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ABSTRACT 

INVESTIGATION INTO THE PATHOGENESIS OF RETINAL DYSPLASIA IN 
THE MINIATURE SCHNAUZER AND ENGLISH SPRINGER SPANIEL DOG 
 
Bianca S. Bauer, BSc., DVM    Supervisor: 
University of Saskatchewan, 2008   Lynne S. Sandmeyer, DVM, 
DipACVO 
  

 Retinal dysplasia has been documented in many breeds of dogs.  It has recently 

been hypothesized that Miniature Schnauzer dogs affected with retinal dysplasia and 

associated persistent hyperplastic primary vitreous have a decreased amount of Tfam and 

several mtDNA transcripts in the retina and RPE.  Affected dogs were also hypothesized to 

have a decrease in leukocyte mtDNA compared to normal dogs.  Additionally, using 

electron microscopy, these dogs were hypothesized to having decreased mitochondrial 

numbers and size with altered morphology in multiple tissues, including neutrophils.  Due 

to these recent discoveries in this breed it has been proposed that retinal dysplasia could be 

the result of an altered energy supply to the retina and RPE.  The objective of this study 

was to further investigate the pathogenesis of retinal dysplasia in the Miniature Schnauzer 

and English Springer Spaniel dog. 

 The hypothesis of an altered Tfam gene sequence in affected Miniature Schnauzer 

dogs leading to a decreased amount of Tfam transcript in the retina and RPE was tested by 

amplifying, cloning and sequencing the coding, 5’ and 3’non-coding regions, and intron 1 

of the Tfam gene from affected and normal Miniature Schnauzer dogs.  Using transmission 

electron microscopy, affected and normal lymphocyte mitochondria were also objectively 

measured and quantified in this breed along with mitochondrial morphology assessment.  

In the English Springer Spaniel dog, the hypothesis of a decreased amount of leukocyte 

mtDNA in affected dogs was tested using real-time PCR.  In addition, using transmission 

electron microscopy, affected and normal lymphocyte mitochondria were objectively 

measured and quantified in this breed with mitochondrial morphology assessment.  

 Sequencing of the particular regions of the Miniature Schnauzer Tfam gene 

revealed no significant nucleotide changes between affected and normal dogs.  Evaluation 

of lymphocyte mitochondrial size, number and morphology also revealed no significant 
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differences between the two groups.  In the English Springer Spaniel dog a relative 

decrease in leukocyte mtDNA did not exist in dogs affected with retinal dysplasia.  

Furthermore, evaluation of affected English Springer Spaniel dog lymphocyte 

mitochondria revealed no significant differences in mitochondrial number, surface area or 

morphology when compared to normal English Springer Spaniel dogs.   

 To conclude, we failed to demonstrate a mutation in the areas of the Tfam gene 

sequenced in Miniature Schnauzers affected with retinal dysplasia and associated persistent 

hyperplastic primary vitreous.  In contrast to previous findings of decreased leukocyte 

mtDNA in the affected Miniature Schnauzer dog, no evidence was found to support a 

relative decrease in leukocyte mtDNA in English Springer Spaniel dogs affected with 

retinal dysplasia.  Furthermore, the hypothesis of altered mitochondrial size, number and 

morphology in affected dogs is not supported by this study.  Further evaluation of 

mitochondria, mtDNA and mitochondrial gene expression within age-matched retina and 

RPE of Miniature Schnauzer and English Springer Spaniel dogs is necessary to determine 

if mitochondria and altered energy supply play a role in the pathogenesis of retinal 

dysplasia in these breeds.  
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GENERAL INTRODUCTION 
 

RETINAL DYSPLASIA IN DOGS  

 

 Retinal dysplasia is a common congenital disorder in dogs and is defined as an 

abnormal differentiation of the sensory layers of the retina.1  The condition was first 

recognized in the Bedlington Terrier by Rubin in 1963 2, 3, and has since been reported in 

many breeds.4-17  Morphologically, retinal dysplasia can be classified into three forms: i) 

single or multiple retinal folds; ii) geographic retinal dysplasia and iii) generalized 

dysplasia with retinal detachment or non-attachment.18  In focal or multiple retinal folds 

the lesions appear as grey or green linear streaks or dots and are most prevalent in the 

central tapetal fundus, dorsal to the optic disc.  Dysplastic foci in the non-tapetal fundus 

appear as grey worm-like retinal opacities.9, 19   (Figure 1)  In geographic retinal dysplasia 

the affected areas appear irregular or have a horse-shoe shaped appearance.19  (Figure 2)  

Often within or around the dysplastic area retinal elevation may be noted, as well as 

hyperreflective areas indicative of neuroretinal degeneration.19  Lastly, in generalized 

retinal dysplasia with retinal detachment a completely detached neural retina is evident, 

often only attached at the optic nerve.  In neonates, leukocoria and a rotary nystagmus may 

accompany generalized retinal dysplasia.19  The cause of retinal detachment in retinal 

dysplasia has not been determined.  In the English Springer Spaniel dog it has been 

proposed that the presence of ectopic vessels within the dysplastic areas may compromise 

the inner blood-retinal barrier resulting in leakage and subsequent retinal detachment.20  

Vitreoretinal degeneration and liquefaction has been demonstrated to contribute to retinal 

detachment in Labrador retrievers 21 and thus may also play a role in generalized retinal 

dysplasia in this breed.   

 Clinically, retinal dysplasia is non-progressive but lesions may change in 

appearance with age due to remodelling of the retina.4, 19, 20, 22  In focal or multifocal retinal 

dysplasia the lesions occasionally become less obvious and some folds may disappear with 

time.19  In the geographic form the lesions often become more demarcated with time.19  

The retinal pigment epithelium (RPE) underlying the dysplastic areas may appear more 

pigmented due to RPE hypertrophy or hyperplasia.19  Retinal dysplasia occurs both 



bilaterally and unilaterally.18  Affected dogs may have normal or impaired functional 

vision or may present with unilateral or bilateral blindness due to retinal detachment or 

non-attachment.19   

 Although retinal dysplasia is believed to be congenital, Holle et al. 23 have 

proposed that a developmental form of geographic retinal dysplasia may also exist.  This 

retrospective study identified geographic retinal lesions in various purebred and mixed 

breed dogs at 10 weeks of age.  The lesions identified were not visualized in the same dogs 

between 5 and 9 weeks of age.  The posterior pole and equatorial regions of the superior 

fundus were most commonly affected and lesions appeared as thick, dark, circular plaques 

of retinal tissue.  The lesions were often accompanied by retinal folds and were usually 

associated with the major retinal vessels.  The non-tapetal fundic lesions appeared as 

circular grey to white plaques and were located in the peripapillary region or along the 

horizontal retinal vascular arcades nasally or temporally.  All lesions were unilateral and 

the authors proposed that the lesions identified were consistent with geographic retinal 

dysplasia.23  This presumptive diagnosis may however, be erroneous.  Retinal dysplasia is 

a defect of retinal differentiation and is thus considered to be a congenital condition.19  

Lesions should therefore, be visible at birth and be predominately bilateral, however, all 

dogs examined in the study by Holle et al. 23 were normal before 10 weeks of age and all 

lesions were unilateral.  Secondly, hereditary factors are suspected to be the cause of 

retinal dysplasia in most breeds.3, 4, 7, 9, 10, 13, 14, 24-26  Pedigree analysis or test breeding was 

not performed in this study to verify the diagnosis of an inherited condition.  Most 

importantly, histopathology, which is necessary to confirm a diagnosis of retinal dysplasia, 

was not performed in this study.  It is therefore likely, that the condition reported by Holle 

et al. 23 is not geographic retinal dysplasia, but rather a separate unknown condition that 

occurs after retinal development has occurred.   

 Retinal dysplasia commonly occurs concurrently with other idiopathic or inherited 

congenital ocular anomalies.  The English Springer Spaniel 5 and Yorkshire Terrier 14 are 

reported to have the condition in association with cataracts, while the Sealyham Terrier 7, 

Bedlington Terrier 2, Labrador Retriever 13, 27, and Akita 12 are reported to have retinal 

dysplasia in association with cataracts and microphthalmia.  In the Labrador Retriever 

retinal dysplasia may also be associated with persistent pupillary membranes 13 and 
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skeletal dysplasia 26, 27.  In the Doberman Pinscher an autosomal recessive inherited 

congenital anomaly is reported that is characterized by microphthalmia, retinal dysplasia 

and anterior segment dysgenesis.11, 28-30  Multiple ocular defects including microphthalmia, 

cataracts, lenticonus with lens capsule rupture, persistent pupillary membranes, 

goniodysplasia, persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic 

primary vitreous (PHTVL/PHPV) in association with retinal dysplasia is reported in 

Bloodhound puppies.6  Similarly, multiple ocular congenital defects including 

microphthalmia, buphthalmia, anterior synechia, acorea and aphakia in association with 

retinal dysplasia is reported in Saint Bernard puppies.17  Most recently, retinal dysplasia 

associated with persistent hyperplastic primary vitreous (PHPV) is reported in the 

Miniature Schnauzer dog.15  Although the Chow-Chow and Australian Shepherd dog have 

been cited as having retinal dysplasia in conjunction with other ocular defects 19, a 

histopathologic diagnosis of retinal dysplasia has not been confirmed in these breeds.  

Similarly, the Samoyed dog has been reported to have retinal dysplasia in conjunction with 

short-limbed dwarfism 31 however, histopathologic evidence of retinal dysplasia was not 

demonstrated in the study.   

 

HISTOPATHOLOGY  

 

 Histopathology is necessary to confirm a diagnosis of retinal dysplasia.  

Histologically retinal dysplasia is characterized by folding of the neuroepithelium and the 

formation of rosettes in the sensory retina.32 (Figure 3)  Lahav et al. 32 describe four types 

of rosettes: (i)  Three-layer rosettes which have the appearance of mature retina that has 

been secondarily thrown into folds; (ii)  Two-layer rosettes in which the innermost layer 

resembles a photoreceptor cell layer with external limiting membrane and a large lumen 

containing undifferentiated cells.  Surrounding these is a more peripheral layer of bipolar-

like cells or poorly differentiated cells; (iii)  One-layer rosettes with a single layer of 

moderately well-differentiated neural cells, usually several cells thick, having a structure 

similar to an external limiting membrane and surrounding a lumen.  Within the lumen 

larger undifferentiated cells containing pigment granules are often observed; (iv)  Primitive 

unilayer rosettes in which a single layer of undifferentiated retinal cells surround a lumen 
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delineated by an external membrane-like structure or, groups of cells that are arranged in a 

circle with a central tangle of fibrils.32  Many rosettes examined Lahav et al. 32 appeared to 

have developed from the outer nuclear layer of the retina but the degree of disorganization 

prevents definitive determination of the layer of origin.32  Other common concurrent 

histologic examination findings include retinal folds, retinal detachment or non-

attachment, persistent hyperplastic primary vitreous and retinal pigment epithelium 

hypertrophy and hyperplasia.9, 20, 32  Some retinal folds are not true dysplasia.  These folds 

are believed to be caused by a transient growth differential between the inner and outer 

layers of the optic cup.33  While folds may be encountered as a component of retinal 

dysplasia, they are distinct in terms of pathogenesis and significance.33  The distinction 

between these retinal folds and retinal dysplasia is difficult to make ophthalmoscopically, 

thus requiring histopathology to differentiate between the two conditions.  Retinal folds 

due to growth differential may disappear as the animal matures while retinal dysplasia 

represents permanent retinal pathology.34   

 

ETIOLOGY 

 

 Etiologies for retinal dysplasia in dogs include genetic mutations 15, viruses 35 and 

irradiation. 36  The condition is proven to be inherited as an autosomal recessive trait in the 

Miniature Schnauzer dog 15, English Springer Spaniel 24, American Cocker Spaniel 9, 

Bedlington Terrier 3 and Golden Retriever. 37  Limited pedigree analysis in the Yorkshire 

Terrier is also suggestive of autosomal recessive inheritance.14  Retinal dysplasia 

associated with skeletal dysplasia in Labrador Retrievers has an autosomal dominant mode 

of inheritance with incomplete penetrance.  26  

 Although inheritance of retinal dysplasia appears to be the most important etiologic 

factor 19, viral- 35; or radiation- 36 induced retinal dysplasia have also been reported in the 

dog.  Experimental studies in neonatal puppies demonstrated that inoculation of herpes 

virus at 1 to 4 days postnatally induces systemic infection and panuveitis with retinal 

rosettes noted histopathologically.35  The susceptibility of the retina to irradiation has also 

been demonstrated experimentally, such that irradiation of the immature dog retina leads to 

retinal rosette formation.36  Retinal dysplasia in these cases is due to disorganization and 
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abortive repair rather than a true dysgenesis.38  Viral etiologies of retinal dysplasia can be 

differentiated from inherited etiologies histologically.  Retinal rosettes are demonstrated in 

all cases, however, the acute viral histologic lesions demonstrate nonsuppurative 

endophthalmitis with multifocal chorioretinal necrosis, and the chronic viral lesions 

demonstrate multifocal chorioretinal scarring and atrophy.33  Also, with viral infection, the 

lesions may be prevalent in any part of the fundus, not just centrally as in the typical 

hereditary forms.19  Retinal dysplasia due to toxin exposure 39 and vitamin A 40, 41, taurine 

and zinc deficiency 42 has been reported in other species.  Although not documented in the 

dog, it is likely that these etiologies would also induce retinal dysplasia in this species.   

