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ABSTRACT 
 

The purpose of the studies reported in this thesis was to increase our understanding of 

the reproductive physiology of South American camelids. Studies were conducted in 

llamas and alpacas to investigate methods to electively control ovarian follicular 

dynamics, to determine the effects of hormone preparations or biological factors derived 

from seminal plasma on ovulation induction, and to evaluate the establishment of 

superstimulatory protocols to induce a consistent ovarian follicular response for oocyte 

collection.  

 

The first study was designed to compare the efficacy of treatments intended to induce 

follicular wave synchronization among llamas, and to determine the effect of these 

treatments on pregnancy rates after fixed-time natural mating. In the first experiment, 

lutenizing hormone (LH) and follicular ablation treatments were most effective for 

inducing follicular wave synchronization, while estradiol plus progesterone (E/P) 

treatment was intermediate. In the second experiment, llamas were assigned randomly 

to Control, (E/P), and LH groups. A single, fixed-time natural mating was permitted 10 

to 12 days after treatment. The pregnancy rate was higher (P<0.05) for synchronized 

llamas (LH and E/P groups combined) than for non-synchronized llamas (Control 

group).  

 

The second study was done to compare the effects of hormonal treatments and natural 

mating on ovulation induction, interval to ovulation, and luteal development in llamas. 

No differences were detected among groups (mated, LH, and GnRH) in ovulation rate 

(80%, 91%, 80%, respectively; P = 0.6), or interval from treatment to ovulation (30.0 ± 

0.5, 29.3 ± 0.6, 29.3 ± 0.7 h, respectively; P = 0.9). Similarly, no differences were 

detected among groups (mated, LH, and GnRH) in maximum corpus luteum (CL) 

diameter. 

 

The third study documents the existence of an ovulation-inducing factor (OIF) in the 

seminal plasma of alpacas and llamas. In Experiment 1, female alpacas were given 
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alpaca seminal plasma or saline intramuscularly (im) or by intrauterine infusion. Only 

alpacas that were given seminal plasma im ovulated. In Experiment 2, ovulation was 

detected in 9/10 (90%) llamas at a mean of 29.3 ± 0.7 hours after seminal plasma 

treatment. In Experiment 3, female llamas were given llama seminal plasma, GnRH, or 

saline im, and ovulation was detected in 6/6, 5/6, and 0/6 llamas, respectively (P < 

0.001). Treatment was followed by a surge (P < 0.01) in plasma LH concentration 

beginning 15 minutes and 75 minutes after treatment with GnRH and seminal plasma, 

respectively. Plasma LH remained elevated longer in the seminal plasma group (P < 

0.05), and plasma progesterone concentration was twice as high in the seminal plasma 

group (P < 0.01).  

 

The fourth study describes the presence of an OIF in the seminal plasma of Bos taurus – 

a species conventionally considered to ovulate spontaneously - contains OIF. Bull 

seminal plasma induced ovulations in 26% (5/19) of llamas compared to 0% (0/19) in 

PBS group (P < 0.001). The ovulation rate was lower (P < 0.01) in bull seminal plasma 

group compared to that in the groups treated with alpaca or llama seminal plasma 

(100%).  

 

The fifth study was conducted to determine a local versus systemic effect of ovulation-

inducing factor in seminal plasma. Ovulation rate in the seminal plasma intramuscular 

group (93%) was higher (P < 0.01) than seminal plasma intrauterine group (41%), while 

the seminal plasma intrauterine curettage group was intermediate (67%).  

 

The sixth study was done to determine the time required for llama oocyte to reach the 

maturation stage, and to establish a superstimulatory treatment for oocyte collection. 

Llama oocytes reached second metaphase as early as 28 h after in vitro culture. The 

FSH- and eCG-treated groups did not differ (P = 0.85) with respect to the number of 

follicles ≥6 mm at the time of cumulus-oocyte complex (COC) collection (17.9 ± 2.2 vs 

17.7 ± 2.2), the number of COC collected (10.7 ± 2.1 vs 11.2 ± 2.3 per llama), or the 

collection rate per follicle aspirated (71 vs 74%).  
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Finally, in the last study, the effect of two superstimulatory treatments was evaluated on 

ovarian response and COC collection efficiency and oocyte maturation in alpacas. No 

difference (P = 0.54) was observed between FSH and eCG- treated alpacas in the 

number of expanded (11.5 ± 2.9 vs 8.8 ± 2.8) or compact COC collected with ≥3 layers 

of cumulus cells (12.5 ± 4.3 vs 14.3 ± 2.6; P = 0.72). No difference (P = 0.1) was 

detected between FSH and eCG groups in the number of expanded COC at first 

metaphase (1.2 ± 1.2 vs 1.7 ± 0.6) or second metaphase stage (8.5 ± 1.9 vs 6.0 ± 2.1) 

respectively.  

 

In conclusion, these studies demonstrated that the control of ovarian follicular wave 

emergence and ovulation induction in llamas will contribute consistently to the 

establishment of fixed-time natural or artificial insemination as well as recipient 

synchronization in embryo transfer programs. The discovery of an ovulatory molecule 

in the semen of this species generates a new area of research regarding the ovulation 

mechanism in induced ovulators. Characterization of this factor may have important 

implications in the diagnosis and treatment of male and female infertility. Finally, the 

superstimulatory treatments and oocyte development studies will establish the baseline 

for the development of an in vitro embryo production system in llamas and alpacas. 
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1.0 INTRODUCTION 
 

The majority of reproductive studies on South American camelids have been 

conducted over the past 15 years using llamas and alpacas. Our understanding of the 

reproductive physiology of South American camelids appears miniscule when 

compared to our knowledge of traditional livestock species, such as cattle or sheep. 

Most of the existing information from wild South American camelids, vicuña and 

guanaco, relates to population, habitat, behavior, and biodiversity. Currently, llamas and 

alpacas are a valuable economic resource for Peruvian, Bolivian and Chilean people 

living in the high plains of the Andes Mountains, and they have become a consistent 

feature of North American livestock production. 

 

 Ultrasonographic studies of the reproductive organs and systematic 

endocrinology studies in llamas were carried out in the 1990s. These studies have 

contributed to a better understanding of follicular development, ovulation and corpus 

luteum function. However, the need to carry out further studies to better understand the 

reproductive physiology of South American camelids is evident. 

 

The reproductive management of llamas and alpacas in high Andes communities 

is very poor or non-existent.  Llama and alpaca breeding systems in the high Andes 

communities and in North American herds are based on sexual behavior, i.e., mating is 

performed when females adopt the sternal-recumbent copulatory posture in the presence 

of a male. However, sexual receptivity is not strictly correlated with the presence of a 

mature follicle capable of ovulating a competent oocyte.  The control of ovarian 

follicular development in these species would facilitate the use of natural mating or 

artificial insemination (AI). Ideally, AI would be done at a fixed time with the presence 

of a healthy mature follicle containing a competent oocyte to maximize conception rate.    
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The South American camelids are induced ovulators that require natural mating 

to induce ovulation. Although hormone preparations have been used to induce 

ovulation, studies are needed to determine whether the interval to ovulation and the 

induced luteal phase are similar to those occurring after natural mating. The control of 

follicular development, ovulation and the luteal phase, either by the use of exogenous 

hormones or biological products, would contribute tremendously to the development 

and application of AI and embryo transfer.  Llamas and alpacas are considered species 

with low reproductive efficiency due to low rates of pregnancy and birthing.  An 

embryo mortality of up to 35% has been documented in alpacas during the first 35 days 

after natural mating.  However, it is not clear whether embryo loss is caused by 

alterations in the maternal environment or because of intrinsic defects in the oocyte or 

embryos after ovulation and subsequent fertilization.  

 

The application of assisted reproductive technology is in the formative stages for 

the domestic species of South American camelids (llama and alpaca) and is virtually 

non-existent for the wild species (guanaco and vicuña). Although, camelid embryos 

have been produced by in vitro fertilization and more recently by nuclear 

transplantation, the birth of live offspring following the use of these techniques have not 

been reported.  

 

Presently, it is important to focus on the development of reliable methods for 

semen collection and manipulation techniques, as well as the development of 

superstimulatory treatments and in vitro culture systems that could improve oocyte 

competence and embryo development.  
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2.0 REVIEW OF LITERATURE 
 

2.1 Importance of South American camelids 

 

The family of Camelids encompasses the New World and Old World camelids.  

The New World camelids, which are also known as South American camelids, are the 

llama (Llama glama), alpaca (Llama pacos), guanaco (Llama guanicoe) and vicuña 

(Vicugna vicugna).  The Old World camelids are the dromedary, or one-hump camel, 

(Camelus dromedarius) that inhabits the hot deserts from Asia to North Africa and the 

two-hump Bactrian camel (Camelus bactrianus) living in the deserts of China and 

Mongolia (Novoa, 1970).  The total population of South American camelids including 

both domesticated (llama and alpaca) and wild species (vicuña and guanaco) is 

estimated to be approximately 6.8 million and is distributed throughout Argentina, 

Bolivia, Chile, Colombia, Ecuador, Paraguay and Peru (Raggi, 2001). 

 

Historically, llamas and alpacas have played an important role in the 

development of the Inca civilization.  Llamas served as transport animals, whereas 

alpacas were an important source of meat and fibre (Burton et al., 1969).  Presently, 

llamas and alpacas are the primary source of income to the Aymaras communities living 

in the high Andes Mountains in Peru, Chile and Bolivia. These communities use the 

llama for meat and transportation and alpacas for meat and fibre production.   
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The quality of the fibre produced by South American camelids is appreciated 

world wide by the textile industry. The fibre obtained from Alpacas is softer, finer and 

lighter than llama fibre.  The alpaca fiber has a diameter ranging from 12 to 28 µm 

whereas the fiber from llamas ranges in diameter from 20 to 80 µm. However, the finest 

fibre is found in the wild species, guanaco and vicuña, with fibre diameters ranging 

from 16 to 18 and 11 to 14 µm, respectively (Wheeler, 1995). 

 

World production of fiber from alpacas exceeds 4 million kg and it is worth 

more than US $12 million  (Raggi, 2001). Peru is one of the biggest alpaca fibre 

producers. Fibre is processed by USA textile companies in Peru and exported to other 

countries. Peru has over 3 million alpacas and 1 million llamas; Bolivia has more llamas 

(2 million) than alpacas (325,000), while Chile has the smallest number of animals 

(33,000 alpacas and 67,000 llamas).  The high quality and commercial value of the 

alpaca fibre attracted the attention from textiles industries of developed countries.  A 

massive and uncontrolled number of high genetic valued animals were exported from 

1989 to 1998 from Peru and Chile to the USA, New Zealand, Australia, England, and 

Canada (Raggi, 2001). There are more than 150,000 registered llamas and alpacas in 

North America. 

 

2.2 Overview of the reproductive physiology in South American camelids 

 

Our knowledge of the reproductive physiology of South American camelids is 

largely based on data obtained from domesticated species.  Llamas and alpacas are 

classified as induced or reflex ovulators because ovulation will only take place after 

copulatory stimulation (San Martin et al., 1968; England et al., 1969; Fernandez-Baca et 

al., 1970a).  In the absence of a male, female alpacas may remain in estrus for up to 36 

days with only occasional periods of anestrus that last no longer than 48 hours (San 

Martin et al., 1968). Similar estrus behavior has been observed in llamas (England et al., 

1971).   Camelids do not have an estrus cycle; therefore, follicular and luteal phases are 

more convenient terms that could be used in these species to characterize the sexual 
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cycle. Sexual behavior can be considered in two unique patterns, i.e., receptivity and 

non-receptivity of the female camelid.   

 

The exact age at which llamas and alpacas reach puberty is not clearly defined. 

Traditionally, llamas are bred at 3 years of age, whereas alpacas are usually bred when 

they reach approximately 60% of adult body weight (Sumar, 1985).  Early reports 

indicate that alpacas are sexually receptive and capable of ovulating at 12 months of age 

(Novoa et al., 1972).  Ovulation, fertilization and embryo development rates of yearling 

alpacas are similar to those of adult alpacas (Fernandez-Baca et al., 1972).    

 

Under normal conditions, sexually receptive females lie down in a prone 

position (copulatory position) in the presence of a sexually mature male.  Sexually 

receptive females have been known to lie near a mating couple (San Martin et al., 1968; 

England et al., 1971).  However, sexual receptivity is not always associated with the 

presence of a dominant follicle (Sumar et al., 1993; Bravo et al., 1994).   The presence 

of an aggressive dominant male may trigger non-receptive females to adopt the 

copulatory response (Adams, 1997).  On the other hand, sexual behavior in non-

receptive females is highly correlated with the presence of a corpus luteum.  Non-

receptive females consistently reject male advances by spitting, kicking and screaming 

(Sumar, 1988; Adams et al., 1989; Fernanadez-Baca 1993; Pollard et al., 1994).   

 

The reproductive pattern in South American camelids is influenced by 

conditions of the environment and management.  In the Northern Hemisphere, llamas 

and alpacas breed throughtout the year (Schmidt 1973; Johnson, 1988).  The breeding 

season of llamas and alpacas inhabiting the highlands of Peru, Bolivia and Argentina 

takes place from December to March, which corresponds to the warm, rainy months and 

highest availability of green forage (Fernandez-Baca 1993; Sumar, 1996).  In New 

Zealand, alpacas breed both in the spring and autumn months (Pollard et al., 1995).  The 

conception rate observed in females mated in spring did not differ from those mated in 

autumn (Knight et al., 1995).  However, another report suggests that both males and 

females show less sexual interest during the spring months (Pollard et al., 1995).  
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 Llamas, alpacas and vicuñas have a wave-like pattern of follicular development 

(Bravo and Sumar, 1989; Adams et al., 1990; Bravo et al., 1990a; Chavez et al., 2002; 

Vaughan et al., 2004; Miragaya et al., 2004).  The pattern of follicular waves is 

supported by periodic increases in the number of follicles and the emergence of a 

dominant follicle, which may reach a diameter of 7 mm or more in both llamas and 

alpacas (Adams et al., 1990; Vaughan et al., 2004).  It has been proposed that the ability 

of llamas and alpacas to ovulate in response to a mating stimulus is influenced by the 

developmental status of the dominant follicle at the time of mating (Adams et al., 1990; 

Bravo et al., 1991; Vaughan et al., 2004). Growing dominant follicles ≥6 mm are 

capable of ovulating (Adams et al., 1990), whereas smaller follicles or those undergoing 

regression are not capable of ovulating (Bravo et al., 1991).  

 

The luteal phase following natural induction of ovulation has been well 

described in llamas and alpacas (Sumar et al., 1988; Adams et al., 1990, 1991a; Aba et 

al., 1995).  The maximum corpus luteum (CL) diameter and plasma progesterone 

concentrations were detected at day 8 after mating (day 0 = mating). The first significant 

decrease in CL diameter and plasma progesterone profiles during luteolysis in non-

pregnant females occurred on days 11 and 10 after mating and reached a nadir on days 

15 and 14, respectively.  The uterus controls CL regression in the non-pregnant llama 

and alpaca (Fernandez-Baca et al., 1979; Sumar et al., 1988).  Partial hysterectomy 

prolongs the corpus luteum lifespan ipsilateral to the missing uterine horn. In addition, 

the right uterine horn appears to have a local luteolytic effect, while it has been 

hypothesized that the left uterine horn has both a local and a systemic luteolytic effect 

(Fernandez-Baca et al., 1979). A recent report suggests that the left horn may induce 

luteolysis of the CL in the right ovary via a local veno-arterial pathway mechanism (Del 

Campo et al., 1996). Luteolysis has been temporally associated with a pulsatile release of 

prostaglandin (PGF2α) from the uterus around days 8 to 10 after mating (Sumar et al., 

1988; Aba et al., 1995). If conception is successful after natural mating, the CL is 

maintained during the entire pregnancy (Sumar, 1983). The gestation length has been 

reported to be 325-361 days for alpacas (San Martin et al., 1968) and 331-361 days for 

llamas (Sumar, 1988).  Although a high rate of fertilization (70% to 80%) has been 
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reported in alpacas after natural mating (Fernandez-Baca et al., 1970b), 25% to 50% of 

alpaca embryos are lost during the first 30 days of gestation (Fernandez-Baca et al., 

1970b; Knight et al., 1995). It is unknown whether the high embryo loss is due to an 

intrinsic defect of the gametes or alterations within the uterine environment.   

Interestingly, embryo migration from the right to the left uterine horn is common and 

apparently required in this species.  Approximately 98% of the gestations are carried out 

in the left uterine horn in alpacas (Fernandez-Baca et al., 1973) regardless of the site of 

ovulation (Fernandez-Baca et al., 1973; Sumar and Leyva, 1979). This suggests that 

embryo development in the right uterine horn may be compromised. 

 

2.3 Follicular growth pattern in llamas and alpacas 

 

The wave pattern of follicular development has been documented in several 

domesticated and wild ruminant species (Adams, 1999).  Follicular dynamics have been 

extensively studied in cattle (Pierson and Ginther, 1984; Pierson and Ginther, 1987; 

Savio et al., 1988; Sirois and Fortune, 1988; Adams et al., 1994a).  It appears that the 

mechanisms of recruitment, selection and dominance are highly conserved across all 

monovulatory species. 

 

  Follicular wave activity has been well-documented in llamas under three 

different physiological conditions: anovulatory (non-mated), ovulatory but non-pregnant 

(mated by vasectomized male), and ovulatory pregnant llamas (Adams et al., 1990).  The 

periodic growth of a cohort of follicles, the appearance of a dominant follicle that 

reaches at least 7 mm in diameter and the inverse relationship between the diameter of 

the largest follicle (dominant follicle) and the total number of follicles (subordinate 

follicles) support the existence of follicle waves in llamas. 

 

In llamas, the dominant follicle of the first anovulatory wave is detected 3 days 

after ovulation in females mated to a vasectomized or intact male.  The dominant follicle 

is first identified retrospectively at a diameter of 3 to 4 mm.  The subordinate follicles do 

not exceed a diameter of 7 mm.  Dominant follicles may range in diameter from 9 to 15 
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mm on day 15 (Adams et al., 1990).  Dominant follicles with smaller diameters have 

been associated with the presence of the CL and with lactational stage.  These factors 

also decrease the number of follicles in each cohort.  The lifespan of the anovulatory 

dominant follicles is 20 to 25 days, in unmated and vasectomy-mated llamas the inter-

wave interval is 19.8 ± 0.7 days and in pregnant llamas the inter-wave interval is 14.8 ± 

0.6 days. Lactation was associated with an inter-wave interval that was shortened, on 

average, by 2.5 ± 0.5 days (Adams et al., 1990).  Successive dominant follicles do not 

appear to follow an alternate pattern between the right and left ovaries. 

 

   Studies conducted in alpacas by laparoscopy (Bravo and Sumar, 1989) and 

llamas by ultrasonography (Bravo et al., 1990a) were consistent with the presence of a 

wave-like pattern of follicular development in camelids. However, follicular wave 

emergence and inter-wave interval were not defined in these studies.  In addition, the 

lifespan of dominant follicle, the apparently inter-wave interval, and the incidence of 

occurrence of successive dominant follicles between left and right ovaries were 

substantially different to that previously reported (Adams et al., 1990). The dominant 

follicle spanned 12 to 14 days, and the inter-wave interval lasted approximately 11.1 and 

15 days in llamas and alpacas, respectively. The occurrence of successive dominant 

follicles tended to alternate between ovaries in 85% of the follicle waves. In a recent 

study of llamas (Chavez et al., 2002), the lifespan of the dominant follicle (22.6 ± 2.5 

days) and the inter-wave interval (18.0 ± 2.6 days) in non-pregnant females, were similar 

to that described by Adams et al. (1990). Apparently the inter-wave interval of 15 days 

observed in a study of alpacas (Bravo et al., 1989) was similar to that found in a recent 

report (Vaughan et al., 2004) in which 15/38 (39%) and 12/38 (32%) of alpacas had 

inter-wave intervals of 12 and 16 days, respectively. In addition, an inter-wave interval 

of 4.2 ± 0.3 days was reported for non-pregnant, non-lactating vicuñas (Miragaya et al., 

2004).  

 

The variability of the duration of the inter-wave interval observed in anovulatory 

llamas and alpacas could be attributed to different degrees of follicular dominance 

related to the maximum diameter reached by the dominant follicle in each species. 
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Considering follicular dominance as a function of follicular size, the larger the size of a 

dominant follicle the longer the expected lifespan in each species.  This was shown in 

separate reports in which the maximum size of dominant follicles spanned from 7 to 12 

mm in alpacas (Bravo and Sumar, 1989; Vaughan et al., 2004) and 9 to 16 mm in llamas 

(Adams et al., 1990). This could partially explain the different inter-wave intervals 

observed between alpacas (Vaughan et al., 2004) and llamas (Adams et al., 1990), 

However, it does not explain the shortest inter-wave interval (4.2 ± 0.3 days) described 

in anovulatory vicuñas (Miragaya et al., 2004), in which the maximum diameter of 

dominant follicles ranged from 6.2 to 11.2 mm, similar to that of alpacas.  

 

Although follicle development in llamas and alpacas shares many of the 

characteristics previously reported in cattle, it appears that there are many differences in 

the control of the wave-like pattern between this species.  

 

Each follicular wave in cattle is preceded by a surge in circulating FSH (Adams 

et al., 1992a). Suppression of the FSH surge with follicular fluid (Turzillo and Fortune, 

1993) or exogenous estradiol (Bo et al., 1995a) prevented new wave emergence.  

However, it appears that there is no temporal association between FSH and wave 

emergence in llamas (Bravo et al., 1990a).  The selection of the dominant follicle in 

cattle has been temporally associated with the nadir of FSH and a change in dominant 

follicle responsiveness to LH with an increased capacity to produce estradiol (Adams et. 

al., 1993a; Ginther et al., 2001).  After selection, the dominant follicle grows in function 

for LH secretion, and during the luteal phase in cattle, progesterone reduces LH pulse 

frequency and the dominant follicle regresses (Savio et al., 1993; Campbell et al., 1995). 

Treatment with exogenous progesterone during early metestrus has been shown to 

suppress the diameter of the first-wave dominant follicle in a dose-dependent manner 

(Adams et al., 1992b), indicating that LH pulse frequency regulates turnover of the 

dominant follicle in these species (Roche et al., 1999). Although these events have not 

been extensively characterized in camelids, some evidence suggests the possibility that a 

similar mechanism may operate in this species. The concentration of plasma estradiol 

has been correlated with follicular size in llamas and alpacas (Bravo et al., 1991; Lasley 
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et al., 1989; Bravo et al., 1990b).   However, these studies failed to demonstrate temporal 

relationships between estradiol and plasma gonadotropin concentrations.  

 

In llamas, the diameter of the dominant follicle of the ovulatory wave may be in 

part associated with the pulsatile secretion of LH.   Progesterone secreted by the corpus 

luteum resulting from mating the female with a vasectomized male appears to decrease 

the diameter of the dominant follicle of the first anovulatory wave (Adams, 1990) 

Furthermore, prolonged exposure to progesterone observed in pregnant llamas results in 

significant reduction in the diameter of the second anovulatory wave, and an early 

regression of the dominant follicle of the first wave resulting in a shorter inter-wave 

interval than that observed in anovulatory (non-mated) and ovulatory (sterile-mated) 

females. However, the regression of the dominant follicle occurs in the anovulatory 

female with undetectable levels of progesterone; therefore intraovarians factors may play 

an important role in the control of the dominant follicle lifespan in these species. 

 

2.3.1 Control of ovarian follicular wave emergence  

 

Methods to effectively schedule fixed-time natural mating or AI in llamas and 

alpacas must take into account the need to have a healthy mature dominant follicle 

present at the time of mating.  Thus, synchronization protocols should be able to induce 

the emergence of a new follicular wave regardless of the stage of the cycle.   The 

rationale of these treatment protocols is based on the removal of the suppressive effect of 

dominant follicles at random stages of the follicular wave either by inducing its 

ovulation or atresia and thereby resulting in the recruitment of a new follicular wave. 

 

Ovarian synchronization has been achieved in cattle using physical and 

hormonal methods to induce follicular wave emergence. Ultrasound-guided follicle 

aspiration of all follicles ≥5 mm in diameter at random stages of the estrous cycle in 

heifers has been used to induce a transient increase in FSH and a synchronous emergence 

of a new wave within 1.5 days post-treatment (Bergfelt et al., 1994). This technique has 

been combined with prostaglandin F2α and GnRH or LH to improve the synchrony of 
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ovulation in cattle (Bergfelt et al., 1994; Brogliatti et al., 1998). Ultrasound-guided 

follicle aspiration effectively synchronizes follicular wave emergence.  However, the 

applicability of this technique with a large number of animals and under field conditions 

significantly reduces its large-scale application. 

 

   Hormonal treatments for controlling follicular wave emergence in cattle include 

the use of GnRH  (Pursley et al., 1995; Martinez et al., 1999), LH (Macmillan and 

Thatcher, 1991; Twagiramungu et al., 1992; Pursley et al., 1997), and estradiol in 

combination with progestagens (Bo et al., 1994, 1995a, b).  Ovulation has been reported 

to occur in 55% of GnRH-treated heifers (Pursley et al., 1995) and 78% of LH-treated 

heifers (Martinez et al., 1999) with an interval from treatment to the new follicular wave 

emergence of approximately 2 days.  

 

  Synchronization programs in cattle may involve the combination of 

progesterone and estradiol treatments to synchronize follicle wave emergence.  

Progesterone administration reduced the size of the dominant follicle of the first 

follicular wave in cattle (Adams et al., 1992b), and in a similar fashion it reduced the 

size of the dominant follicle of the first follicular wave in ovulatory vasectomized-mated 

llamas and the size of the dominant follicle in wave 1 and 2 in pregnant llamas (Adams 

et al., 1990). In cattle, progesterone decreases the frequency of the LH pulses and results 

in a decreased diameter of the dominant follicle (Goodman and Karsch, 1980; Ireland 

and Roche, 1982). Although progesterone suppresses the LH pulse frequency, it has no 

significant effect on FSH secretion (Goodman and Karsch, 1980); thus it will induce 

atresia of only LH-dependent follicles. Therefore, a treatment protocol with the 

administration of progesterone alone will be effective only at a specific stage of the 

follicular wave.  

 

Estrogens induces the atresia of FSH-dependent follicles by reducing FSH 

concentration through a negative feedback. A new follicular wave will emerge when 

estradiol concentration returns to basal levels (Bo et al., 1995b). The administration of 

exogenous estradiol in sheep and cattle with low progesterone concentrations resulted in 
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a decreased LH pulse amplitude (Goodman and Karsch, 1980; Rawlings et al., 1984). 

The combination of estradiol and progesterone treatment has been reported to have an 

additive suppressive effect on LH secretion (Bo et al., 1994). The use of estradiol 17-ß 

and progestagen-implanted heifers induces a new follicular wave emergence on an 

average of 4.3 ± 0.1 days, suggesting that this combination is able to more effectively 

control the ovarian follicular synchronization in cattle regardless of the stage of the 

follicular wave at the time of treatment.  

 

The use of GnRH (Bravo et al., 1992; Aller et al., 1999; Cancino et al., 1999; 

Huanca et al., 2001), LH (Huanca et al., 2001; Taylor et al., 2000) and hCG (Adam et 

al., 1992; Bourke et al., 1992; Correa et al., 1997; Ratto et al., 1997) to induce ovulation 

in normal and superstimulated females has yielded variable results in camelids.  

However, these studies were not designed to systematically evaluate the development of 

follicular waves post-treatment.  Other experiments have simply adapted the 

progesterone or progestagens protocols previously used in cattle and sheep to 

synchronize llamas and vicuñas (Bourke et al., 1992; Aba et al., 1999; Chaves et al., 

2002; Aba et al., 2005). 

 

So far, studies have not addressed the interaction between ovarian steroids and 

gonadotropin   concentrations in camelids.  Ovarian steroids have been reported to exert 

a negative effect on hypothalamic GnRH release and pituitary LH secretion in induced 

ovulators (Carroll and Baum, 1989; Johnson and Gay, 1981; Pau et al., 1986). Estradiol 

reduces the frequency and amplitude of the LH pulses in a dose dependent manner via a 

negative effect at the level of hypothalamus or pituitary gland (Pau et al., 1986; Carroll 

et al., 1987; Ramirez et al., 1994). The administration of exogenous estradiol benzoate 

slowly reduced FSH concentrations over 2 to 3 days in rabbits (Dufy-Barbe et al., 

1978).  Ovariectomized ferrets that received exogenous progesterone had similar LH 

concentrations to those of non-treated females. In addition, LH concentrations in 

progesterone-primed ferrets were significantly higher than those of ovariectomized 

estrogen-primed ferrets (Baum et al., 1986).  The use of estradiol alone to control 

follicular wave dynamics has been reported in only one alpaca study (D’Occhio et al., 

12 



 

1997). Exogenous estradiol given at doses of 0.5 or 2 mg induced follicular regression 

and emergence of a new follicular wave in which the new dominant follicle reached 

ovulatory size 10 to 12 days after treatment.  

