
Autotuning the Intel HLS Compiler using the

Opentuner Framework

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Chandler Janzen

Saskatoon, Saskatchewan, Canada

c© Copyright Chandler Janzen, September, 2019. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, it is agreed that the Libraries of this University may

make it freely available for inspection. Permission for copying of this thesis in any manner, in

whole or in part, for scholarly purposes may be granted by the professors who supervised this

thesis work or, in their absence, by the Head of the Department of Electrical and Computer

Engineering or the Dean of the College of Graduate Studies and Research at the University of

Saskatchewan. Any copying, publication, or use of this thesis, or parts thereof, for financial

gain without the written permission of the author is strictly prohibited. Proper recognition

shall be given to the author and to the University of Saskatchewan in any scholarly use which

may be made of any material in this thesis.

Disclaimer

Reference in this thesis/dissertation to any specific commercial products, process, or

service by trade name, trademark, manufacturer, or otherwise, does not constitute or im-

ply its endorsement, recommendation, or favoring by the University of Saskatchewan. The

views and opinions of the author expressed herein do not state or reflect those of the Univer-

sity of Saskatchewan, and shall not be used for advertising or product endorsement purposes.

i

Request for permission to copy or to make any other use of material in this thesis in

whole or in part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

ii

Abstract

High level synthesis (HLS) tools can be used to improve design flow and decrease verifi-

cation times for field programmable gate array (FPGA) and application specific integrated

circuit (ASIC) designs. The Intel HLS Compiler is a high level synthesis tool that takes

in untimed C/C++ as input and generates production-quality register transfer level (RTL)

code that is optimized for Intel FPGAs. The translation can, however, require multiple iter-

ations and manual optimizations to get comparable synthesized results to that of a solution

written in a hardware descriptive language. The synthesis results can vary greatly based

upon coding style and optimization techniques, and typically require an in-depth knowledge

of FPGAs to fully optimize the translation which limits the audience of the tool. The extra

abstraction that the C/C++ source code presents can also make it difficult to meet more

specific design requirements; this includes designs to meet specific resource usage or perfor-

mance based metrics. To improve the quality of results generated by the Intel HLS Compiler

without a manual iterative process that requires an in-depth knowledge of FPGAs, this re-

search proposes a method of automating some of the optimization techniques that improve

the synthesized design through an autotuning process. The proposed approach utilizes the

PyCParser library to parse C source files and the OpenTuner Framework to autotune the

synthesis to provide a method that generates results that better meet the needs of the de-

signer’s requirements through lower FPGA resource usage or increased design performance.

Such functionality is not currently available in Intel’s commercial tools.

The proposed approach was tested with the CHStone Benchmarking Suite of C programs

as well as a finite impulse response filter. The results show that the commercial HLS tool can

be automatically autotuned through placeholder injection using a source parsing tool for C

code and using the OpenTuner Framework to autotune the results. For designs that are small

in nature and include conducive structures to be autotuned, the results indicate resource

usage reductions and/or performance increases of up to 40% as compared to the default

Intel HLS Compiler results. The method developed in this research also allows additional

design targets to be specified through the autotuner for consideration in the synthesized

design which can yield results that are better matched to a design’s requirements.

iii

Acknowledgments

I am grateful for the opportunity to study at the University of Saskatchewan and for the

support of the Electrical and Computer Engineering Department. I have received a great

deal of support and assistance since I started my research. First, I would like to thank my

supervisor, Dr. Brian Berscheid for his guidance and countless hours of investment into my

research. His expertise was invaluable in the progression of the research.

Second, I’d like to acknowledge my colleagues for their support and suggestions through-

out this journey. In particular: Rory Gowen, Jason Pannell, Dr. Daniel Teng, and Dr. Eric

Salt have been very helpful in offering advise and suggestions along the way. Their support

and banter over ideas, methods, and paradigms kept things moving along.

Finally, I would like to express my gratitude to my family. Without their support, none

of this would have been possible. To my wife, Marcee Janzen, and my kids: Kain, Bella,

Nicholas, and Walter; thank you for the much needed encouragement.

iv

Table of Contents

Permission to Use i

Disclaimer i

Abstract iii

Acknowledgments iv

Table of Contents iv

List of Tables ix

List of Figures xii

List of Abbreviations xv

1 Introduction 1

1.1 FPGAs . 1

1.2 HLS . 4

1.2.1 Intel HLS Compiler . 5

1.2.2 Other HLS Tools . 6

1.2.3 Design Flow Using Intel HLS . 8

1.2.4 Intel HLS Compiler Advantages Over Traditional HDL Development 10

1.2.5 Challenges of Using the Intel HLS Compiler 11

1.3 Intel HLS Compiler Automation . 13

v

1.3.1 Autotuning Using OpenTuner . 13

1.3.2 PyCParser: Parsing C Code and Injecting Compiler Directives 16

1.3.3 Docker . 17

1.4 Research Objective . 17

1.5 Thesis Outline . 19

2 Autotuning Parameters 21

2.1 Introduction . 21

2.2 Intel HLS Optimization Techniques . 21

2.2.1 HLS Interfaces . 21

2.2.2 Data Types . 23

2.2.3 Local Memory Optimizations . 24

2.2.4 Loop Optimizations . 27

2.2.5 Coding Practice Related to HLS Optimization 30

2.3 Autotunable Parameters . 30

2.3.1 Choosing Tunable Parameters . 30

2.3.2 Defining Parameter Ranges . 32

2.3.3 Injecting Parameters Into Source Code 36

2.3.4 Limitations . 37

3 OpenTuner Configuration and Execution 40

3.1 OpenTuner Framework . 40

3.1.1 Search Techniques . 41

vi

3.1.2 Configuration Manipulator . 43

3.1.3 Objectives . 45

3.2 OpenTuner Usage for Tuning Intel HLS . 45

3.2.1 Search Techniques . 45

3.2.2 Search Space Size . 45

3.2.3 Results Generation . 46

3.2.4 Compilation Types . 48

3.2.5 Adjusting Optimization Preferences 51

3.2.6 Specifying Targets . 53

4 Results 55

4.1 Impact of Individual Parameters . 56

4.1.1 Memory Optimizations . 57

4.1.2 Loop Optimizations . 59

4.2 Autotuning the Intel HLS Compiler . 62

4.2.1 Use of CHStone . 63

4.3 Establishing the Reference for the Autotuner 66

4.3.1 CHStone Applications . 66

4.3.2 DSP FIR Filter . 67

4.4 Setup of Autotuning for Intel HLS Compiler Applications 68

4.4.1 OpenTuner Configuration . 68

4.4.2 Search Space Size and Techniques . 71

vii

4.5 CHStone Autotuning Results . 74

4.5.1 Establishing a Starting Point . 74

4.5.2 Correlation Between Estimated vs Post-Mapped and Estimated vs

Post-Fitted Results . 76

4.5.3 WNS CHStone Application Results 78

4.5.4 Other CHStone Application Results 85

4.6 DSP FIR Filter Autotuning Results . 91

4.6.1 Verification of Results . 91

4.6.2 Autotuning with Targets Introduced 100

5 Summary and Conclusions 104

5.1 Summary . 104

5.1.1 Benefits of Autotuning . 104

5.1.2 Limitations of Autotuning . 106

5.2 Thesis Contributions . 107

5.3 Future Work . 109

A DSP FIR Filter Example 110

B User Defined Configuration File 111

B.1 autotuner config.json . 111

B.2 run.sh . 113

C Post-Mapped and Post-Fitted CHStone Results 116

D Verilog Code for FIR Filter 125

References 134

viii

List of Tables

2.1 Optimizing Interfaces to Components [1] . 22

2.2 Optimization Parameters for Autotuning System 32

2.3 Loop Unroll Ranges for a Shift Register Circuit 34

2.4 Loop Unroll Ranges for a Shift Register Circuit Implemented in an FIR Filter

Circuit . 35

2.5 Default Configuration Parameters and their Parameter Ranges 36

2.6 Original Code Versus Generated Code . 37

2.7 Using the Blacklist Option . 38

3.1 OpenTuner Built-In Search Techniques . 42

3.2 Impact on the Search Space . 46

3.3 Optimization Strategies and Associated Weights 52

4.1 Memory Optimizations for Local Variables Using Mapped Resources 57

4.2 Memory Optimizations for Local Variables Using Fitted Resources 58

4.3 Results of the Individual Impact of a Memory Optimization Normalized to

the hls singlepump Solution for the data Variable 59

4.4 Loop Unrolling Examples . 60

ix

4.5 Results of the Individual Impact of Loop Unrolling 60

4.6 Loop Coalescing Examples . 61

4.7 List of CHStone Applications and Their Functions 62

4.8 Modifications Made to Blowfish . 65

4.9 Initial CHStone Application Results with Estimated Resources 67

4.10 Initial CHStone Application Results with Post-Mapped Resources for the Cy-

clone V FPGA Family . 68

4.11 Initial CHStone Application Results with Post-Fitted Resources for the Cy-

clone V FPGA Family . 69

4.12 Initial FIR Filter Results . 69

4.13 Autotuner Configurations: Weights and Target Penalty Factor 70

4.14 Search Space Size of Each Test Program . 72

4.15 Initial Time to Compile (Without Injected Optimizations) 72

4.16 Repeated Tests with Different Seeds . 75

4.17 Same-Seed Results for mips . 76

4.18 Same-Seed Results for mips . 78

4.19 Relative Improvement Based on Estimated Resources 83

4.20 Relative Improvement Based on Post-Mapped Resources 84

4.21 Relative Improvement Based on Post-Fitted Resources 85

4.22 Initial CHStone Application Results Versus Best WNS Results 89

4.23 Initial CHStone Application Results Versus Best-In-Category Results 89

4.24 Modelsim Signals Generated By the Intel HLS Compiler 95

x

4.25 Summary of FIR Filter Synthesis Results . 99

4.26 Summary of mips with DSP Block Targets Specified, Same Seed Configura-

tion, Varying Penalty Factor . 101

xi

List of Figures

1.1 Internals of an FPGA [2] . 1

1.2 LegUp Design Flow . 7

1.3 Typical Design Flow When Using Vivado HLS [3]. 8

1.4 Typical Design Flow When Using the Intel HLS Compiler [4]. 10

1.5 Process Flow for Using OpenTuner . 15

2.1 Pipelined Loop with Three Stages and Four Iterations [5] 29

3.1 Overview of the Major Components in the OpenTuner Framework [6] 41

3.2 OpenTuner’s Exploration Phase and Exploitation Phase [7] 43

3.3 OpenTuner’s Hierarchy of Included Parameters [6]. 44

3.4 Intel HLS Compilation Stages . 48

3.5 Cyclone V Adaptive Logic Module (ALM) [8] 50

3.6 Design Flow When Performing a Full Quartus Compilation From Command

Line or Tcl Script [9] . 50

4.1 Same Seed Comparison of Tool Levels - mips 77

4.2 WNS Estimated Balanced Results . 80

xii

4.3 WNS Estimated Area Results . 81

4.4 WNS Estimated Performance Results . 82

4.5 CHStone Estimated Resources - ALUTs . 86

4.6 CHStone Estimated Resources for adpcm . 88

4.7 CHStone Post-Fitted Resources for mips . 90

4.8 FIR Filter Estimated Results . 92

4.9 FIR Filter Estimated vs Post-Fitted Results 93

4.10 FIR Filter Estimated vs Post-Fitted Results 94

4.11 FIR Filter Verilog HDL Results . 96

4.12 Intel HLS Initial Result - No Optimization Specified 96

4.13 Intel HLS Initial Result - Fully Unrolled . 97

4.14 Intel HLS Initial Result - Partially Unrolled 97

4.15 Mips with a Target of 3 DSP Blocks and Varying Penalty Factors 102

C.1 WNS Estimated Balanced Results . 116

C.2 WNS Estimated Area Results . 117

C.3 WNS Estimated Performance Results . 118

C.4 WNS Post-Mapped Balanced Results . 119

C.5 WNS Post-Mapped Area Results . 120

C.6 WNS Post-Mapped Performance Results . 121

C.7 WNS Post-Fitted Balanced Results . 122

C.8 WNS Post-Fitted Area Results . 123

xiii

C.9 WNS Post-Fitted Performance Results . 124

xiv

List of Symbols & Abbreviations

AC Algorithmic C

ALM Adaptive Logic Module

ALUT Adaptive Lookup Table

ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuit

AST Abstract Syntax Tree

DPI Direct Programming Interface

DSP Digital Signal Processing

FF Flip-Flop

FIFO First In First Out

FIR Finite Impulse Response

Fmax Maximum Operating Frequency

FPGA Field Programmable Gate Array

GCC GNU Compiler Collection

GDB GNU Project Debugger

HDL Hardware Descriptive Language

HLS High-Level Synthesis

IP Intellectual Property

LE Logic Element

LLVM Low Level Virtual Machine

PLY Python Lex-Yacc

RAM Random-Access Memory

ROM Read-Only Memory

RTL Register Transfer Level

Tcl Tool Command Language

VHDL VHSIC Hardware Description Language

WNS Weighted Normalized Sum

WNV Weighted Normalized Value

xv

xvi

1. Introduction

1.1 FPGAs

An FPGA (Field Programmable Gate Array) is a device used to produce a digital cir-

cuit that is configurable and programmable by a customer or designer. FPGAs can be used

in similar places as other controller based circuits including microprocessors and microcon-

trollers, but can also be used to implement basic digital logic designs. To use an FPGA, the

designer would typically write a program using a hardware descriptive language (HDL) in

which the language translates directly to the hardware inside of the device.

Configurable
Logic
Block

Logic Block

Configurable
Logic
Block

I/O Block

Switch
Matrix

Configurable
Logic
Block

Configurable
Logic
Block

Configurable
Logic
Block

I/O Block

Switch
Matrix

Configurable
Logic
Block

Switch
Matrix

Configurable
Logic
Block

Configurable
Logic
Block

Switch
Matrix

Configurable
Logic
Block

I/O Block I/O Block

I/O

I/O

I/O

I/O

Figure 1.1: Internals of an FPGA [2]

An FPGA consists of three types of con-

figurable elements: perimeter input/output

blocks, a core array of configurable logic

blocks, and the resources for interconnec-

tion of these blocks. Each configurable logic

block can be composed of Flip-Flops (FFs),

Look-up Tables (LUTs), blocks of RAM,

and other application specific logic elements

that vary by manufacturer and FPGA fam-

ily. Each FPGA has a fixed number of con-

figurable elements that can be used in a de-

sign, and some designs will tend to use more

of one resource than another. For example,

circuits that perform a lot of multiplications

will benefit greatly from dedicated digital

1

signal processing (DSP) blocks that exist in many FPGAs. However, when all of the DSP

blocks have been used, any additional DSP operations must be performed from generic

lookup tables which can be very inefficient for large designs.

When using an FPGA to implement a digital circuit, the designer writes a program using

a hardware descriptive language that instructs a compiler on how to connect hardware to

perform the required functional task. The compiler will perform a series of analysis and

synthesis steps to produce a hardware structure that takes into consideration the particular

FPGA that is being targeted. It will optimize, re-configure the interconnects and wire the

logic blocks together to generate a functional hardware equivalent of the HDL code. Since

there are very few limitations on the way an FPGA can be configured, multiple individual

circuits and designs can be configured on the same device. This allows the FPGA to handle

application specific tasks and parallel data processing very well.

FPGAs are not the only option for implementing digital logic circuits. Two other common

alternatives are microprocessors and ASICs. Microprocessors differ from FPGAs in that they

are limited to processing data using preconstructed hardware that is not reconfigurable and

use a fixed instruction set. This forces microprocessors to perform operations sequentially

and limits the extent to which operations can be performed in parallel. FPGAs are much

more flexible in design and can support a high degree of parallelism, enabling high data rate

applications. One can even implement microprocessors inside of the FPGA (among other

designs and custom instructions).

ASICs (application specific integrated circuits) are similar to FPGAs in that a hardware

descriptive language is used to organize the hardware, but ASICs are not reprogrammable -

the hardware is permanently etched into the silicon. For example, a computer’s CPU is an

ASIC. ASICs are very expensive to initially create, but in mass quantities they become the

economical choice. ASICs also provide higher performance than FPGAs because the hard-

ware can be etched into the silicon in an optimal configuration for the specific application,

including the exact required resources for the design and creating shorter routing intercon-

nects. ASICs offer the best performance and power efficiency, but are very unforgiving for

future updates and time to market.

2

FPGAs were introduced in the 1980’s and have become increasingly popular ever since

due largely to their flexibility and reconfigurability. FPGAs provided industry with reduced

upfront costs for lower quantity production runs than ASIC designs, and this gap continues

to widen over time [10]. FPGAs have proven themselves to provide a great balance in

terms of performance, time to market, cost, and reliability. However, FPGAs also have

some challenges. First, the use of an FPGA requires knowledge of a hardware descriptive

language such as VHDL or Verilog programming languages. These HDL languages are not

as simple to use or learn as procedural languages (such as C/C++) and require knowledge

of digital system fundamentals. Furthermore, achieving an efficient and high performance

FPGA implementation requires detailed knowledge of the specific FPGA family so that the

available logic resources can be used in the most efficient way. Relatively few engineers and

computer scientists have this expertise, a fact which limits the market for FPGAs.

Designs have increased in size and complexity over time. As projects increase in size, so

has the average percentage of FPGA project time spent in verification. The 2018 Wilson

Research Group Functional Verification Study, commissioned by Mentor Graphics, shows an

increase in average percentage of FPGA project time spent in verification which indicates

an increase in verification complexity as designs grow. Similarly, the demand for verification

engineers outpace the demand for design engineers [11, 12]. FPGAs are difficult to verify

because of their parallel nature in design, and because of difficulty in testing timing con-

straints and considerations [13]. According to a study performed in 2018, only 16% of all

FPGA projects were able to achieve no bug escapes into production, and almost half of

those bugs are related to functional or logical problems. [12]. Procedural languages have

many debugging tools such as GDB or Valgrind to verify functionality of the code, and

timing considerations are rarely an issue in procedural languages. FPGAs do not have any

source level debugging tools and often require the use of simulators, logic analyzers, or im-

plementation tests to verify the designs. This limits the audience that FPGAs can be used

by and as designs get larger, so do their costs to verify.

3

1.2 HLS

In an attempt to enable a larger audience to use FPGAs and reduce the time to verify

FPGA designs, some companies have developed High Level Synthesis (HLS) compilers to

assist in the development with FPGAs. HLS compilers take a more common procedural

language such as C or C++, and convert the code to a hardware descriptive language or

Register Transfer Level (RTL) solution that can be programmed directly to the FPGA.

There are several HLS tools on the market. Some of these tools are commercially available,

while others are open-source. The first generation of HLS tools originated in the 1990’s,

but these tools were not widely adopted because of limitations in their ability to generate

RTL translations that adequately met the needs of the design from their input sources [14].

The complexity of the synthesis transformations increases greatly with the design size which

puts more emphasis on the HLS tool and general coding style of the designer [15]. In more

recent years, the popularity of using HLS tools has increased. Research is being performed

in many different areas of using the tools and an overall improvement in synthesized results

has occurred [16–18].

Recent major investments by FPGA companies have spawned two popular commercial

HLS tools: Intel HLS Compiler (2017) and Vivado HLS (2012). IntelFPGA (formerly Altera)

and Xilinx have a commanding share of the FPGA market, and have each developed their

own HLS compiler which target their FPGAs [19]. Another HLS compiler which has gained

some traction since its inception in 2011 is LegUp. LegUp was developed at the University

of Toronto and has become a popular choice for research because of its academic and open-

source nature [20].

This research focuses on the Intel HLS Compiler for two main reasons. First, it is one of

the most recent HLS tools to reach the market, and it has not yet been explored to a large

extent in research. Second, its architecture lends itself well to the design of FPGA-based

accelerator modules, which are expected to be a major application for FPGAs in the future.

The following sections discuss the Intel HLS Compiler and the competing HLS tools in more

detail.

4

1.2.1 Intel HLS Compiler

The Intel HLS Compiler takes untimed C/C++ as input and generates production quality

register transfer level (RTL) code that is optimized for Intel FPGAs. The Intel HLS Compiler

aims to benefit the user by allowing for a higher level of abstraction as well as improved

verification times. With this tool, conventional C/C++ development can be used to both

develop and verify designs targeted for FPGA devices.

Intel HLS synthesizes a C/C++ function into an RTL design in the form of an Intellectual

Property (IP) file. These generated IP files can be incorporated into Platform Designer or

Quartus Prime, Intel’s FPGA design software. A C/C++ source file is created by the

designer which implements functions that can be marked as a component. The component

is the designation to the Intel HLS Compiler that the function and its contents are to be

converted into an RTL solution. The component directive has no impact when testing the

code for functionality using a traditional C/C++ compiler, and a new compiler provided

by Intel (i++) can be used to generate RTL code from the C/C++ code in the marked

function. The designer can choose which functions are to be marked as a component in their

design, and only the components will be synthesized into RTL. This allows the designer

to also code a procedural based testbench in their C/C++ source code to allow for easier

testing. Intel has also added the capability to perform functional testing through interfacing

with their FPGA simulator: ModelSim - Intel FPGA Edition. This provides the advantage

of allowing for more realistic FPGA functional verification to be performed in a procedural

source file. The Intel HLS Compiler uses System Verilog Direct Programming Interface

(DPI) to allow the C/C++ code in the hardware executable to interface with System Verilog

via the Modelsim simulator. Then, an inter-process communication library is used to pass

testbench input data to the RTL simulator and return the data back to the x86 testbench.

Any call to the component function in the C program will automatically invoke Modelsim

and communicate via DPI [5]. This allows for functional testing of a component as an

individual function, but also as components in a larger FPGA design in which there can be

multiple components operating in flight at the same time (procedural languages normally

cannot handle parallel function calls). Each compile using i++ will (by default) generate a

5

hardware executable that can be used to test functionality, a Modelsim testbench that uses

simulation to further verify functionality and timing requirements, and a Quartus project

for actual FPGA implementation for each individual marked component.

As previously discussed, there are many ways to implement a given hardware function

inside an FPGA. FPGA developers make many design decisions when writing HDL in order

to tailor the implementation to the user’s cost and performance requirements. In an HLS

design flow, the compiler generates RTL directly from C/C++. The conversion of a C/C++

function into an RTL implementation is only partially optimized by default. The compiler

will make many assumptions in the process and will automatically perform optimizations

based on those assumptions. In most cases, the C/C++ code will need to be adjusted

by placing Intel HLS Compiler specific directives in the code to help direct the compiler’s

translation process. After several (manual) iterations of optimization involving changes to

the C code and compiler optimizations, the goal is for the result to be similar in cost and

performance to a solution written in HDL. Intel’s target is to be within 10-15% resource

usage in comparison to hand-written HDL design. [21].

1.2.2 Other HLS Tools

Although the main focus of this research is the Intel HLS Compiler, this section provides

background information on other HLS tools available on the market. According to a survey

performed in 2016, there are over 17 active HLS tools in use [22]. Each of these tools differ

by input source file language, techniques used, FPGAs supported, and domains that they

are targeting. For example, CoDeveloper is specifically designed for the image streaming

domain. Others, such as VivadoHLS and LegUp are designed for all domains. Most of

these tools use a variation of C as an input language to the tool (including C++, C#,

and SystemC) and output a hardware descriptive language equivalent or RTL solution. For

comparison, a popular academic tool and a popular commercial tool will be discussed: LegUp

and VivadoHLS.

LegUp

6

C Program
Verification: GCC

Intermediate
Representation

Byte Code

Verilog
Verification:
Modelsim

Bit Stream
Validation:

Quartus/Modelsim

LLVM

Legup Backend Pass

Quartus

Figure 1.2: LegUp Design Flow

LegUp is an open-source high-level syn-

thesis research infrastructure being actively

developed at the University of Toronto since

early 2010. LegUp can translate a C pro-

gram into verilog which can then be veri-

fied using a simulator. Similar to Intel HLS,

LegUp requires Modelsim and Quartus to

synthesize the verilog for an FPGA. LegUp

can compile an entire C program to hard-

ware, or it can compile user designated func-

tions to hardware while the remaining pro-

gram segments are executed in software on

the soft TigerMIPS processor or ARM processor such as the one available on the DE1-SoC

board [23].

