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ABSTRACT 

 The process of urea recycling to the gastro-intestinal tract (GIT) is an evolutionary 

adaptation that allows ruminants to maintain a positive nitrogen (N) balance, particularly when 

faced with a dietary protein deficit. Recycled urea-N can enter all GIT compartments; however, 

the rumen is where most of the anabolic usage occurs as it provides a N source for microbial 

protein synthesis, thus providing amino acids to the host animal when microbial protein is digested 

at the small intestine. The objective of this thesis research was to determine the effects of forage 

level and corn grain processing on N utilization, primarily focusing on dietary effects on whole-

body urea kinetics and apparent N balance, and ex vivo serosal-to-mucosal urea flux (Jsm-urea) 

across ruminal, duodenal, and cecal epithelia. Additionally, to better understand the mechanisms 

associated with whole-body N utilization across the aforementioned GIT regions, dietary effects 

on regional fermentation characteristics and messenger ribonucleic acid (mRNA) expression of 

urea transporters (UT) and aquaporins (AQP) were also assessed. Sheep were used as an 

experimental model for ruminants. Thirty-two wether lambs (37.2 ± 1.7 kg initial body weight 

[BW]) were blocked by BW into groups of 4 and assigned to 1 of 4 diets (n = 8) in a 2 x 2 factorial 

design. Dietary factors were forage level (30% [LF] vs. 70% [HF]; DM basis) and corn grain 

processing (whole-shelled [WS] vs. steam-flaked [SF]). Provision of WS or SF corn was expected 

to alter the location of starch digestion in the ruminant GIT, with SF corn expected to shift starch 

digestion to the rumen, and WS corn expected to shift starch digestion to the intestine and hindgut. 

Four blocks of lambs (n = 4) were used for the in vivo metabolism trial to determine N balance 

and whole-body urea kinetics. Whole-body urea kinetics were determined using 4-d double-

labelled urea ([15N15N]-urea) isotopic infusions, with concurrent total collections of urine and feces 

to determine isotopic enrichments and N balance. After 23 d of dietary adaptation, all lambs were 

killed (one per day for logistical reasons) on the morning of d 24 and ruminal, duodenal, and cecal 

epithelia were collected to determine Jsm-urea (using the Ussing chamber model) and mRNA 

expression for UT and AQP. Lambs fed LF had greater DM (1.20 vs. 0.86 kg/d; P < 0.01) and N 

(20.1 vs 15.0 g/d; P < 0.01) intakes than those fed HF. Lambs fed SF corn had greater DM (1.20 

vs. 0.86 kg/d; P < 0.01) and N (20.6 vs. 14.5 g/d; P < 0.01) intakes than those fed WS. When 

expressed as a percent of N intake, total N excretion was greater in lambs fed HF diets compared 

to those fed LF diets (103 vs. 63.0%; P < 0.01). Also, total N excretion (as a percent of N intake) 

was greater in lambs fed WS corn compared to those fed SF corn (93.6 vs. 72.1%; P = 0.02). 
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Apparent N balance, expressed as a percent of N intake, was greater in lambs fed LF diets 

compared to those fed HF diets (37.0 vs. -2.55%; P < 0.01). Similarly, lambs fed SF corn also 

exhibited a greater apparent N balance (28.0 vs. 6.50; P = 0.02) compared to lambs fed WS corn, 

when expressed as a percent of N intake. Endogenous urea production (UER) tended to be greater 

in lambs fed HF diets (17.6 vs. 14.3 g/d; P < 0.10) compared to those fed LF diets. Moreover, 

lambs fed HF diets also had greater urinary urea-N loss (as a proportion of UER) (0.38 vs. 0.22; P 

< 0.01), reduced amounts of urea-N returning to the GIT (as a proportion of UER) (0.62 vs. 0.78; 

P < 0.01), and overall, a reduced amount of urea-N allocated towards anabolism (as a proportion 

of urea-N GIT entry; GER) (0.12 vs. 0.26; P < 0.01) compared to those fed LF diets. Ruminal pH 

was similar in lambs fed SF and WS with HF diets, but it was lower in lambs fed SF compared to 

WS with LF diets (interaction, P = 0.01). Lambs fed LF had a lower cecal pH compared to those 

fed HF (P < 0.01). Ruminal Jsm-urea was unaffected by diet. Duodenal Jsm-urea was greater in lambs 

fed HF compared to LF (77.5 vs. 57.2 nmol/(cm2 × h); P < 0.01). There were positive correlations 

between Jsm-urea and serosal-to-mucosal mannitol flux (Jsm-mannitol) in duodenal (r = 0.88; P < 0.01) 

and cecal (r = 0.93; P < 0.01) epithelia. Lambs fed LF diets had increased mRNA expression of 

AQP-3 (1.21 vs. 0.90; P = 0.03) in ruminal epithelia and tended to have greater mRNA expression 

of AQP-3 (1.27 vs. 0.99; P < 0.10) in duodenal epithelia compared to lambs fed HF diets. 

Expression of UT-B mRNA in ruminal, duodenal, and cecal epithelia was largely unaffected by 

dietary treatment, except that cecal UT-B expression tended to be greater in lambs fed HF diets 

(0.95 vs. 0.71; P < 0.10) compared to lambs fed LF diets. The results presented in this thesis 

suggest that the provision of highly digestible diets improves N retention for anabolic usage and 

shifts urea-N excretion from the urine to the feces by enhancing urea recycling to the GIT. This 

shift in urea excretion can result in more stable forms of N losses, yielding an environmental 

benefit. Provision of LF diets also increased expression of AQP-3 in the ruminal and duodenal 

epithelia, providing insight into the molecular mechanisms associated with Jsm-urea in both ruminal 

and post-ruminal regions.  
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1.0    GENERAL INTRODUCTION 

 Urea recycling in ruminants is an evolutionary adaptation that allows the animal to remain 

in a positive nitrogen (N) balance when faced with a dietary protein deficiency. Urea-N that is 

secreted from the bloodstream into the rumen provides N for microbial growth, thus contributing 

amino acids to the host animal when ruminal microorganisms flow out of the rumen and are then 

digested in the small intestine (Lapierre and Lobley, 2001). Perusal of the literature indicates that, 

under a wide range of dietary conditions, endogenously produced urea can account for 87.0 to 

141.7% of digestible N intake (Lapierre and Lobley, 2001; Lobley et al., 2000). If there was no 

mechanism to recover some of this endogenously-produced urea and it was all lost through urinary 

excretion, then ruminants would have difficulty maintaining a positive N balance under a wide 

variety of dietary conditions. Recycling of urea to the gastro-intestinal tract (GIT) is a salvage 

mechanism for urea, and published studies indicate that 61.0 to 79.0% of endogenously-produced 

urea is recycled to the GIT (Lobley et al., 2000; Archibeque et al., 2001). Urea-N that is lost 

through the urine can have negative environmental consequences. Urinary urea-N is rapidly 

degraded to ammonia (deionized, NH3; ionized [ammonium], NH4
+) by urease enzymes that are 

ubiquitous in the environment, with the resulting NH3 being transformed by nitrifying and 

denitrifying microorganisms (Dijkstra et al., 2011). Potential products from the metabolism of NH3 

by these microorganisms include nitrite (NO2
-), nitrate (NO3

-), nitric oxide (NO), and nitrous oxide 

(N2O) (Dijkstra et al., 2011). Though some of these compounds may be beneficial for plant uptake 

and growth (NH4
+, NO3

-), many of them contribute to chemical leaching into groundwater (NO2
-, 

NO3
-) and to greenhouse gaseous losses into the atmosphere (N2O, NO, N2). In contrast to the 

urine, most N losses in the feces are in the form of organically-bound N compounds, such as 

undigested feed protein, microbial protein, and endogenous losses. Because of this, mineralization 

processes that free organic-N from fecal material and convert it to inorganic NH4
+ help in 

providing a stable form of N that is available for plant uptake. Knowing the impacts that excreted 

urea-N has on the environment, a thorough understanding of the urea salvage mechanism in 

ruminants is critical to promote not only efficient production, but also to maintain sustainable 

agricultural ecosystems. 

 From an anabolic perspective, endogenously produced urea is of most benefit to the 

ruminant when it is recycled to the rumen, either through the saliva or the blood. Epimural bacteria 
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that are closely attached to the ruminal wall will rapidly hydrolyze urea as it is transferred from 

the bloodstream into the rumen, releasing free NH3 (also referred to as ammonia nitrogen, NH3-

N), and carbon dioxide (CO2). Free NH3 in the rumen can then be utilized by the microbial 

population for synthesis of microbial protein, which will later contribute to the ruminant’s 

metabolizable protein supply during post-ruminal digestion and absorption (Reynolds and 

Kristensen, 2008). Aside from the rumen, it is also known that endogenous urea can be recycled 

to the various post-ruminal regions of the GIT, including the intestines and hindgut. Much like the 

rumen, ureolytic bacteria present in these regions will hydrolyze urea to release free NH3, which 

can be sequestered by the microbial communities; however, most of the microbial protein 

produced will not be of anabolic benefit to the animal (Lapierre and Lobley, 2001). Instead, urea-

N recycled to post-ruminal regions is typically excreted in the feces as organic microbial-N 

(Thornton et al., 1970), which, as mentioned previously, is far less detrimental to the environment 

compared to urea-N losses in the urine. For both entry into ruminal and post-ruminal sites, dietary 

factors play a critical role in governing the magnitude of endogenous urea-N entry into the GIT, 

including dietary intake (Black and Griffiths, 1975; Sarraseca et al., 1998), fermentable 

carbohydrate content (Oncuer et al., 1990; Walpole et al., 2015), and ruminally-degradable protein 

(RDP) content (Siddons et al., 1985; Davies et al., 2013). Though many of these factors have been 

studied extensively in the rumen, less research has been dedicated to the post-ruminal regions of 

the GIT. 

 The mechanisms of movement by which urea is transferred across the GIT epithelium from 

the serosal to the mucosal side has long been acknowledged to take place via passive diffusion 

(Houpt and Houpt, 1968). Having already identified the role carrier-mediated transport plays in 

the movement of urea within the renal system (Sands et al., 1997; Rojek et al., 2008; Starke et al., 

2012), researchers began to discover and assess the role that facilitative transport has in the 

movement of urea into the GIT. It is currently known that urea transporter-B (UT-B) and various 

isoforms of aquaporins (AQP) are associated with carrier-mediated transport of urea across the 

ruminal epithelium (Walpole et al., 2015). Interestingly, these transporters have shown that their 

function can be manipulated by certain dietary parameters, namely fermentative end-products, and 

changes in pH. Utilizing the ex vivo Ussing chamber method, Abdoun et al. (2010) found that the 

serosal-to-mucosal urea flux (Jsm-urea) across ruminal epithelium was increased when the tissue was 

exposed to short-chain fatty acids (SCFA), CO2 and a pH of 6.4. In a later study, Lu et al. (2015) 
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assessed the influence of SCFA and reduced pH levels on UT messenger ribonucleic acid (mRNA) 

expression and protein abundance in cultured goat ruminal epithelial cells and found that both 

mRNA expression and protein abundance of UT-B and G-protein coupled receptors (GPR) 

increased when exposed to fermentative end-products and reduced pH. Aquaporins have been 

shown to respond to in vivo dietary treatments when Walpole et al. (2015) fed Holstein steer calves 

a forage-based control diet vs. a 50:50 forage-to-concentrate (F:C) diet. The study reported that as 

the amount of time the animals were fed the 50:50 diet increased, so did their mRNA expression 

of individual isoforms of AQP (Walpole et al., 2015). These data provide strong evidence that urea 

recycling through facilitative transporters can be altered by dietary energy levels and end-products 

associated with fermentative substrates.    

 In terms of hindgut expression, Ludden et al. (2009) confirmed the expression of UT-B in 

the cecum and colon of sheep; however, the current literature does not report any studies that have 

confirmed the expression of AQP mRNA in post-ruminal regions. Moreover, despite earlier 

studies having assessed the effects of hindgut infusions of fermentative substrate on urea recycling 

and N excretion (Ørskov et al., 1970; Thornton et al., 1970; Oncuer et al., 1990), no studies in the 

literature appear to have assessed the direct dietary effects of forage level and corn grain processing 

on whole-body urea kinetics, ex vivo Jsm-urea, and UT and AQP expression throughout the ruminant 

GIT. 

 Knowing that urea recycling to the hindgut plays a major role in influencing the form of 

urea-N lost to the environment, and that fermentative end-products influence facilitative 

transporters responsible for the movement of that urea, it is of the utmost importance to uncover 

and understand the facilitative transport mechanisms associated with the movement of urea across 

the GIT epithelia. Therefore, this thesis will provide new, basic research on the effects of forage 

level and corn grain processing on whole-body urea kinetics, ex vivo urea flux, and expression of 

UT and AQP throughout the ovine GIT. 
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2.0    LITERATURE REVIEW 

2.1    Nitrogen Metabolism 

 Nitrogen metabolism in ruminants is a fine-tuned, complex process that includes N sources 

from dietary, recycled, and endogenous supply (Bach et al., 2005). Nitrogen sourced from dietary 

protein can be both RDP and ruminally-undegradable protein (RUP), with the former also 

including sources of non-protein N (NPN) (Bach et al., 2005). Most N metabolism is governed by 

the proteolytic activity that takes place by the microbiota present within the rumen, producing 

small peptides, amino acids (AA), NH3, and microbial protein (Storm and Ørskov, 1983). The 

ruminant’s ability to utilize N through microbial sequestration stems from its unique digestive 

physiology, in particular, the aforementioned rumen. 

2.1.1    Ruminant Digestive Physiology 

2.1.1.1    The Forestomach 

 The ruminant’s ability to utilize complex carbohydrates and N is due to pre-gastric 

fermentation that takes place in the rumen, which is the largest compartment of the ruminant 

forestomach that lies anterior to the small intestine (Stewart and Smith, 2005). Due to its anaerobic 

environment, the rumen is a host to a multitude of dense microbial communities, including 

bacteria, protozoa, fungi, archaea, and bacteriophages (Sherwood et al., 2013; Mountfort, 1987). 

Many of these microbial communities provide metabolizable substrates for the ruminant in 

exchange for its host environment, illustrating a symbiotic relationship. The microbial populations 

in the rumen specialize in the breakdown of complex carbohydrates (hemicellulose, cellulose, 

lignin) into absorbable SCFA that are the major source of energy for the host animal (Stewart and 

Smith, 2005; Flint et al., 2008). The breakdown of these complex carbohydrates is performed by 

epimural, fluid-associated, and feed-associated bacteria, with about 75% of carbohydrate digestion 

attributed to feed-associated bacteria (Sherwood et al., 2013). Acetate, propionate, and butyrate 

are the three major SCFA produced within the rumen, and can be directly utilized as an energy 

source by absorption through the ruminal epithelium and subsequent entry into the Kreb’s cycle 

as acetyl-CoA. Propionate acts as a precursor to glucose synthesis, providing upwards of 70% of 

the ruminant’s glucose and glycogen supply (Sherwood et al., 2013). Through production of SCFA 

by anaerobic fermentation, adenosine triphosphate (ATP) is produced, supplying an energy source 

that facilitates microbial sequestration and utilization of N (both dietary and endogenous sources) 
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(Kennedy and Milligan, 1980; Huntington, 1989). The utilization of N in the rumen provides 

microbial protein to the ruminant and is a major contributor of AA supply to the small intestine. 

Depending on dietary conditions, microbial protein can account for 50 to 80% of absorbable 

protein entering the duodenum, providing a significant contribution to metabolizable protein 

requirements (Storm and Ørskov, 1983). 

 The two other components of the pre-gastric forestomach include the reticulum and the 

omasum. The function of the reticulum closely resembles that of the rumen, in that it is a anaerobic 

compartment responsible for hosting microbial communities, digestion and fermentation of 

nutritive substrates, and absorption (Sherwood et al., 2013). The omasum receives digesta from 

the reticulum via the omasal orifice, and functions to absorb water and nutrients, as well as to 

transfer digesta into the abomasum via the omasoabomasal orifice (Sherwood et al., 2013). The 

omasum’s specialized function of absorption can be attributed to its compartmentalized nature; 

various laminae lined with small papillae increase surface area of the epithelium, allowing for 

significant absorptive capacity (Church, 1988). 

2.1.1.2    The Abomasum and Small Intestine 

 Proceeding the forestomach in ruminants, the GIT structure and function are similar to that 

of a monogastric animal. The abomasum is the true, glandular-type stomach responsible for acid 

hydrolysis and digestion of dietary protein and ruminal microbes via secretion of gastric juices, 

and for transferring digesta from the abomasum into the small intestine (Sherwood et al., 2013). 

The small intestine can be broken down into three main segments: the duodenum, the jejunum, 

and ileum. The main function associated to these regions are digestion and absorption. Digestion 

of proteins, carbohydrates, and lipids is facilitated by secretions from the exocrine pancreas and 

liver (Sherwood et al., 2013). Then, absorption of the resulting AA, monosaccharides, and 

triglycerides is enabled by the presence of folds, villi, microvilli, and specialized transport 

mechanisms along the intestinal epithelium (Sherwood et al., 2013). 

2.1.1.3    The Hindgut 

 The cecum and colon, collectively referred to as the hindgut, is the region of the GIT in 

ruminants that lies aboral to the four-chambered stomach. The cecum is a blind sac located at the 

junction between the last segment of the small intestine (ileum) and the beginning of the large 

intestine (Sherwood et al., 2013). In short, the primary function of the cecum is fermentation of 



6 

 

carbohydrates that escaped gastric digestion (Gressley et al., 2011). In ruminants, a distinct 

anatomical marker dividing the cecum and colon is lacking. Because of this, similar fermentative 

profiles of acetate, propionate, and butyrate exist between the two regions (Elsden et al., 1946; 

McNeil, 1988). Like the rumen, the cecum plays a role in the absorption of these SCFA, 

particularly when cecal pH is reduced (Myers et al., 1967); however, the cecum has a reduced 

ability to regulate and maintain digesta pH due to differences in its physiological buffering 

capacity compared to the rumen (Gressley et al., 2011). These differences include lack of salivary 

bicarbonate (HCO3
-) influx, and lack of protozoal populations (which, in the rumen, reduce the 

rate of fermentation by sequester fermentable carbohydrates) (Gressley et al., 2011). Additionally, 

differences in gut epithelia type (the cecum lacks the protective stratum corneum of the rumen) 

may predispose cecal epithelium to damage induced by the presence of organic acids (Gressley et 

al., 2011). With the reduced ability to regulate digesta pH and a lack of protective barrier, the 

cecum can be deemed as having a sensitive mucosal layer compared to its forestomach 

counterparts (Gressley et al., 2011).  

 The colon takes up the majority of an animal’s large intestine and, in ruminants, is an 

elongated, coiled structure (Sherwood et al., 2013). The main function of the colon is to extract 

water and minerals from colonic contents, leaving feces to be excreted. Additionally, the colon 

also serves as the last fermentative region of the ruminant GIT, producing SCFA that are available 

for absorption to the animal, and that assist in reducing the growth of pH-sensitive pathogenic 

bacterial populations (Sherwood et al., 2013). 

 Within the hindgut, microbial communities make use of available N to synthesize microbial 

protein just as they do in the rumen; however, due to a lack of mechanism for the microbial protein 

to be digested, the majority will be excreted in the feces (Lapierre and Lobley, 2001). Because of 

this loss, microbial protein synthesized in the hindgut has negligible anabolic value to the ruminant 

(Lapierre and Lobley, 2001). A more extensive discussion of this area is provided in Section 

2.2.1.2. 

2.1.2    Partitioning of Dietary Nitrogen Sources in the Rumen 

 Nitrogen provided to the ruminant is classified as being from either dietary, recycled, or 

endogenous sources (Bach et al., 2005). Dietary protein is categorized into RDP and RUP, with 

RDP consisting of both NPN (e.g., recycled urea-N) as well as true dietary protein (Bach et al., 
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2005). Through proteolytic microbial activity, RDP is broken down into peptides, AA, and free 

NH3 (see section 2.1.3.1), which are the precursors for microbial protein synthesis. Non-protein 

nitrogen consists of N sources from dietary NO3
-, exogenous and endogenous urea, 

deoxyribonucleic acid (DNA), ribonucleic acid (RNA), NH3-N, and AA, with the N harvested 

from AA and NH3-N contributing towards microbial growth and protein synthesis (Bach et al., 

2005). Recycled N sources are derived from endogenous urea produced by the liver via the 

ornithine cycle, which can enter the ruminant GIT by means of saliva or by movement across the 

ruminal epithelium from the blood (Reynolds and Kristensen, 2008; Lapierre and Lobley, 2001). 

When urea is transported across the ruminal epithelium, epimural ureolytic bacteria associated 

with the rumen wall degrade urea via urease activity, thus releasing free NH3-N that is available 

to the microbes for microbial protein synthesis (Reynolds and Kristensen, 2008). Similarly, urea 

introduced into the rumen via saliva will also face microbial hydrolysis (Abdoun et al., 2006). 

Additionally, endogenous N (derived from protein secretions and epithelial sloughing) can provide 

N inflow into the GIT (Lapierre and Lobley, 2001). Of course, the relative contribution of 

endogenous N to microbial protein synthesis or to the metabolizable protein requirement depends 

on where in the GIT the endogenous N is sourced from. For example, small contributions of 

endogenous N flow into the duodenum from the forestomachs (Siddons et al., 1982); however, 50-

75% of protein reaching the terminal ileum can be traced back to endogenous duodenal 

contributions (Van Bruchem et al., 1989; Van Bruchem et al., 1997), from sources including 

pancreatic digestive juices, bile, mucus glycoproteins, lymph, and intestinal mucosal slough. 

2.1.3    Degradation and Utilization of Nitrogen in the Rumen 

2.1.3.1    Mechanisms of Rumen Protein Degradation 

 Nitrogen metabolism in the rumen is performed by the microbial communities present, 

which exhibit a symbiotic relationship with their host by, among other things, provision of 

microbial protein to the animal (Bach et al., 2005). Protein metabolism begins by the proteolytic 

microbiota attaching to the free-floating feed particles within the rumen, as shown in Figure 2.1. 

After attachment, extracellular microbial proteases act on the protein fraction of the feed particle 

to release products including peptides and AA (Brock et al., 1982; Bach et al., 2005). Due to the 

complex nature of varying bonds within a protein molecule, synergistic action of several proteases 

is often required to completely degrade the protein molecule to peptides and AA (Wallace at al.,
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Figure 2.1. Illustration of the mechanism of proteolytic action by ruminal bacteria. Adapted 

from Bach et al. (2005). 
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 1997). The peptides and AA resulting from protein degradation are absorbed into the microbial 

cells, where they are subjected to various fates (Bach et al., 2005). The fates of these absorbed 

peptides and AA are dependent on energy availability from ruminally-fermentable carbohydrates 

(RFC). If energy availability for microbial growth is not limiting, absorbed AA and peptides can 

be directly incorporated into microbial protein (Bach et al., 2005). However, if energy availability 

is limiting, absorbed AA and peptides are further degraded by microbial peptidases into NH3 

which, in turn, becomes the major source of N for microbial protein synthesis (Bach et al., 2005).  

 Aside from bacteria, protozoa also play a role in N metabolism in the rumen. Protozoa are 

predatory in nature, engulfing not only large molecules such as proteins and carbohydrates, but 

also ruminal microbes (Van Soest, 1994; Bach et al., 2005). Despite their digestion of proteins and 

ruminal bacteria, protozoa are responsible for only a small fraction of microbial protein flow into 

the small intestine. Punia et al. (1992) conducted a study assessing the flow of protozoal N to the 

duodenum of sheep and cattle, and found that despite protozoal N contributing upwards of 48% of 

total N in the rumen, only 11-20% of total N flow from the abomasum into the duodenum was of 

protozoal origin. This can be attributed to factors such as increased residence time in the rumen 

and longer generation intervals (Jouany, 1996; Bach et al., 2005). Additionally, with their high 

level of proteolytic activity and inability to utilize NH3-N for protein synthesis, protozoa greatly 

elevate free ruminal NH3-N concentrations (Jouany, 1996). Because the absorption of NH3-N from 

the rumen into the portal blood is a concentration-dependent process (Rémond et al., 1993; Abdoun 

et al., 2006), the elevated ruminal NH3-N concentration in the presence of protozoa increase NH3 

absorption into portal blood, thus resulting in significant wastage of N via renal excretion of urea.  

2.1.3.2    Utilization of Nitrogen for Microbial Protein Synthesis 

 As mentioned in the previous section, synthesis of microbial protein from N sources is an 

energy-dependent process (Bach et al., 2005). Typically, this energy is obtained through the 

fermentation of dietary fermentable carbohydrates, but can also be obtained through the 

fermentation of branched-chain AA. Branched-chain AA introduced into the rumen can potentially 

be fermented into branched-chain SCFA, in particular, isobutyric and isovaleric acids, which are 

essential for the growth of ruminal microbes (Bach et al., 2005; Allison and Bryant, 1963). 

Additionally, branched-chain AA are a preferred substrate for the growth of cellulolytic bacterial 

populations in the rumen (Allison et al., 1962). As reviewed by Bach et al. (2005), fermentation 
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of these branched-chain AA into branched-chain SCFA provide ATP for cellulolytic bacteria, 

resulting in increased fiber digestion, SCFA and energy production, and microbial protein 

synthesis. Moreover, the provision of branched-chain AA also provides a direct source of AA to 

be incorporated into microbial protein synthesis. When assessing the sources of N utilized by 

microbes to synthesize microbial protein, it has been reported that up to 66% of microbial protein 

synthesis is derived from N sourced from AA, with the remainder being sourced from NH3-N 

(Russell et al., 1983). 

 Aside from energy and N sources, other factors will influence microbial N utilization 

within the rumen, including ruminal pH and dilution rates (Bach et al., 2005). Ruminal pH is 

altered predominantly by the fermentation of organic matter (OM), with highly fermentable diets 

reducing the pH of the rumen after feeding by release of protons, potentially resulting in acidosis 

(pH ranges of 5.5 – 5.8 for sub-acute ruminal acidosis, and 5.0 – 5.2 for acute ruminal acidosis) 

(Aschenbach et al., 2011; Penner et al., 2007). Insults in pH within these ranges have the potential 

to alter or reduce the growth of certain microbial populations within the rumen, resulting in 

changes to the type and amount of fermentative end-products produced, as well as microbial N 

utilization (Aschenbach et al., 2011). As described in a review paper by Bach et al. (2005), dilution 

rates within the rumen are attributed to factors such as feed intake (Merchen et al., 1986), F:C ratio 

(Rode and Satter, 1988), and particle size of the diet (Woodford and Murphy, 1988), and have an 

important role in influencing ruminal fermentation characteristics and microbial growth (Russell 

et al., 1992). Typically, increases in dilution rate are indicative of high passage rates, which reduces 

the amount of time that microbes have access to digestive substrate. As a result, microbial 

populations will have a reduced ability to produce SCFA and energy, leading to a consequential 

decrease in sequestration of N and microbial growth (Okine et al., 1994). 

 Lastly, nutrient synchrony strategies have been studied to determine microbial efficiency 

of utilizing N when presented with a synchronous fermentable energy supply. Energy and protein 

availability can be manipulated in the rumen by altering their dietary amounts and types (Lapierre 

and Lobley, 2001). In theory, the more synchronous the supply and rate of degradation of RDP 

and RFC, the more efficiently the microbial community is able to sequester N for the purpose of 

microbial protein synthesis (Cabrita et al., 2006). For example, Davies et al. (2013) found that 
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provision of RDP in a low crude protein (CP) diet in combination with RFC improved efficiency 

of microbial N production, resulting in increased microbial N supply to the duodenum. 

2.1.4    Ammonia Absorption and the Ornithine Cycle 

 As previously discussed, ruminal NH3 is derived from proteolytic degradation of dietary 

protein, endogenous N, as well as recycled N (Bach et al., 2005). This NH3 acts as a N source for 

synthesis of microbial protein; however, not all NH3 will be sequestered. Ammonia that is not 

incorporated into microbial protein leaves the rumen through absorption across the ruminal 

epithelium (42 – 66% of irreversible NH3 loss out of the rumen) or by flowing with the fluid phase 

of ruminal digesta into the omasum (8% of irreversible NH3 loss out of the rumen) (Siddons et al., 

1985). 

2.1.4.1    Factors Influencing Ruminal Ammonia Concentration and Absorption of 

Ammonia from the Rumen 

 Absorption of NH3 from the rumen is a concentration-dependent process, completed by 

NH3 passing through the ruminal epithelium via passive diffusion down its concentration gradient 

(Tan and Murphy, 2004). This process relies heavily on the concentration of NH3 in the rumen: as 

levels of ruminal NH3 increase, so does the net flux of NH3 into the portal blood (Tan and Murphy, 

2004). Because of this, it is important to consider the influence of the diet on NH3 production in 

the rumen. Residence time in the rumen, amount of dietary protein fed, as well as protein solubility 

all play important roles in determining the amount of NH3 present in the rumen (Tamminga, 1983). 

