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Abstract 

Heavy load equipment, such as tractors, shovels, cranes, airplanes, etc, often employ 

fluid power (i.e. hydraulic) systems to control their loads by way of valve adjustment in 

a pump-valve control configuration. Most of these systems have low energy efficiency 

as a consequence of pressure losses across throttle valves. Much of the energy is 

converted into heat energy which can have determinantal effects on component life and 

the surrounding environment. 

From an energy efficiency point of view, an ideal hydraulic system is one that does 

not include any throttling valve. One such circuit is made of a variable pump and motor 

load (pump/motor configuration). The velocity of the load is controlled by manipulating 

the pump displacement or by changing the rotary speed of the pump shaft. In such a 

system, the transient response of the load is often unsatisfactory because it is difficult to 

quickly and accurately manipulate the pump displacement or change shaft speed. Thus 

circuit design must be a compromise between the energy efficiency of the pump/motor 

system and the controllability of a pump/valve/motor combination. 

One possible compromise is to use a pump-valve configuration which reduces energy 

losses across the valve. One way to achieve this is by controlling the pressure drop 

across the valve and limiting it to a small value, independent of load pressure. Based on 

this idea, a type of hydraulic control system, usually called load-sensing (LS), has 

recently been used in the flow power area. This type of system, however, is complex and 

under certain operating conditions exhibits instability problems. Methods for 

compensating these instabilities are usually based on a trial-and-error approach. 
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Although some research has resulted in the definition of some instability criterion, a 

comprehensive and verifiable approach is still lacking. 

This research concentrates on identifying the relationship between system parameters 

and instability in one particular type of LS system. Due to the high degree of non-

linearity in LS systems, the instabilities are dependent on the steady state operating 

point. The study therefore concentrates first on identifying all of the steady state 

operating points and then classifying them into three steady state operating regions. A 

dynamic model for each operating region is developed to predict the presence of 

instabilities. Each model is then validated experimentally. This procedure, used in the 

study of the LS system, is also applied to a pressure compensated (PC) valve. A PC 

valve is one in which the flow rate is independent in variations to load pressure.  

A system which combines a LS pump and a PC valve (for the controlling orifice) is 

called a load sensing pressure compensated (LSPC) system. This research, then, 

examines the dynamic performance of the LSPC system using the operating points and 

steady state operating regions identified in the first part of the research.  

The original contributions of this research include: (a) establishment of three steady 

state operating conditions defined as “Condition I, II & III” , which are based on the 

solution of steady state non-linear equations; (b) the provision of an empirical model of 

the orifice discharge coefficient suitable for laminar and turbulent flow, and the 

transition region between them; (c) and the development of an analytical expression for 

orifice flow which makes it possible to accurately model and simulate a hydraulic 

system with pilot stage valve or pump/motor compensator. These contributions result in 

a practical and reliable method to determine the stability of a LS or LSPC system at any 

operating point and to optimize the design of the LS or LSPC system. 
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Chapter 1  Introduction 

1.1 Project Background 

The motion of many manipulators in engineering (steering control of vehicles, the 

arm control of crane equipment and robots, control of moving parts of off-road 

equipment and airplanes, etc) is often fulfilled using flow control in hydraulic systems. 

Essentially, there are two ways in which flow control can be accomplished: using a 

variable displacement pump and using an orifice opening via a proportional valve 

(pump-valve system).  In the first instance, a variable displacement pump can be used to 

change the flow rate without the use of a controlling orifice (valve).  This is 

accomplished by varying the swash-plate angle of the pump or the input speed from the 

electric motor.  This type of flow control is very efficient because energy losses across a 

controlling orifice are avoided.  However, controlling the swash-plate can be quite 

complex and in some instances, can introduce additional sources of inefficiencies. 

An alternate configuration is one of a pump and controlling orifice (via a valve 

downstream from the pump).  This configuration results in a pressure drop across the 

controlling orifice which translates to an inherent energy loss.  This pressure drop, 

however, can be used as a controlling signal within the valve or can be fed back to a 

control valve at the pump to improve transient responses and reduce energy losses. 

Flow control systems with a pump-valve configuration are often found in 

applications involving multi-loads.  Systems of this type must meet two conditions: (1) 

the pump must provide enough flow to the control valves to sustain a constant pump 

supply pressure, and (2) the control valves should be of proportional type.  If energy 

consumption is to be minimized then the pump should be of the demand flow type in 
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which the valve flow requirements match the flow delivered by the pump.  To 

accomplish this, some sort of “ load sensing”  function is required. 

In the past decade, load-sensing systems (here-after denoted as LS systems) have 

found increasing usage in fluid power applications, especially in automobiles and off-

road equipment [Book and Goering, 1997].  One of the many advantages associated with 

these systems is the high energy-saving potential; that is, the pump attempts to match the 

power requirements to the changing load power requirements with minimal control 

losses.  However, stability problems and undesirable interactions amongst loads have 

been reported [Lantto, et al, 1990 and Lantto, et al, 1991]. 

A load sensing pump is one in which a pressure (or pressure differential) is fed back 

to a controller within a pump to adjust the swash-plate angle and subsequently, the 

pump's flow (see Figure 1.1).  The LS pump system consists of a variable displacement 

pump (A in Figure 1.1), the actuating yoke and control piston (B) of the swash-plate, 

and the critically lapped adjusting valve (C).  When the physical load (D) experiences an 

incremental increase, then a corresponding incremental increase in pressure PL is sensed 

in the feedback sensing line (E); the pressure change acts on the spool of the 

compensator piston (G).  A force unbalance on the spool translates the spool to the right 

porting fluid in the swash-plate piston (B) to the tank.  A decrease in the fluid pressure at 

this point increases the swash-plate angle, which in turn increases the flow rate from the 

pump.  This increase in flow encounters the controlling orifice (higher resistance) (F) 

and as a result, the pressure increases.  This pressure is sensed in the pump feedback line 

(H), which acts on the right hand side of the compensator piston (G).  The pressure rises 

until a force balance across the compensator is re-established.  At this point, the pressure 

drop across the controlling orifice (F) is re-established and the flow restored to its 
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original value.  Flow control is thus established.  This type of pump is called a “ load 

sensing”  pump.  A system that consists of a load sensing pump, a simple proportional 

valve and its load(s) is commonly called as load sensing (LS) system. 

The prime advantage of the LS system is that the supply pressure Ps is controlled to 

be marginally higher than the down stream pressure PL (typically, 1MPa).  Thus, the 

energy loss across the valve is minimized compared to valve-based systems.  Only a 

variable displacement pump-motor combination is more energy efficient. 

In LS systems, the system response is affected by dynamic changes in the load 

conditions.  This can be illustrated in Figure 1.2.  With reference to this figure, consider 

the following scenario.  In (a), the steady state loading conditions are shown.  In (b), a 

sudden increase in PL occurs.  As a result the flow through the valve decreases 

momentarily as seen in (c).  Ps also increases but at a smaller rate than PL (d) because of 

the capacitance in the lines between the pump and valve.  But the pressure difference 

across the load sensing compensator forces the spool to respond such that the pump 
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Figure 1.1 Schematic of Load Sensing (LS) System 
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starts to increase its stroke; therefore, the pump flow Qs increases as illustrated in (d).  

QL also starts to increase because of the small increase in Ps from step (d).  As a result of 

the increase in pump flow, Ps will now increase rapidly as illustrated in (e).  QL increases 

because the pressure drop across the valve increases, but also the pump flow starts to 

decrease due to the reestablishment of the pressure balance across the pump 

compensator.  This continues until the pressure drop across the control valve is 

reestablished (f). 

The response of QL and Qs are shown in Figure 1.3, which reflects the above 

sequences.  It is clear that both QL and Qs are load dependent during the dynamic change 

in PL.  Since the object is to make QL independent of the load, statically and 

dynamically, the LS system is in error.  This translates into a perturbation in the speed of 

a rotary or linear load.  In some cases, if the operating point is close to critical values in 

term of stability, this perturbation can drive the system to an unstable situation. 

A second problem arises when this kind of system is connected to two loads as 

shown in Figure 1.4 [Ramachandran and Ukrainetz, 1985; Ukrainetz, et al, 1986, and 

Lantto, et al, 1991].  Consider the following sequences as illustrated in Figure 1.5 and 
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with reference to Figure 1.4.  In (a), the steady state load pressure for load #1 is PL1 and 

for load #2, PL2.  Because of the design of the circuit, the pump compensator responds to 

the highest load pressure (PL1) via the shuttle valve (see Figure 1.4).  It is assumed that 

flows to the loads are QL1 and QL2 as shown in (a).  The pump delivers the sum of these 

two flows Qs. Consider an increase in the load pressure PL1 as shown in (b).  QL1 starts to 

decrease (c).  But, because of the pump compensator, the pump is directed to increase 

flow Qs as shown in (d).  As a result, Ps increases (e) and QL1 starts to increase (e).  But 

because Ps increases, the pressure drop across the other flow control valve increases also 

shown in (e).  This results in an increase in the flow, QL2, through the other valve (f); 

thus, the load speed will increase accordingly.  Thus changes in the loading conditions in 

the higher load will affect the flow to the second system.  The response of both loads in 

terms of flow to the pressure increase is shown in Figure 1.6.  It is clear that the first 

system flow QL1 can recover but the second system cannot.  Thus, the aforementioned 

problems do require some consideration when it comes to implementation.  
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Figure 1.3 Transient of a LS System Perturbed by its Load 
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A second type of flow control structure consists of a pump, compensator valve (more 

commonly known as a hydrostat), and a fixed orifice (Figure 1.7).  The system consists 

of valves (or valve combination) in which the pressure(s) is piloted to a pressure 

compensator valve (A) in Figure 1.7, (located downstream from a fixed or adjustable 

orifice (E)).  This compensator valve modulates its opening in order to maintain a fixed 

pressure drop (Ps - Pm) across the fixed or variable orifice (E).   

Consider the situation in which the load (D) experiences a change during operation; 

subsequently, the pressure, PL, would also change.  This causes an instantaneous 

decrease in the pressure drop, Pm – PL, which results in a decrease in the flow rate, QL, to 

the load. The “unperturbed” flow through the fixed orifice (E) encounters a resistance at 

(B). Because of the very small chamber volume between the fixed and compensator 

orifice, the intermediate pressure, Pm, would suddenly increase. The pressure increase is 

sensed in the feedback sensing line (C) and is exerted on the spool of the compensator 

valve (A).  The orifice created by the compensator spool is modulated by the force 

unbalance across the spool (created by Ps, Pm and a bias spring, Ppc).  An increase in Pm 

increases the compensator spool orifice opening, xpc, which results in an increase in the 

flow, QL, through the compensator.  The increase in the flow rate via the compensator 

(A), in turn, results in a decrease in Pm. The aforementioned processes continue until a 

new force balance is re-established across the compensator spool (A).  The original 

pressure drop across the fixed orifice is restored and flow control is accomplished.  Thus 

for a specific orifice setting, the flow is independent of the variation in PL (and similarly, 

Pm). 
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For the LS system previously discussed, a problem associated with changes in the 

load was identified.  This same situation exists for this kind of PC system.  However, 

because the mass of the spools of the compensator is small compared to the mass of the 

pump swash plate, the response of the valve is very fast compared to the pump and rapid 

flow recovery is possible.  When used in circuits with multiple loads, the second 

problem discussed previously does not exist because each load is isolated by a separate 

PC valve and hence Ps is approximately constant.  For all PC systems, the supply from 

the pump is established by the pressure compensator on the pump or from the relief 

valve setting.  This means that a substantial pressure drop exists across all (PC) flow 

control valves.  This can result in substantial energy losses in the system.  This loss is 

highly dependent upon the load pressure and the supply pressure set at the pump. 

Although both LS and PC systems are based on pressure (or pressure differential) 

feedback control, there are some differences in their operation.  The key components of 

PC systems are hydrostats, which are automatically adjusted in order to maintain a 

constant flow independent of the load.  The main components of LS systems usually are 

variable displacement pumps, which are demand flow systems; that is, they only deliver 

what is required independent of the loading condition. 
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Figure 1.7 Schematic of Pressure Compensated (PC) System 
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The above discussion has shown that the dynamic behavior of the LS system is 

affected by variations in the load pressure.  The PC systems also show this dependency 

but because of their response, it is minimal (good controllability).  But PC systems, 

being valve based, are not energy efficient compared to the LS systems.  Thus it is 

desirable to be able to combine the advantages of the PC system with those of the LS 

system.  This gives rise to a new configuration called a LSPC system.  Such as system is 

shown in Figure 1.8. 

The LS system acts to reduce the supply pressure Ps to the PC flow control valve 

reducing pressure losses across the valve.  The PC flow control valves act to respond 

quickly to changes in the loads and to act as isolation valves for multiple loads.  

However, the resulting system is now much more complex and can give rise to 

controllability/stability problems. 
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Figure 1.8 Circuit Diagram of a Simple LSPC System 
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1.2 Previous Research 

Research into the controllability and stability problem of LS and LSPC systems can 

be traced back to the early 80’s.  Bitner and Burton [1984(1)] addressed the 

measurement technique of load sensing pump parameters for a LS system.  It was found 

that special experimental measurements of pump parameters were essential for 

simulation and research into LS systems.  This research indicated that two factors; fluid 

temperature and the operating point, greatly affected the flow gain and flow-pressure 

coefficient of the orifice, the leakage of the pump, and the frequency response.  In 1984, 

Bitner developed a small signal model of a load-sensing pump.  He developed a 

simplified model based on TF analysis which required linearization of non-linear 

equations.  The correlation between experimental and theoretical results was poor.  It 

was established that part of the problem was due to the choice of the operating point for 

the frequency responses. 

Research by Palmberg, et al, [1985] provided a model of a particular pressure-

control pump which is used in most LS or LSPC systems.  The dynamic performance of 

the pressure-control pump was mainly influenced by the pump inductance Lp, but also 

by the break frequency and the leakage coefficient of the pump.  The non-linearity 

associated with the hysteresis of the spool of the pilot valve was linked to system limit 

cycle oscillations. 

Research by Ramachandran and Ukrainetz [1985] indicated that multiple loads could 

interact with LS systems.  Pressure reducing valves included in the system in a meter-in 

configuration were found to improve the performance of multi-load systems.  For the 

load with the highest inertia, the pressure-reducing valve decreased the load damping 

while increasing the damping of the system with a smaller inertial load.  These 
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observations agreed with some of the findings reported by Ukrainetz, et al, [1985], Mai 

and Dransfield [1983], and Mai [1982]. 

Kim, et al, [1987(1) and 1987(2)] investigated the parameter sensitivity of a variable 

displacement axial piston pump. The results indicated that high-sensitivity parameters 

were the flow gain of the pressure compensator, the volumetric displacement of the yoke 

control cylinder, etc. The yoke inertia, the viscous friction coefficient, etc. are 

insensitive to the dynamics of the pressure pump. This helped reducing the model order 

of the pressure-compensated pump from the sixth to the second order system. 

Zarotti and Nervegna [1988] addressed the “non-standard”  operation of load sensing 

systems.  Three-D plots of output flow, Q, of a LS system with a single load as a 

function of load pressure, P, and metering orifice area, A, showed the operation range 

which would be expected and which would be favored.  In order to reduce saturation 

effects, a PC system with hydrostat downstream of the fixed orifice was shown to be 

able to handle saturation automatically at different degrees of effectiveness when 

compared to a PC system with hydrostat upstream to the fixed orifice. 

Lin and Akers [1988] presented a detailed mathematical model of an axial piston 

pump controlled by a two-stage servo valve.  The 8th order state space model indicated 

that the open-loop system was unstable.  In the model, the input was the current in the 

coil of flapper valve and the output was the pump pressure in the pump chamber.  A 

closed loop optimal control was developed which proved to be stable.  A comparison of 

models indicated that the performance of an axial piston pump controlled by a single-

stage valve was superior to that controlled by a two-stage valve, since the single-stage 

valve demonstrated a faster frequency response.  This research was relevant in the 

implementation of a LS system with an electrical-hydraulic load sensing structure. 
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Kim, et al, [1988] presented a stability analysis in the frequency domain which 

included linearizing models and then applying Routh-Hurwitz criterion. This model did 

not consider the damping of the load sensing line and the LS pump was simply 

considered as a standard 2nd order system. Based on their research, they concluded that 

• Increasing the throttle opening of the flow orifice, xv, and the pressure 

differential setting, Pd, of pump compensator increased the effect of the positive 

feedback loop, thus making the load sensing system unstable. 

• The load inertia, the line volumes, and the volumetric displacement of the motor 

were closely related to a resonance phenomenon. When these parameters were 

chosen close to the resonance region, the system tended to be unstable. 

Krus [1988] provided a detailed description and model of a LS system.  A general 

transfer function was presented, which consisted of the transfer functions of three 

subsystems (the pump and pump regulator, valve systems, and loads).  For a simple 

inertia load, a stability criterion was established.  Two main instabilities (pump high-

frequency instability at small valve openings and pump-load low-frequency instability at 

large valve openings) were described qualitatively.  In addition, two other instabilities 

(load low-frequency instability at small valve openings and pump-load high-frequency 

instability at large valve openings) were also mentioned.  His research proposed six 

possible ways to avoid an instability in an LS system. 

• Increase the pressure drop over the flow control orifice (meter-in) which would 

be at the expense of energy loss. 

• Increase the pressure drop over a meter-out orifice if one exists (also at the 

expense of energy loss). 
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• Use a PC system.  The system could be highly underdamped but would not be 

unstable. 

• Incorporate a pump-regulator with a high gain.  This would have to be done with 

care in order to avoid high frequency instabilities. 

• Design a “ low pass filter”  on the load sensing line hydraulically. 

• Dampen the load so that any resonance peaks are removed. 

Zhang and Hou [1989] examined a load sensing axial piston pump that used two 

pump-adjusted valves (one for increasing swash plate angle and the other for decreasing 

the angle).  The use of two valves created separated pressure settings which could be 

used to find favorable states of the pump. 

Mai and Dransfield [1989] found that the response time and quality of LS systems 

depend significantly on small differences in the cross-sectional areas of the regulator’s 

spools. 

Friedrichsen [1989] applied a LS system in the hydrostat steering of mobile vehicle 

as a LS hydrostatic steering system. The experiments for ramp and step responses were 

done to investigate the acceleration and speed of the steering wheel at different driving 

situations in order to obtain optimal values of adjustable parameters. 

Lantto, et al, [1990] analyzed static and dynamic performance of LSPC systems with 

two different types of PC subsystem configurations.  Her static analysis showed that, 

when the pump pressure decreased to a value less than the sum of the pump component 

setting and the highest load pressure, the load flow in the system with a “conventional”  

PC configuration (that is, where the hydrostat spool is controlled by the pressure drop 

across the fixed orifice) would decrease sequentially starting with the highest load.  But, 
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for the system with a “ relocated”  PC configuration (that is, where the hydrostat spool is 

manipulated by the pressure drop cross the hydrostat orifice), all load flows would 

reduce proportionally.  Even though the pump flow was saturated, interaction between 

loads did not occur, as long as the hydrostats would operate. 

In another study by Lantto, et al, [1991] and indeed others [Bitner 1986; Kim and 

Cho 1988], the whole LS system has been observed to enter into limit cycle 

conditions—an instability problem.  Three causes of instabilities were defined.  The 

most common cause was due to the feedback of the pump pressure and the highest load 

pressure controlling the active pump regulator.  The second was a result of “ flow 

feedback”  (pump flow minus load flow).  A rapid change in the flow control valve 

orifice area can result in a sudden change in the load flow.  If the system is “stiff” , this 

load flow change can result in a large pressure transient.  This condition has been shown 

to lead to instability, but only under certain conditions (which are seldom met).  Hence, 

this instability rarely occurs.  The third cause of instability was attributed to the 

interaction of loads (for example, several loads controlling the same mechanical 

structure i.e. a crane arm).  This instability was found to be highly dependent on the 

geometry of the mechanical structure; therefore, a proper design of the structure would 

eliminate this problem.  The method of eliminating the problem in hydraulic systems 

was to use pressure compensation or by incorporating pressure feedback via a transducer 

to an electrical controller (using a low pass filter to stabilize the response). 

Kim and Cho [1991] presented a design method using simulation techniques to 

simultaneously determine the optimal controller gains of a servo- flow control valve and 

the optimal setting pressure of the LS pump.  The investigation indicated that the setting 
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pressure should be determined at the controller design stage, since it greatly affects both 

control performance and energy efficiency of LS systems. 

Backe [1993] described a LS system with electrical-hydraulic LS mode for 

improving the dynamic behavior of a LS system. In this system, the LS regulator was an 

electro-hydraulic valve. There were two factors to motivate this research. On the one 

hand, the signals could be transmitted faster electronically. On the other hand, more 

complex controllers could be configured than it is possible by hydro-mechanical means. 

Pizon and Sikora [1993] simulated four types of hydraulic circuits: constant source 

pressure and a simple orifice; constant flow source and a simple orifice; constant flow 

source and a PC valve with exit port; and a LS system. This study indicated that the 

energy-saving feature of the LS system was very apparent in the transient state.  

Zarotti and Paoluzzi [1993] compared the steady state and dynamic behavior of a LS 

system for different types of LS controllers of a pressure control pump. These LS 

controllers included two 3-way valves which acted as the LS regulator (or flow 

compensator) and the pressure limiter (or pressure compensator). This study configured 

the LS regulator and the pressure limiter in the forms of tandem, parallel, two-stage, and 

other variations. The experimental results indicated that the tandem and parallel form 

were better than others. 

Zheng and Guan [1993] investigated a digital control pressure pump. The spool of 

the pressure compensator or the LS regulator was actuated by a stepper motor. The 

experiments proved the feasibility of this electro-hydraulic control of the pressure pump.  

Pettersson, et al, [1996] showed how the dynamic behavior of a PC-valve affects the 

system where it is incorporated.  The flow-pressure coefficient, Kcpc of the orifice and 

natural frequency of the hydrostat have a significant influence on the effective flow-
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flow-pressure coefficient, Kc, of PC systems, as well as the static and dynamic properties 

of the whole system.  Pettersson showed that an increase of the flow-pressure 

coefficient, Kcpc, of the hydrostat will decrease the effective Kc of PC systems 

(destabilizing).  An increase of the opening xv of the flow control valve was shown to 

increase the effective Kc of PC systems (stabilizing effect). 

Maiti, et al, [1996] analyzed the operation of a load sensing flow control valve with a 

bypass exit (i.e. PC system with bypass port) at five different conditions: (1) the fixed 

orifice was closed, (2) the fixed orifice was opened but no load flow demanded (when 

setting the directional valve following the PC valve to the closed center position), (3) the 

hydrostat spool was not in motion and the bypass orifice was closed (4) the hydrostat 

spool was controlled and the control behavior of the bypass orifice was activated, and 

(5) the hydrostat spool was controlled and the control behavior of the fixed orifice was 

activated. The simulation result would help in better understanding the functions, design 

and selection of such a valve. This research also indicated that the flow force had not 

much effect on spool equilibrium. 

Andersson and Ayres [1997] compared steady state performances, energy efficiency 

and damping for different LS directional valves with open-center and closed-center 

configurations. The research indicated that, by adding load pressure feedback, closed-

center load sensing valves could have the same favorable damping as open-center valve. 

Sakurai and Takahashi [1997; 2000] used a bond-graph model of the LS system to 

investigate its overall efficiency taking into consideration the dynamic characteristics of 

the system. It was found that there was a maximum point of overall efficiency. This 

research displayed a curve of overall efficiency with respect to the steady-state ratio 

defined as the ratio of the oscillation period and one duty cycle of the cylinder load.  
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Simulation by Book and Goering [1997] verified that instabilities caused by the 

inertia load could be eliminated with the addition of damping in the feedback line.  This 

was accomplished in the simulation by adding a transportation delay in the simulation 

model.  No experimental work was done in this study. 

Erkkila [1999] provided a block diagram of a LS system which could assist in the 

understanding of the dynamic analysis of LS systems. An analogue-mechanical model 

and an analogue-electrical model for a LS system were also provided.  

Li [1999] described a generalized procedure for experimentally investigating LSPC 

systems with multi-loads based on state space models. No experimental results were 

provided. 

Luomaranta [1999] implemented one type of an electrohydraulic LS system on a log 

loader application. The LS mode was accomplished using pressure transducers, 

electrical filters and electronically controlled pressure pump (Note: the control pressure 

was provided by a pressure divider which consisted of a restriction orifice and an 

electronically controlled relief valve.). Comparison of experimental results in the 

laboratory indicated that the electrohydraulic LS system was a competitive alternative.  

Zhang, et al, [1999] compared three different power-matching energy-saving 

hydraulic systems: the hydro-mechanical LS system, the electric-hydraulic LS system 

with the programmable logic control (PLC) and the electrical LS system with a stepper 

motor controlled pump. The last two had the best efficiency but the first one was 

superior in term of the cost, maintenance and reliability. 

Kappl [2001] used experimental methods to obtain a semi-empirical model for the 

variable displacement pump with load sensing regulator and power restrictor. The pump 

and LS line were both modeled as first order systems. Kappl’s model was found to be 
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too simple, but was helpful in understanding the identification of the damping 

coefficient in a LS line. 

One of the common objectives of many of the aforementioned research projects was 

to fully understand the relationship between hydraulic circuit parameters (components’  

structure parameters and setting parameters) and the expected operating state of the LS 

or LSPC systems and to then design a LSPC system with demonstrated controllability 

and energy saving.  As an example, it is essential that an LSPC system must be stable for 

the expected range of opening, xv, of the flow control valve.  However, the complexity 

of LS or LSPC systems makes relationships between the type of hydraulic components 

and their design parameters very difficult to find.  Two common methods of establishing 

such relationships are to use linearization and frequency response analysis, and time 

domain simulation techniques.  Frequency response techniques were used by Bitner and 

Burton [1984], Palmberg, et al, [1985], Lin and Akers [1988], Krus [1988], Zhang and 

Hou [1989], Lantto, et al, [1990], Lantto, et al, [1991], and Pettersson, et al, [1996].  The 

time domain approaches were used by Mai and Dransfield [1989], Kim and Cho [1991], 

and Book and Goering [1997] and by some of the first group who used the first method 

as well for comparison or verification. 

Users of the linearization approach experienced several problems which affect the 

universal application of their techniques.  The first one was the “operating point”  

problem.  Bitner and Burton [1984] was one of the first groups to encounter this problem 

in their research.  Although they (and others) discovered that the operating point greatly 

affects the theoretical results, no attempt was made to establish how the operating point 

changed with changes in operating condition.  Most researchers who used the 

linearization and TF analysis did not deal with this “crucial”  problem.  The transfer 
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function of LSPC systems and the stability criterion so developed included the flow-

pressure coefficient, Kc, which is strongly affected by the operating point.  In reality, the 

main parameters that were used in the stability analysis (flow gain, Kq, and flow-

pressure coefficient, Kc, of valves) were a function of state variables of the system, such 

as the spool displacement and system pressures.  Thus, any stability criterion developed 

from transfer functions could only be considered meaningful if all linearization 

parameters (Kc, Kq) had “ reasonable”  values. 

To illustrate this, a value of Kc and Kq could be evaluated about an operating point 

xv0, P0 etc.  When a stability criterion has been established, it can be said that the LSPC 

system is stable at this operating point.  Thus small perturbation will eventually 

converge to this operating point.  However, if xv, the spool opening, is changed for the 

purpose of controlling load speed, the operating point is no longer xv0 and P0.  Thus, it is 

necessary to evaluate another new operating point corresponding to the new parameter 

xv, establish new linearization parameters (Kc, Kq) and then repeat the stability analysis.  

To date, a systematic approach to this problem has not been done. 

In order to further demonstrate this, consider the transfer function (Equation (1.1)) 

and the stability criterion for LSPC system established by Krus [1988], Lantto, et al, 

[1990, 1991], and Pettersson, et al, [1996]. 
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where the criteria for stable operation were established as: 
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In these equations,
S

L

C

C
+= 1κ ,  Lp and Cs are the inductance and capacitance of the load-

sensing pump respectively.  CL is the capacitance of the load.  ωL and δL are the natural 

frequency and damping ratio of the load respectively.  Kcv is the equivalent flow-

pressure coefficient of the PC subsystem (hydrostat and flow control valve 

combination). 

Kcv is closely related to the operating point (such as Ps0, PL0, xpc0 etc.) of the LSPC 

system.  A LSPC system designed by criterion 1, 2, 3, or 4 for a particular operating 

point does not mean that it always is stable at other operating points.  This is because Kcv 

would be different at different operating points. 

In applying the stability criteria, a value of Kcv must be defined.  In the literature, 

values of Kcv were defined but not justified.  Further, the research did not demonstrate 

that Kcv (which is known to be operating point dependent) in fact would be valid at the 

operating point about which the system actually operated.  Therefore, it cannot be 

concluded that these chosen values were, in fact, valid for their chosen operating 

condition. 

Techniques which would validate the choice of the state dependent parameters (Kc, 
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Kq etc) as a function of the resulting state parameters, are necessary.  In 1997, Scholz 

and Engelhardt examined a simple hydraulic system (not load sensing).  They applied a 

linearization technique to the nonlinear flow equation and then attempted to calculate the 

operating point and choice of parameters for steady state condition only (static analysis).  

This study was limited in its application but did acknowledge that the problem did exist. 

A second concern which arose from the literature search was that many simplifying 

assumptions were used in the development of the models.  As an example, when 

developing the model of pressure-control (PC) pumps, Palmberg, et al, [1985] indicated 

that a simple two-parameter model described by Equation (1.6) was usually sufficient to 

describe the dynamic behavior of the pump. 
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Lp was the inductance, Rp the resistance, ωp1 a characteristic break frequency, Kcp a 

pressure gain of the PC pump, Ps the pressure, Pref a reference pressure, which the 

pressure Ps is expected to be, ηcK  the leakage coefficient of the PC pump, Kc1 the flow-

pressure coefficient of the regulator’s orifice, 
c

se

A

A
 the ratio of the piston area of the 

stroke mechanism.  κ and crK are the parameters of the regulator’s pilot respectively.  

For a direct-operated regulator, Kcr was zero. 

It should be noted that the model defined by Equation (1.6) has been adopted by 

many researchers in modeling load sensing system.  Palmberg, et al, suggested that this 
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model could be further simplified by assuming that the pump resistance Rp and flow-

pressure coefficient Kcp are negligible resulting in Equation (1.8). 
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It should be noted that this model is valid between the pump cut-off pressure and the 

dead head pressure (Pdhp).  For pressures less than Pcut-off, the flow from the pump is 

constant and independent of Ps. 

If these PC pump models are to be integrated in LSPC systems, it is questionable 

whether the pump resistance Rp and flow-pressure coefficient Kcp can be ignored.  This 

is because the small change of the pump performance caused by varying Kcp may affect 

the dynamic performance of the whole system.  Thus, the validity of using Equation 

(1.8) in simulation studies must be carefully established by considering the actual loads 

and operating points of the remaining system. 

Even though the model of a PC pump as developed by Palmberg, et al, [1985] could 

be consider “detailed”  (see Equation (1.6)), it was still not a complete model of the 

pressure-control pump.  This is because Equation (1.6) ignores the dynamic factors 

(mass and damping) of the pump-regulator's spool, does not consider the effect of the 

fluid compressibility in the pump compensator chambers, and simplifies the local 

pressure feedback factor (the second item of Equation (1.6)) as a constant gain, Kcp 

(which, in fact, is a dynamic factor (transfer function) affected by the operating 

frequency). 

A dynamic model of the PC system (Figure 1.7) was presented by Pettersson, et al, 

[1996].  For the PC system and nomenclature shown in Figure 1.7, his linear model was 

expressed as  
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Lms PPP ,, and cpcP  were defined in Figure 1.7. 

Petterson, et al, [1996] gave a value of Kcx, but the physical concept of Kcx was not 

explained and the value of Kcx used was not justified. 

The dynamic models of pressure-control pumps and PC systems reviewed above are 

essential in developing the dynamic model of LS and LSPC systems.  Krus [1988] 

developed a transfer function of an LS system with single inertia load given by Equation 

(1.1).  The pump was regarded as a pure inductance Lp; hence the ωpl was considered 

infinite in Equation (1.8).  The stability criteria presented in Equations (1.2) to (1.5)) 

were derived from the simplified pump model.  As a result, the stability deduction from 

the simplified model could only be considered approximate. 

A comprehensive model of LS systems and especially models of LSPC systems have 

not been published.  A comprehensive model of LS systems should take into account 

"more details" than that presented by Palmberg, et al, [1985].  A model of LSPC systems 

should include dynamic models of both the two subsystems (pressure-control pump and 

PC systems). 

Although most of conclusions drawn by previous researchers were in agreement, 

some conclusions presented by researchers, such as Kim, et al, [1988] and Krus [1988], 

were in conflict. 
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In summary, the literature indicates that the operating point problem for linearized 

models, the “complexity”  of the individual component models, and a complete model of 

LS or LSPC systems remain areas which require much further study.  For a designed LS 

system or LSPC system, it is necessary to further investigate how the parameter 

variation of an LSPC system causes the change of the operating point and hence affects 

the change of the linearization parameters that are used for stability analysis.  In order to 

develop and justify the comprehensive model of LS and LSPC systems, it is also 

essential to establish more detailed models of hydraulic components (pressure-control 

pump, PC systems etc.). 

1.3 Objectives 

The objectives of this thesis are  

• To investigate the steady state operating condition and the steady state operation 

points (SSOP’s) of a LS system with a critically lapped LS regulator spool in the 

LS pump,  

• Based on the knowledge about the SSOP of the LS system, to develop the 

stability models of the LS system under different steady state operating conditions 

using the linearization method,  

• To determine the dependence of the system stability on the SSOP of the LS 

system,  

• To analyze the steady state and dynamic performances of a typical PC system,  

• And finally, to investigate the stability of the LSPC system which consists of the 

LS system and the PC system. 

In additions, this thesis is also to experimentally verify all models developed for 
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determining the SSOP’s and stabilities of the LS, PC and LSPC systems. 

1.4 Outline of Thesis 

This thesis is organized in the sequence of the LS system, PC system and then the 

LSPC system.  

The LS system is first investigated. The non-linear dynamic models are presented in 

Chapter 2. The steady state operating conditions are identified in Chapter 3, under which 

the system models are developed. These models are experimentally verified in Chapter 

4. The frequency response models based on the linearization approach are developed in 

Chapter 5. These frequency response models are experimentally validated in Chapter 6. 

These frequency response models are used to analyze the stability of the LS system in 

Chapter 7.  

Similar to the procedure for investigating the LS system, the PC system is then 

studied in Chapters 8 through Chapter 11. The non-linear dynamic model of the PC 

system is presented in Chapters 8. The steady state operating conditions is analyzed and 

the model for solving for the operating point is developed in Chapter 9. The comparison 

between the predicted and experimental results of the steady state operating point is 

given in Chapter 10. The frequency response model of the PC system based on the 

linearization approach is developed in Chapter 11. 

The LSPC system is further investigated by applying the results for the LS system 

(Chapters 2 through 7) and for the PC system (Chapters 8 through 11). The steady state 

models used to solve for the SSOP’s are developed in Chapter 12. The frequency 

response models are then presented in Chapter 13, which are used to carry out the 

stability analysis in Chapter 14. The analysis result is experimentally verified in Chapter 

15.  Finally, the conclusion and recommendation are given in Chapter 16. 
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Chapter 2 Modeling of Load Sensing Systems 

Frequency domain analysis and time domain simulation are two common approaches 

to designing and analyzing a dynamic system of any kind (electrical, hydraulical, 

mechanical, etc.). The frequency response analysis is popular because it can give more 

information about the relationship between the parameters and the dynamic 

characteristics of a system than time domain simulations. However, the frequency 

domain (transfer function) analysis has the precondition that the system be linear.  This 

limits the application of the frequency domain method in most hydraulic systems 

because of their high degree of non-linearity.  In order to take advantage of the 

frequency domain analysis, linearization techniques are often applied.  Typically, the 

non-linear system is linearized about a point of interest and the frequency domain 

method is applied for small excursions about this steady state operating point. Actually, 

so are the time domain methods. It is assumed that the system is approximately linear 

within a small region about the steady state operating point. 

The objectives of this chapter are to introduce a mathematical model of the LS 

system which consists of non-linear differential equations and non-linear algebraic 

equations. The linearization forms of these equations are also provided. The non-linear 

model will be used in Chapters 3 & 4 for investigating the steady state operating 

conditions and solving for the SSOP of the LS system. The linearized model of the LS 

system will be used to develop the TF (transfer function) of the LS system in Chapter 5. 
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2.1 Linearization of a Load Sensing System 

The mathematical foundations for linearization for a nonlinear function is presented 

in Appendix A.  Consider the LS system shown in Figure 2.1.  The system consists of a 

LS pump with a LS regulator (1), a control piston (2) and a pressure control pump (3), 

an adjustable orifice (4), a LS line with a damping orifice (5), and a motor load (6). 
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Figure 2.1 Schematic of the Load Sensing System 

2.1.1 Load Sensing Pump 

The LS pump system consists of three main hydraulic components as shown in 

Figure 2.2; pressure control pump, LS regulator (three-position three-way valve with 

critical center spool), and a control piston (the control piston makes contact with the 

yoke upon which the swash plate is fixed). From energy saving considerations, the spool 

of the LS regulator is most often selected to be critically centered [Ford 60 Series 

Gemini Tractors; Volvo Champion Motor Graders; Brueninghaus Hydromatik Variable 

Displacement Pump AA11VO; Vickers PVH Piston Pumps; Caterpiller 160H Motor 

Grader; Newholland Series 60 tractors etc.].  In a few other applications, [Newholland 
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Series 60 tractors with gear pumps], an underlapped spool is used. In this study, a 

critically lapped spool is considered. 

The dynamic mathematical model consists of two equations of mechanical 

movement and one flow continuity equation. 

• Force Equilibrium Equation for the LS Regulator Spool 

The equation of motion for the spool of the LS regulator (Figure 2.2) can be 

described as 
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where  xr is the spool displacement.  mr, Br, and  kr are spool mass, damping coefficient, 

and preset spring coefficient respectively.  Ar is the cross sectional area of the spool.  Ps, 

PLs and Pd are the pump pressure, the load pressure at the end of LS line, and the 

pressure differential setting respectively.  It is noted that Pd is not a true “physical”  

pressure but an equivalent pressure term caused by the pre-compression force of the 

spring (
A

F
P = ).  Pd controls the pressure drop across an adjustable orifice and is a 
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Figure 2.2 Schematic of the Load Sensing Pump System 
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designed value of pressure differential, Ps - PL. Pd will be further discussed when its 

value is determined in Section 4.2.2.1 of Chapter 4.  

It is also noted that Equation (2.1) does not include the steady state flow force and the 

transient flow force exerted on the spool of the LS regulator. This is because the flow 

rate (i.e. the leakage for the critically lapped LS spool) through orifices around the spool 

sleeve is small resulting in a flow force that is very small compared to the force 

produced by (Ps – PLs - Pd). A dynamic simulation in which the steady state flow force 

and the transient flow force were considered has been conducted to verify that the flow 

forces are negligible for the LS regulator in this study. 

• Dynamic Equation of the Yoke Control Cylinder and Swash Plate 

Referring to the control piston (Figure 2.2), the relationship between the swash plate 

angle, θsp, and the yoke displacement, xy, is 

py

yy
sp R

xx −
= maxtanθ         (2.2) 

The pre-compression spring normally pushes the yoke piston back and maintains the 

displacement, xy, of the yoke at the original position (xy = 0 in Figure 2.2). That is, the 

pre-compression spring value is such that the pump is at full displacement before the 

pump operates.  When the yoke chamber pressure, Py, increases, the yoke piston does 

not move until the yoke chamber pressure overcomes the pre-compression pressure Pys.  

When Py increases beyond Pys, the yoke piston begins to move forward and the swash 

plate angle begins to decrease correspondingly.  When xy increases to the maximum, the 

pump swash plate angle decreases to zero.  In this case, the pump is “destroked”  and 

pump flow is zero. 
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In order to describe the dynamic behavior of the swash plate and the control yoke, 

the displacement of the control piston, yx , or the swash plate angle, spθ , can be assigned 

as the state variable.  The swash plate angle, spθ , is usually used as the variable in 

modeling because (1) the non-linearity of the pump is mainly caused by the pressure 

control pump, rather than the control piston, and (2) measuring spθ  is easier than 

measuring xy.  The dynamic model of the swash plate angle depends on the structure of 

the variable displacement axial piston pump. Depending on the eccentricity of the swash 

plate axis, the external active torque on the swash plate assembly is dictated by both the 

yoke control pressure, yP , and the pumping piston pressure, sP .   

Numerous models for axial displacement pump have been developed. Dobchuk, et 

al, [1999, 2000] developed a mathematical model of a variable displacement axial piston 

pump and investigated the effect of internal pump dynamics on control piston pressure 

ripple. However, this model was too complex to consider in the LS system-level models. 

Another model, which reflects the “back pressure”  on the pump due to the pump 

pressure acting on the pistons, was developed by Kavanagh [1987]. The non-linear 

dynamic equation was developed to be 

yypyspsprsprspspspspspspsp PARPKPKTKBJ −−++−−= θθθθ 32
&&&    (2.3)  

where  spJ  = Average total moment of inertia of swash plate, yoke and piston assembly, 

Nms2. 

spB  = Simplified constant (damp coefficient) of the control piston and swash 

plate assembly, Nms. 

spK  = Angular effective spring coefficient, Nm⋅rad-1. 
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spT   = Angular effective spring pretension, Nm. 

2prK  = Pressure torque constant, Nm⋅Pa-1. 

3prK  = Pressure torque constant, Nm⋅Pa-1⋅rad-1. 

pyR  = The distance between the centerline of the control piston guide and the 

swash plate pivot (Figure 2.2), m. 

yA  = Effective control piston area (Figure 2.2), m2. 

It is noted that Ps in Equation (2.3) was pP∆  (the differential pressure, Ps - PT) in the 

original model by Kavanagh [1987].  However because the pressure, PT, in the suction 

piston chambers is small, pP∆  can be considered as the pump pressure which is 

represented by Ps here. 

This equation is nonlinear because the spspr PK θ3 term includes the product of two 

variables, sP and spθ .  Thus, this equation is linearized which results in: 

sspprpryypyspsprspspspspsp PKKPARPKKBJ ∆−+∆−∆+−∆−=∆ )()( 03203 θθθθ &&&   (2.4) 

The linearized Equation (2.4) does not include the constant spT . This indicates that the 

constant spT  affects the steady state operating point and does not relate to the dynamic 

performance. 

• Flow Continuity Equations of Chamber Volume of the Pump Swash-Plate Control 

Cylinder 

Consider the chamber between the LS regulator and the control piston in Figure 2.2.  

For the adjusting valve with a critically lapped spool, the flow continuity equations can 

be described as 
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( )21 ryyr
y

y QxAQ
V

P −−= &&
β

       (2.5) 

where β is the bulk modulus of hydraulic oil, Vy is the volume of yoke chamber which is 

given in Equation (2.6), Qr1 is the flow through the “charging”  orifice on the right side 

(in the LS regulator of Figure 2.2), and Qr2 is the flow through the “discharging”  orifice 

on the left side. 

yyyy xAVV += 0          (2.6) 

The control piston position is defined such that an increase in xy will cause an increase in 

the volume, Vy, of the yoke chamber. 

With reference to Figure 2.2, flow through the “charge”  orifice (As) and “discharge”  

orifice (AT) (depending on which orifice is opened) is given by 

( ) ( )ysrsdr PPxACQ −=
ρ
2

1   0≥rx      (2.7) 

( ) yrTdr PxACQ
ρ
2

2 =    0<rx      (2.8) 

where Cd is the discharge coefficient of the valve orifice and ρ is the density. 

For a rectangular-shaped orifice with a critically lapped spool, the orifice areas As(xr) 

and AT(xr) can be represented by a piecewise linear relationship given as 

( )




=
0

max

rr

rr

rs xw

xw

xA    

0

0 max

max

<
<<

≥

r

rr

rr

x

xx

xx

   (2.9) 
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( )




=
0
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rT xw
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0
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≤<−

−≤

r

rr

rr

x

xx

xx

   (2.10) 

wr is the width of the rectangular-shaped orifice. maxrx is the largest width of the 

regulator orifice.  The coordinate of xr is defined such that when xr ≤ 0, the orifice on the 

right hand side is closed (Qr1 = 0) and when xr ≥ 0, the orifice on the left hand side is 

closed (Qr2=0).   

In Kim and Cho [1991], the metering orifices of the LS regulator were assumed to be 

rectangular. In practice, the orifices in LS systems are usually round-shaped. The round-

shaped orifice makes the LS system model more non-linear than rectangular-shaped 

orifices. For a round-shaped orifice with a critically lapped spool (Figure 2.2), the orifice 

areas As(xr) and AT(xr) are piecewise non-linear and are given as 

( ) ( )���
���
�

≥

<<−−−���
����	 −

≤

= −

rrr

rrrrrrr
r

rr
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RxR
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     (2.11) 
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00
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     (2.12) 

where Rr is the radius of the round orifice (Rr replaces 
2
maxrx

 in order to distinguish the 

rectangular orifice in Figure 2.2.  The top view of the round-shaped orifice is shown in 

Figure 2.3). 

Linearization of Equations (2.7) and (2.8) gives 

( )yscrrqrr PPKxKQ ∆−∆+∆=∆ 111       (2.13) 
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and ycrrqrr PKxKQ ∆+∆=∆ 222        (2.14) 

where  
( ) ( )00

0
1

2
ys

r

rs
dqr PP

dx

xdA
CK −⋅⋅=

ρ
,      (2.15) 

( )
( )00

0
1

2 ys

rsd
cr

PP

xAC
K

−
=

ρ
,        (2.16) 

( )
0

0
2

2
y

r

rT
dqr P

dx

xdA
CK

ρ
⋅⋅= ,       (2.17) 

( )
0

0
2

2 y

rTd
cr

P

xAC
K

ρ
=         (2.18) 

The opening rates of orifice area, 
( )

r

rs

dx

xdA
 and

( )
r

rT

dx

xdA
, for rectangular-shaped 

orifices are constant (wr and -wr depending on which orifice is opened).  For the round-

shaped orifice, the gradients 
rdx

dA
are nonlinear. 

Linearization of Equation (2.5) can be expressed as 

( )21 ryyr
y

y QxAQ
V

P ∆−∆−∆=∆ &&
β
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or   spsypyrxrydxyyxyy PKPKxKxKxKP ∆+∆−∆+∆−∆−=∆ ��     (2.19) 

where  

( ) ( )200102
00

ryyr

yyy

y
xy QxAQ

xAV

A
K −−

+
= &

β
     (2.20) 

00 yyy

y
dxy xAV

A
K

+
=

β
        (2.21) 

( )21
00

qrqr
yyy

xr KK
xAV

K −
+

= β
       (2.22) 

( )21
00

crcr
yyy

py KK
xAV

K +
+

= β
       (2.23) 

00

1

yyy

cr
ps xAV

K
K

+
=

β
        (2.24) 

Equation (2.19) involves two time derivatives ( yP&  and yx& ) of the state variables. The 

effect of piston velocity, yx& , on the pressure, yP , of the control piston chamber is not 

negligible due to the small volume of the control piston chamber. 

∆xy and yx&∆  in Equation (2.19) must be expressed in term of ∆θsp and spθ&∆ because 

θsp is assigned as the state variable of the swash plate and control piston assembly. 