LegUp uses Low Level Virtual Machine (LLVM) to translate the source code to byte

code which is an intermediate representation of the source file. LLVM offers more flexibility

than GCC because it is modular, easily allows for additional compiler passes, and allows for

intermediate representation of the file after each pass [23], [24]. Optimizations for LegUp

are performed during the LLVM intermediate representations of each compiler pass. Unlike

Intel HLS, insertions into the source files are not usually performed. LegUp also outputs

a user-readable verilog file, as opposed to the Intel HLS Compiler’s IP file which keeps the

actual verilog implementation abstracted from the designer [23].

LegUp also has some limitations on standard C programming: it does not support recur-

sive functions or dynamic memory. Functions, arrays, global variables, floating arithmetic,

and pointers are all supported.

Vivado HLS

Vivado is also based upon LLVM compilations. Similar to LegUp, Vivado originated in

2011 and includes a full design environment. Vivado supports more languages, allowing for

7

Synthesis

Functional Verification
Using GCC/G++

Simulation

C
Design

RTL
Design

C
Testbench

Implementation

C
Wrapper

Vivado Design Suite
IP Packager

Architectural
Verification

System Integration

Figure 1.3: Typical Design Flow When Using Vivado HLS [3].

C/C++ and System C as inputs, and outputs VHDL, Verilog, and SystemC. Optimizations

are performed during the LLVM compilation process, which is similar to LegUp [3].

Optimizations in Vivado are performed through specific directives used in the design

environment. Optimizations can also be specified through TCL scripts from a command

line. Vivado only supports Xilinx FPGAs. Similar to Intel HLS, Vivado outputs IP files

which are designed to be incorporated into other solutions or to be programmed to a Xilinx

FPGA directly [25].

1.2.3 Design Flow Using Intel HLS

Design using an HLS compiler begins with developing a C/C++ testbench and compo-

nent. The component in this case is simply a function which implements the algorithm to be

synthesized, which is usually a small component or portion of a larger design. The algorithm

in the component is developed and verified until the C/C++ code is functionally correct.

At this stage, the component can be debugged using standard C debugging tools.

8

The second stage of the design process involves optimizing the design for specific FPGA

targets and features. This step generates RTL code for the component and gives estimates

for resource usage. The designer at this stage can do initial optimizations based on resource

usage from reports generated by the Intel HLS Compiler. By manually using code restruc-

turing, compiler directives, and Intel HLS Compiler specific constructs, a semi-optimized

design can be achieved. However, due to the extra layer of abstraction (the addition of

procedural code) it can be difficult to know the impact of a change from the procedural

language (C/C++) to the final synthesized FPGA design. This causes the designer to re-

peat the optimization step several times until a satisfactory result is achieved. Furthermore,

this optimization requires detailed FPGA expertise, which is contrary to the goal of making

FPGAs more accessible to a wider audience.

After optimization, verification of the design using simulation-based tools (Modelsim)

allows for additional verification of the design functionality [4]. Following this, full synthesis

of the design in Quartus Prime is used to get accurate quality of result metrics such as Fmax

and resource usage results. Further iterations of updates and optimization occur until the

designer has found a design which meets all of the requirements of the design specification.

Finally, the IP file for the component can be extracted and used with Intel Quartus Prime

or Platform Designer for larger system integration.

The procedure can be summarized as follows:

1. Create C/C++ code and testbench.

2. Emulate, test, and debug C/C++ code using conventional C/C++ tools.

3. After functional correctness is verified, mark functions to be synthesized as component

and recompile using i++.

4. Review generated reports from co-simulation and accompanying Modelsim files. These

reports give indications for what/where to optimize the C/C++ code, and the Model-

sim files are used to verify HLS constructs, HLS attributes, resets and reset conditions.

5. Update the C/C++ code to improve flow or use special compiler directives to optimize

the component functions.

9

C Design C Testbench

Functional Verification Using GCC/G++

Compile Design Using Intel HLS
Compiler and (Optional Simulator)

i++ -march="Cyclone V"

Refine
Algorithm

RTL
IP File

Optimize
For FPGA

Compile Design Using Quartus Prime
For Quality of Results Metrics

Figure 1.4: Typical Design Flow When Using the Intel HLS Compiler [4].

6. Re-iterate until satisfied with performance and resource usage (repeat for each compo-

nent).

7. Compile IP in Quartus to generate more accurate resource usage and synthesis report,

as well as generate an Fmax for the design.

8. Verify the solution at the RTL level for reset conditions and timing violations.

9. Integrate the IP file into an HDL project or FPGA system.

1.2.4 Intel HLS Compiler Advantages Over Traditional HDL De-

velopment

HLS tools offer many advantages to developers, mostly in the realm of improved devel-

opment times and ease of use [26]. Some of these advantages include:

Code Development: In most situations, the sequential and easy to follow flow of C/C++

code leads to faster development and verification of algorithms. The ability to imple-

ment different algorithms quickly allows the developer to determine which will have

the best performance measurements and metrics without the need for a lengthy HDL

coding cycle [11].

10

Debugging: Traditional debugging tools such as print statements, GDB, or Valgrind offer

quick line-by-line troubleshooting which is currently unparalleled in the HDL develop-

ment environments. Problems such as memory leaks, invalid pointers, uninitialized val-

ues, and memory allocations are easier to troubleshoot using traditional methods [12].

Less RTL Knowledge Needed: Sequential programming is easier to learn and deploy.

Use of HDL tools requires a knowledgeable background in HDL, synthesis, and RTL

circuits.

Automation: The Intel HLS Compiler provides scripts that automatically generate Mod-

elsim testbenches to verify RTL circuits generated.

Floating Point Arithmetic: Floating point arithmetic has no order/combination limita-

tions because it is not architecture specific when using the Intel HLS Compiler [1].

Development Phases: Troubleshooting an HDL design is difficult because issues can be

related to functionality, the interface, or the timing. Development using an HLS tool

allows for the segregation of each of these items, which reduces the debugging scope

and simplifies the debugging process.

1.2.5 Challenges of Using the Intel HLS Compiler

HLS compilers, including Intel’s HLS Compiler, have several challenges for the designer

to overcome. Some of these challenges include:

Result Efficiency: The compiler usually generates less efficient results in terms of perfor-

mance and resources used; a typical goal is to be within 10-15% of a hand-coded HDL

solution if proper optimization techniques are followed [21].

Iterations: Most designs using the Intel HLS Compiler will require a multi-iterative proce-

dure which can reduce some of the benefit of using an HLS tool.

Optimization Techniques: Although the developer will require less knowledge of RTL

synthesis, some knowledge of hardware and Intel HLS Compiler specific optimization

techniques is required to get to target performance and resource usage.

11

Timing Violations: Functional equivalent circuits can be developed using the Intel HLS

Compiler, but some issues can only be solved using HDL simulation tools such as

Modelsim. For example, reset conditions and timing violations are not observed in

C/C++ development.

Coding Limitations: Although C/C++ is used as the input into the Intel HLS Compiler,

some limitations on coding style and standard coding constructs exist. For example,

loops cannot be unrolled if their count is dynamic. Pointer arithmetic is also not

supported [1].

Multiple Loops: A current limitation of the Intel HLS Compiler is regarding loops that

are coded at the same level. Multiple loops cannot be ran in parallel, although they

can still be pipelined. To achieve a more efficient design, the developer would have to

place each loop body in their own component. This further restricts coding style.

Abstraction: Intel HLS provides a layer of abstraction from the RTL synthesis. Although

abstraction can be a good for improving modularity of code, it can also make it difficult

for the developer to meet specific targets and goals of the finished design. Higher levels

of abstraction make it more difficult to evaluate the effects of changes and code style,

particularly if a resource usage target or performance metric is to be met [27].

Manual Intervention: Many optimizations require the user to manually adjust or correct

the C/C++ code. This adjustment can become cumbersome and time consuming, and

generally requires FPGA specific expertise. For example, data type sizing, memory

space allocations, establishing dependencies, and trade-offs between performance and

resources used.

Memory: Intel HLS has many limitations and complications related to memory. When

merging data, intermediate storage is needed. Manual specification of concurrent in-

vocations is needed to take advantage of sharing memory. Intel HLS does not support

dynamic memory allocation, and only a single dimension of a multidimensional array

is used to infer banking configurations as opposed to analyzing each dimension for

optimal configuration [1].

12

Resource Usage Trade-off: Intel’s tools have predetermined default optimizations that

will attempt to fit designs in accordance to their preference. The designer may, on the

other hand, prefer different allocations. For example, a designer may prefer save some

DSP blocks by placing some of the design in LUTs instead. This preference must be

manually specified, and the trade-off of DSP blocks to LUTs will be unknown until

a synthesis is performed. Furthermore, manual repetitive iterations will also need to

be performed until the correct balance is achieved. This process can be very time

consuming, especially in larger designs.

Inability to Specify Design Targets: The Intel HLS Compiler, when used in conjunc-

tion with Quartus, only allows for three different optimization schemes: area, perfor-

mance, and balanced. Usually there is a performance decrease when less resources

are used, and vice versa. These schemes will bias the solution to either use less re-

sources, perform better, or attempt to balance this trade-off. However, it does not take

into consideration any specific requirements that should be met in a particular design,

and does not offer any variation in the trade-off. In some cases the optimal solution

from the designer’s perspective may never be achieved because of the rigidity of the

optimization schemes.

With all of the challenges of using an HLS tool, it is apparent that more can be done

to improve the usability and performance of these tools. The central idea of this research

is to improve these tools by automating some of the manual portions of the optimization

procedure, and introducing a method of allowing the designer to explore different trade-offs

of resource usage automatically. To automate the Intel HLS Compiler and the optimization

process, several additional tools will be introduced: OpenTuner, PyCParser and Docker.

1.3 Intel HLS Compiler Automation

1.3.1 Autotuning Using OpenTuner

HLS compilers started making an appearance in the 1990s but did not gain any real

traction until the early 2000s. This is due to a number of reasons including: targeting the

13

wrong audience, lack of support, and hard to validate results [14]. In more recent years,

popularity of these compilers has increased but they still struggle with the requirement of

manual feedback from the programmer to create optimal and usable solutions which makes

the process manual, heavily interactive, and cumbersome. In an attempt to reduce the

manual portion of the iterative process, it is hoped that a software solution can be used to

automate the exploration of the design space and help achieve target goals in the design.

In general, the process of adjusting program parameters and running the program after

each adjustment is known as autotuning. The goal is to improve the program’s outcome

by finding a desirable set of configuration parameters. This research aims to apply the

autotuning concept to HLS compilation. Several software packages, known as autotuners,

exist to facilitate this type of design space exploration across various domains. OpenTuner

is the first to introduce a general framework to describe complex search spaces for program

autotuning [6].

This research attempts to use OpenTuner to autotune the Intel HLS Compiler to assist

with the generation of different FPGA configurations that meet targets specified by the user.

For example, the user should be able to request the cheapest possible implementation of a

module that can run at a clock speed of at least 200Mhz. It is believed that OpenTuner can

be modified to assist in this search, which would currently require a great deal of manual in-

tervention. OpenTuner also has the advantages of utilizing an ensemble of search techniques

which work together to find an optimal solution, and a database of results is provided for

post processing by the designer. Autotuning requires performing multiple compilations and

can take a significant amount of time to perform, especially when autotuning HLS tools that

are themselves slow to run. This drawback, however, is offset by the automated capabilities

that allow the autotuner to run over night or when computers are not normally being used

and reducing manual developer effort.

How OpenTuner Works

OpenTuner provides the framework for autotuning. It has all of the components needed

to perform autotuning without integration of domain specific requirements [6]. In the current

14

OpenTuner framework there are three major components that are provided: a configuration

manipulator that is responsible for determining configurations (sets of compilation parame-

ters) to run from a search space, a measurement interface that is used to quantify the results

of a configuration, and a database.

Configuration
Parameters and User

Preferences

OpenTuner

New Configuration:
Intel HLS Compiler

Command (i++)

Intel HLS
Compiler

Quartus Prime

Results: Resource
Usage and

Performance Metrics

Figure 1.5: Process Flow for Us-

ing OpenTuner

To use OpenTuner, the user first defines the search

space by creating a configuration manipulator. This ma-

nipulator contains a user specified list of parameters that

will be controlled by the manipulator. In the scope of

this research, the configuration parameters are automat-

ically generated to be passed to the Intel HLS Compiler.

The parameters are Intel HLS Compiler specific directives

that will change the way the compiler synthesizes the RTL

solution. These parameters can be either primitive (int,

float, etc.) or complex (bool, enum, etc.). Each parame-

ter used in the configuration could have an impact on the

synthesized solution of the compiler, providing a new syn-

thesized solution that yields different resources used and

performance metrics (for better or for worse).

The user can also specify which search techniques are

to be used; these techniques utilize the results from the

database of previous runs to determine what the next con-

figuration should be. OpenTuner supports the use of mul-

tiple search techniques, and has many techniques already

built into the framework. It also supports the addition

of user defined search techniques. Once a configuration

has ran, the results are passed to a measurement interface where the results are compared

to user-defined objectives. These objectives set the premise of how good a configuration is.

OpenTuner supports multiple objectives, and several variants on each objective; a typical use

case is an object which minimizes time; however, compilation time is not a useful metric for

15

the present application. To make use of OpenTuner for HLS optimization, the OpenTuner

codebase must be extended to allow FPGA resource usage targets to be specified.

Each run of a configuration will yield a result based upon a user-specified objective.

In the context of this research a calculated value that reflects the resource utilization and

performance measurements is defined. The autotuner framework then attempts to adjust

configuration parameters in order to minimize the target metric. As more results populate

the database, the autotuner is able to deduce which techniques are typically yielding better

results and will bias itself to using the best-performing search technique [6]. The end result

of the autotuner will be a new C source file with automatically injected parameters and a

list of values for those parameters that yield a particular synthesized RTL solution.

1.3.2 PyCParser: Parsing C Code and Injecting Compiler Direc-

tives

The Intel HLS Compiler currently supports both C and C++ as inputs to the translator,

but this research focuses on C. The reason is that C is currently the dominant choice in

embedded system design. By focusing on C, this research may enable a vast library of

legacy C code to be ported to FPGAs. C++ is gaining popularity in DSP systems and

multicore embedded systems, but only proves efficient when code space is abundant [28].

In the particular use case of autotuning C code for the Intel HLS Compiler, the C code

needs to be parsed and conditioned to accept tuning parameters specific to the needs of

the Intel HLS Compiler. In this case, most optimization strategies involve user specified

compiler directives, Intel HLS Compiler specific constructs, or in-line code directives using

pragmas [4]. A portion of this research includes assisting the user by automatically detecting

the portions of the C code which are candidates for optimization, then inserting placeholders

within the C code for the auto-generated configuration parameters. In order to automatically

add the placeholders, this research uses a C parsing tool called PyCParser to interpret the C

file. PyCParser is a complete parser of the C language, written in pure Python using Python

Lex-Yacc (PLY) parsing library. It parses C code into an Abstract Syntax Tree (AST) and

can serve as a front-end for C compilers or analysis tools [29].

16

1.3.3 Docker

This research includes the use of several different tools (OpenTuner, Intel HLS Compiler,

Quartus Prime, PyCParser) that have all been designed to be used in different working

environments. In order to get everything to run properly on one system, a complex setup

of virtual environments and specific library versions is required. To assist in replicating this

particular environment, a program called Docker is used. Docker is a tool which creates

a specific environment to run applications in objects called containers. Containers allow a

developer to package up an application with all of its requirements (such as specific library

versions and dependencies) and deploy them as a one-touch setup. This is particularly

useful for this application because of the specific working environment needed, as well as

simplifying the process of adjusting autotuner runs and automating tests. Docker provides

a performance advantage over virtual machines because it allows for the full utilization of a

computer’s available resources [30]; a feature that is needed because of the resource heavy

utilization of Quartus and the Intel HLS Compiler.

1.4 Research Objective

The primary objective of this research is to investigate whether the translation of HLS to

RTL provided by the Intel HLS Compiler can be improved without requiring specific FPGA

expertise. Improvements in the translation can be interpreted as either better performance,

more efficient translations which lead to reduced resources needed, or translations that are

tailored to specific design requirements (such as resource usage limits for a module) that

would normally be ignored in the standard translation process provided by the Intel HLS

Compiler.

The HLS optimizations under consideration target several different aspects of FPGA de-

sign including loop manipulation, memory interfacing, memory optimization, data typing

and sizing, and Intel’s recommended good coding practices for use with the Intel HLS Com-

piler. An investigation into which of these optimizations can be performed automatically

without user intervention and whether these automatic optimizations have an impact on

17

functional results will be performed. An investigation into the types of designs that are best

tailored to these optimization techniques, as well as further investigation into the impact of

specifying target requirements for a practical design environment will occur.

In order to achieve these objectives, a system which can automate the Intel HLS Compiler

optimization process will be constructed. This will involve the following major steps:

• Provide an interface for the designer to specify design requirements, targets, and pref-

erences

• Apply PyCParser to inject placeholders around specific coding constructs in the given

C source file based upon the preferences provided by the designer and pass a list of

tuneable parameters and their associated ranges to OpenTuner

• Extend OpenTuner to dynamically create a search space based upon the given param-

eters and ranges

• Use OpenTuner to construct an Intel HLS Compiler command that passes a configu-

ration’s list of parameters to the HLS tool for the Intel HLS Compiler to run

• Develop a cost function based upon the results of the Intel HLS Compiler run that

represents how good the result is in comparison to an initial (untuned) result and pass

this value to the objective metric within OpenTuner

• Collect data over a variety of programming domains for analysis to determine if the

autotuner is finding configurations that show improvements over the initial untuned

result, and determine which designs the autotuner is conducive to provide better (or

worse) results

• Introduce a new cost function that includes specific design targets based upon a design’s

requirements and see if the autotuner is able to find synthesized solutions that are

optimized to a scheme but also meet the specified design targets

18

1.5 Thesis Outline

This thesis is divided up into five chapters:

Chapter 1: Intel HLS Compiler and the OpenTuner Framework

Chapter 2: Autotuning Parameters

Chapter 3: OpenTuner Configuration and Execution

Chapter 4: Autotuning Results

Chapter 5: Thesis Summary and Conclusions

Chapter 1 provides details into the background of the environment and domain being

autotuned. This chapter discusses what the Intel HLS Compiler is, why there is a need

for such a tool, and some of the challenges that are included with the tool. To create an

environment to autotune the Intel HLS Compiler, several different components work together

to provide pre-conditioning of the input program, the OpenTuner Framework for generating

different configurations and runs for the instance, and containerizing of the environment

for easier deployment and testing. Each of these components are introduced with relevant

background information.

Chapter 2 focuses on a more in-depth view of the autotuning environment, as well as a

detailed explanation of what the Intel HLS Compiler does and how this tool can be optimized

to generate a final optimized RTL solution. Each of the optional optimization parameters

are explained and a discussion of which parameters chosen to be autotuned by the Open-

Tuner Framework ensues. Our desire to analyze the effects of changing each of these chosen

parameters leads to the development and design of a full autotuning environment that yields

a more flexible and usable translation of the input program to the Intel HLS Compiler.

Chapter 3 details what the results of each autotuner run produces, as well as how the

OpenTuner Framework chooses subsequent configurations based on previous results. Several

parameters and their impact on the final RTL design are explored. Configuration options to

19

the environment are introduced to give the designer more flexibility in the direction of the

autotuner, and the effects of the parameters are discussed from a practical design perspective.

Chapter 4 discusses the results of autotuning several applications across different domains

such as those presented in the CHStone benchmarking applications and in that of DSP

filters. This chapter also elaborates more on the practical design configuration options, and

introduces the concept of targets based on requirement specifications from the designer.

Further investigation shows the effect on an autotuning run when targets are added, and

how the final RTL result can benefit from them.

Chapter 5 summarizes the thesis, covers the research done, and highlights the results.

Following the summary is a list of the contributions of the thesis. Some suggestions for

future work conclude the document.

20

2. Autotuning Parameters

2.1 Introduction

As mentioned in the previous chapter, there are many optimization and configuration

options provided by the Intel HLS Compiler which can control how a C algorithm is converted

into RTL for implementation on an FPGA. The focus of this research is on finding ways to

automate the design space exploration process through autotuning. This chapter introduces

many of the optimization techniques available in the Intel HLS Compiler, and evaluates

which of these are suitable for inclusion in the autotuning scheme. The process of parsing

the C code to detect potentially suitable optimizations and inject the necessary placeholders

for autotuning is also discussed.

2.2 Intel HLS Optimization Techniques

Intel provides ample documentation on optimization strategies and areas for their Intel

HLS Compiler; manual optimizations to the C source files are needed in most situations to

reach their target goal of 10-15% higher resource usage in comparison to a hand-coded HDL

solution. These optimizations are broken up into the following categories: HLS interfaces,

data types, local memory optimizations, loop optimizations, and good coding practice related

to optimizing the Intel HLS Compiler [1].

2.2.1 HLS Interfaces

HLS components are essentially just ordinary C/C++ functions which can be called in a

standard C/C++ fashion. When passing information into or out of a component, standard

pointer notation can be used. This can be greatly optimized by changing how the information

21

is passed. There are two main types of interfaces supported by the Intel HLS Compiler:

avalon streaming interfaces and avalon memory mapped interfaces. Streaming interfaces

provide point-to-point unidirectional data flow that is synchronous to a clock signal. Memory

mapped interfaces provide a master/slave configuration in which communication is done by

an interconnect. All pointer interfaces become memory mapped interfaces and default to 64

bit addresses unless otherwise specified. For example:

Default Interface Code Optimized Interface Code

component void vector add(int∗ a,

int∗ b,

int∗ c,

int N)

{

#pragma unroll 8

for (int i = 0; i < N; ++i) {

c[i] = a[i] + b[i];

}

}

component void vector add(

ihc :: mm master<int, ihc::aspace<1>,

ihc :: dwidth<8∗8∗sizeof(int)>,

ihc :: align<8∗sizeof(int)> >& a,

ihc :: mm master<int, ihc::aspace<2>,

ihc :: dwidth<8∗8∗sizeof(int)>,

ihc :: align<8∗sizeof(int)> >& b,

ihc :: mm master<int, ihc::aspace<3>,

ihc :: dwidth<8∗8∗sizeof(int)>,

ihc :: align<8∗sizeof(int)> >& c,

int N)

{

#pragma unroll 8

for (int i = 0; i < N; ++i) {

c[i] = a[i] + b[i];

}

}

Table 2.1: Optimizing Interfaces to Components [1]

22

Table 2.1 includes default code that includes three pointer inputs to the component. By

default, all three pointers would be mapped to a single avalon memory mapped interface

with a 64-bit wide data bus, but this would cause stalling due to multiple accesses through

the same memory interface and extra digital logic to incorporate stallable arbitration logic to

schedule these accesses is required. To optimize this, three separate memory mapped inter-

faces could be used to prevent the memory stalling, and correct bit sizing for the interfaces

could be specified as shown in the optimized interface code.

2.2.2 Data Types

The data types used to represent variables in a C component can have a significant

impact on the FPGA RTL representation after HLS. While standard C data types are fully

supported, it is also possible to use the Algorithmic C (AC) data types that Mentor Graphics

provides under the Apache license [5]. Intel has developed optimized versions of the AC data

types to allow the Intel HLS Compiler to generate efficient hardware on Intel FPGAs. The

key advantages of using these data types over standard implementations are:

• Likely smaller resource consumption

• Custom bit widths for variables

• Support for larger than 64 bit types

• Improved handling for integer promotion

• Special API functions provided by Mentor Graphics may be used

Floating point arithmetic can also be optimized. By default, floating point numbers

must adhere to the floating point standard (IEEE 754) [31], but if a design is robust enough

to deal with small inaccuracies in floating point arithmetic, the floating point relaxed and

floating point conversion options can be passed to the Intel HLS Compiler. The floating

point conversion flag allows for intermediate rounding and conversion operations during

chained floating point operations when DSP blocks cannot be used, but the design would

23

no longer follow the (IEEE 754) standard. The floating point relaxed flag allows for the

compiler to generate shallower adder trees for sequential additions [32]. The floating point

relaxed option also allows the compiler to use hardened dot-product IPs when it detects a

pattern that would benefit from them. This is more efficient than traditional chaining of

multiply-adds.

