

THE APPLICATION OF A GENETIC ALGORITHM

TO A SCHEDULING PROBLEM

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Civil Engineering

University of Saskatchewan

Saskatoon

By

Kent Joseph Kostuk

August, 1995

© Copyright K. J. Kostuk, 1995. All rights reserved.

In presenting this thesis in partial fulfillment of the requirements for a

Postgraduate degree from the University of Saskatchewan, I agree that the

Libraries of this University may make it freely available for inspection. I

further agree that permission for copying of this thesis in any manner, in

whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of

the Department or the Dean of the College in which my thesis work was

done. It is understood that any copying or publication or use of this thesis or

parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be

made of any material in my thesis.

Requests for permission to copy or to make other use of material in

this thesis in whole or part should be addressed to:

Head of the Department of Civil Engineering

University of Saskatchewan

Saskatoon, Saskatchewan S7N OWO

ABSTRACT

Over the past three decades a significant amount of time and effort has been

expended in an attempt to optimize complex scheduling problems as a way to

reduce costs. These scheduling problems are often difficult to solve because of

their combinatorial nature.

Many Civil Engineering problems deal with the logistics of coordinating the

movement of goods or people between various modes of transportation.

Problems of this type, which can be classified as Doubly Constrained

Traveling Salesman Problems (DCTSP), are particularly difficult because the

deliveries must be made within prespecified windows of opportunity.

The Genetic Algorithm (GA) has been identified as a method to solve

combinatorial problems. Its capability to solve complex scheduling problems

has been explored herein by applying the GA technique to a complex real

world scheduling problem which can be modeled as a DCTSP. The problem

selected was the design of the National Hockey League's (NHL) 1992-1993

playing schedule. The NHL playing schedule was selected because: it is easily

modeled as a DCTSP, the data necessary to formulate the problem was readily

available, and the existing solution could act as a benchmark to measure the

GA's performance.

To illustrate the robustness of the GA it was applied to a variety of classical

Operations Research (OR) problems. Solving the OR problems provided an

excellent opportunity to compare the performance of various GA modeling

techniques. When applying the GA to the NHL scheduling problem, the

ii

problem size and complexity was increased incrementally. Initially the GA

was used to optimize the schedule only on distance. Next, optimization was

based on meeting a subset of the NHL's constraints as well as minimizing

distance traveled. Finally, the GA was used to optimize the schedule by

meeting the complete set of constraints and minimizing the distance

traveled.

The GA illustrated its flexibility by solving the OR test suite with minimal

modifications. As the problems became more difficult new chromosome

structures and reproduction schemes were introduced to improve the GA's

performance. In the NHL scheduling application the GA was able to create

scheduling solutions but it was unable to improve upon the schedule recently

developed using the Decision Support System now in use by the NHL.

The GA's failure was attributed to one, or a combination of, three factors:

limited computer resources, chromosomes were not adequate representations

for the problem, and the problem space was either too large or deceptive for

the GA to find a local optima.

The GA is a robust tool. It can solve a variety of linear and non-linear

problems. This in turn suggested, and was shown to be true, that it can solve

problems with hybrid characteristics such as the doubly constrained traveling

salesman problem.

ill

ACKNO�EDGEMENTS

I would like to thank Dr. Gordon Sparks for giving me the freedom to do my

research in an area which I would find interesting, but to still keep me 'reined

in' allowing me to get the job done in an acceptable fashion. I would also like

to thank my wife, Delilah, for her never ending support and faith in my

abilities. Without being maudlin, I would also like to thank my parents for

all that they have done to support and encourage my academic achievements.

I would also like to acknowledge the contributions of various members of the

Computer Science department who have been very patient with my neophyte

inquiries and provided me nearly carte blanche access to their computer

equipment.

Financial support for this work was obtained from the University of

Saskatchewan.

iv

TABLE OF CONTENTS

Page

PERMISSION TO USE .i

ABSTRACT .ii

ACKNOWLEDGEMENTS .i v

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES ix

1. INTRODUCTION 1

1.1 Background
- The Scheduling Problem 1

1.2 The Doubly Constrained Traveling Salesman Problem 3

1.3 Applying Computers to the Scheduling Problem .4

1.4 The Genetic Algorithm 5

1.5 Objectives 8

1.6 Scope 8

1.7 Methodology 8

1.8 Layout Of The Thesis 9

2. INVESTIGATING THE GENETIC ALGORITHM'S ROBUSTNESS 11

2.1 Linear Programming 12

2.1.1 The Giapetto Problem 13

2.1.2 The Dakota Problem .23

2.2 Integer Programming 30

2.2.1 The Nickles Problem .31

2.2.2 The J. C. Nickles Problem with Chromosomes

Repair 38

2.3 Job Scheduling 43

2.4 Traveling Salesman Problem 48

2.5 Transportation Problem .56

2.6 Summary 70

3. APPLYING THE GENETIC ALGORITHM TO A REAL WORLD

PROBLEM 72

3.1 The NHL Schedule 73

3.2 Designing The GA 79

3.2.1 Alphabet Selection and Chromosome Design 79

3.2.2 Generating the Initial Population 80

3.2.3 Crossover and Mutation 84

3.2.4 Chromosome Repair 86

3.2.5 Fitness Function 86

3.2.6 Population Size 89

3.2.7 The Search Space 90

3.2.8 Summary Of Parameters 91

3.3 Results 91

3.4 Conclusions 98

4. THE GENETIC ALGORITHM AND LARGE SCALE PROBLEMS 99

v

4.1 Limiting Factors 99

4.2 Suggested Approaches 102

5. SUMMARY AND CONCLUSIONS 105

5.1 Summary 105

5.2 Conclusions 105

5.3 Further Investigation 107

REFERENCES 109

APPENDIX A 112

A.l An Example Application 113

A.2 The Four Major Preparatory Steps 113

A.3 Applying the Genetic Algorithm 115

APPENDIX B 124

VI

LIST OF FIGURES

Figure Page

2.1 Description of the Solution Space for the Giapetto Problem 15

2.2 A Schematic of the Allocation of the Chromosome

Structure Between Two Variables 15

2.3 A Graphical Depiction of the Total Loss Penalty Function 17

2.4 A Graphical Depiction of the Semi-uniform Penalty Function 18

2.5 A Graphical Depiction of the Semi-Proportional Penalty
Function 19

2.6 A Graph of the Best Chromosome Fitness in Each

Generation of a GA Run 22

2.7 A Graph of the Best Chromosome Fitness in Each Generation of

a GA Run 27

2.8 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves {Dakota

Problem) 30

2.9 A Graph of the Cumulative Probabilities and Number of

Individuals Processed vs. The Number of Generations a GA

Evolves (J. C. Nickles problem) 38

2.10 Segment of Chromosome Representing the Destination for the

West Region's cheques {Chicago, New York and Atlanta) 39

2.11 Chromosome Segment After Being Repaired .40

2.12 Correcting a Type 2 Constraint Violation. The West Region is

sending its cheques to Los Angeles so a processing centre is

opened 40

2.13 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves (J. C.

Nickles Problem with Chromosome Repair) .42

2.14 Graph of Cumulative Probabilities and Number of

Individuals Processed vs. The Number of Generations a GA

Evolves (Job Scheduling Problem) 47

2.15 Chromosome and Graphical Representation of Two Parent

Tours 51

2.16 First City in New Tour 52

2.17 Two Cities in New Tour .53

2.18 A Complete Tour 53

2.19 Graphical Representation of Offspring Tour 53

2.20 Chromosome Representation of Tour Before and After

Mutation 54

2.21 Graphical Representation of Tour Before and After Mutation 55

2.22 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves (TSP) S7

2.23 First Random Value Placed in Allocation Matrix 60

2.24 Allocation of Supply To Next Demand Point 60

Vll

2.25 Allocation of Supply To Remaining Demand Points 60

2.26 Random Allocation of Supply To First Demand Point.. 60

2.27 Allocation of Supply To Remaining Demand Points 61

2.28 Allocation of Supply To Remaining Demand Points 61

2.29 Two Parent Matrices Selected for Crossover. 61

2.30 The Rounded Average Matrix 62

2.31 Matrix Containing Remainders From the Rounded Average
Matrix 62

2.32 The Half Remainder Matrices 63

2.33 The Offspring Matrices 63

2.34 An Offspring Matrix with Elements Selected for Mutation 64

2.35 A Randomly Generated Element of the Mutation Matrix 64

2.36 Updating the Rowand Column Elements 64

2.37 Completed Mutation Matrix 65

2.38 Offspring Matrix After Mutation is Completed 65

2.39 Graph of Cumulative Probabilities and Number of Individuals 67

2.40 Graph of The Number of Individuals Processed vs. The Number

of Generations a GA Evolves Given Various Population Sizes

(Transportation Problem) 68

2.41 Graph of The Cumulative Probability of Success vs. The Number

of Generations a GA Evolves Given Various Population Sizes

(Transportation Problem) 69

3.1 Schematic of the Matrix Chromosome Structure 80

3.2 Relative level of difficulty when fulfilling game requests 83

3.3 Algorithm for generating the home game request template 84

3.4 Algorithm for generating the initial population of

chromosomes 85

3.5 Example Calculation for Upper Bound Constant.. 87

3.6 Example Calculation of a Chromosome's Normalized Fitness 88

3.7 Graph of Best, Worst and Average Chromosome Fitness in Each

Generation Population Size=100. Parameters of Pop=100,
Gen=10,OOO, Px=0.2, Pm=O.OOOl, Time=50,306 seconds 94

3.8 Graph of Best, Worst and Average Chromosome Fitness in Each

Generation Population Size = 500. Parameters of Pop=500,
Gen=1000, Px=O.8, Pm=O.Ol, Titne=124,074 seconds 95

5.1 Schematic Representation of a Three Dimensional Chromosome

Structure 108

A.1 An Example of a Chromosome Structure 113

A.2 Roulette Wheel with Proportional Weighting 117

A.3 Fitness of the Initial Population'S Chromosomes 118

A.4 Reproduction of Two Chromosomes 120

A.5 Fitness of the Second Generation of Chromosomes 123

A.6 A Near-Optimal Solution is Almost Found 123

B.1 Definition of the global variables and data structures 126

B.2 Random number utility functions 126

B.3 Fitness function calculation function and the function used to

viii

convert a 30 bit string to a base 10 float. 127

B.4 The procedure used to collect the user's GA parameters 127

B.5 Procedure generating the initial population 128

B.6 Population statistics procedure. Calculates the maximum,

minimum and average fitness of a generation 128

B.7 Procedure used to generate a report on the initial population 129

B.8 A utility procedure used to generate n spaces 129

B.9 Reporting procedure used to store data on the chromosome in

each generation 130

B,10 Procedure used to generate the intial population 131

B.II The base procedure to the algorithm. Chromosome selection,

mutation and reproduction functions are included here. Note

that mutation is called from the crossover function 132

B.12 The procedure used to generate a new generation/ population of

chromosomes. Chromosomes are selected via roulette wheel

selection 132

B.13 Main procedure directs the flow of the algorithm. Note all of the

work necessary to generate an initial population is performed in

the initializeO procedure 133

IX

Table

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

3.1

3.2

3.3

3.4

3.5

3.6

A.l

A.2

A.3

A.4

LIST OF TABLES

Page

Production Parameters for the Giapetto Problem , 14

Genetic Algorithm Parameters for the Giapetto Problem .. " 21

Resources Required to Produce Product lines 23

Revenues From Each Product Line , , 23

Resources Available to the Dakota Furniture Company 24

Genetic Algorithm Parameters for the Dakota Problem , 25

Summary of Results for 300 Runs of the Dakota Problem 29

Highest Costs Associated with Sending Mail BetweenEach Region and

City 34

Genetic Algorithm Parameters for the J. C. Nickles Problem 36

Genetic Algorithm Parameters for the J. C. Nickles Problem 40

Fitness Penalties Corresponding to the Number of Duplicate Jobs 45

Genetic Algorithm Parameters for the Job Scheduling Problem 46

Half of the Symmetric Trip Matrix Showing the Distances Between

Each City 49

Summary of the Upperbound Estimate of the Tour Length of a TSP 50

Summary of Available Connections (Linkages) 52

Connections of Cities Connected to City 1 52

Connections of Cities Connected to City 3 53

Genetic Algorithm Parameters for the TSP 55

Cost Matrix Between Source and Destination 58

Optimal Allocation of Goods Between Source and Destination 58

Genetic Algorithm Parameters for the Transportation Problem 66

Approximate Success Rate For Various Population Sizes Given a

Relaxed Solution Threshold (Within 5% of Known Optimum) 70

Summary of the Topics Covered in Chapter 2 71

NHL League Alignment for the 1992-1993 Season 75

Allocation of Games Between Teams for the 1992-1993 NHL

Season 76

Scheduling Constraints Followed by the NHL ., , , .. , 78

Memory Required for the Binary Representation of an NHL Schedule 80

GA Parameters for the NHL Problem 91

Comparison of GA Schedule Results to the Actual NHL Schedule 96

An Initial Population of Chromosomes 116

A Key to the Standard GA Chromosome Fitness Table , 117

The Second Generation of Chromosomes 121

Difference in Offspring Due to Mutation 121

x

1. INTRODUCTION

1.1 Background
- The Scheduling Problem

Scheduling is an everyday occurrence. Something as simple as two

people getting together for a meeting, or even to just have coffee, requires a

certain amount of scheduling. Scheduling two people to meet is a relatively

simple task. But, small increases in the number of people involved will

significantly increase the difficulty of the task. This is because scheduling is a

combinatorial problem. The complexity of a problem will expand non­

linearly with each additional event to be scheduled. Thus problems which

were once simple to solve, become incomprehensible with the addition of a

few new parameters.

Scheduling problems are not solely confined to the coordination of two

people's daily timetables. The domain of Civil Engineering is full of

processes which are scheduling problems or could be easily modeled as

scheduling problems: project management, transportation of goods, and

refuse collection. Any situation which requires a person, good, or task to be

coordinated with another person, good or task at a prespecified time can be

modeled as a scheduling problem. As stated previously the scheduling

problem is a combinatorial problem. Consequently the complexity of many

everyday problems exceeds the capabilities of most available analytical tools.

One of two approaches must be taken. A common, low risk (but not

necessarily the best) approach is to simplify the problem, and solve the new,

simplified problem. The more efficient, but also more difficult approach is to

develop new analytical tools to handle the problem 'as is.'

Scheduling is basically an allocation problem where scarce resources

must be allocated objectively (usually on a minimum cost basis). Problems of

this type fall within the domain of Operations Research (OR). In the

literature there are references to the scheduling of truck fleets (Powell et al.

1988), airline crews (Jones 1989), canal cleaning (Singer and Moritz 1987), and

professional baseball leagues (Cain 1972). There are almost as many solutions

as there are problems. This condition has arisen because scheduling is often

used as a tool to gain a competitive advantage. Efficient scheduling allows a

company to reduce their costs, or move more goods at the same cost. These

savings are directly reflected in their profitability. To maintain their

competitive edge companies will protect their scheduling techniques as

proprietary information. Another reason for this proliferation of solutions is

because many problems are conceptually quite similar, but are unique enough

that a solution from one situation is not immediately transportable to

another.