Rearranging Equation (2.2) and differentiating xy give 

( )sppyyy Rxx θtanmax ⋅−=         (2.25) 

( ) sp
sp

py
y

R
x θ

θ
&& ⋅−=

2cos
        (2.26) 
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Linearization of Equations (2.25) and (2.26) gives 

( ) sp
sp

py
y

R
x θ

θ
∆⋅−=∆

0
2cos

        (2.27) 

( )
( )
( ) sp
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spsppy
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00
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&
&&     (2.28) 

Substituting Equations (2.27) and (2.28) into Equation (2.19) can give  

spsypyrxrspdspy PKPKxKKKP ∆+∆−∆+∆+∆=∆ θθ θθ
&&     (2.29) 

where 

( )( )
( )0

2

00

cos

tan2

sp

dxyspspxypy KKR
K

θ
θθ

θ

&+
=       (2.30) 

( )0
2cos sp

dxypy
d

KR
K

θθ =          (2.31) 

• Flow Supply of the LS Pump 

Figure 2.4 shows schematically the flow through the LS pump.  Consider the control 

volume defined as illustrated by the dashed line. Three flows are illustrated; the flow 

(Dpω) from the tank, the flow (Qr1) to the regulator, and Qs, the flow to the load 

(commonly referred to as the pump flow) 

From the flow continuity consideration of the pump outlet volume, 

1rps QDQ −= ω          (2.32) 

Dp is the “displacement”  of the pump and is linearly related to the tangent of the swash 

plate angle, that is 
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( )
π

θ
θ sppp

spp

RNA
fD

tan
==        (2.33) 

Substituting Equation (2.33) into Equation (2.32) gives  

1

tan
r

sppp
s Q

RNA
Q −=

π
θω

       (2.34) 

Both terms of Equation (2.34) on the right hand side include non-linear functions.  

Linearization of Equation (2.34) can be expressed by 

( )yscrrqrspps PPKxKCQ ∆−∆−∆−∆=∆ 11θ      (2.35) 

where the Kqr1 and Kcr1 were defined in Equation (2.13), and 

( )0
2cos sp

pp
p

RNA
C

θπ
ω

⋅
=         (2.36) 

2.1.2 Pump Volume 

Consider Figure 2.4.  The pump pressure is dictated by the pump flow Qs, the 

leakage flow Qpl, and the load flow, QL.  The pump pressure in the outlet volume is thus 

given as 

( )( )plLs
p

s QQQ
V

P −−= β
&       (2.37) 
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Figure 2.4 Flow Diagram of the LS Pump 
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where splpl PcQ = .  cpl is the leakage coefficient of the pump. Vp is the pump outlet 

volume which includes the volume of pipeline. The load flow, QL,, will be discussed in 

the next section.  It should be noted that if the pump volume is small and the leakage is 

negligible, then the pump pressure is dictated by the loading condition and thus the 

causality of all the relationships do change. In most applications, the pipeline volume 

between the pump and valves is larger than the effective volume of pump pistons. The 

effect of long pipelines on the dynamic behavior of the pump is significant [Kauranne, et 

al, 1999].  

2.1.3 Flow Adjusted Orifice without Pressure Compensation 

The well-known equation of the volumetric flow rate through the adjustable orifice 

shown in Figure 2.1 is derived from Bernoulli’s equation by assuming (1) an 

incompressible fluid, (2) turbulent flow and (3) rectangular type orifice [Merritt, 1967] 

as 

( )Lsd PPwxCQ −=
ρ
2

        (2.38) 

where Cd is the discharge coefficient. w and x are the width and opening of the 

rectangular type orifice respectively. ρ is the fluid density. Ps is the pump pressure at the 

orifice upstream. PL is the load pressure at the orifice downstream. 

Because the flow through an orifice is assumed to be turbulent, the discharge 

coefficient, Cd, is commonly considered as a constant, typically, 0.61 for sharp edged 

orifice. 

Linearization of Equation (2.38) can be expressed by 

( )LscqL PPKxKQ ∆−∆+∆=∆        (2.39) 
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where 

( )00

2
Lsdq PPwCK −=

ρ
        (2.40) 

( )002 Ls

d
c

PP

wxC
K

−
=

ρ
        (2.41) 

2.1.4 Motor Load 

The mathematical model of the motor load in Figure 2.5 consists of a flow continuity 

Equation (2.42) of the inlet volume and the dynamic torque Equation (2.43) on the 

motor axis. 

( )mlLm
m

L QQD
V

P −+−= φβ
&        (2.42) 

( )mfLmm
m

TPDB
J

−+−= φφ 1
&        (2.43) 

where Lmlml PcQ = .  cml is the leakage coefficient of the motor.  Vm is the inlet volume of 

motor, Jm is the total inertia of motor and load, Bm is the damping coefficient of the load, 

and Dm is the volumetric displacement of the motor. φ is the rotary speed of the motor.  

Tmf is the resistant torque of the load. The resistant torque cannot be neglected because it 

does exist due to many factors such as gravity, stiction, friction, etc. It directly affects 

the SSOP of the LS system. 
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Figure 2.5 Diagram of a Hydraulic Motor 
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Equations (2.42) and (2.43) can be linearized as 

( )LplLm
m

L PcQD
V

P ∆−∆+∆−=∆ φβ
&       (2.44) 

( )Lmm
m

PDB
J

∆+∆−=∆ φφ 1
&        (2.45) 

It can be seen that the constant resistant torque, Tmf, is absent in Equation (2.45) 

unless it depends on any state variable or it is an independent variable. 

2.1.5 Feedback Line  

It is difficult to build a precise mathematical model of the load sensing line.  A 

lumped parameter model, however, can approximately describe the dynamic behavior of 

the load sensing line.  Figure 2.6 shows a two-parameter model of load sensing line with 

hose volume, VLs, and hose flow resistance, RLs.  QLs represents the flow of load sensing 

line at the left end of pump compensator.  This flow is linearly related to the speed, rx& , 

of the compensator piston.  QLsss represents the flow that considers the presence of hose 

resistance and hose capacitance.  Actually, in the limit, QLsss can be regarded as the 

steady state value of QLs.  Therefore, 

 rrLs xAQ &−=          (2.46) 
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=         (2.47) 
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Figure 2.6 Model of Load Sensing Line 
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 ( )LsLsss
Ls

Ls QQ
V

P −= β
&        (2.48) 

Substituting Equations (2.46) and (2.47) into (2.48), the dynamic behavior of the 

load sensing line can be expressed by 

 
( )



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

+
−

= rr
Ls

LsL

Ls
Ls xA

R

PP

V
P &&

β
      (2.49) 

Usually, rr xA & is negligible.  Equation (2.49) can be simplified into a simple first order 

system as 

 ( )LsLLsLs PPP −= ω&         (2.50) 

where
LsLs

Ls RV

βω = .  Lsω  represents the break frequency of the “damping”  system due 

to the effect of both the flow resistance and the hose capacitance. (Note, in the literature, 

Lsω  is used rather than Lsτ ; as such, Lsω  will be adopted in this work.) 

2.2 MethodologyDesign and Analysis of the Load Sensing System 

The non-linearity and complexity of LS systems makes system analysis and design 

very complicated.  The stability of linear systems is uniquely determined by the system 

parameters which are time invariant, independent of steady state operating points, and 

independent of the amplitude of the input signals.  Unlike a linear system, however, the 

dynamic characteristics of non-linear systems are dependent on steady state operating 

points and input signals.  Therefore, the approaches to analyzing these systems are 

different. 
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2.2.1 Examples 

Two simple examples shown in Figures 2.7 and Figure 2.8 are used to explain the 

difference in the analytical methods.  Consider a linear system with mass, m, and linear 

damping, B, shown in Figure 2.7.  For an arbitrary step input, F, the final velocity of the 

block will converge to 
B

F
v f =  uniquely.  It can be said that the system is always stable.  

However, for the case of a single pendulum shown in Figure 2.8, the situation is 

different. 

Assume that a step input in F is in the tangential direction.  The equation of motion 

is given as 

 ( ) ( )tUlFmglml 0
2 sin =++ θθηθ &&&       (2.51) 

where m is the mass of the block suspended, η  is the angle damping coefficient, l is the 

length of the pendulum, and g is the gravitation acceleration, U(t) is a unit step input and 
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Figure 2.7 An Example of Linear Systems 
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Figure 2.8 An Example of Non-Linear Systems—Single Pendulum 
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F0 is the magnitude of this step input.  For a particular range of F0, the single pendulum 

will be eventually stabilized at a particular steady state operating point, 0θ (<900).  In 

order to analyze the stability of the single pendulum mathematically, there are two 

aspects that must be considered. 

All possible operating points at steady state must be determined.  From Equation 

(2.51), the steady state angle of the pendulum is given by 
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arcsin180
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Equation (2.52) indicates that, for |F|>mg, no steady state operating point exists.  For 

|F|≤ mg, there are two steady state operating points. 

Secondly, it is necessary to establish if each steady state operating point is a 

“ realizable”  steady state operating point.  In order to do this, linearization of Equation 

(2.51) is necessary. 

Faaa ∆=∆+∆+∆ θθθ 012
&&&       (2.53) 

where mla =2 , la /1 η= , and ( )00 cosθ⋅= mga .  The transfer function corresponding to 

linearization Equation (2.53) is 

  ( ) ( )
( ) 01

2
2

1

asasasF

s
sf

++
=

∆
∆= θ

     (2.54) 

According to the theory of dynamic analysis of linear systems, the single pendulum 

is stable only if the three coefficients (ai i=0,1,2) are of the same sign.  Substituting the 
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two possible steady state points for Equation (2.52) into the linearized Equation (2.43), it 

is observed that, for 


=
mg

F
arcsin0θ , all three coefficients of Equation (2.52) are 

positive.  Therefore, the single pendulum is stable.  For 


−=
mg

F
arcsin1800

0θ , a0 is 

negative.  Therefore, under these conditions, the single pendulum is unstable.  This 

example illustrates that, for a non-linear system, it is necessary to find the steady state 

operating points before the dynamic analysis can be done. 

2.2.2 Summary of Linearization Approach 

The lineariztion approach of the LS system is defined in the thesis as the method of 

small signal analysis of a non-linear LS system using linear theory. The method includes 

“steady state analysis”  and “dynamic analysis” . The former is defined as the procedure 

for finding all possible steady state operating conditions and steady state operating 

points. The latter is defined as the procedure using frequency response modeling and 

analysis, or alternatively a small signal simulation, based on the linearized equations of 

the non-linear LS system. 

For the steady state analysis, it is impossible to give an analytical expression for all 

possible steady state operating points at all possible operating conditions. First, finding 

all possible operating conditions requires the complete analysis for components which 

demonstrate the significant non-linearities. The regions in which the LS system cannot 

be described by the same dynamic equations set, can be separated into several different 

operating conditions. Second, for each operating condition, finding all possible steady 

state operating points requires all possible solutions to a very large set of nonlinear 

system equations for the case where all the derivatives are set equal to zero.  For 
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example, Equation (2.52) is the solution of Equation (2.51) with 0== θθ &&& .  Usually, a 

LS system is required to operate about operating points at steady state in such a way that 

derivatives of pressures (pump pressure and load pressure) and spool position (LS 

regulator spool) are zero.  As such, the very large set of non-linear system equations 

become a set of non-linear algebraic equations involving several unknown variables. 

Solving for these unknown variables needs an iteration computation in most cases. 

Dynamic analysis, or small signal analysis of the linearized dynamic equations often 

involves frequency response modeling approach and analysis. The objective is to find 

the stability of the LS system at SSOP’s. The detailed explanation about the method of 

the frequency response modeling and analysis is presented in Section A.3 of Appendix 

A. 

A linearization approach can also be used for the design of a LS system, such as the 

one shown Figure 2.1, which involves choosing the hydraulic components and setting 

parameters of some components to meet required specifications.  Primarily, these 

components can be “pre-chosen” by the power and/or flow requirements of the load(s).  

The feasibility of these choices of components must be subsequently validated by steady 

state and dynamic analysis.  If they cannot meet the specifications, the original 

component choice must be re-examined. 

Usually, the design inputs include the pressure differential setting, Pd, to control the 

pressure drop across the orifice in the non-compensated valve which is the pump-

regulator setting.  For a specific opening, xv, of the orifice within the range (0~xvmax), it is 

necessary to first do the steady state analysis and then its dynamic analysis.  If the result 

of the steady state analysis indicates that no steady state operating point exists within a 
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specified range, then it is not necessary to proceed with stability analysis.  In this case, it 

may be that the component(s) is chosen improperly, or the design inputs Pd is 

unreasonable.  For example, suppose the steady state operating point of the spool 

displacement of the LS regulator was calculated to be xrmax which is the maximum 

opening of LS regulator orifice.  This would be an unacceptable steady state operating 

point because it is at saturation. 

If the steady state operating point(s) are within a specified range, dynamic analysis, 

using tools such as the Bode diagram of the linearized system, help assess the stability at 

the steady state operating point(s) for the specific opening, xv, of the flow control valve.  

For all expected openings, xv, of the adjustable orifice, if the LS system is stable, the 

system meets the required design constraints and is considered stable. 
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Chapter 3 Steady State Analysis of the Load Sensing system 

3.1 Introduction 

As indicated in Chapter 2, a “steady state analysis”  procedure for a dynamic system 

must be developed to determine all possible SSOP’s.  Finding these operating points 

requires all possible solutions to a set of nonlinear system equations in which all the 

derivatives are set equal to zero.  For some simple non-linear systems, such as a single 

pendulum, it is possible to develop an analytical solution of the corresponding steady 

state equations.  However, for many actual hydraulic systems, such as LS systems, it is 

not possible to develop an analytical expression for all possible operating points.  

Fortunately, numerical methods and powerful computers have provided alternate 

approaches for solving all possible solutions to a non-linear equation. 

This chapter will develop a set of causal relationships which will facilitate the steady 

state analysis of LS systems.  A numerical method for solving non-linear equations will 

be provided.  The “piece-wise model”  problem which surfaces from these equations will 

also be discussed.  Finally, a procedure of solving for the SSOP’s of the LS system is 

forwarded. 

3.2 Non-linear Models for Steady State Analysis of a Typical Load Sensing System 

In order to understand the procedure of solving for the operating point of general LS 

systems, it is necessary to consider a set of nonlinear algebraic equations resulting from 

the non-linear dynamic models developed in Chapter 2, and to use these equations to 

illustrate the steady state analysis of a typical LS system. 
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3.2.1 Non-linear Equation Set 

For the LS system under steady state conditions, the time derivatives of the state 

variables ( LsLysspr PPPPx and,,,,,, φθ ) are zero.  Therefore, setting 

,,,, spsprr xx θθ &&&&&& LsLys PPPP &&&&& and,,,,φ to zero in Equations (2.1), (2.3), (2.43), (2.37), 

(2.5), (2.42), and (2.50) yields seven algebraic equations having seven unknown 

variables ( φθ ,, sprx , LsLys PPPP and,,, ). These equations are listed in Table 3.1. 

Equation (3.4) indicates that the flow rates, Qr10 and Qr20, are zero due to the critically 

lapped condition. This will give rise to the different operating conditions discussed in 

the next section. 

Table 3.1 Generic Steady State Models of the LS system 

( )( )dLss
r

r
r PPP

k

A
x −−=  (3.1) 

032 =−−++− yypyspsprsprspspsp PARPKPKTK θθ  (3.2) 

m

mfLm

B

TPD −
=φ  (3.3) 

( ) ( ) 0,,, 020220101011 == yrrysrr PxQPPxQ     (For critically lapped spool) (3.4) 

0=−− splLs PcQQ  (3.5) 

0=−− φmLmlL DPcQ  (3.6) 

LLs PP =  (3.7) 
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Equation (3.2) can be re-expressed as 

ssp
ypy

pr
sp

ypy
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s

ypy

pr
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y P

AR

K

AR

K
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AR

K
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P θθ 32 −−+=      (3.8) 

Define: 

 
ypy

sp
sp AR

T
T ='   N⋅m-2       (3.9) 

 
ypy

pr
pr AR

K
K 2'

2 =  dimensionless      (3.10) 

 
ypy

sp
sp AR

K
K ='   N⋅m-2⋅rad-1      (3.11) 

 
ypy

pr
pr AR

K
K 3'

3 =   rad-1       (3.12) 

Equation (3.8) can be now expressed 

sspprspspsprspy PKKPKTP θθ '
3

''
2

' −−+=   max0 spsp θθ <<   (3.13) 

The particular form of Equation (3.13) is preferred here because the values of 

parameters '
spT , '

spK , '
2prK  and '

3prK have been experimentally evaluated for the particular 

pump used in this study. 
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3.2.2 Steady State Operating Condition of the Load Sensing Regulator 

The critically lapped spool design of the LS regulator necessitates a special 

consideration when solving the equation set.  Equation (3.4) indicates that under steady 

state conditions, Qr1 and Qr2 are equal to zero for critically lapped spool design.  This 

condition occurs when xr = 0 or xr = xr0 (with other conditions attached).  This gives rise 

to the identities  

( ) 0,, 0101011 =ysrr PPxQ         (3.14) 

( ) 0, 02022 =yrr PxQ          (3.15) 

where the subscript “01”  in Equation (3.14) represents the operating point with xr0 > 0 

(i.e. the “charge”  orifice is open) (see Figure 3.1). The subscript “02”  in Equation (3.15) 

represents the operating point with xr0 < 0 (i.e. the “discharge”  orifice is open). It is now 

necessary to consider the condition under which these identities can occur. 

Equations (2.11) and (2.12) shows that As(xr) is zero for 0≤rx  (and hence Qr1(xr) is 

zero), and AT(xr) is zero for 0≥rx  (hence Qr2(xr) is zero).  Further, As(xr) and AT(xr) are 

also zero at 0=rx (hence Qr1(0) and Qr2(0) are zero). With respect to Figure 2.2, the 

 xr<0 
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Qr2 

xr>0 
Ps 

PT 

Py 

Qr1 

Charge 
orifice 

 

(a)                                                       (b) 

Figure 3.1 LS Regulator: (a) the Control Chamber Charged  

(b) the Control Chamber Discharged 
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flow to the control piston (xr > 0), or the flow to the tank (xr < 0) must be zero for steady 

state conditions; that is 

( ) ( )




=

≥=−

)blocked(0

00
2

2

0000

r

rysrsd

Q

xPPxAC
ρ       (3.16) 

and 

( )
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


=
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)blocked(           0
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000

r

ryrTd

Q

xPxAC
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The above analysis gives rise to the following conditions in which Qr1 or Qr2 are zero or 

both.  

Condition I: 00 =rx . (Qr1= 0 and Qr2 = 0).  This condition is obvious because the 

valve is critically lapped.  

Condition II: 00 >rx (Qr1 = 0). This only occurs if 00 ys PP =  (see Equation (3.16)).  

Condition III: 00 <rx (Qr2 = 0). This can only occur if 00 =yP and 0=TP  (see 

Equation (3.17)). 

The aforementioned three conditions describe “possible”  scenarios of the LS 

regulator with a critically lapped spool under steady state conditions in which the flow 

rates are zero. Whether the operating point exists or is stable for each condition depends 

upon control equations of other parts of the LS system shown (i.e. the control piston and 

pressure control pump in Figure 2.2 and the load in Figure 2.5), in particular, the steady 

state control characteristic of the pressure control pump. To assist in explaining the 

relationship between the above three conditions and the steady state control 
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characteristics of the pressure control pump, consider Figure 3.2 in which the control 

pressure, Py, is plotted as a function of the pump pressure, Ps, and swash plate angle, 

spθ (see Equation (3.13)). The minimum swash plate angle, minspθ , is zero and the 

maximum, maxspθ , is 0.32 radians for the pump studied. The regions or lines which 

reflect two of the three conditions are also labeled in Figure 3.2. 

Consider condition I.  Condition I cannot be shown in Figure 3.2.  This is because 

there is no explicit relationship between Py and Ps for xr = 0. Thus, Py0 and Ps0 must be 

mathematically derived from other steady state equations.  It is reasonable to expect that 

the solution may be any point in regions (A) and (B) which represent steady state 

operating regions permitted by the pressure control pump. However, any solution in 

region (A) does not make physical sense in the LS mode because, physically, Py cannot 
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Figure 3.2 Steady State Characteristic of the Pressure Pump 
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be greater than Ps under steady state condition. Therefore, only solutions in region (B) 

can be considered for xr = 0. 

Consider condition II.  This condition requires that the control pressure, Py, be equal 

to the pump pressure, Ps (see Figure 3.2).  Possible operating points under condition II 

must be on the line (Py = Ps) and within Qspmin and Qspmax; this line is also the boundary 

between regions (A) and (B). Pressures, Ps and Py, at two terminal points can be 

determined by applying Condition II to Equation (3.13) to give 

'
2

'
3max

'
max

'

1 1 prprsp

spspsp
s

KK

KT
P

−+
−

=
θ

θ
       (3.18) 

and 

'
2

'

2 1 pr

sp
s

K

T
P

−
=          (3.19) 

The specific operating point under condition II must also be mathematically 

determined. 

Consider condition III.  This condition requires that the control pressure, Py, be zero. 

However, Figure 3.2 indicates that Condition III (Py = 0) is outside the normal steady 

state operating region (B) of the pressure control pump. In fact, condition III represents 

the “ fully stroked” status of the pressure control pump where the swash plate angle is 

limited to the maximum value. This often occurs if the pressure setting (such as Pd) of 

the LS system or the opening of the orifice (xv) is very large, or the load is overrunning 

and theoretically would require more flow than the pump could deliver. 

In order to solve for the operating point at each condition, the steady state equation 

sets with a critically lapped spool need to be expressed in a different way, as presented 

in the following section. 
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3.2.3 Steady State Equations Set 

As a first step, φ (Equation (3.3)) is substituted into Equation (3.6).  Further PLs 

(Equation (3.7)) is substituted into Equation (3.1).  Thus the algebraic Equations (3.1), 

(3.13), (3.3) through (3.7) can be simplified into a set of four nonlinear equations and 

one assumed condition which can be one of Conditions I, II or III. 

Substituting Equation (3.7) into (3.1) gives  

( )
( )
( )



=<<−
=>>−

==−

) III(condition 0 and 0for          

) II(condition  and 0for          

) I(condition 0for          
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000

000
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PxPPP

PPxPPP

xPPP

   (3.20) 

Equation (3.20) is expressed as an inequality because the discussion in this chapter is 

more interested in the sign of xr0 than the magnitude of xr0. (See Equation (3. 28)) 

In order to reflect Condition III in the relationship between the swash plate angle, θsp, 

Ps, and Py, Equation (3.13) is expressed as 
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    (3.21)  

Substituting Equations (2.34) and (2.38) into Equation (3.5) in Table 3.1 results in 

( ) 0
2tan

=−−− splLsd
sppp PcPPwxC

RNA

ρπ
θω

    (3.22) 

It must be noted that Qr1 is equal to zero (steady state) in the expression for Qs. 

In a similar fashion, Equation (3.6) can be expressed as 
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2 2

=+





+−−
m

mfm
L

m

m
mlLsd B

TD
P

B

D
cPPwxC

ρ
    (3.23) 



 55 

Equations (3.20), (3.21), (3.22) and (3.23) are the four equations to be used to solve 

for operating points (xr0, θsp0, Ps0, Pl0, Py0).  It is apparent that there are five variables 

and four non-linear equations. To solve these equations, one parameter value must be 

assumed; for example, xr0 is zero for condition I, Py0 equals to Ps0 for condition II, and 

Py0 is zero for condition III.  Using one of these conditions, all other parameters can be 

solved.  Because PLs0 and φ0 are uniquely determined by PL0 (see Equations (3.3) and 

(3.7)), solving for these variables is straight forward and will not be considered in 

subsequent sections. 

3.3 Solving for the Steady State Operating Point 

In this section, the solutions of the steady state equation sets for the three conditions 

are discussed separately.  For each condition, the general solution of the operating point 

is developed associated with xr0, θsp0, Ps0, PL0, Py0. 

3.3.1 Solution of the Steady State Equation Sets under Condition I (xr0 = 0) 

Consider the load pressure PL0.  Substituting Equation (3.20) into Equation (3.23) 

and then re-organizing the equation results in 
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20        (3.24) 

Again, it must be noted that Pd is not a true physical pressure but an equivalent pressure 

term. Recall that the value of Pd is equal to the designed external pressure differential, 

( )00 Ls PP − , which, under the steady state condition, forces the spool to its null position 

(refer to Figure 2.2). The load pressure, 0LP , of the operating point under steady state 

conditions can been directly computed via Equation (3.24).  Equation (3.24) indicates 
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that the larger the motor leakage, the smaller the load pressure is.  There are two terms in 

the square bracket of Equation (3.24).  The first term is the load flow and the second 

term is a flow which is proportional to the resistant torque on the axle of the motor with 

the load.  Therefore, the larger the flow rate entering the motor and the higher the load 

resistant torque, the higher the load pressure is. 

To calculate the pump pressure Ps0, it is necessary to substitute Equation (3.24) back 

into Equation (3.20) to give 

00 Lds PPP +=          (3.25) 

To find the swash plate angle, θsp0, Equation (3.20) is substituted into Equation 

(3.22) and re-organized to give 
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where Ps0 is determined using Equation (3.25). 

To determine the control pressure Py0, it is necessary to substitute the values of 

Equations (3.25) and (3.26) into Equation (3.21) to give the control pressure under the 

steady state condition as 

( ) 00
'

3
'

0
'

2
'

0 spsprspsprspy PKKPKTP θ+−+=      (3.27) 

Equations (3.24), (3.25), (3.26) and (3.27) can now be sequentially solved to give the 

value of four variables under the steady state condition xr0 = 0 (condition I).  However, it 

should be noted that the operating points calculated from the above equations, may not 

always exist in the operating region.  It is necessary to check if the solution of each 

variable is in the normal operating region.  This approach is now explained. 
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Whether the operating point with condition I exists or not is determined by checking 

two requirements. First, the swash plate angle, θsp0, calculated by the flow continuity 

Equation (3.26) must be smaller than the maximum angle, θspmax.  Then, the control 

pressure, Py0, computed by Equation (3.27) must be smaller than the pump pressure, Ps0, 

by Equation (3.25).   

The above two requirements have a physical interpretation. The first requirement 

( maxspsp θθ < ) implies that the flow demanded by the load plus the pump leakage which 

corresponds to the swash plate angle, θsp0, must be smaller than the maximum flow 

delivered at the maximum swash plate angle, θspmax. If this is not true, the LS pump must 

be in the “ fully stroked” status (i.e. condition III). The second requirement means that, if 

the control pressure, Py0, computed by Equation (3.27) is larger than the pump pressure, 

Ps0, then this situation results in a physically unrealizable condition under steady state 

conditions. 

3.3.2 Solution of the Steady State Equation Sets under Condition II (Ps0 = Py0) 

Figure 3.2 shows that the pump pressure under condition II must be in region [Ps1, 

Ps2]; that is, the pump pressure must be less than Ps2 in Figure 3.2. 

20 ss PP <           (3.28) 

Now from Equation (3.20), Ps must satisfy the relationship 

00 Lds PPP +>          (3.29) 

Combining inequalities (3.28) and (3.29) results in 

dsL PPP −< 20          (3.30) 

This indicates that the operating point with condition II may only exist when 

dsL PPP −< 20 .  If Pd is set to a larger value than Ps2, the inequality would never be 



 58 

established because pressures PL0 is always positive unless a runaway load exists. This 

implies that no operating point exists with condition II and 2sd PP > .  Therefore, the 

operating point with condition II can exist only when Pd is smaller than Ps2. Again, 

because Pd is always positive and Ps2 usually is small (e.g. for the pump studied, Ps2 = 

1.55 MPa), the operating point with condition II exists when Pd is smaller than Ps2 and 

PL0 is small.  

Condition II of Equation (3.20) gives the equality relationship between the control 

pressure, Py0, and the pump pressure, Ps0, but does not give the value of xr like condition 

I.  This results in a different method of solving the non-linear equation sets. 

For the convenience of iteratively solving for the SSOP, Equation (3.22) can be 

rearranged as 

( ) ( ) splLsd
sppp PcPPwxC

RNA
−−=

ρπ
θω 2tan

    (3.31) 

Equation (3.31) involves three unknown variables, θsp, Ps and PL. In order to solve 

for the SSOP of the LS system under Condition II, Equations (3.21) and (3.23) have to 

be used.   

Equation (3.21) can be rearranged to reflect condition II as 
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=θ   syspsp PP =≤≤ and0 maxθθ   (3.32) 

It is noted that the pump pressure, Ps, in Equation (3.32) is not labeled with the 

subscript ‘0’  because at this point Ps is not known. Indeed, all subsequent equations will 

not bear the “0”  subscript until Ps can be solved. 

Equation (3.23) can be rearranged to express PL as a function of the Ps as 
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Equations (3.32) and (3.33) into Equation (3.31) yields a non-linear algebraic equation 

to solve for Ps0 (and Py0 due to Ps0 = Py0 under Condition II) under steady state 

conditions. Then, substituting Ps0 into Equations (3.32) and (3.33) obtains θsp0 and PL0 

respectively. 

Similar to the approach of Section 3.3.1, it is necessary to check if the operating 

point calculated above is on the line (Ps0 = Py0) of Figure 3.2. Firstly, the pump pressure, 

Ps0, must satisfy 201 sss PPP ≤≤ . Then, the basic relationship of condition II 

( dLs PPP >− 00 ) must be met. 

3.3.3 Solution of the Steady State Equations Set under Condition III (θθθθsp0 = θθθθsp0max;  

Py = 0) 

It was mentioned that condition III represented the “ fully stroked” status of the 

pressure control pump in which the swash plate angle,θsp, was limited to its maximum 

value, θspmax.  In order to avoid this operating condition when designing a LS system, or 

to diagnose what causes this operating condition, it is necessary to develop the 

mathematic solution of the operating point at this operating condition. 

If condition III exists, max0 spsp θθ = (Equation (3.21)) and 00 =yP  (Equation (3.20)). 

Because the leakage flow is very small relative to the delivered pump flow and the load 

flow rate when the pump is fully stroked, the leakage term in Equation (3.31) can be 
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neglected, and as a consequence, the first term in Equation (3.23) is constant and 

approximately equals to the maximum pump flow delivery. Therefore, the load pressure 

can be directly obtained from Equation (3.23), that is, 
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Neglecting pump leakage (the third term) of Equation (3.31) and rearranging 

Equation (3.31) gives 
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      (3.35) 

Again, the method of checking the operating point presented in Section 3.3.2 is used. 

First, the numeric solution, Ps0, of Equation (3.35) can be substituted into Equation 

(3.33) to obtain the load pressure, PL0, and to further check the basic condition of 

condition III ( dLs PPP <− 00 ). 

To summarize, the method of finding the operating point of the LS system is to solve 

each non-linear algebraic equation with three possible operating conditions and to check 

if the operating point exists in each condition.  There is at most one operating point 

among the three conditions. 

3.4 Procedure for Solving for the Steady State Operating Point 

This section presents the flow chart for solving for the SSOP of the LS system 

(Figure 3.3). Because, before the steady state analysis process begins, there is no 

obvious knowledge of the operating condition in which the LS system operates, an 

operating condition must be assumed  for example  the normal operating Condition 

I (Step (1) in Figure 3.3). Calculating Equations (3.24), (3.25), (3.26) and (3.27) gives 
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the SSOP directly (Step (2)). Then, Steps (3) and (4) determine if the result satisfies the 

essential conditions. 

Assume that the LS system
operates under the normal

operating condition (Condition I)
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Figure 3.3 Flow chart of solving for the SSOP of the LS system 
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It is impossible in practice for the swash plate angle to be larger than the maximum 

value. If the calculation result gives this result, this indicates that the LS system could 

not operate under Condition I. In this case, the LS system must operate under Condition 

III. Therefore, the SSOP should be calculated by Equations (3.34) and (3.35). It is noted 

that the solutions under Conditions I and III do not require the iteration calculation.  

If the control pressure, Py0, computed by Equation (3.27) in Step (2) is larger than the 

pump pressure, Ps0, then this situation results in a physically unrealizable condition 

under steady state conditions. In this case, the LS system must operate under Condition 

II. The dashed line box in Figure 3.3 is the flow chart of the iteration for computing the 

SSOP of the LS system for this condition, because substituting Equations (3.32) and 

(3.33) into Equation (3.31) cannot give a direct expression of Ps0. 

The method of iteration is as follows: a region [P1, P2] of the pump pressure, Ps, in 

which the solution of SSOP is located, is first selected.  Because the pump pressure, Ps0, 

and the control pressure, Py0, are equal and must be a value between Ps1 and Ps2 (see 

Figure 3.2), the first region is selected to be [P1, P2] =[Ps1, Ps2] (Step (6)). A pump and 

control pressure is assumed to be ( )215.0 PP + , at the mid-point in the region (step (7)). 

The swash plate angle, θsp, and the load pressure, PL, are then determined using 

( )215.0 PP +  via Equations (3.32) and (3.33) and are substituted into both sides of 

Equation (3.31). The value of the left hand side is the pump flow, i.e. the input flow rate 

of the pump chamber (here defined as Qin), while the value of the right hand side 

represents the output flow rate of the pump chamber (here defined as Qout). If Qin > Qout 

(step (9)), the pump volumetric flow rate has to be reduced. According to Figure 3.2, 

reducing Qin along the straight line (Ps = Py) implies increasing pump pressure. In other 
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words, the solution of the pump pressure, Ps, must be larger than the pressure, 

( )215.0 PP + . Therefore, the new region becomes [P1, P2] = [ ( )215.0 PP + , P2] (Step 

(11)), otherwise, this region becomes [P1, P2] = [P1, ( )215.0 PP + ] (Step (12)). 20 

iterations is about all that is required to reduce the length of the region from the initial 

value of 0.79 MPa to 0.75 Pa. The final result for Condition II is given by Step (13). The 

calculation based on the flow chart shown in Figure 3.3 can give the operating condition 

(I, II, or III) under which the LS system is operating, as well as the SSOP of the LS 

system. 

3.5 Summary 

This chapter has demonstrated that the operating point of the LS system with a 

critical center spool of the LS regulator is determined by three conditions.  As condition 

I, the LS regulator spool displacement of the operating point under steady state 

conditions, xr0, is always at the null position for the LS regulator with a critically lapped 

spool.  In this case, the value of all state variables can be obtained directly. 

Under condition II, the control pressure and the pump pressure are the same. This 

would occur when the system pressure differential setting, Pd, is small. Condition III 

represents the “ fully stroked” status of the pump. When the opening of the flow control 

valve is quite large (which results in a small pressure differential, Ps0 - PL0), this 

condition could occur. This chapter also gives a flow chart which summarizes the 

procedure for solving for the SSOP of the LS system. 
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Chapter 4 Experimental Verification of the Steady State Operating 

Point of the Load Sensing System 

4.1 Introduction 

In Chapter 3, the mathematical model for solving for the SSOP of the LS system was 

developed. The objective of this chapter is to experimentally verify the theoretical 

solution of the SSOP. 

In the steady state analysis of the LS system, the load pressure is assumed to be a 

controlled input. Therefore, in this part of the study, the steady state load pressure, PL0, 

is established using a relief valve, instead of using a motor load. Adjusting the load 

pressure, PL0, the opening of the flow control valve, Av, or the pressure differential 

setting, Pd, can all cover changes in the SSOP. 

In the subsequent sections, the experimental platform and the measurement system 

are discussed first. Finally a comparison of the experimental and theoretical SSOP’s is 

presented. 

4.2 Experimental System 

Because the main interest of this chapter is the experimental verification of the 

SSOP, and not the dynamic response, a simple relief valve was used to replace the 

hydraulic motor as the load. 

The schematic of the experimental system is shown in Figure 4.1. Six variables, the 

pump pressure, Ps, the control pressure, Py, the load pressure, PL, the swash plate angle, 

θsp, the LS spool displacement, xr, and the fluid temperature, T, were measured. The 

relief valve located directly after the pump was used to protect the system in case of a 
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failure in the pressure compensator. A relief valve located down stream of the flow 

control valve was used to create a constant pressure load. 

In order to verify the theoretical model developed in Chapter 3, it is necessary to 

compare the experimental results to those obtained from theoretical computations. It is 

noted that the coefficients or constants used in the theoretical model must be consistent 

with those of their experimental counterparts. Some of these coefficients can be found 

from manufacturer specifications (pump volumetric displacement, for example); others 

need to be obtained from experimental results (leakage coefficient, for example). This 

chapter, then, considers the calibration of all transducers, the characteristics of certain 

components and the identification of certain system parameters that cannot be obtained 

directly. 

4.2.1 Measurement System 

There are four types of physical quantities to be measured; pressure (the pump 

pressure, Ps, the control pressure, Py, and the load pressure, PL), the swash plate angle, 

θsp, the spool displacement of the LS regulator, xr, and the fluid temperature, T.  Figure 

4.2 shows a schematic of the instrumentation and the Data Acquisition system (DAQ) 

 

Ps 

PLs 

Py 

LS regulator 

θsp 

Pressure 
control 
pump 

Adjustable 
orifice 

Load: 
relief 
valve 

PL 

Relief 
valve 

Av 

Pd 
xr 

T 

 

Figure 4.1 Schematic of Load Sensing (LS) System 
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used in the experimental system.  Each channel includes a transducer, a signal 

conditioning circuit and an A/D converter.  All signals are converted into DC voltage 

signals which can be monitored visually by multimeters. This setup facilitated the 

"zeroing" of appropriate transducer outputs for all tests. 

The purpose of the measurement system calibration was to determine the 

relationships between channel readings (output from the DAQ) and physical quantities 

such as pressures and displacements. These relationships reflect the gain of transducers 

and include the measurement error. The measurement system can be considered as a 

cascade of two subsystems: the sensing system and the DAQ system. The gains and 

measurement error of the DAQ system are the same for all channels. The error 

associated with the DAQ is mainly introduced by the limitation of the "word length". 

For this study, the DAQ system uses a multifunction interface board (model: CIO-

DAS16) with 16 channels of A/D converters and 4 channels of D/A converters.  The 
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word length of the DAQ system’s A/D and D/A converters is 12 bits. For the specific 

setting (range = [-5, 5]; gain = 1), the resolution of the A/D and D/A converters is 2.44 

mv. The bias error is measured to be –3.3 mv when each channel is set to 0 volt. The 

bias error can be removed through the use of an appropriate software algorithm. 

The gain and the measurement error of the transducers and signal conditioners 

depend on the gain and sensing error of each measurement system. Calibration 

procedures are necessary in order to determine the gain relationship and sensing error 

between the physical quantities and the DC voltage outputs. According to 

experimentation and uncertainty theory, measurement error or uncertainty of transducers 

is expressed as the square root of the sum of the squares of the random error and bias 

error [Coleman and Steele, 1999]. As previously discussed, the bias error of the A/D 

converter can be readily compensated. The bias error of the sensing system is mainly 

caused by a slow zero drift of the signal conditioning circuit. This can be minimized by 

“ re-zeroing”  each system before each test. Therefore, the following section will focus on 

the calibration of the sensing system via the transducer gain and the random 

measurement error. 

Because the sensing error of the transducers and the signal conditioner and the A/D 

converter error are independent, the overall random error can be calculated by  

( ) 22
cs eKee +=          (4.1) 

where es is the sensing random error, ec is the A/D converting error, and K is the gain of 

the A/D converter. In this case, the A/D converter gain is set to equal to 1. 
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The calibration of pressure sensors for the measurements of LS pump, control piston 

and the load pressure, angle position sensor for the measurement of the swash plate 

angle, and Proximator for the measurement of the displacement of the LS spool are 

given in Appendix B. 

4.2.2 Determination of Relevant Parameters for the Load Sensing System 

4.2.2.1 Load Sensing Regulator 

A schematic of the LS regulator used in this study is shown in Figure 4.3. The 

regulator consists of the body, the LS spool, an end cap, the balance spring, an 

adjustable screw and a spring guide. The spring and spool are separated by a spring end 

cap.  Adjusting the screw moves the spring guide, the spring, the end cap and the spool. 

Parameters of the LS regulator associated with SSOP theoretical models are the 

pressure differential setting, Pd, the cross-sectional area of the spool, Ar, and the spring 

coefficient, kr.  Ar and kr were measured to be 31.7 mm2 and 61.1 N/mm respectively. 

The Pd has to be determined through the value of setting xri (see Figure 4.3). This is now 

considered. 
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It has been mentioned that Pd is not a true physical pressure but an equivalent 

pressure term. The value of Pd is equal to the external pressure differential which forces 

the spool to its null position (refer to Figure 4.3).  In order to calculate Pd, the schematic 

of the LS regulator related to the pressure differential setting, Pd, is shown in Figure 4.4. 

Under steady state condition, the spring force, Fsp, can be expressed as 

( )rirrsp xxkF −=          (4.2) 

where xr is the displacement of the LS regulator spool and whose direction is defined 

opposite to the direction of the spring force exerted on the spool.  xri is the initial 

displacement of spool. kr is the spring coefficient. When xr is equal to xri, the spring 

force is zero.  When xr is forced to zero by an external force under steady state, the 

external force will balance the spring force which can be determined by 

rirspext xkFF −==         (4.3) 

When the LS regulator operates in the LS system, the external force is determined by the 

product of the pressure differential on the spool and the sectional area of the spool, that 

is 

( )Lssrext PPAF −=         (4.4) 
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The pressure differential, ( )Lss PP − , under the condition xr = 0 (i.e. the system pressure 

differential setting Pd according to the definition) can thus be determined by combining 

Equation (4.3) and Equation (4.4) as 

( ) ri
r

r

xLssd x
A

k
PPP

r
−=−=

=

∆

0
       (4.5) 

The subscript ‘ ri’  is used to distinguish the initial position from the operating point ‘ r0’ .  

It is noted that xri must be negative, that is, the “discharge”  orifice of the LS regulator is 

always open before the system starts operation (see Figure 4.4). For the LS regulator 

study, the manufacture setting of initial displacement is –1.27 mm. The derived 

parameter, Pd, is thus calculated to be 2.45 MPa.  Pd can be decreased by adjusting the 

spring pretension screw (via an adjustable screw) out so as to reduce the absolute value 

of xri. In contrast, Pd can be increased by tightening the adjustable screw (i.e. increasing 

the absolute value of xri). 

4.2.2.2 Pressure Compensated Pump 

Figure 4.5 shows the schematic of the pressure compensated pump (Model: Vickers 

PVE 10) with its control piston (note there are two types of pistons: pumping pistons and 

a control piston). The theoretical delivery at maximum RPM (1800 rpm) and maximum 

swash plate angle (18 degree) is 73.44 lpm (19.4 US gpm). When the pump shaft rotates, 

each pump piston rotates around the pump shaft as well as translates along the piston 

sleeve. The displacement of each piston changes in the cylinder sleeve as the piston and 

sleeve assembly rotate along the swash plate. Each piston draws flow from the tank for 

half the rotary cycle and discharges fluid for the other half of the cycle.  Leakage in the 

pump can follow three paths: through the clearance between this piston and its sleeve, 
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between the piston assembly and the valve plate and between the piston shoe slipper 

assembly and the swash plate. 

Many pump parameters must be determined; these can be divided into three types. 

The first type is defined as structure parameters which are used to determine the pump 

effective gain, Cpss (which relates the pump flow to the swash plate angle). 

Mathematically, this was given in Section 2.1.1 as 

( )
sp

sppp

sp

p

sp

p
pss

RNADQ
C

πθ
θω

θ
ω

θ
tan

===       (4.6) 

For the pressure compensated pump in this study, the pump gain varies from 3.96 

lpm/deg. (1.04 gpm/degree) at θsp = 18° to 4.09 lpm/deg. (1.08 gpm/degree) at θsp =0 

and at a rotary speed of 1800 rpm. It is noted that Cpss represents the steady state gain of 

the pump while Cp (see Equation (2.37)) is the linearization gain of the pump. Cpss is 
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used to calculate the SSOP of the LS system and Cp is used for the linearization and 

dynamic analysis of the LS system. 

The second type is made up of the torque balance parameters which describe the 

relationships between the pump pressure, Ps, the control pressure, Py, and the swash 

plate angle, θsp. These parameters are '
spT , '

spK , '
2prK  and '

3prK  (refer to Equation (3.34)).  

The third type is the hydraulic parameters, for example, the leakage coefficient, cpl. 

The parameters of the first type are known because they are measurable or specified by 

the manufacturer. The second type of parameters for this specific pump was determined 

by Bitner [1996] and Huh et al [2000]. The third type, however, was unknown and had 

to be measured. The procedures involved in making these measurements of the third 

type are now considered. 

Consider a situation where the load ports are blocked (no flow condition). The 

second term of Equation (3.35) is zero giving, 

s

sppp
pl P

RNA
c

π
θω tan

=         (4.7) 

Equation (4.7) can be expressed as 

s

sp
pss

s

sp

sp

sppp
pl P

C
P

RNA
c

θθ
πθ

θω
==

tan
      (4.8)  

The only fluid that the pump is delivering is due to leakage. Therefore, the swash plate 

angle is very small and tan(θsp) ≈ θsp. Cpss is a known constant, 
π

ωppRNA
, and θsp and Ps 

are measurable; then cpl can be calculated from the slope of a plot of Cpssθsp versus Ps.  
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In order to obtain the slope of a plot of Cpssθsp versus Ps by measuring θsp and Ps 

(without load flow), it is essential to measure many points ([Psi ,θspi], i = 1, 2,. …). The 

pump pressure, Ps, must be variable. The regulator shown in Figure 4.6 is used to 

explain the method of varying Ps. The LS regulator (lower part) and a pressure 

compensator (upper part) are normal components in a commercial pressure regulator. 

The pressure compensator is used to limit the pump pressure for safety. The pump 

pressure, Ps, can be adjusted using the adjustable screw of the LS spool (i.e. changing 

pressure differential setting, Pd), or by the adjustable screw of the pressure compensator 

spool (see Figure 4.6). If the pressure, Ps, was adjusted by changing Pd (i.e. by adjusting 

the LS spring adjustable screw), Ps would only reach the maximum design value of Pd 

(4.6 MPa) because the load pressure was zero in this experiment (note Ps – PL = Pd) and 

the adjustable screw could only be moved a limited amount, ∆xrmax. But the pump 

pressure under normal operating conditions would be higher than this value due to the 

presence of the load pressure. Thus, a wide pressure range could not be created. The 

other way to adjust Ps was by keeping LS orifice open by completely tightening the LS 

adjustable screw ( 0<rx ) and then adjusting the screw of the pressure compensator of 

the LS regulator assembly in order to vary the pump pressure Ps. Under these operating 

conditions (i.e. No load flow with the “discharge” orifice of the LS regulator opened), 

the pump pressure was almost equal to the pressure of the compensator spool spring (i.e. 

deadhead pressure) due to the very small flow rate (i.e. the pump leakage). 

Figure 4.7 shows a typical test result at a fluid temperature of 41°C in which Cpssθp is 

plotted as a function of Ps. This result indicates that the relationship between the flow 

leakage (Cpssθp) and the pump pressure approximates a linear relationship.  The leakage 
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coefficient at 41°C is calculated to be 0.13 lpm/MPa (or, 2.17×10-12 m3/s/Pa). Figure 4.8 

is the plot of the leakage coefficients as a function of the fluid temperature. The position 

of the temperature transducer was close to the drain port of the pump casing to the tank. 