When feeding diets with varying CP concentrations in an oscillating manner in lambs, Doranalli 

et al. (2011) observed greater ruminal NH3 concentrations when high CP diets were fed compared 

to low CP diets (5.94 vs. 3.65 mmol/L). Similarly, Marini and Van Amburgh (2003) detected a 

quadratic increase in ruminal NH3 concentration in Holstein heifers fed diets containing 1.45, 1.89, 

2.50, 2.97, and 3.40% N. Whilst assessing protein solubility, Davies et al. (2013) found that 

ruminal NH3 concentrations were greater in beef heifers fed high RDP compared to those fed low 

RDP. Moreover, provision of rapidly fermentable carbohydrates will also alter ruminal NH3 

concentrations by means of microbial sequestration, as discussed in section 2.1.3.2. Knowing that 

microbial protein synthesis is an energy-dependent process, NH3 absorption can be influenced by 

both the quantity, as well as the degradability of dietary carbohydrates (Reynolds and Kristensen, 

2008). Bailey et al. (2012) provided supplemental energy to beef cattle by dosing 600 g of glucose 
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intraruminally once daily to determine the effects of non-structural carbohydrates on N utilization. 

As expected, the provision of additional energy in the rumen reduced NH3 concentrations, 

supporting the notion of increased sequestration and utilization of N for microbial protein synthesis 

when more RFC is available. 

2.1.4.2    Mechanisms of Ammonia Absorption 

 Depending on dietary conditions, significant amounts of NH3 are absorbed across the 

ruminal epithelium and enter the portal blood (Figure 2.2). Ammonia in the rumen is present as 

both ionized (NH4
+) and deionized (NH3) forms (Reynolds and Kristensen, 2008). Whichever form 

predominates, however, relies on the surrounding pH (Abdoun et al., 2006; Reynolds and 

Kristensen, 2008). Different mechanisms are responsible for the transport of NH3 across the 

ruminal epithelium depending on whether NH3 is protonated or non-protonated. In its neutral state, 

deionized NH3 can be absorbed by means of simple diffusion due to its lipophilic nature, whereas 

its ionized counterpart, NH4
+ (lipophobic), relies exclusively on potassium channels (Bödeker and 

Kemkowski, 1996; Reynolds and Kristensen, 2008). It has been reported that between pH values 

of 6 and 7, almost all NH3 is present in its ionized form (NH4
+) (Abdoun et al., 2006). Because 

normal ruminal pH is typically below this given range on a wide variety of dietary conditions, the 

majority of NH3 present in the rumen will also be in the ionized NH4
+ form (Huntington and 

Archibeque, 1999; Abdoun et al., 2006; Reynolds and Kristensen, 2008). Moreover, Bödeker et 

al. (1992a) proposed that the form of NH3 transported across the ruminal epithelium did not just 

depend on ruminal pH, but also the proton concentration above the luminal membrane of the 

mucosa. The studies conducted by Bödeker et al. (1992a, 1992b) suggested that availability of 

protons for the formation of NH4
+ could be reduced by the hydrogen reacting with secreted HCO3

- 

(i.e., H+ + HCO3
- ↔ H2O + CO2) or by reaction with de-protonated SCFA (i.e., H+ + SCFA- ↔ 

HSCFA), resulting in an increase in deionized NH3, thus facilitating a greater absorption of 

ammonia as NH3 (Bödeker et al., 1992a; Bödeker et al., 1992b). Once inside the epithelial cell, 

deionized NH3 has the potential to be protonated to NH4
+ via the dissociation of HCO3

- and 

HSCFA, thereby maintaining the NH3 gradient across the ruminal epithelium, further stimulating 

absorption of deionized NH3 (Bödeker et al., 1992a; Bödeker et al., 1992b; Abdoun et al., 2006). 

The mechanism for transport of NH3 and NH4
+ across the basolateral membrane is unknown, and 

requires further investigation (Abdoun et al., 2006). 
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Figure 2.2. Illustration of the pathways for ammonia (NH3/NH4
+) and urea transport across 

the ruminal epithelium, and the interaction with short-chain fatty acids (SCFA) and 

bicarbonate (HCO3
-). Sourced from Lu et al. (2014) with permission from the publisher. 
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2.1.4.3    The Ornithine Cycle 

 In order to prevent NH3 toxicity, NH3 absorbed from the GIT is transported via portal blood 

to the liver for detoxification into urea through the ornithine cycle (also referred to as the urea 

cycle, or ureagenesis; see Figure 2.3) (Tan and Murphy, 2004). In the first reaction of the ornithine 

cycle, NH3 associates with HCO3
-
 to form carbamoyl phosphate (2ATP + NH3 + HCO3

- → 

carbamoyl phosphate + 2ADP + Pi + H+) via carbamoyl phosphate synthetase I (CPS1), which 

takes place in the mitochondria of the hepatocyte (Visek, 1979; Meijer et al., 1990). This first 

reaction is considered the rate-limiting step of urea synthesis (Meijer et al., 1990). From here, the 

ornithine cycle consists of 4 enzymatic reactions required to convert toxic NH3 into non-toxic urea, 

involving ornithine transcarbamylase, argininosuccinate synthetase, argininosuccinase, and 

arginase (Visek, 1979). Once synthesized, urea may be directed towards urinary excretion via the 

kidneys or recycled to the GIT via blood or salivary routes (Lapierre and Lobley, 2001; Reynolds 

and Kristensen, 2008). Any NH3 that escapes ureagenesis in periportal hepatocytes is used for the 

amidation of glutamate to form glutamine in perivenous hepatocytes, a reaction that is catalyzed 

by the enzyme glutamine synthetase (Häussinger et al., 1992). Glutamine synthesis in perivenous 

hepatocytes is a “high affinity, low capacity” system that ensures that toxic NH3 does not escape 

into peripheral circulation (Häussinger et al., 1992). Glutamine is released into the bloodstream 

and, on subsequent passage of blood through the liver, it releases the NH3 (through a reaction 

catalyzed by glutaminase) for use as a substrate in urea synthesis in periportal hepatocytes  

(Häussinger et al., 1992). 

 Like any metabolic pathway, the ornithine cycle has both short-term and long-term 

regulation to control its function. One of the most important short-term regulatory mechanisms 

controlling the ornithine cycle is the presence of mitochondrial N-acetylglutamate (Meijer et al., 

1990; Tymockzo et al., 2011). N-acetylglutamate is synthesized from acetyl-CoA and glutamate, 

providing a biological indication that there is existing NH3 to be detoxified (Tymockzo et al., 

2011). The greater the concentration of N-acetylglutamate within the mitochondria, the more CPS1 

is activated, producing increased levels of carbamoyl phosphate destined for ureagenesis (Meijer 

et al., 1990). In addition to this regulatory mechanism, availability of ornithine also plays a key 

role in governing the ornithine cycle in two ways: (1) ornithine is the required substrate for 

ornithine transcarbamylase (facilitating the second step of the ornithine cycle) and; (2) ornithine 

upregulates the action of CPS1 (Krebs et al., 1973).
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Figure 2.3. Illustration of the Ornithine Cycle (also referred to as the Urea Cycle or 

Ureagenesis). Adapted from Visek (1979) and Tymoczko et al. (2011). Enzymatic reactions are 

as follows: (1) carbamoyl phosphate synthetase I; (2) ornithine transcarbamylase; (3) 

arginosuccinate synthetase; (4) arginosuccinase; and (5) arginase. 
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In terms of long-term regulation, Meijer et al. (1990) explains that chronic alterations to AA 

catabolism in the body (e.g., consumption of diets high in protein [Freedland and Sodikoff, 1962], 

or during periods of starvation [Schimke, 1962]), as well as the presence of various hormones (e.g., 

glucagon, insulin, glucocorticoids; Morris, 2002) will have a direct effect on the presence and 

function of ornithine cycle enzymes. 

2.1.5    Mechanisms of Renal Urea Excretion 

 In vertebrates, the kidneys are responsible for the concentration of urine as an excretory 

product, and in doing so, function to regulate organic solutes (e.g., ions involved in physiological 

acid-base balance), plasma volume, osmotic balance, as well as concentrate waste products with 

the intent of elimination (Sherwood et al., 2013). The functional unit of the kidney is the nephron, 

consisting of tubules and associated vasculature that complement the structure and function of one 

another (Sherwood et al., 2013). The first structure of the nephron encountered by the afferent 

arteriole (unfiltered blood) is the glomerulus, which is responsible for filtering protein-free filtrate 

into Bowman’s capsule. From here, the filtrate undergoes a series of both controlled and 

uncontrolled reabsorption and secretion of select substances in order to produce urine of various 

concentrations (Sherwood et al., 2013). Due to the increasing concentration gradient between the 

nephron tubules and peritubular capillaries, urea is passively reabsorbed (paracellularly) 

throughout the proximal tubule, salvaging as much as 40% for recirculation to the body (Sherwood 

et al., 2013). Interestingly, urea permeability changes throughout the length of the nephron, at 

times relying more heavily on the presence of urea transporters (UT) to facilitate movement of the 

molecule. Urea transporters are carrier-mediated transporters expressed in kidney tissue that 

facilitate the concentration of urinary urea, as well as its recycling both within renal tissues and to 

the blood stream (Knepper and Françoise, 1987; Stewart et al., 2005; Sherwood et al., 2013). Many 

different variants of UT have been discovered in kidney tissue, including UT-A1, -A2, UT-B1, 

and -B2 (Sands et al., 1997). More information regarding urea recycling and transporters will be 

provided in the next section. Ultimately, urea that remains within the interstitial fluid of the renal 

medulla will be concentrated back into the tubular nephron (with final concentrations dependent 

on hormonal influence and homeostatic mechanisms), proceed to the ureters, bladder, and finally 

excreted through the external urethral orifice (Sherwood et al., 2013). 
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2.2    Urea Recycling 

 Urea-N salvaging is a distinct evolutionary adaptation that ruminants evolved to maintain 

a positive nitrogen balance in the face of dietary protein deficiency, or during asynchronous supply 

of energy and protein (Reynolds and Kristensen, 2008). This mechanism takes place through the 

recycling of blood urea nitrogen (BUN) to the lumen of the GIT, occurring predominantly at the 

reticulo-rumen epithelia (Lapierre and Lobley, 2001), but also occurring through the saliva, 

intestines, and hindgut (Lapierre and Lobley, 2001; Siddons et al., 1985). Available research 

indicates that urea-N recycled back to the GIT can range from 29 to 99% of endogenous urea 

output (Theurer et al., 2002; Marini and Van Amburgh, 2003; Wickersham et al., 2008). 

Approximately 3 to 10% of recycled urea is lost in feces, 26 to 50% is reabsorbed as NH3, and the 

remaining 35 to 55% is used for anabolic purposes (Lapierre and Lobley, 2001). Factors such as 

diet composition, level of feed intake, ruminal environmental conditions, and productive state of 

the animal will influence the relative partitioning of recycled urea towards fecal loss, reabsorption 

as NH3, or anabolic use (Huntington and Archibeque, 1999). By salvaging urea from its fate of 

excretion, urea is recycled to the GIT and degraded back into NH3 by microbial urease activity, 

thus making it an important source of N for microbial protein synthesis (Reynolds and Kristensen, 

2008). According to Virtanen (1966), the utilization of urea for microbial protein synthesis not 

only allows ruminants to conserve N and survive in less-than-optimum dietary conditions, but also 

continue to produce milk and meat at desirable levels. With the importance of urea recycling from 

an animal health, production, and economic standpoint, it is imperative to better understand the 

underlying mechanisms associated with urea recycling to further improve N efficiency in the 

ruminant. 

2.2.1    Urea Entry into the GIT 

2.2.1.1    Rumen 

 Urea recycling is of most nutritional benefit to the ruminant when it is recycled to the 

rumen where it can be used as a source of N for microbial protein synthesis, thus contributing AA 

to the host animal when ruminal microorganisms flow out of the rumen and are digested at the 

small intestine. As reviewed by Lapierre and Lobley (2001), urea-N is contributed to the 

forestomachs from both saliva and the blood, with values ranging from 15 to 100% (saliva) and 

27 to 54% (blood) of total urea-N entry to the GIT. The amount of endogenous urea-N transferred 

to the rumen is dependent on multiple factors, including dietary N intake, protein degradability, 
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energy density, carbohydrate fermentability, particle size and salivary production, ruminal NH3 

concentrations, and blood urea concentrations (Kennedy and Milligan, 1980; Huntington, 1989; 

Reynolds and Kristensen, 2008). Select factors will be discussed in greater detail in section 2.2.2. 

 In order to determine the quantitative transfer of urea-N from the saliva to the rumen, the 

difference between splanchnic urea-N flux and urinary urea-N output is calculated using the data 

obtained from the venous-arterio (V-A) difference technique that involves strategic placement of 

catheters in the splanchnic vasculature (Huntington, 1989; Theurer et al., 2002). Past studies have 

assessed dietary impact on salivary urea-N contributions to the rumen, and have proposed that 

factors such as the level of feed intake and F:C ratio will influence salivary contribution to urea-N 

entering the rumen (Kennedy and Milligan, 1980; Huntington, 1989). For example, Huntington 

(1989) found that steers fed high concentrate diets had decreased salivary transfer of urea-N to the 

rumen compared to those fed high forage diets. Additionally, though not significant, Theurer et al. 

(2002) observed a grain processing effect wherein steers fed steam-flaked sorghum had reduced 

secretion of salivary urea-N to the rumen compared to those animals fed dry-rolled sorghum (2.0 

vs. 13.3 g/d urea-N flux). The results of these studies can be presumably attributed to the reduction 

in mastication and, subsequently, reduced rumination that is observed in ruminants fed low forage, 

more heavily processed diets.  

 The primary “driver” for urea transfer across the ruminal epithelium from the blood is the 

naturally occurring diffusional gradient between the serosal and mucosal side of the rumen (Houpt 

and Houpt, 1968). This gradient is established and maintained by the intraruminal hydrolysis of 

urea entering the rumen by the action of bacterial urease, as well as the overall permeability of the 

epithelium (i.e. barrier function) (Houpt and Houpt, 1968). Hormones and second messengers are 

also thought to have an influence on urea flux via altering permeability of the ruminal epithelium, 

in particular, vasopressin (Houpt, 1970) and gastrin (Harrop and Phillipson, 1970; Rémond et al., 

1993), though further studies are required to validate their respective mechanisms. Aside from 

diffusional transport, ruminal transfer of urea also relies on carrier-mediated transport 

mechanisms, namely UT (Marini and Van Amburgh, 2003) and AQP (Walpole et al., 2015). These 

transporters and their mechanisms will be discussed in more detail in a later section. 

 Aside from the rumen, it is known that endogenous urea-N produced by the liver does enter 

the hindgut of ruminants. By usage of the V-A method, measurements of urea transfer across the 
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splanchnic tissues can be obtained in order to differentiate endogenous urea-N contribution to the 

rumen vs. post-ruminal sites (Huntington, 1989; Seal and Parker, 1996). Studies by Huntington 

(1989) and Seal and Parker (1996) successfully measured urea transfer across the portal-drained 

viscera (PDV; ruminal and post-ruminal regions) and mesenteric-drained viscera (MDV; post-

ruminal regions), but did not differentiate the regions within the post-ruminal sites. Recent 

literature on comparative urea-N entry to ruminal vs. differentiated post-ruminal sites is sparse. 

2.2.1.2    Post-Ruminal Sites 

 Urea recycling in the hindgut of monogastric species has been studied throughout the 

literature (Mosenthin et al., 1992a; Mosenthin et al., 1992b; Collins et al., 2010). In a study 

conducted by Mosenthin et al. (1992b), the group aimed to validate the occurrence of endogenous 

urea secretion into the hindgut of gilts. They found that gilts infused with starch through ileal T-

cannulas exhibited greater fecal N excretion (in the form of bacterial N) compared to those infused 

with water (Mosenthin et al., 1992b). The study concluded that the microbial N was sourced from 

ileal digesta, however, as opposed to luminally secreted endogenous urea-N synthesized by the 

liver. In contrast, Collins et al. (2010) studied urea flux across human ascending and descending 

colonic tissue using Ussing chambers and found both regions of the colon to be permeable to urea 

(by means of absorption and secretion). Collectively, both studies provide valuable data regarding 

endogenous urea transfer to the GIT, leading animal scientists to speculate the importance of urea 

recycling to the hindgut in ruminants. 

 In ruminants, it is currently known that endogenous urea-N can be secreted into the various 

compartments of the hindgut, including the lattermost region, the colon (Ritzhaupt et al., 1997). 

Urea recycling at post-ruminal sites of the GIT can account for up to 70% of urea-N entry into the 

GIT, although the majority will not go towards anabolic usage for the animal (Lapierre and Lobley, 

2001). Microbial populations present within post-ruminal sites (i.e. intestine, cecum, colon) will 

sequester NH3-N arising from the degradation of recycled urea-N and use it as a source of N for 

microbial protein synthesis (Lapierre and Lobley, 2001). Microbial protein that is produced in 

these post-ruminal regions, however, is excreted in feces as this is past gastric digestion and there 

is no mechanism to retrieve microbial AA (Siddons et al., 1985; Lapierre and Lobley, 2001). 

Although urea that is recycled to post-ruminal sites might not contribute to the metabolizable 

protein needs of the ruminant, it can have a major influence on the environmental impact of 
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intensive livestock operations. This is because urea-N that is recycled to the hindgut will primarily 

be excreted in feces as microbial N rather than as urinary urea-N, which can be lost into the 

environment through volatilization. Importantly, various dietary factors will influence the 

magnitude of endogenous urea-N entry into the hindgut, including dietary intake (Sarraseca et al., 

1998), fermentable energy sources (Thornton et al., 1970; Oncuer et al., 1990), and protein content 

(Siddons et al., 1985). In terms of partitioning where urea-N enters the hindgut, Varady et al. 

(1979) found that the small intestine accounted for the majority of endogenous urea-N entry into 

post-ruminal tissues in sheep fed a hay and barley-based diet. Though conducted in monogastrics, 

a study by Mosenthin et al. (1992a) also determined that the small intestine was the location for 

the majority of endogenous urea-N entry into post-stomach regions in pigs, which was later 

confirmed by Columbus et al. (2014).  

 Transfer of urea to post-ruminal sites of the ruminant GIT is commonly accepted to take 

place through diffusional transport; however, recent research in ruminant nutrition has revealed 

the presence of carrier-mediated UT in the hindgut of sheep (Marini et al., 2004; Ludden et al., 

2009). By validating the presence and functional role of these transporters, a greater insight will 

be gained into the role that the hindgut plays in endogenous urea-N entry. 

2.2.1.3    Mechanisms of Urea Transport from the Blood to the GIT 

2.2.1.3.1    Simple Diffusion 

 It is known that one of the major mechanisms for the transfer of endogenous urea-N from 

the blood into the rumen is passive diffusion (Houpt and Houpt, 1968). This, in part, is because of 

the chemical nature of urea, being a small, uncharged polar compound. Diffusional transport 

requires the presence of a concentration gradient and, in ruminants, that gradient is established by 

the activities of the microbial populations present in the GIT. In the rumen, for example, passive 

diffusion of urea across the epithelium is facilitated by urease activity of bacteria that are 

associated with the rumen wall (Rémond et al., 1993). Ureolytic action degrades urea into free 

NH3 and CO2, keeping a favorable gradient for urea to cross the ruminal epithelium. Because the 

amount of urea-N transported into the GIT by diffusion is highly variable, researchers have started 

to study the presence and function of carrier-mediated transport mechanisms associated with the 

movement of urea (Ritzhaupt et al., 1997; Abdoun et al., 2006; Ludden et al., 2009; Walpole et 

al., 2015). 
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2.2.1.3.2    Carrier-Mediated Transport 

 It is currently known that the transport of urea also depends on carrier-mediated UT – 

primarily UT-A (SLC14a2 gene) and UT-B (SLC14a1 gene) (Stewart et al., 2005) – that are 

expressed in the kidney and ruminal epithelium, respectively (Stewart et al., 2005; Ritzhaupt et 

al., 1997). An early study by Ritzhaupt et al. (1997) determined that urea transport across ruminal 

tissue was facilitated by carrier-mediated transport when the addition of 0.75 mmol/L of phloretin, 

a known inhibitor of UT function, reduced mucosal-to-serosal flux rates of 14C-urea. These 

findings have since been supported by various published studies (Stewart and Smith, 2005; 

Doranalli et al., 2011; Walpole et al., 2015) assessing the functional roles of UT in ruminal tissue 

using Ussing chamber methodology, as well as presence of the transporters as assessed by protein 

abundance (Stewart et al., 2005; Ludden et al., 2009; Røjen et al., 2011) and quantitative 

polymerase chain reaction (qPCR) (Ludden et al., 2009; Doranalli and Mutsvangwa, 2010; Røjen 

et al., 2011; Lu et al., 2015; Walpole et al., 2015). Knowing that urea recycling occurs in the 

hindgut in both monogastrics and humans (Stewart and Smith, 2005), further research has begun 

to study the expression of these transporters localized to the hindgut. Collins et al. (2010) validated 

the presence of UT-B in human colonocytes and found that urea recycling via UT-B at this site 

contributed to the maintenance of normal colonic bacteria. Similarly, Ludden et al. (2009) detected 

the presence of UT-B in the cecum, large colon, and spiral colon of protein-supplemented sheep 

via immunoblotting techniques. These findings provide evidence that the expression of UT-B is 

not limited to the rumen. 

 Utilizing ex vivo Ussing chamber methodology, various laboratories have studied the 

effects of pH, fermentative end-products, and NH3 on UT function and expression. Abdoun et al. 

(2010) and Lu et al. (2014) completed a series of experiments investigating the effects of SCFA 

and CO2 or ruminal environment (ruminal pH) on ruminal epithelium permeability to urea and 

UT-B expression. Both studies confirmed that production of SCFA and CO2 from RFC was 

accompanied by a decrease in pH (Abdoun et al., 2010; Lu et al., 2014), with Abdoun et al. (2010) 

noting a 4-fold increase in Jsm-urea at a pH of 6.4 compared to 7.4 (see section 2.2.2.2.2 for further 

discussion). Moreover, the addition of phloretin reduced Jsm-urea by 50%, validating the functional 

role of UT-B in urea transfer across the ruminal epithelium (Abdoun et al., 2010). Lu et al. (2015) 

also assessed the effects of SCFA and acidic pH on UT protein expression in ruminal epithelial 

cell cultures. Additionally, the presence of GPR4 (GPR41 and GPR43), which are speculated to 
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be sensitive to the presence of SCFA and other luminal conditions, were also evaluated (Lu et al., 

2015). The G-proteins GPR41 and GPR43 (also known as free fatty acid receptors, FFAR3 and 

FFAR2) are thought to be responsible for mediating the regulatory effects that SCFA have on 

ruminal epithelial development (Wang et al., 2009). The study conducted by Lu et al. (2015) 

revealed that cultured ruminal epithelial cells from goats fed high levels of non-fiber carbohydrates 

exhibited greater levels of GP41 than those fed low levels of non-fiber carbohydrates, and that the 

expression of GPR41 was positively correlated with that of UT-B (Lu et al., 2015). Based on these 

results, Lu et al. (2015) hypothesized that these G-coupled proteins were key players in signalling 

the induction of UT-B expression, and that they were influenced by fermentative end-products. 

Similarly, both studies by Lu et al. (2014, 2015) noted the inhibitory effects of NH3 on urea 

transport and corresponding UT-B gene expression, particularly at pH values of 6.4. Though the 

mechanism is not fully understood, it is speculated that when intracellular concentrations of NH4
+ 

increase, there is direct competition with urea for access to the UT, thereby decreasing Jsm-urea (Lu 

et al., 2014). 

The functional role of UT in urea transfer across the ruminal epithelium has now been 

established using inhibitors such as phloretin in Ussing chamber models (Abdoun et al., 2010; 

Doranalli et al., 2011); however, these studies have also demonstrated that the addition of phloretin 

does not completely inhibit urea transfer, suggesting that other urea transport mechanisms could 

also be involved. A potential candidate for alternative urea transport mechanisms are AQP, which 

are trans-membrane proteins that are primarily associated with the movement of water in various 

tissues (Ma and Verkman, 1999). A sub-group of these membrane-spanning proteins, referred to 

as aquaglyceroporins (primarily AQP-3, -7, -9, and -10), have been found in various locations of 

the GIT in non-ruminants and are known to be permeable to urea (Rojek et al., 2008). In ruminants, 

there has also been evidence supporting the presence of AQP in the GIT. Røjen et al. (2011) 

conducted a study to test the effects of dietary N concentration on UT-B and AQP expression in 

bovine ruminal papillae. The study confirmed the presence of UT-B and AQP-3, -7, and -8 in the 

rumen; however, contrary to expectations, the expression of AQP-3, -7 and -10 did not increase 

when exposed to low dietary N concentrations (Røjen et al., 2011). Expression of UT-B was 

reduced in animals fed low dietary N concentrations (12.9 % CP), whereas expression of AQP 

were greater in cows fed high levels of dietary N (17.1% CP) (Røjen et al., 2011). These findings 

led Røjen et al. (2011) to conclude that increased ruminal epithelial urea permeability commonly 
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observed in cattle fed low N diets was not due to the function of AQP, and moreover, that 

regulation of AQP expression could be affected by factors other than dietary N content. Walpole 

et al. (2015) conducted the first study to examine the functional role of AQP in ruminal urea 

transfer. The study’s objectives were to determine the functional roles of AQP in Jsm-urea across the 

ruminal epithelium, and to determine the effects of dietary fermentable carbohydrates on 

expression of AQP. Twenty-five Holstein steer calves were assigned to either a 91.5% forage-

based control diet, or a 50:50 F:C ratio diet (41.5% barley grain). The two diets were fed for either 

3, 7, 14, or 21 d in order to determine a dietary adaptation response. To assess the functional role 

of AQP in Jsm-urea using Ussing chambers, 1 mmol/L of nickel chloride (NiCl2) was added to inhibit 

AQP-mediated urea transport. In this experiment, Walpole et al. (2015) found that AQP played a 

definitive role in the movement of urea from the serosal side of the ruminal epithelium to the 

mucosal side. This was validated by the addition of NiCl2 reducing Jsm-urea by 23% (Walpole et al., 

2015). Walpole et al. (2015) also found that gene transcript abundance of AQP-3 in ruminal 

epithelium was positively correlated to the level of RFC present in the diet. The study also 

observed a positive relationship in the expression of AQP-3 and the amount of time the 50:50 F:C 

diets were fed to growing steers (Walpole et al., 2015). From these findings, it can be concluded 

that diet plays an important role in regulating urea transport mechanisms through AQP. 

2.2.2    Regulation of Urea Recycling 

 As previously mentioned, urea recycling is influenced by many factors, including dietary 

(e.g., intake, protein degradability, carbohydrate fermentability) and physiological (e.g. 

fermentative end-products, NH3 concentration, endogenous urea production) factors alike. In terms 

of dietary factors, many studies have assessed in vivo dietary effects on N recycling (Walpole et 

al., 2015; Davies et al., 2013; Doranalli et al., 2011; Marini et al., 2004). Currently, the results 

strongly support that N and energy are the two most important dietary factors governing the 

amount of urea salvaging that takes place within the ruminant animal (Reynolds and Kristensen, 

2008). 

2.2.2.1    Dietary Protein and Nitrogen Supply 

 Dietary N levels, as well as intake, have an important role in governing a ruminant’s ability 

to recycle endogenous urea to the GIT. Marini and Van Amburgh (2003) conducted a study 

assessing dietary N levels on urea recycling in Holstein heifers. Diets fed were isocaloric, and 
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contained N levels of 1.44, 1.89, 2.50, and 2.97% (dry matter [DM] basis), and were fed at 1.8 

times maintenance intake. Results from the study indicated that dietary N levels altered the 

partitioning of the various fates of endogenous urea-N produced. For example, increasing dietary 

N levels increased both endogenous urea-N production as well as urinary urea-N excretion, but 

decreased the amount of fecal N excretion (Marini and Van Amburgh, 2003). Because of this, 

urea-N utilized for anabolism (as a percentage of endogenous urea-N returned to the GIT) 

remained relatively constant despite intake increasing with dietary N content (Marini and Van 

Amburgh, 2003). In contrast, animals fed the low N diets had less endogenous urea-N return to 

the ornithine cycle (as percentage of endogenous urea-N returned to the GIT) providing them with 

greater anabolic benefit. These findings support the claimed benefits that urea recycling has on 

ruminants when faced with a protein deficiency. To assess the effects of oscillating dietary CP 

levels on urea recycling, Doranalli et al. (2011) provided oscillating levels of dietary CP to 9 

wether lambs per treatment. Dietary CP content starting at 103 g CP/kg DM and increasing to 161 

g CP/kg DM were deemed OSC-HIGH diets, whereas dietary CP content starting at 161 g CP/kg 

DM and decreasing down to 103 g CP/kg DM were deemed OSC-LOW. Doranalli et al. (2011) 

observed a reduction in ruminal NH3-N concentrations for wether lambs fed OSC-LOW, as well 

as a corresponding increase in Jsm-urea across ruminal epithelium in lambs fed OSC-LOW diets. 