 

There is no clear evidence that progesterone exerts a negative feedback effect on 

LH secretion in induced ovulators (Bakker and Baum, 2000). An intravaginal device 

(CIDR) containing 0.33 g of progesterone was used in sixteen adult, non-pregnant and 

non-lactating llamas (Chaves et al., 2002). The maximum plasma progesterone 

concentration reached was 9.45 ng/ml on day 1 after treatment (day 0 = CIDR implant), 

and then progesterone concentration decreased to 2.2 ng/ml on day 3, and returned to 

pretreatment values at day 11. Although, the stage of the follicular wave at the time of 

the treatment was not stated, apparently progesterone affected the diameter of the 

dominant follicles during the growing phase and early in the static phase.  However, no 

data was reported regarding the emergence of a new follicular wave in those females. A 

similar study was done in vicuñas (Aba et al., 2005) in which CIDRs containing 0.33 g 

of progesterone were implanted in adult females at random stages of follicular 

development. Similar to the llama study, maximum plasma progesterone concentration 

was 8.15 ng/ml at day 1 after treatment (Day 0 = CIDR implant), and progesterone 

concentrations remained elevated at approximately 3 ng/ml until the day of CIDR 

withdrawal. No follicular activity was observed during the CIDR treatment, maximum 

follicle diameter was 4 mm, and no information was provided regarding the emergence 

of a new follicular wave. Finally, in another study (Aba et al., 1999), 120 mg 

medroxyprogesterone acetate (MPA) sponges were inserted for 9 days in 22 adult 

llamas. After sponge withdrawal, females were allocated to different ovulatory 

treatments. Although all animals ovulated and formed a functional CL, the ovarian 

follicular dynamic was not characterized in this investigation. 
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2.4 Mechanism of ovulation in induced ovulators 

 

The females of spontaneous ovulators have ovarian cycles at regular intervals in 

which the preovulatory LH surge and subsequent ovulation depend on ovarian steroid 

concentrations. Substantial evidence has been reported for the effects of ovarian steroids 

and the preovulatory LH surge in spontaneous ovulators (Karsch, 1987; Turzillo and 

Net, 1999). In contrast, early studies in camelids concluded that the copulation stimulus 

elicits ovulation. Stimuli provided by either intact or vasectomized males and 

administration of human chorionic hormone (hCG) induced ovulation in more than 80% 

of llamas and alpacas (San Martin et al., 1968; Fernandez-Baca et al., 1970a; England et 

al., 1969). However, the first endocrine study that correlated the levels of LH and 

ovulation following copulation in llamas showed that LH concentrations increased at 15 

minutes, peaked at 2 hours, and declined to basal levels by 7 hours after natural mating 

(Bravo et al., 1990b). The rapid increase in plasma LH after mating in llamas (Bravo et 

al., 1990b) resembled that observed in rabbits after a single mating (Jones et al., 1976). 

Apparently, the number of matings did not increase either the ovulation rate in alpacas 

or the amplitude of the LH surge in llamas and alpacas (Fernandez-Baca, 1970a; Bravo 

et al., 1992), while in other induced ovulators such as cat, multiple mating increased 

both plasma LH amplitude and ovulation rate (Concannon et al., 1980). 

 

Administration of exogenous estradiol with or without progesterone did not 

elicit LH secretion in rabbits and ferrets (Sawyer and Markee, 1959; Baum et al., 1990).  

Estradiol in induced ovulators was reported to act in the female hypothalamus inducing 

behaviors characteristic of the proceptive and receptive sexual stages (Baum and 

Schretlen, 1978). Although the increase of estradiol has been positively correlated to the 

increase of the size of the dominant follicle in llamas and alpacas, these physiological 

increases did not induce ovulation in these species (Bravo et al., 1990a, 1990b, 1991, 

1992).  

 

 Gonadotropin releasing hormone (GnRH) is the central hypothalamic regulator 

of LH pulses in both spontaneous and induced ovulators. GnRH is produced by 
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hypothalamic neurons from a precursor polypeptide by enzymatic processing and 

packaged in storage granules that are transported down neural axons to the median 

eminence (Fink, 1988). Immunocytochemical studies have indicated that GnRH 

neurons are scattered throughout the medio-basal hypothalamus (MBH), rostrally and 

dorsally to the preoptic area and ventromedial hypothalamic nuclei (reviewed in Karsch, 

1987). Although there are clear species differences in the localization of GnRH neurons, 

these differences are not related to the type of ovulation mechanism. In general, the 

terminal axons of GnRH neurons lie in the pericapillary space of the hypophyseal portal 

system in the median eminence. 

 

The measurements of GnRH secretion have been reported only in the rat (Levine 

and Ramirez, 1982), rabbit (Ramirez et al., 1986; Pau et al., 1986), sheep (Moenter et 

al., 1991), and rhesus monkeys (Levine et al., 1985a, b).  Studies conducted in rabbits 

by using a push-pull perfusion technique showed that GnRH release is pulsatile in the 

rabbit, and when coitus was allowed, there was a 40 to 100-fold increase in GnRH 

within 20-60 minutes from the MBH followed by an increase in LH concentrations 

(Ramirez et al., 1986; Pau et al., 1986). Spies et al. (1997) provided a detailed 

comparison between induced and spontaneous ovulators using the rabbit and the 

monkey as models.  Although the initial stimulus to elicit the GnRH/LH surge is 

different between induced (neural) and spontaneous ovulators (hormonal), there are 

cases of induced ovulators undergoing spontaneous ovulation and spontaneous 

ovulators undergoing induced ovulation. This likely suggests that these animals are 

capable of responding to both types of stimulus but a single type of stimulus is 

predominant for a given species. 

 

 The neural pathways involved in the activation of GnRH neurons in induced- 

ovulators are still poorly understood.  Neurotransmitter and peptidergic systems have 

been shown to affect GnRH secretion and subsequently LH release in mammalian 

females (reviewed in McEwen and Parsons, 1982). Rabbits and ferrets are the only 

species of induced ovulators in which neurotransmitter and neuropeptide studies have 

been conducted to evaluate the neuroendocrine signal(s) that control   GnRH release 
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after mating. Although coitus and estrogen stimuli have been shown to increase 

norepinephrine concomitantly with increasing GnRH secretion, the latency of central 

activation of this neuroendocrine system by these two types of stimuli is governed by 

minutes or seconds in rabbits and hours in monkeys (Spies et al., 1997). Therefore, this 

differential speed in response could be attributed to different pathways required to elicit 

a GnRH/LH release in spontaneous or induced ovulators. 

 

2.4.1 Effect of natural mating and hormonal treatment on ovulation and CL 

formation 

  

In an early study designed to determine factors associated with eliciting 

ovulation in alpacas (Fernandez-Baca et al., 1970a), ovulation rate was compared 

among females that 1) were unmated, 2) were mounted only followed with or without 

artificial insemination, 3) had interrupted mating, 4) had sterile mating (vasectomized 

male) followed with or without artificial insemination, 5) had single or multiple 

uninterrupted mating (intact male), or 6) were given hCG. A high ovulation rate (80 to 

100%) was observed in the females mated by intact or vasectomized males and when 

hCG was used. However, the interval from stimulus to ovulation was not reported 

because ovaries were collected from a slaughterhouse 3 days after treatment.   

 

In a study involving a one-time examination of the ovaries during necropsy at 2- 

to 6-h intervals post-mating (n = 1 to 5 alpacas/time interval; San Martin et al., 1968), 

ovulation was detected as early as 26 h after mating and 24 h after hCG treatment. 

However, the method of detection (necropsy) precluded characterization of the mean 

interval and distribution of ovulations. In another llama study, ovulation was detected 

about 28 h after GnRH treatment (Bourke et al., 1992). Studies conducted in alpacas by 

laparoscopy every 12 h (Sumar et al., 1993) showed that the interval from mating to 

ovulation was 30 to 72 h in 50% (38/76) and approximately 30 h in 24% (18/76) of 

females. Based on daily ultrasonography of the ovaries in llamas (Adams et al., 1989, 

1990), ovulation was detected 2.1 ± 0.1 days (mean ± SEM) after copulation.  
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Most of the studies that characterize the luteal phase in llamas and alpacas are 

based on laparotomies performed at very long intervals or measurements of plasma 

progesterone concentrations collected at different times after natural mating 

(Fernandez-Baca et al., 1970c; England et al., 1969; Sumar et al., 1988; Adams et al., 

1989; Aba et al., 1995). Only one study has systematically reported the growth, 

regression and day-by-day diameter of CL after mating (Adams et al., 1991a). 

According to the other studies, the CL in alpacas reaches a maximum diameter of 14 

mm around day 8-9 after mating (day 0 = mating), and regresses by day 8-12. The 

maximum progesterone concentration ranged from 3.6 to 6.3 ng/ml on day 7-8 post 

mating (Bravo et al., 1995; Sumar et al., 1988; Aba et al., 1995). 

 

 Based on daily ultrasonography of the ovaries and every-other-day blood 

sampling after natural mating in llamas (Adams et al., 1991a), the maximum CL 

diameter and plasma progesterone concentrations were detected at day 8 after mating 

(day 0 = mating). Although an artificial luteal phase has been induced in camelids by 

treatment with gonadotropins (England et al., 1969; Sumar 1985; Ratto et al., 2003) or 

GnRH (Sumar 1985; Adams et al., 1992), these studies were not designed to evaluate 

the interval to ovulation and CL dynamics.  

 

2.4.2 Effect of semen on ovulation induction in llamas and alpacas 

 

 Seminal plasma is secreted by the testes and male accessory glands.  

Traditionally, the seminal plasma was regarded simply as a vehicle for sperm cells.  

However, it is believed that proteins, growth factors, hormones and cytokines present in 

the seminal plasma may also regulate important functions in the spermatozoa and in the 

female reproductive system.   

 Evidence that ovulation was induced by intravaginal semen deposition without 

any physical contact with the male was initially reported by investigators in China who 

concluded that a factor in semen, rather than mechanical stimulation during copulation, 

was responsible for eliciting ovulation in Bactrian camels (Chen et al., 1985).  In 
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addition, a study of alpacas (cited by Sumar, 1994) showed that intravaginal deposition 

of semen in alpacas was associated with ovulation.  Peruvian scientists conducted 

similar experiments in 1985 (cited in Sumar, 1994) but no information is available 

about the experimental design, methodology and analysis of the data.  A later study 

showed that alpaca seminal plasma stimulates LH secretion from primary cultures of rat 

pituitary cells (Paolicchi et al., 1999).  These reports suggested the presence of a 

factor(s) in alpaca seminal plasma that had GnRH-like activity.   However, the first 

scientific study designed to evaluate the effect of seminal plasma on ovulation indicated 

the presence of an ovulation-inducing factor (OIF) in alpaca seminal plasma.  Thirteen 

out of 14 female alpacas (93%) ovulated after an intramuscular injection of alpaca 

seminal plasma (Adams et al., 2001). 

 

 The presence of these ovulation-inducing substances may not be restricted to the 

seminal plasma of induced ovulators. In cattle, the preovulatory LH surge can be 

advanced if mating is conducted during the first 6-8 hours of behavioral estrus (Jochle, 

1975).  In pigs, the intrauterine deposition of boar seminal plasma accelerates ovulation 

in gilts (Wabersky et al., 1995).  Early studies on human seminal plasma reported the 

presence of molecules that immunoreacted with GnRH antibodies (Sokol et al., 1985; 

Izumi et al., 1985).  These substances are believed to be involved in sperm or oocyte 

function (Morales et al., 1994). Whether these factors are related to ovulation 

mechanisms in humans or whether these chemicals are closely related to those of 

Bactrian camels (Chen et al., 1985) remains unknown.  

 

2.5 Assisted reproductive technology in South American camelids 

 

 The development of assisted reproductive techniques such as artificial 

insemination, embryo transfer and in vitro technologies in South American camelids, is 

considerably behind that of other livestock species. The genetic improvement of cattle 
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and sheep herds has been accelerated through the commercial application of embryo 

transfer and superstimulation treatments. 

 

 Very little has been published on embryo transfer in South American camelids.  

Relatively poor results have tempered the initial enthusiasm for embryo transfer in 

llamas and alpacas in the 1990s. Among the reasons for limited success in the use of 

embryo technologies in llamas and alpacas are the lack of effective superstimulatory 

treatments, low embryo recovery, and scanty knowledge of embryo physiology. The 

first report on llama IVF was published in 1994 (Del Campo et al., 1994), and the first 

alpaca embryo produced by in vitro technique was reported in 2002 (Gomez et al., 

2002).  However, there are no reports of attempts to develop or establish IVF-

techniques in llamas and alpacas.  Since the first update regarding the application of 

reproductive technologies in South American camelids published in 1995 (Del Campo 

et al., 1995), few reports have been published in the field of oocyte collection and 

morphology and embryo freezing and cloning technology. 

 

2.5.1 Ovarian Superstimulation 

 

 Superstimulation has been attempted using equine chorionic gonadotropin 

(eCG) and follicle stimulating hormone (FSH) during a luteal phase (induced by 

eliciting ovulation, or by progesterone treatment) or during the sexually receptive phase. 

After superstimulatory treatment, the females were mated and given gonadotropin-

releasing hormone (GnRH) or human chorionic gonadotropin (hCG) to induce 

ovulation.  Superstimulatory treatment schemes may be summarized as follows: 

 

A. Luteal phase induced by ovulation (Bourke et al., 1995a): GnRH or hCG was 

given when a follicle of ≥9 mm was present (day 0). At day 7, 1000 IU of eCG 

was administered intramuscularly. At day 9, a luteolytic dose of prostaglandin 

was given and finally, to induce ovulation, 750 IU of hCG was given when 

follicles reached a diameter of 9 to 13 mm.  
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B. Luteal phase simulated by progestogen treatment (Bourke et al., 1992, 1994; 

Correa et al., 1994): The luteal phase has been simulated either by the 

application of a CIDR, norgestomet, or daily progesterone treatment for 7 to 12 

days. Gonadotropin treatments consisted of 20 mg pFSH (NIH-FSH-P1) im 

every 12 h for 5 days (total dose of 200 mg) or 1000 IU of eCG, starting 48 h 

before progestogen removal. Finally, 750 IU of hCG or 8 μg of GnRH was 

administered to induce ovulation. 

 

C. Sexually receptive phase (Correa et al., 1997; Ratto et al., 1997): Females that 

displayed continuous sexual receptivity for 5 days received 20 mg pFSH (NIH-

FSH-P1) im every 12 h for 5 days (total dose of 200 mg). After the last injection 

of FSH, females were treated with 750 IU of hCG to induce ovulation. 

 

  One study reported that doses of 500 and 1000 IU were optimal for inducing 

multiple follicular growth in llamas (Bravo et al., 1995).  The need to induce a luteal 

phase prior to or during superstimulation in camelids is not clearly understood, but it 

may simply reflect an empirical bias to conventional methods used in other ruminants. 

The number of ovulations or CL varies widely among studies, ranging from 2 to more 

than 11 per animal with a number of transferable embryos ranging from 0 to 2 per 

animal. Much of the variation may be attributed to the variation in follicular status at the 

time superstimulation treatments were initiated. More studies are needed to determine if 

follicular dominance will suppress the superstimulatory response in llamas and alpacas 

as it does in cattle. Recently, Bravo et al. (2004) reported an ovarian response of 3 to 7 

CL and a mean of 3.9 embryos after eCG treatment in alpacas.  However, this study did 

not provide the stimulatory protocols used in the experiment. 

 

2.5.2 Oocyte collection 

 

  Oocyte recovery rate after follicular aspiration by laparotomy in 4 

alpacas treated with FSH and 7 alpacas treated with eCG was 83% (105/127) and 82% 

(163/198) of the total follicles aspirated, respectively (Gomez et al., 2002). The 
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proportion of expanded COC that had reached the second metaphase in the 2 groups 

was 18/45 (40%) and 16/61 (26.2%), respectively. Ultrasound-guided follicle aspiration 

is a standard procedure used to collect cattle oocytes, but the first report of this 

technique for any species of camelids appeared in a recent study in llamas (Brogliatti et 

al., 2000).  

 

2.5.3 Embryo collection and transfer 

 

The first collection of zygotes from the oviducts of alpacas after spontaneous 

ovulation and from superovulated females by laparatomy 3 days after ovulation was 

reported in 1968 (Novoa and Sumar, 1968). The flushes were carried out normograde, 

from the ovarian end of the oviduct to the uterine end. The authors suggested that the 

muscular utero-tubal junction made retrograde flushing impossible (Sumar, 1983). 

 

 The non-surgical method of embryo collection is similar to that used in cattle.  

Briefly, a catheter is introduced through the cervical canal and the cuff is placed just 

cranial to the internal cervical os. Both uterine horns are flushed simultaneously by 

infusing collection medium until the horns are distended and then the fluid is recovered  

by aspiration or gravity flow. The process is repeated several times until 500 to 1000 ml 

of medium are recovered (Del Campo, et al., 1995; Smith, et al., 1994, Bourke, et al., 

1992; Correa, et al., 1992). Uterine flushing has been done on days 6.5 to 12 after 

mating, but embryo recovery has been frustratingly variable.  Regardless of the method 

of embryo collection, zygote recovery does not exceed 50% of the expected zygotes 

based on CL counts, (Del Campo et al., 1995).  

 

 The application of embryo transfer techniques over the past 30 years has 

generated approximately 13 live offspring throughout the world (reviewed Del Campo 

et al., 1995). The first birth of an alpaca using surgical collection and transfer 

techniques was reported in 1974 (Sumar, 1983). The first llama born using non-surgical 

collection and transfer was reported by Wiepz and Chapman (1985). In this experiment, 

collection and transfer were done 7 d after GnRH treatment. In 1987, the birth of 2 
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alpacas was reported in Peru through the use of nonsurgical collection and transfer 

(Palomino et al., 1987). Six live offspring were born in the United Kindgom from 1992 

to 1995 from 27 embryos transferred nonsurgically to 21 synchronized recipients 

(Bourke et al., 1994, 1995b). Interestingly, only recipients synchronized with GnRH 

became pregnant; no pregnancies resulted in those that received progestagen implants. 

In Chile, the birth of 1 llama offspring after 2 nonsurgical embryo transfers was 

reported in 1994 (Gatica, et al., 1994). More recently, Canadian scientists reported the 

recovery of 23 embryos from 5 superstimulated llamas (Palasz et al., 2000), and an 

American study reported the recovery of 37 embryos from 47 unstimulated donors 

(79%), 41% of which established pregnancies after transfer to recipients (Taylor et al., 

2000). The first report of successful interspecies transfer in camelids appeared in 2001 

after 2 alpaca offspring were born to llama recipients (Taylor et al., 2001). 

 

2.5.4 Embryo Morphology 

 

 Camelid embryos collected from superovulated females 6 to 7 days after mating 

vary in size from 0.1 mm to 1 mm and are usually found as hatched expanded 

blastocysts. From a total of 163 llama embryos and 19 alpaca embryos, the mean 

diameter of the embryo was 527.1 ± 168.0 μm and 534 ± 151.4 μm, respectively (Del 

Campo et al., 2002). There is also great variation in the diameter of single embryos 

collected from the same female in successive collections (Del Campo et al., 2002). 

About 35% of recovered embryos were small (≤450μm in diameter), 40% were medium 

(451 to 650 μm) and 24% were large (≥ 651μm). The size distribution was almost 

identical for alpacas.  

 

 It appears that embryos develop more rapidly in llamas and alpacas than in other 

species. Morulae have been recovered from llama oviducts as early as day 3 after 

insemination. Trophoblast expansion ranged from a mean of 1.2 mm in diameter on day 

6.5 to 7.5, to 83 mm in length on day 13 to 14 (Bourke et al., 1992). This accelerated 

rate of embryo development may be related to the apparent early maternal recognition 

of pregnancy in these species (Adams et al., 1991a; McEvoy et al., 1992).   
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2.5.5 In vitro Fertilization (IVF) and cloning 

 

  Growing follicles of llamas are spherical, and 85% of their surface protrudes 

from the surface of the ovary (Del Campo et al., 1994). Llama and alpaca cumulus 

oocyte complexes (COC) are dark, thus easily distinguished through the follicle wall by 

trans-illumination (Del Campo, et al., 1994).  In llamas, the COC was located in the 

follicle hemisphere containing the expected ovulation point. Oocytes collected from 

follicles 2 to 11 mm in diameter ranged from 172 to 200µ (mean ± SD, 183±14).  

Immature oocytes had a very distinct and large germinal vesicle with a dark nucleolus. 

A greater number of oocytes were collected by mincing the ovary with a razor blade 

(average 27 oocytes/llama) than by aspiration of follicles between 1 and 6 mm in 

diameter (6.4 oocytes/llama; Del Campo et al., 1992, 1994).  

 

   The first successful in vitro maturation and in vitro fertilization in llamas were 

reported in 1992 and 1994, respectively, using ovaries collected from a slaughterhouse 

(Del Campo et al., 1992, 1994). The authors reported that 62% of oocytes achieved 

metaphase II after 36 hours of culture and 57% of the matured oocytes displayed signs 

of fertilization after in vitro culture with epididymal sperm. Of 234 oocytes placed in 

llama oviductal epithelial cells co-culture for 9 days, 32% cleaved, 5.6% reached the 

morula stage, 6% reached the early to expanded blastocyst stage and 4.7% reached the 

hatched blastocyst stage. The first interspecies embryos were produced by heterologous 

in vitro fertilization using capacitated llama epididymal sperm and alpaca oocytes 

(Gomez et al., 2002). 

 

   Recently, somatic cell nuclear transfer was reported in llamas (Sansinena et al., 

2003). Adult female llama fibroblasts were used for donor karyoplasts and injected into 

enucleated llama oocytes. A total of 11 embryos (8-cell to morula stages) were 

transferred to synchronized recipient llamas, but no pregnancies were observed. 
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2.5.6  Embryo cryopreservation 

 

 The effects of 2 cryoprotectants, propylene glycol and ethylene glycol, on post-

thaw re-expansion and morphology of blastocysts have been compared (Palasz et al., 

2000). After 12 h of culture only blastocysts preserved in ethylene glycol re-expanded, 

and although transfers were not attempted, the authors concluded that ethylene glycol 

might be the cryoprotectant of choice in this species. Recently, vitrification of llama 

embryos has been attempted using an open pull straw (OPS) method (von Baer et al., 

2002). Embryos ranging from 0.3 to 0.8 mm were exposed in one step to a high 

concentration of cryoprotectant (40% ethylene glycol) and then submerged directly into 

liquid nitrogen. In vitro re-expansion of embryos after thawing was acceptable, but no 

pregnancies resulted after transfer of embryos into 2 recipients. High lipid content in the 

cytoplasm of camelid oocytes and embryos may contribute to low survival after 

cryopreservation (Brogliatti et al., 2000; von Baer et al., 2002). Recently, 2 out of 4 

llamas became pregnant after the transfer of 2 vitrified embryos in each female (Aller et 

al., 2002), but it is unknown whether these pregnancies resulted in offspring. 
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3.0 GENERAL OBJECTIVES  
 

The purpose of the studies reported in this thesis was to investigate methods to 

electively induce follicular wave emergence followed by the development of a new 

dominant follicle capable of ovulating at a consistent and predictable time. In addition, 

studies were done to determine the effects of hormone preparations or biological factors 

derived from seminal plasma on ovulation induction and corpus luteum function. 

Finally, studies were conducted to evaluate the establishment of superstimulatory 

protocols to induce a consistent ovarian follicular response and to determine their 

effects in oocyte collection and morphology in llamas and alpacas.  
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4.0 SPECIFIC OBJECTIVES 

 

Aim 1: A study conducted to manipulate ovarian follicular dynamics in llamas 

is presented in Chapter 5 of this thesis. This study was done to determine whether 

physical or hormonal treatments could control ovarian follicular wave emergence and if 

oocytes ovulated from the induced follicular waves were competent for fertilization and 

embryonic development under field conditions. 

  

Aim 2: A study was conducted to compare the effects of natural mating versus 

hormonal treatments on ovulation induction, interval to ovulation, and corpus luteum 

function  (Chapter 6).  

 

Aim 3: Three studies were conducted to determine whether alpaca or llama 

seminal plasma influences ovulation mechanisms in these species. The aim of the first 

study was to determine the presence of an ovulation-inducing factor in the seminal 

plasma of llamas and alpacas, and to evaluate their effect on ovulation rate and corpus 

luteum function; this study is presented in Chapter 7. A second study was designed to 

determine if the ovulation-inducing factor is present in the semen of spontaneous 

ovulating species, e.g., bull (Chapter 8). Finally, the third study evaluated the effect of 

seminal plasma delivery routes on ovulation rate and corpus luteum formation in alpacas 

(Chapter 9). 

 

26 



 

 Aim 4: Studies were conducted to determine whether superstimulatory 

treatments given during follicular wave emergence would influence the ovarian follicular 

response and oocyte maturation (in vivo maturation) in alpacas and llamas, and to 

evaluate the effect of in vitro culture time on maturation of llama oocytes (in vitro 

maturation). These studies are presented in Chapters 10 and 11, respectively.   
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5.0 OVARIAN FOLLICULAR WAVE SYNCHRONIZATION AND 
PREGNANCY RATE AFTER FIXED-TIME NATURAL MATING IN 
LLAMAS 

 

5.1 Abstract 

 

The study was designed to compare the efficacy of treatments intended to induce 

follicular wave synchronization among llamas (Experiment 1), and to determine the 

effect of these treatments on pregnancy rates after fixed-time natural mating 

(Experiment 2). In Experiment 1, llamas were treated with either 1) saline (Control, n = 

20), 2) estradiol and progesterone (E/P, n = 20), 3) LH (LH, n = 20), or 4) transvaginal 

ultrasound-guided follicle ablation (FA, n = 20). The ovarian response was monitored 

daily by transrectal ultrasonography. The intervals from treatment to follicular wave 

emergence and to the day on which the new dominant follicle reached ≥7 mm, 

respectively, did not differ between LH (2.1 ± 0.3 days and 5.2 ± 0.5 d) and FA groups 

(2.3 ± 0.3 days and 5.0 ± 0.5 d), but both were shorter (P<0.05) and less variable 

(P<0.01) than in the Control group (5.5 ± 1.0 days and 8.4 ± 2.0 d), while the E/P group 

(4.5 ± 0.8 days and 7.7 ± 0.5 d) was intermediate. In Experiment 2, llamas at unknown 

stages of follicular development were assigned randomly to Control, E/P, and LH 

groups (n = 30 per group). A single, fixed-time natural mating was permitted 10 to 12 

days after treatment. Ovulation rates did not differ among groups (Control, 93%; E/P, 

90%; LH, 90%; P = 0.99), but the pregnancy rate was higher (P<0.05) for synchronized 
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llamas (LH and E/P groups combined, 41/54) than for non-synchronized llamas 

(Control group, 15/28). In conclusion, LH and FA treatments were most effective for 

inducing follicular wave synchronization, while E/P treatment was intermediate. 

Synchronization treatments did not influence ovulation rate subsequent to fixed-time 

natural mating, but a higher pregnancy rate in synchronized than non-synchronized 

llamas warrants critical evaluation of the effects of follicular status on the 

developmental competence of the contained oocyte. 
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5.2  Introduction 

 

Female llamas and alpacas ovulate in response to copulation (England et al., 

1969; San Martin et al., 1968). Hence, unmated females remain in a follicular phase 

characterized by more-or-less constant sexual receptivity (San Martin et al., 1968; 

England et al., 1971) and regular emergence of anovulatory follicular waves (Adams et 

al., 1990; Bravo et al., 1990a). Despite virtually constant sexual receptivity, the ability 

to ovulate in response to a mating stimulus was influenced by the developmental status 

of the dominant follicle at the time of mating (Bravo et al., 1991). Growing dominant 

follicles ≥6 mm were capable of ovulating (Adams et al., 1990), but smaller follicles or 

those that were regressing were not (Bravo et al., 1991). To be able to effectively 

schedule mating or insemination in llamas and alpacas, a method of controlling 

follicular wave status must be developed to ensure that mating coincides with the 

presence of a healthy mature dominant follicle. 

 

 In one study (Adams et al., 1990), the interval between the emergence of 

successive dominant follicles was 17 to 20 days in unmated and sterile-mated llamas, 

and lactation was associated with an abbreviation of 2.5 days in the interval. The 

interval during which the dominant follicle was ≥6 mm was approximately 19 days, of 

which 8 days were in the growing phase, 7 days were in the static phase, and 4 days 

were in the regressing phase (Adams et al., 1990). Assuming that the dominant follicle 

is responsive to a mating stimulus only when it is growing and ≥6 mm, then 

approximately half of the females may be expected to ovulate in response to mating on 

any given day. However, it is assumed that the dominant follicle remains viable for half 

the static phase, then about two thirds of the females may be expected to ovulate in 

response to mating on any given day. To achieve a response approaching 100%, a 

protocol must be devised to induce the proper follicular phase at the desired time of 

mating. 

 

Ovarian synchronization has been reported in cattle using physical and hormonal 

methods to elicit follicular wave emergence. Ultrasound-guided follicle aspiration of all 
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follicles ≥5 mm in diameter induced the emergence of a new wave within 1.5 days after 

treatment (Bergfelt et al., 1994; Baracaldo et al., 2000). Hormonal treatments for 

controlling follicular wave emergence in cattle included the use of GnRH, LH 

(Macmillan and Thatcher, 1991; Pursley et al., 1995, 1997; Twagiramungu et al., 1992; 

Martinez et al., 1999), and estradiol in combination with progestogens (Bo et al., 1994, 

1995a, 1995b). Similar to follicle ablation, the effectiveness of a hormonal method is 

based on removal of the suppressive effects of the dominant follicle, either by inducing 

its ovulation (GnRH, LH) or atresia (estradiol and progesterone). The final effect is 

elective induction of a new follicular wave followed by the development of a new 

dominant follicle capable of ovulating at a consistent and predictable time (Martinez et 

al., 2000).  