The curve shown in Figure 4.8 indicates that the pump leakage increases as the fluid 

temperature increases. This is as expected since pump leakage is laminar and the 

viscosity which is significantly affected by fluid temperature is related to the flow rate. 

Theoretically, the relationship between the flow rate and viscosity is the reverse ratio for 

laminar flow conditions. 

This section has discussed the estimation or measurement of the pump parameters; 

the pump gain, Cpss, the torque equivalent parameters ( '
spT , '

spK , '
2prK  and '

3prK ) and the 

pump leakage coefficient, cpl, which are essential to calculate SSOP of LS systems.  

These parameters will be used in the subsequent sections. 
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Figure 4.7 Estimation of the Pump Leakage Coefficient 
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Figure 4.8 Leakage Coefficient as a Function of the Fluid Temperature 



 76 

4.2.2.3 Parameters of the Needle Valve 

In this study, a needle valve was used (See Av in Figure 4.1) to create the “ fixed”  

orifice for the LS system. In order to predict SSOP of the LS system, two parameters, 

the flow cross sectional area, Av, and the discharge coefficient, Cd, of the adjustable 

orifice must be known. Av is a function of the displacement, xv, of the spool of needle 

valve (or in this case the “ turn number”  of the valve knob). For the studied needle valve, 

the relationship was determined by Huh et al [2000] and can be presented as a piece-

wise linear function as 




≤≤−
≤≤

=
45.23416

5.204.2

xvxv

xvxv
v NN

NN
A        (4.9) 

where Nxv is the number of turns on the needle valve. 

Another important parameter which was needed to describe the uncompensated 

needle valve was Cd.  Cd is a function of the Reynolds number, Re, which can be 

experimentally determined. The experimental method and result of the discharge 

coefficient, Cd, are presented in Appendix C, (Wu, et al [2002]). For the studied needle 

valve, the empirical model of Cd is re-written as 

Re28.0Re22.0 72.147.275.0 −− +−= eeCd       (4.10) 

4.2.3 Discussion of Experimental Procedures 

The hydraulic components and the measurement system associated with the SSOP of 

the LS system have been discussed in the previous sections. This section provides 

information pertaining to the experimental procedures to be followed. 
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It should be recalled that the objective of the experiments was to verify all three 

models associated with Conditions I, II and III. These conditions were excited by 

adjusting the system pressure differential setting, Pd, the opening of the flow control 

orifice, xv, and the load pressure, PL.  Methods of setting the system pressure differential, 

Pd, and the flow orifice area of the needle valve were described in Sections 4.2.2.1 and 

4.2.2.3 respectively.  The load pressure, PL, was adjusted manually using the relief 

valve. 

The first procedure to be considered is that associated with the DAQ, in particular, 

the determination of the sampling frequency. The pump has nine pistons which are 

evenly distributed around the shaft. For one rotation, each piston delivers one pulse of 

fluid. Thus, the period between each pulse is 
ω9

1
 where ω  is the rotary speed of the 

shaft. This translates to pulses every 0.0037 seconds at 1800 RPM. A pressure and flow 

ripple will appear at the output of the pump at a frequency of 270 Hz. In addition, other 

frequency components due to the structural design of the valve plate are present. For a 

LS system, this pressure ripple can have a significant effect on the performance of the 

components. A typical pressure trace of the output pump pressure, control pressure and 

load pressure ripple is shown in Figure 4.9. A spectrum analysis of the control pressure 

indicates that frequency spikes occur at a fundamental frequency (270 Hz) and a second-

order harmonic frequency (540 Hz). Higher order frequency components are not present 

because the signals are filtered with an analog anti-alias filter with cut-off frequency of 

750 Hz. 
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The sampling frequency should be five to ten times the maximum significant signal 

frequency [Thaler, 1989]. Therefore, the sampling frequency in this experiment was 

selected to be 5000 Hz. 

For steady state experiments, the valve opening and the load pressure had to be set at 

fixed values. Although all variables will demonstrate some small oscillations at 270 Hz 

and higher order harmonic frequencies, it is the steady state components which represent 

the SSOP.  To accommodate collection of data at several operating points, the DAQ was 

programmed to sequentially adjust the load pressure via the solenoid pressure relief 

valve. Another signal was a slow ramp load pressure profile (2.5MPa change in 10 

seconds, for example).  With this slow ramp, the change in the operating conditions 

would not excite system transients; thus a steady state relationship could be deduced at 

any point in the trace. The collected data had to be filtered to obtain the result for all the 

SSOP’s. 
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4.3 Comparison of the Experimental and Theoretical Results 

Section 4.2 presented the experimental system, hydraulic components, and 

measurement system which were used to determine the SSOP of the LS system with 

controlled load. This section compares the experimental and theoretical results for 

Conditions I, II and III. The theoretical results are obtained through the calculation 

procedure presented in Figure 3.5 of Chapter 3. It is noted that, because PL0 is a 

controlled input in this experimental study, it is unnecessary to calculate PL0 in Step (2), 

(5) or (8) in Figure 3.5. 

4.3.1 Condition I 

When the pressure differential across the needle valve was set to 2.5 MPa via the LS 

regulator and the needle valve opening was set to less than 3.5 turns, the LS system 

operated in Condition I. Figures 4.10 through 4.13 compare the predicted and measured 

SSOP’s as a function of load pressure with the needle valve opening at 2.75 turns. 

Figure 4.10 shows the pump pressure and the control pressure.  The actual pump 

pressure correlated very well with the experimental results but the control pressure does 

show some small error at large load pressures.  This deviation may be due to the 

assumption of neglecting the leakage in the clearance between the LS spool land and the 

LS sleeve. Another reason may be a consequence of error in the pump parameters found 

by Huh et al [2000]. 

Figure 4.11 shows the measurement of the system pressure differential, Ps - PL. All of 

experimental points lie within a band of 0.06 MPa. The “scatter”  band of the pressure 

measurement system itself is 0.04MPa (±0.02MPa). This indicates that some amount of 

scatter exists in the quantity Ps - PL and is approximately 0.04 MPa ( 22 04.006.0 − ). 
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Figure 4.11 Pressure Differential (Ps - PL) of LS System SSOPs 
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Figure 4.10 Pressure Relationship of LS System SSOPs 
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Figure 4.12 shows the swash plate angle as a function of PL0. The scatter of experimental 

data is within the band of 0.002 radians which is about 0.6% of the full swash plate 

angle. This scatter is less than that of the measurement system (0.003 radians at 

≈0spθ 0.12 radian or 6.9 degree (reference to Figure B.2 in Appendix B). Therefore, the 

measured result of the swash plate angle is considered valid. In addition to the random 

error of the measurement system, the fluid temperature also affects the scatter of the 

resulting error. It can be further observed that when the load pressure is less than about 

4.4 MPa, the prediction has an excellent agreement with the experiments. But the 

agreement decreases for load pressures larger than 4.4 MPa. This may be a result of two 

factors related to the pump leakage and the load flow rate (note: 

pss

Lpl

pss

s
sp C

QQ

C

Q 00
0

+
==θ ). On one hand, it was assumed that the pump leakage is 
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Figure 4.12 Swash Plate Angle of LS System SSOPs 
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proportional to the pump pressure (Qpl = cplPs). In fact, when using this linear leakage 

model, model error also exists. On the other hand, in practice, the pressure drop across 

the orifice is not exactly Pd (Pd = Ps0 – PL0 under Condition I). When the PL0 increases, 

the pressure drop, Ps0 – PL0, would change by a small amount. 

Figure 4.13 shows the LS spool displacement. Theoretically, the spool should be at 

the null position xr0 = 0 for Condition I. The SSOP of experiments, however, are 

distributed within a band of width 0.04 mm with a bias of –0.012 mm. This scatter value 

is related to the data processing method. It was mentioned that with a slow ramp load 

pressure profile, the change in the operating conditions would not excite system 

transients. But the collected data included a fundamental frequency of 270 Hz and its 

high order harmonic frequencies. The SSOP’s were measured by filtering out these high 

frequency signals with a Chebyshev type II digital filter (cut-off frequency: 250Hz).  In 

spite of this, the signal still included some noise components less than 250 Hz.  

It is noted that the centerline of the scatter band is 0.015 mm lower than the null 

position (xr = 0). The tiny difference is negligible compared to the error caused by 

visually identifying the null position when the calibration of the proximitor measurement 

system was processed. 
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4.3.2 Condition II 

When the system pressure differential setting, Pd, was set to 0.58 MPa (84 psi) and 

when the load pressure was less than 0.8 MPa (Ps2 – Pd), operating Condition II 

occurred. Figures 4.14 through 4.17 show the comparisons of the theoretical and 

experimental results with a valve opening of 2.75 turns. Figure 4.14 shows the SSOP for 

Ps0 and Py0 as functions of PL0.  If the load pressure is less than 0.8 MPa (116 psi), the 

theoretical calculation indicates that the LS system operates in the range Condition II. 

The pump pressure, Ps0, approaches the control pressure, Py0.  In reality, Ps0 is always 

larger than Py0 under any circumstances due to the leakage in the control chamber.  

Figure 4.15 shows the measurement of the system pressure differential, Ps0 – PL0 as a 

function of PL0. The experimental pressure differential is larger than the theoretical 

pressure differential setting Pd under Condition II. When the system operating condition 

transfers from Condition II to I, the pressure differential approaches Pd. Figure 4.16 
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Figure 4.13 LS Spool Displacement of LS System SSOPs 
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shows that the LS spool displacement is larger than zero.  This is a necessary condition 

for the existence of Condition II (Equation (3.28)). 
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Figure 4.14 Pressure Relationship of LS System SSOPs 
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Figure 4.15 Pressure Differential (Ps - PL) of LS System SSOPs 
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Figure 4.17 shows the swash plate angle as a function of PL0.  It is observed that the 

swash plate angle decreases as the load pressure increases.  In Condition II, the flow 

through the valve orifice decreases as the pressure differential (Ps0 –PL0) decreases (note: 

the orifice opening is fixed to 2.75 turns). This can be true only if the swash plate angle 

decreases. In Condition I, although the pump leakage increases slightly as Ps0 increases, 

(due to the load pressure increase, PL0), the load flow decreases as the pressure 

differential (Ps0 –PL0), continuously decreases. The overall flow being delivered from 

the pump pistons decreases as the load pressure increases. This can be true only if the 

swash plate angle decreases. 
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Figure 4.16 LS Spool Displacement of LS System SSOPs 
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     It is also observed from Figures 4.14 through 4.17 that the theoretical calculations 

yield a distinct boundary between Conditions II and I, This is not true for the 

experimental results which show a smooth transition from Condition I to Condition II.  

This is because the practical LS hydraulic system is very complex which no theoretical 

model can exactly represent. The theoretical model was based on several assumptions; 

the leakage through the clearance between the LS spool land and the sleeve was 

neglected, and the non-linearities of the LS spring and the Coulomb friction of the LS 

spool were neglected. Finally, small chamfers at the edge of the needle valve orifice 

were not considered in the model. Regardless, the results are considered to be 

sufficiently close for practical SSOP predictions. 

In Figure 4.17 the results for Condition II are presented for small swash plate angles. 

This corresponds to the short upper segment of the oblique line given by the equation Py 

= Ps (Condition II) in Figure 3.5 of Chapter 3. Experiments at large swash plate angles 
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Figure 4.17 Swash Plate Angle of LS System SSOPs 
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could not be conducted because the relief valve could not produce the small load 

pressure required for Condition II with the large opening of the flow control valve. 

4.3.3 Condition III 

Condition III will occur if the opening of the flow control valve increases beyond a 

certain value. Therefore, an experiment to create Condition III requires the valve 

opening to be the controlled variable. This is different from the experiments for 

Condition I and Condition II in which the opening of the valve was fixed and the load 

pressure varied independently. Figure 4.18 shows the pump pressure Ps as a function of 

the opening of valve. In this test, the load pressure was not adjusted via the relief valve 

(the load pressure would increase as the opening of the needle valve increases). The 

sectional area of the valve orifice increased to 2.5 mm2 (3.5 turns). When the LS system 

passed from operating Condition I to operating Condition III, the control pressure, Py, 

suddenly drops to zero (refer to Figure 4.19). Because this experiment did not adjust the 

relief valve which simulates the load, the load pressure will increase when the load flow 

increases under Condition I. Soon after the system reaches Condition III, the load flow is 

a maximum and the load pressure tends to be constant. This can be seen in Figure 4.20.   

Figure 4.21 shows the pressure differential, Ps – PL0 as a function of Av. In Condition 

I, the pressure differential, Ps-PL, is controlled to the design value, Pd, which is 2.5 MPa. 

When the system passes through Condition III, the pressure differential decreases due to 

the constant load flow (pump stroked) and the increasing needle valve opening. A 

decrease of the pressure differential causes the LS spool to move to the left (Figures 4.3 

and 4.22). When xr < 0, the control piston chamber is exposed to the return line. The 

control pressure, Py, decreases to zero. The swash plate continues to stroke until it 

reaches maximum position (Figure 4.23). 
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Figure 4.18 Pump Pressure of SSOPs under Condition III 

-1

0

1

2

10 15 20 25 30 35 40

The sectional area of valve orifice Av, mm2

C
on

tr
ol

 p
re

ss
ur

e 
P

y0
, M

P
a

Theoretical prediction
Experimental data

Condition I Condition III

 
Figure 4.19 Control Pressure of SSOPs under Condition III 



 89 

 

 

0.5

1.5

2.5

3.5

10 15 20 25 30 35 40

The sectional area of valve orifice A v (mm2)

P
re

ss
ur

e 
di

ffe
re

nt
ia

l 
P

s0
- 

P
L0

 

(M
P

a)

Theoretical prediction
Experimental data

Condition I Condition III

 
Figure 4.21 Pressure Differential of SSOPs under Condition III 
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Figure 4.20 Load Pressure of SSOPs under Condition III 
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Figure 4.22 shows a significant difference between the theoretical and experimental 

results.  Even though the trends of the measurement and theoretical prediction are same, 

an offset of 0.1 mm exists. This is due to neglecting the leakage in its LS spool which 

can generate a steady state flow force. A mathematical simulation which considered the 

leakage and the steady state flow force has illustrated the offset of about 0.12 mm. 

Figures 4.13 and 4.16 also indicate that the measurement is lower than the theoretical 

prediction. In the experimental system, the leakage across the LS spool perimeter results 

in the pressure, Ps, decreasing at the end next to the proximitor sensor; subsequently, the 

LS spool moves in a negative direction (refer to Figure 4.5).  Another possible reason for 

this effect is a consequence of the null position error caused by visually identifying the 

null position when the calibration of the proximitor measure system was processed.  
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Figure 4.22 LS Spool Displacement of SSOP’s under Condition III 
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4.4 Summary 

For the LS pump and non-compensated valve, the following conclusions can be 

made: 

1. Three theoretical conditions of SSOP of a LS system do exist in a practical LS 

system with a critically lapped LS regulator. 

2. For each condition, the experimental results show acceptable repeatability and are 

consistent with the theoretical predictions.  

3. The experiments show a smooth transition between the three conditions which is 

different from the abrupt transition predicted. 

4. Condition I is the “normal”  operation condition. Conditions II and III should be 

avoided in practice. 
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Figure 4.23 Swash Plate Angle of SSOPs under Condition III 
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5. The condition of the SSOP of the LS system depends on the system pressure 

differential setting, Pd, the load pressure, PL, and the opening of the flow control 

valve, Av. When both Pd and PL are small, Condition II occurs. When the demand 

flow is larger than the supply flow by the LS pump (i.e. the opening of the valve, 

Av, is larger than the critical value), Condition III occurs. 
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Chapter 5 Dynamic Analysis of the Load Sensing System 

5.1 Introduction 

It is well known that LS systems have a high energy-savings potential, but stability 

problems do exist. Some researchers [Bitner and Burton, 1984(2); Krus, 1988; Lantto, et 

al, 1990; and Lantto, et al, 1991] have investigated the stability problem of some LS 

systems. However, their studies were limited in scope and as such, there is room for 

further investigation of the stability associated with the non-linearities in the LS system. 

Before approaching the stability issue, it is necessary to define what is the “dynamic 

problem” of the LS system from a flow control point of view. 

Fig.5.1 is the schematic circuit of a basic LS system which consists of the LS pump, a 

variable adjusting orifice (1), the motor load (2) and the LS line (3). As stated in Chapter 

1, when an increase in the orifice opening, x, occurs (in order to increase the load rotary 

speed), Ps is temporally reduced. Since Ps acts on the LS pump spool (4), the spool 

PL

PL s

QL
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s

(1)  x
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Q
mlQ

pl
Qs

LS line (3)
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LS pump
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x r
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variable adjusting
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 Figure 5.1 A Basic Load Sensing Circuit 
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moves to the right in Figure 5.1. As such, fluid in the control port area on the 

compensator pump piston side (5) is ported to tank reducing the pressure, Py, in the 

control piston chamber. As a consequence, the pump swash plate angle, θsp, increases 

and the flow from the pump also increases. This causes Ps to increase, which in turn, 

increases in the load flow until the pump pressure establishes a new balanced operating 

point. 

Fig.5.2 is a simplified block diagram of the LS system (which is to be developed in 

this section). Kq and Kc, represent the flow gain and flow-pressure coefficient of the 

adjustable orifice. The rest of the block transfer functions are defined as follows.  

( )
( )sQ

s
G

L

φ
φ =   Output transfer function. 

( )
( )sQ

sP
H

L

L
L =  Load transfer function.  

( )
( )sP

sQ
G s

p δ
=   LS pump transfer function (note∗: ( ) ( ) ( )sPsPsP Lss −= ∗δ ). 

( )
( )sP

sP
H

s

s
p

∗

=   Overall pressure feedback gain of the LS pump. 

( )
( )sQ

sP
G s

s δ
=   Pump volume transfer function (note: ( ) ( ) ( )sQsQsQ Ls −=δ ). 

( )
( )sP

sP
G

L

Ls
Ls =   Damping of the LS line. 

This chapter will show the development of the block diagram of Figure 5.2 but it is 

first desirable to explain how this transfer function is to be used from a physical point of 

view. 

                                                 
∗ δ is used to emphasize that the input is a differential signal. 
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Figure 5.2 Block Diagram of the Basic Load Sensing Circuit 

As illustrated in Figure 5.2, the flow rate, QL, can be manipulated directly by the 

opening, x, of the adjustable orifice and indirectly by the feedback path via Kc. The 

system includes one “positive”  feedback loop (HL � GLs � Gp � Gs � Kc path), in 

addition to many negative feedback loops. It is the “positive”  feedback loop that, under 

certain conditions, could cause the system to become unstable. This is defined as the 

“dynamic problem” of flow control in the LS system. 

The method of solving the dynamic problem is to find out these “certain conditions”  

which cause the instabilities, and to avoid these regions without compromising the 

energy saving of the LS system (i.e. by increasing the allowable pressure across the 

adjustable orifice, as an example). Other researchers have considered this problem but 

only in a marginal sense. These studies were unable to demonstrate that instabilities are 

related to the SSOP and operating conditions (Conditions I, II, & III which were 

identified in Chapter 3). The SSOP’s were shown to have a significant influence on the 

values of the linearized coefficients in the models (Kq, Kc etc.). The operating conditions 

do affect the stability at different operating modes (Condition I, II, or III). In other 

words, the system TF parameters and order are very much a function of the operating 

conditions. The objective of this chapter is to develop the system TF at different 
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operating conditions (I, II, & III) and to further analyze how changes in the SSOP and 

operating conditions affect the stability of LS system. 

The procedure includes building dynamic models of all components for the LS 

system, expressing them in TF form, giving a complete block diagram of the LS system, 

analyzing and simplifying the block diagram for different operating conditions (I, II & 

III), and developing the TF, 
( )
( )sX

sφ
, of the LS system for Conditions I, II and III. These 

TF’s are validated in Chapter 6. 
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5.2 Modeling of the Dynamic System 

This section is to use the linearized models in Section 2.1 in Chapter 2 in order to 

develop the TF of individual component. It is noted that the “∆”  prior to each variable in 

linearized Equations (2.4), (2.13), (2.14), (2.29), and (2.35) will now be dropped for 

simplicity. But it should be emphasized that all variables represent their “dynamic 

component” . When the steady state operating point (SSOP) occurs in any equation, the 

subscript “0”  is added to distinguish the parameters/state from the dynamic component 

of variables. For convenience, the schematic of the LS system is redrawn in Figure 5.3. 

5.2.1 Dynamic Model of the Load Sensing Spool 

Equation (2.1) represents the dynamic model of the LS spool. Because the pressure 

differential setting, Pd, is neither a state variable nor the input variable, Pd is absent in 

the linearized equation of Equation (2.1). Pd affects the stability of the LS system only 

through the SSOP. The dynamic equation is given as 
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Figure 5.3 Schematic of the Load Sensing System 
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( )( )LssrrrrrMr PPAxkxBx
r

−+−−= &&& 1       (5.1) 

Taking the Laplace transform of Equation (5.1) yields the TF relating Xr(s) to 

( ) ( )sPsP Lss −  as 

( ) ( )
( ) ( )

1
2

2

2

++
=

−
=

r

r

r

r

Lss

r
r ss

K

sPsP

sX
sG

ω
ζ

ω

      (5.2) 

where  

r

r
r k

A
K =           (5.3) 

r

r
r M

k
=ω          (5.4) 

rr

r
r

kM

B

2
=ζ          (5.5) 

Equation (5.2) can be represented in block diagram form as shown in Figure 5.4. 

5.2.2 Dynamic Model of the Swash Plate 

Equation (2.4) is re-written as 

sspprpryypyspsprspspspspsp PKKPARPKKBJ )()( 03203 θθθθ −+−+−−= &&&   (5.6) 

Taking the Laplace transform of Equation (5.6) yields the TF of θsp with respect to Ps 

and Py in the frequency domain as 

 
Gr(s) 

− 

+ Xr Ps 

PLs  
 

Figure 5.4 TF of the LS Spool 



 99 

( ) ( ) ( ) ( )( )sPKsPKsGs yspysspsspsp −=θ       (5.7) 

where  

( )
1

2
1

2

2

++
=

sp

sp

sp

sp ss
sG

ω
ζ

ω

        (5.8) 

sp

sprsp
sp J

PKK 03+
=ω         (5.9) 

( )032 sprspsp

sp
sp

PKKJ

B

+
=ζ        (5.10) 

03

032

sprsp

spprpr
sps PKK

KK
K

+
−

=
θ

         (5.11) 

03 sprsp

ypy
spy PKK

AR
K

+
=          (5.12) 

Equation (5.6) can be represented in block diagram form as in Figure 5.5. 

5.2.3 Flow Continuity Equation for the Pressure Control Chamber 

Consider Equation (2.29). 

spsypyrxrspdspy PKPKxKKKP +−++= θθ θθ
&&      (5.13) 
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Figure 5.5 TF of the Swash Plate 
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It will now be shown that the linearization coefficient, Kθ, equals zero. In order to 

prove this, Equation (2.30) is re-written as 

( )( )
( )0

2

00

cos

tan2

sp

dxyspspxypy KKR
K

θ
θθ

θ

&+−
=       (5.14) 

where Kxy was defined in Equation (2.20) as 

( ) ( )200102
00

ryyr

yyy

y
xy QxAQ

xAV

A
K −−

+
= &

β
     (5.15) 

Under steady state conditions, the sum of the three terms in the bracket of Equation 

(5.15) are always zero no matter in which condition (I, II, or III) the LS system operates 

(Qr10 = Qr20, 00 =yx& ). Therefore Kxy is always equal to zero. Further, 0spθ&  in Equation 

(5.14) is zero under steady state conditions; therefore, Kθ is also always zero. 

Consider the linearized coefficient, Kdθ, in Equation (5.13). Substituting Equation 

(2.25) into Equation (2.21) and then substituting the result into Equation (2.31) gives 

( )( )0max0
2 tancos sppyyysp

ypy
d RAV

AR
K

θθ
β

θ ⋅−
=       (5.16) 

where Vymax is the maximum volume of the control piston chamber. 

Consider the linearized coefficients Kr, Kps, and Kpy in Equation (5.13). Substituting 

Equation (2.25) into Equations (2.22) through (2.24) gives 

( )
( )0max

21

tan sppyyy

qrqr
xr RAV

KK
K

θ
β

⋅−
−

=        (5.17) 

( )
( )0max

21

tan sppyyy

crcr
py RAV

KK
K

θ
β

⋅−
+

=        (5.18) 
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( )0max

1

tan sppyyy

cr
ps RAV

K
K

θ
β

⋅−
=        (5.19) 

Equations (5.17) through (5.19) indicate that linearized coefficients Kxr, Kps, and Kpy 

mainly depend on flow gains, Kqr1 and Kqr2, and flow-pressure coefficients, Kcr1 and 

Kcr2. Recall that these coefficients are the partial differentials of flow rates, Qr1 and Qr2 

with respect to displacement, xr, and the pressure drop across orifice, δP (reference to 

Figure 5.3), that is, 

( )yscrrqrr PPKxKQ −+= 111        (5.20) 

ycrrqrr PKxKQ 222 +=         (5.21) 

where
r

r
qr x

Q
K

∂
∂

= 1
1 , 

P

Q
K r

cr δ∂
∂

= 1
1  (Note ys PPP −=δ ), 

r

r
qr x

Q
K

∂
∂

= 2
2 ,

y

r
cr P

Q
K

∂
∂

= 2
2 . 

In order to theoretically estimate these four coefficients, the flow rate equations of the 

two orifices in the pressure regulator (Qr1, Qr2) must be considered. Because the normal 

operation of the LS regulator with a critically lapped spool occurs at the null position, 

the application of the general flow rate equation ( ( ) PxACQ d ∆= ρ
2 ) would introduce 

significant uncertainty. There are two reasons for this: (1) Cd may not be equal to 0.61 

due to laminar flow conditions and (2) the precise value of A(x) cannot be obtained 

(small chamfers could exist which would be very difficult to measure). Therefore, the 

flow rate equation must be modified to reflect this physical reality. Appendix C provides 

an empirical model of the discharge coefficient, Cd, which can be applied to both 

turbulent and laminar flow. Using the results of Appendix C, Appendix D modifies the 

orifice area, A(x), as a function of the orifice opening. A comprehensive flow rate model 

which has been shown to be valid around the null point is given as (zero lap) 



 102 

P

e

wx
beaeCQ

d

x

CC
d

dd ∆
−







++=
−

−−

∞
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ρ

δδ
2

1

1
ReRe 21

    (5.22) 

The “charge”  (Qr1) and “discharge”  (Qr2) orifices of the LS regulator can be considered 

to be approximately symmetric about the null position; the flow rate equations are 

therefore, 

( )ys

d

x
rCC

dr PP

e

wx
beaeCQ

r

dd −
−







++=
−

−−

∞
∞∞

ρ

δδ
2

1

1
1

2
1

1 ReRe

1    (5.23) 

and  

y

d

x
rCC

dr P

e

wx
beaeCQ

r

dd

ρ

δδ
2

1

1
2

2
2

1 ReRe

2

−






++= ∞∞
−−

∞     (5.24) 

The corresponding flow gains and the flow-pressure coefficients for the “charge”  and 

“discharge”  orifices are given as 

( )( )
( )( ) ( )ysX

X
d

r

r
qr PP

e

eXwC

x

Q
K −

−−

+−
=

∂
∂=

−

−

ρ
ε

2
2

1
1

11

11
     (5.25) 

where 





++= ∞∞
−−

∞

ReRe 21

1 dd CC
dd beaeCC

δδ

  

d

x
X r=   

d

CC

C

ebea dd

2

Re
Re

2

Re

1

21

�
�

�

�

�
�

�

�

−−

=

∞∞
−−

δδ

δδ

ε  

( )( )
( )( ) yX

X
d

r

r
qr P

e

eXwC

x

Q
K ρ

ε
2

2
2

2
11

11

−−

−−
=

∂
∂=       (5.26) 
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( )( ) ( )ys
X

rdr
cr

PPe

wxC

P

Q
K

−−−
=

∆∂
∂

=
− ρε 211

1
1      (5.27) 

( )( ) y
X

rd

y

r
cr

Pe

wxC

P

Q
K

ρε 211
2

2 −−
=

∂
∂

=       (5.28) 

With empirical Equations (5.25) through (5.28), the value of Kdθ (Equation (5.16)), 

Kxr (Equation (5.17)), Kpy (Equation (5.18)), and Kps (Equation (5.19)) now can be 

calculated. It was mentioned earlier that Kθ equals zero. Now it is possible to further 

develop the TF for the linearized Equation (5.13). 

Taking the Laplace transform of Equation (5.13) can give the TF of the pressure Py 

with respect to three inputs, xr, Ps, and θsp in the frequency domain as 

( ) ( ) ( ) ( ) ( )( )ssKsPKsXKsGsP spyspsysryryy θ++=      (5.29) 

where  

( )
1

1

+
=

y

y s
sG

ω

         (5.30) 

( )
( )0max

21

tan sppyyy

crcr
pyy RAV

KK
K

θ
βω

⋅−
+

==       (5.31) 

21

21

crcr

qrqr
yr KK

KK
K

+
−

=          (5.32) 

It is noted that Kqr2 as calculated by Equation (5.26), is always negative due to the 

“discharge”  flow. In order to avoid any possible misinterpretation, Equation (5.32) is 

rewritten as 

21

21

crcr

qrqr

yr KK

KK
K

+

+
=         (5.33) 
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( )210
2cos crcrsp

ypy
ysp KK

AR
K

+
=

θ
       (5.34) 

21

1

crcr

cr
ys KK

K
K

+
=          (5.35) 

Equation (5.29) can be represented in block diagram form as shown in Figure 5.6. 

5.2.4 Swash Plate-Flow Gain of the Pump 

Equation (2.35) represents the flow equation of the LS pump. It is re-written as 

( )yscrrqrspps PPKxKCQ −−−= 11θ       (5.36) 

where Cp was given by Equation (2.36) and repeated here for clarity: ( )0
2cos sp

pp
p

RNA
C

θπ
ω

⋅
= . 

Kqr1 and Kcr1 are determined by Equations (5.25) and (5.26) respectively. 

Equation (5.36) is an algebraic equation. The first term of the right hand side is the 

ideal flow rate from the pump pistons. The other two terms represent the flow rate 

entering the LS regulator via its charge orifice. Although the steady state value of the 

pump flow delivery, Qs0, at large swash plate angles is many orders of magnitude larger 

than Qr10, this does not imply that the dynamic component must also satisfy Qs >> Qr1. 
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Figure 5.6 TF of the Pressure Control Chamber 
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When the swash plate angle is very small, the effect of Qr1 on the system is significant. 

Therefore, the other two terms in Equation (5.36) cannot be neglected. 

5.2.5 Flow Continuity Equation of the Pump Chamber 

Equation (2.37) is the dynamic equation of the pump pressure, Ps, with respect to two 

flow inputs; Qs and QL. It is re-written as 

( )( )splLs
p

s PcQQ
V

P −−= β
&        (5.37) 

where cpl is the leakage coefficient of the pump. Substituting Equation (5.36) into 

Equation (5.37) gives 

( )( )Lycrrqrsppscrpl
p

s QPKxKCPKc
V

P −+−++−= 111 θβ
&    (5.38) 

Taking Laplace transform of Equation (5.38) can give the TF of the pump pressure, Ps, 

with respect to four input variables, swash plate angle, θsp, the LS spool charge orifice 

opening, xr, the control piston pressure, Py, and the load flow rate, QL, to yield 

( ) ( ) ( ) ( ) ( ) ( )( )sQsPKsXKsCsGsP Lycrrqrsppss −+−= 11θ    (5.39) 

where 

( )
1+

=

s

s
s s

K
sG

ω

         (5.40) 

( )
p

plcr
s V

cK +
= 1β

ω          (5.41) 

plcr
s cK

K
+

=
1

1
         (5.42) 

Equation (5.39) can be represented in block diagram form as shown in Figure 5.7. 
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Figure 5.7 TF of the Pump Volume 

5.2.6 Model of the LS Line 

Equation (2.49) is the dynamic model of the LS line. Since rx&  is very small under all 

operating conditions, rr xA & is negligible. Thus, 

( )
LsLs

LsL
Ls RV

PP
P

−
=

β
&          (5.43) 

Taking the Laplace transform of Equation (5.43) can give the TF of the LS pressure 

PLs with respect to the load pressure, PL, in frequency domain as 

( ) ( )
( ) 1

1

+
==

Ls

L

Ls
Ls ssP

sP
sG

ω

        (5.44) 

where 
LsLs

Ls RV

βω = . The diagram is shown in Figure 5.8. 
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Figure 5.8 TF of the LS Line 



 107 

5.2.7 Model of the Flow Adjusted Orifice without Pressure Compensation 

The linearized flow equation of the adjustable orifice (Equation (2.39)) can be 

expressed in the frequency domain as 

( ) ( ) ( ) ( )( )sPsPKsXKsQ LscqL −+=       (5.45) 

where  

( )00

2
Lsdq PPwCK −=

ρ
        (5.46) 

( )002 Ls

d
c

PP

wxC
K

−
=

ρ
        (5.47) 

The block diagram of this equation was shown in Figure 5.1. 

5.2.8 Load Model 

The load model is defined as the TF of the load pressure, PL(s), with respect to the 

load flow rate, QL(s). Equations (2.42) and (2.43) can be rewritten as.  

( )LmlLm
m

L PcQD
V

P −+−= φβ
&        (5.48) 

( )Lmm
m

PDB
J

+−= φφ 1
&         (5.49) 

Taking the Laplace transform of Equations (5.48) and (5.49) and then eliminating 

( )sφ  can give the TF of the load as 

( ) ( )
( )

1
2

1

2

2
0

++

+
==

L

L

L

L
L

L

L
L ss

s

K
sQ

sP
sH

ω
ζ

ω

ω
      (5.50) 

where 
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2
mmml

m
L DBc

B
K

+
=          (5.51) 

( )
mm

mmml
L JV

DBc 2+
=

βω         (5.52) 

( )22 mmmlmm

mmlmm
L

DBcVJ

JcBV

+

+
=

β
βζ        (5.53) 

m

m
L J

B
=0ω           (5.54) 

In order to obtain the TF of system output, φL, with respect to the load flow, QL, 

taking the Laplace transform of Equations (5.48) and (5.49) and then eliminating PL(s) 

can give the TF of the system output as 

( ) ( )
( )

1
2

2

2

++
==

L

L

L

L ss

K

sQ

s
sG

ω
ζ

ω

φ φ
φ        (5.55) 

where 

m

mml
m D

Bc
D

K
+

= 1
φ          (5.56) 

If the leakage of motor is negligible (i.e. 0=mlc ), the model parameters are 

simplified as 

2
m

m
L D

B
K =           (5.57) 

mm
mL JV

D
βω =          (5.58) 

β
ζ

m

m

m

m
L J

V

D

B

2
=          (5.59) 
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LL
m

m
L J

B ωζω 20 ==         (5.60) 

mD
K

1=φ           (5.61) 

Equations (5.50) and (5.55) can be represented in block diagrams as shown in Figure 

5.9(a) and 5.9(b). 

This section has developed the required TF’s of all hydraulic components and has 

shown the appropriate block diagrams. The following section will combine all block 

diagrams and then show appropriate simplification for operating conditions I, II & III. 
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(a) Motor load TF  (b) System output TF 

Figure 5.9 TF’s of Motor Load 
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5.3 Development of the Transfer Function of the Load Sensing System for each 

Operating Condition 

The objective of this section is to develop the TF of the LS system for each operating 

condition (I, II & III). When the LS system operates at different loading conditions, 

parameters of the dynamic model change due to the variation of the SSOP. If the 

variation of SSOP is so large that the operating condition of the LS system shifts from 

one condition to another, the system dynamic model would have to change, reflecting 

the different forms of the TF’s for different operating conditions. In order to obtain the 

simplified TF at each operating condition, the complete block diagram of the LS system 

must be considered (essentially combining all the block diagrams developed in the 

chapter). 

Combining the transfer functions given in Figures 5.4 through Figure 5.9 provides a 

complete TF of the LS system as shown in Figure 5.10. This block diagram is too 

complex to directly obtain the TF, because there are as many as 24 terms in the 

determinant of the graph if Mason’s gain formula is applied [Ogata, 1970]. Even if the 

TF could be obtained, the TF would not readily reveal the information about which 

terms dominate the poles of the TF at specific operating conditions (I, II or III). 

Therefore, the block diagram must be simplified for each operating condition (I, II, and 

III). 
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Figure 5.10 Complete Block Diagram of the LS System 
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5.3.1 System Transfer Function at Condition I 

In order to obtain the TF of the LS system at operating Condition I, it is necessary to 

simplify the block diagram (Figure 5.10). It is very difficult to simplify it using the “ rules 

of block diagram algebra”  (Ogata, 1970) due to the fact that the summing points and 

branch points come into contact with the main path from PL to Ps. 

Consider the block diagram in the dashed line box of Figure 5.10. The block diagram 

of the load sensing pump is redrawn in Figure 5.11 to reflect a more common form in 

which the input variable is on the left side and the output is on the right side.  

G s pK s pyG r C P

K ys ps

K yr

K ys

K s ps

+

-+

++

-
x

r P y
θ

s p

G y

+

+
+ -

K qr1

K c r1

Q s

P s

P L s

Figure 5.11 Block Diagram of the LS Pump 

As a result of the complex nature of the block diagram shown in Figure 5.11, it is 

desirable to make the model simpler and make it user-friendlier. In order to simplify the 

block diagram, it is necessary to analyze it and then make some assumption. This block 

diagram includes one inner loop (Gy � Kspy � Gsp � Kysps), three feedback paths of the 

pump pressure (unit feedback, Kys and Ksps – the first one is the dominant term) and three 

feedforward paths (the main feedforward path, Kqr1 and Kc1– the first one is the dominant 

term). When the operating point is within the operating boundaries of Condition I, certain 

assumptions can be made to simplify the transfer function and still maintain its validity.  
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When the operating point approaches the boundaries of Condition II or Condition III the 

assumptions may not be valid. In the literature, (Bitner and Burton [1984], Erkkila 

[1999], Kim and Cho [1988], Krus [1988], Lantto, et al, [1990], etc), excluded the non-

dominant blocks from their models (feedback: Kys and Ksps, and feedforward: Kqr1 and 

Kcr1). This simplification in the normal operating region, does not affect the model 

accuracy significantly. However, when the LS system operates in the transition region 

between Condition I and Condition II or III, the accuracy of the models presented by the 

aforementioned authors is questionable.  

In this study, the non-dominant terms are considered. However, it is very difficult to 

simplify the block diagram on basis of the rules of the block diagram reduction [Ogata, 

1970]. A capitulated assumption was made such that the feedback path can be simplified 

by neglecting the non-dominant feedforward paths (Kqr1 and Kc1).  The feedforward path 

can be simplified by neglecting the non-dominant feedback paths (Kys and Ksps). Even 

though the non-dominant paths are neglected, the terms Kqr1 and Kcr1 are included in the 

feedforward gain and terms   Kys and Ksps are included in the feedback gain.  With this 

assumption, Figure 5.11 can be simplified into Figure 5.12. 

Gp+
-

P s

P Ls Qs

Hp

 
Figure 5.12 Simplified TF of the LS Pump 

♦ Equivalent pressure feedback gain of the LS pump, Hp 

In order to obtain the equivalent pressure feedback gain, Hp, it is necessary to move 

the second and third addition points of Ps forward until the first addition point (Figure 



 114 

5.11). Because it was assumed that Kqr1 and Kcr1 were negligible, it is feasible to move 

the second and third addition points to the first addition point. 

Hp considers all effect of the three inner feedbacks of the pump pressure, Ps (refer to 

Figure 5.10). The first inner feedback of the pump pressure relates to the force, ArPs, 

exerted on the LS spool. The second inner feedback reflects the effects of the pump 

pressure to the control pressure, Py, via the flow pressure sensitivity, Kcr1, on the “charge”  

orifice, and the third corresponds to the “back pressure”  on the swash plate. Hp can be 

derived on the basis of the rule of the block diagram algebra to give 

( ) ( ) ( ) ( )
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   (5.62) 

Equation (5.62) can be simplified for the low frequency regions as 







−+=
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sps

ryr
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p KK

K

KK

K
H 11        (5.63) 

Substituting equations (5.3), (5.11), (5.12), (5.33) and (5.35) into above equation gives 

( )
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   (5.64) 

♦ Equivalent feedforward gain of the LS pump, Gp 

Because it was assumed that Kys and Ksps were negligible, it is feasible to combine the 

non-dominant feedforward term, Kcr1, into the pump gain term, Cp, to give an equivalent 

*
pC  as 
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
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Considering the fact that the term,
spyp

cr

KC

K 1 , is usually less than 0.01 at Condition I, 

less than 0.1 in the transition region between Conditions I and II, and ωsp = 78 ~ 190 

rad/s, the effect of the dynamics term, 1
2

2

2

++
sp

sp

sp

ss

ω
ζ

ω
, on *

pC is negligible. Therefore,  
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In order to derive the equivalent feedforward gain of the LS pump, Gp, Figure 5.11 is 

redrawn into Figure 5.13 in which an inner loop shown in the dashed line box relates to 

the velocity feedback of the control piston. The TF of the inner loop is 
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 (5.67) 

where 
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θ
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Figure 5.13 Block Diagram of the LS Pump at Condition I 

For the pump and valve examined, ωysp = 0.19 ~ 1.23 rad/s, ωsp = 78 ~ 190 rad/s and 

ωsp < ωy (see Table 5.1). Therefore, Equation (5.67) can be reduced to 


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      (5.69) 

where 
ysp

y
spLsp ω

ω
ωω =         (5.70) 
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ζζ 
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


+=
2

       (5.71) 

Table 5.1 Frequency Parameters of the LS Pump’s Dynamics Characteristics 

(Condition I) 

Range ωysp (rad/sec)  ωsp (rad/sec) ωy (rad/sec) 

Min 
0.19  

(θsp0 = 18°; Ps0 = 0.76MPa) 

78 
(Ps0 = 0.76Mpa) 

407 

(θsp0 = 0°) 

Max  
1.23 

(θsp0 = 0°; Ps0 = 20MPa) 
190 

(Ps0 = 20Mpa) 
2200 

(θsp0 = 18°) 
 

In additions, when ω < 1000 rad/s, Equation (5.67) can be further approximated as 
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          (5.72) 

Figure 5.14 is the simplified block diagram of the studies LS pump which can be 

further reduced. The TF of the LS pump, Gp(s), can be obtained from Figure 5.14 as  
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where ( )γ+= 1*
pspyyrrp CKKKK � � � � � � � (5.74) 
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Figure 5.14 Simplified Block Diagram of the LS Pump 

Substituting Equations (5.33), (5.12), (5.37) and (5.66) into Equation (5.76) gives 
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Substituting Equations (5.3), (5.33), (5.12), (5.37) and (5.66) into Equation (5.74) gives 
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γ in Equation (5.76) represents the ratio of leakage flow gain (via the LS regulator), 

r

r
qr x

Q
K

∂
∂

= 1
1 , and the control gain, 

r

sp*
p x

C
∆
θ∆ 1, in the main path. From the point of view of 

energy saving, γ is expected to be small because physically this reflects the orifice’s 

leakage. However, a very small Kqr1 (hence Kqr2 because symmetry about the null position 

was assumed in the model) results in a very small equivalent gain of the LS pump (see 

Equation (5.78)). 

Substituting Equations (5.68) and (5.77) into Equation (5.75) gives 
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It is noted that Gp(s) accommodates a change in sign of PLs and Ps at the summing 

point in Figure 5.14. It should be noted that the input signal in Figures 5.14 is (HpPs – 

PLs) while the input signal in Figure 5.12 is (PLs – HpPs ). 

                                                 
1 ∆ represents the small signal analysis 
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Because the undamped natural frequency, ωr, of the LS spool is very high (in this 

study, ωr = 1954 rad/s) compared to ωysp (in this study, ωysp < 1.23 rad/s), Equation (5.73) 

can be further simplified as  
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Consequently, the dashed line box in Figure 5.10 is simplified into a single block in 

Figure 5.12 which represents the TF of the LS pump (refer to Equations (5.64) and 

(5.80)) at operating Condition I. As a result of the simplification, the block diagram 

shown in Figure 5.10 now becomes the block diagram originally shown in Figure 5.2 at 

operating Condition I. 

The TF of the overall LS system can be obtained from the Mason’s gain formula as 
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Equation (5.81) can be presented in a more general form as 
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where all coefficients, ai and bi, of the s polynomials in the numerator and the 

denominator are given in Appendix E. 

Equation (5.82) can be compared to Bitner’s model [1986]. Bitner [1986] derived a 

7th order TF which considered the LS spool dynamics (ωr = 1954 rad/s). Equation (5.82) 

neglects effects of system characteristic frequencies higher than 1000 rad/s (refer to the 

derivation of Equation (5.80)). The reason for doing so can be explained as follows. 

The system presented by Figure 5.10 has a pair of dominant conjugate poles in which the 

undamped natural frequency is usually small (≤ ωL). This pair of dominant conjugate 

poles can be estimated by Ding’s method [1989]. At a frequency of 1000 rad/s, the 

magnitude of the TF is attenuated by about 40 dB. In other words, the high frequency 

components in the motor’s rotary speed are difficult to identify. It is recognized that if the 

focus of study is such that high frequency behavior is of concern, the simplifications 

(Equation (5.67) to Equation (5.72) and Equation (5.73) to Equation (5.80)) made in this 

section cannot be applied. In this case, a TF or a state space model has to be directly 

derived from Figure 5.10. This would result in a 9th order model. Although this derivation 

is not developed in this thesis, the 9th order TF has been developed and programmed for 

the purpose of comparison to a simplified 5th model. A comparison of the frequency 

response for the 5th and 9th order transfer functions with four different operating 

conditions is given in Figure 5.15. The comparison indicates that simplifying the pump’s 

transfer function to that given by Equation (5.80) would not affect the outcome of any 

analysis of the LS system in the frequency regions of interest in this study. The trivial 

difference between the 5th and 9th order models at resonant peak can be observed when 

the flow orifice has a small opening and the LS line has a small damping. 
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Figure 5.15 Comparison between 9th and 5th models for four different conditions 

5.3.2 System Transfer Function at Condition II 

When the LS system operates in Condition II, the LS spool does not operate about the 

null position (see Figure 5.3). Instead, the LS spool moves to the side in which the load 

pressure is exerted. In this condition, xr0 > 0, Ps0 = Py0. In order to explain the 

simplification at Condition II, the LS regulator and the control piston are illustrated as 

Figure 5.16. 

The charge orifice usually is open at Condition II though it may sometimes be closed 

during the dynamic oscillation. The average opening, xr0, is significant for the small 

control piston volume, Vy, under Condition II (Py0 = Ps0). 
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The block diagram in Figure 5.10 can be simplified to that shown in Figure 5.17. It is 

noted that block Kcr1 in Figure 5.10 does not exist because the two terms which contained 

Kcr1 in Equation (5.38) cancel due to Ps0 = Py0. It is further noted that ωs is independent of 

Kcr1 due to this cancellation at Condition II. It can be observed from Figure 5.17 that one 

positive feedback loop (Gs�Ksps�Gsp�Cp) still exists and hence there is a potential risk 

of instability. 
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Figure 5.17 Block Diagram of the LS Pump at Condition II 

The block diagram is further simplified into Figure 5.18 in which the pressure 

feedback of the LS pump, Hp, can be written as: 
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xr 
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Vy 

PLs Ps
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Figure 5.16 Schematic of the LS Regulator and 
Control Piston at Operating Condition II 
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Figure 5.18 Simplified Block Diagram of the LS Pump at Condition II 

Equation (5.84) indicates that the coefficients, Kpr2 and Kpr3, of the swash plate’s 

“backpressure”  terms in Equation (2.3) (see Chapter 2) affect the pressure feedback 

gain, *
pK , under operating Condition II.  