 

PATHOGENESIS 

 

The pathogenesis of retinal dysplasia is complex.  Silverstein et al. 38 divided the 

pathogenesis into four categories: (i) a hyperplastic extension of the retina into abnormal 

sites away from the retinal pigment epithelium (RPE); (ii) secondary to retinal detachment 

from the RPE; (iii) over regions devoid of RPE, i.e. colobomas; and (iv) an in situ 

dysplasia in which the retina has never been separated from the RPE.38  Based on the first 

three categories it is suggested that healthy RPE is an essential prerequisite for normal 

development of the retina.  Detachment of the neural retina from the RPE or damage to the 

RPE during development results in the loss of cell organization with consequent abnormal 

retinal development.  The retinal dysplasia in situ has been shown to occur with bluetongue 

virus infection in lambs.  This category of retinal dysplasia is thought to result from a 

necrotizing inflammatory response of the retina to infection, resulting in disorganization 

and abortive repair rather than true dysgenesis.38  Silverstein’s hypothesis is supported by a 

study in Doberman Pinschers on congenital blindness with ocular developmental 

anomalies.28  In this study a highly abnormal retinal pigment epithelium was evident and 

thus it was proposed that the RPE may play a role in the pathogenesis of retinal dysplasia 

in this breed.   In most breeds, however, the pathogenesis of retinal dysplasia remains to be 

elucidated. 
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RECENT DISCOVERIES IN RETINAL DYSPLASIA  

 

 The molecular basis of inherited retinal dysplasia in Miniature Schnauzer dog has 

recently been investigated.43  Using a complementary deoxyribonucleic (cDNA) pool of 

retinal and RPE tissue from an affected and unaffected dog, representational difference 

analysis (RDA) was performed to identify candidate genes causing the disease.  The RDA 

test provided evidence of altered mitochondrial deoxyribonucleic acid (mtDNA) or 

mitochondrial transcription activity in affected Miniature Schnauzer dog retina and RPE.  

To confirm these findings, real-time polymerase chain reaction (PCR) was performed to 

make quantitative measurements of white blood cell mtDNA, and retinal and RPE mRNA 

transcript levels, of an affected and normal dog.  Results from the real-time PCR revealed 

that the affected dog had decreased mtDNA and mRNA expression of several 

mitochondrial genes in retinal and RPE tissues along with approximately 30% less white 

blood cell mtDNA.43  As mitochondrial mutations are maternally inherited and the 

inheritance of retinal dysplasia in Miniature Schnauzer dogs is autosomal recessive 15, a 

mutation in a nuclear-encoded gene that affects mtDNA transcription was suspected.43  

Tfam is a nuclear encoded gene that controls DNA transcription and copy number.44  Using 

real-time PCR Appleyard et al. 43 measured Tfam expression in affected and normal dogs 

and in correspondence with the decreased mtDNA and mRNA, Tfam mRNA levels were 

also decreased in the retina and RPE of the affected dog.  Based on these findings it was 

proposed that the pathogenesis of retinal dysplasia may be due to a decreased energy 

supply to the retina and RPE during development.43  These molecular findings also led the 

authors to examine mitochondrial morphology from neutrophils, skeletal muscle, semen 

epithelial cells and spermatozoa using transmission electron microscopy.  The 

mitochondria from the affected dogs appeared reduced in size and number and appeared to 

have an abnormal structure in all the tissues examined.   Morphologically, the number of 

cristae within each mitochondrion appeared reduced and there was poor definition of the 

characteristic double cristal membrane.43  (Figures 4 and 5) 
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STUDY OBJECTIVES 

 

This study of retinal dysplasia was undertaken to further investigate the 

pathogenesis of retinal dysplasia in Miniature Schnauzer and English Springer Spaniel 

dogs.  The objectives of this study are to: 

 

a) determine if there are mutations in the Tfam promoter, intron1, structural gene 

sequence and 3’ non-coding region in Miniature Schnauzer dogs affected with 

retinal dysplasia and occasionally expressed PHPV; and to quantitate and measure 

the surface area of lymphocyte mitochondria, and compare mitochondrial 

morphology between affected and normal Miniature Schnauzer dogs using electron 

microscopy  

b) determine if English Springer Spaniel dogs affected with retinal dysplasia have 

decreased leukocyte mtDNA compared to normal dogs and to quantitate and 

measure the surface area of lymphocyte mitochondria, and compare mitochondrial 

morphology between affected and normal English Springer Spaniel dogs using 

electron microscopy.  
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Figure 1.  Multifocal retinal dysplasia with several grey, hyporeflective streaks and lines 
evident in the tapetal fundus.  Photo courtesy of B. H. Grahn. 
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Figure 2.  Geographic retinal dysplasia with the typical horse-shoe shaped fundic lesion in 
the tapetal fundus.  Hyperreflective areas are indicative of retinal thinning.  Photo courtesy 
of B. H. Grahn. 
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Figure 3.  A hematoxylin and eosin-stained histologic section of a retina from a Miniature 
Schnauzer dog with inherited retinal dysplasia.  Rosettes composed of a central lumen 
containing dysplastic photoreceptor inner and outer segments are evident.  Photo courtesy 
of B. H. Grahn. 
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A                                                                       B 

 
 
Figure 4.  Transmission electron micrographs of a neutrophil from a normal Miniature 
Schnauzer dog (A) and a Miniature Schnauzer dog affected with retinal dysplasia (B).  The 
mitochondria of the affected dog appear reduced in size and number and are more electron  
dense compared to the normal dog.  Arrows: mitochondria.  Magnification x 18,000.   
Reprinted by permission from The Association for Research in Vision and Ophthalmology:   
Appleyard, G.D., G.W. Forsyth, L.M. Kiehlbauch, et al., Differential mitochondrial DNA 
and gene expression in inherited retinal dysplasia in Miniature Schnauzer dogs. Invest 
Ophth Vis Sci, 2006. 47(5): p. 1810-6, copyright (2006).  
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A            B   

 
 
Figure 5.  Transmission electron micrographs of skeletal muscle from a normal Miniature  
Schnauzer dog (A) and a Miniature Schnauzer dog affected with retinal dysplasia (B).  The  
mitochondria of the affected dog appear reduced in size and number and the cristae appear  
abnormal compared to the normal dog.  Arrowheads: mitochondria.  Magnification x  
18,000.  Reprinted by permission from The Association for Research in Vision and  
Ophthalmology:  Appleyard, G.D., G.W. Forsyth, L.M. Kiehlbauch, et al., Differential 
mitochondrial DNA and gene expression in inherited retinal dysplasia in Miniature  
Schnauzer dogs. Invest Ophth Vis Sci, 2006. 47(5): p. 1810-6, copyright (2006).  
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GENERAL LITERATURE REVIEW 

 

SECTION 1 

 

REGULATION OF NUCLEAR GENE EXPRESSION 

 

 The first level of regulation of differential gene expression occurs at the initiation 

of messenger ribonucleic acid (mRNA) synthesis from the DNA template.  The frequency 

of initiation depends on sequence-specific transcription factors that activate or repress 

transcription from the gene.45  The control region in the immediate vicinity of a 

transcription start site is called the promoter; which specifically binds ribonucleic acid 

(RNA) polymerase along with other transcription factors and determines where 

transcription begins.46  Transcription of genes can also be stimulated by enhancer 

sequences, which can regulate a promoter from a distance and in an orientation-

independent fashion.45     

 Most vertebrate genes contain introns which are non-protein encoding sequences of 

DNA.  The introns are transcribed but are precisely excised from primary transcripts to 

form mature mRNAs with continuous message.46  Certain genes have been demonstrated 

to have DNA-binding protein sites or transcription factor binding sites situated in introns 

that stimulate or inhibit gene transcription.  These binding sites are situated primarily in the 

first intron (intron 1) 47-49, although in some cases they can be situated in other introns.50  

Thus, DNA-binding proteins can mediate a complex set of interactions between intronic 

and 5’flanking promoter sequences which in turn, can aid in gene transcription 

regulation.48  

 

NUCLEAR GENE TRANSCRIPTION AND POLYADENYLATION 

  

 RNA polymerase II requires other transcription factors collectively known as TFII 

to form a complex and initiate transcription.46  RNA polymerase proceeds along the DNA 

template and transcribes until a terminator sequence is reached.  Primary transcripts are 

then cleaved by a specific endonuclease that recognizes the sequence AAUAAA (known as 



the polyadenylation site).51  Cleavage does not occur if the polyadenylation site or a 

segment of some 20 nucleotides on its 3’ side is deleted.46  After cleavage by the 

endonuclease, most pre-mRNAs are polyadenylated in which a poly(A) polymerase adds 

approximately 250 A residues to the 3’end of the transcript.52  Mutations that disrupt the 

process of polyadenylation have been demonstrated to result in decreased mRNA levels.53, 

54  

 

MITOCHONDRIAL GENETICS 

 

Mitochondria are the energy-transducing organelles of eukaryotic cells with their 

principle function being adenosine-5'-triphosphate (ATP) production through electron 

transfer and oxidative phosphorylation.55  Morphologically, mitochondria have a double 

membrane; the outer membrane separates the mitochondrion from the cytosol and the inner 

membrane is invaginated to form the cristae which protrude into and define the matrix of 

the organelle.56  Five discrete multi-subunit enzyme complexes are embedded in the inner 

mitochondrial membrane and catalyze electron transfer from respiratory chain substrates to 

oxygen.55  This electron transfer results in the translocation of protons and production of 

protonic energy which is utilized for ATP synthesis, ion translocation and protein 

importation.55  The five enzymes complexes that make up the oxidative phosphorylation 

system are:  NADH:ubiquinone oxidoreductase (complex I); succinate:ubiquinone 

oxidoreductase (complex II); ubiquinol:ferricytochrome c oxidoreductase (complex III); 

ferrocytochrome c:oxygen oxidoreductase (complex IV); and ATP synthase (complex V).55 

Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is 

located in the mitochondrial matrix 57 and makes up approximately 1% of a cell’s total 

DNA population.58  The maintenance of mtDNA integrity is essential for normal function 

of the respiratory chain and thus ATP production.59  In mammalian cells, mitochondrial 

genes are present at high copy number (usually 103-104 copies/cell) 60 with 2-10 copies of 

mtDNA existing within each mitochondrion.61, 62  Regulation of mtDNA copy number is 

important for maintaining mitochondrial ATP production, as the level of mtDNA 

transcripts largely depends on the copy number of mtDNA.59   
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Mammalian mtDNA is a maternally inherited circular double stranded molecule 

that in most species, including the canine, encodes 13 essential polypeptides involved in 

the respiratory chain-oxidative phosphorylation system along with two ribosomal 

ribonucleic acid (rRNA) subunits and 22 transfer ribonucleic acid (tRNA) molecules 

involved in mitochondrial translation.63  The length of the mtDNA molecule in the canine 

is 16,728 base pairs (bp) and the organization and direction of the open reading frames and 

the regulatory control region are the same as those in other mammalian species.63  (Figure 

1)  The mitochondrial-encoded respiratory chain proteins reside mainly in the inner 

mitochondrial membrane.64  The remainder of the respiratory chain-oxidative 

phosphorylation system subunits and all the proteins required for the replication and 

transcription of mtDNA are nuclear-encoded.  These nuclear-encoded proteins are 

therefore synthesized in the cytosol and imported into the mitochondria where they are 

either linked to mtDNA transcription/replication or they are co-assembled with the 

mtDNA-encoded subunits into respiratory chain complexes.  Thus, the function of the 

respiratory chain and mtDNA maintenance is regulated by both mitochondrial and nuclear 

genes.65  The individual strands of mtDNA are denoted heavy (H) and light (L) strands as 

they have different buoyant densities in a cesium chloride gradient.  The mitochondrial 

genome lacks introns however; a long non-coding regulatory region, known as the 

displacement-loop (D-loop), exists within the genome and initiation of transcription occurs 

from two major promoters within the D-loop, the light- and heavy-strand promoters (LSP 

and HSP).66  (Figure 1)  Transcription from LSP is necessary not only for gene expression 

but also for production of RNA primers required for initiation of mtDNA replication.  