Additionally, provision of increasing levels of RDP (0, 59, 118, and 177 g of N/kg body weight 

[BW] via ruminal casein dose) resulted in linear increases in endogenous urea production, as well 

as a decrease in urea entry into the GIT (Wickersham et al., 2008). This decrease is attributed to 

the increased amounts of NH3 released due to the proteolytic activity of ruminal bacteria on RDP. 

The NH3 released is known to decrease urease activity in the rumen (Cheng and Wallace, 1979), 

resulting in a loss of the diffusional gradient favourable to serosal-to-mucosal transfer of urea 

(Marini et al., 2004; Abdoun et al., 2006; Lu et al., 2014). When assessing the effects of ruminal 

NH3 levels on UT-B, Marini et al. (2004) found that prevalence of UT-B (98 and 40 - 45 kD bands) 

decreased in ruminal tissue as the amount of N/kg DM in the diet increased. This finding could 

provide an additional explanation as to how the presence of NH3 acts on the inhibition of Jsm-urea. 

Collectively, the data described illustrates the effects of dietary protein intake, level, and 

degradability on urea recycling. 

In summary, it has been confirmed that in times of protein deficit, urea recycling will aid 

in improving N retention via return to the GIT, and provide an available N source for the ruminal 
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microbial population to synthesize microbial protein, thus enhancing the efficiency of nutrient 

utilization (Lapierre and Lobley, 2001; Doranalli et al., 2011). With less protein being provided in 

the diet, the NH3 concentration in the rumen decreases, allowing urea to flow down its 

concentration gradient from the BUN pool to the rumen.  

2.2.2.2    Fermentable Energy Sources and Fermentative End-Products 

 The effects of fermentable energy sources and fermentative end-products on urea recycling 

have been an area of increasing interest. Proven in peer-reviewed studies, the provision of RFC to 

ruminants improves microbial NH3 sequestration by supplying an energy source (Kennedy and 

Milligan, 1980; Huntington, 1989), thus reducing the ruminal NH3 concentration. Reducing 

ruminal NH3 concentration removes the inhibitory action NH3 elicits on urease functions (Cheng 

and Wallace, 1979), thus improving N retention by maintaining a favourable diffusional gradient 

for urea, enhancing its transfer to the rumen. Increasing energy availability in the rumen to elicit 

the aforementioned response can be achieved through means of grain processing, presence of 

SCFA and CO2, and reduction in ruminal pH.  

2.2.2.2.1    Effect of Grain Processing 

 Grain processing is an effective method to increase rapidly fermentable carbohydrate 

content available to bacteria in the rumen. Typically, the greater the degree of grain processing, 

the higher the starch digestibility, resulting in the rumen becoming a favorable site for urea transfer 

(vs. post-ruminal regions) (Huntington, 1989). Common types of cereal grain processing methods 

utilized in the feed industry include grinding, cracking, dry-rolling, roasting, reconstituting, and 

steam-flaking (Theurer, 1986). To study the effect of grain processing on urea recycling and N 

balance, Doranalli and Mutsvangwa (2007) fed four dietary treatments in a 2 × 2 factorial design 

to four Suffolk ram lambs. Dietary factors were provision of dry-rolled barley or pelleted barley 

as a fermentable energy source, combined with dietary levels of RDP provided at 60 vs. 70% of 

total dietary CP content. Diets were composed of 80% concentrate mixture and 20% barley silage 

(DM). The study found that feeding dry-rolled barley resulted in greater N digestibility compared 

to feeding pelleted barley; however, the amounts of endogenous urea-N produced and urea-N 

returned to the GIT were not different (Doranalli et al., 2007). Interestingly, the high concentrate 

diets fed by Doranalli and Mutsvangwa (2007) resulted in substantial amounts of endogenous urea 

produced being recycled to the GIT. In a similar study, Davies et al. (2013) fed four duodenally-
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cannulated beef heifers diets varying in ruminally-degradable starch (RDS) content (whole-shelled 

corn vs. steam-rolled corn), and determined that animals fed higher levels of RDS in conjunction 

with increased RDP levels exhibited greater amounts of urea recycling to the GIT. These results 

confirm the proposed relationship between RFC and urea recycling mentioned above, with the 

findings of other studies (Huntington, 1989; Theurer et al., 2002; Walpole et al., 2015) supporting 

this notion. 

2.2.2.2.2    Effects of SCFA, CO2, and pH 

 When starch is fermented in the rumen, SCFA and CO2 are produced as end-products by 

the bacterial community due to amylolytic, cellulolytic, and hemicellulolytic degradation (Ørskov, 

1986). As the production of SCFA increases within the rumen, there is a corresponding reduction 

in ruminal pH (Owens et al., 1998). Production of these SCFA provide energy (as ATP) for the 

microbial community, facilitating the sequestration of NH3 to synthesize microbial protein. Both 

in vivo and in vitro, it has been shown that the presence of SCFA can effect urea transfer into the 

rumen (Rémond et al., 1993; Abdoun et al., 2010; Bailey et al., 2012), with butyrate receiving 

attention for its reported stimulatory effects on urea recycling (Norton et al., 1982; Simmons et al., 

2009). In a more recent study conducted by Agarwal et al. (2015), the effects of rumen butyrate 

concentrations on urea recycling in sheep failed to affect N utilization and retention in sheep, 

leaving conclusions of the previous studies (Norton et al., 1982; Simmons et al., 2009) in question. 

Additionally, altering levels of CO2 (which is released as a by-product of the various fermentative 

pathways of pyruvate) in the rumen has also been shown to influence urea transfer to the rumen 

(Rémond et al., 1993; Abdoun et al., 2010). Because endogenous urea-N recycled back to the GIT 

is a N source for microbial protein synthesis, understanding how fermentative end-products 

regulate its transfer across the ruminal epithelium is critical. Bailey et al. (2012) studied the effects 

of supplemental energy to beef cattle in the form of 600 g glucose or 480 g SCFA infused ruminally 

combined with 120 or 240 g casein, and its effects on urea kinetics. The group observed that cattle 

provided with glucose infusions had an increase in endogenous urea-N entry into the GIT, as well 

as increased microbial uptake of recycled urea-N compared to those animals dosed with SCFA 

(Bailey et al., 2012). To study the effects of fermentative end-products on urea flux across the 

ruminal epithelium ex vivo, Abdoun et al. (2010) conducted a series of Ussing chamber 

experiments to assess the effects of SCFA, CO2, and pH on urea transfer across the ruminal 

epithelium. The study found that at a luminal pH of 6.4 in combination with SCFA (40 mmol/L), 
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Jsm-urea was increased from 18.8 ± 1.5 nmol/(cm2 × h) (pH 7.4, no SCFA) to 82.4 ± 12.1 nmol/(cm2 

× h), and when combined with CO2
 (10%), increased Jsm-urea from 39.2 ± 12.0 nmol/(cm2 × h) (pH 

7.4 with 10% CO2) to 127.2 ± 5.5 nmol/(cm2 × h). A few years later, Lu et al. (2014) also assessed 

the effects of SCFA and pH on urea-N transfer across the ruminal epithelium, and found that when 

luminal pH was 6.4, Jsm-urea increased linearly with increasing SCFA concentrations (0, 40, and 80 

mmol/L). The findings from these studies provide evidence that fermentative end-products play a 

regulatory role in the permeability of ruminal epithelia to urea. Furthermore, the study by Lu et al. 

(2014) also successfully sequenced UT-B in the ruminal epithelium of sheep, but did not study the 

regulatory effects of SCFA or pH on its expression; however, the group speculated that the increase 

in urea flux witnessed could be attributed to stimulatory effects of pH, SCFA, and CO2 on UT-B 

expression and activity. In a follow-up study, Lu et al. (2015) also reported an up-regulatory effect 

of GPR4, GPR41, and UT-B in ruminal tissue of goats fed high levels of non-fiber carbohydrates 

(NFC), isonitrogenous diets compared to those fed low NFC, isonitrogenous diets. Interestingly, 

ruminal concentrations of NH3-N were greater in the high NFC group, although serum urea 

concentrations were unchanged between the treatment groups. These findings led Lu et al. (2015) 

to conclude that SCFA and pH played a key role in the dietary regulation of UT-B expression (via 

GPR4 and GPR41), and that this mechanism may have priority over plasma urea concentrations 

in governing urea flux across the ruminal epithelium. Interestingly, Abdoun et al. (2010) had 

previously proposed that potential regulation of UT-B by fermentative end-products could be 

attributed to intracellular proton accumulation from transport of SCFA, altering the permeability 

of the ruminal epithelium to carrier-mediated urea transport. More research is needed to uncover 

the underlying mechanisms of pH, SCFA, and CO2 on urea transport.  

 It is known that starch fermentation occurs in the hindgut, namely the large intestine and 

the cecum, and that fermentative profiles can be quite similar to that of the rumen (Ørskov, 1986). 

Some research has assessed the effects of fermentation in the hindgut of ruminants on urea 

recycling. Thornton et al. (1970) fit four wether lambs with ileal re-entrant cannulas in order to 

study the effects of glucose infusions into the hindgut on transfer and losses of endogenous N. The 

group found that fecal N output per day was greater as the percent of glucose in the infusate 

increased (4.22 vs. 5.20 g N/d), leading them to conclude that under favorable fermentative 

conditions in the hindgut, urea-N will be preferentially recycled to post-ruminal regions and 

utilized for microbial protein synthesis (Thornton et al., 1970). In support of these findings, Oncuer 
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et al. (1990) also observed that as terminal ileum infusate fermentability increased (by provision 

of starch, glucose, or the two combined), fecal N losses increased, further implying that provision 

of fermentable substrate in the hindgut facilitates microbial protein synthesis by providing an 

energy source for NH3 sequestration (Lapierre and Lobley, 2001). Knowing that fermentative end-

products in the rumen and hindgut influence urea transfer across the GIT epithelium, and that there 

is a proposed mechanism in place for these end-products to alter UT and AQP function in the 

rumen, this study sought to determine if the same relationships can be seen within the post-ruminal 

regions of ruminants. 

2.3    Methods for Measuring Urea Transfer from the Bloodstream to the GIT 

2.3.1    In Vivo Whole-Body Urea Kinetics (Lobley Model) 

 The beginnings of the whole-body urea kinetics model started in the 1950s, when Walser 

and his colleagues set out to determine mathematical models that would describe the 

monomolecular reactions between N14N14 + N15N15 ⇌ 2N14N15 under ordinary, non-equilibrium 

circumstances (Walser et al., 1954). Soon after these initial studies, experiments were put into 

place wherein systemic infusions of double-labelled urea ([15N15N]-urea) were provided to 

humans, and the emerging concentrations of formed single-labelled urea ([14N15N]-urea) were 

observed (Walser, 1968; Jackson et al., 1984; Jackson et al., 1993). These studies assessed rates 

of excretion of both labelled and unlabelled urea-N, and from there, determined the rate of urea 

production based on regular protein intakes for men (Jackson et al., 1984; Jackson et al., 1993). 

 Due to the physiological significance of urea recycling in ruminants, the whole-body urea 

kinetics model was an attractive scientific methodology to determine the multiple entry rates of 

urea-N to the GIT, return to ornithine cycle, as well as losses and anabolic retention (Sarraseca et 

al., 1998). Sarraseca et al. (1998) was the first group to apply the whole-body urea kinetics model 

to ruminants, feeding sheep 560, 1,110, and 1,670 mg N/kg0.75
 (25, 51, and 76 g DM/kg0.75, 

respectively) for a total of 8 d. On the last 4 d of the experimental period, N balance was determined 

by total collections of feces and urine, with jugular infusions of [15N15N]-urea taking place from d 

3 to 4. The study found that endogenous urea-N production increased with intake, as did urea-N 

entry into the GIT. The proportion of recycled urea-N to the GIT relative to the amounts returned 

to the ornithine cycle remained unchanged across dietary treatments, leading the group to speculate 

that the remainder was allocated towards anabolic usage (Sarraseca et al., 1998). With peaked 
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interests from this study, Lobley et al. (2000) conducted a study on 4 wether sheep fed 1 of 2 

dietary treatments: (1) mixed concentrate-forage diet (CF; total 21.5 g N/kg DM); and (2) 1:1 

mixture of grass pellets and chopped hay (HG; total 31.5 g N/kg DM), fed at 1000 g/d as fed. The 

methodology of obtaining urea kinetics data was almost identical to that of Sarraseca et al. (1998); 

however, Lobley et al. (2000) conducted the infusions over the entire 4-d period to increase 

[15N15N]-urea enrichments with the objective of reaching a plateau. From here, Lobley et al. (2000) 

developed a series of equations that better quantified “whole-body” fractional transfers and fates 

of urea-N to be used in the final analysis. These quantifications included: endogenous urea 

production (UER), urea-N entry into the GIT (GER), urea-N return to the ornithine cycle (ROC), 

urea-N loss to feces (UFE), urea-N loss in the urine (UUE), and urea-N left for anabolism (UUA), 

which is calculated by subtracting ROC and UFE from GER (Lobley et al., 2000). In addition, 

Lobley et al. (2000) also determined fractional transfers of: UER to UUE, UER to the GIT, GER 

to ROC, GER to the feces, and GER to UUA. The refinements implemented in the previously 

mentioned study provided a more complete picture of urea-N transfer throughout the body, 

particularly in the quantifications of the anabolic fractions. Additionally, Lobley et al. (2000) 

gathered invaluable information regarding time frames necessary for plateaus to be reached with 

both [15N15N]- and [14N15N]-urea, allowing the mathematical models to accurately quantify these 

two molecules and reduce the need for invasive splanchnic-tissue studies (Lobley et al., 2000). 

Figure 2.4 illustrates the refined [15N15N]-urea isotopic infusion model developed by Lobley et al. 

(2000). 

2.3.1.1    Strengths and Limitations of the Lobley Model 

 The whole-body urea kinetics model used by Lobley et al. (2000) is accurate in its 

predictions of the fates of urea-N in the ruminant GIT. Additionally, if ruminal sampling is 

feasible, the model can include information pertaining to blood and salivary urea contributions to 

ruminal NH3 by comparing 15N enrichments of urea (Koenig et al., 2000; Lapierre and Lobley, 

2001). Moreover, if [15N]-NH3 ruminal infusions are done on separate animals at the same time as 

intravenous infusions, data can be combined to provide estimates of intraruminal N recycling given 

the acquisition of a steady-state N pool (Lapierre and Lobley, 2001). The whole-body urea kinetics 

model is also far less invasive than its alternative, the V-A method, and is therefore used widely 

amongst research groups that are investigating regulatory mechanisms of urea recycling in 

ruminants.
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Figure 2.4. Illustration of the refined [15N15N]-urea isotopic infusion model (in ruminants) 

developed by Lobley et al. (2000). To quantify the fates of urea throughout the gastro-intestinal 

tract (GIT), [15N15N]-urea is infused into the jugular vein, where it is subject to entry into the 

GIT. When [15N15N]-urea enters the GIT, it is rapidly hydrolyzed by ureolytic bacteria, releasing 

two free 15NH3 molecules. Free 15NH3 can be sequestered by bacteria to synthesize microbial 

protein (later absorbed as 15AA or excreted in the feces as 15N), or subject to reabsorption across 

the GIT epithelia into the portal blood. In the liver, indiscriminate incorporation of labelled and 

unlabelled N into hepatic ureagenesis results in the formation of [14N14N]-, [14N15N]-, and 

[15N15N]-urea, which can be recycled back to the GIT, or lost in the urine. Sourced from Lapierre 

and Lobley (2001) with permission from the publisher. 
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 Limitations to the model include time investments to reach steady-state conditions, 

ambiguity regarding site of gut entry, calculations subject to cumulative errors, and the inability 

to run simultaneous jugular and ruminal infusions (Lapierre and Lobley, 2001). Lobley et al. 

(2000) determined that infusions are most beneficial if conducted for at least 4 d to obtain plateau 

enrichments, with the collection and measurement period spanning a minimum of 48 h (Lapierre 

and Lobley, 2001). Moreover, steady-state conditions of N and/or urea pool sizes must be attained 

prior to the start of infusions and maintained to the end of the experiment, which can be difficult 

to sustain (Lapierre and Lobley, 2001). The whole-body urea kinetics model is also unable to 

provide information regarding the site of urea entry in the GIT, as the entire GIT is treated as a 

single compartment, whereas models such as the V-A difference method have the ability to 

differentiate between GIT regions depending on catheter placement (Lapierre and Lobley, 2001). 

Also, because the anabolic values obtained through the model are based on “differences between 

total urea-N entry and the amounts [of urea] converted to…catabolic fates,” the estimates are 

subject to cumulative calculation errors (Lapierre and Lobley, 2001). Lastly, though extension of 

the model is possible if one has direct ruminal access, ruminal infusions of [15N]-NH3 cannot be 

simultaneously run with jugular [15N15N]-urea infusions due to conflicts of labelling nitrogenous 

compounds, such as NH3 and AA (Lapierre and Lobley, 2001). 

2.3.2    Ex Vivo Ussing Chamber Model 

2.3.2.1    History, Description, and Methodology of the Ussing Chamber 

 The Ussing chamber model was first developed by Hans Ussing in 1951 during his studies 

investigating sodium movement in frog skin (Ussing and Zerahn, 1951). Since then, it has become 

one of the most useful experimental models for the study of epithelial transport of ions, nutrients, 

and medicinal drugs, thus providing major insights into the molecular mechanisms associated with 

transepithelial transport (Clarke, 2009). Ussing chambers come in various shapes and sizes, but 

ultimately, are categorized into 1 of 2 types: (1) the circulating chamber; or (2) the continuously 

perfused chamber (Li et al., 2004). In a review paper by Li et al. (2004), the 2 different Ussing 

chambers are described as follows. The circulating chamber (Figure 2.5) is a unit consisting of 2 

half-chambers fitted to two glass columns, with a U-shaped circulatory tubing system within each 

column that is filled with experimental buffer. To attain desired experimental conditions, the 

solution within the chambers can be thermoregulated via water-jacket reservoirs, and are gassed 

with gases such as O2, CO2, or N2 in order to mix the experimental solution. The 2 halves of the
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Figure 2.5. Diagram of the circulating Ussing chamber. 
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Ussing chamber are specifically designed to minimize fluctuations in hydrostatic pressure to 

reduce damage to the epithelial sample. The continuously perfused chamber is similar in that like 

the circulating chamber, it too consists of 2 halves in which tissue is mounted. It differs, however, 

in that the experimental solutions bathing the tissue are continuously delivered to the chamber 

from reservoirs held 20 to 50 cm above the chamber. Unlike the circulating chamber that relies on 

dimensions of the tubes to regulate flow rate, the continuously perfused chamber relies on a valve 

system to control flow and hydrostatic pressure. The continuously perfused chamber is not 

commercially available, making the circulating chamber most common in laboratories. 

 Regardless of the model used, Ussing chambers not only provide information regarding 

epithelial transport, but also critical electrophysiological measurements pertaining to tissue 

resistance (Rt or its reciprocal, Gt) and short-circuit current (Isc) (Li et al., 2004; Clarke, 2009). 

Tissue resistance is, essentially, a value indicating tissue integrity based on permeability and 

functional tight junctions. It is calculated by Ohm’s law, as: Rt = ∆𝑉 ∆𝐼⁄ , where Rt is tissue 

resistance, V is voltage, and I is electric current. The Rt value is obtained by voltage clamping; a 

series of short-current pulses injected into the system via a resistor, measured as voltage deflection 

by a voltmeter (Li et al., 2004). Commonly, Rt values are interpreted through tissue conductance 

(Gt) values, which are the reciprocal of Rt (Clarke, 2009). Interpretation of Rt and Gt data provides 

excellent insight into paracellular pathways – typically, greater Gt (or lower Rt) values are 

indicative of leaky epithelium with compromised tight junctions, whereas lower Gt (or higher Rt) 

values are indicative of intact, undamaged epithelial tissue. As described by Li et al. (2004), Isc is 

“defined as the charge flow per time when the tissue is short-circuited,” meaning that 

transepithelial voltage (Vte) of the tissue (the electrical current generated across an epithelium due 

to transport of ions, namely driven by Na+/K+ ATPase) is short-circuited to maintain a Vte of 0 mV 

such as to eliminate an electrical gradient across the epithelium and minimize the movement of 

ions. To induce short-circuit conditions, a current is applied throughout the system, and is   

consistently adjusted and measured by a feedback amplifier. In circumstances where epithelial 

tissue fails under a voltage clamp at 0 mV, the system can run “open,” wherein Vte and 

transepithelial resistance (Rte) are known and can calculate an “open” or “equivalent” Isc value: Isc 

= 𝑉te Rte⁄  (Li et al., 2004). It is important when conducting an Ussing chamber experiment to 

provide a stabilization period ranging from 10 to 40 min after mounting experimental tissue to 

allow oscillating Vte, Isc, and Rte to normalize (Li et al., 2004; Doranalli et al., 2011).  
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 The structure of the Ussing chamber facilitates its experimental function. Mounted between 

the 2 halves of the chamber, the epithelial sample separates the “mucosal” (apical, luminal) and 

“serosal” (basolateral) sides of the chamber, with the corresponding membrane of the epithelia 

matching its designated half (Clarke, 2009). Temperature and pH-controlled, gassed experimental 

buffers are designed to match in vivo physiological conditions of the respective sides of the tissue 

to facilitate accurate data collection. For measurements of solute movement and determination of 

tissue permeability, experimental designs commonly incorporate the usage of both a target 

molecule, as well as a hydrophilic molecule known to cross epithelial tissue by paracellular 

(diffusional) transport (Clarke, 2009). Examples of commonly used paracellular molecules are 

mannitol and inulin. Both radiolabelled and non-radiolabelled versions of the solutes are added to 

one or both sides of the chamber, with the provision of an equilibration period in order to achieve 

a steady-state flux within the system prior to obtaining isotopic flux measurements (Clarke, 2009). 

Isotopic flux measurements can be conducted by monitoring substrate movement (i.e. flux) from 

the mucosal to the serosal side, or from the serosal to the mucosal side. In order to obtain 

information regarding mechanisms of epithelial transport, the use of pharmacological or 

pathological drugs and/or inhibitors can be added to one side of the ussing chamber to elicit a 

physiological change in substrate transport (Kirat and Kato, 2006; Doranalli et al., 2011; Lu et al., 

2014; Walpole et al., 2015). In regard to urea transport, for example, the inhibitors phloretin 

(Ritzhaupt et al., 1997; Stewart et al., 2005; Doranalli et al., 2011; Walpole et al., 2015) and NiCl2 

(Walpole et al., 2015) have been used to study the function roles of UT and AQP ex vivo in ruminal 

epithelium. The addition of these inhibitors effectively alters urea transfer across the ruminal 

epithelium, thereby providing insight on the mechanisms that govern its transport. Additionally, 

altering the environment of the physiological buffers so as to impose a challenge to the tissue can 

also provide valuable information regarding tissue function. An example of this is when Penner et 

al. (2010) imposed either an acidic (pH 5.2, 293 mOsm/L) or osmotic (pH 6.1, 450 mOsm/L) 

challenge to ovine ruminal epithelia to determine the effects of subacute ruminal acidosis on 

epithelial barrier function. 

2.3.2.2    Tissue Preparation 

 When preparing tissue for an Ussing chamber experiment, extreme caution must be taken 

to maintain the integrity of the tissue. Firstly, tissue collected for experimentation must be obtained 

from a euthanized animal immediately and kept in physiological conditions during transport as 
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much as feasible. For preparation of GIT tissue, the underlying seromuscular layer must be 

carefully removed prior to mounting the tissue. The removal of the seromuscular layer aids in 

mitigating the diffusional barrier present on the epithelial tissue to various isotopes, nutrients, and 

oxygen, as well as reduce the presence of neuromuscular contractions that may arise with exposure 

to changes in Isc (Clarke, 2009). Once tissue stripping is complete, a piece of epithelium, cut to fit 

the exposed portion of the half-chamber, is mounted on pins to hold the tissue in place. Usage of 

rubber washers or parafilm liners on either side of the epithelium is optional, but has been shown 

to mitigate epithelial edge damage (Clarke, 2009). Once the tissue is finally mounted, the two 

halves of the chamber are assembled and held in place by pressure clamps. 

2.3.2.3    Strengths and Limitations of the Ussing Chamber Model 

 The Ussing chamber model has provided great contributions to the scientific knowledge of 

transepithelial transport processes and continues to be relevant in many physiology laboratories to 

date. Some of the major strengths of the Ussing chamber model include the ability to: (1) study a 

vast array of tissue types (e.g. reproductive tract, gastrointestinal tract, organ tissues); (2) maintain 

viable tissue in a closed, controlled system for an extended period of time; (3) expose the tissues 

to a wide variety of treatments with technical replicates; and (4) obtain precise measurements of 

molecular transport under mimicked in vivo conditions. The Ussing chamber method enables an 

ex vivo/in vitro approach in quantifying in vivo phenomenon over a diverse spectrum of subject 

material, including but not limited to gut barrier health (Benjamin et al., 2000; Penner et al., 2010; 

Wilson et al., 2012), the effects of pharmacological substances and drug absorbencies (Lampen et 

al., 1996; Lennernäs et al., 1997), and tissue permeability for substrate transport (Schröder et al., 

1997; Abdoun et al., 2010; Walpole et al., 2015). 

 However, the model is not without its weaknesses. Firstly, due to time sensitivity and the 

fragile nature of live tissues, viability and functionality of the tissue being used in an Ussing 

chamber experiment is frequently questioned (Clarke, 2009). Despite real-time electrical 

measurements taking place to provide an insight into tissue viability, changes in Gt values can be 

challenging to discern (Clarke, 2009). Additionally, during periods where tissues cannot be 

clamped at ~ 0 mV to regulate unwanted ion movement, they may be run on an “open” circuit (Li 

et al., 2004). Transport, flux, or uptake data needs to be interpreted cautiously in these instances, 

as not all ion movement has been controlled in the system. Secondly, maintaining a tissue ex vivo 
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removes in vivo physiological effects, including nutrient supply and waste removal, and hormonal 

and paracrine signalling, thus further limiting the extent of data interpretation (Clarke, 2009). 

Thirdly, the materials making up the Ussing chamber are designed for reuse and are therefore 

subject to contamination between experimental studies. In particular, soft plastics used for 

circulation tubing between the chambers and the columns are particularly prone to contamination 

by compounds dissolved in dimethyl sulfoxide or ethanol, as are the solidified agar bridges 

(Clarke, 2009). To avoid this issue, thorough cleaning regimens and protocols are imperative in 

the laboratory. Lastly, when studying the effects of drugs on tissues ex vivo, there are many factors 

unique to the Ussing chamber that must be accounted for: (1) different tissues vary in diffusional 

barriers (e.g. intestinal tissue limits diffusion through goblet cell mucosal secretions on the apical 

surface, and by presence of collagen and fibroblasts on the basolateral submucosal membrane); (2) 

accounting for these diffusional barriers, equilibration time and drug concentration may not be the 

same for all tissue types utilized in any given study; and (3) composition of experimental buffers 

can have an important influence on a drug’s mode of action (e.g. CO2/HCO3
--containing buffers 

influence drug action by altering the buffering capacity of both the closed system as well as the 

epithelial cells of the tissue), in addition to a lack of in vivo stimuli (e.g. hormones) (Clarke, 2009). 

Despite the weaknesses listed, it is important to note that constant advancements are being made 

in Ussing chamber studies, and through careful data interpretation and experience, it remains an 

excellent model to delve into the understandings of life sciences. For these reasons, the Ussing 

chamber model was deemed a beneficial apparatus to use in this study to obtain valuable total flux 

data across the ovine GIT. 

2.3.3    Considerations to the Methodologies 

 To account for the strengths and weaknesses of the whole-body urea kinetics and Ussing 

chamber models, it was decided to use both the in vivo and ex vivo methodologies in combination 

for this study. The in vivo isotope infusions provide information regarding whole-body urea-N 

utilization and kinetics; however, it fails to represent the various compartments of the GIT. 

Therefore, samples from the rumen, duodenum, and cecum were collected at the time of slaughter 

to assess ex vivo Jsm-urea across the individual regions, as well as interpret any dietary treatment 

effects on urea flux. 



