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ABSTRACT 

The goal of this research was to characterize growth hormone (GH) receptor 

(GHR) and bin- protein (GHBP) and to investigate the physiological regulation of 

GHR and GHBP in the goldfish (Catassius w a r n ) .  Recombinant carp (Cyprim 

cwpio) growth hormone (rcGH) was used to develop a goldfish hepatic GHR binding 

assay. A single ctass of high affmity and low-capacity binding sites, with an 

association constant (K,) of 1.9x10'~ M" and a maximum binding capacity ( B A  of 9 

fmol mg-' protein was identified in goldfish hepatic membranes. A similar K, was also 

found in goldfish serum GHBP. The level of serum GHBP was bighly correlated with 

the number of hepatic GHR. GH displayed an antimitogenic effect in cultured goIdfish 

hepatocytes. In vivo and in vitro experiments suggested that GH regulated its own 

receptors, and that nutrition also had an important modulatory effect on GHR and 

GHBP in the goldfish. Together, results of this thesis suggest that goldfish is a good 

rnodel to study the roles of GH, GHR and GHBP in endocrine regulation of somatic 

growth in teleosts. 

Perhaps, the most novel finding in this thesis was the identification of a single 

class of high-affinity and low-capacity binding sites for rcGH and recombinant 

rainbow trout GH (rtGH) in rabbit and rat liver membrmes. Also, rcGH and rtGH 

were found to have biological activity equivalent to bGH in the mammalian 3T3- 

F442A cell line. CovaIent cross-linking of rcGH or bovine GH (bGH) to goldfish, 

rabbit or rat liver membrane proteins resulted in the same specifically IabeIed bands, 

suggesting that the GHR was similar in all three species. This was the first 

demonstration that teleost GH may highly cross-react with mammalian GHR, and 



challenged the long-held dogma that fish GH is inactive in mammals. The cross- 

reactivity of teleost GH with mammalian GHR was hypothesized to be related to 

structural similarities between teieost and mammalian GH. The new hypothesis 

proposed in this thesis may better explain the species-specificity of GH-GHR 

interactions in vertebrates, 
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Somatic growth in teleosts and other vertebrates is controUed by the brain-growth 

hormone (GH)-insulin-like growth factor4 (IGF-I) axis (for reviews see: Peter & 

Marchant 1995, Goffin & Kelly 1996, Peng & Peter 1997, Goffin et al. 1998). in this 

endocrine pathway, GH and IGF-I play key roles in reguhng whole body growth and 

metabolism. GH and IGF-I actions are initiated by interaction with specific receptors 

for each hormone distributed on the surface of cellular membranes (for reviews see: 

Hughes & Friesen 1985, Kelly et al. 199 1, Postel-Vinay & Finidori 1995, Goffin & 

Kelly 1996, Goffin et uf. 1998). Circulating GH (Barnard & Waters 1997) and IGF-I 

(Clark 1997, Duan 1997, 1998) are mainly present in serum combined with specific 

binding proteins. In the following sections, a brief review about the structure aud 

function of GH, its receptor (GHR) and binding proteins (GHBP) is given with respect 

mainly to m a d s  and teleosts, followed by an outline of the objectives of the 

research presented in subsequent chapters. 

1.1 Growth Hormone - 
In vertebrates, GH is a 21-22 kilodalton (KD) single chain polypeptide consisting 

of approximately I91 amino acids in mammals (Kawauchi & Yasuda 1989, Walk 

1996) and 188 amino acids m teleosts (Chen et PI. 1994, Venkatesh & Bremrer 1997). 

The most recent information h m  the GenBank databwe 



(http://www.ncbi.nlmnlmnihgov/PubMe~ indicates that the primary structure of GH 

itom 43 teleosts has been determined Sequence analysis of GH genes h m  these 

teleosts reveals that the intron pattern of GH genes might serve as a natural marker in 

understanding the evolutionary relationship of various teleost and mammalian species 

(Yowe & Epping 1995, Venkatesh & Brenner 1997, May et al. 1999). The GH genes 

€iom goldfish (Carassius auratus) (Law er al. 1996, Mahmoud et d 1996), various 

catfish species (Tang et al. 1993, Lernaire et al. 1994) and several carps (Chao et al. 

1989, Koren et al. 1989, Chang er al. 1992, Chiou et al. 1990, Zhu et al. 1992, Hong & 

Schartl 1993, Rand-Weaver d a!. 1993) consist of four introns and five exons, similar 

to avian and mammalian GH genes (Kawauchi & Yasuda 1989, Wallis 1996). In 

contrast, the GH genes from the majority of other teleosts have an additional intron 

within the last exon (Chen et af. 1994, Yowe & Epping 1995, Venkatesh & Brenner 

1997, May et al. 1999). These findings suggest that at least some teIeost GH may be 

divergent h m  the main line of tetrapod evolution in terms of their distinct GH gene 

structure. 

There is also evidence indicating that GH, prolactin (PRL) and somatolactin (SL) 

evolved h m  a common a n c d  gene by duplication and divergence, and the ancestral 

gene, in turn, may have arisen by repeated duplication of a d e r  gene or codiag 

domain and insertion of additional domains (Chen et al. 1994). Two forms of GH, 

derived from separate genes, termed GH-I and GH-II, were reported for salmonids @u 

etal. 1993, Forbes et al. 1994, Kavsan et al, 1994, Rubin & Dores 1999, Nile tilapia 

(Tilqia nilotica) (Ber & Daniel 19931, and goldfish (Law m d. 1996, Mahmoud er al, 

1996). The presence of two fonns of GH genes has been suggested to be the result of a 



tetraploidization event that occurred in a commoa ancestor to salmonids @u et d. 

1993, Forbes era/. 1993, Kavsan et a/. 1994, Rubin & Dores 1995) and goI&sh (Law 

et uf. 1996, Mahrnoud et al. 1996). In Niie tilapia, the GH gene seqyence seems to have 

undergone duplication (Ber & Daniel 1993). Thus, it is necessary to take into account 

the molecular differences of both inter-species and the two intra-species variants, GH-I 

and GH-11 in GH actions. 

The amino acid sequence alignment of GH has shown that there is only 

approximately 2527% amino acid sequence identity between teleost and mammalian 

GH (May ef a!. 1999). Approximately 15% of the remaining residues in the GH 

molecule are highly conserved. Although there are significant differences in amino acid 

sequences between teleost and mammalian sp ies ,  the structure of GH is considered 

to be fairly weil conserved throughout vertebrate evolution (Nicoll et aL 1987, Chen et 

a!. 1994). Overall, the vertebrate GH moIecde can be divided into four higbiy 

conserved domains, A, B, C and D (Chen et al. 1994, May ef d. 1999). These domains 

are thought to be important in receptor binding or in maimaining the correct 

conformation of tbe hormone (Chea et d. 1994, May et id 1999). 

In vertebrates, GH is largely secreted by anterior pituitary somatotrophs and 

released in a pulsatile manner (for reviews see: Peter & Marchant 1995, Peng & Peter 

1997, Clark 1997, Ray & Melmed 1997, Sower 1998). In mammk, secretion of GH is 

primarily controtled by the interplay of two hypotbaIamic hormones, somatostatin 

(SRIF) and GH reIeasing hormone (GHRH) (Harvey 1993, Clark 1997, Ray & Metmed 



1997, Sower 1998). Evidence of the inhibitory effect of SRIF on GH secretion has also 

been found in teleosts (Peter & Marchant 1995, Peng & Peter 1997). However, the 

inhibitory effects of SRIF in teleosts are balanced by two major stirnulatory factors, 

GHRH and gonadotropin-releasing hormone, and by a number of other hypothalamic 

factors that stimulate GH secretion directfy at the level of the somatotrophs (Peter & 

Marchant 1995, Peng & Peter 1997). Such hypothalamic factors include dopamine, 

neuropeptide Y, thyrotropin-releasing hormone, cholecystokinin, bornbebn and activin 

(Peter & Marchant 1995, Peng & Peter 1997). 

In addition to the primary control mechanism of GH secretion by hypothalamic 

substances, there is strong evidence for peripheral feedback mechanisms in mammals 

(Scadon et al. 1996, Ray & Melmed 1997, Sower 1998) and teleosts (Peter & 

Marchant 1995, Peng & Peter 1997). A negative feedback action of GH on its own 

release at the pituitary level has been reported in rat (CeUa et al. 1990) and human 

(Ross et aal. 1987). IGF-I was found to block GH secretion fiom rat pituitary cells via a 

pituitary IGF-I. receptor-mediated process (Scanlon et a/, 1996, Ray & MeImed 1997). 

In mammals, the secretion of GH may also be regulated by other peripheral products 

including glucose, glucocorticoids, estradiol, testosterone, triiodothyronine (T3), and 

k fatty acids (Scanlon et af. 1996). A similar IGF-I action has aIso been found in 

teleosts (Bjiirnsson 1997, Duan 1998), suggesting that IGF-I may serve as an 

important reguIator of GH secretion in vertebrates through negative f-k 

mechanism 

Several extrapituitaxy sites also have the ability to synthesize and release GH in 

mammals (Scanion et al. 1996, Ray & MeImed 1997). Such sites include discrr=te 



neuronal populations within the central nervous system (Hojvat et al. 1982, Gossard et 

al. 1987), epithelial cells of the mammary gland (Mol et al. 1995) and thymus 

(Maggiano et al. 1994), endothelid cells of blood vessels (Wu et al. 1996), fibroblasts 

(Palmetshofer et a(. 1995), and cells of the immune system (Weigent et al. 1991). la 

humans, placenta tissue was found to synthesize variant forms of GH (Scippo et al. 

1993). The si@cance of GH production and release by this non-endocrine system 

remains obscure. 

1.2 Growth Hormone Receptor 

-m 

In avian and mammalin species, GHR is identified as a smgle chain giycosylated 

protein composed of typical class 1 cytokine receptor extracellular, transmembrane and 

cytoplasmic domains (Kelly et al. 199 1, Goffin & Kelly 1996, Bole-Feysot et al. 1998, 

Gofin er al. 1998). The GHR in mammals consists of an extracellular hormone-binding 

domain of approximately 246 amino acids, a short hydrophobic transmembrane domain 

and a cytoplasmic domain of approximately 350 amino acids (Goffin et d. 1998). 

The structure of the GHR is well conserved in mammals, with greater than 70% 

sequence similarity among the various species studied thus far (Go& et al. 1998). For 

example, an amino acid sequence identity of 84% was found between rabbit and human 

GHR (Leung et al. 1987, Kelly et ai. 1991). Two bighly conserved features are also 

found in the class 1 cytokine receptor exhacellular domains. The first is the presence of 

two pairs of disulfide-linked cysteines in the amino (N)-tenninal subdomain. These 

cysteines may be involved in forming ligand-binding pockets characteristic for each 



specific ligand (Wells & de Vos 1996, Clackson et al. 1998). The second is a 

pentapeptide termed the WSxWS motif (Tryptophan-Serine-any amino acid- 

Tryptophan-Serine) found near the carboxyl ( C ) - t e d  of the subdomain. There are 

conservative substitutions in the GHR WSxWS motif (Goffin et al. 1998), and it is 

probably required for correct folding and cellular M c k i n g  of GHR rather than for 

ligand binding ( G o f i  ef al. 1998). The cytoplasmic domain of cytokine receptors 

displays more restricted sequence similarity than the extracellular domain. Two 

regions, calIed Box i and Box 2 are relatively conserved (Gofin et aL 1998). Box I is a 

membrane-proximal region composed of eight amino acids highly enriched in prolines 

and hydrophobic residues. A conserved PxP motif (Proline-any amino acid-Roline) 

within Box 1 is assumed to adopt the consensus folding specifically recogntzed by 

transducing molecules. The second consensus region, Box 2, is much less conserved 

than Box 1 and consists of a succession of hydrophobic, negatively charged residues 

(Goffin et al. 1998). The transmembrane domain of GHR is approximately 24 amino 

acids (Goffin et al. 1998). However, the involvement of any crucial amino acids in GH- 

GHR interactions within ths domain is unknown. 

The three-dimensional structure of human GHR (hGHR) extracellular domain has 

been determined by crystallographic analysis (de Vos et d. 1992). Each of the two 

subdomains contains seven fhrands that foId in a sandwich formed by two 

antiparallel ft-sheets, one composed of three strands and the other composed of the 

four remaining strands (de Vos er aL 1992, WelIs & de Vos 1996, Goffin et d 1998). In 

humans, the GH-GHR comp1exe.s were found to be composed of a single molecule of 

hormone bound to two motecdes of bindiug protein, indicating the ocxurmce of 



ligand-induced receptor dimerization (de Vos et aL 1992, Wells & de Vos 1996, 

Clackson et al. 1998). To date, there is no three-dimensional structuraI information 

available for the cytoplasmic domain of the mammalian GHR. 

Multiple types of GHR were found in mammals (Barnard et d 1985, Smith & 

Talamantes 1987, Breier et a[, 1988) and teleosts (Ng et a!. 1991, Gray & Tsai 1994) 

by electrophoresis. The apparent molecdar weights for these multiple forms of GHR 

vary from 20 KD to 400 KD. It has k n  hypothesized that the multiple forms of 

GHR in mammaIs are attrr%uted to post-translational modifications of the GHR gene 

product (Mathews 1991). However, further research is needed to determine whether 

these multiple forms of GHR are the subunits of one receptor or different receptors 

with same affinity constants. 

1.2.2 ofGfiB * .  . 

The liver has long been known to be the primary target organ for GH and the 

major source of GHR in mammals (GofEn et a/. 1998). However, GHR has aIso been 

demonstrated in a variety of other tissues inchding heart, adipose tissue, kidney, lung, 

brain, pancreas, intestine, g d  tissues, cartilage, and skeIetaI muscle (Roupas & 

Herington 1989, Kelly et 01. 199 t ). 

As in mammals, teleost Iiver is aIso an abundant source of GHR Although specific 

GH binding was detected in other tissues of teleosts (Yao et al, 1991, Le Gac et al. 

199 1, P&-Sbchez et al, 199 1, Sakamoto & Kirano I991), GH-specific receptors are 

mainly present in her membranes as reported in the tilapia (Oreochronis 

rnossambicus) (Fryer, 1979, Ng a al, 1992), coho Amon (Oncorhynchtlp krstdch) 



(Fryer & Bern, 1979, Gray et al. 1990), Japanese eel (hguilla japonicu) (Mori et al. 

1992), rainbow trout (0. mykiss) (Ikuta et al. 1989, Yao et ai- 199I), and snakehead 

fish (Ophiocephalus argus) (Sun et al. 1997). In these studies, analysis of the binding 

characteristics reveals a single class of high affiity and low-capacity binding sites 

which are highly specific for teleost GH. 

13 Growth Hormone Binding Protein 

CircuIating GHBP has sequence identity with the extracellular do- of GHR 

which is approximately 246 amino acids in length (Barnard & Waters 1997). The GH 

binding domain of the high affinity GHBP is identical to that of GHR, indicating a 

strict relationship between GHBP and GHR (Barnard & Waters 1997). GHBP is 

derived either by translation of an alternatively spliced GKR mRNA lacking the 

appropriate transmernbtane and intracefiular domains of the GHR (Smith et d 1989, 

Baumbach et al, 1989, Edens et al. 1994) or by direct cleavage from GHR (Leung et al. 

1987, Amit er al. 1996, Mullis et aL 1997). 

As a result of aIternadve splicing between exons 7 and 8, the GHBP in the rat and 

mouse possesses a hydrophilic 17 or 27 amino acid C-terminal sequence, respectively 

(Baumbach et al. 1989, Smith er d. 1989, et al. 1990). Ths hydrophilic amino 

acid C-terminal sequence is generally ref- to as the 'tail' sexpeace. In rodents, the 

GHBP transcript encodes a short hydrophilic 'tail' sequence instead of the 

transmembrane and cytoplasmic domains characteristic of the fidl Iength GHR (Smith 

et aL 1989, Baumbach et al. 1989, Edens et al. 1994). In humans and rabbits, GHBP is 



largely generated h m  proteolytic cleavage of the membrane-anchored receptor 

(Barnard & Waters 1997). The cleavage site was found to be adjacent to a cysteine 

residue at position 241 close to the transmembrane boundary (Leung et at. 1987). 

Similar findings were also reported for human IM-9 lymphocytes (Trivedi & 

Daughaday 1988, Saito a af. 199S), and transfated humau HepG2 (Harrison et af. 

1995) and COS-7 cells (Sotiropoulos et af. 1993). These studies indicate that the loss 

of a reactive thiol group, probably cysteine at position 241, destabilizes the GHR and 

renders it susceptible to endopeptidase cleavage (Alele et al. 1998). 

In all species studied, the circulating GHBP have been found to be present in 

multiple forms that are structurally distinct. Major circulating GHBP of 50 KD and 

100 KD have been found in humans (Baumann et af- 1986, Hocquette et al. 1990, 

Bawnann & Shaw 1990, Amit et at. 1996) and rabbits (Ymm & Herington 1985, Leung 

et af. 1987). The 100 KD GHBP was also identified in the rat (Baumbach et at. 1989, 

Massa et al. 1990, Arnit et at. I992), mouse (Peeters & Friesen 1977, Smith et at. 

1989) and sheep (Amit et of. 1992). A recent study has demonstrated four structurally 

distinct GHBP of 55,74, 158 and 363 KD in guinea pig serum (Ymer et al. 1997). As 

in mammals, the structural heterogeneity of GHBP also exists in avian (Vasilatos- 

Younken e t a -  199 1, Davis et al. 1992) and reptilian (Sotelo et af. 1997) species. The 

sigdicance and origin of the multipIe forms of GHBP remain unclear. 

The major source of circuIating GHBP is liver tissue as found for GHR 

(Herington et at. 1986, Tiong & Herington 1991, Lobie et a!. 1992). Partid 



hepatectomy &cram circulating GHBP in the rat (Baruch et 1993). GHBP was 

found to be expressed and released in human and rodent hepatoma ell lines (Mullis et 

al. 1995). GHBP have also been found to be present in human (Barnard et al. 1989), 

rabbit (Postel-Vinay et al. 199 1 )  and bovine (Devolder et al. 1993) milk Other sources 

of GHBP include human follicular fluid (Amit et al. 1993), urine [Hattori et d 1990) 

and lymph (Maheshwari et 01. 1995). GHBP was found to k expressed in rat 

adipocytes (Frick et al. 1994) and mouse placental cells (Barnard et al. 1994). 

However, these cell types do not appear to be capable of releasing GHBP (Barnard et 

al. 1994). 

1.4 Roles of G& GEIRand GHBP in Somatic Growth and Metabolism 

The initial step in GH action is the binding of GH to specific membrane 

associated GHR (for reviews see: Hughes & Friesen 1985, Kelly et ui. I99 1, Postel- 

Vinay & Finidori 1995, Goffm & Kelly 1996, Goffin et d. 1998)- Recent discoveries of 

the binding stochiometry (Cunnkgharn et ul. 199 1) and the crystaIlization (de Vos et 

al. 1992) of the human GH (hGH)-hGHR complex have h c e d  our knowledge in 

understanding the molecular basis for interactions between hGH and hGHR~human 

GHBP (hGHBP). The crystallographic structure of hGH-hGHR complex shows that 

one molecuIe of hGH binds to two molecules of identical bGHR (de Vos et at. 1992). 

The hGHR contains two @-samhvich-Iike binding domains, with one binding domain 

interacting with hGH and the second contacting with the other hGHR (de Vos et al. 

1992). hGH binds to hGHR in a 1:2 ratio through two regions d e d  binding sites 1 and 



2 (de Vos er al. 1992). Binding site 1 in hGH is formed by amino acids located in helix 

IV and the loop between helix II and III; bindtog site 2 in hGH is formed by a m h  

acids in helix 1 and III on the opposite side of the honnone (de Vos et al. 1992). A 

recent study has found that the key amino acids of hGHR in the formaton of hGH- 

hGHR complex are two tryptophan residues, Trp104 and Trp-169, which participate 

in aliphatic-aromatic stacking interactions with hGH (Clackson er at. 1998).The 

remaining hGHR residues interacting with hGH are part of a more hydrophilic 

periphery surrounding the hydrophobic tryptophan patch (Clackson et a!. 1998). 

Thus, the binding affinity of hGH-hGHR is determined by the tend hydrophobic 

patches which are formed by Trp-104 and Trp-169 of hGHR and the sickhains 

parhcipating in Wl-aromatic stackrng interactions (Clackson et al, 1998). 

The hGH-hGHR interaction model has also rnade it possible for identification of 

the amino acids in the honnone and receptor that might be responsible for species- 

specificity. hGH is known to be able to bind GHR fiom a variety of species including 

teleosb (Goodman ef al. 1996). However, only primate GH can bind with hGHR 

(Souza er d. 1995, Goodman et al. 1996, Behncken et al, 1997). The low cross- 

reactivity of non-primate GH with hGHR appears to result from the incompatibility 

of a single arginine at position of43 in the hGHR with a histidine at position of 171 in 

non-primate GH (Souza er aL 1995, Goodman er d 1996, Behncken et al, 1997). In 

- - hGHR, other amino acid residues that may also bave some importance in cbxmmmg 

species-specificity include gIrrtamine at positions 44 and 127 and aspartic acid a t  

position 164 (Clackson et d. 1998). Since the hGH-hGHR model is the only three- 

dimensional model adabIe so far, firher studies in other vertebrates are needed if the 



molecular basis of the species-specificity of interactions between GH and GHR is to 

be fidly understood. 

Dimerization of the extracelluIar portion of the hGHR induced by one hGH 

appears to bring the intxacellular domains of the hGHR together so that they interact as 

illustrated in Figure 1.1. A hGH antagonist that binds ody a single hGHR was found 

to be unable to exert hormonal effect on humans (Fuh ef al. 1992). Thus, dimerization 

of GHR is an essential step for GHR signal transduction pathways (Wells & de Vos 

1996). GHR dimerization induced by GH activates the signal transduction pathway of 

the Jams kinase (JAK) and signal transducers and activators of transcription (STAT) 

cascade (Postel-Vinay & Finidori 1995, Goffin & Kelly 1996, G o f k  et al. 1998). 

Several other signai transduction pathways, including the mitogen-activated protein 

kitwe (MAPK) cascade, appear to also be activated following GHR dherization 

(Goffin er al. 1998). However, more evidence is needed to determine the precise 

interactions that occur between the JAK-STAT and MAPK cascades, and their 

relationship to the other intracelldar cascades thought to be involved in the GHR signal 

transduction pathways (Goffh et al. 1998). 
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Cytoplasm 
8 

I Biological effects I 

Figure 1.1. Schematic representation of the GHR signaling pathways (redrawn 
fiom Goffia er af. 1998). GH fht interacts with GffR through its binding site I. 
forming an inactive GH-GHR complex. Then GH binds to a second receptor 
through its binding site 2. which Ieads to receptor dimerization. GHR 
dimerization activates the JAK-STAT. W K .  and possible other intracellular 
s igdhg pathways. 



J.,4 3 In vlvo in vitro 

[n mammals, GH has been found to play a role in regdating its own receptor. A 

reIatively long-term GH treatment was reported to induce an up regdatim of GWR in 

rat (J3axter et al. 1984), pig (Chung & Etherton 1986), and rabbit and lamb (Posner er 

al. 1980). Recently, it has been shown that elevated levels of ovine GH expressed as a 

transgene in mice are capable of inducing hepatic GHR (Orian et d 1991). In contrast, 

the absence of circulating GH is associated with low hepatic GHR numbers in the 

hypophysectomized rat (Gause et aL 1985). This reduced GH binding can be partially 

restored by treatment with other hormones such as estrogen (Maes et a/. 19831, insulin 

(Liang er al. 1999), thyroxine (T4) (Gause & Eden I985), and cortisone (Gause & Eden 

1986). 

Although GH may have a roIe in long-term maintenance of GHR, it aIso appears 

to cause a short-term down-reguIation of GHR. Such effects of GH have been reported 

in cultured human tM-9 lymphocytes (Rosenfeld & Hinz 1980), mouse fibrobIasts 

(Murphy & Lazarus 1984), and rat adipocytes (Roupas & Herington 1986). 

Interpretation of acute down-regulation must be made with some caution since GH 

binding may involve a rapid and complex pathways for the physiological turnover 

(dimerization, internalization, degradation, recycling, synthesis) of GHR. 

In teleosts, hepatic GH binding was reported to be decreased m the Japanese eel 

(Mori er af. 1992) and long-jawed mudsucker (Gillichrhys mirabtlis) (Gray & Kelley 

1991) following hypophysectomy. In these species, hepatic GH binding was further 

decreased after GH treatment (Mori et d. 1992, Gray & Kelley 1991). In intact 

Japanese eel, however, hepatic OH binding was increased 5 days after GH injection 



(Mori et d. 1992). Together, these results suggest that endogenous GH may also 

regulate hepatic GI-TR in teleosts, although further studies are needed to clan@ the 

short-term and long-term effects of GH on hepatic GHR- 

Nutritional status also appears to alter hepatic GHR in mammals and teleosts. 