Thus, transcription is a prerequisite for mtDNA replication.66 

 Mitochondria are dynamic organelles that respond to developmental and 

environmental signals in meeting cellular energy demands.67-69  The regulation of mtDNA 

transcription is of fundamental importance for maintaining metabolic functions in the 

eukaryotic cell, however, little is known about the mechanisms of mitochondrial 

transcription and how the levels of transcription are regulated in response to metabolic 

need.  
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MITOCHONDRIAL TRANSCRIPTION AND TRANSCRIPTION FACTOR A 

(TFAM) 

 

 Transcription factor A (TFAM) is a nuclear encoded protein factor that is encoded 

by the Tfam gene.70  In canines, the Tfam gene maps to chromosome 4 and is a 13,379 

nucleotide sequence made of up 7 exons which encode a polypeptide of 246 amino acids.71  

(Figure 2)  Structurally, Tfam possesses two high mobility group (HMG) boxes which are 

sequences of DNA that are considered to be involved in DNA binding 70, and a C-terminal 

tail composed of 25 amino acids.72  The protein binds to elements in both heavy- and light 

strand promoters on mtDNA and appears to be the principal activator of transcription by 

the mitochondrial RNA polymerase.73  Although TFAM has a higher affinity to the LSP 

and HSP promoters on mtDNA, it also has nonspecific DNA-binding activity irrespective 

of DNA sequence.74, 75  TFAM also has a role in mtDNA replication, since transcription 

generates an RNA primer necessary for initiation of mtDNA replication.66  As TFAM is 

abundant in mammalian mitochondria with a molar ratio of TFAM to mtDNA of ~900-

1000:1 76, it is likely that mammalian mtDNA is fully covered with TFAM protein and that 

TFAM is also a major component in the formation of the nucleoid structure helping 

stabilize mtDNA.59, 76    

 The current general model for human mitochondrial transcription is that TFAM 

binds to LSP and then recruits mitochondrial RNA polymerase (POLRMT) and the 

mitochondrial transcription factor B paralogues, TFB1M and TFB2M to initiate the 

transcription process.77-79  It is speculated that the initial TFAM binding introduces specific 

structural alterations in mtDNA (i.e. unwinding of the promoter region) which can 

facilitate promoter recognition by the TFBM/POLRMT complex.60, 80  The C-terminal tail 

of TFAM has an essential role in the initiation of the promoter-specific transcription in 

vitro 72, as it has been demonstrated to be responsible for the binding of TFAM to TFBM 81 

and to strengthen the general binding of TFAM to DNA.82  TFAM is known to control 

mitochondrial transcription activity and copy number and it has been demonstrated in vivo 

that the protein is necessary for mtDNA maintenance and embryogenesis in mice.44  

Larsson et al. 44 demonstrated that heterozygous knockout mice (+/Tfam-) have reduced 

mtDNA copy number, reduced mitochondrial transcription and a respiratory chain 
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dysfunction in the heart.  In these mice, the mtDNA copy number decreased by 34+/- 7% 

in all tissues analyzed, and the mitochondrial transcript numbers were reduced by 22+/- 

10% in heart and kidney.  Homozygous knockout embryos (Tfam-/Tfam-) exhibited severe 

mtDNA depletion with abolished oxidative phosphorylation and abundant enlarged 

mitochondria with abnormal cristae.  (Figure 3)  These embryos proceeded through 

implantation and gastrulation but exhibited growth retardation, delayed neural and cardiac 

development and died prior to embryonic day E10.44  Further studies in mice 83, chicken 84 

and human cells 59 have also demonstrated TFAM to be a major determinant of mtDNA 

amount and that mtDNA copy number is directly proportional to the total TFAM protein 

levels in mouse embryos.83  Moreover, targeted disruption of Tfam in cardiac myocytes 

induced deletion of mtDNA and mitochondrial transcripts leading to dilated 

cardiomyopathy.85, 86  A reduction of TFAM expression has been demonstrated in cardiac 

failure and overexpression of TFAM can prevent the decline in mtDNA as well as 

mitochondrial respiratory defects in post-myocardial infarction hearts.87  These lines of 

evidence have established a critical role for TFAM in the regulation of mtDNA copy 

number and transcription as well as in the maintenance of mitochondrial physiological 

function.   

 

THE POLYMERASE CHAIN REACTION 

 

 The polymerase chain reaction (PCR) is a method which allows exponential 

amplification of specific DNA sequences.88  The technique was developed by Kary Mullis 

in 1984 and has since been an invaluable tool for DNA manipulation.89  The requirements 

for PCR include a DNA polymerase, a pair of oligonucleotide primers, 

deoxyribonucleoside triphosphates (dNTPs), a template and a buffer containing 

magnesium.88 

 The most commonly used DNA polymerase is Taq polymerase.  The enzyme is 

derived from the organism Thermus aquaticus and its advantages of heat stability and high 

temperature optimum make it the ideal choice for use as a DNA polymerase in PCR.90  A 

pair of synthetic oligonucleotide primers are necessary to prime DNA synthesis.  The 

design of these primers is crucial to the efficiency and specificity of the amplification 
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reaction.88  The primers are designed complementary to the DNA regions at the 5’ and 3’ 

ends of the DNA region to be amplified.90  If all nucleotides are randomly distributed in 

any given DNA sequence the expected frequency of occurrence of a sequence (K) is given 

by the following equation: 

 

       [Eq. 1] [ ] ( )[ TACG ggK ++ −×= 2/12/ ]

)

 

where G, C, A, T are the number of guanine, cytosine, adenosine, and thymidine 

nucleotides in the oligonucleotide, and g is the relative G+C content of the sequence.91  

Based on this equation, a minimum oligonucleotide primer length of 17 is recommended to 

ensure uniqueness.90  Primer sequences should also have minimal secondary structure, no 

significant sequence identity with other sequences of the target genome and low 

complementarity to each other, particularly in the 3’region.88  The specificity of PCR also 

depends strongly on the melting temperature (Tm) of the primers.88  The Tm is the 

temperature at which half of the primer has annealed to the template.88  Best results are 

obtained when the melting temperatures are similar for both primers.88  The dNTPs are the 

nucleotide bases from which the DNA polymerase synthesizes a new DNA strand and 

include deoxyadenosine triphosphate (dATP), deoxythymidine triphosphate (dTTP), 

deoxycytidine triphosphate (dCTP), and deoxyguanosine triphosphate (dGTP).  Standard 

PCRs contain equimolar amounts of dATP, dTTP, dCTP, and dGTP.88  Lastly, a buffer 

solution and magnesium are essential for efficient DNA polymerase action and stability.90   

 The process of PCR involves three essential steps:  denaturation of the template by 

heat, annealing of the primers to the single-stranded target sequence, and extension of the 

annealed primers by a DNA polymerase.88  These steps are carried out in a thermal cycler 

which controls the temperature required at each reaction step.  The selection of 

temperatures and times depends on the DNA being amplified and the primers chosen.90  

The amplified products of PCR accumulate exponentially as described in Equation 2 88: 

 

         [Eq. 2] ( n
Of YNN += 1
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where Nf is the final copy of amplified sequence after n cycles of amplification, N0 is the 

initial copy number of the target sequence in the DNA template and Y is the efficiency of 

amplification per cycle.  The efficiency of PCR is determined predominately by the quality 

of the DNA polymerase, and in the exponential phase of the reaction efficiency can be 

calculated from Equation 3 88: 

 

 [ ] 1
/1

0
−=

n

N
N fY          [Eq. 3] 

 

where Y is the efficiency of amplification per cycle, N0 is the initial copy number of the 

target sequence in the DNA template and Nf  is the number of amplified molecules 

produced in n cycles of exponential amplification.  The exponential phase of amplification 

continues until one of the reaction components becomes limited or accumulating products 

decrease efficiency.88 

 Certain target DNA sequences can be more difficult to amplify than others; 

especially for templates with high GC content.92  This can often be overcome by alteration 

of the PCR technique or reagents.92  The product(s) obtained from PCR should be a 

defined length.  When PCR is complete, the product and appropriate molecular-weight 

markers are loaded onto an agarose gel containing ethidium bromide for electrophoresis 

and are then visualized by ultraviolet transillumination.90   
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SECTION 2 

 

RETINAL DYSPLASIA IN THE ENGLISH SPRINGER SPANIEL DOG 

 

 Retinal dysplasia has been well studied in the English Springer Spaniel with 

ophthalmoscopic, light, and transmission electron microscopic findings being well 

documented in this breed.1, 5, 20, 22, 93-96  The condition has its morphogenic inception in the 

English Springer Spaniel between days 45 and 50 of gestation.1, 22, 94, 97  At day 46 of 

gestation, a marked decrease in the size and area occupied by the gap junctions within the 

external limiting membrane of dysplastic fetal eyes is evident when compared to normal 

fetuses.94  By day 50-55 of gestation, and at days 1 and 7 postnatally, the rosettes formed 

by neuroblasts have a central lumen with a distinct external limiting membrane.1  The folds 

occasionally progress to focal retinal detachment and associated RPE hypertrophy.1  

Histologically, the retinal rosettes are present at birth and located primarily in the 

peripapillary tapetal retina.1, 20, 98  A discrete external limiting membrane is absent in the 

dysplastic areas.20  Ultrastructurally in the dysplastic areas, the Müller cell radial processes 

are either absent or disorganized.22  From day 45 of gestation to postnatal day one, deep 

(sclerad) aberrant retinal vessels are often noted within the lumens of rosettes and folds 

however, the continuity of these vessels with choroidal or retinal vessels has not been 

determined.20  Abnormal intravitreal vessels can also develop concurrently with fold-

rosette complexes in the English Springer Spaniel.20, 98  The dysplastic lesions are non-

progressive but secondary retinal detachment is occasionally noted and retinal atrophy 

within the region of dysplasia is relatively common in dogs older than two years of age.20    

 Histological evaluations of the English Springer Spaniel dysplastic retinas have 

failed to show evidence of inappropriate retinal pigment epithelium development.  Thus, 

O’Toole et al. 20 believe that Silverstein’s 99 proposed pathologic mechanisms of  retinal 

dysplasia do not appear to have relevance to the development of heritable retinal dysplasia 

in this breed.  Based on the light microscopic and ultrastructural findings by O’Toole et al. 
20, 22, two further mechanisms of retinal dysplasia have been proposed.  As abnormal 

intravitreal and intraretinal vessels develop concurrently with fold-rosette complexes in the 

English Springer Spaniel fetuses, O’Toole et al. 20, 22 propose that the retinal dysplasia may 
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occur secondarily to inappropriate development of the hyaloid and retinal vascular 

systems.  The studies by O’Toole et al. 20, 22 also demonstrated the presence of 

disorganized Müller fibres within the dysplastic areas and the focal absence of a discrete 

external limiting membrane.  Müller cells are thought to act as a scaffold for neuroblast 

migration.100  Based on these findings it has been proposed that retinal dysplasia could also 

be due to the defective development of Müller cells or abnormal gliovascular relationships 

leading to abnormal differentiation and migration of neuroblasts.20, 98  O’Toole et al. 22 

believe that these mechanisms may also explain other aspects of this disease, including 

retinal detachment and persistence of the hyaloid vasculature.20, 98   

 Based on the findings of decreased gap junction size and area within the external 

limiting membrane 94, Whiteley 1 has proposed that inappropriate expression of cell 

adhesion molecules or glycoproteins on the neuroepithelium or Müller cells may lead to 

poor cell adhesion.  This, in turn may lead to the inability to form cell junctions or proper 

cell-cell communication, causing subsequent disorganized proliferation of neuroblasts.1  

Due to these particular morphologic findings, further studies by Whiteley et al. 101 

investigated the role of membrane proteins known as intramembranous particles (IMP) and 

the ability of membrane probes (filipin in particular) to bind cell membranes.101  

Differences in intramembranous particle density and filipin binding were identified in 

affected English Springer Spaniel dogs compared to age-matched controls.101   Based on 

these findings, Whiteley et al. 101 suggest that abnormalities in the membrane structure of 

neuroblastic cells may be related to the dysplastic process.101  

 

REAL-TIME POLYMERASE CHAIN REACTION (PCR) 

 

 Real-time polymerase chain reaction (PCR) is the method of choice to quantify 

nucleic acids.89  It is based on the revolutionary method of PCR which amplifies specific 

pieces of DNA however; real-time PCR allows quantification of PCR products as they are 

generated.89  Fluorescent reporter dyes emit fluorescence when bound to double stranded 