37 

 

2.4    Summary 

 Most of the current literature has focused on urea recycling to the rumen, as it is most 

beneficial to the ruminant from an anabolic and production standpoint; however, it is known that 

urea recycling also occurs in the hindgut regions (Stewart and Smith, 2005; Ludden et al., 2009; 

Collins et al., 2010). The serosal-to-mucosal movement of urea-N across the GIT epithelium has 

been confirmed to take place via passive diffusion and by carrier-mediated transport mechanisms, 

namely UT (Stewart et al., 2005; Ludden et al., 2009; Walpole et al., 2015) and AQP (Walpole et 

al., 2015). Moreover, it is known that dietary starch content and fermentative end-products have 

an influence on both Jsm-urea and the expression of UT and AQP in the rumen (Abdoun et al., 2010; 

Lu et al., 2015; Walpole et al., 2015). Currently, comparative studies assessing dietary influences 

on ruminal vs. post-ruminal urea transfer are sparse; therefore, it would be of great interest to 

evaluate the impact of forage level and corn grain processing on ruminal and post-ruminal urea 

recycling, and the influence on the expression of UT and AQP in the rumen, duodenum, and 

cecum. Combining this knowledge with in vivo N balance and whole-body urea kinetics data will 

facilitate a deeper understanding of urea recycling in ruminants. 

2.5    Hypothesis 

 The hypothesis of this experiment was that altering the F:C ratio and the extent of corn 

grain processing would influence urea-N recycling to ruminal and post-ruminal regions of the GIT, 

and Jsm-urea and the expression of UT and AQP in ovine ruminal, duodenal, and cecal epithelia.  

2.6    Objectives 

 The objectives of this experiment were: (1) to determine the influence of forage level and 

corn grain processing on whole-body urea-N kinetics, and Jsm-urea and the expression of UT and 

AQP in the ovine ruminal, duodenal, and cecal epithelia; and (2) to determine the influence of 

forage level and corn grain processing on whole-body N balance and fermentation characteristics 

in the ovine rumen, duodenum, and cecum. 
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3.0    MATERIALS AND METHODS 

3.1    Animals, Experimental Design, and Dietary Treatments 

 Thirty-two wether lambs (37.2 ± 1.7 kg initial BW upon arrival) were used in this study. 

Animals were housed at the University of Saskatchewan Livestock Research Building (LRB), and 

were cared for in accordance with the guidelines of the Canadian Council of Animal Care (2009). 

All procedures conducted in this experiment were approved by the University of Saskatchewan 

Animal Research Ethics Board (Protocol No. 20040048). Upon arrival at the LRB, lambs were 

weighed and blocked by BW into groups of 4 (for a total of 8 blocks) and randomly assigned 

within block to 1 of 4 dietary treatments (n = 8). Experimental diets were arranged into a 2 × 2 

factorial design, with dietary factors being: (1) dietary forage content i.e., low (30% [LF]) vs. high 

(70% [HF]) forage; and (2) method of corn grain processing i.e., whole-shelled [WS] vs. steam-

flaked [SF]). Ingredient and chemical composition of the experimental diets are presented in Table 

3.1. Dietary treatments were formulated to be isonitrogenous (10.7 ± 0.2% CP) so as to remove 

any influence on urea recycling associated with varying CP content. To investigate the effects of 

grain processing, corn was selected as the cereal grain to be included in the diets based on its high 

starch content (68.0 to 75.4% starch, DM basis) (Theurer, 1986; Crocker et al., 1998; Zinn et al., 

2002). Feeding either WS or SF corn was intended to manipulate the site of starch digestion, with 

more starch being fermented in the rumen when SF corn was fed compared to WS corn (Lee et al., 

1982; Huntington, 1997; Crocker et al., 1998). Additionally, in a study conducted by Crocker et 

al. (1998), starch reactivity (i.e., the amount of starch degraded to glucose over a given time period 

when incubated with amyloglucosidase) was 28.5% units greater with SF corn compared to WS 

corn. Based on this evidence from previous studies investigating the effects of processing on starch 

digestion, it was decided that provision of either SF or WS corn would be used to manipulate the 

site of starch digestion between ruminal and post-ruminal sites. In support of this decision, diet 

fermentability predictions obtained from the Nutritional Dynamic System (NDS; CNCPS v6.5) 

estimated that rumen escape starch for the WS-containing (HFWS, LFWS) and SF-containing 

(HFSF, LFSF) diets were 14.0 and 4.96% of DM, respectively. Corn grain processing was 

conducted at the Canadian Feed Research Centre (North Battleford, SK). In brief, WS corn was 

held in a steam chest for 20 min at 100°C, followed by processing through a AT Ferrell 18×39 

dual drive flaking mill (A.T. Ferrell Co., Bluffton, IN) with continuous steam injection. Processing 

index for the produced SF corn was reported at ~78%. Feeding of experimental diets took place at
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Table 3.1. Ingredients and chemical composition of experimental diets containing low (LF) and 

high (HF) forage levels in combination with whole-shelled (WS) or steam-flaked (SF) corn. 

 Experimental diets1 

 
   LF       HF 

Item WS   SF   WS SF 

Ingredients, % of DM      

   Barley green feed 26.4 26.4  70.7 70.7 

   Corn, WS 64.6 -  22.0 - 

   Corn, SF - 64.6  - 22.0 

   Pelleted ingredients       

      Barley, ground 0.66 0.66  0.66 0.66 

      Limestone, ground 1.35 1.35  1.01 1.01 

      Salt, white 0.47 0.47  0.47 0.47 

      Canola meal, solvent-extracted 5.83 5.83  5.15 5.15 

      Commercial micro-premix2 0.05 0.05  0.05 0.05 

      Bovatec3 0.02 0.02  0.02 0.02 

      Dicalcium phosphate 0.67 0.67  - - 

Chemical composition      

   DM, % 91.6 ± 0.6 90.4 ± 1.2  90.2 ± 1.4 90.3 ± 0.9 

   ADF, % of DM 12.1 ± 0.4 12.5 ± 0.3  26.2 ± 1.3 26.8 ± 0.2 

   NDF, % of DM 22.2 ± 1.0 22.0 ± 0.9  40.6 ± 2.3 40.7 ± 1.9 

   NFC4, % of DM 59.5 ± 1.2 60.0 ± 1.7  39.9 ± 2.5 40.1 ± 3.2 

   Starch, % of DM 47.1 ± 0.7 48.0 ± 1.3  26.4 ± 0.8 26.6 ± 0.4 

   CP5, % of DM 10.5 ± 0.3 10.7 ± 0.7  10.7 ± 0.7 11.0 ± 1.4 

   Soluble protein, % of DM 1.95 ± 0.3 1.55 ± 0.3  2.78 ± 0.4 2.58 ± 0.7 

   EE, % of DM 2.93 ± 0.1 2.52 ± 0.2  2.41 ± 0.1 1.95 ± 0.1 

   Ca, % of DM 0.74 ± 0.03 0.84 ± 0.1  0.70 ± 0.1 0.74 ± 0.1 

   P, % of DM 0.43 ± 0.02 0.43 ± 0.1  0.30 ± 0.01 0.29 ± 0.03 

NEg
6, Mcal/kg of DM 1.20 ± 0.01 1.16 ± 0.03  0.88 ± 0.05 0.88 ± 0.02 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2Commercial micro-premix contained (per kg of premix, DM basis): 0.67% P, 0.13% Cl, 0.33% 

Mg, 1.21% K, 0.04% NaCl, 0.08% Na, 5.18% Ca, 65.49 mg Co, 11.06 mg Cu, 20.30 mg F, 56.02 

mg I, 143.35 mg Fe, 3,505.89 mg Mn, 1,512.59 mg Zn, 55.95 mg I, 11.60 mg Se, 3,429.97 mg 

chelated Mn, 1,430.99 mg chelated Zn, 11.60 mg chelated Se, 58.38 mg biotin, 4,199.77 IU 

vitamin E, 488.60 KIU vitamin A, 54.37 KIU vitamin D3. Supplied by Masterfeeds, Taber, AB. 

3Bovatec 200,000 mg/kg (ionophore, lasalocid sodium) included in the diet as a rumen modifier; 

supplied by Masterfeeds, Taber, AB. Manufactured by Zoetis Canada Inc.   

4Non-fiber carbohydrates = 100 – (% NDF + % CP + % EE + % Ash). 

5Diets were formulated to be isonitrogenous. 

6Net energy of gain. 
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 0700 and 1700 h daily. Diets were provided as a total mixed ration (TMR) and fed to allow for ≤ 

5% refusals. Water was provided free choice. 

 Initially, all lambs were placed in a common outdoor pen for a minimum of 2 weeks to 

facilitate habituation, where they were fed ad libitum grass hay along with daily provision of WS 

corn mixed with a supplemental pellet (the amounts of WS corn and pellet fed were determined 

based on predicted daily intakes). The composition of the pellet is presented in Table 3.1. At the 

onset of the experiment, lambs were brought into the metabolism wing of the LRB in their 

respective blocks and housed in individual floor pens. Each lamb was given 23 d of dietary 

adaptation to their assigned dietary treatment and was then killed at approximately 1000 h on d 24 

to facilitate collection of tissues for ex vivo experimentation. Additionally, 4 blocks of animals 

were randomly selected to conduct in vivo measurements of whole-body urea kinetics (see below).  

For logistical reasons, only one animal could be killed per day to obtain tissues for ex vivo 

measurements. Therefore, it was necessary to stagger the initiation of feeding experimental diets 

to individual animals within each block such that each animal was exposed to the experimental 

diet for 23 d before it was killed. Within each block, the order of initiation of animals on 

experimental diets was random. 

3.2    Sample Collection 

3.2.1    Feeding and Feed Sampling 

 Individual feed ingredients as well as TMR samples were collected bi-weekly over the 

duration of the experiment to determine their DM and chemical composition. Amounts of TMR 

offered and orts were recorded daily over the duration of the experiment, with records from the 

last 7 d of the 23-d experimental period used to determine dry matter intake (DMI). For animals 

utilized in the in vivo metabolism trial (see below), orts were collected over the 4-d period (i.e., d 

19 to 23) so as to determine actual nutrient intake for digestibility calculations. All feed and orts 

samples collected were kept frozen at -20°C pending processing and analysis upon completion of 

the trial. 

3.2.2    In Vivo Metabolism Trial 

 Four blocks of animals were randomly selected from the 8 blocks and used for in vivo 

measurements of whole-body urea kinetics and N balance. The in vivo metabolism trial was 

conducted for 4 d (d 19 to d 23) for each animal at its designated time-point during the experiment.
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Animals were housed in metabolism crates to facilitate total collections of feces and urine. Animals 

were placed in metabolism crates on d 18 to allow for 24 h of acclimatization before the initiation 

of total fecal and urine collections on d 19. On d 18, animals were fitted with temporary jugular 

catheters (0.86-mm i.d. × 1.32-mm o.d.; Scientific Commodities Inc., Lake Havasu City, AZ) in 

the left and right jugular veins, to allow isotopic infusions. Prior to the initiation of jugular isotopic 

infusions on d 19, background samples of feces and urine were collected to determine 15N (feces), 

and [15N15N]- and [14N15N]-urea (urine) natural abundance. Thereafter, intra-jugular infusions of 

[15N15N]-urea were conducted for 4 d (d 19 to 23) using a peristaltic pump to determine urea-N 

kinetics as described by Lobley et al. (2000). The [15N15N]-urea (99.8 atom % 15N; Cambridge 

Isotope Laboratories, Andover, MA) intrajugular infusate was prepared in 0.9% sterile saline 

solution, with infusions beginning at approximately 0800 h on d 19 until 0800 h on d 23, with 

approximately 450 mL infused daily. The amounts of [15N15N]-urea infused per day (range = 0.036 

to 0.146 g/d; mean = 0.083 g/d) were calculated based on mean daily N intakes during the last 4 d 

before the initiation of isotopic infusions, such that urinary [15N15N]-urea enrichments of 0.15 atom 

percent excess were achieved. 

Fecal collections were conducted using fecal bags, with collections done once daily at 0730 

h. Fecal bags were fitted the day prior to the start of collection (d 18) to allow for acclimatization. 

Feces collected were thoroughly mixed, weighed and a representative sample (25% of total output) 

was taken and stored at -20°C pending chemical analysis. Simultaneously, urine was collected in 

plastic containers placed below the individual metabolic crates. These containers contained 40 mL 

of 37% HCl to reduce urine pH to < 3 in order to prevent the loss of NH3 and prevent bacterial 

growth. Urine collected was weighed and recorded once daily (0730 h), then a representative 50-

mL sub-sample was taken and stored at -20°C pending analysis for urea-N concentration, and 

[15N15N]- and [14N15N]-urea enrichment. The remaining urine was collected, composited over the 

4-d in vivo period, and stored at -20°C for later determination of total N content. After termination 

of total collections at approximately 0730 h on d 23, animals were returned to their respective floor 

pens prior to their kill date on d 24 of the experimental period (described below).  

3.2.3    Digesta and Gastro-Intestinal Tissue Sampling 

 Prior to killing, venous blood samples were collected into heparin-coated vacutainers (BD; 

Franklin Lakes, NJ) by jugular venipuncture at 3 h after the morning feeding (~1000 h) on d 24 
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(i.e., after 23 d on experimental diets). Plasma samples were refrigerated at 4°C until they were 

centrifuged at 3,000 x g for 15 min at 4°C to obtain plasma. Plasma samples were then stored at -

20°C pending chemical analysis for urea-N and glucose concentrations. Following blood 

sampling, animals were killed by captive bolt stunning, pithing, and exsanguination. The time of 

killing (i.e., 3 h after the morning feeding) was chosen to allow sufficient time for microbial 

fermentative activities to occur in the GIT after feeding (Doranalli et al., 2011; Walpole et al., 

2015). Immediately after killing, the abdominal cavity was opened, and the entire GIT was 

removed. Thereafter, whole digesta contents were collected from the rumen, duodenum, and 

cecum. Digesta was temporarily stored in clean plastic containers. Following thorough mixing of 

whole ruminal digesta, a representative sub-sample was strained through 2 layers of cheesecloth 

to obtain ruminal fluid. Ruminal fluid pH was then measured using a portable pH meter (Accumet 

AP110 Portable pH Meter; Fisher Scientific, Ottawa, ON). Thereafter, two 10-mL sub-samples 

were collected and preserved with the addition of either 2 mL of 1% sulfuric acid (for NH3-N 

analysis) or 2 mL of 25% metaphosphoric acid (for SCFA analysis). Preserved ruminal fluid 

samples were stored at -20°C pending chemical analysis. Whole duodenal and cecal digesta were 

thoroughly mixed before sub-samples were collected, weighed, and then mixed with equal weights 

of double-distilled water (ddH2O). The addition of ddH2O to duodenal and cecal digesta was to 

reduce the viscosity of the sample, thus facilitating ease of handling during chemical analysis. 

Thereafter, duodenal and cecal digesta pH was measured using a portable pH meter. Duodenal and 

cecal digesta sub-samples were then preserved with 2 mL of 1% sulfuric acid or 25% 

metaphosphoric acid and stored at -20°C pending NH3 and SCFA analysis, respectively. 

 Simultaneous to digesta collection, tissue samples were obtained from the caudal-ventral 

sac of the rumen (Doranalli et al., 2011), proximal duodenum (Marini et al., 2004), and distal 

cecum (Ludden et al., 2009; Haenen et al., 2013). Tissue samples were washed in an O2-saturated 

transport buffer that was pre-heated to 38°C and was maintained at pH 7.4. The saturation of the 

transport buffer with O2 was achieved by continuous gassing with carbogen (95% O2, 5% CO2 

mixture). After washing of tissue samples, the underlying muscular layer was removed gently from 

the mucosa (for ruminal tissue) before the tissues were transported immediately (within 15 min of 

killing) to the laboratory in the transport buffer for ex vivo measurements. In addition to tissue 

samples that were obtained for ex vivo measurements, additional mucosal samples were obtained 

for later analysis of mRNA expression of UT-B, and AQP-3, and -7. Tissue samples were collected 
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from the caudal-ventral sac, proximal duodenum (within the 1st 10 cm), and blind sac of the cecum 

using sterile forceps and tweezers. Samples of ruminal papillae were obtained by clipping, whereas 

proximal duodenum and cecum samples were acquired by scraping the mucosa from the 

epithelium using a sterile glass slide. All samples were cleaned in sterile phosphate-buffered saline 

(PBS; pH 7.4, 4°C), transferred into cryovials, snap-frozen in liquid N2, and then stored at -80°C 

pending analysis for gene expression. 

3.2.4    Ex Vivo Ussing Chamber Experiment 

 Upon arrival at the laboratory, duodenal and cecal tissue samples had the underlying 

muscular layer removed gently to avoid damage of the mucosal layer. During removal of the 

muscular layer, duodenal and cecal tissue samples were bathed in O2-saturated, pre-heated (38°C) 

transport buffer to maintain tissue viability. Thereafter, stripped ruminal, duodenal, and cecal 

tissue samples were cut into strips, and mounted between two halves of an Ussing chamber, with 

an exposed surface area of approximately 3.14 cm2 (for ruminal tissue) or 1.0 cm2 (for duodenal 

and cecal tissue). Once mounted, tissue samples were bathed in incubation buffer solutions (15 

mL for both mucosal and serosal sides) that were maintained at 38°C. A total of 24 Ussing 

chambers were used, allocating 8 chambers per GIT region. The chemical compositions of the 

mucosal and serosal buffers are presented in Table 3.2. For all tissues, the pH of the incubation 

buffer on the serosal side was maintained at 7.4 to mimic physiological blood pH. For ruminal 

tissue, the pH of the incubation buffer on the mucosal side was maintained at 6.4. This pH was 

based on a study by Abdoun et al. (2010) who observed that maximal Jsm-urea in ruminal epithelial 

tissue mounted in Ussing chambers was achieved at a mucosal buffer pH of 6.4. For duodenal 

tissue, the pH of the incubation buffer on the mucosal side was maintained at 7.4 (Schröder et al., 

1995), whereas for cecal tissue the incubation buffer was maintained at a pH of 6.4 to mimic in 

vivo physiological conditions (Kirat and Kato, 2006). Also to mimic in vivo physiological 

conditions, mucosal buffers for the duodenal and cecal tissues contained glucose and SCFA, 

respectively, as energy sources. The pH of incubation buffers was adjusted by the addition of 1 

mmol/L NaOH or 37% HCl. Both serosal and mucosal incubation buffers were mixed by gassing 

with carbogen (95% O2, 5% CO2 mixture), with temperature maintained at 38°C by water-jacket 

reservoirs. All tissues were incubated under short-circuit conditions using a computer-controlled 

voltage clamp (Dipl.-Ing. K. Mussler, Scientific Instruments, Aachen, Germany), with Gt and Isc 
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Table 3.2. Chemical composition for transport, incubation 1, and incubation 2 buffers used 

in the Ussing chamber experiment. 

 Experimental buffers1 

Chemical, mmol/L Transport Incubation 1 Incubation 2 

CaCl2  1.00 1.00 1.00 

MgCl2 1.00 1.00 1.00 

Na2HPO4 2.00 2.00 2.00 

NaH2PO4 1.00 1.00 1.00 

Phenyl-phosphorodiamidate 1.00 1.00 1.00 

Butyric acid 5.00 5.00 0.00 

NaCl 60.0 60.0 60.0 

KCl 5.00 5.00 5.00 

Glucose 10.0 10.0 10.0 

Na-acetate 25.0 25.0 2.50 

Na-propionate 10.0 10.0 1.00 

Na-butyrate 0.00 0.00 0.50 

Na-gluconate 15.0 15.0 46.0 

NaHCO3 25.0 25.0 25.0 

HEPES 0.00 0.00 5.00 

Antibiotics, mg/L    

   Penicillin G sodium salt 0.00 60.0 60.0 

   Kanamycin sulfate 0.00 100.0 100.0 

   Fluorocytosine 0.00 50.0 50.0 

Buffer characteristics    

   Osmolality, mOsmol/L 291 ± 2.37 291 ± 2.37 284 ± 0.60 

   Temperature, °C 38 38 38 

   pH 7.4 6.4 7.4 

   Gas Carbogen2 Carbogen Carbogen 

1pH adjustments were made using either 1 mmol/L NaOH or 37% HCl and were based on 

physiological conditions. Transport buffer was used to transport tissues from the slaughter 

site to the laboratory, and for subsequent tissue handling. Incubation 1 buffer was used to 

bathe ruminal and cecal epithelia on the mucosal side, whereas Incubation 2 buffer was used 

to bathe duodenal epithelia on the mucosal side, as well as ruminal, duodenal, and cecal 

epithelia on the serosal side. 
2Carbogen gas (95% O2, 5% CO2 mixture). 
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measured every 6 sec. Tissues were allocated 20 min for stabilization of electrophysiological 

measurements prior to the start of the experiment. 

 After the 20-min electrophysiology stabilization period, 74 KBq/15-mL column of 14C-

urea (Perkin-Elmer, Waltham, MA) and 148 KBq/15-mL column of 3H-mannitol (Perkin-Elmer, 

Waltham, MA) were added to the serosal sides of the tissue samples to determine serosal-to-

mucosal fluxes of urea and mannitol (Jsm-mannitol). Both 14C-urea and 3H-mannitol were mixed with 

unlabelled urea and mannitol to achieve final concentrations of 1 mmol/L. The addition of 14C-

urea to only the serosal side elicits a concentration gradient from the serosal-to-mucosal side, thus 

mimicking physiological conditions in which urea is not normally found in ruminal fluid 

(Doranalli et al., 2011). The addition of 3H-mannitol allowed for the assessment of paracellular 

tissue permeability (i.e. diffusional transport). A 45-min isotope equilibration period was allotted 

prior to obtaining flux measurements. After isotope equilibration, Jsm-urea and Jsm-mannitol were 

measured over a 30-min flux period. To facilitate measurements of Jsm-urea and Jsm-mannitol, samples 

of incubation buffer (100 μL from the serosal side and 500 μL from the mucosal side) were 

collected at the beginning and end of the 30-min flux period. To maintain the volume of buffer on 

the mucosal side after the first sampling, 500 μL of fresh mucosal buffer was added. Samples were 

placed in scintillation vials (Perkin-Elmer, Waltham, MA), mixed with 4 mL of liquid scintillation 

cocktail, and were analyzed in a liquid scintillation counter (Tricarb 2910, Perkin-Elmer, Waltham, 

MA) on the same day, following the experiment. 

3.2.5   Gene Expression and Real-Time Quantitative PCR 

 Ruminal, duodenal, and cecal samples that were stored at -80°C after collection at the time 

of the kill were ground and homogenized using pre-frozen (-80°C) mortars and pestles. During 

grinding, all samples and materials were kept in contact with dry ice and liquid N2 to prevent 

thawing. Once ground, RNA extraction was conducted using TRIzol™ reagent in accordance with 

the TRIzol™ Reagent Extraction Protocol (Invitrogen, Burlington, ON). Quantitative assessment 

of RNA was completed using a Nanodrop 2000c Spectrophotometer (Thermo Scientific Inc., 

Waltham, MA), with a basic contaminant assessment conducted using the absorbance ratios of 

260:280 nm and 260:230 nm. After RNA concentration was determined, RNA samples were 

analyzed on a 1.2% denaturing agarose gel to assess RNA integrity and to check for genomic DNA 

contamination. Primers (Table 3.3; primers were designed using NCBI-Primer3 and BLAST) and 
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Table 3.3. Gene name, NCBI accession number, forward and reverse sequences, amplicon size, efficiency, and function of primers  

for real-time quantitative polymerase chain reaction (qPCR). 

Item1 Accession Number2 Primer Sequence  Amplicon Size3  Efficiency (%) Function 

GAPDH NM_001190390.1 F4: AAGCTCATTTCCTGGTACGACA 200 101 Reference 

  R5: GAAATGTATGGAGGTCGGGAGA    

HPRT1 XM_015105023.1 F: TATGGACAGGACCGAACGAC 121 101 Reference 

  R: GATGTAATCCAACAGGTCGGC    

RPLP0 XM_004017413.2 F: GAAATCCTGAGCGATGTGCAG 187 95 Reference 

  R: AGCGGGAATGCAGAGTTTCC    

UT-B NM_001163054.1 F: GTGGTGTTTGTCAGCAACCC 146 94 Target 

  R: ATGGCAGACCTGTCCTGATTG    

AQP-3 XM_015093074.1 F: CTATGTGCTTCCTGGCTCGT 121 95 Target 

  R: GCCCAGATCGCATCGTAATA    

AQP-7 XM_012118379.2 F: CGCATGTCCTGGAAGAAGTT 96 100 Target 

  R: AGCGGTGTAGAAGAGGCTGT    

4
6

 

1GAPDH = Glyceraldehyde-3 phosphate dehydrogenase; HPRT1 = Hypoxanthine-guanine phosphoribosyltransferase; RPLP0 = 

60S acidic ribosomal protein P0; UT-B = Urea transporter-B (SLC14A1); AQP-3 = Aquaporin-3; AQP-7 = Aquaporin-7. 

2NCBI accession number (National Center for Biotechnology Information). 

3Amplicon size represented in base pairs. 

4F = Forward primer sequence. 

5R = Reverse primer sequence. 
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prepared RNA samples were then shipped to the Advanced Analysis Centre (Genomics Facility) 

at the University of Guelph (Guelph, ON) for primer efficiency analysis, further RNA integrity 

assessment (Agilent 2100 Bioanalyzer, Agilent Technologies, Waldbronn, Germany), and qPCR 

analysis. Real-time qPCR was conducted using the StepOnePlus™ Real-Time SYBR PCR System 

(Thermo Scientific Inc., Waltham, MA).  

 In preparation for qPCR analysis, complementary DNA (cDNA) was made using 800 ng 

of RNA with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Thermo 

Scientific Inc., Waltham, MA). Thereafter, 10 uL of 2X PerfeCTa SYBR Green FastMix 

(Quantabio Inc., Beverly, MA) was combined with 0.8 uL of the desired forward and reverse 

primers (5 uM), 5.0 uL of cDNA template, and 4.2 uL of nuclease-free H2O for a total volume of 

20 uL/reaction. Each qPCR cycle included a 30-second pre-incubation period at 95°C for 

activation of polymerase, followed by a 3-second denaturing cycle at 95°C, and a 30-second 

annealing and extension period at 60°C for a total of 40 cycles. After each qPCR run, a melting 

curve analysis was performed to confirm the purity of the obtained PCR products, which was 

indicated by a single peak. Each plate was designed using the gene maximization method, with all 

samples run in duplicate for each GIT region. A no-template control was analyzed to determine 

the presence of any contaminants and/or primer-dimer formation within the qPCR reactions 

(without the cDNA template), which could potentially lead to false positive results. Lastly, an 

inter-plate calibrator was designed by pooling aliquots from all rumen samples and analyzing for 

Glyceraldehyde-3 phosphate dehydrogenase (GAPDH) and 60S acidic ribosomal protein P0 

(RPLP0) in duplicate to account for run-to-run variation on each plate. For each run, cycle 

threshold (Ct; the number of cycles required for amplification fluorescence to exceed that of 

background fluorescence) was determined using a normalized reporter signal (Rn; emission 

intensity of the reporter signal) set to a ΔRn of 0.5 (ΔRn = Rn cycle [reaction with template] – Rn 

baseline [reaction without template]). Obtaining a Ct value at ΔRn of 0.5 places the reading within 

the exponential phase of the reaction (Bustin, 2000). All Ct values obtained for target genes were 

normalized by subtracting the geometric mean of the Ct values obtained from three selected 

housekeeping genes (GAPDH, RPLP0, and Hypoxanthine-guanine phosphoribosyltransferase 

[HPRT1]) to obtain ΔCt (Vandesompele et al., 2002). It should be noted that all three housekeeping 

genes were used for normalization of ruminal and cecal tissue samples; however, RPLP0 was 

excluded from duodenal tissue due to significant effects of dietary treatment. Next, fold-change 
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was calculated using the 2-ΔΔCt method by designating one of the dietary treatments as a control 

(HFWS). Then, the 2-ΔΔCt value for each target gene was divided by the arithmetic mean of the 2-

ΔΔCt values for HFWS in order to obtain a fold-change ratio of mRNA expression relative to the 

control diet, which was set to one.  

3.3    Sample Analysis 

 Samples of TMR, orts, and feces were dried to a constant weight at 60°C in a forced-air 

oven over 3 d (TMR and ort samples) or 7 d (fecal samples) to determine DM (AOAC, 1990; 

method 930.15). Samples of TMR and orts were then ground through a 1-mm screen using the 

Christy-Norris mill (Christy and Norris Ltd., Chelmsford, England), whereas fecal samples were 

ground through a 1-mm screen using the Retsch ZM100 ultra centrifuge mill (Retsch-Allee, Haan, 

Germany). Ground orts and fecal samples were pooled for each animal proportionally, with sub-

samples submitted to Cumberland Valley Analytical Services (Hagerstown, MD) for analysis of 

chemical composition. Prior to pooling fecal samples, background and daily fecal sub-samples for 

each animal on the in vivo metabolism trial were kept for later analysis of 15N enrichment. Samples 

of TMR, orts, and feces were analyzed for ash (AOAC, 2000; method 942.05), acid detergent fiber 

(ADF) (AOAC, 2000; method 973.18), neutral detergent fiber (NDF) (Van Soest et al., 1991), 

starch (Hall, 2009), CP (AOAC, 2000; method 990.3), soluble protein (Krishnamoorthy et al., 

1982), ether extract (EE) (AOAC, 2000; method 2003.05), and minerals (Ca and P) (AOAC, 2000; 

method 985.01). 