Use of the AC data types does require manual insertion of the correct bit sizes, and

knowledge of what the appropriate size for a data type or variable is needed. Adjusting the

bit sizes creates a risk of breaking code functionality and therefore they should be used with

caution and additional verification needs to be performed after making adjustments.

2.2.3 Local Memory Optimizations

The Intel HLS Compiler will attempt to automatically configure and optimize declared

variables and arrays into local memory blocks in the FPGA. Most of the Intel FPGAs use

the M10K or M20K architecture for local memory which can be used for either RAM or

ROM applications. Although the compiler attempts to select appropriate memory settings

based on information available to it, there are several considerations related to local memory

optimizations:

• Local memory translation is dependent on the C data type used by the programmer.

• Local memory cannot be dynamically allocated. Architecture (including banking con-

fig, width, depth, and interconnect) is customized at compile time.

• Performance is dependent on the banking configuration and interconnect bus configu-

ration. The Intel HLS Compiler will automatically configure the memory banks and

the interconnects, but they can also be manually customized to improve performance.

• Memory is usually organized into 10Kb or 20Kb blocks of dedicated memory resource

based on the M10k or M20k structure available in the FPGA.

• Local memory blocks can support multiple concurrent accesses through a dual port

mode.

24

• Local memory can be combined to make larger sizes in both width and depth.

• Local memory can be forced into single or dual port mode. Each block is 20 bits wide

in dual port mode or 40 bits in single port mode.

• Local memory can be used to make shift registers

• Using FIFO buffers if available

• Local memory supports customizable read-during-write operations

When writing C code, attention should be paid to how many loads and stores are used

on a port. With no optimization, sharing ports can greatly reduce performance [4]. This

is because pipelines stall due to arbitration for concurrent accesses. The key to high local-

memory efficiency is stall-free memory accesses. In general, there are several ways to optimize

memory to achieve this goal. The compiler will automatically use replication and double

pumping, which are the two main forms of local memory optimization. The compiler will also

analyze access patterns on memory and will use coalescing, splitting, banking optimization

and port sharing to optimize the memory. The advantages of creating stall-free memory

include:

• Fixed and reduced latency

• Fewer resources are used

• Stall-free memory can be included in stall-free execution regions of a pipeline

• Simpler interconnects when no arbitration is needed

• Memory access can be scheduled more efficiently.

The Intel HLS Compiler employs several techniques to manipulate and improve memory

performance. These techniques include:

25

Double Pumping This technique doubles the effective number of ports in a memory by

using twice the clock frequency for operations. In consequence, some additional mul-

tiplexers are used to route data into and out of the memory block.

Replication Replication involves using multiple blocks to hold the same memory. This

is particularly useful for memory which will be read often. The major consequence

to this technique is stores need to go to both blocks. Replication is always done

automatically by the compiler and is transparent to the user. It usually results in

a simpler interconnect and has no negative impacts on Fmax. The only downside to

replication is the additional resource usage. Components in the Intel HLS Compiler are

infinite loops that never end. Each component can also have multiple invocations which

would require replication of memory as well. By default, the compiler will replicate

memory for each invocation, but the designer can tell the compiler the number of max

concurrent invocations using <hls max concurrency(N)>. The compiler will then only

replicate the necessary amount of memory needed, and will re-use memory for other

invocations.

Coalescing Arrays which are used in concurrent accesses can be merged into larger words,

depending on the data type sizes. This will reduce the number of accesses needed for

the operations.

Banking In the event that an array is not used with consecutive accesses, the compiler will

automatically separate memory into different areas to optimize access. For example, a

double array might be broken down into two single arrays to take advantage of banking.

An N-bank configuration can handle 4·N requests per clock as long as each request

address is on a different bank (assumes dual port, double pumping and no replication

are used). A requirement of banking (and coalescing) is that no potential out-of-bounds

index addressing can occur. To convince the compiler that no out-of-bounds condition

will occur, proper masking of index arguments must be used (for example, A[x] vs A[x

& 0x3]). The compiler will assume the lower index of a multidimensional array is the

known index. Manual configuration is needed if this is not true (for example, A[x][i]

vs A[i][x]).

26

Splitting In an optimal configuration, each variable would get its own memory system

that would include separate addresses and ports. For arrays, bottlenecks can occur on

memory access. However, if the array is split into separate memory systems, it can

perform better. The compiler will automatically split arrays, but can only do so if it

can prove that a pointer refers to exactly one array.

Port Sharing Arbitration logic is needed when there are more read and write sites than

ports available. The Intel HLS Compiler will determine if two mutually exclusive

operations can be connected to the same port. For example, if the logic is pipelined or

when two different for-loop blocks are used sequentially.

Registers Memory can be forced into registers as well. Registers provide fast access and

are always stall-free. They are useful for small variables, arrays and scalars because

of their fast access. If loops are unrolled, arrays are usually stored in registers. Many

devices also provide shift registers which are ideal for hardware optimization. They are

automatically inferred from access patterns, and Intel HLS Compiler must recognize

the pattern for the shift register to be optimized in hardware.

By default, the Intel HLS Compiler makes memory-based optimization choices automati-

cally based on the number of accesses. Specifically, the compiler may enable any or all of the

options listed above. When choosing memory options, the compiler places in order of pri-

ority: stall-free memory access and stores, improving overall Fmax in the design, and lastly

optimizing for lower resource utilization. However, the user may wish to prioritize these

goals differently and enable a different set of memory options. Manual intervention in the

form of compiler directives placed in the C code can be used to force a particular memory

configuration.

2.2.4 Loop Optimizations

There are four types of loop optimizations which can influence the implementation of a

loop in C.

Data Optimizing the data such that instructions operate on different pieces of data. GPUs

27

are good at this.

Thread Level Multiple threads execute concurrently to execute instructions in parallel.

Multi-core CPUs are good at this.

Instruction Level Executing multiple instructions at the same time.

Pipeline Parallelism Multiple instructions are in flight at the same time, but are executing

different parts of the instruction. Most modern processors have pipeline stages and

FPGAs are the best at this type of parallelism.

The Intel HLS Compiler automatically analyzes each loop in the C source file for depen-

dencies. It attempts to reduce the amount of clock cycles needed by pipelining the stages

and launch the next iteration as soon as possible. This tends to improve the performance

without extra hardware. The Intel HLS Compiler will also pipeline components because each

component is treated as an infinite loop. Each instruction that is found to be independent

can be parallelized and each sequential instruction can be stamped out and executed in a

pipelined fashion. In the ideal case, a new iteration is started on each clock cycle. The

number of clock cycles needed to start a new iteration is referred to as the iteration interval.

A high iteration interval will create a bottleneck in the execution flow of a program.

Loops can also be unrolled. Unrolling is the repetition of hardware to allow parallelism.

This can only be performed if no dynamic loop count variables are used. This results in

a much higher performance/throughput in the component, at the compromise of increased

hardware resource utilization. The entire loop can be unrolled, or the loop can be unrolled

into segments. Unrolling does not always have a linear relationship for how much to unroll

verses performance and area gains. This is caused by potentially created increased critical

path delays that are difficult to account for due to actual layout considerations and FPGA

specific hardware blocks [33].

Nested loops can create complex analysis unless most or all of the logic is located in the

inner-most loop. If logic is found in multiple layers of the loop, the compiler usually results

in much higher iteration interval values.

28

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Time (Cycles)

Loop
Iterations Initiation Interval

Figure 2.1: Pipelined Loop with Three Stages and Four Iterations [5]

Loops can be manually optimized using a number of compiler specific directives. These

directives, or pragmas are a means for the programmer to pass information to the compiler.

As of this date, all pragmas are related to loop unrolling and include:

#pragma unroll <n> Unrolls the loop by replicating hardware to increase performance.

The compiler does this automatically, but can be forced to unroll a specific amount by

specifying <n>.

#pragma ivdep Asserts memory array accesses are independent across loops. The de-

signer becomes responsible for functionality as dependencies are ignored by the com-

piler. The designer can also specify a safe length option. This guarantees the compiler

that there are no dependencies for the next ‘n’ iterations.

#pragma loop coalesce <n> Combine nested loops to help reduce overhead and re-

sources. The number of levels to coalesce is specified by ‘n’. Although this can save

resources, it can also create complex loop exit conditions which can increase the iter-

ation interval.

#pragma II <n> Specify a new iteration interval that is greater than the current amount.

#pragma max concurrency <n> Allows for ‘n’ iterations to be in flight at one time.

By default the compiler will maximize this value, but the user can reduce it if needed

to match timings of other components. Reducing this will sacrifice performance for

local memory savings which is useful for non-critical loops.

29

2.2.5 Coding Practice Related to HLS Optimization

Intel provides an entire document dedicated to coding practices that will improve the

HLS translation. In order for the translation to reach target goals, the designer must be

aware of the nuances and restrictions of the Intel HLS Compiler. A summary of some of the

key concepts include:

• Avoid pointer aliasing. The compiler does not make assumptions when using pointers,

and is unable to resolve dependencies which leads to the inability to synthesize or

optimize. In some cases which are unavoidable, the ’restrict’ keyword can be used to

tell the compiler that there will never be a dependency between two variables.

• Construct well-formed loops. Exit conditions should compare against a bound integer,

and use a simple induction increment.

• Minimize loop carried dependencies. This includes pointer arithmetic, complex array

indicies, non-linear indexing, multiple index variables in the same subscript location

and reading data written by a previous iteration.

• Convert nested loops into a single loop if possible. This can be done manually or by

using #pragma loop coalesce option.

• Declare variables in the deepest scope possible. This will reduce serial regions and

reduce the amount of extra resources needed to carry information into the next scope.

• Move unnecessary operations out of loop bodies to prevent extra resources from being

generated.

2.3 Autotunable Parameters

2.3.1 Choosing Tunable Parameters

The purpose of autotuning some of the user specifiable optimization options is to reduce

manual intervention and ultimately the requirement for designer expertise throughout the

30

optimization process and RTL translation. For the current study, the key factor in deter-

mining whether a parameter can be tuned automatically is whether the parameter could

potentially impact functionality of the component. Some parameters can only be used if the

designer has foresight of how the component is going to be used; others may have an impact

on synthesis but won’t effect the functional result of the component. This research focuses

on parameters of the latter type.

Table 2.2 summarizes which parameters are detected by our system and added into the

autotuning search space, are optionally included if requested, or are not included because

they require the designer to manually insert for the reasons specified [1]:

Parameter Included Reason

Intel HLS Interfaces No Knowledge of external connections are neces-

sary for proper connection to Intel HLS Com-

piler Interfaces.

AC DataTypes No Knowledge of the usage of the data to deter-

mine proper sizing is required by the designer.

Single/Double Pump-

ing

Yes Offers a trade-off between using additional re-

sources to improve performance.

Replication No Replication is always done automatically by

the compiler and cannot be manually con-

trolled.

Banking No Currently unimplemented, but could be ex-

plored further in future work.

Splitting No The compiler automatically does this provided

it can prove that a pointer refers to exactly one

array.

Registers/Memory Al-

location

Yes Forcing memory into registers or memory will

provide a trade-off between performance and

resource usage.

31

Loop Unrolling Yes Controlling how much to unroll a loop offers

a trade-off between performance and resource

usage.

Ignore Potential De-

pendencies

Optional The designer is responsible for functionality as

dependencies are ignored with this option.

Loop Coalesce Yes Combining loops can help reduce overhead and

resources. Adjusting the number of loops to

coalesce can potentially improve resource us-

age if the loop exit conditions don’t get too

complicated.

Iteration Interval No Forcing a specific iteration interval is only

needed to make a component match timing of

another component or system, which requires

system-level knowledge from the designer.

Floating Point Re-

laxed/Conversion

Optional The designer needs to decide if the design al-

lows for small errors in floating point calcula-

tions, timings, or reduced precision.

Table 2.2: Optimization Parameters for Autotuning System

2.3.2 Defining Parameter Ranges

The search space for the autotuner grows exponentially with each configuration option

considered. The combination of the large search space and the long compile times of the

HLS Compiler and Quartus mapping and fitting tool can make it infeasible to exhaustively

search through the entire space for the optimal solution. Reducing the size of the search

space is one way to improve the end result of the autotuning process.

One example of how the search space can be selected appropriately for a given piece

of C code centers around loop unrolling. Recall that loop unrolling is the replication of

hardware for an iteration of a loop which allows the loop iterations to be ran in parallel.

32

When choosing to unroll a loop, the designer can specify how much to unroll the loop versus

allow the compiler to pipeline stages of the loop. The more the loop is unrolled, the fewer

clock cycles it takes to get a result on the output; however, unrolling generally increases

the required hardware resources. This trade-off is one that the autotuner can use to help

discover different solutions that may be more optimal for a design’s requirements.

The maximum amount that a loop can be unrolled is limited by the number of iterations

in the loop, while the minimum is always going to be (one), which implies that the loop is

to be entirely pipelined without any loop unrolling. In both of these cases, there are some

inefficiencies that can be eliminated by limiting the options considered by the autotuner.

For example, choosing to unroll by a factor of the number of the loop iterations will yield

a solution in which the hardware is always fully used. Unrolling by a non-factor value will

cause portions of the hardware to be stalled when other portions of the circuit are still

processing data.

The elimination of non-factor loop unroll values significantly reduces our total search

space. There are situations in which specifying the optimal loop unroll amount will yield

significantly improved resource usage. This is due to allowing the compiler to use built-in

dedicated hardware blocks for a specific task. For example, observe the following code that

implements this shift register portion of an FIR Filter:

index = 0;

#pragma unroll N

for(index = (129); index > 0; index--)

data[index] = data[index-1];

data[0] = data_in;

Most Intel FPGAs have built-in shift registers that can perform the above operation very

efficiently. The above code is a candidate for the autotuner to loop unroll; however, the

optimal solution is likely the one that uses the built in shift registers.

33

ALUTs FFs RAM Blocks DSP Blocks

(No pragma) 656 580 1 0

unroll (default) 182 183 1 0

unroll 1 656 580 1 0

unroll 2 1098 1140 2 0

unroll 3 2076 2777 14 0

unroll 4 1874 3286 20 0

unroll 5 2164 3700 23 0

unroll 6 2456 4115 26 0

unroll 42 15064 26223 190 0

unroll 43 15302 26536 193 0

unroll 44 15704 27053 196 0

unroll 128 58036 86485 640 0

unroll 129 182 183 1 0

Table 2.3: Loop Unroll Ranges for a Shift Register Circuit

Table 2.3 shows that fully unrolling the design leads to significant resource savings com-

pared to other unroll amounts. This is because of better utilization of specialized hardware

in the design (dedicated shift registers). When observing the impact of forcing a specific

unroll amount that is not fully unrolling the loop, the results show an increase in resources

used at a fairly consistent rate. This increase could be attributed to more complicated access

patterns and restrictions that prevent the use of the dedicated shift registers. Also, unrolling

the circuit does not have the same consistent relationship for circuit delay, and all unroll

amounts between the half-way point and the full unroll amount will all yield the same circuit

delay (which is not optimal). This is further discussed in Section 4.6.1. The table also shows

that not specifying the unroll directive will yield the same result as not unrolling the circuit

(unroll value of one); a circuit that is small in design but does not leverage the built-in hard-

ware shift registers efficiently and is the worst in circuit delay/throughput. Specifying that

the loop should be unrolled but not specifying how much will yield the same result as fully

34

unrolling the circuit (unroll 129 in this case). This yields the circuit that has the highest

throughput and the fewest resources and is likely viewed as the optimal circuit choice in this

case. Other factors which may influence a designer’s loop unrolling decisions that are not

considered here are the initiation interval (latency of a circuit) and the initial setup time of

the circuit, discussed in more detail in Section 4.6.1.

ALUTs FFs RAM Blocks DSP Blocks

(No pragma) 942 1003 2 2

unroll (default) 2895 5020 207 2

unroll 1 942 1003 2 2

unroll 2 1391 1572 3 2

unroll 3 2369 2309 15 2

unroll 4 2167 3718 21 2

unroll 5 2457 4132 24 2

unroll 6 2749 4547 27 2

unroll 42 15357 26655 191 2

unroll 43 15595 26968 194 2

unroll 44 15997 27485 197 2

unroll 128 58329 86917 641 2

unroll 129 2895 5020 207 2

Table 2.4: Loop Unroll Ranges for a Shift Register Circuit Implemented in an FIR Filter

Circuit

Another interesting factor that should be considered is how the modifications to a circuit

impacts the usability of the circuit; a circuit may be optimal by itself, but when used

in a larger system it may have more complicated access patterns and a negative impact

on the rest of the design. This is demonstrated in Table 2.3 and 2.4. The original shift

register used the fewest resources when fully unrolled, but when applied in a larger system,

more complicated access patterns result in a significant amount of extra resources to build

the circuit in comparison to not unrolling the circuit at all (although throughput is not

35

considered here). This demonstrates that there is a need for observing different optimization

strategies on the program file as a whole instead of individually testing portions of the circuit

because of the impact that one optimization may have on the entire circuit.

The following table summarizes the options that are considered by the autotuner for each

default included configuration parameter:

Parameter Values/Options for Autotuner

Register/Memory Al-

location

hls register, hls singlepump, hls doublepump

Loop Unrolling Factors of N where N is number of iterations in the loop

Loop Coalesce 1 to N where N is the number of layers to a nested loop

Loop Concurrency Factors of N where N is number of iterations in the loop

Table 2.5: Default Configuration Parameters and their Parameter Ranges

2.3.3 Injecting Parameters Into Source Code

One of the objectives of this research is to make the C to RTL translation easier and

quicker for the designer. In an attempt to assist the designer with Intel HLS Compiler

specific optimization strategies that the autotuner can tune, placeholders for the optimiza-

tion parameters are injected automatically into the input source files. The autotuner can

then substitute a corresponding optimization directive for the current configuration. These

placeholders need to be put on specific lines in the code for the corresponding optimiza-

tion technique. For example, the loop unroll pragma needs to be on the line just above the

for-loop, and the hls memory pragma needs to be at an array declaration.

Parsing C code for a C-to-C translation has many challenges; different coding styles and

preprocessor capabilities can lead to a substantial amount of differences from one functional

piece of code to another. To assist with interpreting these differences, a parser called PyC-

Parser is used break input source files into AST (Abstract Syntax Tree) nodes. AST nodes

provide a grammar independent representation of the source code which can then be parsed

through to identify key lines of interest.

36

Placeholders are injected directly into the source code for each of the optimization options

specified in the configuration file for the autotuner. Some of these optimization options are

enabled by default, but can be disabled; while others are disabled by default and can be

enabled if the designer chooses to do so. This is done to prevent the autotuner from adjusting

configuration parameters that could impact the functionality of the code.

Table 2.6 shows an example of the placeholder injection process. Note that the parser

has identified one loop, one array, and one variable in the original C code and injected

corresponding placeholders and pragmas in the code for use by the autotuner.

Original Code Generated Code

signed long mul_out[15];

signed long out;

for(i = 15; i >= 0; i--)

{

out += mul_out[i];

}

num_pump_1

signed long mul_out[15];

variable_0

signed long out;

#pragma unroll loop_unroll_1

#pragma max_concurrency loop_concurrency_1

#pragma loop_coalesce loop_coalesce_1

for(i = 15; i >= 0; i--)

{

out += mul_out[i];

}

Table 2.6: Original Code Versus Generated Code

2.3.4 Limitations

There are several limitations of the Intel HLS Compiler which prevent certain code styles,

C constructs, and specific optimization techniques from being used. Some of these situations

are accounted for in the automated insertion script, but some situations are difficult to

account for such as user added levels of abstraction through typedefs, unions, etc. The Intel

37

HLS Compiler is more robust when manual optimization is not specified, and can synthesize

an acceptable design that would otherwise throw a compiler error when compiler directive

is specified for a code segment. In other situations, there could be sensitive sections of code

in which the designer does not want optimization strategies applied.

To account for some of these challenges, our parsing solution allows the designer to force a

line of code to not be optimized by the autotuner. This will bypass the placeholder injections,

and allow for manual optimization parameters to be specified. For example, the Intel HLS

Compiler does not allow for pointer math to be used in a loop which utilizes constant data

types from a global space.

Broken Code Fixed Code

/*Global Variable Space*/

const int h[24] = {

12, -44, -44, 212

};

/*Inside a function:*/

const int *h_ptr;

h_ptr = h;

#pragma unroll 5

for (i = 0; i < 10; i++)

{

xa += 2 * (*h_ptr++);

xb += 2 * (*h_ptr++);

}

/*Global Variable Space*/

const int h[24] = {

12, -44, -44, 212

};

/*Inside a function:*/

const int *h_ptr;

h_ptr = h;

//blacklist

for (i = 0; i < 10; i++)

{

xa += 2 * (*h_ptr++);

xb += 2 * (*h_ptr++);

}

Table 2.7: Using the Blacklist Option

Table 2.7 demonstrates how using an optimization strategy generates a compiler error.

On the left, specifying an unroll amount for a for-loop which utilizes pointer math on a

38

constant variable defined in global space generates an error in the Intel HLS Compiler.

Should the designer remove the pragma unroll statement, the Intel HLS Compiler is able

to synthesize the design properly. Since the autotuner will automatically attempt to put a

placeholder above the for-loop (which includes unroll statements), the designer must specify

that the for loop must not be optimized; otherwise, an error will be generated. This is done

by using the //blacklist command just above the problematic loop.

39

3. OpenTuner Configuration and Execution

This chapter describes the overall architecture of the OpenTuner Framework. It then explains

the modifications that were made to OpenTuner in order to allow autotuning of the Intel

HLS Compiler.

3.1 OpenTuner Framework

Figure 3.1 provides an overview of the OpenTuner framwork, which attempts to solve

the autotuning problem. The autotuning problem is that of a search problem [6]. The

search space is comprised of a combination of inputs and parameters that collectively make

a configuration. In the present application, parameters are used to tweak the C to RTL

translation to work towards optimizing an objective function representing the quality of a

compile to find a better solution than what the default translation would normally achieve.

In order to establish a baseline for comparison, the first translation is always the default

translation (with no specified optimization parameters). This baseline is used to assist with

determining the effect of adjusting the configuration. Each adjustment of the configuration

is done by a configuration manipulator, which makes adjustments to its current configuration

based on previous results and applying a search space technique to the collection of results

in a common database to generate the next configuration. Over time, it is hoped that the

configuration manipulator will hone in on desirable values of the configuration parameters.

Each result is analyzed by a measurement process which uses a user defined measurement

function to determine the worth of the result. This is necessary to analyze the area versus

performance trade-off, and also to take into consideration how close to a design target the

current result is. This calculated result becomes the basis of the user defined objectives which

40

Search Module

Search Driver

Search
Technique

(Several Options)

Configuration
Manipulator
From User

Specified List

Configuration Run
Function

(i++ Command)

Results
Database

Measurement Module

Measurement Driver

User Defined
Measurement

Function

Objective

Figure 3.1: Overview of the Major Components in the OpenTuner Framework [6]

the OpenTuner Framework is attempting to meet.

3.1.1 Search Techniques

The first configuration that OpenTuner calculates establishes the basis for comparison;

this configuration includes no forced optimizations and allows the Intel HLS Compiler to

optimize using all default parameters and optimization strategies. All subsequent compi-

lations use the new source file generated with injected placeholders for forced optimization

parameters. The second configuration will be from a random starting point based upon a

set of seed values. The seed values can be specified by the user, or can be left to the random

number generators. As results are stored into the database, user specified search techniques

will start utilizing the data from the database to determine future configurations to try.

OpenTuner includes a wealth of search space techniques which are implementations of

standard, well-studied mathematical optimization algorithms. Users can choose to define

their own search technique if preferred. Some of the included search space techniques are

listed in Table 3.1.