 

In camelids, GnRH (Bravo et al., 1992; Aller et al., 1999; Cancino et al., 1999; 

Huanca et al., 2001), LH (Huanca et al., 2001; Taylor et al., 2000) and hCG (Adam et 

al., 1992; Bourke et al., 1992; Correa et al., 1997; Ratto et al., 1997) have been used to 

induce ovulation in normal and superstimulated females, with variable results. These 

studies, however, were focused on ovulation rate and were not designed to 

systematically evaluate follicular wave development after treatment. Other experiments 

involving the empirical use of progesterone have been reported in llamas and alpacas 

(Bourke et al., 1992; Aba et al., 1999; Chaves et al., 2002), based on studies done in 

cattle and sheep. The rationale for using progesterone alone to synchronize follicular 

development in llamas, however, is unclear since regular luteal phases are not a 

characteristic of the ovarian pattern in camelids (i.e., induced ovulators) and follicular 

waves continue to emerge at regular intervals during progestational states (i.e., after 

sterile mating or during pregnancy, Adams et al., 1990). Effective control of ovarian 

function will require a method of inducing emergence of a new follicular wave, 

regardless of the stage of the wave at the time of treatment, so that mating may be 

scheduled at a time when the dominant follicle is mature and contains a competent 

oocyte. Conventional breeding management practices for llama and alpaca producers 

require a substantial investment of time and labor for detecting sexual receptivity. 

Establishment of a protocol that will permit elective control of follicular growth in 
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camelids will dramatically improve breeding management by providing a means of pre-

scheduling inseminations. 

 

The objective of the study was to compare the efficacy of treatments intended to 

induce follicular wave synchronization among animals. Experiments were designed to 

determine the effects of steroids (estradiol plus progesterone), gonadotropin (LH), and 

ultrasound-guided follicular ablation on follicular wave dynamics in lactating and non-

lactating llamas (Experiment 1), and to determine the effects of these treatments on 

pregnancy rates after fixed-time natural mating (Experiment 2). 

 

 5.3 Materials and Methods 

 

Two experiments were conducted during the rainy season (January-March) at the high 

altitude research station at Quimsachata  (4600 m above sea level) in the Department of 

Puno, Peru.  

 

5.3.1 Experiment 1 

 

Llamas, >2 years of age and weighing 75 to 150 kg, were classified as lactating 

(n = 40) or non-lactating (n = 40) and assigned randomly to the following treatment 

groups: 1) 2 ml phosphate buffered saline given im (Control, n = 20), 2) 1 mg estradiol-

17β and 25 mg of progesterone (Sigma chemical Co, St.Louis, MO, USA), in a total 

volume of 2 ml of safflower oil given im (E/P, n = 20), 3) 5 mg Armour Standard 

luteinizing hormone (Lutropin, Vetrepharm Canada Inc, London, ON, Canada) given im 

(LH, n = 20), and 4) transvaginal ultrasound-guided ablation of all follicles ≥5 mm in 

diameter (FA, n = 20). Transrectal ultrasonography was done using a B-mode scanner 

with a 7.5 MHz linear-array transducer (Aloka, SSD500). Ovarian structures were 

examined once daily as described (Adams et al., 1989) from 3 days before to 19 or 20 

days after treatment. Individual follicles ≥3 mm were monitored serially during this 

period and sketches were made of each ovary noting the number and the relative size 

and position of ovarian structures (Knopf et al., 1989). The ovarian response to 
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treatment was evaluated by determining the interval to new wave emergence, the daily 

diameter profile of the dominant follicle, the day on which the new dominant follicle 

reached ≥7 mm in diameter, and the number of follicles ≥4 mm in diameter. A follicular 

wave was defined as the simultaneous growth of a cohort of follicles. A dominant 

follicle was defined as one that grew to at least 7 mm and exceeded the diameter of all 

other follicles in the cohort (Adams et al., 1990). The day of wave emergence was 

defined as the day on which the dominant follicle was first detected, retrospectively, at a 

diameter of 4 mm (Adams et al., 1990).  

 

5.3.2 Experiment 2 

 

Lactating llamas, >2 years of age and weighing 75 to 150 kg, and of unknown 

(i.e., random) follicular wave status were assigned randomly to 3 treatment groups: 1) 2 

ml phosphate buffered saline given im (Control, n = 30), 2) 1 mg estradiol-17β and 25 

mg of progesterone, in a total volume of 2 ml of safflower oil given im (E/P, n = 30), 

and 3) 5 mg Armour Standard luteinizing hormone given im (LH, n = 30). Natural 

mating was scheduled on day 10 to 12 (day 0 = day of treatment). Each female was 

mated only once, and a different male was used for each female (i.e., 90 males). 

Matings were monitored and transrectal ultrasound examinations were conducted on the 

day before mating, the day of mating and 3, 8 and 25 days later to evaluate follicular 

size, ovulation, presence of a corpus luteum, and pregnancy, respectively. Ovulation 

was assumed by the disappearance of an apparent dominant follicle identified before 

mating and the subsequent examination, and was confirmed by the subsequent detection 

of a corpus luteum (Adams et al., 1990). Pregnancy was defined as the ultrasonic 

detection of an embryo proper (Adams, 1997).  

 

5.3.3  Statistical Analyses 

 

Single point measurements (i.e., interval from treatment to wave emergence, 

maximum size of the dominant follicle, interval from treatment to the day on which the 

new dominant follicle reached ≥7 mm) were performed by two-way analyses of 
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variance to determine the effects of hormonal treatment, lactation, and their interaction. 

Differences between lactating and non-lactating llamas in the interval to wave 

emergence and to the day on which the new dominant follicle reached ≥7 mm in 

diameter were not significant; therefore, data were analyzed for a treatment effect 

irrespective of lactational status. The degree of variability in the intervals from 

treatment to wave emergence and to the day the dominant follicle reached ≥7 mm was 

estimated by calculating the group mean and subtracting it from each data point; the 

resulting values were then compared among treatment groups by analysis of variance. 

When main effects or their interaction were significant (i.e., P≤0.05), means were 

compared by least significant difference (LSD). Cook's value was used to detect outliers 

(Rawlings, 1988). For statistical analyses of serial data and preparation of figures, 

follicular data were centralized to the day of wave emergence. Serial data were 

compared by Proc-mixed in SAS (SAS, 1985) to determine main effects of status, 

treatment, day, and their interactions. The Compound Symmetry model provided the 

best fit and was, therefore, used to interpret the results of analyses of variance. 

Ovulation and pregnancy rates were compared by Chi-square analyses, and follicular 

size before mating was compared among treatment groups by analysis of variance. 

 

5.4 Results 

 

5.4.1 Experiment 1 

 

Data from 1 non-lactating llama in the Control group and 1 non-lactating llama 

in the E/P group were excluded from analyses because emergence of a new follicular 

wave was not detected during the observational period (i.e., > 20 days). The interval to 

wave emergence for these 2 animals were statistical outliers compared with others in 

the respective groups. One lactating and 2 non-lactating llamas from the Control group 

ovulated spontaneously, but their data were included in the analyses. By the same token, 

2 lactating and 2 non-lactating llamas in the LH group did not ovulate, but their data 

were also included in the analyses. 
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The effects of treatment and lactational status on the interval from treatment to wave 

emergence are summarized in Table 5.1. There was an effect of treatment (P = 0.01) but 

no effect of lactation (P = 0.8), or treatment-by-lactation interaction (P = 0.06). The 

mean interval did not differ between LH and FA groups, but both were shorter (P < 

0.05) than the Control group, while the E/P group was intermediate.  

 

The effects of treatment and lactational status on the interval from treatment to the day 

on which the new dominant follicle reached ≥7 mm in diameter are shown in Table 5.2. 

There was an effect of treatment (P = 0.01) on the mean interval, but no effect of 

lactation (P = 0.1) or treatment-by-lactation interaction (P = 0.07). The mean interval 

did not differ between LH and FA groups, and both were shorter (P < 0.05) than the 

Control group, while the E/P group was intermediate.  

 

Intervals from the day of treatment to the day of wave emergence and to the day 

on which the new dominant follicle reached ≥7 mm did not differ between lactating and 

non-lactating llamas; therefore, data were analyzed for degree of synchrony (variability) 

after combining lactating and non-lactating groups (Table 5.3). The variability in the 

intervals to wave emergence for the LH and FA groups were less (P < 0.01) than the 

Control group, and the E/P group was intermediate. The variability in interval to the day 

on which the new dominant follicle reached ≥7 mm in diameter did not differ among the 

E/P, LH and FA groups, but all 3 were less (P < 0.01) than the Control group. 

 

Lactation was associated with a decrease (P < 0.01) in maximum diameter of the 

dominant follicle, but there was no effect of treatment or interaction (Table 5.4). The 

effects of treatment and lactational status on the number of follicles ≥4 mm detected on 

the day of wave emergence are summarized in Table 5.5. In the FA group, the number 

of follicles was numerically lower than in other groups, but differences did not reach 

significance among treatment groups (P = 0.07).  

 

No effect of treatment was detected on the day-to-day profile of follicle numbers and 

diameter of the new wave; therefore, data were combined among treatment groups 
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(Figure 5.1). The dominant follicle diameter profile was smaller in lactating llamas than 

non-lactating llamas (lactation-by-day interaction, P < 0.01). There was a day effect but 

no lactation effect or interaction on the profile of the number of follicles ≥4 mm 

detected per day (Figure 5.1).  
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Table 5.1. Interval (mean ± SEM) from treatment to follicular wave emergence in llamas after estradiol-17β plus progesterone 
(E/P), luteinizing hormone (LH), or ultrasound-guided follicle ablation (FA) treatments for the purpose of ovarian 
synchronization. 

 

 Control E/P LH FA Overall 

Lactating (days) 

(n) 

7.2 ± 1.7 

(10) 

4.2 ± 0.6 

(10) 

1.9 ± 0.4 

(10) 

1.6 ± 0.3 

(10) 

3.8 ± 0.6 

(40) 

Non-lactating (days) 

(n) 

3.7 ± 1.0 

(9) 

5.0 ± 1.6 

(9) 

2.4 ± 0.3 

(10) 

3.1 ± 0.9 

(10) 

3.3 ± 0.5 

(38) 

Overall (days) 

(n) 

5.5 ± 1.0a 

(19) 

4.5 ± 0.8ab 

(19) 

2.1 ± 0.3b 

(20) 

2.3 ± 0.3b 

(20) 

3.6 ± 0.4 

(78) 

 

Treatment (P = 0.01), Lactation (P = 0.8), Treatment-by-Lactation interaction (P= 0.06). 
a,b  Values with no common superscripts are different (P < 0.05). 
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Table 5.2. Interval (mean ± SEM) from treatment to the day on which the dominant follicle reached ≥7 mm in diameter in 
lactating and non-lactating llamas after estradiol-17β plus progesterone (E/P), luteinizing hormone (LH), or 
ultrasound-guided follicle ablation (FA) treatments for the purpose of ovarian synchronization. 

 
 Control E/P LH FA Overall 

Lactating (days) 

(n) 

10.5 ±1.7 

(10) 

8.3 ± 0.7 

(10) 

5.2 ± 0.5 

(10) 

4.8 ± 0.5 

(10) 

7.2 ± 0.6 

(40) 

Non-lactating (days) 

(n) 

6.3 ± 1.0 

(9) 

7.2 ± 1.0 

(9) 

5.3 ± 0.6 

(10) 

5.8 ± 1.0 

(10) 

6.1 ± 0.5 

(38) 

Overall (days) 

(n) 

8.4 ± 2.0a 

(19) 

7.7 ± 0.5ab 

(19) 

5.2 ± 0.5b 

(20) 

5.0 ± 0.5b 

(20) 

6.7 ± 0.4 

(78) 

 

Treatment (P = 0.01), Lactation (P = 0.1), Treatment-by-Lactation interaction (P= 0.07). 
a,b Values with no common superscripts are different (P < 0.05). 
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Table 5. 3.  Variability (mean ± SEM)* in intervals to follicular wave emergence and the day on which the dominant follicle reached 
≥7 mm in diameter in llamas after estradiol-17β plus progesterone (E/P), luteinizing hormone (LH), or ultrasound-guided 
follicle ablation (FA) treatments for the purpose of ovarian synchronization. 

 
 Control E/P LH F/A 

Wave emergence (days) 

Range 

(n) 

3.4 ± 0.5a

1 - 15 

(19) 

2.4 ± 0.5ab

1 - 14 

(19) 

0.9 ± 0.1b

0 - 5 

(20) 

1.3 ± 0.4b

0 - 11 

(20) 

≥ 7mm follicle (days) 

Range 

(n) 

3.6 ± 0.5a

2 - 19 

(19) 

1.5 ± 0.4b

5 - 14 

(19) 

1.4 ± 0.3b

2 - 9 

(20) 

1.9 ± 0.3b

2 - 13 

(20) 
 

a,b Values within rows with no common superscripts are different (P < 0.01). 
*Variability was estimated by calculating the absolute difference between the treatment group mean and individual animal 
value. Mean differences were compared among groups by analysis of variance. 
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Table 5. 4.  Maximum diameter (mean ± SEM) of the dominant follicle in lactating and non-lactating llamas after estradiol-17β plus 
progesterone (E/P), luteinizing hormone (LH), or ultrasound guided follicle ablation (FA) treatments for the purpose of 
ovarian synchronization. 

 
 Control E/P LH F/A Overall 

Lactating (mm) 

(n) 

10.0  ± 0.8 

(10) 

10.8 ± 0.8 

(10) 

10.8 ± 0.4 

(10) 

11.8 ± 0.9 

(10) 

10.9 ± 0.8a

(40) 

Non-lactating (mm) 

(n) 

13.4 ± 1.0 

(9) 

13.1 ± 0.7 

(9) 

14.0 ± 1.0 

(10) 

13.7 ± 1.1 

(9) 

13.6 ± 0.5b

(38) 

Overall (mm) 

(n) 

11.7 ± 1.7 

(19) 

11.9 ± 1.1 

(19) 

12.4 ± 1.6 

(20) 

12.7 ± 0.9 

(20) 

12.2 ± 0.3 

(78) 

 

Treatment (P = 0.8), Lactation (P = 0.01), Treatment-by-Lactation interaction (P = 0.66). 
a,b Values with different superscripts are different (P < 0.01). 
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Table 5.5. Number (mean ± SEM) of follicles ≥4 mm detected on the day of wave emergence in lactating and non- lactating llamas 
after estradiol-17β plus progesterone (E/P), luteinizing hormone (LH), or ultrasound-guided follicle ablation (FA) 
treatments for the purpose of ovarian synchronization. 

 

 Control E/P LH F/A Overall 

Lactating 

(n) 

11.3 ± 2.6 

(10) 

9.3 ± 0.9 

(10) 

5.7 ± 1.5 

(10) 

4.1 ± 1.0 

(10) 

7.6 ± 0.9 

(40) 

Non-lactating 

(n) 

11.4 ± 1.9 

(9) 

8.3 ± 1.5 

(9) 

11.2 ± 2.5 

(10) 

8.0 ± 2.0 

(10) 

9.7 ± 1.0 

(38) 

Overall 

(n) 

11.4 ± 1.6 

(19) 

8.8 ± 1.0 

(19) 

8.4 ± 1.5 

(20) 

6.0 ± 1.1 

(20) 

8.6 ± 0.7 

(78) 

 

Treatment (P = 0.07), Lactation (P = 0.2), Treatment-by-lactation interaction (P = 0.1)  
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Figure 5.1.   The effect (mean ± SEM) of lactational status on follicular dynamics in llamas after 
synchronization treatment. No effect of treatment on number of follicles ≥ 4 mm (P = 0.3) or on 
dominant follicle diameter (P = 0.6) was detected, therefore, data were combined among 
treatments groups. a) Profiles of follicles number. Effect of day (P<0.01), Lactation (P = 0.1), 
Treatment-by-status (P = 0.4), Treatment-by-day (P = 0.1), Status-by-day (P = 0.1), Treatment-
by-status-by-day (P = 0.1). b) Profiles of follicle diameter. Lactation-by-day interaction (P<0.01), 
Treatment-by-status (P = 0.9), Treatment-by-day (P = 1.0), Treatment-by-status-by-day (P = 0.6). 
* Day 10: first day of significance (P<0.01). 
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5.4.2 Experiment 2 

 

All the females were receptive to mating, regardless of group. The diameter of 

the largest follicle at the time of mating did not differ (P = 0.94) among treatment 

groups. Ovulation rates ranged from 90% to 93% and did not differ among groups (P = 

0.5; Table 5.6). Eight days after mating, a CL was detected in all females in which 

ovulation had been detected. Differences in pregnancy rates among groups did not reach 

significance; however, the pregnancy rate was higher (P < 0.05) in synchronized 

animals (LH and E/P groups combined) than in those that were not synchronized 

(Control group; Table 5.6). 
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Table 5.6.   Follicular size (mean ± SEM), and ovulation and pregnancy rates in lactating llamas treated with estradiol-17β plus 
progesterone or LH and permitted a single fixed-time natural mating (Experiment 2). 

 
End Point Control E/P LH E/P and LH Combined

Number 30 30 30 60 

Follicular diameter (mm)* 9.8 ± 0.4 9.9 ± 0.5 9.7 ± 0.4 9.8 ± 0.3 

Ovulation rate  28/30 

(93%) 

27/30 

(90%) 

27/30 

(90%) 

54/60 

(90%) 

Pregnancy rate** 15/28 

(54%)a

21/27 

(78%) 

20/27 

(75%) 

41/54 

(76%)b

 

a,b Values with different superscripts are different (P < 0.05). 
*Follicular diameter recorded before mating. 
**Number pregnant over the number that ovulated. 
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5.5 Discussion 

 

The ability to manipulate follicular waves in cattle has resulted in a degree of 

estrus and ovulation synchrony sufficient to permit fixed-time insemination (Bo et al., 

2002). Consistency in estrus and ovulation synchronization protocols depends largely 

on the effectiveness of treatment to induce the development of a new dominant follicle 

among animals regardless of follicular and luteal status at the time of treatment. The 

present study was designed to compare the efficacy of treatments, developed initially 

for use in cattle, to induce follicular wave synchronization in llamas, and to evaluate the 

effect of such treatments on ovulation and pregnancy rate after a single, fixed-time 

natural mating. LH treatment and the use of ultrasound-guided follicle ablation were 

most effective for inducing follicular wave synchronization, while treatment with 

estradiol-17β plus progesterone was intermediate in efficacy. Although synchrony of 

wave emergence was affected by the treatments in Experiment 1, treatment-induced 

wave synchrony did not influence ovulation rate subsequent to natural mating in the 

Experiment 2. This result was unexpected and calls into question the notion that only 

growing- and early static-phase dominant follicles are capable of ovulating (Bravo et 

al., 1991).  

 

Camelids exhibit a follicular wave pattern similar to other species, and share 

similar features such as recruitment, selection and dominance during follicular 

development (Adams, 1997). Similar to other species then, FSH and LH may play 

important roles in recruitment and dominance, respectively. An association between 

FSH surges and follicle recruitment has been described in cattle (Adams et al., 1992a), 

sheep (Picton et al., 1990), and swine (Driancourt et al., 1995), but in the only study of 

its kind in llamas (Bravo et al., 1990a), no relationship between FSH and follicular 

recruitment was detected. However, follicular waves and the inter-wave interval were 

not strictly defined, and FSH surges may have been obscured without the use of wave 

emergence as a reference point (Adams, 1997). 
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Several reports have documented the efficacy of estradiol plus progesterone 

treatment for synchronizing wave emergence and ovulation in cattle (Pursley et al., 

1997; Martinez et al., 1999; Bo et al., 1994, 1995a, 1995b). The synchronizing effect 

has been attributed to treatment-induced atresia of the dominant follicle through 

suppression of circulating gonadotropins (Bo et al., 2000). Estradiol alone was found to 

suppress the growth of the dominant follicle in cattle, but the effect was more consistent 

when combined with progestogen treatment (Martinez et al., 1999). The dose of 

estradiol use in the present study was similar to that of a preliminary study (D’Occhio et 

al., 1997) in which a single administration of 0.5 or 2 mg of estradiol without 

progesterone induced follicular regression and new wave emergence in alpacas 

regardless of the stage of follicular development. Although the effect of steroid 

treatment was consistently intermediate between that of the Control and other treatment 

groups, a distinct synchronizing effect of estradiol/progesterone treatment was not 

apparent in the present study. The lack of a clear effect may have been related to the 

dose or duration of treatment of estradiol and progesterone. In this regard, progesterone 

treatment is commonly given for 6 to 9 days in cattle (Bo et al., 2002). 

 

In one study (Bourke et al., 1992), a subcutaneous norgestomet ear implant 

(Crestar®) for 7 days or an intravaginal progesterone-releasing device of (CIDR®) for 

9 days was used in llamas prior to ovarian superstimulation. Authors reported a high 

number of corpora lutea after superovulatory treatment, but a comparison with non-

progestogen treated animals was not included. Recently, the use of a CIDR for 8 days in 

two groups of llamas with a follicular size of 6 to 9 mm and 10 to 14 mm, respectively, 

resulted in a decrease in follicular size in both groups 7 days after treatment (Chaves et 

al., 2002). Administration of progesterone (150 mg per day for 14 days) had a 

suppressive effect on large follicles in camel, however, progesterone treatment alone did 

not effectively synchronize wave emergence (Skidmore, 1994). In another brief report 

in camels, the use of a CIDR for 14 days, with or without an initial injection of estradiol 

plus progesterone, induced the development of a pre-ovulatory follicle 10 days after the 

CIDR was removed (Niasari-Naslaji et al., 2002). In most of these studies, however, the 

lack of information regarding follicular dynamics subsequent to treatment and the lack 
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of a clear definition of ovarian status before treatment makes interpretation difficult, 

particularly when success of synchrony was reported in terms of ovulation rate. Results 

of the present study suggest that it is not valid to make inference about follicular 

synchrony based on ovulatory response; i.e., ovulation rates did not differ between 

synchronized and unsynchronized llamas, but pregnancy rates did. The ovarian effects 

of dose and duration of estradiol/progesterone treatment in llamas remain to be 

investigated. 

 

Follicular wave emergence after GnRH or LH treatment was variable in studies 

conducted in cattle (Martinez et al., 1999; Martinez et al., 2000). Wave synchronization 

occurred only if ovulation was induced; i.e., only when treatment coincided with the 

presence of a large viable dominant follicle. However, in the Experiment 1, a large 

proportion of llamas did ovulate (80%) after LH treatment given at random stages of 

follicular development, resulting in a large proportion of llamas with new follicular 

wave emergence. Inherent ovulatory responsiveness in combination with a strategic 

waiting period of 10 to 12 days, made LH treatment particularly effective for inducing 

follicular synchrony among llamas in the present study. 

 

The treatment-induced follicular wave was similar to the spontaneous wave 

based on the observation that the daily profile of the number of follicles ≥4 mm and the 

diameter of the dominant follicle of the new wave were not influenced by 

synchronization treatments. The suppressive effect of lactation on the diameter of the 

dominant follicle was consistent with previous findings (Adams et al., 1990). 

 

The ovulation rate observed in the Control group in Experiment 2 was 

unexpectedly high (93%). We anticipated an ovulation rate of about 66% based on the 

presence of a growing- or early static-phase follicle of ≥7 mm within the ovaries in 66% 

of the llamas at any given time (Adams et al., 1990). However, results suggest that 

follicles in growing, static, and regressing phases were capable of ovulating, contrary to 

the results of a previous study (Bravo et al., 1991). Although ovulation rate was not 

affected by treatment, the pregnancy rate was higher in synchronized than non-
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synchronized females (Experiment 2). The disconnection between ovulation rate and 

pregnancy rate suggests that ovulatory capability is not directly related to the capability 

of the oocyte to become fertilized and develop into an embryo. Assuming that a 

growing- or early static-phase dominant follicle ≥7 mm is present in about 66% of 

llamas at any given time, and that such follicles have a high ovulation rate (85-90%, 

Adams et al., 1990) and contain a viable oocyte, we expected a pregnancy rate of about 

57% in the control group (i.e., 66% x 87%). Despite the unexpectedly high ovulation 

rate in the Control group (93%), the observed pregnancy rate (54%) was very close to 

the expected rate. Results provide rationale for the hypothesis that oocytes from 

follicles outside the mid-growing to early-static phase are immature or post-mature, and 

not competent to develop into embryos. 

 

In conclusion, LH and FA treatments were most effective for inducing follicular 

wave synchronization, while E/P treatment was intermediate. The ovulation rate after a 

single LH treatment or a single mating was unexpectedly high (~90%) and suggests that 

ovulatory capability extends through a greater proportion of the growing, static and 

regressing phases of dominant follicle than previously thought. Although 

synchronization treatments did not influence ovulation rate subsequent to natural 

mating, treatment was associated with a higher pregnancy rate. Differences in 

pregnancy rate after fixed-time natural mating between synchronized vs non-

synchronized llamas warrant critical evaluation of the effects of follicular status on the 

developmental competence of the contained oocyte. Synchronization treatment 

followed by a single pre-scheduled mating resulted in acceptable pregnancy rates and 

may form the basis of new breeding management schemes that obviate the labor-

intensive need for testing behavioral receptivity in llamas. 
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6.0 COMPARISON OF THE EFFECT OF NATURAL MATING, LH, AND 
GNRH ON INTERVAL TO OVULATION AND LUTEAL FUNCTION IN 
LLAMAS 

 

6.1 Abstract  

 

Gonadotropins and GnRH have been used to electively induce ovulation in 

llamas and alpacas, but critical evaluation of the natural interval to ovulation after 

mating has not been performed nor has a direct comparison of the effects of natural 

mating versus hormone treatments on this interval and subsequent luteal development. 

The objectives of this study were to compare the effects of hormonal treatments and 

natural mating on ovulation induction, interval to ovulation, and luteal development in 

llamas. The ovaries of llamas were examined by transrectal ultrasonography once daily. 

Llamas with a large follicle were assigned randomly to be: 1) mated with an intact male 

(mated; n = 10); 2) given 5mg of LH im (LH; n = 11); or 3) 50µg of GnRH im (GnRH; 

n = 10). Ultrasound examinations were performed every 4 h from treatment (day 0) to 

ovulation and thereafter once daily for 15 consecutive days to monitor CL growth and 

regression (n = 5 per group). Plasma progesterone concentrations were measured at 

days 0, 3, 6, 9, and 12 after treatment to evaluate CL function. The size of the largest 

preovulatory follicle at the time of treatment did not differ among groups (11 ± 0.6, 10.5 

± 0.8, 11.8 ± 0.9 mm, for mated, LH, and GnRH groups, respectively; P = 0.6). No
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differences were detected among groups (mated, LH, and GnRH) in ovulation rate 

(80%, 91%, 80%, respectively; P = 0.6), or interval from treatment to ovulation (30.0 ± 

0.5, 29.3 ± 0.6, 29.3 ± 0.7 h, respectively; P = 0.9). Similarly, no differences were 

detected among groups (mated, LH, and GnRH) in maximum CL diameter (14.2 ± 0.3, 

13.2 ± 0.5, and 13.0 ± 0.7 mm, respectively; P = 0.5), the day of maximum CL diameter 

(7.6 ± 0.2, 7.6 ± 0.2, and 7.4 ± 0.4 mm, respectively; P = 0.6), or the day on which the 

CL began to regress (12.3 ± 0.3 [non-pregnant, n = 3], 11.8 ± 0.6, 12.2 ± 0.4, 

respectively; P = 0.4). The diameter of the CL and plasma progesterone concentrations 

changed over days (P < 0.0001) but the profiles did not differ among groups. In 

summary, ovulation rate, interval to ovulation, and luteal development were similar 

among llamas that were mated naturally or treated with LH or GnRH. We conclude that 

both hormonal treatments are equally reliable for inducing ovulation and suitable for 

synchronization for artificial insemination or embryo transfer program. 
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6.2 Introduction 

 

Camelids are considered induced ovulators; a copulatory stimulus is necessary to 

elicit ovulation in females (England et al., 1969; Fernandez-Baca et al., 1970a). In an 

early study designed to determine factors associated with eliciting ovulation in alpacas 

(Fernandez-Baca et al., 1970a), ovulation rate was compared among females that 1) 

were unmated, 2) were mounted only followed with or without artificial insemination, 

3) had interrupted mating, 4) had sterile mating (vasectomized male) followed with or 

without artificial insemination, 5) had single or multiple uninterrupted matings (intact 

male), or 6) were given hCG. It was concluded that mounting with penile intromission is 

necessary to induce ovulation regardless of whether the male is intact or vasectomized, 

and that ovulation rate can be increased with hCG treatment. Support for the hypothesis 

that South American camelids are induced ovulators was provided in a later study in 

which a rise in plasma LH concentration was detected 15 minutes after natural mating in 

llamas (Bravo et al., 1990b). 

 

In a study involving one-time examination of the ovaries during necropsy at 2- to 

6-hour intervals post-mating (n = 1 to 5 alpacas/time interval; San Martin et al., 1968), 

ovulation was detected as early as 26 h after mating and 24 hours after hCG treatment. 