Composited urine samples were thawed overnight in the refrigerator at 4°C and analyzed 

for N using the macro-Kjeldahl procedure (AOAC, 1990; method 976.05). Background and daily 

urine samples were thawed overnight in the refrigerator at 4°C in preparation for urinary urea-N 

analysis. Samples were diluted prior to analysis such that the absorbance (at 600 nm) reading fell 

within the standard curve for accurate results. Similarly, plasma samples were thawed overnight 

in the refrigerator at 4°C prior to plasma urea-N (PUN) analysis. Urinary and plasma urea-N 

concentrations were determined according to procedures described by Fawcett and Scott (1960). 

Additionally, plasma samples were also analyzed for glucose concentration using the glucose 

oxidase/peroxidase enzyme (No. P7119; Sigma, St. Louis, MO) and diansidine dihydrochloride 

(No. F5803; Sigma, St. Louis, MO) assay. Absorbance was recorded at 450 nm using a plate reader 

(SpectraMax 190, Molecular Devices Corp., Sunnyvale, CA). 
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Following urea-N analysis, background and daily urine samples were analyzed for urinary 

[15N15N]- and [14N15N]-urea enrichment as described by (Lobley et al., 2000). Briefly, urea-N was 

isolated by applying a pre-determined volume of urine that contained 1.5 mg of urea-N through a 

pre-packed ion exchange column (Poly-Prep® Columns, AG® 50W-X8, hydrogen form #7316213; 

Biorad, Richmond, CA) as described by Archibeque et al. (2001). Previous studies have found that 

1.5 mg of urea-N allows for a sufficient amount of sample to properly undergo isotope ratio-mass 

spectrometry (IRMS) while minimizing non-monomolecular reactions during in the degradation 

of urea (Sarraseca et al., 1998; Archibeque et al., 2001). After the urine had completely drained 

through the column, 7 mL of ddH2O was applied, with the eluant being discarded. Thereafter, urea 

was eluted by applying 20 mL of ddH2O through the column with the eluant being collected into 

test tubes. The 20-mL eluant samples were then air-dried at 60°C overnight. Next, the eluted urea 

was transferred into 17- x 60-mm borosilicate tubes by rinsing with 1 mL of ddH2O three times. 

Samples were then freeze-dried over a period of 72 hours, and sent for analysis of [15N15N]- and 

[14N15N]-urea enrichment at the N-15 Analysis Laboratory, University of Illinois (Urbana-

Champaign, IL). The analysis of [15N15N]- and [14N15N]-urea enrichment was conducted using 

IRMS as described by Lobley et al. (2000). The IRMS assay conducted produced mass/charge 

(m/z) values of 28, 29, and 30 for [14N14N]-, [14N15N]- and [15N15N]-urea, respectively. Also, 

standards prepared using [15N15N]-urea (99.8% 15N) and [14N14N]-urea (natural abundance; 

0.368% 15N) were used to correct values obtained for [14N15N]-urea to account for non-

monomolecular reactions (Lobley et al., 2000). 

In preparation of fecal 15N enrichment analysis, ground background and daily fecal samples 

from each lamb on the in vivo trial were pulverized into a fine powder using a ball mill grinder. 

Thereafter, ground samples (~2 mg) were weighed into 6- x 4-mm tin capsules (Elemental 

Microanalysis Limited, Okehampton, UK) and subsequently positioned into a 96-well plate. Fecal 

15N enrichment was then determined by combustion to N2 gas in a Costech ECS4010 elemental 

analyzer (Costech Analytical, Valencia, CA) and continuous flow IRMS (Delta V Advantage mass 

spectrometer, Thermo Scientific Inc., Bremen, Germany) as described by Lobley et al. (2000). 

 To determine digesta NH3-N concentrations, ruminal, duodenal, and cecal digesta samples 

(preserved with sulfuric acid) were thawed overnight in the refrigerator at 4°C. Once thawed, the 

digesta samples were gently mixed and transferred into new 15-mL centrifuge tubes, and then 



50 

 

centrifuged at 1,000 × g for 10 min at 4°C. Next, ~1.5 mL of supernatant was transferred from the 

15-mL centrifuge tube into a 2-mL micro-centrifuge tube. Thereafter, 20 μL of sample was utilized 

for ruminal NH3-N analysis, whereas for duodenal and cecal NH3-N analysis, 40-μL of sample 

was analyzed (to account for the additional dilution with ddH2O at the time of collection). 

Ammonia-N concentration was determined using the phenol-hypochlorite method as described by 

Fawcett and Scott (1960). To quantify SCFA concentrations, ruminal, duodenal, and cecal digesta 

samples (preserved with metaphosphoric acid) were thawed overnight in the refrigerator at 4°C. 

After thawing, the digesta samples were gently mixed and transferred into new 15-mL centrifuge 

tubes, and then centrifuged at 12,000 × g for 10 min at 4°C. For duodenal and cecal digesta, the 

supernatant obtained was placed into a new 15-mL centrifuge tube and centrifuged again at 12,000 

× g for 10 min at 4°C to ensure adequate separation of solid particulate from the liquid phase. After 

centrifugation, ~1.75 mL of supernatant from ruminal, duodenal, and cecal samples was 

transferred into a 2-mL micro-centrifuge tube and then centrifuged at 16,000 × g for 10 min at 

4°C. Supernatants obtained from duodenal and cecal samples were then filtered through sterile 

0.45-µm syringe filters (13-mm diameter, polyvinylidene fluoride, Fisher Scientific, Ottawa, ON) 

into gas chromatography (GC) vials. Thereafter, ruminal, duodenal and cecal samples were mixed 

with 0.2-mL of internal standard (isocaproic acid) and stored at 4°C pending SCFA analysis using 

GC according to the method described by Khorasani et al. (1996). Individual SCFA were separated 

using an Agilent GC machine (Agilent 6890 Series, 254 Agilent Technologies, Waldbronn, 

Germany) with a column length of 30.0 m (255 model 7HM-G009-11, Zebron, Phenomenex, 

Torrance, CA). 

3.4    Calculations and Statistical Analysis 

 Dry matter intake was determined for all animals on trial (n = 32) based on the last 7 d of 

the experimental period and was calculated as: [TMR offered (kg/d) × TMR %DM] – [TMR 

refused (kg/d) × TMR %DM]. Additionally, for those animals on the 4-d in vivo metabolism trial 

(n = 16), DMI was calculated as: [TMR offered (kg/d) × TMR %DM] – [TMR refused (kg/d) × 

orts %DM]. Daily nutrient intake was calculated as: [DM offered (kg/d) × %nutrient in TMR] – 

[DM refused (kg/d) × %nutrient in orts], and apparent nutrient digestibility (as a percent) was 

calculated as: [nutrient intake (kg/d) – fecal nutrient output (kg/d)] ÷ [nutrient intake (kg/d)] × 100. 
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 Apparent N balance was calculated as: [average N intake (g/d)] – [total N excretion (g/d)], 

with total N excretion accounting for both urinary and fecal N losses (g/d). Apparent N balance, 

as a percent of N intake, was calculated as: [apparent N balance (g/d)] ÷ [N intake (g/d)] × 100.  

Whole-body urea kinetics data was calculated using urinary [15N15N]- and [14N15N]-urea, 

and fecal 15N enrichments as described by Lobley et al. (2000). The model provides quantitative 

information regarding transfers of urea-N throughout the body. The model accounts for urea-N 

synthesized in the liver (endogenous urea production, UER), which will either return to the GIT 

(gastro-intestinal entry rate, GER) or is lost in the urine (urinary urea-N excretion, UUE). The 

urea-N returned to the GIT will be subject to degradation to NH3 via ureolytic bacteria, with some 

of the NH3 being reabsorbed into the portal blood and returned to the liver (urea-N returned to the 

ornithine cycle, ROC). Ammonia not reabsorbed will be lost through fecal excretion (fecal urea-

N excretion, UFE), with the remainder assumed to contribute to anabolic usage (urea-N utilized 

for anabolism, UUA) (Lobley et al. 2000). 

Data were analyzed as a randomized complete block design with a 2 × 2 factorial design 

using the mixed model procedure of SAS (Version 9.4, SAS Institute Inc., Cary, NC). The 

statistical model used was: Y = µ + F + G + (F × G) + B + e, where Y is the dependent variable, 

µ is the mean, F is the effect of forage level, G is the effect of corn grain processing, F × G is the 

interaction between forage level and corn grain processing, B is the block (random) effect, and e 

is the error term. To ensure normality, both block and error were checked for normal distribution 

using Shapiro-Wilke values and visual distribution plot analysis, with studentized residual values 

used to detect and remove outlier data from any given dataset. Mean comparison were conducted 

using the Bonferonni method. Significance was declared when P < 0.05, and tendencies when 0.05 

≤ P ≤ 0.10. Correlations between region-specific NH3-N concentrations and Jsm-urea, PUN 

concentrations and Jsm-urea, Gt and Jsm-urea, and Jsm-mannitol and Jsm-urea were determined using the 

correlation procedure in SAS (Version 9.4, SAS Institute Inc., Cary, NC). Data sets were checked 

for normal distribution using Shapiro-Wilke values. Pearson correlation was used when both sets 

of data were normally distributed, and spearman correlation was used if at least one of the data 

sets were not normally distributed. 

 For analysis of qPCR mRNA transcript abundance, the results are expressed as fold-change 

relative to the HFWS dietary treatment, which was designated as the control treatment. The choice 
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of HFWS as the control treatment was based on 2 factors: (1) it was expected that this diet would 

result in the greatest ruminal NH3-N concentration relative to the other diets due to its high soluble 

protein content; and (2) it was also expected that due to the unprocessed nature of WS corn, 

ruminally-fermentable starch content would be lower compared to SF corn, resulting in reduced 

ruminal SCFA concentrations relative to the other diets. Elevated ruminal NH3-N concentrations 

have been reported to inhibit urea-N flux across ruminal epithelium (Lu et al., 2014, 2015). Also, 

urea-N flux across the ruminal epithelium has been reported to be decreased when SCFA 

concentrations are reduced (Abdoun et al., 2010). Collectively, therefore, the greater ruminal NH3-

N concentrations and decreased ruminal SCFA concentrations with the HFWS relative to the other 

diets were expected to result in the lowest rates of urea-N transfer into the rumen. 

4.0    RESULTS 

4.1    Dietary Characteristics 

 Ingredient and chemical composition of the dietary treatments are shown in Table 3.1. As 

per dietary formulation, experimental diets were isonitrogenous (mean CP content of 10.7 ± 0.2%). 

Also, the soluble protein content of the HF diets was greater than that of the LF diets. As expected, 

the LF diets had greater levels of starch (47.6% vs. 26.5%) and NFC (59.8% vs. 40.0%), and lower 

levels of ADF (12.3 vs. 26.5%) and NDF (22.1 vs. 40.7%) compared to the HF diets.   

4.2    Final Body Weights, Dry Matter Intake and Apparent Nitrogen Balance 

 Mean BW (± S.D.) at the end of the experiment were 39.3 ± 5.2, 40.1 ± 3.3, 43.2 ± 4.0 and 

44.3 ± 3.5 kg BW for HFWS, HFSF, LFWS and LFSF dietary treatments, respectively. For all 32 

animals (i.e., n = 8) that were used in the study, DMI was greater in lambs fed SF compared to 

those fed WS (1.24 vs. 1.04 kg/d; P = 0.03; Figure 4.1). Lambs fed LF diets tended to have greater 

DMI (1.22 vs. 1.06 kg/d; P = 0.07) than those fed HF diets. For animals that were used in the in 

vivo metabolism trial (i.e., n = 4), similar trends were observed for the effects of forage level and 

method of grain processing on DMI (Table 4.1). Lambs fed LF diets had greater DMI (1.20 vs. 

0.86 kg/d; P < 0.01) compared to lambs fed HF diets. Lambs fed SF corn also exhibited greater 

DMI (1.20 vs. 0.86 kg/d; P < 0.01) compared to those fed WS corn. 

 Nitrogen intake was greater in lambs fed LF diets compared to those fed HF diets (20.1 vs. 

15.0 g/d; P < 0.01). Nitrogen intake was greater in lambs fed SF corn compared to those fed WS
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Figure 4.1. The effects of forage level (F) and grain processing (G) on dry matter intake 

(DMI) based on intakes calculated from the last 7 d of the experimental period (n = 8). 

Experimental diets were arranged into a 2 × 2 factorial design, with dietary factors being: 

(1) dietary forage content i.e., low (30% [LF]) vs. high (70% [HF]) forage; and (2) method 

of corn grain processing i.e., whole-shelled [WS] vs. steam-flaked [SF]). SEM = 0.11. 
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Table 4.1. The effects of forage level and grain processing on dry matter intake (DMI) and nitrogen 

utilization (n = 4). 

 

  Experimental diets1   

  LF   HF  P value2 

Item WS SF  WS SF SEM F G F × G 

DMI, kg/d 1.08 1.31  0.63 1.08 0.14 <0.01 <0.01 0.14 

N intake, g/d 18.2 22.0  10.8 19.2 2.39 <0.01 <0.01 0.10 

Urinary excretion          
   Total, g/d 891 1101  2877 982 532 0.10 0.14 0.07 

   Total N, g/d 6.22bc 4.84c  7.59ab 9.00a 0.65 <0.01 0.99 0.03 

   Total N, % of N intake 36.7 22.9  80.2 49.4 9.96 <0.01 0.01 0.28 

   Urea-N, g/d 3.84 2.25  6.20 6.70 0.69 <0.01 0.32 0.07 

   Urea-N, % of urinary N 58.8 45.3  80.7 74.4 5.70 <0.01 0.06 0.46 

Fecal excretion          
   DM, g/d 223 327  208 361 42.0 0.64 <0.01 0.26 

   N, g/d 5.94 7.48  4.11 7.28 0.99 0.05 <0.01 0.11 

   N, % of N intake 32.4 34.0  37.7 37.8 2.40 0.06 0.70 0.72 

Total N excretion          
   g/d 12.2b 12.3b  11.7b 16.3a 1.17 0.02 <0.01 <0.01 

   % of N intake  69.1 56.9  118 87.2 9.93 <0.01 0.02 0.26 

Apparent N balance          
   g/d 5.99 9.72  - 0.91 2.93 1.88 <0.01 0.02 0.97 

   % of N intake 30.9 43.1  - 17.9 12.8 9.93 <0.01 0.02 0.26 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage level and 

grain processing. 
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corn (20.6 vs 14.5 g/d, P < 0.01). In lambs fed WS corn, dietary forage level had no effect on 

urinary N excretion (g/d), whereas in lambs fed SF corn, feeding HF diets increased urinary N 

excretion compared to feeding LF diets (interaction; P = 0.03). As a percent of N intake, total 

urinary N excretion was greater in animals fed HF compared to those fed LF diets (64.8 vs. 29.8%; 

P < 0.01). As a percent of N intake, lambs fed WS corn exhibited greater urinary N excretion 

compared to those fed SF (58.5 vs. 36.2%; P = 0.01). Urinary urea-N loss (g/d) was lower in 

animals fed LF diets compared to those fed HF diets (3.05 vs. 6.45 g/d; P < 0.01). As a percent of 

urinary N excretion, urea-N loss was greater in lambs fed HF diets compared to those fed LF diets 

(77.6 vs. 52.1%; P < 0.01). Lambs fed WS corn tended to exhibit greater amounts of urea-N lost 

in the urine (as a percent of urinary N) compared to those fed SF corn (69.8 vs. 59.9%; P = 0.06). 

Fecal N excretion tended to be greater in lambs fed LF compared to those fed HF diets (6.71 vs. 

5.70 g/d; P = 0.05). Lambs fed SF corn had greater fecal N excretion compared to those fed WS 

corn (7.38 vs. 5.03 g/d; P < 0.01). As a percent of N intake, lambs fed HF diets tended to have 

greater fecal N excretion compared to those fed LF diets (37.8 vs. 33.2%; P = 0.06). Total N 

excretion (g/d) was greater in lambs fed the HF diet with SF corn compared to those fed the HF 

diet with WS corn, whereas lambs fed the LF diet with either WS or SF corn had similar total N 

excretion (interaction; P < 0.01). As a percent of N intake, lambs fed HF diets had greater total N 

excretion compared to those fed LF diets (102.6 vs. 63.0%; P < 0.01). Lambs fed WS corn also 

exhibited greater total N excretion (as a percent of N intake) compared to those fed SF corn (93.6 

vs. 72.1%; P = 0.02). Apparent N balance (g/d) was lower in lambs fed HF diets compared to those 

fed LF diets (1.01 vs. 7.86 g/d; P < 0.01). Similarly, lambs consuming WS corn had a lower 

apparent N balance (g/d) compared to those fed SF corn (2.54 vs. 6.33 g/d; P = 0.02). Apparent N 

balance (as a percent of N intake) was greater in lambs fed LF compared to those fed HF diets 

(37.0 vs. -2.55%; P < 0.01). Apparent N balance (as a percent of N intake) was greater in lambs 

fed SF corn compared to those fed WS corn (28.0 vs. 6.50%; P = 0.02). 

4.3    Whole-Body Urea Kinetics 

 Lambs fed HF diets with SF corn tended to have greater UER compared to those fed HF 

diets with WS corn, whereas lambs fed LF diets with WS or SF corn had similar UER (interaction; 

P = 0.06; Table 4.2). Gastro-intestinal urea-N entry rate tended to be greater in lambs fed SF corn 

compared to those fed WS corn (12.7 vs. 9.73 g/d; P = 0.10). Dietary forage level had no effect on 

GER (P = 0.98). Lambs fed the HF diet with SF corn tended to have greater ROC compared to 
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Table 4.2.  The effects of forage level and grain processing on whole-body urea-N recycling kinetics 

(n = 4). 

  Experimental diets1 

  

  LF   HF  P value2 

Item WS SF  WS SF SEM F G F × G 

Urea-N kinetics3, g/d          

   UER 15.0 13.5  14.4 20.8 2.37 0.09 0.21 0.06 

   GER 11.2 11.3  8.25 14.1 2.14 0.98 0.10 0.11 

   ROC 8.07 7.48  7.37 11.5 1.68 0.23 0.20 0.10 

   UFE 0.57 0.76  0.15 0.50 0.12 <0.01 <0.01 0.35 

   UUE 3.84 2.25  6.20 6.70 0.69 <0.01 0.32 0.07 

   UUA 2.55 3.03  0.73 2.11 0.59 0.01 0.07 0.35 

Fractional Urea-N transfers        

   UER to urine 0.26 0.18  0.44 0.32 0.05 <0.01 0.02 0.65 

   UER to GIT 0.74 0.82  0.56 0.68 0.05 <0.01 0.02 0.65 

   GER to ROC 0.72 0.63  0.91 0.82 0.06 <0.01 0.08 1.00 

   GER to feces 0.05 0.08  0.02 0.03 0.01 <0.01 0.04 0.60 

   GER to UUA 0.23 0.29  0.08 0.15 0.05 <0.01 0.12 0.90 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage level and 

grain processing. 

3UER = endogenous urea-N production; GER = gastro-intestinal entry rate; ROC = return to ornithine 

cycle; UFE = fecal urea-N excretion; UUE = urinary urea-N excretion; UUA = urea-N utilized for 

anabolism. 
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those fed the HF diet with WS corn, whereas lambs fed the LF diet with WS or SF corn had similar 

ROC (interaction; P = 0.10). Lambs fed LF diets had greater UFE (0.67 vs. 0.33 g/d; P < 0.01), 

but had lower UUE (3.05 vs. 6.45 g/d; P < 0.01) compared to those lambs fed HF diets. Lambs fed 

SF corn exhibited greater UFE compared to those fed WS corn (0.63 vs. 0.36 g/d; P < 0.01). Lambs 

fed the LF diet with WS corn tended to have greater UUE compared to those fed the LF diet with 

SF corn, whereas lambs fed HF diets with WS or SF corn tended to have similar UUE (interaction; 

P = 0.07). For lambs fed LF, UUA was greater when compared to lambs fed HF diets (2.79 vs. 

1.42 g/d; P = 0.01). Lambs fed SF corn tended to have greater UUA compared to those fed WS 

corn (2.57 vs. 1.64 g/d; P = 0.07). For fractional urea-N transfers, lambs fed HF had greater UER 

to urine (0.38 vs. 0.22) and GER to ROC (0.87 vs. 0.68), but had lower UER to GIT (0.62 vs. 

0.78), GER to feces (0.03 vs. 0.07) and GER to UUA (0.12 vs. 0.26) compared to lambs fed LF 

diets (P < 0.01). Lambs fed SF corn had greater UER to GIT (0.75 vs. 0.65; P = 0.02) and GER to 

feces (0.06 vs. 0.04; P = 0.04), but had lower UER to urine (0.25 vs. 0.35; P = 0.02) compared to 

lambs fed WS corn. Additionally, lambs fed WS corn tended to have greater GER to ROC 

compared to those fed SF corn (0.82 vs. 0.73; P = 0.08). 

4.4    Apparent Total-Tract Digestibility 

 Total-tract digestibilities of DM (77.4 vs. 67.1%), OM (79.3 vs. 69.4%), EE (87.2 vs. 

72.5%), and starch (99.5 vs. 96.9%) were greater in lambs fed LF diets compared to those fed HF 

diets (P < 0.01; Table 4.3). Total-tract digestibility of ADF was lower (32.1 vs. 43.6%; P = 0.04), 

whereas that of NDF (36.3 vs. 47.9%; P = 0.06) tended to be lower in lambs fed LF compared to 

those fed HF diets. Lambs fed LF diets tended to have greater CP digestibility compared to those 

lambs fed HF diets (66.8 vs. 62.3%; P = 0.07). Lambs fed WS corn had greater total-tract 

digestibility of EE than those fed SF corn (82.4 vs. 77.3%; P < 0.01); however, total-tract 

digestibilities of DM, OM, CP, NDF, ADF, and starch were unaffected by grain processing. 

4.5    Ruminal, Duodenal, and Cecal pH and Fermentation Characteristics 

 Ruminal pH was similar in lambs fed SF and WS with HF diets, but it was lower in lambs 

fed SF compared to WS with LF diets (interaction, P = 0.01; Table 4.4). Duodenal pH was 

unaffected by dietary treatment; however, cecal pH was lower in lambs fed LF diets compared to 

those fed HF diets (6.26 vs. 6.96; P < 0.01). 
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Table 4.3. The effects of forage level and grain processing on apparent total-tract nutrient 

digestibility (n = 4).

  Experimental diets1   

  LF   HF  P value2 

Item WS SF  WS SF SEM F G F × G 

Nutrient digestibility, %          

   DM 79.7 75.0  67.6 66.5 1.81 <0.01 0.13 0.33 

   OM3 81.5 77.1  70.0 68.8 1.67 <0.01 0.13 0.36 

   CP 67.6 66.0  62.3 62.2 2.40 0.07 0.71 0.72 

   EE 88.8 85.6  75.9 69.0 1.37 <0.01 <0.01 0.18 

   NDF 39.1 33.4  49.3 46.5 5.76 0.06 0.45 0.79 

   ADF 31.7 32.4  44.1 43.0 5.51 0.04 0.97 0.86 

   Starch 99.3 99.7  96.6 97.1 0.69 <0.01 0.55 0.91 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage level 

and grain processing. 

3OM = 100-ash. 
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Table 4.4. The effects of forage level and grain processing on ruminal, duodenal, and cecal pH, and 

NH3-N and short-chain fatty acid (SCFA) concentrations (n = 8). 

  Experimental diets1   

   LF   HF  P value2 

Item WS SF  WS   SF SEM F G F × G 

Rumen          

   pH 5.90a 5.40b  6.05a 6.08a 0.11 <0.01 0.02 0.01 

   NH3-N, mg/dL 4.68 0.92  13.4 9.97 1.23 <0.01 <0.01 0.88 

   SCFA, mmol/L          

      Acetate 52.3 61.5  60.4 65.1 4.88 0.14 0.08 0.56 

      Propionate 22.3 35.4  15.4 19.0 3.21 <0.01 0.01 0.15 

      Isobutyrate 0.72a 0.20b  0.72a 0.72a 0.06 <0.01 <0.01 <0.01 

      Butyrate 14.0 14.7  12.3 14.6 1.48 0.52 0.29 0.56 

      Isovalerate 1.90a 0.40b  0.82b 0.85b 0.23 0.18 <0.01 <0.01 

      Valerate 1.49 2.38  0.85 0.84 0.34 <0.01 0.18 0.17 

      Total SCFA 92.7 114.6  90.5 101.1 7.14 0.21 0.01 0.36 

   A:P3 2.66 1.93  4.01 3.46 0.27 <0.01 0.03 0.74 

Duodenum          

   pH 4.70 4.48  4.78 4.95 0.30 0.37 0.94 0.51 

   NH3-N, mg/dL 11.4 10.0  12.1 11.5 1.05 0.27 0.33 0.73 

   SCFA, mmol/L          

      Acetate 3.47 4.67  2.96 3.28 0.93 0.32 0.43 0.64 

      Propionate 0.10 0.51  N.D. N.D. 0.16 0.06 0.20 0.20 

      Isobutyrate N.D. N.D.  N.D. N.D. - - - - 

      Butyrate 0.06 0.09  N.D. N.D. 0.06 0.18 0.78 0.78 

      Isovalerate N.D. N.D.  N.D. N.D. - - - - 

      Valerate N.D. N.D.  N.D. N.D. - - - - 

      Total SCFA 3.63 5.27  2.96 3.28 1.07 0.23 0.37 0.54 

Cecum          

   pH 6.13 6.39  6.89 7.02 0.14 <0.01 0.13 0.63 

   NH3-N, mg/dL 7.92 9.32  13.8 14.5 1.69 <0.01 0.47 0.83 

   SCFA, mmol/L          

      Acetate 60.0 73.6  43.6 46.4 4.13 <0.01 0.06 0.20 

      Propionate 14.4 16.3  8.37 9.15 1.14 <0.01 0.26 0.64 

      Isobutyrate 0.47 0.43  0.72 0.71 0.10 0.01 0.80 0.89 

      Butyrate 9.63 6.26  3.33 2.60 1.11 <0.01 0.08 0.24 

      Isovalerate 0.50 0.29  0.69 0.65 0.10 0.01 0.22 0.40 

      Valerate 1.06 1.20  0.73 0.71 0.15 0.01 0.69 0.59 

      Total SCFA 86.1 98.1  57.5 60.2 5.76 <0.01 0.21 0.43 

   A:P 4.27 4.65  5.25 5.17 0.24 <0.01 0.54 0.35 
1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage level and 

grain processing. 

3Acetate-to-propionate ratio. 
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 Ruminal NH3-N concentrations were lower in lambs fed LF diets compared to those fed 

HF diets (2.80 vs. 11.7 mg/dL; P < 0.01). Lambs fed SF corn exhibited lower ruminal NH3-N 

concentrations compared to those fed WS corn (5.45 vs. 9.04 mg/dL; P < 0.01). Duodenal digesta 

NH3-N concentrations were unaffected by dietary treatment. Cecal NH3-N concentrations were 

lower in lambs fed LF diets compared to those fed HF diets (8.62 vs. 14.2 mg/dL; P < 0.01).  

 Lambs fed LF diets had greater ruminal concentrations of propionate (28.9 vs. 17.2 

mmol/L) and valerate (1.94 vs. 0.85 mmol/L) but exhibited a lower acetate-to-propionate (A:P) 

ratio (2.30 vs. 3.74) compared to those fed HF diets (P < 0.01). Ruminal concentrations of acetate, 

butyrate, and total SCFA were unaffected by dietary forage level. In animals fed SF corn, ruminal 

acetate concentration tended to be greater (63.3 vs. 56.4 mmol/L; P = 0.08), whereas propionate 

(27.2 vs. 18.9 mmol/L) and total SCFA (108 vs. 91.6) concentrations were greater than those in 

animals fed WS corn (P = 0.01); however, lambs fed SF corn had a lower A:P ratio (2.70 vs. 3.34; 

P = 0.03) compared to those fed WS corn. With LF diets, lambs fed WS corn exhibited greater 

ruminal concentrations of isobutyrate and isovalerate compared to those fed SF corn, whereas 

lambs fed WS and SF corn with HF diets had similar concentrations of these SCFA (interaction, 

P < 0.01). Dietary treatment did not affect duodenal SCFA profiles, except that lambs fed LF diets 

tended to have greater propionate concentrations compared to those fed HF diets (P = 0.06). Cecal 

concentrations of acetate (66.8 vs. 45.0 mmol/L), propionate (15.4 vs. 8.76 mmol/L), butyrate 

(7.95 vs. 2.97 mmol/L), valerate (1.13 vs. 0.72 mmol/L), and total SCFA concentration (92.1 vs. 