DNA (dsDNA) and the fluorescence intensity increases proportionally to the dsDNA 

concentration.  During amplification, the cycle at which the fluorescent signal reaches a 

threshold level (known as CT) correlates with the amount of original target sequence, 
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thereby enabling quantification.  This CT value is inversely proportional to the amount of 

specific nucleic acid sequence in the original sample.102  (Figure 4)  The threshold 

fluorescence level is determined as significant fluorescence above a calculated background 

fluorescence.103  The final product from any unique pair of primers on a target gene can be 

further characterized by subjecting it to increasing temperatures to determine when the 

double-stranded product becomes single stranded.  This melting point is a unique property 

dependent on product length and nucleotide composition.89  (Figure 5) 

 To correct for sample-to-sample variation in the amount of DNA template 

simultaneous amplification of an internal reference gene is performed.  This reference gene 

serves as an internal reference against which other values can be normalized as it is 

expressed at a constant level among different tissues of an organism and at all stages of 

development.  The most commonly used reference genes include glyceraldehyde-3-

phosphate-dehydrogenase (GA-3-PDH) and ß-actin.102  In order to ensure reproducibility, 

all assays are run in triplicate and should be repeated at least once.103  Amplification 

efficiency of the reactions performed is an important consideration in relative 

quantitation.104  The efficiency is influenced by the template GC content, length of the 

amplified product, annealing temperature and secondary structure.103  Amplification 

efficiency is calculated using data from a standard curve with the following formula 104:    

 

 Efficiency = [10 (-1/slope)]       [Eq. 4] 

 

Numerous mathematical models exist to calculate relative quantitation.  When 

amplification efficiencies are similar in the target and reference genes being amplified the 

comparative CT method can be used.105  CT values in the linear exponential phase of the 

target gene (COX-1) are normalized to the reference gene (GA-3-PDH) by calculating ∆CT  

and then calibrated using the following equations 105: 

 

∆CT  = CT target gene - CT reference gene      [Eq. 5] 

 

∆∆CT  = ∆CT sample - ∆CT calibrator      [Eq. 6] 
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The amount of target, normalized to an endogenous reference and relative to a calibrator is 

then given by 105: 

 

 R = 2 -∆∆C
T                  [Eq. 7]  

 

Another method of relative quantitation is based on the mathematical model by Pfaffl 106 

which corrects for changes in PCR efficiency.  Equation 8 shows this model. 

 

 Ratio = sample)-r(calibrato C 
gene reference
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     [Eq. 8] 
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Figure 1.  Map of the double-stranded mammalian mtDNA encoding the 13 proteins, 22 
tRNAs and two rRNAs.  Heavy-strand and light-strand origin of DNA replication occur at 
OH and OL, respectively.  Heavy-strand transcription begins at the HSP.  The HSP 
transcripts produce the 12S and 16S rRNAs (red) as well as 12 mRNA molecules (green) 
and tRNAs (grey).  Transcription from the light-strand promoter (LSP) produces the 
mRNA molecule for ND6 (yellow) along with primers for the initiation of DNA synthesis.  
Non-coding regions are indicated in blue. 
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Figure 2.  TFAM gene structure.  Numbering is relative to the start codon. 
I = intron, E = exon.   
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Figure 3.  Electron micrographs of (A) control (Tfam+/Tfam+) and (B) homozygous 
knockout embryo (Tfam-/Tfam-) mitochondria exhibiting abundant enlarged mitochondria 
with abnormal cristae.  Reprinted by permission from Macmillan Publishers Ltd: 
[NATURE GENETICS] (Larsson, N.G., et al., Mitochondrial transcription factor A is 
necessary for mtDNA maintenance and embryogenesis in mice. Nature Genetics, 1998. 
18(3): p. 231-6), copyright (1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 26



 
 

 
 
Figure 4.  Real-time PCR amplification plots demonstrating cycles versus fluorescence 
for multiple DNA samples. The CT  value corresponds to the cycle at which fluorescence  
is determined to be statistically significant above the background and is inversely 
proportional to the amount of specific nucleic acid sequence in the sample.   For the DNA 
sample marked •—•—• the CT  value is 19.   
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Figure 5.  Dissociation analysis of a real-time amplicon.  The negative derivative of  
fluorescence versus temperature was plotted against temperature.  The curve shows a  
single, sharp peak, suggesting that only a specific PCR product was generated with this  
set of primers.   
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CHAPTER 1 

 

NUCLEOTIDE SEQUENCING FOR THE MITOCHONDRIAL 
TRANSCRIPTION FACTOR A GENE (Tfam) AND LYMPHOCYTE 
MITOCHONDRIAL QUANTIFICATION AND MEASUREMENT IN 
MINIATURE SCHNAUZER DOGS AFFECTED WITH INHERITED 
RETINAL DYSPLASIA AND ASSOCIATED PERSISTENT 
HYPERPLASTIC PRIMARY VITREOUS 
 

1.1 INTRODUCTION 
 

 Retinal dysplasia is defined as an abnormal differentiation of the outer layers of the 

retina.1  The condition is a common congenital disorder in the dog and has been recognized 

in many breeds.4-16  The clinical manifestations of retinal dysplasia in the Miniature 

Schnauzer dog vary.  Single or multiple retinal folds; geographic retinal dysplasia; and 

generalized dysplasia with retinal detachment have all been reported in the Miniature 

Schnauzer dog.15, 18, 107  Dysplastic lesions are usually most extensive dorsal to the optic 

disc involving the temporal and nasal retina.15  In this breed, persistent hyperplastic 

primary vitreous (PHPV) is present in approximately 20% of dogs affected with retinal 

dysplasia and the mode of inheritance of this syndrome has been determined to be 

autosomal recessive.15   

 The pathogenesis of retinal dysplasia is poorly understood and remains to be 

elucidated.  The suspected etiology of retinal dysplasia in the Miniature Schnauzer dog is a 

genetic mutation as the condition is inherited as an autosomal recessive trait.15  Decreased 

mRNA expression of Tfam, a nuclear encoded gene controlling mitochondrial transcription 

and copy number, and of several mitochondrial genes in the retina and retinal pigment 

epithelium (RPE) of an affected Miniature Schnauzer dog has been described.43  

Furthermore, transmission electron microscope evaluation of mitochondria within 

neutrophils, skeletal muscle, semen epithelial cells and spermatozoa by Appleyard et al. 43, 

revealed that the mitochondria from affected dogs in all of the aforementioned tissues 

appeared reduced in size and number.  Morphologically, the number of cristae within each 

mitochondrion appeared reduced and poor definition of the characteristic double cristal 



membrane was noted.43  These findings led to a hypothesis that a decreased energy supply 

to the retina and RPE may lead to retinal dysplasia in the Miniature Schnauzer dog.43   

 As TFAM is known to control mitochondrial transcription activity and copy 

number 44, a mutation in the Tfam gene sequence of affected Miniature Schnauzer dogs 

could lead to the decreased retinal and RPE Tfam and mtDNA mRNA levels noted by 

Appleyard et al..43  Therefore, the first objective of this study was to determine if the Tfam 

gene sequence is altered in Miniature Schnauzer dogs affected with retinal dysplasia and 

associated hyperplastic primary vitreous.  Using the polymerase chain reaction (PCR), the 

coding sequence along with the promoter, intron1 and the 3’untranslated sequence to 218 

bases beyond the polyadenylation site were amplified, cloned and sequenced for analysis.  

The second objective of this study was to objectively quantitate, measure the surface area, 

and compare the morphology of lymphocyte mitochondria from normal and affected 

Miniature Schnauzer dogs using transmission electron microscopy as well as compare 

mitochondrial morphology.  The identification of Tfam sequence or mitochondrial 

differences would provide insight into the pathogenesis of retinal dysplasia and associated 

persistent hyperplastic primary vitreous in the Miniature Schnauzer dog. 
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1.2 MATERIALS AND METHODS 
 

1.2.1 EXPERIMENT DESIGN  

 

 Experimental breeding of two known affected and two known unaffected Miniature 

Schnauzer dogs was performed.  All eyes were examined by a veterinary ophthalmologist 

to verify whether the retina was normal or affected with the syndrome of retinal dysplasia 

and occasionally expressed PHPV.  Normal dogs were also confirmed by test breeding and 

pedigree analysis.  If phenotypically normal progeny were generated by an unknown and 

affected dog test breeding then the unknown dog genotype was confirmed to be normal.  

Physical examinations did not reveal any systemic abnormalities other than ocular defects.  

All animals were handled according to the standards set by the Canadian Council on 

Animal Care and the ARVO Statement for the Use of Animals and Ophthalmic and Vision 

Research.    

 

1.2.2 SAMPLE PREPARATION AND DNA/RNA EXTRACTION 

 

 EDTA whole blood samples were collected by venipuncture from affected and 

unaffected subjects.  The red blood cells were lysed with Tris ammonium chloride and the 

white blood cell pellets were collected via centrifugation.  For electron microscopy, a 

portion of the white blood cells were fixed in 5% glutaraldehyde with 0.2 M s-collidine 

buffer.  The cells were then embedded in Epon/Araldite, sectioned at a thickness of 90-100 

nm, and stained with uranyl acetate.  For PCR, the total cellular DNA of leukocytes was 

extracted by phenol/chloroform after treatment with proteinase K (Invitrogen TM).  The 

DNA was quantified using a spectrophotometer (Cary 100Bio) to measure the absorbance 

at 260 and 280 nm.  For RNA isolation three 3-week old progeny from the experimental 

breeding were euthanized with an overdose of barbiturates and the retina and RPE were 

harvested from affected and unaffected eyes using an operating microscope in a sterile 

environment.  The retinas from both eyes of each dog were removed from the posterior 

segment and placed into 10mL of extraction reagent (TRIzol; Invitrogen TM).  The posterior 

segment was then filled with approximately 1mL of 0.5% trypsin (Invitrogen TM).  After 5 
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minutes of incubation and gentle manipulation with a cyclodialysis spatula, the RPE cells 

from each eye were harvested.  These cells were then pooled from both eyes and placed 

into 10mL of extraction reagent (TRIzol; InvitrogenTM).  cDNA was produced with 

reverse-transcription reactions primed with oligo-dT using the total harvested RNA as a 

template (5μg RNA per reaction).   

 

1.2.3 PRIMER DESIGN 

 

 All Tfam gene data was obtained from GenBank® and based on the Boxer breed 

sequence assembled in May 2005 by the Broad Institute of MIT/Harvard.  The Tfam gene 

(LOC488989) is made up of seven exons and lies within positions 13,787,958 to 

13,801,337 of chromosome 4 (GenBank® accession number NC_006586).  (Figure 1.1)  

The gene encodes the TFAM protein with a corresponding record of XP_546107.  Optimal 

primers targeting the Tfam gene including intron1 and the 5’ and 3’ untranslated regions 

were designed using the program Primer Designer version 2.01 (Scientific and Educational 

Software) and synthesized by Invitrogen TM.  Primer design criteria included similarity in 

melting temperature (Tm) levels and avoidance of primer and template secondary structure 

at the primer Tm .  A BLAST search of GenBank® was performed on the primers and the 

canine genome to ensure specificity.  The nucleotide sequences and the properties of these 

primers are listed in Table 1.1.   

 

1.2.4 PCR 

 

 Two different cycling protocols were necessary for Tfam amplification.  For the 

promoter region (-253 to -9) and intron1 a ‘Slowdown’ protocol 108 with various annealing 

temperatures, prolonged cycles, and low ramp rates was used in an Eppendorf® 

Mastercycler® thermal cycler, as standard PCR was unsuccessful in these regions.  From -

115 to 218 bases beyond the polyadenylation site (Position +1621 bp) a standard PCR 

protocol was used in a Perkin Elmer 480 thermal cycler.  For the untranslated regions 

(promoter, intron1 and 3’ sequence) 5ng genomic DNA of affected or unaffected subjects 

was used as the template.  Reactions for the translated regions were performed using 
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cDNA of affected or unaffected subjects as the template.  PCR reactions were carried out 

in a total volume of 50 μl.  Standard PCR contained buffer supplied by the manufacturer 

(United Bioinformatica Inc.: 50mmol/l KCl, 10mmol/l TrisHCl pH 8.8, 0.08% Nonidet-

P40), 1.5 mmol/L MgCl2, 200umol/l each NTP, 1 U Taq Polymerase and 100 nmol/l of 

each primer.  ‘Slowdown’ PCR used a standard PCR mixture except 150 μmol/l of 7-

deaza-2’-deoxyguanosine-5’triphosphate dilithium salt (dc7GTP) (Amersham Biosciences) 

+ 50 µmol/l GTP was used instead of 200 µmol/L GTP.    

 Standard PCR was performed for 30 cycles with 45 s denaturation at 94°C, 45 s 

annealing at 65 °C followed by a primer extension of 45 s at 72 °C.  The ‘Slowdown’ 

protocol was used with a lowered ramp rate at 2.5°C/s and a low cooling rate for reaching 

annealing temperature at 1.5°C/s.  The ‘Slowdown’ PCR was carried out under the 

following conditions:  amplifications were run for 48 cycles with 30 s denaturation at 

95°C, 30 s annealing with a progressively lowered temperature from 70°C to 55°C at a rate 

of 1°C every third cycle, and a primer extension of 40 s followed by 15 additional cycles 

with an annealing temperature of 58°C.  Ten μl of PCR products were loaded on 2.5% 

agarose gels and visualized under UV-illumination.   The PCR products of expected size 

were then ligated into a TOPO TA cloning vector (Invitrogen TM) and used to transform 

competent E. coli DH5-α cells.  Transformed colonies were identified by PCR and 

sequenced at the National Research Council Plant Biotechnology Institute (Saskatoon, 

Saskatchewan) using T7 primers.  The cloned sequences of the affected and unaffected 

subjects were aligned with eachother and with GenBank® using SeqAid II ™ (Version 

3.81) and base pair differences were examined.  Nucleotide numbering was based on 

nucleotide +1 corresponding with the start of translation and intron nucleotides were 

numbered according to the number of the last nucleotide of the preceding exon followed by 

a plus sign and the nucleotide position in the intron. 

 

1.2.5 ELECTRON MICROSCOPY 

 

 For mitochondrial evaluation, fixed white blood cells from eleven Miniature 

Schnauzer dogs were used: two affected male, two affected female, three normal male and 

four normal female dogs (ages 1-12 years).  From each dog a minimum of 10 lymphocytes 
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were examined and photographed at 13, 000 magnification using a Philips EM 410 

transmission electron microscope.  Criteria for selecting lymphocytes were agranular cells 

with round or oval nuclei and little cytoplasm.  Lymphocytes were the white blood cell of 

choice due to their ease of identification and the lack of cytoplasmic granules allowing for 

clear identification of mitochondria.  Images were scanned into a computer and viewed 

using the Northern Eclipse (Empix Imaging Inc.) graphics program.  Using the graphics 

program the perimeter of each lymphocyte photographed was measured in microns (µm) 

and the surface area (µm2) was calculated.  Mitochondria within each lymphocyte cross-

section were identified and quantified.  Selection criteria for the mitochondria included 

double membrane organelles with visible cristae.  The perimeter of each mitochondrion 

was measured in microns (µm) and the mitochondrial surface area (µm2) was calculated.  

(Figure 1.2)  Lastly, using a masked observer, the scanned lymphocyte photographic 

images were viewed and the mitochondrial morphology was compared between affected 

and normal dogs.  

 

1.2.6 STATISTICAL ANALYSIS 

 

 The median lymphocyte surface area, mitochondrial number per lymphocyte cross-

section and mitochondrial surface area were compared between the affected and normal 

dogs.  Since the distribution of the mitochondrial variables analyzed were non-Gaussian, 

comparisons were made using the non-parametric Mann-Whitney test.  The lymphocyte 

surface areas were compared using a t test as the variables were parametric.  A p value of 

<0.05 was accepted as significant.  Statistical analysis was performed with GraphPad 

Software Inc. (San Diego, CA, USA). 
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1.3 RESULTS 

 
1.3.1 TFam SEQUENCING 

 

 Sequencing confirmed the PCR products obtained to be part of the Tfam gene.  The 

cloned sequences of the affected and unaffected subjects were aligned with each other and 

with GenBank® accession number NC_006586 using SeqAid II ™ (Version 3.81) and 

base pair differences were examined.  No base pair changes of significance were noted.  

Base pair differences that were noted occurred between the GenBank® reference canine 

Boxer sequence (accession number NC_006586) and the affected and unaffected Miniature 

Schnauzers; not between the affected and unaffected dogs.  Figures 1.3 to 1.5 demonstrate 

these differences.  Nucleotide +1 corresponds with the start of translation and intron 

nucleotides were numbered according to the number of the last nucleotide of the preceding 

exon followed by a plus sign and the position in the intron.  In the 5’non-coding promoter 

region at position -220 (position 13,788,128 on chromosome 4) the affected and unaffected 

Miniature Schnauzers differed from the GenBank® Boxer sequence in that both subjects 

had an adenosine versus a guanine recorded for the Boxer in GenBank® (Figure 1.3).  

Within the coding sequence no base pair changes were noted.  Within intron1 the affected 

and unaffected dogs differed from GenBank® accession number NC_006586 in three 

positions.  At Position 491+54 (position 13,788,502 on chromosome 4) the Miniature 

Schnauzers had a guanine versus GenBank® accession number NC_006586 had a 

thymine; at position 491+184 (position 13,788,632 on chromosome 4) a guanine versus a 

cytosine and at position 491+194 (position 13,788,642 on chromosome 4) a cytosine 

versus a guanine (Figure 1.4).  After the STOP codon within the 3’ non-coding sequence at 

position +1212 (position 13,801,179 on chromosome 4), GenBank® accession number 

NC_006586 was noted to have a cytosine and the affected and unaffected dogs were noted 

to have a thymine (Figure 1.5).   
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1.3.2 ELECTRON MICROSCOPY 

 

 A total of 151 lymphocytes were imaged and measured; 86 from normal dogs and 

65 from affected dogs.  Table 1.2 summarizes the overall results for each group.  The 

normal dog lymphocyte surface area ranged from 7.94 µm2 to 31.74 µm2 with a median 

surface area of 20.04 µm2.   The affected dog lymphocyte surface area ranged from to 8.67 

µm2 to 33.59 µm2 with a median surface area of 21.46 µm2.  (Figure 1.6)  The medians of 

lymphocyte surface area were not significantly different (p value = 0.3139).   In the normal 

dog lymphocytes, mitochondrial numbers per cell cross-section ranged from zero to 10 

with a median of 3.00.  In the affected dog lymphocytes mitochondrial numbers per cell 

cross-section ranged from zero to 12 with a median of 2.00.  (Figure 1.7)  Using a Mann-

Whitney test the medians were not statistically different (p=0.8448).  The mitochondrial 

surface areas per lymphocyte cross-section were also compared.  The normal dog 

mitochondrial surface area per lymphocyte cross-section ranged from 0.0196 µm2 to 

0.7074 µm2 with a median of 0.1346 µm2.  The affected dog mitochondrial surface area per 

lymphocyte cross-section ranged from 0.0187 µm2 to 0.4276 µm2 with a median of 0.1343 

µm2.  (Figure 1.8)  No significant difference existed between the affected and normal 

mitochondrial surface areas per lymphocyte cross-section (p=0.2047).   Lastly, 

mitochondrial morphology did not appear altered between the two groups.   
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1.4 DISCUSSION 
 

 The current study verified no significant base pair changes in the promoter region, 

coding sequence, intron1 or 3’ non-coding sequence of the Tfam gene between affected 

and unaffected Miniature Schnauzer dogs.  Similarly, there was no significant difference in 

mitochondrial number, size or morphology between affected and normal dogs.  TFAM 

involvement in Miniature Schnauzers with retinal dysplasia was speculated recently by 

Appleyard et al..43  As a gene’s promoter region 45 and most commonly intron1 47-49 can 

regulate gene transcription, mutations in these areas could lead to decreased gene 

transcription and thus decreased mRNA levels.  Similarly, mutations in the Tfam gene 

coding and 3’ non-coding sequence, including the polyadenylation site, could alter 

transcription efficiency resulting in decreased mRNA levels.53, 54  No evidence could be 

found in this study to support the hypotheses advanced by Appleyard et al. 43 concerning 

the pathogenesis of retinal dysplasia in the Miniature Schnauzer dog.  The sequences of the 

Tfam gene examined are not altered in affected dogs with retinal dysplasia and the base 

pair changes noted between the Miniature Schnauzer dog and the GenBank® reference 

Boxer sequence (accession number NW_876311)  (Figures 1.3 to 1.5) were assumed to be 

due to breed differences. 

 Various etiologies other than a mutation in the specific Tfam sequences analyzed 

could lead to the decreased retinal and RPE Tfam mRNA levels noted by Appleyard et al.43 

in the affected Miniature Schnauzer dog.  Tfam gene expression is coordinated and 

regulated by highly specific transcription factors.67, 109-111  These factors are also known to 

regulate multiple nuclear genes whose products contribute to mitochondrial respiratory 

function.67, 110, 111  The promoter activity of the Tfam gene is highly dependent upon 

recognition sites for the transcription factors known as the nuclear respiratory factors 1 and 

2 (NRF-1 and -2) and Sp1.109  NRF-1 in particular has been demonstrated to provide a vital 

function during early embryonic development as an NRF-1 deficiency results in reduced 

mtDNA.112  A more recent study confirmed recognition sites for the above transcription 

factors but also identified functional recognition sites for the transcription factor 

hStaf/ZNF143.111   This study demonstrated that hStaf/ZNF143 is also necessary for 

obtaining efficient transcription levels from the Tfam promoter.111  Lastly, another 
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transcription factor, Myc, has also been established to play a role in mitochondrial 

biogenesis through Tfam transcription regulation.113  In situ, Myc binds directly to the 

Tfam promoter region and contributes to Tfam expression.113  

 In addition to transcription factors, a transcriptional coactivator, peroxisome 

proliferator-activated receptor-γ coactivator-1α (PGC-1α) can induce mitochondrial 

biogenesis by interacting with NRF-1 on the Tfam promoter.  PGC-1α is markedly 

upregulated in brown fat during adaptive thermogenesis but is also expressed in various 

tissues not ordinarily associated with adaptive thermogenesis such as brain and heart.  An 

increase in PCG-1α expression has been demonstrated to lead to a significant increase in 

the expression of Tfam along with cellular mtDNA levels and mitochondrial mass in 

tissue-culture cells and in transgenic mice.114  A second coactivator, designated PGC-1-

related-coactivator (PRC), is not significantly induced in adaptive thermogenesis but can 

also trans activate NRF-1 target genes that are necessary for the biogenesis of 

mitochondria and the expression of a functional respiratory chain.67, 114  With respect to 

Miniature Schnauzer dogs affected with retinal dysplasia, deficiencies or mutations in the 

aforementioned transcription factors and coactivators could result in the decreased Tfam 

mRNA levels reported by Appleyard et al..43  Demonstrating the expression of these 

factors in retinal dysplasia may address the possibility of their involvement in this 

condition.    

 The inability of the aforementioned transcription factors and coactivators to bind to 

the Tfam promoter could also result in decreased Tfam expression.  DNA methylation of 

CpG dinucleotides has been demonstrated to suppress the expression of many genes due to 

its direct interference with transcription factor binding.115  The Tfam promoter contains 

many CpG dinucleotides which are potential methylation sites and it has been 

demonstrated that in vitro methylation of the NRF-1 sites down-regulates Tfam 

expression.115  Thus, methylation of the Tfam promoter may silence Tfam expression and 

contribute to the decrease in mtDNA amount noted in an affected Miniature Schnauzer dog 

with retinal dysplasia.  Examination of Tfam promoter methylation was not performed in 

this study.   

 Other factors affecting gene transcription in general could also cause the decreased 

Tfam mRNA noted by Appleyard et al..43  The activities of many promoters are greatly 
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increased by sequences called enhancers that have no promoter activity of their own.46  

Enhancers can exert their stimulatory actions over distances of several thousand base pairs 

making them often difficult to identify.  Various types of silencer elements can, however, 

block the activity of enhancers leading to suppression of transcription.116  Similarly, 

alternative promoters have been demonstrated to be situated in introns other than intron1.50  

Enhancers were not identified in this study and other introns were not amplified or 

sequenced.    

 A decreased level of Tfam mRNA can also result from transcript instability.  The 

majority of eukaryotic mRNAs carry a 5’ 7-methylguanosine cap structure and a 3’poly(A) 

tail that is bound to a poly(A) binding protein (PABP).117  Both of these structures protect 

the RNA chain from degradation by exonucleases.117, 118  Removal of the poly(A) tail from 

some stable mRNAs causes them to be degraded rapidly.119  Similarly, 5’ decapping results 

in subsequent exonucleolytic mRNA degradation.117  Other reported factors affecting 

mRNA half-life include developmental or environmental stimuli such as nutrient levels, 

cytokines, hormones, temperature shifts and viral infection.117  Lastly, a decreased level of 

Tfam mRNA could also be due to down-regulation.  If mtDNA amount is reduced in 

affected Miniature Schnauzer dogs through some other nuclear mechanism, decreased 

Tfam transcript level may simply reflect the decreased demand for TFAM.120   

 Mammalian cells contain several hundreds to greater than a thousand mitochondria 

and the size, shape and abundance of mitochondria may change under different energy 

demands and different physiological or environmental conditions.121  It has been suggested 

that cells depleted of mtDNA have ultrastructurally abnormal mitochondria 44, 122 and it has 

been demonstrated that TFAM-mutant mice with pancreatic cell disruption of TFAM have 

severe mtDNA depletion, deficient oxidative phosphorylation and abnormal appearing 

mitochondria.123  In addition, a correlation between Tfam expression and content of 

mitochondria has also been demonstrated.124  Based on these reports and the demonstration 

of decreased leukocyte mtDNA, decreased retinal and RPE Tfam mRNA and possibly 

decreased leukocyte mitochondrial numbers and size in affected Miniature Schnauzer dogs 
43, further objective mitochondrial evaluation was warranted to determine if mitochondria 

play a role in Miniature Schnauzer dogs with retinal dysplasia.  In this study, upon initial 

subjective evaluation of Miniature Schnauzer lymphocyte mitochondrial number and size, 
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there appeared to be a trend towards larger and more numerous mitochondria in the 

lymphocytes of normal Miniature Schnauzer dogs.  However, after objective quantification 

there were no differences between the two groups.  (Table 1.2)  Using a masked technique, 

the morphology of the lymphocyte mitochondria also did not appear altered between the 

two groups.  This is not unexpected as affected dogs are otherwise systemically healthy.  

Limitations of using transmission electron microscopy to evaluate mitochondria do exist.  

The classic measurement of mitochondrial section area by this method is limited by the 

complex three dimensional organization of mitochondria 125 and the internal organization 

of mitochondria is irregular and variable on physiological conditions.126  A more accurate 

method of determining mitochondrial content is by measuring the citrate synthase 

activity.124  Citrate synthase is localized within the mitochondrial matrix and its activity is 

commonly used as a quantitative enzyme marker for the presence of intact mitochondria.124  

If altered energy supply to the retina and RPE remains a proposed pathogenesis of retinal 

dysplasia in the Miniature Schnauzer dog, then evaluation of affected and normal retinal 

mitochondrial morphology and content by citrate synthase activity would be ideal.                     

 Most importantly, the underlying question of whether Tfam mRNA is truly 

decreased in the retina and RPE of affected Miniature Schnauzer dogs needs to be 

answered.  The original study by Appleyard et al. 43 used only one dog from each group 

when determining the relative quantity of Tfam mRNA.  To base further research on this 

data, verification with increased samples would be necessary.  This would be challenging 

as a repeat experimental breeding would be necessary to obtain retina and RPE tissue.  

mRNA expression has also been documented to be influenced by the stage of tissue 

development 127, thus, determining which genes are differentially expressed by the retina 

and RPE during the process of retinal dysplasia development in utero, would be ideal.  

Furthermore, although there is a tight connection between gene expression and gene 

product function 128, this is certainly not always the case.  The study by Appleyard et al. 43 

used real-time PCR to measure the mRNA levels of Tfam and several mitochondrial genes 

in the retina and RPE.  These findings suggest possible decreases in TFAM and 

mitochondrial protein levels or function but formal demonstration or measurement of 

TFAM protein levels using Western blot analysis for example, would be necessary to 

confirm a role of TFAM in affected Miniature Schnauzer dogs with retinal dysplasia.    

 40



 In conclusion, this study demonstrated that the Tfam promoter, intron1, coding and 

3’non-coding sequence is not altered in Miniature Schnauzer dogs affected with retinal 

dysplasia.  Furthermore, there is no significant difference in lymphocyte mitochondrial 

number, surface area or morphology between affected and normal dogs.  Further 

investigations into other candidate genes causing retinal dysplasia in the Miniature 

Schnauzer dog are warranted. 
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Table 1.1  Oligonucleotide sequences of TFam primers with calculated Tm  and GC           
content.   
 
Primer                                  Sequence                                                  Tm             Pos         Product    GC cont. 
                                                                                                             (°C)                           Length        (%) 
TFAM 138s            5’-CCG AGC TCC TCC TCC TTT GC-3’           60.3        -253 bp     245 bp          65.0 
TFAM 363as          5’-CCT ACA ACG CAG CGA CCG AG-3’        60.6          -28 bp                          65.0 
TFAM 138s            5’-CCG AGC TCC TCC TCC TTT GC-3’           60.3        -253 bp     580 bp         65.0 
TFAM 698as          5’-TGC CTG CCA GTC TGC CCT AT-3’           65.4         +30 bp                         60.0 
TFAM 535s            5’-TAC CCA AAG AAG CCT CTG AC-3’         57.0        +145 bp     573 bp         50.0 
TFAM 1088as        5’-TCC TTG GTG CTT TAC TGA GC-3’           58.1        +698 bp                         50.0 
TFAM 704s            5’-CAG ACT GGC AGG CAT ACA AAG-3’     60.8        +314 bp     889 bp         52.4 
TFAM 1573as        5’-AGA GGA GTT GTG GGT GCT CT-3’         58.9       +1183 bp                         55.0 
TFAM 1081s          5’-CTA CGT CGC TCA GTA AAG CAC-3’      60.0         +691 bp     950 bp         55.0 
TFAM 2011as        5’-CTG GCT GTG CCT TGT TAT GGA-3’        62.2       +1621 bp                        55.0 
TFAM 367s            5’-GTC GCT GCG TTG TAG GCT GG-3’          66.5           -24 bp     716 bp         65.0 
TFAM 1063ias       5’-GTC AGA GGC TTC TTT GGG TA-3’          57.0         +145 bp                        50.0 
 
Primer position was calculated relative to translation start point.   
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Table 1.2  Lymphocyte surface area and mitochondrial quantification and surface area 
measurement using electron microscopy of normal and affected Miniature Schnauzer 
dogs at 13,000 X magnification. 

 
 

Total # of 
Lymphocytes 

Median 
Lymphocyte 
Surface Area 

(µm2)  
 

Median 
Mitochondrial 
#/Lymphocyte 
Cross- section  

 

Median Mitochondrial 
Surface Area 

(µm2)/Lymphocyte    
Cross-section 

 
Affected 86 21.46 2 0.1343 

Unaffected 65 20.04 3 0.1346 
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Figure 1.1.  TFAM gene structure.  Numbering is relative to the start codon.  The areas 
sequenced are shadowed.  I = intron, E = exon. 
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Figure 1.2  Transmission electron micrograph of a canine lymphocyte.  The cell and 
mitochondria are outlined for surface area measurement.  Magnification x 13,000. 
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Figure 1.3  Alignment of the partial Tfam sequences from affected and normal Miniature 
Schnauzer promoter region compared to the GenBank® Boxer canine sequence (derived 
from accession number NC_006586).  Region with variation is shaded in grey.  Numbering 
corresponds with the nucleotide position relative to the start of translation.   
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Figure 1.4  Alignment of the partial Tfam sequences of intron1 from affected and normal 
Miniature Schnauzer compared to the GenBank® Boxer canine sequence (derived from 
accession number NC_006586).  Regions with variation are shaded in grey.  Numbering 
corresponds with the nucleotide position within intron1. 
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Figure 1.5  Alignment of the partial Tfam sequences of the 3’ non-coding region from 
affected and normal Miniature Schnauzer compared to the GenBank® Boxer canine 
sequence (derived from accession number NC_006586).  Region with variation is shaded 
in grey.  Numbering corresponds with the nucleotide position relative to the start of 
translation. 
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Figure 1.6  Box and whisker graphs of lymphocyte surface area of normal and affected 
Miniature Schnauzer dogs. 
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Figure 1.7  Box and whisker graphs of mitochondrial numbers per lymphocyte cross-
section of normal and affected Miniature Schnauzer dogs. 
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Figure 1.8  Box and whisker graphs of mitochondrial surface area per lymphocyte cross-
section of normal and affected Miniature Schnauzer dogs. 
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CHAPTER 2 

 

RELATIVE QUANTITATION OF LEUKOCYTE MITOCHONDRIAL 
DNA AND MITOCHONDRIAL EVALUATION USING 
TRANSMISSION ELECTRON MICROSCOPY IN NORMAL 
ENGLISH SPRINGER SPANIEL DOGS AND THOSE AFFECTED 
WITH RETINAL DYSPLASIA 
 

2.1   INTRODUCTION 

 
 Inherited retinal dysplasia has been well studied in the English Springer Spaniel 

dog, yet the pathogenesis remains unknown.  Fetal English Springer Spaniel eyes with 

retinal dysplasia have been noted via light and electron microscopy to have a marked 

decrease in the size and area occupied by the gap junctions within the external limiting 

membrane compared to normal fetuses.94  It has therefore been proposed that inappropriate 

expression of cell adhesion molecules or glycoproteins on the neuroepithelium or Müller 

cells may lead to poor cell adhesion.  This in turn may lead to the inability to form cell 

junctions or proper cell-cell communication, causing subsequent disorganized proliferation 

of neuroblasts and the typical retinal dysplasia rosettes noted with light microscopy.1  

Further studies by Whiteley et al. 101 demonstrated differences in intramembranous particle 

density and filipin binding in affected English Springer Spaniel dogs compared to age-

matched controls, suggesting that abnormalities in the membrane structure of neuroblastic 

cells may be related to the dysplastic process.101  O’Toole et al. 20 have proposed that 

defective development of Müller cells or abnormal gliovascular relationships may result in 

retinal dysplasia, as disorganized Müller fibres within the dysplastic areas and the focal 

absence of a discrete external limiting membrane have been noted histologically.20  These 

mechanisms may also explain other aspects of this disease, including retinal detachment 

and persistence of the hyaloid vasculature.20, 98   

The most recent study investigating the pathogenesis of retinal dysplasia in the dog 

was by Appleyard et al..43  Using real-time PCR in the Miniature Schnauzer dog 

Appleyard et al. 43 revealed that the white blood cells of an affected dog with retinal 



dysplasia had decreased mitochondrial DNA (mtDNA) compared to a normal Miniature 

Schnauzer dog.43  Further investigations in this study demonstrated that the retina and RPE 

of the affected Miniature Schnauzer dog had decreased expression of several mitochondrial 

genes as well as Tfam 43, a nuclear encoded gene controlling mitochondrial transcription 

and copy number.44  These findings led to the postulation that retinal dysplasia in this 

breed may be due to decreased retinal energy supply.43  Using transmission electron 

microscopy, Appleyard et al. 43 also believed that the mitochondria of affected Miniature 

Schnauzer dogs were decreased in numbers and size and appeared to have altered 

morphology.43   

Ophthalmoscopically and histologically, retinal dysplasia in the English Springer 

Spaniel dog is similar to that in the Miniature Schnauzer dog.  In both breeds, retinal 

dysplasia is inherited as a bilateral, generalized condition.  Histologically, affected 

individuals of both breeds have been demonstrated to have an incomplete external limiting 

membrane, convoluted outer nuclear layer, and dysplastic outer and inner segments.15, 20  

Due to the similarities of the condition in both breeds, the molecular and morphological 

findings of Appleyard et al. 43 may not be unique to the Miniature Schnauzer dog.  One 

objective of this study was to compare the relative amounts of mtDNA in the white blood 

cells of several normal and affected English Springer Spaniel dogs using real-time PCR.  

Identifying decreased mtDNA in the white blood cells of affected dogs could provide a 

potential screening test for identifying the condition.  Secondarily, quantification, 

measurement and morphology assessment of lymphocyte mitochondria was performed.  

Identifying significant differences between the two groups could provide further insight 

into identifying the pathogenesis of retinal dysplasia in the English Springer Spaniel dog.   
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2.2  MATERIALS AND METHODS 
 

2.2.1 EXPERIMENT DESIGN  

  

 For mtDNA relative quantification seven affected and five unaffected English 

Springer Spaniel dogs ranging in age from 1 to 11 years were selected.  For mitochondrial 

evaluation, seven English Springer Spaniel dogs were used:  two affected male, one 

affected female and four normal female dogs (ages 1-11 years).  All eyes were examined 

by a veterinary ophthalmologist to verify whether the retina was normal or affected with 

retinal dysplasia.  General physical examinations did not reveal any systemic abnormalities 

other than ocular defects.  All animals were handled according to the standards set by the 

Canadian Council on Animal Care and the ARVO Statement for the Use of Animals and 

Ophthalmic and Vision Research.    

 

2.2.2 SAMPLE PREPARATION AND DNA EXTRACTION 

 

 EDTA whole blood samples were collected by venipuncture from affected and 

unaffected subjects.  The red blood cells were lysed with Tris ammonium chloride and the 

white blood cell pellets were collected via centrifugation.  For electron microscopy, a 

portion of the white blood cells were fixed in 5% glutaraldehyde with 0.2 M s-collidine 

buffer.  The cells were then embedded in Epon/Araldite, sectioned at a thickness of 90-

100nm and stained with uranyl acetate.  For PCR, the total cellular DNA of leukocytes was 

extracted by phenol/chloroform after treatment with proteinase K (Invitrogen TM).  The 

DNA was quantified using a spectrophotometer (Cary 100Bio) to measure the absorbance 

at 260 and 280 nm.   

 

2.2.3 PRIMER DESIGN AND PCR CONDITIONS 

 

 Using cytochrome oxidase subunit 1 (COX-1) as a representative of mtDNA and 

glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) as a reference gene to normalize 

COX-1 levels, the relative quantitation of COX-1 between normal dogs and then normal 
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against affected dogs was performed using a Mx 3005P Stratagene Multiplex Quantitative 

PCR System.  Optimal primers for COX-1 and GA-3-PDH were designed using the 

program Primer Designer version 2.01 (Scientific and Educational Software) and 

synthesized by Invitrogen TM.  Primer design criteria included similarity in melting 

temperature (Tm) levels and avoidance of primer and template secondary structure at the 

primer Tm .  A BLAST search of Genebank® was performed on the primers and the canine 

genome to ensure specificity.  The designed primer pairs were tested in a standard PCR 

reaction and visualized with ethidium bromide after agarose gel electrophoresis.  Those 

primers producing a clean, single product of expected size were selected and further tested 

for their ability to produce a sharp melting curve peak after successive PCR cycles in a 

thermal cycler (Mx 3005P Stratagene).  The nucleotide sequences of the primer pairs 

selected are: 

GA-3-PDH: sense (S) 256 5’-GGTGATGCTGGTGCTGAGTAT Tm = 59.6°C and 

antisense (AS) 439 5’-TGCTGACAATCTTGAGGGAGT Tm  = 59.3°C, yielding a 183 bp 

product with a calculated Tm  of 91.8°C and a measured Tm of 86.5°C.  

 COX-1:  S 893 5’-GATGTAGACACACGAGCGTA  Tm = 55°C and  

AS 970 5’-CCATGAAGTGTTGCCAGT Tm = 55°C, yielding a 77bp product, with a 

calculated Tm of 82.4°C and a measured Tm of 80.3°C. 

PCR amplifications were carried out in a total volume of 25 µl, containing 0.5 µM 

of each primer, 12.5 µl of Brilliant® SYBR® Green QPR master mix (Stratagene®),   0.375 

µl of 1:500 diluted reference dye and 20ng of DNA.  The PCR cycling conditions were: 

initial denaturation at 94°C for 30 seconds followed by an annealing temperature of 60°C 

for 45 seconds and an extension temperature of 72°C for 45 seconds.  PCR amplification 

was performed in quadruplicate for each DNA sample and each experiment was repeated 

once.   The SYBR® Green fluorescence intensities during PCR were recorded and analyzed 

in the MX 3005P system (Stratagene®).  PCR amplification efficiencies for COX-1 and 

GA-3-PDH were calculated using data from a standard curve.  The threshold cycle (CT) is 

defined as the cycle at which the first significant increase in the fluorescent signal is 

detected.  CT values of the target gene (COX-1) were normalized to the reference gene 

(GA-3-PDH) and the relative quantification was performed according to the delta-delta CT  

(∆∆CT ) model 105 and the Pfaffl model 106. 
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2.2.4. MELTING CURVE ANALYSIS 

 

 The melting curve analysis to ensure product homogeneity is provided by the 

system software and was performed after the real-time PCR.  The amplified products were 

incubated at 95°C for 1 minute followed by ramped up temperatures of 55°C to 95°C at a 

rate of 0.2°C/sec with the fluorescence data being collected continuously on the 55-95°C 

ramp. 

 

2.2.5 ELECTRON MICROSCOPY 

 

 From each dog a minimum of 10 lymphocytes were examined and photographed at 

13, 000 magnification using a Philips EM 410 transmission electron microscope.  Criteria 

for selecting lymphocytes were agranular cells with round or oval nuclei and little 

cytoplasm.  Lymphocytes were the white blood cell of choice due to their ease of 

identification and the lack of cytoplasmic granules allowing for clear identification of 

mitochondria.  Images were scanned into a computer and viewed using the Northern 

Eclipse (Empix Imaging Inc.) graphics program.  Using the graphics program the perimeter 

of each lymphocyte photographed was measured in microns (µm) and the surface area 

(µm2) was calculated.  Mitochondria within each cell cross-section were identified and 

quantified.  Selection criteria for the mitochondria included double membrane organelles 

with visible cristae.  The perimeter of each mitochondrion was measured in microns (µm) 

and the mitochondrial surface area (µm2) per lymphocyte cross-section was calculated.  

(Figure 2.1)  Lastly, using a masked observer, the scanned lymphocyte photographic 

images were viewed and the mitochondrial morphology was compared between affected 

and normal dogs.  

 

2.2.6 STATISTICAL ANALYSIS 

 

 The median lymphocyte surface area, mitochondrial number per lymphocyte cross-

section and mitochondrial surface area were compared between the affected and normal 

dogs.  Since the distribution of the mitochondrial variables analyzed were non-Gaussian, 
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comparisons were made using the non-parametric Mann-Whitney test.  The lymphocyte 

surface areas were compared using a t test as the variables were parametric.  A p value of 

<0.05 was accepted as significant.  Statistical analysis was performed with GraphPad 

Software Inc. (San Diego, CA, USA). 
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2.3 RESULTS 

 
2.3.1 REAL TIME PCR 

 
The amplification efficiencies for GA-3-PDH and COX-1 were 1.883 and 1.913 

respectively.  (See Figures 2.2 and 2.3)  For normal English Springer Spaniel dogs the CT 

values for GA-3-PDH and COX-1 are provided in Table 2.1.  The normalized ∆CT and 

∆∆CT values calibrated to Dog 1 along with the relative ratios using the ∆∆CT method 105 

are also provided in Table 2.1.  Using COX-1 as the target gene representative of mtDNA, 

the amount of mtDNA in unaffected dogs relative to unaffected Dog 1 is shown in Figure 

2.4.  Results revealed that the mtDNA amount was variable in normal English Springer 

Spaniel dogs and ranged from 1.08-fold difference to 4.76-fold difference.   Dog 1 

appeared to have the least amount of mtDNA.  As affected dogs were hypothesized to have 

less mtDNA versus normal, mtDNA amount of the affected dogs was calibrated against 

Dog 1.  CT  values along with ∆CT and ∆∆CT values for Dog 1 and the affected dogs are 

shown in Table 2.2.  When comparing the affected dogs to a normal dog (Dog 1) with the 

lowest mtDNA amount the relative quantities ranged from a 1-fold to 2.68-fold difference.  

(See Figure 2.5)  The relative ratios obtained by the Pfaffl model 106, which corrects for 

differences in amplification efficiency, were similar to those values obtained by the ∆∆CT 

method 105 (results not shown).  Homogeneity of the accumulated PCR products was 

confirmed in the assays by dissociation curves which show single sharp peaks.  (Figure 

2.6)   

 

2.3.2 ELECTRON MICROSCOPY 

 

 A total of 81 lymphocytes were imaged and measured; 48 from normal dogs and 33 

from affected dogs.  Table 3 summarizes the overall results for each group.  The normal 

dog lymphocyte surface area ranged from 8.76µm2 to 28.56µm2 with a median surface area 

of 17.62 µm2.  The affected dog lymphocyte surface area ranged from 8.79 µm2  to 26.48 

µm2  with a median surface area of 18.94 µm2.  (Figure 2.7)  Using a t test the means of 

lymphocyte surface area were not significantly different (p value = 0.0967).  In the normal 
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dog lymphocytes, mitochondrial numbers per cell cross-section ranged from zero to 9 with 

a median of 3.  In the affected dog lymphocytes mitochondrial numbers per cell cross-

section ranged from zero to 12 with a median of 3.  (Figure 2.8)  Using a Mann-Whitney 

test the medians were not statistically different (p=0.8098).  The mitochondrial surface 

areas per lymphocyte cross-section were also compared.  The normal dog mitochondrial 

surface area per lymphocyte cross-section ranged from 0.0199 µm2 to 0.3090 µm2 with a 

median of 0.0912µm2.  The affected dog mitochondrial surface area per lymphocyte cross-

section ranged from 0.0209 µm2 to 0.3420 µm2 with a median of 0.0954 of µm2.  (Figure 

2.9)  Statistical analysis with the Mann-Whitney test showed no significant difference 

between the affected and normal dog mitochondrial surface areas per lymphocyte cross-

section (p=0.3102).  Lastly, mitochondrial morphology did not appear altered between the 

two groups.   
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2.4 DISCUSSION 
 

 The results of this study indicate that the mtDNA amount in the white blood cells 

of affected and unaffected English Springer Spaniel dogs varies widely and is independent 

of whether dogs are affected with retinal dysplasia or not.  Additionally, using transmission 

electron microscopy, there were no significant differences in lymphocyte mitochondrial 

number, size or morphology between affected and normal English Springer Spaniel dogs.  

It was recently suggested that the pathogenesis of retinal dysplasia in Miniature Schnauzer 

dogs may arise from a lowered energy supply to the retina and RPE.43  This proposed 

pathogenesis was from data revealing decreased white blood cell mitochondrial DNA 

(mtDNA) in an affected Miniature Schnauzer dog and decreased mitochondrial number 

and size in multiple tissues of affected Miniature Schnauzer dogs.43  In the following 

experiment, the relative quantity of leukocyte mtDNA in multiple affected and unaffected 

English Springer Spaniel dogs were compared within real-time PCR experiments.  Using 

only normal dogs in one real-time experiment (Figure 2.4) the variation ranged from 1.08-

fold to 4.76-fold difference.  As affected dogs were hypothesized to have less mtDNA 

versus normal, mtDNA amount of the affected dogs were calibrated against Dog 1.  

Comparing affected dogs against a normal dog with the lowest amount of mtDNA (Dog 1) 

showed significant variation.  The affected dogs had either a similar amount of mtDNA or 

up to 2.66-fold more.  (Figure 2.5)  The comparison of affected dogs to Dog1 only (versus 

the using the average of the normal dogs) was the most robust method to avoid a false 

claim.  The calculated relative ratios of mtDNA were similar when both the ∆∆CT method 
105 and the Pfaffl method 106 were used indicating that the difference in amplification 

efficiencies of GA-3-PDH and COX -1 (1.883 and 1.913 respectively) played an 

insignificant role in relative quantitation.    

 Mitochondrial biogenesis and mtDNA maintenance depend on coordinated 

expression of genes in the nucleus and the mitochondria.  The abundance of mitochondria 

and mtDNA necessary to meet a cell’s energy needs is determined by a variety of 

hormonal and second messenger signals and may change under different energy demand 

and physiological or environmental conditions.121  Thus, a variety of factors can influence 

the amount of mtDNA in a particular cell.  It has been proposed that increased oxidative 
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stress contributes to the abundance of mitochondria as well mtDNA content.121  This has 

been demonstrated in the leukocyte where elevated oxidative stress leads to increased 

mtDNA amounts.129  Additionally, hyperlipidemia has been demonstrated to result in 

decreased mtDNA.130  The blood samples from the English Springer Spaniel dogs used in 

this study were not grossly lipemic but exact measurements of lipoproteins were not 

measured.     

 The effect of age on mtDNA amount is controversial and tissue dependent.131  In 

many tissues (heart 132, lung 133, kidney132, and spleen 132) mtDNA content has been 

demonstrated to increase with age whereas tissues such as the bone marrow show no age-

related pattern.132  Demonstrations of mtDNA content in relation to age in the brain 132, 134 

and skeletal muscle 120, 132, 135-137 are inconsistent.  To the author’s knowledge, the 

correlation of mtDNA and age within the white blood cell has not been investigated.  In 

this particular study the age of the animal did not appear to correlate with leukocyte 

mtDNA content.  However, based on the literature from other tissues, age matched 

controls should be performed if mtDNA content is to be further evaluated in dogs affected 

with retinal dysplasia.  Lastly, previous studies have indicated that mtDNA concentrations 

are only weakly related to age-adjusted aerobic fitness (maximal oxygen consumption and 

self-reported physical activity levels) 136 and thus aerobic fitness of each dog was not 

considered to play a significant role in this particular study.  