The TF of the overall LS system can be obtained from the Mason’s gain formula as 
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Equation (5.85) can expressed in a more general form as 
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where all coefficients, ai and bi, of s polynomials in the numerator and the denominator 

are given in Appendix F. 

5.3.3 System Transfer Function at Condition III 

When the LS system operates in Condition III, the flow control function of the LS 

pump does not exist. The situation can be observed from Figure 5.10 in which the dashed 

line box does not exist because Qs(s) = 0 (i.e. the flow delivered is a constant when the 

pump is fully stroked). Recall that Qs(s) is actually ∆Qs(s) which is zero because the 

pump swash plate does not move. The block diagram of the LS system is reduced to that 

shown in Figure 5.19. 
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Figure 5.19 Block Diagram of the LS Pump at Condition III 

It is noted that no positive feedback loop exists in the block diagram (Figure 5.19). 

The TF of the overall LS system can be obtained from the Mason’s gain formula as 
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Equation (5.87) can be expressed as a more general form as 
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The coefficients of s polynomials in Equation (5.87) are obtained in Appendix G. It 

can be verified by Routh’s stability criterion that the LS system is always stable at 

condition III (see Appendix G). 

This section has developed the TFs of the LS system for conditions I, II, and III. The 

TF’s for conditions I and II are approximated as 5th order and for condition III, the TF is 

3rd order. 

5.4 Procedure to Calculate the Load Sensing System Stability 

This section discusses how to compute the stability of the LS system for the three 

conditions (I, II, III). For the LS system with the given LS pump (Vickers PVE19Q), 

most of the model parameters are unchangeable such as the dimension parameters. 

However, the setting parameters (such as the system pressure differential setting in the 

LS regulator, Pd), the control input (such as the opening of the flow adjustable orifice 

area, Av) and the load parameters (such as the volume of pump’s outlet chamber, Vp, the 

volume of motor’s inlet chamber, Vm, the motor damping, Bm, the inertia of motor and the 

load, Jm, and the resistant torque of the load, Tmf) are changeable. The system stability can 
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be usually described in terms of its “absolute”  stability (i.e. conditions in which the 

system is either “stable”  or “unstable” ) and its relative stability in terms of its undamped 

natural frequency, ωn, and its damping ratio, ξ, associated with the dominant poles. 

Table 5.2 shows the process that was used to establish the stability for the LS system. 

The calculations are broken into five steps. The first step is to establish the operating 

point with the method introduced in Chapter 3. The second step is to estimate the flow 

gains and the flow-pressure coefficients of the LS regulator orifices and the adjustable 

orifice. The third step computes the coefficient of the TF’s for each functional subsystem 

based on the models introduced in Sections 5.3. The fourth step calculates the coefficients 

of the s-polynomial in the denominator and numerator for the TF of the LS system in 

Section 5.4. Only roots of the denominator determine the stability of the LS system. 

However, in order to check if there is a “zero-pole cancellation”  or a situation in which a 

zero and a pole on the right half of the s plane are very close each other, it is necessary to 

know all the zeros determined by numerator. Finally, applying the “ root”  function of 

Matlab®, all the poles of the TF of the LS system can be calculated. In the following 

chapter, the procedure using the models introduced in previous sections will be used to 

calculate the stability of a specific LS system. The results will be compared to their 

experimental counterparts. 

5.5 Summary 

This chapter has established comprehensive frequency-domain models of the LS 

system for Conditions I, II, & III. A summary of the procedure to evaluate the zero’s and 

pole’s is given in Table 5.2. These models relate to the steady state operating points via 

the flow gains, Kq, the flow-pressure coefficients, Kc, and the non-linear dynamic 
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equation of the pump swash plate. In order to obtain a precise model of the flow gain and 

flow-pressure coefficient for the LS regulator orifices, the empirical flow model of an 

orifice developed in Appendices C & D was used. 

These models are experimentally verified in Chapter 6 and are used in Chapter 7 to 

investigate the relationship between the stability of the LS system and the SSOP’s under 

a variety of operating conditions. 

 

Table 5.2 Procedure of Stability Analysis for the LS System 
 

Pd Vp Av Vm Jm Bm Tmf ωLs Input parameters 

Coefficients of 
subsystem TFs 

linearization 
parameters 

Operating point 

Coefficients of 
closed loop TF 

Poles and zeros of 
loop TF 

Ps0  Py0  PL0  xr0 
(Figure 3.3) 

Kqr1 Kqr2 Kc1 Kc2 Kq Kc 
(Eqs.5.25 through 5.28, Eqs.5.46 and 5.47**) 

Kp 
*
pK  Ks KL ωs ωL ωsp ωr 

ωy ωysp  ωL0 ωp0 ζL  ζr  ζsp 

ai bi 
(Appendix E, F, and G) 

σpi + jωpi  (i = 1, 2, …9) and σzi + jωzi  (i = 1, 2, …7) 
(Matlab programming) 

Calculation steps Parameters 

 
* *   The flow rate, QL, through the adjustable orifice usually is turbulent. 

Therefore, it is unnecessary to use the more accurate flow rate model in 
Appendix D 
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Chapter 6 Validation of Dynamic Models of the Load Sensing System 

Chapter 5 has developed the transfer functions of the LS system under Conditions I, II 

and III. The purpose of this chapter is to experimentally validate these models. The 

procedure for the validation experiments includes (1) setting up a proper experimental 

system, (2) determining all parameters of the LS system for the models, (3) the 

description of the experimental method and (4) a comparison between the theoretical and 

experimental results. 

6.1 Experimental System 

Figure 6.1 shows the experimental platform for testing the LS system. The LS system 

is same as that studied in previous chapters, except that (a) a servo valve acts as the 
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Figure 6.1 Experimental System of frequency response of the LS System 
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adjusting orifice (compare to Figure 6.1) and (b) a relief valve (1) in Figure 6.1 is 

positioned downstream of the motor to simulate a constant resistance torque for the load. 

The experimental setup included a signal generator, a tachometer, a signal analyzer, and a 

scope. 

The servo valve (model: MOOG 72-102) has a pilot stage which was supplied by a 

separate hydraulic pump and adjustable relief valve (2). For comparative frequency 

response experiments, it is essential to generate an input signal (the opening of the 

adjustable orifice, x) within a certain bandwidth. A servo valve with suitable frequency 

response characteristics was selected for this purpose. An additional requirement was that 

the servo valve had a separate pilot stage source port. The pilot stage of most servo 

valves uses the same source pressure as the main stage. For this type of servo valve, there 

are two problems: (a) the dynamic response is poor when the source pressure is lower 

than the specified operating pressure (usually 3000 psi for a high frequency response 

servo valve and 1000 psi for the low frequency response servo valve), and (b) the bypass 

flow through the pilot stage is significant compared to the flow rate through the main 

stage when the orifice opening of the main stage is small. Therefore, a servo valve with a 

separated pilot stage source was used. This servo valve (MOOG 72-102) had a response 

time of 10 ms at 3000 psi pilot pressure. 

The relief valve (1) creates a backpressure on the motor load which was used to adjust 

the operating point. In order to explain the relationship between the relief valve pressure 

in the experimental circuit and the simulated load torque, the dynamic model of the motor 

is provided as (refer to Figure 6.1) 

( )( )*1
mfmbLmm

m

TPPDB
J

−−+−= φφ&       (6.1) 
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where Pmb is the pressure setting of the relief valve (2) in Figure 6.1. *
mfT  is the measured 

value of the motor torque (see Appendix I). Comparing Equation (6.1) to Equation (2.43) 

gives 

mbmmfmf PDTT += *          (6.2) 

*
mfT  and Dm are known. Adjusting Pmb can change the simulated Tmf in Equation (2.43). 

A tachometer (model: KEARFOTT CM-09608007) was used to measure the rotary 

speed of the motor load of the LS system. Appropriate transducers for measuring the 

operating points, Ps0, Py0, PL0, xr0, θsp0 and QL0, were installed. These were the same 

transducers used for the operating point determinations described in Chapter 4. 

The signal generator provided a pseudo random input signal to control the orifice 

opening. A signal analyzer was employed to directly obtain the experimental Bode plot. 

6.2 Model Parameters 

In order to predict stability regions of the LS system (based on the model developed in 

Chapter 5) the model parameters must be known. Appendix H lists all parameters with a 

“*”  representing adjustable parameters. Av is the cross sectional area which is 

proportional to the adjustable orifice opening, x, as an input variable of the system (Note: 

the orifice of the servo valve is rectangular type). The pressure differential setting, Pd, the 

damping frequency in the LS line, ωLs, and the resistant torque of the load, Tmf, are 

settable. It is noted that the damping frequency in the LS line, ωLs, does not affect the 

SSOP. When the back pressure is set to zero, Tmf is minimum and represents the motor’s 

Coulomb friction torque. 

The values of these parameters were obtained from four sources: 

(1) Direct measurement (kr, mr, Ay, Vymin, Vp, Vm, Jm), 
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(2) An internal research report provided by Bitner [1996] (Ar, Br, Rpy, Rp, Ap, ω, Ksp, 

Tsp, Kpr2, Kpr3, Bsp, Jsp,), 

(3) Manufacturer specifications (β, ρ, µ, θspmax, cml, Dm) and  

(4) Experimental methods (dr, wr, cpl, Cd, Bm, Tmf, ωLs). 

Some explanatory comments are required regarding the parameters determined by 

experimental methods. The equivalent height, dr, and the width, wr, of the LS regulator 

orifice at the null point are two important parameters which affect the gain of the LS 

pump. The description of how they were measured is presented in Appendix D. The 

procedure for determining the leakage coefficient of the LS pump, cpl, was described in 

Chapter 4. The method for determining the servovalve discharge coefficient, Cd, is 

contained in Appendix C. The damping coefficient, Bm, and the Coulomb resistant torque, 

Tmf, of the motor with an inertia load (flywheel) were experimentally determined 

according to the procedure described in Appendix I. The method for finding the damping 

break frequency, ωLs, of the LS line can be found in Appendix J. 

6.3 Comparison of the Model Predictions and Experimental Results 

This section will provide a frequency domain comparison between the theoretical 

predictions and experimental results for the dynamic models of the LS system under 

operating Conditions I, II and III. A comparison can only be conducted for the dominant 

poles of the LS system due to the finite band width (<20Hz) of the servo valve and the 

limited resolution of the tachometer.  

For the frequency response experiments, it is necessary to explain the method of 

setting an operating point and the dynamic excitation signal. The input signal applied on 

the servo-valve has a carrier signal (i.e. a DC voltage plus a small pseudo random). The 
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DC voltage bias sets the operating point. The small pseudo random signal is a dynamic 

excitation signal about the operating point. The magnitude of the pseudo random signal 

must be small. Otherwise, the linarization procedure is invalid. From an experimental 

point of view, however, the very small magnitude of the pseudo random signal results in 

a poor SNR (signal to noise ratio) and consequently poor precision in experimental 

results. In this study, the magnitude of the pseudo random signal is 10 mv which results 

in small excursions (amplitude of about 1 lpm) in the flow rate about the operating point. 

6.3.1 Condition I 

The objective of this section is to provide comparisons of the theoretical and 

experimental frequency response results of the LS system at a small opening and at a 

large opening (operating points).  

For the experiment using a large opening in the valve area, the adjustable parameters 

were fixed at the values shown in Table 6.1 by setting the relief valve (1) at 500 psi. The 

linearized parameters, model parameters and the coefficients of the system TF were also 

determined. Finally, the poles of the TF which related motor rotary speed, φ(s), to the 

adjustable orifice opening, X(s), were obtained. 

Figures 6.2 and 6.3 show a comparison of Bode diagrams between the model 

prediction and measured values. Figure 6.2 indicates that the model is an accurate 

representation particularly at lower frequencies. There is a resonance peak about 6 rad/s. 

This is a result of a pair of dominant conjugate poles (s1,2 = -0.6 ±6j) which yield a small 

damping ratio (ζ = 0.1). 
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Table 6.1 An example of Determining Parameters for the Stability Analysis 

 Adjustable  A v Settable  P d T mf ω Ls 
parameters 11 mm 2 parameters 0.3 MPa 13.7 Nm 450 s -1 

Operating P s0 P y0 P L0 x r0 θ sp0 Q L0 φ 0 
point 7.6 MPa 3 MPa 7.3 MPa  -0.006 mm 0.055 rad 13 l/min 53 rad/s 

K q1 K q2 K c1 K c2 K c 
Lineaized  

parameters 
0.099           
m 2 s -1 

 -0.092       
m 2 s -1 

0.5x10 -12  

m 5 s -1 N -1 
0.8x10-12  
m 5 s -1 N -1 

3.6x10 -12  

m 5 s -1 N -1 

K p K s K L ω s ω L ω sp ω r 
Model  

parameters 
2x10 -8           

m 5 s -1 N -1 
5x10 11          m - 

5 sN 
9.8x10 9        

m -5 sN 13.8 s -1 18.6 s -1 130 s -1 1954 s -1 
ω y ω L0 ω p0 ζ r ζ L ζ sp 

290 s -1 0.34 s -1 405 s -1 0.0353 0.06 0.4 

numerator b 3 b 2 b 1 b 0 
Coefficients 4.69x10 -4 0.384 143 2.95x10 4 

of TF Denominator a 5 a 4 a 3 a 2 a 1 a 0 
1.36x10 -6 0.94x10 -2 5.96 803 1127 2.95x10 4 

Poles of TF s 1 s 2 s 3 s 4 s 5 
 -0.6+j6  -0.6-j6 -188 -499 -6248  
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Figure 6.2 Comparison of Magnitudes between the Measured and 

Predicted Results Using Equation (5.81) 
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In order to verify that the relative stability shifts with operating points, another 

frequency response was measured and calculated at a small orifice opening, x. The input 

parameters, the operating point and the poles of the LS system at the condition of a small 

orifice opening, x, are given in Table 6.2. The comparisons of the magnitudes and phases 

are shown in Figures 6.4 and 6.5. A resonant peak exists at about 7 rad/s. This is again a 

consequence of a pair of the dominant conjugated poles (s1,2 = -0.5 ± j7.3) with a small 

damping ratio (ζ = 0.07). 
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Figure 6.3 Comparison of the Phases between the Measured and 

Predicted Results Using Equation (5.81) 

Table 6.2 Another example of Determining Parameters for the Stability Analysis  

 Adjustable  A v Settable  P d T mf ω Ls 
parameters 4 mm 2 parameters 0.3 MPa 6.1 Nm 250 s -1 

Operating P s0 P y0 P L0 x r0 θ sp0 Q L0 φ 0 
point 7.2 MPa 3 MPa 6.9 MPa  -0.004 mm 0.025 rad 4.8 l/min 33 rad/s 

Poles of TF s 1 s 2 s 3 s 4 s 5 
 -0.5+j7.3  -0.5-j7.3  -247+j177  -247-j177 -2336  
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Figure 6.4 Comparison of the Magnitudes between the Measured and Predicted 

Results Using Equation (5.81) with Small Opening of the Adjustable Orifice 
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Figure 6.5 Comparison of the Phase between the Measured and Predicted 

Results Using Equation (5.81) with Small Opening of the Adjustable Orifice 
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Comparing Figures 6.2 and 6.4 indicates that at the smaller orifice opening, x, a higher 

resonant peak in the magnitude occurred. It can also be observed that the experimental 

plot in Figure 6.4 has the larger scatter than that in Figure 6.2. This is because SNR at the 

small opening in the valve area is larger than that at the large opening. 

6.3.2 Condition II 

In order to validate the model for the operating Condition II, it is necessary to predict 

the locus of the pair of the dominant poles as the opening, x, of the adjustable orifice 

increases (see Figure 6.6). The purpose of the prediction is to determine a proper 

operating point for the experiments. Based on model predictions, this pair of the 

dominant poles is sensitive to the operating points. For example, when the opening of the 

adjustable orifice begins to increase from zero, the dominant poles of the LS system are a 

pair of conjugate poles. The corresponding undamped natural frequency is 18 rad/s at a  
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Figure 6.6 Root Locus of the LS system for Condition II 
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small opening, x. The smaller the opening is set at, the smaller the damping ratio 

becomes. When the opening reaches a specific value (flow rate about 0.87 litre/min), the 

damping ratio is larger than 0.7 and hence the large oscillations disappear. The model 

prediction also indicates that in the high frequency regions, another pair of conjugate 

poles with positive real parts (about 100 ~ 300 rad/s) may exist when the opening, x, is 

large depending on the operating point. However, this pair of poles is approximately 

cancelled by a pair of zeros which are very close to them. Therefore, experimentally, this 

pair of poles in the region of 100 ~ 300 rad/s was seldom detectable. 

For the low frequency region of Condition II which requires a small opening of the 

adjustable orifice, it was difficult to obtain an accurate Bode plot from the signal analyzer 

due to the low signal-noise-ratio. In order to check if an undamped natural frequency of 

about 3 Hz (18 rad/s) existed in the experimental system, the orifice opening, x, was set 

to a very small value (but not zero). Although a pseudo random signal was not applied, 

the noise in the LS system served the same purpose. A spectral analysis of the output 

signal can provide this information.  

Figure 6.7 shows the spectrum of the measured pump pressure, Ps. In addition to the 

frequency components of 30 Hz and its harmonic frequencies (caused by the pump 

rotational speed), a frequency component of 3 Hz in the pressure signal exists. This signal 

indicates a dominant frequency of about 3 Hz. Therefore, it was concluded that the model 

could predict the main dynamic characteristics of the actual LS system.  
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6.3.3 Condition III 

When the LS system operates at Condition III, the LS pump acts as a fixed 

displacement pump since it is fully stroked. The circuit thus becomes a simple fixed 

displacement pump/valve/motor configuration. For the experimental LS system, the 

model is given in the normalized form as 

( ) ( )
( )( )54.384.330

3000288.0
2 +++

+=
sss

s
sG        (6.3) 

Equation (6.3) indicates that the system is stable because the TF has a zero (sz = -3 

rad/s), a pair of dominant conjugate poles (sp1,2 = -1.7 ± j 6 rad/s), and the other pole    

(sp3 = 30 rad/s). Figures 6.8 and 6.9 show a comparison of the model prediction and the 

experimental result in the form of Bode plots. It can be observed that the resonant 

frequency occurs at about 6 rad/s (i.e. 1 Hz). The comparison indicates that the  

 
Figure 6.7 Power Spectrum of the Pump Pressure at Condition II 

3 Hz signal 
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harmonic frequency due 
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Results under Operation Condition III 
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experimental results show a significant scatter (frequencies less than 2 rad/s) and the 

predicted results did not agree with their experimental counterpart in this frequency 

range. 

6.4 Summary 

This chapter has attempted to experimentally validated the dynamic models of the LS 

system under operating Conditions I, II and III developed in Chapter 5. A servo valve 

acts as an adjustable orifice. The opening, x, of adjustable orifice can be proportionally 

manipulated by DC bias plus a pseudo random signal. The bias sets the operating point 

and the pseudo signal provides the signal necessary to determine the dynamic response of 

the LS system. This carrier signal was also fed into a signal analyzer as the input signal of 

the LS system. The rotary speed of the motor measured by a tachometer was connected to 

the signal analyzer as the output of the LS system. The experimental result in the form of 

the Bode plot can be used to compare to the model prediction. The comparisons indicated 

that the models of the LS system for Condition I, II and III are satisfied for most 

conditions, the exception being the lower frequency region for Condition III. 
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Chapter  7 Stability Analysis of the Load Sensing System 

Chapter 5 provided a comprehensive block diagram (Figure 5.10) of the LS system 

and developed the simplified TFs for three different operating conditions. Chapter 6 

experimentally verified the dynamic models (i.e. TF’s for operating Conditions I, II and 

III) in the low frequency regions. This chapter uses the stability model developed in 

Chapter 5 to analyze the stability of the LS system at a variety of operating points as a 

function of the opening of the adjustable orifice. 

When the aforementioned opening varies from zero to its maximum, the operating 

points associated with the appropriate variables move and form “ trajectories” . In 

addition for the same opening but under different load conditions, the trajectory is 

different. Before the stability of the LS system is discussed, it is necessary to first 

illustrate some common SSOP trajectories when the orifice is adjusted in a practical LS 

system. The stability is then calculated at each operating point along these common 

SSOP trajectories. It must be noted that initially the damping-adjustable orifice in Figure 

5.3 is fully opened. The effect of the damping orifice in the LS line on stability at a 

specific SSOP is then discussed. 

7.1 Trajectory of Steady State Operating Points for  the Load Sensing System 

In order to investigate how the stability varies as the operating point shifts, it is 

necessary to know some common trajectories during operation. In practice, it is 

necessary to determine flow control of the LS system by changing the opening, xv, of the 

flow orifice at certain load conditions such as Jm, Bm cml, Dm and Tmf. In this study, it is 

assumed that Jm, Bm, cml and Dm are constant. The load resistance, Tmf, however, can be 

different. Such is an application when, for example, a crane or an excavator lifts its load; 
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Tmf is a large positive value. When unloaded, Tmf  is a small positive value or can even 

become negative (i.e. runaway load: Tmf < 0). For different Tmf, the trajectory of the 

SSOP of the LS system can be quite different when varying xv. To assist in this 

discussion, two types of trajectories are defined. Before proceeding, it is necessary to 

know the pump’s initial status (the pump is almost destroked even though the orifice has 

not been opened). Assume that the load pressure, PL0, is zero initially. According to 

Equation (3.20) in Chapter 3, the pump’s initial pressure is determined by 




<
≥

=
22

2

sds

sdd
si PPP

PPP
P   

)IICondition(

)ICondition(
      (7.1) 

It is necessary to further explain Equation (7.1). First, Condition III is not possible 

because the pump is destroked (zero flow). When Pd is set to be larger than Ps2, the 

assumption behind Condition II (that is, Ps0 > Pd due to 00 =LP ,  refer to Equation 

(3.20)) would result in a prediction that Ps0 > Ps2 (refer to Figure 3.2) which is not 

physically possible. Therefore, the pump pressure, Psi, can only be Pd for condition Pd > 

Ps2. When Pd is set to be smaller than Ps2, the pump pressure, Psi, would no longer be 

equal to Pd, but, equal to Ps2, otherwise, the pump flow would not be zero in the initial 

condition. 

Trajectory I :  

Trajectory I is a consequence of plotting the SSOP’s of the LS system for Condition I 

or Conditions I & III as a function of the orifice opening. These SSOP’s are evaluated 

using the procedure presented in Figure 3.3 of Chapter 3. However, it is first necessary 

to determine the actual conditions for Trajectory I. It is known that for certain load 

conditions (i.e. Tmf, Bm, cml and Dm, constant) the pump pressure always increases as the 
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flow orifice opening, xv, increases. Therefore, as long as the pump pressure, Ps0, satisfies 

Ps0 > Ps2 (see Figure 3.2) at the zero opening (xv = 0), the LS system would not operate 

in the region of Condition II. Based on Equation (3.25), Ps0 > Ps2 is true if the following 

condition is satisfied, that is, 

( ) 22 s
mmml

mfm
d P

DBc

TD
P >

+
+         (7.2) 

Trajectory I is shown in Figure 7.1, When the orifice has a small opening, the load 

pressure is soon established (limited by the compressibility of the fluid) and the pump 

pressure would jump from point x0 to x10. The trajectory starts from the initial opening 

(x10 ≈ 0). According to Equation (3.25), the pump pressure, Ps0, is equal to 

( )2
mmml

mfm
d DBc

TD
P

+
+  at x10. The swash plate angle, θsp0, is not zero, but very small due to 
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Figure 7.1 Operating Point Trajectories of the LS system 
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leakage in the pump. As the orifice opening increases, the control piston pressure, Py0, 

and the pump pressure, Ps0, increase until the point x11 where the control pressure 

reaches a maximum value. Beyond x11, the control pressure decreases until the point x12 

where the pump is fully stroked. At point x12, the pump flow delivery reaches the 

maximum. Neglecting the leakage in the pump (cplPs), the flow orifice opening can be 

approximated by the relationship 

dd

sppp

PwC

RNA
x

ρ
π

θω
2

tan max
12 =   (See Equation (3.31))    (7.3) 

As x continues to increase (x13), the control pressure suddenly drops to zero. This is 

because the flow rate through the orifice now becomes constant (Qpmax) and an increase 

in the orifice opening, x, must result in a decrease in the pressure drop across the orifice, 

(Ps – PL). The decrease in (Ps – PL) moves the LS spool such that the discharge orifice is 

fully opened and as a consequence, the control pressure, Py, becomes zero. As the orifice 

opening further increases, the pump pressure decreases (x14) due to the fact that the 

pump is fully stroked (maximum flow rate, Qpmax). 

Trajectory I I  

Trajectory II is considered as the “ trace”  of the SSOP’s of the LS system starting 

under Conditions II, as the adjustable orifice is opened gradually. Again, it is noted that 

these SSOP’s are evaluated using the procedure presented in Figure 3.3 of Chapter 3. 

When Inequality (7.2) cannot be satisfied, the operating point must start from point (x20) 

at the zero opening (see Figure 7.1). As the opening of the adjustable orifice increases, 

the operating point moves along a straight line Ps0 = Py0 (x21 in Figure 7.1) until a critical 

point, x22, in which PL0 and Ps0 as solved by Equations (3.37) and (3.38) can no longer 
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satisfy the essential condition for operating Condition II (i.e. dLs PPP >− 00 ). In this case, 

the operating point enters the region of Condition I. As the adjustable orifice opening 

increases, the remaining segment of Trajectory II is similar to Trajectory I which passes 

through x23, x24, x25 and x26, etc. 

If the SSOP cannot reach the break point (x22) on Trajectory II before the swash plate 

angle increases to the maximum, θspmax, (point x32), the operating point can only move in 

the region defined by Conditions II and III. This trajectory usually occurs in the case of a 

significant runaway load. As the opening of the adjustable orifice increases, the runaway 

load decreases the resistance as seen by the pump and subsequently, the pressure 

decreases. In order to determine the condition under which the SSOP would not enter the 

region of Condition I, consider a typical SSOP (Ps0 = Py0 = Ps1, θsp0 = θspmax) which is 

the boundary between Condition I, II & III (refer to Figure 7.1). Substituting Equation 

(3.34) into Equation (3.20) gives 
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

+−= 1    (7.4) 

When the load torque, Tmf, is less than the critical value expressed by Equation (7.4), 

the SSOP moves along the region at Condition II and directly runs into the region at 

Condition III without entering the region at Condition I (x32 in Figure 7.1). 

7.2 Stability of the Load Sensing System on Trajector ies of Steady State Operating 

Points 

It is well known that stability of a non-linear system depends on its SSOP. This 
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dependence, in particular in the LS system, is significant. Previous researchers have not 

adequately addressed this problem. The objective of this section is to investigate the 

dependence of the LS system on its SSOP’s. The stability along the trajectories defined 

in Section 7.1 is first examined. The absolute and relative stability [Ogata, 1970] of the 

LS system are graphically presented as a function of the SSOP. 

7.2.1 Trajectory I  

Figure 7.2 shows an example of Trajectory I for the model parameters defined in 

Appendix H in which certains variable parameters (pressure differential setting, Pd, 

resistant torque of the motor load, Tmf, and the damping frequency in the LS line, ωLs), 

are set to be equal to 2.5MPa, 0.21Nm and 450 s-1 respectively. Parameter, Av, is chosen 

to be 2.4×10-3, 16.2, 20.9-, 20.9+, and 30 mm2 by setting the needle valve opening, xv, to 

an initial start’s point (very small value), and then 3.1, 3.4-, 3.4+ and 4 turns (see 

Equation (4.9)). The procedure for determining stability was given in Table 5.2. The 

results indicated that in the region of Condition I , the dominant conjugate poles with 

frequencies less than ωωωωL (the undamped natural frequency of the motor  load), and 

a second pair  of “ non dominant”  poles with frequencies very close to ωωωωr (the 

undamped natural frequency of the LS spool), are those that influence the stability 

of the LS system. 
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Figure 7.3 shows that for Trajectory I, in the region dictated by Condition I, the non-

dominant poles (x10, x11 and x12) are in the right half of the s plane. The system is 

unstable in this region. The magnitude of complex part of these poles are close to the 

undamped natural frequency of the LS regulator spool, ωr.  It can be observed that when 

the orifice opening is small (x10, x11) the poles and zeros of the LS system transfer 

function at these frequency points exactly cancel (x10) or approximately cancel (x11).  

In a practical LS system, however, instabilities which result from these particular 

poles are not readily observed in the output flow of the LS system. This is because the 

poles and zeros cancel. When the dynamic signal becomes large enough, the non-

linearity of the LS system results in a limit cycle oscillation. In the presence of a load 

with a relative large inertia, the high frequency oscillation of about 2000 rad/s are 

filtered. In other word, the high frequency oscillation in the motor rotary speed cannot 

be identified. It is noted that the high frequency oscillation might be observable in other 
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Figure 7.2 Operating point trajectory I of the LS system 
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parameters, such as the system pressures, (Ps, Py and PL) and the displacement of the LS 

regulator spool, xr. 

It is necessary to note that if the lines, which connect the LS pump, the flow control 

valve, and the load, are soft hoses, the equivalent bulk module of the fluid is much 

smaller than that of pipes and hence these poles and zeros would occur in the left half of 

the s plane. 

From a more practical perspective, the relative stability of the dominant conjugate 

poles is of more concern than non-dominant poles described above because of possible 

low frequency “hunting” . This pair of dominant conjugate poles has their frequency 

component less than ωL (in this study, ωL = 18.6 s-1). It can be observed that as the 

operating point moves along the trajectory shown in Figure 7.2, the damping ratio, ζ, of 

the dominant conjugate poles shown in Figure 7.4 is approximately constant 
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( φζ 1−= cos ) but the undamped natural frequency, ωn, decreases. It can also be 

observed that when the operating point enters the region of Condition III (pump fully 

stroked) from Condition I (the normal LS operation), the dominant poles no longer vary 

(x13 and x14 in Figure 7.4). The LS system shows more significant oscillations in 

Condition I than in Condition III, because the damping ratio of the dominant poles (x10, 

x11 and x12) in Condition I is less than that in Condition III (x13 and x14). 

 

7.2.2 Trajectory I I  

Figure 7.5 shows Trajectory II. In this example, it is assumed that a “ runaway”  load 

with a negative torque of 6.94 Nm is applied to the rotary shaft. When the opening of the 

adjustable orifice is set to x20 (very small value), x21 (0.15), x22 (0.25), x23 (1.34), x24 

(1.47), x25 (1.5), x26 (2.4), x27 (3.33), x28 (3.44-), x29 (3.44+) and x2a (4), the operating 
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point moves along the trajectory shown in Figure 7.5. Points, x20, x21 and x22 are in the 

region of Condition II. x23 is a boundary operating point between Conditions II and I. 

Points, x24, x25, x26 and x27 are in the region of Condition I. x28 and x29 are boundary 

operating points between Conditions I and III. x2a is in the region of Condition III.  

Figure 7.6 shows the locus of the dominant poles. The calculation indicates that, 

when the system operates in the region of Condition I I , at least one pole with a 

positive real par t exists. Therefore, the system is theoretically unstable in the region 

of Condition I I . However, for  each pole with the positive real par t, one zero with a 

positive real par t always exists. These zeros have a value very close to the positive 

pole and hence can be considered as canceling out.  

 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0 2 4 6 8 10 12 

Pump pressure  Ps0 

C
on

tr
ol

 p
re

ss
ur

e 
 P

s0
 (

M
P

a)
 

θsp0 = 0 

x20 

Ps0 = Py0 

θsp0 = max 

x21 

x23 

x22 

x24 

x25 

x26 

x27 

x28 

x29 x30 

 
Figure 7.5 Operating point trajectory II of the LS system 



 151 

When the orifice opening is very small (x20 � x21), there are three dominant poles (a 

real pole and a pair of conjugate poles). The real pole and a real zero in the left half of s 

plane cancel (see Figure 7.6). The conjugate poles have a small damping ratio. The 

dominant conjugate poles are very close to the imaginary axis with their frequency 

component very close to ωL. As the orifice opening increases (from x21 to x22), the 

damping ratio of the dominant conjugate poles increases due to an increasing of the 

phase angle of the poles. However, the dominant real pole in this region (from x21 to x22) 

lies in the right half of s plane so that the LS system becomes unstable. At operating 

point x22, the dominant conjugate poles now become two negative real poles. As the 

orifice opening continues to increase (x23), the operating point enters the region of 

Condition I (Figure 7.7). The LS system becomes stable. At the operating point (x24), the 

two dominant poles become a pair of dominant conjugate poles (Figure 7.7). However, 

as the operating point shifts from x25 to x26, then a pair of non-dominant conjugate poles 

 

-20 

0 

20 

-20 0 20 
Real axis (1/sec) 

Im
ag

in
ar

y 
ax

is
 (

1/
se

c)
 

x 20 

x 20 

x 20 

x 21 

x 21 

x 21 x 22 

Dominant poles 
Dominant zeros 

x 22 

 
Figure 7.6 Dominant poles on trajectory II in the region of Condition II 



 152 

shifts to the right half of s plane (shown in Figure 7.8) and the LS system becomes 

unstable. When the operating point reaches x28, the pump is fully stroked. The operating 

condition of the LS system suddenly changes from Condition I (x28) to Condition III (x29) 

in Figure 7.7. In the region of Condition III, the poles no longer vary with increasing x 

(comparing x29 and x30 in Figures 7.7 and 7.8). The locus plot of dominant and non-

dominant poles indicates that on the trajectory the LS system experiences transitions 

from “unstable”  (x20, x21, x22, x23) to “stable”  (x24, x25, and x26) to “unstable”  (x26, x27 and 

x28) and then back to “stable”  (x29 and x30) operating regions. 
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7.2.3 Stability Presentation Based on Steady State Operating Points 

The purpose of this section is to calculate the absolute and relative stability of the LS 

system for different openings of the adjustable orifice, x, and for different load 

conditions, Tmf, and to present the results in terms of the system pressures, Ps0, Py0 and 

θsp0. 

Figure 7.9 shows the absolute stability perspective related to SSOP’s. In this stability 

analysis (Chapters 3 through 5), the load torque, Tmf, is allowed to vary from –33 Nm 

(runaway load) to 14 Nm and the orifice opening, xv, varies in the region of zero through 

4 “ turns” . The stable region is labeled with “O” and the unstable region is represented by 

“×” . 
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In the region of Condition I, when the pump pressure, Ps0, is large, the system 

becomes “ locally”  unstable (Note: the term “ locally”  implies small excursions from the 

operating point). The result is a consequence of the dynamics of the LS regulator spool, 

because the magnitude of the frequency component of the conjugate poles is very close 

to the undamped natural frequency of the LS regulator spool, ωr. The boundary between 

the unstable region and stable region may change depending on the parameters of the LS 

pump and the load. In the region of Condition II, the LS system is always unstable. In 

the region of Condition III, the LS system is always stable. 

Figure 7.10 illustrates the damping ratio of the dominant poles of the LS system in 

the normal operation condition (Condition I). It can be observed that the damping ratio is 

less than 0.1 in all normal operation regions and lies in the range (0.06 ~0.08). Hence ζ 

is approximately constant. 
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Figure 7.11 illustrates that the undamped natural frequency (i.e. the bandwidth) of the 

dominant poles of the LS system reduces as the opening of the adjustable orifice 

increases (hence the swash plate angle and the pump flow delivery increase). When the 

orifice opening is very small, the system bandwidth approaches the undamped natural 

frequency of the load, ωL. In this study, ωL was 18.6 rad/s. 

 
Figure 7.10 Damping ratio of the dominant poles of the LS system  

∆ζ = 0.06   �ζ = 0.07   �ζ = 0.08 



 156 

 

7.3 Effect of the pressure differential set, Pd 

As an important parameter of the LS system, Pd can affect both the steady state and 

dynamic performance of the LS system. From an energy saving of point view, Pd is 

desired to be as small as possible. However, Pd directly affects the steady state operating 

condition (see Equation (7.2)). The LS system with small Pd tends to enter the region of 

Condition II where the LS system is unstable. In addition, decreasing Pd results in a 

decrease of the bandwidth because the magnitudes of dominant poles become small. 

Figure 7.12 compares the root locus of the dominant poles of the LS system for Pd = 0.5 

MPa and 2.5 MPa under Condition I. 

 

 
Figure 7.11 The undamped natural frequency of the dominant poles of the LS 

system 

+  ωn = 7 ~ 9 rad/s     *   ωn = 9 ~ 11 rad/s 
•  ωn = 11 ~ 13 rad/s  ∆  ωn < 13 ~ 15 rad/s 
� ωn = 15 ~ 17 rad/s � ωn > 17 rad/s 
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7.4 Effect of the damping in the Load Sensing line, ωωωωLs 

It can be observed from Figure 7.4 that under normal conditions (Condition I) the 

dominant pole of the LS system is a pair of conjugate poles which are very close to the 

imaginary axis. Therefore, the damping of the LS system is very small (see Figure 7.10). 

A practical system would thus display a significant low frequency oscillation. In order to 

reduce this oscillation, one practical method is to increase the damping in the LS line 

(see Figure 5.3). The purpose of this section is to theoretically calculate the relative 

stability of the LS system when the damping in the LS line varies. The disadvantage of 

changing this parameter is also discussed. 
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Figure 7.13 shows comparisons of the theoretical frequency responses of the flow 

control TF (Equation (5.81)) as a function of different damping coefficients in the LS 

line. When the damping orifice in Figure 5.3 is fully opened, the damping in the LS line 

is minimum (ωLs = 500 rad/s in Figure 7.13). The magnitude of the flow control TF, 

( )
( )sX

sφ
, of the LS system has a significant resonant peak of about 20 dB at 9.5 rad/s. 

When the damping orifice is gradually closed, the resonant peak decreases. This 

illustrates the stabilization process on the LS system by increasing the magnitude of the 

damping in the LS pilot line. However, this improvement is associated with a side effect 

in that the bandwidth of the control system decreases. Figure 7.13 indicates that the 

bandwidth of the LS system is about 0.6 rad/s for ωLs = 1 rad/s. Consequently, the LS 

system transient response decreases. Figure 7.14 shows a comparison of the 

 
Figure 7.13 Comparison between different damping in the LS line 
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experimental magnitude frequency response for different openings of the damping valve. 

When the opening of the damping valve decreases from 1 turn to 1/4 turn, the damping 

ratio of the LS system increases from 0.2 to 0.5 but the bandwidth decreases from 5 

rad/s to 2 rad/s. 

In summary, the LS system can be stabilized via the damping orifice in the LS pilot 

line but it results in a decrease in the transient performance. 

7.5 Summary 

The result of the dynamic analysis of the LS system in this chapter can be 

summarized as follows: 

• When the system pressure setting, Pd, and the load, Tmf, satisfy Equation (7.2), the 

LS system always operates in Conditions I and III as the adjustable orifice is opened 

from zero to a large value. Otherwise, the operation of the LS system operates in 

Conditions II, I and III. When the runaway load, Tmf , is less than a critical value as 
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determined by Equation( 7.4), the LS system can only operate in Conditions II and 

III. 

• In the region of Condition I, the LS system is stable when the pump pressure, Ps, is 

small. When Ps is large, the LS system is “ locally”  unstable. A high frequency 

oscillation would be observable in the system pressures. In additions, a low 

frequency oscillation also occurs in all regions of Condition I, because the damping 

ratio of the dominant poles of the LS system is very small (<0.1) and hence the LS 

system has a poor relative stability. 

• In the region of Condition II, the LS system is unstable. 

• In the region of Condition III, the LS system is always stable. 

• Decreasing Pd can improve the efficiency of the LS system. But a small Pd tends to 

force the LS system to enter the region of Condition II where the LS system is 

unstable. Under Condition I, a small Pd also makes the dynamic response of the LS 

system slower. 

• The damping orifice in the LS line can be used to stabilize the system but the 

bandwidth of the LS system is compromised. 
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Chapter 8 Modeling of the Pressure Compensate Flow control Valve 

8.1 Background 

Chapters 2 through 7 have investigated the steady state and dynamic performance of 

a practical LS system with a critically lapped spool in the LS regulator. As illustrated in 

Chapter 7, a main problem in the LS system is the poor relative stability. In order to 

solve this problem, Krus [1988] suggested an increase in the damping in the LS line. 

Based on the theoretical results presented in Chapter 7, increasing damping in the LS 

line is not an ideal method, because the bandwidth is reduced. 

It can be noticed from the literature review in Chapter 1, that other methods have 

been suggested to stabilize the LS system such as, (1) replacing the simple adjustable 

orifice (See Figure 2.1) with a PC valve (LSPC system [Lantto, et al, 1990 and 1991; 

Pettersson, et al, 1996; Li, 1999]); (2) replacing the hydraulic LS line with an 

electrohydraulic LS line [Backe, 1993; Luomaranta,1999; Zhang, et al, 1999]. The 

second approach required additional control valves and hence introduced additional 

sources of inefficiencies. It was also found that improved stabilization using the 

electrohydraulic valve was not evident. The first method using a PC valve is simple and 

practical but a comprehensive analysis of the LSPC system has not been attempted. 

In this chapter, a comprehensive model and analysis of the PC valve is presented. A 

general non linear dynamic model of a typical PC valve and its linearized equations is 

developed. Chapter 9 develops the steady state model for solving for the SSOP of the PC 

valve. Chapter 10 experimentally verifies the steady state model developed in Chapter 9. 

Chapter 11 further develops the dynamic model of the PC valve and discusses the 

relationship between the dynamic performance and the design parameters of the PC 
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valve. Based on the knowledge of the LS system (Chapters 2 through 7) and the PC 

valve (Chapters 8 through 11), Chapters 12 and 13 present the steady state analysis and 

the dynamic analysis of the LSPC system respectively. 

8.2 Introduction 

As introduced in Chapter 1, the pressure compensated valve (PC system) is a flow 

control device which consists of a fixed or adjustable orifice and a compensator valve. 

The compensator valve modulates its opening in order to maintain a fixed pressure drop 

(Ps - Pm) across the fixed or adjustable orifice. 

There usually are two configurations for PC systems1: (a) hydrostat upstream and (b) 

hydrostat downstream as shown in Figure 8.1. Their purpose for flow control are same, 

that is, to maintain a constant pressure drop across the fixed orifice independent of 

changes in load pressure, thus flow is maintained constant and is independent of changes 

in the load pressure. The hydrostat upstream, configuration (a), has been studied by 

many researchers [Lantto, et al, 1990; Li 1999; Pettersson, et al, 1996; Zarotti and 

Nervegna 1988]. From a practical viewpoint, in this study, it was very difficult to install 

transducers to measure the spool displacement, xpc, and the intermediate pressure, Pm, 

for the hydrostat upstream due to the compact structure of these valves. However, PC 

systems with the hydrostat downstream can be fitted with appropriate transducers to 

measure xpc and Pm. Therefore, only the hydrostat downstream configuration is studied 

in this thesis. There is no loss in generality here because if the model can be verified 

with the hydrostat downstream then the approach can be applied to the case of the 

upstream hydrostat with some confidence. For the duration of this thesis, a hydrostat

                                                 
1 The term PC system is synonymous with PC valve in the literature. 
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downstream will be assumed. 

The PC system investigated in this study was a PC flow control valve manufactured 

by Brand Hydraulics Inc (model: EFC12-10-12). The PC system shown in Figure 8.2 

consists of the valve case, a hydrostat spool (automatically controlled) and an adjustable 

spool (manually or electrically). Its operation principle has been explained in Chapter 1 

and is not repeated here. It is noted that the PC flow control valve was designed with a 

by-pass port (5). In order to investigate the performance of this valve without by-pass 

flow (See Figure 8.1b), the by-pass port was capped. 

The state variables used to describe the dynamic behavior are the displacement, xpc, 

of the hydrostat spool, the pressure, Psh, in chamber (2) and the intermediate pressure, 

Pm (see Figure 8.2). The input variables include the upstream pressure, Ps, the 

downstream pressure, PL, and the opening , xv, of the adjustable orifice. 

This chapter presents the non-linear dynamic model of this particular PC system and 

the process used to linearize the nonlinear relationships. 

8.3 Non linear Dynamic Model of the Pressure Compensated system 

Figure 8.2 shows the sectional drawing and its equivalent schematic of the PC 

system. The control equations associated with the PC system include the flow, QLv, into 

the PC system through the fixed or adjustable orifice (1), the flow, QLpc, out of the PC 
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system through the hydrostat orifice (4), the dynamic equation of the hydrostat spool, the 

flow continuity equation of the chamber (2), and the flow continuity equation of the 

intermediate chamber between orifices (1 & 4). 

Preliminary studies have shown that the adjustable orifice is rectangular shape and 

the hydrostat orifice is crescent-type (such as Parker PC series and Brand FC series). 

Therefore, the flow equations of QLv and QLpc can be defined as [Merritt 1967] 

( )msvvdvLv PPxwCQ −=
ρ
2

       (8.1) 

( ) ( )LmpcpcdcLpc PPxACQ −=
ρ
2

       (8.2) 

 

PL 

Pm 

Ps 

Hydrostat spool  

Fixed orifice (1) 

Normally opened 
hydrostat orifice (4) 

xv 

xpc 

 

Inlet 

Outlet 

Apcs

Small 
hole(3) 

Ps 
PL xpc

xv

Ppc 

Pm 

Chamber(2) 
Psh 

x p
c=

0 

Manually adjustable spool 

Capped 
bypass 
port (5) 

L 

 
Figure 8.2 Sectional Drawing of the PC System 



 165 

where  
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  (8.3) 

It must be noted that flow discharge coefficients, Cdv and Cdc, of Equations (8.1) and 

(8.2) were not the same. Although the flow rates through both orifices were the same, 

the flow status (that is, turbulent or laminar flow conditions) was different due to 

different pressure drops and different cross-sectional areas for each orifice, especially 

when the flow rate was small. This gives rise to different Reynolds numbers for the 

same flow rate. 

Consider the dynamic equations of the PC system. The dynamic force balance across 

the hydrostat is considered first. 

( )( ) ( )( )( )mshpcpcsLpcLmpcpcffpcpcpcpc
pc

pc PPPAQLPPxAkxkxB
M

x −−+−−−−−= &&&& ρ1
 (8.4) 

where xpc is the opening of the hydrostat orifice (also the displacement of the hydrostat 

spool). Mpc is the spool mass. Bpc is the damping coefficient of the spool. kpc is the 

coefficient of the pre-compression spring. The third term in the bracket represents the 

steady state flow force which is proportional to the flow orifice sectional area and the 

pressure drop across the hydrostat orifice. The constant of proportionality is defined by 

the coefficient, kff. The fourth term stands for the transient flow force in which the 

damping length, L, is equal to the axial length between the hydrostat orifice (i.e. 

outgoing port) and centerline of the conduit (i.e. incoming port) shown in Figure 8.2. 

The fifth term is the force which relates to the pressures differential across the ends of 
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the hydrostat spool. It is further noted that Ppc is not a true “physical”  pressure but an 

equivalent pressure term caused by the pre-compression spring (
A

F
P = ).  Ppc controls 

the pressure drop across an adjustable or fixed orifice and is a design value which 

reflects the maximum pressure differential, Ps - Pm across the orifice. This will be 

discussed further in Chapter 10. 

