 
G*S   4     811 **    1734 ***   2.02 ** 
Error b 24       84       165    0.36  
Time (T)   1   4028 **    8143 *** 28.32 *** 
Error c   6     322       251    0.14  
T*G   1   3668 ***    5598 ***   4.14 *** 
T*S   4     194 *      261 ns   0.34 * 
T*G*S   4     218 *      109 ns   0.34 * 
Error  24       69      187   0.12 

ns, * , ** and *** not significant at P = 0.05 level, significant at P = 0.05, 0.01 and 
0.001 level, respectively. 
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Appendix 1-5 Analysis of variance for the effects of grafting systems and scion 
cultivars on the leaf drop (%) of apple grafts for two observation times (early and late 
November) over two years (2001 and 2002) at Saskatoon.   

Between subjects effects Within subjects effects 
Source  DF Mean 

square 
 Source   DF Mean square 

    Year (Y)   1 50194 *** 
Replication (R)   3   2832 ns  Y*B   3     536 * 
Grafting system (G)   1   6947 *  Y*G   1   4496 *** 
Error a   3     455   Y*R*G   3         8 ns 
Scion (S)   4   4155 ***  Y*S   4       66 ns 
G*S   4   1571 *  Y*G*S   4     270 ns 
Error b 24     378  Y*R*G*S 24     223 *** 
Time (T)   1 21811 ***  Y*T   1   3184 ** 
Error c   6       88  Y*T*R*G   6     166 ** 
T*G   1     253 ***  Y*T*G   1     420 ns 
T*S   4     122**  Y*T*S   4       28 ns 
T*G*S   4       86ns  Y*T*G*S   4     238 ** 
Error  24       26  Error(Y) 24       39 
ns, * , ** and *** not significant at P = 0.05 level, significant at P = 0.05, 0.01 and 
0.001 level, respectively.   
 
 
Appendix 1-6 Analysis of variance for the effects of grafting systems and scion 
cultivars on the leaf drop (%) of apple grafts over two observation times (early- and 
late-November) in 2001 and 2002 at Saskatoon.   
Source DF                       Mean Square 
   2001 2002 
Replication (R) 3      674 ns   2693 * 
Grafting system (G) 1  11310 **     133 ns 
Error a 3      223      240  
Scion (S) 4    2066 ***   2154 ** 
G*S 4    1416 **     425ns 
Error b 24      234     366 
Time (T) 1    4164 *** 20830 *** 
Error c 6      104      150 
T*G 1        11 ns     662 *** 
T*S 4        30 ns     121 ** 
T*G*S 4        53 ns     272 ** 
Error  24        31       35 

ns, * , ** and *** not significant at P = 0.05 level, significant at P = 0.05, 0.01 and 
0.001 level, respectively.   
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Appendix 1-7 Analysis of variance for the effects of grafting systems and scion 
cultivars on the apical shoot length, leaf number and leaf number to shoot length ratio of 
apple grafts over two years (2001 and 2002) at Saskatoon.  
Source     DF Mean square 
 Leaf no.  Shoot length Leaf no./shoot length 
Replication (R)       3     28.4 ns     90 ns     1.77 ns 
Grafting system (G)       1 1978.3 ** 6755 ** 270.92 *** 
Error a       3     67.0    216      2.00  
Scion (S)       4     34.2 **   281 ***     9.65 *** 
G*S       4     44.1 **   214 ***     5.42 *** 
Error b     24       7.7      33      0.76  
Year (Y)       1       1.4 ns     83 ns     2.02 ns 
Error c       6       8.6      19      0.61  
Y*G       1     67.3 ns   118 **     0.60 ns 
Y*S       4       2.5 ns       9 ns     0.43 ns 
Y*G*S       4       2.2 ns       9 ns     0.32 ns 
 Error      24       8.5     16     0.49 
ns, * , ** and *** not significant at P = 0.05 level, significant at P = 0.05, 0.01 and 
0.001 level, respectively. 
 