 The question of whether mtDNA is truly decreased in the white blood cells of all 

affected Miniature Schnauzer dogs still, however, remains to be answered.  The original 

study by Appleyard et al. 43 used only one dog from each group when determining the 

relative quantity of mtDNA.  To base further research on this data, verification with 

increased samples would be necessary.  Additionally,  mtDNA content varies widely in 

different tissues 132 with the differences observed being likely secondary to tissue-specific 

energy demands.124  Therefore, as dogs affected with retinal dysplasia are otherwise 

healthy, the relative quantitation of mtDNA in the retina and RPE of age-matched affected 

and normal dogs rather than leukocytes, would be ideal to prove that decreased mtDNA is 

involved in the pathogenesis of the condition.   It must also be noted, however, that 

although the original study by Appleyard et al. 43, demonstrated decreased retinal and RPE 

mitochondrial transcripts in the affected Miniature Schnauzer dog, mtDNA content and 
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transcript level do not always have a positive correlation.134  In the brain, it has been 

demonstrated that aging has been associated with increased mtDNA content and reduced 

transcript level.134  Similarly, in liver, heart, and skeletal muscle, a decline in mtDNA does 

not correlate with a decrease in transcript level nor do reduced mtDNA levels appear to 

affect enzyme activities.131  To the author’s knowledge, other than the findings by 

Appleyard et al. 43, the correlation between mtDNA content and transcript level have not 

been evaluated in healthy retina and RPE.    

 Mitochondrial DNA depletion in association with abnormal mitochondria has been 

reported in several studies.43, 44, 123  Pancreatic cells with severe mitochondrial depletion 

and deficient oxidative phosphorylation have been noted to have abnormal mitochondria 
123, 138, as well as mtDNA depleted myoblasts and mice embryos.44, 138  The recent study 

demonstrating a relative decrease in mtDNA in a Miniature Schnauzer dog affected with 

retinal dysplasia along with a possible decrease in leukocyte mitochondrial number and 

size as well as altered mitochondrial morphology 43, led to mitochondrial quantification 

and measurement in the English Springer Spaniel dog.  Objective quantification and 

measurement of lymphocyte mitochondria in the English Springer Spaniel dog 

demonstrated no differences in mitochondrial number, size or morphology between normal 

dogs and those affected with retinal dysplasia.  (Table 2.3)    These results were not 

unexpected as affected dogs are otherwise systemically healthy.  The demonstration in this 

study that leukocyte mtDNA is not decreased in affected versus normal English Springer 

Spaniel dogs also supports these electron microscopic findings.  Limitations of using 

transmission electron microscopy to evaluate mitochondria do, however, exist.  The classic 

measurement of mitochondrial section area by this method is limited by the complex three 

dimensional organization of mitochondria 125 and a more accurate method of determining 

mitochondrial content would be by measuring the citrate synthase activity.124  Furthermore, 

if altered energy supply to the retina and RPE remains as a proposed pathogenesis of 

retinal dysplasia then objective evaluation of affected and normal retinal mitochondria 

would be ideal.   

 In conclusion, in contrast to the findings in the Miniature Schnauzer dog by 

Appleyard et al. 43, a relative decrease in white blood cell mtDNA does not exist in English 

Springer Spaniel dogs affected with retinal dysplasia.  Furthermore, affected English 
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Springer Spaniel dog lymphocytes do not have decreased mitochondrial number, surface 

area or altered morphology when compared to normal English Springer Spaniel dogs.  The 

essential question of whether decreased mtDNA is a feature of affected Miniature 

Schnauzer dogs remains to be answered, as the original study by Appleyard et al. 43 lacks 

power due to its low sample number.  Evaluation of mitochondria, mtDNA and 

mitochondrial gene expression within age-matched retina and RPE of English Springer 

Spaniels would be necessary to determine if mitochondria play a role in the pathogenesis 

of retinal dysplasia in this breed.  
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Table 2.1  Comparison of differences in mean crossing threshold (CT) ± the standard deviation 
(S.D.) for COX-1 and GA-3-PDH for unaffected English Springer Spaniel dogs.  Values are 
normalized (∆CT) and calibrated (∆∆CT ) to Dog 1.  R = relative fold difference. 

 
Unaffected Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 
CT  COX-1 19.46 ± 0.13 19.69 ± 0.10 17.86 ± 0.10 21.83 ± 0.16 20.35 ± 0.10 
CT  GA-3-PDH 15.55 ± 0.05 15.89 ± 0.05 16.20 ± 0.04 18.50 ± 0.19 18.03 ± 0.10 
∆CT 3.91 ± 0.14 3.8 ± 0.11 1.66 ± 0.11 3.33 ± 0.25 2.32 ± 0.14 
∆∆CT 0.00 ± 0.14 -0.11 ± 0.11 -2.25 ± 0.11 -0.58 ± 0.25 -1.59 ± 0.14 
R 1.00  1.08 4.76 1.49 3.01 
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Table 2.2  Comparison of differences in mean crossing threshold (CT) ± the standard 
deviation (S.D.) for COX-1 and GA-3-PDH for affected English Springer Spaniel dogs.  
Values are normalized (∆CT) and calibrated (∆∆CT ) to Dog 1.   

 
Dog 1 Dog 6 Dog 7 Dog 8 Dog 9 Dog 10 Dog 11 Dog 12 

CT  COX-1 17.70 
± 0.03 

22.79 
± 0.13 

19.82 
±0.08 

20.02 
± 0.22 

19.36 
± 0.13 

17.55  
± 0.09 

16.63 
± 0.11 

17.94 
± 0.05 

CT   
GA-3-PDH 

16.39 
± 0.06 

22.89 
± 0.07 

18.90 
± 0.07 

18.66 
± 0.12 

18.85 
± 0.07 

16.51  
± 0.16 

15.69  
± 0.09 

17.92  
± 0.04 

∆CT 1.31  
± 0.06 

-0.1  
± 0.15 

0.92 
 ± 0.11 

1.36  
± 0.25 

0.51 
± 0.15 

1.04  
± 0.18 

0.94  
± 0.14 

0.02  
± 0.06 

∆∆CT 0.00 
± 0.06 

-1.41 
± 0.15 

-0.39 
± 0.11 

0.05   
± 0.25 

-0.8 
± 0.15 

-0.27  
± 0.18 

-0.37  
± 0.14 

-1.29  
± 0.06 

R 1.00 2.66 1.31 1.04 1.74 1.21 1.29 2.45 
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Table 2.3  Lymphocyte surface area and mitochondrial quantification and surface area 
measurement using electron microscopy of normal and affected English Springer Spaniel 
dogs at 13,000 magnification. 
 

 

Total # of 
Lymphocytes 

Median 
Lymphocyte 
Surface Area 

(µm2)  
 

Median 
Mitochondrial 

#/lymphocyte cross 
section  

 

Median 
Mitochondrial 

Surface Area (µm2) 
 

Affected 33 18.94 3 0.0954 
Unaffected 48 17.62 3 0.0912 
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Figure 2.1  Transmission electron micrograph of a canine lymphocyte.  The cell and 
mitochondria are outlined for surface area measurement.  Magnification x 13,000. 
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Figure 2.2  Standard curve for GA-3-PDH demonstrating a calculated efficiency of   
1.883.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 68



 
 
Figure 2.3  Standard curve for COX-1 demonstrating a calculated efficiency of 1.913. 
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Figure 2.4  Relative amount of leukocyte mtDNA from normal English Springer Spaniel 
dogs.  The results are expressed as a ratio relative to the value for Dog 1.  
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Figure 2.5  Relative amount of leukocyte mtDNA from affected English Springer Spaniel 
dogs (white bars) calibrated to normal Dog 1 (black bar).  The results are expressed as a 
ratio relative to the value for Dog 1.  
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Figure 2.6  Dissociation analysis of real-time COX-1 (■) and GA-3-PDH (●) amplicons.   
The negative derivative of fluorescence versus temperature was plotted against  
temperature.  The curve shows single peaks, suggesting that only specific PCR  
products were generated with these sets of primers.   
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Figure 2.7  Box and whisker graphs of lymphocyte surface area of normal and affected 
English Springer Spaniel dogs. 
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Figure 2.8  Box and whisker graphs of mitochondrial numbers per lymphocyte cross-
section of normal and affected English Springer Spaniel dogs. 
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Figure 2.9  Box and whisker graphs of mitochondrial surface area per lymphocyte cross-
section of normal and affected English Springer Spaniel dogs. 
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GENERAL CONCLUSION 
  

 This study was undertaken to better understand the roles of TFAM, mitochondria 

and mtDNA in the pathogenesis of retinal dysplasia in the Miniature Schnauzer and 

English Springer Spaniel dog.  In the Miniature Schnauzer dog the Tfam promoter region, 

intron1, coding and 3’non-coding sequence were amplified and sequenced in normal and 

affected dogs with no sequence differences between the two groups.  The mitochondrial 

numbers and surface area per lymphocyte cross-sectional area also revealed no differences 

between affected and normal Miniature Schnauzer dogs.  Similarly, lymphocyte 

mitochondrial morphology could not distinguish healthy dogs from those with retinal 

dysplasia.  With respect to the English Springer Spaniel dog, using real-time PCR it was 

demonstrated that the relative quantities of leukocyte mtDNA varies widely between 

affected and unaffected dogs.  Similar to the Miniature Schnauzer dog, electron 

microscopy failed to demonstrate lymphocyte mitochondrial differences between affected 

and normal dogs.   

 The original study by Appleyard et al. 43 demonstrated differential gene expression 

of mtDNA and Tfam in the retina and RPE of an affected Miniature Schnauzer dog, as well 

as possible morphological changes in the mitochondria of various tissues.43  Based on this 

study, it was hypothesized that a decreased energy supply to the retina and RPE may lead 

to retinal dysplasia.  The initial representational difference analysis (RDA) performed by 

Appleyard et al. 43 provides evidence of decreased mitochondrial DNA or decreased 

mitochondrial transcription activity in affected Miniature Schnauzer RPE.  The RDA 

technique itself has been demonstrated to be useful for large scale profiling of differential 

gene expression 139 and sensitive in identifying rare transcripts with minimal chance of 

isolating false positive clones.140  The RDA results of differential mitochondrial gene 

expression reported by Appleyard et al. 43 may be valid; however, these observations were 

followed by real-time PCR using only one affected and one normal dog.  Therefore, of 

significant importance is that the real-time PCR results provided by Appleyard et al. 43 lack 

power due to the low sample number used.  Using several affected and normal dogs, the 

data obtained in this particular study does not support the real-time PCR and electron 

microscopic findings by Appleyard et al.43   



 Identifying differences in retinal or RPE gene expression between affected and 

normal dogs is an important step towards understanding the pathophysiology of retinal 

dysplasia.  With any technique used to identify differentially expressed genes however, 

causative genes can be missed.  This could occur if expression of these genes occurs only 

at certain points in development, if technical problems occur with the procedure, or if 

possible loss of transcripts in the RNA isolation or amplification process occurs.  In order 

to verify the findings by Appleyard et al. 43 a repeat breeding of affected and confirmed 

normal dogs to increase sample numbers and obtain retinal and RPE tissue would be 

necessary.  Using the increased sample numbers, nuclear and mitochondrial gene 

expression differences within the retina and RPE could be evaluated.  As retinal dysplasia 

is a congenital condition 1 and mRNA expression may be influenced by multiple factors 

including stage of development 127, determining which genes are differentially expressed 

by the retina and RPE during the development of retinal dysplasia in utero would be ideal.  

To determine if mitochondria play a role in the pathogenesis of retinal dysplasia in the 

Miniature Schnauzer and English Springer Spaniel dog evaluation of mitochondria, 

mtDNA and mitochondrial gene expression within age-matched retina and RPE would be 

necessary. 

 A DNA microarray is an experimental tool that allows for gene expression 

analysis.128  Using this technique, thousands of discrete DNA sequences (arrays) are 

hybridized to fluorescently labeled DNA or RNA samples and the relative abundance of 

each gene sequence can be compared by the ratio of fluorescence.128  Microarray 

technology has demonstrated low false positive rates 141 but it does however, have its 

limitations.  It cannot be used for gene discovery, as it relies on prefabricated probes to 

allow for analysis and it has also been known to be problematic to detect changes in 

transcript profiles for low abundance transcripts because of detector sensitivity limits.139  A 

great deal of information can be obtained through cDNA subtraction methods coupled with 

microarray screening.  Using this strategy, differentially expressed genes are first enriched 

by RDA, followed by cloning, amplification and then microarray analysis to screen the 

subtracted products.142, 143 

 Confirmation of the data obtained by Appleyard et al. 43 or identification of other 

candidate genes causing retinal dysplasia could thus potentially be achieved by microarray 
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gene expression analysis.  If mitochondrial genes are isolated by microarray analysis, 

determining the retinal and RPE mitochondrial content and possibly function during the 

genesis of retinal dysplasia would also be advantageous.  Such further investigations 

should prove to yield new insights into the pathogenesis of retinal dysplasia in the 

Miniature Schnauzer and English Springer Spaniel dog. 
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