41

Technique Description

Differential Evolution New candidate solutions are created based on com-

bining existing solutions.

Greedy Mutation and Variants Modifying one or more values based on a probabil-

ity of change.

Nelder-Mead and Variants Treats the N-dimensional problem with n+1

points, looking for valleys using the centroid.

Pattern Search Analyzing previous results for defined patterns and

adjusting inputs accordingly

Hill Climbing Variants Making incremental changes to an existing solu-

tion.

Particle Swarm Optimization A population of candidate solutions that move

around the search space.

Pure Random All parameters are chosen randomly.

Table 3.1: OpenTuner Built-In Search Techniques

OpenTuner also provides a mechanism to utilize multiple search space techniques at

the same time. The user is able to specify a collection of techniques to explore, and will

subsequently bias towards techniques that perform well while techniques which perform

poorly are allocated fewer tests [6]. Using ensembles of techniques provide OpenTuner with

two distinct advantages. First, some search techniques may naturally perform better for a

given search space than another technique. By employing multiple techniques at the same

time, it is much more likely to arrive at a better solution because of a higher likelihood of

using a technique that is conducive to the search space. Second, most techniques utilize

all existing results from the database. This allows one technique to use data points which

another technique has unveiled and expands the data to include more information that would

normally not be present for a single search technique. This helps prevent a technique from

stalling or getting stuck in a local optimum due to a bad starting point [6].

A detailed discussion and analysis of optimization techniques for multidimensional search

42

Differential
Evolution

Nelder-Mead
Method

Greedy
Mutation

Search
Driver

33% 33% 33%

Exploration

Differential
Evolution

Nelder-Mead
Method

Greedy
Mutation

Search
Driver

100% 0% 0%

Exploitation

Figure 3.2: OpenTuner’s Exploration Phase and Exploitation Phase [7]

spaces is outside the scope of this thesis. In this work, the AUC Bandit Meta Technique is

used which is a collection of four different techniques: differential evolution, uniform greedy

mutation, normal greedy mutation, and random Nelder-Mead. This is the core meta tech-

nique which OpenTuner uses as it is based on an optimal solution to the classical multi-armed

bandit problem [6]. This meta-technique encapsulates a fundamental trade-off between ex-

ploitation (using the best known technique) and exploration (estimating the performance of

all techniques) [7]. It does so by using a sliding window to analyze which techniques have

been used the most in the window, and also assigns credit to techniques which performed

well for the given search space.

3.1.2 Configuration Manipulator

The configuration manipulator serves two main purposes in OpenTuner. First, it provides

a means for the user to specify a list of parameters over which OpenTuner should search for

optimal solutions. Each parameter can be assigned a type and a range of valid values. For

each built in type of parameter that OpenTuner provides, a collection of helper functions

are also included which assist OpenTuner in evaluating the search techniques. OpenTuner’s

parameters are stored as a hierarchy with two main categories. Primitive parameters are

those that have a numeric value with both an upper and lower bound. Complex parameters

have a variable set of manipulation operators, and allow parameters to be customized for

domain-specific structures to be included in the search space. The selection of data types for

autotuneable parameters can impact the performance of the autotuner, and is an important

design decision. Specifically, complex parameters are more difficult for search techniques to

43

Configuration
Manipulator
Parameter

Primitive Complex

Scaled
NumericFloatInteger Switch EnumeratedPermutation SelectorBoolean

Log Integer Log Float Power of
Two Schedule

Figure 3.3: OpenTuner’s Hierarchy of Included Parameters [6].

explore because of the lack of bounds and lack of defined relationship between operators.

Some complex parameters can also be included in the primitive space. For example,

boolean, switch, and enum types can easily be translated to an integer representation. How-

ever, in the context of the search techniques they are better represented as complex pa-

rameters because integer based parameters usually follow gradients, whereas complex types

cannot be assumed to follow gradients. In the context of autotuning Intel HLS parameters,

most parameters have been reduced in their possible ranges to decrease the search space

size. It is a limitation of the OpenTuner Framework that the integer primitive types do not

include lists of integers.

To accommodate the limitation of integer primitive types in the OpenTuner Framework,

lists of possible inputs (such as the factors of the number of iterations of a loop) are passed in

as enumerated types. It should be noted that in the current implementation of OpenTuner,

the best implementation for some of the parameters would be an extension of a scaled numeric

type where the factors are listed in an order which implies a corresponding gradient. However,

for this initial proof-of-concept system, parameters which are subset lists of a full range are

currently defined using the enumerated type. In particular, the parameters for loop unrolling

and loop concurrency would be best specified with a numeric type instead of an enumerated

type. Similar to the powers of two type, a type for factors could be created. This potential

for future work is discussed further in Section 5.3.

44

3.1.3 Objectives

By default, OpenTuner supports multiple user defined objectives. The framework defines

multiple static fields to address these objectives which include time, accuracy, energy, size,

confidence and user defined data. Each field can be used as a minimizing function, maxi-

mizing function, threshold based function, or a combination of objectives and functions. For

example, minimizing time could be the defined objective of the autotuner, and the user can

pass the execution time of a program as the input to this field. The autotuner would then

use the specified search techniques and configurable parameters to attempt to find solutions

which minimize the execution time of a program.

As discussed in the following sections, customized objective functions have been defined

in order to facilitate the design space exploration of HLS translation.

3.2 OpenTuner Usage for Tuning Intel HLS

3.2.1 Search Techniques

The AUC Bandit Meta Technique is intended to provide a robust technique for problems

with unknown probabilistic outputs. This technique also provides a good balance between

exploitation and exploration of search techniques. Each type of problem (and every time

the original design changes) may have a different technique that will more efficiently hone in

on an optimal solution. For simplicity and consistency across different designs and for the

other reasons listed above, the AUC Bandit Meta Technique is used as the search technique

for all result generation in this research.

3.2.2 Search Space Size

The search space of a given configuration is determined by the number of included op-

timization parameters. For example, each variable that is declared in the source program

can be optimized through memory optimizations by specifying hls register, hls singlepump,

or hls doublepump. If these three options are included in the optimizer, every C variable

which is to be placed into memory increases the size of the search space by a factor of 3.

45

For-loops can be optimized by specifying an unroll amount and a concurrency amount. The

default included parameters for each for-loop is based upon the number of loop iterations.

Given N iterations of a loop, valid configuration parameters included any factors of N for

both the loop unroll amount and the concurrency amount. Thus, the search space increases

by (Factors of N)2. The impact on the search space is outlined in Table 3.2 for the default

included parameters.

Increase in Search Space Size

Variable Declaration 3

Loop of N iterations (Factors of N)2

Nested Loop of N Levels N

Table 3.2: Impact on the Search Space

3.2.3 Results Generation

A closer look into what results are produced from the Intel HLS Compiler is needed before

determining the objective of the autotuning process. A report is generated by the Intel HLS

Compiler that outlines estimated resource usage based on the current implementation each

time the tool is used to translate a C source file to RTL. The key components that are

extracted from this report include the number of logic modules used as adaptive lookup

tables (ALUTs) or adaptive logic modules (ALMs), the amount of FPGA memory used

(RAM bits or RAM blocks), the number of FFs used, the number of DSP blocks used, and

the maximum operating clock frequency for the circuit (Fmax).

A weighted normalized sum is used as the basis of comparison for configuration results

because it provides a quantifiable representation of the trade-off between performance and

resources used based upon the designer’s preferences [26]. Each individual component is

assigned a weight which provides a relative worth to itself verses the other components. All

values are then normalized to the initial HLS compile to provide the designer with a quan-

tifiable representation of how much improvement the autotuner’s solutions have provided

in comparison to the compilation with default optimization. Resource based metrics will

46

be found to be improved if they are smaller than the initial estimate/translation and the

performance based metric (Fmax) is improved if it is greater than the initial synthesis; thus,

two equations are used to represent the weighted normalized values.

The relative improvement for each result component relating to resource usage can be

found by:

WNVn =
Wn × (X + 1)

Xi + 1
(3.1)

WNVn : Weighted Normalized Value of an individual component (FF, ALUT/ALM,

RAM bit/block, DSP Block)

Wn : Weight of an individual component, specified by the designer

X : Configuration result for an individual component

Xi : Initial configuration result for an individual component

The relative improvement for the performance metric (Fmax) can be found by:

WNVn =
Wn × (Xi + 1)

X + 1
(3.2)

The relative improvement of a configuration can be found by summing the individual

weighted normalized values.

WNS =
∑
n

WNVn (3.3)

WNS : Weighted Normalized Sum of a configuration

In this research’s implementation of autotuning the Intel HLS Compiler, minimizing the

WNS value is used as the objective of the autotuner. After each configuration completes,

the WNS value for that configuration is computed and stored in the database, and the

autotuner subsequently attempts to find configurations that minimize the WNS value.

47

Initial Compile

ALUTs
RAM Blocks

FFs
DSP Blocks

C Source File

Post-Mapper

ALUTs
RAM Bits

FFs
DSP Blocks

Max Clock Frequency

Estimated
Resources

Post-Fitter

ALMs
RAM Blocks

FFs
DSP Blocks

Max Clock Frequency

Estimated
Resources and

Estimated
Performance

Actual
Resources and

Actual
Performance

Figure 3.4: Intel HLS Compilation Stages

3.2.4 Compilation Types

The process that the Intel HLS Compiler follows is a multi-stage translation process that

leverages an HLS tool and Intel’s Quartus Prime software to translate a design to RTL, map

the design to a technology and finally fit the design to a specific FPGA. The first stage is

an initial compile done by the translation tool to give the designer feedback on their current

implementation. This stage includes an estimate of how many resources are going to be

used (including ALUTs, FFs, RAM blocks and DSP blocks). At this stage there has been

no timing analysis performed yet; thus no performance metrics are generated. The C source

file is translated to a functional RTL equivalent based on the architecture specified by the

designer. This RTL equivalent is not finalized at this stage because it has not been mapped

to a selected technology or fitted to a particular FPGA; hence, it is considered an estimate.

This first stage is (relatively) quick to perform.

Included with this initial compile is an optional functional simulation performed by Mod-

elsim and an Intel HLS Compiler specific report which provides detailed information about

the current design. The Modelsim-based verification process is used to ensure that the de-

sign is in fact functionally correct, and can be verified through an accompanying C/C++

testbench in the original source file. The generated report is intended to be viewed by

the designer so that an iterative process can be used to improve the overall quality of the

component. Any portions of code that cannot be translated properly are identified.

48

The autotuner is intended to be used after the functional verification process is complete.

Once the designer has ensured that the component is functionally correct and that all of the

code can be translated to RTL, they can then run the autotuner to improve the C to RTL

translation. If the designer is only interested in optimizing the resource usage of an RTL

translation, they could autotune their design based on this first stage. Doing so will yield

results much more quickly than performing the latter stages of the compilation process, but

will not yield a fully implementable solution on a physical FPGA.

The second stage of the process is to run the Quartus mapper. The mapper translates

a hardware descriptive language (HDL) to a technology specific RTL equivalent. Since the

RTL has already been generated, the input to the mapper is the pre-generated RTL design

which is then adjusted to a technology. This adjusts the resource usage outputs to those that

are specific to a technology. For example, the Cyclone V family of FPGAs utilize 8-input

adaptive logic modules (ALMs) as seen in Figure 3.5 which include an 8-input fractured

look-up table (LUT) with four dedicated registers [8].

For OpenTuner to leverage the Quartus mapper, a Tcl script that utilizes the Quartus

shell from command line has been created. The Intel HLS Compiler provides an option to

perform a full Quartus compile (post-fit analysis) with its standard command; however, it

is advantageous for the designer to only perform the Quartus mapper. The mapper is more

accurate than the initial estimation and is much faster to perform than the fitter. Using a Tcl

script allows the automation of testing a design with the Intel HLS Compiler and the Quartus

shell tool. Additional shell tools can be ran following the mapper such as database merging

and timing analysis of the post-mapped results. This generates performance metrics that

are imported into OpenTuner. Resource usages are also imported into OpenTuner (ALUTs,

RAM bits, DSP blocks, and FFs).

The final stage in generating a fully implementable RTL solution is the Quartus fitter.

The fitter generates accurate quality-of-results (QoR) metrics that were mentioned in the

mapper. The fitter requires a previously ran analysis and synthesis (post-mapper) solution

prior to being ran. The fitter places and routes the design for a specific FPGA device.

Following the fitter is another timing analysis to update the maximum performance metrics

49

Adaptive
LUT

Cyclone V ALM

Full
Adder

0

1

S0

Mux

0

1

S0

Mux

0

1

S0

Mux

0

1

S0

Mux

Full
Adder

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 3.5: Cyclone V Adaptive Logic Module (ALM) [8]

Input Files
(.v), (.vhd), (.vqm),
(.tdf), (.bdf), .(edf)

Analysis and
Synthesis

quartus_map
Simulator

quartus_sim

Fitter
quartus_fit

Compiler Database
quartus_cdb

Assembler
quartus_asm

Programmer
quartus_pgm

TimeQuest
Timing Analyzer
quartus_sta

EDA Netlist Writer
quartus_eda

EDA Output Files
(.vo), (.vho), (.sdo)

PowerPlay Power
Analyzer

quartus_pow

Design Assistant
quartus_drc

SignalTap II Logic
Analyzer

quartus_stp

Figure 3.6: Design Flow When Performing a Full Quartus Compilation From Command Line or

Tcl Script [9]

50

to include wiring differences, critical path adjustments, and further optimization that is

performed by Quartus. The ALUTs are now converted to ALMs and the RAM bits are

converted to RAM blocks, but they still can be analyzed using the weighted normalized

sum computations found in equations 3.1 and 3.3. Although using the post-fitter solution

as the result metric for OpenTuner provides the highest accuracy of results, it also takes the

longest to perform and requires the most computer resources to compile. Therefore, using

post-fit results may limit the extent to which OpenTuner can explore the search space for a

particular design in a reasonable amount of time.

3.2.5 Adjusting Optimization Preferences

One intent of this research is to assist with the C to RTL translation for practical design

circuits; adding the capability for the designer to adjust the objective, search space, and

relative worth of each result provides a practical approach to the autotuning solution.

Adjusting the Search Space

The default parameters for the search space, as outlined in Section 2.3.1, include several

autotunable parameters that are guaranteed not to break the functionality of the design.

This includes loop unrolling, loop concurrency, allocating variables to memory or registers,

single pumping or double pumping the memory, and coalescing nested loops. There are

also some optional parameters that the user can choose to enable which will increase the

search space. These include ignoring potential memory dependencies that would otherwise

prevent the compiler from performing optimizations, specifying the number of potential

concurrent implementations of a component, and relaxing floating point arithmetic. In the

current implementation, options to adjust or optimize component interfacing and specifying

memory optimizations (such as sizing, banking, interfaces, etc) are not implemented in the

autotuner. The user can, however, manually insert these optimizations and adjustments

and the autotuner will respect them. Similarly, the user can disable any of the default

optimization strategies, or manually specify an option in the original source file which will

take precedence over the autotuner’s injected parameters.

51

Adjusting Result Weights

An important feature to make the OpenTuner implementation practical is the ability to

adjust the weights of the items generated from each configuration result. In a standard design

process using Quartus Prime, the designer has the ability to specify an optimization strategy

for the design. These include balanced, performance, and area focused optimization. The

designer usually has insight into the limiting factors in their design; if they suspect space

will be an issue, they could attempt to optimize with the area strategy. The autotuner

constructed in this research continues with this scheme by giving the designer the ability to

adjust weights attached to each of the generated results or choose a different weight scheme.

Table 3.3 shows the default weights and schemes chosen for this research.

Metric Area Balanced Performance

Fmax 2 4 8

ALUTs / ALMs 8 4 2

FFs 8 2 4

RAM bits / RAM blocks 8 2 2

DSP blocks 8 2 2

Table 3.3: Optimization Strategies and Associated Weights

The value chosen for the weights should be proportionately represented in relation to the

other weights for the items of interest; the actual value of the weight is not as important as

the relation to the others. As each result is generated, the relative improvement amount will

scale in accordance to the weights chosen and the number of each resource that is synthesized

in the result. See equations 3.1 and 3.3 for more information on how the weights are used.

The framework also allows for the designer to specify multiple optimization schemes such

as those found in Table 3.3. This allows for quicker exploration of the different possible

solutions by quickly adjusting the optimization scheme.

52

3.2.6 Specifying Targets

Introducing targets (or goals) for the autotuner adds a new function to the compiler and

translator that wasn’t previously available. The previous optimizations performed by the

Intel HLS Compiler acted on a standard view of generating a design that is optimal in a

category. With the introduction of targets to the tool, the designer can generate a design

that is optimal in a category while focusing on meeting target specifications. This is a more

practical use of the compiler and translator as more specific objectives can be specified for

a solution, and multiple objectives can be accounted for.

The adjustments made to the autotuner to incorporate specific targets are done through

the WNS objective as before. With each specified target/goal, a penalty is imposed on the

weighted normalized value for that component if the target has not been met. The penalty

that is applied becomes increasingly heavy the further from the target that the current

configuration generates. Starting with Equation 3.1 as the basis, targets and their penalty

can be introduced with:

WNS =
∑
n

WNVn × Pn (3.4)

WNS : Weighted Normalized Sum of a configuration

WNVn : Weighted Normalized Value of an individual component

Pn : Penalty for not meeting the target value for an individual component

The penalty is computed as:

Pn =

1 Xn ≤ Tn

(Xn+1
Tn+1

)Tp Xn > Tn

(3.5)

Pn : Penalty for an individual component

Xn : Configuration result for an individual component

Tn : Initial configuration result for an individual component

Tp : Penalty factor (user selectable, default = 2.0)

53

Equation 3.5 may be used for all resource related values that are extracted from the

compilation reports, however a slight variation is needed when comparing the performance

metric; Fmax should be maximized instead of minimized. For the performance metrics, the

equation changes to:

Pn =

(Tn+1
Xn+1

)Tp Xn < Tn

1 Xn ≥ Tn

(3.6)

If targets are specified then the weighted normalized values found in Equation 3.4 are

used instead of those found in Equation 3.1. In the current implementation of the autotuner,

targets may be specified as either absolute values or percentages of the available resources

in the specific FPGA device.

The penalty factor (Tp) is specified by the user, with a default value of 2.0. To implement

more harsh penalties for not meeting the target, increasing this factor slightly provides an

exponential penalty imposition. Similarly, if targets are soft goals for the designer, lowering

the penalty factor imposes a reduced penalty for not meeting the target.

A configuration file allows the user to select both the weights and the penalty factor for

the project. An example of the configuration file is provided in Appendix B.

54

4. Results

The need for comparing quantitative results from one HLS tool to another is fulfilled through

standardized benchmark suites. A common benchmark suite that researchers have been

using for HLS translations is the CHStone Benchmark Suite, developed in 2008 [34,35]. The

suite consists of 12 programs written in C, with the programs spread across several different

programming domains. These include arithmetic, media applications, cryptography, and

processor designs. The CHStone Benchmark Suite was designed to stress HLS compilers by

using a variety of C coding styles across various programming domains. As such, due to

the previously mentioned coding style limitations in the Intel HLS Compiler, many of the C

programs do not natively work with the Intel HLS Compiler without adjustment.

The Intel HLS Compiler is designed to have clear separation between the component and

the testbench. The function to be synthesized needs to be marked as the component, and

all other C program code is assumed to be testbench related or passed into the component

via an interface connection. The CHStone Suite does not make such assumptions, and so

a manual reconfiguration of the files was performed to clearly separate the component from

the testbench. Similarly, the Intel HLS Compiler has strict C programming best practices

guidelines that should be followed for the synthesis to work properly. This includes avoiding

dynamically allocated memory, not clearly defining loop lengths and avoiding memory de-

pendencies (for a full list of limitations, see Section 2.3.4). Since the CHStone applications do

not always follow Intel’s C programming best practices, many of the CHStone applications

do not compile in the Intel HLS Compiler out of the box.

Some of the CHStone applications can be compiled and synthesized with some simple

modifications performed while others would require extensive rewrites. In this research, upon

55

performing the manual separation of the testbench from the component, a test is conducted

to see if the component will synthesize:

i++ source.c -o test-fpga --simulator none --quartus-compile

The above command will yield a full RTL solution for the given source file. Each of the

CHStone applications have a single marked function as component. For this research, it is

assumed that the Intel HLS Compiler will properly translate the C source file into functionally

equivalent RTL. Modelsim simulations are generally intended to increase confidence in the

final design through function verification. Therefore, in this research, the simulation step is

not performed during each autotuning iteration as the design space is explored. Eliminating

the simulator reduces compilation times which will reduce the overall time to synthesize

greatly.

The following sections describe a series of tests that were performed to evaluate the

performance of the Intel HLS Compiler. First, in Section 4.1, the impact of individual

configurations parameters is investigated for a typical DSP filtering application found in

appendix A. Sections 4.2 to 4.6 then describe the results obtained when autotuning a variety

of designs, including those from the CHStone benchmarking suite.

4.1 Impact of Individual Parameters

Using a standard DSP Finite Impulse Response (FIR) Filter (C source code included in

appendix A), we can observe the effects of some of the parameters that are being autotuned.

To test the individual impacts, manual optimization pragmas are injected to only a single

line to observe the impact on the final synthesis. These results will vary for each level of

synthesis that is performed: estimated resources, post-mapper, or post-fitter synthesis; the

latter two also being effected by Quartus optimizations. The rest of the source file is left to

default optimization strategies performed by the Intel HLS Compiler.

There are two purposes for performing these tests. First, they can provide insight into

how the individual configuration parameters can influence the HLS results. Second, they can

56

be used to evaluate the similarities and differences between the resource estimates provided

by the Intel HLS Compiler and those obtained from a full Quartus compilation.

4.1.1 Memory Optimizations

Memory optimizations are performed on all variables in the filter design. Prior to running

the Quartus mapper or Quartus fitter, the Intel HLS Compiler must first generate an estimate

of the logic resources required for the FPGA implementation. Tables 4.1 and 4.2 include the

associated estimated resource usage from the Intel HLS Compiler and the Quartus mapper

and fitter, respectively, for the memory optimization tests.

Quartus Mapper Results Intel HLS Compiler Estimates

Test ALUTs FFs RAM Bits DSPs
Fmax

(Mhz)
ALUTs FFs

RAM Blocks

(M10K)
DSPs

hls singlepump

static int data [65];
479 850 4164 2 101.1 1082 974 1 2

hls doublepump

static int data [65];
452 1139 4171 2 101.1 1146 1308 2 2

hls register

static int data [65];
5822 10349 24 2 63.0 6215 9032 0 2

hls singlepump

static int index = 0;
479 850 4164 2 101.1 1082 974 1 2

hls doublepump

static int index = 0;
479 850 4164 2 101.1 1082 974 1 2

hls register

static int index = 0;
479 850 4164 2 101.1 1082 974 1 2

Table 4.1: Memory Optimizations for Local Variables Using Mapped Resources

As can be seen in Table 4.1, optimization of some variables from the original C code can

have a significant impact on the final result, while others have no impact at all. This will

vary depending on usage of the variables in the component whether they are inputs/outputs

of the component and how the memory access patterns are analyzed by the tool. In some

cases, variables can be optimized away which is the case for the index variable. Arrays

are treated in a similar fashion to variables, except the impact is multiplicative based on

57

the size of the array. Both hls singlepump and hls doublepump are directives to store the

variable into memory (RAM), but the addition of double pumping the clock creates for more

complicated access logic which is demonstrated by an increase in ALUTs and FFs.