The flow continuity equation of the right hand side chamber (2) of the spool is  

pcpcs
sh

shs
sh

sh xA
R

PP
P

V
&& +

−
=

β
       (8.5) 

where pcspcshsh AxVV −= 0 . Vsh represents the chamber volume in chamber (2) at the 

right hand side of the hydrostat spool which varies as the hydrostat spool moves. Vsh0 is 

the value of Vsh at xpc = 0. Psh is the pressure in chamber (2). Rsh represents the resistance 

of the short slot type orifice (small hole (3)). It is noted that, because Vsh is very small 

and β is very large, the term at the left side of Equation (8.5) can approximate to zero. 

Therefore, Equation (8.5) is further simplified as 

pcshpcsssh xRAPP &+=         (8.6) 

The flow continuity equation of the intermediate chamber between the adjustable 

orifice and the hydrostat orifice is 

pcpcsLpcLvm
pcm xAQQP

V
&& −−=

β
       (8.7) 

where pcspcpcmpcm AxVV += 0 . Vpcm represents the intermediate volume between the fixed 

orifice (1) and the hydrostat orifice (4) which varies as the hydrostat spool moves. Vpcm0 



 167 

is the value of Vpcm at xpc = 0. Pm is the intermediate pressure. Similarly, because Vpcm is 

very small and β is very large, the term at the left side of Equation (8.7) can approximate 

to zero. Therefore, Equation (8.7) can also be simplified as 

0=−− pcpcsLpcLv xAQQ &         (8.8) 

8.4 Linearization of the Non-linear Dynamic Model of the Pressure Compensated 

System 

Linearizing Equations (8.1) and (8.2) gives 

( )mscvvqvLv PPKxKQ ∆−∆+∆=∆        (8.9) 

( )LmcpcpcqpcLpc PPKxKQ ∆−∆+∆=∆       (8.10) 

where Kqv and Kqpc are flow gains of two orifices (1 & 4). Kcv and Kcpc are flow-pressure 

coefficients and are given by 

( )0

2
msvdvqv PPwCK −=

ρ
       (8.11) 

( )02 ms

vdv
cv

PP

xwC
K

−
=

ρ
        (8.12) 

( ) ( )
pc

pcpc
Lmdcqpc dx

xdA
PPCK ⋅−= 0

2

ρ
      (8.13) 

( )
( )Lm

pcpcdc

cpc
PP

xAC
K

−
=

02ρ
        (8.14) 

When the flow rate through the PC valve is small so that the flow status is laminar or 

in the transition from the laminar to turbulent, these parameters must be determined 

using models presented in Appendix D. 
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Linearizing Equation (8.4) gives 

( )
( )( ) ( ) ( )mshpcsLmcpcLmpcpcff

pc
*
pcpcqpcpcpcpc

PPAPPLKPPxAk

xkxLKBxM

∆∆∆∆ρ∆∆

∆∆ρ∆

−−−−−−=

+++
&&

&&&

0

  (8.15) 

where 
( )( )Lm

pc

pcpc
ffpcpc PP

dx

xdA
kkk −+= 0

0*       (8.16) 

The term, ( )Lmcpc PPLK && ∆∆ρ − , is usually neglected because there is little direct 

evidence to indicate that the pressure rate term contributes substantially to the valve 

dynamics [Merritt, 1967]. Linearizing Equation (8.5) gives 

pcshpcsssh xRAPP &∆+∆=∆         (8.17) 

Substituting Equation (8.17) into Equation (8.15) and neglecting ( )Lmcpc PPLK && ∆∆ρ −
 

give 

( )( )
( ) Lpcpcffspcs

mpcpcffpcspcpcpcpcpcpc

PxAkPA

PxAkAxkxBxM

∆+∆−=

∆−−∆+∆+∆

0

0
**

&&&

    (8.18) 

where shpcsqpcpc
*
pc RALKBB 2++= ρ        (8.19) 

Equations (8.18) and (8.19) indicate that the hydraulic resistance, Rsh, associated with 

the small hole (3) in Figure 8.2 can be used to increase the damping coefficient of the 

hydrostat spool. 

Linearizing Equation (8.8) gives 

0=∆−∆−∆ pcpcsLpcLv xAQQ &        (8.20) 

Substituting Equations (8.9) and (8.10) and then rearranging Equation (8.20) yields 

( ) Lcpcscvvqvmcpccvpcpcspcqpc PKPKxKPKKxAxK ∆+∆+∆=∆++∆+∆ &   (8.21) 

Equations (8.10), (8.19) and (8.21) will be used to develop the TF of the PC system in 

Chapter11. 
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8.5 Summary 

This chapter introduced two different configurations of PC systems (i.e. hydrostat 

upstream and hydrostat downstream configurations). The non-linear dynamic models of 

the PC system with hydrostat downstream were presented. These equations will be used 

to develop the SSOP model of the PC system in Chapter 9. Finally, these models are 

linearized and will be used to develop the TF of the PC system (Chapter 10). 
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Chapter 9 Steady State Analysis of the Pressure Compensated System 

It is necessary to know the steady state operating point (SSOP) before the linearized 

models in Section 8.3 in Chapter 8 can be used to develop the transfer functions (TF) of 

the PC system. This chapter provides a set of non-linear algebraic equations and the 

procedure of solving for SSOP (xpc0 and Pm0). 

9.1 Steady State Model of the PC System 

Under steady state conditions, the derivatives of all variables in Equations (8.4), (8.6) 

and (8.8) are zero. A subscript “0”  is added to all variables (except for xv, Ps and PL 

because they are input variables for particular study of the PC system) of all non-linear 

equations to present the SSOP. In this situation, Ps is equal to Psh0 from Equation (8.6) 

and QLv0 is equal to QLpc0 from Equation (8.8). Equating the right hand sides of 

Equations (8.1) and (8.2), and expressing Pm as a function of the variables Ps and PL, 

give 

( )
( )pcpcvv

Lpcpcsvv
m

xAxw

PxAPxw
P

2222

2222

+
+

=
η

η
       (9.1) 

where η  is defined as 
dc

dv

C

C
=η . Equation (9.1) indicates that the pressure, Pm, is a linear 

combination of pump pressure, Ps, and load pressure, PL, with coefficients proportional 

to the ratio of the square of the orifice areas. 

Substituting Pm into Equations (8.1) and (8.2), QLv can be expressed in terms of Ps 

and PL as 

( )
( ) ( )Ls

vvpcpc

pcpcvvdv
LpcLv PP

xwxA

xAxwC
QQ −

+
==

ρη
2

2222
    (9.2)  

The steady state algebraic equation of Equation (8.4) is 
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( )( ) ( )( ) 0=−−−−− Lmpcpcffpcpcmspcpcs PPxAkxkPPPA     (9.3) 

It is noted that the transient flow force does not affect the steady state operating point 

because the transient flow force is proportional to the acceleration of the fluid elements, 

i.e. the derivation of the flow rate. At steady state, the flow rate can be considered as 

constant. Therefore, no term associated with the transient flow force exists in Equation 

(9.3).  

Substituting Equation (9.1) into Equation (9.3) gives 
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Equation (9.4) can be rewritten to give the pressure differential, Ps - PL, as a function 

of the hydrostat spool displacement pcx , that is, 

( )pcpc
pcs

pc
pcLs xx

A

k
PPP 2λ





−=−        (9.5) 

where ( ) ( )( )
( ) ( ) pcspcpcvvpcpcff
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Equation (9.6) can be further simplified. Assume that 
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Usually, the hydrostat spool sectional area, Apcs, is much larger than the flow area of 

two orifices, wvxv and Apc. Thus, 

( ) ( ) ≈+ pcspcpcvvpcpcff AxAxwxAk 2222η  ( ) ( ) ( ) pcspcpcpcs
pcpc

vv
pcpc AxAA

xA

xw
xA 2

22
2 5.0
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


+ . 

Equation (9.6) can be approximated by 
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( ) ( )pcpc

vv
pc xA

xw
x

2

222

2 1
ηλ +=         (9.7) 

The method of solving Equation (9.5) for xpc0 will be discussed in Section 9.3. 

Substituting the solved xpc into Equation (9.1) generates the intermediate pressure Pm. 

It is necessary to discuss all possible operating conditions of the PC system shown in 

Figure 8.2 before introducing the procedure for solving Equation (9.5). This is because 

the solution of Equation (9.5) could be invalid under certain conditions, such as that 

associated with mechanical limitations. 

9.2 Operating Conditions of the Pressure Compensated system 

In order to find different operating conditions of the PC system, it is necessary to 

examine several scenarios of the operation of the PC system as a function of different 

upstream pressures, Ps, in Figure 9.1. The PC valve in Figure 9.1 represents the PC 

system shown in Figure 8.2. 
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Figure 9.1 Investigation of the Operating Conditions of the PC system 

If the deadhead pressure of the pump is set to be small (See Figure 9.1) and hence the 

upstream pressure, Ps, is small, the hydrostat spool does not move until the product of 

the pressure differential, Ps – Pm, and the hydrostat spool sectional area, Apcs, is larger 

than the pre-compression force of the hydrostat spring (See Figure 8.2). In other words, 
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a critical value of the pressure drop across the PC system, Ps – PL, must exist for a 

designed PC system. When the pressure drop, Ps – PL, is larger than this critical value, 

the hydrostat spool is not limited. This condition is defined as Condition A. If the 

hydrostat is limited due to mechanical constraints, then this is defined as Condition B. 

Under Condition B, the PC system essentially becomes a cascade of two fixed orifices.  

The critical value, δPpcc, of the PC system pressure drop can be determined by 

( )max2max pcpc
pcs

pc
pcLspcc xx

A

k
PPPP λδ 





−=−=      (9.8) 

where xpcmax is the maximum displacement of the hydrostat spool due to mechanical 

limitations. It is noted that because λ2(xpcmax) relates to xv, the critical value, δPpcc is a 

function of xv, that is, δPpcc(xv).Therefore, the non-linear algebraic Equation (9.5) about 

the operating point xpc0 is expressed as 

( ) ( ) ( )

( ) ( )
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xPPPxx
A

k
PPP

δ

δλ
 (9.9) 

Equations (9.8) and (9.9) are used to define the operating status of the valve and to 

solve for the operating point, xpc. 

9.3 Numerical Procedure to Determine xpc0 

Figure 9.2 shows the procedure of solving for the operating point, xpc0. With reference 

to this figure, the critical value is calculated (1). When the pressure drop across the PC 

system is not larger than the critical value (2), the hydrostat spool has a maximum 

displacement due to the spring pre-compression (3). When the pressure drop across the 

PC system is large enough to overcome the spring pre-compression, the PC system is at 

Condition A. It is necessary to use iteration for solving for xpc0 because Equation (9.9) is 
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an implicit non-linear algebraic equation (see the dashed line box in Figure 9.2). The 

flow chart of the iteration is similar to that shown in Figure 3.3. 
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Figure 9.2 Procedure of Solving for Operating Points 
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Chapter 10 Experimental Verification of the Steady State Operating 

Points of the Pressure Compensated System 

As explained in previous chapters, knowledge of the steady state operating point 

(SSOP) of a non-linear system is essential when using the linearization approach to 

determine stability boundaries.  A pressure compensated (PC) flow control valve is a 

simple pressure feedback (or load sensing) system. It has three state variables; the 

hydrostat spool displacement, xpc, the intermediate pressure, Pm, and the pressure, Psh 

(See Chamber (2) in Figure 10.1). Therefore, their SSOP’s must be determined using the 

non-linear equations presented in Chapter 8. From Chapter 9, the SSOP of the pressure, 

Psh, is equal to the upstream pressure, Ps. But the hydrostat spool displacement operating 

point, xpc0, and the intermediate pressure operating point, Pm0, must be determined by 

Equations (9.8) and (9.1). The objective of this chapter, then, is to experimentally verify 

the solution of Equation (9.8). 

In order to solve for the SSOP of the PC system from Equation (9.8), the parameters 

Ppc, kpc, Apcs, kff, Cdc and Cdv must be known.  The SSOP, xpc0, of the hydrostat spool 

displacement can be uniquely determined as a function of the pressure drop across the 

PC system, Ps – PL, and the cross-sectional area of fixed rectangular orifice, Av.  

Measurement or estimation of these parameters is now considered. 
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10.1 Parameters of Pressure Compensated System 

The PC system investigated in this study was manufactured by Brand Hydraulics Inc 

(model: EFC12-10-12). To assist in describing how the remaining parameters are 

estimated, Figure 10.1 shows a cross sectional drawing of the PC system with installed 

transducers. A displacement transducer (Eddy current Proximator) was embedded into 

the end cap at the right hand side of the hydrostat spool. A pressure transducer was 

installed between the two orifices (orifices (1) and (4)). The fluid enters the system from 

the inlet and through orifice (1).  The pressured fluid Ps is also fed to the chamber (2) via 

a small hole (3) at the end of spool. The fluid downstream of the fixed orifice (1) is at 

pressure Pm. Flow from the fixed orifice (1) must then pass through the hydrostat orifice 

(4). The area of the hydrostat orifice, Apc(xpc) (i.e. a function of the spool displacement, 
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Figure 10.1 Sectional Drawing of the PC System 



 177 

xpc) can be determined from the force balance equation between the hydraulic force, 

( )mspcs PPA − , the spring pre-compression, pcF , the spring force, pcpc xk  and the steady 

state flow force, ( )( )Lmpcpcff PPxAk −  (see Equation 8.4). It should be noted that orifice 

(1) is rectangular in shape and the hydrostat orifice (4) is round (to be precise, four 

crescent shaped orifices). 

Measured and calculated parameters (those obtained indirectly from other known 

measurements are marked with a “ *” ) are listed in Table 10.1. The spring coefficient, kpc, 

and the spool cross-sectional area, Apcs, can be directly measured. The spring pre-

compression, Fpc, was calculated from the product of the spring coefficient, kpc, and the 

initial deformation (15.63 mm) of the balance spring. In the initial condition, the 

hydrostat spool makes contact with the washer. Thus, the spool initial displacement, xpci, 

is equal to the maximum, xpcmax. 

Table 10.1 Parameter of the PC System 

Fixed rectangular orifice width wv 49.83 mm 

Spool diameter Dpcs 23.55 mm 

Number of circular orifices Npc 4  

Diameter of circular orifice Dpc 7.2 mm 

Spring constant kpc 9.1 N/mm 

Maximum opening of orifice xpcmax 2.62 mm 

Pre-compression*  Fpc 142.3 N 

Pressure setting of the PC system* Ppc 0.38 MPa 

Coefficient related to steady state force* kff 0.7Cdc  
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10.1.1 Pressure Differential Setting, Ppc, for Pressure Compensated System 

As was the case for Pd for the LS system, Ppc is not a true physical pressure but 

equivalent pressure term. In order to understand its physical meaning for the PC system 

shown in Figure 10.1, consider Equation (9.3). Because xpc is defined such that when the 

spool displacement, xpc, equals 0, the hydrostat orifice area, Apc, is also zero, the value of 

Ppc is equal to the external pressure differential (Ps – Pm) on the hydrostat spool of the 

PC system which forces the hydrostat orifice to close (xpc = 0) (see Figure 10.1). 

The initial displacement of the hydrostat spool is so designed that the hydrostat 

orifice is normally fully open (that is, xpci = xpcmax).  The spring force, Fsp, under steady 

state condition can be expressed as 

( )pcpcpcpcsp xxkFF −+= max        (10.1) 

where Fpc is the pre-compression of the spool spring at the initial displacement. xpcmax is 

the maximum opening of the hydrostat orifice (also the initial displacement of the 

hydrostat spool). kpc is the spring coefficient of the hydrostat spool spring.  xpc is the 

displacement of the hydrostat spool whose sign is defined as positive in the same 

direction of the spring force exerted on the spool. When xpc is equal to xpcmax, the spring 

force is equal to the pre-compression, Fpc.  When xpc is forced to zero by an external 

force, the external force will balance the spring force which value can be determined by 

Equation (10.1) 

maxpcpcpcspext xkFFF +==        (10.2) 

During normal PC system operation, the external force on the spool is the sum of the 

steady state flow force and the product of the pressure differential across the spool ends 

and the sectional area of the spool. When xpc is forced to zero, the steady state flow force 
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becomes zero. Therefore, the external force can be expressed as the product of an 

equivalent pressure differential and the spool sectional area, that is 

( )mspcsext PPAF −=         (10.3) 

The pressure differential ( )ms PP −  under the condition xpc = 0 (i.e. the pressure setting 

Ppc based on the definition) can thus be determined by combining Equation (10.2) and 

Equation (10.3) as 

( )
pcs

def_springpc

pcs

maxpcpcpc

xmspc A

xk

A

xkF
PPP

pc
=

+
=−=

=0

∆
    (10.4) 

The derived parameter, Ppc, is calculated to be 0.38 MPa using the parameters in Table 

10.1. The pressure differential, (Ps - Pm), across the fixed orifice is ideally constant (Ppc); 

however, (Ps - Pm) decreases as the fixed orifice opening increases.  (Ps - Pm) is, thus, 

always slightly less than Ppc. xspring_def represents the deformation (from free length) of 

the spring at xpc = 0. 

10.1.2 Determining the coefficient kff  

As will be shown, the parameter kff in Equation (8.4) is a coefficient associated with 

steady state flow force. The steady state flow force exerted on the hydrostat spool cannot 

be neglected in this case. Simulation studies indicated that the steady state flow force 

was substantial when compared to the spring force on the spool. Mathematically, the 

steady state flow force on a spool is proportional to the discharge coefficient of the 

hydrostat orifice [Merritt, 1967] and is given by 

( )( )Lmpcpcvdcff PPxACCF −= θcos2       (10.5) 

where Cv = 0.98. θ = 69o. In Equation (8.4), the steady sate flow force, however, is 

represented by ( )( )Lmpcpcff PPxAk − . Thus, the coefficient, kff, can be expressed by 
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dcvdcff CCCk 7.0cos2 == θ        (10.6) 

Therefore, kff becomes known if Cdc is determined. 

All parameters, except the two discharge coefficients, Cdv and Cdc, are known or can 

be calculated. Determining these two coefficients, however, is a non-trivial process.  

Thus, a detailed discussion on the methodology used to determine these parameters is 

now considered. 

10.2 Determination of the Discharge Coefficients 

Methods of measuring and modeling the discharge coefficient of orifices in Appendix 

C were applied to both the fixed orifice (1) (rectangular shaped) and the hydrostat orifice 

(4) (crescent type) in the PC system. When changing the operating conditions of the PC 

system by adjusting sLv Px ∆,  and T, variables Qpc, Ps, Pm, PL, and xpc would change. Cdv, 

Cdc, Rev and Rec can be calculated using Equations (C16) and (C17) provided in 

Appendix C (Note, the subscript “ v”  represents the fixed orifice and the subscript “ c”  

represents the hydrostat orifice). 

10.2.1 Discharge Coefficient of the Fixed orifice (1) (Rectangular Type) 

Figure 10.2 shows the experimental results for the fixed orifice (1) of the PC system. 

The experimental data demonstrates a slightly higher discharge coefficient than what has 

been generally accepted as a value for rectangular orifice (Cd = 0.61, Merritt, 1967) but 

generally behaves as expected. An analytical approximation to Cdv as a function of 

vRe  was obtained using a statistical curve fit of the form 





− ∞
−

∞

v
dC

d eC
Re

1
δ

. ∞dC is 

the discharge coefficient when the flow becomes fully turbulent. δ represents the 
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laminar flow coefficient because, when vRe is less than 
δ

∞dC
, this formula can be 

further approximated by its 1st Taylor expansion vReδ  which has the same form as 

Merrit (1967) used.  For this situation, 63.0=∞dC  and 17.0=δ , that is, 

( )veCdv
Re27.0163.0 −−=         (10.7) 

10.2.2 Discharge Coefficient of the Hydrostat Orifice (4) (Crescent Shaped) 

Figure 10.3 shows the experimental result of the discharge coefficient of the 

hydrostat orifice (4) in the PC system. This curve indicates that there is considerable 

scatter in the results in the region of transition. Only when the Reynolds number is larger 

than 1000 ( 31Re = ), does the discharge coefficient begins to converge. Thus, a 

correlation equation of the form of Equation (10.7) is unacceptable. 

In order to identify the source of the “ too much scatter”  problem in Figure 10.3, the 

flow through the hydrostat orifice (4) at a very small opening, xpc, is considered, because 
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Figure 10.2 Discharge Coefficient of the Fixed Orifice (1) of the PC 

System 
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small Reynolds numbers occur when the opening of the crescent orifice is small. Figure 

10.4 shows the geometry of the hydrostat orifice (4) for a very small opening. The 

experimental PC system has four crescent orifices along the perimeter of the hydrostat 

spool. The flow through each orifice consists of two components: the orifice flow, Q1, 

and the leakage, Q2.  When the opening of these orifices, xpc, is very small, the leakage, 

Q2, becomes significant relative to the orifice flow, Q1 (Figure 10.4). Under these 

circumstances, calculating Reynolds number, Rec, and discharge coefficient, Cdc, using 

the overall measured flow rate (Q = Q1 + Q2) and flow cross sectional area of the 

crescent type orifice, in fact, is unreasonable.  Theoretically, Rec and Cdc should be 

calculated by Q1 instead of overall flow rate (Q1 + Q2). Ruan, et al, [2002] developed a 

leakage model of Q2. However, it is impossible to separate Q1 and Q2 from the measured 

value of Q. It is noted that Equations (10.6) and (10.7) cannot be used for a crescent 

orifice, because the leakage, Q2, at xpc = 0 is different from that at xpc ≠ 0. In this case, a 
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Figure 10.3 Discharge Coefficient of the Hydrostat Orifice (4) of the 

PC System 
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possible method to determine Cdc is to modify Rec to reflect a dependency on fluid 

temperature, orifice opening and the pressure drop across the crescent orifices. 

The modification coefficient, ε, is empirically selected as  

n

mL

mL

m

P

P

T

T







=

∆
∆ε 00         (10.8) 

such that ( )T

DA
Q

h
pc

pc

c µ

ερ 



=Re        (10.9) 

where coefficient m is equal to 2 and n is a function of xpc as 
0pc

pc

x

x
n = . T0 is room 

temperature (23°C) for this experiment. ∆PmL0 is a specific value (here 2 MPa). xpc0 is 1 

mm. 

Applying this new modification to the Re calculated from the experimental data 

yields the plot of Figure 10.5. Also shown is the corresponding Cdc as a function of Rec 

(See Appendix C). It is quite apparent that this modification reduces the scatter 

significantly. 

   

xpc 

Q1 Q2 

Q1 

Q2 

Piston 

Sleeve 
 

Figure 10.4 Geometry of Orifice (4) on Perimeter of the Hydrostat Spool  
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10.3 Comparison of Experimental and Theoretical Results of the Steady State 

Operating Points 

A set of experiments was conducted to measure the displacement, xpc, of the 

hydrostat spool as a function of xv, Ps and PL. The input conditions of each experiment 

(i.e. xv, Ps, and PL) are considered as the input to the nonlinear Equation (3.35) to predict 

the displacement, xpc, of the hydrostat spool. The predicted and experimental results of 

xpc are compared in Figures 10.6 through 10.9. 

Figure 10.6 shows the comparison between the experimental and predicted results of 

xpc as a function of xv under the condition of a constant pressure drop of 1.6 MPa across 

the PC system. The region between the dashed lines contains all of the measured values 

for the hydrostat orifice opening, xpc. The region between solid lines represents all of the 

predicted results of xpc, which vary mainly due to changes in oil temperature (viscosity). 

When the opening of the fixed orifice, xv, is small, the measured and predicted results 
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Figure 10.5 Discharge coefficient of the hydrostat orifice (4) of the PC 

system as a function of the modified Reynolds number 
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are almost identical. As the opening, xv, increases, the measured value is gradually larger 

than the predicted results. 

Figures 10.7 through 10.9 are comparisons between the experimental and predicted 

results of xpc as a function of xv under conditions of different pressure drops across the 

PC system, Ps - PL. The agreement between predicted and measured results is generally 

very good. The higher the pressure drop, the more accurate predictions occur. 

10.4 Summary 

The PC system has a fixed orifice and a hydrostat located orifice. The fixed orifice is 

used to manually, or electronically, adjust the flow rate of the PC system. The hydrostat 

orifice is automatically controlled by the pressure drop across the fixed orifice. Because 

the opening of the hydrostat orifice (i.e. the displacement of the hydrostat spool) directly 

affects the dynamic and steady state behavior of the flow, it is necessary to study the 

SSOP of the opening of the hydrostat orifice. 
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Figure 10.6 Comparison of the Experimental and Theoretical Results 

of the Hydrostat Orifice Opening, xpc (∆PsL = 1.6 MPa) 
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Figure 10.7 Comparison of the Experimental and Theoretical Results 

of the Hydrostat Orifice Opening, xpc (∆PsL = 2.2 MPa) 
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Figure 10.8 Comparison of the Experimental and Theoretical Results 

of the Hydrostat Orifice Opening, xpc (∆PsL = 2.9 MPa) 
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This study establishes a nonlinear equation to solve the SSOP of the opening of the 

hydrostat orifice, xpc. This nonlinear equation involves the discharge coefficients of two 

different types of orifices. For the fixed rectangular-type orifice, the discharge 

coefficient, Cdv, is indirectly measured and fitted as an exponential function of the 

square root of Reynolds number. For the hydrostat crescent-shaped orifice, however, the 

discharge coefficient, Cdc, has to be presented as a function of a modified Reynolds 

number due to significant leakage at small orifice openings. The discharge coefficient, 

Cdc, is also fitted as an exponential function of the square root of the modified Reynolds 

number. 
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Figure 10.9 Comparison of the Experimental and Theoretical Results 

of the Hydrostat Orifice Opening, xpc (∆PsL = 3.5 MPa) 
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Chapter  11 Dynamic Analysis of the Pressure Compensated System 

The objective of this chapter is to develop the frequency response model of the PC 

system with the downstream hydrostat configuration. Similar to the methods used in 

Chapter 5, the linearization equations given in Chapter 9 are used to develop the 

appropriate transfer functions. 

11.1 Dynamic Model of the Pressure Compensated System 

This section develops the frequency response model of the PC system based on the 

linearized dynamic model in time domain. Condition A and B are considered separately. 

11.1.1 Condition A (Normal condition) 

Equation (8.4) represents the dynamic model of the hydrostat spool. Because the 

pressure setting, Ppc, is neither a state variable nor an input variable, Ppc is absent in the 

linearized equation of Equation (8.18). Ppc affects the dynamic behavior of the PC 

system only through the SSOP. The dynamic Equation (8.18) is repeated (Again, note: 

“∆”  used for linearization is dropped) 

( )( )
( ) Lpcpcffspcs

mpcpcffpcspcpcpcpcpcpc

PxAkPA

PxAkAxkxBxM

0

0
**

+−=

−−++
���

    (11.1) 

Taking the Laplace transform of Equation (11.1) gives 

( ) ( ) ( ) ( ) ( ) ( )sPxAksPAsPAsXsA Lpcpcffspcsmpc 01211 +−=+     (11.2) 

where ( ) **2
11 pcpcpc ksBsMsA ++=        (11.3) 

 ( ) pcspcpcff AxAkA −= 012        (11.4) 

Equation (8.21) is rewritten as (Note: “∆”  is dropped) 

( ) Lcpcscvvqvmcpccvpcpcspcqpc PKPKxKPKKxAxK ++=+++
�

   (11.5) 

Taking the Laplace transform of Equation (11.5) gives 
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( ) ( ) ( ) ( ) ( ) ( )sPKsPKsXKsPAsXsA Lcpcscvvqvmpc ++=+ 2221    (11.6) 

where ( ) sAKsA pcsqpc +=21         (11.7) 

cpccv KKA +=22          (11.8) 

Taking the Laplace transform of Equation (8.10) gives the load flow rate through the 

hydrostat orifice as 

( ) ( ) ( ) ( )( )sPsPKsXKsQ LmcpcpcqpcLpc −+=      (11.9) 

Solving Equation sets (11.2) and (11.6) for state variables Xpc(s) and Pm(s), and then 

substituting them into Equation (11.9) yields the flow rate, QLpc(s), as a function of three 

input variables, Xpc(s), Ps(s) and PL(s). Appendix K presents the derivation of this 

function and is shown to be 

( ) ( ) ( ) ( ) ( ) ( )( )sPsPsGsXsGsQ LspsLvxvLpc −+=
              (11.10)

 

where 

( )
01

2
01

2

asas

bsbs
KsG xvxv

xvxv ++
++

=       
          

(11.11) 

( )
01

2

01
2

asas

bsbs
KsG psLpsL

psLpsL ++
++

=       
          

(11.12) 

The dynamic model of the PC system (Equation (11.10)) and the linarized equation 

for a simple orifices (Equation (5.45)) have a similar form. That is, 

( ) ( ) ( ) ( )( )sPsPKsXKsQ Lscq −+=  for an orifice and 

( ) ( ) ( ) ( ) ( ) ( )( )sPsPsGsXsGsQ LspsLvxvLpc −+=
 
for the dynamic model. Therefore, Gxv(s) 

can be considered as the “ flow gain transfer function”  (TF) which is equivalent to its 

counterpart, Kq, and GpsL(s) as the “ flow-pressure coefficient transfer function”  (TF) 

equivalent to its counterpart, Kc. In order to accomplish flow control through an 
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appropriate change in the area of the adjustable orifice, Xv(s), GpsL(s) should be as small 

as possible (zero at best). Thus it is most important to investigate the relationship 

between GpsL(s) and parameters of the PC system with an aim to minimize the effect on 

QLpc through optimal design of the PC system. 

The gains and coefficients of Equations (11.11) and (11.12) are derived in Appendix 

K and are listed as 

cpvcv

cpcqv
xv KK

KK
K

+
=         

          
(11.13) 

cpvcv

cpccv
psL KK

KK
K

+
=         

          
(11.14) 

( )( )
( )cpccvpc

pcpcffpcspcs

pc

pc

KKM

xAkAA

M

B
a

+
−

+= 0
*

1
     

          
(11.15) 

( )( )
( )cpccvpc

pcpcffpcsqpc

pc

pc

KKM

xAkAK

M

k
a

+
−

+= 0
*

0
     

          
(11.16) 

pc

pc

xv M

B
b

*

1 =          
          

(11.17) 

( )( )
cpcpc

pcpcffpcsqpc

pc

pc

xv KM

xAkAK

M

k
b

0
*

0

−
+=      

          
(11.18) 

cvpc

pcs

pc

pc

psL KM

A

M

B
b

2*

1 +=        
          

(11.19) 

( )
cpcpc

pcpcffqpc

pc

pc

psL KM

xAkK

M

k
b

0
*

0 −=       
          

(11.20) 

Equations (11.13) through (11.20) include six coefficients given in Chapter 8. They 

are repeated here for completeness. 

shpcsqpcpc
*
pc RALKBB 2++= ρ       

          
(11.21) 



 191 

( )Lmpcffpcpc PPwkkk −+= 0
*      

               
(11.22) 

( )0

2
msvdvqv PPwCK −=

ρ
      

          
(11.23) 

( )02 ms

vdv
cv

PP

xwC
K

−
=

ρ
       

          
(11.24) 

( )Lmpcdcqpc PPwCK −= 0

2

ρ
     

                    
(11.25) 

( )
( )Lm

pcpcdc

cpc
PP

xAC
K

−
=

02ρ
       

          
(11.26) 

where pcw  represents the equivalent width of the hydrostat orifice,
( )
pc

pcpc

dx

xdA 0 . 

Equations (11.15) through (11.20) can be expressed into simpler form by substituting 

Equations (11.21) through (11.26) into Equations (11.13) through (11.20). In the 

following process, it is assumed that ( )0pcpcpcs xAA >>  (i.e. the spool cross sectional 

area, Apcs, is much larger than the hydrostat orifice area, Apc(xpc0)) and 1<ffk (reference 

to Equation (10.6) ). With these conditions, Equations (11.15) through (11.20) become 

�
�

�

�
�
�
�

�
���

�
���

�

+
+++=

cpccv
shpcsqpcpc

pc KK
RALKB

M
a

11 2
1 ρ    

                
(11.27) 
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vpcpc
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pc
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pc

PP

PP
AxA

PPAw
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(11.28) 

pc

shpcsqpcpc
xv M

RALKB
b

2

1

++
=

ρ
     

                  
(11.29) 
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( )
( ) ���

����
�

−
+=

0

0
0

21

pcpc

Lmpcspc
pc

pc
xv xA

PPAw
k

M
b    

                  
(11.30) 

���
�		
� ���
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� +++=
cv

shpcsqpcpc
pc

psL K
RALKB

M
b

11 2
1 ρ    

                  
(11.31) 

( )( )Lmpcffpc
pc

psL PPwkk
M

b −−= 00

1     
                 

(11.32) 

In order to use Equation (11.10) in subsequenct analysis and design of the PC system, 

it is necessary to determine Rsh in Equation (11.27). Rsh represents the hydraulic 

resistance in the damping hole (3) in Figure 8.2. The damping hole can be considered a 

short tube orifice. Because the flow rate through the damping hole is small, the flow 

must be laminar. Merritt [1967] gave a discharge coefficient for a short tube orifice at 

laminar flow conditions to be 

damp

damp
d L

ReD
C

8

1=         (11.33) 

where Ddamp is the diameter of the small hole, Ldamp is the length of the small hole, and 

Re is the Reynolds numbers and is defined 

dampD

Q
Re

πµ
ρ4=         (11.34) 

Substituting Equation (11.34) into Equation (11.33), and then substituting Cd into the 

general orifice flow equation yields 

P
L

D
Q

damp

damp ∆
µ

π
128

4

=         (11.35) 

Therefore, the hydraulic resistance, Rsh, is derived as a reciprocal of the coefficient in 

Equation (11.35), that is, 
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π
µ
4

128

damp

damp
sh D

L
R =         (11.36) 

11.1.2 Condition B (Hydrostat or ifice fully opened) 

Under Condition B, the hydrostat orifice of the PC system is fully opened. The PC 

system becomes essentially two cascade fixed orifices in series. In order to obtain the 

equivalent flow gain and flow pressure coefficient of the cascaded orifices, Equations 

(8.9) and (8.10) must be considered (Noted: the “∆”  due to linearization is dropped). For 

Condition B, xpc = xpcmax and QLv = QLpc = QL. Therefore, 

( )mscvvqvL PPKxKQ −+=       (11.37) 

( )LmcpcL PPKQ −=        (11.38) 

Eliminating Pm from Equations (11.37) and (11.38) gives 

( )Ls
cpccv

cpccv
v

cpccv

cpcqv
L PP

KK

KK
x

KK

KK
Q −

+
+

+
=     (11.39) 

Based on Equation (11.39), the equivalent flow gain and flow pressure coefficient 

for the cascaded orifices are defined as 

cpccv

cpcqv
q KK

KK
K

+
=*         (11.40) 

cpccv

cpccv
c KK

KK
K

+
=*         (11.41) 

11.2 Theoretical Prediction of the Frequency Response of the Brand PC Valve  

This section uses the model form of Equation (11.10) to predict the frequency 

response of the Brand PC flow control valve. The essential parameters of the PC system 
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must be measured or indirectly calculated. For various conditions, the Bode diagram of 

Gxv(s) and GpsL(s) are presented. 

11.2.1 Parameters 

Table 11.1 gives all essential parameters for plotting the Bode diagrams based on 

Equations (11.11) and (11.12). Parameters with a “* ”  have been evaluated directly or 

developed in earlier sections. 

Table 11.1 Parameters of a Typical PC System 

 Parameters Expression Value Unit 
Fluid  Fluid density ρ 898 Kgm-3 

characteristics Fluid temperature T             * 35 °C 
and 
parameters 

Discharge coefficient of fixed 
orifice 

Cdv               
* 0.63  

 
Discharge coefficient of hydrostat 
orifice 

Cdc               
* 0.65  

Geometry  Spool diameter Dpcs 23.55×10-3 m 

parameters 
Width of fixed orifice (rectangular 
type (1)) 

wv 49.83×10-3 m 

 
Equivalent width of hydrostat 
orifice (crescent type (4)) 

wpc              
* 20.8×10-3 m 

 
Maximum displacement of the 
spool 

xpcmax 2.62×10-3 m 

 Diameter of the damping hole Ddamp 1×10-3 m 
 Length of the damping hole Ldamp 1×10-3 m 

 
The axial length between 
hydrostat orifice and the center of 
conduit 

L 1×10-2 m 

Dynamic  Spool mass Mpc 0.14 kg 
parameters Spool damping coefficient Bpc            10 Nsm-1 

 Pre-compressed spring coefficient kpc 9.1×103 Nm-1 

 Spring pre-compression Fpc 142.3 N 

 

Fluid temperature, T, is used to determine the dynamic viscosity, µ, required by 

Equation (11.36). For the fluid in this study, the fluid’s viscosity (model: NUTO 68) can 

be expressed as 
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16.2182.0 −= Tρµ          (11.42) 

Two discharge coefficients, Cdv and Cdc, given in Table 11.1 actually represent Cdv∞ 

and Cdc∞ obtained by the experiment in Chapter 10. The discharge coefficients can 

usually be considered as constant because the flow rate is relatively large and hence the 

flow is turbulent. Only when the adjustable orifice has a very small opening, the 

modified discharge coefficient model in Chapter 10 has to be applied. 

wpc represents the equivalent width of the hydrostat orifice at small openings. 

Although the hydrostat orifice is crescent type (See equation (8.3)), the orifice could be 

approximated as an equivalent rectangular shape about an operating point, xpc0. The 

experimental result indicated that when xpc0 is larger than the certain value (e.g. 0.2 mm 

for this study) the width of the equivalent rectangular orifice is almost constant. The 

value of wpc of 20.8 mm in Table 11.1 is an experimental result. 

11.2.2 Procedure and Result of Calculations 

It is necessary to explain the procedure for the evaluation of the frequency response at 

an operating point because the PC system is, in fact, a nonlinear system. All of 

Equations (11.13) through (11.26) depend on the operating point. Equation (11.21) does 

not explicitly show a dependency on temperature, but it is indirectly affected via 

Equations (11.36) and (11.42).   

The operating point is determined by the input variables; xv, Ps and PL, and the fluid 

temperature, T, for the studied PC system. Assume that xv is 0.2 mm, Ps is 4 MPa and PL 

is 2 MPa. The operating point is calculated using the flow chart given in Figure 9.2 of 

Chapter 9. The results indicate that the PC system operates under Condition A (the 

normal condition): δPpcc = 0.34 MPa which is less than (Ps – PL) (2 MPa). Thus, 
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Operating point: xpc0 = 0.23 mm and Pm0 = 3.63 MPa 

( ) ( )
( )( ))11227479

1033.4420517.0 72

++
×++=

ss

ss
sGxv           (11.43) 

( ) ( )( )
( )( ))11227479

57.496681063.4 11

++
−+×=

−

ss

ss
sGpsL           (11.44) 

Note that as s � 0, GpsL(0) becomes negative, i.e. the phase shift is 180o at steady 

state. 

Equations (11.43) and (11.44) are plotted in Figures 11.1 and 11.2. It can be observed 

from Figure 11.1 that the frequency band of flow control is very wide (1122 rad/s). In 
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Figure 11.1 Frequency response of flow gain of the PC system, Gxv(s) 
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addition, it can be deduced that a conjugate zero and another pole with very high break 

frequencies, exist. 

For GpsL(s), Figure 11.2 and Equation (11.44) indicate that a small real zero exists in 

the right half of the s plane. In the low frequency region, the flow-pressure coefficient is 

very small (about -250 dB). It is known that the smaller GpsL(s) is, the better that flow 

control over all frequencies can occur. The ideal situation is that a zero should be located 

at the origin. This is further discussed in the follow section. As mentioned above, at the 

very low frequency region (near the steady state condition) the phase of the flow-

pressure coefficient TF is 180°. This is defined as an “over-compensated”  situation and 

will now be considered. 
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11.3 Model Analysis and Design of the Pressure Compensated System 

The objective of this section is to analyze the basic characteristics of the flow gain TF, 

Gxv(s), and the flow-pressure coefficient TF, GpsL(s), to use these to define three different 

dynamic operating conditions and to derive formulas which can be used to optimize the 

design of a PC system. 

11.3.1 The Basic Feature of the Flow Gain Transfer  Functions, Gxv(s) 

The flow gain TF, Gxv(s), is a low pass filter because a0 in Equation (11.28) is smaller 

than bxv0 in Equation (11.30). The bandwidth of the low pass filter can be considered as 

the smallest one of two poles which is determined using Equations (11.27) and (11.28). 

The hydraulic resistance, Rsh, in Equations (11.27) affects the damping in the system.  In 

order to obtain a proper damping ratio of the PC system, the size of the damping hole (3) 

in Figure 8.2 must be carefully calculated. When the hole is large (resulting in a small 

value of Rsh), the two poles of Equations (11.11) and (11.12) are complex conjugates; as 

a result, the damping ratio is very small. This can cause oscillatory behavior of the PC 

system. If the hole is very small (so that Rsh is large), the two poles become real, with 

one of the poles becoming very small. This reduces the flow control bandwidth of the 

PC system. In an ideal situation Rsh is selected such that the PC system has a pair of 

conjugate poles with a damping ratio of 0.7, thus, 412
0

1 .
a

a
== ζ . Substituting 

Equations (11.27) and (11.28) into this equation and rearranging it gives 

cpccv
qpcpc

cpccv

pcsqpc
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pcs
sh KK

LKB
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−
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


−−





+
+= 1

2
1
2

ρ   (11.45) 
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In this case, the bandwidth of the flow control is 0a  (refer to Equation (11.12)). 

Figure 11.3 gives the magnitude plots of the flow gain TF’s and the flow pressure 

coefficient TF’s for two examples: Examples I and II.  The flow gain TF’s and flow 

pressure coefficient TF’s are Gxv1(s) and GpsL1(s) for Example I and Gxv2(s) and GpsL2(s) 

for Example II respectively. The comparison between Gxv1 and Gxv2 indicates that further 

increase in the bandwidth can be obtained by increasing the spring coefficient, kpc, the 

spool cross sectional area, Apcs, or decreasing the mass, Mpc, (Equation 11.28). 

11.3.2 The Basic Feature of the Flow-Pressure Coefficient Transfer  Functions, 

GpsL(s) 

The flow-pressure coefficient TF, GpsL(s), is a high pass filter. The function of the PC 

systems in hydraulic circuits is to control the flow rate through the valve by minimizing 

the effect of the pressure drop across the valve on the flow rate. To realize this, the 

 
Figure 11.3 Frequency response comparison of 

|GpsL(s)| of two PC systems 
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magnitude of flow-pressure coefficient TF, GpsL(s), should be as small as possible in all 

frequency regions, especially in the low frequency region. 

Factors affecting the magnitude of the flow-pressure coefficient TF, GpsL(s), will now 

be explored. It can be observed from Equation (11.12) and Figure 11.2 that KpsL 

represents the flow-pressure coefficient in the high frequency region. KpsL is determined 

by the flow pressure coefficients of the adjustable orifice and the hydrostat orifice at a 

specific operating point and is independent of dynamic parameters such as Mpc, Bpc, kpc, 

Rsh, etc. These dynamic parameters only affect the shape of the magnitude of GpsL(s) at 

the low frequency region. Therefore, it is possible to reduce |GpsL(s)| in the low 

frequency region by designing a set of proper dynamic parameters. 

Figure 11.3 also shows the magnitude plots of flow pressure coefficient TF’s, GpsL1(s) 

and GpsL2(s). When the pole of GpsL(s) increases, |GpsL(s)| decreases (compare GpsL1(s) 

and GpsL2(s)).  Section 11.3.1 has introduced the method of increasing the pole (i.e. 

expanding the bandwidth of flow control of the PC system). Therefore, increasing the 

pole results in two advantages: expanding the bandwidth of flow control and decreasing 

|GpsL(s)|.  

The other approach of decreasing |GpsL(s)| at low frequencies is to decrease the zero 

of GpsL(s) (compare GpsL1(s) and GpsL2(s) again). The zero of GpsL(s) in Figure 11.3 can 

be determined by (reference to Equation (11.12)) 

10
2

11 450 psLpsLpsLz bbb.s −−=        (11.46) 

It can be seen that, sz1 is reduced by decreasing the absolute value of bpsl0 (ideally bpsl0 

= 0). In the ideal situation, sz1 is equal to zero and the flow rate is completely 

independent of the pressure drop across the PC system at steady state condition. It must 



 201 

be emphasized that bpsl0 can only be zero at some operating point, 
pcff

pc
Lm wk

k
PP +=0  

(reference to Equation (11.32)). Indeed, Pm0 can be larger, equal or less than 

pcff

pc
L wk

k
P + , which corresponds to, bpsl0 being positive, zero or negative. This gives rise 

to different dynamic operating conditions. 

11.3.3 Three “ Pressure Compensated”  Conditions 

bpsl0 can be positive, zero, or negative depending on which of the spring coefficients, 

kpc, and the equivalent spring coefficient caused by the steady state flow force is largest. 

These cases reflect three different pressure compensation conditions. With the 

inspiration from the three damping conditions (under-damped, critically damped and 

over-damped conditions) of the 2nd order system, three different pressure compensation 

conditions are defined into under-compensated, critically compensated and over-

compensated conditions. 

Under-compensated Condition: 

( )Lmpcffpc PPwkk −> 0        (11.47) 

In the “under-compensated”  condition, the flow pressure coefficient of the PC system 

is non-zero but positive at the steady state. When the pressure differential, Ps – PL, 

increases, the flow rate, QLpc, increases. This is similar to the case of a simple orifice, but 

the increase in QLpc is much less than the increase in QL of a simple orifice for the same 

pressure drop across the PC system. As an example, 8.1=cK lpm per MPa for an 

orifice and Kc = 0.018 lpm per MPa for the PC system. 

Critically Compensated Condition: 

( )Lmpcffpc PPwkk −= 0        (11.48) 
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Under the critically compensated condition, the flow pressure coefficient of the PC 

system is zero at the steady state. Therefore, the steady state flow rate, QpsL0, is 

independent of the pressure drop across the PC system, (Ps0 – PL0). 

Over-compensated Condition: 

( )Lmpcffpc PPwkk −< 0        (11.49) 

In the “over-compensated”  condition, the flow pressure coefficient of the PC system 

is negative at the steady state. When the pressure differential, Ps – PL, increases, the flow 

rate, QLpc, decreases. The example in Section 11.2.2 is such a case. The theoretical 

prediction of the phase angle under steady state conditions is 180 degrees (Figure 11.2). 

This result has been verified experimentally in which the flow rate has been measured as 

a function of the pressure drop across the PC system at several openings. It is clear that 

the slope (here KpsL) is negative reflecting the over-compensated condition (Figure 11.4).  
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Figure 11.4 The relationship of flow rate and pressure drop across 

the PC system at steady state. 



 203 

11.3.4 Simplification of the Dynamic Model of the Pressure Compensated System 

Equations (11.11) and (11.12) can be simplified, because, except for a small zero in 

GpsL(s), the poles and zeros of Gxv(s) and GpsL(s) are very large and hence, only 

influencing the dynamics of the valve at very high frequency operating condition. This 

justification is true as long as Rsh is not extremely large. Figures 11.1 and 11.2 indicate 

that most of the corner (or break) frequencies are larger than 1000 rad/s. These 

frequencies can be neglected when the frequency response less than 1000 rad/s of the PC 

system is of concern. 