However, the method of detection (necropsy) precluded characterization of the mean 

interval and distribution of ovulations. Based on daily ultrasonography of the ovaries in 

llamas (Adams et al., 1989, 1990), ovulation was detected 2.1 ± 0.1 days (mean ± SEM) 

after copulation. In another study involving ultrasonographic examination of the ovaries 

of llamas at 2-hour intervals (Adam et al., 1992), ovulation was detected at 27.2 ± 0.3 h 

(mean ± SEM) after hCG treatment and 28.6 ± 0.4 h after GnRH treatment. Although 

the latter study was not designed to compare the effects of treatment with natural 

mating, the authors reported a mating to ovulation interval of 2 d, similar to that 

previously described but substantially longer than the response to hormone treatment 

(Adam et al., 1992). 
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The characteristics of the luteal phase after natural induction of ovulation have 

been well described in llamas and alpacas (Sumar et al., 1988; Adams et al., 

1990,1991a; Aba et al., 1995). Based on daily ultrasonography of the ovaries and every-

other-day blood sampling after natural mating in llamas (Adams et al., 1991a), 

maximum CL diameter and plasma progesterone concentration were detected at day 8 

after mating (day 0 = mating). The first significant decrease in CL diameter and plasma 

progesterone profiles during luteolysis in non-pregnant females occurred on days 11 and 

10 after mating and reached nadir on days 15 and 14, respectively. Similarly, maximum 

plasma progesterone concentrations occurred on day 8 after hCG treatment or mating, 

followed by a decrease beginning on day 13 in non-pregnant alpacas (Fernandez-Baca et 

al., 1970c). Luteolysis was temporally associated with pulsatile release of PGF2α from 

the uterus around days 8 to 10 after mating (Sumar et al., 1988; Aba et al., 1995). In 

pregnant llamas, a transient drop in plasma progesterone concentration was detected 

between days 10 and 12 after mating, and was followed by a rebound on day 14 (Adams 

et al., 1991). Luteal diameter and plasma progesterone in pregnant llamas continued to 

increase until maximum on days 23 and 27, respectively.  

 

An artificial luteal phase has been induced in camelids by treatment with 

gonadotropins (England et al., 1969; Sumar 1985; Ratto et al., 2003) or GnRH (Sumar 

1985; Adam et al., 1992). Hormonal treatments (GnRH, hCG or LH) were also used to 

synchronize ovulations in llama recipients for embryo transfer programs (Bourke et al., 

1995a,b; Correa et al., 1997; Taylor et al., 2001) and to induce ovulation after artificial 

insemination in alpacas (Bravo et al., 1997). However, direct comparison of the effects 

of natural mating versus hormonal treatments on ovulation induction and corpus luteum 

function in camelids has not been reported.  

 

Knowledge of the effects of hormonal preparations inducing ovulation and luteal 

function will provide insight on the mechanism of ovulation in these species and is 

critical for successful development of fixed-time insemination protocols and for 

recipient synchronization in embryo transfer programs. Furthermore, the apparent 

disparity in interval to ovulation between mating-induced versus hormone-induced 
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ovulation may have important implications in the design of protocols intended to control 

ovarian function in llamas and alpacas. Hence, the objectives of this study were to 

compare the effects of hormonal treatments and natural mating on: 1) ovulation 

induction; 2) interval to ovulation; and 3) luteal development in llamas. 

 

6.3 Materials and methods  

 

Mature non-pregnant female llamas (n = 31), ≥2 years of age (4.5 ± 0.2) and 

weighing 85-130 kg (114 ± 2 kg) were used during the breeding season (January-

February) at the Quimsachata Research Station in the Department of Puno, Peru (15° S 

latitude, 71° W longitude, and 4,500 m above the sea level). Ovaries were examined 

once daily by transrectal ultrasonography (Adams et al., 1989) using a B-mode scanner 

with a 7.5 MHz linear-array transducer (Aloka, SSD500, Instruments for Science and 

Medicine Inc., Vancouver, Canada). Llamas with a follicle ≥8 mm in diameter that had 

grown for three consecutive days (Adams et al., 1990) were assigned randomly to be: 1) 

mated with an intact male (mated: n = 10); 2) given 5 mg Armour Standard LH im (LH: 

n = 11, Lutropin, Bioniche Animal Health Canada Inc., Belleville, Ontario, Canada); or 

3) 50 µg of GnRH im (GnRH: n = 10, Cystorelin, Merial Canada Inc., Victoriaville, 

Quebec, Canada). In the mated group, each female was mated only once and a different 

male (n = 10) was used for each female. 

 

The ovaries were examined by transrectal ultrasonography every 4 h from 

treatment (day 0) to ovulation. Ovulation was defined as the sudden disappearance of a 

large follicle (≥8 mm) that was detected during the previous examination, and was 

confirmed by subsequent CL formation (Adams et al., 1989). Thereafter, 

ultrasonographic examination was performed once daily for 15 consecutive days in 5 

llamas per group to monitor CL growth and regression. Blood samples were collected 

from the same 5 llamas in each group into heparinized tubes by jugular venipuncture on 

days 0, 3, 6, 9, and 12 after treatment. Samples were centrifuged at 1700 x g for 20 min 

and the plasma was stored at -20°C. Plasma progesterone concentration was determined 

by solid-phase radioimmunoassay (Adams et al., 1991a). All samples were analyzed in a 

53 



 

single assay. The intra-assay coefficients of variations were 1.8%, 4.9% and 1.8%, 

respectively, for reference plasma progesterone concentrations of 1.8, 2.9, and 14.6 

ng/ml. The sensitivity of the assay was 0.02 ng/ml. 

 

6.3.1 Statistical Analyses 

 

Single-point measurements (i.e., follicle size at the time of treatment, maximum 

CL diameter, day on which the CL was first detected) were compared among groups by 

analysis of variance. For statistical analyses of serial data and preparation of figures, CL 

diameter and progesterone data were centralized to the day of treatment (day 0). Serial 

data were compared by analysis of variance for repeated measure (mixed model 

procedure of SAS, Statistical Analysis System Institute Inc., Cary, NC, USA) to 

determine the effects of treatment, day, and treatment-by-day interaction. When main 

effects or the interaction were significant (i.e., P ≤ 0.05), means on a given day were 

compared by least significant difference (LSD). Ovulation rate was compared by Chi-

Square analysis. 

 

6.4 Results  

 

The diameter of the largest follicle at the time of treatment was similar among 

groups (P = 0.6), and no differences were detected among groups in ovulation rate (P = 

0.6), interval to ovulation (P = 0.9, Table 6.1), or day on which the CL was first detected 

after treatment (P = 0.8, Table 6.2). The diameter of the CL remained elevated and 

plasma progesterone concentration exceeded 1ng/ml on day 12 in only 2 llamas from the 

mated group. Pregnancy was confirmed in these 2 llamas by ultrasonographic detection 

of an embryo proper on day 25. 

 

In the mated group, luteal diameter and plasma progesterone profiles were 

affected by reproductive status (pregnant vs non-pregnant, P = 0.05, Figure 6.1ab). 

However, CL diameter did not differ (P = 0.5) between pregnant (n = 2) and non-

pregnant (n = 3) llamas from days 0 to 11 after mating, and progesterone concentrations 
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were not different (P = 0.2) from days 0 to 9 (Figure 6.1a,b). Therefore, comparisons of 

CL diameter and plasma progesterone profiles among groups (Figure 6.2a,b) included 

data from all llamas to day 11 and to day 9, respectively; thereafter, data from the 2 

pregnant llamas were omitted. Corpus luteum diameter and plasma progesterone 

concentration changed over days (P < 0.0001) but the profiles did not differ among 

groups (Figure 6.2). Maximum CL diameter and the day on which maximal diameter 

was detected did not differ among groups (Table 6.2). Similarly, no difference was 

detected among groups on the day when CL diameter began to decrease (Table 6.2). 

Plasma progesterone concentrations were elevated (P < 0.05) by day 6 and were 

maximal by day 9. Plasma progesterone concentrations decreased sharply between days 

9 and 12 (Figure 6.2). 
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Table 6.1. Effect (mean ± S.E.M.) of mating and hormonal treatment on ovulation induction 
in llamas. 

 

End Point Mating 

(n = 10) 

 

LH 

(n = 11) 

 

GnRH 

(n = 10) 

 

P-value 

Follicle size at treatment (mm) 11.0 ± 0.6 10.5 ± 0.8 11.8 ± 0.9 0.6 

Ovulation rate 
8/10 

(80 %) 

10/11 

(91 %) 

8/10 

(80 %) 
0.6 

Interval from treatment to ovulation 

(h) 
30.0 ± 0.5 29.3 ± 0.6 29.4 ± 0.7 0.9 

 

 

Table 6.2. Effect (mean ± S.E.M.) of mating and hormonal treatment on luteal development 
in llamas (Day 0 = day of mating or hormonal treatment).  

 

End Point 
Mating 

(n = 5) 

LH 

(n = 5) 

GnRH 

(n = 5) 
P-value 

1st day corpus luteum detected 2.4 ± 0.4 2.2 ± 0.3 2.6 ± 0.2 0.8 

Maximum CL diameter (mm) 14.2 ± 0.3 13.2 ± 0.5 13.0 ± 0.7 0.5 

Day of maximum CL diameter (mm) 7.6 ± 0.2 7.6 ± 0.2 7.4 ± 0.4 0.6 

Onset of CL regression* 12.3 ± 0.3+ 11.8 ± 0.6 12.2 ± 0.4 0.4 

 

* Defined as the first day on which the corpus luteum began a progressive decrease in 
diameter leading to a minimum on the last day of the observational period. 
+  non-pregnant (n = 3).   
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Figure 6.1. Corpus luteum diameter (a) and plasma progesterone (b) profiles (mean ± 
S.E.M.) in (pregnant            , n = 2, non-pregnant              , n = 3)  llamas 
mated to an intact male. An asterisk (*) indicates the first day on which 
values differed between pregnant and non-pregnant llamas (P < 0.05). 
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Figure 6.2. Corpus luteum diameter (a), and plasma progesterone (b) profiles (mean ± 
S.E.M.) in llamas after mating  (         ; n*), or being treated with LH (                          
, n = 5), or  GnRH (         , n = 5) to induce ovulation. Day 0 = day of mating 
or hormonal treatment.  
*n = 5 for Days 0 to 11 for CL diameter and Days 0 to 9 for progesterone;  
*n = 3 thereafter for CL diameter and progesterone. 

58 



 

6.5 Discussion 

 

Direct comparison between the effects of mating and hormonal treatment on 

ovulation and luteal kinetics in llamas and alpacas has not been reported previously. The 

use of mating or gonadotropin hormone administration to induce ovulation has been 

reported in several studies in alpacas (Fernandez-Baca et al., 1970a) and llamas 

(England et. al., 1969; Sumar et al., 1988; Adams et al., 1990, Bravo et al., 1991, Adam 

et al., 1992), but there is a paucity of critically derived data characterizing the ovulatory 

response interval and the developmental dynamics of the corpus luteum (Adams et al., 

1990, 1991). Results of the present study provide detailed characterization of the 

interval to ovulation after natural mating, and show that the effects of mating and 

hormonal treatment on ovulation and luteal function are similar. 

 

In the present study, the interval from mating or LH/GnRH treatment to 

ovulation did not differ among groups (29-30 h), and was similar to the interval 

previously reported for llamas after hCG or GnRH administration (27-29 h; Adam et al., 

1992). However, the interval from mating to ovulation was nearly 1 day shorter than 

previously reported (2 days; Adams et al., 1991a; Adam et al., 1992). This difference 

was attributed to examination frequency. Once daily examinations in previous studies 

resulted in detection of ovulation on the second day after mating in the majority of 

females. No difference in interval to ovulation between mating, LH, or GnRH groups  

(given a 4-hour examination frequency) suggests that the mechanism responsible for 

transducing copulatory stimulation into secretory stimulation of the hypothalamus and 

pituitary is rapid. This is consistent with the observation that LH begins to increase by 

15 minutes after mating and peaks at 2 hours after mating (Bravo et al., 1990b). 

 

The developmental kinetics of the CL induced by hormonal treatment in the 

present study were similar to that induced by natural mating; i.e., no differences were 

detected in the day-to-day profiles of CL diameter or plasma progesterone 

concentration. The maximum CL diameter and onset of regression were consistent with 

those observed in previous studies (England et al., 1969; Adams et al., 1990, 1991a). 
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Maximum plasma progesterone concentration was detected 1 day later than previously 

reported (Sumar et al., 1988, Adams et al., 1991a), but the disparity may be attributed to 

differences in blood sampling frequency. The CL decreased in diameter to 4 mm by the 

last day of the observational period (day 15), but was still detectable by ultrasound 

examination. This is a longer period of detection than previously described (Adams et 

al., 1991a).  

 

In summary, ovulation rate, interval to ovulation, and luteal development were 

similar among llamas that were mated naturally or treated with LH or GnRH. We 

conclude that the hormonal preparations (LH and GnRH) are equally reliable for 

inducing ovulation and normal luteal function, and both are suitable for use in 

synchronization for artificial insemination protocols or embryo transfer programs. 
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7.0 OVULATION-INDUCING FACTOR IN THE SEMINAL PLASMA OF 
ALPACAS AND LLAMAS 

 

7.1 Abstract 

 

Studies were conducted to document the existence of an ovulation-inducing 

factor in the seminal plasma of alpacas (Experiment 1) and llamas (Experiment 2), and 

to determine if the effect is mediated via the pituitary (Experiment 3). In Experiment 1, 

female alpacas (n = 14 per group) were given alpaca seminal plasma or saline 

intramuscularly or by intrauterine infusion. Only alpacas that were given seminal plasma 

im ovulated (13/14, 93%; P < 0.01). In Experiment 2, ovulation was detected in 9/10 

(90%) llamas at a mean of 29.3 ± 0.7 hours after seminal plasma treatment. Plasma 

progesterone concentrations were maximal by Day 9 and were at nadir by Day 12 post-

treatment. In Experiment 3, female llamas were given llama seminal plasma, GnRH, or 

saline im, and ovulation was detected in 6/6, 5/6, and 0/6 llamas, respectively (P < 

0.001). Treatment was followed by a surge (P < 0.01) in plasma LH concentration 

beginning 15 minutes and 75 minutes after treatment with GnRH and seminal plasma, 

respectively. Plasma LH remained elevated longer in the seminal plasma group (P < 

0.05), and had not yet declined to pretreatment levels after 8 hours. Compared to the 

GnRH group, CL tended to grow longer and to a greater diameter (P = 0.1), and plasma 

progesterone concentration was twice as high in the seminal plasma group (P < 0.01). 

Results document the existence of a potent factor in the seminal plasma of alpacas and 
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llamas that elicited a surge in circulating concentrations of LH, and induced an 

ovulatory and luteotropic response. 
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7.2 Introduction 

 

Ovulation in mammals involves pulsatile release of GnRH from the medio-basal 

nuclei of the hypothalamus into the hypophyseal portal system with subsequent release 

of LH from the gondotrophs of the anterior pituitary into the systemic circulation 

(Karsch, 1987, Karsch et al., 1997). Elevated circulating concentrations of LH elicit a 

cascade of events within the mature follicle culminating in follicle wall rupture and 

evacuation of its fluid and cellular contents (Richards et al., 2002). The broad 

classification of species as either spontaneous or induced ovulators is based on the type 

of stimulus responsible for eliciting GnRH release from the hypothalamus (Baker and 

Baum, 2000). In spontaneously ovulating species (e.g., human, sheep, goats, cattle, 

horse, pigs), release of GnRH from the hypothalamus is triggered when, in the absence 

of progesterone, systemic estradiol concentrations exceed a certain threshold (Knobil, 

1980; Jaffe and Keys, 1974; Chenault et al., 1975; Turzillo and Nett, 1999; Kelly et al., 

1988). As a consequence of regularly occurring luteolysis and development of one or 

more estrogen-producing follicles, a preovulatory surge in circulating concentrations of 

LH occurs at regular intervals. In induced ovulators (e.g., rabbits, ferrets, cats, 

camelids), however, neural signals from copulatory stimulation trigger GnRH secretion 

from the hypothalamus, followed by the preovulatory release of LH from the pituitary 

(Baker and Baum, 2000). Similar to spontaneous ovulators, a surge in the circulating 

concentration of LH appears to be requisite for ovulation in induced ovulators, but its 

occurrence is contingent upon copulatory stimuli; hence, ovulation is not a regular 

cyclic event.  

 

The phenomenon of induced ovulation has been demonstrated in llamas 

(England et al., 1969), alpacas (San Martin et al., 1968), and old world camelids (Chen 

et al., 1980; Shalash and Nawito, 1964), but very few studies have been conducted to 

determine the factors responsible for eliciting ovulation in camelids. In the only study of 

its kind in new world camelids (Bravo et al., 1990b), ovulation induced by natural 

mating in llamas was associated with a rise in plasma LH concentration beginning 
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within 15 minutes of mating. In an early, classic study in alpacas (Fernandez-Baca et al., 

1970a), the ovulation rate was compared among females that 1) were non-mounted, 2) 

were mounted only, followed with or without artificial insemination, 3) had interrupted 

mating, 4) had sterile mating (vasectomized male), followed with or without artificial 

insemination, 5) had a single uninterrupted mating (intact male), or 6) had multiple 

uninterrupted matings. It was concluded that mounting accompanied by penile 

intromission was necessary to stimulate ovulation. From these early studies, the concept 

that physical stimulation of the genitalia during copulation is the primary trigger for 

inducing ovulation in alpacas and llamas has become dogma.  

 

This dogma, however, is being challenged by the suggestion that a chemical 

substance may be present in the semen that mediates the ovulatory cascade. The 

existence of such a substance was initially reported by investigators in China who 

concluded that some factor in the semen was responsible for eliciting ovulation in 

Bactrian camels, rather than the mechanical stimulation of copulation (Chen et al., 

1985). Ovulation occurred after intravaginal (Chen et al., 1985; Xu et al., 1985) or 

intramuscular/intrauterine (Pan et al., 1992) administration of Bactrian seminal plasma 

to female Bactrian camels. In this regard, results of one study in alpacas (cited in Sumar, 

1994) appear contradictory to the initial alpaca study (Fernandez-Baca et al., 1970a) in 

that artificial insemination (intravaginal deposition of alpaca semen) was associated with 

ovulation in 6/10 alpacas and 5/8 llamas. In a more recent report (Paolicchi et al., 1999), 

alpaca seminal plasma stimulated LH secretion from primary culture of rat pituitary 

cells in vitro. The authors suggested that the putative ovulation-inducing factor in 

seminal plasma had GnRH-like activity but was not GnRH because its biological 

activity on rat pituitary cells was not suppressed when anti-GnRH antibodies were added 

to the culture media.  

 

The objective of this study was to document the existence of an ovulation-

inducing factor in the seminal plasma of alpacas and llamas. Experiment 1 was designed 

specifically to document the existence of OIF in alpacas and to compare the effects of 
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intrauterine versus intramuscular administration. Experiment 2 was designed to 

determine the existence of OIF in llamas prior to a controlled study (Experiment 3) 

designed to determine if the effect of OIF is associated with a preovulatory surge in LH. 

These studies were designed to determine the effects of seminal plasma on ovulation 

rate, interval to ovulation, and corpus luteum function, and to compare the effect of 

seminal plasma with that of GnRH.   

 

7.3 Materials and Methods 

 

7.3.1 Experiment 1 

 

The study was conducted during January to March at the Quimsachata Research 

Station in the Department of Puno, Peru (15° S, 71° W, and 4,500 m above sea level). 

Semen was collected from 8 male alpacas using an artificial vagina (Bravo et al., 1997) 

over a period of 2 months (16 ejaculates per animal). Ejaculates were diluted 1:1 (v/v) 

with phosphate buffered saline (PBS, Gibco, Grand Island, N.Y., USA) and centrifuged 

for 30 minutes at 1500 x g. The supernatant was decanted from the spermatozoa and a 

drop was evaluated by microscopy to confirm the absence of cells. If spermatozoa were 

detected, the sample was centrifuged again in like manner. Sperm-free seminal plasma 

was stored at –20°C before the experiment. Upon thawing, the diluted seminal plasma 

samples from all 8 males were pooled and kanamycin sulfate (Sigma Chemical Co., St 

Louis, MO, USA) was added to a final concentration of 25 µg/ml. 

 

Mature non-lactating female alpacas (n = 70), ≥3 years of age and weighing an 

average of 70 kg, were examined daily by transrectal ultrasonography (Aloka SSD 500, 

Instruments for Science and Medicine Inc., Vancouver, BC, Canada) using a 7.5 MHz 

linear-array transducer attached to a rigid probe extension (Adams et al., 1991b, Adams, 

1995). Alpacas were selected (n = 58) when a growing follicle of ≥8 mm in diameter 

was detected (i.e, capable of ovulating; Adams et al., 1989), and then assigned randomly 

to 4 groups in a 2 x 2 factorial experiment (n = 14 per group): 1 ml of diluted alpaca 
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seminal plasma given intramuscularly or by intrauterine infusion, or 1 ml of PBS given 

intramuscularly or by intrauterine infusion (negative control). Although not part of the 

original experimental design, an additional group of 6 mature non-lactating female 

alpacas from the same herd became available during the experimental period and were 

treated by intrauterine infusion of 5 mg of LH (Lutropin-V, Bioniche Animal Health 

Canada Inc., Belleville, Ontario, Canada) when a growing follicle ≥8 mm was detected 

by transrectal ultrasonography (Ratto et al., 2003). Intramuscular injections were given 

in the semimembranosus muscle using a 20-gauge 40 mm long needle, and intrauterine 

infusions were accomplished by passing a pipette through the cervix via transrectal 

manipulation. 

 

Alpacas were examined daily by transrectal ultrasonography until Day 3 (Day 0 

= treatment) to detect ovulation, and again on Day 8 to detect the presence of a corpus 

luteum (CL). Ovulation was defined as the sudden disappearance of a large follicle (≥8 

mm) that was detected during the previous examination, and was confirmed by 

subsequent detection of a CL (Adams et al., 1989). 

 

7.3.2 Experiment 2 

 

The study was conducted from May to August at the University of 

Saskatchewan, Saskatchewan Canada (52° N, 106° W and 500 m above sea level) to 

determine if llama seminal plasma would induce ovulation in llamas, as it did in alpacas 

(Experiment 1), and to provide necessary information for the design of a controlled 

comparison of the effects of GnRH versus seminal plasma (Experiment 3), with 

adequate numbers for statistical interpretation (i.e., ovulation rate, interval to ovulation, 

CL and progesterone profiles). Semen was collected from 4 mature (5 to 7 years old) 

male llamas using an artificial vagina over a period of 2 months (24 ejaculates per 

animal). As in Experiment 1, samples were diluted 1:1 (v/v) with PBS, and centrifuged 

for 30 minutes at 1500 x g. Sperm-free seminal plasma was stored at –20°C. Upon 

thawing, the seminal plasma from all 4 males was pooled and kanamycin sulfate was 

added to a final concentration of 25 µg/ml. 
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Mature non-lactating female llamas (n = 15), ≥4 years of age and weighing 90-

150 kg, were given 5 mg Armour Standard luteinizing hormone (Lutropin-V, Bioniche 

Animal Health, Belleville, ON, Canada) im to synchronize follicular wave emergence 

among animals (Ratto et al., 2003). Twelve days after LH treatment, llamas with a 

follicle ≥8 mm in diameter (n = 10) were given 1.5 ml of diluted llama seminal plasma 

im. The ovaries were examined by transrectal ultrasonography every 4 hours from the 

time of seminal plasma treatment until ovulation or 48 hours, whichever came first. 

Ultrasonographic examination was performed once daily thereafter for 15 days to 

monitor CL growth and regression. As in Experiment 1, ovulation was defined as the 

sudden disappearance of a large follicle (≥8 mm) that was detected during the previous 

examination. The onset of luteal regression was defined as the first day on which the 

corpus luteum began a progressive decrease in diameter leading to a minimum on the 

last day of the observational period. Blood samples were collected into heparinized 

tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes, New Jersey, USA) by 

jugular venipuncture on Day 0, 3, 6, 9, 12, and 15 (Day 0 = day of seminal plasma 

treatment). Blood samples were centrifuged at 1700 x g for 25 minutes and the plasma 

was stored at -20°C.  

 

Plasma progesterone concentrations were determined using a commercial, 

double-antibody radioimmunoassay kit (Coat-a-Count total progesterone, DPC, 

Diagnostic Products Corporation, Los Angeles, CA, USA), as described previously 

(Adams et al., 1991a). All samples were analyzed in a single assay. The intra-assay 

coefficients of variations were 1.8%, 4.9% and 1.8%, respectively, for reference plasma 

progesterone concentrations of 1.8, 2.9, and 14.6 ng/ml. 

 

7.3.3 Experiment 3 

 

Results of Experiment 2 were used to design a study to determine if the 

ovulatory effects of seminal plasma treatment are associated with pituitary release of 

LH, by comparison with the effects of GnRH treatment. The study was conducted in the 

autumn (October to November) after Experiment 2 using a different group of llamas 
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from the same herd at the University of Saskatchewan. Mature non-lactating female 

llamas (n = 25), ≥4 years of age and weighing 90-150 kg, were given 5 mg Armour 

Standard LH (Lutropin-V) to synchronize follicular wave emergence among animals, as 

described in Experiment 2. Twelve days after LH administration, llamas with a follicle 

≥8 mm in diameter were assigned randomly to 3 groups (n = 6 per group) in which 1.5 

ml of llama seminal plasma, 1.5 ml of PBS (negative control group), or 50 μg of GnRH 

(Cystorelin, Merial Canada Inc., Victoriaville, Quebec, Canada; positive control group) 

were given by intramuscular injection. The same pool of llama seminal plasma collected 

during Experiment 2 was used in Experiment 3. The ovaries were examined by 

transrectal ultrasonography once daily from the day of treatment (Day = 0) to Day 15 to 

detect ovulation and CL development, as described in Experiment 1.  

 

Blood samples for measurement of plasma LH concentration were collected in 

heparinized tubes by jugular venipuncture every 15 minutes for 8 hours starting 

immediately before treatment (Time 0 = treatment). A jugular catheter (inner and outer 

diameters of 1.0 and 1.5 mm, respectively) was fixed in place one day before frequent 

blood sampling to minimize the effects of handling stress on plasma LH concentrations. 

Blood samples were centrifuged at 1700 x g for 25 minutes and the plasma was stored at 

-20°C. Plasma LH concentrations were measured using a double-antibody 

radioimmunoassay (Rawlings et al., 1984). Concentrations of LH are expressed in terms 

of NIAMDD-oLH-24. The minimum detectable limit of the assay was 0.026 ng. The 

range of the standard curve was 0.026 ng (80% ligand labeled LH) to 0.19 ng (20% 

ligand labeled LH). The intra- and inter-assay coefficients of variation were 6.3% and 

6.0%, respectively, for the high reference plasma LH concentration (0.79 ng/ml). The 

intra- and inter-assay coefficients of variation were 17% and 15%, respectively, for the 

low reference plasma LH concentration (0.17 ng/ml).  

 

Blood samples were collected every 2 days from Day 3 (Day 0 = treatment) to 

Day 17 for measurement of plasma progesterone concentration and assayed as described 

in Experiment 2. All samples were analyzed in a single assay. The intra-assay 
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coefficients of variations were 5.8%, 7.6% and 2.9%, respectively, for reference plasma 

progesterone concentrations of 1.4, 2.3, and 11.6 ng/ml. 

 

7.3.4 Statistical Analyses 

 

Non-serial data (i.e., follicle size at the time of treatment, maximum CL 

diameter, day on which the CL was first detected, onset of CL regression) were 

compared between groups by analyses of variance. For statistical analyses of serial data 

and preparation of figures, CL diameter, LH and progesterone data were centralized to 

the day of treatment (Day 0). Serial data were compared by analysis of variance for 

repeated measures (Proc-mixed in SAS, Statistical Analysis System Institute Inc., Cary, 

NC, USA) to determine the effects of treatment, day, and treatment-by-day interaction. 

When main effects or their interaction were significant (i.e., P ≤ 0.05), means on a given 

day were compared by the method of least significant difference. Ovulation rates were 

compared among groups by Chi-Square analysis. 

 

The experimental protocols were approved by the University of Saskatchewan 

Committee on Animal Care and Supply under the guidelines of the Canadian Council on 

Animal Care. 
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7.4 Results 

 

7.4.1 Experiment 1 

 

Two alpacas assigned to the intrauterine PBS group and 2 assigned to the 

intrauterine seminal plasma group were excluded from the study because their small size 

precluded transrectal manipulation for intrauterine infusion.  

 

The diameter of the largest follicle at the time of treatment did not differ among groups 

(P = 0.65). Ovulation was observed only in the group treated by intramuscular 

administration of seminal plasma (Table 7.1). Ovulations were detected on Day 1 in 6 

alpacas, and on Day 2 in the remaining 7 alpacas (Day 0 = day of treatment). A corpus 

luteum was detected on Day 8 in all 13 ovulatory alpacas. Ovulation and luteal 

development were not detected in the negative control groups, nor in any of the 

intrauterine treatment groups (Table 7.1). 
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Table 7.1.  Effect of intramuscular or intrauterine administration of alpaca seminal plasma, phosphate buffered saline (PBS), or 
luteinizing hormone (LH) on ovulation and corpus luteum formation in alpacas (mean ± SEM; Experiment 1). 