Significant reduction in the number of hepatic GHR was reported for fasted rat (Maes 

eraL 1983, Mulumba eta/. 1991), salmonids (Duan et al. 1994). and gilthead seabream 

(Sparus m a t a )  (Perez-Snchez el a(. 1994). A similar relationship between hepatic 

GHR levels and nutritional status was also reported for the steer (Breier er al. 1988), 

Japanese eel (Duan & Hiram, 1992), and coho sdmon (Gray a al. 1992). Although a 

recent study on rabbit indicated that fasting induced a significantly higher level of GHR 

messenger nbnucleic acid (mRNA) in growth plate and muscle tissue than those of fed 

animals (Heinrichs er ul. 1993, poor nutritional status appears to be generally 

correlated with hepatic GUR down-regulation in both mammals and teleosts. 

1.4.4 Bi-M ~UIUQE 

GH is a primary regulator of somatic growth, and appears to promote body 

growth through a "duaI-effector" mechanism in mammals (for reviews see: Isaksson et 

41. 1991, Jones & Clemmons 1995). According to this model, IGF-I is the major 

celIular growth stimulator, with GH stimulating in vivo growth via the promotion of 

IGF-I. production in the liver or at the tissue level. GH also acts directly on 

prechondrocytes to promote their differentiation into chondrocytes which are sensitive 

to IGF-I and produce IGF-I locally (Isaksson er al. 1991, Jones & Clemmons 1995). 

Thus, IGF-I actions involve endocrine, paracrine and autocrine pathways. 



In mammals, linear skeletal growth occurs through iaterstjtial growth and 

expansion of chondrocytes (Tsaksson et al. 199 1) .  IGF-I induced by GH was fou~ld to 

be directly involved in fetal and postnatal growth in a number of mammalian species 

(Jones & Clemmons 1995). Evidence from in vitro studies also supports the "dual 

effector" hypothesis. [GF-I was found to stimulate the differentiation of myoblasts 

(Florini et al. 1986), osteoblasts (Schmid et al. 19841, adipocytes (Smith et al. 1988), 

and chondrocytes (Isaksson et al. 1987). These studies indicated that GH stimulated 

local production of IGF-I which in turn promoted the clonal expaasion of cells that had 

already started to differentiate. 

Although the autocrine and paracrine roles of IGF-I in teleosts remain unclear, the 

endocrine action of teleost IGF-1 clearly influences body growth and development 

(Duan 1997, 1998). In teIeosts, adminisbation of GH has been shown to stimulate 

IGF-1 mRNA expression in the liver of coho salmon (Cao ef al. 1989, Duan ef al. 

1993), Japanese eel @uan & Inui 1990, Duan & Hirano f W), rainbow trout (Duan et 

al. 1994), and gilthead seabream (Duguay et al 1996). In vitro studies have 

demonstrated that mammaiian IGF-I, but not GH, directly stimulates cartilage 

proteoglycan synthesis in teleosts, including the Japanese eel @urn & Hirano 1990), 

coho salmon (McConnick er ai. 1992, Tsai et al. 1995), long-jawed mudsucker (Gray & 

Kelley I991), goldfish (Marchant & Moroz 1993), and common carp (Cyprinus 

carpio) (Cheng & Chen 1995). These results provide strong evidence that IGF-E 

mediates at least some of the growth-promoting effects of GH in teIeosts as m 

mammals. 



A variety of other biological effects of GH have also been desctr'bed In teleosts, 

GH has been demonstrated to stimulate protein synthesis (Foster et d. 1991), lipid 

mobilization (07Comor et a!. 1993), glycogen brertkdown (Bjdrnsson 1997), oxygen 

consumption (Seddiki et al. t 999, hypoosmoregulatory ability (Gray er al. 1990, 

Sakamoto & Hirano 1991), appetite (Johnson & Bjornsson 1994)- and efficiency of 

food conversion (Fine ef of. 1993b, Garber et a/. 1995). These results indicate the 

multifunctional nature of GH action on somatic growth and metabolism. 

1.5 Research Objectives 

The overall goal of this research is to identify and characterize GHR and GHBP 

and to investigate the physiologicaI regulation of GHR and GHBP in the goldfish. 

Although our knowledge about the role GHR (Goffin & KeIIy 19%- Goffin etuf. 1998) 

and GHB P (Barnard & Waters 1997) play during somatic growth in mammals bas been 

greatly advanced, our understanding on GKR in teleosts is stiIl Limited, particularly in 

cyprinid species. A serum GfiBP bas been reported to be present in rainbow trout 

(Sohm et d. 1998), but the role of serum GKBP during somatic growth in rainbow 

trout and other teteosts is not clear. Thus, it is important to determine how various 

aspects of teleost GHR and GHBP tesembie or differ b m  other vertebrate GHR and 

GHBP, including the biochemical nature of teleost GHR and GHBP, cross-reactivity of 

GH, GHR, and GHBP among various species, and the roles of teleost GH, GHR, and 

GHBP in somatic growth 

In this research, I addressed seveml specific objectives with a variety of 

experimental approaches. A goldfish GH binding assay was established and deveIoped 



with recombinant common carp GH (rcGH) as the ligand, makmg it possible to directly 

study GHR in the liver membranes of the goldfish (Chapter 2). The biochemical nature 

of the GHR in the goldfish was investigated using a covaIent hormone-receptor cross- 

linking technique (Chapter 3) and the biological activities of rcGH, bovine GH (bGH), 

recombinant rainbow trout GH (rtGH) and recombinant sea bream GH (rsbGH) were 

compared in the 3T3-F442A bioassay (Chapter 4). The cross-reactivity of rcGH to 

rabbit and rat liver GHR was also studied using GH binding assays (Chapter 4). A 

circulating GHBP in the serum of goldfish and fiom cdtured goldfish hepatocytes was 

identified using a ligand blotting technique (Chapter 5). The goldfish GHBP was also 

compared with GHBP from rabbit and rat sera using Ligand blotting and GH bin- 

assays (Chapter 5). The effects of GH injection, hypophysectomy, and fasting on 

golash growth physiology in vivo were examined (Chapter 6). Parameters measured 

in these experiments inciuded growth rate, serum GH, GHBP, thyroid hormones and 

glucose levels, and hepatic GHR (Chapter 6). The last objective was to examine the in 

vttro regulation of GHR in cultured goldfish hepatocytes (Chapter 7). Factors that may 

influence the in vztro regulation of GHR were investigated, including IGF-I, insulin, 

thyroid hormones, GH, and PRL (Chapter 7). Together, these results provide 

considerable new knowledge about the biochemical characteristics and physioiogicaI 

roles of GHR and GHBP in the goldfish, and greatly increase overall understanding of 

the endocrine regulation of somatic growth in teleosts. 



CEAPTER 2 DEVELOPMENT OF A GOLDFISH GROWTH HORMONE 

RECEPTOR BINDING ASSAY* 

2.1 Introduction 

Since the first report of GKR in the rabbit liver (Tsushima & Friesen 1973), our 

knowledge a b u t  the role GH receptors play during somatic growth in vertebrates bas 

been greatly advanced (for reviews see: Kelly et d 1991, Peter & Marchant 1995, 

Goffin & Kelly 1996, Peng & Peter 1997, Goffin et a/. 1998). In teleosts, receptor 

binding assays have been employed to detect GH binding sites in tilapia (Fryer 1979, 

Ng et a/. 1992), coho salmon (Fryer & Bern 1979, Gray et ui. 1990), rainbow trout 

(Sakamoto & Hirano 199 1, Yao er d. 199 I), Japanese eet (Hirano 1991; Mori et al. 

1992), gilthead seabrearn (Perez-Shchez er ul. 1994), striped bass (Morone saxariiis) 

(Gray & Tsai 1994), and snakehead fish (Sun er al. 1997). These studies have indicated 

that GH receptors are highly concentrated in the Liver of teIeosts, although GH specific 

receptors have also been reported to be present in the brain (Pdm-Shchez et ai. 

199 I), gonads (Sakamoto & Hirano 199 1, Le Gac eta[. 199 l), gill, intestine and kidney 

(Sakamoto & Hirano 1991, Yao et al. I99 I). Scatchard (Scatchard 1949) analyses 

indicate that a single class of low-capacity, high GH binding sites, highIy 

specific for teleost GH, are present in these tissues. 

* Portions of the results presented in Chapter 2 have been published elsewhere (Zhang 
& Marchant 1996). 



Although GH receptor binding sites have been reported in a fairly wide range of 

teleosts, there is a general lack of information on GH receptors in cyprinid trleosts. 

One reason for this is that a sufiicient quantity of purified cyprinid GH has not been 

available for receptor binding assays. Recently, however, a common carp GH cDNA 

was cloned (Koren et al. 1989) and expressed in Escherichia coli (Fine et al. 1993% 

1993b) to produce a rcGH. This rcGH was found to be biologiCaUy active in vivo (Fine 

et al. 1993a) and to bind specifically to liver membranes from common carp (Fine et al. 

1993b). These findings suggest that rcGH may be useful in the characterization of GH 

receptors in common carp and related cyprinids. The goal of the present study was to 

establish a GH receptor binding assay based on rcGH in the goldfish. 



2.2 Materials and Methods 

Goldfish (common and comet varieties) were purchased from Grassyforks 

Fisheries Co. (Martinsville, IN). Animals were maintained at 21-25 '~  in flow-through 

aquaria under a simulated natural (Saskatoon) photoperiod for a minimum of two 

weeks prior to use in the experiments. All studies were conducted during the summer 

months (May to July) with reproductively immature fish (10-20 g) of mixed sex. The 

fish were fed to satiation twice daily with N d n  Goldfish food purchased from R.C. 

Hagen Co. (Edmonton, Canada). 

777- 

rcGH containing five cysteine residues (Fine er al. 1993% Ir) was kindly provided 

by Dr. A. Gertler (The Hebrew University of Jerusalem, Israel). This rcGH 

comesponds to type I of the two carp GH variants (Law et d. 1996). Iodination of 

rcGH was performed according to the methods of Cook er al, (1983). The specific 

activity of [%CGH prepared in this way was routinely more than 60 pCi Ci(gl when 

determined using selfaisplacement (Cdvo et at. 1983) in the receptor binding assay or 

rcGH radioirnmmoassay (Fine et al. 1993a). Pllrified pituitary goldfish GH (@H) 

and common carp prolactin (cPRL) were Erom Dr. R E. Peter (University of 

Alberta, Canada). bGH, bovine prolactin (bPRL), ovine GH (oGH), rat GH (GH) and 

rat prolactin (rPRL) were gifts h m  the National Hormone and Pituitary Program 

(NIDDK, BaItimore, MD). All other chemicals were purchased h m  Sigma Chemical 

Co. (St. Louis, MO) or BDH Chemiwls (Edmonton, AB). 



Goldfish liver membranes were prepared using methods modified fiom Haro and 

Talamantes (1985). Fish were anesthetized in 0.05% hcaine methaneSuLfonate 

(MS222) and killed by spinal transection. The liver was removed quickly, weighed, 

washed in 0.7% saline and homogenized with a Polytron homogenizer in 4 volumes 

(wthol) of ice-cold homogenization buffer. The homogenate was then centrifuged at 

9,600 g for 30 min at 4 ' ~ .  The supernatant fmm 9.600 g was then centrifuged at 

IO0,OOO-g for i h at 4 ' ~ .  The 100,000-g pellet was MU& and suspended in icbcold 

suspension b d e r  to a protein concentration of 20-30 mg ml-1. The membranes were 

then frozen on dry ice and stored at -20 '~ .  Protein concentration in the membrane 

preparation was determined using the method of Lowry er d (1951). Membranes from 

the other tissues were aIso prepared according to the above procedure. Where 

applicable, endogenous GH was removed by incubating membranes with 4 M MgC12 

(Kelly er d. 1979, Maiter et al. 1988). In the present study, the number of total and 

b e  binding sites refers to specific I 2 5 l - r ~ ~ ~  biading to membranes treated with or 

without MgC12, respectively . 

To ensure that GH binding in the present study was performed under optimal 

ionic and buffer conditions (Ham & Talamantes 1985). the infIuence of a variety of 

buffer combinations on hepatic rcGH binding was studied Two types of 



homogenization buffers were examined; a glycine buffer (200 mM glycine, 150 mM 

NaCI, 50 mM EGTA, 50 rnM EDTA, 300 m M  sucrose, at pH 9.0) and a Tcis buffer 

(100 mM Tris, 150 mM NaCl, 50 mM EGTA, 50 mM EDTA, 300 mM sucrose, at 

pH 9.0). The suspension buffers examined were a Tris buffer (25 m M  Tris 10 mM 

MgC ta, at pH 7.6) and a phosphate buffer (10 m M  phosphate, 10 m M  MgC12, at pH 

7.6). The assay buffers included a Tris buffer (100 mM Tris, 500 m M  sodium acetate, 

10 rnM MgC12,O. 1% BSA at pH 7.6) and a phosphate buffer (10 m M  phosphate, 150 

m M  NaCl, 10 mM EDTA, 0.1% BSA, 0.1% NaN3 at pH 7.6). The effectiveness of 

various enzyme inhibitors during tissue homogenization was also examined These 

included I m M  phenylmethane sulfonyl fluoride (PMSF), 100 KIU mI*l aprotinin 

( APROT), 0.1 mM IV-tosy I-L-pheny lalanine chloromethy [ketone (TPCK), 0.02 pg ml- 

1 baciwdn (BAC), and I mM PMSF plus 100 KIU ml-1 APROT. 

. .  

Goldfish membranes were diluted in 300 pl of assay buffer to a final protein 

concentration of 800 pg The membranes were then incubated in a final volume of 0.5 

mi of assay buffer with approximately 25,000 cpm ~~SI-~CGH in the pmcace or 

absence of unlabeled rcGH (500 ng), Separation of bound ligarad fiom flee tigad was 

performed by addition of 1.0 ml ice-cold assay bfler followed by centrifugatron at 

4000 g for 30 minutes. Radioactivity corresponding to 1251-~CGH h the pellet was 

then measured in a gamma counter. 



6 S m  . * 

In each assay, total binding (TE3) of I*SI -~~GH to the membrane preparation was 

determined as the total radioactivity remaining in the @Let following incubation of the 

membranes in the absence of unhbeled rcGK Non-specific binding (NSB) of 1251- 

rcGH was determined as the doactivity remaining in the pellet following incubation 

of the membranes with excess unlabeled rcGH (500 ng per tube). Specific binding (SB) 

of 1251-~CGH was then calculated as the difference between TB and NSB. Thus, SB 

represents displaceable binding whereas NSB represents noa-displaceable binding of 

1251-XGH in this study. All binding parameters were expressed as a percentage of the 

total radioactivity present during incubation The association affinity constaat (Ka) 

and maximurn binding capacity (Bmax) of rcGH were calculated using the LIGAND 

computerized program (Munson & Rodbard 1980). Other data were analyzed with 

Student's t-test or analysis of vmkice (ANOVA) followed by Student-Newman-Keuls 

multiple comparison test. 



23 Results 

The SB of 1251-rcG~ to the 100,OOO-g liver membrane W o n  was 1.7 times 

higher than 9,600 g fraction and 6.6 times higher than 600 g fiaction (Fig. 2.1). 

Membranes prepared with TPCK displayed higher SB (10.4%) when compared to the 

SB (6.4%) observed in membranes prepared without enzyme inhibitor (Fig. 2.2). 

Membranes prepared with the other enzyme rnhibitors (PMSF, APROT, BAC, and a 

combination of PMSF and APROT) displayed a SB between 7.0% and 8.0% (Fig. 2.2). 

The combination of Tris homogenization and suspension buffers and a phosphate 

assay buffer resulted in the highest SB of aU the buffer combinations tested (Table 2.1). 

Consequently, all subsequent binding assays were performed using these buffers and 

the 100,000-g membrane fraction prepared with TPCK, as this protocol consistently 

resulted in the highest SB and lowest NSB. 

Binding of 125t-rcG~ to goldfish liver membranes was dependent on incubation 

pH, time and temperature (Fig. 2.3 & 2.4). Significant binding occurred over a wide pH 

range between 4.4 and ll.6, although NSB increased as pH of the assay buffer 

decreased (Fig. 2.3). The optimd pH for the rcGH receptor binding assay was chosen 

to be 6.5 because a high SB with a NSB of approximately 5% or less was achieved at 

this pH (Fig. 2.3). Following 24 h of incubation, SB reached a steady state at 2 4 " ~  and 

3 0 " ~  (Fig 2.4). In contrast, eprih'brium was not reached until after 36 h at 4°C and 

1 5 " ~  (Fig 2.4). Following 24 h incubation, NSB was approximately 8% at 30°C 

compared to 5% at 24'~. Thus, all assays were subsequently performed using a 24 h 

incubation at 24 '~ .  



€ he effeet of inmasing amounts of liver membrane protein on the b e  of 1251- 

rcGH to goldfish liver membranes is shown in Figure 2.5. Specific binding kreased as 

the amount of Ever membrane protein was increased A plot of the reciprocal of SB 

versus the miprocaI of membrane protein revealed a linear relationship (Fig. 2.5, 

inset). Fmm the ordinate intercept ofthis plot (Calvo et d 1983). the fraction of 12%- 

rcGH that would bind to an infinite receptor concentration was calculated to be 53% of 

the total radioactivity added 

Pnor to MgCI:! treatment, only liver, spleen and gut tissues were obsewed to have 

specific binding of %~CGH (Table 2.2). In contrast, MgCl2-treated membranes from 

all tissues displayed specific binding of 1%-~CGH (Table 2.2). Liver tissue had the 

highest SB of the tissues examined; displacement of endogenous GH by MgCh 

resulted in approximately 40Qh increase in SB in the liver membranes. 

The Ka of %-rcG~ to goldfish liver membranes was indicated by the negative 

slope of the Scatchard plot (Scatchard 1949) and Bmax was indicated by the x- 

intercept of this plot. L I O N  analysis of binding of lUbrcGH to goldfish liver 

membranes revealed a single class of binding sites with a Ka of 1.9 x 1010 M-I and 

Elmax of 9 h o l  rug' protein (Fig. 2.6). 

Dispiacment of 1251-RGH fiom goldfish liver membranes by various uuIabeled 

hormones is shown in Figure 2.7. The Ka for each hormone was calculated asing the 

LIGAND program in order to determine the relative cross-reactivities of the various 

hormones with rcGH as the reference; the Ka of unlabeled rcGH was detemkd as 3.9 



eO.8) x 109 M-f (mean 2 SEM) from three different experiments* The relative cross- 

reactivities of gEH, cPRL, bPRL and rPRL were found to be 92.5%, 1.8%, 0.5% and 

0.4%. respectively. All mammalian GH displayed a similar relative cross-reactivity of 

t 1.4%. 



2.4 Discussion 

An important goal of this study was to achieve maximum specific binding of 12%- 

rcGH to goldfish tissues through the optimization of binding assay conditions. The 

results indmte that buffer, enzyme inhibitor, temperature and pH are important 

factors in the goldfish GH receptor binding assay. The optimum buffer combination is 

Tris as a homogenization and suspension buffer and phosphate as an assay buffer. 

SimiIar buffer conditions were found to be optimal in the bovine GH receptor (Haro et 

a/. 1984) and the mouse PRL receptor (Haro & Talamantes 1985) binding assays. 

During hepatic membrane preparation, PMSF is wideIy used as an enzyme hhiiitor to 

prevent receptor degradation in teleosts (Fryer 1979, Gray er 01. 1990, Hirano 1991, 

Perez-Shchez er ul. I99 1, Mori et a/. 1992, Ng et ai. 1992, Sun ef al. 1997) and 

mammals (Haro & Talamantes 1985). The present study demonstrates, however, that 

TPCK is the most effective e w e  inhibitor in the goldfish GH binding assay. The 

lack of an effect of PMSF during membrane preparation in the goldfish is not 

surprising as PMSF was originally found to be completely ineffective in blocbg the 

activity of acetycholinesterase in brain tissue from electric eel (Electrophorza 

electricup) (Turini etal. 1968) and g~ldfish (Moss & Fahrney 1978). Recently, TPCK 

was also found to be more effective in coho salmon and striped bass (Gray & Tsai 

1994). 

The binding of 1251-~CGH to goldfish liver membranes was a pHdependent 

process, with an optimum pH at 6.5 which allows the highest SB with a low NSB of 

approximately 5%. When the goIdfish GH binding assay was performed at a pH of 

7.2-7.5, a pH used for most other teleost GH receptor binding assays (Fryer 1979, 



Hirano 199 1, Yao et al. 1991, Pbez-Shchez et al. 1991, 1994, Mori et d. 1992, Ng et 

al. 1992, Sun er al. 1997), specific binding decreased by more than 30%. A lower 

optimum pH (7.0) was also reported for coho salmon (Gray et al. 1990). In mammals, 

the optimum binding of recombinant bovine GH to bovine hepatic membranes occurs 

at pH 7.8 (Haro et al. 1984), whereas the optimum pH for binding of mouse PRL to 

mouse hepatic membranes is 8.3 (Haro & Talamantes 1985). Other mammalian GH 

receptors are often found to bind GH with high affinity at neutral pH (Mellman et d. 

1986). The reason why the optimum pH for the goldfish GH receptor binding assay is 

lower than in other teleost or mammalian species is not clear. It is possible that pH 

may cause slight structural changes to rcGH andlor the goldfish hepatic binding sites, 

which in turn, would alter the overall binding parameters. 

In the goldfish GH receptor binding assay, the optimum temperature was 

determined to be 24°C at which binding eqdiirium was reached by 24 h with a low 

NSB. Higher incubation temperature resulted in a shorter time for the reaction to reach 

equtbbrium, but also resulted in a higher Ievel of NSB. In teleosts, the optimum 

incubation temperature for GH receptor binding assays are reported to vary accordurg 

to species: 2 0 " ~  for tilapia (Ng er af. 1992), IS'C for coho salmon (Gray et d 1990), 

rainbow trout (Sakamoto & Hirano 1991, Yao er al. 1991) and gilthead seabream 

(Ptbez-Snchez et al. 1994). These differences in optimum temperatures for teleost GH 

receptor binding assays possibly reflect the different in vfio temperature reqlrirements 

of the various species. The stability of labeled hormones in v i m  may also account for 

the temperature differences (Yao et d 199 1). 



LLGAND analysis of 1 2 5 I - r ~ ~ ~  binding to goldfish liver membranes indicated a 

single class of high affinity and lowcapacity binding sites with a Ka of 1.9 x 10 lo M-1 

and Bmax of 9 h o l  m g  1 proteia Fryer (1979) reported a similar Ka (1.5 x 1Olo M-1) 

in a tilapia GH binding assay. However, in other teleost GH binding assays, the Ka is 

usually reported to be approximately 10-fold lower (Gray et al. 1990, Hirano 1991, 

Sakamoto & Hirano 199 I, Yao et al. 199 1, Ng et al. f 992, Perez-!Wchez et al. 1994). 

In these teleost GH binding assays, B- generally varies between 26 h o l  m g l  

protein and 360 fino1 mgl protein. Thus. the goldfish hepatic GH binding sites are of a 

higher affinity and lower capacity than those reported for most other teIeosts. 

Analysis of displacement of 1%-~CGH h m  goldfish liver membranes by various 

unlabeled hormones indicated that 1251-EGH binding to goldfish liver mcmbrrma was 

highly specific for teleost GH. Goldfish GH was slightly less potent tfian rcGH, but 

was more potent than mammatian GH. In turn, bGH, oGH and rGH had higher cross- 

reactivities than cPRL, oPRL and rPRL. These results indicate that displacement of 

1 2 S t - r ~  €iom goldfish liver membranes by various lrnlabeIed hormones &leas the 

general pattern reported for other teleosts (Fryer 1979, Gray et af. 1990, Hirano 1991, 

Sakamoto & Hirano 1991, Yao er 41, 1991, Ng et al. 1992, Perez-Shchez et d 1994, 

Sun era[. 1997). 

A significantly higher SB was found in goldfish liver membranes than in other 

tissues, indicating that the Liver is a major source of GH biading sites. This result is 

consistent with findings reported for other vertebrates (for reviews see: Kelly er al, 

1991, Peter & Marchant 1995, Peng & Peter 1997, Gofh  et d. 1998). In the goldfish, 



specific GH binding was also found in kidney, gill, gut, brain, heart, spleen, skeletal 

muscle, and blood cells after removal of endogenously bound GH. A wide tissue 

distribution of GH binding sites was also reported for tilapia (Fryer 1979, Ng et a[. 

1992) and various saIrnonid species (Gray et al. 1990, Sakamoto & h o  1991, Yao et 

al. 199 1). These results suggest that a variety of tissues may be targets for GH action 

in the goldfish and other teleosts. 