58.9 mmol/L) were greater in lambs fed LF diets compared to those fed HF diets (P ≤ 0.01). Lambs 

fed HF diets exhibited greater cecal concentrations of isobutyrate (0.72 vs. 0.45 mmol/L) and 

isovalerate (0.67 vs. 0.40 mmol/L) compared to those fed LF (P = 0.01). Lambs fed HF diets also 

exhibited an increased A:P ratio (5.21 vs. 4.46) compared to those fed LF diets (P < 0.01). Method 

of grain processing largely had no effects on cecal SCFA concentrations, except that cecal 

concentration of acetate tended to be greater in lambs fed SF corn compared to those fed WS corn 

(60.0 vs. 51.8 mmol/L; P = 0.06). Additionally, lambs fed WS corn tended to have greater butyrate 

concentration compared to those fed SF corn (6.48 vs. 4.43 mmol/L; P = 0.08). 

4.6    Concentrations of Plasma Metabolites 

 Lambs fed LF diets had greater plasma glucose concentrations compared to those fed HF 

diets (75.6 vs. 68.3 mg/dL; P < 0.01; Table 4.5). Additionally, lambs that were fed SF corn had 
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Table 4.5. The effects of forage level and grain processing on plasma metabolites (n = 8). 

 

  Experimental diets1   

  LF   HF  P value2 

Item WS SF  WS SF SEM F G F × G 

Plasma metabolites, mg/dL          

   Glucose  72.2 78.9  66.2 70.3 2.36 <0.01 0.03 0.58 

   Urea-N 10.0 9.48  12.8 12.3 1.04 <0.01 0.53 0.98 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage level and 

grain processing. 
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greater plasma glucose concentrations compared to those fed WS corn (74.6 vs. 69.2 mg/dL; P = 

0.03). Plasma urea-N concentrations were affected by forage level, with lambs fed HF diets having 

greater PUN concentrations compared to those fed LF diets (9.74 vs. 12.6 mg/dL; P < 0.01).  

4.7    Total Fluxes, Tissue Conductance, and Short-Circuit Current Measurements in 

Ruminal, Duodenal, and Cecal Epithelia 

 Dietary treatment had no observable effect on ruminal and cecal Jsm-urea; however, lambs 

fed HF diets had greater duodenal Jsm-urea compared to those fed LF diets (77.6 vs. 57.2 nmol/(cm2 

× h); P < 0.01; Table 4.6). Similarly, ruminal and cecal Jsm-mannitol were unaffected by dietary 

treatment; however, duodenal Jsm-mannitol was greater in lambs fed HF compared to those fed LF 

diets (36.3 vs. 27.2 nmol/(cm2 × h); P < 0.01). Lambs fed LF had greater ruminal Gt compared to 

those lambs fed HF (6.40 vs. 3.98 mS/cm2; P < 0.01); however, LF reduced ruminal Isc when 

compared to HF (0.33 vs. 1.01 µEq/(cm2 × h); P < 0.01). Dietary treatment had no effect on 

duodenal Gt or Isc. Feeding HF with SF compared to WS tended to increase cecal Gt, whereas Gt 

between LF combined with WS or SF were similar (interaction; P = 0.05). Various correlations 

were run to determine the relationship between different variables to Jsm-urea. Ruminal NH3-N 

concentration had a weak negative correlation to Jsm-urea (r = -0.30; P = 0.11), whereas duodenal 

NH3-N concentration exhibited a weak positive correlation to Jsm-urea (r = 0.33; P = 0.07), and cecal 

NH3-N concentration exhibited no correlation to Jsm-urea (r = 0.03; P = 0.89) (Figure 4.2). Plasma 

urea-N concentration was negatively correlated to both ruminal Jsm-urea (r = -0.41; P = 0.02), as 

well as cecal Jsm-urea (r = -0.15; P = 0.41); however, a positive correlation was observed between 

duodenal Jsm-urea and PUN concentration (r = 0.28; P = 0.12) (Figure 4.3). For ruminal tissue, Gt 

had no correlation to Jsm-urea (r = 0.09; P = 0.62), but Gt and Jsm-urea were positively correlated for 

both duodenal (r = 0.35; P = 0.06) and cecal (r = 0.37; P = 0.05) tissues (Figure 4.4). Ruminal Jsm-

mannitol had no correlation to Jsm-urea (r = 0.04; P = 0.84) (Figure 4.5). Conversely, duodenal Jsm-

mannitol had a strong positive correlation to Jsm-urea (r = 0.88; P < 0.01), and cecal Jsm-mannitol also 

exhibited a strong positive correlation to Jsm-urea (r = 0.93; P < 0.01).  

4.8    Abundance of UT and AQP mRNA in Ruminal, Duodenal, and Cecal Epithelia 

 Within the ruminal epithelia, the fold-change of mRNA expression of AQP-3 was greater 

in lambs fed LF diets than those fed HF diets (1.21 vs. 0.90; P = 0.03; Table 4.7). Ruminal mRNA 

abundance for UT-B and AQP-7 were unaffected by dietary treatment. For duodenal tissue, fold-
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Table 4.6. The effects of forage level and grain processing on serosal-to-mucosal urea (Jsm-urea) and 

mannitol (Jsm-mannitol) flux, tissue conductance (Gt), and short-circuit current (Isc) of ruminal, duodenal, 

and cecal epithelia (n = 8). 

  Experimental diets1   

  LF   HF  P value2 

Item WS SF  WS SF SEM F G F × G 

Rumen          

   Jsm-urea, nmol/(cm2 × h) 135.3 129.4  122.9 132.5 18.4 0.79 0.91 0.65 

   Jsm-mannitol, nmol/(cm2 × h) 8.81 9.64  8.15 8.01 1.20 0.09 0.60 0.46 

   Gt, mS/cm2 6.26 6.54  3.67 4.29 0.49 <0.01 0.36 0.72 

   Isc, µEq/(cm2 × h) 0.12 0.53  1.09 0.93 0.18 <0.01 0.42 0.08 

Duodenum          

   Jsm-urea, nmol/(cm2 × h) 54.1 60.3  77.8 77.3 6.52 <0.01 0.67 0.61 

   Jsm-mannitol, nmol/(cm2 × h) 27.1 27.3  40.0 32.5 3.17 <0.01 0.26 0.23 

   Gt, mS/cm2 21.5 22.4  21.4 25.2 2.17 0.52 0.27 0.50 

   Isc, µEq/(cm2 × h) 0.38 0.60  0.39 0.28 0.15 0.16 0.65 0.14 

Cecum          

   Jsm-urea, nmol/(cm2 × h) 66.4 55.8  58.9 74.7 6.92 0.42 0.71 0.07 

   Jsm-mannitol, nmol/(cm2 × h) 30.8 28.8  28.3 38.8 3.79 0.33 0.27 0.11 

   Gt, mS/cm2 23.0 21.4  20.8 29.6 2.66 0.25 0.17 0.05 

   Isc, µEq/(cm2 × h) 1.30 1.62  1.73 1.91 0.30 0.22 0.40 0.81 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage level and 

grain processing. 
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Figure 4.2. Correlations between ruminal (A), duodenal (B), and cecal (C) ammonia (NH3-N) 

concentrations and ruminal, duodenal, and cecal serosal-to-mucosal urea flux (Jsm-urea). 
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Figure 4.3. Correlations between plasma urea-N (PUN) concentrations and ruminal (A), 

duodenal (B), and cecal (C) serosal-to-mucosal urea flux (Jsm-urea). 
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Figure 4.4. Correlations between ruminal (A), duodenal (B), and cecal (C) Gt and ruminal, 

duodenal, and cecal serosal-to-mucosal urea flux (Jsm-urea). 
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Table 4.7. The effects of forage level and grain processing on mRNA abundance (presented 

as fold-change relative to the designated control diet) of UT-B, AQP-3, and AQP-7 in 

ruminal, duodenal, and cecal epithelia (n = 8). 

 

  Experimental diets1   

  LF     HF3  P value2, 4 

Item5 WS SF  WS SF SEM F G F × G 

Rumen          

   UT-B 1.28 1.21  1.00 0.91 0.19 0.32 0.79 0.85 

   AQP-3 1.05 1.37  1.00 0.79 0.16 0.03 0.79 0.11 

   AQP-7 1.85 1.90  1.03 1.00 0.86 0.57 0.35 0.65 

Duodenum          

   UT-B 1.35 0.68  1.00 0.81 0.26 0.74 0.46 0.36 

   AQP-3 1.16 1.37  1.00 0.97 0.15 0.06 0.73 0.41 

   AQP-7 0.85 0.65  1.00 0.65 0.19 0.22 0.08 0.96 

Cecum          

   UT-B 0.79 0.63  1.00 0.90 0.14 0.07 0.33 0.70 

   AQP-3 0.85 1.00  1.00 0.97 0.14 0.61 0.68 0.31 

   AQP-7 1.36 0.70  1.11 1.35 0.37 0.71 0.36 0.57 

1LF = low forage; HF = high forage; WS = whole-shelled corn; and SF = steam-flaked corn. 

2F = effect of forage level; G = effect of grain processing; and F × G = interaction of forage 

level and grain processing. 

3HFWS designated as control diet to calculate fold change. 

4For statistical analysis, raw data was transformed using a log10 transformation to meet 

normal distribution requirements of the statistical model. 

5mRNA abundance for UT-A and AQP-10 is not reported due to low primer efficiency. 
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change of AQP-3 tended to be greater in lambs fed LF diets compared to lambs fed HF diets (1.27 

vs. 0.99; P < 0.10). In terms of grain processing, lambs fed WS corn tended to have greater 

duodenal expression of AQP-7 compared to lambs fed SF corn (0.93 vs. 0.65; P < 0.10). Fold 

changes for UT-B in duodenal epithelia were unaffected by dietary treatment. In cecal epithelia, 

UT-B fold-change tended to be greater in lambs fed HF diets compared to those fed LF diets (0.95 

vs. 0.71; P < 0.10), whereas fold-changes for AQP-3 and AQP-7 were unaffected by dietary 

treatment. The current study also aimed to investigate expression of UT-A and AQP-10; however, 

due to low primer efficiency and expression within the studied regions, the data was removed from 

this thesis. 

5.0    DISCUSSION 

5.1    Effects of Dietary Treatment on Dry Matter Intake and Apparent Total-Tract 

Digestibility 

 Dry matter intake was affected by dietary treatment in the present study, with lambs fed 

LF diets exhibiting a greater DMI compared to those fed HF diets. It has been previously reported 

in the literature that fiber content of the diet (i.e., NDF) plays a major role in influencing voluntary 

feed intake in ruminants (Jung and Allen, 1995; Allen, 1996; Beauchemin, 1996). As dietary NDF 

content increases, voluntary intake is reduced because the fibrous fractions of the diet contribute 

to greater ruminal fill and distension, thereby reducing the rate of digesta passage (Jung and Allen, 

1995; Beauchemin, 1996; Allen and Piantoni, 2013). Ruminal fill and distension also contribute 

to physical regulation of feed intake, wherein tension-sensitive mechanoreceptors located in the 

reticulorumen will generate an action potential when exposed to pressure, resulting in altered 

feeding behavior driven by the satiety centers in the brain (Leek, 1986; Allen and Piantoni, 2013). 

In the present study, HF diets contained 84.2% more NDF content compared to LF diets, thereby 

suggesting that the greater NDF content in HF diets could have reduced DMI due to ruminal fill. 

Also, it was observed that lambs fed SF corn had greater DMI compared to those fed WS corn. 

Perusal of the literature indicates that the effects of grain processing on DMI in ruminants are 

equivocal. In some studies, the provision of more extensively processed grains did not appear to 

influence DMI (Joy et al., 1997; Crocker et al., 1998; Yang et al., 2001; Doranalli and 

Mutsvangwa, 2007), whereas other studies have reported reduced DMI in ruminants fed more 

extensively processed grains (Stock et al., 1995; Owens et al., 1997). The reduction in DMI with 
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more extensive grain processing has been attributed to induction of ruminal acidosis due to the 

excessive production and accumulation of SCFA in the rumen (Stock et al., 1995; Owens et al., 

1997). More recently, it has been proposed that the increased availability to the liver of oxidative 

substrates such as SCFA (e.g., propionate) arising from portal uptake when more extensively 

processed grains are fed generates ATP, resulting in reduced vagal afferent “firing” and, 

subsequently, inhibition of “feeding centers” in the hypothalamus (Allen et al., 2009). This is 

referred to as the hepatic oxidation theory (Allen et al., 2009). According to Allen (2000) and Allen 

et al., (2009), the increase in propionate production and absorption in the rumen of animals fed 

extensively processed grains provides a major oxidative substrate to the ruminant liver and may 

be responsible for hypophagic effects. In the present study, ruminal concentration of propionate 

was greater in lambs fed SF corn compared to those fed WS corn. Because the absorption of 

propionate into the portal blood is a concentration-dependent process, the greater supply of 

propionate to the liver in lambs fed SF corn compared to those fed WS corn would have been 

expected to suppress DMI; however, contrary to these expectations, results from the present study 

show that lambs fed SF corn had greater DMI than those fed WS corn. The reasons for this 

discrepancy are unclear. 

 In the current study, most of the dietary effects observed on apparent total-tract digestibility 

were due to F:C ratio rather than grain processing. Overall OM digestibility (including DM, CP, 

EE, and starch) was increased when LF diets were fed to lambs compared to HF diets. This finding 

is in agreement with the increase in digestibility that is typically associated with low-fiber, high-

concentrate diets (Yang et al., 2001). Similar findings in sheep have been reported throughout the 

literature. Merchen et al. (1986) and Colucci et al. (1989) found that overall OM digestibility 

improved in sheep fed forage levels at 25% and 30% of dietary DM, respectively, compared to 

sheep fed forage levels of 75% and 80% of dietary DM, respectively. In dairy cattle, Yang et al. 

(2001) reported that providing a lower forage level (35% vs. 55% DM) also resulted in improved 

total-tract OM digestibility. Because concentrate-based diets are lower in fiber content (i.e., NDF 

constituents – hemicellulose, cellulose and lignin), the inhibitory effects of lignin on enzymatic 

hydrolysis of cell-wall polysaccharides are greatly reduced, thereby increasing the fermentability 

of dietary substrate (Jung and Allen, 1995). As fermentability of the diet increases, an increase in 

total-tract digestibility is expected. 
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 Neutral detergent fiber digestibility tended to be greater, whereas ADF digestibility was 

greater in lambs fed HF diets compared to those fed LF diets. A similar finding was reported by 

(Yang et al., 2001), where ADF digestibility was improved in dairy cattle as the amount of forage 

in the diet was increased. Although the current study measured apparent total-tract digestibility, it 

is known that the majority of fiber digestion takes place within the rumen due to the activities of 

the fibrolytic bacterial population (Varga and Kolver, 1997), with the major fiber-digesting 

bacteria being Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus 

(Cheng et al., 1991). The ruminal ecosystem is made up of diverse microorganisms, and ruminal 

environmental conditions such as pH and NH3-N concentration have a major influence on the 

profile of microorganisms that predominate. Compared to their amylolytic counterparts, fibrolytic 

bacteria are very sensitive to ruminal pH, and they thrive in a more alkaline pH environment with 

reduced proliferation observed at ruminal pH ranging between 5.0 to 6.0 (Hoover, 1986). When 

the growth of fibrolytic bacteria is inhibited in more acidic conditions, ruminal fiber digestion is 

decreased (Hoover, 1986). Moreover, fibrolytic bacteria have lower maintenance requirements, 

relying mostly on NH3-N as their N source for growth as opposed to preformed AA or peptides 

(Russell et al., 1992). Although bacterial profiles were not determined in this study, mean ruminal 

pH in lambs fed HF diets was 6.07 whereas it was 5.65 in lambs fed LF diets. In addition, greater 

ruminal concentrations of NH3-N were observed in lambs fed HF diets compared to those fed LF 

diets. Taken together, it can be surmised that the more alkaline ruminal conditions and greater 

ruminal concentrations of NH3-N favoured the proliferation of fibrolytic bacteria, thereby 

potentially explaining the increase in fiber digestibility that was observed in lambs fed HF diets. 

 It is well-known that grain processing improves nutrient digestibility in ruminants (Lee et 

al., 1982; Theurer, 1986; Crocker et al., 1998). In corn, steam-flaking greatly enhances digestibility 

by disruption of the starch-encapsulating protein matrix, and by gelatinization of the starch 

granules (Zinn et al., 2002), thereby increasing surface area for enzymatic degradation. In the 

current study, it was expected that the provision of SF corn would increase total-tract nutrient 

digestibility; however, minimal effects of grain processing were observed. Ruminal pH was lower 

and total SCFA concentration was greater in lambs fed SF corn compared to those fed WS corn, 

which could be taken as indirect evidence that feeding SF corn increased the extent of ruminal 

digestion when compared to feeding WS corn. However, total-tract digestibility was largely 

unaffected by grain processing. If it is assumed that the extent of ruminal digestion was greater 
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with SF corn compared to WS corn, then compensatory post-ruminal digestion occurred in lambs 

fed WS corn such that total-tract digestibilities were similar. Ether extract digestibility was 

increased by 6.53% in lambs fed WS corn compared to those fed SF corn. Reasons for increased 

EE digestibility associated with feeding unprocessed corn are not clear; although it has been 

reviewed in the literature that grain processing methods typically do not enhance digestibility to 

the same extent in small ruminants as in cattle (Ørskov, 1976; Theurer, 1986). This is thought to 

be attributed to increases in rumination and mastication associated with feeding small ruminants 

whole grains (Ørskov et al., 1974). 

5.2    Effects of Dietary Treatment on Fermentation Characteristics in the Rumen, 

Duodenum, and Cecum 

 Interactive dietary effects on ruminal pH were observed, whereby ruminal pH was similar 

in lambs fed WS and SF corn in combination with HF diets, but for LF diets ruminal pH was 8.47% 

lower in lambs fed SF compared to those fed WS corn. The reasons for this interaction are unclear 

but could be related to the differences in forage content between LF and HF diets. Because SF 

corn is more ruminally-fermentable compared to WS corn (Lee et al., 1982), it was expected that 

feeding SF corn would depress ruminal pH when compared to feeding WS corn; however, this was 

not the case for animals fed diets containing SF and WS corn with HF. It is plausible that the 

greater forage content with HF diets could have stimulated greater chewing and rumination 

activities in lambs fed both SF and WS, thus leading to more saliva production. Saliva is rich in 

HCO3
- and phosphates, which are important buffering agents that assist in the regulation of ruminal 

pH (Van Soest, 1994). Although saliva production was not measured in the present study, others 

(Maekawa et al., 2002; Beauchemin et al., 2008) have reported increased rumination and chewing 

activities, and saliva production in ruminants fed high forage diets. Thus, we can surmise that 

sheep fed HF diets in this study produced more saliva which, in turn, could have provided a greater 

buffering capacity thus possibly attenuating any negative effects of feeding SF corn on ruminal 

pH. 

Ruminal concentrations of acetate and butyrate were unaffected by dietary treatment; 

however, propionate levels were higher in lambs that were fed LF diets compared to those fed HF 

diets. Similar findings were reported by Yang et al. (2001), who studied the effects of F:C ratio 

and extent of barley grain processing on rumen fermentation characteristics in dairy cattle. The 
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study reported that animals fed a 35:65 F:C ratio diet had higher propionate concentrations in the 

rumen compared to those animals fed a 55:45 F:C ratio diet (Yang et al., 2001). In the same study, 

Yang et al. (2001) also reported slight elevations in ruminal propionate concentrations in cattle fed 

flat steam-rolled as opposed to coarse steam-rolled barley. Similar effects of grain processing on 

ruminal propionate concentrations were also observed in the current study: lambs fed SF corn had 

greater propionate concentrations compared to lambs fed WS corn. Lastly, total SCFA 

concentrations in the rumen were increased by 16.3 mmol/L in lambs fed SF corn compared to 

those lambs fed WS corn in the current study. This finding can be attributed to the increase in RFC 

when feeding SF corn vs. WS corn. 

No dietary effects were observed on duodenal pH; however, pH values ranged from 4.48 

to 4.95 across dietary treatments. Published studies reporting duodenal pH in ruminants are scarce. 

In Holstein steers fed a diet containing a 50:50 F:C ratio, Pederzolli et al. (2018) found that 

duodenal pH ranged from 4.99 to 5.28, which are higher than the pH values reported in the current 

study. This difference in pH range can be attributed to the dietary treatment differences, namely 

the F:C ratio. When compared to ruminal concentrations, duodenal concentrations of the three 

major (i.e., acetate, propionate, and butyrate) and total SCFA were much lower. This is not 

surprising as the duodenum is not considered to be a fermentative region (Sherwood et al., 2013), 

so the production of SCFA is minimal and total SCFA concentration is not the major “driver” of 

duodenal pH. As digesta is transferred from the rumen to the proximal duodenum, it passes through 

the abomasum which typically has a pH ranging from 2.77 to 3.27 (Constable et al., 2005). In the 

present study, the acidic abomasum is likely to be the major factor influencing the low pH that was 

observed in duodenal digesta. As already indicated, duodenal concentrations of SCFA were 

negligible and were not affected by dietary treatment. Pederzolli et al. (2018) also reported trace 

amounts of SCFA in duodenal digesta of Holstein steers. 

 Cecal pH decreased by 10.1% when lambs were fed LF diets compared to HF diets. 

Coupled with this finding, total SCFA concentration in the cecum was increased in sheep fed LF 

diets compared to those fed HF diets. It can be surmised that the provision of greater levels of 

dietary concentrate (i.e., by feeding LF diets) resulted in increased fermentative activity in the 

cecum, resulting in greater total SCFA concentrations. The greater total SCFA concentrations in 

sheep fed LF compared to HF diets are likely the major “driver” of the observed differences in 
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cecal pH. Cecal concentrations of acetate, propionate, and butyrate were greater in sheep fed LF 

compared to HF diets. Similar findings were reported by Siciliano-Jones and Murphy (1989), who 

observed increased concentrations of acetate, propionate, butyrate, lactate, and total SCFA in the 

cecum of Holstein steers as dietary provision of concentrate increased. Although SCFA production 

is the major determinant for decreasing cecal pH, in general, the hindgut’s reduced capability of 

maintaining digesta pH during fermentation and SCFA production should also be considered. 

Though HCO3
- is known to pass through the hindgut epithelium as it does across ruminal 

epithelium, the hindgut does not receive additional HCO3
- supply through saliva production 

(Gressley et al., 2011). This, in turn, makes the hindgut region more susceptible to fluctuations in 

pH with the provision of fermentable diets. 

 In the present study, corn grain processing had no effect on cecal pH or had only minimal 

effects on cecal SCFA concentrations. Because WS corn is less fermentable in the rumen compared 

to SF corn, it was anticipated that feeding WS could shift the site of starch digestion from the 

rumen to post-ruminal sites. However, the lack of effect of corn grain processing on fermentation 

characteristics in the cecum imply that feeding WS corn did not result in more corn being 

fermented in the cecum. Ørskov et al. (1974) found that apparent total-tract digestibility of 

processed barley (pelleted) in lambs was not greatly affected compared to feeding the whole barley 

grains. In that study, Ørskov et al. (1974) also recorded rumination time and number of 

regurgitations. Though time spent eating was almost identical (mean of 158 min/24 h), lambs fed 

whole barley ruminated an additional 186 min/24 h and regurgitated an additional 258 times/24 h 

compared to lambs fed pelleted barley. These observations suggest that, when fed whole compared 

to processed cereal grains, sheep spend more time ruminating and this could limit the amount of 

whole grains reaching post-ruminal sites. 

 Ruminal NH3-N concentrations were reduced by 8.90 mg/dL when LF diets were fed 

compared to HF diets. It is well-established that ruminal NH3-N concentrations are influenced by 

a multitude of factors, including N intake, and dietary contents of RDP and RFC. Typically, 

ruminal NH3-N concentration increases in tandem with N intake (Doranalli et al., 2011; Davies et 

al., 2013); however, results from the present study indicate that, although N intake was 34.0% 

greater in lambs fed LF compared to those fed HF diets, lambs on LF diets had lower ruminal NH3-

N concentrations. The greater ruminal NH3-N concentrations with HF diets could be partly 
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attributed to increased provision of dietary RDP and reduced dietary RFC. Although dietary RDP 

content was not measured in the current study, predicted values obtained from NDS (CNCPS v6.5) 

based on dietary ingredient composition indicated that RDP contents for the LF and HF diets were 

5.34 and 6.24% (as % of dietary DM), respectively, thus suggesting that provision of RDP in lambs 

fed LF diets could have been reduced compared to lambs offered HF diets. Moreover, chemical 

analysis of experimental diets indicated that soluble protein levels (as a % of CP) were 8.3% units 

lower in LF diets compared to HF diets. Taken together, the lower dietary RDP content coupled 

with a lower soluble protein content for LF diets compared to HF diets could have resulted in 

reduced substrate availability for ruminal proteolytic bacteria, thus potentially reducing ruminal 

NH3-N concentrations (Bach et al., 2005). Available evidence indicates that increasing ruminal 

energy availability by feeding more dietary concentrates (e.g., RFC) is associated with reduced 

ruminal NH3-N concentrations, primarily because of a more efficient sequestration of ruminal 

NH3-N for microbial growth (Seal et al., 1992; Yang et al., 2001; Davies et al., 2013). Thus, in the 

present study, providing more RFC by feeding more concentrate (i.e., LF diets) could have reduced 

ruminal NH3-N concentration through this mechanism. In support of this assertion, lambs fed LF 

diets had a lower ruminal pH and numerically greater ruminal concentrations of total SCFA, thus 

suggesting a greater extent of ruminal carbohydrate fermentation when compared to lambs fed HF 

diets.  

 In addition to LF diets influencing ruminal NH3-N levels, lambs fed SF corn also exhibited 

lower levels of ruminal NH3-N compared to lambs fed WS corn. As discussed above, it has been 

reported throughout the literature that increasing provision of dietary concentrate and RFC 

availability improves NH3-N sequestration in the rumen (Kennedy and Milligan, 1980; Lee et al., 

1982; Huntington, 1989; Davies et al., 2013). In the present study, total SCFA concentrations were 

increased in lambs were fed SF corn as opposed to those fed WS corn, thus suggesting a greater 

ruminal energy availability with SF diets. This greater ruminal energy availability allowed 

improved sequestration of NH3-N into microbial protein, thereby decreasing ruminal NH3-N 

levels. In agreement with the present study, Davies et al. (2013) reported that greater provision of 

RFC (by means of grain processing) in the diets of beef heifers resulted in a decrease in ruminal 

NH3-N concentration, coupled with a numerical increase in total SCFA production.  
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 According to Tan and Murphy (2004), concentrations of NH3-N in the digesta of post-

ruminal regions are substantial, with NH3-N being sourced primarily from ruminal outflow, and 

ureolytic catabolism of recycled endogenous urea. In the current study, duodenal concentrations 

of NH3-N were not different between dietary treatments, but ranged from 10.0 to 12.1 mg/dL. 

Studies presenting information on duodenal digesta NH3-N concentrations are limited; however, 

Plaizier et al. (2014) reported jejunal digesta NH3-N concentrations ranging from 7.34 to 11.90 

mg/dL in yearling Holstein calves fed concentrate-based diets for varying lengths of time, and 

these data are in the same range as data observed in the present study. 

 Decreasing dietary forage level resulted in a reduction of cecal NH3-N concentration by 

39.3%. Although the extent of carbohydrate digestion was not determined within the different 

compartments of the GIT, it was anticipated that there would be a greater flow of undigested 

dietary carbohydrates reaching the lower GIT with LF diets compared to HF diets. If this was the 

case, then that would provide more substrate for microbial fermentation in the lower GIT. Indirect 

evidence in support of greater fermentative activity in the lower GIT in lambs fed LF diets is 

provided by the fermentation characteristics that were observed in the cecum, showing reduced 

cecal pH as well as increased total SCFA concentrations with LF compared to HF diets. With 

greater cecal fermentation, the increased energy availability to the microbial population could 

potentially result in reduced cecal NH3-N concentrations as the microorganisms would be more 

efficient at sequestering NH3-N. Similar findings were reported by Ørskov et al. (1970), who 

reported that cecal starch infusions in sheep resulted in an 83% increase in cecal microflora counts 

as well as a 3.2-g increase in fecal N excretion compared to sheep not receiving cecal starch 

infusions. Such findings support the notion of bacterial sequestration of free NH3-N in the cecum 

during periods of enhanced fermentation, leading to a reduction in free cecal NH3 (Tan and 

Murphy, 2004). 