Equation (11.10) can be simplified and expressed as  

( ) ( ) ( ) ( ) ( )( )sPsPsGsXKsQ LspsLvxvLpc −+= *

    (11.50)
 

where 
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where  
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The simplified dynamic model of the PC system is such that the flow gain TF, Gxv(s), 

is a pure proportional gain, *
xvK , and the flow pressure coefficient TF, GpsL(s), is 

approximately as a first order TF with the corner frequency, ωpc0 (time constant, 
0

1

pcω
). 

For the critically compensated condition, substituting Equations (11.53) and (11.54) 

into Equation (11.52) gives 

( ) sKsG psLpsL
**=         (11.55)

 

where 

cpccv
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pc

cv
shpcsqpcpc

cpvcv
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12ρ
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This indicates that the flow pressure coefficient, GpsL(s), is a pure differential. At 

steady state condition (s = 0), the flow pressure coefficient is zero. Flow through the 

valve is completely independent of pressure drop. 

For the over-compensated condition, it can be observed from Equations (11.53) and 

(11.54) that both *
psLK  and 0ω are negative. Equation (11.52) can be expressed as 

( ) ���

�
���

�
−= 1

0

*

ω
s

KsG psLpsL         (11.57) 

Equation (11.57) indicates that the flow pressure coefficient at steady state is equal to 

*
psLK−  (reference to Figure 11.4). 

11.3.5 Discussion Relating to Exper iments on the Pressure Compensated System 

It must be explained that although the sign of the steady state gain, 
0

0

a

bK
K psLpsL*

psL = , 
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of Equation (11.44) has been experimentally verified (see Figure 11.4), it is extremely 

difficult to completely verify Equation (11.44) at all frequencies experimentally, because 

• The flow pressure coefficient of PC valves is very small; that is, the dynamic 

component in the flow rate, resulting from the small dynamic excitation signal in 

the pressure drop across the PC valve, is quite small. Any change in measured 

flow which could be attributed to ( )sK psL  would be masked by a low signal to 

noise ratio at their levels. 

• In order to increase the flow sensitivity to ( )sK psL , one method is to increase the 

amplitude of the dynamic excitation signal of the pressure drop across the PC 

valve. However, this would make the linearization method invalid. This can be 

further explained by examing Equations (11.12) and (11.32). When (Ps – PL) (and 

hence (Pm – PL)) varies over a large range, the coefficient, bpsL0, in Equation 

(11.12) would experience a significant variation, and indeed could change its sign. 

Consequently, the TF defined at the operating point would no longer be valid. 

• It is very difficult to excite and measure break frequencies larger than 1000 rad/s. 

As a final note, it should be mentioned that the three compensated conditions 

discussed above are often not of concern for a simple circuit which uses a PC system 

only for control of the flow rate, because *
psLK is much smaller than Kc for a simple 

orifice (typically one hundredth). However, when the PC system plays the role of both 

flow control and “pressure sensing”  in complex circuits such as a LSPC system, the 

three compensated conditions can have completely different consequences for the 

performance of the system. 
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11.4 Summary 

Based on the analysis of the PC system model given by Equations (11.10), (11.11) 

and (11.12), the following comments can be forwarded. 

• Because it is preferred that a PC system display a very small flow pressure 

coefficient, the best condition is that the spring coefficient, kpc, matches the 

equivalent spring coefficient caused by the steady state flow force (reference to 

Equation (11.48)). 

• The PC system can exist in one of three dynamic compensation conditions which are 

defined as pressure “under-compensated” , “critically compensated”  and “over-

compensated”  conditions depending on the sign of bpsL0 (Equation (11.32)). 

• In order to extend the bandwidth of the flow control valve, the poles of the PC 

system TF’s (Gxv(s) and (GpsL(s)) should be as large as possible. Increasing the 

spring coefficient, kpc, the spool cross sectional area, Apcs, or decreasing the mass, 

Mpc, can expand the bandwidth. 

• In order to obtain a good compromise between the bandwidth and dynamic behavior 

of the PC system, the size of the damping hole in Figure 8.2 must be properly 

selected using Equations (11.45) and (11.36). A very small Rsh (i.e. a very large 

damping hole) would result in high frequency oscillation. But a very large 

Rsh, (a very small damping hole) would reduce the bandwidth. 
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Chapter 12 Steady State Analysis of the Load Sensing and Pressure 

Compensated System 

12.1 Introduction 

In Chapter 2 through Chapter 7, it was established that flow control using a LS 

system demonstrated high efficiency, but at the expense of performance. In chapters 8 

through 11, a PC valve for flow control was considered which demonstrated good 

dynamic characteristics, but was very inefficient from an energy point of view. In this 

chapter, a combination of the LS system and the PC valve is examined and is defined as 

a load sensing, pressure compensated (LSPC) system. The LSPC system is illustrated 

schematically in Figure 12.1. 
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Figure 12.1 Schematic of the Load Sensing Pressure Compensating System 

The LSPC system consists of a LS pump with the LS regulator (1), the control piston 

(2) and the pressure control pump (3), the PC valve with an adjustable orifice (4) and 

hydrostat (5), the LS line with a damping orifice (6), and the motor load (7). It can be 

observed that the PC system (defined by (4) and (5)) controls the load flow rate, QL, 
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through the load (7), while the LS pump ((1), (2) and (3)) delivers the necessary flow to 

the PC valve by measuring the pressure drop across the PC system via the LS line (6). 

In order to investigate the performance of the LSPC system by the linearization 

approach, a procedure similar to that used to analyze the LS system and PC system must 

be followed. The basic steps include modeling, steady state analysis (operating condition 

analysis and solving for SSOP’s), dynamic analysis, etc. However, because the LSPC 

system is an assembly of the LS system and the PC system, it is unnecessary to repeat 

modeling of each hydraulic component. This chapter analyzes the steady state operating 

condition of the LSPC system and presents the method of solving for SSOP’s. The 

following chapter considers the modeling and analysis of the dynamic performance of 

the LSPC system. 

12.2 Steady State Operating Conditions 

The steady state operating conditions of the LSPS system are combinations of all 

operating conditions of the LS system and the PC system, that is, six different operating 

conditions (Condition I, II, and III for the LS system; Condition A and B for the PC 

system). It is now necessary to discuss these operating conditions. 

According to Chapters 3 and 9, Conditions I and A are the normal operating 

conditions for both the LS system and the PC system. Therefore, the combination of 

Condition I for the LS and Condition A for the PC system is the normal operating 

condition of the LSPC system. For simplicity, this condition is defined as Condition N 

for the LSPC system. According to Equations (3.20) and (9.9), Condition N must satisfy 

the relationship 

dLs PPP =− 00          (12.1) 
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and 

( )vpccLs xPPP δ>− 00         (12.2) 

It is noted that Ps and PL in the condition ( ( )vpccLs xPPP δ>− ) of Condition A in 

Equation (9.9) is added with a subscript “0”  in Equation (12.2). This is because, when 

the PC system was independently studied, Ps and PL were considered to be input 

variables, but Ps and PL are now two state variables in the LSPC system. Combining 

Equations (12.1) and (12.2) gives 

( )vpccd xPP δ>  

or 

( )maxpcmaxpc
pcs

pc
pcd xx

A

k
PP 2λ





−>       (12.3) 

where ( )max2 pcxλ  is determined by Equation (9.6) with xpc = xpcmax. It gives 

 ( ) ( )( )
( ) ( ) pcspcpcvvpcpcff

vvpcpcpcs
pc

AxAxwxAk
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222
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2

222
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2

max2 +
+

=
η

η
λ     (12.4) 

which can be approximated as (see Equation (9.7)) 

( ) ( )maxpcpc

vv
maxpc xA

xw
x

2

222

2 1
ηλ +=        (12.5) 

It is necessary to explain that Inequality (12.3) is an essential condition for Condition 

N. If Inequality (12.3) cannot be satisfied, the LSPC system cannot operate in Condition 

N. If Inequality (12.3) can be satisfied, it is possible for the LSPC system to operate in 

Condition N. This must be further determined by (Ps - PL). As long as (Ps - PL) lies in 

the region [δPpcc, Pd], the LSPC system operates in Condition N (reference to Equations 

(12.1) and (12.2)). 
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It can be observed that ( )max2 pcxλ  depends on the opening of the fixed orifice, xv. For 

convenience, the six operating conditions are discussed in two cases: 

Case 1: Inequality (12.3) is true and 

Case 2: Inequality (12.3) is false. 

It can be observed from Equation (12.5) that a critical opening value, xvc, may exist 

and satisfies ( )
vcv xx

maxpcpc

vv
maxpc

pcs

pc
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xA
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x
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k
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=
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2

222

1
η

. When xv is smaller than xvc, 

the LSPC system is in Case 1. Beyond this opening value, Inequality (12.3) becomes 

false and hence the LSPC system is in Case 2. The critical value of the fixed orifice 

opening, xvc, can be approximated by  

( )
1
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max −
−

=
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pcpc
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A
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P

w

xA
x

η
     (12.6) 

Case 1: (Inequality (12.3) is true) 

In addition to Condition N, there are three possibilities: Condition O, P and Q, which 

are shown in Table 12.1. The operating condition must also be further determined by the 

load condition. 

 

     Table 12.1 Steady State Operating Conditions of the LSPC system (Case 1) 

 
Condition I Condition II Condition III 

Condition A Condition N Condition O Condition P 

Condition B × ×× Condition Q 

  × & ××: Impossible conditions 

LS 

PC LSPC 
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Condition N is the normal operating condition. Conditions O, P and Q would occur 

under “extreme” load conditions. Condition O is associated with the “ runaway” load. 

Conditions P and Q are associated with the situation that the load flow demand is larger 

than the maximum flow delivery of the pump.  

Consider the impossible operating conditions “×”  in Table 12.1 (Condition I for the 

LS system and Condition B for the PC system). According to Equations (3.20) and (9.9), 

the combination of Condition I for the LS system and Condition B for the PC system 

implies dLs PPP =− 00 and ( )vpccLs xPPP δ≤− 00 , and consequently ( )vpccd xPP δ≤  which 

contradicts the criterion (Inequality (12.3)). Therefore, the condition with a “×”  could 

not occur. 

Consider the second impossible operating condition with a “××”   (Condition II for the 

LS system and Condition B for the PC system). Again, according to Equations (3.20) 

and (9.8), the combination of Condition II and Condition B implies dLs PPP >− 00 and 

( )vpccLs xPPP δ≤− 00 , and consequently ( )vpccd xPP δ<  which also contradicts the 

criterion (Inequality (12.3)). Therefore, this is also an impossible steady state operating 

condition.  

The four different steady state operating conditions in Table 12.1 can be expressed by 

( )
( )

( )
( ) ( )




==<−≥−>
=<<>−>
=<>>>−

<=>=−

Q)(condition0 and  0,for 

P)(condition0 and  0,for 

O)(condition and  0,for 

N)(condition  and 0for 

000000

0000

0000

0000

ymaxpcpcrLspccLsd

ymaxpcpcrpccLsd

symaxpcpcrpccdLs

maxpcpcrpccdLs

PxxxPPP&PPP

PxxxPPPP

PPxxxPPPP

xxxPPPP

δ
δ
δ
δ

           (12.7) 
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Because ( )maxpcx2λ  increases as xv increases, Inequality (12.3) is always true for all 

openings, xv, as long as it is true for the maximum, xvmax, of xv, (refer to Equation (12.5). 

Therefore, a generic condition for Case 1 which is applicable for all xv becomes 

( )





+





−>
max

2

2
max

22

max 1
pcpc

vv
pc

pcs

pc
pcd xA

xw
x

A

k
PP

η
      (12.8) 

Inequality (12.8) is an important criterion of the LSPC system, because it gives the 

LSPC system the “most chance” (for all xv) to operate in the normal operating condition 

(Condition N). It is noted that, in addition to the LS pump parameter, Pd, Inequality  

(12.8) mainly deals with the parameters of the PC system. It does not relate to the load 

parameters such as Jm, Bm, Dm, Tmf, etc. Therefore, it can be used to select the PC system 

for the LSPC system.  

Case 2: (Inequality (12.3) is false) 

Under this Case, four operating conditions could possibly exist and are given in Table 

12.2.  

Table 12.2 Steady State Operating Conditions of the LSPC system (Case 2) 

 
Condition I Condition II Condition III 

Condition A × Condition O ×× 

Condition B Condition R Condition S Condition Q 

  × & ××: Impossible conditions 

The steady state operating condition for Case 2 can be expressed by 

LS 

PC LSPC 
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( )
( ) ( )

( )
( ) ( )
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PPxxxPPPP

PPxxxPPPPPP

xxxPPPP

δ
δ

δ
δ

          (12.9) 

Similar to Case 1, it can be verified that Condition P does not exist in Case 2. 

An approximate criterion can also be found for Case 2. According to Equation (12.4), 

when the opening of the fixed orifice is zero, λ2 (xpcmax) is equal to 1. δPpcc (Equation 

(9.8)) is very close to Ppc, because xpc is very small at xv = 0 (reference to Figures 10.6 

through Figure 10.9). Therefore, Inequality (12.3) is false at xv = 0 implies that  

pcd PP <          (12.10) 

If Inequality (12.10) is true, Inequality (12.3) would always be false for all values of 

xv. Therefore, Pd and Ppc must be such selected such that Inequality (12.10) is always 

false. 

In summary, Case 1 is preferred because it is possible for the LSPC system to operate 

in Condition N. Case 2 is an unexpected case for the LSPC system and the design 

parameters should be selected such that Case 2 would not occur.  

It is now necessary to consider the non-linear equations used to solve for the 

operating point under the six operating conditions. 

12.3 Solving for the Steady State Operating Point 

In this section, the solutions of the steady state equations set with six conditions are 

discussed separately.  For each condition, the general solution of the operating point is 

developed which is associated with xr0, xpc0, θsp0, Ps0, PL0, Py0. 
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12.3.1 Steady State Operating Point at Condition N 

Because the pressure drop across the PC system, (Ps0 – PL0), is constant (Pd) (though 

Ps0 or PL0 can be variable under Condition N), the SSOP of the LSPC system at 

Condition N can be independently calculated by the equations sets presented in Chapters 

3 and 9 (with some minor modifications). First, xpc0 is calculated by (refer to Equation 

(9.5)) 

( )pcpc
pcs

pc
pcd xx

A

k
PP 2λ





−=       (12.11) 

where ( ) ( )( )
( ) ( ) pcspcpcvvpcpcff

vvpcpcpcs
pc

AxAxwxAk

xwxAA
x

2222

2222

2 +
+

=
η

η
λ     (12.12) 

Equation (12.11) is a non-linear algebraic equation which must be solved by the iterative 

method presented in Figure 9.2. 

In order to determine the load pressure, PL0, with xpc0 generated from Equation 

(12.11), it is necessary to modify Equation (3.24). It can be observed from Equation 

(3.24) that the term,
ρ

d
d

P
wxC

2
, represents the flow rate through a simple orifice. In the 

LSPC system, this term must be replaced by the flow rate through the PC valve which 

was presented in Equation (9.2). Consequently,  
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( ) 


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20   (12.13) 

The pump pressure, Ps0, can be directly obtained by 

00 Lds PPP +=         (12.14) 
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To find the swash plate angle θsp0, the term, 
ρ

d
d

P
wxC

2
, in Equation (3.26) is 

replaced by Equation (9.2) to yield 
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���
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��
�

�
�
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RNA
tan

ρηω
πθ   (12.15) 

Thus, the control pressure Py0, is determined by Equation (3.27). For completeness, 

it is repeated here 

( ) 00
'

3
'

0
'

2
'

0 spsprspsprspy PKKPKTP θ+−+=     (12.16) 

12.3.2 Solution of the Steady State Equations Set with Condition O 

Because the pressure drop across the PC system, (Ps0 – PL0), is not constant under 

Condition O, the SSOP of the LSPC system cannot be independently calculated by the 

equation sets presented in Chapter 3 and Chapter 9. The SSOP; xr0, xpc0, θsp0, Ps0, PL0, 

Py0 has to be computed by solving a large non-linear equations set. In order to simplify 

the calculation, it is essential to manipulate some equations in Chapters 3 and 9 to 

reduce the number of the non-linear equations set. 

Substituting Equation (9.5) into Equation (9.2) gives 
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Substituting Equation (12.17) into Equation (3.23) and then re-organizing the 

equation results in  
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It is noted that the load pressure, PL, and the displacement, xpc, in Equation 

(12.18) are not labeled with the subscript ‘o’  because at this point xpc is not known. 

Indeed, all subsequent equations will not bear the ‘o’  subscript until the xpc can be 

solved. 

Substituting Equation (12.18) into Equation (9.5) gives 

( ) ( )
( )

( )( )
( ) ( ) pcspcpcvpcpcff

vpcpcpcs
pc

pcs

pc
pc

m

mfm
pc

pcs

pc
pc

pcpcpcsvff

pcpcpcsvdv

m

m
ml

pcs

AxAAxAk

AxAA
x

A

k
P

B

TD
x

A

k
P

xAAAk

xAAAC

B

D
c

xP

222

222

222

21

+
+







−+







+





−
+





+
=

η
η

ρη
(12.19) 

Equation (3.32) is repeated but Ps is now a variable dependent on xpc. 
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Replacing the flow term, ( )Lsd PPwxC −
ρ
2

, in Equation (3.31) with Equation 

(12.17) and substituting Equations (12.20) into Equation (3.31) result in a non-linear 

algebraic equation of the displacement, xpc, as 
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where the function ( )pcs xP  is given in Equation (12.19). For a given Ppc, the numeric 

solution of Equation (12.21), xpc0, can be used to determine other variables, PL0, Ps0 

(which is also equals to Py0), and θsp0 by Equations (12.18), (12.19) and (12.20). 
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It can be noted that the above derivation of the non-linear Equation (12.21) does not 

contain the variable xr.  In general, the actual value of the variable xr0 is usually not of 

concern since it is the pressure equality, 00 ys PP = , that is important for condition O. 

However, xr0 can be determined by Equation (3.1) if required. Since xpc0 is now known, 

substituting Equation (9.5) into (3.1) gives the displacement of the LS regulator spool 

under steady state condition as 

( )( )
( ) ( ) 





−
+

+






−= d
pcspcpcvpcpcff

vpcpcpcs
pc

pcs

pc
pc

r

r
r P

AxAAxAk

AxAA
x

A

k
P

k

A
x

0
22

0
2

22
0

2

00 η
η

 (12.22) 

12.3.3 Solution of the Steady State Equations Set with Condition P 

Under Condition P of the LSPC system, the pump is in the fully “stroke”  position 

but the PC system is in the normal operating condition. In order to solve for the SSOP in 

this condition, consider Equation (9.3). 

The first term of Equation (9.3) includes the pressure drop across the adjustable or 

fixed orifice, (Ps – Pm). It can be alternately expressed as 
2

2
���

�����
vdv

L

AC

Qρ
. The third term of 

Equation (9.3) represents the steady state flow force. For convenience, the equation can 

be expressed in a form consistent with the model of the steady state flow force, Fff , 

derived by Merrit [1967]. kff can be eliminated by rewriting the flow force as: 

( )pcpcc

o

ff xAC

Q
F

269cos ρ= . The contraction coefficient, Cc, equals to 0.611 [Merritt, 1967, p42]. 

Consequently, Equation (9.3) with the pump fully stroked becomes 
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If the hydrostat orifice can be approximated by an equivalent rectangular orifice with 

the width, wpc, Equation (12.23) can be directly solved to give xpc0 as, 

pc

pc

pc k

ckcc
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4 2
2
11
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=        (12.24) 

where 
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It is noted that the solution, xpc0, of Equation (12.24) must be smaller than xpcmax, 

otherwise, the LSPC system would operate in Condition Q. 

12.3.4 Solution of the Steady State Equations Set with Condition Q 

If the hydrostat orifice is fully opened and the pump fully stroked, the LSPC system 

operates under Condition Q. In this case, the cascade of two fixed orifices plays the part 

of a fixed orifice in the LS system with the pump fully stroked. 

It can be observed from Equation (9.2) that the PC system can be regarded as an 

equivalent orifice whose area equals to the product of a factor, 
( )

( ) 222
vpcpc

pcpc

AxA

xA

η+
, and 

the area, vA , of the adjustable orifice. Therefore, the SSOP can be calculated by 

replacing Av in Equation (3.35) with the equivalent orifice area, that is,  
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where PL0 is determined by Equation (3.34) which is repeated here for convenience. 
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It should be noted that xpc0 is known to be xpcmax under Condition Q. 

12.3.5 Solution of the Steady State Equations Set with Condition R 

Condition R is an operating condition which the LS system operates in normal 

condition but the PC system is in the condition under which the hydrostat orifice is fully 

open (i.e. the spool reaches the end). The LSPC system now operates in the LS mode 

with an equivalent orifice of two fixed cascade orifices. The method of solving for the 

operating point is the same as that for Condition N, but it is unnecessary to calculate xpc0 

using Equation (12.11) due to xpc0 = xpcmax. 

12.3.6 Solution of the Steady State Equations Set with Condition S 

Similar to Conditions Q and R, Condition S also represents the LS mode. The model 

of the operating point can be obtained by modifying the orifice area, wx, in Equations 

(3.31) and (3.33) with the equivalent area of two cascade orifices (Equation (9.2)). The 

modified model equations are: 
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where 2
11 ab = , 2132 2 aaab −= , and sPaab 3

2
23 −= . The coefficients, a1, a2, and a3, can 

be further expressed as 
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12.4 Procedure of Solving for the Steady State Operating Point 

Figure 12.2 shows the flow chart of solving for the SSOP of the LSPC system. First 

of all, the critical opening of the fixed orifice, xvc, is calculated using Equation (12.6). If 

the opening setting, xv, of the fixed orifice is less than xvc, the LSPC system is in Case 1. 

Therefore, the LSPC system may operate in Condition N, O, P or Q. In order to justify 

which of the Conditions N, O, P and Q exist, it is necessary to initially assume that the 

LSPC system operates in its normal condition. Therefore, Equation (12.11) is used to 

iteratively calculate xpc0 and then values of other variables, PL0, Ps0, Py0 and θsp0, are 

computed using Equations (12.13), (12.14), (12.15) and (12.16). At this point, Condition 

N must be validated. If the swash plate angle is less than the maximum ( maxspsp θθ <0 ) 

and the control pressure is less than the pump pressure (Py0 < Ps0), the LSPC system 

does operate in Condition N. Otherwise, the LSPC system must operate in one of the 

other three conditions. If maxspsp θθ <0  and Py0 > Ps0, then an impossible condition exists. 

In this situation, the LSPC system might in fact be operating in Condition O. If 

maxspsp θθ >0 is calculated, then this situation is also impossible. This condition indicates 

that the pump is fully stroked, that is, Condition P or Q (which depends on whether the 

PC valve is fully opened (Condition Q), or not (Condition P)). Similarly, the operating 

condition must be validated based on Equation (12.7). 

It is noted that the dashed line box in Figure 12.2 indicates that some iterative 

computation is required. For Case 2, the procedure for justifying the validation of 

operating condition and calculating the SSOP is similar to Case 1 and hence it is not 

explained here. 
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12.5 Summary 

This Chapter has investigated all possible steady state operating conditions of the 

LSPC system. Theoretically, there are six different operating conditions which are all 

combination of the conditions of the LS system and the PC system. They are defined as 

Conditions N, O, …S. Condition N is the normal operating condition under which the 

LS system and the PC system normally operate. 

The operating conditions can be classified into two groups: Case1 and Case 2. Case 1 

reflects all combinations (N, O, P and Q) of the LS system and PC system operating 

conditions in which Inequality (12.3) is true. Case 2 represents all combinations (O, R, S 

and Q) of the LS system and PC system operating conditions in which Inequality (12.3) 

is false. When the adjustable orifice opening, xv, is smaller than xvc determined by 

Inequality (12.6), the LSPC system operates in Case 1. The load condition can be further 

used to determine which of Conditions N, O, P and Q the LSPC system is operating in. 

For any adjustable orifice opening, the LSPC system is expected to operate in Case 1, 

because the normal operating Condition N is in Case 1. In other word, Inequality (12.8) 

is required to be true. 

It is very important that the system be designed to avoid Inequality (12.10), a 

condition in which the PC system could not normally operate. 

Based on the results of Chapters 3 and 9, this chapter has developed the models of the 

SSOP’s of the LSPC system for all six operating conditions and presented a flow chart 

which can be used to validate the operating condition and to solve for the SSOP. These 

results are essential for the dynamic analysis of the LSPC system presented in the 

following chapter. 
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Chapter 13 Dynamic Model of the Load Sensing and Pressure 

Compensated System 

13.1 Introduction 

The objective of this chapter is to develop the TF of the LSPC system for each 

operating condition (N, O, P, Q, R and S) and to present the procedure of calculating the 

stability of the LSPC system. The TF of the LSPC system can be given by assembling 

the TF of the LS system (Chapter 5) and the TF of the PC system (Chapter 9). The block 

diagram of the LSPC system shown in Figure 13.1 is similar to that of the LS system 

presented by Figure 5.10 but the blocks, Kq and Kc, in Figure 5.10 are replaced with the 

transfer functions, Gxv(s) and GpsL(s), of the PC system respectively. The comprehensive 

TF can be developed and programmed based on the block diagram shown in Figure 13.1 

via Mason flow formula [Ogata, 1970]. The actual development of the transfer functions 

using Mason’s flow formula is not presented here. This Chapter considers only the 

simplified TF’s of the LSPC system which can be used to calculate the frequency 

response in order to compare the results to the LS system without the PC valve. 
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Figure 13.1 Complete Block Diagram of the LSPC System 
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13.2 Transfer Function of the Load Sensing and Pressure Compensated System 

The objective of this section is to develop the simplified TF for Conditions N, O, P, 

and Q. The simplified TF’s of the PC system, Equations (11.51) and (11.52), are used to 

replace Kq and Kc in Equations (5.81), (5.85) and (5.87) respectively. 

• Condition N (normal operating condition) 

Based on Equation (5.81), the simplified TF of the LSPC system at Condition N is 
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Equation (13.1) can be expressed as a 5th order TF of the form 
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The coefficients can be determined as presented in Appendix L. 
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• Condition O 

Based on Equation (5.85), the simplified TF of the LSPC system at Condition O is 
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Equation (13.3) can also be expressed as a 5th order TF as 
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The coefficients are presented in Appendix M. 

• Condition P 

Based on Equation (5.87), the simplified TF of the LSPC system at Condition P is 
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Equation (13.5) can be expressed as a 3rd order TF as 
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The coefficients are presented in Appendix N. 
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• Condition Q, R and S 

Under Conditions Q, R or S, the hydrostat orifice of the PC system is fully opened. 

The PC system, in effect, becomes two fixed orifices that are cascaded in series. The 

LSPC system actually operates in the LS mode. The TF of the system has the same 

expressions as Equations (5.81), (5.85) and (5.87) but the coefficients, Kq and Kc, in these 

equations have different meanings. Kq and Kc become the “equivalent flow-gain”  and 

“equivalent flow-pressure coefficient”  of two cascaded orifices which are independent of 

the frequency. They were defined as *
qK  and *

cK  in Chapter 11 and were determined by 

Equations (11.40) and (11.41). 

13.3 Procedure to Calculate the Stability for the Load Sensing and Pressure 

Compensated System 

The procedure for determining the LSPC system stability is similar to that presented in 

Table 5.2 of Chapter 5, but the parameters associated with the PC system at each step 

have to be evaluated. For purpose of comparison, Table 13.1 gives the counterpart of 

Table 5.2 for the LSPC system. The parameters printed in bold font are different from 

those in Table 5.2. It must be acknowledged that Av in the LSPC system represents either 

the fixed or adjustable orifice flow area. 

Table 13.1 is valid for only operating Conditions N, O and P. When the LSPC system 

operates in Condition Q, R or S, the procedure to evaluate the stability is the same as 

shown in Table 5.2 but Kq and Kc are replaced with *
qK  and *

cK  which are determined 

from Equations (11.40) and (11.41). 
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13.4 Summary 

This chapter has presented the block diagram of the LSPC system. In order to obtain 

the transfer function for the LSPC system, Gxv(s) replaces Kq in the TF’s for the LS 

system and GpsL(s) replaces Kc. The coefficients, bi, in the numerators of Equations 

(13.1), (13.3) and (13.5) are the same as those in Equations (5.81), (5.85) and (5.87). 

However, the coefficients, ai and K, of the TF’s for the LSPC system are different from 

those for the LS system. The different coefficients, ai, in the denominator of their TF’s 

would result in different dynamic performance compared to the LS system (which will be 

investigated in Chapter 14). This chapter also provides the procedure used to do the 

dynamic analysis of the LSPC system at an operating point. 

Table 13.1 Procedure for Conducting a Stability Analysis for the LSPC System 
 

Pd Vp Av Vm Jm Bm Tmf ωLs Input parameters 

Coefficients of 
subsystem TFs 

linearization 
parameters 

Operating point 

Coefficients of 
closed loop TF 

Poles and zeros of 
loop TF 

Ps0 Py0 PL0 xr0 xpc0 Pm0 

(Figure 12.2) 

Kqr1 Kqr2 Kc1 Kc2 K
*
xv K

*
psL 

(Eqs.5.25 through 5.28, Eqs.12.52 and 12.53* * ) 

Kp 
*
pK  Ks KL ωs ωL ωsp ωr 

ωy ωysp  ωL0 ωp0 ζL  ζr  ζsp ωωωωpc0 

ai bi 
(Appendix K, L, and M) 

σpi + jωpi  (i = 1, 2, …9) and σzi + jωzi  (i = 1, 2, …7) 
(Matlab programming) 

Calculation steps Parameters 

 
* *   The flow rate, QL, through the adjustable orifice usually is turbulent. 

Therefore, it is unnecessary to use the more accurate flow rate model shown in 
Appendix D 



 229 

Chapter  14 Stability Analysis of the Load Sensing and Pressure 

Compensated System 

14.1 Introduction 

The purpose of this chapter is to illustrate the stability of the LSPC system by tracing 

the root locus as the steady state operating points (SSOP) move along the special 

trajectories. The requirements of the designed PC valve are established which will result 

in the overall stabilization of the LSPC system. The approach to do this is based on 

carrying out a comparison of the root locus of the LSPC system with different parameters 

for the PC valve. 

The dynamic performance of the LSPC system is also compared to that of the LS 

system by itself. It must be noted that the comparison is valid only if the same SSOP 

trajectory exists for both systems. Therefore, it is necessary to first explain the SSOP 

trajectory of the LSPC system and the LS system. 

14.2 Trajectory of Steady State Operating Points 

Assume that all parameters associated with the SSOP of the LS system in Figure 5.1 

are the same as those of the LSPC system in Figure 12.1. The SSOP trajectories of the LS 

system (Figure 7.1 Py vs Ps) as the result of varying x of the adjustable orifice (1) in 

Figure 5.1 should be same for the LSPC system as the result of varying xv of the 

adjustable orifice (4) in Figure 12.1. However, for same opening, x = xv, the actual SSOP 

“ location”  is a different point on the trajectory due to the different orifice width and the 

different pressure drop across adjustable orifice. The actual values of the openings, x and 

xv, are unimportant, but it is important that the operating points on the SSOP (Py0 vs Ps0) 

trajectory must be the same. This is because the load flow rates, QL0 or QLpc0, and the load 
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pressure, PL0, would be the same at same operating point for the LS system and LSPC 

system. Thus, the system’s dynamics can be compared. It should be noted that the 

trajectory of the LSPC system, which is defined by the parameters, Ps0, Py0 and θsp0, of 

the LS pump, is the same as that of the LS system and hence, is not illustrated here.  

It is necessary to illustrate the “ trajectory”  of the SSOP, xpc0 and Pm0, of the PC valve 

on Trajectory I (as presented in Figure 7.2). Figure 14.1 shows the plots of xpc0, (Pm0 - PL0) 

and (Ps0 - PL0) as a function of the opening of the adjustable orifice, xv. As the adjustable 

orifice opening, xv, increases, the LSPC system operates in Condition N (See Figure 

14.1). In this region, the pressure drop, 00 Ls PP − , is numerically equal to Pd (1.5 MPa); 

the pressure drop, 00 Lm PP − , increases slightly and the hydrostat orifice opening, xpc0, is 

approximately proportional to adjustable orifice opening, xv (Figure 14.1). At point x12, in 

Figure 7.2, the pump is fully stroked; the LSPC system enters the region of Condition P 

where the pump is fully stroked but the PC valve has not fully opened. Because the 

pressure drop across the PC valve can no longer be controlled to 1.5 MPa as point x12 

increases, 00 Ls PP −  rapidly decreases and hence, the hydrostat orifice increases to its 

maximum value, xpcmax. At this point the pressure drop across the PC valve converges to a 

critical value, δPpcc, (reference to Equation (12.2) and Figure 14.1). In this example, δPpcc 

= 0.3 MPa at xv = 1.75. Beyond this point, the LS pump is fully stroked and the PC valve 

is fully opened. Therefore, the region associated with Condition P in the LSPC system is 

very limited. 
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Figure 14.2 shows the hydrostat orifice opening, xpc0, the pressure drop across the 

hydrostat orifice, 00 Lm PP − , and the pressure drop across the PC valve, 00 Ls PP − , 

(defined as Trajectory II in Figure 7.5) as a function of xv. From Figure 7.5, it is noted 

that a “ runaway” load with a negative torque of 6.94 Nm is applied to the rotary shaft. As 

the adjustable orifice opening is small, the LS pump operates in Condition II where 

dLs PPP >− 00 . Because Pd > δPpcc (Pd = 1.5 MPa and δPpcc = 0.38 ~ 0.3 MPa at xv = 0 ~ 

0.3 mm), the PC valve operates in Condition A. Consequently, the LSPC system is in 

Condition O. At point x23 in Figures 7.5 and 14.2, the LSPC system enters the region of 

Condition N. Similar to Trajectory I, as the adjustable orifice opening, xv, increases, the 

LSPC system passes from Condition N to Q via a short region of xv in which Condition P 

exists (see Figure 14.2). 
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Figure 14.1 Hydrostat Orifice Opening and Pressure Drops Across the PC Valve and 

the Hydrostat Orifice on Trajectory I as a Function of the Control Orifice Opening 
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It is noted that Trajectory I defined in Chapter 7 consists of the SSOP at Condition I or 

Conditions I and III (see Figure 7.1). Therefore, for the LSPC system, Trajectory I can be 

one of four combinations: Condition N, Conditions N and P, Conditions N, P and Q, and 

Conditions R and Q (refer to Tables 12.1 and 12.2). In this study, only Conditions N for 

Trajectory I is considered, because, for Condition Q, R and S, the LSPC system actually 

operates in the LS mode and Condition P only exists in the limited transition region. 

In a similar fashion, Trajectory II defined in Chapter 7, consists of the SSOP at 

Conditions II, I, and III, or II and III (see Figure 7.1). Trajectory II for the LSPC system 

can be Conditions O, N, P and Q, or Conditions O, P and Q. In this study, only 

Conditions O and N for Trajectory II are considered, because Condition P only exists in 

the limited transition region and Condition Q reflects the LS mode. 

It is noted that Case 1 defined in Chapter 12 is only considered in this chapter, that is; 
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Figure 14.2 Hydrostat Orifice Opening and Pressure Drops Across the PC Valve and 
the Hydrostat Orifice on Trajectory II as a Function of the Control Orifice Opening 
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the PC valve must satisfy Inequality (12.3), because the other case, Case 2, reflects the 

saturation condition in which the hydrostat orifice of the PC valve is fully opened. 

14.3 Stability Analysis of the LSPC System 

The objective of this section is to compare the loci of the poles (especially the 

dominant poles) of the LSPC system and the LS system when the SSOP moves along the 

same trajectory (Trajectories I or II). The effect of the dynamics of the PC valve on the 

dynamic performance of the LSPC system is discussed. 

14.3.1 Trajectory I  (Conditions N (LSPC) and I  (LS))  

In order to illustrate the root locus of the LSPC system and compare them to that of 

the LS system, the parameters of the LS pump and the load are selected to be the same as 

those used in Section 7.2.1 of Chapter 7 and the PC valve parameters are also selected to 

be the same as those listed in Table 11.1 of Chapter 11. Using the procedure discussed in 

Table 13.1, the locus of the poles and zeros for the LSPC system can be plotted. The 

results of the zero-pole analysis for the LSPC system are worth repeating here: in the 

region of Condition N, the dominant conjugate poles, whose frequency components 

were less than ωωωωL (the undamped natural frequency of the motor  load), and a second 

pair  of “ non dominant”  poles, with frequency components close to ωωωωr (the 

undamped natural frequency of the LS spool), mainly influence the stability of the 

LS system. 

For the non-dominant poles, the results of the calculation are similar to that illustrated 

in Figure 7.3; that is, the non-dominant poles are in the right half side of the s plane. It is 

noted that if the LS circuit is connected together with soft hoses (instead of pipe), the 

non-dominant poles shifts to the left half side of the s plane. When the orifice opening is 
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small, the poles and zeros of the LS system transfer function at these frequency points 

cancel or approximately cancel. Because these non-dominant poles mainly relate to the 

dynamics of the LS spool, any instability associated with these non-dominant poles is 

caused by the positive feedback loops in the LS pump (see Figure 13.1). There are three 

positive feedback loops: 1) Gr � Kyr � Gy � Kcr1 � Gs, 2) Kys  �Gy � Kcr1 � Gs and 3) 

Ksps � Gsp � Cp � Gs. Therefore, replacing the simple orifice with the PC valve does not 

solve the instability problem associated with the non-dominant poles. 

For the dominant poles shown in Figure 14.3, it can be observed that the difference in 

the dominant poles’  loci indeed exists between the LS and LSPC systems. For the LS 

system, as the operating point moves along the trajectory shown in Figure 7.2, the 

dominant poles shown by Curve (1) in Figure 14.3 move directly towards the origin. In 

other words, the undamped natural frequency, ωn, of the system decreases and the 

damping ratio, ζ, is approximately constant 1. However, the LSPC system can become 

unstable due to the dominant poles shifting into the right half side of s plane (refer to 

Curve (2)). 

In order to investigate why using the PC valve in the LS system makes the LS system 

performance worse, it is necessary to review the dynamic performance of the PC valve 

used in the LSPC system. Equation (11.44) and Figure 11.1 indicate that the PC valve is 

an over-compensated PC valve. At the steady state, there is a phase shift of 180°. This 

phase shift might be a problem, because, at the steady state and the low frequency region, 

the LS loop and the flow feedback loop (i.e. the load feedback loop: GpsL(s) � HL(s) and 

the flow feedback (GpsL(s) � Gs(s))) in Figure 13.1 become a positive feedback loop but 

                                                 
1 The undamped natural frequency, ωn, of the LSPC system is equal to the distance between the poles and 
the origin in s plane. The damping ratio, ζ, is equal to the sine of the angle with respect to imaginary axis. 
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the pump pressure feedback loop (GpsL(s) � HL(s) � GLs(s) � Gr(s) � Kyr � Gy(s) � 

Kspy � Gsp(s) � Cp � Gs(s)) becomes negative due to the phase shift (180°) of GpsL(s) 

itself. This scenario is opposite to the LS system. 

According to Section 11.3.3 of Chapter 11, the PC valve can be one of three 

compensation conditions; critically compensated, under compensated and over 

compensated. Consider the under-compensated PC valve for the LSPC system. For a PC 

valve, there are four methods which can be used to change compensation conditions from 

over- to under-compensated (reference to Equations (11.47) and (11.49)): a) increasing 

the hydrostat spring coefficient, kpc, b) decreasing the steady state flow force coefficient 

(i.e. decreasing kff), c) decreasing the equivalent width of the hydrostat orifice, wpc, and d) 

decreasing the pressure drop across the hydrostat orifice, Pm0 – PL0. The first method is 

 
Figure 14.3 Comparison of the Dominant Poles’  Loci between the LS and the 

LSPC Systems on Trajectory I 
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physically feasible for the PC valve studied. It is noted that in order to make the 

comparison valid, Pd cannot be changed. When the hydrostat spring coefficient, kpc, 

increases, the pressure drop across the hydrostat orifice, Pm0 – PL0, correspondingly 

decreases because increasing kpc results in an increase in the pressure drop across the 

fixed orifice, Ps0 – Pm0, (note: the pressure differential set, Pd, is constant and equal to Ps0 

– PL0). 

When kpc increases from 9100 N/m to 37000 N/m, Inequality (11.47) is satisfied and 

the PC valve becomes under-compensated. Curve (3) in Figure 14.3 shows the locus of 

the dominant poles of the LSPC system with the under-compensated PC valve. It 

indicates that, although the dominant poles move outwards at small openings of the 

adjustable orifice, then change their direction and shift towards to the region of instability 

(Curve (3)), the dominant poles’  locus of the LSPC system is always located in the left 

half side of s plane; that is, the LSPC system is stable. Therefore, the LSPC system can 

be stabilized by modifying the over-compensated condition into the under compensated 

condition for the PC valve. 

It should be noted that even though the aforementioned improvement is accomplished, 

the dominant poles’  locus (Curve 3) of the LSPC system for the large openings of the 

adjustable orifice is still to the right of the dominant poles’  locus (Curve 1) of the LS 

system and is very close to imaginary axis. This implies that the dynamic performance of 

the LSPC system cannot be superior to that of the LS system. 

14.3.2 Trajectory I I  (Conditions O &  I I  and Conditions N &  I ) 

The objective of this section is to compare the dominant poles’  locus of the LSPC 

system when the LSPC system operates along trajectory II. Based on Figure 14.2, the 
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LSPC system operates at Conditions O, N, P and Q as the opening of the PC valve’s 

adjustable orifice varies. Again, it is mentioned that Condition P only exists in the limited 

transition region P and Condition Q reflects the LS mode because the hydrostat orifice is 

fully open. Thus, Conditions P and Q are not discussed in this chapter. This section 

compares the dominant poles’  loci of the LSPC systems at Conditions O (Ps0 = Py0) and 

N. Usually, Condition O would occur when the load becomes “ runaway”. In fact, if Pd is 

set to be less than Ps2 (see Figure 7.1), the LSPC system when the opening, xv, is small, 

can operate in Condition O even if the load is not a runaway load (reference to Equation 

(7.2)). 

Figure 14.4 illustrates the dominant poles’  loci for the LS system and the LSPC 

systems with the over- and under-compensated PC valve on Trajectory II (Figure 7.5 and 

Figure 14.2). The symbols, ‘O’  (Condition II) and ‘ * ’  (Condition I) represent the root 

locus of the LS system. The symbols, ‘+’ , ‘×’  (with under-compensated condition) and 

‘•’ , ‘◊’  (with over-compensated condition), identify the loci of the LSPC system. The loci 

with ‘+’  and ‘•’ , are in Condition O and ‘×’  and ‘◊’  in Condition N. It can be observed 

that the loci of the LS system and the LSPC system with the under-compensated 

condition are always located in the left half side of the s plane. The loci of the LSPC 

system with the over-compensated condition are located in the right side of the s plane 

except the part of the locus with very small opening of the adjustable orifice. 
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It is noted that the above comparisons for Conditions N and O in Sections 14.3.1 and 

14.3.2 are accomplished under the certain condition such as the pressure drop, Pd, of 1.5 

MPa, a specific load (Jm = 0.16 Nm/s2, Bm = 0.056 Nm/s) and the temperature, T, of 

30°C. For different conditions, particularly the different load, the locus of the dominant 

pole would be different. Figure 14.5 shows the root locus of the LS and LSPC system 

under the condition in which only the load inertia, Jm, is the tenth of that for Figure 14.4 

and all other parameters are the same as those for Figure 14.4. Compared to Figure 14.4, 

it can be observed that the initial dominant poles change from 1.3±18j to 2.5±58j and the 

trend of the locus is also different. 

 
Note: ‘O’  and ‘ * ’   LS,  ‘+’  and ‘×’   LSPC (with under-compensated 

condition), ‘•’  and ‘◊’   LSPC (with over-compensated condition), ‘O’   
Condition II, ‘ * ’ Condition I, ‘+’  and ‘•’  Condition B, and ‘×’  and ‘◊’  
 Condition A, Arrows indicate directions of increasing flow. 

Figure 14.4 Comparison of the Dominant Poles’  Loci between the LS and the 
LSPC Systems on Trajectory II 
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Although the root locus of the LS and LSPC systems changes as the parameter varies, 

the root locus plots under different conditions can give rise to consistent conclusions such 

as: 

♦ The over-compensated PC condition always makes the LSPC system unstable. 

♦ The use of a PC valve does not improve the dynamic performance of the LS 

system. Therefore, the use of a PC valve in a LS system (LSPC system) has limited 

application, unless it is applied to the case of a multiple-load LS system where the 

PC valves have to be used to isolate the interaction between loads (refer to Chapter 

1). 

 
Note: ‘O’   Condition II, ‘ * ’ Condition I, ‘+’  and ‘•’  Condition B, and ‘×’  

and ‘◊’   Condition A, Arrows indicate directions of increasing flow. 

Figure 14.5 Comparison of the Dominant Poles’  Loci between the LS and the 
LSPC Systems on Trajectory II 
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In addition to the above conclusions, the following observations can also be forwarded 

based on the result of the parameter sensitivity analysis about the particular trajectory. 

♦ A decrease in the load resistance, Tmf, can make both the dominant poles and 

the non-dominant poles move towards the left half side of the s plane, thus the 

LSPC system tends to be more stable. 

♦ A decrease in the pressure differential set, Pd, stabilizes the system but reduces 

the speed of response of the system. 

♦ Increasing the damping in the LS line, i.e. decreasing ωls, reduces the speed of 

response of the LSPC system and tends to destabilize its operation. 

♦ An increase in the capacity of the pump and motor (via increasing the volumes, 

Vp and Vm, or reducing the equivalent bulk module, β, using soft hoses, for 

example) reduces the speed of response of the LSPC system. However, the 

non-dominant poles (around 2000 rad/s) move into the left half side of the s 

plane (stabilizes), and the high frequency oscillation which would occur in the 

system pressures, Ps, Py and PL, and the displacement of the LS spool, xr, no 

longer exist. 

♦ In addition to the spring coefficient, kpc, other parameters of the PC valve, such 

as the size of the damping orifice, significantly affect the dominant poles’  loci. 

14.4 Summary 

When the PC valve is applied to the LS system (creating the LSPC system), the system 

becomes very complex in its steady state and dynamic performance. The steady state 

operating condition can be one of six different operating conditions as a result of the 

combination of Conditions I, II and III for the LS system and Conditions A and B for the 
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PC valve. They are defined as Conditions N, O, … S. Condition N is the normal 

operating condition. As the opening of the adjustable orifice of the PC valve increases, 

the SSOP of the LSPC system moves along Trajectory I (starting from Condition N 

through Q via P) or Trajectory II (starting from Condition O through Q via N and P). 

The stability analysis of the LSPC system in this chapter results in two main 

conclusions: 1) the LSPC system can be stabilized using the under-compensated PC valve 

and 2) the dynamic performance of the LSPC system is not superior to that of the LS 

system for the case of the single load. 
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Chapter  15 Exper imental Ver ification for  the Results of Stability 

Analysis of the Load Sensing and Pressure Compensated system 

15.1 Introduction 

The purpose of this Chapter is to experimentally verify the main conclusions and 

observations which were forwarded in Chapter 14. The most important conclusions for 

the LSPC system is restated as: 1) the LSPC system can be stabilized using the under-

compensated PC valve and 2) the dynamic per formance of the LSPC system is not 

super ior  to that of the LS system for  the case of the single load. In order to 

experimentally verify the above statements, it is necessary to establish three dynamic 

experiments and compare the results to that predicted theoretically. The first experiment 

is associated with the LS system, the second the LSPC system (with over-compensated 

PC valve), and the third the LSPC system (with the under-compensated PC valve). The 

comparison of the behaviors of these three systems is done using step responses. 

Experimental verification is limited to the stability associated with the dominant poles of 

the LS system and the LSPC system and is undertaken only in the normal operating 

conditions (Conditions I and N). The experimental studies of the dynamic performance 

under “non-normal”  operating conditions (Conditions II and III for the LS system and 

Conditions O, P, Q, R for the LSPC system) and the stability associated with the non-

dominant poles of the LS and LSPC systems are deferred for future work. 

It is noted that for the purpose of comparison the experimental operating conditions 

for the three experiments must be the same. In other words, the system parameters (e.g. 

the LS pump parameters, the load conditions -- Jm, Bm, Tmf, cml, the pressure drops across 

the PC valve and the needle valve, Pd) and the SSOP (e.g. the load flow rate at the steady 
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state, QL0) are required to be the same. 

In order to conduct two of the experiments on the LSPC system, it was necessary to 

determine some method for modifying one or more parameters of the PC valve in order to 

create the under- and over-compensated conditions on the same PC valve. 

15.2 Modification and Ver ification of the “ Compensation Condition”  for  the 

Pressure Compensated Flow Control valve 

The “Compensation Condition”  denotes the three conditions: “under” , “critical”  or 

“over”  compensation introduced in the earlier chapters.  This section first introduces the 

approach for modifying the compensation condition for the existing PC valve. The 

particular experiments are then conducted to verify the modification.  

In order for the PC valve shown in Figure 8.2 to operate under the desired 

compensation condition, the PC valve must be modified so as to satisfy Inequality (11.47) 

for the under-compensated condition, Equality (11.48) for the critically compensated 

condition, or Inequality (11.49) for the over-compensated condition. In order to further 

understand these criteria, Equality (11.48) is modified slightly as follows. Because the 

pressure drop across the fixed orifice, Ps – Pm0, is approximately equal to Ppc (refer to 

Section 10.1.1 in Chapter 10), the pressure drop, Pm0 – PL, can be approximated by (Ps – 

PL) - Ppc = (Ps – PL) -
pcs

def_springpc

A

xk
(refer to Equation (10.4)). Consequently, Equation 

(11.48) can be approximated by 

( )

pcs

def_springpcff

Lspcff
pc

A

xwk

PPwk
k

+

−
=

1

       (15.1) 
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Equation (15.1) indicates that the compensation condition can be related to the value 

of spring coefficient, kpc, the equivalent width of the hydrostat orifice, wpc, the coefficient 

kff (where dcff C.k 70= . See Equation (10.6)), the cross-sectional area of the hydrostat 

spool at the ends, Apcs, the spring deformation, xspring_def, at xpc = 0, and the pressure drop 

across the PC valve, Ps – PL. For the existing PC valve, it is difficult to modify wpc, kff 

and Apcs. The pressure drop, Ps – PL, is equal to the system parameter, Pd, in the LSPC 

system and is required to be constant for comparison purposes. Therefore, a feasible 

approach for modifying the compensated condition is to change the spring size, that is, 

selecting different kpc and xspring_def. Practically, it is more restrictive physically to choose 

different values of the spring deformation, xspring_def, than it would be for changing the 

spring coefficient, kpc. Thus the spring coefficient, kpc, was changed to reflect a value 

which would be larger or smaller than the value of the term on the right hand side of 

Equation (15.1) for the corresponding compensation conditions (under or over-

compensated conditions). 

For the critically compensated condition, kpc is calculated to be 10140 N/m for Pd = 

1.5MPa. Thus two springs were selected to which had spring coefficients of 37000 N/m 

for the under-compensated condition (Century Spring Co., #3057) and 5000 N/m  for the 

over-compensated PC valve(Century Spring Co., #11511). 

In order to verify the under-compensated condition and the over-compensated 

condition, the measured value of the steady state flow-pressure coefficient, *
psLK  (refer to 

Equation (11.52)), must be a positive number for the rigid spring and a negative number 

for the soft spring (refer to Equation (11.53)). 
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Figure 15.1 shows a comparison of the measured steady state flow-pressure 

coefficients of the PC valve using a rigid hydrostat spring and a soft spring. When the 

pressure drop across the PC valve, Ps – PL, is constant (Pd = 1.5MPa), the slope of the 

experimental curve is a positive number ( 0>*
psLK ) for the rigid spring and a negative 

number ( 0<*
psLK ) for the soft spring as predicted by theory. Therefore, the use of these 

hydrostat springs does indeed create the desired compensation conditions for the same PC 

valve. 

15.3 Procedure of the Exper iment and Signal Processing 

The purpose of this section is to explain the procedure used to create the step response 

experiments for the LS and LSPC system with under-compensated and over-compensated 

PC valves. The input signal is the opening, x(t), of the needle valve or the opening, xv(t), 

of the adjustable orifice of the PC valve. The output is the motor rotary speed, φ(t). The 
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Figure 15.1 Comparison of the Experimental Flow-Pressure Coefficients of the 

PC Valve between a Rigid Hydrostat Spring and a Soft Hydrostat Spring 
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parameters of the LS pump and the load (developed in Appendix H) are Pd = 1.5 MPa, ωls 

= 450 rad/s (the LS damping orifice is fully opened), and Tmf = 0.2 Nm. The fluid 

temperature was in the region of 25 ~ 35 °C. With these defined parameters, Trajectory I 

can be created experimentally. The procedure was to select several SSOP’s on this 

trajectory and to carry out step responses with a small step input signal, (xfinal(t) - xinitial(t)). 

The procedure can be summarized as 

Step 1: Construct the LS circuit with a needle valve as the control orifice.  Initialize 

the data acquisition system. 

Step 2: Power on the LS system; continuously adjust the opening of the adjustable 

orifice until the load flow rate is equal to 5 l/min.  

Step 3: When steady state conditions are reached, the adjustable orifice is opened as a 

small step about SSOP. The magnitude of the step is such that the output flow rate 

variation is 3 l/min. This is accomplished using trial-and-error process.  

Step 4: Measure and collect the output signal, φ(t), using the data acquisition system. 

Step 5: Repeat Steps 2, 3 and 4 with the several SSOP’s (load flow rates of 10, 15, 20 

l/min).  

Step 6: Replace the needle valve with the PC valve (containing the soft hydrostat 

spring) and repeat Steps 2, 3 and 4. 

Step 7: Replace the soft hydrostat spring in the PC valve with the rigid hydrostat 

spring and repeat Steps 2, 3 and 4. 

It is noted that the load flow rate of 20 l/min can result in a motor speed of 1337 rpm 

for the piston motor used. For safety reasons, experiments for flow rates greater than 20 

l/min were not conducted. However, the flow range used was considered sufficient to 
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verify the stated conclusions of Chapter 14. 

The data collected during the experiments must be properly processed in order to 

facilitate comparison. As stated in Section 15.1, the stability associated with the dominant 

poles is only considered; therefore, it is necessary to filter out any high frequency signal 

from the collected data. Because the undamped natural frequency, ωn, of the LS system 

and the LSPC system associated with the dominant poles is usually less than the 

undamped natural frequency, ωL (3 Hz in this study), a 5th order Chebyshev II filter with 

the cutoff frequency of 4.5 Hz was applied.  

15.4 Exper imental Results and Analysis 

In order to understand the relationship between the experimental result and the 

location of the dominant poles, Figure 14.3 is re-plotted as Figure 15.2 in which only the 

experimental operating points (QL = 5, 10, 15 and 20 l/min.) are illustrated. This is the 

stability prediction based on the experiment condition. 
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Figure 15.2 Dominant poles’  Loci of the LS System and the LSPC System for 

the Experimental Condition 
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Figures 15.3 through 15.6 illustrate the step responses about the operating points, QL1, 

QL2, QL3 and QL4. It can be observed in Figure 15.3 that the step response of the LSPC 

system demonstrates more oscillation than the LS system. This reflects the fact that the 

dominant poles of the LSPC system are very close to the imaginary axis (see Figure 15.2). 

For two situations of the LSPC system, the case of the under-compensated condition 

demonstrates a significant oscillation which is identical to that predicted by the dominant 

poles of the LS system as they move close to the imaginary axis (see Figure 15.2). 

Figure 15.4 indicates that the step response of the LSPC system tends to be more 

oscillatory. The LS system and the LSPC system are stable for the flow rate of 5 and 10 

l/min which was shown in Figures 15.3 and 15.4. 

 

34

36

38

40

42

0 1 2 3 4 5

Time, sec.

M
ot

or
 s

pe
ed

 φ
, r

ad
/s

LSPC system with under-
compensated condition

Comparison of step responses
at the flow rate of about 5 litre/min.

LS system

LSPC system with over-
compensated condition
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Figure 15.4 Comparison of the Measured Motor Rotary Speed, φ, at the Load 

Flow Rate of 10 l/min 
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Figure 15.5 Comparison of the Measured Motor Rotary Speed, φ, at the Load 

Flow Rate of 15 l/min 
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    The step response with the over-compensated condition in Figure 15.5 indicates that 

the LSPC system is in a limit cycle oscillation. This kind of the oscillation represents the 

“marginally stable status”  on the basis of the linear theory. This experimental result is 

inconsistent with the “unstable state”  predicted theoretically as the dominant poles have 

moved into the right half side of the s plane (see Figure 15.2). The inconsistence was 

caused by the application of the linear theory to the non-linear system. The “ instability”  

predicted by the linearization approach for a practical nonlinear system always 

demonstrates a limit cycle oscillation. If the pole located in the right half side of the s 

plane is very close to the imaginary axis, the magnitude of the limit cycle oscillation is 

small. If the poles are far away the imaginary axis, the magnitude of the limit cycle 

oscillation becomes large. The step response with the over-compensated condition in 

Figure 15.5 demonstrates a low frequency fluctuation with small magnitude. This is 

consistent with the prediction that the dominant pole of the LSPC system is very close to 
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Figure 15.6 Comparison of the Measured Motor Rotary Speed, φ, at the Load 

Flow Rate of 20 l/min. 
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the imaginary axis. 

Figure 15.6 shows the existence of the significant oscillations in the LSPC system with 

the over-compensated condition compared to its partner in Figure 15.5. This is consistent 

with the prediction that QL3 is closer to imaginary axis than QL4. But the difference of the 

step responses of the LSPC system with the under-compensated condition in Figures 15.5 

and 15.6 is not evident. This is also consistent with the prediction that the location of 

dominant poles is almost invariable. 

It can also be observed through a comparison of the step responses of the LS system in 

Figures 15.3 through 15.6 that the percent overshoot is almost the same. This is also 

consistent with the fact that the damping ratio associated with dominant pole location of 

the LS system is the same. 

15.5 Summary 

This Chapter experimentally verifies the main conclusion obtained in Chapter 14. The 

result of the dynamic response in time domain and the theoretical prediction in frequency 

domain are basically consistent. Both methods indicate that the LSPC system can be 

stabilized using the under-compensated PC valve but the dynamic performance of the 

LSPC system seems to be inferior to that of the LS system for the operation of a single 

load. 
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Chapter 16 Conclusions and Recommendations 

 

This thesis presents a comprehensive study of a LS and LSPC system -- a highly 

nonlinear system. To compromise between efficiency and fast dynamic response, a LS 

system is sometimes equipped with a LS regulator with a critically lapped spool. This 

brings about a situation where the system model not only is non-linear but also varies 

depending on which operating region it is in. Therefore, the system analysis initially 

started by identifying the operating regions to establish the order of the system model, 

and then secondly, solving for the operating points to define appropriate linearized 

coefficients of the models. Finally, a standard stability analysis procedure was carried 

out. 

16.1 Main Achievements 

The following sections summarize the main achievements of this thesis. 

16.1.1 Load Sensing System 

In order to summarize the achievement of the research for the LS system, it is 

necessary to recall the objectives for this thesis. The objectives associated with the LS 

system were (1) to investigate the steady state operating condition and the SSOP’s of a 

LS system with a critically lapped LS regulator spool in the LS pump; (2) to develop the 

stability models of the LS system under different steady state operating conditions using 

the linearization method based on the knowledge about the SSOP of the LS system; and 

(3) to determine the dependence of the system stability on the SSOP of the LS system.  

The following section itemizes the achievements accomplished in meeting the 

objectives. 



 253 

• Steady state operating conditions and steady state models of the LS system 

In this research, the LS system equipped with a LS regulator with a critically 

lapped spool has been defined as operating in three different operating regions 

Conditions I, II, & III. Operating Condition I is the normal operating condition of the 

LS system. The boundary conditions of the three conditions can be given as 

 Condition I: 00 =rx ; 001 sys PPP << ; max0 spsp θθ <  and dLs PPP =− 00   (16.1) 

Condition II: 00 >rx ; 2001 )( ssys PPPP <=< ; max0 spsp θθ <  and dLs PPP >− 00  (16.2) 

Condition III: 00 <rx ; 00 =yP ; max0 spsp θθ =  and dLs PPP <− 00    (16.3) 

Under each operating condition, the model for solving for the SSOP was presented 

and experimentally verified. 

• Empirical orifice flow model at small openings 

In order to develop the transfer function of the LS system for stability analysis, it 

was necessary to obtain the flow gain and flow-pressure coefficient of the orifice 

flow rate for the LS regulator. The traditional form of the flow gain 

( PwCK dq ∆=
ρ
2

), and the flow-pressure coefficient (
P

wxC
K d

c ∆
=

ρ2
), for an orifice 

are not sufficiently accurate to use in the modeling of a LS system because of the 

following three factors: 

1. Cd may not be a constant but a function of the orifice Reynolds number (i.e. a 

function of the flow rate through orifice, orifice geometry and fluid 

temperature) because of laminar flow, or the transient region from laminar to 

turbulent flow status. Except for the generation of graphical representations 

[Merritt, 1967; Borghi et al, 1998; Vescovo et al, 2002; Ellman et al, 1996; 
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Gromala et al, 2002], an analytical expression of such a function has not been 

found. 

2. Traditionally used flow gain and flow-pressure coefficient models are 

discontinuous at the null position (x = 0) where the LS regulator operates at 

most time. 

3. The flow cross sectional area (wx) is usually inaccurate about the null 

position because of chamfers, clearances and other factors caused by 

machining limitations. 

These problems also exists when modeling other hydraulic valves which have the 

spool operating at the “null”  point, such as, pilot valves of two stage valves or 

compensators of pumps and motors.  

This research provides a closed form empirical model for Cd as a function of the 

Reynolds number which can be applied to different types of orifices (see Equation 

(4)1 in Appendix C). Based on this model, a technique to evaluate flow without 

having to use iteration (given an orifice area and pressure drop) is introduced. A 

novel modification to the flow cross-sectional area is introduced (see Equation (10) in 

Appendix D) and the resulting empirical closed form of the flow equation is 

presented (see Equation (14) in Appendix D). This closed form equation greatly 

facilitates the transient and steady state analysis of low flow regions at small or null 

point operating regions of the spool valve. The derived flow gain (Equation (15) in 

Appendix D) and the flow-pressure coefficient (Equation (16) in Appendix D) are 

reasonably accurate and no longer influenced by the aforementioned three factors. 

                                                 
1 The use of “ (4)”  rather than “ (C.4)”  for the equations in necessitated because the appendix is a reprint of 
the journal article.   
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Journal papers based on this particular research have now been published [Wu, et al, 

2002 and Wu, et al, 2003]. 

• Frequency response models of the LS system 

The transfer function of the flow control with the LS system is defined as (see Figure 

6.2) 

( ) ( )
( )sX

s
sF

φ=          (16.4) 

where the input signal, X, is the opening of the adjustable orifice.  The output signal, φ, 

is the motor’s rotary speed. The transfer functions for operating Conditions I, II and III 

are given by Equations (5.76), (5.80) and (5.82) respectively. These frequency response 

models in the low frequency regions have been experimentally verified. These transfer 

functions can be summarized as following: 

Condition I: The transfer function Equation (5.76) is 5th order and neglects the 

effects of system characteristic frequencies higher than 1000 rad/s of the LS pump. It 

can be used to investigate the stability of the LS system in the frequency range less than 

1000 rad/s. A complete 9th order transfer function can be used to determine the high 

frequency dynamic behavior of the LS pump caused by the LS spool with a high 

undamped natural frequency, ωr, (1954 rad/s). High frequency dynamic behavior cannot 

be identified with respect to the motor rotary speed due to the filter effects of the load 

inertia. 

Condition II: The 5th order transfer function Equation (5.80) reflects the dynamic 

behavior of the LS system in which the “charge orifice”  is fully opened (see Figure 

5.15). The LS pump dynamics are dominated by the pump pressure and are not affected 

by the LS path via GLs(s) and Gr(s) (compare Figures 5.16 and 5.10). This situation is 
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similar to the operation of a compensated pump/valve system in which the cut-off 

pressure of the compensated pump is Ps1 and the deadhead pressure is Ps2 (see Figure 

3.2). Therefore, this model can be applicable to a compensated pump/valve system. 

Condition III: The 3rd order transfer function Equation (5.82) reflects the operating 

behavior of the LS system in which the pump is fully stroked. The LS system is shown 

to be stable (see Appendix G). This condition is similar to that of a fixed displacement 

pump/valve system in which swash plate angle, θ, is fixed. Therefore, this model is 

applicable to a simple pump/valve system. 

16.1.2 The Pressure Compensated System 

In order to summarize the research achievements for the PC system, the objective 

associated with the PC system is restated. The objective was to analyze the steady state 

and dynamic performance of a typical PC system. The following section itemizes the 

achievements accomplished in meeting the objective. 

• Steady state operating conditions and steady state analysis of the PC system 

The PC system has been defined as operating in two different operating regions 

defined as operating Conditions A & B. Operating Condition A is a normal operating 

condition of the PC system while Condition B represents the situation in which the 

hydrostat orifice is fully opened. The boundary conditions of the two conditions can be 

determined by Equation (9.8). Equation (9.9) can also be used to solve for the SSOP of 

the PC system, xpc0. The intermediate pressure, Pm0, can be calculated using Equation 

(9.1). 
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The operating point, xpc0 and Pm0, has been measured on a typical PC valve and the 

measured xpc0 was compared to the theoretical prediction. The experimental result was 

consistence with the theoretical prediction. 

• Frequency response model of the PC system 

The PC system can be considered as an “equivalent orifice”  in which the flow gain, 

Gxv(s), and the flow-pressure coefficient, GpsL(s), are a function of the operating point 

and the input frequency of the adjustable orifice opening and the pressure drop across 

the PC system. Gxv(s) and GpsL(s) have been defined as the flow gain TF and flow-

pressure coefficient TF respectively. Gxv(s) is a “ low pass”  filter and GpsL(s) is a “high 

pass”  filter. 

• Criterions for optimized design of the PC system 

Based on the study of the steady state and dynamic behavior of the PC system, a PC 

system can be optimized. The objective of the optimization is to expand the bandwidth 

of the flow control, Gxv(s), and to decrease the gain of the flow-pressure coefficient TF, 

GpsL(s), at the low frequency region as much as possible. Equations (11.45) and (11.48) 

are used to in optimizing performance as a function of the damping orifice’s size and 

spring coefficient, etc. 

16.1.3 Load Sensing and Pressure Compensated System 

In order to summarize the research achievements for the LSPC system, the objective 

associated with the LSPC system is restated. The objective was to investigate the 

stability of the LSPC system which consists of both the LS and the PC system. The 

following section itemizes the accomplishments in meeting the objective. 

• Steady state operating conditions and steady state analysis of the LSPC system 
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The LSPC system has six different operating conditions which are all combinations 

of the LS system and PC system operating conditions. These operating conditions can be 

classified into two groups: Case 1 and Case 2. Case 1 given in Table 12.1 reflects the 

combinations at a typical design condition that Inequality (12.3) is true. Case 2 

represents combinations (B, E, F and D) of the LS system and PC system operating 

conditions in which Inequality (12.3) is false. Case 1 is an expected design condition, 

because the normal operating Condition A belongs to Case 1. When the adjustable 

orifice opening, xv, is smaller than xvc determined by Inequality (12.6), the LSPC system 

operates in Case 1. The load condition can be further used to determine which of 

Conditions A, B, C and D the LSPC system is operating in. 

• Frequency response model of the LSPC system 

The TF’s of the LSPC system are the same in form as the TF’s of the LS system, but 

with a replacement of the Kq and Kc by Gxv(s) and GpsL(s) of the PC system. When the 

simplified models of Gxv(s) and GpsL(s) (Equations (11.51) and (11.52)) are applied to 

the simplified TF’s of the LS system (Equations (5.76), (5.80) and (5.82)), the order and 

zero point locations of the frequency response models of the LSPC system and the LS 

system are the same, that is, 5th, 5th and 3rd order respectively. Only their poles are 

different. 

A dynamic analysis for the LSPC system using the above models was undertaken. A 

set of experiments were conducted in order to verify the main conclusions drawn from 

the dynamic analysis for the LSPC system. 
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16.2 Contributions (Summary) 

This Ph. D. research makes seven original contributions in the field of fluid power. 

They are: 

• An empirical model of an orifice discharge coefficient as a function of Reynolds 

number has been developed which is suitable for different types of orifices (sharp-

edged type, needle valve and long tube orifice) and for different flow conditions 

(laminar flow, turbulent flow and the transition region between them).  

• An analytical expression of the orifice flow model has also been developed which 

can facilitate the modeling and simulation of a complete hydraulic system with pilot 

stage valves or pump/motor compensators. 

• Three pressure compensated conditions (under-compensated, critically compensated 

and over-compensated conditions) of a PC flow control valve have been defined 

which provide a design criterion for valve designers. 

• Three steady state operating conditions (Condition I, Condition II and Condition III) 

for a typical LS system have been identified which can aid in the design of LS 

pumps. 

• A practical method of analyzing LS & LSPC systems has been provided which 

includes identifying all possible steady state operating conditions, solving for steady 

state operating point for each operating condition, justifying linearized models and 

illustrating the relative stability. This method can be used to design stable LS & 

LSPC system and to minimize the energy losses. 
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16.3 Main Conclusions 

Based on the extensive modeling and experimental verification of the describing 

equations for the LS and PC systems, the following conclusions are drawn: 

16.3.1 Load Sensing System 

For the load sensing system, it is concluded that: 

♦ The LS system usually operates in Condition I.  

♦ When the orifice opening is large, the LS system tends to operate in the region of 

Condition III.  

♦ When a runaway load occurs, the LS system tends to operate in the region of 

Condition II. 

♦ In the region of Condition I, as the adjustable orifice opening increases, the LS 

system tends to be unstable because a pair of poles near the undamped natural 

frequency of the LS spool (1954 rad/s) is in the right half side of s plane. The limit 

cycle oscillation caused by this instability cannot be observed in the motor rotary 

speed due to the “ low pass”  filtering function of the motor and load. 

♦ The LS system tends to be the low frequency oscillation as the adjustable orifice 

opening increases. 

♦ The damping orifice in the LS line can be used to stabilize the system but the 

bandwidth of the LS system is compromised. 

♦ The LS system is always unstable in the region of Condition II. 

♦ The LS system is always stable in the region of Condition III. 
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16.3.2 Pressure Compensated System 

For the pressure compensated system, it is concluded that: 

♦ When the PC system operates in the steady state operating Condition A, the 

hydrostat orifice is automatically adjusted.  

♦ Depending on the parameters of the PC system and the SSOP, the dynamic 

behavior of the PC system can be one of three dynamic operating conditions which 

are defined as the under-compensated, critically compensated and over-

compensated conditions. The criterion developed was expressed by Equation 

(11.48) 

♦ For the critically compensated condition ( ( )Lmpcffpc PPwkk −= 0 ), the flow rate 

through the PC system is completely independent of the pressure drop across the 

PC system. 

♦ For the under-compensated condition ( ( )Lmpcffpc PPwkk −> 0 ), the flow rate 

through the PC system increases as the pressure drop across the PC system 

increases. 

♦ For the over-compensated condition ( ( )Lmpcffpc PPwkk −< 0 ), the flow rate 

through the PC system decreases as the pressure drop across the PC system 

increases. 

♦ Usually, these three dynamic operating conditions are not of concern. However, 

when the PC system plays the role of both “ flow control”  and a “pressure sensing”  

in complex circuits such as the LSPC system, the three compensated conditions 

produce distinctly different consequences (for example, positive feedback or 

negative feedback). 
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16.3.3 Load Sensing and Pressure Compensated System 

For load sensing and pressure compensated system, it is concluded that: 

♦ The over-compensated PC condition always makes the LSPC system unstable. The 

LSPC system can be stable in the low frequency region provided a PC valve with 

the under-compensated condition is used. 

♦ There was no evident that the dynamic performance of the LS system was 

improved using a PC valve. Therefore, it is questionable that a PC valve can be 

applied to a LS system (creating the LSPC system) in order to improve the 

dynamic performance of the LS system. The exception is the case of a multiple-

load LS system where the PC valves are used to isolate the interaction between 

loads (refer to Chapter 1). 

16.4 Future Work and Recommendations 

In general, a LS system seems to be good compromise between energy saving, 

controllability, reliability, price and maintenance. It is necessary to further investigate 

and optimize the system performance of the LS system. There is a substantial amount of 

future work that could be conducted regarding this research. 

• It has been mentioned above that the actual LS system always uses a pressure 

regulator assembly which consists of a LS regulator and a pressure limiter. There is a 

region in which the pressure limiter and the regulator could operate together. This 

operating condition could be defined as the “ fourth”  operating condition of a 

practical LS system. Therefore, it is necessary to model and analyze this condition. 

• The contributions in this thesis has provided a practical and reliable method to 

determine the stability of a LS system and a LSPC system at any operating point. It 
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is possible to optimize the design of the LS system using these models in the future. 

• The models developed in this thesis could be extended to the case with an 

underlapped spool LS regulator. 

• Chapters 12 through 15 investigate the LSPC system from the point view of the flow 

control because only the transfer function, 
( )
( )sX

sφ
, was developed and analyzed. In 

fact, the main purpose for using the PC system in the LSPC system is to decrease the 

interaction between loads in a multi-load LSPC system. Therefore, more theoretical 

study is required. 
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Appendix A  Linearization of Non-Linear Hydraulic Systems 

In this appendix, the linearization process for a non-linear function and non-linear 

dynamic system are considered.  The approach is to present the general form and then 

illustrate the procedure with common examples found in hydraulic applications.   

A.1 Linearization of a Non-Linear Function 

Consider the relationship where y is a non-linear function of x, ( )xfy = .  This non-

linear function can be expressed by the Taylor series for f(x) as 

  L+∆+∆+== 2
2

2

0

00
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dx
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dx

df
xfxfy

xx

   (A.1) 

Usually, the high order terms are negligible about the steady state operating points as 

long as the higher order derivatives are not infinite.  Thus Equation (A.1) simplifies to 

  x
dx

df
xfy

x

∆+=
0

)( 0  

or  ( ) xxKy ∆=∆ 0         (A.2) 

where ( )0xfyy −=∆  and ( )
0

0
xdx

df
xK = .  The linearization can be generally represented 

as illustrated in Figure A.1.  Equation (A.2) is the straight line in Figure A.1 and is 

tangent to curve f(x) at (x0,y0).  Within a small range about (x0,y0), there is little error 

between the straight line and the curve.  It may also be that the output, y, of a component 

is a non-linear function of two inputs or two independent variables.  Similarly, for the 

case where y is a non-linear function of two variables, this can be expressed as 



 270 

L+∆
∂
∂+∆∆

∂∂
∂+∆

∂
∂+

∆
∂
∂+∆

∂
∂+==

2

0,
2

2

0,

2
2

0,
2

2

,,
00

000

0000

),(),(

z
z

f
zx

zx

f
x

x

f

z
z

f
x

x

f
zxfzxfy

zxzxzx

zxzx
   (A.3) 

For small excursions about a steady state operating point [(x0, z0), y0], the items with 

higher order derivatives are negligible and Equation (A.3) can be simplified to 

  ( ) ( ) zzxKxzxKy ∆+∆=∆ 002001 ,,      (A.4) 

where ( )00 , zxfyy −=∆ ,
( )00 ,

001 ),(
zxx

f
zxK

∂
∂= , 

( )00 ,
002 ),(

zxz

f
zxK

∂
∂=  

Consider an example involving a hydraulic system in which valve flow, Q, is a 

function of valve opening, x, and the pressure drop, P, across the valve orifice. 

Mathematically, this is given by 

  ( ) PwxCPxfQ d ρ
2

, ==       (A.5) 

where w is the width of rectangular-shaped orifice, Cd  the discharge coefficient of the 

valve orifice and ρ the density of fluid oil.  The linearization model for small variations 

x∆  and P∆  about a steady state operating point (x0, P0) is 

  ( ) ( ) PPxKxPxKQ cq ∆+∆=∆ 0000 ,,      (A.6) 
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Figure A.1 Linearization of a Non-Linear Function 
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where ( ) ( ) 0000

2
, PwCPKPxK dqq ρ

==  is the flow gain and ( )
0

0
00

2
,

P

wxC
PxK d

c ρ
=  is 

the flow-pressure coefficient of the valve orifice. 

A.2 Linearization of a Simple Non-Linear Dynamic System 

A non-linear dynamic system may consist of one or more non-linear components 

with dynamic parameters.  The generic form of the model of a simple non-linear system 

can be expressed as 

  0),,( =uxxf &         (A.7) 

where x is the state variable, x
�

 the time derivative of state variable and u is the input 

variable.  Linearization of Equation (A.7) (retaining only first order terms) gives 
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or 

uKxKx ux ∆+∆=∆&        (A.9) 

where the linearization coefficients are 
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, the system is no longer a dynamic system and this 

linearization has no physical meaning. 

Consider the simple hydraulic system shown in Figure A.2.  Assume that the 

upstream pressure, Ps, of the flow control orifice is constant.  The damping coefficient, 
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Bm, of the load is also assumed constant.  The inertia of the motor and load and the 

leakage are considered to be negligible.  The dynamic equations of the system can thus 

be expressed by 

( )Lsd PPwxCQ −=
ρ
2

      (A.10) 

( )θβ
&&

mL DQ
V

P −=        (A.11) 

Lmm PDB =θ&         (A.12) 

where w, Cd and ρ are explained previously in Equation (A.5).  β is the bulk modulus of 

hydraulic oil, Dm the volumetric displacement of the motor and V the volume of the inlet 

chamber of the motor. 

Substituting Equations (A.10) and (A.12) into Equation (A.11), a non-linear 

dynamic equation is obtained given by 
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Figure A.2 A Valve- Motor Control System 
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where load pressure, PL, is the state variable, LP& is the time derivative of the state 

variable and x is the control input to the system.  The linearization model of the non-

linear dynamic system can be described as 

  xKPKP xLpL ∆+∆=∆ &       (A.14) 

where  
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A.3 Generic Formulation of the Linearization of a Non-Linear Dynamic System 

Most control systems in industry are non-linear and complex, such as LSPC 

hydraulic systems, robot control systems, etc.  The system variables and inputs are 

sometimes coupled.  The motion of a system may be described by more than one non-

linear equation.  For example, it could be described as 
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In Equations (A.17) and (A.18), n is the number of system dynamic equations or 

state variables, xi (i=1 ..n), m is the number of input variables, ui (i=1 ..m), and p is the 

number of the output variable yi (i=1 ..p).  The system represented by Equations (A.17) 

and (A.18) is defined as multi-input, multi-output (MIMO) system.  The system control 

Equations (A.17) and (A.18) can be re-written in a matrix format as 

 ( ) 0,, =UXXF &         (A.19) 

 ( )UXXgY ,,&=         (A.20) 

Equation (A.19) and (A.20) can be linearized as 

 0=∆
∂
∂+∆

∂
∂+∆

∂
∂

U
U

F
X

X

F
X

X

F

opopop

&

&
     (A.21) 

 U
U

g
X

X

g
X

X

g
Y

opopop

∆
∂
∂+∆

∂
∂+∆

∂
∂=∆ &

&
     (A.22) 

where 
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As long as the inverse matrix of 
opX

F
&∂

∂
exists, the linearized Equations (A.21) and 

(A.22) can be expressed in a generic form as 

  UBXAX ∆+∆=∆ &        (A.23) 
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where  

  )(

1

nn
X

F

X

F
A

opop

×
∂
∂







∂
∂=

−

&
     (A.25) 

  )(

1

mn
U

F

X

F
B

opop

×
∂
∂







∂
∂=

−

&
     (A.26) 

  )1( nA
X

g

X

g
C

opop

×



⋅

∂
∂+

∂
∂=

&
     (A.27) 

  )1( mB
X

g

U

g
D

opop

×



⋅

∂
∂+

∂
∂=

&
     (A.28) 



 276 

For convenience, the “∆”  is often dropped from Equations (A.22) and (A.23) 

yielding 

BUAXX +=&        (A.29) 

DUCXY +=        (A.30) 

Equations (A.29) and (A.30) are a common generalized form of the state space 

model of dynamic systems.  In this case, the matrixes A, B, C, and D are dependent on 

the steady state operating point.  Within small variations about a particular steady state 

operating point, these parameter matrixes can be regarded as being invariant.  Thus, a 

complex non-linear system can be subjected to linear system theory, including frequency 

domain analysis. 

Equations (A.29) and (A.30) can usually be used to analyze the dynamic behavior in 

the frequency domain. Matlab software has provided many functions which can be 

directly used for Equations (A.29) and (A.30) to illustrate the result of the frequency 

response in the way of a Bode diagram or a root locus. This is a direct method. Another 

method is the traditional frequency analysis method  transfer function (TF) analysis. 

The second method requires (1) to do the Laplace transform to Equations (A.29) and 

(A.30); (2) to present all Laplace transform equations in block diagrams; (3) to simplify 

these block diagrams, if necessary; (4) to develop the TF of the system; and (5) to 

illustrate the TF in a Bode diagram or the root locus. It seems that, comparing to the first 

method, the second method has some extra steps ((1), (2), (3) and (4)). In fact, the 

second method can help to provide a thorough understanding and subsequent 

simplification for the physical system, especially for systems with high non-linearities.  

Therefore, this thesis will use the second method. 



 277 

Appendix B Calibration of Measurement System of the Load Sensing 

System 

B.1 Pressure sensing calibrationmeasurement of pump, control and load 

pressures 

Three pressures (Ps, Py, and PL) are measured using three sets of variable inductance 

type of pressure transducers (Model: DP15 differential pressure transducer) and 

specialized signal conditioning amplifiers by Validyne Engineering Corporation (Model: 

CD15 sine wave carrier demodulator).  The signal conditioner applies a 5kHz sinusoidal 

wave excitation to two inductance ratio arms of the pressure transducer. The resulting 

output of the transducer is demodulated and amplified using the integrated circuit.  The 

DC output is obtained from an active filter circuit and gives a uniform response from 

steady state to 1000 Hz. The DC output is read by the DAQ system directly connected to 

computer. 

The system is calibrated using a deadweight tester [model 5525]. Selected weights 

(representing pressure) are applied to the tester and the output voltage recorded. The 

results of this procedure are shown for one transducer in Figure B.1. The calibration 

curve shown is, in fact, four calibration curves in which two are obtained before the 

experiment was started and the other two after the tests was completed. The calibration 

curve shown in Figure B.1 indicates that the measurement gain is 1V per 300 psi. The 

scatter associated with the four measurements is shown on an expended scale on Figure 

B.1. The scatter lies within a range of ±0.01V which corresponds to an error band of 
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±0.02MPa. The calibration also indicates that no difference exists in the calibration 

before and after the experiments were conducted. 

B.2 Angular position transducer calibrationmeasurements of the pump swash plate 

angle 

The swash plate angle is measured by a RVDT (Rotary Variable Differential 

Transformer, R30D). The output of the transducer produces a voltage whose magnitude 

varies linearly with the angular position of the shaft. The DC-operated RVDT accepts a 

DC input voltage that is internally converted to an AC carrier signal to excite the 

primary coil. An integral demodulator and filter converts the signal which is 

subsequently amplified.  

The calibration of the transducer is based on data provided by the manufacturer. 

Calibration in the laboratory was not possible due to the precision of the calibration 
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Figure B.1 Calibration of one of the pressure transducers 
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equipment which would be required to do this. Such equipment was not available in our 

laboratory.  The RVDT operates within a range of ± 40° with a linearity (the maximum 

deviation from a straight line fit over the full range) less than ±0.5 percent. However, 

over smaller angular displacements, linearity improves substantially. For this 

application, the maximum of the swash plate angle is 18° (0.314 radian) when the pump 

is fully stroked.  The calibration of this transducer over the full range is shown in Figure 

B.2.  The calibration error which is expressed as a function of deviation of the 

experimental points from a least square best fit of these points is also shown in this 

figure. The maximum deviation at any point is within ±0.04V and the maximum 

deviation in the range of operation is less than ±0.01V. 
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Figure B.2 Calibration curve of the RVDT (R30D)--angular position 

transducer 
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B.3 Proximitor sensor calibration  measurement of the LS spool displacement 

The spool displacement of the LS pressure regulator is measured by a proximitor 

which consists of a signal conditioning circuit (model: Bently Proximitor 3106) and an 

eddy current probe (model: Bently Probe 306J). The Bently Probe is mounted at the end 

of the LS spool sleeve and is driven by the signal from the Proximitor (see Figure B.3). 

The displacement measurement is derived directly from the end of the transducer to the 

nearest conductive body (spool) facing the probe. The output voltage is highest at high 

gap distances, decreasing toward a zero level as the gap decreases. The output voltage 

readings are not affected by the gap medium, in this case — hydraulic oil. Installation of 

the probe and the amount of the gap spacing for the null position of the spool is based on 

a trade-off between the resolution of the transducer and probe safety. If the gap between 

the probe and spool end is too large (to protect the probe from contacting the spool 

under any circumstances), the probe would operate in a non-linear (saturation) region 

where the signal produced by the spool motion is almost independent of the spool 

displacement. To obtain the best probe sensitivity, the gap should be small. But the spool 

would contact the probe during expected oscillations.  Based on an assumed maximum 

displacement of the spool and the actual null position of the spool, the gap was set to be 

1.6 mm. 

Before calibrating the probe (Figure B.3), the probe must be seated into the casing by 

pressurizing the probe at port Ps.  When the system was pressurized for the first time, 

some plastic and elastic deformation in the seat between the probe and the casing may be 

expected. Since plastic deformation occurs only once, any subsequent deformation upon 

pressurization would be elastic in behavior.  The comparison of experiments before 
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seating and after (fist time pressurization) indicated that the plastic deformation was in 

the order of 0.29 mm. 

Two possible factors might affect the elastic deformation of the probe; the pressure, 

Ps, and temperature, T, of the hydraulic oil. Increasing Ps could result in a small 

longitudinal elastic deformation of the probe head and spool metal. To determine this, 

another experiment using a fixed spool was conducted to check the effect of Ps. The 

results of this experiment indicated that a small elastic deformation did exist with a 

pressure sensitivity of 0.002 mm/MPa. Thus, the maximum elastic deformation at 

10MPa was 0.02mm which is only a 1% error over the expected measurement range of 

±1mm. 

Temperature can affect the measurement of the spool displacement via the thermal 

expansion of the spool metal. A calculation indicated that the maximum expansion of 

the spool (for the length of 50mm) with 25 ∼ 45°C is 0.01 mm which is only about 0.5% 

of the measurement range of ±1mm.  Therefore, the effects of the pressure and 

temperature on the measurement of the spool position were considered negligible. 

Figure B.4 shows the calibration of the measurement system for LS spool 

displacement.  The null position was considered as the origin point of coordinate xr. It 

was identified visually.  The calibration curve of Figure B.4 presents a significant 
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a a 

 
Figure B.3 Measurement of the LS spool displacement 
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nonlinearity. Normally, the spool operates at the null position where the output voltage 

of the proximitor is about –3.64 V and the sensitivity is 0.577 V/mm.  The fitting error 

of the polynomial function of the spool displacement is also shown in the secondary 

axis. The deviation is within ±0.5mV. 

Because the null point was done visually, it is quite possible that a “bias”  could exist 

in the actual calculation curve. 
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Appendix C An Empirical Discharge Coefficient Model for Orifice Flow 

(Reprinted from International Journal of Fluid Power, Vol. 3, No. 3) 
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Abstract 
 

In fluid power systems, flow control is mainly achieved by throttling the flow across valve orifices. Lumped 
parameter models are generally used to model the flow in these systems. The basic orifice flow equation, derived 
from Bernoulli’s equation of flow, is proportional to the orifice sectional area and the square root of the pressure drop 
and is used to model the orifice coefficient of proportionality. The discharge coefficient, Cd, is often modeled as 
being constant in value, independent of Reynolds number. 

However, for very small orifice openings, Cd varies significantly and can result in substantial error if assumed 
constant. In this situation, modelers usually revert to graphs or look–up tables to determine Cd.  This paper provides a 
closed form model for Cd as a function of the Reynolds number which can be applied to different types of orifices. 
Based on this model, a technique to evaluate flow given an orifice area and pressure drop without having to use 
iteration is introduced. 

 
Keywords: fluid power, hydraulic, flow control, orifice equation, discharge coefficient, Reynolds number 
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1   Introduction 
 
The well known equation of the volumetric flow 

rate through an orifice (Fig. 1) is derived from 
Bernoulli’s equation by assuming (1) an 
incompressible fluid and (2) turbulent flow as 

( )vcud

2
PPACQ −=

ρ
   (1) 

where  

( )2
u

2
c

cv
d

1 AAC

CC
C

−
=    (2) 

Cv: flow velocity coefficient (approximately 0.98). 
Cc: area contraction coefficient (equal to AAvc

). 

For sharp-edged orifices, it is 0.611. 
Avc, the cross-sectional area at vena contracta. 
Au, the cross-sectional area at upstream. 
Pu, the pressure at upstream. 
Pvc, the pressure at vena contracta. 

Because Au is much larger than A, the discharge 
coefficient, 

dC , is almost equal to
cvCC . 

Because in many situations, the flow through an 
orifice is turbulent, the discharge coefficient, Cd, is 
commonly considered as a constant. Application of Eq. 
1 can also be extended to the case of laminar flow. In 
this case, the discharge coefficient is a function of the 
Reynolds number as well as the orifice geometry and is 
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Fig. 1: Flow through a sharp-edged orifice 
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usually determined by experimental methods and 
presented graphically [Merritt, 1967]. Viall et al [2000] 
experimentally determined the discharge coefficient of 
a typical spool valve. Borghi et al [1998] and Vescovo 
et al [2002] employed computational fluid dynamics 
(CFD) models to numerically compute the discharge 
coefficient and compared the computational and 
experimental results. None of these studies or other 
CFD studies [Ellman et al, 1996; Gromala et al, 2002], 
etc. developed a functional relationship between the 
discharge coefficient and Reynolds number. A main 
reason is that the Reynolds number also depends on the 
flow rate requiring an iterative numerical solution 
[Miller, 1996]. 

This paper provides an empirical model of the 
discharge coefficient with respect to square root of 
Reynolds number. This empirical model can be directly 
applied to traditional graphically-expressed functions, 

( )Red fC = , for sharp-edged orifices (such as that 

provided by Merritt [1967]), or to experimentally 
derived discharge coefficients (such as that provided in 
this paper). The paper will also consider the 
determination of parameters in the generalized 
empirical model for an orifice. Finally, a new 
calculation method for the flow rate, which does not 
need iteration, with the empirical model is developed. 
 
2 Empirical modelling of discharge 
coefficient for orifices 

 
From the literature, it is well known that there is a 

transition in a plot of discharge coefficient vs. Re  
from being proportional to the square root of the 
Reynolds number, Re, at low Reynolds number, to 
being constant at high Re. Although the curve shapes 
vary as the orifice geometry varies, they can be 
approximated by an empirical model as an exponential 
function, i.e: 
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where 
∞dC is the turbulent discharge coefficient for a 

specific orifice. δ is a laminar discharge coefficient, 
and is similar to the coefficient introduced graphically 
by Merritt [1967]. 

Eq. 3 is simple and the two parameters have a 
clear physical interpretation. 

∞dC is the turbulent 

discharge coefficient because Cd converges to 
∞dC for 

high Reynolds numbers. δ is called as “ laminar 
discharge coefficient”  because Eq. 3 can be 
approximated by Red δ=C  at very small Reynolds 

numbers ( δ=
∂
∂

=0Re

d

Re

C ). However, Eq. 3 cannot 

always be satisfied for a variety of orifices with 
different geometries, especially when fitting the 
transition from the laminar flow to turbulent flow. 
Therefore, another form of the discharge coefficient is 
proposed as 

�
�

�

�

	
	




�

++= ∞∞
−−

∞

ReRe

dd
d

2

d

1

1 CC beaeCC
δδ

 (4) 

where the parameters, a, b,
1δ  and 

2δ  are specific flow 

dependent coefficients to be determined. Eq. 4 can be 
applied to most types of orifice.  

Three types of orifices with the different geometries 
shown in Fig. 2 are modeled using the generalized 
empirical model (Eq. 4). The sharp-edged orifice (Fig. 
2(a)) has zero length and near 180° trumpet mouth 
downstream. The spool orifice (Fig. 2(b)) has a 90° 
downstream mouth. The needle orifice (Fig. 2(c)) has a 
downstream mouth less than 90°. The shape of 
discharge coefficient curves for each would be 
different and it is now necessary to consider the 
application of the empirical model (Eq. 4) to these 
typical orifices. 

 
2.1 Application of the empirical model to typical 
curve of discharge coefficient 

 
Merritt [1967] has presented a “smooth”  discharge 

coefficient curve with respect to square root of 
Reynolds number for a typical sharp-edged orifice 
(Fig. 2(a)). This smooth curve has been generated from 
experimental data. For this curve, the parameters, a, 
b,

1δ  and 
2δ  in Eq. 4 can be determined using the 

following mathematical manipulation. The laminar 
discharge coefficient, δ , the turbulent discharge 
coefficient, 

∞dC , and the maximum discharge 

coefficient, Cdm, at a specific Reynolds number, Rem, 
can be found by applying an appropriate measurement 
on a given curve. The four parameters, a, b, 

1δ , and 
2δ  

can be solved by applying the following four 
conditions common to most types of orifices; 
1. Initial condition. 

01
0Red =++=

=
baC    (5) 

2. Laminar discharge coefficient condition: 

δδδ =−−=
∂
∂

=
21

0Re

d

Re
ba

C   (6) 

 

 
(a) Sharp-edged        (b) Sharp-edged      (c) Needle valve  
     Orifice                       spool orifice            orifice 

Fig. 2: Three types of orifice 
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For a sharp edged orifice, δ ≈ 0.2. 
3. Maximum value conditions 
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�
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−−

∞
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d

2
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d

1 ReRe

ddm 1 CC beaeCC
δδ

 (7) 

and 
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Re
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2
m

d

1
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Re

2
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Re
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CC ebea
C

δδ

δδ  (8) 

Eqs. 5 through 8 can be solved to determine a, b, 

1δ , and 
2δ . These equations can be simplified into a 

non-linear algebraic equation of δ1 as 
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where 
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 (10) 
Eqs.9 and 10 can be solved numerically. Parameters, a 
and b, can be determined by 

12

2

δδ
δδ

−
−

=a     (11) 

21

1

δδ
δδ

−
−

=b     (12) 

Note that a maximum value of discharge coefficient 
does not always exist in the transition region from the 
laminar to the turbulent flow. In this case, Rem can be 
considered to be an intersecting point of two asymptote 
lines for the laminar and turbulent flow regions. Thus, 
the right hand side of Eq. 8 would not be zero, but 
some finite value, 

dmC� . Eqs. 9 and 10 then become 
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and 
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The method is applied to the typical discharge 
coefficient curve given by Merritt [1967] (pp44). The 
input and output parameters for the model calculations 
are listed in Table 1.  

 
 
 

Table 1 Empirical model parameters for a typical 
coefficient curve 

∞dC  δ Cdm mRe  Input 
Parameters 0.61 0.23 0.69 11 

A b δ1 δ2 Output 
Parameters 1.07 -2.07 0.077 0.15 

Using these parameters, the empirical model of the 
discharge coefficient for Merritt’ s curve becomes 

( )Re246.0Re126.0
d 07.207.1161.0 −− −+= eeC  (15)  

and is shown in Fig. 3. Excellent agreement between 
the original curve and the empirical model predictions 
is obtained. 
 
2.2 Application of the empirical model to 
experimental data plot of discharge coefficient 
 

Although Fig. 3 is a commonly used plot of 
discharge coefficient for a sharp-edged orifice, in 
practice, the clearance, chamfer, and other factors of 
valves (due to machining accuracy limitation) generate 
a different shaped curve. Thus, it is necessary to 
measure the discharge coefficient for the orifice of 
specific valves. The method of the experimental 
determination of the discharge coefficient, Cd, and the 
corresponding Reynolds number, Re, for an orifice are 
also based on the general flow equations:  

 

PA

Q
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∆
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ρ
2

d

   (16) 

µ

ρ h

Re
DA

Q 	
��
�
=    (17) 

where Q is the flow rate through the orifice, A is the 
cross-sectional area of the orifice, ∆P is the pressure 
drop cross the orifice, Dh is the hydraulic diameter, ρ is 
the fluid density and µ is the fluid absolute viscosity.  

The experimental hydraulic circuit was so designed 
such that the pressure differential, ∆P, of the tested 
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Fig. 3: Comparison between typical discharge 

coefficient and the empirical model predictions 
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orifice could be adjusted. In order to create a variety of 
flow conditions, each of the orifice opening, x, the fluid 
temperature, T, and the pressure differential, ∆P, was 
set at different levels to carry out the experiment. The 
purpose of varying the fluid temperature, T, was to 
change in a controlled form, the fluid absolute 
viscosity, µ.  The three variables were selected so that 
the orifice flow condition could span the laminar, the 
transient and turbulent regions. For these different flow 
conditions through the orifice, Q, ∆P, x, and T, are 
measurable. A and Dh can be calculated from x, based 
on the orifice geometry. Consequently, the discharge 
coefficient, Cd, and the Reynolds number, Re, can be 
determined from Eqs. 16 and 17. 

Experimental results for the discharge coefficient 
for a specific sharp-edged spool orifice used in the 
study are given in Fig. 4. The data was obtained for the 
fixed orifice of a PC valve manufactured by Brand 
Hydraulics Inc (model: EFC12-10-12). 

The discharge coefficient of a typical needle valve 
orifice was also experimentally determined (Fig.5) for 
a ���  needle valve manufactured by Deltrol Fluid Prod 
(Model: EN-35). 

Consider the application of the empirical model to 
these two experimental results. It is noted that the 

mathematical method introduced in Section 2.1 cannot 
be applied to these experimental data because the input 
parameters, 

∞dC , δ , 
mRe , Cdm, and 

dmC� , cannot be 

accurately measured from the plot of the experimental 
data. Therefore, an alternate technical method is 
introduced to evaluate the various coefficients from 
experimental data with normal scatter. 

This alternative method of obtaining model 
coefficients, 

∞dC , a, b, 
1δ , and 

2δ , is nothing more than 

the direct application of curve fitting. In this case, the 
typical parameters, 

∞dC , 
dmC , δ , Rem, and 

dmC�  do not 

need to be known. The solution of 
∞dC , a, b, 

1δ , and 

2δ  should make the following objective function a 

minimum. 
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where wi is the weight coefficient at Rei. Cdi is the 
experimental discharge coefficient at the point Rei. The 
optimal method of searching multi-parameters is 
suitable for solving

∞dC , a, b, 
1δ , and 

2δ  from the direct 

experimental results. It must be recognized, however, 
that a significant amount of computation is necessary 
because the curve fit using Eq.18 includes five 
unknown parameters. Models generated using the 
curve fitting method (as well as the predicted values) 
were also illustrated in Figs. 4 and 5. 
 
3 Application in fluid power simulations 

 
In section 2 of this paper, a method has been 

presented for developing equations for directly 
calculating Cd as a function of Re from experimental 
data which has been smoothed or with experimental 
scatter.  However, to make use of the curve for 
modelling purposes, iterative procedures must be used 
because the Reynolds number is a function of flow 
rate. This can be observed from the equation relating 
flow to pressure drop across an orifice obtained by 
substituting Eq. 4 into the general flow Eq. 1 which 
gives 
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and the equation for Reynolds number expressed as a 
function of flow rate by 

µ

ρ h

Re
DA

Q ������
=    (20) 

Consider a rectangular orifice of width, w, and 
opening of a small distance, x, where xw >> . Re can 
be expressed as 
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Fig. 4: Comparison between the measured results and 

empirical model of the discharge coefficient for 
a typical sharp-edged spool orifice 
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µ
ρ

w

Q2
Re =     (21) 

Substituting Eq. 21 into Eq.19 gives 
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where PxX ∆=
ρ
2                                                   (23) 

An iterative solution to this equation is required for 
all combinations of the variable, X. This means that, for 
each time step in a simulation, a series of interactions 
must be implemented as follows. Given a specific 
value for X, the initial flow rate, Q0, is calculated using 
the discharge coefficient for large Reynolds numbers, 

∞dC . This would be used to calculate an initial 

Reynolds number, Re0 which would be used to 
calculate a new Cd, and subsequently, a new Q. The 
process is repeated until the difference in calculated 
flow rate between iterations reaches some accepted 
value. 

Alternatively, for a specific value of X, it is possible 
to solve for Cd “off line”  before the simulation is in fact 
started. This requires that the converged value of Cd be 
plotted as a function of some convenient variable. In 
this work, the initial Reynolds number Re0 is used. This 
essentially eliminates the need for time consuming 
iterative solutions during dynamic simulation. The 
process requires calculating Re0 off line (from X), using 
iterations to find the converged value for Cd and then 
plotting Cd vs. 

0Re . To use this new plot, either a 

look-up table or a functional empirical relationship can 
be used. 

To demonstrate this, the off line process was 
applied to the sharp-edged orifice of Merritt [1967]. 
This is shown in Fig. 6. It is noted worthy that the 
shape of the curve is similar to the original Cd vs. Re  
curve. Thus Eq. 4 could be used to approximate the 
curve with reasonable accuracy. 

 

4 Conclusions 
 

This paper provides an empirical discharge 
coefficient model of flow rate through orifices. It can 
be applied to a variety of orifices with different 
geometries. Two approaches for solving the parameters 
in the empirical model are also developed. They can be 
applied to the “smooth”  representations of the 
discharge coefficient and to experimentally determined 
Cd (with scatter) as a function of the Reynolds number. 
A simple method of using an off line value of Cd vs. 
the initial Reynolds numbers is introduced for use in 
modelling applications. This reduces the need for on 
line iterations. As a final note, the closed form of 
discharge coefficient as a function of Reynolds number 
makes it possible to mathematically manipulate the 
orifice flow rate equation, such as differentiating the 
flow rate to obtain the analytical expression of the flow 
gain, Kq, and flow-pressure coefficient, Kc. This is 
extremely important in determining stability criterion 
using small signal analysis of hydraulic systems at 
small orifice openings. 

 
Nomenclature 
 
A orifice cross-sectional area            [m2] 
a, b coefficients in the empirical model 
Au flow cross-sectional area at upstream           [m2] 
Avc flow cross-sectional area at vena contracta  [m2] 
Cc area contraction coefficient 
Cd discharge coefficient 

∞dC  turbulent discharge coefficient 

Cdm maximum of discharge coefficient 

dmC�  tangent of discharge coefficient at 
mRe  

Cv velocity coefficient 
Dh hydraulic diameter              [m] 
∆P pressure drop cross orifice            [Pa] 
Pd downstream pressure            [Pa] 
Pu upstream pressure             [Pa] 
Pvc pressure at vena contracta            [Pa] 
Q volumetric flow rate         [m3/s] 
Q0 initial volumetric flow rate calculated from the 

turbulent discharge coefficient, 
∞dC .        [m3/s] 

Re Reynolds number 
Rem Reynolds number at maximum value or a 

specific point 
Re initial Reynolds number calculated from Q0 

associated with the turbulent discharge 
coefficient, 

∞dC . 

S orifice perimeter              [m] 
w rectangular orifice width             [m] 
wi weight  
X variable associated with x, ∆P and ρ. 
x orifice opening              [m] 
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Fig. 6: The modified discharge coefficient of the 
sharp-edged orifice 
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δ  laminar discharge coefficient 

21,δδ  attenuation coefficients of the empirical model 

µ absolute viscosity           [Pas] 
ρ fluid density        [kg/m³] 
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Modelling of Orifice Flow Rate at Very Small Openings 
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Abstract 
 

Modelling hydraulic control systems that contain flow modulation valves is highly influenced by the accuracy of the 
equation describing flow through an orifice. Classically, the basic orifice flow equation is expressed as the product of 
cross-sectional area, the square root of the pressure drop across the orifice and a “ flow discharge coefficient” , which is 
often assumed constant. However, at small Reynolds numbers (such the case of valve pilot stage orifices), the discharge 
coefficient of the flow equation is not constant. Further, the relationship between the flow cross-sectional area and the 
orifice opening are extremely complex due to clearances, chamfers, and other factors as a result of machining 
limitations. In this work, a novel modification to the flow cross-sectional area is introduced and the resulting closed 
form of the flow equation is presented. As a secondary benefit, an analytical form of the orifice flow gain and flow-
pressure coefficient can be obtained. This closed form equation greatly facilitates the transient and steady state analysis 
of low flow regions at small or null point operating regions of spool valve. 

 
Keywords: pilot valve, flow control, orifice, flow rate equation, discharge coefficient, Reynolds number 

 
1      Introduction 

 
In many fluid power applications, spool valves are 

used to modulate flow to a load. This flow can be quite 
large and demonstrate turbulent behavior. Under these 
conditions, the discharge coefficient is known to be 
constant and independent of the Reynolds number. 
However in other applications, the flow through the 
valve can be very small and show a strong dependency 
on the Reynolds number. Such applications of low 
flow rate are often found in pilot valves of two stage 
valves or in compensators of pumps and motors. For 
these kinds of applications, it is very difficult to model 
the flow rate because the flow cross-sectional area 
around the null position often cannot be exactly 
defined or because the flow may not be turbulent.  Due 
to these difficulties, other means such as experimental 
techniques are often used to model the flow (Bitner 
(1986)).  Chaimowitsch (1967) developed a flow 
model for a rectangular orifice as a function of pressure 
drop and geometry parameters (clearance, chamfer 
angle, openings, the maximum lap, etc.). The model is 
difficult to use due to its extremely complex form. 
Therefore, an accurate and relatively simple analytical 

expression of flow as a function of orifice geometry 
and pressure drop is absolutely essential in order to 
develop a complete dynamic model of any hydraulic 
control system. 

Consider the classical square-type orifice flow 
equation. As derived from Bernoulli’ s equation, flow is 
proportional to the product of the orifice width, the 
orifice opening, the square root of the pressure drop 
and a flow coefficient which is defined as the discharge 
coefficient. The equation is derived by assuming the 
fluid is inviscid, incompressible, one dimensional and 
turbulent. Thus, 

PwxCQ d ∆=
ρ
2     (1) 

In most applications, for large Reynolds numbers, Cd, 
is modeled as being constant. Merritt (1967) suggests 
that the application of the general turbulent flow 
equation (Eq.1) can also be extended to the case of 
laminar flow. However, the discharge coefficient, Cd, is 
now a function of the Reynolds number, as well as the 
orifice geometry. Cd is usually determined 
experimentally and presented graphically. However, in 
Wu (2002), a closed form model of the discharge 
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coefficient was developed for different types of orifice 
geometries. This closed form expression for a square-
type orifice is 

PwxbeaeCQ dd CC
d ∆�

�

�

�

�
�

�

�

++= ∞∞
−−

∞ ρ

δδ
2

1
ReRe 21  (2) 

The advantage of Eq.2 is that it is possible to 
differentiate the flow rate to obtain flow gain, 

x

Q
K q ∂

∂= , 

and flow-pressure coefficient, 
P

Q
K c ∂

∂= , for use in 

transient and stability studies.  Palmberg (1985) and 
Wu (2002) showed that stability in a load sensing 
system is influenced by the parameters Kq and Kc, 
which are important factors in determining the overall 
pump gain and dynamic behavior of the pump.  Others 
(Krus (1988), Lantto (1990, 1991) and Peterson 
(1996)) have also shown that stability is influenced by 
overall pump gain. 

At small orifice openings around the null point, 
Eqs.1 and 2 are often invalid. This is because the actual 
flow cross-sectional area, A, is not defined due to 
clearances, chamfers and other factors which result 
from machining limitations. Fig.1 shows a comparative 
plot of an ideal flow rate based on Eqs.1 or 2 and a 
measured flow rate about the null point. It is evident 
that a significant error between the measured and ideal 
flow does occur at the null position. Further, for the 
curve illustrated in this figure, the flow gain, which 
from Eqs.1 or 2 should be constant for x > 0, is not 
constant in actual practice. For x < 0, the theoretical 
flow gain is zero, but in actual practice is still a 
positive, finite value. Thus, it is necessary to develop 
an empirical expression that will approximate the 
typical flow rate for – α < x < α. To do this, it is 
necessary to accurately model the orifice area in some 
empirical function.  

The objective of this paper is to present an 
empirically modified closed form of the flow cross-
sectional area, A, which would replace wx in Eq.2 and 
which could be used to accurately model the flow 
equation in the null region. This empirical form will 
allow the flow orifice equation to be valid at small 

openings (positive and negative), as well as large spool 
displacements, x. 

 
2      Modelling of the cross-sectional area of an 
orifice 

 
The model of flow cross-sectional area of an 

orifice, A(x), is highly dependent on the geometry of 
the orifice (often defined as “square” , “crescent” , 
“short slot tube”  etc). This study assumes that the 
orifice is rectangular, which is the most common types. 
Other types can be modeled in a similar fashion. Fig.2 
illustrates a typical rectangular orifice in a spool valve. 
At the null position, the existence of clearances result 
in null position flow; thus at x = 0, an equivalent flow 
cross-sectional area must be defined. In the absence of 
any chamfers on the land, the cross-sectional area is 

( )
4

2
1

2
2 πDD

A
−

=     (3) 

where D1 and D2 are the diameters of the spool and 
sleeve respectively. For convenience, the cross-
sectional area, A, can be alternatively expressed in 
terms of the clearance between the spool and sleeve, c, 
and the average diameter, D.  In order to do this, 
consider the relationships as follows (see Fig.2) 

cDD −=1
     (4) 

cDD +=2
     (5) 

Substituting Eqs.4 and 5 into Eq.3 gives  
    wcDcA == π     (6) 

where w is defined as the width of the square orifice at 
the null position and is equal to the average of the 
perimeters of the spool and sleeve. c is defined as the 
height of the square orifice. It is noted that Eq.6 has the 
same form as the cross-sectional area term, wx, in Eq.2. 
However, at the null position, A would be zero but in 
practical applications, the existence of spool clearances 
means this is not valid. 

The flow cross-sectional area due to clearances is 
even larger than wc at the null position due to 
chamfers. The height of the rectangular orifice is, in 
fact, d0, instead of c (see Fig.3(b)). Assuming that the 
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Fig.1: Comparison of measured and ideal flow rates 

for a typical pilot valve 
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orifice 
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chamfer angle radius is r. The height of the orifice, d0, 
can now be expressed as 

( ) rrcrd 242 22
0 −++=    (7) 

When the spool is not at null position (see Figs.3(a) 
and 3(c)), the height, d0, becomes  

( ) ( ) ( )���� �
−<
−>−+++=

rxc

rxrxrcrxd
2

2222 22   (8) 

Therefore, the cross-sectional area becomes 
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2222
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However, it is not convenient to use Eq.9 in Eq.2, 
because:  

• Eq.9 is valid only for a known quarter circular 
chamfer. Whereas the actual land chamfer 
geometry would not be known,  

• Eq.9 includes two parameters, r and c which 
would be very difficult to measure and 

• Eq.9 is complex and piecewise. 
When the spool displacement, x, is less than –2r, 

the orifice cross-sectional area in Eq.9 becomes 
constant and subsequently for a constant pressure drop, 
the flow rate would become a constant (Eq.2). 
However in reality, the flow rate is not constant but 
decreases as the lap increases (Fig.3(a)). This is 
because the orifice now becomes a short slot tube and 
hence the coefficients (i.e. 

∞dC , a, b, δ1, and δ2) in the 

discharge coefficient model for a typical square orifice 
become invalid. For the above reasons, it is necessary 
to consider developing an empirical flow area model 
that reflects the behaviors of Eq.9 for rx 2−> and 
approximates the flow of short slot  tube orifice for 

rx 2−< in the same flow rate model. 
Any empirical model requires experimentally 

generated data. Consider Fig.2. If the spool is fixed at a 
certain position, the pressure drop across the orifice, 
∆P, and the flow rate through the orifice, Q, are readily 
measured. The flow cross-sectional area, A, can be 
estimated by Eq.1 (accounting for the changing Cd as 
in Wu (2002)). As in any experimental procedure, 
measurement error will have an effect on the estimated 

value of A. This results in the vertical scatter in the data 
in Fig.4. Any error in estimating Cd will also contribute 
to the scatter. 

The objective is to find an empirical relationship 
between the flow cross-sectional area, A, and the spool 
displacement, x, which will best fit the experimental 
results. There are many functions that can be used to fit 
the data, including an nth order polynomial. However, 
the function that would be most desirable is one that 
would satisfy the following constraints: 

• The functional form should be as simple as 
possible. 

• The function should not include more than two 
parameters (one would be ideal) in addition to 
the orifice width, w (w = Dπ). These parameters 
should have some physical significance. 

• The fit should be acceptable at large spool 
displacements as well as in the region about the 
null position. 

In this study, an empirical model which satisfies the 
above criteria is proposed as 

( )
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e

wx
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=     (10) 

where w is the width of the square type orifice and d0 is 
a parameter which can be related to the equivalent 
orifice height at the null position (refer to Fig.3(b)). 
The clearances and chamfers influence the model 

though the term, 
01

1
d
x

e
−

−
. Because it is difficult to 

obtain d0 analytically from Eq.7, d0 is experimentally 
determined from 
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Fig. 3: The enlarged scenario of the spool and sleeve 
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In Eq.12, N is the number of measurements at different 
pressure drops, ∆Pi. Cd is determined by Wu (2002)’s 
model. For non-rectangular orifice, w varies with 
position. In this case, Eq.10 is used with a small non-
zero valve displacement to generate another equation 
in w and d0 from which an effective valve width can be 
calculated. In Fig.4, Eq.10 is plotted as the solid line 
for the valve used in this study. Fig.5 shows more 
closely the information in Fig.4 about the null position. 

The model must satisfy the following boundary 
conditions: 

• When x is a large negative number (large 

lapped amounts), A �  0 and 0=
∂
∂
x

A . 

• When x = 0, A = wd0.  
• When x is a large positive number (large 

openings), A �  wx. 
From Figs.4 and 5, it is apparent that the first and 

third boundary conditions are satisfied. When x = 0, 
Eq.2 tends to 

0

0 . Applying L′Hopital rule to Eq.10 

gives 
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Thus, the second condition is satisfied. 
Eq.13 and Fig.5 indicate that, although the null 

position is a singular point, Eq.10 is continuous. As a 
consequence, the flow rate equation (Eq.2) is also 
continuous. 

 
3     Analytical model of the flow gain and flow-
pressure coefficient 

 
Using the modified form of Eq.10 for the flow 

cross-sectional area, the flow through the orifice 
becomes 
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where 
0d

x
X = . X is a dimensionless variable. 

The flow gain and the flow-pressure coefficient can 
be obtained by differentiating Eq.14 with respect to the 
opening, x, and pressure drop, ∆P. As developed in 
Appendix A, the closed forms for Kq and Kc become 
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and 
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It is apparent that the “modification”  quantity, ε, is 
also a function of the Reynolds number (Eq.17). It can 
be shown that at Re = 0, 5.0=ε  (Note: as Re �  0, Cd 

�  0 as well). For a typical sharp-edged orifice, ε is 
plotted in Fig.6 and varies from 0.5 at very low 
Reynolds numbers to zero at large Reynolds numbers. 
It should be noted here that at x = 0, Eqs.A12, A13 and 
A14 should be used rather than Eqs.15, 16 and 17. A 
simple “ IF”  statement can be used to facilitate this in a 
dynamic simulation. 

Eqs.14, 15 and 16 are the general forms of the 
flow rate through a square orifice, the flow gain and 
flow-pressure coefficient respectively, which can be 
applied to cases of laminar flow, turbulent flow, as 
well as the transition from laminar to turbulent flow. 
For both laminar flow and turbulent flow, Eqs.15 and 
16 can be simplified as follows. 

As the orifice opening, x, and/or the pressure drop, 
∆P, increase, the Reynolds number increases. Cd and ε  

converges to ∞dC and 0 respectively. If 
0dx >> (i.e. 
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1>>X ), the term, ( )( )
( )2
1

11
X

X

e

eX
−

−

−

+− , also converges to 1. 

As a result, the flow gain becomes the well-known 
form of 

PwCK dturbulentq ∆= ∞ ρ
2   (18) 

and the flow-pressure coefficient becomes the familiar 
expression 

P

wxC
K d

turbulentc ∆
= ∞

ρ2
   (19) 

It would appear from Eq.19 that Kc could become 
infinite when ∆P = 0. This is not true as Kc is always a 
finite value. When ∆P approaches zero, the flow rate is 
very small and the flow becomes laminar. Therefore, 
Eq.19 is really not applicable. In this situation, the 
Reynolds number is very small and thus Eq.16 should 
be used under the limit, Cd approaches zero. Thus, as 
shown in Appendix B, the closed forms of the flow 
gain and the flow-pressure coefficient under laminar 
flow conditions are 
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where δ is the laminar discharge coefficient, as 
defined in Wu (2002). Under these conditions, it can be 
observed that the flow-pressure coefficient, Kc, is 
independent of the pressure drop, ∆P, across the orifice 
under the laminar flow conditions. 

When x = 0, the flow rate (leakage) is through the 
clearances and hence is small. The flow is usually 
laminar. Therefore, Eqs.20 and 21 are applicable. The 
flow gain and the flow-pressure coefficient at x = 0 
thus become 
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Eqs.14, 15 and 16 can also be extended to the case 
of non-rectangular orifices. The general forms of the 
flow rate, the flow gain and the flow-pressure 
coefficient for any type orifice can be expressed by 
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where A(x) represents the ideal area as a function of the 
orifice opening (without considering clearances and 

chamfers). Cd employs Wu (2002)’s model. X and w 
represent the area ratio of the ideal area function, A(x), 
and the practical leakage area, A0, at the null position, 
and the equivalent orifice width respectively, i.e. 
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4 A comparison of the analytical and experimental 
results 

 
The orifice flow rate models expressed by Eqs. 14, 

15, and 16 can be verified experimentally. A pilot 
valve was used in the experimental verification (Fig. 
7). With the orifice opening, x, fixed, the flow rate, Q, 
and the pressure drop, 

du PPP −=∆ , were measured. 

Experimental results of flow through a pilot valve with 
a crescent orifice were obtained and illustrated using 
the function, Q(x) at a specific pressure drop, ∆P, and 
the function, Q(∆P) at a specific opening, x. 

In order to calculate the flow rate using the 
empirical model provided in this study, parameters for 
the cross-sectional area model, w and d0, and 

parameters for the discharge coefficients model, ∞dC , 

a, b, 1δ , and 2δ , must be known. Although the cross-

sectional area is a crescent type (see Fig.7), 
experimental results indicate that, within small orifice 
openings, such as less than 1 mm (in this study), the 
orifice could be approximated as a rectangular type. 
For the pilot valve used in this study, the identified 
model parameters, w and d0, are listed in Table 1. Wu 
(2002)’s research indicated that model parameters of 

the discharge coefficient, ∞dC , a, b, 1δ , and 2δ , were 

highly dependent on the orifice geometry, such as 
“sharp-edged” , “short slot tube” , or “needle valve”  
types. In this study, the pilot valve used was a sharp-
edged type and the model parameters are also given in 
Table 1. 

 

 

Pu 
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w 

A A 

A  A 

Fig. 7: A simple spool orifice 



 294 

Table 1 Model parameters 

d0(mm) w(mm) ∞dC  a δ1 b δ2 

0.025 4 0.63 -0.99 0.20 -0.01 3.7 

 
Fig.8 shows a comparison of the flow rate using 

Eq.14 and the experimental results for orifice flow 
rates at small openings (x > 0) and small lapped 
amounts (x < 0) for a pressure drop of 5 MPa. All the 
experimental data is contained in the region between 
the two dashed lines. Although the empirically 
calculated flow is not a perfect fit to the experimental 
results, it is far superior to that obtained using the more 
common model, as illustrated in Fig.8. Fig. 9 shows a 
comparison at large orifice openings. It is clear that the 
representation of the empirical model at large orifice 
openings is excellent. 

Fig.10 shows a comparison of the empirically 
predicted and measured flow rates as a function of 
pressure drop across the orifice at the null position (x = 
0). The tangent on the curve represents the flow-

pressure coefficient at operating points, x = 0 and ∆P = 
6 MPa. Fig.11 also shows a comparison of the flow 
rate as a function of pressure drop across the orifice at 
an opening of 0.5 mm. 

Fig.12 shows a comparison of the orifice flow 
gains, Kq, based on the empirical model and 
experimental results. The two curves plotted with 
“ triangles”  represent experimental flow gains, i.e. the 
slopes of the upper and lower dashed lines shown in 
Figs.8 & 9. The experimental results show a flat region 
at about x = 0.2 mm. This is attributed to the fact that 
Kq (experimental) is obtained graphically and in this 
region, small variations can lead to large errors in the 
slope. 

Fig.13 compares the orifice flow-pressure 
coefficients, Kc, based on the empirical model and 
slope values obtained from the experimental results. 
The solid line represents the predicted results from the 
empirical model. The scatter evident in the 
experimental results of Fig.13 is attributed to the 
process of differentiation of the experimental data, 
which also has a significant amount of scatter. 

There is a relatively good agreement between the 
empirical model predictions and the experimental 
results. The determination of Kq and Kc using Eqs.15 
and 16 is a valid approach.  
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Fig. 8: Comparison of model-based and experimental 

results of orifice flow rate at ∆P = 5MPa (for 
small openings (x > 0) and small lapped 
amounts (x < 0)) 
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Fig. 9: Comparison of model-based and experimental 

results of orifice flow rate at ∆P = 5MPa (for 
large openings) 
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Fig 11 Comparison of model-based and experi-
mental results of orifice flow rate at x = 0.5 mm 
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5 Conclusions 

 
The flow rate through a pilot valve usually is small 

due to small orifice openings. A problem occurs in 
using the classical orifice flow equation in this case. 
The discharge coefficient is not a constant due to 
laminar flow conditions. In addition, it is difficult to 
determine the actual orifice cross-sectional area about 
the null position due to clearances, chamfers, and 
machining limitations. This paper provides an 
empirical flow cross-sectional area model that includes 
only one parameter, d0, or only two parameters, d0 and 
w, for non-rectangular orifice. In practice, Cd must also 
be measured (for example, Wu (2002), which requires 
measurement of other parameters). It is thus possible to 
differentiate the flow equations with respect to the 
orifice opening and pressure drop in order to obtain the 
flow gain and flow-pressure coefficient of the pilot 
valve. Thus, the discontinuity problem of applying the 
traditional flow rate model at x = 0 no longer exists. A 
comparison between experimental and empirical 
models show that this approach is valid. 

 
Nomenclature 
 

A orifice cross-sectional area 
A0 orifice cross-sectional area at the zeroed 

orifice opening 
a, b coefficients in the empirical model Cd, or 

polynomials 
Cd discharge coefficient 

∞dC  turbulent discharge coefficient 

d height of square type orifice 
d0 height of square type orifice at the null 

position 
Kq flow gain 
Kq0 flow gain at the zeroed orifice opening 
Kc flow-pressure coefficient 
Kc0 flow-pressure coefficient at the zeroed orifice 

opening 
N the number of experiments 
Pd downstream pressure 
Pu upstream pressure 
∆P pressure drop across orifice 
Q volumetric flow rate  
Re Reynolds number 
w rectangular orifice width 
x orifice opening 
X dimensionless orifice opening 
α a small orifice opening  
δ laminar flow discharge coefficient 
δ1 δ2 attenuation coefficients of the empirical model 
ε modification associated with discharge 

coefficient 
ρ fluid density 
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Appendix A: Derivation of the general form of flow 
gain and flow-pressure coefficient through orifices 

 
For simplicity, the orifice flow equation (Eq.2) can 

be re-expressed as 

PACQ d ∆=
ρ
2     (A1) 

where  
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For a rectangular orifice with width w, when the 
orifice opening, x, is much less than width w (i.e. 

wx << ), the Reynolds number can be expressed as 
(Wu (2002)) 
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Differentiating Eq.A1 with respect to orifice 
opening, x, gives 
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X is a dimensionless number (
0d

x
X = ). 

Substituting Eqs.A6 &A7 into Eq.A5 gives 
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The first term in the right hand side can be considered 

as the product of a coefficient, ε, and 
x

Q

∂
∂ . Kq (i.e. 
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is then solved to be 
( )( )

( ) P
e

eXwC

x

Q
K

X

X
d

q ∆
−

+−
−

=
∂
∂=

−

−

ρε
2

1

11

1 2

 (A9) 
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Similarly, Differentiating Eq.A1 with respect to 
pressure drop, ∆P, gives 
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It is notable that when x = 0 (hence X = 0), Q, Kq 

and Kc show the form of 
0

0 . Similar to Eq.13, the value 

of Q, Kq and Kc at the null position can be calculated 
by 
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Appendix B: Derivation of the flow gain and the 
flow-pressure coefficient for the laminar flow 
through orifices 

 
Eq. 2 is an empirical orifice flow equation that can 

be applied to both laminar and turbulent flow. Eqs.15 
and 16 are the flow gain, Kq, and the flow-pressure 
coefficient, Kc, developed from Eq.2. When the flow 
through orifices becomes laminar, the Reynolds 
number of the orifice flow is very small and the 
discharge coefficient can be approximated by its 
linearization model, i.e. 

Reδ=dC    (B1) 

where 21 δδδ ba −−= . Substituting Eq.A4 into 

Eq.B1 gives 
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Replacing Eq.A2 by Eq.B2, Eq.A1 becomes 
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Squaring both sides of Eq.B3 results in the laminar 
flow equation of an orifice as 
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Eq.B4 shows a linear relationship between the 
orifice flow and pressure drop. Eq.B4 can be compared 
to Eq.(3-39) of Merritt (1967) (note: the term of 4x2w is 
same as 2DhA in Merritt). The only difference is that 

the term of the exponential function, 
2

01 �
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�
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−
−

d

x

e , exists 

in the denominator of Eq.B4. 
Differentiating Eq.B4 with respect to x and ∆P 

gives the flow gain and the flow-pressure coefficient at 
the laminar flow condition as 
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Appendix E Transfer Function of the Load Sensing System (Condition I) 

The appendix is to express the TF (see Equation (5.81)) of the LS system under the 

operating Condition I in a more general form as Equation (5.82) so that it is possible to 

use Matlab programming to plot the Bode diagram and/or the zeros & poles in phase 

plane. Equations (5.81) and (5.82) are rewritten as 
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For the convenience, it is necessary to define some variables as  
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The coefficients in Equation (E2) can be calculated by Tables E.1 and E.2 
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Table E.1 Determination of the coefficients, bi, of s polynomial in the numerator of LS 

system’s TF in Condition I 

 s3 s2 s1 s0 

1 tstysptLs tstysp+tstLs+tLstysp ts + tysp + tLs 1 
2  Kps(tp0tLs) Kps(tp0+tLs) Kps 
Σ b3 b2 b1 b0 

 

Table E2 Determination of the coefficients, ai, of s polynomial in the denominator of LS 

system’s TF in Condition I 

 s5 s4 s3 s2 s1 S0 

1 

tL2tstysptLs tL2tstysp+ 
tL2tstLs+tL2tysp

tLs+ tLtstysptLs 

tL2ts+ tL2tLs+ tL2tysp+ 
tLtstysp+ tLtstLs+ 
tLtLstysp+ tstLstysp 

tL2+ tLts+ tLtysp+ 
tLtLs+ tyspts+ 
tLsts+ tLstysp 

tL+ ts+ tysp+ 
tLs 

1 

2 

 KcLtL0tstysptLs KcL(tL0tstysp+ tL0tLsts+ 
tL0tLstysp ) 

KcL(tL0ts+ tL0tysp + 
tL0tLs + tstysp + 
tstLs + tysptLs) 

KcL(tL0+ ts+ 
tysp+ tLs) 

KcL 

3 
 KsctL2tysptLs Ksc(tL2tysp+ tL2tLs+ 

tLtLstysp ) 
Ksc(tL2+ tLtysp + 
tLtLs + tysptLs) 

Ksc(tL+ 
tysp+ tLs) 

Ksc 

4 
 KpstL2tp0tLs Kps(tL2tp0+ tL2tLs+ 

tLtLstp0 ) 
Kps(tL2+ tLtp0 + 
tLtLs + tp0tLs) 

Kps(tL+ tp0+ 
tLs) 

Kps 

5 
  KpscltL0tp0 tLp0 Kpscl(tL tLp0+ tp0 

tLp0 + tL tp0) 
Kpscl(tL+ 
tp0+ tLp0) 

Kpscl 

Σ a5 a4 a3 a2 a1 A0 
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Appendix F The Transfer Function of the Load Sensing System (Condition II) 

The appendix is to express the TF (see Equation (5.85)) of the LS system under the 

operating Condition II in a more general form as Equation (5.86) so that it is possible to 

use Matlab programming to plot the Bode diagram and/or the zeros and poles in the 

phase plane. Equations (5.85) and (5.86) are rewritten as 
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For the convenience, it is necessary to define some variables as  
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Consequently, the coefficients in Equation (F2) can be calculated by Equation (F13), 

Tables F1 and F2. 
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Table F.1 Determination of the coefficients, bi, of s polynomial in the numerator of LS 
system’s TF in Condition II 

 s3 s2 s1 s0 

1 tsp2ts tsp2+tspts ts + tsp 1 

2    
*
spK  

Σ b3 b2 b1 b0 
 

Table F.2 Determination of the coefficients, ai, of s polynomial in the denominator of 

LS system’s TF in Condition II 

 s5 s4 s3 s2 s1 s0 

1 
tL2tstsp2 tL2tstsp+tL2tsp2

+tLtstsp2 
tL2ts+ tL2tsp+ tLtstsp+ 
tLtsp2+ tstsp2 

tL2+ tLts+ tLtsp+ 
tsp2+ tstsp 

tL+ ts+ tsp 1 
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 KcLtL0tstsp2 KcL(tL0tsp2+ tsp2ts+ 
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Appendix G The Transfer Function of the Load Sensing System (Condition III) 

The appendix is to express the TF (see Equation (5.87)) of the LS system under the 

operating Condition I in a more general form as Equation (5.88) so that it is possible to 

use Matlab programming to plot the Bode diagram and/or the zeros and poles in the 

phase plane. Equations (5.87) and (5.88) are rewritten as 
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For convenience, it is necessary to define variables as 
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Consequently, the coefficients can be obtained as follows. 
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In order to prove the LS system is always stable at Condition III, apply the Routh-

stability criterion. 
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It can be observed that the term, 
2

0312

a

aaaa − , is larger than zero. Therefore, the LS 

system is stable at Condition III. 
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Appendix H Parameters for the Stability Analysis of the LS System 

Components Parameter definition  Symbol Value Unit 

  Bulk modulus  β 1.38x109 Nm-2 

Fluid properties Fluid density ρ 898 kgm-3 

  Fluid absolute viscosity at 25oC µ 1.74x10-4 m2s-1 

  Pressure differential of the adjustable orifice Pd       
* 0.3 ~ 2.5 MPa 

  LS spool cross-sectional area  Ar 3.2x10-5 m2 

  LS spool balance spring constant kr 6.1x104 Nm-1 

LS regulator LS spool mass mr 1.6x10-2 kg 

  LS spool damp Br 2.21 Nsm-1 

  Equivalent opening of two orifices at null point dr 2.5x10-5 m 

  Equivalent width of two orifices at null point Wr 4x10-3 m 

  Moment arm of the control piston about the shaft Rpy 5.5x10-2 m 

Control piston Cross-sectional area of the control piston  Ay 3.36x10-4 m2 

  Minimum volume of the control piston chamber Vymin 1.38x10-6 m3 

  Moment arm of the pump pistons about the shaft Rp 3.48x10-2 m 

  Cross-sectional area of pump pistons  Ap 2.07x10-4 m2 

  Pump outlet volume including the hose volume Vp 2.0x10-4 m3 

  Pump leakage coefficient cpl 2.0x10-12 m5s-1N-1 

  Pump shaft speed ω 183.5 rad-s-1 

Pressure pump Angle coefficient of swash plate spring Ksp 1.42x106 N-m-2rad-1 

  Angle precompression of swash plate spring Tsp 1.11x106 N-m-2 

  Pressure torque constant  Kpr2 2.84x10-1   

  Pressure torque constant  Kpr3 4.53x10-1 rad-1 

  Damp coefficient of the swash plate Bsp 5.5x10-1 Nsm 

  Inertial of the swash plate Jsp 1.32x10-3 kgm2 

  Maximum swash plate angle θspmax 3.14x10-1 rad 

Adjustable orifice Discharge coefficient Cd 0.63   

  Cross area of the flow control orifice Av       * Variable m2 

  Damp coefficient of the motor and the load Bm 0.056 Nms 

  Motor inlet volume including the hose volume Vm 1.4x10-4 m3 

Motor and load Inertial of the motor and the load Jm 1.62x10-1 kgm2 

  Resistant torque of the load on the motor axis Tmf     * 0.2 ~  Nm 

  Motor leakage coefficient cml 2.0x10-13 m5s-1N-1 

  Volumetric displacement of motor Dm 2.57x10-6 m3rad-1 

LS line Damp frequency of the LS line ωls       * 0 ~ 500 rad-s-1 
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Appendix I Determination of Parameters of the Motor with an Inertial 

Load 

Based on the dynamic model developed in Chapter 7, the stability of the LS system 

depends on the parameters of the LS pump, in addition to the parameters of the motor 

load (Vm, Jm, Bm, Tmf, Dm and cml). The volume of the motor inlet, Vm, can be estimated 

by the size of the hose between the adjustable orifice and the motor. The inertia of the 

motor and flywheel load, Jm, can be calculated by the dimension of the flywheel. The 

volumetric displacement, Dm, and the leakage coefficient of the motor, cml, can be found 

from the motor’s specification. The damping coefficient, Bm, and the Coulomb resistant 

torque, Tmf, of the motor with the inertial load (flywheel) had to be experimentally 

determined. 

Consider Equation (2.22) of the motor load. When the motor operates at the steady 

state, φ&  becomes zero. Therefore, 

0=−+− mfLmm TPDB φ         (I.1) 

or 

mfm TBT += φ          (I.2) 

where T = DmPL. φ and PL are measurable. Dm is known. Equation (I.2) indicates that the 

unknown parameters, Bm and Tmf, could be identified by a linear regression of the steady 

state experimental results at different operating points.  

Figure I.1 shows a simple experimental circuit of obtaining Bm and Tmf. The orifice 

opening was set to a series of values; the steady state values of the load pressure, PL, and 

the rotary speed of the motor, φ , were subsequently measured. The experimental results 

are shown in figure I2.  The slope of the fitted straight line is Bm and the zero-intercept 
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of the line is Tmf. In the study, Bm and Tmf are determined to be 0.056 Nms and 0.16 Nm 

respectively. 
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Figure I.1 Parameters measurement circuit of the motor load 
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Figure I.2 Parameter estimation of the motor load 
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Appendix J Determination of the Damping Characteristics in the Load 

Sensing Line 

The damping characteristics in the LS line has a significant effect on the stability of 

the LS system under certain conditions, because the LS line, GLs(s), in Figure 7.2 lies in 

the loop path with positive feedback (i.e. HL � GLs � Gp � Gs � Kc path). A 

preliminary dynamic analysis in the frequency domain indicated that the more damping 

the LS line has, the more stable the LS system would be. However, the response would 

become slower. In order to quantitatively analyze the effect of the damping of the LS 

line on the stability, it was necessary to determine the damping time constant, tLs (or, 

damping frequency ωLs = 1/tLs), for different LS lines (a long line without restriction 

orifice or a short line with a restriction).  

Figure J.1 shows the experimental layout. The measured LS line was pressurized by a 

deadweight loader. Two pressure gauges were installed at the two terminals of the LS 

line. The instrumentation was comprised of a signal analyzer which could directly give 

the frequency response in the way of a Bode plot. The procedure for the experiment was 

(1) to select the proper deadweight load, (2) to pressurize (via a hand pump) the line in 

order to set the operating point pressure selected by the deadweight load, (3) to strike the 

Handpump

Deadhead
weight

PL

Adjustable
restrication

PLs

LS line

ω

20lg|GLs|Signal
analyzer

 
Figure J.1 Measurement of the damping performance of the LS 

line 
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deadweight loader to generate a pressure pulse signal and (4) to start the frequency 

response analyzer.  

In this study, the LS line consisted of a soft hose of diameter 6.35 mm and length 

700mm (model: H425 04), and a small needle valve (model: Parker N200S). Figures J.2 

and J.3 show an experimental frequency response result at the operating point with 

pressure of 500psi and restriction orifice opening of 0.5 turn on the valve knob. The 

break frequency is measured to be about 8 rad/s. 
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Figure J.2 Magnitude response of the LS line 
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Figure J.3 Phase angle of the LS line 



 311 

Figure J.4 shows the experimental results of the break frequency, ωLs, as a function of 

the number of valve knob turns. 
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Figure J.4 Break frequency of the LS line as a function 
of the number of turns on knob of the restriction valve 
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Appendix K Derivation of the Transfer Function of the Pressure Compensated 

System 

The objective of this appendix is to derive the TF of the PC system based on the 

Laplace transform of the linearized dynamic equations of the PC system. For 

convenience, these equations (Equations (11.2), (11.6), and (11.10)) are repeated as 

( ) ( ) ( ) ( ) ( ) ( )sPxAksPAsPAsXsA Lpcpcffspcsmpc 01211 +−=+     (K1) 

( ) ( ) ( ) ( ) ( ) ( )sPKsPKsXKsPAsXsA Lcpcscvvqvmpc ++=+ 2221    (K2) 

( ) ( ) ( ) ( )( )sPsPKsXKsQ LmcpcpcqpcLpc −+=      (K3) 

Solving Equations (K1) and (K2) for Xpc(s) and Pm(s) gives 
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Substituting A12 and A22 expressed by Equations (11.4) and (11.8) in Chapter 11 into 

Equations (K4) and (K5) and then substituting Equations (K4) and (K5) into Equation 

(K3) give 
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Equation (K6) can be expressed as 
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( ) ( ) ( ) ( ) ( ) ( )( )sPsPsGsXsGsQ LspsLvxvLpc −+=
              (K7) 

It is noted that Equation (K6) links with the frequency operator, “s” , through two 

terms, A11(s) and A21(s). Substituting A11(s) and A21(s) expressed by Equations (11.3) and 

(11.7) in Chapter 11 into Equation (K6) can present Gxv(s) and GpsL(s) by the normalized 

TF form as 
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Appendix L Transfer Function of the Load Sensing and Pressure Compensated 

System (Condition N) 

The appendix is to express the TF (see Equation (13.1)) of the LSPC system under 

the operating Condition N in a more general form as Equation (13.2) so that it is possible 

to use Matlab programming to plot the Bode diagram and/or the zeros & poles in phase 

plane. Equations (13.1) and (13.2) are rewritten as 
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In addition to Equations (E3) through (E10) and (E13) in Appendix E, other coefficients 

associated to Kc and Kq must be redefined. They are 
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The coefficients of s-polynomial in the numerator in Equation (L2), bi, are same as 

those in Equation (E2) and hence can be calculated by Table E1. The coefficients of s-

polynomial in the denominator in Equation (L2), ai, must be calculated by Table L1. 

Table L.1 Determination of the coefficients, ai, of s-polynomial in the denominator of 
LSPC system’s TF in Condition N 

 s5 s4 s3 s2 s1 s0 

1 

tL2tstyspt
Ls 

tL2tstysp+ 
tL2tstLs+tL2tysptLs
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Appendix M Transfer Function of the Load Sensing and Pressure Compensated 

System (Condition O) 

The appendix is to express the TF (see Equation (13.3)) of the LSPC system under 

the operating Condition O in a more general form as Equation (13.4) so that it is possible 

to use Matlab programming to plot the Bode diagram and/or the zeros and poles in the 

phase plane. Equations (13.3) and (13.4) are rewritten as 
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In addition to Equations (F3) through (F8) and (F11) in Appendix F, other coefficients 

associated to Kc and Kq must be redefined. They are 
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The coefficients of s-polynomial in the numerator in Equation (M2), bi, are same as 

those in Equation (F2) and hence can be calculated by Table F1. The coefficients of s-

polynomial in the denominator in Equation (M2), ai, must be calculated by Table M1. 

Table M1 Determination of the coefficients, ai, of s polynomial in the denominator of 

LSPC system’s TF in Condition O 

 s5 s4 s3 s2 s1 s0 
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Appendix N Transfer Function of the Load Sensing and Pressure Compensated 

System (Condition P) 

The appendix is to express the TF (see Equation (13.5)) of the LSPC system under 

the operating Condition P in a more general form as Equation (13.6) so that it is possible 

to use Matlab programming to plot the Bode diagram and/or the zeros and poles in the 

phase plane. Equations (13.5) and (13.6) are rewritten as 
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In addition to Equations (G3) through (G6) in Appendix G, other coefficients 

associated to Kc and Kq must be redefined. They are 
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The coefficients of s-polynomial in the numerator in Equation (N2), bi, are same as 

those in Equation (G2) in Appendix G and hence b1 and b0 are ts and 1 respectively 

(Equations (G13) and (G15)). The coefficients of s-polynomial in the denominator in 

Equation (N2), ai, must be calculated by 

020023 pcLscpcLscLsL ttKtttKtta ++=       (N7) 

( ) ( )( )sLpcLscLpcLLscsLL tttttKtttKttta ++++++= 0000222    (N8) 

( ) ( )0001 pcsLcLpcLscsL tttKttKtta ++++++=      (N9) 

sccL KKa ++= 10          (N11) 

 