The present study is the first time that a Mly characterized GH receptor binding 

assay in a cyprinid species has been reported The goldfish hepatic GH binding sites 

meet two of the general criteria of a GH receptor by displaying a high affinity and low- 

capacity binding for 1 2 5 ~ - r c ~ ~  and a specificity for teleost OH. Study of the binding 

of 1251-~CGH to goldtish tissue membranes revealed skuhities to the general pattern 

of GH receptor binding observed in other teleosts. However, hepatic GH binding in the 

goldfish is different from that reported for other teleosts in several aspects, including 

optimal conditions for microsoma1 preparation, pH, b&kr composition, and 

incubanon temperature. These findings emphasize the importance of optimizing 

binding assay conditions when GH binding sites are to be studied in a new species. 
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Figure 2.1 Specific binding of 1x1-&H to various goldfish Liver membrane hctions. 
Data, expressed as mean+SEM, were obtained by pooling results from three 
experiments, each canied out in triplicate and with liver membranes from different 
animals. Specific binding of rcGH at various tiactions was analyzed using the Student- 
Newman-Keuls multiple comparison test @<O.OS); groups with different superscript 
Ietter dispiayed a different value for SB. 

eukr  PMSF APROT PMSF+ TPCK BAC 
APROT 

Figure 2 2  Effect of various enzyme inhibitors during homogenization on the binding 
of 1x1-rcGH to goldfish liver membranes. The concentrations of each enzyme 
inhibitors used in this experiment are described in the MateriaIs and Methods. Data, 
expressed as mean.SEM, were obtained by pooling red& from three experiments, 
each carried out in triplicate and with liver membranes from different animals. Specific 
binding of rcGH corresponding to each enzyme inhibitor was analyzed using the 
Student-Newman-Keuls multiple comparison test w0.05); groups with same 
superscript letter displayed a simiIar value for SB. 



Figure 2 3  Effect of assay buffer pH on the binding of [XI-rcGH to goldfish liver 
membranes. Data. expressed as meanfSEM, were obtained by pooling resuits from 
three experiments, each carried out in triplicate and with liver membranes from 
different animais. Specific binding of rcGH at different pH was analyzed using the 
Student-Newman-Keuis multiple comparison test (p<O.OS); groups with same 
superscript letter displayed a similar value for SB. 

Incubation time (hour) 

Figure 2.4 Specific binding of 1251-rcGH to g o l w  liver membranes over time at 
various incubation temperatures. Each point represents the mean_+SEM of triplicate 
determinations in a single assay. SimiIar results were obtained in two additional 
experiments. Specific binding of rcGH at the various temperatures at 24 h was 
compared using the Student-Newman-Keds multiple comparison test w0.05); 
groups with same superscript letter displayed a similar value for SB. 
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Figure 2.5 Effect of haeashg amounts of memlnane protein on the binding of 1251- 
rcGH to g o l W  Liver membranes. Data an presented as m S E M  of triplicate 
deteTminations h m  t k  d . i  experiments, each carried out with Liver m e m b m  
ftom different a u b k .  Tbe inset represents a reciprocal pIot of SB versus the 
r e c i p d  of protein concentration. 

\specificalty bound (hmVmg protein) 

F i  2.6 Displacement curve produced by inahat@ inmas& a m o m  of 1251- 
rcGH with 800 pg of goldfish liver membranes. Data arc presented as mez&EM of 
triplicate determinations in a siagIe assay. The inset gtaph rrprtscnts the derived 
S c a h d  plot Similar resuIts were obtained in two additiond experiments. 



Unlabeled hormone (ng) 

Figure 2.7 Displacement of IZ5t-rcGH tiom goldfish Liver membrane proteins by 
increasing amounts of various unlabeIed hormones. Data, expressed as meanfSEM, 
were obtained by pooling results from three experiments, each carried out in triplicate 
and with liver membranes from different animals. 



Table 2.1 Relative binding of 1251-rcGH to goldfish liver membranes under various 
buffer combinations, Data are presented as mean f SEM of triplicate determinations in 
a singIe assay. 

Relative binding (% of total radioactivity) 

Homogenization Suspension Assay N X  - SB 

Glycerine Tris Tris 9.156.9 6.e0.1 2.1+0.1 

Phosphate 9.43.3 5.850.1 3.650.1 

Phosphate Tris 1 1.3fl.4 7.120.2 4.220.1 

Phosphate 9.8+_0.2 5.1iO. 1 4.720.1 

Tris Tris Tris 13.220.3 6.lkO.l 7.1i0.1 

Phosphate 15*2~0.2 5.650.1 9,650.2 

Phosphate Tris 1 O.W.3 5.850.1 5.1+0.1 

Phosphae 10.5~0.3 5.520.1 5 . w . 1  



Table 2.2 Specific binding of '251-rcGH to membranes h m  various goldfish tissues. 
Data are presented as mean SEM fiom a triplicate determinations in a single assay. 

Tissue %SB %SB 

Before MgC12 treatment After MgC12 treatment 

Liver 

Kidney 

Spleen 

Gut 

Brain 

Heart 

Gill 

Blood cells 

Muscle 



CEIAPTER 3 COMPARISON OF TBE BIOCHEMICAL NATURE OF 

COL,DFISH AND MAMMALIAN GROWTH HORMONE RECEPTORS 

3.1 Introduction 

Covalent hormone-receptor cross-link~~~g studies have been employed to study the 

GHR in rat hepatocytes (Yarnada & Donner 1984), rat adipocytes (Carter-Su et d 

1984, Gorin & Goodman 1984), and hepatic membranes fiom rat (Hughes et d 1983, 

Human et al. 1988), rabbit (Hughes et al, 1983, Ymer & Herington I987), mouse 

(Smith & Talamantes 1987, Orian et of. 1991) and sheep (Breier et al. 1994). AII these 

studies indicate the presence of rnultipIe forms of the GHR. The mammalian GHR 

generally occurs as a glycoprotein with an 22 KD extracellular binding subunit, a short 

36 KD transmembrane domain, and a 51 KD cytoplasmic domain (Baumann 1991). 

[ntact GHR can be rapidIy cleaved to these lower molecular weight forms (Goffin et d. 

1998). 

The biochemical nature of the GHR in teleosts remains IargeIy undefined. There is 

evidence h m  tilapia (Ng et al. 199 1) and striped bass and coho salmon (Gray & Tsai 

1994) indicating the presence of multiple forms of GHR as found in mammals. The 

tilapia GHR was found to be a glycopmtein of Mr approximateiy 400 KD (Ng et at. 

1991) whereas in striped bass and coho salmon the GHR were N-linked glycoproteins 

of Mr approximatety 80 KD or I I2 KD (Gray & Tsai 1994). In the present study, the 

biochemical nature of goIdfiish hepatic GHR was studied using the covalent hormone- 



receptor crudinking technique. Cross-linking studies on rabbit and rat hepatic GHR 

were also conducted and compared to goldfish GHR usiag the same SDS-PAGE gel. 

Such direct comparisons provide new information on the biochemistry of goldfish 

hepatic GHR and the similarities or differences between goldfish and the mammalian 

GHR. 



3 3  Materials and Methods 

Goldfish of the common or comet varieties were maintained as previously 

described (Chapter 2). Livers from male New Zealand White rabbits ad female Wistar 

rats were kindly provided by Mr. R Riding and Dr. A. Richardson (Departments of 

Physiology and Anatomy and Cell Biology, University of Saskatchewan). All animals 

were used in accordance with guidelines established by the Canadian Council on 

Animal Care. 

rcGH and bGH were obtained as d e s c n i  previously (Chapter 2). Bis 

(sulfosuccinimidyl)-suberate was purchased from Pierce Chemical Co. (Brockvhle, 

ON). All other chemicals were purchased tiom SigmaChemical Co. (St Louis, MO) or 

BDH Chemicals (Edmonton, AB). 

m:,,& . . 

Iodination of the GH was performed using the lactoperoxidase method as 

descriied previously (Chapter 2). Specific activities of l Z 5 ~ - r c ~  and 1 2 5 ~ - ~ ~  

prepared in this way were routinely more than 100 pCi pg-l when determined using 

self-displacement (Caivo et at. 1983) in the GH binding assay. G o l f i h  Iiver 

membranes were prepared as described previously (Chapter 2). Rabbit and rat liver 

membranes were prepared usingthe published method of Haro et al. (1984). 



Covalent cross-linking of GH to receptor proteins h m  goldfish, rabbit and rat 

was performed using the methods of Gray and Tsai (1994). Briefly, 2 mg of liver 

protein was incubated with 500,000 cpm of labeled GH in presence or absence of 1 pg 

unlabeled GH for 20 h at room temperature, followed by centrifbgation at 10,000 g for 

15 min. The pellet was resuspended in 100 pl of HEPES buffer (10 mM N-2- 

Hydroxyethylpiperazine-N2-ethanesulphonc acid, pH 8.0) containing 1 mM of the 

cross-linking agent, Bis (sulfosuccinimidyl~wberate, and cross-linking was allowed to 

proceed for 25 min at room temperature. Samples were then separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in absence or 

presence of reducing agents such as dithiothreitol (DTT) or l3-mercaptoethanol 

(Laemmli 1970). Gels were dried and exposed to X-ray film (Kodak X-Omat ARS) for 

7-14 days at -70°C; M, of the various bands on the autoradiograms were calculated 

using the BIOMED computer program (MGA Software Inc.). In the present study, 

cross-linking of l * ~ r c ~ ~  to rabbit and rat liver membranes was uwd as a "negative" 

control because teleost GH including rcGH were not expected to cross-react with the 

mammalian GHR (Goodman et al. 1996). 



3 3  Results 

Covalent hormoae-receptor cross-linking was used to compare 1251-~GH and 

~%CGH binding sites in rabbit, rat and goldfish liver membranes. The OH binding 

site in all species consisted of three bands with Mr of 88KD, 142KD, and > 200KD 

(Fig. 3.1). The appearance of these bands was completely inhl'bited by the addition of 

1 pg of the corresponding unlabeled hormone to the incubation mixture. The three 

specifically labeled bands were observed in the absence (Fig. 3.1) or presence (Fig. 3.2) 

of the reducing agent, O-rnercaptoethanol. Incubation of goldfish liver membranes with 

the reducing agent, DTT also did not alter the position of the three specifically labeied 

bands (Fig. 3.3). Covalent cross-linking of 1 2 h G ~  to rabbit and rat liver membrane 

proteins resulted in the same specifically labeled bands, with Mr of 88KD, 142KD, 

and > ?OOKD, as when 1 2 S ~ - b ~ ~  was used (Fig. 3.4). 



3.4 Discussion 

These covalent hormone-receptor cross-linking studies revealed the presence of 

multiple forms of GH binding sites in the goldfish. The presence of miwing agent such 

as Dmercaptoethanol or DTT did not alter the Mr of the multiple GH binding sites in 

the goldfish. Similar findings were reported for other teleosts (Ng et al. 1991, Gray & 

Tsai 1994) and mammals (Hughes et al. 1983, Smith & Talamantes 1987, Ymer & 

Herington t 987, Husman er al. 1988, Wan et a(. 199 1). These results suggest that the 

various bands observed following SDS-PAGE are not simply GH receptor subunits 

Ilnked through disulfide bonds. 

Recent studies from mammals indicated that the mammalian GHR has extracellular 

binding subunit, a short transmembrane domain, and cytoplasmic domain (Baumann 

1991). These GHR can be rapidly cleaved to lower molecuiar weight forms (Goffin et 

ul. 1998). There is also evidence from hGH-hGHR binding indicating GHR 

dimerization (de Vos et al. 1992). It appears that the combination of one molecuie of 

GH (Mr 22 KD) with two molecules of the extracellular portion of GHR would result 

in a complex with an Mr of 88 KC. The combination of one molecuIe of GH with one 

intact molecule of GHR would have an Mr of approximately 130 KD. One molecule of 

GH binding to two intact molecules of GHR wouId make a complex with an Mr > 240 

KD. Thus, the 88, 142, and > 200 KD bands observed in my study in goldfish may 

reflect various GH-GHR complexes formed following GH binding and subsequent 

GHR dimerization. 



Previous cross-linking studies in mammals have shown that the Mr of the GH- 

GHR compIexes varied according to species. For example, the GH-GHR complexes 

were found to have an Mr of 52 KD, 78 KD and 142 KD in rabbits (Ymer & Herington 

1987), 43,55,64, and 95 KD in rat (Husman et u2. 1988), and 56,62, and 125 KD in 

mouse (Smith & Talamantes 1987). In the present study, the Mr of the GH-GHR 

complexes observed in rabbit and rat was slightly different to those reported by other 

authors (rabbit: Hughes er al. 1983, Ymer & Herington 1987, Lemg et al. 1987, 

Spencer et ul. 1988; rat Husman et al. 1988, Husman & Andersson 1993). The Mr of 

the GH-receptor comptexes in goldfish were also different from those reported in other 

teleosts (Ng et al, I99 1, Gray & Tsai 1994). These discrepancies could be explained by 

species differences, variations in experimental protocols, enzymatic degradation of the 

GHR during incubation, or the caIculation error of Mr in SDS-PAGE which may be up 

to 10% (Weber & Osborn 1975). However, comparison of the three species in my 

study was done on the same gel under identical conditions which minimizes the enor in 

cross-species comparisons. 

The SDS-PAGE banding pattern observed after cross-linking bGH or rcGH to 

Liver receptor proteins was identical in the rabbit, rat and goldfish, indicating that rcGH 

was able to bind to the same complexes in mammals as bGH. Cross-linking of lZ1- 

rcGH to rabbit and rat liver membranes was originally conducted as a negative control 

as I expected that rcGH would have negligiile cross-reactivity with the nmmmab 

GHR. This expectation was based on the loag-held dogma that fish GH are inactive in 

mammaIs (Goodman et a[- 1996). Thus, the hding that rcGH bound to the same GHR 

complexes as bGH in rabbit and rat was quite surprising. However, this cross-Mg 



study does not provide information on the blrrding affhity between rcGH and the 

mammalian GHR or on the biologicaI activity of rcGH, Therefore, a GH binding assay 

and a bioassay were employed in the following chapter to determine these parameters. 



Figure 3.1 AUmndiogram of SDS-PAGE gel (7.5%) showing aom-lialdng of lZ1- 
rcGH to goldfish liver membrarrs (lanes c, d) and 1251-~GH to rabbit (lanes e, f) and 
rat (lanes g, h) her  membranes under noweducing conditions. Molecular weights 
(KD) of standards are shown on tbe left. All bands disappeared when the membrane 
was incubated with Iabeled GH in presence of 1 pg of the unhbefed GH (lanes 4 f ,  h). 
The positions of IabeIed rcGH (lane a) and bGH (lane b) are also shown in this 
autoradiogram. 



a b c d e f  g h 

Figure 3 3  Autodogram of 7.5% SDS-PAGE gel showing cross-linking of 12%- 
rcGH to goldfish liver membranes (lams c, d) and 125~-bG~ to rabbit (lanes e, f )  and 
rat (lanes g, h) liver membranes under reducing conditions. Molecular weights (KD) of 
standards are shown on the leR All bands disappeared when the membrane was 
incubated with IabeledGH in presence of 1 pgof the uulabeled GH (lanes c, e, g). The 
positions of labeled rcGH (lane a) and bGH (lane b) are also shown in this 
autoradiogram. 



Figure 3.3 Autoradiogram of SDS-PAGE gel (7.5%) showing cross-linking of 1251- 
rcGH to goldfish liver membranes under non-reducing conditions (lane b) and reducing 
conditions (lane c). Molecular weights (KD) of standards are shown on the left The 
position of labeled rcGH (lane a) is also shown in this autoradiogram 



a b c d e f  

Figure 3.4 Autoradiogram of SDS-PAGE pel (7.5%) showing c r o ~ - l m g  of 12*1- 
rcGH to rabbit (lam d) and rat (lane f )  liver membranes and 1251-~GH to rabbit (lane c) 
and rat (lane e) Liver membranes. MoIecular weights (KD) of standards are shown on 
the left The positions of labeied rcGH (Iane a) and bGH (Iane b) are also shown in this 
autoradiogram. 



CHAPTER 4 COMPARISON OF THE SPECIESSPECIFICTIY OF TEE 

GROWTH HORMONE-RECEPTOR INTERACTION IN TELE06TS AND 

MAMMAIS 

4.1 Introduction 

The concept that 'fish GH is inactive in mammals' is commonly accepted 

(Goodman et uol. 1996). Evidence supporting this concept originated in the 1950s when 

bovine GH was found to stimulate body growth in teleosts (Pickford 1957). However, 

none of the teleost GH preparations tested at that time appeared to be active in 

mammals (Pickford 1957). Since then, a number of studies on the species-specificity of 

GH have been conducted using various techniques, including radioimmunoassay 

(Hayashida 1975, Hayashida & Lewis 1978, Farmer et al, 1981), bioassay (Hayashida 

1975, Hayashida & Lewis 1978) and radioreceptor binding assay (Tarpey & Nicoll 

1985, LeBail er ul. 1989). These studies also found that teleost GH have little or no 

cross-reactivity in mammalian species, whereas ma& GH have strong cross- 

reactivity in a wide range of vertebrates, including most teleosts. Thus, teleost GH are 

usually considered to be divergent from the main line of tetrapod evolution in terms of 

their structure-activity featrrres (Nicoll et ut. 1986, Hayashichi 1975, NicoU eta(. 1987). 

According to these early studies, binding of labeled teleost GH to mammalian GH 

receptors would be expected to be negligible or of low affinity. However, dunng a 

study (Chapter 3) of h e  biochemical nature of GH receptors in the goldfish, I 

serendipitously found that a recombinant GH h r n  common carp was abie to cross- 



react with rabbit and rat hepatic GHR. This surprising finding led me to question the 

validity of the genemi concept that teleost GH are iaactive in mammals- In the present 

study, the cross-reactivity between mammalian GH receptors and recombinant GH 

from three teleosts was investigated more l l l y  using GH bindmg assays and the in 

viiro 3T3-F442A preadipocyte bioassay (Corin etal. 1990). These results indicate that 

at least two teleost GH molecuIes retain full bioactivity in mammals. 



4.2 Materials and Methods 

Goldfish of the common or comet varieties were maintained as previously 

described (Chapter 2). Male rainbow trout weighmg 1.5-2 kg was purchased locally 

(McNabb Trout Hatchery). Livers tiom male New Zedand White rabbits a d  female 

Wistar rats were kindly provided by Mr. R Risling and Dr. A. Richardson 

(Departments of Physiology and Anatomy and Cell Biology, University of 

Saskatchewan). All animals were used in accordance with guidehes established by the 

Canadian Council on Animal Care. 

Recombinant rainbow trout GH (rtGH) was purchased h m  Gro-Pep Co. 

(Adelaide, Australia). This rtGH corresponds to type I of the two trout GH variants 

(Ageilon et a/. 1988). Recombinant sea bream GH (rsbGH) and rcGH were kindly 

provided by Dr. A. Gertler (The Hebrew University of Jerusalem, Israel). bGH and 

rPRL were o h e d  as & s c n i  previously (Chapter 2). Carp prolactin (cPRL) was a 

gift h m  Dr. R E. Peter (University of AIberta, Canada). Recombinat human GH 

(rhGH) was purchased fiom Backm hc. (Torrance, CA). CeU culture media and sera 

were purchased h m  Canadran Life Technologies (Burlington, ON). All other 

chemicals were purchased fiom Sigma Chemical Co. (St. Louis, MO) or BDH 

ChemicaIs (Edmonton, AB). 



GH b a g  assays were used to examine the interaction between the various GH 

and receptors h m  rabbit, rat, goldfish and rainbow trout liver membmnes. lodination 

of the GH was performed using the lactoperoxidase method as descri i  previously 

(Chapter 2). Specific activities of the iodinated hormones prepared in this way were 

routinely more than 100 pCi pg1 when determined using self-displacement (Calvo et 

al. 1983) in the receptor binding assay. Goldfish and rainlx)w trout liver membrane 

preparation and GH binding assay were conducted as descn'bed previously (Chapter 

2). Rabbit and rat liver membrane preparation and receptor binding assay were 

performed using published methods (Haro et a!. 1984) with a sIight modification to 

assay buffer pH as d e s c n i  below. The 100,000-g Liver membrane hction was used 

in the binding assays. 

3T3-F442A 

3T3-F442A cells were generously provided by Dr. H. Green (Harvard University, 

Boston, MA). The antimitogenic activity of various GH in this cell line was 

determined according to the method of Corin et al. (1990) with minor modifications. 

Briefly, 3T3-F442A ceIIs were plated in 24-well dishes (Falcon) in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10% c;.Plf serum at a density of 

2 x 105 cells/cm2. After 4 h of incubation at 37°C in a humidified atmosphere (5% 

C02/95% air), the DMEM was replaced with a serum-& medium (SFM) (Corin et 

al. 1990) containing increasing amounts of GH. The ceh were cultured for an 



additional 5 days, after which the medium was changed to SFM with 4% fetal calf 

sennn. The celk were then cultured for 2 additional days. 

At the end of thls incubation period, cell number was determined using a 

colorimetric assay based on the mitochonQid conversion of 344,s-dimethylthiazol-2- 

y I)-2,s-diphenyltetrazolium bromide (MTT) to formazan (Plumb et d. 1989). The 

cells were washed twice with phosphate-buffered saline (PBS; 0.15 M NaCI, 8 m M  

Na2WO4 and 5 mM EDTA, pH 7.4) and 100 pl of MTT solution ( l mg ml" in PBS) 

was added to each weii. The plate was wrapped in aluminium foil and dlowed to 

incubate for 5 h at 37°C in a humidified atmosphere (5% C02195% air). After the 

incubation, the MTT solution was removed by aspiration, and each we11 was rinsed 

once with PBS. The PBS was discarded and 120 PI of dimethyl sulfoxide was added to 

each well and mixed throughly by trimtion to ensure al l  the fonnazan crystals were 

dissolved The contents of each we11 were transferred into spectrophotometric cuvettes 

and diluted with distiIled water to a final volume of 400 yl. The fonnazan 

concentration in each cuvette was determined with a Beckman DU-7 

spectrophotometer at a test wavelength of 570 nm and a refefence wavelength of 690 

nm. In this assay, cell number is directly proportional to the fomazaa concentration 

(Plumb et 41. 1989) and results are expressed as the optical density (OD) 

corresponding to the formazan concentration. The ALLFlT @e Lean et d. 1978) 

computer program was used to analyze the m vztro doseresponse cmves and 

&&mine the half-maximal effective dose 0 5 0 )  for each hormone. 



Data from GH binding studies were subjected to LIGAND @funson & Rodbard 

1980) analysis to determine the Ka and B- values- When appropriate, displacement 

curves were also analyzed &ng the ALLFIT (De Lean er al. 1978) computer program 

Other data were a d y s e d  with ANOVA followed by the Student-Newman-Keuls 

multiple comparison test. 



4.3 Results 

The optimal binding of 1251-~CGH to rabbit liver membranes, defined as the 

highest SB with low NSB was found to occur at pH 6.5 (Fig. 4.1). This is s i m k  to the 

previous finding for the binding of 12%-~CGH to goldfish liver membranes (Chapter 2). 

M a d  specific binding of 1251-~GH to rabbit (Fig. 4.1) liver membranes was found 

to occur at pH 7.4, but was only slightly reduced (4%) at pH 6.5. The binding of 

~ % S ~ G H  and 1 2 5 1 - r t ~ ~  was similar at either pH (Fig 4.1). Thus, an assay buffer 

pH of 6.5 was selected for all binding assays in order to allow direct comparisons to be 

made among the various hormones. 

GH binding assays were conducted in two ways: liver membranes were incubated 

with increasing amounts of either labeled GH or the unlabeled GH in the presence of a 

constant amount of labeled hormom. LIGAND analysis of 1 2 5 ~ - b ~ ~  binding to rabbit 

and rat liver membranes indicated two classes of binding sites: high mty, low- 

capacity sites, and low afEaity, high capacity sites (Fig 4.2). In contrast, a single class 

of high-affnity and low-capacity binding sites for 1 2 % - r e ~ ~  and 1251-rt~H was 

identified in rabbit and rat liver membranes (Fig. 4.2). A single class of binding sites for 

1 2 5 1 - r s b ~ ~  was also identified in rabbit liver membranes, but with a much lower 

affiity (Fig. 4.2). The Ka and B- for iodinated bGH, rcGH, rtGH, rsbGH and 

rhGH m rabbit, rat, goldfish and rainbow trout liver membranes are summarized in 

Table 4.1. 



Displacement of 1251-~GH or 1251-~CGH fiom rabbit liver membranes by various 

unlabeled hormones is shown in Figure 4.3. When 1251-~GH was used, ALLFIT 

analysis revealed that the bGH and rcGH displacement curves displayed similar values 

for the minimally effective concentration of hormone, slope and EDSO. However, the 

theoretical concentration of rcGH resulting in maximal displacement was significantly 

higher than that of BGH. When 1 2 5 1 - r c ~ ~  was used, all parameters of bGH and rcGH 

dispkement curves were identical (Fig, 4.3). Prolactins displayed relatively little 

displacement of either labeled GH (Fig. 4.3). When I ~ % - ~ G H  was used, the relative 

cross-reactivities of bGH, rcGH, rsbGH, rPRL, and cPRL as determined by LIGAND 

analysis were found to be 100%, 100.9%, 2.1%, 0.16% and 0.03%, respectively. In the 

binding assay of ~ % ~ C G H  to rabbit liver membranes, the dative cross-reactivities of 

rcGH, bGH, rsbGH, cPRL, and rPRL were found to be IOU%, 102,4%, 3.2%, 0.2%, 

and 0.16%, respectively. 

AU GH tested displayed antimitogenic activities in 3T3-F442A preadipcyte dl 

line (Fig. 4.4). ALLFIT analysis of these dose-response curves revded that rhGH had 

the highest antimitogenic activity for 3T3-F442A preadipocytes with an ED50 of 

0.046 2 0.005 nM (mean + SEM, n=3). In contrast, rsbGH bad the lowest 

antimitogenic activity with an ED50 greater than 0.05 M The antimitogenk activity of 

bGH was similar to that of rcGH and rtGH, with ED50 of 0.093 2 0.016 nM, 0.096 2 

0.0 12 nM and 0.098 2 0.0 17 nM (mean + SEM, n=3), respectiveIy. 



4.4 Discussion 

This study provides strong evidence that recombinant GH tiom some teleosts 

highly cross-reacts with mammalian GHR. Such evidence includes high affinity binding 

of rcGH and rtGH to rabbit and rat liver membranes, and a biological activity of rcGH 

and rtGH equivalent to bGH in the 3T3-F442A cell line. These results support my 

previous finding of an identid banding pattern for rcGH and bGH in SDS-PAGE 

following covalent receptor cross-linking to rabbit and rat liver proteins (Chapter 3). 

LIGAND analysis of 12%-~GH binding to rabbit and rat liver membranes 

identified two classes of binding sites for bGH. In contrast, only a single class of 

binding sites for rcGH, rtGH and rsbGH was found in rabbit and rat Liver membranes. 

The single class of rcGH binding sites appears to be very similar to the high affinity 

bGH binding sites in both rabbit and rat liver membranes. Cross-reactivity of rcGH 

with only high affinity binding sites was also evident in the displacement of labeled 

bGH and rcGH fiom rabbit liver membranes by various unlabeled hormones. In these 

experiments, displacement curves fiom unlabeled rcGH and bGH were generally 

similar. However, the concentration of dabeled rcGH needed to cause maximal 

displacement of 1251-~GH was significantly higher than that of uuIabeIed bGK This 

difference can be explained by a iack of cross-reactivity between rcGH and the low 

affinity bGH binding sites in rabbit liver membranes. In both the 12%-~GH and 12% 

rcGH drsplacement tests, prolactins were considerably less potent than GH suggesting 

that the rabbit binding sites were specific for GH. 

The high affinity site has been reported to be associated with bioiogical responses 

in mammals (MelIman et al. 1986, Sauawein et at- 199 1). My finding that rcGK rtGH 



and bGH were equally biologically active in the 3T3-F442A cell line suggests that the 

high affinity rcGH and rtGH binding sites id-ed in rabbit and rat her membranes 

also leads to a biological response. Human GH displayed the highest antimitogenic 

activity in 3T3-F442A preadipocytes as has been found in other studies (Vashdi et d. 

I992, Fine et al. 19936). The higher bioIogicaI activity of rhGH in this ceU line bas been 

attriiuted to an increased ability to induce post-binding effects such as receptor 

dimerization (Vashdi et al. 1992). 

rsbGH displayed a much lower affinity than bGH in the rabbit GH receptor 

binding assay and little cross-reactivity with rat liver membranes. The considerably 

reduced affinity of rsbGH in the radioreceptor bindiag assays dso corresponded to a 

much lower biological activity in the 3T3-F442A preadipocytes. The low cross- 

reactivity of rsbGH with mammalian GH receptors reflects the general pattern 

reported for other teleost GH (Tarpey & Niwll 1985, NicolI er al. 1987, Le Bail et al. 

I989). 

It is not clear why rcGH and rtGH but not rsbGH shows high cross-reactivity 

with mammalian GH receptors. Sequence analysis of vertebrate GH indicates that the 

structure of GH is fairly we11 conserved throughout vertebrate evolution (NicolI er 4. 

1987, #en er al. 1994). Interestingly, studies on the structures of GH h m  common 

carp (Fine er al. 1993a, Chen a af. I994), goldfish (Mahmoud er uf. 1996) and other 

cyprinid species (Chen et af. 1994) bave found that GH from these species possess 

tive cysteines, as opposed to four in other vertebrates. In rcGH, four of the cysteines 

at positions 48, I6 1, 178, and 186 are structurally homologous to those found in other 

vertebrate GH (Fme et al. I993a). However, comparison of rcGH to hGH have 



revealed that the cysteine at position 123 in rcGH corresponds to a leucine at position 

128 in hGH (Fine et al. 1993a). This residue contributes to the formation of the core of 

the four-helix bundle in hGH rather than being directly involved in binding to the 

receptor (Fine et al. 1993a). A recent study has shown that goldfish possess cDNAs 

encodmg for two different GH; one with a cysteine residue at position 123, and the 

other with a seine at position 123 (Mahmoud et al. 1996). These authors suggested 

that goldfish and other cyprinid GH may require a polar amino acid at position 123 

which is not necessarily a cysteine (Mahmoud et al. 1996). The present study also 

suggests that the presence of an extra cysteine residue in rcGH does not contribute to 

the high cross-reactivity of rcGH to rabbit and rat GHR This conclusion was W e r  

confirmed by the finding of high cross-reactivity between rabbit and rat GHR and 

rtGH which has only four cysteine residues. 

rtGH was also found to highly cross-react with goldfish GHR whereas rsbGH, 

bGH and rhGH dispIayed little binding with goldtish GHR Binding of rcGH, rsbGH, 

bGH and rhGH to hepatic GHR from rainbow trout was too low to allow LIGAND 

analysis. These results indicate that the species-specificity for GH and GHR 

interactions is complex and will require more structural information on teleost GHR to 

Nly understand the biochemical basis for this finding. 

To my knowledge, this is the first report where two teleost GH have been found 

to highly cross-react with mammalian GHR, and contrasts with d e r  liudings that 

teleost GH display little or no activity in mammals (Pickford 1957, Hayashida 1975, 

Hayashida & Lewis 1978, Farmer et al. 1981, Tarpey & NicolI 1985, Nicoll et d. 1987, 

Le Bad er aL 1989, Goodman et a[. 1996). These eadier findings lead to the gamd 



conclusion (Goodman er al. 1996) that teleost GA is divergent from other vertebrate 

GH in terms of structure-activity. However, my results clearly indicate that GH fiom 

at least two teleosts has an ability to highly cross-react with mammalian GHR Thus, 

broad condusions about teleost GH may not be valid, and the structure-activity 

relationship of GH h m  each teleost should be examined on an individual basis. 



Figure 1.1 Effect of assay buffer pH on the binding of "*I-~GH, i % c ~ ~ ,  1 251_ 

nGH and 1 2 5 1 - a b ~ ~  to rabbit liver membranes. Data, expressed as meankSEM, were 
obtained by pooling results From three experiments, each carried out in triplicate with 
liver membranes from a different animal. For each GH, specific binding at the diierent 
pHs were compared using the Student-Newman-Keuls multiple comparison test 
(p<0.05); groups with same superscript letter displayed a similar level of specific 
binding. 
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Figare 4.2 Scatchard plots produced by incubating iaaeadog amounts of I2I1-bW 
12%rc~H, 1251-rtGH and 131-rsbGH with rabbit (panel a), rat ( p e l  b), gddfish 
(panel c), aod rainbow trout (pancl d) Iiver membranes. Data, expessed as -SEW 
were obtained by pooling d t s  fiom four experiments, each Cured out in a i ~ b e  
and with Iiver membranes fiom a different animal. 
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Figure 4.3 Displacement of 131-~GH (top panel) and [25[-rcGH (bottom panel) tiom 
rabbit liver membranes by increasing amounts of various unlabeled hormones. For the 
1251-bGH experiment (top panel), ALLFIT analysis indicated that the theoretical 
concentration of unlabeled hormone causing maximal displacement was significantly 
different (*p< 0.05) between rcGH and bGH. Data, expressed as meanfSEM, were 
obtained by pooliag remlts from three experiments, each carried out in triplicate and 
with liver membranes hrn a different animal. 
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Figure 4.4 Antimitogenic activity of various GH in the 3TSF442A preadipocyte cell 
line. Cell number was determined by the M'IT assay and data are expressed as the 
optical density (OD) corresponding to the concentration of formazan. Data, expressed 
as meankSEM, were obtained by pooling results fiom three different experiments, each 
carried out in nipticate. 



Table 4.1 Comparison of bGH, rhGH, rcGH, rsbGH, and rtGH bindingsites in liver 
membranes prepared from rabbit, rat, goldfish, and rainbow trout. The & and Bmax 
values for Liver membranes fiom rabbit, rat, goldfish, and rainbow trout were obtained 
by LIGAND analysis of the results presented in Figure 4.2. All data are expressed as 
mean.SEM (n=3 or 4) and were obtained by pooling results from three or four 
experiments, each carried out in triplicate and wirh liver membranes from a different 
animal. 

Source of Ka Bmax 
Hormone (109 M-1) (fmoVmg protein) 

membranes 

Rabbit bGH 
(n=4) 

Goldfish 
(n=3) 

Rainbow 
trout 
(n=3) 

r hGH 
rcGH 
nGH 
rsbGH 

rhGH 
rcGH 
rtGH 
rsbGH 

bGH 
rhGH 
rcGH 
rtGH 
rsbGH 

rhGH 
rcGH 
rtGH 
rsbGH 

* Ka and Bmax values are not available due to low (~2%) specific binding of the labeled 
hormone. 



CHAPTER 5 IDlENTIFICATION OF GROWTH HORMONE BINDING 

PROTEINS M GOLDFISH SERUM AND EEPATOCYTE CULTURE MEDIUM* 

5.1 htroduction 

Circulating GHBP have been identified and characterized in the serum of a nuder 

of mammalian species including the mouse (Peeters & Friesen 1977, Smith et ai. 1989), 

rabbit (Ymer & Herington t 9851, rat (Baumbach et d 1989, Amit et d. 1990, Massa et 

al. 1990), dog and pig (Lauteric et a!. 1988), sheep (Davis ef al. 1992, Amit et al. 

1 W2), goat (Jarnmes ef al. 1996), guinea pig (Ymer et al. 1997), and human (Baumann 

et al, 1986, Herington ef d. 1986). In mouse and rat, GHBP is derived by translation of 

an alternatively spliced GHR mRNA lacking the appropriate transmembrane and 

intracellular domains of the GHR (Smith et ui. 1989, Baumbach et al. 1989). In humans 

and rabbits, GHBP is considered to be IargeIy generated h m  proteolytic cleavage of 

the membrane-anchored receptor (Barnard & Waters 1997). The mechanistic details of 

proteoIytic shedding of the human and rabbit GHR remain unclear although a mest 

study in the EM-9 Lymphocyte culture (AIele et aL 1998) indicated the involvement of 

a metaIIoprotease. 

* Portions of the results presented in Chapter 5 have been published else* (Zhang 
& Marchant 1999). 



In other vertebrate groups, studies on GHBP are very limited. There are reports of 

serum GHBP in domestic poultry (Vasilatos-Younken et al. 1991, Davis et al. 19921, 

the turtle, Chrysemys dorbigni (SoteIo et al. 1997), and the rainbow trout (Sohm et al. 

f 998). The god of the present study was to investigate the GHBP ia the circulation of 

the goldfish GH binding assay and ti@ blotting techniques were employed to 

identie GHBP in goldfish serum and from cultured hepatocytes. The binding 

characteristics and molecular sizes of goldfish senun GHBP were also compared to 

those in rabbit and rat sera. These results provide clear evidence that a GHBP exists in 

the goldfish, as in other vertebrates, and indicate that the physiological role of GHBP 

in teleosts needs to be investigated in future studies. 



5.2 Materials and Methods 

5.2.1 E- 

Goldfish of the common or comet varieties were maintained as previously 

d e s c n i  (Chapter 2). All studies were conducted in November with reproductively 

immature fish (50-70 g) of mixed sex The goldfish were auaesthetized by immersion in 

0.005% (wthol) MS222. Blood samples were obtained fiom each fish by inserting a 

25-gauge needle attached to a disposable syringe into the caudal vasculature. The blood 

was centrihged at I0,000 g and serum was collected and stored at -20°C. Serum fiom 

female New Zealand White rabbits and male Wistar rats was kindly provided by Drs. 

K. Prasad and A. kchardson (Departments of Physiology and Anatornay and Cell 

Biology, University of Saskatchewan). All animals were used in accordance with 

guidelines established by the Canadian Council on Animal Care. 

537- 

rcGH, rsbGH, bGH, rPRL and cPRL were obtained as d e s c n i  previoudy 

(Chapters 2 & 4). Electrophoresis equipment and reagents were purchased h m  

BioRad Co. (Mississauga, ON). Ultmgel AcA54, iodoacetamide, cell culture reagents, 

and all  other chemicals were purchased h m  Sigma Chemical Co. (St. Louis, MO). 

. . - .  

lodination of the GH was performed as previously clescn'bed, us@ the 

Iactoperoxidase method (Chapter 2). The specific activity of the labeled hormones was 



routinely more than 100 pCi C i ~ l  when determined using selfdsplacement (Chapter 

2) in liver membrane receptor binding assay. 

Serum binding studies were carried out using modif?cations of a published method 

(Ymer & Herington 1985). Incubation of goldfish, rabbit and rat sera with iodinated 

hormones was performed at 2 1-23°C for 4 h using a 10 m M  phosphate assay bIrffer 

containing 10 m M  MgCI2,0.02% (wt/vol) sodium ad&, and 0.1% (wt/vol) BSA, at 

pH 6.5 in a f i ~ I  volume of 250 pL Goldfish, rabbit and rat sera were used at a hd 

protein level of 800 pg Separation of bound ligand h m  fiee Iigand was performed by 

gel filtration on AcA54 minicolumns (0.8 x 30 cm) at 21-23°C (Ymer & Herington 

1985). Data were subjected to LIGAND (Munson & Rodbard 1980) analysis to 

determine the Ka and Bm values, When appropriate, displacement curves were also 

analyzed using the ALLFIT (De Lean et al. 1978) computer program. 

Ligand blotting of GHBP fiom goldfish, rabbit and rat sera was performed using a 

slight modification of pubIished methods (Hocquette et 1990, Vasilatos-Younken et 

af. 199 1). Briefly, 20 pg of serum protein was separated by SDSPAGE on a 7.5% gel 

under both teducing and non-reducing conditions (Laemmli 1970). Under the reducing 

conditions, s e m  proteins were treated with 100 mM DTT or 5% (vollvol) p- 

mercaptoetfianol prior to separation. Prestained moIecuIar weight standards (BioRad, 

Richmond, CA) were separated in another lane of the gel, Separated proteins were 



transferred to nitrocellulose (0.45 pm pore size) using a BioRad mini transfer unit with 

Towbin buffer (25 mM Tris, I92 rnM glycine, and 20% methanol, at pH 7.4). The 

nitrocellulose membw was washed with 3% Nonidet P-40 in Tris saline (10 m M  

Tris, I50 mM NaCI, pH 7.4) for 30 min and placed in bloclang buffer (Tris saline 

containing 2% skim milk powder, I% BSA and 0. I% Tween-20, pH 7.4) for 2 h. The 

nitrocelluIose membrane was then incubated with approximately 200,000 cpm of tracer 

in 50 ml of assay buffer in the presence or absence of excess unlabeled GH (10 pg d-') 

for 24 h at room temperature. FinaLly, the nitrocellulose membrane was washed, dried, 

and exposed to X-ray fiIm (Kodak X-Omat AR5 or Biornax MS 1) for 4 days at -70°C. 

Preparation of goldfish hepatocytes is descn'bed in detail elsewhere (Appendix A). 

Goldfish hepatocytes cultured for 3 days were used in this study as the physiobgical 

function of the hepatocytes was well maintained at this time (Appendix A). In order to 

release GHBP in the culture medium, hepatocytes were mated with 20 m M  

iodoacetamide for 1.5 h at 26°C. Similar iod-de treatment has been reported to 

release a maximum mount of GHBP into the culture medium b m  IM-9 lymphocytes 

(Trivedi & Daughaday 1988, Alele el (11. 1998). At the end of the incubation, the 

medium was wUected and any remaining ceUs were removed by centrifirgation Twenty 

micrograms of medium protein was separated by SDS-PAGE on a 12% gel (kmdi 

1970) under both reducing and non-reducing conditions. Separated proteins wete then 

subjected to ligand blotting as descri i  above. 



5.3 Results 

CrH . * 

AN binding assays were carried out at pH 6.5, slightly lower than is routinely used 

in mammalian binding assays (Ymer & Herington 1985). This change was necessary as 

the optimal binding of 12 '1 - rc~~ to all serum binding proteins, dehed as the highest 

$8 with lower NSB, was found to occur at pH 6.5 (Fig. 5.1). This is similar to my 

previous finding for the binding of 1 2 ' 1 - r c ~ ~  to goldfish and d a n  liver 

membranes (Chapters ? & 4). Specific binding of 2 5 ~ - b ~ ~  to rabbit and rat serum 

was only slightly reduced ( ~ 1 % )  at pH 6.5 (Fig, 5.1) compared to that at pH 7.4 with 

no alteration in the shape of the I Z S 1 - b ~ ~  displacement curve. Thus, an assay bu&r 

pH of 6.5 was selected in order to allow direct comparisons to be made between rcGH 

and bGH in ail species. 

Binding of 1 2 5 ~ - r c G ~  to goldtish serum was also dependent on incubation time 

and temperature (Fig. 5.2). At the optimal pH of 6.5, equilibrium was reached after 

incubation for 3 h at 24OC (Fig 5.2). The fraction of l 2 ' l - ~ ,  'Y-~GH and 12'1- 

rsbGH that wouId bind to an infinite concentration of serum protein was calculated to 

be approximately 80% of the totd radioactivity added Therefore, total binding was 

corrected prior to LEGAND analysis as descn'bed previously (Chapters 2 & 4). 

Typical eiutioo profiles for the total and noo-specific binding of %~GH to goldfish 

serum are shown in Figure 5.3. Three peaks were obse~ed for the total or non-specific 

binding profile (Fig. 5.3). Peak I in the total binding profile represented totd bmding to 

GHBP which was largely inhiiited by the presence of excess dabekd rcGH in the 



incubation mIrrture prior to gel filtration. Peak I in the non-specific binding profile 

represented noa-specific binding of 1 2 5 1 - r c ~ ~  to gpldfish sem. Peak II and Peak ID 

represented free 1 2 5 i - r c ~ ~  and ~ a I ~ ' 1 ,  respectively (Fig 5.3). Spcific binding of 

1 2 5 ~ - r c ~ ~  to serum GHBP was dculated as the difference between the t o t .  and 

non-specific radioactivity corresponding to the Peak I fractions. 

LIGAND analysis of 12*1- rc~~ ,  1-~GH and L 1 5 ~ - r s b ~ ~  biodiag to goldfish 

serum indicated ody a single class of high affinity and [ow-capacity binding sites (Fig. 

5.4). The Ka for 1 2 S ~ - r c ~ ~  binding to goldfish renun was approximately 10-fold 

higher than that of ' Z 5 t - b ~ ~  and 9-fold higher than that of L25t-rsbG~. A single class 

of high-affinity and low-capacity binding sites for L 2 5 1 - r c ~ ~  and 1 2 5 1 - b ~ ~  was also 

identified in rabbit and rat serum. The Ka and Bmax for iodinated rcGH, bGH and 

rsbGH in goldfish, rabbit and rat serum are summarized in TaMe 5.1. 

Displacement of 1 2 5 1 - ~ ~ ~  horn goldfish xnrm by various unlabeled hormones 

is shown in Figure 5.5. The Ka for each hormone was estimated using the LIGAND 

program in order to determine the relative cross-reactivities of the various hormones 

with rcGH as the reference; the Ka of unlabeled rcGH was estimated as 12 (+ 4) x 10 9 

M" (mean+ SEW 0=3)- The relative cross-reactivities nbGEi, bGK cPRL, and rPRL 

were found to be 13.8, 10.9, 1.7 and 0.4%, respectively. 

Displacement of '%~GH and 1 2 5 ~ - r c ~ ~  from rabbit r e ~ n  by various 

unlabeled hormones is shown in Figure 5.6. ALLFIT d y s i s  revealed that aIl 



parameten of the bGH and rcGH displacement curves were identical in the lZ51-bGEI 

and 1 2 5 1 - r c ~ ~  dqlacemmt tests (Fig. 5.6). Prolactins displayed relatively little 

displacement of either labeled GH (Fig 5.6). When 1 2 5 1 - b ~ ~  was used, the rehtive 

cross-reactivities of bGH, rcGH, rsbGH, rPRL, and cPRL as determined by LIGAND 

analysis were found to be 100%, 99.7%, 2.0%, 0.2%, and 0.05%, respectively. In the 

binding assay of 12 '1-rc~~ to rabbit serum, the ~ M v e  cross-reactivities of rcGH, 

bGH, rsbGH, cPRL, and rPRL were found to be I00%, 102.6%, 2.9%, 0.22%, and 

0.17%, respectively. 

The GH bin- site consisted of multiple bands each with high Mr in goldfish 

(70, 80, 120, 180, 240, 360 and 400 KD), rabbit (80, 120, 180 and 240 KD), and rat 

(180 and 240 KD) serum (Fig. 5.7). Serum from aiI three species contained the 180 KD 

and 240 KD bands. Two bands with Mr of 80 KD and 120 KD were also found in 

both goldfish and rabbit serum. The Mr of the labeled bands in all three species was 

aItered under reducing conditions. The Mr of the bands under reducing conditions 

ranged from 27 to 160 KD in the goldfish and rat senun and 27 to 240 KD in the rabbit 

serum (Fig. 5.7). A prominent band with an Mr of 66 KD and a minor band with an 

Mr of 27 KD were observed to occur in serum fiom all three species under dumg 

conditions. The appearance of all bands was completely inhibited by the presence of 

I0 Irg ml" of the Lmlabeled rcGH (Fig. 5.7). 



Iodwetamide promoted the shedding of multiple forms of GHBP from the 

goldfish hepatocyte culture whereas no GfIBP was detected in the conditioned medium 

in the absence of iodoacetamide (Fig. 5.8). The GHBP from goldfish hepatocyte culture 

consisted of three bands with Mr of 25,40 and 45 KD (Fig. 5.8). The appearaace of 

these bands was compIetely inhibited by the presence of 10 pg ml" of unlabeled rcGH 

(Fig. 5.8). The Mr of these bands was not altered under reducing conditions (Fig. 5.8). 



5.4 Discussion 

The existence of specific GHBP in goldtish s e m  and cultured hepatocytes was 

confirmed by rcGH binding and ligand blotting studies. LIGAND analysis of 12%- 

rcGH binding to goldfish serum indicated a single class of high affinity and low- 

capacity binding sires with a Ka of 20.1 x 10' M-'. In msmmals, GHBP can be divided 

into different types based on GH binding affinity (Amit et al. 1992). Type I and Type 

I1 GHBP display low affinity GH binding. Type I GHBP include those of the mouse 

9 -I and rat with a binding affinity of 1.2-3.9 x 10 M (Amit et af. 1992). Type II GHBP 

have even lower GH binding affinity than type I GHBP, and have been found in the 

sheep (Davis er al. 1992, Amit er al. 1992), goat (James  er al. 1996), and cow (Gertler 

er al. 1984, Devolder er al. 1993). All type III GHBP have high affinity binding with 

GH (4.7-9.2 x lo9 M-I), and an present in the rabbit (Ymer & Herington 1985), dog 

(Lauteric er al. 19881, and horse (Amit e t d -  1992). tn birds, chicken serum GHBP was 

found to have the highest Ka value for human OH binding (1.55 x 10' M", Davis et d 

1992). In contrast, lower affinity of s e w  GHBP was reported for turtle (Ka: 3.8 x 

lo8 M-'. Sotelo er ol. 1997) and rainbow trout (Ke: 6.6 x 10' M", Sobm et d 1998). 

Among the species studied to date, goMkh serum GHBP has the highest Ka value. 

This may be attrihted to species differences7 more optimal conditions for rcGH 

binding to goldfish serum, or correction of total binding prior to LIGAND analysis. 

In goldfish, the atlhities of the serum GHBP (Ka: 20.1 x 10' M-I) and liver 

membraae GHR (Ka: 19 x 10' M*', Chapter 2) for rcGH are very d a r .  This implies 



a close relationship between gol&sh serum GHBP and the liver membrane GHR A 

similar Ka for serum GHBP and liver membrane GHR was also found in the rabbit 

(Leung et al. 1987, Spencer et al. 1988), where the GHBP appears to be largely 

generated fiom proteolytic cleavage of the membrane GHR (Bamard & Waters 1997). 

In contrast, the Ka of the rat serum GHBP in the present study was found to be 22- 

fold lower than that of rat liver GHR (Chapter 4) for 1251-XGH or 1 2 5 L b ~ ~  b m h g  

This is similar to previous reports on rat serum GHBP (Massa et al. 1990) and liver 

membrane GHR (Baxter et al. 1980). Rat serum GHBP originates fiom translation of 

an alternatively spliced GKR mRNA rather than directly from proteolytic cIeavage of 

the membrane GHR (Smith t.r al, 1989, Baumbach et al. 1989) which may provide one 

explanation for the difference between the Ka of the serum GHBP and that of the liver 

membrane GHR in the rat 

In the pldtkh GHBP assay, the Ka value for 1251-~CGH was significantly higher 

than that for 1251-~GH. Analysis of displacement of 1251-~CGH hrn goldfish senon 

by various dabeled hormones also indicates that 1%-~CGH binding to goldfish serum 

was highly specific for teleost GH. rsbGH was found to be less potent than rcGK, but 

was slightly more potent than the " GH. Prolactins were coasiderabiy Iess 

potent than GH suggesting that the goldfish serum GHBP were speclfZc for 

somatogenic hormones. This pattern of hormone specificity is simiIar to that of the 

goldfish GHR (Chapters 2 & 4), and firrther indicates that the goldfish GHRlGHBP is 

very species specific in tenns of hormone binding. 



The present results also indicate that rcGH, but not rsbGH, highly cross-reacts 

with serum GHBP fiom the rabbit and rat. These results are in agreement with 

previous findings for GHR in rabbit and rat h e r  membranes (Chapter 4). High cross- 

reactivity of rcGH with the single class of high affinity serum GH binding sites was 

also evident in the displacement of labeled bGH and rcGH from rabbit serum by 

various unlabeled hormones. In these experiments, displacement c w e s  fiom unlabeled 

rcGH were simitar to those of unlabeled bGH. In both the l251-~GH and 1251-~CGH 

displacement tests in the rabbit, prolactins were considerably iess potent than GH 

suggesting that the rabbit binding sites were also specific for GH, 

In the present study, the B- value for serum GHBP was found to be 

considerably higher in the rabbit (-3300 h o l  ml" serum) and rat (-6000 h o l  ml" 

serum) than in the goldfish (-160 h o l  ml-' serum). Amit et al. (1992) measured the 

Bmax for serum GHBP in a number of mammajian species incIuding rabbit, rat, mouse, 

sheep, cow, horse, cat, monkey and human, and reported that it varied between 140 

finoVmI serum and 19,200 finoUml serum. Among other species studied to date, turtIe 

GHBP was found to have a Bmax of 1080 h o l  ml-' serum (Sotelo et al. 1997) whereas 

the Bmax values for serum GHBP fiom rainbow trout (Sohm er al. 1998) and chicken 

5 (Davis et al. 1992) were reported to be remarkably higher, ranging ftom 5.2 x 10 to 1.5 

6 x 10 fino1 ml-' serum or greater. The physiological significance for such large 

variations in the B- value among diffefent species remains unknown. 

Ligand blotting also identified GHBP in goldfish serum and culture medium of 

goldtish hepatocytes. Goldfish, rabbit and rat sera contained GHBP of large Mr, 



ranging fiom 120 KD to 360 KD. These large GHBP complexes in rabbit and rat sera 

have previously been identified by gel filtration (Ymer & Herington 1985, Baumbach et 

al. 1989, Amit et al. 1990, Massa et uf. 1990). In the present study, DTT or & 

rnercaptoethanol treatment resulted in the reduction of the Mr of the serum GHBP 

complexes in aU species, suggesttng that the large bands observed by ligand blotting 

contain disulfide bonds. Similar results have been reported for human serum GHBP 

(Hocquette er al. 1990). In the goldfish, the smallest Mr of serum GHBP under 

reducing conditions was found to be 27 KD. A 27 KD GHBP was also identified in 

serun of chickens and turkeys (Vasilatos-Younken et al. 1991). Previous studies on the 

primary structure of GHR in rat (Baumbach et al. 1989) and mouse (Smith et ai. 1989) 

have indicated that the M of the extracellular domain of the GHR is approximately 30 

KD. Thus, the 27 KD GMBP observed in present study may represent the 

extracellular portion of the goldfish GHR. The release of nnall M r  GHBP finom 

cultured goldfish hepatocytes by iodoacetamide suggests that a mechanism of 

proteolytic cleavage of membrane GHR may also be involved m the generation of 

goldfish GHBP. However, additional studies will be requrred to l l l y  determine the 

nature of the large Mr GHBP in goldfish serum. 

The goldfish GHBP resemble GKE3P h m  other species by displaying a specific 

high affinity and low-capacity binding for GH, presence of multiple forms of GHBP in 

the circulation, and a close relationship with liver membrane GKR. Although circulating 

GHBP have been found in all species tested to date, the precise physiological role of 

GHBP remains unclear (Barnard & Waters 1997). I have previously established and 

vdidated a goldfish GH receptor binding assay (Chapter 2). Together, these results 



indicate that the goldfish will be a very useful model for studies on the physiological 

interaction between GH, GHR, and GHBP in teleosts. 



Figure 5.1 Effect of assay buffer pH on the binding of l Z S ~ - r c ~ ~ ,  lZS1-~GH and '"I- 
rsbGH to goIdfish serum GHBP. Data, expressed as mean_+SEM (n=3), were obtained 
by pooling results from three experiments, each carried out in triplicate with serum 
from a diierent animal. For each GH, specific binding at different pH was compared 
using the Student-Newman-KeuIs multiple comparison test (p<0.05); groups with 
same superscript letter dispIayed a simiIar leveI of specific binding. 

Figure 5.2 Specific binding of '%CGH to g o l a  serum over time at various 
incubation temperatures. Data, expressed as ~ ~ w S E M ,  were obtained from three 
different experiments, each carried out in triplicate. Specific binding of rcGH at various 
temperatures at 3 h was compared using the Student-Newman-Keds multipk 
comparison test (pc0.05); groups with same superscript letter displayed a similar SB. 



Fraction number 

Figure 53  Elution profile of goldfish serum incubated with 1s1-CCGH following gel 
filtration on an Ultrogel AcA54 mini-column. An aliquot of 25 pl goldfish serum 
diluted in 25 pl assay buffer was incubated with approximately 20,000 cpm of 12% 

rcGH in the absence (open circles, total binding profile) or presence (closed circles, 
non-specific binding profile) of excess unlabeled rcGH (1 pg per tube). At the end of 
incubation, the mixture was eluted with assay buffer at a flow rate of 10 ml h-' and 1.5 
min hctions were collected. Fraction pools corresponding to peak I were used to 
calculate bound 1x1-rcGH. Vo, void volume, Vt, total volume. 
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Figure 5.4 Scatchard plots produced by incubating increasing amounts of 1251-bGH, 
1251-rcGH or 1251-nbGH with goldfish (top panel), rabbit (middle panel) or rat 
(bottom pane() serum. Data, expressed as memkSEM. were obtained by pooling 
results fiorn three experiments, each carried out in tripIicate and with serum from a 
different animal. 



Unlabeled hormone (ng) 

Figure 5.5 DispIacernent of 20,000 cprn of r%rcGH from goidfish s e m  by 
increasing amounts of various unlabeled hormones, Data, expressed as rnean_+SEM, 
were obtained by pooling results from three different experiments, each carried out in 
tripticate and with serum from a different animal. 



Unlabeled hormone (ng) 

Figure 5.6 DispIacement of 20.000 cpm of 1 3 1 - ~ G H  (top panel) or 1x1-~CGH 
(bottom panel) from rabbit s e m  by increasing amounts of various unlabeled 
hormones. Data, expressed as mean_+SEM, were obtained by pooling redts fiom three 
different experiments, each carried out in triplicate and with serum fiom a different 
animal. 



A B C D E F  

A B C D E F  

Figure 5.7 Autoradiogram of nitroceIIulose membrane following ligand blotting of 1x1- 
rcGH to goldfish (lanes a, d), rabbit (lanes b. e) and rat (lanes c, f )  serum (top panel). 
AU samples were separated on 7.5% SDS-PAGE under both non-reducing (lanes a, b, 
C) and reducing conditions (lanes d, e, f). Molecular weights (KD) of standards are 
shown on the left. All bands disappeared when the membrane was incubated with 
IabeIed GH in presence of 10 pg ml" of the unlabeled GH (bottom panel). 



Figure 5.8 Autoradiogram of nitroceUulose membrane following Ligand btotting of 
1251-XGH to the culture medium fiom goldfish hepatocytes treated with (lane a) or 
without (lane b) iodoacetamide (top paneb. SampIes were separated on 12% SDS- 
PAGE under non-reducing conditions. Molecular weights (KD) of standards are shown 
on the left. AU bands disappeared when membranes were incubated with Iabeled GH in 
presence of 10 pg mI" of the unlabeled GH. The Mr of the bands was not altered 
under reducing conditions (bottom paneI). Lane c shows binding of 1x1-rcGH to 
culture medium h m  hepatocytes treated with iodoacetamide and subsequent 
incubation of the nitrocelldose membrane with 10 pg mI" of unlabeled rcGH. 



Table 5.1 Comparison of bGH, rcGH and rsbGH binding sites in rabbit, rat and 
goldfish sera. The Ka and Bmax values were obtained by LIGAND analysis of the 
results presented in Figure 4.3. All data are expressed as mean_+ SEM. 

Source Hormone K, (109 M-1) Bmax 

of 

sera 
(fino1 mg-' protein) (fmol mg-' serum) 

Goldfish rcGH 20.1 + 1.8 

( ~ 3 )  rsbGH 2.8 2 0.06 

bGH 2.0 & 0.04 

Rabbit bGH 9.1 & 0.2 

(n=3) rcGH 9.5 + 0.3 

rsbGH 1.1 & 0.2 

Rat bGH 1.250.1 

(n=3) rcGH 1.1 kO.1 

rsbGH * 

* Ka and Bmax values are not avai1abIe due to low (~2%) specific binding of the Iabeled 
hormone. 



CHAPTER 6 I1Y VNO REGULATION OF EEPATIC GROWTB HORMONE 

RECEPTORS IN THE GOLDFEE* 

6.1 Introduction 

In teleosts, GH (Peter & Marchant 1995, Peng & Peter 1997) and nutrition @uan 

1998) have ken  found to play important roles in regulating hepatic GHR. The effect 

of exogenous GH on regulation of GHR has been studied in coho salmon (Gray et al. 

1990, 1992), the long-jawed mudsucker (Gray & Kelley 199 I), and the Japanese eel 

(Mori et at. 1992). Hepatic GH binding was reported to be demeased in the 

hypophysectomized Japanese eeI (Mori et al. 1992) and longjawed mudsucker (Gray 

& Kelley 1991) following GH injection In intact Japanese eel however, hepatic GH 

binding was increased 5 days after GH injection (Mori et a/. 1992). These results 

suggest that endogenous GH may regulate hepatic GHR in teleosts. 

Nutritional status also appears to alter the hepatic GHR @uan 1998). Evidence 

fiom Japanese eeI (Mori et al. 1992), coho salmou (Gray et cJ, 1992) and gihhead 

seabream (Perez-Sbchez er d 1994) indicates that several weeks of starvation 

substantially reduced the total number of hepatic GHR A significant decrease in 

hepatic GHR in coho salmon (Gray et al. 1992) and gilthead seabream (Pkz-Shchez 

* Portions of the results presented in Chapter 6 have been published elsewhere (Zhang 
& Marchant 1996). 



et al. 1994) was correlated with elevated senrm GH concentrations but cessation of 

animal growth. It appears that the GHR down-regulation induced by food deprivation 

reflects a general pattern in teleosts. 

The goal of the present study was to investigate the roles of GH and nutrition in 

the regulation of hepatic GHR in goldfish Comparisons were made between the effect 

of short-term GH injection in intact goldfish and the effect of relatively long-term GH 

injection in hypophysectomized g o ~ d f d ~  The effects of other hormones such as 

prolactin on hepatic GH binding in goldfish were also examined Parameten measured 

in the fasting experiments inciuded hepatic GHR, body weight and length, liver-somatic 

index (LSI), and serum GH, GHBP, T3, Tq, and glucose levels. Serum GH has been 

reported to induce glucose production in mammals (Scadon et al, 1996) and teteosts 

(Bj6rnsson 1997). Thus, the correlation between serum GH and glucose levels was 

examined Levels of T3 and Tq were measured because the effects of GH on somatic 

growth of teleosts are potentiated by thyroid hormones (Eales 1988, Leather[and 

1994). 



6.2 Materials and Methods 

Goldfish of the common or comet varieties were obtained and maintained as 

described previously (Chapter 2). All studies were conducted in November with 

reproductively immature fish (50-70 g) of mixed sex 

rcGH and rPRL were obtained as described previously (Chapter 2 

the rcGH was performed as previously described, using the lactoperoxidase method 

(Chapter 2). The specific activity of the labeled rcGH was routinely more than 100 

pCi !f' when determined using self-displacement in liver membrane receptor binding 

assay (Chapter 2). 

Hypophy sectomy of goldfish ( I  5 to 20 g body weight) was performed using the 

opercdar approach (Yamazaki 1961). Sham operations were performed in a similar 

manner except that the pituitary was not l l l y  exposed in order to minimize possible 

disruption of hypothalamic connections to the pituitary. All surgeries were performed 

in fish deeply anesthetized with 2-phenoxyethanoI(0.3% vollvol). FoUowing surgery, 

hypophysectomized (Hx) and shamoperated fish were maintained in charcoal-filtered 

0.6% (wt/vol) NaCI; the fish were fed to excess twice daily during this recovery period 

Mortality during the recovery period was less than 5%. Completeness of 

hypophysectomy was assessed through cbange in body color (Chavin 1956, Yamazaki 



196 1 ) and by visual inspection for pituiw remnants in the sella region at the time of 

Sacrifice, and was achieved in greater than 95% of the surgeries. 

Hormone administration began I0 days &r surgery. Groups of fish (n=7 per 

group) received a total of three intraperitoneal injections of saline, rcGH or rPRL at 1 

day intervals. The hormones were dissolved in 0.6% (wt/vol) NaCI. rcGH was injected 

at a dosage of 0. I ,  1.0 or 10 Clggl body weight whereas rPRL was injected at a dosage 

of 5 pg g1 body weight Saline-injected animals received an equivalent volume of 0.6% 

NaCl(10 pl g l  body weight). 24 h after the last injection, all fish were anesthetized in 

0.05% MS222 and killed by spinal transection The livers fiom fish in each group were 

col tected, pooled and liver membranes prepared for use in the rcGH receptor binding 

assay as d e s c n i  previously (Chapter 2). Free and totaI GH bmdq sites in liver 

membranes were measured for each group. Total GH binding sites were measured by 

treatment of the liver membranes with 4 M MgCI2 to remove endogenous GH fiom the 

Liver membranes (Chapter 2). 

Groups of fish received a single intraperitoneal injection of saline or rcGH The 

hormone was dissolved in 0.6% (wt/vol) NaCl and injected at a dosage of 1.0 pg gl 

body weight Saline-injected animals received an equivalent volume of 0.6% NaCl (20 

pl gl body weight). AAer the injections, groups (n=7) of fish were anesthetized in 

0.05% (wthol) MS222 and killed by spinal transection at intervals thm 1 to 12 h 

Livers h m  fish in each group were mlIected, pooled and liver membranes prepared for 



use in the rcGH receptor binding assay as descnied previously (Chapter 2). Free and 

total GH binding sites in liver membranes were measured for each group (Chapter 2). 

b7 5 E E  

Goldfish were allowed to feed themselves through a demand feeder for 4 weeks 

prior to the start of the experiments. Two separate fasting experiments were 

conducted At the beghmg of the experiments, fish were weighed, measured for 

length, divided into different groups, and placed in separate tanks. 

The first experiment included two groups of fish, each consisting of 6 fish. Fish in 

one group were fed continuously through a demand feeder whereas fish in the second 

group were fasted for 1 week At the end of the t i n g  period (Day 7), all fish in the 

fed and fasted groups were weighed, measured, sacrificed, and blood samples collected 

for analysis of serum GH, GHBP and glucose. Livers were also collected but were 

inadvertently destroyed during preparation of the membranes for use in the rcGH 

receptor binding assay. Thus, data for hepatic GHR are unavailable for this experiment. 

In the second experiment, 30 fish were divided into 5 groups. Each group, 

consisting of 6 fish, was placed in a separate tank Fish in groups 1, 2 and 4 were fed 

through a demand feeder whereas fish in groups 3 and 5 were fasted for 3 or 7 days. 

Groups of fish were weighed, measured, sacrificed at various time intervals (day 0, 

group I; day 3, groups 2 aad 3; day 7, groups 4 and 5), and her tissues and blood 

samples were collected for analysis of total and free hepatic GHR and senrm GH, 

GHBP, T3, Td and ghcose. LSI was calculated as the percentage of liver weight over 

body weight 



6 v 2 4 - M  

lodination of the GH was performed as previously d e s c n i  (Chapter 2)- Serum 

GH levels were determined using a rcGH radioimmunoassay (RIA) validated for 

meamring circulating levels of GH in the goldtish (Fine et al. 1993b). Senrm GHBP 

levels were measured as d e s c n i  previously (Chapter 5). lodination of thyroid 

hormones was performed using the method of KjeId et al. (1975). The specific activity 

of labeled thyroid hormones prepared in this way was approximately 800 pCi pgl  for 

T3 and 2700 pCi pgL for T4. Serum T3 or Tq measurements were performed in 

unextracted sera by RIA (Chopra 1972) using commercially available T j  and Tq 

antisem (Sigmachemical Co., St. Louis, MO) in combination with labeled T3 and Tq, 

respectiveiy. The minimum detection Limit was 6.25 pg I+' for T3 and 20 pg 1-I for Tq. 

All samples were measured in a single T3 or Tq assay. The within assay variability in 

the T3 and Tq RIA was acceptable; the % coefficient of variation for both assays was 

less than 10%. Serum glucose levels were determined by a glucose oxidase method 

(Young et d 1975) using a glucose test kit (Catalog No. 3 15-500) purchased fiom 

SigmaChemical Co. (St. Louis, MO). 

. - 

Specitif binding of 1 2 5 1 - r c ~ ~  to hepatic GHR and serum GKBP was d M  

as d e s c n i  previously (Chapters 2 & 5). Data from hypophysectomy and hormone 

administration experiments, and fiom f d g  experiments were analyzed with ANOVA 



followed by Student-Newman-Keuls multiple comparison test (F0.05). The Ka and 

B- of 1 2 5 ~ - r c ~ ~  binding to liver membranes from gold£ish in the fartiag experiment 

were determined using the LLGAND computerized program (Munson & Rodbard 

1980). Other data were analyzed using Student's t-test (~0.05). The Spearman rank 

correlation coefficient was used to examhe the relationship between between hepatic 

GHR and serum GHBP in the fasting experiment. 



6.3 Results 

5.3.1 Effects- 

The effects of hypophysectomy, rcGH and rPRL treatmeat on binding of 125~- 

rcGH to pooled liver membmnes treated with or without MgC12 are shown in Figure 

6.1. The number of total binding sites in sham-operated goldfish was 1-8 times bigher 

than that of h e  binding sites. In contrast, all the Hx goldfish had similar numbers of 

total and fk binding sites. Membranes fiom saline-injected Hx goldfish displayed a 

sigdicant increase in totd binding sites when compared to membranes fiom saline- 

injected sham-operated animals (Fig. 6.1). Following injection of rcGH to tIx fish, the 

number of both total and h e  binding sites was significandy decreased compared to 

that of Hx fish injected with saline. The decrease in total and k binding sites was 

dependent on the dosage of rcGH with dosages of 0.1, 1.0 and 10 pg g 1 d t h g  in a 

27%, 52% and 68% demase in total binding sites and a 25%, 53% and 65% decrease in 

free binding sites, respectively (Fig 6.1). Injection o f  5 pg gl rPRL into Hx goldfish 

also resulted in a 32% decrease in total binding sites and a 34% ckease in 6'ee binding 

sites (Fig. 6.1). 

The effects of a singie nGH injection on binding of 1 2 S 1 - r ~ ~ ~  to pooled liver 

membranes from intact goidfish are shown in Figure 6.2. Administration of rcGH 

resulted in a rapid down-reguIation of hepatic GHR Fig. 6.2). The lowest levels of 

both fke and total binding sites were reached 2 h after rcGH injection (Fig. 6.2). 12 h 



after injection of rcGH, the levels of both hx and total binding sites were restored to 

those observed prior to rcGH treatment and were similar to that observed in saline 

injected fish (Fig. 6.2). in contrast, membranes fiom saline-injected goldfish displayed 

no change in both h e  and total binding sites over the entire sampling period (Fig. 6.2). 

3 E- 

Changes in body weight and length of goldfish from both first and second 

experiments were shown in Figure 6.3. In the first experimenf fasted tish lost 

approximately 8.3% of their body weight whereas the body weight of fed fish 

increased by 3.7% at 1 week (Fig. 6.3). The body Iength of fasted and fed fish in the 

first experiment decreased by 0.9% and increased by 2.6%, respectively (Fig. 6.3). In 

the second experiment, in comparison with those of fish at day 0, the body weight and 

length of fasted fish decreased approximately 3% and 0.2% at day 3 and 9% and 1% at 

day 7, respectively, whereas those of fed fish increased approximately 1.8% and 0.3% 

at day 3 and 4.2% and 2.8% at day 7, respectively (Fig 6.3). Fasting resulted in a 

significant reduction in LSI of goldfish at both day 3 and day 7 (Fig. 6.4). 

In the first experiment, senan gIucose (Fig. 6Sa) and GH (Fig. 6.5b) levels in 

fasted fish increased only slightly whereas serum GHBP (Fig. 6 . 5 ~ )  levels significantly 

decreased in fasted fish However, fasted fish from the second experiment had 

s ign i f idy  higher serum glucase (Fig. 6.6a) and GH (Fig. 6.6b) Ievels than the control 

fish at both day 3 and day 7. A significant reduction in serum GHBP (Fig. 6 .6~)  and 

total hepatic GH binding sites (Fig, 6-66) was also found in fisted fish fiom the second 

experiment at both day 3 and day 7. LIGAND analysis of 1 2 5 ~ - r c ~  binding to liver 



membranes from each group of goldfish indicated that Ka was not altered by tist@ 

(Fig. 6.7). A s i g d i ~ ~ ~ l t l y  positive correlation was found between hepatic GHR and 

serum GHBP levels in goldfish fiom the second experiment (Fig. 6.8). Serum T3 Ievels 

of fasted goldfish fiom the second experiment were not sigmficant Merent compared 

to those of control fish at day 3 and day 7 (Fig. 6.9). In contrast, s e m  T4 Ievels were 

significantly decreased in fasted fish compared to hose of control fish at both day 3 

and day 7 (Fig. 6.9). 



6.4 Discussion 

The number of total 1251-rcG~ binding sites in liver membranes from sham- 

operated goldfish was almost 2-fold higher than the number of h e  binding sites, 

indicating that some of the binding sites were occupied by endogenous GH in the 

sham-operated animals. The existence of endogenous GH in liver membranes has been 

reported in a variety of teleosts (Gray et 01. 1992, Mori et al. 1992, Perez-Shchez et 

ai. 1994) and mammals (Kelley et al. 1979, Maiter et d 1988). Hepatic membranes 

h m  Hx goldfish had similar values for the number of total and fire 1 2 5 1 - r c ~ ~  bin- 

sites, which reflects the lack of circulating GH in the fix fish. This result also indicates 

that the injected rcGH was removed h m  the circulation system of the Hx fish by the 

time of sampling. It has been reported that the time required for the total clearance of 

injected GH is 24 h for Hx Japanese eel maintained at 2 0 ' ~  (Mori et al. 1992) and 6 h 

for Hx rat (Maiter et 41. 1988). 

Hypophysectorny has been reported to reduce the number of total and fiee GH 

binding sites in rabbit and sheep (Posner et af. 1980), pregnant mouse (Sanchez- 

Jimenez et al. 1990), female rat (Baxter & Zaltsman 1984), long-jawed mudsucker 

(Gray & Kelley 1991), and Japanese eei (Mori et al. 1992). In contrast, 

hypophysectomy did not alter totaf and h GH binding sites in the male rat (Baxter & 

Zaltsman 1984) and coho salmon (Gray et al. 1992). These results suggest that the 

effect of hypophysectomy on hepatic GH binding may vary according to species or 

sex. Hepatic membranes from Hx goldfish injected with saline had a significantly higher 

number of total 1 2 5 1 - r c ~ ~  binding sites thau those of sham-operated fish, indicating 

an upregulation of GH binding sites by hypophysectomy m the goldfish This finding 



suggests that endogenous GH may play a role in the regulation of its own receptors in 

the goldfish 

In vivo adminimation of rcGH to Hx gold6sh reduced the number of 1251-~CGH 

binding sites in a dose-dependent manner. Rat PRL also reduced 1251-~CGH binding 

sites, but at a 50-fold higher dose than rcGH. These results suggest that administration 

of rcGH induced GH receptor down-regulation in the goldfish her. GH treatment m 

vrvo has been reported to cause down-regulation of GHR under some situations in 

long-jawed mudsucker (Gray & Kelley 1991), coho salmon (Gray et al. 1992) and 

Japanese eel (Mori et al. 1992). The finding that rPRL treatment also decreased the 

number of total I%~CGH binding sites in the goldfish provides the possibility that 

PRL may also have a role in GH receptor regulation However, whether PRL acts by 

cross-reacting with GH receptors or indirectly via its own receptor is not clear. 

The rapid decrease in both h e  and total GH binding sites in intact goldfish after a 

single rcGH injection also suggests that GH may play a role in the short-term down- 

regulation of its own receptors in the goldfish The levels of hepatic GHR in intact 

goldfish were restored to the control levels by 12 h after rcGH injection. In mammals, 

acute down-regulation of the GE3R may involve multiple rapid and complex pathways, 

including dimerization of GHR, cellular internalization of the GH-GHR complex, and 

cellular degradation, recycling, or synthesis of GHR (Goffin et al. 1998). 

Hepatic GHR in fasted goldfish also decreased signiscantly. A s i m k  reduction in 

hepatic GHR was reported for salmonids (Gray et al. 1992, Duan et d 19941, gilthead 

seabream (Perez-Shchez et a/. 1994), and Japanese eel (Duan & Hirano 1992). The 

present study found that lower levels of hepatic GHR were coincident with hi* 



levels of serum GH. Such higher tevels of endogenous GH may induce a down- 

regulation of hepatic GHR in fasted goldfish as hi above. 

Sennn GHBP levels were also lower in fasted fish than in fed animals. Studies 

from mammals have found a signrficant positive correlation between hepatic GHR and 

serum GHBP in rats (Massa et al. 1990) and humans (Baumann et al. 1987, Daughaday 

et a/. 1987) whereas no relationship between hepatic GHR and sewn GHBP was 

found in rabbit (Heinrichs et al. 1997). To date, there is no information available on the 

physiological regulation of GHBP h m  teleosts. The present study in goldfish, 

however, found that hepatic GHR was signrficantly correlated with sewn GHBP in 

the fasting experiments. Thus, the concentration of serum GHBP appears to reflect 

hepatic GHR levels in the goldfish, indicating that hepatic GHR may be the primary 

source of sentm GHBP in this s p i e s .  

There is evidence from mammaltan studies that GHBP acts as a GH reservoir by 

reducing GH c1earar1ce rate h r n  the circulation (Barnard & Waters 1997). Based on 

this effect of GHBP, low levels of GHBP shouId r e d t  in [ower IeveIs of serum GH 

due to increased clearance of GH h m  the circulation (Barnard & Waters 1997). 

However, in fasted goldfish, lower levels of serum GHBP were coincident with higher 

levels of serum GH. 

GoIdfish GHBP binds GH with high affinity (Chapter 5), and it is possible that 

the presence of GHBP in serum might also influence the measurement of serum GH 

Ievels by RIA. There is a lack of information on how serum GHBP rmrmght influence GH 

RIA in teleosts, although GHBP results in a aegligi'ble disturbance in mammalian GH 



RIA (Jan et ai. 1991). However, W e r  research is needed to cob that teleost GH 

RIA accurately determine the correct GH levels in serum containing GHBP. 

In goldfish fasted for 3 or 7 days, body and Liver weights decreased significantly 

compared to those of the fed fish. The loss of tissue weights in fasted goldfish reflects 

a general pattern reported for other teleosts (Momsen & Plisetskaya 1991). The 

significant reduction in the liver-somatic index during fasting appears to be caused by 

preferential utilization of liver components such as glycogen and lipid as an energy 

source in fasted teleosts (Pereira et af. 1995). Serum glucose concentrations are usually 

maintained in fasted fish by reducing the rate of glucose use, increased gluconeogenesis, 

or increased tissue glycogen breakdown (Pereira et al. 1995). There is extensive 

evidence fiom carp (Blasco et al. I992a, b), dab (Limanda limunh) (Zhang 19931, and 

Atlantic sdmon (Sulmo salar) (Soengas et d. 1996) indicating that tissue giycogen is 

converted to glucose during the first week of fasting to provide an energy source for 

fasted animals. 

Evidence fiom mammaIs (Scanlon et al. 1996) and other teleosts ( B j i s m n  1997) 

has indicated that GH has an anti-insulin-like effect and may be responsible for the 

ekvated serum glucose levels observed in the present study. However, elevated GH 

levels induced by food deprivation are not always evident in salmonids (Leatheriand 

1994) and it has been suggested that the increased circuiating GH levels sometimes 

observed during fasting may be an artifact related to experimental design (Leatherland 

& Farbridge 1992). Sigmflcantly higher serum GH levels in fasted goIdfish were also 

found in ody one experiment in the present study, suggesting that the response to 

fasting is also variable in goldfish. Further research is obviously needed to clarEfL this 



issue and to determine the precise role for the elevated circulating GH dunng fasting in 

teleosts. 

Fasted goldfish dso had lower levels of serum T4 than fed fish. In teleosts, T3, 

but not Tq, is the biologically active hormone produced extrathyroidally by 5'- 

monodeiodination of Tq (EaIes 1988). There is evidence from salmonids (Eales 1988, 

Leatherland 1994), goldfish (Spieler 1993), and sea bass (Dicentrarch labrm) and 

gilthead seabream (CerdA-Reverter et a[. 1996), indicating that fasting results in a 

significant reduction in levels of both circulating T3 and Tq. Such a decrease in thyroid 

hormone levels in fasted teleosts indicates an overall reduction in metabolism and the 

pituitary-thyroidal axis, and wodd result in a suppression of the growth-promoting 

effect of GH (Eales 1988, teatherland 1994). Although goldfish were aIso fasted for 3 

or 7 days similar to those of salmonids (Leatherland 1994) and sea bass and sea bream 

(Cerdi-Reverter et ai. 1996), s e m  T3 levels remained unchanged in fasted goldfish. 

However, goldfish fasted for 7 days had lower s e w  Tq levels than those fasted for 3 

days. These results suggest that fasting did suppress the thyroid axis in goldfish, but a 

longer period of fasting may be cequired to alter serum T3 levels. 

The present study provides several lines of new evidence indicating the 

importance of GH and nutrition m the m vivo regulation of GHR in goldfish. In both 

. . Hx and intact goldfish, GH a d m m t d o a  clearly caused down-regulation of hepatic 

GHR whereas in the fasted goldfish, elevated circulating GH levels were also coincident 

with significantly Iower 1eveIs of hepatic GHR In response to food deprivation, 

goldfish dispIayed a pattern similar to that in other teleosts, incIuding signiscant 

reductions in body weight and length, LSI, and serum T4 IeweIs but not in T3 leweis. 



Importantly, the present study provides the tint of a direct relationship 

between hepatic GHR and serum GHBP in a teleost, and suggests that the suppression 

of somatic growth during fasting may be due, at least in part, to a reduction in hepatic 

GHR and serum GHBP. Elevation m serum GH and glucose were also found in fasted 

goldfish, providing for tbe possibility that changes in the GH-GHR endocrine axis 

result in the mobilization of short-term energy stores during fasting. Together, these 

results suggest that the goldfish is a good model to hrher study the interaction 

between the GH, GHR and other endocrine pathways during somatic growth and 

energy partitioning in teleosts. 
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Figure 6.1 Effects of saline, rcGH or rPRL treatment on binding of 1 2 5 ~ - r c ~ ~  to liver 
membranes coklected and pooled fiom sham-operated or KK goldfish. Total binding 
sites were measured following treatment of liver membranes with MgC12 to remove 
endogenous GH; fiee binding sites were measured in membranes that were not treated 
with MgC12. Total binding sites were sigruficantly higher than fiee binding sites in the 
sham-operated group (Student's t-test, *** p<O.OOI); total and h e  binding sites were 
similar within each of the Hx groups (Student's t-test, pO.5). Totd binding sites in the 
various treatment groups were also compared using the Student-Newman-Keuls 
multiple comparison test (p<0.05); groups with the same superscript letter displayed a 
similar value for the total binding sites. All data are presented as mean+SEM of 
triplicate determinations in a single assay. 
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Figure 6.2 Effects of rcGH and saline treatments on binding of 1251-rcG~ to liver 
membranes collected and pooled h m  intact goldfish Free (panel a) and toGI (panel b) 
binding sites were measured as descri'bed previously (Chapter 2)- Both £ice and total 
binding sites were sigmficautly decreased at 1, 2, 4, and 8 h after rcGH injection 
compared to those of the saline-injected group (Student's t-test, **p<0.001) and were 
restored to controi levels 12 h after rcGH treatment. Data from the rcGH-injected fish 
were subjected to the Student-Newman-Keuls multiple comparison test (p~O.05); 
groups with the same superscript letter displayed a similar SB. MI data presented 
as the rntz&EM of triplicate determinations in a singIe assay. 
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Figure 6 J  E f f i  of  fasting on goldfish growth expressed as percent change in body 
wi@t and length of fish From both fm (left panel) and second (right panel) 
expments. The control fish were fed contiauously via demand feeders. Data are 
expressed as m S E M  (n4). Values from the control groups were significantly 
different fiom those of the fasted groups at day 3 and day 7 (Student's t-test, 
***p<O.OO 1). 
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Figure 6.4 Effects of fasting on her-somatic index of goldfish fiom both first (top 
panel) and second (bottom panel) experiments. LSI was significantly decreased in 
fasted fish at day 3 and day 7 (Student's t-test, *p<0.05). Data ftom the fed (control) 
groups of the second experiment were subjected to the Student-Newman-Keuls 
multiple comparison test (pc0.05); groups with the same superscript letter displayed a 
simiIar LSI. Data are expressed as mean2SEM (n=6). 
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Figure 6.5 Effects of fasting on senrm glucose (tap panel), GH (middle panel), and 
GHBP (bottom panel) levels in goldfish tiom Experiment 1. Sennn glucose and GH 
levels in fasted fish were not significantly different h m  those of fed (control) 6sh. 
The Bmax of serum GHBP was significantly decreased in fish fasted for 1 week 
compared to that of control fish (Student's t-test, ***p<0.001). Data are expressed as 
rnea&EM (n=6). 
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Figure 6.6 Effects of fasting on serum glucose (panel a), GH (panel b), and GHBP 
(panel c) and hepatic GHR (panel d) levels in goldtish from the second experiment. 
Serum glucose and GH levels were signtficantly increased in fasted fish (Student's t-test. 
**p<0.0 1)  compared to those of fed (control) fish The Bmax values of serum GHBP 
and hepatic GHR were significantly decreased in fish fasted for 3 or 7 days (Student's t- 
test, ***p<0.001). Data tiom the control groups were also subjected to the Student- 
Newman-KeuIs multiple comparison test (p<0.05); groups with the same superscript 
letter displayed a similar value for glucose, GH, or B- Data are expressd as 
m e S E M  (n=6). 
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Figure 6.7 Effects of fasting on total (panel a) and Etee (panel b) GH binding sites, 
expressed as a Scatchard plot, in hepatic membranes of goldfish. The B- values of 
both total and h e  GH binding sites were significantly decreased (Student's t-test, 
***p<0.001) in fish fasted for 3 or 7 days compared to those of fed (control) groups 
whereas the Ka was M a r  in all groups. Data are expressed as me-zu&SEM (n=6). 
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Figure 6.8 Corretation between hepatic GHR and serum GH3P in goldfish. A 
significantly positive correlation was found between hepatic GHR and serum GHBP 
(~0.86, p<O.OO I ,  n=30). 
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Figure 6.9 Effects of fasting on serum T3 (top panel) and Tq (bottom panel) levels in 
goldfish. Serum T3 levels in fasted fish were not sigiflcantly different from those of 
fed (control) fish. Serum Tq levels were signXcantly decreased in fasted fish at both 
day 3 and day 7 (Student's t-test, **p<0.01, ***p<0.001). Data are expressed as 
meanLSEM (n=6). 



CBAPTER 7 LW VITRO REGULATION OF GROWTH HORMONE 

R E ~ O R S  IN TEtE GOLDFISB 

7.1 Introduction 

Evidence from in vivo experiments (Chapter 6 )  suggests that GH is involved in the 

regdation of hepatic GHR in goldfish In vitro studies have revealed that GH induces 

short-term down-regulation of surfhe GKR in various types of mammalian cells, 

including cultured human IM-9 lymphocytes (Rosenfeld & Hinz 1980), mouse 

fibroblasts (Murphy & Lazarus 1984), rat adipocytes (Roupas & Herington 1986), 

and Chinese hamster ovary ceils (Amit et al. 1999). An advantage of using hepatocytes 

as an in vitro model for studies of hepatic physiology and biochemistry is that cultured 

cells are exposed directly to a reagent at a much lower concentration than with in vivo 

injection where 90% of the reagent is lost by excretion and distniution to tissues other 

than those under study (Guillouzo & Guguen-Guillouzo 1986). 

[n rat (Tollet er al- 1993) and pig (Brameld et af. 1995) hepatocytes, an increase ia 

IGF-I rnRNA levels was induced by GH exposure in vilro. GH promotion of IGF-I 

production was also reported for saimon hepatocytes (Duan et al. 1993, Shamblott et 

al. 1995). Other hormones such as indin,  PRL and SL were found to have no effect on 

stimulation of hepatic IGF-I mRNA levels in salmon hepatocytes (Duan et al. 1993). 

These results suggest that hepatic GHR has an important role in mediating GH 

stimulation of IGF-1 production from the liver of teleosts. In the present study, the 



effects of GH, PRL, Tj and IGF-I on the growth of goldfish hepatocytes and the 

regulation of hepatic GHR were examkd in vitro. 



7.2 Materials and Methods 

Goldfish (common and comet varieties) were maintained as descnibed previously 

(Chapter 2). AII studies were conducted between January and April with 

reproductively immature fish (50-70 g) of mixed sex Collection of liver tissue and 

preparation of viable goldfish hepatocytes are descnied in Appendix A. 

rcGH, bGH, rsbGH, cPRL and rPRL were obtained as descn'bed previousIy 

(Chapters 2 & 4). Recombinant sea bream IGF-I (rsbIGF-I) was kindly provided by 

Dr. A. Gertler (The Hebrew University of Jerusalem, Israel). Recombinant human 

IGF-I (rhIGF-I) was purchased from Bachem Inc (Torrance, CA). T3, bovine insulin, 

cell culture reagents, and all other chemicals were purchased h m  Sigma Chemical Co. 

(St  Louis, MO) or BDH Chermermcals (Edmonton, AB). 

7 2  7 -bvc- 

7.2.3.1 Injluence of epinephrine on fieshly tsoiated cells 

Freshly isdated goldfish hepatocytes were placed m sterile 1.5 d polypropylene 

viais at a density of 1.16 x 106 ceUu'viaI. The hepatocytes were treated in tripticate 

with i p M  epinephrine, 1 pM epinephrine plus 1 pM propran0101 or HEPES bIlffer 

done (control, Appendix A). The hepatocytes were then incubated for 0.5, 1,2,4, or 8 

h. After incubation, the supernatant was collected by centrihgation. Glucose kvels 



were determined by the glucose oxidase method (Young et al. 1975) using a g I m  test 

kit (Chapter 6). 

7.2.3.2 Injuence of epinephrine on cultured cells 

At 0, 4, 7, 14, or 21 days, goldfish hepatocytes were washed twice with 

phosphate-buffered saline (PBS; 0.15 M NaCI, 8 m M  Na2mOq and 5 mM EDTA, 

pH 7.4), and 200 p1 of PBS saline with or without 1 pM epinephrine was added to the 

wells. The hepatocytes were then incubated for 8 h, after which, the supematant was 

collected by centnfugation and glucose concentration measured as d e s c n i  above. 

7.2.3.3 !fluence of rcGH on glucose production 

Goldfish hepatocytes cultured for 3 days were treated with various concentrations 

of rcGH (1, 10, and 100 nM) in tripticate. The treated hepatocytes were then 

incubated for 1, 4, 8, 16, or 24 h. After incubation, the supernatant was collected by 

centrifigation and the glucose was measured as d e s c n i  above. 

Growth curve of 

Freshly isolated goldfish hepatocytes were seeded in 24-well Primaria plates at a 

density of I x lo5 ceUs/well. After celI attachment, the cells were supplemented with 

medium (DMEMl199 3: I )  containing 100 ng rcGWweU or without rcGH. The cdture 

medim was renewed every 2 days. At various time intervals over a 30-day period, the 

number of viable cells was measured using the MTT assay hi previousiy 



(Chapter 4). Population doubling time and level (Freshney 1994) were calculated as 

follows: 

Day - Day, 
Population doubling time = 

wp,J 

Population doubiing level = h (NFJ, )  

where, Day, and Day, represent the start and finish days, respectively, of the 

exponential cellular growth period No and N, represent the number of cells found at 

the start and finish, respectiveIy, of the exponential growth period. 

7.2.5 of vf 

Freshly isolated goldfish hepatocytes were seeded in 24-well Rimaria plates at a 

5 density of 1 x 10 ceWwel1. Cells were supplemented with medium ( D m 1 9 9  3: 1) 

containing various concentrations of rcGH, bGH, rsbGH, cPRL, rPRL, T3, insulin, 

rhIGF-I, rsbIGF-I or medium alone (control). The hepatocytes were then incubated for 

5 days, with the culture medurn renewed every 2 days. At the end of the 5-day 

incubation period cell number was determined using the MTT assay descrii 

previously (Chapter 4). 



7.2.6.1 E@ct of incubation time on 1 2 S ~ - r c ~ ~  bnding lo gol@ih hepataytes 

Binding of 1251-~CGH to goldfish hepatocytes cultured for 3 days was measured 

according to the method of Tollet et 01. (1993). Binding studies were conducted in 

triplicate directly in 24-well Primaria plates. Before the addition of radioactive tracer, 

cells were M S ~  a x e  in assay buffer (10 rnM phosphate, 150 mM Ndl, 10 m M  

EDTA, 0.1% BSA at pH 7.4) and preincubated with 400 yYwell assay buffer. After 30 

min, 100 yl of assay buffer containing 200,000 cpm 12%-~CGK with or without 100 

ng udabeted rcGH was added Cells were W e r  incubated for 0.2, 0.5. I,  4, or 8 h, 

after which the assay buffer was removed and cells were washed three times in icecold 

assay buffer. Attached cells were solublited by the addition of 100 pl of 1% (wtlwol) 

sodium dodecyl sulphate in 0.1 N NaOH, fotlowed by scraping with a rubber stick 

The contents of each well were transfmed to 12x75 mm glass culture t u k  and the 

radioactivity corresponding to 1251 was determined in a gamma counter. TI3 of 12%- 

rcGH to the hepatocytes was determined as the total radioactivity in the ceUs 

following incubation in the absence of unlabeied rcGH. NSB of 1 2 s ~ - r c ~ ~  was 

determined as the radioactivity present in the cells treated with excess (100 ng/well) 

tdabeled rcGH. SB of 1 2 5 ~ - r c ~ ~  was then caicdated as the difference bemeen TB 

and NSB. 



7.2.6.2 Scarchard plot 

In order to obtain a Scatchard pIot (Scatchard 1949), goldfish hepatocytes were 

incubated with an increasing amount of 1251-rc~~.  The amount of spaitically bound 

~ % - ~ c G H  to goldfish heptocytes and the ratio of specifically bound over fiee ~ZI-  

rcGH (BE) were then calculated The tiaction of 1 2 5 1 - r c ~ ~  that would bind to an 

infinite receptor concentration was calculated to be 51% of the total radioactivity 

added Thus, according to Calvo er al, (1983), the calculation of BE prior to analysis 

was conducted using only 5 1% of the total radioactivity added 

7.2.6.3 In~ermIizution of GHR 

Bound ~%KGH on the cell d a c e  was removed using the method of figler er 

a[. (1980). Briefly, goldfish hepatocytes cultured for 3 days were rinsed once in assay 

buffer and preincubated with 400 pUwell assay buffer for 30 min. Incubation of the 

ceils with 100 yUwel1 of 200,000 cpm 1 2 S 1 - r ~ ~ ~  was performed for 10, 20,30,40, or 

60 rnin, after which, the cells were washed thee times in ice-cold assay buffer. Slrrface- 

bound 1251-~CGH at each incubation h e  was removed by addmg 100 pI of 0.2 M 

acetic acid containing 0.5 M NaCl (pH 2.5) to each well. The celIs were then incubated 

at room temperature for 10 min Total binding of 1 2 5 ~ - r c ~ ~  to the hepatocytes was 

determined by the radioactivity of cells without acetic sacid treatment The 

radioactivity of internalized 1 2 5 ~ - m ~ ~  was determined using the cdls treated with 



121 

acetic acid. The radioactivity of surface- bound 1 2 S ~ - r c ~ ~  was then calculated as the 

difference between the radioactivity of total and internalized 125~-rdj~. 

7.2.6.4 Effect of rcGH on the in vitro regulation of GHR 

The effect of unlabeled rcGH on binding of ~~SI -KGH to goldfish hepatocytes 

was determined using cells cultured for 3 days in 35 rnm plastic Rimaria culture dishes. 

Cells supplemented with DMEIW199 (3: I) were incubated with (1 pg/dish) or without 

rcGH for 0.2, 0.5, 2, 4, 8, 12, or 24 h. After incubation, the cells were washed three 

times in assay buffer, detached by rubber stick and homogenized with a Polytron 

homogenizer in ice-cold homogenization buffer ( 100 rnM Tris, 150 m M  NaCI, 50 m M  

EGTA, 50 mM EDTA, 300 m M  sucrose at pH 9.0). The homogeaate was then 

centrifuged at 100,000-g for I h at 4°C. The pellet was collected and suspended in ice- 

cold suspension buffer (25 mM Tris, 10 mM MgC12 at pH 7-61, fiozen on dry ice, and 

stored at -20°C. Protein concentration in the microsoma1 preparation was determined 

using the method of Lowry et d. (1951). The Ka and Bmax of 1 2 5 ~ r c ~ ~  buding to 

the total binding sites of the hepatocyte microsomes were determined using MgC12 

treated microsomes and the GH receptor binding assay described previously (Chapter 

2). 

7 S m  - .  

AU data were expressed as mean+ SEM The Ka and B- of 1 2 5 ~ - r c ~ ~  binding 

to cultured goldfish hepatocytes were determined h m  the Scatchard plot using the 



LIGAND computerized program (Munson & Rodbard 1980). The half-- 

effective dose (EDSO) of hormones on hepatocyte growth in v i m  was estimated using 

the ALLFIT @e Lean et d 1978) computer program. Other data were analyzed with 

ANOVA followed by the Student-Newman-Keuls multiple comparison test or 

Student's t-test (p<0.05). 



7.3 Results 

1 -n bv c- 

Freshly isolated goldfish hepatocytes released glucose which was fUrther 

stimulated by the addition of epinephrine (Fig 7.1). The effect of epinephrine on 

glucose release was completely inhlibited by the I3 ach.energic antagonist propranolol 

(Fig. 7.1). Glucose production declined continuously over time in cultured hepatocytes 

and the hepatocytes were only responsive to epinephrine for up to 1 week in culture 

(Fig. 7.1). Administration of rcGH had no effect on glucose production by either 

freshly isolated cells or cells cultured for various days (Fig. 7.2). 

Figure 7.3 illustrates a growth curve of gold6sh hepatocytes incubated for various 

times after seeding with or without rcGH. Cultures supplemented with rcGH had a 

longer lag phase (approximately 6 days) and those cells cultured without rcGH (4 

days). The saturation density in cultures without rcGH was reached at 20 days, which 

was equivalent to 8.06 x 106 c e b  ml-'. In the cultures without rcGH, the population 

doubling level and population doubling time were caiculated as 4.02 and 53.8 h, 

respectively. Similar values of saturation density, population doubling level and 

popdation doubling time were found in the cultures supplemented with rcGH (Fig. 

7.3). 



7.3.3 Influence of vario-W 

The effects of various hormones on goldfish hepatocyte growth are ilIustrated in 

Figure 7.4. All GH displayed an antimitogenic effect on the cultured goldfish 

hepatocytes. The ED50 of the hormone was estimated using the ALLFIT @e Lean et 

a!. 1978) computer program. The EDSO of rcGH, rsbGH and bGH were 0.1 1 2 0.02 

nM, 0.36 F 0.04 nM, and 0.38 + 0.04 OM, respectively (Fig. 7.4). In contrast, PRL, 

T;, insulin, rhIGF-I, and rsbIGF-I had no effect on the growth of cultured goldfish 

hepatocytes (Fig. 7.4). 

7.3.4 In 
. . 

vim GH 

' Z 5 ~ - r c ~ ~  binding to cultwed goldfish hepatacytes was dependent on incubation 

time (Fig. 7.5). Binding eqvilibrium was reached 1 h &er addition of 1 2 5 ~ - r c ~ ~  to the 

hepatocytes (Fig. 7.5). LIGAND analysis revealed a single class of binding site with a 

Ka of 1.9 x 1010 M-1 and Bmax of 2.0 fino1 mg' protein (Fig. 7.6). Internalization of 

12S~-rcG~ kgan 10 mi0 after binding to cell surfke receptors (Fig 7.7). 

Approximately 85% of 1 2 5 ~ - r c G ~  was interaalized following 30 min of iwbation 

(Fig. 7.7). Adminissation of unlabeled rcGH in vitro resulted in a rapid down- 

regulation of total GH binding sites m goldiish hepatocytes (Fig 7.8). The lowest 

%CGH binding to goldfish hepatocytes was reached between 0.5 iud 2 h after 

addition of unlabeled rcGH (Fig. 7.8). Attn 2 h, binding of 1 2 5 ~ - ~ ~  to goldfish 

hepatocytes gradualIy increased and reached control ImIs by 12 h (Fig. 7.8). 



7.4 Discussion 

Goldfish hepatocytes cultured in vitro displayed proliferation over time, in terms 

of population doubling time and level, similar to mammalian hepatocytes (Guguen- 

GuilIouzo 1992). Giucose release by hepatocytes in response to epinephrine is used as 

an indicator of the maintenance hepatocyte kct ion in vitro (Bimbaum et d. L976, 

Guguen-Guillouzo 1992). In the present study, freshly isolated goldfish hepatocytes 

were very responsive to epinephrine stimulation. The effect of epinephrine was 

blocked by propranolol, Mher indicating the maintenance of hepatocyte function in 

vitro. Although goidfish hepatocytes survived for up to 1 month, cells cultured for 

more than 1 week were not responsive to epinephnne in terms of gtucose production. 

The reason for the loss of responsiveness of the hepatocytes to epinephrine over time 

remains unclear. However, most primary cultures tend to become dedifferentiated over 

time in vitro (Freshney 1994), and goldfish hepatocytes may also follow this pattern. 

Unlike epinephrine, rcGH did not appear to directly stimulate glucose prduction 

from cultured goldfish hepatocytes. A similar finding was reported for rat hepatocytes 

treated with bGH (Blake & Clarke 1989). However, bGH was found to stimdate 

g l u m  production by hepatocytes prepared from E k  rats via a possible 

gluco~leogenesis pathway (Blake & Clarke 1989). Previously (Chapter 6), sipticantly 

increased s e m  GH and glucose levels were found to be coincident in fasted goldfish, 

providing the possibility that GH might be responsible for kreased hepatic g I w  

production during fasting. However, the lack of an effect of GH on gIucose production 

by goldfish hepatocytes m vifro, suggests that the GH does not act at the level of the 

h e r  to promote giucose release. It is also possl%le that GH interacts with other 



hormones such as i d i n  at the level of the hepatocyte to influence glucose release, 

although this was not directly examined in the present study. Further research is 

needed to clarify the relationship between GH and glucose production in the gotdfish, 

and to determine the exact mechanism by which GH exerts an anti-Min effect in 

tekosts (Bjdmsson 1997). Other possibilities also to be investigated include a reduced 

rate of glucose utilization m vivo (Pereira et al. 1995), or increased glmeogenesis or 

glycogeno~ysis by other tissues (Blasco et al. 1992% b, Zhang 1993, Soengas et al. 

1996). 

AIthough rcGH did not influence glucose release from the goldfish hepatocytes, 

all GH tested in the present study displayed a clear antimitogenic effect in cultured 

goldfish hepatocytes. Previous studies have found that GH has an antimitogenic effect 

on 3T3-F442A preadipocytes (Corin et 41. 1990, Vashdi et al. 1992, Chapter 4). To 

my knowiedge, the antimitogenic effect of GH on mammalian hepatocytes has not been 

investigated Thus, the present study provides the first eviderrce that GH also inhi'bits 

the proliferation of hepatocytes and suggests that this eEect of GH may be observed in 

a variety of tissues in vertebrates. T3, insulin and PRL were found to be unable to alter 

mitogenesis of goldfish hepatocytes, suggesting that the antimitogenic effect is specific 

to GH. 

A Iong survival period, up to one month, and proliferation in vitro were found in 

the cultured goldfish hepatocytes. Interestingly, cells treated with rcGH had a longer 

lag phase prior to undergoing exponential growth than cells treated without rcGH. 

However, the saturation density and population doubling time and level measured over 

the period of exponential growth were similar in cultures treated with or without rcGH. 



These results also suggest that rcGH has an antimitogenic effecf but only during the 

eariy phase of the culture period The loss of responsiveness of goldfish hepatocytes 

to rcGH during subsequent stages of cell growth is probably similar to that for 

epinephrine described above. 

Based on the "dual effector" model of GH action, GH treatment stimulates 

hepatic IGF-I production, which in turn, wodd promote proliferation of many other 

cell types (Esaksson er af. 1991, Jones & Clernmons 1995, Duan 1998). However, in 

the present study, adminstration of rhIGF-1 and rsbIGF-I to cultured goldfish 

hepatocytes did not resuft in cell proliferation, although rhIGF-I was reported to 

stirndate proliferation of rat hepatocytes (Kimura & Ogrhara 1998). It is not clear why 

IGF-I is unable to promote proliferation of cultured goldfish hepatocytes. Goldfish 

cartilage tissue has been reported to be responsive to IGF-I m vitro (Moroz 1995). 

These results suggest that IGF-E action in terms of cell proliferation may be cell or 

tissue specific. 

In addition to rcGH, rsbGH and bGH were found to have an antimitogenic effect 

on cultured goldfish hepatocytes. However, the EDSO values of rsbGH and bGH were 

much higher than that of rcGH. These results suggest that among the GH examined, 

rcGH has the highest biological activity. The higher activity of rcGH in goldfish 

hepatocytes may be attributed to the higher affinity of rcGH for the goldfish hepatic 

GHR, compared to rsbGH and bGH (Chapters 2 & 4). 

LlGAND analysis of 12%-rcGH binding to goldfish hepatoeytes i n d i d  a single 

class of high affinity and low-capacity binding sites with a Ka of 1.9 x 1010 M-1 and 

Bma of2.0 hoL mg' protein A simar Ka value was reported for 1251-ccG~ b d h g  



to goldfish liver membranes (Chapter 2). The Bmax (9 fin01 mg-' protein) of goldfish 

liver membranes (Chapter 2) was stightly figherthan that of goldfish hepatocytes. The 

total number of GHR in an individual goldfish hepatocyte was found to be 

approximately 2900 when calculated using B- of 2.0 hwl a' ad protein 

concentration of 2.5 mg/1o6 cells. A similar number of GHR per cell bas been reported 

for rat hepatocytes (Donner er at. 1978, Tollet er al. 1993). 

The number of surface GHR in goIdfish hepatocytes decreased shortiy after GH 

binding, indicating that i 2 5 1 - r c ~ ~  initially bound to a surfice receptor with the GH- 

GHR complex subsequently u&rgoing rapid internalization. Simi findings were 

reported for human IM-9 Iymphocy?es (Haigler et al. 1980) and Chinese hamster 

ovary cells (Amit et 01. 1999). Recent studies on the three-dimensional structure of 

hGH-hGHR has shown that binding of hGH to hGHR induces receptor dimexization 

(de Vos et d 1992). Receptor dimerization is an essential step for internalization of 

GH, and the induction of a biological response (Goth el al. 1998). 

In v i m  adminisbation of rcGH to goldfish hepatocytes resuited in a signdicaut 

decrease in the SB of hepatocyte microsomes, indicating a down-regulation of 

hepatocyte GHR by GH. A similar efxt of GH on GHR was also found in goldfish 

liver membranes during ;n vivo studies (Chapter 6). Down-regulation of GHR may 

involve dimerization of GHR, uacreased cellular internahtion and Qgradatim of the 

GH-GHR complex, decreased recycling or & novo synthesis of GHR (Goffk et ui. 

1998). Further studies are needed to determine the exact mechanism of GHR down- 

regdation induced by GH in goldfish. 



The present study is the first time that the effects of GH on hepatocyte 

proliferation and on hepatocyte GHR in vitro have been studied in a teleost. The 

advantages of in vitro over in vivo studies are many. First, in v i m  techniques avoid 

potentid influences of a d  fmdhg such as hypophysectomy and intraperitoneal 

injection. Second, an in vitru assay to study the biological effects of GH is more rapid 

and sensitive than an in vivo assay. For example, goldfish hepatocytes were found to 

be responsive to rcGH at concentrations of less than 10 nglwell whereas 1 pg g' or 

more of rcGH needs to be administrated in vivo in order to induce a biological response 

(Chapter 6). Finally, this in vitro study provides evidence of GHR internalization 

following GH binding that cannot be determined by m vivo experiments. Together, 

results of this study indicate that the cultured hepatocytes will be a very useN model 

in future studies of the GH-GHR interaction in the goldfish. 
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F i e  7.1 Effects of epinephrine on glucose production by &My isolated goidfish 
hepatocytes (top panel) or cells cdtured for various days (bottom panel),The amount 
of glucose produced by goldfish hepatocytes was significantiy increased over time by t 
pM epinephrine (top panel, Student's t-test, *p<O.OS, ***p<0.001). The effect of 
epinephrine was compIetely inhibited by addition of I pbl of propramlo1 to the 
cultures (top panel). Significantly higher glucose levels resulting from epinephrine 
simulation were found at day 1, day 4. and day 7 in cultured hcpatocytes (bottom 
panel, Student's t-test, *p<0.05, ***p<O.OOt). Data were subjected to the Student- 
Sewman-Keuls multiple comparison test (p<O.OS); groups with the same superscript 
letter displayed a simiIar glucose level. Data, expressed as mwSEM, were obtained 
hrn three experiments, each carried out in triplicate. AU conmls were mated with 
HEPES buffer only. 



Incubation time 

Figure 7.2 Effect of rcGH on glucose production by fieshly isolated goldfish 
hepatocytes (top panel) and ceUs cultured for various days (bottom panel). The 
amount of glucose produced by gold6sh hepatocytes was not aitered over time by 
addition of rcGH. Data, expressed as mm+SEM, were obtained h m  three 
experiments, each carried out in tripIicate. Data were subjected to the Student- 
Newman-Keuls multiple comparison test (p4.05); p u p s  with the same superscript 
letter displayed a simiiar giucose level. AU controIs were mated with medium only. 
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Figure 73 Growth curve of cdtured goldfish hepatocytes. The cells were 
supplemented with DMW199 (3: 1) containing rcGH (100 ng/well) or medium only. 
Incubation was performed for various days. The number of cells was determined using 
the MTT assay. The number of cells in culture between day 5 and day 13 without 
rcGH was sipficmtly higher tfian that of cells treated with rcGH (Student's t-test, 
***p<0.001). Data. expressed as rnean,+SEM, were obtained h m  three experiments, 
each carried out in triplicate. 
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Figure 7.4 Effects of rcGH, bGH, abGH, cPRL and rPRL (top pane) and hsuh, T3, 
rhtGF-I, and rsbIGF-I (bottom panel) on in v i m  growth of goidfkh hepatocytes. At 5 
days, fell number was determined using the M I T  assay. All GH had antimitogenic 
effect on goldfish hepatocytes (top pane4 Student's t-test. *FO.OS, "*p4MtO1) 
whereas pmIactins, T3, MGF-I. rsbIGF-I, and insulin had little effect on cdl growth 
Data are presented as meaniSEM h m  three different experiments, each earried out in 
triplicate. 



Figure 7 5  Total (m), specific (SB) and non-specific (NSB) binding of '"I-~CGH to 
cultured goldfish hepatocytes over time. Data are presented as mean+SEM h r n  three 
different experiments. each carried out in tripticate. 
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Figure 7.6 Displacement curve produced by incubating haeasing amounts of 
rcGH with cuitured goIdfish hepatocytes. Data are presented as mean+SEM &om three 
diffel-ent experiments, each carried out in triplicate. The inset graph represents the 
derived Scatchard plot. Ka and B- were determined by LIGANO analysis of this 
plot. 
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Figure 7.7 Biding of "'I-~CGH to s u k e  and intemaiized receptors on goldfish 
bepatoeylu in vim. l x ~ - r c ~ ~  began to be imemaliad 10 min afler addition of '=I- 
rcGH. After 20 min of incubation, s t t r f k  GKR number was signiscantly decreased 
compared to total ' 2 S ~ - r c ~ ~  birufing (Student's t-test, ***p<0.001). Data, exp-d 
as mean,+SEM were obtained h m  thrn experiments, each carried out in triplicate. 

control 
rcGH 

Figure 7.8 E f f x a  of udabeIed rcGH over time on specific binfing of ' 2 5 ~ - ~ ~  to 
goldfish hepatocyte microsomes. Data, expresd as mean,+SEM, were obtained h m  
three experiments, each -ed out in triplicate (Student's t-test, ***, significantly 
different at the p4.00 1 level compared to control), 



CECAPTEX 8 GENERAL DISCUSSION 

Body growth in vertebmtes ultimately results h m  cartilage growth and 

expansion, bone deposition, and the proliferation and differentiation of other somatic 

cells (Goffin et al. 1998). The endocrine regulation of somatic growth has been 

extensively studied in mammals (for review see Chapter 1); the major components of 

this endocrine pathway are summarized in Figure 8.1. According to this end& 

pathway, GH is secreted by the anterior pituitary into the circulation in response to 

stirnulatory and inhibitory signals from the hypothalamus or peripheral f d k  

mechanisms. Circulating GH acts via hepatic GHR to stimulate the production and 

release of IGF-I, which then traveis via the circdation to interact with its receptors in 

target tissues and promote cetluIar changes associated with somatic growth, GH a h  

acts via GHR in other target tissues to produce IGF-I locally. The local IGF-I: acts to 

stimulate somatic growth in mammals thmugh a paracrine or autocrine mechanism. The 

interactions between GH and IGF-I descnhed above are known as the "dual effector" 

model of OH action (Isaksson et d 1987, Jones & Clemmom 1995). Both GH and 

IGF-I are present in the circulation complexed with specific binding proteins. These 

binding proteins act to reduce the clearance rate of the hormones and serve as a 

hormone reservoir in the circaIatiou. The liver is the major source of circuIating GHBP. 

Other variables such as circthhg thyroid hormone levels and nutrition aIso have a 

profound influence on somatic growh. %us, knowledge of changes that occur 



simultaneously in each of these major components is needed to fdly understand the 

endocrine regulation of somatic growth. 

Several lines of evidence suggest that the endocrine regulation of somatic growth in 

teleosts is similar to that of mammals (Peter & Marchant 1995, Peng & Peter 1997). 

For example, studies in Japanese eel @uan & Hirano 1990), coho salmon (McCorrnick 

et al. 1992, Tsai er ui. 1995), long-jawed mudsucker (Gray & Kelley 1991), goldfish 

(Marchaat & Moroz 1993), and common carp (Cheng & Chen 1995) indicate that IGF- 

I mediates at least some of the growth-promoting effects of GH. In addition to GH and 

[GF-[, thyroid hormones have been found to play a permissive role in somatic growth 

of teIeosts (Eales 1988, Leatherland 1994). E x t d  factors which influence somatic 

growth in teleosts include nutrition (Ptrez-Stinchez et uf. 1994, Chapter 61, 

temperame (Marchant & Peter 1986, Marchant et a[. 1989, Bjdmsson 1997) and 

photoperiod (Marchant & Peter 1986, Marchant et al. 1986, Bjdmson et al. 1994). 

Although the mammalian endocrine model may be generaily applicable, there is a lack 

of information about the nature and role of GHR in teleosts, and very IittIe information 

is avaifable about the reIationship between teleost GHR and GHBP. The purpose of 

my research was to investigate more fXly the involvement of these components in the 

endocrine regulation of somatic growth in the goldfish. 

In order to study GHR in the goldfish, a sensitive GH receptor binding assay had 

to be established accomplished this task, as descn'bed in Chapter 2, through the use 

of very pure rcGH and the optimization of assay conditions, including a carefid choice 

of enzyme inhhitors for mimsomal preparation, buffer pH and composition, and 

incubation temperature. The findings presented in Chapter 2 represent the first time 



that a GH receptor binding assay in a cyprinid species has been fully characterized 

This GH receptor binding assay then allowed me to study the biochemical nature of 

goldfish GHR (Chapter 3), iden* s e m  GHBP in the goldfish (Chapter S), examine 

the m vivo (Chapter 6) and m vitro (Chapter 7) regulation of goldfish GHR, and 

compare binding characteristics between GH and GHR £iom various species (Chapter 

4). 

Goldfish GHR was found to be present as multiple forms following SDS-PAGE 

analysis of hepatic membranes (Chapter 3). Covalent cross-linking of rcGH to gol&sh 

liver membrane proteins resulted in three specifical1y labeled bands, with M, of 88, 

142, and >200 KD (Chapter 3). The presence of reducing agents such as B- 

mercaptoethanol or DTT did not alter the M, of the bands. Similar findings were 

reported for other teleosts (Ng et a[. 199 1, Gray & Tsai 1994) and mammals (Hughes 

err al. 1983, Smith & Talamantes 1987, Ymer & Herington 1987, Husman et al. 1988, 

Orian et al. 199 I), suggesting that the various bands observed following SDS-PAGE are 

not simply GH receptor subunits Iinked through disulfide bonds. Rather, the 88, 142, 

and > 200 KD bands observed in my study in goldfish appear to represent various 

GH-GHR complexes formed during GH binding and subsequent GHR dirnerization 

The existence of specific GHBP in goldfish s e m  and cultured hepatocytes was 

confirmed by rcGE4 binding and ligand blotting studies (Chapter 5). To my knowledge 

there has only k n  one other study on GHBP in a teleost, the tainbow trout (Sohm et 

al. 1998). However, rainbow trout GHBP was found to bind to a preparation of GH 

purified from rainbow trout pituitaries with relatively Iow aflkity. In contrast, 

goldfish GHBP displayed very high affinity and low capacity binding for rcGH 



(Chapter 5). In goldfish, the affinity of the serum GHBP (Chapter 5) and liver 

mernbcaae GHR (Chapter 2) for rcGH are very similar. This implies a close 

relationship between goldfish serum GHBP and the liver membrane GHR. Ligand 

blotting experiments indicated that goldfish GHBP was present as multiple forms in 

serum, and that small M, GHBP were reIeased fiom cultured goldfish hepatocytes, 

possibly via a mechanism involving proteolytic cleavage of membrane GHR (Chapter 

5). Thus, the goldfish GHBP resembles GHBP from other vertebrates by displaying a 

high affinity and low-capacity binding for GH, presence of multiple fonns of GHBP in 

the circulation, and a close relationship with liver membrane GHR. 

In goldfish, GH was found to play an important role in regulating hepatic GHR 

(Chapter 6 & 7). Evidence From hypophystctomized goldfish indicated a down- 

regulation of hepatic GHR when the animals received repeated rcGH injections at 24 h 

intervals and were sampled 24 h after the last injection (Chapter 6). A similar GH- 

induced down-regulation of hepatic GHR has been reported in coho salmon (Gray et af. 

1990, 1992) and long-jawed mudsucker (Gray & Kelley 1991). in contrast, 

administration of exogenous GH led to an upregulation of hepatic GHR in Japanese 

eel (Mori et al. 1992). Several Lines of evidence indicate that hypophysectomy reduces 

the number of total and h e  GH binding sites in mammals (Posner et al. 1980, Baxm & 

Zdtsman 1984, Sanchez-Jimeuez e r d -  1990) and teleosts (Gray & KeUey 1991, Mori 

et ol. 1992). In the present study, hypophysectomy was found to induce an up- 

regulation of hepatic GHR in the goldfish (Chapter 6). These findings suggest that the 

role of GH in the regulation of its own receptors may vary according to species or with 



experimental design, such as the use of Hx or intact animals or the hquency and 

duration of GH injection. 

The role of GH in the regulation of its own receptors was also studied in vitro 

with goldfish hepatocytes (Chapter 7). Admiaistration of rcGH to cultured goIdfish 

hepatocytes induced a short-term down-regulation of cell surface GKR (Chapter 7) 

similar to that found in intact goldfish injected with rcGH (Cha~er 6). En both in virro 

and in vivo situations, the number of GHR recovered to the original level 12 h after GH 

treatment (Chapters 6 & 7). The acute down reguIation of the GHR may involve 

mdtipte rapid and complex pathways, including dimerization of GHR, cellular 

internalization of the GH-GHR comptwr, and cellular degradation, recycling, or 

synthesis of GHR (Goffin et ul. 1998). 

Interactions between GH, G m  GHBP, thyroid hormones, and nutrition in the 

regulation of somatic growth in goldfish were further studied in fasted animals. Food 

deprivation resulted in a signiscant decrease in somatic growth in goldfish (Chapter 6). 

The loss of tissue weight in fasted goldfish reflects a general pattern reported for other 

tekost species (Mommsen & Plisetskaya 199 1). The si@cant reduction in the Liver- 

somatic index during fasting appears to be c a d  by preferential utilization of her 

components such as gIycogen and lipid as an wetgy source in fasted teleosts (Pereira et 

al. 1995). Serum glucose concentrations are usually maiataiued in fasted fish either by 

reducing the rate of glucose use, iacreased gIucoueogenesis, or increased tissue gIycogen 

breakdown (Pereira et al. 1995)- There is extensive evidence indicating that tissue 

glycogen is rapidly converted to glucose during the first week of fasting in some 



teleosts including carp (Blasco et al. 1992% b), dab (Zhang 1993), and Atlantic salmon 

(Soengas et al. 1996). 

Evidence fiom mammals (Scanlon et al. 19%) and other teleosts (Bjdmsson 1997) 

indicates that GH has an anti-insulin-like effect and thus, may be r~sponsibie for the 

elevated serum glucose levels observed in the present study (Chapter 6). However, the 

exact mechanism by which GH alters blood glucose remains to be determined, as M 

vitro experiments (Chapter 7) found that GH did not directly stimulate glucose 

production fiom cultured goldfish hepatocytes. A similar W g  was reported for rat 

hepatocytes treated with bGH (Blake & Clarke 1989), although bGH was found to 

stimulate glucose production by hepatocytes prepared fiom E-k rats, possibly via a 

gluconeogenesis pathway (Blake & Clarke 1989). In my study (Chapter 6), increased 

serum gtucose levels were coincident with an elevation of serum GH levels in fasted 

goldfish High levels of senun GH in fasted mammals (Ray & Melrned 1997) and 

teleosts (Bj6rnsson 1997, Duan 1998) may be caused by a sigtuficant reduction in 

serum IGF-I which serves to regulate GH secretion via a negative feedback mechanism. 

However, other authors have proposed that an elevation in serum GH level dunng 

fasting may be a result of down-regulation of GHR in target tissues (Sumpter et al. 

1991) or an artifact related to a metabolic role for GH (Leatheriand & Farbridge 1992). 

Further study is obviousiy needed to clar@ the mechanisms responsible for the 

elevation of serum GH level in fasted teleosts and to determine the precise 

physiological role for the elevated GH levels during fasting, 

Food deprivation also resulted in a significant decrease in hepatic G m  serum 

GHBP and T4 levels, but not s e m  T3 (Chapter 6). A sigdicant fimting from these 



experiments is that the number of hepatic GHR correlates strongly with s e m  GHBP 

levels in goldtish, the first time that has been observed in a teleost. The decmse in 

serum Tq levels suggest a suppression of the pituitary-thyroidal axis in fasted goldfish 

Together, these results suggest that somatic growth of goldfish is determined not only 

by GH but also by other major regulators such as hepatic GHR, serum GHBP and 

thyroid hormones and that the fasting goldfish is a good model to study interactions 

between these components. 

The effects of GH and various other hormones on cell growth in vitro were 

studied using 3T3-F442A preadipocytes and goldfish hepatocytes. GH displayed an 

antimitogenic effect in 3T3-FU2A preadipocytes (Chapter 4) and goldfish 

hepatocytes (Chapter 7). The antimitogenic effect of GH on the preadipocytes is 

related to celldar differentiation induced by GH treatment (Corin et al. 1990). 

Preadipocytes treated with GH exit the cell cycle at a discrete point in GI to enter a 

quiescent state, and do not prolifmte further. Tbe antimitogenic effect of GH observed 

in goldfish hepatocytes provides the possibiIity that a similar mechanism may be 

involved in GH actions in goldfish hepatocytes. 

Perhaps the most novel finding in this thesis is that teleost GH highly cross- 

reacts with mammalian GHR (Chapter 4) and GHBP (Chapter S), and that rcGH and 

rtGH show a biological activity equivalent to bGH in a mammalian in vitro GH 

bioassay (Chapter 4). The concept that fish GH is inactive in mammals was first 

proposed by PicIcford (1957). In the 1950s, shortly after the production of the first 

purified bGB preparation (Li et al. 1945). Pickford used the ethanoI precipitation 

method to plrrifL GH fiom a variety of teleosts and tested the bioIogical activities of 



these GH (Pickford 1957). They found that the teleost GH preparations were inactive 

in m a d s ,  whereas mammalian GH preparations were biologically active in teleosts. 

Later, Hayashida (1975) provided extensive immmoiogical evidence indicating that 

teleost GH was strucWIy diffwent fiom mammalian GH. Thus, teleost GH has 

traditionally been considered to be divergent from the main line of vertebrate GH 

evolution in terms of its structure-activity characteristics (Hayashida 1975, Nicoll et al. 

1986,1987). 

Why can the concept that fish GH is inactive in mammals survive for almost half 

acentury? First, there was little pure teleost GH availabIe in the 1950s. All teleost GH 

preparations used at that time were crude pituitary extracts or were prepared using an 

ethanol precipitation method (Pickford 1957). Most of the imrnundogical studies on 

the species-specificity of GH were performed using similar GH preparations 

(Hayashida 1975). Second, evidence obtained with antisera does not necessarily 

provide an accmte indication of structural differences that relate to receptor binding. 

Third, the relatively low sensitivity of the killifish (FUlfduIm hecerocIim) (Pickfiord 

1957) and rat &ia (Hayashida 1975) bioassays requires that large amounts of GH are 

used to induce a bioIogicaI effect in viva For example, in order to stimdate growth of 

kiUifis4 fish were injected with bGH every week at 30 pg/g body weight for up to 28 

days at 20°C (Pickford 1957). In contrast, less than I pg of GH is needed to induce an 

effect m the 3T34442A bioassay (Corin et al. 1990, Chapter 3) and goldfish 

hepatocytes (Chapter 6). Thus, the concept that fish GH is inactive in mammals was 

established based on cross-reactivity studies using impure GH preparations, imprecise 

immunological information, and insensitive bioassays. 



Since the late 1970s, there has been some indication that teleost GH may be active 

in mammals. For example, GH h m  tilapia (Farmer et af. 1976) and chum salmon (0. 

keru) (Wagner et al. 1985) were found to be active in the rat tibia bioassay. 

Mammalian GH appeared to be more potent than tilapia or churn salmon GH, although 

the dose response relationship between mammalian and teleost GH was not fully 

investigated in these studies (Farmer et al. 1976, Wagner et al. 1985). In spite of these 

earlier findings, however, it appears no comprehensive study was conducted to verifjr 

these results or determine the species-specificity of GH from other teleosts. Results 

from my research clearly indicate that broad conclusions about species-specificity of 

teleost GH are not justifiable, and that the structure-activity relationship of GH h m  

each teleost should be examined on an individual basis. 

[n order to Mly understand the molecular basis for my findings on the species- 

specificity of the interaction between GH and GHR, detailed structural information 

about GH and its receptor is needed Recent hdings on the crystallization of the 

dimerized hGH-hGHBP complex have provided the molecular basis for interactions 

between hGH and hGHRlhGH13P (de Vos er of. 1992, Wells & de Vos 1996, Clackson 

et d. 1998). Such studies have made it possible for identification of individual amino 

acid interactions between the hormone and receptor that are responsible for binding 

affinity and the species-specificity of hGH, 

hGH binds to its receptor in a 1 2  ratio through two regions in hGH called binding 

sites I and 2. Binding site 1 is fonned by a pocket of amino acids in helix IY and the 

loop between helix I1 and lII of hGH, whereas binding site 2 is formed by amino acids 

in helix I and III on the opposite side of the hormone. Binding site 1 in hGH consists of 



amino acids in positions 60 to 68 (loop) and 168 to 179 (helix IV) (Clackson et al. 

1998). According to Wells and de Vos (1996), binding site 2 in hGH consists of amino 

acids in positions 12 to 16 (helix I) and 1 15 to 120 (helix III). The binding affinrty of 

hGH-hGHR is determined by aliphatic-aromatic stacking interactions between two 

tryptophan residues (Trp-104 and Trp-169) on hGKR and the residues forming the 

two binding sites on hGH (Clackson et uf. 1998). 

If these findings for hGH-hGHR are generally applicable to GH from other 

species, the rnolecuIar basis for my finding of a high affinity between teleost GH and 

mammalian GHR may be due to similarities between mammalian and teleost GH in 

residues 60 to 68 and 168 to 179 for binding site I and residues 12 to 16 and 115 to 

120 for binding site 2. A comparison of the sequences of GH from several teleost and 

mammalian species in these key regions is shown in Figure 8.2. Within the 32 amino 

acid residues forming binding site 1 and 2, there are only 2 conserved substitutions in 

rat and rabbit GH compared to bGH, whereas hGH differs significantly fiom bGH by 

dispiaying 3 non-conserved and 9 conserved substitutions (Fig. 8.2). Comparison of 

bGH with goldfish and common carp GH reveals ody I residue in sites I and 2 

residues in site 2 that are non-conserved substitutions, although one of these 

substitutions (W-173) is a h  found in hGH. In contrast, rainbow trout GH and 

gilthead seabream GH contain 9 non-conserved and 4 and 5 conserved amino acid 

substitutions in binding site I and 2, respectively, compared to those of bGH. 

Although the sea bream GH matches well with rainbow trout GH in both site 1 and 2, 

GH from gilthead seabream is a shorter molecule and lacks several residues immediately 

adjacent to helix III in binding site 2 (Funkenstein et d- 199 1). 



My results (Chapter 4) strongly support a hypothesis that the cross-reactivity of 

teleost GH with mammalian GHR is related to structural similarities of the teleost GH 

to mammalian GH. Both rcGH and rtGH were found to highly cross-react with rabbit 

and rat hepatic GHR and the biological activities of rcGH and rtGH were equivalent to 

bGH in the 3T3-F442A bioassay. However, rcGH displayed a higher K, than rtGH in 

rabbit and rat GH receptor binding assays (Chapter 4). This suggests that rcGH is a 

dightly better ago& for these receptors, although rtGH was equivalent to rcGH in 

the bioassay. Discrepancies between receptor binding and bioactivity have been 

reported for other GH molecuies (Vashdi et al. 1991) and are probably related to the 

hypothesis that only partial occupancy of GHR is required to elicit a !ill biological 

response. rsbGH was distinct from rcGH and rtGH in that rsbGH displayed IittIe 

cross-reactivity with rabbit and rat hepatic GHR and a very low bioactivity in the 

3T3-F442A bioassay. These results support my hypothesis that the cross-reactivity 

of teleost GH with mammalian GHR depends on the structural similarities between 

mammalian GH and teleost GH, especially in regions corresponding to binding site 1 

and 2 of hGH. 

A recent study found that teleost GH genes display a pattern of structural 

divergence related to teleost phylogenetic classification (Venkatesh & Bremer 1997). 

Within the subdivision Euteleostei, carp and goldfish belong to the superorder 

Ostariophysi, rainbow trout belongs to the superorder Protacanthopterygii, whereas 

gilthead seabream is a member of the superorder Acanthopterygii (Netson 1994). 

Among Euteleostei, Acanthopterygii is the most divergent fiom the main line of 

vertebrate evolution. In my study, GH h m  the common carp highly cross-reacted 



with mammalian GHR whereas GH from @thead seabream displayed the lowest cross- 

reactivity with mammalian GHR, Thus, GH from teleost groups closer to the main h e  

of vertebrate evolution appear to have higher cross-reactivity with mammalian GHR. 

This suggests that the pattern of cross-reactivity of teleost GH with mamrnaliau GHR 

is also closely related to teleost phyiogenetic classification. 

Historically, the molecular basis for species-specificity of vertebrate GH-GHR 

interactions has been difficult to determine (Niwll et al. 1986). It is now clear, 

however, that ody a few residues in GH and GHR determine binding affinity and 

compatibility is needed within these contact residues between GH and GHR (Clackson 

et al. 1998). Recent evidence suggests that the Low cross-reactiwty of non-primate GH 

with hGHR results from the incompatibility of -43 in the hGHR with His-172 in 

non-primate GH (Souza et all 1995, Goodman et aL 1996, Behrtcken et al. 1997). Thus, 

changes in a single amino acid pair in hGH and hGHR confers a very high degree of 

species-specificity in this interaction. 

In Chapter 4, rtGH was found to highly cross-react with goldfish GHR, whereas 

rsbGH, bGH and rhGH displayed little binding with goldfish GHR. In contrast, 

binding of all GH, except rtGH, to hepatic GHR h m  rainbow trout was too low to 

Jlow for LIGAND analysis. These results demonstrate that rainbow trout and, to a 

lesser extent, gotdfish GHR, have very specific molecuiar requirements for GH binding. 

Although rcGH differs b m  rtGH within binding site 1 and 2 (Fig. 8.2) and other 

regions of the moIecuies (Koren ef al. 1989), the precise molecular basis for the 

different pattern of hormone cross-reactivity observed with trout and goldfish GHR is 

not immediately evident Additional information about the residues making contacts in 



the teleost GH and GHR interaction d l  be required To my knowIedge, the structure 

of the GHR in any teleosts has not yet been determined; this information will be 

needed to Mly understand the molecular basis for my hdings. 

Two distinct GH molecdes encoded by two separate genes have been reported in 

carp (Chao er a!. 1989, Chiou et al. 1990), goldfish (Law et al. 1996), and rainbow trout 

(AgelIon et al. 1988). There are no differences in the amino acid residues in bmdmg 

sites 1 and 2 between gotdfish GH-I and GH-I1 (Fig. 8.2). Thus, the two GH variants 

in goldfish are Likely to have identical receptor binding activity. There is only one 

conserved substitution at position 62 between common carp GH-I and GH-U, and 

these two variants should aIso display similar receptor bindug. Overall, carp and 

goldfish GH are very similar to each other structurally and are likely to interact with 

receptors in a very similar manner- The two trout GH variants have been found to 

exhibit different biochemical and immunologicaI characteristics in SDS-PAGE and RIA, 

but displayed similar receptor binding &ties (BjSrnsson 1997). Thus, the sequence 

variation in sites t and 2 of the trout GH also does not appear to result in a difference 

between rainbow trout GH-I and GH-U in terms of binding f i n i t y .  

In summary, my thesis provides new evidence about the chatgcteristics of goldfish 

GHR, the differences and similarities between goldfish and rmmmahm GHR, the 

interactions of hepatic GHR with other components important in somatic growth, and 

the regulation of the hepatic GHR in goldfish Together, these results suggest that the 

goldfish is a usel l  model to study the roles of GH, GHR and GHBP in endocrine 

regulation of somatic growth in teieosts. A signrt?~iillt finding also presented in this 

thesis is that GH from at least two teleosts highly cross-reacts with mammalian GHR 



and GHBP. This tinding challenges the long held dogma that fish GH is inactive in 

mammals (E5clcford 1957, Hayashicia 1975, Tarpey & NicoU 1985, LeBail et al. 1989, 

Goodman et al. 1996) and I propose a new hypothesis to better explain the species- 

specrficity of GH-GHR interactions in vertebrates. 
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APPENDIX A OPTIMIZATION OF GOLDFlSB HEPATOCYTE CULTURE 

TECaMQUES 

A1 Introduction 

Barry and Friend (1969) fist ckd'bed the isolation of Liver parenchymal cells by 

collagenase digestion in the rat. A similar technique has also been successfully 

employed to isolate teleost hepatocytes (Moon et al. 1985). Mammalian hepatocytes 

can survive in vitro for up to one month under an appropriate culture environment 

(Isom et al. 1985). In contrast, hepatocytes from carp and salmonids have been 

reported to survive for oniy a few days (Guguen-Guillouzo & Guillouzo 1986). The 

shorter life of teleost hepatocytes in vitro may be due to an inappropriate culture 

environment. Although high yield preparations of goldfish hepatocytes have been 

obtained (Birnbaurn et al. 1976, Schwarzbaum et d 1992, Knrmschnabel et a[. 1994, 

1996), these cells were used for experiments immediately after preparation and were 

not continuously cultured 

In order to complete the m vitro study of GH receptors in Chapter 7, a goldfish 

hepatocyte culture had to be established and optimized for a longer period of m v i m  

hepatocyte survival. In this appendix, various factors that influence goldfish 

hepatocyte viability, yield and in vitro growth were examined experimentally. 

Optimization of these conditions then allowed large amounts of viable goldfish 

hepatocytes to be easily prepared and cultured in vitro for up to one month. 



A2 Materials and Methods 

. * 

Goldfish hepatocytes were routinely prepared using the method of Krumschnabel 

et al. (1994). Goldfish were sacrificed in excess anesthetic (0.05% MS222). Portions of 

liver were removed under sterile conditions and washed in HEPES buf5er (120 mM 

NaCI, 4.8 m M  KCl, 1.2 mM KH2P04,24 m M  NaHC03, and 15 mM HEPES, pH 

75)  containing 0.1 mg ml" of kanamycin. The liver was minced and incubated with 

0.1 % collagenase for 30 min at 26°C in an atmosphere of 95% d 5 %  C 0 2  Digested 

tissue was filtered through a 75 pm nylon mesh, centdhged at 50 g for 45 seconds, and 

the supernatant removed by aspiration. Sedimented hepatocytes were washed three 

times in KEPES buffer and resuspended in a serum-& culture medium consisting of 

3:l of mixture of Dulkco's modification of Eagle's medium plus medium 199 

containing 0. I mg mi*' of kanamycin (DMEMI 199). 

* . .  

Viable cells are impermeable to trypan blue, aigrosine, and a number of other dyes 

whereas dead cells are stained by the dyes (Freshney 1994). In this study, cells were 

exposed to 0.5% (wt/vol) trypan bIue for several minutes and then counted on a 

hemocytometer. The viability of cells was determined as the percentage of cek present 

which were not stained by trypan blue. The yield of celIs was calculated as the total 

number of viable cells obtained per gram of liver tissue. 



&23 In vitro c w  

Prior to seecling, the number of viable ceh was counted on a hemocytometer 

using the dye exclusion method described above. Only cell preparations with a viability 

greater than 98% were used for the subsequent experiments. Approximately 1 x 10 
7 

cells were plated in 2.5 cm regular polystyrene cdture dishes (Falcon brand, Becton 

Dickinson Co., NJ) and incubated at 26°C in a humidified atmosphere of 95% aids% 

C02. Attachment efficiency was detennined as the number of cells attached to the 

surface over the total number of viable cells plated. After cell attachment, fiesh 

DMEMf 199 (3: I )  without antibiotics was added and renewed every 2 days thereafter. 

&24 S- 

Freshly isolated goldfish hepatocytes were seeded in 2.5 cm Primaria dishes 

(Becton Dickinson Co., NJ) at a density of I K 107 celIs/dish After 3 days in culture, 

the cells were detached by 0.25% (wthol) trypsin or by the rub stick method 

(Freshney 1994) and removed into new culture dishes for subculture. Attachment 

efficiency was determined as descnkd above. 

Sigruficantly low IeveIs of attachment efficiency were found in goldfish 

hepatocytes following subculture (Fig. A. 1). After subculture, the attachment 

efficiency of the cells was only 15% whereas over 80% of the freshly isolated cells 

(control) were found to be attached. The extremely low attachment efficiency in the 

first passage of goldtish hepatocyte culture made it impossible for firrther subcutture or 

testing of these cells. 



Incubation of minced liver was performed with various concentrations (0, 0.025, 

0.05, and 0.1%) of type IV collagenase for various time periods (1, 2, and 4 h). The 

viability and yield of goldfish hepatocytes were determined as described above. 

Two types of 24welI plates were tested for optimal culture of goldfish 

hepatocytes; one was made of normal poIystyrene (regular Falcon brand, Becton 

Dickinson Co., NJ), the other is made of modified polystyrene (Primaria Falcon brand, 

Becton Dickinson Co., NJ). incubation was performed for various time periods (1, 4, 

12, and 24 h). Cell number was determined using the MTT assay described previously 

(Chapter 4). 

Freshly isolated goldfish hepatoqtes wexe seeded in 24weII Rimaria plates at a 

density of 1 x 105 celldwell. Cells were supplemented with medium only 

( D W  1 99 3: 1 ) or with medium containing 1 pg rcGWweI1,l pg bovine insulin/well, 

or 10% (voUvo1) goldfish serum. Attachment efficiency uuder each treatment was 

determined as described above. 



A.2.8 of c-wth 

Freshly isolated goldfish hepatocytes were seeded in 24weI1 Primaria plates at a 

density of 5 x 104 celIs/weU. After 2 to 3 h, lnring ceUs were attached to the plastic 

surface and began to spread.. After cell attachment, various types of f h h  media were 

added inctuding DMEM, medium 199, or mixture of DMEM plus medium 199 (1: 1 or 

3:l). Cells were incubated for a period of 4 days. Fresh medium was added and 

renewed every 2 days. At the end of incubation periods, cell number was determined 

using the MTT assay descriied previously (Chapter 4). 



A3 Results 

A3 1 m'mt o f c o l l a e e n a s e  m . .. 

Collagenax -on resulted in the release of large number of intact goldfish 

hepatocytes with a viability of more than 95%. Incubation of minced goldfish liver 

with various concentrations of collagenase yielded various amounts of viable cells. A 

high yield of goldfish hepatocytes was obtained using 0.1% co[lagenase dsapgqation, 

with a yield of 6.7 + 0.5 x 10' cells g1 liver, a viability of more than 97% and a protein 

content of 2.5 mg/106 cells (Fig. A.2). ,All subsequent experiments were performed 

using 0.1% coilagenase disaggregation. Longer incubation with collagenase resulted in a 

higher yield of cells but a lower viability (Fig. A.3). For a viability of more than 95%, 2 

h of incubation with 0.1% collagenase resulted in the highest yield of viable 

hepatocytes (Fig. A.3). 

&3 7 E E  

The effects of rcGH, insulin, and goldfish serum on attachment efficiency of 

goldfish hepatocytes are illustrated in Figure A.4. Si@cantly higher attachment 

efficiency was found in cells treated with rcGH incubated less than 4 h compared to 

that of the control cells (Fig A.4 top panel). However, by 24 h, attachment efficiency 

was similar in all treatments. Thus, hormone and serum were not used for cell 

attachment in all subsequent experiments. 



A3.3 Effect of s u ~ ~  on 

Cells cultured on a modified polystyrene subssate (Primaria) had higher 

attachment efficiency than cells cultured on regular poIystyrene substrate (Fig. A.4 

bottom panel). Therefore, all the subsequent experiments were conducted using 

modified polystyrene as a substrate (Primana culture plates). 

A.3.4 E&ct of c u l t u r e m e d i u m o n  virro growth 

The effects of culture medim on in vitro growth of goldfish hepatocytes are 

shown in Figure AS. There were no significant differences in ceU growth cultured in 

the different media (Fig. AS). DMEM/199 (3: 1) medium was used for all subsequent 

goldfish hepatocyte cdtures. 

3.5 of 

Freshly isolated goldfish hepatocytes displayed a highly rounded morphoIogy 

(Fig. A.6a). Goldflsh hepatocytes began to proliferate after seeding (Fig A6b), 

gradually aggregated to form short cords by day 4 (Fig. A6c), and maintained a simiIar 

structure for up to one week (Fig. A6d). At two weeks, cord-like structures 

deveIoped with many processes (Fig. A.6e). Such structures were maintained uatd the 

end of goldfish hepatocyte culture (Fig A.60. 



A4 Discussion 

A rapid and eff'tive method for isolation of goIW hepatocytes by wIIagenase 

disaggregation was established in this study. These hepatocytes display a long period 

of survival in v i m  and maintain their responsiveness to epinephrine stimulation 

(Chapter 7). The two-step m sim colIagenase perfirsion is the best method for 

preparation of mammalian hepatocytes (Freshney 1994). However, this technique is 

very time consuming, and is not efficient or economical for small-sized and 

anatomicd Iy dispersed livers such as that found in goldfish Colrstgenase disaggregation 

is of greatest benefit for tissues incIuding liver, which are either too fibrous or too 

sensitive to allow for the successful use of trypsin (Krdovansky era!. 1990). 

Separation of the parenchymal cells h m  non-parenchymal liver cells may be 

achieved on the basis of size and density, using either gravity sedimentation, low speed 

centrifugation or to best advantage, cezlmfbgaI elutriation (Hayner et al. 1984). In the 

present study, a low speed cen-ation was aIso selected for isolation of goldtish 

hepatocytes. The goldfish hepatocytes selected by low speed centnf&g&on bave been 

previously reported to have a large portion of parenchyd h e r  cells which display 

responsiveness to epinephrine similar to those of m vivo hepatocytes (Bimbaum et al. 

1976, Van Waarde & Kesbeke 1981, Schwanbaum et a[. 1992, Krumschnabei ef 41. 

1994, 1996). The use of an a q i n b f k  dm medim has also been reported for 

selection of parenchymal liver cells based on the unique capacity of hepatocytes to 

synthesize arginine fiom ornithine via the urea cycle (L.eErt & Paul 1973). En addition 

to the manipulation of arginine, the absence of serum inhr3its the growth of fibroblasts 

in hepatocyte cdtures (Enat er al. 1984). In the present study, DMEM1199 (3:l) 



culture medium was used for goldfish hepatocytes. This cuIture medium contains a bw 

concentration of arginine and is fke of serum. 

Hepatocytes require certain substances and suitable substrates for attachment, 

spreading, survival and growth. Serum has been reported to play an important role in 

cell attachment of mammalian hepatocytes (Horiuti et al. 1982). However, 

heterologous sera are less effective in stimulating DNA synthesis in rat hepatocytes 

than either a serum-& medium supplemented with insulin and epidermal growth 

factor or medium containing rat serum (Strain et af. 1982). In the present study, rcGH 

was found to be the most effective factor in stimulating attachment of golmh 

hepatocytes. The use of rcGH instead of goldfkh serum for cell attachment has 

advantages in the biochemical and physioiogical studies of goldfish hepatocytes since 

serum contains many uaknown substances which complicates in vitro studies. 

However, rcGH has also an andmitogenic effect on goldfish hepatocytes (Chapter 7). 

Therefore, rcGH was not used to improve attachment efficiency of goldfish 

hepatocytes. 

Potential substrates for cell attachment indude collagens (type I, III, IV, V, and 

VI), noncollagenous glycoproteins such as fibmnectin and laminin, heparan sulfate 

proteoglygan, or plastics such as polystyrene (Fresbney 1994). Previous studies 

indicate that collagen substrate provides a condition most resembling the m vivo 

situation for " hepatocytes (Dunn a al. 1989). In the present study, a 

poIystyrene culture substrate was selected on the basis of simplicity and economy. 

Goldfish hepatocytes were found to have a higher attachment efficiency on a modified 

polystyrene substrate than that of regular polystyrene. The culhms of goldfkb 



hepatocytes were also found to proliferate and survive for a long period of time on the 

modified polystyrene substrate (Chapter 7). 

There were no significant differences in the in vitro growth of goldfish 

hepatocytes cultured in the different media This result suggests that the choice of 

basat medium is of little importance for in vitro growth of goldfish hepatocytes. Similar 

findings were reported for mammalian hepatocytes (Guguen-Gudlouzo 1992). It 

appears that the importance of culture medium for cell survival is supplement of 

nutrients, metabolites, and minerals, and maintenance of pH, osmoldity, and humidity, 

rather than direct stimulation of in virro growth (Freshney 1994). 

The present study developed a simple, rapid and economical method for 

preparation of goldfish hepatocytes with high viability and yield The goldfish 

hepatocytes cultured in vitro displayed high attachment efficiency, proweration over 

time, and morphologicaI changes similar to mammalian hepatocytes (Guguen-Guillouzo 

1992). Additional characteristics of goldfish hepatocytes prepared using these 

techniques were W e r  studied in Chapter 7. 



(Trypsin) (Rub stick) 

Figure A1 Effects of subcuIture on attachment efficiency of golcKsh hepatocytes. 
Freshly isolated goldfish hepatocytes <control) had sirmificantIy higher attachment 
efficiency than cells cuttured for 3 days and subcultured following detachment by 
uypsin or the rub stick method (Student's t-test, *** p<0.001). Data, expressed as 
mean+SEM, were obtained from three experiments, each carried out in nipticate. 

0.05 

Collagenase concentration (% wlv) 

Figure A l  Yietd of viable goidfish hepatocytes obtained using various concentrations 
of collagenase. Liver tissue was incubated with collageme at 26OC in a humidified 
atmosphere (5% C02/95% air) for 2 h. Data, expressed as memkSEM, were obtained 
fi-om three experiments, each carried out in triplicate. Groups with different 
superscripts are signZcantIy different (Student-Newman-Keds test, p4.05). 



Figure A 3  Yield of viable goldfish hepatocytes obtained foIlowing digestion of Ever 
tissue with 0.1 % collagenaseat 26°C in a humidified atmosphere (5% C02/9j% air) 
for various time periods. Data, expressed as mean_+SEM, were obtained from three 
experiments, each carried out in triplicate. Groups with different superscripts ate 
significantly different (Student-Newman-Keuls test, pc0.05). 
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Figure A.4 Effects of rcGH, insulin, goldfish senun, and substrate on attachment 
efficiency of goldfish hepatocytes. Cells were cultured with D W 1 9 9  (3:l) 
containing rcGH, insulin or 10% goldfish serum on modified polystyrene substrate 
(top panel). Cells supplemented without hormones or serum were cdtwd on either on 
modified polystyrene substrate or normal polystyrene substrate (bottom panel), 
Incubation of cells was performed at 26°C in a humidified atmosphere (5% C02/95% 
air) for various time periods. CeUs cdtured on modified polystyrene had a significantly 
higherattachment efficiency than those cdtured on normal polystyrene (Student's t- 
test, * p<O.O5. *** pc0.001). Data, expressed as mea&EM, were obtained h m  
three experiments, each carried out in triplicate. Groups with different superscripts are 
siguiticantly different (Student-Newman-Keds test, pq.05). 
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Figure A S  Effects of various culture media on in v i m  growth of goldfish hepatocytes. 
The number of ceIIs was determined using the MlT assay. Data, expressed as 
meankSEM, were obtained from three experiments, each carried out in triplicate. There 
were no significant differences in cell number between the various culture media. 



Figure A6 Morphological changes of goldfish hepatocytes in vitro. Freshly isolated 
goIash hepatocytes displayed a highly rounded rnorphoIogy (Fig. A.6a). Goidfish 
hepatocytes began to proliferate after seeding (Fig. A.6b), gradually aggregatcdto form 
short cords by day 4 (Fig. A.6c), and maintained similar structure for up to one week 
(Fig. A.6d). At two weeks, large cord-like structures developed with many processes 
(Fig. A.6e). Such structures were maintained until 30 days of goldfish hepatocyte 
culture (Fig. A.60. 