5.3    Effects of Dietary Treatment on Plasma Glucose and Urea-N Concentrations 

 Concentrations of plasma glucose were elevated in lambs fed LF diets compared to those 

fed HF diets. This finding is in agreement with previous studies assessing the effects of dietary 

forage level on plasma glucose concentrations in ruminants (Evans et al., 1975; Evans and 

Buchanan-Smith, 1975; Seal et al., 1992). Ruminants perpetually depend on hepatic 

gluconeogenesis to meet their glucose needs, with propionate that is derived from microbial 
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fermentation of dietary carbohydrates being the major precursor for glucose synthesis (Danfaer et 

al., 1995). In the present study, feeding LF diets elevated propionate concentrations in the rumen 

and cecum. As propionate absorption into portal blood is concentration-dependent (Aschenbach et 

al., 2011), greater propionate concentration in the rumen and cecum could potentially increase 

substrate availability for hepatic gluconeogenesis which, in turn, would elevate plasma glucose 

concentrations in lambs fed LF diets. Similarly, lambs fed SF corn compared to those fed WS corn 

also exhibited increased concentrations of plasma glucose. Ørskov et al. (1974) conducted an 

experiment assessing the effects of grain type and extent of processing on ruminal fermentation 

characteristics. In all grain types, provision of pelleted cereal grains increased propionate levels in 

the rumen compared to feeding whole cereal grains. The increase in ruminal propionate production 

observed in the present study with lambs fed SF corn is in agreement with the findings of Ørskov 

et al. (1974), and provide an explanation for the reported increase in plasma glucose 

concentrations. 

 Plasma urea-N concentration increased by 29.4% when lambs were fed HF diets compared 

to LF diets. The major source of N for hepatic ureagenesis is NH3 derived from the GIT, primarily 

the rumen and, to a smaller extent, the cecum (Hoover, 1978). In the present study, both ruminal 

and cecal NH3 concentrations were greater in lambs fed HF diets compared to those fed LF diets. 

Because the absorption of NH3 into the portal blood is a concentration-dependent process, we can 

surmise that, when feeding HF diets, portal uptake of NH3 was increased compared to LF diets. 

This would result in increased provision of substrate for hepatic ureagenesis. Supporting evidence 

for increased hepatic ureagenesis for lambs fed HF diets is provided by the numerical increase in 

UER compared to those fed LF diets, as determined by the [15N15N]-urea isotopic technique 

(Lobley et al., 2000). Other studies have also reported increased PUN concentrations coupled with 

elevated ruminal NH3 concentrations (Doranalli and Mutsvangwa, 2010; Bailey et al., 2012). 

5.4    Effects of Dietary Treatment on Apparent Nitrogen Utilization 

 In the current study, dietary N intake was 34.0% greater in lambs fed LF diets compared 

to those fed HF diets. Similarly, N intake in lambs fed SF corn was 42.1% greater than in lambs 

fed WS corn. Because diets were formulated to be isonitrogenous (and chemical analysis indicated 

that there were only small differences in dietary CP contents, with a range of 10.5 to 11.0% CP), 

the differences in N intake are reflective of the differences that were observed in DMI. 



78 

 

Data on the major variables that are related to N utilization (i.e., urinary and fecal N 

excretion, total N excretion, and apparent N balance) revealed that, on a quantitative basis (i.e., 

g/d), dietary F:C ratio and grain processing had major effects on N utilization; however, it should 

be noted that N intakes were also influenced by dietary treatments, so direct comparisons of these 

quantitative data relating to N utilization are not very meaningful as they would be affected by the 

level of N intake. For this reason, the focus of this discussion will be on the major variables of N 

utilization when expressed as a proportion of N intake, which in this case are more meaningful 

comparisons. Total N loss in the urine (as a percentage of N intake) was 35% units greater in lambs 

fed HF diets compared to those fed LF diets. Typically, as N intake increases, there is a 

corresponding increase in the amount of urinary N excreted when expressed as a proportion of N 

intake (Marini et al., 2004). The major form of urinary N excretion was urea-N, which represented 

77.6 and 52.1% of total urinary N excretion in lambs fed HF and LF diets, respectively. The 

differences in urinary N excretion, therefore, largely arise from differences in urea-N excretion. 

Urinary urea-N arises from hepatic ureagenesis, with ruminally-derived NH3 being the major 

source of N (Huntington and Archibeque, 1999). It is well established that the absorption of NH3 

from the rumen into the portal blood is a concentration-dependent process (Tan and Murphy, 

2004); although ruminal absorption of NH3 into portal blood was not measured in the present 

study, it can be surmised that lambs fed HF diets likely exhibited greater NH3 uptakes because 

they had greater ruminal NH3 concentrations when compared to those fed LF diets. This would 

have provided more substrate for hepatic ureagenesis in lambs fed HF diets, thus the greater 

excretion of urea-N in urine when compared to lambs fed LF diets. Other studies, such as that 

conducted by Lobley et al. (2000), have also reported numerical increases in urinary urea-N (as a 

percent of total urinary N) in sheep fed a 50:50 F:C diet compared to a 50:50 grass pellet and loose 

hay diet. In terms of grain processing effects on urinary N excretion, lambs fed WS corn had 

greater total urinary N excretion when expressed as a percentage of N intake compared to lambs 

fed SF corn. In addition, similar trends were observed for urea-N excretion as a percentage of total 

urinary N. Therefore, as discussed previously, the observed difference in total urinary N excretion 

can, in part, be attributed to the differences observed in urinary urea-N excretion. Lambs fed WS 

corn exhibited increased ruminal NH3 concentrations compared to lambs fed SF corn. Based on 

the preceding discussion regarding the influence of forage level on urinary N excretion, similar 

mechanisms involving ruminally-derived NH3 would be responsible for the differences in urinary 
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N excretion and urinary urea-N excretion (as a percentage of N intake) between lambs fed WS and 

SF corn. Similar studies in sheep (Doranalli and Mutsvangwa, 2007) and cattle (Gozho et al., 2008; 

Hales et al., 2012; Davies et al., 2013) have assessed the effects of grain processing on urinary N 

losses; however, the reported results do not show the same relationship observed in the present 

study. Matras et al. (1991) also assessed the effects of grain source and processing on N utilization, 

and found that although urinary N excretion (g/d) was greatest in lambs fed whole barley grain, 

urinary N excretion (g/d) was greater in lambs fed rolled sorghum compared to steam-flaked 

sorghum. Although urinary losses did vary between treatment groups, overall N balance (in g/d, 

and as a percentage of N intake) was not affected (Matras et al., 1991).  

Evidence available in the literature indicates that greater N intakes will often result in an 

increase in urinary N excretion, whereas fecal N losses largely remain constant (Marini et al., 2004; 

Davies et al., 2013). In the current study, when expressed as a proportion of N intake, fecal N 

excretion exhibited a narrow range across dietary treatments, ranging from 32.4 to 37.8%, with a 

tendency for lambs fed HF diets to exhibit a 4.6% unit increase in fecal N excretion compared to 

those fed LF diets. This finding suggests that the 63.5% increase in total N excretion (calculated 

by the sum of total N losses in both the urine and the feces), expressed as a percentage of N intake, 

between HF and LF fed lambs can be attributed primarily to differences in urinary N losses. 

Similarly, lambs fed WS corn also had greater total N excretion (as a percentage of N intake) when 

compared to lambs fed SF corn. As mentioned above, the disparity between grain processing 

treatments on total N excretion can be attributed to the difference in urinary N loss; lambs fed WS 

corn had a 61.6% increase in total urinary N loss (as a percent of N intake) compared to lambs fed 

SF corn. Other studies assessing N balance in sheep have also reported greater variation in urinary 

N output compared to fecal N output, thereby increasing total N excretion (Marini et al., 2004; 

Doranalli et al., 2011; Agarwal et al., 2015), though of course these findings are dependent on 

dietary influence. 

Apparent N balance is calculated as the difference between N intake and total N losses 

(through both the feces and the urine) and provides a “snapshot” of the N content within the body 

that can be allocated towards anabolism and production. As recommended by the NRC (1985), CP 

requirements for growing lambs weighing either 30 or 40 kg is between 14.7 to 11.6% CP (DM 

basis), respectively. In the current study, CP content ranged from 10.5 to 11.0% CP (DM basis), 
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indicating that these diets were deficient in CP by NRC (1985) standards (for the objectives of this 

study, low CP levels were desired so as to maximize urea recycling). In the present study, lambs 

fed LF diets had a greater apparent N balance, when expressed as a percentage of N intake, 

compared to lambs fed HF diets. Additionally, lambs fed SF corn also exhibited an increase in 

apparent N balance, when expressed as a percentage of N intake. The differences in N balance 

between the two groups can be attributed to the increased N loss through urinary excretion between 

the treatment groups, as discussed previously. By the ability to retain more N through urea 

recycling (for both lambs fed LF, as well as lambs fed SF), these animals were able to remain in a 

positive N balance despite being faced with a protein deficit. Though we can assume that the N 

retained by these animals would go towards anabolic usage, average daily gain was not recorded 

in the present study as growth performance was not an objective. This limits our ability to suggest 

potential rates of daily protein accretion within the lambs. 

5.5    Effects of Dietary Treatment on Whole-Body Urea Kinetics, Regional Jsm-urea and  

Jsm-mannitol, and mRNA Abundance of UT and AQP 

 One of the major objectives of the present study was to assess the effects of forage level 

and grain processing (as a strategy to manipulate the site of starch fermentation) on whole-body 

urea kinetics. It is well-established that urea secretion into the GIT, particularly the rumen, is an 

important evolutionary adaptation that allows ruminants to maintain a positive N balance when 

dietary N supply might be limited (Lobley et al., 2000; Marini and Van Amburgh, 2003). When N 

intake is limiting, urea that is recycled to the rumen becomes an important source of N for 

microbial protein production, thus supplying essential amino acids to the host animal when 

microbes flowing out of the rumen are subsequently digested in the small intestine (Fuller and 

Reeds, 1998). Thus, it is important to improve our understanding of the mechanisms that regulate 

urea recycling so that strategies can be developed to enhance urea secretion into the GIT. In the 

present study, endogenous urea production (i.e., UER) ranged from 13.5 to 20.8 g/d across dietary 

treatments. These data are in agreement with published studies (11.5 to 22.4 g/d, Sarraseca et al., 

1998; 2.40 to 19.2 g/d, Marini et al., 2004) that have reported UER in sheep at similar N intakes 

as in the present study. The rate of endogenous urea production is dependent on many factors, such 

as the level of dietary N intake (Marini and Van Amburgh, 2003) and ruminal NH3 concentration 

(Doranalli and Mutsvangwa, 2010). Although only a tendency, UER in lambs fed HF diets were 

23.1% greater compared to lambs fed LF diets. This response could partly be attributed to the 
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observed differences in ruminal NH3 concentration, as lambs fed HF diets exhibited greater (by 

+8.90 mg/dL) ruminal NH3 concentrations compared to those fed LF diets. As discussed elsewhere 

in this thesis, the absorption of NH3 into the portal blood is a concentration-dependent process, so 

it is plausible that lambs fed HF diets absorbed more NH3 from the rumen than those fed LF diets, 

thus more substrate was available for hepatic ureagenesis. Because ruminally-derived NH3 is a 

major source of N for hepatic ureagenesis (Reynolds and Huntington, 1988; Huntington, 1989; 

Theurer et al., 2002), it is not surprising that other studies (Wickersham et al., 2008; Davies et al., 

2013) have also reported greater UER with elevated ruminal NH3 concentrations. The endogenous 

urea produced in the liver can then be released into the bloodstream, and the greater PUN 

concentrations in lambs fed HF diets compared to those fed LF diets confirm the greater rates of 

endogenous urea production with HF diets mentioned above. Presumably, if the site of starch 

fermentation was manipulated by the degree of corn grain processing, this had no influence on 

UER even though ruminal NH3 concentrations were greater in lambs fed WS corn compared to 

those fed SF corn. The reasons for this discrepancy when compared to the responses with forage 

level are unclear. However, it should be noted that the difference in ruminal NH3 concentration 

between lambs fed WS and SF corn (i.e., 3.59 mg/dL) was much smaller than that between lambs 

fed HF and LF diets (i.e., 8.90 mg/dL); thus, it can be surmised that there might not have been 

differences in substrate supply for hepatic ureagenesis (i.e., ruminally-derived NH3) between 

lambs fed WS and SF corn. Indirect evidence for this assertion is provided by the observation that 

PUN concentrations were not altered by grain processing.       

 The difference between UER and UUE provides an estimate of GER, which is the amount 

of endogenously produced urea-N that is recycled to the GIT. Essentially, GER represents the 

evolutionary mechanism ruminants have acquired in order to increase N retention when faced with 

a protein deficit. Although it is known that urea is secreted to both ruminal and post-ruminal sites, 

the magnitude of entry is greatest at the rumen, and is of the greatest anabolic benefit to the animal 

(Lapierre and Lobley, 2001). Many physiological factors play a role in the regulation of GER, 

including GIT NH3-N concentrations (Lu et al., 2014), SCFA and reduced pH (Abdoun et al., 

2010; Lu et al., 2015), and PUN concentrations (Sunny et al., 2007; Muscher et al., 2010). In the 

current study, GER was not affected by dietary treatment; however, the fractional transfer of UER 

to GIT (i.e., the GER:UER ratio) was 25.8% greater in lambs fed LF diets compared to those fed 

HF diets. The greater GER:UER ratio that was observed in lambs fed LF diets compared to those 
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fed HF diets could be partly attributed to the provision of more RFC when feeding LF diets. The 

dietary provision of more RFC by decreasing dietary forage content has been demonstrated to 

increase urea secretion into the rumen (Huntington, 1989). Because the sequestration of ruminal 

NH3 into microbial protein is dependent on energy availability (Bach et al., 2005), providing more 

RFC is typically associated with a decrease in ruminal NH3 concentration (Seal et al., 1992; Davies 

et al., 2013). In fact, in the present study, ruminal NH3 concentrations were lower in lambs fed LF 

diets compared to those fed HF diets. It has been shown in various ex vivo studies (Abdoun et al., 

2006; Lu et al., 2014) that increasing luminal NH3 concentration has inhibitory effects on Jsm-urea 

across ruminal epithelia, so the lower ruminal NH3 concentrations in lambs fed LF diets compared 

to those fed HF diets could partly explain the greater GER:UER ratio that was observed with LF 

diets. It has been reported in the literature that urea-N transfer into the GIT is positively correlated 

with PUN concentrations (Reynolds and Huntington, 1988; Sunny et al., 2007). However, in the 

current study, lambs fed LF diets had lower PUN concentrations compared to those fed HF diets, 

so the greater GER:UER ratio in lambs fed LF diets compared to those fed HF diets is incongruent 

with the reported positive correlation between urea-N transfer to the GIT and PUN concentration. 

Lapierre and Lobley (2001) suggested that the positive correlation between urea-N transfer to the 

GIT and PUN concentrations might not apply in all feeding situations. For example, when PUN 

concentration was elevated in sheep by using acute mesenteric vein infusion of amino acids, only 

a weak correlation between urea-N flux across the PDV and PUN concentration was observed (r2 

= 0.21) (Lobley et al., 1998; Lapierre and Lobley, 2001). According to Lapierre and Lobley (2001), 

weak correlations (range of r2 values = 0.01 to 0.19) were reported between urea-N flux across the 

PDV and PUN concentration in beef and dairy cattle under a wide range of dietary conditions. In 

the current study, although PUN concentrations were greater in lambs fed HF diets compared to 

those fed LF diets, it is plausible that the greater ruminal NH3-N concentrations in lambs fed HF 

diets could have inhibited urea-N entry into the rumen as has been reported by others (Abdoun et 

al., 2006; Lu et al., 2014), thus negating any stimulatory effects of elevated PUN concentration on 

urea-N transfer to the GIT. 

 In the current study, there was a 15.4% increase in GER:UER in lambs fed SF corn as 

opposed to WS corn. Other studies have reported similar findings with the dietary provision of 

more extensively processed grains. For instance, Delgado-Elorduy et al. (2002) reported a 143.1% 

increase in urea-N recycled to the GIT in dairy cattle fed steam-flaked corn as opposed to those 
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fed steam-rolled corn. Similarly, Theurer et al. (2002) also reported increases in urea-N flux to 

ruminal tissues, as well as total PDV, in steers fed steam-flaked sorghum as opposed to those fed 

dry-rolled sorghum. Because extensive grain processing is a method utilized to increase dietary 

RFC, provision of SF corn likely increased the GER:UER ratio by mechanisms similar to those 

previously discussed for forage level. For example, ruminal NH3 concentrations were lower in 

lambs fed SF corn compared to lambs fed WS corn, suggesting that provision of SF corn increased 

energy availability in the rumen, facilitating microbial NH3 sequestration, thereby mitigating the 

inhibitory effects of free NH3 on ruminal urea secretion into the GIT. In addition to this, it has 

been reported that provision of high dietary levels of RFC may increase the expression of UT-B 

in the ruminal epithelia of goats compared to feeding diets low in RFC (Lu et al., 2015). Although 

not significant, the current study showed a numerical increase in the mRNA expression of UT-B 

in the ruminal epithelia of lambs fed LF diets compared to those fed HF diets, which may facilitate 

the transfer of UER to the GIT. This conclusion is to be made with caution, however, as there was 

no dietary effect on ruminal Jsm-urea in the current study.      

 When urea is recycled back to the GIT, it is subject to many fates, including usage for 

anabolism, reabsorption and ureagenesis, and excretion in the feces. Of these fates, the first is the 

most crucial for the ruminant, as it contributes to the animal’s maintenance and growth 

requirements. Calculated by difference (UUA = GER - [UFE + ROC]), UUA represents 

endogenous urea that is retained for the animal’s anabolic usage. As described by Lobley et al. 

(2000), the isotopic infusion model assumes that the major component of UUA is the sequestration 

of free NH3 into microbial protein in the rumen (which is subsequently digested in the small 

intestine and contributes to the metabolizable protein requirement). However, liberated NH3 in the 

GIT sourced from recycled endogenous urea-N can also be reabsorbed across the GIT epithelia 

and contribute to amination and transamination reactions within various tissues (Lobley et al., 

2000). Of the two reactions, transamination reactions involve only the exchange of an amino group 

rather than contributing to the formation of an AA; therefore, it is possible that UUA values may 

be overestimated in the isotopic infusion model (Lobley et al., 2000). In the present study, lambs 

fed LF diets had 96.5% increase in UUA, and a 116.7% increase in UUA as a proportion of GER 

(i.e., the UUA:GER ratio) compared to lambs fed HF diets. In addition, lambs fed SF corn tended 

to exhibit an increase in UUA (g/d) over lambs fed WS corn. Because the major anabolic use of 

recycled urea-N is via its contribution of a N (as NH3) source for microbial protein synthesis, 
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which is an energy-dependent process, the extent to which recycled urea-N can be used for this 

purpose largely depends on the availability of RFC (Joy et al., 1997; Crocker et al., 1998; Bach et 

al., 2005). In the present study, the provision of more RFC via feeding more concentrate (i.e., 

feeding LF diets) or more extensively processed grain (i.e., SF corn) resulted in greater anabolic 

use of recycled urea-N. Although the study did not use the [15N15N]-urea isotopic technique, 

Delgado-Elorduy et al. (2002) used the V-A method to determine the effects of feeding steam-

rolled or SF corn on splanchnic N metabolism in lactating dairy cows. The study reported that 

cows fed SF corn had a tendency for increased urea-N flux (g/d) into the PDV compared to cows 

fed steam-rolled corn. Joy et al. (1997) and Crocker et al. (1998) both studied the effects of corn 

grain processing on N passage throughout the GIT of lactating dairy cows, and reported that as 

dietary inclusion of SF corn increased, non-NH3-N (as a percent of N intake) flow to the duodenum 

was greater (Crocker et al., 1998), and was numerically greater (Joy et al., 1997) compared to cows 

fed dry-rolled corn. Moreover, Joy et al. (1997) also found that provision of SF corn resulted in 

increased flow of microbial N (as a percent of non-NH3-N) to the duodenum compared to cows 

fed dry-rolled corn. When interpreted together, the data collected by these studies might suggest 

that increased provision of RFC improves urea-N recycling to the GIT, and subsequent 

sequestration of endogenously-derived NH3 for anabolic usage. Other studies have assessed the 

influence of dietary concentrate level (Lobley et al., 2000) and grain processing (Doranalli and 

Mutsvangwa, 2007; Davies et al., 2013) on whole-body urea kinetics using the [15N15N]-urea 

isotopic technique; however, they did not observe dietary effects on UUA (g/d, or as a proportion 

of GER). A potential reason for this could be attributed to the limitations of estimating UUA in 

the isotopic infusion model: (1) the model lacks the ability to differentiate between the anabolic 

routes of labelled N (as previously mentioned), thus potentially assuming a larger contribution to 

microbial protein production; and (2) because UUA is calculated by difference, UUA values 

obtained in the model are subject to cumulative calculation errors. Unfortunately, these limitations 

can lead to overestimates of UUA, providing potential challenges in elucidating dietary effects.  

  In the present study, no dietary effects were observed on total ROC values (g/d); however, 

as a proportion of GER (i.e., the ROC:GER ratio), lambs fed HF diets had a 0.19 unit increase in 

urea-N that re-entered the ornithine cycle compared to lambs fed the more fermentable LF diet. 

This finding was expected given the large difference in fermentable substrate between the HF and 

LF diets. In the rumen, numerical increases in total SCFA production along with a reduction in pH 
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in lambs fed LF diets compared to HF diets is indicative of increased energy availability for 

microbial protein synthesis. Moreover, ruminal NH3 concentrations were lower in the LF group 

than the HF group, suggesting improved NH3 sequestration by the microbial community. In the 

farther fermentative region, the cecum, similar findings were also found: lambs fed LF diets had 

increased total SCFA concentrations, reduced regional pH, and reduced cecal NH3 concentrations 

compared to lambs fed the HF diet, once more suggesting improved microbial sequestration of 

NH3 sourced from recycled endogenous urea. These findings would suggest that lambs fed LF 

diets had an improved ability to sequester NH3-N derived from the degradation of endogenous 

urea over their HF fed counterparts, resulting in less NH3 subject to absorption across the ruminal 

epithelia and re-transformation into urea by the liver.  

 As mentioned above, NH3 obtained from the hydrolysis of endogenous urea may be subject 

to excretion through the feces (Lobley et al., 2000). The literature reports that 3 to 20% of GER is 

excreted in the feces of cattle (Marini and Van Amburgh, 2003; Davies et al., 2013), and 1.5 to 

7.1% in sheep (Doranalli and Mutsvangwa, 2007; Lobley et al., 2000), with the results varying 

widely due to the influence of diet. For example, it is known that energy provision within the 

hindgut has a major influence on the proportion of urea-N lost in the feces, particularly in sheep 

(Thornton et al., 1970; Oncuer et al., 1990). In the current study, lambs fed LF diets exhibited a 

103% increase in UFE (g/d) compared to lambs fed HF diets. Moreover, as a proportion of GER 

(i.e., the UFE:GER ratio), lambs fed LF diets had a 133% increase in the amount of UFE compared 

to lambs fed HF diets. It has been previously reported by Thornton et al. (1970) that provision of 

glucose to the terminal ileum of sheep resulted in an increase in the total amount of fecal N 

compared to sheep infused with water. The group suggested that this increase in fecal N excretion 

could be attributed to endogenous urea-N being transferred from the blood to the hindgut, 

providing a N source to the microbial population, resulting in microbial protein N being excreted 

in the feces (Thornton et al., 1970). In addition to this finding, the group also reported a decline in 

the amount of urinary urea-N as excretion of fecal N increased, allowing them to conclude that 

under favorable fermentative conditions in the hindgut of sheep, endogenous urea-N will be 

preferentially recycled to the latter regions of the GIT as opposed being excreted in the urine 

(Thornton et al., 1970). Similar findings were reported in the current study, wherein lambs fed LF 

diets exhibited a 52.7% decrease in UUE, and a 42.1% decrease in UUE as a proportion of UER 

(i.e., the UUE:UER ratio). Knowing that the LF diets in the present study provided greater amounts 
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of fermentable substrate to the hindgut (see previous paragraph for supporting evidence), we can 

surmise that energy availability and ATP yield from OM digestion in the hindgut of lambs fed LF 

diets supported microbial protein synthesis, thereby reducing cecal NH3 concentrations, and 

promoting endogenous urea transfer to the hindgut. In lambs fed SF corn, UFE was 0.27 g/d greater 

than lambs fed WS corn. As a proportion of GER, lambs fed SF corn also had a 50.0% increase in 

UFE:GER compared to lambs fed WS corn. Doranalli and Mutsvangwa (2007) reported a grain 

processing effect on UFE in growing lambs; lambs fed dry-rolled barley tended to have greater 

UFE:GER compared to those fed pelleted barley. Other studies have also assessed the influence 

of grain processing on UFE (Gozho et al., 2008; Davies et al., 2013), with no treatment effects 

observed. It is known, however, that processing of cereal grains does increase energy availability 

and starch digestibility (Theurer, 1986), with steam-flaking corn shown to increase energy 

availability primarily through the process of starch gelatinization (Theurer, 1986; Zinn et al., 

2002). In regards to urea metabolism, Oncuer et al. (1990) demonstrated the significant influence 

that improved starch and energy availability can have on stimulating urea recycling to post-ruminal 

regions. The group reported that terminal ileal infusions of fermentable carbohydrates (starch in 

combination with cellulose vs. water) influenced the partitioning of endogenous urea-N to the 

lower GIT as opposed to urinary N excretion, and that this finding was due to altering the 

fermentative profile in the hindgut of sheep. In the current study, a similar finding was reported in 

lambs fed SF corn: as a proportion of UER, lambs fed SF corn had lower amounts of UUE 

compared to those fed WS corn. These findings could be attributed to a potential increase in 

fermentable substrate reaching the hindgut of lambs fed more extensively processed grains, 

facilitating partitioning of UER to the hindgut (away from urinary excretion). This leads to 

improved NH3 sequestration in the hindgut, resulting in losses of urea-N in the feces as microbial 

protein.   

 Besides the rumen, it is well-established that urea can be transferred from the bloodstream 

to other compartments of the GIT, including the small intestine (Varady et al., 1979; Marini et al., 

2004) and the cecum (Thornton et al., 1970; Oncuer et al., 1990; Marini et al., 2004). As already 

discussed elsewhere, urea-N that is secreted into the rumen can be used for anabolic purposes 

through sequestration as microbial protein, thus providing amino acids to the host animal after 

gastric digestion in the small intestine. The anabolic benefit of endogenous urea-N recycled into 

post-ruminal sites requires further research (Lapierre and Lobley, 2001); however, post-ruminal 
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recycling of urea-N has shown importance in the repartitioning of PUN from urinary excretion to 

quantitative recovery in feces (Ørskov et al., 1970; Thornton et al., 1970). In monogastrics, 

Columbus et al. (2014) found that when pigs were provided with cecal infusions of a supplemental 

N source (casein or urea infused at 40% of N intake compared to a saline control), use of the 

[15N15N]-urea isotopic infusion model indicated increases in large intestinal N disappearance 

(absorption), PUN, and body protein deposition (g/d and as a percent of N intake). The group 

proposed that free NH3 derived from the cecal infusions was absorbed from the large intestine and 

utilized for hepatic ureagenesis (Columbus et al., 2014). Then, this endogenously produced urea 

was recycled back to the small intestine, wherein it was subject to sequestration into microbial 

protein, and made available for further digestion and utilization for anabolic purposes (Columbus 

et al., 2014). With this evidence of NH3 absorption in the intestinal regions resulting in anabolic 

benefit to the animal, the whole-body urea kinetics data reported in this thesis becomes 

increasingly interesting. With the GER:UER ratio being influenced by dietary treatment, it leads 

one to question where exactly the endogenously produced urea was entering the ovine GIT. 