 

 Intramuscular  Intrauterine 

 Seminal 

plasma 

(n = 14) 

 

PBS 

(n = 14) 

 

Seminal 

plasma 

(n = 12) 

 

PBS 

(n = 12) 

 

LH 

(n = 6) 

Follicle diameter (mm)  

on day of treatment 

(Day 0)* 

10.9 ± 0.3 11.1 ± 0.4  11.1 ± 0.4 10.6 ± 0.4 10.5 ± 0.4 

Ovulation rate 13/14 a

(93%) 

0/14b

(0%)  

0/12b

(0%) 

0/12b

(0%) 

0/6b

(0%) 

CL diameter on Day 8 
(mm) 12.2 ± 0.4 ---  --- --- --- 

 

* No significant difference among groups (P = 0.6) 
a,b Proportions with different superscripts are different (P < 0.0001). 
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7.4.2 Experiment 2 

 

The diameter of the largest follicle at the time of treatment was 9.7 ± 0.4 mm 

(mean ± SEM). Ovulation was detected in 9/10 (90%) llamas after intramuscular 

administration of llama seminal plasma. The mean interval from treatment to ovulation 

was 29.3 ± 0.7 hours; 6 llamas ovulated at 28 hours and the remaining 4 ovulated at 32 

hours. The corpus luteum was first detected on Day 2.3 ± 0.2, it reached a maximum 

diameter of 11.5 ± 0.5 mm on Day 6.9 ± 0.3, and began to regress on Day 9.7 ± 0.3 

(Day 0 = treatment). Plasma progesterone concentrations were elevated by Day 6, were 

maximal by Day 9, and were at nadir by Day 12 (Figure 7.1). 
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Figure 7.1.  Corpus luteum diameter and plasma progesterone concentration (mean ± 
SEM) in llamas (n = 9) after intramuscular administration of llama 
seminal plasma.  
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7.4.3 Experiment 3 

 

The diameter of the largest follicle at the time of treatment did not differ among 

treatment groups and ovulation occurred in all llamas treated with seminal plasma, all 

but one treated with GnRH, and none treated with PBS (Table 7.2). During the 8-hour 

period following treatment, plasma LH concentration increased and decreased (P < 0.01) 

in the GnRH (positive control) and seminal plasma groups, but not in the PBS (negative 

control) group (Figure 7.2). Plasma LH concentration in the GnRH group began to 

increase (P < 0.05) and was higher (P < 0.05) than in the other groups by 15 minutes 

after treatment. The first significant increase in LH in the seminal plasma group was 

detected 1 hour after treatment. At 2 hours after treatment, plasma LH concentrations 

were similarly elevated in the GnRH and seminal plasma groups (Figure 7.2). Within 

individuals, maximum plasma LH concentration occurred at 1.4 ± 0.2 and 1.9 ± 0.2 

hours after GnRH and seminal plasma treatment, respectively (P = 0.06). Plasma LH 

concentration remained elevated for a longer period in the seminal plasma group than in 

the GnRH group (P < 0.05), and had not yet declined to pretreatment levels by the end 

of the sampling period (8 hours). In the GnRH group, plasma LH began to decrease (P < 

0.05) at 5 hours after treatment and was similar to pre-treatment levels by 5.5 hours after 

treatment.  

 

The CL tended to grow for a longer period and to a greater diameter in the 

seminal plasma group compared to the GnRH group (group-by-day interaction, P = 0.1; 

Figure 7.3). On an individual-animal basis, differences between GnRH and seminal 

plasma groups in maximum CL diameter and the day of maximum diameter were not 

significant (Table 7.2). Plasma progesterone concentrations were highest (P < 0.05) in 

the seminal plasma group, intermediate (P < 0.05) in the GnRH group and remained 

basal in the PBS group. In both seminal plasma and GnRH groups, progesterone 

concentrations increased sharply to peak values by Day 7 and decreased sharply to nadir 

by Day 11 (Figure 7.4). 
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Table 7.2. Effect (mean ± SEM) of intramuscular administration of llama seminal 
plasma, GnRH, or phosphate buffered saline (PBS) on ovulation and luteal 
development in llamas (Day 0 = day of treatment; Experiment 3). 

 
 

 Seminal plasma 

(n= 6) 

GnRH 

(n= 6) 

PBS 

(n= 6) 

Follicle size at treatment 
(mm)* 

10.9 ± 0.2 10.6 ± 0.2 9.8 ± 0.2 

Ovulation rate 6/6 b 

(100%) 

5/6 b

(83%) 

0/6 a

(0%) 

1st day corpus luteum 
detected* 

2.5 ± 0.2 2.4 ± 0.2 --- 

Maximum CL diameter 
(mm)* 

13.5 ± 0.2 11.5 ± 0.5 --- 

Day of maximum CL 
diameter* (mm) 

7.6 ± 0.2 7.4 ± 0.4 --- 

Onset of CL regression* 9.5 ± 0.2 9.6 ± 0.2 --- 

 

*No significant difference among groups (P ≥ 0.3) 
a,b Proportions with different superscripts are different (P < 0.001). 
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Figure 7.2. Plasma LH concentrations (mean ± SEM) in female llamas after intramuscular 
treatment with llama seminal plasma, GnRH or phosphate buffered saline (PBS; 
Experiment 3).  
abc On a given day, values with no common superscript are different among groups 

(P < 0.05) 
x Within group, the first increase from pre-treatment (Time 0) concentration (P < 

0.05) 
y Within group, the maximum concentration (P < 0.05) 
Z Within group, the first decrease from maximum concentration (P < 0.05) 
* Within group, the last value is higher than the pre-treatment value (P < 0.05). 
** Within group, the last value is not different from the pre-treatment value (P =0.9). 
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Figure 7.3.  Diameter profile (mean ± SEM) of the corpus luteum in female llamas 
after intramuscular treatment with llama seminal plasma or GnRH 
(Experiment 3). 
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Figure 7.4.  Plasma progesterone concentrations (mean + SEM) in female llamas after 
intramuscular treatment with llama seminal plasma, GnRH, or phosphate 
buffered saline (PBS; Experiment 3).  
abc On a given day, values with no common superscript are different (P < 0.05). 
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7.8 Discussion 

 

Copulation in llamas and alpacas is an unusually protracted event, often lasting 

30 to 50 minutes (England et al., 1971; Fernandez-Baca et al., 1970a), and involves 

constant gutteral humming by the male, clasping and treading of the male’s fore- and 

hind-limbs while mounted on a receptive female in sternal recumbency. While the role 

of physical, visual, auditory and olfactory stimuli remains to be elucidated, results 

document the existence of an ovulation-inducing factor (OIF) in the seminal plasma of 

alpacas (Experiment 1) and llamas (Experiment 2), and that the mechanism of action of 

OIF involves a preovulatory surge in circulating concentrations of LH (Experiment 3). 

These results in alpacas and llamas support earlier observations made in Bactrian camels 

(Chen et al., 1985; Xu et al., 1985; Pan et al., 1992), and challenge the notion that 

physical stimuli associated with copulation are causative of ovulation in camelid species 

(Fernandez-Baca et al., 1970a).  

 

One of the most important findings in this study was the potency of the effect of 

seminal plasma treatment. A relatively conservative dose of seminal plasma was chosen 

in the present study (0.5 to 1 ml of raw seminal plasma) based on the reported average 

volume of the ejaculate in alpacas and llamas (2 to 3 ml; Lichtenwalner et al., 1996; 

Neely and Bravo, 1997). Despite the modest dose used in this study, the effects of 

seminal plasma were profound. Collectively, 28 of 30 (93%) alpacas and llamas given 

seminal plasma intramuscularly in the present series of experiments ovulated compared 

to 5 of 6 (83%) given GnRH and 0 of 20 (0%) given PBS. The duration of the surge in 

plasma concentration of LH was significantly greater after treatment with seminal 

plasma than with GnRH, and progesterone secretion from subsequent CL was double 

that of the GnRH group. 

 

Interestingly, the post-treatment surge in LH was later in the seminal plasma 

group compared to the GnRH group; i.e., the first significant increase occurred 1 hour 

later, the maximum concentration occurred 2 hours later, and the first significant 

decrease occurred 2.5 hours later than in the GnRH group. In addition, post-treatment 
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plasma LH concentrations remained elevated above pretreatment levels in the seminal 

plasma group for at least 8 hours (end of sampling period), whereas LH had returned to 

basal levels by 5.5 hours post-GnRH treatment. These observations provide rationale for 

the hypothesis that OIF and GnRH effect pituitary LH release differently and are 

different molecules. This is consistent with the observation that the LH-secreting effect 

of alpaca seminal plasma on rat pituitary cells in vitro was not suppressed when anti-

GnRH antibodies were added to the primary culture (Paolicchi et al., 1999). 

 

While the disparity in amplitude and duration of the LH surge between GnRH- 

and seminal plasma-treated llamas did not influence the ovulation rate or interval to 

ovulation, it was associated with a subtle increase in CL diameter profile and a striking 

increase in plasma progesterone concentration in the seminal plasma group. This 

observation provides rationale for the hypothesis that the degree of luteogenesis is 

directly proportional to the duration of the preovulatory LH surge. Results of studies 

done in primates (Chandrasekher et al., 1994) are consistent with this hypothesis; a 

prolonged surge of LH (48-50 h) during the periovulatory phase was necessary to 

achieve normal luteinization of granulosa cells, expression of progesterone receptors, 

and development of a functional CL. Shorter endogenous LH surges (14 h) elicited by 

exogenous GnRH given after ovarian stimulation protocols in primates were associated 

with deleterious effects on luteinization of granulosa cells and CL development and 

function (Chandrasekher et al., 1994). Studies conducted in rabbit (Bomsel-Helmreich et 

al., 1989) and rats (Peluso, 1990; Ishikawa, 1992) documented that changes in 

concentration and duration of gonadotropins during the periovulatory period can 

influence changes in oocyte maturation, granulosa cell luteinization and corpus luteum 

formation.  

 

The ovulation rate and interval to ovulation after seminal plasma treatment in 

llamas (Experiment 2) were similar to those reported previously in llamas after natural 

mating or hormonal treatment (Ratto et al., 2005a). In the latter study, a direct 

comparison of natural mating, LH treatment (5 mg Lutropin-V), and GnRH treament (50 

μg Cystorelin), revealed no differences in ovulation rate (80%, 91%, 80%, respectively), 
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interval to ovulation (30.0 ± 0.5, 29.3 ± 0.6, 29.4 ± 0.7 h, respectively), CL diameter 

profiles, or plasma progesterone profiles. Relatively infrequent sampling in Experiment 

2 limits the ability to interpret the effects of seminal plasma treatment on subsequent 

progesterone production. 

 

The difference in the effects of seminal plasma given by intramuscular injection 

versus intrauterine infusion was unexpected and supports the notion that the effect of 

seminal plasma involves a systemic rather than a local pathway. None of the alpacas 

given seminal plasma by intrauterine infusion in the present study ovulated. This result 

is consistent with the finding that ovulation rate was not increased by artificial 

insemination of female alpacas that were allowed to be mounted only (i.e., no 

intromission; Fernandez-Baca et al., 1970a), but is in contrast to the findings of another 

study in which ovulation was observed in 6/10 alpacas and 5/8 llamas after intravaginal 

deposition of alpaca semen (cited in Sumar, 1994). In 3 separate studies in Bactrian 

camels, ovulation was induced by intravaginal or intrauterine infusion of whole semen 

or seminal plasma in ≥75% of females (Chen et al., 1985; Xu et al., 1985; Pan et al., 

1992). The reason for the disparity in results is not clear, but differences appear too 

great to be due to chance alone. It is interesting to note that in the present study, alpacas 

given an intrauterine infusion of LH also failed to ovulate. The dose of LH used was the 

same as that used in previous studies (Ratto et al., 2003; 2005) in which ovulation was 

induced in 27/30 and 10/11 llamas after intramuscular administration, respectively. 

Differences may be attributed to differential adsorption from the genital mucosa 

compared to the muscle. In this regard, copulation in alpacas and llamas is prolonged 

(30 to 50 minutes) and ejaculation is intrauterine (Bravo et al., 1996). A normal sequela 

of copulation is acute, transient inflammation of the endometrium as a result of repeated 

abrasion by the penis (Bravo et al., 1996). Perhaps absorption of OIF in seminal plasma 

subsequent to natural mating is facilitated by the hyperemia of the excoriated 

endometrium. Test of this hypothesis might include curettage of the endometrium at the 

time of intrauterine infusion of seminal plasma. 
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The categorical distinction between induced and spontaneous ovulators is not as 

clear as the label implies. Authors of early studies suggested that camels are 

spontaneous ovulators (Asdell, 1964; Bodenheimer, 1954; Leonard, 1894), and even in 

llamas and alpacas there are conflicting reports on whether spontaneous as well as 

induced ovulations can occur (Fernandez-Baca et al., 1970b; Sumar, 1983). Based on 

laparotomy or necropsy examinations, the ovulation rate of unmated alpacas 

(spontaneous ovulation) was reported to be about 5% (Fernandez-Baca et al., 1970a). In 

a critical ultrasound study (Adams et al., 1990), the incidence of spontaneous ovulation 

was 8% in unmated llamas, and ovulation failure rate was 10% in mated llamas. 

Rodents appear to occupy an intermediate position between induced and spontaneous 

ovulators. Ovulation in mice and rats occurs spontaneously, but CL development and 

function is contingent upon mating (Suckow, 2001; Maeda et al., 2000). The distinction 

between spontaneous and induced ovulators is further blurred by the finding that 

ovulation was hastened in gilts by intrauterine application of a pronase-sensitive fraction 

of boar seminal plasma (Waberski et al., 1995). Further, the existence of a GnRH-like 

molecule was detected in studies on human seminal plasma (Sokol et al., 1985). 

Although the nature and function of these molecules remains unknown, they may 

represent an evolutionary vestige of a common ancestry or indeed play a pivotal role in 

the ovulatory mechanism or a role in gamete interaction (Morales, 1998).  

 

In summary, results clearly document the existence of a potent factor in the 

seminal plasma of alpacas and llamas that elicited a surge in circulating concentrations 

of LH and inducing ovulation in more than 90% of animals treated. The presence of a 

potent ovulation-inducing factor in seminal plasma would seem an evolutionary asset 

and one upon which natural selection pressure would be brought to bear. The existence 

of OIF in camelids begs the question of its existence and its effect in other species. The 

discovery of this novel factor may have broad implications on our understanding of 

ovulation and on diagnosis and treatment of ovulatory perturbations in this and other 

species. 
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8.0 INTERSPECIES COMPARISON OF THE EFFECT OF OVULATION-
INDUCING FACTOR (OIF) IN SEMINAL PLASMA 

 

8.1 Abstract 

 

We have recently reported the presence of an ovulation-inducing factor (OIF) in 

the seminal plasma of llamas and alpacas – a species characterized as induced ovulators. 

The study was designed to test the hypothesis that OIF is well conserved among species 

by comparing the effects of seminal plasma from conspecific versus hetero-specific 

males using the llama ovulation model as a bio-assay. The seminal plasma of alpacas, a 

closely related species (Lama pacos), and cattle, a distantly related ruminant species 

(Bos taurus) considered to be spontaneous ovulators, was compared with that of the 

llama (Lama glama). Ovulation and corpus luteum development were compared by 

ultrasonography among female llamas (n = 19 per group) treated intramuscularly with 

phosphate buffered saline (PBS, negative control) and those treated with the seminal 

plasma of bulls, alpacas, or llamas (conspecific control). The diameter of the pre-

ovulatory follicle did not differ among groups at the time of treatment. Bull seminal 

plasma induced ovulations in 26% (5/19) of llamas compared to 0% (0/19) in PBS 

group (P < 0.001). The ovulation rate was lower (P < 0.01) in bull seminal plasma group 

compared to that in the groups treated with alpaca or llama seminal plasma (100%). A 

corpus luteum was detected on Day 8 in all llamas in which ovulation was 
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detected earlier (Day 2) by ultrasonography. The diameter of the CL did not differ 

among groups. Results documented the presence of OIF in the seminal plasma of Bos 

taurus. The interspecific effects of seminal plasma on ovulation and luteal development 

provide support for the hypothesis that OIF is a highly conserved molecule among 

mammals.  
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8.2 Introduction 

 

Llamas and alpacas require a copulatory stimulus to induce ovulation (England 

et al., 1969, Fernandez-Baca et al., 1970a). Despite elevated circulating concentrations 

of estradiol during the period of maturation of the dominant follicle, a spontaneous 

preovulatory LH surge is not triggered in camelids (Bravo et al., 1990b; Homeida et al., 

1988) as it is in other species (e.g. cattle and sheep; Karsch 1987, Karsch et al., 1997). 

Although a number of different stimuli (tactile, olfactory, visual) have been associated 

with eliciting ovulation in induced ovulators, the physical stimulation of penile 

intromission has been ascribed the dominant role in triggering the preovulatory LH 

surge (Baker and Baum 2000). Authors of studies in llamas and alpacas showed that 

hCG administration effectively induced ovulation and concluded that the only the 

physical act of coitus, and not just mounting (no intromission) with or without artificial 

insemination, elicited a similar response in these species (Fernandez-Baca et al., 1970a; 

England et al., 1969). The first significant increase in circulating LH concentration was 

detected at 15-30 minutes after mating in llamas and alpacas, and peaked at 2 hours 

(Bravo et al., 1990b; Bravo et al., 1991). A similar increase in LH was observed in 

camels 20-30 minutes after mating (Xu et al., 1985; Marie and Anouassi 1986).  The 

rapid increase in plasma LH concentration after mating in camelids is similar to that 

observed in rabbits and cats after mating (Jones et al., 1976; Concannon et al., 1980).  

 

In contrast, others have suggested that penile penetration of the vagina and 

cervix is not the only stimulus responsible for eliciting ovulation in camelids. Ovulation 

was detected in alpacas (cited in Sumar 1994) and Bactrian camels (Chen et al., 1985; 

Xu et al., 1985) after intravaginal deposition of semen from the same species. Results of 

a more recent study documented the presence of an ovulation-inducing factor (OIF) in 

the seminal plasma of alpacas and llamas (Adams et al., 2005). Collectively, ovulation 

was induced in 28/30 (93%) females after intramuscular administration of alpaca or 

llama seminal plasma in the respective species, but none of the females (0/32) ovulated 

after intramuscular or intrauterine administration of phosphate buffered saline (negative 

control groups). Seminal plasma treatment was followed by a surge in circulating 
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concentrations of LH that peaked at 3 hours, and ovulation at 29 hours after treatment. 

In addition, seminal plasma treatment elicited a potent luteotrophic response. In light of 

these recent findings, the classical concept of a physical neuro-endocrine reflex as the 

mechanism by which ovulation is induced is in question. 

 

Induced (reflex) ovulation and spontaneous ovulation are not discrete species-

specific traits in mammals (Zarrow and Clark 1968; Conaway 1971; Jochle 1975; 

Martin 1990). In rabbits, ovarian steroids can facilitate the release of LH in response to 

vaginal stimulation (Sawyer and Markee, 1959). In cattle and pigs, coital activity was 

associated with enhanced LH secretion and a higher ovulation rate (Marion 1950; 

Signoret et al., 1972; Jochle 1975). Therefore, the presence of an OIF may not be 

restricted to the seminal plasma of species traditionally classified as induced ovulators. 

In a more recent study (Wabersky et al., 1995), a pronase-sensitive protein in the 

seminal plasma of pigs accelerated ovulation in gilts after intrauterine deposition. In 

addition, studies on human seminal plasma suggest the presence of a GnRH-like 

substance (Sokol 1985; Izumi et al., 1985) that may be involved in sperm/oocyte 

interaction (Morales et al., 1994). It is unknown whether these factors in spontaneous 

ovulators are involved in the mechanism of ovulation or if they are related to OIF in the 

semen of alpacas and llamas. 

 

In preliminary studies of the interspecies effects of seminal plasma, ovulation 

was detected by transrectal palpation in 3 of 7 Bactrian camels after intravaginal 

deposition (Chen et al., 1985) and 1 of 3 after intramuscular administration of bull 

semen (Pan et al. 1992). In another preliminary study, however, no ovulations (0/5) 

were observed in llamas after intravaginal administration of bull semen (cited by Sumar 

1994). The camelid species represents a good model for the study of ovulation-inducing 

factors because they are amenable to ovarian ultrasonography (Adams et al., 1989) and 

because their follicular, ovulatory, and luteal dynamics have been well characterized 

(Adams et al., 1990; Ratto et al., 2005). 
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The study was designed to test the hypothesis that OIF is well conserved among 

species by comparing the effects of seminal plasma from conspecific versus 

heterospecific males using the llama ovulation model as a bio-assay. The effect of 

seminal plasma of alpacas - a closely related species (Lama pacos), and cattle - a 

distantly related ruminant species (Bos taurus) considered to be spontaneous ovulators, 

was compared with that of the llama (Lama glama) using the llama ovulation model as 

an in vivo bio-assay. 

 

8.3 Materials and methods 

 

8.3.1 Semen collection and handling 

 

Semen was collected from male llamas (n = 4) and alpacas (n = 8) twice per 

week over a period of 2 months prior to the start of the experiment. Semen was collected 

with the use of an artificial vagina designed for use in sheep that was fitted into a 

phantom mount built of wood and covered with alpaca or llama hide (Bravo et al., 

1997). Semen from Hereford bulls (n = 6) was obtained by electro-ejaculation (Pulsator 

III; Lane Manufacturing, Denver, CO, USA) using a 75 mm in diameter rectal probe 

with three ventrally oriented electrodes. A total of 10 ejaculates were obtained per 

animal. 

 

The seminal plasma from each species was prepared using procedures described 

previously (Adams et al., 2005). In brief, ejaculates were diluted 1:1 (v/v) with 

phosphate buffered saline (PBS, Gibco, Grand Island, N.Y., USA) and centrifuged for 

30 minutes at 1500 x g. The supernatant was decanted to remove spermatozoa and a 

drop was evaluated by microscopy to confirm the absence of cells. If spermatozoa were 

detected, the sample was centrifuged again in like manner. Sperm-free seminal plasma 

was stored at –70°C. Upon thawing, the diluted seminal plasma was pooled by species 

(i.e., a pool for each species) and kanamycin sulfate (Sigma Chemical Co., St Louis, 

MO, USA) was added to a final concentration of 25 µg/ml.  
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8.3.2 Animals and treatments 

 

The study was conducted during February and March at the Quimsachata 

Research Station in the Department of Puno, Peru (15° S, 71° W, and 4,500 m above sea 

level). Mature non-lactating female llamas (n = 120), ≥4 years of age and weighing 120-

150 kg were used. To facilitate data collection, ovarian follicular development was 

synchronized among females by giving 5 mg Armour Standard LH (Lutropin-V®, 

Bioniche Animal Health, Belleville, ON, Canada) to induce ovulation. We expected 

approximately 85% to 90% of the llamas to ovulate after LH treatment, resulting in 

synchronous emergence of a new follicular wave 2 days after treatment (Ratto et al., 

2003). Llamas were examined by transrectal ultrasonography 12 days after LH 

treatment; sufficient time to permit complete luteal regression after ovulation and 

growth of a dominant follicle to an ovulatory diameter (Ratto et al., 2003; 2005). 

Females with an ovarian follicle ≥8 mm in diameter (i.e., mature enough to ovulate) 

were assigned randomly to 4 groups (n = 19 per group). Llamas in the respective groups 

were given an intramuscular (semimembranosus or semitendinosus muscle) injection of 

2.0 ml of phosphate buffered saline (PBS, negative control group), or 2 ml of diluted 

seminal plasma of llamas, alpacas, or bulls. Based on a mean interval from stimulus to 

ovulation of 29 hours (Ratto et al., 2005), llamas were examined by transrectal 

ultrasonography at Day 2 (Day 0 = treatment) to detect ovulation. Ovulation was 

defined as the sudden disappearance of a large follicle (≥8 mm) that was detected during 

the previous examination (Adams et al., 1989). To confirm ovulation and assess corpus 

luteum development, transrectal ultrasonography was repeated on Day 8; i.e., expected 

time of maximum CL diameter (Adams et al., 1989; Ratto et al., 2005).  

 

8.3.3 Statistical Analyses 

 

Single-point measurements (i.e., follicle size at the time of treatment, maximum 

CL diameter) were compared among groups by analyses of variance. If the overall effect 

was significant (P<0.05), specific comparisons were made between groups using Tukey 

88 



 

multiple comparisons. Ovulation rates were compared among groups by chi-square 

analysis. 

 

8.4 Results 

 

The diameter of the largest follicle at the time of treatment did not differ among 

groups (P = 0.8; Table 8.1). Ovulations were observed in all groups except in the group 

treated with PBS (negative control group, Table 8.1). Bull seminal plasma induced 

ovulations in 26% (5/19) of llamas compared to 0% (0/19) in PBS group (P < 0.001). 

The ovulation rate was lower (P < 0.01) in bull seminal plasma than llama or alpaca 

seminal plasma groups (100%). A corpus luteum was detected on Day 8 in all llamas in 

which ovulation was detected by ultrasonography on Day 2. Luteal development was 

not detected in the negative control group and CL diameter did not differ among llamas 

that ovulated after bull, llama and alpaca seminal plasma administration (Table 8.1).  
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Table 8.1.  Effect of intramuscular treatment with phosphate buffered saline (PBS, 
negative control), or with the seminal plasma of llamas, alpacas, or bulls 
on ovulation and corpus luteum development in female llamas (mean ± 
SEM). 

 

Seminal Plasma  Phosphate 

buffered 

saline 
Llama Alpaca Bull 

 

Follicle diameter at 

treatment (mm)* 

10.0 ± 0.7 

(n = 19) 

8.9 ± 0.3 

(n = 19) 

9.0 ± 0.3 

(n = 19) 

8.7 ± 0.2 

(n = 19) 

Ovulation rate (%) 0/19a

(0%) 

19/19b

(100%) 

19/19b

(100%) 

5/19c

(26%) 

CL diameter (mm) on Day 

8 (Day 0 = treatment)* 

---- 10.4 ± 0.4 

(n = 19) 

10.1 ± 0.3 

(n = 19) 

9.6 ± 0.7 

(n = 5) 

 

* No differences among groups (P ≥ 0.2). 
a,b,c Proportions with different superscripts are different (P < 0.001). 
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8.5 Discussion 

 

The present study was designed to determine the ovulation-inducing effect of 

semen of like-species (llama), related species (alpaca) and unrelated species (bovine) 

using the female llama as a bio-assay; i.e., an induced ovulating species in which follicle 

dynamics and ovulation have been well characterized, and in which ovulation can be 

readily monitored by ultrasonography (Adams et al., 1990; Bravo et al., 1990b, Ratto et 

al., 2003, 2005). The species used represent the 2 broad categories of ovulation type – 

spontaneous (bovine) and induced (camelid). Results document clearly the existence of 

an ovulation-inducing factor (OIF) in the seminal plasma of bulls, and confirm the 

results of a previous study in which OIF was identified in the seminal plasma of llamas 

and alpacas (Adams et al., 2005).  

 

We infer from the results of the present study that OIF is a potent and highly 

conserved molecule. Similar to our earlier study (Adams et al., 2005), a relatively 

conservative dose of seminal plasma was used in the present study (1 ml of raw seminal 

plasma) based on the reported average volume of the ejaculate in alpacas and llamas (2 

to 3 ml; Lichtenwalner et al., 1996, Neely and Bravo 1997). Despite the modest dose 

used in this study, the effects of seminal plasma were profound. Collectively, 38 of 38 

(100%) llamas given camelid seminal plasma and 5 of 19 (26%) given bovine seminal 

plasma ovulated. The ovulation rate was lower with bull seminal plasma than alpaca or 

llama seminal plasma, suggesting that bull OIF is somewhat altered or present in a lower 

concentrations compared to that in camelid semen. Results are consistent with those of a 

preliminary study of Bactrian camels monitored by transrectal palpation (Pan et al., 

1992) in which ovulation was detected in 9 of 10 camels after intramuscular treatment 

with camel seminal plasma and 1 of 3 camels after treatment with bull seminal plasma. 

The relative effects of diluting bovine and camelid ejaculates will require more critical 

evaluation to determine the total dose of OIF being administered. 

 

Some have postulated that induced ovulation may be a primitive trait from which 

spontaneous ovulation has evolved (Conaway 1971; Jochle 1975). This hypothesis is 
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consistent with evidence that induced ovulation appeared early phylogenetically in 

Orders Lagomorpha and Rodentia (Jochle 1975), and prevailed later in other closely 

related orders such as Insectivora and Carnivora (Zarrow and Clarke 1968). However, 

the presence of induced ovulation in a more distant Order such as Artyodactyla 

(camelids) challenges the hypothesis that induced ovulation is a primitive mechanism. 

According to one view, induced ovulators originated as a result of drastic changes in the 

environment that necessitated a change in reproductive behavior to maximize the 

possibility of conception (Lariviere and Ferguson 2003). The progenitor of present-day 

camelids originated on the North American continent but was forced through the 

Panamanian isthmus or across the Bering land bridge during the last glacial advance and 

evolved into what are now known as old world camelids (Bactrian and dromedary) in 

Asia and Africa, and new world camelids (llama, alpaca, vicuna, and guanaco) in South 

America (Wheeler 1995). Whether the ancestral species was a spontaneous or induced 

ovulator is unknown, but both old and new world camelids of today inhabit harsh, arid 

and isolated environments such as deserts and high altitudes. Perhaps environmental 

changes associated with the surging ice age, or the harshness of the present interglacial 

environment resulted in an evolutionary strategy for constant sexual receptivity to 

ensure survival of the species. Evidence of OIF in the bovine species, however, supports 

the hypothesis that acquisition of the characteristic of induced ovulation is a more 

ancient phenomenon that preceded the division of Tylopoda from other Artiodactyls. In 

this vein, the presence of an attenuated form or quantity of OIF in the seminal plasma of 

bulls may represent an evolutionary vestige of a common ancestry between ruminants 

and camelids. The existence of OIF in cattle demonstrated herein provides a plausible 

explanation for previous studies (Jochle 1975) in which mating was associated with an 

enhanced LH secretion and ovulation in cattle and sheep.  