Solutions may be problem specific, but the general technique used to

solve them is not. The first step is to mathematically model the

environment in question so that a combination of independent elements or

conditions can be compared quantitatively. Most solutions attempt to use a

balance between experience based, rule-of-thumb solutions (heuristics) and

mathematically tractable solutions (such as linear programming
-

a best-fit

solution to a set of simultaneous equations). In practice, the ratio of

heuristics and linear programming required to solve the problem varies with

the complexity of the problem. Usually as the solution space grows, so does

the reliance on heuristics to solve the problem. This reliance on heuristics

generates problem specific or non-robust solutions.

2

1.2 The Doubly Constrained Traveling Salesman Problem

One of the most complicated types of scheduling problem is the doubly

constrained traveling salesman problem (DCTSP). The DCTSP is an

enhancement of the standard traveling salesman problem (TSP). Since the

TSP is a very simple problem it will be described first. The elements which

make the DCTSP more difficult to solve will then be introduced.

The objective of the standard TSP is to have the salesman travel the

minimum distance and still visit all of his clients. The complexity of the TSP

is (n-l)! /2. This means that if the salesman has four clients, there are (4-

I)! /2=3 different routes which he can take. But, if there are eight clients (twice

as many) there are (8-1)! /2=2520 different routes. As one can see the

complexity of the TSP can expand rapidly.

The DCTSP is different from the basic or standard TSP as follows. In

the classic TSP the salesman is visiting a variety of clients, attempting to

minimize the distance traveled in making his tour. In this problem the

salesman has the luxury of assuming that the clients will always be in their

office and available to meet with him. To increase the level of difficulty of

the problem, the clients can establish windows of opportunity for when they

will see the salesman. Now, the salesman must consider client availability in

addition to distance. To increase the difficulty of the problem to an additional

level. Now imagine that each of the clients are themselves salesmen. The

time that they are available to meet with a salesman is the time that they are

in their own office. Scheduling the one salesman would be a difficult enough

task, but the DCTSP attempts to schedule all of the salesman to minimize the

distance traveled by all of the salesmen.

3

From an engineering prospective there are a variety of problems which

can be classified as a TSP. Any problem where one must find the shortest

route passing through every point in a set of points is a TSP. Example

problems range from designing delivery truck routes, to routing cable

through a building, to designing circuit board layouts. The TSP with time

windows problem is a generic description of the school bus scheduling

problem or, the transportation of perishable goods. In the basic TSP distance

is the only factor. The TSP with time windows forces one to consider time

and distance. The salesman must now arrive, or complete the entire journey,

within a prespecified time window. The DCTSP further enhances the

problem in that one is now trying to schedule a group of salesman. Each of

these salesman are trying to meet with each of the other salesman. The

DCTSP, which will be shown to describe a sports league schedule, can also be

used to describe problems such as the design of courier hub and spoke

networks or bus schedules. In these problems the vehicles must coordinate

their arrivals at specified locations to transfer their loads (be it goods or

people).

1.3 Applying Computers to the Scheduling Problem

Computers have traditionally been used to solve mathematically

intensive scheduling problems such as the DCTSP. What computers are not

well suited for is the heuristic knowledge that has been traditionally relied

upon to solve many of these problems. Heuristics are a double-edged sword.

Under conditions where people must make quick but not necessarily optimal

choices heuristics are a cost-effective tool. But, when designing an automated

Decision Support System (DSS), those same heuristics can reduce the cost

4

effectiveness of a system. The assumptions that heuristics are based upon can

limit the long term usefulness of a system. Any change in the system may

negate the heuristic. Also, to encode the heuristic, employees' must explain

their methodology (this insight may not be readily brought forth under

conditions where the DSS is perceived as a threat to job security) (Irgon 1990).

Schedules are dynamic, and unless an automated system can adapt to

the various changes to the environment that the schedule must serve, then

automation is not economically viable. Ideally software needs to be

developed which can be applied to a basic problem type. A robust model

would adapt to an evolving environment and could be transported between

applications. Only basic expert knowledge (an understanding of the problem's

constraints) of the problem would be required to modify the model. Ideally

no significant reprogramming would be required, only a change in basic

system parameters.

1.4 The Genetic Algorithm

A technique which can deal with the non-linear problems which occur

in real-world applications is the Genetic Algorithm (GA). The GA was

developed by John Holland at the University of Michigan in the late 60s and

early 70s (Holland 1992). The algorithm is modeled after the process of

natural selection found in successful biological systems (survival of those best

adapted to the surrounding environment).

An explicit explanation of the GA and an example problem can be

found in Appendix A. In general the GA evolves a variety of solutions until

5

an optimal solution is found. This is achieved by encoding the problem, or

model of the problem, as a chromosome. This chromosome, which is often a

binary string representation, is then mated with other chromosomes.

Through reproduction and mutation new, and hopefully better,

chromosomes are generated. Over time, the chromosomes converge towards

the optimal solution.

Most algorithms which solve non-linear problems are limited in their

scope, but the adaptive nature of the GA allows it to efficiently solve many

types of non-linear (and linear) problems. The robust nature of the GA

makes it an excellent candidate for solving the DCTSP.

The GA's greatest attribute is its flexibility. It is applicable to a variety

of problems and is easily modified. These factors make it a good alternative

to solve the DCTSP.

This is not to say that the GA is the perfect algorithm. It does have its

share of limitations, but in general its flexibility overcomes most potential

problems. Like other analytical methods the GA requires a mathematical

model of the problem. But, unlike other algorithms and Expert Systems,

maintenance is not a problem because it can be implemented in a variety of

software languages, and since the basic algorithm is easily understood, in­

house Information Systems staff should be easily able to maintain the code.

Verification that the solution is optimal is not possible for most real-world

solutions because the GA is a probabilistic system. There are no guarantees

that a global optimum is reached. But, since the algorithm is mathematically

founded (Holland 1992a), there is assurance the solution is at least a local

6

optimum, and that it is the best solution found to date.

The GA's ability to search several regions of the solution space

simultaneously makes it unique among other non-linear algorithms. The

existence of a combinatorial explosion can be exploited, instead of acting as a

barrier which is usually the case (Michalewicz 1992). This characteristic

makes GAs a candidate solution method for many classical problems found

in Operations Research which have traditionally been solved in the field

using heuristic methods: the doubly constrained traveling salesman

problem, the traveling salesman problem, facility location or (minimax and

maximin problems where one attempts to minimize the maximum distance

anyone person must travel, or maximize the minimum distance a person

must travel), vehicle routing, and scheduling. These problems all share the

common trait that as they increase in size, they become increasingly difficult

(if not impossible) to solve analytically.

The scheduling of a professional sports league can easily be modeled as

a DCTSP. In any league there is a collection of teams (salesmen) which must

visit a specific set of teams (clients) a predefined number of times. To further

complicate the scheduling process teams are only available for short windows

of opportunity. The prime objective of this problem is to minimize the

league's traveling costs. Creating a mathematical model to solve this

problem is a difficult task. But, since most professional sports leagues have a

continuous ebb and flow of new teams and new locations, these changes

further complicate the modeling process. The robust nature of the GA makes

it well suited to solve this very complex and continuously evolving problem.

The ease of modeling the league schedule as a DCTSP was not the only

reason the NHL schedule was selected as the testing ground for the GA.

Designing a test problem which is truly representative of a real-world

problem is a difficult task. Since the base data used to generate the NHL

schedule was readily available it was felt that a real problem would be a better

test of the GA's ability than a model based on conjecture and the researcher's

implicit biases. Also, because a known solution exists, the GA's performance

could be measured against a reliable benchmark.

1.5 Objectives

The objective of this thesis is to explore the GA's ability to solve large

scale scheduling problems. The model selected is the National Hockey

League's (NHL) 1992-1993 regular season playing schedule.

1.6 Scope

The scope of this thesis will be restricted to the design and

development of a Genetic Algorithm which can be applied by the NHL to

create their playing schedule. The software will be designed using a relatively

available software language (ANSI-C) so that it will work on a personal

computer. Demonstrating that the GA can solve the NHL scheduling

problem will imply that it will be useful relative to a number of similarly

complex scheduling problems for which analytical solution methods have

not as yet been developed.

1.7 Methodology

The methodology that will be followed to achieve the objectives of this

8

thesis is as follows:

1) Demonstrate the robustness of the GA by solving a variety of

increasingly difficult OR problems.

2) Introduce various GA modeling techniques to evaluate their

potential application in solving the NHL schedule.

3) Apply the Genetic Algorithm to a simplified model of the NHL

schedule (six teams and a shortened schedule) using distance as

the only factor in the objective function.

4) Expand the model to full scale (twenty-four teams and an eighty­
two game schedule) using distance as the only factor in the

objective function.

5) Expand the objective function to include additional league
constraints such as uniform distribution of games, restricting the

length of time a team is on the road, and making the last weeks of

play consist primarily of inter-division play.

6) Evaluate the schedule the GA generates in comparison to the

schedule completed manually by the NHL.

1.8 Layout Of The Thesis

To meet the objectives this thesis has been divided into five sections:

1. Introduction

2. Investigating the GA's Robustness

3. Applying the GA to a Real World Problem

4. The GA and Large Scale Problems

5. Discussion of Results, Conclusions and

Recommendations.

9

The first chapter serves as an overview of the importance and

complexity of the scheduling problem. The general concepts of the GA are

also introduced, as is the reasoning for attacking the scheduling problem with

the GA.

The second chapter contains applications of the GA to various classes

of problems in Operations Research: linear programming, Integer-linear

programming, job scheduling problem, the traveling salesman problem, and

finally, the transportation problem.

The third chapter examines a real world (and also a large scale)

scheduling application; the NHL's 1992-1993 playing schedule. The first topic

covered in this chapter is a discussion of the complexity issues involved with

creating the NHL schedule. This is followed by a complete description of the

modeling process. The third part of this chapter is a discussion of the GA's

results.

The fourth chapter expands upon the discussion of the GA's ability to

solve other large scale, real-world problems. This chapter includes a review

of the feasibility and limitations of developing a large scale GA.

The fifth chapter summarizes the work done in this thesis.

Conclusions are made, and some possible extensions for further research are

put forth.

10

2. INVESTIGATING THE GENETIC ALGORITHM'S ROBUSTNESS

The primary goal of this chapter is to illustrate the GA's ability to solve

a variety of problem types. Why is this important? There exist a variety of

algorithms and heuristics which solve specific problem types extremely well.

But, once they are applied to problems outside of their scope they are basically

useless. Under real-world conditions few problems can be packaged neatly

into the domains of these problem solving techniques. Showing that the GA

can solve a variety of specific problems effectively suggests that it is a

technique which can deal with a broad range of real world problems.

This is not to say that the GA is a panacea to all Management

Science /Operations Research (MS / OR) problems. It will be very evident that

the GA is not well suited to solve certain problems. It will get the job done,

but not with the elegance of a specialized algorithm. The results from these

examples will define the boundaries of usefulness of the GA. Thus, when

faced with a problem similar to one in this chapter, one will know

beforehand the preferred approach to successfully applying the GA to that

problem type.

For the reader not already familiar with the GA, Appendix A gives a

detailed description of the method by way of an example problem.

A secondary goal of this chapter is to introduce a variety of strategies or

techniques which can be used to improve the GA's performance. The most

important strategy when designing the GA is to follow a standardized

methodology. Following a standardized methodology allows the designer to

'see through the noise' in a problem and focus on how best to apply the GA.

11

This methodology will be introduced and strictly followed in this chapter.

Some of the techniques which will be introduced to improve the GA's

performance include the use of multi-character alphabets, matrix

chromosome structure, and self correcting reproduction and mutation

operators.

Finally, the last goal of this chapter is to act as a reference. Most GA

texts refer in passing to the application of GAs to classic MS / OR problems.

Michalewicz's text (1992a) is one of the few which actually goes into any detail

of the GA's application, but his list is incomplete. The eight problems (from

five different problem types) covered in this chapter is still not exhaustive,

but extends the basis that Michalewicz established.

2.1 Linear Programming

There are two example problems in this category: the Giapetto problem,

and the Dakota problem. Both problems are from Wilson (Wilson 1989).

Linear Programming problems have been studied extensively, and several

exact solution techniques are known. Problems that could be solved using LP

include determining the optimal blend for cattle feed or concrete mix, finding

a lowest cost distribution strategy for a trucking firm, or designing an efficient

production schedule. The form of an LP problem is:

max (or min) z = ctx

subject to Ax = b

(2.1)

(2.2)

Note the objective function (equation 2.1) is linear, hence the name Linear

Programming. A series of constraints (equation 2.2) define the combination

12

of parameters which constitute a valid solution. From a mathematical

perspective, the constraints define (or restrict) the solution space.

Traditional techniques to solve LP problems are well known, well

understood, and very efficient. Any GA research which has been completed

in this area has focused on techniques to reduce the GA search space

(Michalewicz 1992a). The techniques used in the LP examples to follow do

not follow this research direction. The methods which will be introduced are

ones which can be built upon to solve the more difficult non-linear problems

to follow.

2.1.1 The Giapetto Problem

The Giapetto problem is a simple LP problem. It is included as an

introduction to the LP problem and to introduce the first variation on the

classic binary representation scheme of the GA.

This problem is a production problem. The company, Giapetto's

Woodcarving Inc., manufactures toy soldiers and trains. The production of

each toy requires different amounts of finishing labour and carpentry labour.

The profit margin on each toy is also different. The demand of toy soldiers is

known to be limited to forty in one week. Giapetto wishes to maximize his

profits. Below, is a matrix of the pertinent values.

13

Table 2.1 Production Parameters for the Giapetto Problem

Soldiers Trains

Available

Resources

Profits / unit

Finishing Labour Costs

Carpentry Labour Costs

3

2

1

2

1

1

100

80

The values in the matrix can be used to develop the following model.

Maximize z =

xl + X2

Subject to 2XI + X2 s 100 (Finishing Constraint) (2.3)

Xl + X2 $ 80 (Carpentry Constraint) (2.4)

Xl s 40 (Soldier Demand Constraint) (2.5)

Where Xl is the number of soldiers produced, and X2 is the number of

trains produced.

The optimal solution is xI=20, x2=60, for a profit of 180 (Giapetto should

produce 20 soldiers and 60 trains). Figure 2.1 contains the graphical

interpretation of the solution space (the shaded area) defined by the

constraints. The point representing the optimal value is circled.

Now that the problem is defined, the next step is to design the GA. The

first stage in designing a GA is to determine a representation scheme. In the

example in Appendix A the chromosome represented a single variable. This

problem requires the chromosome to represent two variables. This is

achieved by subdividing the chromosome into two parts, each corresponding

to one variable.

14

x 1<=40

xl+x2<=80

Figure 2.1 Description of the Solution Space for the Giapetto Problem

•••

Figure 2.2

x1 x2

A Schematic of the Allocation of the Chromosome

Structure Between Two Variables

Since the chromosome is divided into two regions, the total length is a

function of the length of the binary number required to represent each

variable.

In reality this problem should be solved as an integer problem

(Giapetto could make 0.75 of a toy soldier, but he would be hard pressed to sell

it for 0.75 of its normal price). To increase this problem's difficulty it shall be

approached with two decimal place precision. By setting Xl to 0, the largest

15

feasible value for X2 is 80. Similarly, the largest feasible value of X2 is 40. To

achieve the desired precision the feasible values become 8000 (80 x 100) and

4000. The calculation used to find the length of the binary number necessary

to represent these values are shown below.