Quartus Fitter Results Intel HLS Compiler Estimates

Test ALMs FFs
RAM

Blocks
DSPs

Fmax

(Mhz)
ALUTs FFs RAM Blocks DSPs

hls singlepump

static int data [65];
329 683 1 2 216.12 1082 974 1 2

hls doublepump

static int data [65];
385.5 977 2 2 101.1 1146 1308 2 2

hls register

static int data [65];
4912 10511 0 2 113.51 6215 9032 0 2

hls singlepump

static int index = 0;
329 683 1 2 216.12 1082 974 1 2

hls doublepump

static int index = 0;
329 683 1 2 216.12 1082 974 1 2

hls register

static int index = 0;
329 683 1 2 216.12 1082 974 1 2

Table 4.2: Memory Optimizations for Local Variables Using Fitted Resources

When observing the results normalized to the hls singlepump solution for data variable

as shown in Table 4.3, we can see that introducing a double pumped memory frequency

typically yields an increase in area usage, although it allows for portions of the circuit to

perform at double the system clock frequency, but actual fitting of the circuit to the device

yields a decrease in maximimum operating clock frequency. This decline in performance

is the result of additional access logic created from more complicated memory accessing.

This shows that doublepumping the memory does not always create performance increases.

Similarly, forcing variables into registers can have a significant impact on resource usage and

performance metrics.

58

Estimated Mapped Fitted

Test ALUTs FFs RAMs DSPs ALUTs FFs RAMs DSPs Fmax ALUTs FFs RAMs DSPs Fmax

hls singlepump 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

hls doublepump 1.06 1.34 2.0 1.0 0.94 1.34 1.002 1.0 1.0 1.17 1.43 2.0 1.0 0.47

hls register 5.75 9.3 0.0 1.0 12.2 12.2 0.006 1.0 0.62 14.9 15.4 0.0 1.0 0.53

Table 4.3: Results of the Individual Impact of a Memory Optimization Normalized to the

hls singlepump Solution for the data Variable

4.1.2 Loop Optimizations

There are three loop optimization techniques that are being autotuned by the OpenTuner

Framework: loop concurrency, loop unrolling, and loop coalescing.

Loop Concurrency

Adjusting the maximum loop concurrency offers a trade-off of reduced performance for

reduced resource usage. To benefit from increasing the maximum loop concurrency, a loop

needs to be able to benefit from private copies of a variable to improve the throughput of the

loop. This can occur only when the scope of a component memory (through its declaration

or access pattern) is limited to the loop being optimized. In such cases, loop concurrency

will provide a trade-off between throughput performance and area usage. The FIR filter

under consideration in this section does not benefit from adjusting the loop concurrency;

static memory declarations that are used in the scope of the component do not benefit from

loop concurrency.

Loop Unrolling

Loop unrolling allows for the replication of hardware to improve throughput of a loop.

To observe the effect of loop unrolling, any loop can be unrolled by using the #pragma unroll

followed by a number which represents how many times to unroll the loop: a value of one

implies that the loop does not get unrolled and the maximum value unrolls the loop fully

(bound by the number of iterations of the loop).

59

Shift Register Accumulator

#pragma unroll N

for(index = (64); index > 0; index−−)

{

data[index] = data[index−1];

}

#pragma unroll N

for(index = (64); index >= 0; index−−)

{

data out += data[index] ∗ c[index];

}

Table 4.4: Loop Unrolling Examples

Using post-fitted synthesis results, we can see the effect on both examples over a range

of unrolling values for N found in Table 4.5. Note that the shift register has a maximum

loop iteration of 64 and the accumulator has a maximum loop iteration of 65.

Test ALMs FFs DSPs RAM Blocks Fmax

Shift Register N = 1

Accumulator = default
329 683 2 1 216.12

Shift Register N = 32

Accumulator = default
2975 9972 2 64 170.53

Shift Register N = 64

Accumulator = default
2830 5021 2 116 169.69

Accumulator N = 1

Shift Register = default
329 683 2 1 216.12

Accumulator N = 32

Shift Register = default
3250 9698 64 32 139.96

Accumulator N = 65

Shift Register = default
6038 21929 58 65 163.45

Table 4.5: Results of the Individual Impact of Loop Unrolling

The results in Table 4.5 demonstrate that default optimization strategy for the FIR filter

60

is to not unroll the loops (default N = 1). This implies that loop unrolling must be specified

by the designer to take advantage of the increase in throughput performance. Another

interesting observation is the reduction of resources that the shift register realizes when fully

unrolling. This shows that the compiler is able to better utilize the built-in hardware for a

shift register when fully unrolling. The accumulator shows a drop in performance when not

unrolling by a factor of the number of iterations of the loop. It is for this reason that the

autotuner only selects factors of the loop iteration when choosing loop unrolling (and loop

concurrency) values in the search space.

Loop Coalescing

Loop coalescing is the merging of nested loops into a single looping structure. This can

simplify designs, but can also complicate memory access logic. The number specified for

loop coalescing determines how many nested layers of loops it should attempt to coalesce.

The default FIR filter does not include any nested loops; however, a slight adjustment can

be made (for demonstration purposes):

#pragma loop coalesce N

for(index = 64; index > 0; index−−)

{

data[index] = data[index−1];

for(index = 64; index >= 0; index−−)

{

data out += data[index] ∗ c[index];

}

}

ALMs FFs DSPs
RAM

Blocks
Fmax

N = 1 515 1338 4 2 202.27

N = 2 349 951 2 2 201.57

Table 4.6: Loop Coalescing Examples

The example shown in Table 4.6 yields improved resource usage by coalescing the two

loops into a single solution; however, it should be noted that coalescing loops does not always

61

yield improved resources as memory access patterns can become increasingly complicated in

some designs.

4.2 Autotuning the Intel HLS Compiler

The CHStone benchmark suite has been developed for C-based HLS, and has been a

common benchmark for HLS related research. The suite has become a popular choice because

it requires no additional libraries or extensions, and covers a variety of different domains and

programming styles. The suite consists of twelve programs which are selected from domains

such as arithmetic, media processing, security and microprocessor [34]. Table 4.7 summarizes

the twelve CHStone programs considered in this research.

Application Domain Description

DFADD Arithmetic Double-Precision Floating-Point Addition

DFMUL Arithmetic Double-Precision Floating-Point Multiplica-

tion

DFDIV Arithmetic Double-Precision Floating-Point Division

DFSIN Arithmetic Sine Function for Double-Precision Floating-

Point Numbers

MIPS Processor Simplified MIPS Processor

ADPCM Encryption Adaptive Differential Pulse Code Modula-

tion Decoder and Encoder

GSM Communcations Linear Predictive Coding Analysis of Global

System for Mobile Communication

JPEG Media JPEG Image Decompression

MOTION Media Motion Vector Decoding of the MPEG-2

AES Encryption Advanced Encryption Standard

BLOWFISH Encryption Data Encryption Standard

SHA Encryption Secure Hash Algorithm

Table 4.7: List of CHStone Applications and Their Functions

62

4.2.1 Use of CHStone

The Intel HLS Compiler has many limitations in coding style and application. The tool is

designed to synthesize a component while also providing the means to incorporate a testbench

(written in C/C++) that can communicate with Modelsim - Intel’s simulation tool. The

CHStone applications are designed and developed to provide a standard benchmarking suite

written in C (not C++), and does not consider the specific requirements of the Intel HLS

Compiler. As such, limitations within the Intel HLS Compiler were identified in many of the

CHStone applications.

All of the CHStone applications needed minor adjustments to work with the Intel HLS

Compiler. Namely, the component must be identified and marked, and a clear separation

between the testbench and component is needed for the tool to synthesize properly. In doing

so, the testbench portion of the program gets ignored by the Intel HLS Compiler and does

not get synthesized into RTL. In some cases, program-specific modifications were made to

circumvent compiler errors, but modifications to the basis of the CHStone applications is

avoided to maintain comparable results.

Adpcm (mostly) worked after blacklisting, or not optimizing, two sections of code that

used pointer arithmetic in memory accesses, as mentioned in Table 2.7. Since adpcm uses

large constructs and structures in its design, compilation times varied drastically: from 6

minutes to more than 3 hours per compile. The variance in compilation times is attributed

to large loop unrolls that create large amounts of hardware, which exponentially increases

the complexity of the RTL solution (and inherently takes a long time to compile).

Applications That Would Not Compile

Three applications would not compile with the Intel HLS Compiler. Major changes and

reorganizations of their underlying C code would be required for successful compilation,

which is contrary to the purpose of a benchmark program. The reasons that they would not

compile varied and are discussed below.

JPEG Fails to compile because of an illegal use of global variable in the component. Pointer

63

to pointer types are not supported by the Intel HLS Compiler in synthesized code.

SHA Fails to compile because the application uses complex address math which is not

supported for load from filescope constant data. This includes pointer math for the

accesses to data. More specifically:

tmp |= 0xFF & *p2++;

is not allowed by the Intel HLS Compiler.

MOTION This program uses older C style syntax such as K&R C style function definitions.

The Intel HLS Compiler provided with Quartus treats all input files as C++14 [5]. The

compiler does not support files conforming to older C++ standards. Motion has many

syntax errors because the Intel HLS Compiler uses C++ as its foundation.

Applications That Compiled, But Were Not Autotunable

Five applications would compile using the default settings of the Intel HLS Compiler, but

were not practical to autotune. The four applications related to arithmetic (dfadd, dfmul,

dfdiv, dfsin) were successful for every attempt to synthesize, but did not vary in results

because they do not contain any constructs that were conducive to the autotuning process.

Namely, the two main areas of optimization that are being autotuned in this research included

local memory optimizations for large memory constructs and loop optimizations; neither of

which are present in the arithmetic programs. As such, each successive configuration yielded

the same result (which is the same result as the default synthesis). Since the autotuner does

not yield varying results, these applications are not included in the results to follow.

Blowfish differed from the arithmetic programs in that it would compile with only a slight

modification. In the case of blowfish, an error is generated without modification:

Compiler Error: Complex address math not supported for load from filescope

constant data.

Compiler Error: Please simplify and ensure that there isn’t pointer math for the

accesses to the data set named: bf init S

64

To overcome the errors, modifications need to be made as shown in Table 4.8.

Blowfish Original Code Blowfish Modified Code

void local memcpy (BF LONG ∗ s1,

const BF LONG ∗ s2, int n)

{

BF LONG ∗p1;

const BF LONG ∗p2;

p1 = s1;

p2 = s2;

while (n−− > 0)

{

∗p1 = ∗p2;

p1++;

p2++;

}

}

void local memcpy (BF LONG ∗ s1,

const BF LONG ∗ s2, int n)

{

BF LONG ∗p1;

const BF LONG ∗p2;

p1 = s1;

p2 = s2;

while (n−− > 0)

{

p1[n−1] = p2[n−1];

}

}

Table 4.8: Modifications Made to Blowfish

With the simple modification made to the pointer arithmetic, blowfish would yield a

successful synthesis, but yielded many different errors when optimization placeholders were

injected. Blowfish includes several large storage constants for the encryption keys. In the

autotuning procedure, these variables could be placed into registers or memory; however, if

registers are chosen as an option, another error occurs:

Compiler Error: hls register attribute is given but cannot implement the stor-

age in register

Blowfish is also large and complex in design, which yields for complex and overly aggressive

65

optimization that takes large amounts of resources and time to compile. As such, not enough

data is able to be collected to show autotuning results. Therefore, blowfish is also eliminated

from the results section of this thesis.

Applications That Were Autotuned

The remaining four applications (aes, mips, adpcm, and gsm) were successful to compile

and were conducive to the autotuning procedure. Although some size limitations prevented

full results from adpcm and gsm, enough results were collected to make conclusions as

discussed later in this chapter.

4.3 Establishing the Reference for the Autotuner

The autotuner point of reference is that of the original RTL synthesis that does not

include any manually (or automatically) injected optimization techniques. This allows the

compiler to yield a solution which is optimized using default tactics and strategies.

4.3.1 CHStone Applications

Only four of the applications were able to be autotuned by the autotuner; however, the

solutions for the other applications are included here for completeness. Nine of the twelve

CHStone applications were able to be compiled and synthesized with minimal alterations to

the original source code. Table 4.9 shows the estimated synthesis results without perform-

ing any further Quartus compilations or optimizations (mapper and fitter). Three of the

applications were unable to compile, as discussed in the previous section.

Included in Table 4.9 is a side-by-side comparison of the effects of changing the FPGA

architecture. Specifically, two FPGA families were considered: Cyclone V and Arria 10. It

is noted that changing the architecture has a major impact on the synthesis results. This

is caused by differences of the internals of the FPGA families; each logic element, DSP

block, and RAM block contain different components and sizes as well as different quantities

of available elements. The Intel HLS Compiler takes these differences into account and

attempts to optimize for the chosen FPGA family. For example, in the GSM application,

66

Cyclone V Arria 10

CHStone

Application
ALUTs FFs RAMs DSPs ALUTs FFs RAMs DSPs

adpcm 952120 903635 1071 38 194430 193607 553 417

aes 82537 127156 696 0 75793 117497 242 0

blowfish 86588 84124 609 0 86385 86443 99 0

dfadd 8436 2880 12 0 8327 2431 4 0

dfdiv 76116 96135 29 28 55704 54487 5 28

dfmul 5250 2000 13 8 5267 1891 5 8

dfsin 103528 118777 62 46 78593 67411 12 46

gsm 365230 311910 91 7 42111 34011 8 56

mips 9005 5903 9 4 8202 3689 9 4

Table 4.9: Initial CHStone Application Results with Estimated Resources

the compiler’s optmizations have resulted in far more DSPs being used in the Arria 10 than

the Cyclone V, with a corresponding large decrease in ALUT and FF usage. To ensure that

these differences don’t impact the autotuner’s configuration manipulator, the Cyclone V will

be used for the remainder of this research.

Similarly, the same nine CHStone applications could further compile with Quartus using

the mapper, fitter, and timing analysis provided by Quartus Prime. The results of these

compilations are shown in tables 4.10 and 4.11.

4.3.2 DSP FIR Filter

Another circuit that is to be analyzed is a common finite impulse response (FIR) filter

structure used in digital signal processing (DSP) applications. The filter chosen uses 129

taps to iteratively shape and conform an input signal to digital television specifications.

67

CHStone Application ALUTs FFs DSPs RAM Bits Fmax

adpcm 300417 887482 44 22712282 42.11

aes 94272 188092 0 2897868 50.45

blowfish 92361 148905 0 2064574 44.79

dfadd 13957 22553 0 77552 47.52

dfdiv 25863 84875 22 103330 48.04

dfmul 8709 16825 12 63680 52.56

dfsin 39859 113182 48 235352 26.34

gsm 58763 144522 14 226360 48.47

mips 2923 5116 6 6210 82.52

Table 4.10: Initial CHStone Application Results with Post-Mapped Resources for the Cyclone V

FPGA Family

4.4 Setup of Autotuning for Intel HLS Compiler Applications

4.4.1 OpenTuner Configuration

OpenTuner is a highly adjustable and configurable framework for autotuning solutions.

In addition to the built-in framework, in this research, a set of additional configuration

options and modes have been added to OpenTuner that are specific to the autotuning of the

Intel HLS Compiler. These configuration options will be used for all subsequent tests using

the OpenTuner Framework.

• Memory optimizations may be selected for all variables and arrays, with valid options

including hls register, hls singlepump, and hls doublepump.

• Loop concurrency on all for loops with valid options including factors of the number

of iterations.

• Loop unrolling on all for loops with valid options including factors of the number of

iterations.

• Loop coalescing on all for loops with valid options ranging from one up to the number

68

CHStone Application ALMs FFs RAMs DSPs Fmax (Mhz)

adpcm 230514 433417 1223 287 195.66

aes 120812 205643 176 0 198.69

blowfish 97426 156802 179 0 145.39

dfadd 9806 13566 9 0 281.37

dfdiv 19621 47149 10 22 295.77

dfmul 6708 10876 6 12 270.64

dfsin 31446 66061 28 48 187.69

gsm 23860 37881 9 65 169.12

mips 2062 3307 10 6 329.06

Table 4.11: Initial CHStone Application Results with Post-Fitted Resources for the Cyclone V

FPGA Family

ALUTs FFs RAM Blocks/Bits DSPs Fmax

Estimated 1082 974 1 2 N/A

Post-Mapped 479 850 4164 2 101.1

Post-Fitted 329 683 1 2 216.12

Table 4.12: Initial FIR Filter Results

of nested for loops.

• Compiler Parallelism is set to one. This refers to the number of configurations in-flight

at a time; some projects are very large and consume most of a computer’s RAM, so the

configurations are run one at a time to avoid slow-downs and out-of-memory errors.

The user configuration settings are spread across three different files:

autotuner config.json contains the list of default and optional configurable parameters

that are not autotuned by default. Additionally, target values and weights are spec-

ified in this file. All simulations will use the same set of weights, and three different

optimization strategies will be tested. If targets are also specified, the penalty for not

69

meeting the target (as per Equation 3.5 and 3.6 is specified by the Target Penalty

Factor. The default autotuner configuration is summarized in Table 4.13 below.

ALUTs FFs RAMs DSPs Fmax

Balanced 4 2 2 2 4

Area 8 8 8 8 2

Performance 2 4 2 2 8

Target Penalty Factor 2.0 2.0 2.0 2.0 2.0

Table 4.13: Autotuner Configurations: Weights and Target Penalty Factor

intel hls parameters.json contains the full list of injected parameters, as well as all pos-

sible configurations for each placeholder. These values can be overwritten, but this file

is also auto-generated. All autotuner configurations will use the default generated file.

run.sh contains the run-time configurations. This includes:

duration: The limit for how many seconds to run the autotuner.

parallelism: How many configurations to run in parallel (defaulted to one).

max iterations: How many iterations to run before finishing.

filename: Name of the input source file that contains main().

optimize strategy: Choice of balanced, area, or performance.

compute fmax: True or false to compute post-mapped results.

quartus compile: True or false to compute post-fitted results.

technique: Designer’s choice of search space techniques (discussed below). AUCBan-

ditMetaTechniqueA is used by default.

chip type: Defaulted to Cyclone V. Intel HLS supports the Cyclone V or later families

of FPGAs. A specific chip can be specified, but the 5CEFA9F23I7 is chosen by

default.

generate new seed: Use previously generated seed file, or generate a new file.

70

seed file: Name of the seed file to use. Seed files are in JSON format and provide a list

of configuration parameters and their starting values. If no seed file is specified,

a new random file is automatically generated.

{output files}: Designer’s choice of output file names (CSV, logs, etc.)

Examples of autotuner config.json and run.sh are provided in Appendix B.

Each configuration result is stored in a common database, as well as a CSV file for

further analysis. Reports are generated with a timeline of the best WNS values and when

the autotuner found them. Every configuration result is assigned a random identifier so that

the results of the translation can be viewed after the autotuner has finished.

4.4.2 Search Space Size and Techniques

The OpenTuner framework provides a large set of available search techniques for explor-

ing a variety of search spaces. The framework also provides provisions for creating custom

or altered techniques. A unique feature of OpenTuner is the ability to apply multiple tech-

niques to a search space, and allocate more tests to techniques which tend to perform better.

Since all results are stored in a common database, every technique benefits from the results

generated by other techniques. The method that OpenTuner explores the search space is

not a focus of this research, and as such the AUCBanditMetaTechniqueA will be used for

all configurations. This group of techniques includes four techniques: Differential Evolu-

tion, Uniform Greedy Mutation, Normal Greedy Mutation, and the Random Nelder Mead

technique. For more information on these techniques, please see Section 3.2.1.

The search space grows for every variable and loop defined in the source file as discussed

in Section 3.2.2. For the given list of test programs, the approximate search space size is

shown in Table 4.14. It is clear from Table 4.14 that exhaustive exploration of the search

space will not be possible for all but the smallest designs.

71

Program Search Space Size

adpcm 1076.95

aes 1020.1

mips 1012.56

gsm 1027.76

FIR Filter 104.44

Table 4.14: Search Space Size of Each Test Program

As the complexity of a program increases, and as resource usage increases, so does the

average time to compile. Each additional stage of the Quartus tool (simulator, mapper,

fitter, timing analysis, etc) that is used to improve the quality of results also increases the

time to compile. Therefore, reducing the number of stages and simplifying the design will

greatly reduce the time to compile, which in turn provides better exploration of the search

space.

Time to Compile (seconds)

Estimated Post-Mapped Post-Fitted Test Computer

adpcm 480 7427 *

Intel i9-9900k

64GB DDR4 RAM

NVME M.2 SSD

aes 120 2112 3526

mips 7 82 165

gsm 44 1115 1595

FIR Filter 5 50 78

Table 4.15: Initial Time to Compile (Without Injected Optimizations)

* adpcm post-fit failed with message ”failed to allocate memory”.

Table 4.15 shows the duration in seconds for the compile time. This compile time does

not include any simulation or verification. The command for each of these include:

Estimated:

72

time i++ source.c -march="Cyclone V" -o output --simulator none

-g0 --fpga-only

Post-Mapped:

time (i++ CHStone_Autotune/mips/mips.c -march="Cyclone V"

-o results/output.prj --simulator none -g0 --fpga-only &&

cp postmap.tcl results/output.prj/quartus &&

sh quartus_sta_postmap.sh results/output.prj/quartus)

Post-Fitted:

time i++ source.c -march="Cyclone V" -o output --simulator none

-g0 --fpga-only --quartus-compile

To be able to get a performance metric, a Quartus timing analysis tool must be used. As

seen in Table 4.15, there is a significant time savings by eliminating the fitter and autotuning

based on the post-mapped results. This optimization, however, is only available when using

the Cyclone V family of FPGAs because later families require some level of the fitter to

have ran to be able to perform a timing analysis. The timing analysis performed by the

post-mapper is not going to have the same quality of results in comparison to the fitter, but

provides sufficiently accurate results for the autotuning process [9].

If resource usage is the only metric of interest, a significant time savings is provided

by eliminating the mapper and fitter steps and relying upon the estimated resources of

the Intel HLS Compiler. This will greatly speed up the autotuning and provide a much

better exploration of the search space. It is also important to note that different solutions

will use varying amounts of resources, and in many cases will use significant amounts of

extra resources; these solutions will take much longer than the initial compiles done without

injected optimizations.

73

4.5 CHStone Autotuning Results

The goal of the autotuner is to provide different synthesized solutions to a given function

written in C. With each adjustment of the configuration, a potentially different solution will

be realized. The objective of the autotuner is to find better solutions than the default solution

provided by the Intel HLS Compiler based upon the configuration settings provided by the

designer as mentioned in Section 4.4.1. The initial benchmark in which all comparisons are

made is the result of the synthesis without any injected optimization parameters; the Intel

HLS Compiler uses all default optimization strategies. In all of the figures below, the initial

starting point is highlighted with a red line, allowing easy comparisons against the autotuned

configuration results. Values indicated above the line are worse (with the exception of Fmax

performance) and all values below the line show improvements.

Occasionally, there will be a truly optimal solution that yields the highest maximum op-

erating clock frequency for performance, and uses the fewest amount of resources. However,

in many cases no one solution will be the best in all categories. In such cases the preferred

solution is the one that best meets the designer’s requirements. The designer specifies these

preferences through the weights that are applied to the results returned by the Intel HLS

Compiler. Refer to Table 4.13 for the weights used for the tests performed below.

4.5.1 Establishing a Starting Point

The autotuning process starts from a random seed configuration (unless a seed file is

specified and provided). This starting point can have a significant impact on the autotuning

results as the number of compilations performed is very small in comparison to the size of

the search space. To determine the impact on the results by adjusting the starting point, the

same design is repeated with different randomized seed configurations. For this test, mips

and aes from the CHStone Benchmarking Suite will be used.

74

Design Seed

Best

WNS

Value

(Initial = 34)

Best

WNS

Iteration

Design Seed

Best

WNS

Value

Best

WNS

Iteration

mips 1 26.93595 90 aes 1 30.27241 205

mips 2 26.93595 91 aes 2 30.27898 72

mips 3 26.93595 48 aes 3 30.27241 75

mips 4 26.93595 69 aes 4 30.27580 220

mips 5 26.93595 162 aes 5 30.27559 206

mips 6 26.93595 37 aes 6 30.27241 203

mips 7 26.93595 47 aes 7 30.27241 165

mips 8 26.93595 151 aes 8 30.27241 197

mips 9 26.93595 46 aes 9 30.27580 73

mips 10 26.93595 105 aes 10 30.27241 188

Table 4.16: Repeated Tests with Different Seeds

The repeated tests shown in Table 4.16 all use the same designs, but a different seed,

or starting configuration. Each test was ran for 1000 iterations, and the first iteration to

achieve the lowest weighted normalized sum value is recorded. The results show that all

tests eventually achieved results of similar quality, but that the initial seed value has a

significant impact on the number of iterations required to find the best weighted normalized

sum value. In the case of aes, some seed values did not allow the autotuner to hone into the

same solutions as other configurations. This problem becomes more apparent the larger the

design. Larger designs have exponentially larger search spaces, and typically take longer to

compile. This will result in a poorer exploration of the search space and a higher dependence

on a good starting seed value.