 

We conclude that bull semen contains an ovulation-inducing factor. The inter-

species effect of seminal plasma provides rationale for the exciting hypothesis that OIF 

is a conserved molecule among all mammals and raises the immediate questions of the 

breadth of species in which OIF is present and the role of OIF in spontaneous ovulators. 
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9.0 LOCAL VERSUS SYSTEMIC EFFECT OF OVULATION-INDUCING 
FACTOR IN SEMINAL PLASMA 

 

 

9.1 Abstract  

 

Camelids are induced (reflex) ovulators. We have recently documented the 

presence of an ovulation-inducing factor (OIF) in the seminal plasma of alpacas and 

llamas. The objective of this study was to test the hypothesis that OIF exerts its effect 

via a systemic rather than a local route and that endometrial curettage will enhance the 

ovulatory response to intrauterine deposition of seminal plasma in alpacas. 

 

Female alpacas were assigned randomly to 6 groups (n = 15 to 17 per group) in a 

2 x 3 factorial design to test the effect of seminal plasma versus phosphate-buffered 

saline (PBS) given by intramuscular injection, by intrauterine infusion, or by 

intrauterine infusion after endometrial curettage. Specifically, alpacas in the respective 

groups were given 1) 2 ml of alpaca seminal plasma intramuscularly, 2) 2 ml of PBS 

intramuscularly (negative control group), 3) 2 ml of alpaca seminal plasma by 

intrauterine infusion, 4) 2 ml of PBS by intrauterine infusion (negative control group), 

5) 2 ml of alpaca seminal plasma by intrauterine infusion after endometrial curettage, or 

6) 2 ml of PBS by intrauterine infusion after endometrial curettage (negative control 
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group). The alpacas were examined by transrectal ultrasonography to detect ovulation 

and measure follicular and luteal diameters. Intramuscular administration of seminal 

plasma resulted in a higher ovulation rate than intrauterine administration of seminal 

plasma (93% versus 41%; P < 0.01), while intrauterine seminal plasma after endometrial 

curettage was intermediate (67%). None of the saline-treated controls ovulated. The 

diameter of the CL after treatment-induced ovulation was not affected by the route of 

administration of seminal plasma.  

 

We conclude that 1) OIF in seminal plasma effects ovulation via a systemic 

rather than a local route, 2) disruption of the endometrial mucosa by curettage facilitated 

the absorption of OIF and increased the ovulatory effect of seminal plasma, and 3) 

ovulation in alpacas is not associated with a physical stimulation of the genital tract, and 

4) the alpaca represents an excellent biological model to evaluate the bioactivity of OIF. 
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9.2 Introduction 

 

Early studies of South American camelids documented that copulatory 

stimulation is responsible for inducing ovulation in these species (Fernandez-Baca et al., 

1970a; England et al., 1969). The first significant increase in plasma LH concentrations 

occurred 15-40 minutes after the initiation of mating in llamas and alpacas (Bravo et al., 

1990b; Bravo et al., 1991). A similar LH increase was observed in Bactrian and 

dromedary camels (related camelid species) beginning 20-30 min after mating (Xu et 

al., 1985; Marie and Anouassi, 1986). The rapid increase in plasma LH concentration 

after mating in camelids resembles that observed in rabbits (Jones et al., 1976) and cats 

(Concannon et al., 1980) – also classified as induced ovulators. A 40-fold increase in 

GnRH secretion from the medio-basal hypothalamus was detected within 20-60 minutes 

of mating in rabbits (Spies et al., 1997), followed by a preovulatory LH surge and 

ultimately ovulation about 10 hours after mating (Milligan, 1982). 

 

The primary mechanism responsible for ovulation induction in these species is 

thought to involve a neuro-endocrine response to physical stimulation of the vagina and 

cervix by the penis during mating (Baker and Baum, 2000). The results of recent studies 

in llamas and alpacas, however, provide support for the hypothesis that a chemical 

substance in the semen is responsible, in whole or in part, for inducing ovulation 

(Adams et al., 2005). The existence of a potent ovulation-inducing factor (OIF) was 

demonstrated by intramuscular administration of cell-free llama and alpaca seminal 

plasma to females of the respective species. Collectively, 28 of 30 (93%) females 

ovulated after seminal plasma treatment compared to 0 of 32 (0%) saline-treated 

controls (Adams et al, 2005).  

 

The discovery of OIF in llamas and alpacas is consistent with an early study in 

which intrauterine or intramuscular administration of Bactrian semen induced ovulation 

in Bactrian females (Chen et al., 1985; Xu et al., 1985). However, conflicting results 

have been reported about the effect of local versus systemic administration of semen. In 

female alpacas that were mounted by a male (intromission prevented) and those that 
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were mounted (intromission prevented) followed by artificial insemination, ovulation 

(detected at necropsy 3 days later) occurred in 2/15 and 3/9, respectively (Fernandez-

Baca et al. 1970a). Since ovulation occurred in 36/44 females after natural copulation, 

the authors concluded that the physical act of coitus was responsible for eliciting 

ovulation in alpacas. In contrast, ovulation was detected in 6/10 alpacas and 5/8 llamas 

inseminated intravaginally with conspecific semen (cited in Sumar, 1994). In Bactrian 

camels, ovulation was detected by rectal palpation after intravaginal or intrauterine 

infusion of whole semen or seminal plasma in ≥75% of females (Chen et al. 1985, Xu et 

al. 1985; Pan et al., 1992). In a recent ultrasonographic study (Adams et al., 2005), 

ovulation was detected in 13 of 14 alpacas given seminal plasma intramuscularly, but in 

0 of 12 given seminal plasma by transcervical intrauterine deposition.  

 

The reason for the disparity in results is not clear, but authors of the latter study 

(Adams et al., 2005) speculated that differences may be attributed to attenuated 

absorption of OIF from the genital mucosa compared to the muscle. In this regard, 

copulation in alpacas and llamas is a prolonged event (30 to 50 minutes; San Martin et 

al., 1968; Bravo et al., 1990b) and ejaculation is intrauterine (Bravo et al., 1996). A 

normal sequela of copulation in these species is acute, transient inflammation of the 

endometrium as a result of repeated abrasion by the penis (Bravo et al., 1996). Perhaps 

absorption of OIF in seminal plasma subsequent to natural mating is facilitated by the 

hyperemia of the excoriated endometrium. 

 

The objective of the present study was to test the hypothesis that OIF exerts its 

effect via a systemic rather than a local route and that endometrial curettage will 

enhance the ovulatory response to intrauterine deposition of seminal plasma in alpacas. 

A 2-by-3 factorial design was used to compare the ovulatory effects of alpaca seminal 

plasma versus phosphate-buffered saline (control) administered by intramuscular 

injection, by intrauterine deposition, or by intrauterine deposition after endometrial 

curettage. 
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9.3 Material and Methods 

 

9.3.1 Seminal plasma collection 

 

Semen was collected from male alpacas (n = 8) by artificial vagina (Bravo et al., 

1997) over a period of 2 months prior to the start of the experiment (10 ejaculates per 

animal) and processed as previously described (Adams et al., 2005). Briefly, ejaculates 

were diluted 1:1 (v/v) with phosphate buffered saline (PBS, Gibco, Grand Island, N.Y., 

USA) and centrifuged for 30 minutes at 1500 x g. The supernatant was decanted to 

remove spermatozoa and a drop was evaluated by microscopy to confirm the absence of 

cells. If spermatozoa were detected, the sample was centrifuged again in like manner 

until all spermatozoa were removed. Sperm-free seminal plasma was stored at –70°C. 

Upon thawing, the diluted seminal plasma was pooled and kanamycin sulfate (Sigma 

Chemical Co., St Louis, MO, USA) was added to a final concentration of 25 µg/ml. 

 

9.3.2 Animals & Treatments  

 

The study was conducted during February to March at the Quimsachata 

Research Station in the Department of Puno, Peru (15º S, 71º W, and 4,500 m above sea 

level) using mature non-lactating female alpacas ≥4 years of age and weighing an 

average of 75 kg. To facilitate data collection, ovarian follicular development was 

synchronized among females (n = 100) by giving 5 mg Armour Standard LH (Lutropin-

V®, Bioniche Animal Health, Belleville, ON, Canada) to induce ovulation. We 

expected approximately 85% to 90% of the alpacas to ovulate after LH treatment, 

resulting in synchronous emergence of a new follicular wave 2 days after treatment 

(Ratto et al., 2003). Alpacas were examined by transrectal ultrasonography (Aloka 500 

with a 7.5 MHz linear-array probe, Instruments for Science & Medicine Inc., 

Vancouver, BC, Canada) 12 days after LH treatment - sufficient time to permit complete 

luteal regression and growth of a new dominant follicle (Ratto et al., 2003, 2005). 

Alpacas with a follicle ≥8 mm in diameter (n = 92) were assigned randomly to 6 groups 

and given: 1) 2 ml of alpaca seminal plasma intramuscularly (n = 15), 2) 2 ml of PBS 
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intramuscularly (control; n = 15), 3) 2 ml of alpaca seminal plasma by intrauterine 

infusion (n = 17), 4) 2 ml of PBS by intrauterine infusion (control; n = 15), 5) 2 ml of 

alpaca seminal plasma by intrauterine infusion after endometrial curettage (n = 15), or 

6) 2 ml of PBS by intrauterine infusion after endometrial curettage (control; n = 15). 

Intramuscular injections were given in the semimembranosus muscle using a 20-gauge 

40 mm long needle. Intrauterine infusions were accomplished by passing a plastic 

pipette through the cervix via transrectal manipulation and depositing 1 ml of alpaca 

seminal plasma or PBS into each uterine horn. To mimic the transient inflammation of 

the endometrium caused by the penis during natural mating (Bravo et al., 1996), both 

uterine horns were curettaged before intrauterine infusion by repeatedly scraping the tip 

of the plastic infusion pipette back and forth over the surface of the endometrial of both 

uterine horns for 3 minutes. Curettage was accomplished by transrectal manipulation of 

the uterus with one hand and manipulation of the pipette with the other. 

 

Alpacas were examined by transrectal ultrasonography on Day 2 (Day 0 = 

treatment) to detect ovulation. Ovulation was defined as the sudden disappearance of a 

large follicle (≥8 mm) that was detected during the previous examination (Adams et al., 

1989). To confirm ovulation and assess corpus luteum (CL) development, transrectal 

ultrasonography was repeated on Day 8; i.e., expected time of maximum CL diameter 

(Adams et al., 1989, Ratto et al., 2005). 

 

9.3.3 Statistical Analyses 

 

Single-point measurements (i.e., follicle size at the time of treatment, maximum 

CL diameter) were compared among groups by analyses of variance. If the overall effect 

was significant (P<0.05), specific comparisons were made between groups using Tukey 

multiple comparisons. Ovulation rates were compared among groups by chi-square 

analysis. 
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9.4 Results  

 

The diameter of the largest follicle at the time of treatment did not differ among 

groups (P = 0.9). Ovulations were observed in groups treated by intramuscular 

administration or intrauterine deposition of seminal plasma (Table 1). Ovulation and 

luteal development were not detected in females that were given PBS by intramuscular 

or intrauterine administration (control groups). The ovulation rate in the intramuscular 

group (93%) was higher (P < 0.01) than in the intrauterine group (41%), while the 

endometrial curettage group was intermediate (67%). Of the alpacas that ovulated, the 

diameter of the CL did not differ among groups. 
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Table 9.1.  Effect of administration of alpaca seminal plasma administered   
intramuscularly or by intrauterine infusion with or without endometrial 
curettage on ovulation and corpus luteum formation (mean ± SEM) in 
female alpacas. 

 

Intramuscular Intrauterine Intrauterine with 
curettage 

 

Seminal 
plasma 

Phosphate 
buffered 

saline 

Seminal 
plasma 

Phosphate 
buffered 

saline 

Seminal 
plasma 

Phosphate 
buffered 

saline 
Follicle diameter 
at treatment 
(mm)* 

8.0 ± 0.3

(n = 15) 

8.2 ± 0.3

(n = 15) 

8.1 ± 0.3

(n = 17) 

8.0 ± 0.3

(n = 15) 

8.3 ± 0.2 

(n = 15) 

8.4 ± 0.3 

(n = 15) 

Ovulation rate 
(%) 

14/15a

(93%) 

0/15c

(0%) 

7/17b

(41%) 

0/15c

(0%) 

10/15ab

(67%) 

0/15c

(0%) 

CL diameter 
(mm) on Day 8 
(Day 0 = 
treatment)* 

9.3 ± 0.4

(n = 14) 

---- 9.5 ± 0.3

(n = 7) 

---- 9.4 ± 0.4 

(n = 10) 

---- 

 

*   No difference among groups (P ≥ 0.9) 
a,b,c Proportions with different superscripts are different (P < 0.01) 
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9.5 Discussion 

 

The results of the present study provide support for the hypothesis that the 

ovulation-inducing effect of seminal plasma is mediated via a systemic rather than a 

local route. A higher ovulation rate in alpacas treated by intrauterine infusion would 

have provided evidence to the contrary, but the ovulation rate was significantly lower in 

the intrauterine infusion group than in the intramuscular group. These results are 

consistent with those of a previous study (Adams et al., 2005) in which intramuscular 

administration of llama seminal plasma was followed by a surge in plasma LH 

concentration and ovulation. However, results do not unequivocally rule out a potential 

local contribution of seminal plasma to ovulation induction. In this regard, results of a 

study of the effects of boar seminal plasma deposited into different segments of the 

uterine horn in gilts were suggestive of a local unilateral mechanism influencing the 

interval to ovulation (Wabersky et al., 1999). Ovulation was advanced in the ovary 

ipsilateral to the side of semen deposition, but interestingly, only when deposited near 

the utero-tubal junction; no effect was found when seminal plasma was deposited in the 

middle of the uterine horn between two ligatures. No information has been reported 

regarding circulating gonadotropin concentrations subsequent to intrauterine or 

intravaginal deposition of semen. 

 

The results are also consistent with the concept that systemic absorption of OIF 

from the uterus is facilitated by endometrial curettage. The ovulation rate in the 

curettage group was intermediate between that of the intramuscular group and the 

intrauterine group without curettage. Endometrial curettage in the present study was 

mild and was accomplished by rubbing a smooth, round-tipped plastic infusion pipette 

against the endometrium for 3 minutes. Perhaps more aggressive curettage would induce 

sufficient endometrial inflammation to increase absorption of OIF and result in an 

ovulation rate more typical of natural mating during the period of follicular readiness 

(i.e., 90%; Adams et al., 1990) 
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The disparity between the present study and our previous study (Adams et al., 

2005) in the effect of intrauterine treatment in non-curettaged alpacas (ovulation rate of 

41% versus 0%, respectively) may be attributed to the dose and site of deposition of 

seminal plasma. A total of 2 ml of seminal plasma was infused in the uterine horns (1 ml 

in each horn) in the present study, while only 1 ml of seminal plasma was infused into 

the uterine body in the previous study (Adams et al., 2005). Regarding local versus 

intramuscular absorption, the addition of a GnRH analogue (Buserelin) to the semen 

induced ovulation in rabbits after intravaginal artificial insemination (Quintela et al., 

2004), but the dose of GnRH required for ovulation induction by intravaginal deposition 

was ten times higher than that used by intramuscular administration in the control group 

(8 µg versus 0.8 µg per inseminated female). This is consistent with the results from our 

previous experiment (Adams et al., 2005) in which no ovulations were detected in 

alpacas after intrauterine deposition of 5 mg of LH (Lutropin), a dose that caused 

ovulation in more that 80% of the females when given intramuscularly (Ratto et al., 

2003, 2005). Hence, higher systemic concentrations of OIF may have been achieved in 

the present study by using larger dose and causing greater dispersion of seminal plasma 

throughout the endometrial surface. No mention was made regarding uterine 

manipulations in previous studies in llamas and alpacas (Fernandez-Baca et al., 1970a; 

Sumar, 1994) or Bactrian camels (Chen et al. 1985; Xu et al. 1985; Pan et al., 1992), 

and it is unclear if semen was deposited into the vagina, the cervix, or the uterus. 

 

Results did not support the notion that physical stimulation of the vagina, cervix 

and uterus is involved in a neuro-endocrine system for ovulation induction, nor was 

there any evidence that OIF is produced by tissues of the female reproductive tract. 

Despite purposeful manipulation and irritation of the genitalia in the present study, none 

of the 45 females treated with saline alone ovulated.  

 

We conclude that 1) OIF in seminal plasma effects ovulation via a systemic 

rather than a local route, 2) disruption of the endometrial mucosa by curettage facilitated 

the absorption of OIF and increased the ovulatory effect of seminal plasma, and 3) 
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ovulation in alpacas is not associated with a physical stimulation of the genital tract, and 

4) the alpaca represents an excellent biological model to evaluate the bioactivity of OIF. 
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10.0 IN VITRO AND IN VIVO MATURATION OF LLAMA OOCYTES 
 

10.1 Abstract 

 

Cumulus-oocyte complexes (COC) were collected from abbatoir-derived llama 

ovaries and cultured in vitro for 28, 30, or 36 hr at 39°C in 5% CO2 to determine the 

time required for maturation. The majority of COC (n = 298, 87%) were classified as 

Categories 1 and 2 (COC with ≥5 layers or 2 to 4 compact layers of cumulus cells, 

respectively) and homogeneous ooplasm, and the proportion that underwent nuclear 

maturation (MII) was 78, 81 and 80%, after 28, 30 and 36 hr, respectively (P = 0.65). To 

compare the effectiveness of FSH versus eCG for inducing in vivo maturation, in 

Experiment 2, llamas (n = 20 per group) were treated with: 1) 25 mg FSH bid for 4 d, 

plus 5 mg armour of LH at the end of FSH treatment; or 2) 1000 IU of eCG, plus 5 mg 

armour of LH 4 d after eCG treatment.  The FSH- and eCG-treated groups did not differ 

(P = 0.85) with respect to the number of follicles ≥6 mm at the time of COC collection 

(17.9  ±  2.2 vs 17.7 ± 2.2), the number of COC collected (10.7 ± 2.1 vs 11.2 ± 2.3 per 

llama), or the collection rate per follicle aspirated (71 vs 74%). As well, no difference (P 

= 0.49) was detected between the FSH and eCG groups in the number of expanded COC 

collected (8.3 ± 2.1 vs 10.6 ± 2.2) or the number of COC at the MII stage (6.9 ± 1.8 vs 

8.9 ± 1.9). In conclusion, llama oocytes reached MII as early as 28 h after in vitro 

culture and both FSH and eCG were equally effective in inducing ovarian 

superstimulation. Treatment with LH after either FSH or eCG superstimulation 

permitted the recovery of a preponderance of expanded COC in metaphase II that may 

be suitable for in vitro fertilization without in vitro maturation. 
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10.2 Introduction 

 

Embryo transfer technology and superstimulatory protocols have been applied in 

camelids with limited success (Sumar, 1983; Bourke et al., 1995a; Correa et al., 1997; 

Ratto et al., 1997). Ovarian superstimulation protocols used to date have resulted in 

extremely variable follicular responses and low embryo recovery rates. A second 

limitation to the application of embryo transfer in llamas and alpacas is that most 

embryos recovered are at the hatched blastocyst stage, which makes embryo handling 

and cryopreservation difficult. Development of an in vitro embryo production system in 

camelids may circumvent some of the problems associated with embryo transfer, but 

issues related to ovarian superstimulation, oocyte collection, and in vitro culture 

conditions remain to be addressed.  

 

Initial studies using abbatoir-derived ovaries from non-stimulated llamas 

provided preliminary information regarding oocyte collection, quality, and maturational 

state (Del Campo et al., 1992, 1994). In the first study (Del Campo et al., 1992), COC 

were collected by aspiration from follicles 1 to 12 mm in diameter (mean collection rate 

of six oocytes/llama) and 62% reached the second metaphase (MII) after 36 hr of in 

vitro culture. In the second study by the same authors (Del Campo et al., 1994), COC 

were collected by mincing the ovaries with a razor blade (mean collection rate of 27 

oocytes/llama) and an in vitro maturation time of 30 hr was used; however, the 

maturation rate was low (30%). These initial studies were not designed to account for 

the effects of follicular size and status; this may account for the variability in the rate of 

maturation after prolonged culture in vitro. In a study in dromedary camels (Abdoon, 

2001), oocyte yield and quality was influenced by season and ovarian physiological 

status; the number and quality of oocytes recovered increased when collection was done 

during the breeding season and in the absence of a corpus luteum. In another camel 

study (Torner et al., 2003), oocytes of non-pregnant females matured faster in vitro (32 

hr) than those of pregnant females (36 hr). In a detailed study on the interval to 

ovulation in llamas, ovulation was detected by ultrasonography at 29.8±2.1 hr after an 
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ovulatory stimulus (Ratto et al., 2004). This interval may have important implications 

for determining the optimal time required for in vitro oocyte maturation. 

 

In more recent studies, oocyte quality and morphology were examined following 

superstimulatory treatment and ultrasound-guided transvaginal follicle aspiration in 

llamas (Brogliatti et al., 2000) or follicular aspiration at laparotomy in alpacas (Gomez 

et al., 2002). In the llama study, gonadotropin treatments were conducted at a random 

stage of follicular development whereas in the alpaca study, treatment was initiated only 

when the largest follicle was <7 mm (i.e., ostensibly in the absence of a dominant 

follicle). In the llama study (Brogliatti et al., 2000), 42% of the COC recovered were 

classified as compact, 29% were degenerated, and despite treatment with gonadotropins, 

none were expanded. In contrast, 43% of alpaca COC recovered were expanded and 

40% of the expanded COC had reached the second metaphase (Gomez et al., 2002). No 

data are available regarding oocyte quality, morphology and nuclear maturation in 

llamas and alpacas after superstimulatory treatment at known stages of follicular 

development.  

 

Ovarian status at the time of superstimulatory treatment has been shown to 

influence the magnitude and variability of the follicular response in cattle (Adams, 

1999). A greater and more consistent ovarian response resulted when treatment was 

initiated near the time of follicular wave emergence than when initiated later or at 

random stages of the estrous cycle (Nasser et al., 1993; Adams, 1994b; Adams et al., 

1994c. The effect has been attributed to the suppressive effect of the dominant follicle 

on the growth of its subordinates and the emergence of the next follicular wave (Adams 

et al., 1993ab; Hagemann, 1999). In addition, follicular status has been shown to 

influence the developmental competence of its contained oocyte (Salamone et al., 1999; 

Vassena et al., 2003). In both studies, bovine oocytes recovered from subordinate 

follicles in the mid- to late-static phase (5 d after wave emergence), were more 

competent to develop to the morula-blastocyst stage than growing-phase follicles. 
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The objectives of the present study were to determine the effect of in vitro 

culture time on nuclear maturation of oocytes from non-stimulated ovaries (Experiment 

1 - in vitro maturation), and to determine the effect of superstimulatory gonadotropin 

treatment after follicular wave synchronization on oocyte collection, quality, and 

maturational stage (Experiment 2 - in vivo maturation) in llamas.  

 

10.3 Materials and methods  

 

10.3.1 Experiment 1 

 

Llama ovaries were obtained from mature non-pregnant females during the 

breeding season (November-January) from an abbatoir in Arica, Chile (15° S latitude, 

70° W longitude, at sea level) and transported in a thermos containing phosphate 

buffered saline (PBS, Gibco, Invitrogen Corporation, Grand Island, NY, USA) 

supplemented with penicillin (100 IU/mL) and streptomycin (100 μg/mL) to the 

laboratory (Catholic University of Temuco; 38º S Latitude, 72º W longitude, 100 meters 

altitude) by air within 5 h of recovery. The temperature of the ovaries upon arrival was 

approximately 25 °C.  COC were aspirated from follicles 3- 6 mm in diameter using a 

21-gauge needle attached to a sterile 10 mL syringe containing PBS supplemented with 

penicillin (100 IU/mL), streptomycin (100 μg/L) and 0.3% bovine serum albumin (BSA, 

Sigma Chemical Co., St. Louis, MO, USA). Follicular aspirates were transferred to a 10 

mL conical tube and allowed to settle for 10 min. The sediment was aspirated with a 

Pasteur pipette and transferred into a 60 mm petri dish containing PBS to search for 

COC. The COC were examined using a stereomicroscope at a magnification of 15x and 

categorized according the number of cumulus cell layers and the appearance of the 

oocyte cytoplasm: Category 1 - COC with ≥5 layers of compact cumulus cells, and 

homogeneous cytoplasm; Category 2 - COC with 2 to 4 compact layers of cumulus 

cells, and homogeneous cytoplasm; Category 3 - ≤1 layer of granulosa cells or partly 

denuded, and vacuolated cytoplasm; and Category 4 - denuded oocyte, and granular 

cytoplasm (De Loose et al., 1989). Only COC from Categories 1 and 2 were used for in 

vitro culture. 
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Follicles were aspirated in the laboratory and COC were placed in culture within 

3 to 5 hr after arrival (i.e., 8-10 hr after slaughter). The COC were matured in vitro using 

the technique previously described (Del Campo et al., 1992, 1994). Briefly, COC were 

cultured in groups of 10 in 50 μL drops of maturation medium consisting of TCM-199 

(Gibco) supplemented with 10% heat-treated fetal calf serum (Gibco), 0.2 mM sodium 

pyruvate, 0.5 μg/mL FSH, 1 μg/mL estradiol-17β, and 25 μg/mL gentamycin (the latter 

four products were from Sigma Chemical Co.). Drops were covered with mineral oil and 

cultured for 28, 30, or 36 h at 39 °C with 5% CO2 and high humidity.  

 

Nuclear morphology was assessed after denuding the COC by repeated 

aspiration and expulsion through a Pasteur pipette and fixing them in 1:3 acetic 

acid/ethanol for at least 24 h. The COC were assessed after 28, 30, 36 h of in vitro 

culture (103, 67, and 128 COC, respectively). Denuded oocytes were stained with 1% 

orcein (w/v) in 45% acetic acid (v/v) and evaluated using phase-contrast microscopy 

(400 x). Oocytes were classified as GV (oocytes with an intact germinal vesicle), GVBD 

(oocytes with no distinct nuclear membrane or nucleolus), MI (oocytes with a 

metaphase plate and no polar body), MII (oocytes with a metaphase plate and a polar 

body), abnormal or degenerated (i.e., oocytes with fragmented ooplasm, no distinct 

nuclear membrane or nucleolus, chromosomes dispersed in clumps within the ooplasm, 

or chromatin not recognizable at any stage of the meiosis).  

 

10.3.2 Experiment 2 

 

Mature, non-pregnant female llamas (n = 40), ≥3 yr of age and weighing an 

average of 120 kg, were used during the breeding season (February to March) at the 

Quimsachata Research Station, in the Department of Puno, Peru (15° S latitude, 71° W 

longitude, and 4,500 m above sea level). Ovarian follicles ≥5 mm were ablated by 

transvaginal ultrasound-guided follicle aspiration using a 5.0 MHz convex-array 

ultrasound transducer (Aloka SSD-500, Instruments for Science and Medicine Inc., 

Vancouver, BC, Canada) and a 19-gauge needle to synchronize follicular wave 

emergence among animals (Bergfelt et al., 1994, Ratto et al., 2003). 
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Llamas were assigned randomly into two groups (n = 20 per group) and treated 48 hr 

after follicle ablation (i.e., expected time of follicular wave emergence; Ratto et al., 

2003) with: 1) 25 mg FSH (Folltropin, Bioniche Animal Health Canada Inc., Belleville, 

ON, Canada) im, twice daily for 4 d, plus 5 mg Armour Standard LH (Lutropin, 

Bioniche Animal Health Canada Inc.) im, 36 hr after the last FSH treatment; or 2) 1000 

IU eCG (Novormon, Bioniche Animal Health Canada Inc) as a single dose i.m., plus 5 

mg LH im, 4 d after eCG treatment.  

 

The ovarian response was assessed by transrectal ultrasonography using a 7.5 

MHz linear-array transducer (Aloka SSD-500) immediately before oocyte collection at 

20 to 22 hr after LH treatment in both groups. COC were collected by transvaginal 

ultrasound-guided follicle aspiration as previously described (Brogliatti et al., 2000). 

Caudal epidural anesthesia was induced with 2.5 mL of 2% lidocaine (Bimeda-MTC 

Animal Health Inc, Cambridge, ON, Canada) and the perineal region was washed with 

surgical scrub. A 19-gauge, 55 cm single-lumen needle was placed in the needle guide 

of the ultrasound probe and advanced through the vaginal fornix and into the follicular 

antrum. Follicular fluid was aspirated using a regulated vacuum pump set at a flow-rate 

of 22 mL/min. The contents of all follicles ≥6 mm were aspirated into a 50 mL conical 

tubes containing PBS with 0.3% BSA, heparin (10,000 IU/L PBS) and 50 μg/L of 

gentamycin. Aspirates were transferred to petri dishes to search for and evaluate the 

COC using a stereomicroscope. COC were examined as described in Experiment 1, and 

were classified by stereomicroscopy as expanded, compact (>2 layers of granulosa cells 

tightly surrounded the oocyte), denuded, or degenerated (pyknotic granulosa cells and 

vacuolated ooplasm). All COC were then denuded by repeated aspiration and expulsion 

through a Pasteur pipette, and nuclear status was classified after orcein staining and 

examination by phase contrast microscopy. 