In 4000
= 11.97 � 12 ego 212 -1 = 4095

In2

In8000
= 12.97 � 13 ego 213 -1 = 8191

In2

(2.7)

(2.8)

To represent Xl and X2 in one chromosome, the total chromosome

length must be 25. The search space contains 225, or 33,554,432 points. There

are no restrictions on exploring the search space. Since not all of these points

are valid solutions a penalty function was required to reduce the viability of a

non-valid solution propagating from generation to generation.

Once the representation scheme is designed a fitness measure must be

selected. The obvious metric is the objective function. The traditional

method of measuring a chromosome's fitness is over the range of 0 and 1.

Because the Giapetto problem has a known solution, we can normalize the

objective function by dividing it by the known optimum1. A chromosome

with optimal fitness will have a fitness of 1.

Penalty functions- can be subdivided into three basic groupings:

• total loss, or zero contribution,

1 The value of the objective function is also called the raw fitness, and what we are calling the fitness is

also known as the normalized fitness.

2
Although penalty functions are referred to in published GA research, the 'black-box' or proprietary nature

of most work precludes detailed explanation of their implementations. For the lack of any existing naming

convention, the author has implemented his own.

16

• semi-uniform contribution,
• and, semi-proportional contribution.

Total loss functions result in the loss of all genetic information (Figure

2.3). Chromosomes violating a constraint are given a fitness of zero. This is

the simplest implementation of a penalty function. Since these

chromosomes have no fitness, the likelihood of being selected to reproduce is

negligible.

fez)

z

Figure 2.3 A Graphical Depiction of the Total Loss Penalty Function

Semi-uniform contribution penalty functions (Figure 2.4) maintain a

chromosome's genetic information. Illegal chromosomes (those violating a

constraint) are set equal to some fractional value. Setting the fitness to zero

would result in the 'genetic information' contained in the chromosome to be

lost to subsequent generations. This is fine if the chromosome exceeded all of

the constraints by a large amount, but not if the constraints are only

marginally exceeded. Keeping these chromosomes is especially important

when the population converges near the optimum. If the search space is

being heavily sampled near the optimum, and a significant number of

chromosomes created violate the constraints, then a significant number of

17

chromosomes will not contribute to the next generation. Those

chromosomes that survive will quickly dominate the population, resulting

in a significant loss of genetic diversity. Under this scenario, it may take a

long time for the GA to reach the optimum value because the population

begins to slowly creep towards the optimum. Significant leaps in fitness are

penalized if they overshoot their target. This function has been labeled 'semi­

uniform' because the penalty is not applied to all of the chromosomes

violating the constraints. In some cases, some of the chromosomes may have

a normalized fitness that is less than the arbitrary penalty. In these cases, the

chromosome is assigned the smaller of the two values. This prevents very

weak chromosomes from increasing their fitness due to a violation.

Implementing this semi-uniform penalty function is slightly more difficult

than implementing the total loss function. The difficulty is in assessing the

size of the penalty. If it is too small, undesirable chromosomes are selected to

reproduce. If the penalty is too large the chromosome is never selected.

fez)

z

Figure 2.4 A Graphical Depiction of the Semi-uniform Penalty Function

A semi-proportional penalty function (illustrated in Figure 2.5) can be

implemented one of three ways:

• as a function of the number of penalties violated

18

• as a function of which constraints were violated

• as a combination of the number of penalties and which constraints

were violated

This penalty function is the most complicated to model, but it is often the

most efficient. The first implementation is based on the assumption that the

number of constraints violated are inversely proportional to the

chromosome's fitness. The more constraints that are violated, the smaller

the fitness value. Ideally, the fitness should be scaled to the optimum, but in

most real problems the optimum is not known, preventing any kind of

accurate (or proportional) scaling from occurring. A more involved

implementation is applicable when the constraints can be prioritized. For

example, if constraint A is twice as important as constraint B, then any

violation of constraint A should be penalized twice as much as a violation of

constraint B. Again, the prefix 'semi' is used to denote that the penalty is

assigned only if the normalized fitness is greater than the penalty fitness.

fez)

z

Figure 2.5 A Graphical Depiction of the Semi-Proportional Penalty
Function

For the Giapetto Problem a semi-uniform penalty function was

implemented. The presence of the constraints (Ax=b) prevent the

chromosomes from having a fitness larger than 1. Any chromosome which

19

exceeds a constraint is given a fitness of 0.001.

With the fitness measure determined, the critical parameters must be

set. The critical parameters in the GA are population size and the number of

generations that the GA evolves. In general the population size should be as

large as possible. It was found that this problem was simple enough that

populations of 100 or more rapidly solved the problem. Reducing the

population size to twenty provided enough of a challenge to make the

problem interesting.

Initially, there is no way of determining the number of generations

required to solve the problem. There are three methods used to determine

the termination criteria

• set the number of generations equal to some arbitrary high number

(WOO, say)
• to terminate when the solution comes within a specified percentage

of the solution

• if some desired performance level is reached or if a specified time

limit was reached.

For the Giapetto problem, the GA was set to run until it had evolved 120

generations.

Standard genetic operators (crossover and mutation) were

implemented because a binary representation was chosen (as described in

Appendix A). The crossover rate is usually arbitrarily set above 0.5. After

performing some initial tests the crossover rate was set to 0.7. The mutation

rate is usually selected to produce at least one mutation in each chromosome

(for this chromosome with a length of 25, 1/25 = 0.04) (Koza 1993, Goldberg

1989). That rate was found to be too disruptive as the GA approached the

20

optimum, so it was reduced to 0.033.

High mutation rates are often beneficial in the early stages of the GA.

This is because it allows the GA to sample a wide variety of regions

simultaneously, but at the same time converge towards the optimum

solution through reproduction. But, as the chromosomes become more

uniform in structure (and thus are all generally near the optimum solution)

the mutation operator which aided in bringing these chromosomes towards a

unifying goal becomes a disruptive force. In other words, if a chromosome is

weak relative to the optimal solution, mutation is usually quite beneficial.

But, if the chromosome is near optimal then it can weaken the chromosome.

Table 2.2 Genetic Algorithm Parameters for the Giapetto Problem

Crossover Rate 0.7

Mutation Rate 0.033

Population size 20

Chromosome Length 25

Maximum Number of Generations 120

Normalizing Value 180

The initial population was generated probabilistically (similar to

flipping a coin 20 x 25 = 500 times).

All problems in this chapter, unless otherwise noted, were run on an

Intel based 33 MHz-386 processor. The software was written following ANSI­

C based conventions and was compiled using DOS and Windows versions of

the Borland C compiler (Version 3.1). Although the DOS version of the

software ran up to twice as' fast as the Windows version, access to the DOS

21

compiler was severely limited so speed was compromised for the sake of

convenience. It should also be noted that the random number generator used

for all problems in this research was the standard random number generator

supplied with the compiler on that platform. Random number generator

seeds ranged from 1 - 500. Statistical analysis was not performed on the GA

results, but there did not appear to be any correlation to how fast (the number

of generations the GA took to solve the problem) the GA solved the problem

relative to the seed's value.

1.00

0.95

I/)

0.90I/)

ell

C

.= 0.85
L&-

0.80

0.75

0 20 40 60 80 100 120

Generation

Figure 2.6 A Graph of the Best Chromosome Fitness in Each

Generation of a GA Run

The optimal solution of 1.0 was not found, but the best individual in

generation 98 had a fitness of 0.9992 (xl=19.88,X2=60.11). It is not surprising

that the exact solution was not found considering that of the approximately

34(106) points in the search space, only one corresponds to the exact answer.

But, for all intents and purposes, the solution was found.

22

2.1.2 The Dakota Problem.

The Dakota Problem is also an LP problem. It is introduced for the

following reasons:

• the problem contains three variables (which increases the

complexity of the problem)
• the form of the objective function challenges the GA more than the

Giapetto problem
• since the GA again failed to find the exact solution, this appears to

be a good time to introduce a reliability calculation developed for

the GA

Before the problem can be dissected, it must be introduced. The Dakota

Furniture Company manufactures three product lines: desks, tables, and

chairs. The resources required for these products are lumber and labour

(finishing and carpentry). The resources required for each product are shown

in Table 2.3, and the available resources and the revenue from each product

are in Tables 2.4 and 2.5 respectively.

Table 2.3 Resources Required to Produce Product lines

Resource Desk Table Chair

Lumber (in board-feet)

Finishing hours

Carpentry hours

8

4

2

6

2

1.5

1

1.5

0.5

Table 2.4 Revenues From Each Product Line

Desk Table Chair

Revenue/Unit $60 $30 $20

23

Table 2.5 Resources Available to the Dakota Furniture Company

Resources Available

Lumber (in board-feet)

Finishing hours

Carpentry hours

48

20

8

The owner's objective is to maximize the company's revenues. The LP

model is formulated as below:

Maximize z = 60XI + 30X2 + 20X3

Subject to 8XI + 6X2 + X3 s 48 (Lumber Constraint)

4XI + 2X2 + 1.5x3 s 20 (Finishing Constraint)

2XI + 1.5x2 + 0.5X3 s 8 (Carpentry Constraint)

(2.3)

(2.4)

(2.5)

Where xj is the number of desks produced, X2 is the number of tables

produced, and X3 the number of chairs produced.

The optimal solution is xI=2, X2=O, x3=8, for a total revenue of 280.

The problem is defined, so now the GA can be designed. A binary

representation scheme will meet the needs of this problem. The

chromosome is divided into three groupings, each corresponding to one of

the three variables. As in the Giapetto problem, to calculate the length of the

binary string representing each variable, the upper bound of each variable is

required. Based on the constraints the upper bounds for xj, x2, and X3 are 4,

5.33, and 13.33. To be able to calculate to two decimal place precision the

chromosome length required is 9+10+11=30. Since these are upperbound

values, and knowing the optimal values using traditional methods, the

lengths were reduced to 9+9+10=28 genes long. The resulting search space

24

was 228=268,435,456 points, (as compared to the original length of 230 which is

approximately 1 billion points). Since all of the points are accessible by the

GA, and not all of them are valid solutions, a penalty function is required.

As in the previous example, the semi-uniform penalty function was

implemented for this problem. The objective function divided by the known

optimal value was used as the measure of merit. Any chromosome violating

a constraint was given a fitness of 0.001.

A population size of 100 was selected. As in the Giapetto Problem, the

population was sized for illustrative purposes and not to generate a rapid

solution. The number of generations that the GA should evolve was set at

300. It was found that after 100 generations the GA did not appear to show

any improvement (consequently Figure 2.7 only depicts generations one to

100). The crossover rate was 0.7, and the mutation rate was 0.033. The initial

population was selected probabilistically. Table 2.6 contains a summary of the

parameters.

Table 2.6 Genetic Algorithm Parameters for the Dakota Problem

Crossover Rate 0.7

Mutation Rate 0.033

Population size 100

Chromosome Length 28

Maximum Number of Generations 300

Normalizing Value 280

The DOS version took approximately 150 seconds to solve this

problem, the Windows version took 280 seconds.

25

The chromosome which evolved the highest fitness had a fitness of

0.9961 (xl=1.89, x2=0.09, x3=8.14, z=278.9) and appeared in generation 58.

The explanation for the lack of convergence is based on two properties

of the problem. One is the design of the chromosome structure, particularly

the use of precision to the hundredths. This problem is only practical with an

integer solution. Solving the problem for an integer solution would have

required a length of eleven. This is a search space of only 2048 points,

insignificantly easy for the GA. The second, and more intrinsic problem is

that the shape of the hyperplane representing the search space is relatively flat

(there is a minimal amount of differentiation amongst the points that are

near optimal and the optimal value). This lack of clear differentiation results

in the GA taking a random walk in the neighbourhood of the optimal value.

The best way to deal with a search space of this nature is to change the fitness

function to a polynomial. This amplifies the fitness of the optimal value

relative to other solutions.

Since the GA is a probabilistic method there is no guarantee of finding

the best solution. The GA is best suited to find an approximate solution

quickly. The time required to find a solution is not fixed, but through

minimal experience, one can estimate how long it will take a GA to converge

given the population size and chromosome length. In situations where a GA

must be relied upon to repeatedly solve the same problem (but with ever­

changing parameters), an estimation of the optimal number of generations

required to converge can be calculated (Koza 1992).

26

1.00

0.95

C/)

C/)

CD

C
-

0.85
u,

0.80

0.75

0 20 40 60 80 100

Generation

Figure 2.7 A Graph of the Best Chromosome Fitness in Each Generation of

a GA Run

To make this calculation a large number of GA trials must be

completed. For the Dakota problem, the GA was instructed to run until the

solution came within one percent of optimum, or one thousand generations

had evolved. Based on three hundred runs, a frequency distribution of the

number of generations required to solve the problem was created. This in

turn was converted to a cumulative probability distribution. The calculation

below derives a predictive model for the number of required trials for a GA to

find a solution within a given probability.

P(M,i) ==

I-P(M,i) =

[l-P(M,i))n ==

l-[l-P(M,i)]n ==

z == the certainty level that a solution is found

(if z=0.99 then there is 1 chance in 100 no

solution is found)

probability of finding a solution by i

generations with a population size of M

probability of not finding a solution

probability of not finding a solution after

running the GA for i generations, n times

probability of finding at least one solution after

running the GA for i generations, n times

27

Now, setting the probability of finding at least one solution equal to the

desired certainty level and solving for n (n being the number of times the GA

would have to be run to find a solution given a population size of M, and

only evolving i generations).

z=I-[I-p(M,i)r

l-z=[I-P(M,i)f

(2.13)

(2.14)

r
In(l- z)

1n =

In[l- P(M,i)]
(2.15)

From the number of runs required, one can find the number of

individuals processed (the population size multiplied by the number of

generations multiplied by the number of runs) to find the solution within the

required level of certainty. Graphing this value against the number of

generations clearly points out the most efficient number of generations that

the GA should evolve. Table 2.7 and Figure 2.8 illustrate this point. Note

that since P(M, i) is defined as the probability of finding a solution by i

generations with a population size M, this is the same as the cumulative

probability.

Figure 2.8 superimposes two graphs. The white squares show the

cumulative probability of successfully solving the problem given the GA

evolves a specified number of generations each run. For example, if the GA

runs for 200 generations, then there is a 77% chance it will find the solution

in one run). This is, of course, based on the 300 sample runs, where 77% of all

runs solved the Dakota Problem within 200 generations. Based on equation

2.15 the necessary number of iterations for 99% certainty is 3.13 or 4

repetitions. Thus, after running this problem four times, for 200 generations

28

you would have processed 201 generations x 100 chromosomes / generations x

4 runs or 80,400 chromosomes. Figure 2.8 illustrates that for the Dakota

Problem it was most efficient to run it six times for only 80 generations (48,600

chromosomes processed).

Table 2.7 Summary of Results for 300 Runs of the Dakota Problem

Cumulative Required Individuals

Generation Count Probability Probability # of Runs Processed

20 50 0.167 17% 25.26 54,600

40 50 0.167 33% 11.36 49,200

60 34 0.113 45% 7.78 48,800

80 28 0.093 54% 5.93 48,600

100 11 0.037 58% 5.36 60,600

120 16 0.053 63% 4.63 60,500

140 12 0.040 67% 4.15 70,500

160 11 0.037 71% 3.75 64,400

180 12 0.040 75% 3.35 72,400

200 7 0.023 77% 3.13 80,400

250 18 0.060 83% 2.60 75,300

300 10 0.033 86% 2.31 90,300

350 10 0.033 90% 2.03 105,300

400 12 0.040 94% 1.67 80,200

450 9 0.030 97% 1.35 90,200

500 1 0.003 97% 1.31 100,200

600 1 0.003 97% 1.27 120,200

700 2 0.007 98% 1.18 140,200

800 2 0.007 99% 1.07 160,200

900 4 0.013 100% 1.00 90,100

The key point being illustrated by Figure 2.8 is that it is not always

better to allow the GA to run endlessly until some solution is found There is

a cut-off point for all problems. If the GA does not find a solution by that

generation, then it should be restarted with a new initial population.

Equation 2.15 is the tool which can be used to estimate the computational

effort required to solve a problem. From a practical perspective this

calculation is only effective if one has the opportunity to solve a sample

29

problem (under repeated trials) which is quite similar to the actual problem to

be solved.

-

o

>­

.�

.c

CCI en
.c

en

� CI)

Q. u

u

CI) :::J

> en

�

..!!!
:::J

E
:::J

o

o

180,000

160,000

140,000 en

CI)

E

120,000
0
en

0

100,000
E-o
o CI)
...

en
.c

en
o CI)

80,000 _
u

o �
... Q.

60,000
CI)

.c

E
:::J

40,000
z

20,000

0

200 400 600 800 1000

Generation

--.-- Chromosomes Processed---0--Cumulative Probability

Figure 2.8 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves (Dakota

Problem)

2.2 Integer Programming

Integer Programming (IP) problems are best described as LP problems

where the solution must be integer. Most IP problems are solved as a

variation of LP problems using a branch and bound technique. Integer

Programming is used in situations where an exact integer solution is

required. All of the examples discussed for LP also fall within this domain..

30

Other IP problems include selecting a crew roster for an airline schedule,

vehicle routing, and facility location. A special subset of IP that can be easily

modeled with the binary chromosome of the GA is 0-1 programming.

The GA has been applied to the IP problems generally classified as set

covering (Beasley and Chu, 1994) and set partitioning. (Chu and Beasley,

1995). The methods used in these two papers are significantly more

complicated than will be presented in this section, because the researchers

were attempting to solve a complex problem and not illustrate basic concepts

as is the case here.

The IP section of this chapter will introduce several more modeling

techniques for the GA. The first topic to be introduced will be how to deal

with a minimization problem. The previous two examples dealt with

maximizing profits and revenues. The problem in this section (from Wilson

1989) deals with minimizing cost. Also, we will examine how well the GA

handles the discontinuous search space of an integer problem. With the

previous problems, the search space was continuous because it described a

'floating-point' world. This is not the case in IP. And finally, it will be shown

that the GA's performance will be relatively poor using the methods

introduced so far. A new methodology, chromosome repair, will be

introduced and its effectiveness will be measured.

2.2.1 The Nickles Problem

This IP problem can be further classified as a fixed-charge problem.

Fixed-charge problems are characterized by the fact that there is a cost

associated with the production of some good, regardless of the quantity of that

31

good being produced. In this problem, the]. C. Nickles company receives

credit card payments from four regions of the U.S. (West, Midwest, East, and

South). The company can place processing centres in four different cities (Los

Angeles, Chicago, New York, and Atlanta). The company loses daily interest

for each day cheques are in the mailr so it wants. to reduce the amount of time

the cheques spend in the mail. But, there is a fixed cost of operating each

processing centre. Thus, J. C. Nickles must determine how many processing

centres it must open, and where it should locate them.

The objective function is shown below. Each Xij
will equal either a 0 or

a 1 (hence the name 0-1 programming). If region i sends its payments to city j

then Xij will equal I, (0 otherwise). Each Yj
will equal 1 if a processing centre is

opened in city j, (0 otherwise).

The coefficients represent the associated costs. The payment coefficient

(e.g. 28 XII) is the cost associated with the delay when region i sends its

payment to city j. Similarly, the coefficient to the y-variable is the cost

associated with opening a processing centre in city j.

Minimize z = 28xn + 84x12 + 112x13 + 112x14

+ 60X21 + 20X22 + SOX23 + SOX24

+ 96x31 + 60X32 + 24x33 + 60X34

+ 64'41 + 40X42 + 40X43 + 16x44
+ SOn + SOY2 + SOY3 + SOY4 (2.16)

There are two types of constraints that must be modeled. The first

constraint type (type 1) makes sure that each region sends its payments to a

single city. The second constraint type (type 2) makes sure that if a region

sends its payments to a city, then that city must have a processing centre.

32

Below are the type 1 constraints.

xll + X12 + X13 + X14
= 1 (West region constraint) (2.17)

x21 + X22 + X23 + X24
= 1 (Midwest region constraint) (2.18)

X31 + X32 + X33 + X34
= 1 (East region constraint) (2.19)

X41 + x42 + X43 + X44
= 1 (South region constraint) (2.20)

The type 2 constraints are shown below.

Xll + X12 + X13 + X14 s 4Yl (Los Angeles constraint) (2.21)

X21 + X22 + X23 + X24 s 4Y2 (Chicago constraint) (2.22)

X31 + X32 + X33 + X34 s 4Y3 (New York constraint) (2.23)

X41 + X42 + X43 + X44 s 4Y4 (Atlanta constraint) (2.24)

The optimal solution to this problem is z=242, where Yl=I, Y3 =1, xll;;::I, x23=I,

X33=I, X43=1 (processing centres would be in Los Angeles and New York, with

the residents in the West sending their payments to Los Angeles, and the rest

of the country to New York).

As previously stated, the first step in designing the GA is to establish

the chromosome structure. Since each of the variable types (Xij and Yj) must

equal 0 or 1, it is only natural to represent each variable as a binary gene in the

chromosome. The resulting structure is a binary chromosome with a length

of twenty. The resulting search space is 220 or approximately one million

points. Since not all of the points are valid solutions, a penalty function

(which will be discussed later) was necessary.

The fitness measure for this problem differs from the previous

problems because they were maximization problems, and this is a

minimization problem. The GA will normally only work on a maximization

33

problem. To convert a minimization problem to maximization, subtract the

objective function from some constant. As the objective function gets

smaller, the difference between it and the constant gets larger. The trick is to

find a constant which is large enough that valid solutions do not create a

negative fitness. This constant will also be used as the normalizing value.

Unless the optimum (minimum) value is 0, the most fit individual will not

have a normalized fitness of 1.

The upperbound, or highest cost scenario would have each region send

their payments to the city which takes the longest to receive their mail

(highest cost in terms of delay) and there would be a processing centre open in

each city. Under this scenario we have the following:

Table 2.8 Highest Costs Associated with Sending Mail Between

Each Region and City

Region City Cost

1

2

3

4

30r4

1

1

1

112

60

96

64

Total Cost = 332

Adding this cost to the cost of having four processing centres (200) gives a

total cost of 532. This is not a feasible arrangement since the payments are

only being sent to two cities, and a cost has been allocated as if four processing

centres exist. But, it is best to select a large value when selecting an

upperbound for a minimization problem because the standard GA algorithm

will not work with a mix of positive and negative fitnesses (see Appendix B).

34

For this problem the GA was designed to terminate on the condition

that it had evolved 200 generations or found a solution less than or equal to

250 (which is within three percent of the optimal solution).

The standard genetic operators were used for this problem. Illegal

chromosome structures could evolve, so a penalty function was

implemented. Each chromosome that represented an illegal condition (a

region sent their cheques to more than one city, for example) was given a

penalty fitness of 0.01. The fitness of the optimum chromosome (242) was

0.5451, and the fitness of a chromosome which would just terminate a run

(250) would be 0.5301. Thus, the penalty fitness was approximately two

percent of an optimal chromosome. At first glance this may appear high, but

this is because the valid search space was quite sparse and illegal

chromosomes were easily created. Also, if the penalized chromosome fitness

was too small relative to the legal chromosomes, then the information in

these chromosomes would be lost.

The probability of mutation was selected to produce one mutation in

each chromosome (1/20=0.05). The probability of crossover (0.8) was selected

after several initial trials. The trials indicated that a higher than normal

crossover rate performed better. This was due to the high likelihood of

generating illegal chromosomes. Initially it is difficult for the GA to evolve

legal chromosomes. The high crossover rate 'stirs up' the chromosome

population until a few legal chromosomes are created. The fitness of the

initial legal chromosomes was approximately ten to twenty times that of the

illegal ones. The legal chromosomes quickly dominated the next generation,

and the GA had a starting point from which to evolve. The population size

35

selected (400 chromosomes) was quite large relative to the previous problems

(the Dakota problem had a population size to search space ratio of 100:27(106),

for this problem the ratio is 400:1(106)). This was necessary because the

smaller population sizes were not conducive to the GA quickly evolving legal

chromosomes. Consequently, the GA spent crucial early time steps mating

weak chromosomes in an attempt to create legal ones. A large population

size reduced the 'floundering' to less than five generations. The maximum

number of generations each GA was to evolve for this problem was selected

after observing that if the GA had not already found a solution by 150

generations, it was unlikely to find a solution.

Table 2.9 Genetic Algorithm Parameters for the J. C. Nickles

Problem

Crossover Rate 0.8

Mutation Rate 0.05

Population size 400

Chromosome Length 20

Maximum Number of Generations 200

Normalizing Value 532

Running the J. C. Nickles problem under a Windows compiled version

of the software on three computers (each 33 MHz-386 Intel based machines),

for 100 repetitions on each machine took 6.25, 5.5, and 6 hours respectively

(an average of 5.92 hours per 100 repetitions, or 17.75 hours for 300).

The difference in the time each PC to complete 100 cycles can be

attributed the fact that although the three PCs were identically configured,

they did not have the same effective throughput.

36

This section (and all subsequent sections of this chapter) will only use

the graph illustrating the most effective number of generations that the GA

should evolve. This gives a better perspective of the efficacy and efficiency of

the GA. Another benefit of the efficiency diagram is that the large number of

trials required to generate the figure helps alleviate any concern that the

pseudo-random nature of the random number generator is responsible for

the success of the GA.

This graph has the same general shape as the corresponding graph for

the Dakota problem (Figure 2.8). The major difference is that Figure 2.9 is

much more linear (particularly from generation 80 onward). The linearity is

a function of the success (or relative lack of success) the GA had solving the

problem in 80 generations or less. Once the GA had reached 80 generations, if

it had not solved the problem, it was unlikely to do so. The graph depicting

the GA's probability of success only reaches 58%. Based on three hundred

runs, 42% of all attempts to solve this problem with a GA (given the

parameters used to create this figure) will not find a solution in less than 250

generations, no matter how long it searches. If approximately one million

chromosomes were methodically constructed, at least one solution would be

found (400 chromosomes per generations x 2621 generations == 210

chromosomes). But, because of the nature of the GA and the shape of this

solution space, once it converges in a sub-optimal region of the search space,

it is unlikely to leave.

The most useful information (in terms of efficiency) from this figure is

that for the GA to find a solution with 99% certainty it would be most

efficient to evolve 20 generations per cycle, and run the GA fifteen times.

37

Based on the time it took to evolve 300 generations, this would take

approximately 17.75 hours (20 x 15 = 300). Each of the 15 runs could be run

independently (reducing the time required to approximately one hour). It is

this amenability to parallelization that makes the GA such a potentially

powerful tool.

60% 5'00,000

450,000

50%

'0
400,000

CI)

CD

>- 350,000
E

== 40%
0
CI)

:c 0

11:1 CI) 300,000 E"
..0 CI) o

CD

0 CD
... CI)

... .&. CI)

Q. u 30% 250,000 0 CD
U U

CD :::J - 0

> C/)
200,000

0 ._

:;: ._Q.
� 20%

CD

:::J ..0

E 150,000 E
:::J ::s

0
100,000

z

10%

50,000

0% °

° 50 100 150 200

Generation

-0-- Cumulative Probability ---.-- Chromosomes Processed

Figure 2.9 A Graph of the Cumulative Probabilities and Number of

Individuals Processed vs. The Number of Generations a GA

Evolves (1. C. Nickles problem)

2.2.2 The J. C. Nickles Problem with Chromosomes Repair

This is not a new IP problem, but a different approach to the previous

one. The previous implementation was quite inefficient, which ultimately

38

required a large number of repetitions before a solution could be found. The

primary source of inefficiency was the lack of restrictions placed on generating

illegal chromosomes. With the chromosome structure implemented for this

problem, there was little that could be done to prevent 'illegal' chromosomes

from being created. The approach taken was to fix or repair each

chromosome violating a constraint. This removes all illegal chromosomes

from the population.

There are three ways that a chromosome could be illegal. A type 1

constraint (a region can only send its cheques to one city) can be violated two

ways: a region does not send its cheques to any city, or the cheques are sent to

more than one city. Figure 2.10 shows a chromosome segment where

cheques from the West are sent to three cities. Any violation of a type 1

constraint is handled by sending the payments to the lowest cost city.

1011 1111 1 ... +
Figure 2.10 Segment of Chromosome Representing the Destination for the

West Region's cheques (Chicago, New York and Atlanta)

The repair method could have been designed to randomly select one of

the destinations, but a simple heuristic was included (send payment to the

lowest cost city). The heuristic does not necessarily force the solution to the

optimal combination because having four processing centres open with each

region mailing their cheques to the nearest is not the optimum. But, it is the

heuristic with which most people would start.

39

Figure 2.11 Chromosome Segment After Being Repaired

The type 2 constraint (if a city is being sent cheques, the city must have

a processing centre) violation is corrected by forcing the opening of a centre

any time a region mails a cheque to that city. Again, knowledge about the

problem is exploited as part of the repair mechanism.

1110 1010 1 ••• 101110111

l
1110 1010 1 ••• 1+10111

Figure 2.12 Correcting a Type 2 Constraint Violation. The West

Region is sending its cheques to Los Angeles so a processing
centre is opened.

Using these repair mechanisms, the J. C. Nickles problem was re-run

using the parameters shown in Table 2.10.

Table 2.10 Genetic Algorithm Parameters for the J. C. Nickles

Problem

Crossover Rate 0.8

Mutation Rate 0.05

Population size 200

Chromosome Length 20

Maximum Number of Generations 200

Normalizing Value 532

40

Note that the only parameter change was the population size. The

population size was cut in half (from 400 to 200). It was postulated that if the

new method is effective, a reduction in the population size should have

almost no effect on the success rate. An additional benefit of reducing the

population size was that it also reduced the required processing time.

The problem was run on the same equipment as in the previous

example. The run was distributed between the same three pes. The time

required by each was 120 minutes (141 runs), 105 minutes (150 runs), and 80

minutes (100 runs). The total time required was approximately five hours, or

100 minutes per 100 runs (compared to 355 minutes per 100 runs without

chromosome repair).

As can be seen in Figure 2.13, the success rate was 90%. Without repair,

the success rate was only 60%. Even with a smaller population size, the

solution rate was increased by fifty percent. The higher success rate (fewer

runs went the full 200 generations) coupled with the smaller population size

were primary factors in reducing the time required to solve this problem. A

significant number of solutions were generated in the initial population

(Generation 0). Subsequently, the graph shows that when using the repair

method for this problem, it is better to repeatedly generate a random initial

population and not create any offspring. Basically what has happened is that

the heuristic is effective enough (for a problem of this size) for a random walk

to be more efficient than the GA.

41

90% 140,000

80%

120,000

- 70%
0

U)

Q)

>- 100,000 E
.� 60% 0

:.0
U)

0"0
III U)

80,000
E

Q)
.Q

U) 50% 2 U)
0
... Q)

.c U)

e, (J
() Q)

(J (J

Q) :::J 40%
60,000

- 0

> en 0 ...

.

.;:
...

e,

.!
30%

Q)

:::J .Q

E
40,000

E
:::J :::J

()
20%

z

10%
20,000

0% 0

0 50 100 150 200

Generation

--0- Cumulative Probability --.-- Chromosomes Processed

Figure 2.13 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves (J. C.

Nickles Problem with Chromosome Repair)

42

2.3 Job Scheduling

The job scheduling problem is another classic problem. The basic

premise is how can a sequence of jobs to be performed on one machine (each

with a specified starting and finishing time) and be ordered in such a way that

the total delay is minimized. The job scheduling problem will introduce the

use of a semi-proportional penalty function.

The problem used in this section is from a suite of problems used to

test a heuristic developed in the 1970s (Chowdhury 1977). There are 8 jobs

with the following completion times: 1, 2, 8, 9, 10, 12, 13, and 16. Each is

required to start at the same time, but only one piece of equipment is

available to complete the tasks. The objective is to schedule the jobs so that

the standard deviation of each job's delay is minimized (a slight modification

of the classical description of the problem). For example, if there were three

jobs (taking 1, 2, and 8 time steps to complete) and they were performed in

sequence, the total completion time would be 1 +2+8=11, but the delay in

starting the first job is 0, the second job is 1, and 3 for the last job. The

standard deviation of the delay (0.817) would be found, and then the jobs

would be shuffled in search of a smaller standard deviation. A three job

problem is simple since there are only 3!=6 permutations of job sequences.

But, because of the nature of combinatorial problems, a seemingly simple

problem of eight jobs and one machine is surprisingly complex (8!=40,320

different sequences of jobs).

The optimal solution to this problem has a standard deviation of 15.94.

43

The binary structure used previously can be applied to this problem as

well. The largest job number is eight, which can be represented by a binary

string three long. The chromosome would be subdivided into eight regions,

each representing a job number. The total chromosome length would be

8x3=24. The search space contains 224:::16,772,216 points. Not all of the points

are valid, so a penalty function was required. This penalty function will be

described later in this section.

This problem, like the previous, is a minimization problem. In the

previous problem the constant used to convert the minimization problem to

a maximization problem was determined by constraints on the model. This

problem has no constraints, so this is not an option. An upperbound value

could have been used. But, if one could predict an upperbound or worst case

job sequence, then a best case could also be found. This would essentially

eliminate the need for a GA. To alleviate this problem a 'quick and dirty'

approach was used. A constant was arbitrarily selected, and after a few sample

runs, it was found that 100 would work satisfactorily. Thus, the constant was

redefined as 100.

Once the constant was determined, the issue of selecting a penalty

function was addressed. The only illegal structures that can be created in this

problem are chromosomes where job numbers are repeated. This would

mean that not all of the jobs are completed since the chromosome length

prevents any more than eight jobs from being scheduled. In an effort to steer

the GA away from producing incomplete production schedules, a penalty

function implemented. The function penalizes chromosomes proportional

to the number duplicate jobs in the schedule. The penalty fitness function is

44

P al F·
0.2

en ty itness =
-:-------�

(# of duplicate jobs)

An example of job duplication would be a schedule with one job being

repeated six times, or two jobs repeated four times each. Either way, there

would be six duplicates. Table 2.11 contains the various penalty functions for

this problem.

Table 2.11 Fitness Penalties Corresponding to the Number of

Duplicate Jobs

Number of

Duplicates

Penalized

Fitness

1

2

3

4

5

6

7

0.2000

0.1000

0.0667

0.0500

0.0400

0.0333

0.0286

A chromosome with optimal fitness would have a normalized fitness

of (100-15.94)/100=0.86. A chromosome with only one duplicate has a fitness

approximately one quarter of optimal. The constant is sufficiently large that

few (if any) chromosomes improve their fitness when the penalty function is

applied. Thus, this penalty function could be better described as a

proportional fitness function.

The crossover rate for this problem was reduced to the more traditional

level of 0.6. The mutation rate was left at the same value as the previous

problem (0.05). The population size was set at 200, and the maximum

45

number of generations was set to 400. Initial experiments found these values

to be adequate, so they were not changed.

Table 2.12 Genetic Algorithm Parameters for the Job Scheduling Problem

Crossover Rate 0.6

Mutation Rate 0.05

Population size 200

Chromosome Length 24

Maximum Number of Generations 400

Normalizing Value 100

The GA was designed to terminate under two conditions: once the GA

had evolved 400 generations, or, once the raw fitness of a chromosome fell

within the range of 254 and 254.4. It should be noted that for increased

precision the variance, instead of the standard deviation was stored as the raw

fitness. These two values (254 and 254.4) correspond to standard deviations of

15.937 and 15.950 respectively.

The problem was run on PCs configured similarly to those in the

previous example. The run was distributed between four PCs, each

performing 100 runs. The completion times were approximately 9.25, 9.5, 9.5

and 9.4 hours. The total time required was approximately 37.65 hours, or

9.4125 hours per 100 runs. Figure 2.14 depicts the performance curves for this

problem.

The first point that Figure 2.14 illustrates is that the GA was not

particularly efficient. The cumulative probability of success was only sixteen

percent. The low success rate resulted in a significantly high number of

individuals being processed for this problem as compared the previous

46

examples. Considering that a search space of 224 is approximately 17 million

points, processing three million chromosomes is quite inefficient. Also, a

combinatorial search of 8!=40,320 is not computationally complex. In fact, a

methodical, combinatorial search would have found the solution with

approximately one eightieth the effort. The GA appears to have not handled

this problem type well at all. The underlying problem was not the GA, but

the modeling technique. Although the job got done, the binary chromosome

structure did not lend itself to reproducing legal chromosomes from legal

chromosomes using the traditional genetic operators (crossover and

mutation).

16%

14%
0

0

Q)

CJ

CJ 12 %
:;,

(IJ

-

0
10%

>-

.�

.Q
8%CIJ

.Q

0
._

Q.

6%
G)

>

:;;

.s
4%::::I

E
::::I

0

2%

0%

0

3,000,000

2,500,000

o

Q)

E

2,000,000 0

o

o

E"

E :

1,500,000 c3 :
CJ

'0 E
._Q.
Q)

1,000,000 "E
::::I

Z

500,000

100 300200 400

Generation

----.-- Chromosomes Processed-0-- Cumulative Probability

Figure 2.14 Graph of Cumulative Probabilities and Number of

Individuals Processed vs. The Number of Generations a GA

Evolves Gob Scheduling Problem}

47

The next problem, the Traveling Salesman Problem, has a similar form

to this problem. It will be used to introduce a new genetic structure and

genetic operators that will significantly improve the performance of the GA

when applied to problems of this form.

2.4 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the oldest recorded

optimization problems. The problem is quite simple: given a collection of

destinations, in what sequence should they be visited to minimize the

distance traveled? The TSP is a problem that is faced in fields such as:

marketing (designing sales routes), vehicle routing (school buses, milk trucks,

delivery vehicles), communications (cable routing), and computer

engineering (circuit design).

The TSP is included to introduce a new genetic structure and operators.

The source of this structure and the operators is Michalewicz (1992a). The

structure is still an array, but instead of a binary representation, integers are

used (an increase in the alphabet size from {0,1} to {1,2, ...,9,lO}). The example

problem is from Larson and Odoni (1981). The salesman must visit ten cities

and can select anyone of the ten as the origin. This problem is small relative

to those used to challenge leading edge TSP algorithms (which until the 1970s

could not handle any more than 100 cities), but large enough that it cannot be

easily solved by enumerating all possibilities.

The only constraint of the TSP is that each city must be visited. To

solve a TSP, one only needs to know how many cities are to be visited, and

48

the distances between them. Table 2.13 gives the distances between each city.

The matrix is symmetric, so only half is shown.

Table 2.13 Half of the Symmetric Trip Matrix Showing the Distances

Between Each City

From/To 1 2 3 4 5 6 7 8 9 10

1 0 25 43 57 43 61 29 41 48 71

2 0 29 34 43 68 49 66 72 91

3 0 52 72 96 72 81 89 114

4 0 45 71 71 95 99 108

5 0 27 36 65 65 65

6 0 40 66 62 46

7 0 31 31 43

8 0 11 46

9 0 36

10 0

The optimal tour has a length of 331, and consists of the following

sequence:

{1,3,2,4,5,6,10,9,8,7,1 }

The structure is quite simple; an array of 10 numbers, with each

position in the array having the potential to take on any value from 1 to 10.

The search space's size would be 1010 or 10 billion if all of the array positions

could be any value from 1 to 10. But, once a point is visited it can not be

revisited. This reduces the search space to 10!=3,628,800. The search space is

further reduced by the fact that any sequence can be cycled forward or

backward (A BCD = D C B A). This reduces the space by half. The space is

further reduced by the alphabet size (10) since the salesman can start at any

location (A BCD = C DBA). Thus, the actual search space is 10!, but the

number of potential unique solutions is only 10! / (2x10)=181A40.

49

Since this is a minimization problem a normalizing, upper bound

constant is required. Similar to the Job Scheduling Problem, it is difficult to

find an upperbound feasible solution. But what can be found quite easily is

an upperbound infeasible value. This value was found by scanning across

each row in the trip matrix and finding the furthest distance between cities.

The sum of these distances gives the total length for an infeasible tour.

Table 2.14 Summary of the Upperbound Estimate of the Tour Length of a

TSP

From To Length
1 10

2 10

3 10

4 10

5 3

6 3

7 3

8 4

9 4

10 3

71

91

114

108

72

96

72

95

99

114

Total = 932

The GA was designed to terminate once the optimal solution was

found, or after evolving 300 generations.

Crossover is the primary genetic operator. But its form is quite

different than the traditional crossover operator. Mutation was also used, but

it was also implemented quite differently than in previous problems, and

thus its influences are difficult to compare to the traditional model. The

initial population was generated by randomly sorting numbers from 1 to 10

for each chromosome.

50

To explain the crossover method implemented, a 4 city TSP will be

used. The two tours are represented by the two arrays in Figure 2.15.

Parent Tour 1 Parent Tour 2

Figure 2.15 Chromosome and Graphical Representation of Two Parent Tours

The method implemented here does not randomly mix the

chromosomes, but implicitly considers the inherent strength of specific

sequences. This methodology attempts to exploit the similarities between

strong chromosomes, but at the same time attempts to guarantee that tours

are complete. This is done by promoting strong edges (the links between the

cities). The first step is to select a starting city. Working from left to right,

either city 1 or 2 would be chosen. The city with the fewest subsequent

connections is selected as the first city. For example, if City A is only

connected to one other city, and City B is connected to three others, it is better

to choose City A as the starting point. This is because to get to and from City

A, one would have to pass through the only city it is connected to twice. In

other words, it is more difficult to get to City A than City B from the other

cities. Selecting City A first will decrease the likelihood of not being able to

construct a complete tour.

51

Table 2.15 Summary of Available Connections (Linkages)

City Connected To

1 2,4,3

2 1,3,4

3 2,4,1

4 3,1,2

For this example City 1 and City 2 are connected to 3 others. When this

occurs a random selection is made.

III

Figure 2.16 First City in New Tour

The next city will be selected from the list of cities that are connected to

City 1. City 1 is linked to cities 2, 4 and 3. Again the selection of the second

city in the tour is based upon which city has the fewest number of available

connections.

Table 2.16 Connections of Cities Connected to City 1

City Connected To

2 4,3

3 2,4

4 3,2

Since each city is connected to an equal number of cities, a random

selection can be made.

52

1113 1

Figure 2.17 Two Cities in New Tour

City 3 is connected to cities 2, 4 and 1. But since 1 has been sequenced,

only 2 and 4 are available.

Table 2.17 Connections of Cities Connected to City 3

City Connected To

2 4

4 2

Both have the same number of connections so a random pick is made.

Once the third city is selected, the last city is also known. (Thus, for n cities,

there are only n-l degrees of freedom.)

Figure 2.18 A Complete Tour

Figure 2.19 Graphical Representation of Offspring Tour

Note that distance was never a factor when constructing the new tour,

only sequence and availability. This nearly guarantees that tours are always

53

completed (any incomplete tours can be either repaired or the algorithm is

reapplied to the parents until a legal offspring is created). This method is

easily extended to any number of cities. Also note that this version of

crossover has only one offspring. Thus, two crossovers must be performed to

create two offspring. This additional overhead is more than compensated by

the high success rate for creating complete chromosomes (which means no

costly repairs are required).

Mutation is no longer performed as the genes are transferred to the

offspring. If it was, infeasible tours would be created. Instead of performing

mutation at the gene level, it occurs after the offspring are produced.

Mutation is performed by randomly selecting two cities and swapping their

positions.

11 P 13 14 1

111413121

Figure 2.20 Chromosome Representation of Tour Before and After Mutation

Originally, if the probability of mutation was set to 0.1 and the

chromosome was 10 long, the expected number of mutations was one per

chromosome. Now, the length of the chromosome has no bearing on the

expected number of mutations. Mutation will affect a tour one of two ways.

The first effect is that it will change the direction of travel. The other possible

effect is that a linkage between two cities may be created. This new linkage

will change the relative linkage between at least two and at most four cities.

54

In summary, mutation happens less frequently, but when it does occur, it can

make significant changes in the routing.

Before Mutation After Mutation

Figure 2.21 Graphical Representation of Tour Before and After Mutation

A population size of 300 was selected, and the number of generations to

be evolved was set at 300 (or terminate if the optimum of 331 was reached).

To get a large mixing of chromosomes a crossover rate of 0.8 was chosen. The

mutation rate was set to 0.1. Because of the difference between how this

mutation operator functions and how the traditional mutation operator

functions, no accurate comparisons of the magnitude of this quantity can be

made.

Table 2.18 Genetic Algorithm Parameters for the TSP

Crossover Rate 0.8

Mutation Rate 0.1

Population size 300

Chromosome Length 10

Maximum Number of Generations 300

Normalizing Value 932

55

The TSP problem was run on the same Intel based PC's described in

earlier problems. Running the GA under a Windows compiled version of

the software on various pes took a collective 835 minutes for 644 runs, or

approximately 130 minutes per 100 runs.

The shape of the curves in Figure 2.22 follow the expected shape. The

cumulative curve reached the 100% level indicating that all of the runs found

the exact solution. The efficiency curve shows that the optimal number of

generations for a population of 300 is 210 (63,300 individuals processed).

The job scheduling problem (many jobs, one machine) could also have

used a chromosome structure like the one used here for the TSP (Fox and

McMahon 1991). Consider that both are concerned only with the sequence of

events. The only difference is in how distance is measured (time versus

length) and the measure of merit (standard deviation of delay versus distance

traversed).

2.5 Transportation Problem

The transportation problem is the name given to any problem where

the distribution of some good must be allocated between a set of source points

and destination points. The objective of these problems is usually to

minimize distribution costs. Problems of this type include production

(factory to market), power generation (power plant supplying a city / factory),

and human resources (employees and jobs).

The primary objective of this section is to explain and demonstrate the

last and most complex chromosome structure, the matrix. Along with a new

56

chromosome structure, new reproduction and mutation operators will also

be introduced (Michalewicz 1992a).

-

0

>-
-

.c

co

.c In

0 In
... CD
Q. (J

C)

CD
::::s

>
UJ

-

co

::::s

E
::::s

0

o

300,000

250,000
In

CD

E
0

In

200,000
0

E "0
0 CD
...

In
.s::.

0
In

150,000 CD

(J
-

0
0

...

Q.

100,000
...

CD

.c

E
::::s

50,000
Z

0

50 100 150 200 250 300

Generation

--.-- Chromosomes Processed--0--- Cumulative Probability

Figure 2.22 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves (TSP)

The problem that will be used in this section is from Wilson (1989). A

good is supplied from three locations {35 50 40}, and is equal to the total

demand from four locations {45 20 30 30}. The costs of moving the goods

from each supply point to the destination point can be found in Table 2.19.

57

Table 2.19 Cost Matrix Between Source and Destination

Source \ Destination 1 2 3 4

1 8 6 10 9

2 9 12 13 7

3 4 9 16 5

The optimal solution has a minimum transportation cost of z=1020. The

allocation of goods is shown in Table 2.20

Table 2.20 Optimal Allocation of Goods Between Source and Destination

Source \ Destination 1 2 3 4

1 10 25

2 45 5

3 10 30

As previously stated, the chromosome is represented as a matrix, with

each element of the matrix having an integer value. The search space is

bounded by the supply and demand constraints. Since no row can have a

sum larger than the corresponding supply level and no column can have a

total larger than the demand level, the search space is less than infinity, but it

is difficult to estimate its exact size. An approximate upperbound would be

the permutation of each supply and/ or demand constraint taken 3 times.

Upper Bound = max[45P3 x 20P3 x 30P3 x 30P3, 35P4 x 50P4 x 40P4] = 1.523 x 1019 (2.26)

Defining an upperbound constant to find the optimal minimum is

relatively straight forward. The first step was to find the highest supply cost

(multiply the supply value from each node with the highest associated

transportation cost) and the highest destination cost (multiply the total

58

demand by the highest associated transportation cost). These calculations are

shown below.

[35 50 40{� � :� �]
� 1640 (Supply constraints) (2.27)

�] �� � 1620

16 0
30

o (Destination constraints) (2.28)

o

The larger value (1640) represents an infeasible supply allocation (the

demand at destination nodes 1 and 4 are not satisfied). The smaller value

(1620) represents an infeasible demand allocation (Sources 1 and 2 are not

exhausted, and Source 3 is overdrawn). Since 1620 will still be larger than the

feasible highest cost solution the constant was set at 1620. The optimal

chromosome will have a normalized fitness of 0.3704.

A penalty function is not required for this problem because illegal

chromosomes are not produced.

The genetic operators used with this structure are quite interesting.

The operators are designed in such a way that all chromosomes created are

legal. Before the operators are described, the method used to generate an

initial 'legal' population should be discussed. Each matrix is generated from

the upper left corner, from left to right, down to the lower right corner. The

value of the upper left corner of the matrix is a randomly generated number

between 0 and the min(Source I, Destination 1)=min(35,45). This prevents

too many goods (more than can be supplied or received) from being shipped.

59

35

50

40 }

Figure 2.23 First Random Value Placed in Allocation Matrix

The next value in that row is the min(amount not yet supplied from

Source I, the demand at Destination 2)=min(35-20,45).

45 20 30 30

15 :

50.···

40 •.•

Figure 2.24 Allocation of Supply To Next Demand Point

45 5 30 30

Figure 2.25 Allocation of Supply To Remaining Demand Points

This is repeated throughout the row. All of the supply from the source

in that row is distributed. Each row is allocated in this fashion The only

difference is that now each matrix element must equal the min(amount left

to be supplied, amount left to be received).

25 5 30 30

Figure 2.26 Random Allocation of Supply To First Demand Point

60

30 30

Figure 2.27 Allocation of Supply To Remaining Demand Points

The exception is in the last row. The leftmost element is not randomly

generated, but calculated so that the supply and demand constraints are all

met. If at the end of generating the matrix all of the supply and demand

constraints are not met, the allocation matrix is discarded and a new one is

generated.

20 0 10 30

o

o <:

40

Figure 2.28 Allocation of Supply To Remaining Demand Points

The actual genetic operators are quite elegant in their effectiveness.

The crossover operator is actually an averaging or interpolating operator.

The procedure is best described by example. The initial parent matrices are

shown in Figure 2.29.

20 5 5 5

10 10 25 5

15 5 0 20

5 10 15 5

30 10 0 10

10 0 15 15

Parent Allocation

Matrix 1

Parent Allocation

Matrix 2

Figure 2.29 Two Parent Matrices Selected for Crossover

61

The first step is to create a new matrix which consists of the sum of

each element divided by two and rounded down.

12 7 10 5

20 10 12 7

12 2 7 17

Rounded Average Matrix

Figure 2.30 The Rounded Average Matrix

The next step is to create a matrix that contains the remainder from the

previous operation.

I � I � I � I � I
Remainder Matrix

Figure 2.31 Matrix Containing Remainders From the Rounded

Average Matrix

Each parent allocation matrix is feasible, the corresponding rows and

columns add up to the same values. Consequently, the Remainder Matrix

will always have an even number of Is in each row and each column. The Is

in the Remainder Matrix are split evenly to create two new matrices, each

with a row sum and column sum which is half of the row and column

summations of the remainder matrix. (This is done by finding polygons

defined by the Is and allocating odd and even corners of the polygons to the

two new matrices.)

62

I �I �I �I �I
Half Remainder

Matrix 1

Half Remainder

Matrix 2

Figure 2.32 The Half Remainder Matrices

The new matrices (offspring) are created by adding the Rounded

Average matrix and the Half Remainder matrix.

13 7 10 5

20 10 13 7

12 3 7 18

12 8 10 5

20 10 12 8

13 2 8 17

Child Allocation

Matrix 1

Child Allocation

Matrix 2

Figure 2.33 The Offspring Matrices

Note that the two offspring matrices meet all of the supply and

demand constraints.

The mutation operator is also quite simple. With the transportation

matrix, changing one element affects three others. This is because changing

an element means that the supply and demand for that element of the

allocation matrix will not be met unless another element in that row (and

one from that column) is increased. The fourth element changed is the

element which shares the intersection of the row and column of the two

elements that were also changed. The mutation operator requires four matrix

elements to be selected. This is done by randomly selecting two rows and two

63

columns. The intersection of these two sets (rows and columns) are the four

necessary elements (the elements not shaded in Figure 2.34).

Child Allocation Matrix 1

Figure 2.34 An Offspring Matrix with Elements Selected for Mutation

These four points create their own 2x2 matrix. The upper left element

is a random number between 0 and the existing value.

Figure 2.35 A Randomly Generated Element of the Mutation Matrix

Since the sum of the rows and columns of this sub-matrix can not

change, (or the original Child Allocation matrix will become invalid) the

elements sharing the row and column change.

Figure 2.36 Updating the Rowand Column Elements

This in turn requires the fourth element to change. These updated values are

then placed in the elements of the original matrix, resulting in a mutated, but

legal matrix. Thus, although there are four elements, there is only one degree

of freedom for this matrix.

64

4 8

13 4

Figure 2.37 Completed Mutation Matrix

18 4 10 8

20 13 18 4

12 3 7 18

Child Allocation Matrix 1

Figure 2.38 Offspring Matrix After Mutation is Completed

The control parameters of crossover and mutation were determined

experimentally. The data structure and the basic algorithm for this problem

type were described by Michalewicz (1992a) but he did not mention any

parametric values. After reviewing notes from the documentation of his

source code Genetic2 (Michalewicz 1992b) it was found that the recommended

rates were one crossover per forty chromosomes per generation, and a

relatively high mutation rate of ten percent. Consequently the standard

values of 0.8 (crossover rate) and 0.05 (mutation rate) gave very poor results.

After experimenting with Michalewicz's values, the rates were set at 0.02

(crossover) and 0.2 (mutation). The population size was varied (50, 100, 150

and 200) and termination conditions were set at 500 generations, a fitness less

than or equal to 1030 (1020 was optimal, and 1030 is approximately one

percent more than optimal). The crossover rate must be set low because a

large amount of change occurs during reproduction. Usually reproduction

explores some intermediate location between the two parents. But, under

this operator an intermediate chromosome may occupy a new region of the

solution space. The mutation operator is still quite subtle in its effects, but,

65

similar to the TSP problem, it is so different in comparison to the traditional

implementation that a comparison of its magnitude is fruitless.

Table 2.21 Genetic Algorithm Parameters for the Transportation Problem

Crossover Rate 0.02

Mutation Rate 0.2

Population size 50,100,150,200

Chromosome Length (3x4)=12

Maximum Number of Generations 500

Normalizing Value 1620

This problem was run on a Silicon Graphics (SGI) parallel

computer, using the SGI supplied C compiler (in ANSI-C mode). The speed

of the equipment reduced the time requirements of the GA to the point that

running the GA for four population sizes was feasible. The most efficient

population size was 100 chromosomes. The results from this run are

illustrated below.

The success rate for this population size was approximately 40%, but

the smaller population size compensated for the efficiency of larger

populations. The optimal number of generations was 60. Thus, the optimal

combination of population size of 100 chromosomes, running 60 generations

per run, for 15 runs should find the solution to the problem with 99%

certainty. The total number of individuals processed would be 91,500.

The four runs were plotted together to determine whether there was

an indication if extremely large or small population sizes are better for this

problem. The curves for probability and the number of individuals processed

are shown below.

66

0.7 600,000

-

0 0.6
en

500,000 Q)

>. E
-

0
0.5 en

.c 400,000
0

ca E "t:J
.c en 0 Q)
0 en 0.4 ...

en
...

Q)
.c

a.. 0
en

()
300,000 Q)

o
o

Q)
::l

0.3
-

0

>
C/) 0 ...

a..
-

200,000
...

ca Q)

::l 0.2
.c

E
E
::l

::l
Z

0
0.1

100,000

0 0

0 100 200 300 400 500

Generation

� Cumulative Probability
--..-- Chromosomes Processed

Figure 2.39 Graph of Cumulative Probabilities and Number of Individuals

Processed vs. The Number of Generations a GA Evolves

(Transportation Problem)

It should be noted that all of the runs used the same initial population.

An initial population of 200 chromosomes was generated and saved. Each

run, would use this population as its initial generation. For the runs which

required fewer than 200 chromosomes, only the first 50, 100, or 150

chromosomes were included in the initial generation. Using a common

initial population was done for two reasons. The primary reason was for

speed. Generating the initial population had the same computational

overhead as running the GA for 500 generations. Thus, if this was done for

the 300 or more runs used to generate the data for Figures 2.40 and 2.41, then

67

the time required to complete the calculations would have doubled. The

second reason was so that each run would be comparable. If each initial

population was the same, then no one population size would have an

advantage because of a significantly stronger initial generation.

en

CI)
-a

E
CI)

o en
en en
o CI)

E (.)

o 0

...
...

.co.

o

800000

700000

600000

500000

400000

300000

200000

100000

o

Figure 2.40 Graph of The Number of Individuals Processed vs. The

Number of Generations a GA Evolves Given Various

Population Sizes (Transportation Problem)

68

80%

70%

60%

50%

40%

30%

20%

10%

o % .JeL-l------.:!:::�L...J...J_'___...'"_L._,

c

o

-

III

:::J

D­

o

Q.

Figure 2.41 Graph of The Cumulative Probability of Success vs. The

Number of Generations a GA Evolves Given Various

Population Sizes (Transportation Problem)

The surface illustrating the number of individuals processed (Figure

2.40) indicates a valley at the population size of 100 chromosomes. This is

followed by a relatively flat plane for population sizes of 150 and up. This

indicates that there may be a more efficient population size above the 200

chromosome level. The most likely scenario is that the known local

minimum is global. Larger populations will approach the efficiency of the

100 chromosome population but not improve upon this threshold. The

probability surface (Figure 2.41) illustrates that as the population size increases

the percentage of runs that find an answer increases. This increase in success

69

does not compensate for the additional overhead associated with the larger

population sizes. It should be noted that if the definition of a successful run

was relaxed to within five percent of the optimal answer, the success rates of

the various population sizes would be those found in Table 2.22.

Table 2.22 Approximate Success Rate For Various Population Sizes Given a

Relaxed Solution Threshold (Within 5% of Known Optimum)

Population Size

50 100 150 200

Success Rate 99.2% 99.7% 99.4% 99.0%

2.6 Summary

A large amount of information has been covered in this chapter. The

GA was presented solving five problem types through the use of seven

sample problems. Table 2.23 below has been compiled to summarize the

topics covered in each problem.

At this point, the flexibility of the GA should be evident. There is no

question that it is not the most efficient method to solve some of these

sample problems, but in general the method will find an acceptable solution.

The point that was most likely made was that the GA can not be blindly

applied to a problem. Knowledge about a problem, and its inherent

difficulties must be considered when designing the GA. The parameters

chosen to drive the GA are secondary to the way the problem is engineered.

One can take the largest population size that their computer can handle, and

use rule of thumb parameters and the GA will converge upon the solution.

But without knowing the best chromosome structure, or a good

70

representation scheme for all of the constraints, and the GA could flounder

about aimlessly. This floundering reduced performance to not much better

than a random walk. In fact, to paraphrase John Koza (Koza 1993) premature

convergence only occurs when the GA doesn't find the solution you are

looking for. Good GA engineering can minimize 'bad' premature

convergence.

Table 2.23 Summary of the Topics Covered in Chapter 2

Section and Problem Type Topics Introduced and Covered

2.1 Linear Programming

(Giapetto Problem)

• Multi-constraint problem.
• Multi-variable representation.
• Introduction to penalty functions.

2.1 Linear Programming
(Dakota Problem)

•

Reliability calculation.

• Problems with using the GA for Linear

Programming.

2.2 Integer Programming
O. C. Nickles)

•

Solving a minimization problem with a GA.

•

Using the GA in a sparse, non-continuous

solution space.
• Problems where premature convergence occur.

• Use of chromosome repair to improve the

solution rate.

• Use of problem specific knowledge to improve

performance.

2.3 Job Scheduling
• The weakness of the binary representation in

some problems.
•

Implementation of a proportional penalty
function.

2.4 Traveling Salesman Problem • Introduction to an integer alphabet.
•

Example of the strength of the blind search

method used by the GA.

•

Portability of concepts between like problem

types.
• Benefits and efficiency of only producing

legal chromosomes.

2.5 Transportation Problem • Introduction to an integer matrix chromosome.

•

Example of how larger populations are not

always best.

71

3. APPLYING THE GENETIC ALGORITHM TO A REAL WORLD PROBLEM

The Genetic Algorithm (GA) is well suited to solving complex, non­

linear problems. Scheduling of any type: transportation schedules,

manpower assignment, and equipment usage, fall within this domain.

Unfortunately many scheduling problems such as assigning couriers to pick­

up and delivery routes must be solved as the need arises, not in a well

planned, deterministic environment. This precludes the use of the GA and

most other quantitative approaches because of the time they require to find a

solution (exact or approximate).

Fortunately there are a significant number of scheduling problems

which have a deterministic nature. The doubly constrained traveling

salesman problem (DCTSP), which was described in Chapter 1, is a scheduling

problem classification that is deterministic in nature. There are a variety of

problems that can be modeled as DCTSP: coordination of buses transferring

passengers at a terminal; the design of hub and spoke networks for a national

courier; and the design of a professional sport league schedule. The problem

which will be studied in this chapter is the creation of the National Hockey

League's (NHL) 1992-1993 schedule. The reason for choosing the NHL

playing schedule was because of the availability of the data. Designing a test

problem is a significant task. This is especially true, when the problem must

be designed to reflect real-world conditions, and also must adequately test the

algorithm or solution in question. Since, the NHL playing schedule problem

shares characteristics of other DCTSP and the data necessary to formulate and

solve the problem was available, the NHL playing schedule was used as the

model problem.

72

This chapter will follow the basic approach used in Chapter Two:

problem background, GA design methodology, a review of the results and

interpretation of their meaning; discussion of problems encountered when

designing the GA, and finally conclusions and insights about the application.

3.1 The NHL Schedule

Creating a schedule for the NHL is a time consuming and tedious task.

The scheduling process is begun each October, eleven months before the start

of the next season. There have been several past attempts to create a software

package automating the scheduling process. Only recently has any moderate

success been achieved. The most recent approach implements a Decision

Support System (DSS). The DSS has two modes of operation. One mode

allows the scheduler to manually generate a schedule which is then

evaluated on preset criteria. The second mode has the DSS automatically

generate the schedule, with the scheduler intervening intermittently to fine

tune the process (Fleurent and Ferland 1991). The drawback of this method is

that it does not allow the scheduler to simultaneously experiment with a

wide variety of approaches. Under this approach, a potential solution is

continuously refined until it meets a variety of constraints. Alternatively, the

GA explores a wide variety of potential schedules before refining a select few

to meet the league's requirements.

All of the major North American professional sports leagues, except

for hockey, have had some sort of computerized scheduling since the 1980s.

Hockey is unique because of the combination of the league's size (24 teams),

the large number of games each team plays (41 home, and 41 away), and most

teams play in a facility where they are one of many tenants.

73

Football, specifically the National Football League (NFL), has 28 teams,

and their season consists of only 16 games. Most NFL teams are the primary

tenants at their stadiums, and rarely have to worry about scheduling around

the needs of other tenants during the course of their season because teams

play only once a week, and almost exclusively on Sundays.

Similarly the Canadian Football League has 12 teams. Each team plays

once a week in a season that is 18 weeks long. Again, the home facilities for

most of the teams in the league are one tenant facilities.

Major League Baseball has approximately the same number of teams as

hockey (26 overall), but they are split into two leagues (the 12 team American

League and the 14 team National League). The teams only play teams in their

own league during the regular season. Since scheduling is a combinatorial

problem, a league half the size of the NHL is significantly easier to schedule

than the NHL's. Of all the professional leagues, baseball teams play the most

games per season (over 160 games), but the teams will playa series of three to

four games over three to four days against a specific opponent. This

significantly reduces the amount of travel required of each team. In hockey, if

Team A hosts Team B, the earliest that Team A will host Team B again is

seven days.

Basketball is the sport most comparable to hockey in terms of league

size (28 teams) and number of games played (each team plays 81 games in the

regular season). In most cities where basketball shares facilities with hockey,

hockey has traditionally been the 'poor cousins' in terms of box office

74

attendance and revenues, giving basketball a preferred status in terms of

selecting booking dates.

The comparison between the major sports gives one a general feel for

why hockey is more difficult to schedule. The complexity of the NHL

schedule is better understood after looking at the numerous constraints that

must be met. In the 1992-93 season the league had 24 teams divided into two

conferences, which in turn was further divided into two divisions of 6

teams.' Table 3.1 shows the league alignment.

Table 3.1 NHL League Alignment for the 1992-1993 Season

Prince Of Whales Conference Clarence Campbell Conference

Adams Division Patrick Division Norris Division Smythe Division

Boston Bruins New Jersey Devils Chicago Blackhawks Calgary Flames

Buffalo Sabres New York Islanders Detroit Red Wings Edmonton Oilers

Hartford Whalers New York Rangers Minnesota Stars Los Angeles Kings
Montreal Canadiens Philadelphia Flyers St. Louis Blues San Jose Sharks

Ottawa Senators Pittsburgh Penguins Tampa Bay Lightning Vancouver Canucks

Quebec Nordiques Washing_ton Capitals Toronto Maple Leafs Winnipeg Jets

The NHL plays a fully interlocking schedule, which means that every

team plays every other team at least once at their home facility. Table 3.2

illustrates the allocation of games between all of the teams. This game

allocation table is determined by the NHL teams' GMs, as coordinated by the

league office. The fully interlocking schedule Significantly increases the

complexity of the league's scheduling process. Each column in the table is

headed by the horne team's number. Reading down the column gives the

number of times a team hosts the team in that row. For example, Boston

(Team 1) hosts Buffalo (Team 2) three times. Buffalo hosts Boston four times.

1
The league abandoned this alignment at the completion of the 1992-1993 season when the league added

teams in Los Angeles, Miami and the Stars moved to Dallas.

75

The 41s at the bottom of each column are the total number of home and away

games each team plays.

Note that although every team plays 41 games at home and 41 away,

the schedule is not symmetric. Teams will host teams within their division

3, 4, or 5 times. The difference between hosting and visiting the same team is

never more than one game. In other words if Team A hosts Team B for three

games, it will not visit Team B any more than four times. The only

symmetry is that each team hosts a team from outside its conference once.

Teams will host teams that are in its conference, but not in its division, either

once or twice.

Table 3.2 Allocation of Games Between Teams for the 1992-1993 NHL

Season

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B05 0 4 3 5 3 4 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

BUF 3 0 5 4 4 3 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

HFD 4 4 0 3 4 4 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1

MTL 4 3 4 0 3 4 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

OTI 4 3 3 4 0 4 2 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

QUE 3 4 3 3 5 0 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

NJ 2 2 2 1 2 2 0 3 3 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1

NYI 2 2 2 2 1 2 4 0 3 4 4 3 1 1 1 1 1 1 1 1 1 1 1 1

NYR 1 2 1 2 2 2 4 4 0 3 3 5 1 1 1 1 1 1 1 1 1 1 1 1

PHI 2 1 2 2 1 2 3 5 4 0 4 3 1 1 1 1 1 1 1 1 1 1 1 1

PIT 2 2 2 1 2 1 5 3 4 3 0 4 1 1 1 1 1 1 1 1 1 1 1 1

W5H 2 2 2 2 2 1 3 4 4 4 3 0 1 1 1 1 1 1 1 1 1 1 1 1

au 1 1 1 1 1 1 1 1 1 1 1 1 0 5 4 3 3 3 2 2 2 2 2 1

DEI" 1 1 1 1 1 1 1 1 1 1 1 1 4 0 4 4 4 3 2 2 2 2 1 1

MIN 1 1 1 1 1 1 1 1 1 1 1 1 3 3 0 5 4 4 2 2 1 1 2 2

511. 1 1 1 1 1 1 1 1 1 1 1 1 4 3 4 0 4 4 2 1 2 1 2 2

TB 1 1 1 1 1 1 1 1 1 1 1 1 4 3 3 3 0 5 1 2 2 2 2 2

TOR 1 1 1 1 1 1 1 1 1 1 1 1 4 4 3 3 4 0 2 2 2 2 1 2

CGY 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 0 4 4 5 3 3

EDM 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 3 0 3 4 4 5

LA 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 3 4 0 4 4 4

5J 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 4 3 3 0 4 4

VAN 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 4 3 5 3 0 3

WPG 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 4 4 3 3 4 0

41 41

Besides the league's game allocation, the schedule must meet some

basic constraints. Table 3.3 contains the guidelines or constraints that the

NHL follows when generating a schedule. Note that the right hand column

76

qualifies the constraint's type as either hard (H) or soft (5). A hard constraint

is a constraint which must be met. Most hard constraints are easily met. If

this was not the case valid solutions would be few and far between. For

instance, the first constraint gives the number of games which must be

played, and when they are to be played. Since the league defines the

allocation table of who plays who, as long as any schedule meets that

requirement there will be 984 games in the schedule. The second part of the

constraint basically states that a game can not be scheduled during the

summer. For most problems hard constraints define the basic domain of the

problem. The soft constraints (those that don't necessarily have to be met for

a solution to be valid) qualifies a solution within a set of valid solutions as

being more preferred. The NHL does not specifically qualify their constraints

as hard or soft, this has been done by the author. Any constraint which could

not be easily renegotiated by the General Managers (GMs), or affected the

length or size of the schedule, was classified as a hard constraint.

After the schedule is created, it is submitted to the GM of each team.

Each GM can negotiate a change to the schedule. The GMs will attempt to

change the schedule to improve their own team's schedule (the dual of

improving a team's schedule is making an opponent's schedule more

difficult, which may occur by design or by chance). The negotiation process

can result in the final schedule violating some of the soft constraints.

77

Table 3.3 Scheduling Constraints Followed by the NHL

Constraint

Constraint

Type
H=Hard

s-sen

1) Total of 984 games to be played between Oct. 6/92 and Apr. 15/93. H

2) The games should be distributed evenly through the 27 weeks. S

3) No games may be scheduled on Dec. 24 or Dec. 25 or during the All- H

Star Game break (day prior to / day of / day following).

4) Games on Boxing Day Dec. 26 must not require more than 2 hours and S

30 minutes travel.

5) The number of occurrences of 4 games in 5 dates should be minimized. S

6) Certain clubs require a minimum number of home games on specific S

days of the week.

7) Preferred dates should be scheduled before using Alternate dates. S

8) A club which is out of its home building for 7 days should have at S

least 3 games scheduled during that time (6 games in 14 days).

9) A team should not play more than 7 consecutive games away from it S

home building.

10) After being away from its home building for 7 days or more, a club S

should be scheduled on its first available preferred date.

11) Consecutive visits from a team within the home team's own division S

should be at least 14 days apart (30 days for teams from other

divisions).

12) Routing on long road trips should minimize the total distance H

traveled.

13) The number of weekend games should be maximized. Also, for a club S

which has 2 potential home dates on a weekend, it is preferable to

schedule only one of these, if by so doing, it allows another club

(which has only one potential weekend date) to playa weekend

home game.

14) Teams in the same division are concerned about playing their S

opponents at equal strength, which means both teams played the

night before, or both teams did not play the night before.

15) Teams from the Smythe Division coming to playa road trip in the S

east would like at least one game in their division before arriving in

the east.

78

3.2 Designing The GA

The GA requires a certain amount of front end design (alphabet size,

chromosome structure, adaptation methods, fitness function, control

parameters, and termination conditions). This section will outline the

methods and parameters used to solve this problem as well as discuss the

design behind these parameters.

There are four major preparatory steps in designing a GA: selecting a

chromosome structure, identifying the measure of merit, determining an

efficient population size, and selecting the termination conditions.

3.2.1 Alphabet Selection and Chromosome Design

The chromosome structure cannot be designed without first selecting

an alphabet. A binary representation is the theoretically ideal representation.

Unfortunately the chromosome length necessary for a binary representation

was prohibitive. Table 3.4 indicates the number of characters necessary had a

binary representation been implemented. A 24 character alphabet was

selected because of the reduction in chromosome length and the ease of

interpreting the chromosomes as a schedule by the casual observer. In a 24

character alphabet, each team is mapped to a letter of the alphabet (Team 1 is

mapped to A, Team 2 to B and so forth). This reduces the storage

requirements for a schedule to lx24x180=4320.

After selecting an alphabet the chromosome structure can be designed.

Since this scheduling problem is very similar to the Transportation Problem

introduced in Chapter 2 its matrix structure was utilized. Each row in the

79

matrix was assigned to a day in the schedule. Each column was assigned to a

home team. Thus, each element of the matrix represented a potential home

game date for a team. A letter (over the range of A through X) in one of these

Table 3.4 Memory Required for the Binary Representation of an NHL

Schedule

Length of binary string needed to represent 24 teams:

Maximum Number of Teams:

Length of Schedule:

Total Length: 5 x 24 x 180

5

24

180

21,600

elements would represent the visiting team for that game. For example, if

there was a 'C' in the element represented by (Day 2, Team 1) it would be

interpreted as Team 1 (Boston) was the host for Team C (Team 3, which is

Montreal) on Day 2 of the schedule. A blank means that either the team is on

the road, or it is horne and not playing. This can be quickly ascertained by

scanning the row and checking for the team's presence at another facility.

Team 1 Team 2 ••••• Team 23 Team 24

Day 0

Day 1

•

•

•

•

Day 178
�----��----�---------r--------�----�

Day 179
�----��----�--------�--------�----�

Figure 3.1 Schematic of the Matrix Chromosome Structure

3.2.2 Generating the Initial Population

For this problem, designing the chromosome is only half of the

challenge. Usually, generating the initial population is very straightforward

80

once the chromosome structure has been determined. For the NHL problem,

randomly assigning visiting teams to the matrix (shown in Figure 3.1) would

not work. Each chromosome must represent a complete schedule. For a

schedule to be complete each team must play all of the games they have been

allocated (as shown in Table 3.2). Thus, when assigning visiting teams, with

home teams this allocation must be taken into consideration.

The availability of the home arena must be considered in addition to

the games allocation. For each hockey season, all of the teams submit a list of

requested home game dates (at least 50 preferred dates, as well as some

alternate home dates). This list of dates acts as an outline of facility

availability. Consequently, the final schedule, and ideally each chromosome,

should reflect the home date requests of all the teams in the league. In

practice this list of requests acts as a starting point for generating a schedule.

For the GA, these requests were used as a starting point for generating initial

chromosomes, and also acted as a corrective guide, or template, when

repairing infeasible schedules.

Generating the home game request template (which will be referred to

as the template from here on) was straightforward. The basic objective was to

generate a list of 41 home dates for each team. Scheduling games on these

dates would guarantee that the home team's facility was available (otherwise

they would not have requested it) and reduce the number of teams available

to travel on certain dates.

The first step in generating the template was to randomly select a day

in the schedule. If the selection was not random, then the template would

81

generate a bias towards the days selected first (the beginning of the schedule) ..

This bias would skew the distribution of games.

A selection algorithm was necessary to give preferred requests a higher

priority than alternate requests. A key element of the selection algorithm was

that no more than twelve games can be played on anyone date. The number

of requests for home games on a selected day are counted. If the total requests

(preferred and alternate) are less than or equal to 12 then the process is

simple. Each of the twelve teams are granted their home game request. If

there are more than twelve preferred requests, the twelve teams which have

the highest ratio of unscheduled games to unfilled requests are scheduled.