Unfortunately, one of the major limitations of implementing the isotopic method to determine 

whole-body urea kinetics is that the model fails to differentiate the site of urea transfer to the GIT; 

the entire GIT is treated, in essence, as one single compartment (Lobley et al., 2000; Lapierre and 

Lobley, 2001). In order to provide more insight into the regulatory mechanisms of urea recycling 

and the effects of dietary composition on the site of urea secretion, the current study utilized the 

Ussing chamber technique to obtain qualitative data on urea fluxes across the ruminal, duodenal, 

and cecal epithelia. Ruminal, duodenal, and cecal epithelial tissue samples that were obtained 

when animals were killed after exposure to experimental diets for 23 d were mounted in Ussing 

chambers and used to assess Jsm-urea. With this approach, it was anticipated that any adaptations 

that occurred in transepithelial urea secretion due to dietary treatments would be maintained ex 

vivo as has been reported by others (Doranalli et al., 2011; Walpole et al., 2015). In the present 

study, urea flux across the ruminal epithelium was unaffected by dietary treatment. In the past, 

studies have assessed the influence of rapidly fermentable diets (Walpole et al., 2015) and 

fermentative end-products such as SCFA and CO2 (Abdoun et al., 2010) and pH (Abdoun et al., 

2010; Lu et al., 2014) on ruminal urea flux. Collectively, the reported findings have led to a 

consensus that provision of highly digestible diets (and their subsequent fermentative end-

products) have a stimulatory effect on Jsm-urea. When assessing total flux, Walpole et al. (2015) 
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reported that when Holstein steer calves were fed a 41.5% barley grain diet, there was only a weak 

tendency for an increase in ruminal Jsm-urea in steer calves fed the diet for 3, 7, 14, and 21 d (range 

of 112.6 to 144.2 nmol/(cm2 × h) compared to those fed the control diet of 91.5% hay (Walpole et 

al., 2015). Although these findings are in agreement with the previously reported relationship 

between urea flux and fermentative-end products, Abdoun et al. (2010) was able to more clearly 

discern the effects of these end-products on ruminal urea flux by directly exposing the ruminal 

epithelia to the desired conditions within the closed system. Because the Ussing chamber method 

provides an ex vivo approach to analyzing nutrient fluxes, many physiological factors (e.g., blood 

supply, hormones, paracrine signalling) that may influence these fluxes in vivo are not accounted 

for (Clarke, 2009). This, in turn, can present difficulties in accurately interpreting in vivo dietary 

effects on ex vivo nutrient fluxes, as opposed to directly exposing the tissue to predicted in vivo 

conditions within the Ussing chamber (Abdoun et al., 2010; Doranalli et al., 2011; Lu et al., 2014). 

These reasons may explain why there was no dietary effect on ruminal urea flux. 

 It is known that endogenous urea is transferred across the small intestinal epithelia, both 

through passive diffusion as well as through urea transporters (UT-A and UT-B) (Marini et al., 

2004). In the current study, duodenal Jsm-urea increased by 35.7% in lambs fed HF diets compared 

to those fed LF diets. Though studies utilizing Ussing chambers to assess urea flux across post-

ruminal sites are scarce, the V-A method is another technique that is used to measure net nutrient 

flux across regions of the GIT, namely the PDV and the MDV. Reynolds and Huntington (1988) 

reported that in steers fed high forage diets, BUN uptake by the MDV was greater compared to 

steers fed high concentrate diets. Similar findings were also reported in a previous study conducted 

by Norton et al. (1978), wherein urea metabolism of sheep fed various types of native Australian 

forages were assessed. All lambs used in the study exhibited a negative N balance (-0.48 to -1.62 

g/d), with PUN concentrations ranging from 57 to 138 mg N/L. The study found that 70 to 72% 

of endogenous urea produced was recycled to post-ruminal sites, and that urea transfer to these 

regions had a positive linear correlation with PUN concentrations (Norton et al., 1978). In the 

current study, lambs fed HF diets had a 29.4% increase in PUN concentrations compared to those 

fed LF diets. Additionally, though not significant, a weak positive linear correlation was observed 

between duodenal Jsm-urea and PUN concentrations. Moreover, there was a strong positive linear 

correlation between Jsm-mannitol and Jsm-urea, suggesting that paracellular transport of urea across the 

duodenal epithelia is an important mechanism in the movement of urea into the intestinal region, 
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particularly when PUN values are elevated. In agreement with the previously discussed studies, 

these findings suggest that passive diffusion of endogenous urea-N may be the more prominent 

method of Jsm-urea across intestinal epithelia compared to facilitative transport.  

 Serosal-to-mucosal urea flux across the cecal epithelia was unaffected by dietary treatment. 

In the current literature, there does not appear to be any studies assessing Jsm-urea across the 

ruminant cecal epithelia using the Ussing chamber model; however, Stumpff et al. (2013) studied 

the effects of dietary fiber level on Jsm-urea across the cecal mucosa of piglets. The objective of the 

study was to determine if provision of high fiber, low protein diets as well as ex vivo exposure to 

reduced pH and SCFA would regulate Jsm-urea in a similar fashion as observed in ruminants 

(Abdoun et al., 2010). The study reported that neither dietary fiber level, nor changes in apical pH 

and luminal SCFA concentrations changed urea flux across the porcine cecal epithelia (Stumpff et 

al., 2013), perhaps suggesting that the regulatory mechanisms for Jsm-urea differ between porcine 

and bovine GIT tissues, or, that Jsm-urea across hindgut epithelia exposed to fermentative conditions 

responds differently than ruminal epithelia. Additionally, as observed with duodenal epithelia, a 

strong positive linear correlation was observed between Jsm-mannitol and Jsm-urea. Noting that cecal 

mRNA expression of UT-B, and AQP-3 and -7 were largely unaffected by dietary treatment in the 

current study, we can surmise that perhaps diffusional transport of urea may play a more prominent 

role in Jsm-urea across the cecal epithelia. 

 Mannitol is a large, hydrophilic solute that is commonly used as an indicator of the 

permeability of paracellular pathways (and thus, barrier function) in a given tissue (Clarke, 2009). 

In Ussing chamber experiments, combined measurements of paracellular tracers, such as mannitol, 

as well as Gt values, can act as indicators of tissue integrity ex vivo (Clarke, 2009; Abdoun et al., 

2010; Pederzolli et al., 2018). Diet plays a major role in GIT epithelial health, and it is known that 

provision of highly fermentable diets can lead to ruminal acidosis (Penner et al., 2007) which can 

cause negative effects on epithelial integrity (Pederzolli et al., 2018). Damage to the epithelial 

tissue is in response to the high level of fermentation and SCFA concentrations associated with 

low forage diets, particularly when SCFA production exceeds removal, resulting in reduced pH 

that will alter both morphological and histological properties of ruminal papillae (Penner et al., 

2010). In the current study, ruminal Jsm-mannitol tended to be greater in lambs fed LF diets compared 

to those fed HF diets. Similar results were reported by Walpole et al. (2015), who observed a linear 
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increase in Jsm-mannitol across ruminal epithelia obtained from Holstein steer calves fed a 41.5% 

barley grain diet for prolonged periods of time compared to the control group (91.5% hay). 

Moreover, Schurmann et al. (2014) also found a linear increase in Gt associated with ruminal 

epithelia obtained from the same animals. Taken together, it can be surmised from these results 

that the provision of highly fermentable diets increases tissue permeability (as indicated by 

elevated Gt values) by potentially compromising barrier function of the ruminal epithelium (Penner 

et al., 2010), leading to increases in paracellular passage of compounds, such as mannitol. In 

support of this explanation, the present study also found that ruminal Gt values were 60.8% greater 

in lambs fed the LF diet compared to those fed the HF diet. Interestingly, however, there was no 

linear correlation between ruminal Jsm-urea and Jsm-mannitol. When comparing paracellular transport 

pathways of urea and mannitol, Abdoun et al. (2010) also observed no correlation between Jsm-urea 

and Jsm-mannitol, leading the group to conclude that perhaps Jsm-urea across the ruminal epithelia was 

transported, to a greater extent, by transcellular pathways or that the paracellular pathways 

involved had a specificity to urea compared to mannitol.  

 Duodenal Jsm-mannitol was 33.5% greater in lambs fed HF diets compared to those fed LF 

diets. Duodenal epithelia permeability has not often been studied in ruminants; however, 

Pederzolli et al. (2018) assessed duodenal mannitol flux in Holstein steers fed a diet with a 50:50 

F:C ratio, subject to one of three treatments: (1) control (4 d ad libitum DMI); (2) ruminal acidosis 

(2 d ad libitum DMI, 2 d feed restriction); and (3) low feed intake (4 d feed restriction). The study 

did not find any difference in paracellular permeability of duodenal epithelia obtained from 

animals challenged with ruminal acidosis or low feed intake and those fed a control diet, though it 

should be noted that the study recorded mucosal-to-serosal as opposed to serosal-to-mucosal flux 

(Pederzolli et al., 2018). As mentioned previously, there was a strong positive linear correlation 

observed between Jsm-urea and Jsm-mannitol, thus suggesting that paracellular movement of urea may 

be the preferential mode of transport across intestinal epithelia. Cecal Jsm-mannitol was also not 

different between dietary treatments. Much like the duodenum, we are not aware of any studies 

that have assessed paracellular transport across cecal epithelia in Ussing chamber experiments.  

 The role of UT-A and UT-B in the facilitative transport of urea have been studied 

extensively throughout the literature, as reviewed by Sands et al. (1997). Various studies have 

isolated UT-A1 and -A2 isoforms in the kidney, and UT-B1 and -B2 in the kidney, bone marrow, 



91 

 

and brain of numerous species (Sands et al., 1997). In the kidney, urea transporters are responsible 

for maintaining the urea concentration gradient within the inner medulla of the kidney, facilitating 

adequate concentration of urea in the urine via reabsorption of urea from the vasa recta to the 

descending loop of Henle (Knepper and Françoise, 1987; Sands et al., 1997). Collectively, UT-A 

exists in six different isoforms (Stewart et al., 2005), whereas UT-B exists in two slightly different 

transcript variants (UT-B1 and -B2) (Sands, 2003). Characterization of UT-B expression in the 

ruminal mucosa was first reported by Marini and Van Amburgh (2003) on Holstein heifers using 

western blot analysis. The following year, Marini et al. (2004) validated the presence of UT-B in 

the rumen mucosa, as well as the presence of UT-A in the kidney, liver, and duodenum in sheep 

using western blot analysis. Stewart et al. (2005) conducted the first study that reported the 

presence of UT-B in the bovine rumen epithelium using real-time qPCR, and validated its 

functional role with the use of phloretin, which is an inhibitor of UT-B. Since then, more recent 

studies have assessed the influence of dietary factors such as dietary N content (Ludden et al., 

2009; Røjen et al., 2011) and level of dietary concentrate (Simmons et al., 2009; Walpole et al., 

2015) on the expression of these transporters in the rumen. In addition to UT-A and -B, AQP have 

also been reported to play a role in facilitative urea transport, in particular, the variants AQP-3, -

7, -9, -10 (Rojek et al., 2008). As reviewed by Rojek et al. (2008), the different isoforms of AQP 

are present in a wide variety of tissues in the body, including the kidney, GIT, epidermis, adipose, 

and eyes. To our knowledge, Røjen et al. (2011) and Walpole et al. (2015) are the only studies that 

have reported AQP-3, -7, and -10 mRNA abundance in the ruminal epithelia of ruminants, with 

Walpole et al. (2015) validating their functional role in urea transport with the use of NiCl2, which 

is an inhibitor for AQP.  

 One of the objectives of this thesis research was to improve our understanding of the 

mechanisms involved in in the transepithelial movement of urea in the rumen, duodenum, and 

cecum. As already discussed elsewhere, there is ample evidence that urea is secreted from the 

bloodstream into these GIT compartments. To achieve this objective, the influence of dietary F:C 

ratio and grain processing on the mRNA expression of UT-B, and AQP-3 and -7 in the ovine 

rumen, duodenum, and cecum was investigated. In the current study, there were no dietary effects 

observed on the mRNA expression of UT-B or AQP-7 in the ruminal epithelium; however, mRNA 

for both transporters were expressed. Expression of AQP-3, however, was greater in lambs fed LF 

diets compared to those fed HF diets. The lack of response of UT-B expression to our dietary 
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treatments is inconsistent with the available literature. Simmons et al. (2009) fed beef steers either 

a silage-based diet or a concentrate-based diet and reported that steers fed the concentrate-based 

diet had greater UT-B2 mRNA abundance as well as increased UT-B2 protein expression 

compared to those steers fed the silage-based diet. More recently, Walpole et al. (2015) reported a 

linear increase in ruminal UT-B expression in Holstein steer calves fed a 50:50 F:C diet compared 

to steers fed a high forage control diet (91.5% hay). As discussed by Lu et al. (2015), mRNA 

abundance of UT-B in the rumen has been reported to be upregulated by SCFA production and 

reduced pH (typical of a high concentrate diet) and downregulated by the presence of NH3. Though 

further research is needed to validate the mechanism, Lu et al. (2015) noted a positive correlation 

between GPR4 and UT-B expression in cultured ruminal epithelial cells from goats fed high RFC 

diets, and proposed that GPR4 receptors in the rumen (which are sensitive to changes in ruminal 

pH), might elicit intracellular signaling cascades (e.g. mitogen-activated protein kinases, cyclic 

adenosine monophosphate pathways) that result in upregulation of UT-B mRNA expression (Lu 

et al., 2015). With evidence supporting the theory that high concentrate diets upregulate UT 

expression, it is not clear why the same relationship was not observed in the present study. It should 

be noted, however, that Jsm-urea was also not influenced by dietary treatment in the present study so 

one could surmise that the physiological stimulus was not adequate to upregulate the expression 

of ruminal UT-B. 

 The effect of RFC on mRNA abundance of AQP-3, -7, and -10 in the rumen have been 

studied previously by Walpole et al. (2015). The study reported that the mRNA expression of 

AQP-3, -7, and -10 was increased in Holstein steer calves fed a 41.5% concentrate diet for 21 d 

compared to those fed a 91.5% forage-based control diet. As with UT, the mechanism for 

regulation of AQP is not well understood; however, recent literature suggests that because AQP 

play a role in the movement of water across tissues, hypertonicity and hyperosmolality in the 

environment surrounding these transporters will have an up-regulatory effect on mRNA abundance 

in various tissues, as observed in the kidney (Matsuzaki et al., 2001). Additionally, high levels of 

plasma osmolality is typically indicative of a dehydrative state, resulting in increased secretion of 

vasopressin, which is known to upregulate expression of AQP so as to assist water reabsorption 

from the kidney and into the blood (Robertson and Athar, 1976; Rojek et al., 2008). Provision of 

fermentable carbohydrates will increase ruminal osmolality via increased production of SCFA 

(Huber, 1976; Owens et al., 1998). Therefore, if the proposed regulatory relationship between AQP 
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and high osmolality is to be considered, it could be suggested that the increase in AQP-3 expression 

reported in the ruminal epithelium of lambs fed LF diets could be attributed to increased 

fermentative activity in the rumen compared to lambs fed HF diets. It should be noted, however, 

that ruminal osmolality was not measured in the present study, so any potential dietary effects on 

osmolality are unknown.   

 Few studies have assessed mRNA abundance of UT and AQP in post-ruminal tissues like 

the duodenum and cecum. In the current study, there were no dietary effects on duodenal UT-B 

expression. In ruminants, the presence and expression of UT (both UT-A and UT-B) in the 

duodenum of lambs has been reported by Marini et al. (2004) using Western blot analysis. 

Although the study attempted to assess the influence of N intake on duodenal expression of UT-A 

and UT-B, no differences were observed (Marini et al., 2004). Knowing that the duodenum is a 

region where Jsm-urea occurs (Lapierre and Lobley, 2001), the current study reported a strong, 

positive correlation between Jsm-urea and Jsm-mannitol, indicating that paracellular transport of urea was 

a major mechanism for urea secretion from the bloodstream into the duodenum. Moreover, the 

lack of dietary effects on duodenal expression of UT-B further suggests that facilitative transport 

may not be the primary mechanism responsible for urea-N salvaging within the small intestine.  

 With the intestinal regions of the GIT responsible for transporting large volumes of fluid 

(i.e., bile, pancreatic secretions) and absorbing water from the lumen (Ma and Verkman, 1999), 

AQP expression and regulation in the body has become a subject of increasing interest. As 

reviewed by Ma and Verkman (1999), the past two decades of research on AQP have reported the 

expression of various isoforms of AQP in the stomach, small intestine (jejunum, ileum), and colon 

of both humans and rats. In ruminants, the expression of AQP-3, -7, and -10 have been reported in 

the rumen (Røjen et al., 2011; Walpole et al., 2015); however, studies reporting the expression of 

AQP in the small intestine of ruminants are lacking in the literature. In the present study, dietary 

treatments only tended to influence duodenal mRNA expression of AQP-3 and -7. In lambs fed 

LF diets, there was a tendency for a 28.3% increase in mRNA expression of AQP-3 compared to 

those fed HF diets. Moreover, lambs provided with WS corn also tended to exhibit greater levels 

of AQP-7 compared to their SF fed counterparts. The mechanism behind these tendencies are 

unknown, as Jsm-urea across the duodenal epithelia was not affected by dietary treatment in the 
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current study, and validation of the functional role of AQP in the duodenum was not tested in the 

Ussing chamber experiment.  

 Expression of cecal UT-B mRNA in lambs fed HF diets had a weak tendency to be greater 

compared to those fed LF diets in the current study. Both Marini et al. (2004) and Ludden et al. 

(2009) have successfully reported the presence of UT-B in the hindgut of lambs, with Marini et al. 

(2004) observing abundance of the 98-kD UT-B bands in the cecum, and Ludden et al. (2009) 

observing both 32- and 47-kD UT-B bands in the cecum and spiral colon. In the Ussing chamber 

experiment, cecal Jsm-urea was not affected by dietary treatment; however, cecal Jsm-urea and Jsm-

mannitol had a strong, positive linear correlation, suggesting paracellular movement of urea across 

the cecal epithelia may be a mechanism of importance. Stumpff et al. (2013) measured Jsm-urea 

across the cecal epithelia of piglets, and assessed the effects of fermentative end-products (i.e., 

SCFA, reduced pH) on urea transport across the tissue. Though the study did not attempt to 

sequence UT-B expression in this region, exposure to a fermentative environment did not enhance 

Jsm-urea in the same way Abdoun et al. (2010) observed when assessing ruminal epithelia. Previous 

tracer studies in piglets have reported that the proportion of endogenous urea secreted to the 

intestine is greater than that of the cecum (Mosenthin et al., 1992a, 1992b), meaning that rather 

than urea being recycled directly to the GIT across the cecal epithelia, Jsm-urea occurs more 

extensively across the intestinal epithelia (based on our findings, presumably through paracellular 

transport), providing N sources for hindgut microbiota through the digesta (Stumpff et al., 2013). 

Perhaps the same explanation could be used to explain the numerically lower cecal Jsm-urea values 

obtained in the current study (relative to the ruminal and duodenal Jsm-urea across dietary 

treatments), as well as the weak response of UT-B expression to dietary treatment. Expression of 

AQP isoforms were unaffected by dietary treatment in the current study. In humans, it has been 

reported that AQP-3 is present in the colon (Ishibashi et al., 1995), though to my knowledge, no 

studies have assessed the expression of AQP mRNA in the hindgut of ruminants. The lack of 

dietary influence on UT and AQP in post-ruminal sites of the ruminant GIT could be attributed to 

a few possible explanations: (1) it could be possible that expression of these facilitative 

transporters are not regulated by the same mechanisms in the hindgut as they are within the rumen; 

(2) The studied transporters do not play as major of a role in the transport of urea across hindgut 

epithelia compared to diffusional transport; and (3) That the hindgut is not a major site for urea 

secretion compared to the proximal intestinal segments. 
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 Although dietary treatments largely had a negligible influence on the mRNA expression of 

UT and AQP in ruminal, duodenal, and cecal epithelia, a major contribution of this research is the 

characterization of these urea transport mechanisms in all 3 GIT compartments in the same study. 

To my knowledge, no other studies have characterized the expression of these urea transport 

mechanisms across the various GIT compartments. More research is needed to investigate if the 

expression of UT and AQP in various GIT compartments, particularly the rumen where there is 

the greatest opportunity for the anabolic use of recycled urea, mediate the known effects of dietary 

composition (e.g., dietary content of N and RFC) and end-products of fermentation (e.g., SCFA 

and NH3 concentrations, and pH) on urea secretion from the bloodstream into the GIT. 
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6.0    GENERAL DISCUSSION 

 Urea recycling is studied extensively within the rumen, as it has the most anabolic benefit 

to the animal; however, it has been shown repeatedly throughout the literature that post-ruminal 

regions are an important site for endogenous urea-N entry into the ruminant GIT (Ørskov et al., 

1970; Thornton et al., 1970; Oncuer et al., 1990; Lapierre and Lobley, 2001). When urea is 

recycled back to the post-ruminal regions of the GIT, N is more likely to be lost to the environment 

in a stable, organic form (i.e., microbial protein) in the feces as opposed to volatile NH3 in the 

urine (Thornton et al., 1970), thereby reducing the environmental impact from N excretion 

(Dijkstra et al., 2011). In terms of dietary regulation, it is well validated in the literature that dietary 

protein (Wickersham et al., 2008; Doranalli et al., 2011) and RFC (Doranalli and Mutsvangwa, 

2007; Davies et al., 2013) content play a major role in influencing the partitioning of endogenous 

urea secretion into the GIT. Though urea secretion into the GIT is known to occur through passive 

diffusion, more recently, studies have started to discover facilitative transport mechanisms 

associated with urea movement across the ruminant GIT, for example, UT-B and AQP-3, -7, and 

-10 (Røjen et al., 2011; Walpole et al., 2015). Interestingly, some of these transporters have also 

been identified in post-ruminal regions, namely UT-B in the ruminant duodenum, ileum, and 

cecum. Various studies have assessed the effects of dietary N intake on UT expression throughout 

the ruminant GIT (Marini et al., 2004; Ludden et al., 2009), with Røjen et al. (2011) also observing 

effects on ruminal expression of AQP. Furthering this, more recent studies have also started to 

assess the influence of RFC and fermentative end-products on these molecular transporters (Lu et 

al., 2015; Walpole et al., 2015). Knowing that the provision of RFC and its subsequent 

fermentative end-products have a stimulatory effect on urea recycling to the GIT (Huntington, 

1989; Delgado-Elorduy et al., 2002; Abdoun et al., 2010) and ruminal expression of urea transport 

mechanisms (Lu et al., 2015; Walpole et al., 2015), this study sought out to determine if similar 

mechanisms were responsible in the post-ruminal regions of the ruminant GIT, and if altering 

dietary forage level and grain processing influenced our observations.  

 It was determined in the current study that lambs fed HF diets tended to produce greater 

amounts of UER compared to their LF counterparts; however, they also had greater rates of N loss 

through UUE (both in g/d, as well as a proportion of UER), resulting in reduced UUA (both in g/d, 

and as a proportion of GER). These data suggest that lambs on the HF diet were less efficient in 
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their ability to retain and utilize endogenously produced urea compared to lambs fed LF diets. 

When assessing the effects of grain processing, lambs fed SF corn had numerically greater 

production of UER than lambs fed WS corn and exhibited greater GER:UER. Of this urea-N 

returned to the GIT, lambs fed SF corn had increased UFE:GER and were able to retain 

numerically greater amounts of UUA:GER compared to lambs fed WS corn. Therefore, when 

comparing HF vs. LF fed lambs, or WS vs. SF fed lambs, the data suggest that the provision of 

RFC (by feeding low F:C dietary ratios or extensively processed grains) improves the ruminant’s 

ability to retain endogenously produced urea and partition the free NH3-N obtained to microbial 

usage. Such usage can result in contribution to the ruminant’s anabolic requirements (Reynolds 

and Kristensen, 2008), or be lost in the feces as a stable, organic form of N (Thornton et al., 1970; 

Oncuer et al., 1990). Moreover, provision of these highly fermentable diets appeared to increase 

the amount of fermentative substrate present not only the rumen, but post-ruminal regions as well. 

This was indicated by numerical increases in total SCFA concentrations in the rumen, increases in 

total SCFA concentrations in the cecum, and reduced ruminal and cecal pH in lambs fed LF 

compared to lambs fed HF. Knowing that fermentative end-products assist in the microbial 

sequestration of NH3, it can be surmised that the reduced NH3 concentrations observed in the 

rumen and cecum in lambs fed LF diets compared to those fed the HF diets could be responsible 

for facilitating urea transfer to these regions. 

 Because the whole-body urea kinetics model treats the entire GIT as one compartment, it 

can be challenging to interpret at what region UER returns to the GIT. To obtain qualitative 

information regarding the magnitude of urea entry at each of the studied GIT regions, the current 

study utilized the Ussing chamber method to obtain Jsm-urea measurements from the ovine rumen, 

duodenum, and cecum in an effort to compliment the whole-body urea kinetics data. Despite such 

prominent dietary effects reported from the in vivo isotopic infusion experiment, Jsm-urea across the 

three regions was mostly unaffected by dietary treatment, making it difficult to interpret the 

influence of dietary treatment on region of endogenous urea-N entry into the GIT. For instance, 

Jsm-urea across the ruminal and cecal epithelia was not affected by dietary treatment. Serosal-to-

mucosal urea flux across the duodenal epithelia, however, presented a strong positive correlation 

with Jsm-mannitol, suggesting an increase in the paracellular transport of endogenous urea in lambs 

fed HF diets as opposed to LF diets. This finding was unexpected, as the duodenum is not a major 

site of microbial fermentation and sequestration of NH3-N compared to the rumen and/or the 
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cecum. Interestingly, PUN concentrations were also greater in lambs fed HF diets compared to 

those fed LF diets, and previous studies using the V-A technique have found positive correlations 

between BUN and urea-N transfer to the MDV (Norton et al., 1978; Reynolds and Huntington, 

1988). With these data in mind, combined with the increase in duodenal Jsm-mannitol in the HF diet 

compared to the LF diet, one could surmise that the functional role of diffusional transport may be 

more prominent in the duodenum compared to facilitated transport, and that the duodenum may 

play a more notable role in urea recycling than previously thought. Further research on this 

mechanism should be investigated. 

 Walpole et al. (2015) reported mRNA abundance for UT-B, AQP-3, -7, and -10 in the 

ruminal epithelia, and was able to elucidate dietary effects of RFC provided for prolonged periods 

of time on the expression of the previously mentioned transporters. Moreover, with the use of 

phloretin and NiCl2, the authors were able to validate the functional role of these transporters by 

inhibiting Jsm-urea across the ruminal epithelia. In the current study, mRNA expression of UT-B, 

AQP-3, and -7 were assessed in the ruminal, duodenal, and cecal epithelia. All target genes 

assessed were present in the three regions, providing valuable characterization of these transporters 

throughout the ovine GIT. In terms of dietary effects, expression of AQP-3 was greater in the 

rumen, and tended to be greater in the duodenum, of lambs fed LF diets compared to lambs fed 

HF diets. Since provision of highly fermentable diets results in increases in end-products of 

fermentation, the proposed mechanism of upregulation of AQP by increases in regional osmolality 

(Matsuzaki et al., 2001; Walpole et al., 2015) may provide an explanation for these findings. In 

the farther fermentative region of the ruminant GIT, the cecum, dietary treatments had negligible 

effects on mRNA expression of the investigated transporters. 

 To my knowledge, this is the first study to utilize in vivo and ex vivo approaches to study 

the effects of F:C ratio and extent of grain processing on urea recycling across the ovine rumen, 

duodenum, and cecum collectively. Moreover, it is also the first study to attempt to characterize 

the mRNA expression of select UT and AQP throughout the three regions assessed. To better 

understand the mechanisms associated with serosal-to-mucosal urea transport, ex vivo inhibitory 

techniques utilized by Doranalli et al. (2011) and Walpole et al. (2015) should be attempted in 

order to validate the functional role of these transporters in both ruminal and post-ruminal regions. 

Moreover, other factors associated with utilization of urea-N in the body, such as hormones (i.e., 
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vasopressin, cortisol), should also be investigated, as these too could influence the partitioning of 

urea to the GIT. These data, in combination with in vivo whole-body urea kinetics, could uncover 

important information pertaining to the molecular mechanisms of urea-recycling. 

7.0    CONCLUSION 

 Implementing dietary strategies that assist in improving N retention and utilization in 

ruminants is of the utmost importance for both production and environmental stewardship. In order 

to do this, understanding the molecular mechanisms of urea recycling is imperative. In this study, 

increased provision of RFC by decreasing the F:C ratio, or by feeding extensively processed corn, 

improved apparent N balance in lambs, increased (or numerically increased) endogenous urea-N 

partitioning to anabolism, and reduced urinary urea-N excretion. Provision of either LF diets or 

SF corn also increased the amount of endogenous urea-N excreted in the feces, which may yield 

an environmental benefit to intensive agricultural operations. In addition to this, characterization 

of the fermentative profiles of ruminal and post-ruminal sites of the ovine GIT were determined in 

lambs fed HF and LF diets, and WS and SF corn. Although the present study was not able to 

determine major dietary effects on urea flux across the studied regions (in an attempt to better 

interpret the whole-body urea kinetics data), the study did report the expression of UT-B and AQP 

mRNA throughout the ovine rumen, duodenum, and cecum. This data will prove to be valuable 

information as future research delves into validating their functional roles in urea recycling 

throughout the ruminant GIT. 
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