 

10.3.3  Statistical Analyses 

 

Parametric data were compared between groups using Student’s t-tests and 

proportional data were compared by Chi-square analyses.  
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10.4 Results 

 

10.4.1 Experiment 1: In vitro maturation 

 

A total of 344 COC were collected after aspiration of 3 to 6 mm follicles of 148 

abbatoir-derived ovaries (average, 2.3 COC per ovary). Categories 1 and 2 COC 

comprised 87% (n = 298) of the total, while Category 3 and 4 COC comprised 13% (n = 

46; Figure 10.1 A,B). After in vitro maturation of Categories 1 and 2 COC, there were 

no differences among culture times (28, 30 and 36 h) in the proportion of oocytes in 

each maturational stage (GV, GVBD, MI, MII, degenerated; P = 0.65; Table 10.1). 

Overall, 77.7 % (80/103), 80.6 % (54/67), and 80.4 % (102/128) of the oocytes reached 

MII after 28, 30 and 36 h of in vitro maturation culture respectively. 

 

The unstained stereoscopic morphology of the COC was characterized by 

remarkably and invariably dark ooplasm, both before and after in vitro culture (Figure 

10.1A-D). Varying degrees of cumulus expansion were evident after the respective 

periods of in vitro maturation (Figure 10.1C, D). Incomplete cumulus expansion was 

marked by the presence of dark clumps of what appeared to be degenerate cumulus cells 

(Figure 10.1C). Complete cumulus expansion was marked by the presence of spherical 

clusters of cumulus cells of varying size within the expanding matrix around the oocyte 

(Figure 10.1D). The first polar body was distinct and was clearly detectable by 

stereomicroscopy at 20 x to 40 x magnification (i.e., before nuclear staining) in 80% of 

oocytes after in vitro maturation (Figure 10.1E).  
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Table 10.1  Effect of in vitro maturation time on the percentages of nuclear maturation of COC collected from 3 to 6 mm follicles of 
slaughterhouse-derived llama ovaries. 

  
Oocyte morphology (%) In vitro culture time 

(hours)* 

No. of COC 

GV GVBD MI MII Degenerated

28 103 0 5.8 9.2 77.7 6.8 

30  67 0 --- 10.4 80.6 8.9 

36  128 0 3.1 11.7 80.4 4.7 

 

*No differences among maturation times for any end point (P = 0.65). 
GV: Germinal Vesicle, GVBD: Germinal vesicle break down, MI: Metaphase I, MII: Metaphase II, Degenerated. 
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Figure 10.1.  Morphological features of llama cumulus oocyte complexes (COC) 
during in vitro or in vivo maturation. A) Compact COC with ≥5 layers of 
cumulus cells (Category 1). B) Compact COC with two layers of 
cumulus cells (Category 2). C) COC matured in vitro for 30 hr, showing 
partial cumulus expansion and with dark changes of cumulus cells 
(arrows). D) COC matured in vitro for 30 hr showing fully expanded and 
clustered cumulus cells. E) Oocytes with a polar body detectable by 
stereomicroscopy after 30 hr of in vitro maturation. F) Expanded COC 
collected by transvaginal ultrasound-guided follicular aspiration 22 hr 
after gonadotropin treatment. G) Denuded oocyte with a polar body 
detectable by stereomicroscopy 22 hr after gonadotropin treatment. H) 
Llama oocyte in meiosis II with a polar body and metaphase plate. 
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10.4.2 Experiment 2: In vivo maturation 

 

Ovarian follicles did not exceed 5 mm by the day of COC collection in two 

llamas treated with FSH, and in three llamas treated with eCG. Their data were not 

included in statistical analyses.  

 

There were no differences between FSH- and eCG-treated groups in the number of 

follicles ≥6 mm at the time of COC collection, the number of follicles aspirated, the 

number of COC collected per llama, or the proportion of COC recovered (P = 0.85; 

Table 10.2). There was no difference between groups in the number of expanded COC 

collected per llama (P = 0.44), but a higher proportion of expanded COC was collected 

from llamas treated with eCG (P < 0.01). In addition, a higher number and proportion of 

compact COC were collected from llamas treated with FSH (P < 0.01; Table 10.3). 

 

Differences between groups in the mean number of COC that reached the 

respective nuclear stages were not significant (P = 0.12; Table 10.4), except for a 

tendency for a higher mean number (P = 0.07) of COC at the GV stage in the FSH 

group. Of the total COC recovered, the proportion of COC that reached MII was lower 

(P < 0.01) in the FSH group (124/193, 64%) than in the eCG group (152/192, 79%). Of 

the total expanded COC recovered from the FSH and eCG treatment groups, the 

proportion that reached MII (Fig. 1H) was 82% (124/151) and 84% (152/180), 

respectively (P = 0.57). 

 

Similar to the stereoscopic morphology of in vitro matured COC (Experiment 1), 

the ooplasm of in vivo matured COC was dark, but cumulus expansion was more 

complete and neither dark areas nor spherical clusters of cumulus cells were observed 

around the oocyte (Figure 10.1F). Similar to observations made in Experiment 1, the 

first polar body was very distinct and was clearly detectable by stereomicroscopy 

without staining in most of the oocytes (Figure 10.1G).  
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Table 10.2. Ovarian follicular response (mean ± SEM per llama) and COC recovery rate from llamas superstimulated with 
FSH or eCG at the time of follicular wave emergence followed by LH treatment (Experiment 2).  

 

Treatment 

Group 

No. of follicles ≥6 mm No. of follicles 

aspirated 

No. of COC 

collected 

COC recovery rate 

FSH 

(n=18) 

 

17.9 ± 2.2 15.1 ± 2.0 10.7 ± 2.1 193/273 

(71%) 

eCG 

(n=17) 

17.7 ± 2.2 15.1 ± 2.2 11.2 ± 2.3 192/258 

(74%) 

 

* No differences between groups for any end point (P = 0.85). 
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Table 10.3.  Morphologic characteristics (mean number ± SEM per llama) and proportion (%) of COC collected from llamas 
superstimulated with FSH or eCG at the time of follicular wave emergence followed by LH treatment (Experiment 2).  

 

Treatment group COC collected Expanded COC Compact COC 
> 3 layers 

Denuded Degenerated 

FSH 
(n=18) 
 

10.7 ± 2.1 
(100%) 

8.3 ± 2.1 
(78%) x

2.1 ± 0.7 a

(19.7%)x
0.2 ± 0.1 
(1.5%) 

0 ± 0 

(0%) 

eCG 
(n=17) 

11.2 ± 2.3 
(100%) 

10.6 ± 2.2 
(93.7%) y

0.5 ± 0.1 b 

(4.7%) y
0.05 ± 0.05 
(0.5%) 

0.1± 0.1 
(1.5%) 
 

 

ab Mean values within columns are different  (P < 0.01) 
xy Proportions within columns are different  (P < 0.01) 
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Table 10.4.  Number (mean ± SEM per llama) and proportion (%) of oocytes at each stage of nuclear maturation at the time of 
collection from llamas given superstimulatory treatment of FSH or eCG followed by LH (Experiment 2).  

 
Morphology of oocyte nucleus Treatment 

group 

No of COC 

collected GV GVBD MI MII Degenerated 

FSH 

(n = 18) 

10.7 ± 2.1 

(100%) 

2.0 ± 0.7a

(19%) x
0.4 ± 0.2 

(4.1%) x
1.1 ± 0.3 

(10.4%) 

6.9 ± 1.8 

(64.2%) x

0.3 ± 0.2 

(2.6%) 

ECG 

(n = 17) 

11.2 ± 2.3 

(100%) 

0.5 ± 0.2b

(5.2%) y

0.06 ± 0.6 

(0.5%) y

1.4 ± 0.4 

(12.5%) 

8.9 ± 1.9 

(79.2%) y
0.3 ± 0.04 

(2.6%) 
 

ab Mean values within columns tended to differ  (P < 0.07) 
xy Proportions within columns are different  (P < 0.01) 
GV: Germinal vesicle, GVBD: Germinal vesicle break down, MI: metaphase I, MII: metaphase II, Degenerated. 
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10.5 Discussion 

 

The kinetics of in vitro oocyte maturation has not been critically studied in 

camelids, but has been examined in some detail in cattle (Sirard et al., 1989; Lonergan et 

al., 1997). Although maturation of the oocyte is not required for sperm penetration or for 

sperm nuclear decondensation under in vitro conditions (Chian et al., 1992), exposure of 

the sperm to immature oocytes was associated with decreased embryo development. In 

addition, the period of in vitro culture required for an oocyte to undergo nuclear 

maturation is reflective of its subsequent developmental competence. Bovine oocytes 

that extruded the first polar body as early as 16 h of in vitro culture were more 

competent to develop to the blastocyst stage than those that matured more slowly 

(Dominko and First, 1997).  

 

In the present study, the proportion of COC in the second metaphase was high at 

the shortest time interval (i.e., 78% at 28 h), in contrast to an earlier study (Del Campo 

et al., 1992) in which a culture time of 36 hr was required for the majority (62%) of 

oocytes to mature. The proportion of COC in the second metaphase at 30 hr of in vitro 

culture in the present study was higher than that reported in a previous study (Del 

Campo et al., 1994) for the same period of culture (i.e., (80.6 versus 30.4%). Differences 

between studies may be related to the source of COC. In the early study, ovarian 

mincing using a razor blade likely resulted in the collection of a heterogeneous 

population of oocytes from preantral and antral follicles of all stages of development 

(Hyttel et al., 1997). In cattle, oocytes from follicles < 2 mm were developmentally 

incompetent (Lonergan et al., 1994); perhaps oocytes from immature llama follicles are 

also developmentally incompetent.  

 

In addition to a greater proportion of matured COC in a shorter culture period, 

the proportion of degenerated oocytes observed after in vitro maturation appeared to be 

lower in the present study (4.7 to 8.9%) compared to earlier reports (30%; Del Campo et 

al., 1992, 1994), and may be attributed to the time interval between ovarian collection 

and COC aspiration (18 to 20 hr), or to the method of COC collection (razor blade). 
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Interestingly, the in vitro maturation time in the present study (28 hr) was similar to the 

time interval between mating and ovulation in this species. Based on ultrasonographic 

examination every 4 h, ovulation occurred 29.8±2.1 h after an ovulatory stimulus (Ratto 

et al., 2004). It appears that in vivo and in vitro maturation time is similar under the 

conditions of the present study. However, additional study is required to determine if 

maturation occurs earlier than 28 h of in vitro culture. It is also noteworthy that most 

camel COC (85%) reached MII after 36 h of in vitro culture (Abdoon, 2001), which is 

consistent with the reported time interval between mating and ovulation in camels (36 h; 

Abdoon, 2001). The importance of determining optimal in vitro oocyte maturation time 

is illustrated by the results of studies in cattle that show that oocyte aging may be the 

cause of reduced fertility if in vivo insemination is delayed (Hunter, 1989). In addition, 

delayed insemination in vitro has been associated with oocytes that are capable of being 

fertilized but unable to develop into embryos as a result of deranged cortical granules 

and microtubules (Long et al, 1994).  

 

The dark appearance of the cytoplasm of llama oocytes was consistent with that 

previously described (Del Campo et al., 1994) and may be attributed to the prevalence 

of lipid droplets (Brogliatti et al., 2000). Cumulus expansion in COC matured in vivo 

(i.e., those collected by transvaginal ultrasound-guided follicle aspiration after 

gonadotropin treatment) was more complete than in vitro matured COC. Furthermore, in 

vitro maturation was associated with apparent aberrations in cumulus expansion (i.e., 

dark clumping and spherical clusters of cumulus cells). The significance of these 

apparent aberrations has been documented in a previous study as well (Del Campo et al., 

1994) and it is unknown, but in vitro maturation conditions have been shown to affect 

the level of maternal mRNA polyadenylation, and alter the storage of mRNA necessary 

for the early embryo development (Pocar et al., 2001). In addition, COC morphology 

(cumulus cells and ooplasm) associated with competence to reach the second metaphase 

and blastocyst stage has been correlated with the expression of several specific 

transcripts (De Souza et al., 1998). In cattle, in vivo matured oocytes are more 

competent to develop to the blastocyst stage than in vitro matured oocytes (Van de 

Lemput et al., 1999; Dieleman et al., 2002; Bordignon et al., 1997; Rizos et al., 2002). 
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Specific differences in the morphologic characteristics of in vitro and in vivo matured 

llama COC will provide clues about factors responsible for imbuing developmental 

competence of an oocyte. 

 

Superstimulatory treatments (FSH or eCG) were equally efficacious in inducing 

multiple follicle growth, consistent with a similar comparison made in alpacas (Gomez 

et al., 2002). Gonadotropin treatment effectively increased the number of follicles 

accessible for oocyte collection, as reported in cattle (Pieterse et al., 1988; Looney et al., 

1994; Goodhand et al., 1999; Brogliatti and Adams, 1996). The superstimulatory 

response was relatively consistent among animals in both groups. Of 40 llamas, only 

five (12%) failed to respond to gonadotropin treatment (i.e., no follicles >5mm), and of 

those that responded, all had >3 follicles ≥6 mm. The consistency in response was 

attributed to the emergent stage of follicular wave development at the time treatment 

was initiated (Nasser et al., 1993; Adams, 1994b). Based on previous work in llamas 

(Ratto et al., 2003), follicular wave emergence was expected 2.3±0.3 d after follicular 

ablation; hence, treatment was initiated 2 d after ablation in the present study.  

 

The number of COC collected after superstimulatory gonadotropin treatment in 

the present study (~11 per llama) was approximately half that previously reported in 

alpacas (~24 per alpaca) (Gomez et al., 2002), a difference that may be attributed to a 

greater ovarian response and to the laparotomy technique used to collect COC in the 

alpaca study. The COC recovery rate was similar between treatment groups (about 72%) 

and exceeded the expected recovery rate based on a previous study in which 

transvaginal ultrasound-guided follicle aspiration was used (56%) (Brogliatti et al., 

2000). The COC collection rate also appeared to be higher than that described in cattle 

using a similar technique (52% and 38%) (Looney et al., 1994; Goodhand et al., 1999). 

Further investigation is required to determine whether LH-induced maturational changes 

improve COC collection rate by weakening the attachment to the follicular wall.  

 

The number of expanded COC observed after FSH or eCG treatment in this 

study was higher than that reported in superstimulated alpacas (Gomez et al., 2002). Due 
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to large individual variation, differences observed in the mean number of oocytes per 

llama that reached respective maturational stages did not reach significance. However a 

higher proportion of expanded and matured COC were collected from llamas after eCG 

treatment. Regardless, over 80% of the expanded COC in both treatment groups were in 

metaphase II. In general, the low number of degenerated oocytes in the Experiment 2 

may be attributed to the timing of collection; i.e., following gonadotropin treatment of a 

newly emerged follicular wave (Goodhand et al., 1999; Lonergan et al., 1993; Arlotto et 

al., 1996).  

 

In conclusion, llama oocytes collected from non-stimulated 3 to 6 mm follicles 

reached the MII stage as early as 28 h after in vitro culture. Treatments with FSH and 

eCG were equally effective in inducing ovarian superstimulation when administered 

during follicular wave emergence. Treatment with LH after ovarian superstimulation 

permitted the recovery of a preponderance of expanded COC (80 to 90% of total 

collected), most of which were in MII (64 to 79% of the total collected). 

Superstimulation with eCG was associated with a slightly higher proportion of expanded 

COC and COC in MII compared to superstimulation with FSH.  Therefore, either 

treatment may be used to collect oocytes that are suitable for immediate in vitro 

fertilization (i.e., in vitro maturation not required).  
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11.0 EFFECT OF OVARIAN SUPERSTIMULATION ON COC 

COLLECTION AND MATURATION IN ALPACAS 

 

11.1 Abstract 

The objectives of the study were to evaluate the ovarian response to 2 

superstimulatory treatments in alpacas and to determine the effect of these treatments on 

cumulus-oocyte complex (COC) collection efficiency and maturation. Alpacas (n = 7 

per group) were treated with 1) 200 mg of FSH im divided bid for 3 d, plus a single iv 

dose of 1000 IU hCG 24 hours after the last FSH treatment, or 2) 1200 IU of eCG as a 

single im dose, plus a single iv dose of 1000 IU of hCG on Day 3 after eCG treatment 

(Day 0 = Start of superstimulatory treatment). At 20-24 h post-hCG treatment, the 

ovaries were surgically exposed and COC were collected by needle aspiration of all 

follicles ≥6 mm. The FSH and eCG treatment groups did not differ with respect to the 

number of follicles ≥6 mm at the time of COC collection (20.0 ± 7.5 versus 27.0 ± 3.3; 

P = 0.5), the number of COC collected (26.2 ± 8.4 versus 23.3 ± 3.7; P = 0.7), or the 

collection rate per follicle aspirated (89% versus 87%; P = 0.7). No difference was 

detected between FSH- and eCG-treated alpacas in the number of expanded COC (11.5 

± 2.9 versus 8.8 ± 2.8; P = 0.54) or compact COC with ≥3 layers of cumulus cells (12.5 

± 4.3 versus 14.3 ± 2.6; P = 0.72). As well, no difference (P = 0.1) was detected between 

FSH and eCG groups in the number of expanded COC MII stage (8.5 ± 1.9 vs 6.0 ± 
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2.1). A greater proportion (P < 0.05) of compact COC in MII was observed after in vitro 

culture in alpacas treated with FSH. Eight expanded COC were in vitro fertilized with 

llama sperm. Embryos at two-cells and morulae stage were observed at 48 h and 7 days, 

respectively after in vitro fertilization. In summary, FSH and eCG treatments were 

equally effective for ovarian superstimulation and oocyte collection. COC were 

collected from more than 80% of follicles aspirated at laparotomy. Thirty percent of 

total COC collected after superstimulation were at MII stage. The number of matured 

oocytes per female is increased when compact COC are submitted to in vitro maturation.  
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11.2 Introduction 

 

The application of assisted reproductive technologies in South American 

camelids has been limited compared to other domestic species (i.e., cattle, sheep, goat). 

Although superovulatory protocols and embryo transfer technology have been reported 

in camelids (Bourke et al., 1995; Correa et al., 1997; Ratto et al., 1997, Taylor et al., 

2001, Aller et al., 2002), success has been limited due to wide variation in the ovulatory 

response and low embryo recovery rates. In addition, conventional cryopreservation 

techniques cannot be used because embryos are at a more advanced stage (hatched 

blastocysts), further limiting embryo production for commercial purposes. Although 

studies of in vitro maturation, fertilization and embryo culture techniques have been 

published in llamas (Del Campo et al., 1992, 1994), attempts to establish in vitro 

embryo production in camelids has not been reported. The development of in vitro 

embryo production techniques in camelids would circumvent some of the disadvantages 

of in vivo embryo production. Recently, by using ultrasound-guided follicular aspiration, 

it has been possible to collect a high number of llama oocytes from superstimulated and 

non-superstimulated females that can be used for in vitro studies (Brogliatti et al., 2000; 

Ratto et al., 2005). In addition, a superstimulatory treatment based on daily 

administration of FSH plus a unique LH dose at the end of the treatment has improved 

the ovarian response and oocyte collection in llamas (Ratto et al., 2005b). 

 

Most of the superstimulatory treatments in camelids have been conducted under 

a natural or artificially induced luteal phase to mimic the ruminant physiology, however 

it is unknown whether progesterone/progestogen treatment is necessary to achieve a 

consistent ovarian response. In alpacas, few studies have reported a great variability on 

ovarian response and embryo collection when superstimulatory treatment was 

performed under a natural or artificially induced luteal phase (Correa et al., 1992, 1994; 

Ratto et al., 1994). In a recent report, eCG treatment in alpacas resulted in 3 to 7 corpora 

lutea and a mean of 3.9 embryos, but no details of protocol were given (Bravo et al., 

2004). Follicular status at the time of superstimulatory treatment decreases the 

variability on ovarian response in cattle (Adams, 1999). A more consistent follicular 
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development has been reported in cattle superstimulated in the absence of a dominant 

follicle (Adams, 1994). In a recent llama study the ovarian response was consistent 

among females when the superstimulatory treatments were administered during the 

follicular wave emergence induced by follicle ablation (Ratto et al., 2005b). In addition, 

treatment with LH after either FSH or eCG superstimulation increased the number of 

expanded COC in metaphase II at the time of collection (Ratto et al., 2005b). 

 

The objectives of the study were to compare the effects of 2 superstimulatory 

treatments on ovarian follicular response, COC collection rate, and the maturational 

stage of COC collected.  

 

11.3 Materials and Methods 

 

11.3.1 Animals and treatment groups 

 

Mature nonpregnant alpacas (n = 14), ≥3 years of age and weighing an average 

of 75 Kg, were used during the breeding season (December-February) at the Catholic 

Research Station in the Province of Temuco, Chile (38° S Latitude, 72° W longitude, 

100 meters altitude). The ovaries were examined daily by ultrasonography using a 7.5 

MHz linear-array ultrasound transducer (Aloka SSD-500, Instruments for Science and 

Medicine Inc., Vancouver, Canada) to monitor follicular dynamics (Adams, 1999). 

When the largest follicle observed was <7 mm in diameter (i.e., ostensibly no dominant 

follicle), alpacas were assigned randomly to 2 groups (n = 7 per group) and treated with: 

1) 200 mg FSH (Folltropin, Bioniche Animal Health Canada Inc., Belleville, Ontario, 

Canada) im, divided bid over 3 d, plus a single iv dose of 1000 IU of hCG (Chorulon, 

Intervet, Booxmer, Holland) 24 hours after the last FSH treatment, or 2) 1200 IU of eCG 

(Folligon, Intervet, Booxmer, Holland) as a single im dose, plus a single iv dose of 1000 

IU of hCG on Day 3 of the treatment (Day 0 = start of the superstimulatory treatments). 
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11.3.2 Ovarian response, follicular aspiration and COC classification 

 

 The ovarian response was evaluated by ultrasonography before the scheduled 

time of laparotomy to determine if the surgical procedure would be done. Surgery was 

not done on alpacas with ≤2 follicles ≥6 mm in diameter. The number of follicles ≥6 

mm in diameter were assessed during laparotomy before oocyte collection at 20 to 24 

hours after hCG treatment in both groups. General anesthesia was induced by 

intravenous administration of 5 mg/Kg of Ketamine (Ketalar, Parke Davis, Detroit, 

USA) and 0.4 mg/Kg of xylazine (Rompun, Bayer Laboratory, Santiago, Chile). After 

endotracheal intubation, general anesthesia was maintained with isofluorane (Forene, 

Abbot, Buenos Aires, Argentina) for 30-35 minutes. A 10 cm incision was made 

through the linea alba just cranial to the mammary gland, and ovaries were exposed to 

count ovarian structures and collect COC. The contents of all follicles ≥6 mm were 

aspirated using a 21-gauge needle attached to a sterile 10 ml syringe containing 

phosphate buffer saline (PBS, Gibco, Grand Island, N.Y., USA) supplemented with 

penicillin 100 IU/ml (Gibco), streptomycin 100 μg/ml (Gibco), and 0.3% bovine serum 

albumin (BSA, Sigma Chemical Co., St Louis, MO, USA). Follicular fluid was 

transferred to a 10 ml conical tube and allowed to settle for 10 minutes. 

 

Cumulus oocyte complexes were examined using a stereomicroscope at a 

magnification of 15x and categorized according to the number of cumulus cell layers 

and the appearance of the oocyte cytoplasm. The COC were categorized as expanded, 

compact (3 or more layers of granulosa cells tightly surrounded the oocyte), denuded, or 

degenerated (pyknotic granulosa cells and vacuolated ooplasm). Expanded COC were 

denuded immediately by repeated aspiration and expulsion through a Pasteur pipette, 

and fixed with 1:3 acetic acid/ethanol for 24 h. After the fixation period, oocytes were 

stained with 1% orcein (w/v) in 45% acetic acid (v/v) and evaluated using phase-

contrast microscopy (400x). Nuclear morphology was assessed according criteria 

established previously (Ratto et al., 2005b): oocytes with an intact nuclear membrane 

were in the germinal vesicle stage (GV), oocytes with no distinct nuclear membrane or 

nucleolus were in the germinal vesicle break down stage (GVBD), oocytes with a 
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metaphase plate and no polar body were in metaphase I stage (MI), oocytes with a 

metaphase plate and a polar body were in metaphase II stage (MII), oocytes with 

fragmented ooplasm, no distinct nuclear membrane or nucleolus, with irregular clumps 

of chromosomes within the ooplasm, or with chromatin that was not recognizable at any 

stage of meiosis were considered degenerate (D). 

 

11.3.3 In vitro maturation  

 

Compact COC with 3 or more layers of granulosa cells were matured in vitro 

using the technique previously described (Del Campo et al., 1994). Briefly, COC were 

cultured in groups of 12 in 50 μl drops of maturation medium consisting of TCM-199 

(Gibco), supplemented with 10% heat-treated fetal calf serum (Gibco), 0.2 mM sodium 

pyruvate (Sigma), 0.5 μg/ml FSH (Sigma), 1 μg/ml estradiol-17β (Sigma), and 25 μg/ml 

gentamycin (Sigma). Drops were covered with mineral oil and cultured for 26 hours 

with 5% CO2 and high humidity. After the in vitro maturation period, COC were 

denuded, fixed, stained, and evaluated as described above. 

 

11.3.4 In vitro fertilization and embryo culture 

 

Eight expanded COC from one female in the FSH group were fertilized in vitro 

using the technique previously described (Del Campo et al., 1994). In brief, llama 

epididymides were collected from mature males at a slaughterhouse in Arica, Chile (15° 

S latitude, 70° W longitude, at sea level) and transported on ice in a thermos to the 

Catholic University in Temuco by air within 5 h of slaughter. The tissue temperature 

upon arrival was between 5-7°C. Epididymal tails were dissected and placed in small 

Petri dish containing Sperm-TALP media supplemented with 3mg/ml of BSA (Bavister 

and Yanagimachi, 1977). Sperm were recovered under stereomicroscopy by puncturing 

and squeezing the tissue, and aspirating with a 30-gauge needle attached to a 1 ml 

syringe. Sperm from 5-6 epididymal tails were pooled and evaluated for motility. 

Samples with ≥75% progressive motility were centrifuged in a discontinuous percoll 

gradient (1 ml of 45% over 1 ml of 90% percoll) for 15 minutes at 700 g. The 
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supernatant was removed and the pellet was suspended with Sperm-TALP and 

centrifuged at 350 g for 6 minutes. The supernatant was removed and the final pellet 

was suspended with Fert-TALP (Bavister and Yanagimachi, 1977) supplemented with 6 

mg/ml of fatty acid-free BSA (Sigma) and 10 μg/ml heparin (Sigma) to a final 

concentration of 1 x 106 spermatozoa/ml. 

 

Expanded COC were washed with PBS supplemented with BSA, and then 

transferred into a small Petri dish with a 50 μl drop of spermatozoa suspension and 

covered with paraffin oil. Gametes were co-incubated at 38.5°C in air with 5% CO2 and 

high humidity for 18 hours (Day 0 = in vitro fertilization). After in vitro fertilization, 3 

presumptive zygotes were fixed and stained to evaluate sperm penetration or pronuclear 

formation, whereas the remaining zygotes (n = 5) were washed in TCM-199 

supplemented with 10% FCS and 25 μg/ml of gentamicyn and cultured in a 50 μl drop 

of TCM-199 containing bovine oviductal epithelial cells at 38.5°C in air with 5% CO2 

and high humidity for 8 days (Eyestone et al., 1986). Embryo development was 

evaluated on Day 2 and Day 7 of in vitro culture (Day 0 = in vitro fertilization). 

 

11.3.5 Statistical Analyses 

 

Parametric data were compared between groups using Student’s t-test and 

proportional data were compared by Fisher’s exact test. 

 

11.4 Results 

 

The ovarian follicular response (number of follicles ≥6 mm) on Day 4 (schedule 

day of laparotomy) did not differ between FSH and eCG groups (20.0 ± 7.5 vs 27.0 ± 

3.3; P = 0.5). However, 3 alpacas from FSH group had only 2 follicles ≥6 mm on Day 4 

and were, therefore, not sumitted to the follicular aspiration procedure. There was no 

difference (P = 0.7) between FSH- and eCG- treated groups in the number of follicles 

aspirated or the number of COC collected (Table 11.1; Figure 11.1a). There was no 

difference (P = 0.5) between groups in the number of expanded COC; however, a 
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greater proportion (P < 0.05) of COC were compact in the eCG-treated group (Table 

11.2; Figure 11.1bc).  A higher mean number and proportion of denuded COC were 

observed in the FSH-treated group (Table 11.2).  

 

There were no differences between groups in the number of expanded COC in the 

respective nuclear stages at the time of collection (Table 11.3). Of the total expanded 

COC recovered from the FSH and eCG treatment groups, the proportion that were at the 

MII stage was 74% (34/46) and 67% (42/63), respectively (Figure 11.1d).  

 

Differences between groups in the mean number of compact COC that reached the the 

GV, GVBD, and MI stages after 26 h of in vitro culture were not significant (P = 0.2; 

Table 11.4), but a greater proportion (P < 0.05) of COC reached the MII stage in the 

FSH group and a higher proportion (P < 0.05) of degenerate COC was observed in the 

eCG group. The total number and proportion of COC that reached the MII stage 

(expanded COC at the time of collection plus compact COC after in vitro culture) did 

not differ between groups (P = 0.3; Table 11.5).  

 

Two of 3 expanded COC that were fixed and stained after 18 h of in vitro fertilization 

were found in pronuclear stage, the third one was unidentified (Figure 11.1e). Five of 5 

presumptive zygotes that were co-cultured with oviductal cells developed into 2-cells 

and morulae stage on Day 2 and 7 after in vitro fertilization, respectively (Figure 11.1f).  

None of these embryos developed into blastocyts stage at day 8 of in vitro culture. 
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Table 11.1  Collection of cumulus-oocyte complexes (mean ± SEM per alpaca) from 
alpacas after ovarian superstimulatory treatment with FSH or eCG followed 
by hCG. 

 
 

End Point 
FSH 

(n = 4)

eCG 

(n = 7)

Number of follicles aspirated* 29.5 ± 8.3 26.7 ± 3.4 

Number of COC collected* 26.2 ± 8.4 23.3 ± 3.7 

COC recovery rate* 105/118 

(89%) 

163/187 

(87%) 

 

* No significant difference between groups (P = 0.7). 

 

 

Table 11.2.  Morphologic characteristics (mean number of COC ± SEM per alpaca) of 
COC collected from alpacas after superstimulatory treatment with FSH or 
eCG followed by hCG. 

 
 

 
FSH 

(n = 4)

eCG 

(n = 7)

Expanded COC 11.5 ± 2.9 

46/105 (44%) 

8.8 ± 2.8 

62/163 (38.0%) 

Compact COC (≥3 cumulus cell layers) 12.5 ± 4.3 

50/105a (48%) 

14.3 ± 2.6 

100/163b (61%) 

Denuded 1.8 ± 0.8 a

9/105a (8%) 

0.1 ± 0.1 b 

1/163b (1%) 

 

 ab Values within rows with different superscript are different (P < 0.05) 
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Table 11.3 Nuclear status (mean number of COC ± SEM per alpaca) of expanded COC at the time of collection from alpacas after 
superstimulatory treatment with FSH or eCG followed by hCG. 

 
Morphology of oocyte nucleus* Treatment group Expanded COC 

Collected GV GVBD MI MII Degenerated

FSH   

(n = 4) 

11.5 ± 2.9 

(100%) 

0 

(0%) 

0 

(0%) 

1.2 ± 1.2 

(11%) 

8.5 ± 1.9 

(74%) 

1.7 ± 0.8 

(15%) 

eCG  

(n = 7) 

8.8 ± 2.8 

(100%) 

0.1 ± 0.1 

(2%) 

0.6 ± 0.4 

(6%) 

1.7 ± 0.6 

(19%) 

6.0 ± 2.1 

(68%) 

0.4 ± 0.2 

(5%) 

 

GV: germinal vesicle, GVBD: germinal vesicle break down, MI: metaphase I, MII: metaphase II 
* No significant differences between treatment groups for any end point. 
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Table 11.4 Nuclear status (mean number of COC ± SEM per alpaca) of compact COC (≥3 cumulus cell layers) after in vitro 
culture for 26 hours in alpacas given a superstimulatory treatment of FSH or eCG followed by hCG. 

 
Morphology of oocyte nucleus Treatment group Compact COC 

Collected GV GVBD MI MII Degenerated

FSH   

(n = 4) 

12.5 ± 4.3 

(100%) 

0.3 ± 0.3 

(2%) 

0.3 ± 0.3 

(2%) 

2.3 ± 1.3 

(14%) 

13.7 ± 2.1 

(82%)a

0 

(0%)a

eCG  

(n = 7) 

14.3 ± 2.6 

(100%) 

0 

(0%) 

0.7 ± 0.3 

(5%) 

3.8 ± 2.4 

(23%) 

9.1 ± 1.9 

(64%)b

1.1 ± 0.4 

(8%)b

 

GV: germinal vesicle, GVBD: germinal vesicle break down, MI: metaphase I, MII: metaphase II 
ab Proportions within columns are different (P < 0.05) 
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Table 11.5.  Total number and proportion (%) of alpaca COC at second metaphase 
collected immediately (in vivo maturation) or after 26 h of in vitro culture 
(in vitro maturation) after FSH or eCG superstimulatory treatment 
followed by hCG.  

 

 COC collected* In vivo matured* In vitro matured* Overall* 

FSH 

(n = 4) 

26.2 ± 8.4 

(100%) 

8.5 ± 1.9 

(32.0%) 

10.2 ± 3.7 

(39.0%) 

18.7 ± 2.1 

(71.0%) 

eCG 

(n = 7) 

23.3 ± 3.7 

(100%) 

6.0 ± 2.1 

(26.0%) 

9.1 ± 1.9 

(39.0%) 

15.1 ± 1.9 

(65%) 

 

*No significant difference between treatment groups (P = 0.3). 
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Figure 11.1.  a) Collection of cumulus-oocyte complexes (COC) by follicular 
aspiration in alpacas after ovarian superstimulatory treatment. b) 
Compact COC with ≥3 layers of cumulus cells, and c) expanded COC 
collected 20-24 h after ovarian superstimulatory treatment. d) Expanded 
COC in meiosis II after staining with orcein-acetic acid. e) Alpaca zygote 
with the presence of two well-defined pronuclei after 18 h of in vitro co-
incubation with llama sperm. f) Two-cell alpaca x llama embryo on Day 
2 after in vitro fertilization and co-culture with bovine oviductal 
epithelial cells. 
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11.4 Discussion 

 

The present study demonstrated that superstimulatory treatment with either FSH 

or eCG induced the development of a high number of follicles available for follicular 

aspiration. Approximately 30% of the total COC collected per alpaca were mature at the 

time of follicular aspiration and suitable for immediately in vitro fertilization. This 

proportion increased to 70% when compact COC were matured in vitro for 26 h. Thus a 

considerable number of COC per alpaca can be subjected to in vitro fertilization and 

embryo production. 

 

The number of follicles observed after superstimulatory treatment in this study 

was higher than those reported in previous llama studies in which the superstimulatory 

treatment was initiated at random stages of follicular development (Brogliatti et al., 

2000; Miragaya et al., 2002). However, the number of follicles in this study, although 

still higher, was close to that observed in llamas in which gonadotropin treatments were 

initiated after follicular wave synchronization by follicular ablation technique (Ratto et 

al., 2005b). Of 14 alpacas, only 3 (20%) failed to develop follicles >6 mm in diameter, 

and of those that responded, all had more than 8 follicles >6 mm.  

 

Despite the poor response obtained in 3 females from the FSH treatment group, 

the number of follicles available for collection was high in both groups. These females 

were treated with the absence of <7 mm diameter follicle (i.e., ostensibly no dominant 

follicle), a stage in which was expected the lack of the inhibitory effect of the dominant 

follicle over the rest of the follicles. Perhaps the criteria to start the superstimulatory 

treatment used in this study, i.e, absence of follicles in <7 mm diameter, was not 

sufficiently rigorous to define dominance. Although a superstimulatory treatment 

combined with a natural or artificially induced luteal phase was not included in this 

study, apparently the presence of progesterone does not appear to be requisite for a 

superstimulatory response.  
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The collection rate (87%) in this study was similar to that of our previous study 

in llamas (75%; Ratto et al., 2005b) in which transvaginal ultrasound-guided follicle 

aspiration was used to collect oocytes. The collection rate in these camelid studies was 

higher than that reported for cattle (52%; Looney et al., 1994; 38%; Goodhand et al., 

1999). It is unknown whether or not the high recovery rate was influenced by the effect 

of LH or hCG treatment at the end of superstimulatory treatment. The use of LH or hCG 

at the end of superstimulatory treatment has been reported to improve the oocyte 

collection rate in cattle and horses (Brogliatti et al., 1997; Cook et al., 1993). Another 

plausible explanation of this feature is that follicles protrude more distinctly from the 

surface of the ovary in llamas than in cattle (Adams et al, 1989) and in a study involving 

follicular trans-illumination (Del Campo et al., 1994), COC were attached to the wall of 

the exposed follicular hemisphere (i.e., above the adjacent ovarian surface) in 91% of 

llama follicles compared to 65% in cattle. Perhaps the more superficial location of the 

COC facilitates collection by aspiration. 

 

Although the proportion of expanded COC in this study were lower than that 

reported for our previous llama study (Ratto et al., 2005b), 67% and 74% of the 

expanded COC collected in the respective treatments groups were at second metaphase 

similar to that reported in superstimulated llamas (80%; Ratto et al., 2005b). A higher 

proportion of in vitro matured oocytes were observed in the FSH-treated group. Similar 

to that observed for llama oocytes collected after gonadotropin treatment and subjected 

to in vitro maturation for 27 to 30 h (Miragaya et al., 2002).  

 

Although, a low number of llama COC were submitted to in vitro fertilization and in 

vitro embryo culture, apparently COC were competent to be penetrated after co-

incubation with llama sperm (pronuclear formation), and to develop until morulae stage 

after co-culture with bovine epithelial cells.  

 

In conclusion, FSH and eCG treatments were equally effective for ovarian 

superstimulation and oocyte collection. Cumulus-oocyte complexes were collected from 

more than 80% of follicles aspirated at laparotomy. Thirty percent of all COC collected 
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after superstimulation was at the MII stage. In vitro maturation resulted in an increase in 

the total number of mature oocytes available for in vitro fertilization to 70% of collected 

oocytes. To our knowledge this is the first report of successful alpaca x llama embryos 

production after heterologous in vitro fertilization. 

136 



 

12.0 GENERAL DISCUSSION 
 

12.1 Ovarian follicular wave synchronization and fixed-time natural 

mating in llamas 

 

The breeding management of llamas and alpacas in the high Andes communities 

is based on sexual behavior pattern, i.e., a sexual receptive female is bred with the male 

without any knowledge regarding the ovarian physiological status. On small farms, the 

system consisting of repetitive mating of the receptive female until signs of rejection of 

the male by the female is manifested, results in several matings over a long period of 

time. However, multiple mating does not guarantee high conception rates. In addition, it 

is detrimental for males, i.e., decreases the sperm quality, and increases labor and time. 

The situation on large farms is even worse. A group of females with unknown ovarian 

follicular status are introduced into a small pen and bred with a group of males on just 

one day, and a second mating is allowed 2 weeks later. A female is considered pregnant 

when it rejects the male at the second mating. These breeding practices require a great 

deal of time and human labor, but pregnancy rates are only 40 to 50%. 

 

 To our knowledge, at this time, only one study has reported the use of estradiol 

alone or in combination with progesterone to synchronize follicular wave emergence in 

alpacas (D’Occhio et al., 1997). No systematic attempts have been reported to 

synchronize ovarian follicular wave emergence in llamas followed by ovulation 

induction and to determine the effect on subsequent fertility.  

 

A new wave of follicular development can be induced in cattle approximately 2 

days after GnRH or LH treatment, but the efficacy of the ovarian follicular 

synchronization will depend on the presence of a large viable dominant follicle capable 
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of ovulation (Pursley et al., 1995; Martinez et al., 1999, 2000). Unlike cattle in which 

ovulation has been reported to be quite variable among studies (50% to 78%); a large 

proportion of llamas ovulated (80%) after LH treatment given at random stages of 

follicular development, resulting in a large proportion of llamas with new follicular 

wave emergence (Chapter 5, Experiment 1). The effect of LH on ovulation induction 

was consistent in another llama study (Chapter 6); therefore we adopted LH treatment as 

our basic protocol for inducing ovulation and follicular wave synchronization in the 

llama and alpaca OIF studies in the present thesis (Chapter 7, 8, and 9).  

 

The rationale for the use of estradiol combined with progesterone was based on 

evidence that llamas exhibit a follicular wave pattern similar to that described in cattle 

and share similar features such as recruitment, selection and dominance during follicular 

development (Adams, 1990). Based on these features, we assumed that both FSH and 

LH might play important roles in recruitment and dominance, respectively. The 

combination of estradiol plus progesterone treatment has been reported to be efficacious 

for synchronizing wave emergence and ovulation in cattle regardless of the stage of 

ovarian follicular development at the time of the treatment (Bo et al., 1994,a,b). 

However, estradiol plus progesterone treatment did not have a clear effect on 

synchronizing follicular wave emergence in the same fashion as that observed after LH 

or follicle ablation treatment  (Chapter 5, Experiment 1). The lack of a clear effect may 

have been related to the dose or duration of treatment with estradiol and progesterone.  

 

Higher doses of estradiol and progesterone, including a more prolonged 

progesterone treatment for 6 to 9 days, has been used in cattle to effectively synchronize 

follicular wave emergence (Bo et al., 2002).  However, the dose of estradiol in our llama 

study was similar to that of a previous study in alpacas (D’Occhio et al., 1997) in which 

a single administration of 0.5 or 2 mg of estradiol without progesterone induced 

follicular regression and new wave emergence regardless of the stage of follicular 

development. 
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The use of a progesterone device (CIDR) containing 0.33 g of progesterone has 

been reported in llamas and vicuñas (Chaves et al., 2002; Aba et al., 2005). In the first 

study, the progesterone device induced follicle regression in those females which had a 

dominant follicle in the growing or early static phase, while in the second study, 

although the stage of follicular development was not stated, no follicular activity was 

observed during the entire period of progesterone implant. However, results from both 

studies did not show whether the suppressive effect of progesterone is able to induce a 

new follicular wave. Recently, it was reported that intramuscular administration of 200 

mg of progesterone given 3 times, once every 2 days, induced follicular wave 

emergence with a new follicle capable of ovulating 12 days after progesterone 

administration (Vaughan, 2001). Although the ovarian effects of dose and duration of 

estradiol/progesterone treatment in llamas remain to be investigated, we need to 

consider the possibility that a different intra- and/or extra-ovarian mechanism to control 

follicular growth may be inherent to induced-ovulator species when compared to 

mechanisms in other ruminants where ovulation is a spontaneous process.  

 

Although synchrony of wave emergence was affected by the treatments in 

Experiment 1 (Chapter 5), treatment-induced wave synchrony did not influence 

ovulation rate subsequent to natural mating in Experiment 2 (Chapter 5). The ovulation 

rate observed in the control group in Experiment 2 (Chapter 5) was unexpectedly high 

(93%), suggesting that follicles in growing, static, and regressing phases are capable of 

ovulating, contrary to the results of a previous study (Bravo et al., 1991). Although 

ovulation rate was not affected by treatment, the pregnancy rate was higher in 

synchronized than non-synchronized females (Chapter 5, Experiment 2). The 

disconnection between ovulation rate and pregnancy rate suggests that ovulatory 

capability is not directly related to the capability of the oocyte to become fertilized and 

develop into an embryo.  
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12.2 Different stimuli affecting ovulation induction in llamas and alpacas 

 

 Although information has been reported for the use of hormonal treatments to 

induce ovulation in llamas and alpacas, knowledge of ovulation intervals and corpus 

luteum formation after treatment is very limited. Results among studies are difficult to 

compare because data have been collected using different hormonal protocols (including 

hormonal preparations and doses); furthermore, methods (slaughterhouse or laparoscopy 

techniques) and observational intervals to evaluate ovarian structures have been varied. 

In addition, some studies have attempted to correlate the use of only hormonal profiles 

with ovarian function without any evidence of ovarian structures.  

 

Direct comparison between the effects of mating and hormonal treatment on 

ovulation and luteal kinetics has not been reported previously in llamas. Presently, there 

is a major concern whether or not the use of GnRH agonists has an adverse effect on the 

luteal phase when such treatments are used for ovulation induction in both 

superstimulated and non-superstimulated women (Romeu et al., 1997).  Proper luteal 

function is critical to establish successful development of fixed-time artificial 

insemination protocols and for recipient synchronization in embryo transfer programs 

for new world camelids. In the light of these concerns, the study of the effect of 

hormonal treatments on ovulation induction and luteal function in llamas was necessary. 

Results of the study described in Chapter 6 show that the effects of mating and 

hormonal treatment on interval to ovulation, ovulation rate and luteal function are 

similar and these hormonal preparations are suitable for control of ovarian function for 

breeding management. 

 

The interval from mating or LH/GnRH treatment to ovulation did not differ 

among groups (29-30 h), and was similar to the interval previously reported for llamas 

after hCG or GnRH administration (27-29 h; Adam et al., 1992). However, the interval 

from mating to ovulation was nearly 1 day shorter than previously reported (2 days; 

Adams et al., 1991a; Adam et al., 1992). This difference was attributed to examination 

frequency. The developmental kinetics of the CL induced by hormonal treatment in the 
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present study were similar to those induced by natural mating and consistent with those 

observed in previous studies (England et al., 1969; Adams et al., 1990, 1991a). Unlike 

in women, in which serum progesterone concentration has been reported to be lower in 

GnRH than LH-treated patients (Humaidan et al., 2005), plasma progesterone 

concentration for the entire sampling period in this study (Chapter 6, Figure 6.2) did not 

differ between naturally mated and hormonally treated females. Similar to observations 

in women (Humaidan et al., 2005), no significant difference was observed on ovulation 

rate in llamas after GnRH and LH treatment. However, a peculiar feature has been 

reported in women after the use of these hormonal treatments. For instance, ovulation 

induction with GnRH has a beneficial effect on oocyte maturation compared with that 

observed in LH-induced patients, but lower implantation and pregnancy rates have been 

observed in GnRH than in LH-induced patients (Itskovitz et al., 2000; Fauser et al., 

2002).  The defective luteal phase observed in GnRH-treated woman has been attributed 

to a shorter duration of endogenous LH surge than that observed under physiological 

conditions compromising the luteogenic process and corpus luteum formation (Hoff et 

al., 1983; Chandrasekher et al., 2004). An interesting feature is that GnRH-induced 

women treated with exogenous progesterone to compensate for the luteal defects did not 

improve embryo implantation and pregnancy rates (Humaidan et al., 2005). 

Unfortunately, our study did not evaluate plasma LH concentration, oocyte morphology, 

fertilization or implantation; however, due to the results of the studies involving women, 

it would be interesting to determine the oocyte competence after these hormonal 

treatments. In addition, the llama is an exciting biological model to evaluate a direct 

effect of ovulation induction treatments without the interference of a long exposure of 

GnRH-antagonist treatment commonly used in combinations with these hormones to 

control the endogenous LH surge in women. In fact, llamas and alpacas have become a 

valuable model for the studies of ovulation-inducing factor present in mammals. As 

stated earlier, in most induced ovulator species, stimulation of the female genital tract by 

penile intromission is the most effective stimulus to induce ovulation. However, this 

notion was challenged when ovulation was induced by intra-vaginal or intramuscular 

administration of semen in Bactrian camels (Chen et al., 1985; Xu et al., 1985; Pan et 

al., 1992).  
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The results obtained in the alpaca (Chapter 7, Experiment 1) and llama (Chapter 

7, Experiment 2 and 3) studies support earlier observations made in Bactrian camels 

(Chen et al., 1985; Xu et al., 1985; Pan et al., 1992) for the presence of an OIF in the 

seminal plasma. Ovulations ranged from 93% to 100% of the females when given by 

intramuscular administration (Chapter 7, Experiments 1, 2, 3; Chapter 8, Chapter 9). In 

addition, the presence of an OIF may not be restricted to the seminal plasma of induced 

ovulator species, since 26% (5/19) of the llamas ovulated after intramuscular 

administration of bovine seminal plasma (Chapter 8). Results of this study (Chapter 8) 

clearly indicate that OIF is a conserved molecule among species because cattle and 

alpaca OIF was able to induce interspecies ovulations. That ovulation rate with bull 

seminal plasma was lower than alpaca or llama seminal plasma suggesting that bull OIF 

may be a partially conserved molecule or present in a lower concentration. It is not 

known whether or not bull OIF chemical structure is related to that of camelids, but 

different kinds of selection pressures could have exerted an influence on the degree of 

conservation and bioactivity among species.  

 

Ovulations did not differ between GnRH and seminal plasma treated females. 

But when we analyzed LH plasma concentrations, the duration of the surge in LH was 

significantly greater after treatment with seminal plasma than with GnRH. Progesterone 

secretion from subsequent CL was double that of the GnRH group (Chapter 7, 

Experiment 3). These observations provide a rationale for the hypothesis that OIF and 

GnRH effect pituitary LH release differently and are different molecules. The prolonged 

LH concentration observed for the whole period of sampling after seminal plasma 

treatment could have an effect on the corpus luteum formation and function, as 

evidenced by the higher secretion of progesterone. This observation provides a rationale 

for the hypothesis that the degree of luteogenesis is directly proportional to the duration 

of the preovulatory LH surge, as reported in other species (Chandrasekher et al., 1994; 

Bomsel-Helmreich et al., 1989; Peluso, 1990; Ishikawa, 1992). 
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Contradictory results have been obtained in ovulation induction when seminal 

plasma was given by intrauterine deposition. In the first study (Chapter 7, Experiment 1) 

none of the alpacas ovulated when seminal plasma was infused in the uterine horn, 

while the opposite result was observed in second study (Chapter 9). In addition, 

ovulation did not occur in alpacas after intrauterine deposition of LH (Chapter 7, 

Experiment 1). The results of intrauterine deposition in Experiment 1 (Chapter 7) raised 

the question whether or not a physical stimulus was necessary to induce mucosal 

laceration in order to improve OIF absorption. Copulation in alpacas and llamas is 

prolonged (30 to 50 minutes), and ejaculation is intrauterine. A transient inflammation 

of the endometrium is observed as a result of repeated abrasion by the penis (Bravo et 

al., 1996). Therefore, we hypothesized that absorption of OIF in seminal plasma 

subsequent to natural mating could be facilitated by the hyperemia of the excoriated 

endometrium. To test this hypothesis, we conducted the second study to determine 

whether intrauterine curettage can influence the ovulation mechanism after intrauterine 

deposition of alpaca seminal plasma (Chapter 9). Although we were unable to test the 

hypothesis that OIF absorption depends exclusively on a disrupted uterine mucosa 

(Chapter 9), we suggest that intrauterine curettage facilitated the absorption of OIF as 

evidenced by a higher ovulation rate than that observed in the non-curettage intrauterine 

group. A plausible explanation behind the different outcome regarding the intrauterine 

deposition of seminal plasma seems to be attributed to deposition site and dose. A total 

of 2 ml of seminal plasma was infused in the uterine horns (1 ml in each horn) (Chapter 

9), while only 1 ml of seminal plasma was infused in the uterine body (Chapter 7, 

Experiment 1). Deposition at 2 different sites may further increase the efficacy of 

absorption and ovulation induction. 
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12.3 Superstimulatory treatment and oocyte morphology in llamas and 

alpacas  

 One of the most important limitations to the establishment of the embryo transfer 

technique in llamas and alpacas has been the lack of a consistent ovarian 

superstimulatory protocol.  This limitation has been associated with low embryo 

recovery rates and a more advanced embryonic stage (hatched blastocysts) at the time of 

collection. The development of an in vitro embryo production technique for camelids 

could partly circumvent the disadvantage observed in the in vivo embryo production 

process, but as a first step it is necessary to study the morphological and physiological 

characteristics of camelids oocytes. The studies conducted in Chapter 10 and 11 were 

done to develop a consistent superstimulatory protocol and to evaluate its effects on 

oocyte morphology in llamas and alpacas. 

 

The most important finding of the in vitro study described in Experiment 1 

(Chapter 10) was that a great proportion of COC were mature at a shorter time interval 

of in vitro culture (78% at 28 h) than previously reported in which 36 h of in vitro 

culture was necessary to achieve second metaphase in a large proportion of llama 

oocytes (Del Campo et al., 1992). The difference may be attributed to the oocyte quality 

classification used before the in vitro culture in the earlier study. In addition, a longer 

period of time (18-20 h) from the ovary collection and oocyte aspiration in the earlier 

study may have affected COC quality. Interestingly, the 28 h interval is similar to in 

vivo results (Chapter 6) in which ovulation was detected by ultrasonography 29.8 ± h 

after an ovulatory stimulus. 

 

Superstimulatory treatments (FSH or eCG) were equally efficacious in inducing 

multiple follicle growth in llamas (Chapter 10, Experiment 2) and alpacas (Chapter 11). 

The superstimulatory response was relatively consistent among animals in both studies 

and was attributed to the emergent stage of follicular wave development at the time 

treatment was initiated. Based on the results of Chapter 5 (Experiment 1), follicular 

wave emergence was expected 2.3±0.3 d after follicular ablation; hence, treatment was 

initiated 2 d after ablation in the llama study (Experiment 2, Chapter 10). The number of 
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COC collected after superstimulatory gonadotropin treatment in the llama study (~11 

per llama) was approximately half that in the alpaca study (~24 per alpaca), a difference 

that may be attributed to a greater ovarian response and to the laparotomy technique 

used to collect COC in the alpaca study. However, in the llama study the recovery rate 

ranged from 71% to 74% using ultrasound-guided follicular aspiration, and it is still 

greater than that described for cattle (~50%). Further investigation is required to 

determine whether LH or hCG-induced maturational changes might improve the COC 

collection rate by weakening its attachment to the follicular wall in both llamas and 

alpacas. In a study of the attachment and location of COC in llamas (Del Campo et al., 

1994), llama follicles were found to protrude more prominently from the ovarian surface 

than those of cattle, and 90 % of llama COC were located in the hemisphere adjacent to 

ovarian surface. This facilitated the location of the COC by transillumination without 

follicular dissection, and it probably allowed the high collection rate observed in these 

species.  

 

Although, a higher proportion of expanded and matured COC were collected 

from llamas after eCG treatment (Chapter 10, Experiment 2), over 80% of the expanded 

COC in both treatment groups were in metaphase II. The reason that the number of 

expanded COC after FSH or eCG treatment in the llama study (Experiment 2, Chapter 

10) was higher than observed in superstimulated alpacas (Chapter 11) may be attributed 

to individual variation in response. The proportion of matured oocytes in the alpaca 

study for the expanded COC category, although lower, seems to be closely related 

between studies. The in vitro maturation culture of those immature COC in the alpaca 

study (Chapter 11) increased the proportion of COC in second metaphase over the total 

number of collected COC. In the llama study, superstimulation with eCG was associated 

with a slightly higher proportion of expanded COC and COC in MII compared to 

superstimulation with FSH. Although this feature did not differ between groups in the 

alpaca study, a higher proportion of matured COC were observed in FSH-treated 

females after 26 h of in vitro culture. Similar results were described in a recent llama 

study (Miragaya et al., 2002) in which a higher proportion of COC collected after FSH 

treatment were in the second metaphase than in eCG-treated females after in vitro 
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maturation for 27-30 h. Finally, either of the superstimulatory treatment are useful to 

obtain oocytes suitable for immediate in vitro fertilization, i.e., in vitro maturation is not 

required. 
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13.0 GENERAL CONCLUSIONS 

 

13.1 Ovarian follicular wave synchronization study in llamas 

 

1. LH and FA treatments were most effective for inducing follicular wave 

synchronization, while estradiol-progesterone treatment was intermediate.  

2. Ovulatory capability extends through a greater proportion of the growing, static 

and regressing phases of dominant follicles than previously thought. 

3. Follicular wave synchronization did not influence ovulation rate subsequent to 

natural mating, but synchronization was associated with a higher pregnancy rate. 

4. Follicular wave synchronization followed by a single pre-scheduled mating 

resulted in acceptable pregnancy rates and may form the basis of new breeding 

management schemes that obviate the labor-intensive need for testing behavioral 

receptivity in llamas. 

 

13.2 Ovulation induction studies in llamas and alpacas 

 

1. Ovulation rate, interval to ovulation, and luteal development were similar among 

llamas that were mated naturally or treated with LH or GnRH.2. Hormonal 

treatments (LH and GnRH) are equally reliable for inducing ovulation and 

normal luteal function, and both are suitable for use in synchronization for 

artificial insemination protocols or embryo transfer programs. 

3. Our experiments documented unequivocally the existence of an ovulation-

inducing factor in the seminal plasma of alpacas and llamas. 

4. Ovulation-inducing factor in the seminal plasma of alpacas and llamas induces 

ovulation in more that 90% of females when given intramuscularly. 
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5. Although, OIF and GnRH were effective to induce ovulation in llamas, OIF 

induced a higher and more prolonged LH secretion from the pituitary gland than 

GnRH affecting the development and function of the corpus luteum as evidenced 

by a higher progesterone production.  

6. Presence of an OIF in the seminal plasma of spontaneous ovulator species (bull) 

suggests that OIF is a conserved molecule among species.  

7. The delivery route for seminal plasma treatment influences the effect of OIF in 

ovulation induction in alpacas. Ovulation rate was detected to be higher in 

intramuscular than intrauterine-treated females, however, ovulation rate 

increased when seminal plasma was infused after intrauterine curettage.  

8. Disruption of the lining endometrium mucosa facilitates OIF absorption and 

increases ovulation rate.  

 

13.3 Superstimulatory treatment and oocyte morphology studies 

 

1. Llama oocytes collected from follicles about 3 to 6 mm in diamaeter from 

slaughterhouse ovaries reached the MII stage as early as 28 h after in vitro 

culture.  

2. FSH and eCG treatments were equally effective in inducing ovarian 

superstimulation when administered during follicular wave emergence in llamas.  

3. LH treatment after ovarian superstimulation in llamas permitted the recovery of 

a preponderance of expanded COC (80 to 90% of total collected), most of which 

were in MII (64 to 79% of total collected).  

4. Superstimulation of llamas with eCG was associated with a slightly higher 

proportion of expanded COC and COC in MII compared to superstimulation 

with FSH.  
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5. FSH and eCG treatments were equally effective for ovarian superstimulation and 

oocyte collection in alpacas. COC were collected from more than 80% of 

follicles aspirated at laparotomy.  

6. Thirty percent of COC collected from alpacas after FSH and eCG 

superstimulation treatment were at MII stage. The number of matured oocytes 

per female increased when compact COC were subjected to in vitro maturation.  

7. Both FSH and eCG superstimulation of llamas and alpacas are useful for the 

collection of oocytes, that are suitable for immediate in vitro fertilization (i.e., in 

vitro maturation not required).  
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