75

4.5.2 Correlation Between Estimated vs Post-Mapped and Esti-

mated vs Post-Fitted Results

A series of compilations was performed to investigate the relationship between the esti-

mates from the different compilation levels. To isolate the effect of each additional compila-

tion level, the same seed (starting point) was used in each case. The mips design was used

for this comparison due to its relative short compile time.

Source of

Results
ALUTs/ALMs FFs RAM Blocks (M10K)/Bits DSPs Fmax (Mhz)

Estimated 8723 (ALUTs) 5893 3 (Blocks) 4

Post-Mapped 2946 (ALUTs) 4888 6146 (Bits) 6 82.52

Post-Fitted 2164 (ALMs) 4465 9 (Blocks) 6 185.49

Table 4.17: Same-Seed Results for mips

Table 4.17 and Figure 4.1 show that there is no clear correlation between estimated

results, post-mapped results and post-fit results. Each of the levels of the tool yield different

results, and report slightly different metrics which makes direct comparisons difficult. For

example, estimated and post-mapped results report number of ALUTs, but post-fit results

yield the number of ALMs used. ALMs also include some FFs, so the number of FFs used

by the post-fit results will likely show lower than total accumulated FFs.

Another comparison that is of interest to the designer is the comparison of how the

final optimal configurations differ after autotuning. Table 4.18 simplifies the configuration

comparison by showing only the parameters that had the greatest impact on the results for

this design. The major contributions are the loop unrolling and the local memory storage of

the array types.

The results show that the best configuration identified by the autotuner is remarkably

consistent, regardless of which set of estimates is used. As noted earlier, the resource and

performance estimates from the Intel HLS Compiler are less accurate than those from the

Quartus mapper and fitter; however, the Quartus mapper and fitter are typically slow to run,

76

0 200 400 600 800
Compilation Number

20

40

60

80

100

120

140

160

180

No
rm

al
ize

d
Va

lu
es

WNS

(a) Mips Estimated

0 50 100 150 200 250
Compilation Number

100

200

300

400

500

No
rm

al
ize

d
Va

lu
es

WNS

(b) Mips Post-Mapped

0 100 200 300 400 500 600
Compilation Number

50

100

150

200

250

No
rm

al
ize

d
Va

lu
es

WNS

(c) Mips Post-Fitted

Figure 4.1: Same Seed Comparison of Tool Levels - mips77

Parameter Estimated Post-Mapped Post-Fitted

loop unroll 0 1 1 1

loop unroll 1 1 1 2

loop unroll 2 1 1 2

array 0 hls doublepump hls doublepump hls doublepump

array 1 hls singlepump hls singlepump hls singlepump

Table 4.18: Same-Seed Results for mips

thereby limiting the ability of the autotuner to explore design space and find good solutions.

The estimated and the post-mapped resources showed very similar resulting configurations

and only differ through local storage of individual variables (not shown). Post-fit results,

however, do show some differences on the number of loop unrolling, although the impact of

the differences is small. These differences are likely related to the performance increase that

the fitter realizes when actually fitting the component. As mentioned earlier, the fitter will

yield the highest quality of results, but also takes the longest to compute. Table 4.18 does

show that an autotuning system based on the Intel HLS Compiler estimates narrow to a

configuration that is close to optimal for resource usage, and the post-mapped results gives

a similar analysis with performance metrics included, although the true optimal solution

must be found using post-fit results. All levels of the tool could be found useful, depending

on the stage of the design process that the designer is currently exploring. If the designer

is interested in finding a configuration that potentially optimizes the design by reducing

resources, the Intel HLS Compiler estimated results would be valuable. If the designer is

interested in meeting specific design requirements in terms of resource usage or performance,

the post-fit results may be the level of interest, and post-map gives a balance in-between

these two extremes.

4.5.3 WNS CHStone Application Results

Next, the proposed autotuning system was applied to the entire CHStone benchmarking

suite. As discussed earlier, only four of the CHStone applications (namely adpcm, aes,

78

mips and gsm) yielded useful results, with the remainder of the applications either failing

to compile or always optimizing to the same design. The autotuning process was repeated

a number of times for each design in order to investigate the effect of various design goals

(area vs balanced vs performance) and various sources of per-configuration results (Intel HLS

Compiler estimates vs Quartus post-mapper estimates vs Quartus post-fitter results). In each

case, the WNS values described by Equation 3.3 were used to give an overall indication of

how good a configuration is.

An example set of results is shown in Figures 4.2 to 4.4 for the balanced, area and per-

formance optimization goals based on the Intel HLS Compiler estimated results. In adpcm,

aes, and mips an improvement is demonstrated with the autotuner identifying configura-

tions with normalized values below the starting point (10 in the case of Figure 4.2, as per

the balanced weighting scheme found in Table 4.13). For gsm, however, the default Intel

HLS Compiler compilation yielded the best result, such that all autotuned configurations

were inferior in terms of WNS. It should be noted that only a small portion of the search

space has been explored for each of the results, and it is possible that a more optimal solution

could be realized if the autotuner was given more time or more processing power.

When observing the results in Figure 4.2, large differences in the number of compilations

performed by the autotuner may be observed. This is attributed to the difference in the

compile time for the different compilation levels, the size of the designs, and for how long

the autotuner was ran for the given simulation. For the purpose of the research conducted,

the number of compilations needed to find the optimal result is not of primary interest

because the methods of exploring the search space are not being discussed. The focus of the

research is whether the autotuner is able to find configurations that are optimal or useful

to the designer. As such, the autotuner is ran for (up to) 1000 iterations, or for the longest

period of time available at the time (usually overnight, but varies). Most of the results show

an optimal configuration is found within the first third of an autotuning run, but this is not

conclusive because the autotuner is unable to fully explore the search space. In practice, an

organization or designer could likely achieve better results by running the autotuner on a

larger server or cluster of computers in order to better explore the design space.

79

0 10 20 30 40
Compilation Number

5

10

15

20

25

30

35

40

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 200 400 600 800 1000
Compilation Number

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

11.0

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

10

20

30

40

50

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 10 20 30 40 50 60
Compilation Number

0

50

100

150

200

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure 4.2: WNS Estimated Balanced Results

80

0 5 10 15 20 25 30 35
Compilation Number

30

40

50

60

70

80

90

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 200 400 600 800 1000
Compilation Number

30

31

32

33

34

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

20

40

60

80

100

120

140

160

180

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 20 40 60 80 100
Compilation Number

50

100

150

200

250

300

350

400

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure 4.3: WNS Estimated Area Results

81

0 25 50 75 100 125 150 175
Compilation Number

5

10

15

20

25

30

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 200 400 600 800 1000
Compilation Number

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

10

20

30

40

50

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 10 20 30 40 50 60 70 80
Compilation Number

20

40

60

80

100

120

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure 4.4: WNS Estimated Performance Results

82

The complete set of autotuning results for all optimization goals and all sources of results

is plotted in a series of figures found in Appendix C. In some cases, compilations failed

to produce any data points because the computer ran out of resources when compiling.

For completeness, the graphs are presented in the figures but will be blank when no data

is collected. Overall, it is important to note that only the lowest point in each graph is

important, as it represents the best configuration identified by the autotuner. To aid the

visualization process, this optimal point is highlighted with a black circle.

The relative improvement provided by the autotuner is represented by the difference

between the WNS of the default Intel HLS Compiler configuration (red line) and that of

the best autotuned configuration (black circle). These values are based upon the estimated

resources produced by the Intel HLS Compiler. The relative improvement is calculated as:

Relative Improvement(xbest, xinitial) =
xinitial − xbest

xinitial

∗ 100% (4.1)

In the event that the autotuner does not find a better configuration than the initial

(default) configuration, Equation 4.5.3 will yield a relative improvement of 0% which shows

no improvement was found. Table 4.19 summarizes the relative improvement for each of

these designs with each optimization goal.

Balanced Area Performance

Initial Best Improvement (%) Initial Best Improvement (%) Initial Best Improvement (%)

adpcm 10 6.505 34.95 32 32 0 10 5.976 40.24

aes 10 9.479 5.21 32 30.272 5.4 10 9.464 5.36

mips 10 8.671 13.29 32 26.936 15.825 10 8.731 12.69

gsm 10 10 0 32 32 0 10 10 0

Table 4.19: Relative Improvement Based on Estimated Resources

The normalized results of the estimated resource usage shows that the autotuning process

can find solutions that are reduced in resource usage. Adpcm shows a large variation in the

relative improvement when different goals are used, ranging from 0% for an area-based opti-

mization to over 40% for a performance-based optimization. As per the discussion in Section

83

4.5.1, this may be attributed to the starting point of the initial configuration. Adpcm is also

the largest of the CHStone Applications tested, which limits the number of compilations

performed by the autotuner during the test duration. Aes and mips show a more constent

level of improvement with aes being just over 5% and mips being 12% to 16%. Gsm, on the

other-hand, shows no improvement from the autotuner.

Each of the graphs shown in Figures 4.2, 4.3, and 4.4 show a downward trend as the

number of autotuner iterations increases. This shows that the autotuner’s search techniques

are intelligently selecting parameters that yield better results. There is also a large discrep-

ancy of the number of compilations performed for each of the CHStone applications; this is

caused by adpcm taking significantly longer to compile than mips and aes. As the number of

resources used increases, so does the compilation time. Table 4.15 shows the initial time to

compile for each design. Gsm has significantly more variance in the number of resources used

from one iteration to the next. Although the initial number of resources used is relative small,

forced optimization using configurations that have poor values caused an extreme amount

of resources to be used and would cause an overly complicated design. These compilications

would eventually cause a time-out with an error message Failed to allocate memory. To fix

this, some of the C-code would need to be re-written to avoid unnecessarily complicated

access patterns to memory that are difficult to synthesize. This includes (many) function

calls that are not needed and difficult function return values. Gsm also showed the highest

variance in resources used from one configuration to another, with a minimum of less than

500k ALUTs and a maximum of over 12 million ALUTs, shown in Figure 4.5.

Balanced Area Performance

Initial Best Improvement (%) Initial Best Improvement (%) Initial Best Improvement (%)

aes 14 13.6462 2.53 34 33.1319 2.55 18 17.3114 3.83

mips 14 13.9094 0.647 34 33.6240 1.106 18 17.8169 1.017

gsm 14 14 0 34 34 0 18 18 0

Table 4.20: Relative Improvement Based on Post-Mapped Resources

Introducing the mapper adds performance metrics (Fmax) into the WNS calculations.

This results in a similar trend of improved results over time for aes and mips, but with sig-

84

nificantly less compilations performed in a similar amount of time. The relative improvement

is also reduced, but still shows an improvement of up to 4%. As the mapper takes a signifi-

cant amount of time to compile, adpcm was unable to yield any successful compilations. This

could be because the Quartus mapper is unable to fit the whole design into the computer’s

available memory, or the complexity of the design just takes too long to adequately perform

in the time allotted. Similarly, gsm was able to get some successful compilations done, but

not enough data points are produced to provide any meaningful results.

Balanced Area Performance

Initial Best Improvement (%) Initial Best Improvement (%) Initial Best Improvement (%)

aes 14 13.377 4.45 34 32.736 3.72 18 17.312 3.82

mips 14 12.659 9.58 34 29.699 12.65 18 16.376 9.02

gsm 14 14 0 34 34 0 18 18 0

Table 4.21: Relative Improvement Based on Post-Fitted Resources

Introducing the fitter shows results that more closely coincide with the estimated re-

sources from aes showing approximately 4% improvement and mips showing over 10% im-

provement. The fitter suffers from the same problem as the mapper in that compilations

with larger designs take too long, such that the autotuner may not have time to sufficiently

explore the design space. The fitter is ran in addition to the mapper, and uses even more

computer resources to perform. It does, however, provide the most accurate representation

of what will happen in a real FPGA as the resource usage and performance metrics are

actual and not estimated.

4.5.4 Other CHStone Application Results

To confirm that adjusting the optimization scheme actually benefits the end result, this

section takes a closer look into the individual metrics which contribute to the results. Figure

4.5 shows the estimated amount of ALUTs for the CHStone applications using a balanced

weight scheme during the autotuning process.

Gsm could, on a good compile, yield less than 400k estimated ALUTs used in a design,

but if the configuration is chosen poorly it would require over 12 million ALUTs (among

85

0 10 20 30 40
Compilation Number

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

AL
UT

s

Estimated ALUTs

(a) adpcm

0 200 400 600 800 1000
Compilation Number

77500

80000

82500

85000

87500

90000

92500

AL
UT

s

Estimated ALUTs

(b) aes

0 200 400 600 800 1000
Compilation Number

10000

20000

30000

40000

50000

60000

70000

80000

AL
UT

s

Estimated ALUTs

(c) mips

0 10 20 30 40 50 60
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

AL
UT

s

1e7 Estimated ALUTs

(d) gsm

Figure 4.5: CHStone Estimated Resources - ALUTs

86

other resources). Given that the largest Cyclone V FPGA have around 500k ALUTs, this

is clearly an unreasonable result. This causes a huge bottleneck in the autotuner as such

compilations would take a very long to compile, and occasionally even timeout with a failed

to allocate memory error (on a 64 GB RAM computer) or crash the autotuner. For this

reason, the number of compilations successfully performed for gsm and adpcm varied because

compilations would complete in a timely manner until a bad configuration is chosen, which

would then halt the autotuner. Adpcm follows in a similar manner, but does show significant

improvement from the initial compilation: from just under one million ALUTs down to

approximately 500k.

Smaller designs, on the other hand, show a much more consistent amount of ALUTs.

This is likely due to the fact that the design space is more fully explored by the autotuner

due to shorter compile times. There are still the occasional bad configurations chosen, but

they show less variation in comparison to the larger designs. This is likely because the larger

designs user larger data structures which have a larger impact on the resources used, or the

designs used more loops of higher iterations, and if a configuration is chosen poorly for each

of the loops on the same configuration, a design will be created that is too large for the

computer to handle. Essentially, a larger design with more parameters leaves more room for

the compiler to go wrong.

Table 4.22 and 4.23 summarize the initial (pre-autotuning) and post-autotuning results

for each of the designs considered. It is clear from the tables that autotuning has uncovered

solutions which are advantageous from the perspective of resource usage and/or performance.

Specifically: adpcm, aes and mips all showed solutions that improved ALUTs, FFs, RAM

blocks, or DSP blocks at some trade-off of the other resources. Identifying such solutions

manually without an autotuner would be difficult and time-consuming.

When observing the four resource elements resulting from a compilation for adpcm as

shown in Figure 4.6, a strong correlation between ALUTs, RAMs, and FFs occurs for non-

optimal configurations and the time taken to compile. That is to say, if the number of

ALUTs, FFs or RAM blocks used is sufficiently high, and the time to compile is long, it is

very likely that a bad configuration is chosen. If the autotuner could preemptively determine

87

0 10 20 30 40
Compilation Number

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

AL
UT

s
Estimated ALUTs

(a) Adpcm ALUTs

0 10 20 30 40
Compilation Number

500000

1000000

1500000

2000000

2500000

3000000

3500000

FF
s

Estimated FFs

(b) Adpcm FFs

0 10 20 30 40
Compilation Number

1000

2000

3000

4000

5000

6000

7000

Bl
oc

ks

Estimated RAM Blocks

(c) Adpcm RAM Blocks

0 10 20 30 40
Compilation Number

40

50

60

70

80

90

DS
Ps

Estimated DSPs

(d) Adpcm DSP Blocks

0 10 20 30 40
Compilation Number

0

2000

4000

6000

8000

Ti
m

e
(s

)

HLS Compile Time

(e) Adpcm Intel HLS Compile Time

0 10 20 30 40
Compilation Number

5

10

15

20

25

30

35

40

No
rm

al
ize

d
Va

lu
es

WNS

(f) Adpcm WNS Results

Figure 4.6: CHStone Estimated Resources for adpcm

88

Initial Estimate (WNS = 10) Best WNS Autotuned Result

CHStone

Application
ALUTs FFs

RAM

Blocks
DSPs WNS ALUTs FFs

RAM

Blocks
DSPs

adpcm 952120 903635 1071 38 6.5053 504794 453843 601 38

aes 82522 127156 696 0 9.4790 77690 118743 642 0

gsm 365230 311910 91 7 10 365230 311910 91 7

mips 9005 5903 9 4 8.6713 8723 5893 3 4

Table 4.22: Initial CHStone Application Results Versus Best WNS Results

Initial Estimate Best-In-Category Autotuned Result

CHStone

Application
ALUTs FFs

RAM

Blocks
DSPs ALUTs FFs

RAM

Blocks
DSPs

adpcm 952120 903635 1071 38 489255 442017 557 38

aes 82522 127156 696 0 76883 118743 612 0

gsm 365230 311910 91 7 365230 311910 91 7

mips 9005 5903 9 4 7988 4516 1 4

Table 4.23: Initial CHStone Application Results Versus Best-In-Category Results

if a configuration is going to be a bad configuration, a significant amount of compile time

could be saved; three of the forty eight compiles account for over 30% of the accumulated

compile time. Since a strong correlation between estimated results and post-fitted results can

be found (as shown in Figure 4.10), poor estimated results could be used to preemptively

determine that the fitter is not worth running. This potential extension to the tool is

discussed further in Section 5.3.

Similarly, the post-fit results in Figure 4.7 for mips show the same correlation between

resource usage and time to compile as the estimated resources for adpcm.

89

0 50 100 150 200 250
Compilation Number

5000

10000

15000

20000

25000

AL
M

s
ALMs

(a) Mips ALMs

0 50 100 150 200 250
Compilation Number

10000

20000

30000

40000

FF
s

FFs

(b) Mips FFs

0 50 100 150 200 250
Compilation Number

0

25

50

75

100

125

150

175

Bl
oc

ks

RAM Blocks

(c) Mips RAM Blocks

0 50 100 150 200 250
Compilation Number

0

1

2

3

4

5

6

DS
Ps

DSPs

(d) Mips DSP Blocks

0 50 100 150 200 250
Compilation Number

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(s

)

HLS Compile Time

(e) Mips Intel HLS Compile Time

0 50 100 150 200 250
Compilation Number

20

40

60

80

100

No
rm

al
ize

d
Va

lu
es

WNS

(f) Mips WNS Results

Figure 4.7: CHStone Post-Fitted Resources for mips

90

4.6 DSP FIR Filter Autotuning Results

The DSP FIR Filter used for this test is a 129 tap finite impulse response filter. The filter

involves two loops; one for shifting data into the component and the other for multiplying and

accumulating the data by a pre-defined set of coefficients. In the design of the component,

the coefficients are stored as local variables to the component. This ensures that they become

an internal resource to the component. If they are declared as global variables they would

need to be passed into the component as a streamed memory interface, which is out of the

scope of the current autotuner. The complete C code for this filter is provided in Appendix

A.

The complexity of the FIR Filter is low; there are only two for loops and a few variables.

This makes the search space relatively small, which allows for the autotuner to perform a

more complete search. With the way the current C source code is written, the Intel HLS

Compiler is able to come up with a solution that is fairly optimized in terms of resources, as

shown in Figures 4.8 to 4.10.

Integrating the full Quartus compile shows that the initial solution yields the highest Fmax

as well as the lowest amount of resources. This is, however, misleading as the performance

for this component should include additional metrics beyond just Fmax such as throughput.

The throughput for a filter represents the maximum rate at which data may flow through the

filter. If the design takes multiple clock cycles to generate an output sample, the throughput

is decreased. Conversely, if the filter can process multiple samples within a single clock cycle,

the throughput is increased. This is discussed further in Section 4.6.1.

4.6.1 Verification of Results

This research has assumed (and chosen optimization parameters to ensure) that the Intel

HLS Compiler always produces a result that is functionally equivalent to the original C

source file, and that the tool itself does not need to be checked for correctness. As a sanity

check, a test comparing the expected and actual outputs for the FIR Filter can be performed.

The Intel HLS Compiler creates an IP file that can be compiled in Quartus. This compiled

91

0 500 1000 1500 2000
Compilation Number

0

250

500

750

1000

1250

1500

1750

No
rm

al
ize

d
Va

lu
es

WNS

(a) WNS Results

0 500 1000 1500 2000
Compilation Number

0

50000

100000

150000

200000

AL
UT

s

Estimated ALUTs

(b) Estimated ALUTs

0 500 1000 1500 2000
Compilation Number

0

20000

40000

60000

80000

100000

120000

FF
s

Estimated FFs

(c) Estimated FFs

0 500 1000 1500 2000
Compilation Number

0

200

400

600

800

1000

1200

1400
Bl

oc
ks

Estimated RAM Blocks

(d) Estimated RAM Blocks

0 500 1000 1500 2000
Compilation Number

0

5

10

15

20

25

30

35

DS
Ps

Estimated DSPs

(e) Estimated DSP Blocks

0 500 1000 1500 2000
Compilation Number

8

10

12

14

16

18

20

22

24

Ti
m

e
(s

)

HLS Compile Time

(f) Intel HLS Compile Time

Figure 4.8: FIR Filter Estimated Results

92

0 20 40 60 80 100 120 140
Compilation Number

0

20000

40000

60000

80000

100000

AL
UT

s
Estimated ALUTs

(a) Estimated ALUTs

0 20 40 60 80 100 120 140
Compilation Number

0

10000

20000

30000

40000

50000

60000

70000

AL
M

s

ALMs

(b) Post-Fitted ALMs

0 20 40 60 80 100 120 140
Compilation Number

0

10000

20000

30000

40000

50000

FF
s

Estimated FFs

(c) Estimated FFs

0 20 40 60 80 100 120 140
Compilation Number

0

20000

40000

60000

80000

100000

120000

140000

FF
s

FFs

(d) Post-Fitted FFs

0 20 40 60 80 100 120 140
Compilation Number

0

50

100

150

200

250

Bl
oc

ks

Estimated RAM Blocks

(e) Estimated RAM Blocks

0 20 40 60 80 100 120 140
Compilation Number

0

50

100

150

200

250

300

Bl
oc

ks

RAM Blocks

(f) Post-Fitted RAM Blocks

Figure 4.9: FIR Filter Estimated vs Post-Fitted Results

93

0 20 40 60 80 100 120 140
Compilation Number

0

5

10

15

20

25

30

35

DS
Ps

Estimated DSPs

(a) Estimated DSP Blocks

0 20 40 60 80 100 120 140
Compilation Number

0

10

20

30

40

50

60

DS
Ps

DSPs

(b) Post-Fitted DSP Blocks

0 20 40 60 80 100 120 140
Compilation Number

60

80

100

120

140

160

180

200

220

M
hz

Max CLK Frequency

(c) Post-Fitted Fmax

0 20 40 60 80 100 120 140
Compilation Number

0

5000

10000

15000

20000

25000

30000
Ti

m
e

(s
)

HLS Compile Time

(d) Post-Fitted Compile Time

0 20 40 60 80 100 120 140
Compilation Number

0

100

200

300

400

500

N
o
rm

a
liz

e
d
 V

a
lu

e
s

WNS

(e) Estimated WNS Results

0 20 40 60 80 100 120 140
Compilation Number

0

200

400

600

800

1000

1200

1400

No
rm

al
ize

d
Va

lu
es

WNS

(f) Post-Fitted WNS Results

Figure 4.10: FIR Filter Estimated vs Post-Fitted Results

94

result can then be simulated for analysis in Modelsim. Each synthesized solution contains

the signals found in Table 4.24.

Signal Auto-Generated Function

clk yes Base clock for the system.

clock2x yes Included if double-pumping is used by the

module.

<parameter list> no Every parameter to the component is in-

cluded as an input/output.

data out no the return value of the component is

passed out of the module.

busy yes Indicates if the component is processing

data.

done yes Indicates the data out is valid

start yes Signal to the component to start process-

ing data.

stall yes Signal to the component to delay process-

ing data.

Table 4.24: Modelsim Signals Generated By the Intel HLS Compiler

The FIR filter produces a sequence of outputs that resembles the accumulated sum of

the coefficients with a unit input to the filter (a value equal to one). Using Modelsim, a

measure of the delay from reset to the first data out, and a measure of the periodicity of the

outputs can be realized. The first delay becomes a static constant that reflects the setup

time of the circuit. The periodicity, in the case of the FIR filter, represents the maximum

sampling rate of the circuit. For testing purposes, a 1 Mhz clock is used. For a comparison

of the Intel HLS Compiler results, a similar FIR filter was designed using Verilog HDL. The

verilog solution utilizes more advanced DSP techniques such as multiplier sharing and bit

sizing to reduce hardware resource utilization. The code for the verilog solution is provided

in Appendix D.

95

F
ig

u
re

4.
11

:
F

IR
F

il
te

r
V

er
il

og
H

D
L

R
es

u
lt

s

F
ig

u
re

4.
12

:
In

te
l

H
L

S
In

it
ia

l
R

es
u

lt
-

N
o

O
p

ti
m

iz
at

io
n

S
p

ec
ifi

ed

96

F
ig

u
re

4.
13

:
In

te
l

H
L

S
In

it
ia

l
R

es
u

lt
-

F
u

ll
y

U
n

ro
ll

ed

F
ig

u
re

4.
14

:
In

te
l

H
L

S
In

it
ia

l
R

es
u

lt
-

P
ar

ti
al

ly
U

n
ro

ll
ed

97

Figure 4.11 shows the simulation results for the verilog solution. This solution shows a

79 clock cycle delay from the reset to the first valid data out of the circuit. The period of the

output is equal to 8 clock cycles; this delay is caused by the multiplier sharing circuit. The

outputs also show the correct accumulator values, but as the values progress a small amount

of error is introduced into the system. The verilog solution uses strict bit sizing to barely

allow for no overflows, but also creates small rounding errors in the design. This causes some

minor discrepancies in the results from the actual versus the expected results. In traditional

DSP design, it is the job of an experienced and trained DSP engineer to mathematically

analyze the effects of these quantization errors to ensure correct functionality of the design.

Figure 4.12 shows the solution that the initial Intel HLS Compiler translation produces,

which is used as the comparison for all future autotuner configurations. This solution uses all

of the default optimization techniques that the tool performs automatically. No additional

modifications were performed from the C source file to the RTL solution; no bit sizing was

performed and no careful structuring was used to attempt to create an ideal/optimized

solution. As expected, the testing showed that the output samples generated by the Intel

HLS Compiler version of the filter matched the expected values perfectly. The solution is

one that has not been unrolled at all; therefor, this solution will yield the highest operating

clock frequency and the lowest amount of resources needed to implement the circuit (without

further optimization such as bit sizing). It is noted, however, that the solution has a much

lower throughput for the system. Specifically, 285 clock cycles elapse between valid samples

of data out. This relates directly to the maximum sampling rate of the filter, and is not

currently considered by the Intel HLS Compiler or the autotuner, as it requires a level of

understanding of the functionality of the design.

Similarly, the same HLS solution can be fully unrolled. This produces a solution which

has maximized the throughput of the system, and valid data comes out on every clock

edge. From a performance perspective, this solution may be the best solution, but since the

throughput was not taken into account in the autotuner, this solution will not appear to

be optimal for the autotuner. The autotuner only observes the maximum clock frequency

that the circuit can operate at; a metric that Quartus provides based on a timing analysis.

98

To be able to account for the design specific metrics (such as the maximum throughput of

the system), a customized Modelsim simulation would need to be performed in conjunction

with the procedure already being performed by the autotuner. This would add another level

of complexity and time to the compilations. Once the Modelsim simulation is performed, a

frequency measurement could be performed on the auto-generated ’done’ signal. This signal

identifies to the designer that the output has stabilized and is valid for processing.

An example of a partially unrolled solution is also provided in Figure 4.14. This solution

uses the #pragma unroll 10 optimization directive which gets the compiler to unroll the loop

10 times. This shows that partially unrolling the design does yield a solution in-between the

two extremes of fully unrolling and not unrolling the loops.

To get a more accurate comparison, the throughput of the circuit should be considered.

For comparison reasons, we can define the throughput of the circuit as:

Throughput =
FMax

Ncycles

(4.2)

Throughput : Maximum output of a circuit, millions of valid outputs per second

FMax : Maximum operating clock frequency of the circuit, Mhz

Ncycles : Number of cycles between valid data outputs, clock cycles

ALMs FFs RAMs DSPs FMax Throughput

Verilog HDL 2009 3471 0 65 136.22 17.0275

Initial HLS 312 690 2 2 225.38 0.7908

Unrolled HLS 11775 38873 1 60 193.42 193.42

Partially (10)

Unrolled HLS
9725.5 16738 56 20 116.86 0.7304

Table 4.25: Summary of FIR Filter Synthesis Results

The throughput for an FIR filter is related to the maximum sampling rate of the circuit,

but as the application of the component changes, so will the definition of what the throughput

99

represents. For example, an image processing component may have its throughput reflect

the frame rate, or an encryption algorithm may reflect the number of encryptions per second.

Not all examples will be truly periodic, and every component would require special attention

and application into the autotuner. It is for this reason that the throughput of the component

becomes a difficult metric to calculate. Automated analysis of the throughput for an arbitrary

input design for inclusion in the autotuning process is left as a subject for future investigation.

4.6.2 Autotuning with Targets Introduced

Introducing targets allows the designer to specify more rigid requirements for a synthesis

translation. For example, if a certain number of DSP blocks have been budgeted for a

circuit, any solution that is created above that amount should be penalized. This will

allow the autotuner to bias its search for configurations toward those that meet the target

requirements.

From autotuner config.json, targets can be introduced by specifying a resource value that

the synthesis should attempts to reach. If the target value is not met, an applied penalty is

given to the normalized worth of that configuration. This will cause the autotuner to bias

towards solutions and search techniques that meet the target as per Equation 3.4 and 3.5.

The example below shows the user settings used to specify the target for the number of

DSP blocks to be 3 for mips with a penalty factor of 2.0 for not meeting the target:

"target_settings":

{

"_comment": "only choose one of value or percentage.",

"fmax":0,

"ALUTs":"inf",

"FFs":"inf",

"RAMs":"inf",

"DSPs":3,

"ALUTs_as_Percentage":100.0,

100

"FFs_as_Percentage":100.0,

"RAMs_as_Percentage":100.0,

"DSPs_as_Percentage":100.0

},

"target_weights":

{

"target_penalty_factor":2.0,

.

.

.

To see the impact of adding a target value, a comparison between setting different targets

while keeping the same seed for each test and using the area weighting scheme (to emphasize

resource usage over performance) was conducted. Figure 4.15 and Table 4.26 show the

impact of adding a target on the number of DSP blocks.

Initial

WNS

Best

WNS
ALMs FFs RAM Blocks DSPs Fmax

Initial 2202 4606 15 6 178.41

No Target 34.0 29.6987 2122 4374 8 6 188.64

3 DSP Blocks

Penalty Factor: 2.0
50.5 46.1987 2122 4374 8 6 188.64

3 DSP Blocks

Penalty Factor: 4.0
101.03 88.8355 10897 23689 8 0 143.7

3 DSP Blocks

Penalty Factor: 6.0
255.783 89.1643 11540 24412 2 0 160.64

Table 4.26: Summary of mips with DSP Block Targets Specified, Same Seed Configuration,

Varying Penalty Factor

101

0 100 200 300 400 500 600 700 800
Compilation Number

50

100

150

200

250

No
rm

al
ize

d
Va

lu
es

WNS

(a) Penalty Factor = 2.0

0 100 200 300 400 500 600 700 800
Compilation Number

0

1

2

3

4

5

6

DS
Ps

DSPs

(b) Penalty Factor = 2.0

0 100 200 300 400 500
Compilation Number

100

150

200

250

300

No
rm

al
ize

d
Va

lu
es

WNS

(c) Penalty Factor = 4.0

0 100 200 300 400 500
Compilation Number

0

1

2

3

4

5

6

DS
Ps

DSPs

(d) Penalty Factor = 4.0

0 100 200 300 400
Compilation Number

100

150

200

250

300

350

400

450

500

No
rm

al
ize

d
Va

lu
es

WNS

(e) Penalty Factor = 6.0

0 100 200 300 400
Compilation Number

0

1

2

3

4

5

6

DS
Ps

DSPs

(f) Penalty Factor = 6.0

Figure 4.15: Mips with a Target of 3 DSP Blocks and Varying Penalty Factors

102

As the targets get more strict, the worse the initial synthesis results become. This is

shown in Table 4.26’s initial normalized results. Similarly, how hard the constraint is can

be set by adjusting the penalty for not meeting the target. A low penalty factor would

indicate a soft requirement, while a higher penalty factor would indicate a hard requirement.

With a penalty factor of 2.0, the target of 3 DSP blocks is not considered optimal when the

solution with 3 DSP blocks yields five times the other resources; however, as the penalty

factor for the DSP target increases, the more the autotuner is likely to meet the target at the

expense of the other resources. Figure 4.15 shows that increasing the penalty factor causes

the autotuner to put more emphasis on reducing the number of DSP blocks in the final

design, and as such more attempts at finding an optimal solution with reduced DSP blocks

occurs. As desired, when the penalty factor is sufficient, the autotuner is able to identify

designs which meet the target, as highlighted in Table 4.26.

Targets can be specified for a single resource, or multiple targets could be specified for

single design. Each additional target will impose a penalty if not met as per Equations 3.5

and 3.6; although, the autotuners ability to find valid configurations that meet all of the

targets becomes increasingly difficult as more restrictions apply to the design.

103

5. Summary and Conclusions

5.1 Summary

In this research, it has been shown that the OpenTuner Framework can be used to

autotune the Intel HLS Compiler, a commercial HLS tool, for C to RTL translations. There

are several major areas of optimization strategies than can be employed to a C source file

that improve the translation, but this process currently involves a manual iterative procedure

that can prove to be lengthy and requires specialized knowledge of FPGAs. Using the

autotuner, two types of optimizations can be automatically applied to the source file through

placeholders and autotuned to find parameters for better solutions. These areas are loop

optimizations and local memory optimizations.

For some designs that use structures conducive to the optimizations being autotuned,

improved FPGA hardware implementations can be realized through autotuning. This pro-

cess works if the search space is well defined; otherwise, long compile times and complex

optimizations can limit the usefulness because of poor exploration of large search spaces and

unknown variable dependencies by the compiler. Solutions that are small components of

a larger design are best to autotune because their time to compile and search space stays

small enough for the autotuner to properly explore the search space to find the optimal

solutions. Larger solutions are too taxing on the personal computer’s hardware limitations

unless server-grade computers or clusters are employed.

5.1.1 Benefits of Autotuning

Autotuning allows the designer to obtain improvements in the synthesis translation from

C to RTL without making repetitive adjustments to the source code or having a deep knowl-

104

edge of the FPGA internals. The autotuned parameters are automatically injected into the

source code, which assists the designer without manual intervention. The autotuner will

automatically search for configurations that yield results that move towards a user specified

weighting scheme. Several schemes can be built into the framework which allows a designer

to set the focus of the autotuner to bias towards solutions that are optimized for area, per-

formance, or a balance of both. This allows the designer to potentially create a better RTL

synthesis of the C source code in an effortless manner.

In some situations the autotuner will not provide results that meet the requirements of

a design; however, the autotuner results are stored into a database for post-processing. This

allows for the designer to sift through the results in the database to search for a configuration

that was not deemed optimal by the autotuner but may still be more useful for their design

specifications than an existing solution. For example, there may be a linear relationship

between the number of DSP blocks used in a design and the maximum throughput of the

circuit, and the best solution for the design is one that has a balance of both. This is not

ideal as it requires post-processing of the results, but can still provide valuable time savings

over manually checking new configurations.

The autotuner gives three different levels of compilations: an estimate of the resources

used, post-mapped results that give an estimate to the performance (maximum operation

clock frequency) of the circuit, and post-fitted results. The post-fitted results have the

highest quality of results and yields the final solution that would be fit onto the specific

FPGA, but also takes the longest time to compile - a problem that limits the exploration

of a large search space. The estimated and post-mapped results provide solutions that are

a good estimate to the post-fitted results in finding a configuration that is close to optimal,

and can more efficiently explore a large search space in a given amount of time.

To further the practical application of autotuning HLS tools, the specification of target

requirements adds an additional feature that does not exist currently in HLS tools. The

addition of the ability to specify design targets will allow the autotuner to find solutions

that meet more specific design targets; the targets can be adjusted from soft targets to hard

targets through some JSON formatted configuration files. The addition of targets may cause

105

a formerly optimal solution to no longer be the best solution for the specific requirements of

a design. In any case, the autotuner will explore the search space to find a better solution

or verify that no other optimal solutions exist (which is sometimes just as valuable to the

designer). In the case of mips, a higher penalty factor is needed to convince the autotuner

to reduce the number of DSP blocks in the design at the expense of higher ALMs and FFs;

a trade-off that would normally not be considered by the Intel HLS Compiler or Quartus.

This provides much more flexibility in specifying the requirements by the designer.

5.1.2 Limitations of Autotuning

There are several limitations imposed by the Intel HLS Tool in terms of coding style and

structures used. Specifically, pointer arithmetic and complex exit conditions are difficult

for the tool to synthesize, among other limitations regarding code structuring and depen-

dency resolution. The addition of the autotuner and associated tools impose some further

restrictions on the coding style; namely, support for C++ is dropped by using the python C

parsing tool. This limitation could be reduced (or eliminated) through manual placement of

the optimization placeholders or adding more support for source parsing tools.

Long compilation times proved to prevent the autotuner from exploring enough of the

search space for optimal solutions in many cases. This causes the best identified configuration

to be dependent on the initial seed. To assist with the long compile times, three levels of

synthesis results are selectable by the autotuner framework which allows the user to trade off

quality of estimates versus compilation time and computer hardware requirements. When

a design is large enough to cause the computer use all of its RAM, compilations slow down

greatly or cause compilation errors.

The CHStone Benchmarking Suite, which offers a variety of programs over different ap-

plication domains, was used to test the autotuner. Four of these programs were unable to

be autotuned due to coding limitations because of unsupported syntax or coding practices

that do not adhere to Intel’s best practices guidelines. Others, such as the four arithmetic

programs, were autotunable but did not contain any loops or large local memory structures

to be tuned and are thus not applicable to this method. This limited the number of appli-

106

cations to be tested to only four out of twelve CHStone applications. Of the four CHStone

applications that were autotunable, three showed improvements that ranged from 4% to 40%

depending on the optimization scheme and compilation used. Gsm and the DSP FIR fil-

ter did not show any improvements beyond the initial translation with default optimization

strategies.

The applications that did not show improvement by using the autotuner could still benefit

from autotuning if additional optimization goals were to be incorporated into the autotuner.

For example, the maximum sampling rate of the FIR filter is established by the maximum

throughput of the circuit and is an important metric of the performance of the filter; a

metric that is not automatically generated by Intel HLS Compiler or by performing a Quartus

compile. Without including this metric into the performance of the filter, the optimal solution

will always appear to be the one with the fewest resources used and highest operating

clock frequency; however, this solution may in some cases have the slowest throughput

and thus the lowest maximum sampling rate of the filter. This could be improved upon by

incorporating more information into the autotuner such as the latency and throughput of the

synthesized design. Successful integration of the simulator into the autotuner could expand

the qualitative results of the autotuner to include design-specific measurement attributes.

5.2 Thesis Contributions

This thesis has developed a method of using an autotuner, such as the OpenTuner Frame-

work, to autotune a commercial HLS tool to improve the synthesis translation from C to

RTL automatically. The research from this thesis helps identify problems and situations in

which this process works well, and situations in which this process is still lacking.

The main contributions of this thesis are:

1. This thesis provides a method in which an autotuner can be used to autotune a com-

mercial HLS tool for optimization of the tradeoff between resource usage and maximum

operating clock frequency. The OpenTuner Framework can be used to autotune the

Intel HLS Tool through automatic placement of placeholders for optimization param-

107

eters that are passed in through the i++ command. The OpenTuner Framework can

perform the synthesis translation, store the results in a database, and adjust the con-

figuration through a configuration manipulator and a pre-defined search technique.

2. This thesis verifies that the improvement of the HLS translation can be performed

automatically without any HDL or FPGA knowledge. In the current implementation

of the autotuner, the design must contain some loops or (large) local memory structures

to be autotuned.

3. This thesis shows that smaller components of a design are the most conducive to

autotune. Large designs are not conducive to autotuning because of computer hardware

limitations that lead to long compile times. Long compile times prevent the autotuner

from properly exploring a large search space.

4. This thesis verifies that the starting point for the autotuner is important for the final

results of the configuration. As the source file grows, the search space will also grow

exponentially. The autotuner will likely only be able to explore a small fraction of the

search space and so the starting point of the search technique becomes important so

the autotuner can hone in on optimal solutions.

5. This thesis introduces the concept of applying specific design targets, such as resource

usage or performance metrics, to an autotuner to adjust the Intel HLS Compiler con-

version process. It shows that an autotuner can be used to apply optimization pa-

rameters that adjust the synthesis results to meet the targets specified. For practical

applications, the addition of specified resource or performance targets will yield dif-

ferent solutions than what the default Intel HLS Compiler translation would normally

produce. Such solutions have great practical value, particularly when a component is

to be included as part of a larger design and must meet a resource or performance bud-

get. The targets can be specified as hard targets (must meet) or soft targets (should

meet) by adjusting a penalty term which is applied to configurations not meeting the

target requirement.

108

5.3 Future Work

There are several areas that have been identified for future investigation on the process

of autotuning a commercial HLS tool automatically without any HDL or FPGA specific

knowledge:

1. The addition of the simulator to the autotuner procedure would allow for better per-

formance metrics to be measured. These performance metrics could be used to better

select a configuration based on performance metrics that are more specific to a design’s

requirements, such as throughput of the component.

2. More tunable parameters could be introduced to the autotuner if some intelligent

checking for functionality is performed to ensure that the parameters being tuned do

not break functionality. For example, the data types of the variables in the C code

could be autotuned.

3. An exploration into intelligently selecting a starting point could yield better autotuner

results in fewer iterations. This would make the process more practical and more

efficient.

4. Clustering computers together to solve one autotuner’s task could yield a better ex-

ploration of the search space and better results from the autotuner. Communication

between the cluster would need to be explored as well as proper database handling.

5. The OpenTuner Framework could be built upon to better tailor the needs of HLS trans-

lations. This includes adding proper configuration types for factored inputs so that

search techniques can find optimal solutions faster, and incorporating design targets

and associated search techniques. Preemptively determining if a configuration would

yield poor results could be explored, and using the correlation between estimated re-

sults and post-fitted results could be developed.

109

A. DSP FIR Filter Example

#include ”HLS/hls.h”

component int FIR Filter(int data in)

{

static signed int data out;

static int data[130];

static int index = 0;

static const int coefficient [130] = {

−86, −33, 50, 105, 87, 5, −87, −124, −75, 31, 120, 128, 45, −73, −143, −111, 3, 117, 146, 65,

−70, −156, −121, 16, 155, 182, 57, −139, −257, −185, 58, 310, 372, 152, −239, −538, −495,

−68, 505, 832, 619, −90, −885, −1212, −740, 358, 1430, 1715, 849, −801, −2247, −2433,

−942, 1579, 3621, 3627, 1012, −3204, −6600, −6427, −1056, 8934, 20685, 30129, 33740,

30129, 20685, 8934, −1056, −6427, −6600, −3204, 1012, 3627, 3621, 1579, −942, −2433,

−2247, −801, 849, 1715, 1430, 358, −740, −1212, −885, −90, 619, 832, 505, −68, −495, −538,

−239, 152, 372, 310, 58, −185, −257, −139, 57, 182, 155, 16, −121, −156, −70, 65, 146, 117,

3, −111, −143, −73, 45, 128, 120, 31, −75, −124, −87, 5, 87, 105, 50, −33, −86};

data out = 0;

index = 0;

for(index = (129); index > 0; index−−)

{

data[index] = data[index−1];

}

data[0] = data in;

for(index = (129); index >= 0; index−−)

{

data out += (data[index]) ∗ (coefficient [index]);

}

return data out;

}

110

B. User Defined Configuration File

B.1 autotuner config.json

"hls_advanced_config":

{

"pragma_unroll": "True",

"pragma_loop_coalesce": "True",

"pragma_max_concurrency": "True",

"pump_and_port": "True",

"reg_mem":"True",

"hls_max_concurrency": "False",

"pragma_ivdep": "False",

"floating_point_relaxed": "False",

"floating_point_conversion": "False",

"floating_point_precision": "Flase",

"array_banks_width": "False"

},

"target_settings":

{

"fmax":0,

"ALUTs":"inf",

"FFs":"inf",

"RAMs":"inf",

"DSPs":"inf",

111

"ALUTs_as_Percentage":100.0,

"FFs_as_Percentage":100.0,

"RAMs_as_Percentage":100.0,

"DSPs_as_Percentage":100.0

},

"target_weights":

{

"target_penalty_factor":2.0,

"area": {

"fmax": 2,

"ALUTs": 8,

"FFs": 8,

"RAMs": 8,

"DSPs": 8

},

"balanced": {

"fmax": 4,

"ALUTs": 4,

"FFs": 2,

"RAMs": 2,

"DSPs": 2

},

"performance": {

"fmax": 8,

"ALUTs": 2,

"FFs": 4,

"RAMs": 2,

"DSPs": 2

}

}

112

B.2 run.sh

#!/bin/bash

virtualenv sandbox

source sandbox/bin/activate

pip install pycparser

pip install enum

pip install sqlalchemy

pip install fn

pip install numpy

export LM_LICENSE_FILE=

export PATH=/opt/intelFPGA/18.1/modelsim_ase/bin: \

/opt/intelFPGA/18.1/quartus/bin:$PATH

source /opt/intelFPGA/18.1/hls/init_hls.sh

export LD_PRELOAD=/usr/lib64/libtcmalloc.so

duration=864000 #in seconds

parallelism=1 #number of concurrent compiles

max_iterations=1000 #limit control

name="adpcm"

optimize_type="balanced" #balanced, area, or performance

#Only put either compute_fmax or quartus_compile true, not both

compute_fmax=1 #do a partial quartus compile (Mapper Only)

quartus_compile=0 #do a full quartus compile (Fitter included)

technique="AUCBanditMetaTechniqueA"

chip_type="Cyclone V" #Cyclone V, Stratix V, Arria10

hls_project_directory="sourcefiles" #relative paths (./) not supported

results_directory="results" #relative paths (./) not supported.

main_file_name="source.c" #the file that contains the component

113

final_result="log_best.txt"

other_results="log_other.txt"

detailed_log_name="log_detailed.txt"

csv_log_name="csv_log_"

csv_log_name+=$name

csv_log_name+="_"

csv_log_name+=$optimize_type

csv_log_name+="_"

if [$compute_fmax -eq 1]

then

csv_log_name+="map"

elif [$quartus_compile -eq 1]

then

csv_log_name+="fit"

else

csv_log_name+="est"

fi

csv_log_name+=".csv"

seed_file="seed.json" #NOTE: OpenTuner supports multiple seed files...

#NOTE: seed.json is the auto-generated name

generate_new_seed=1 #can be "y/n" "yes/no" "1/0" etc.

#Tells autotuner to create a new seed.json

auto_parameter_injection=1 #if not set, user must populate or provide

#results/new_sourcefile.c and

#intel_hls_parameters.json

#SEE ALSO: autotuner_config.json for more settings

114

python autotuner.py \

--stop-after=$duration \

--parallel-compile \

--parallelism=$parallelism \

--no-dups \

--technique=$technique \

--test-limit=$max_iterations \

--results-log=$final_result \

--results-log-details=$other_results \

--hls-directory=$hls_project_directory \

--results-directory=$results_directory \

--seed-configuration="$seed_file" \

--generate-new-seed=$generate_new_seed \

--log-detailed=$detailed_log_name \

--compute-fmax=$compute_fmax \

--main-file-name=$main_file_name \

--quartus-compile=$quartus_compile \

--chip-type="$chip_type" \

--optimize_type=$optimize_type \

--log-csv="$csv_log_name" \

--label="$csv_log_name" \

--auto-parameter-injection=$auto_parameter_injection

115

C. Post-Mapped and Post-Fitted CHStone Results

0 10 20 30 40
Compilation Number

5

10

15

20

25

30

35

40

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 200 400 600 800 1000
Compilation Number

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

11.0

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

10

20

30

40

50

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 10 20 30 40 50 60
Compilation Number

0

50

100

150

200

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.1: WNS Estimated Balanced Results

116

0 5 10 15 20 25 30 35
Compilation Number

30

40

50

60

70

80

90

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 200 400 600 800 1000
Compilation Number

30

31

32

33

34

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

20

40

60

80

100

120

140

160

180

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 20 40 60 80 100
Compilation Number

50

100

150

200

250

300

350

400

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.2: WNS Estimated Area Results

117

0 25 50 75 100 125 150 175
Compilation Number

5

10

15

20

25

30

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 200 400 600 800 1000
Compilation Number

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

10

20

30

40

50

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 10 20 30 40 50 60 70 80
Compilation Number

20

40

60

80

100

120

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.3: WNS Estimated Performance Results

118

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 5 10 15 20 25 30
Compilation Number

13.75

14.00

14.25

14.50

14.75

15.00

15.25

15.50

15.75

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

20

40

60

80

100

120

140

160

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 5 10 15 20 25 30 35
Compilation Number

15

20

25

30

35

40

45

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.4: WNS Post-Mapped Balanced Results

119

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 10 20 30 40 50 60
Compilation Number

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

100

200

300

400

500

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 1 2 3 4 5 6
Compilation Number

30

40

50

60

70

80

90

100

110

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.5: WNS Post-Mapped Area Results

120

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 5 10 15 20 25
Compilation Number

17.5

18.0

18.5

19.0

19.5

20.0

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 200 400 600 800 1000
Compilation Number

20

40

60

80

100

120

140

160

180

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 1 2 3 4 5
Compilation Number

20

25

30

35

40

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.6: WNS Post-Mapped Performance Results

121

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 10 20 30 40
Compilation Number

13.5

14.0

14.5

15.0

15.5

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 50 100 150 200 250
Compilation Number

20

40

60

80

100

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.7: WNS Post-Fitted Balanced Results

122

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 10 20 30 40
Compilation Number

33.0

33.5

34.0

34.5

35.0

35.5

36.0

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 50 100 150 200 250
Compilation Number

50

100

150

200

250

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.8: WNS Post-Fitted Area Results

123

0.0 0.2 0.4 0.6 0.8 1.0
Compilation Number

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
es

WNS

(a) adpcm

0 5 10 15 20 25 30 35
Compilation Number

17.5

18.0

18.5

19.0

19.5

20.0

20.5

No
rm

al
ize

d
Va

lu
es

WNS

(b) aes

0 50 100 150 200
Compilation Number

20

40

60

80

100

No
rm

al
ize

d
Va

lu
es

WNS

(c) mips

0 10 20 30 40 50
Compilation Number

20

25

30

35

40

No
rm

al
ize

d
Va

lu
es

WNS

(d) gsm

Figure C.9: WNS Post-Fitted Performance Results

124

D. Verilog Code for FIR Filter

Code c© Ethan Paramor, 2019. Used with permission.

module FIR Filter (

input fast clk ,

input sys clk,

input clk ena,

input reset,

input [2:0] RX sync,

input signed [17:0] x in,

output reg signed [17:0] y

);

integer i;

reg [2:0] mux counter;

reg signed [17:0] x [128:0]; // [1s17] Delay registers as 129x 18−bit arrays

reg signed [17:0] b [64:0]; // [1s17] multiplier coefficients , as 65x 18−bit arrays

reg signed [17:0] mult data in [8:0]; // [2s16] Data in (from sum level 1), post multiplexer

// for fast multiplier , as 9x 18−bit packed arrays

reg signed [17:0] mult coef in [8:0]; // [1s17] Coefficient in, post multiplexer for fast

// multiplier , as 9x 18−bit packed arrays

reg signed [35:0] mult result [8:0]; // [3s33] multiplier output (untrimmed), as 9x 36−bit

// packed arrays

reg signed [17:0] mult trim [8:0]; // [1s17] trim multiplier output, as 9x 18−bit packed arrays

reg signed [17:0] mult out fast [64:0]; // [1s17] multiplier outputs (trimmed, clocked at

// fast clk), as 65x 36−bit packed arrays

reg signed [17:0] mult out pipe [64:0]; // [1s17] multiplier outputs (trimmer, pipelined from

125

// fast clk registers), as 65x 36−bit packed arrays

reg signed [35:0] mult out noShare[64:0]; // [1s17] Non−shared multiplier setup,

// 65x 18−bit packed arrays

reg signed [17:0] sum level 1 [64:0]; //[1s17] 1st level of adders, as 65x 18−bit packed arrays

reg signed [17:0] sum level 2 [32:0]; //[1s17] 2nd level of adders, as 33x 18−bit packed arrays

reg signed [17:0] sum level 3 [16:0]; //[1s17] 3rd level of adders, as 17x 18−bit packed arrays

reg signed [17:0] sum level 4 [8:0]; //[1s17] 4th level of adders, as 9x 18−bit packed arrays

reg signed [17:0] sum level 5 [4:0]; //[1s17] 5th level of adders, as 5x 18−bit packed arrays

reg signed [17:0] sum level 6 [2:0]; //[1s17] 6th level of adders, as 3x 18−bit packed arrays

reg signed [17:0] sum level 7 [1:0]; //[1s17] 7th level of adders, as 2x 18−bit packed arrays

reg signed [17:0] sum level 8; //[1s17] 8th level of adders, as 1x 18−bit packed array

always @ (posedge fast clk)

if (reset == 1’b1)

mux counter <= 3’d0;

else

mux counter <= mux counter + 3’d1;

// Initial signal input

always @ (posedge sys clk)

if (reset == 1’b1)

x[0] <= 18’sd0;

else if (clk ena == 1’b1)

x[0] <= {x in[17], x in [17:1]}; // [2s16] Sign extend input

// Set up delay registers

//129 delay registers total , take previous value on next clock cycle

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for(i=1; i<129; i=i+1)

x[i] <= 18’sd0;

end

else if (clk ena == 1’b1)

begin

126

for(i=1; i<129; i=i+1)

x[i] <= x[i−1]; // [2s16]

end

// First level of Adders (65)

/∗

Add mirrored x values, according to symmetry

∗/

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for (i=0; i<64; i=i+1)

sum level 1[i] = 18’sd0;

end

else if (clk ena == 1’b1)

begin

for (i=0; i<64; i=i+1)

sum level 1[i] = x[i] + x[128−i]; // [2s16]

end

// Pipeline x[64] to maintain timing with sum level 1

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 1 [64] = 18’sd0;

else if (clk ena == 1’b1)

sum level 1 [64] = x[64]; // [1s17]

always @ ∗

for(i=0; i<=64; i=i+1)

mult out noShare[i] <= sum level 1[i] ∗ b[i];

// Second Level of Adders (33)

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for(i=0; i<32; i=i+1)

127

sum level 2[i] <= 18’sd0; // [1s17]

end

else if (clk ena == 1’b1)

begin

for(i=0; i<32; i=i+1)

sum level 2[i] <= mult out noShare[2∗i][33:16] + mult out noShare[2∗i+1][33:16];//[1s17]

end

// Pipeline sum level 1[64] to maintain timing with sum level 2

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 2 [32] <= 18’sd0;

else if (clk ena == 1’b1)

sum level 2 [32] <= mult out noShare[64][33:16]; // [1s17]

// Third Level of Adders (17)

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for(i=0; i<16; i=i+1)

sum level 3[i] <= 18’sd0; // [1s17]

end

else if (clk ena == 1’b1)

begin

for(i=0; i<16; i=i+1)

sum level 3[i] <= sum level 2[2∗i] + sum level 2[2∗i+1]; // [1s17]

end

// Pipeline sum level 2[32] to maintain timing with sum level 3

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 3 [16] <= 18’sd0;

else if (clk ena == 1’b1)

sum level 3 [16] <= sum level 2[32]; // [1s17]

// Fourth Level of Adders (9)

128

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for(i=0; i<8; i=i+1)

sum level 4[i] <= 18’sd0; // [1s17]

end

else if (clk ena == 1’b1)

begin

for(i=0; i<8; i=i+1)

sum level 4[i] <= sum level 3[2∗i] + sum level 3[2∗i+1]; // [1s17]

end

// Pipeline sum level 3[16] to maintain timing with sum level 4

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 4 [8] <= 18’sd0;

else if (clk ena == 1’b1)

sum level 4 [8] <= sum level 3[16]; // [1s17]

// Fifth Level of Adders (5)

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for(i=0; i<4; i=i+1)

sum level 5[i] <= 18’sd0; // [1s17]

end

else if (clk ena == 1’b1)

begin

for(i=0; i<4; i=i+1)

sum level 5[i] <= sum level 4[2∗i] + sum level 4[2∗i+1]; // [1s17]

end

// Pipeline sum level 4 [8] to maintain timing with sum level 5

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 5 [4] <= 18’sd0;

129

else if (clk ena == 1’b1)

sum level 5 [4] <= sum level 4[8]; // [1s17]

// Sixth Level of Adders (3)

always @ (posedge sys clk)

if (reset == 1’b1)

begin

for(i=0; i<2; i=i+1)

sum level 6[i] <= 18’sd0; // [1s17]

end

else if (clk ena == 1’b1)

begin

for(i=0; i<2; i=i+1)

sum level 6[i] <= sum level 5[2∗i] + sum level 5[2∗i+1]; // [1s17]

end

// Pipeline sum level 5 [4] to maintain timing with sum level 6

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 6 [2] <= 18’sd0;

else if (clk ena == 1’b1)

sum level 6 [2] <= sum level 5[4]; // [1s17]

// Seventh Level of Adders (2)

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 7 [0] <= 18’sd0; // [1s17]

else if (clk ena == 1’b1)

sum level 7 [0] <= sum level 6[0] + sum level 6[1]; // [1s17]

//Pipelining

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 7 [1] <= 18’sd0; // [1s17]

else if (clk ena == 1’b1)

sum level 7 [1] <= sum level 6[2]; // [1s17]

130

// Eighth (Final) Level of Adders (1)

always @ (posedge sys clk)

if (reset == 1’b1)

sum level 8 <= 18’sd0;

else if (clk ena == 1’b1)

sum level 8 <= sum level 7[0] + sum level 7[1];

//Pipeline Final Output

always @ (posedge sys clk)

if (reset == 1’b1)

y <= 18’sd0;

else if (clk ena == 1’b1)

y <= sum level 8;

/∗∗/

// Coefficients

/∗∗/

// Beta = 0.14, Theoretical MER of 43 dB

always @ (negedge reset)

begin

b[0] <= −18’sd86;

b[1] <= −18’sd33;

b[2] <= 18’sd50;

b[3] <= 18’sd105;

b[4] <= 18’sd87;

b[5] <= 18’sd5;

b[6] <= −18’sd87;

b[7] <= −18’sd124;

b[8] <= −18’sd75;

b[9] <= 18’sd31;

b[10] <= 18’sd120;

b[11] <= 18’sd128;

b[12] <= 18’sd45;

b[13] <= −18’sd73;

131

b[14] <= −18’sd143;

b[15] <= −18’sd111;

b[16] <= 18’sd3;

b[17] <= 18’sd117;

b[18] <= 18’sd146;

b[19] <= 18’sd65;

b[20] <= −18’sd70;

b[21] <= −18’sd156;

b[22] <= −18’sd121;

b[23] <= 18’sd16;

b[24] <= 18’sd155;

b[25] <= 18’sd182;

b[26] <= 18’sd57;

b[27] <= −18’sd139;

b[28] <= −18’sd257;

b[29] <= −18’sd185;

b[30] <= 18’sd58;

b[31] <= 18’sd310;

b[32] <= 18’sd372;

b[33] <= 18’sd152;

b[34] <= −18’sd239;

b[35] <= −18’sd538;

b[36] <= −18’sd495;

b[37] <= −18’sd68;

b[38] <= 18’sd505;

b[39] <= 18’sd832;

b[40] <= 18’sd619;

b[41] <= −18’sd90;

b[42] <= −18’sd885;

b[43] <= −18’sd1212;

b[44] <= −18’sd740;

b[45] <= 18’sd358;

b[46] <= 18’sd1430;

b[47] <= 18’sd1715;

b[48] <= 18’sd849;

b[49] <= −18’sd801;

132

b[50] <= −18’sd2247;

b[51] <= −18’sd2433;

b[52] <= −18’sd942;

b[53] <= 18’sd1579;

b[54] <= 18’sd3621;

b[55] <= 18’sd3627;

b[56] <= 18’sd1012;

b[57] <= −18’sd3204;

b[58] <= −18’sd6600;

b[59] <= −18’sd6427;

b[60] <= −18’sd1056;

b[61] <= 18’sd8934;

b[62] <= 18’sd20685;

b[63] <= 18’sd30129;

b[64] <= 18’sd33740;

end

endmodule

133

References

[1] “Intel High Level Synthesis Compiler.” https://www.intel.com/content/www/us/

en/programmable/documentation/nml1505158467345.html, April 2019 (accessed 10-

June-2019). UG-20107.

[2] A. Pandit, “Introduction to FPGA and It’s Pro-

gramming Tools.” https://circuitdigest.com/tutorial/

what-is-fpga-introduction-and-programming-tools, 2019, (accessed 10-June-

2019).

[3] M. Santarini, “Vivado, Inside the New Xilinx Design Suite.” https://www.

techdesignforums.com/practice/technique/vivado-xilinx-overview/, 2012 (ac-

cessed 10-June-2019).

[4] “Intel High Level Synthesis Compiler.” https://www.intel.com/content/www/us/

en/programmable/documentation/ewa1462824960255.html, April 2019 (accessed 10-

June-2019). UG-20037.

[5] “Intel HLS Compiler Reference Manual.” https://www.intel.com/content/www/us/

en/programmable/documentation/ewa1462824960255.html, June 2019 (accessed 10-

June-2019). MNL-1083.

[6] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. O’Reilly,

and S. Amarasinghe, “OpenTuner: An Extensible Framework for Program Autotun-

ing,” in 2014 23rd International Conference on Parallel Architecture and Compilation

Techniques (PACT), pp. 303–315, Aug 2014.

134

https://www.intel.com/content/www/us/en/programmable/documentation/nml1505158467345.html
https://www.intel.com/content/www/us/en/programmable/documentation/nml1505158467345.html
https://circuitdigest.com/tutorial/what-is-fpga-introduction-and-programming-tools
https://circuitdigest.com/tutorial/what-is-fpga-introduction-and-programming-tools
https://www.techdesignforums.com/practice/technique/vivado-xilinx-overview/
https://www.techdesignforums.com/practice/technique/vivado-xilinx-overview/
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html

[7] J. Ansel, “Autotuning Programs with Algorithmic Choice,” MIT - CSAIL, 2014. Pre-

sentation Slides.

[8] “Cyclone V Device Overview.” https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf, May 2018

(accessed 10-June-2019). CV-51001.

[9] “Introduction to the Quartus II Software.” https://www.intel.com/content/dam/

www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf, 2010

(accessed 10-June-2019). MNL-01055-1.0.

[10] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty Years

of FPGA Technology,” Proceedings of the IEEE, vol. 103, pp. 318–331, March 2015.

[11] H. D. Foster, “FPGA Verification Challenges and Opportunities.”

https://verificationacademy.com/verification-horizons/

november-2018-volume-14-issue-3/

fpga-verification-challenges-and-opportunities, 2018.

[12] H. Foster, “2018 FPGA Functional Verification Trends,” pp. 40–45, 12 2018.

[13] C. Spear and G. Tumbush, SystemVerilog for Verification. Springer, 2012.

[14] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE Design

Test of Computers, vol. 26, pp. 18–25, July 2009.

[15] M. Dossis, “High-Level Synthesis: A Practical Perspective,” Advances in Robotics and

Automation, vol. 3, no. 3, pp. 1–3, 2014.

[16] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson, “The Effect

of Compiler Optimizations on High-Level Synthesis for FPGAs,” in 2013 IEEE 21st

Annual International Symposium on Field-Programmable Custom Computing Machines,

pp. 89–96, April 2013.

[17] Y. Uguen, F. de Dinechin, and S. Derrien, “A High-Level Synthesis Approach Optimiz-

ing Accumulations in Floating-Point Programs Using Custom Formats and Operators,”

135

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://verificationacademy.com/verification-horizons/november-2018-volume-14-issue-3/
https://verificationacademy.com/verification-horizons/november-2018-volume-14-issue-3/
fpga-verification-challenges-and-opportunities

in 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pp. 80–80, April 2017.

[18] E. Homsirikamol and K. G. George, “Toward a New HLS-Based Methodology for

FPGA Benchmarking of Candidates in Cryptographic Competitions: The CAESAR

Contest Case Study,” in 2017 International Conference on Field Programmable Tech-

nology (ICFPT), pp. 120–127, Dec 2017.

[19] J. Johnson, “List and Comparison of FPGA Companies.” http://www.fpgadeveloper.

com/2011/07/list-and-comparison-of-fpga-companies.html, 2011, (accessed 10-

June-2019).

[20] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. Brown, and

J. Anderson, “LegUp: An Open-Source High-Level Synthesis Tool for FPGA-Based

Processor/Accelerator Systems,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 13, 09 2013.

[21] “Intel HLS Compiler Product Brief.” https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/products/hls/hls-production-brief.pdf, 2019 (ac-

cessed 10-June-2019).

[22] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown,

F. Ferrandi, J. Anderson, and K. Bertels, “A Survey and Evaluation of FPGA High-

Level Synthesis Tools,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 35, pp. 1591–1604, Oct 2016.

[23] “LegUp Documentation, Release 4.0.” http://legup.eecg.utoronto.ca/docs/4.0/

legup-4.0-doc.pdf, October 2015 (accessed 10-June-2019).

[24] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. Anderson, “The Effect

of Compiler Optimizations on High-Level Synthesis for FPGAs,” in 2013 IEEE 21st

Annual International Symposium on Field-Programmable Custom Computing Machines,

pp. 89–96, April 2013.

136

http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/products/hls/hls-production-brief.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/products/hls/hls-production-brief.pdf
http://legup.eecg.utoronto.ca/docs/4.0/legup-4.0-doc.pdf
http://legup.eecg.utoronto.ca/docs/4.0/legup-4.0-doc.pdf

[25] Huan Li and Wenhua Ye, “Efficient Implementation of FPGA Based on Vivado High

Level Synthesis,” in 2016 2nd IEEE International Conference on Computer and Com-

munications (ICCC), pp. 2810–2813, Oct 2016.

[26] P. Bruel, A. Goldman, S. R. Chalamalasetti, and D. Milojicic, “Autotuning high-level

synthesis for fpgas using opentuner and legup,” in 2017 International Conference on

ReConFigurable Computing and FPGAs (ReConFig), pp. 1–6, Dec 2017.

[27] M. Belwal and T. S. B. Sudarshan, “Source-to-Source Translation: Impact on the Per-

formance of High Level Synthesis,” in 2017 International Conference on Computing,

Communication and Automation (ICCCA), pp. 951–956, May 2017.

[28] C. Kuan, J. Li, C. Chen, and J. K. Lee, “C++ Compiler Supports for Embedded

Multicore DSP Systems,” in 2011 40th International Conference on Parallel Processing

Workshops, pp. 214–221, Sep. 2011.

[29] E. Bendersky, “PyCParser.” https://pypi.org/project/pycparser/, (accessed 10-

June-2019).

[30] “Docker.” https://www.docker.com/resources/what-container, (accessed 10-June-

2019).

[31] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1–70, Aug

2008.

[32] P. White, “Advanced QRD Optimization with Intel HLS Compiler,” Intel Corp., 2017.

WP-01277-1.0.

[33] P. R. Panda, N. Sharma, S. Kurra, K. A. Bhartia, and N. K. Singh, “Exploration of

Loop Unroll Factors in High Level Synthesis,” in 2018 31st International Conference on

VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID),

pp. 465–466, Jan 2018.

[34] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii,

“CHStone: A Benchmark Program Suite for Practical C-Based High-Level Synthesis,”

137

https://pypi.org/project/pycparser/
https://www.docker.com/resources/what-container

in 2008 IEEE International Symposium on Circuits and Systems, pp. 1192–1195, May

2008.

[35] A. Dubey, A. Mishra, and S. Bhutada, “Comparative Study of CHStone Benchmarks

on Xilinx Vivado High Level Synthesis Tool,” 2015.

138

	Permission to Use
	Disclaimer
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 FPGAs
	1.2 HLS
	1.2.1 Intel HLS Compiler
	1.2.2 Other HLS Tools
	1.2.3 Design Flow Using Intel HLS
	1.2.4 Intel HLS Compiler Advantages Over Traditional HDL Development
	1.2.5 Challenges of Using the Intel HLS Compiler

	1.3 Intel HLS Compiler Automation
	1.3.1 Autotuning Using OpenTuner
	1.3.2 PyCParser: Parsing C Code and Injecting Compiler Directives
	1.3.3 Docker

	1.4 Research Objective
	1.5 Thesis Outline

	2 Autotuning Parameters
	2.1 Introduction
	2.2 Intel HLS Optimization Techniques
	2.2.1 HLS Interfaces
	2.2.2 Data Types
	2.2.3 Local Memory Optimizations
	2.2.4 Loop Optimizations
	2.2.5 Coding Practice Related to HLS Optimization

	2.3 Autotunable Parameters
	2.3.1 Choosing Tunable Parameters
	2.3.2 Defining Parameter Ranges
	2.3.3 Injecting Parameters Into Source Code
	2.3.4 Limitations

	3 OpenTuner Configuration and Execution
	3.1 OpenTuner Framework
	3.1.1 Search Techniques
	3.1.2 Configuration Manipulator
	3.1.3 Objectives

	3.2 OpenTuner Usage for Tuning Intel HLS
	3.2.1 Search Techniques
	3.2.2 Search Space Size
	3.2.3 Results Generation
	3.2.4 Compilation Types
	3.2.5 Adjusting Optimization Preferences
	3.2.6 Specifying Targets

	4 Results
	4.1 Impact of Individual Parameters
	4.1.1 Memory Optimizations
	4.1.2 Loop Optimizations

	4.2 Autotuning the Intel HLS Compiler
	4.2.1 Use of CHStone

	4.3 Establishing the Reference for the Autotuner
	4.3.1 CHStone Applications
	4.3.2 DSP FIR Filter

	4.4 Setup of Autotuning for Intel HLS Compiler Applications
	4.4.1 OpenTuner Configuration
	4.4.2 Search Space Size and Techniques

	4.5 CHStone Autotuning Results
	4.5.1 Establishing a Starting Point
	4.5.2 Correlation Between Estimated vs Post-Mapped and Estimated vs Post-Fitted Results
	4.5.3 WNS CHStone Application Results
	4.5.4 Other CHStone Application Results

	4.6 DSP FIR Filter Autotuning Results
	4.6.1 Verification of Results
	4.6.2 Autotuning with Targets Introduced

	5 Summary and Conclusions
	5.1 Summary
	5.1.1 Benefits of Autotuning
	5.1.2 Limitations of Autotuning

	5.2 Thesis Contributions
	5.3 Future Work

	A DSP FIR Filter Example
	B User Defined Configuration File
	B.1 autotuner_config.json
	B.2 run.sh

	C Post-Mapped and Post-Fitted CHStone Results
	D Verilog Code for FIR Filter
	References