This ranking system helps minimize the likelihood that the schedule will be

short games at the completion of the algorithm.

The reasoning behind this ratio is clearly illustrated in Figure 3.2. If the

ratio of unscheduled games to unfilled requests was subdivided into four

regions, it becomes fairly obvious that a team with a large number of

available home game dates (unfilled requests) and few games left to be

scheduled (unscheduled games) should not have any difficulty scheduling

the remainder of their schedule. But, if the converse is true (few available

home dates or requests left to be filled and several games to be scheduled)

then this is a difficult if not impossible task to complete. Consequently those

teams which find themselves in the upper left quadrant of Figure 3.2 are

given a higher priority when determining which teams' are placed in the

template.

82

Unscheduled

Games

Hard

Easy

Unfilled Requests

Figure 3.2 Relative level of difficulty when fulfilling game requests.

Finally, if the number of requests exceeds twelve, but the number of

preferred requests is less than twelve, all of the preferred requests are granted.

The balance of alternate home game requests are assigned on the basis of the

teams with the highest ratio of unscheduled games to unfilled requests. This

is repeated for each day of the schedule.

The initial population is generated based on the home game template.

The schedule is generated on a day-by-day basis. A day is randomly selected,

and from the template a list of all the home teams is created. A home team is

randomly selected from this list. Next, a list of potential visiting teams is

generated. This list consists of all of the teams, not on the home team list,

who have not played their allocated games against the selected home team,

and who are not already playing on that day. The visiting team is selected

randomly from this list. If there are no teams that fit this criteria, the home

team is not assigned an opponent. Once the list of horne teams is exhausted

for that day, a new day is selected.

83

Loop through the list of dates in the schedule

Randomly select a day in the schedule

Count all of the preferred and alternate requests for this date

If the total number of requests is � 12

make each team a home team on this date

Else

If the total number of preferred requests> 12

Rank the preferred teams based on (unscheduled games) / (unfilled

requests), and then select the 12 highest.
Else

Save all of the preferred requests
If the preferred requests < 12

Rank the teams with alternate requests on (unscheduled

games)/ (unfilled requests), and then select highest until

(preferred requests + alternate requests) = 12.

Figure 3.3 Algorithm for generating the home game request

template.

3.2.3 Crossover and Mutation

The biggest advantage of crossover is that it is simple to implement.

There are three steps to crossover: select the parents, determine if

'conception' occurs, and locate the crossover point. Each of these steps has a

probabilistic element. The parents are selected based on their relative fitness.

The more fit a chromosome is, the mor� likely it is selected to reproduce.

After two chromosomes are selected to reproduce, it must be determined

probabilistically whether or not they will reproduce. A random number

generator is used to simulate a biased coin toss. The bias is equal to the

crossover rate selected by the GAts designer. If the chromosomes do not

mate, they are passed into the next generation as clones (exact duplicates). If

reproduction does occur the crossover point must be determined. The

crossover point is randomly selected from 179 potential sites {the first

84

crossover point is between day 0 and day I, the last between day 178 and day

179). As is normal for crossover, the tail of one parent is attached to the head

of the other. The only drawback to this method is that it can create

incomplete schedules. For instance, if two schedules have their games poorly

distributed (one has the majority of its games in the beginning of the

schedule, the other at the end of the schedule), their offspring will include

one schedule with too few games, and one with too many.

Randomly select a day in the schedule

Generate a list of home teams (Home_List) based on the home team

request template

Generate a list of visiting teams, which is just the list of teams not in

Home_List (Vis_List)

Randomly select a home team from Home_List

Create a list of potential visiting teams based on the following
criteria (Pot_Vis_List)

•

Already in (Vis_List)
• Has not already played the required allocation of games

with home team.

Randomly select a team from Pot_Vis_List

Remove team from Vis_List

Loop until Home_List is exhausted or remaining teams have no match

Loop until list of days in the schedule have been exhausted or remaining
teams have no match.

Figure 3.4 Algorithm for generating the initial population of

chromosomes.

The mutation operator is quite Simple. As the chromosomes are

passed to the next generation, mutation is performed on each chromosome

85

on a daily basis. After reproduction is complete the chromosome is passed to

the next generation one day at a time. A simulation of a biased coin flip

determines if the day is to be mutated. The bias is equal to the mutation rate,

and is selected by the GA designer. Mutation is performed by swapping

visiting teams between the home teams. This method does not add any

teams to a day on which they are not already playing. An unfortunate side­

effect is that it can add games (or delete games) from the schedule. Thus, two

teams may not play their allocated number of games.

3.2.4 Chromosome Repair

Not all of the schedules created by the GA are complete. Some

schedules have too many games, some not enough. These illegal

chromosomes can be created when generating the initial population

(although it does not happen very often) as well as during crossover and

reproduction. Schedules with too many games are easily fixed. The key is to

find all of the pairs of teams scheduled for more than their required

allocation and randomly delete excess games. For schedules with not enough

games, the repair algorithm is slightly more complex, but still rather straight

forward.

• Find each team pair with a deficit allocation.

• Find all of the available open dates where the two teams have the

proper (visitor, horne) configuration (ideally the horne game

should fit the template, but it is not necessary),
•

Randomly add the appropriate number of games to the schedule.

3.2.5 Fitness Function

The fitness function had to be designed to minimize distance traveled

(which implies travel costs are minimized) and yet still maximize the

number of constraints the schedule is able to meet. To simplify the objective

86

function, the minimization component of the problem was converted to a

maximization problem. This allows all components of the objective function

to 'march to the beat of the same drummer.' To convert the minimization

problem to a maximization problem an upper bound constant (UB) was

necessary. Subtracting the chromosome fitness from the UB gave a new

value to be maximized. As the chromosome fitness decreases (the distance

traveled drops) the difference between the UB and chromosome fitness

becomes larger. Maximizing this difference is the same as minimizing the

distance traveled. The constant also serves to normalize the 'distance fitness'

of each chromosome so that it would fall in the range of [0,1].

The most straightforward way to calculate an UB value was to find the

absolute furthest each team could travel in the course of a season. This

distance is the distance traveled if each team traveled directly home after

every game. The calculation is very simple (it is illustrated in Figure 3.2).

Multiply the distance or cost matrix (the cost to travel between cities is

expected to be proportional to the distance traveled, although it does not have

to be since the matrix acts as a lookup table) and the allocation matrix times a

scalar of two (this is because the allocation matrix times the distance matrix

only gives the distance for a one way trip between a pair of cities).

[A] =

[0] =

[A][D]·2 =

Allocation Matrix

Distance - Cost Matrix

Upper Bound for the Distance Traveled

Figure 3.5 Example Calculation for Upper Bound Constant

87

The VB was found to be 1,786,184 miles. It was rounded up to 2,000,000 miles

to make certain calculations more convenient. The fitness measure for the

distance component was

N 1· d F'
VB - ChromosomeFitness

onna lze itness =----------

VB

Figure 3.6 Example Calculation of a Chromosome's Normalized Fitness

The above formula only measures the distance traveled. It does not

quantify how well the other constraints are met. Each constraint (11 in total)

was measured over the range of [0,1]. For most of the constraints the

measurement was based on the fraction of teams meeting the constraints.

Two fitness functions were developed.

11

1 + Lconstraints;
I(x) =

i

(Normalized Fitness)
12

(3.1)

11

(Normalized Fitness)k + Lconstraintsi
I(x) =

-----k-+-ll-..!-.----
(3.2)

The fitness function in equation 3.1 was designed so that if none of the eleven

constraints were met, the chromosome would still have some fitness (one

twelfth the normalized fitness). This was done to prevent the possibility of a

chromosome being assigned a fitness of zero. If a chromosome is given a

fitness of zero, there is no chance that it will be able to contribute to the next

generation. Because this chromosome has been designed such that all

88

chromosomes will be complete schedules, it was felt that it was better to give

a chromosome some potential to propagate its genetic information, than to

have it automatically terminate as if it had been an incomplete and thus

useless schedule.

Equation 3.2 was designed to put the normalized fitness and the

constraints on more of an equal footing. By varying 'k' the influence of the

normalized fitness could be adjusted. As k approaches infinity the function

would behave as if distance was the only factor in determining fitness. A

value of k=l made distance no more important than any other constraint.

There was no need to modify this function as was done in equation 3.1 since

each chromosome is guaranteed to have a non-zero fitness.

After some initial trials the results using the two fitness functions were

compared and Equation 3.1 was found to produce better results, Thus, it was

adopted for the remainder of the research.

3.2.6 Population Size

Next to be considered was population size. Population size is usually

set proportional to the chromosome length. Because of the size of the

chromosomes in this model (180x24=4320 characters) the population needed

to be as large as possible. Consequently, the population size (2000

chromosomes) was set as large as the computing environment allowed.

The results from trials with a population size of 2000, run for hundreds

of generations, were not significantly better than those which had a

population size of 100 and were run for several thousands of generations.

89

Since this problem appeared to benefit from longer evolutionary cycles, the

smaller population size was selected since it required less computational

effort.

3.2.7 The Search Space

The two most important points about the search space are its size and

whether or not all points in the space can be reached by the algorithm.

It is important to study the search space because the GA is a blind

search method (it exploits the shape of the space, with no knowledge of the

problem), estimating the size of the search space helps estimate the difficulty

of the problem. Also, examination of the space may give insight to the shape

of the space.

The exact size of the search space is difficult to estimate for this

problem because of the inconsistency in the number of games played during

each day. But, some approximate estimates can be established. The absolute

largest size the search space could be is (180!)(24!). The 24! is the number of

ways that you could arrange 24 teams, and 180! is the number of ways you

could order the 180 days. This is a gross over estimate since all of the days do

not have 24 teams playing at one time. Through the course of a season, there

are an average of 6 games played per night. Taking six teams from the 24,

they can be arranged in 24! /18! different ways. A more reasonable estimate

for the search space is then (180!)x24x23x22x21x20x19. This is a reduction of

18! in the estimated size of the solution space, or approximately a factor of

1015. Considering that 109 is a billion, 1015 is a significant decrease in the

estimate of the solution space's size.

90

Because of the existence of allocation criteria (a hard constraint) and

scheduling guidelines (soft constraints) not all of the points in the solution

space described above are members of the valid solution space. All of the

points in the above solution space can be reached, but their likelihood of

contributing to the next generation depends upon their fitness (a combination

of the distance traveled and how well the other constraints are met).

3.2.8 Summary Of Parameters

The software was written in ANSI C, and run on a Silicon Graphics

parallel computer. It should be noted that the parallel architecture of this

system was not exploited; the equipment was implemented strictly for its

processing speed. A population of 2000 chromosomes running for 953

generations took 336,420 seconds (3.89 days). A population of 100

chromosomes running for 5000 generations took 79,562 seconds (22.1 hours).

Table 3.5 GA Parameters for the NHL Problem

Crossover Rate 0.005, 0.02, 0.2, 0.7

Mutation Rate 0.01--0.000 001

Population size 100,500,1000,2000

Chromosome Length 24 x 180 = 4320

Maximum Number of Generations 300--10,000

3.3 Results

A variety of permutations of the parameters in Table 3.5 were

implemented while investigating this problem. During the initial testing

phase distance was the only constraint the GA was required to optimize. This

relatively simple objective function permitted extremely small population

91

sizes. The population sizes implemented were 10, 50, 100 and sometimes 500.

The focus at this stage of the research was to evaluate the GA's ability to

converge using traditional crossover and mutation rates of 0.7 and 0.01.

Convergence did occur, but it was quite small. After reviewing the

schedules that the GA was building it was determined that the lack of

generation to generation improvement was because the schedules generated

were of such a radically different structure. Two schedules of relatively equal

strength would often have different numbers of games scheduled on the

same dates. It was at this point that it was realized that some underlying

similarity should be forced onto the schedules. This is where the template

concept was introduced to the GA.

The template concept improved the GA performance. From this point

permutations of the crossover rate (Px), mutation rate (Pm), and population

size was explored.

In general, five Px and Pm rates were selected and tested with each of

the previously mentioned population sizes. The general process was to check

the GA's behaviour with

• low Px and low Pm
•

high Px and regular Pm

•

regular Px and regular Pm

The general consensus of these tests were that the GA performed best at

traditional Px of 0.7 to 0.9 and Pm of 0.01 regardless of population size.

After this set of testing was complete, the other constraints were

92

introduced. The parameters used in the previous testing acted as a starting

point for this testing. The additional complexity introduced by the additional

constraints caused the GA to founder. Based on the author's experience in

working with the GA, some basic rules of thumb, consistent with other

researcher's experience (Koza, 1992) are:

• if the GA is showing slow steady progress it is a good idea to

increase the population size.

• if the GA is behaving as if it is taking a random walk through
the data then the crossover rate should be changed.

The GA was foundering so in an effort to increase the generation to

generation improvement the Px was dropped substantially and the Pm was

dropped by an order of magnitude. The population size of some of the runs

were also increased from the standard 100 to 2000. The low Px, coupled with

the low Pm appeared to improve the performance of the GA. With the lower

Px, it was noted that the larger population size did not appear to outperform

the smaller population size. The larger number of generations with the

smaller population was able to overcompensate for the larger number of

chromosomes but fewer repetitions.

Comparing the results from the best GA run and the actual schedule

used by the NHL for the 1992-93 season (Table 3.6) shows that the GA was not

able to generate an improved schedule. The GA generated schedule required

the league to travel approximately 30% further than the actual schedule. The

generated schedule was nearly as successful as the actual schedule in

satisfying the league's constraints. But, since the fitness function is strongly

influenced by the distance traveled, the overall fitness of the NHL schedule

exceeded the GA schedule by approximately 70%

93

0.24

0.22

(/)

(/) 0.2
<II

c
-

u::: 0.18

"C

<II

.!::! 0.16
iU

E
...

0 0.14
z

0.12

0.1

0 2000 4000 6000 8000 10000

Generation

----Max. Fitness

Per

Generation

Min. Fitness

Per

Generation

----Avg. Fitness

Per

Generation

Figure 3.7 Graph of Best, Worst and Average Chromosome Fitness in Each

Generation Population Size=100. Parameters of Pop==100,
Gen=10,OOO, Px=O.2, Pm=O.OOOl, Time=50,306 seconds.

Before the GA's results are further analyzed, the basis for the DSS's

success should be analyzed. The basis for this analysis comes from a

description of the DSS in Ferland and Fleurent (1991). The DSS success can be

largely attributed to its ability to enhance the expert scheduler's ability to

generate a schedule. In a strictly book keeping role, the DSS allows the expert

to build a schedule as he always has, but in the process of doing so, a variety of

statistics are tracked allowing the expert to easily manage the overwhelming

amount of data available. The DSS also includes some of the heuristic

knowledge of the scheduler, allowing the software to generate parts of the

94

schedule under the expert's supervision. The expert can then take over

control under conditions where experience or sublime heuristics can

outperform the computational brute force of the DSS.

0.22

0
0.2

0

C1I

c:
- 0.18

u.

"0
0.16C1I

N

cu

E 0.14
...

0

Z

0.12

0.1

0 200 400 600 800 1000

Generation

Max. Fitness

Per

Generation

Min. