Impact of N-fixing trees on soil-derived Greenhouse Gas emissions in the semi-arid Canadian Prairie

Amadi, C^{*}, R. Farrell and K. Van Rees

Department of Soil Science, University of Saskatchewan, Saskatoon, SK. Canada.

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Centre for Northern Agroforestry and Afforestation

Shelterbelts

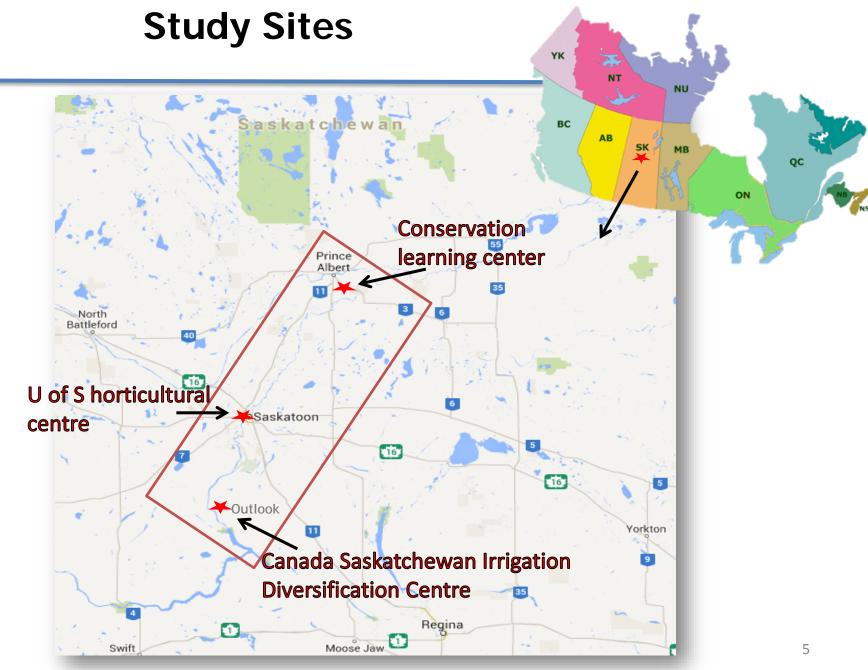
Carbon storage

Greenhouse gas mitigation

Are shelterbelts created equal in terms of GHG mitigation?

Objective:

To quantify and compare soil emissions of N_2O , CH_4 and CO_2 from N-fixing and coniferous shelterbelts

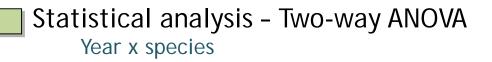


Caragana

Shelterbelt Characteristics

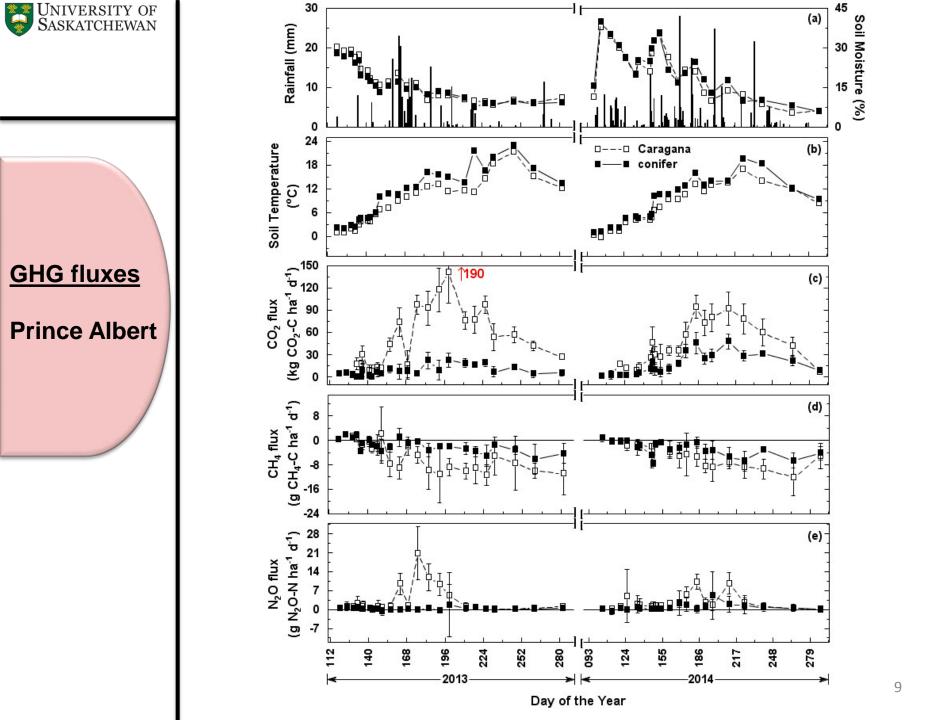
Location	Main species	Age (yr)	Tree rows	Length (m)	Shelterbelt orientation†	Planting space (m)	Mean DBH (cm)	Mean height (m)
N-fixing shelterbelts								
Outlook	Caragana	34	1	750	N - S	1	6.8	5
Saskatoon	Caragana	38	1	84	N - S	1	5.3	5.5
Prince Albert	Caragana	19	1	150	N – S	2	5.6	4
Non N-fixing shelterbelts								
Outlook	Scots pine	19	1	435	E - W	2.5	27.7	10.5
Saskatoon	Mixed spp.	38	1	90	N - S	2	17.5	15
Prince Albert	White spruce	41	4	70	N - S	2	15	7

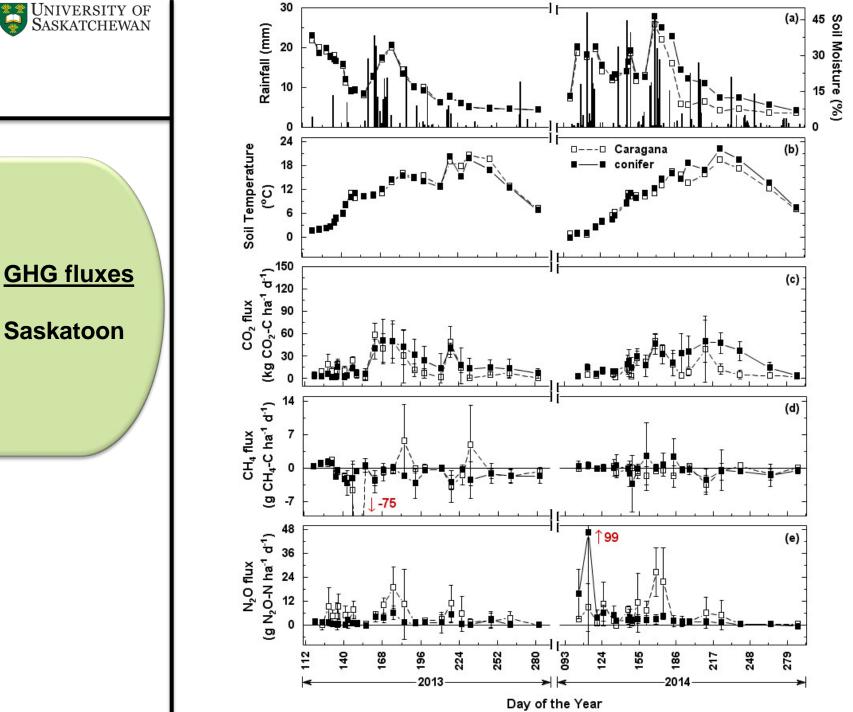
Gas, soil and ancillary data

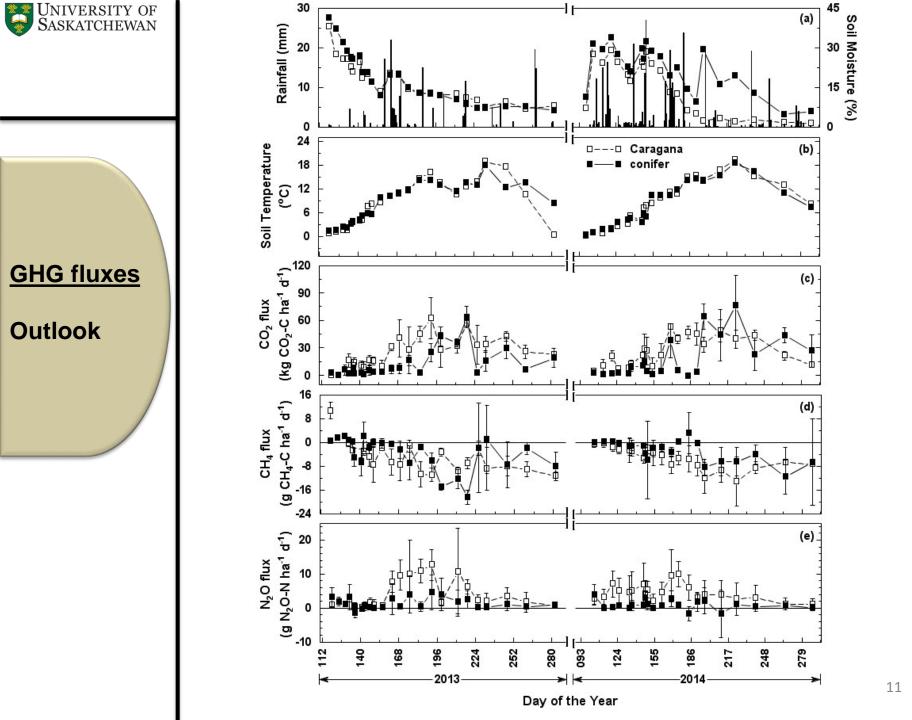

Non-steady state, vented chambers (2013 - 2014)

Sampling intensity:

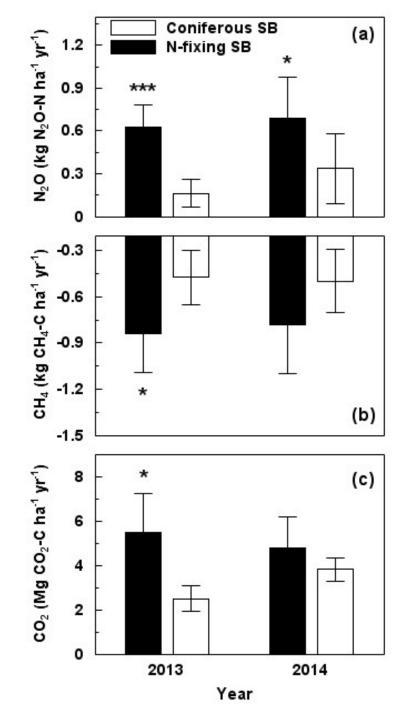
- weekly, (guided by weather events)
- 4 time points (T $_{0,}$ T $_{10,}$ T $_{20}$ and T $_{30}$)
- Gas samples measured using a gas chromatograph (Bruker 450-GC)


- Soil temperature and moisture at 5 cm depth
- Soil sampling: 15 cm depth


Soil properties


Location	Shelterbelt species	Organic C (Mg ha⁻¹)	Total N (Mg ha⁻¹)	NH4-N (μg N g soil ⁻¹)	NO ₃ -N (μg N g soil ⁻¹)	Bulk density (Mg m ⁻³)	Soil pH
N-fixing shelterbelts							
Outlook	Caragana	71.2	6.2	10.3	8.4	1.26	6.97
Saskatoon	Caragana	61.8	5.6	7.9	6.1	0.93	7.12
Prince Albert	Caragana	33.2	2.7	6.4	5.5	1.20	6.90
Non N-fixing shelterbelts							
Outlook	Scots pine	64.8	5.5	7.6	6.0	1.30	6.83
Saskatoon	Mixed spp.	58.2	4.3	6.2	5.3	0.98	6.92
Prince Albert	White spruce	31.1	2.6	5.0	4.9	1.25	6.75

Summary of soil properties (0-15 cm) from caragana and non N-fixing shelterbelt plots



Seasonal Cumulative GHG Exchange

Summary and Conclusion

Nitrous oxide emissions could offset gains in C storage

> 1 kg N₂O will have the same global warming effect as 296 kg CO_2

Inter-planting - maximize N-nutrition in non N-fixing trees while reducing potentials for N_2O emissions

- Increased biomass yield = more C storage
- ➢ Reduced N₂O emissions

References

Izaurralde, R.C., R.L. Lemke, T.W. Goddard, B. McConkey and Z. Zhang. 2004. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Sci. Soc. Am. J. 68:1285-1294

Kort, J. and R. Turnock 1999. Carbon reservoir and biomass in Canadian prairie shelterbelts. Agroforest Syst. 44:175–186

Kulshreshtha, S. and J. Kort. 2009. External economic benefits and social goods from prairie shelterbelts. Agrofor. Syst. 75:39-47

Acknowledgement

We appreciate support and technical assistance from Doug Jackson Darin Richman Frank Krignen Mark Cooke Matt Jones Shannon Poppy Curtis Braaten

Funding was provided by Agriculture and Agri-Food Canada – Agricultural Greenhouse Gas Program (AGGP). Additional support was provided by the Saskatchewan Ministry of Agriculture – Strategic Research Program – Soils & Environment

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Thank you