 
Appendix 1-8 Analysis of variance for the effects of grafting systems and scion 
cultivars on the cumulative shoot diameter of apple grafts two growing seasons after 
grafting in 2002 at Saskatoon. 
Source DF Mean Square F value  
Replication (R) 3     1.11   0.34 ns 
Grafting system (G) 1 202.60 62.58 ** 
Error a 3     3.24    
Scion (S) 4     3.41    6.61 *** 
G*S 4     3.12   6.06 ** 
Error  24     0.52  
ns, ** and *** not significant at P = 0.05 level, significant at P = 0.01 and 0.001 level, 
respectively. 
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Appendix 2-1 Analysis of variance for the effects of tip grafting system on flower 
number, shoot dieback, terminal growth cessation, leaf drop, and vegetative growth of 
sour cherry hybrid seedlings two growing seasons after grafting at Saskatoon z. 
Variable  Source DF  Mean Square   F value  
Flower number Sampling population  2     46.2   39.00 *** 
 Error 105       1.2  
     
Shoot dieback  Sampling population  2     4.218   53.28 *** 
 Error 105     0.079  
     
Terminal bud stage Sampling population  2     28.50   62.14 *** 
 Error 105       0.46  
     
Leaf drop  Sampling population  2     1.690   24.47 *** 
 Error 105     0.069  
     
Shoot length  Sampling population  2     75234 369.28 *** 
 Error 105         279  
     
Shoot diameter  Sampling population  2     905.6 205.83 *** 
 Error 105         4.4  
ns, ***, not significant, significant at P = 0.001 level, respectively. 
z Data were based on 41 tip grafts, 26 scion donors, and 41 non-grafted shoots in 
rootstocks. 
 
 
 
 
 
Appendix 2-2 Chi-square tests for the effects of tip grafting system on shoots with 
flowers and shoots with dieback of sour cherry hybrid seedlings two growing seasons 
after grafting at Saskatoon z. 
Variable  Source DF  Chi-squre  Pr > ChiSq  
Shoots with flowers Sampling population  2  85.85 < .0001 *** 
           
Shoots with dieback Sampling population  2  29.78 < .0001 *** 
***, significant at P = 0.001 level, respectively. 
z Data were based on 41 tip grafts, 26 scion donors, and 41 non-grafted shoots in 
rootstocks. 
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Appendix 2-3 Analysis of variance for the effects of tip grafting system on flower 
number, shoot dieback, terminal growth cessation, leaf drop, and vegetative growth of 
saskatoon berry seedlings two growing seasons after grafting at Saskatoonz. 
Variable  Source DF  Mean Square F value  
Flower number Sampling population  2  583 9.31 *** 
 Error 86    62  
     
Terminal bud stage Sampling population  2  1.31 1.84 ns 
 Error 86  0.71  
     
Leaf drop  Sampling population  2  2.886 104.51 *** 
 Error 86  0.028  
     
Shoot length  Sampling population  2  5741 65.93 *** 
 Error 86      87  
     
Shoot diameter  Sampling population  2  16.37 19.41 *** 
 Error 86    0.84  
ns, ***, not significant, significant at P = 0.001 level, respectively. 
z Data were based on 40 tip grafts, 31 scion donors, and 18 non-grafted shoots in 
rootstocks. 
 
 
Appendix 2-4 Chi-square tests for the effects of tip grafting system on shoots with 
flowers and shoots with dieback of saskatoon berry seedlings two growing seasons after 
grafting at Saskatoon z. 
Variable  Source DF  Chi-squre  Pr > ChiSq  
Shoots with flowers Sampling population  2  39.08 < .0001 *** 
        
Shoots with dieback Sampling population  2  2.58 0.2755 ns 
ns, ***, not significant at P = 0.05 level, significant at P = 0.001 level, respectively. 
z Data were based on 40 tip grafts, 31 scion donors, and 18 non-grafted shoots in 
rootstocks. 
 
 


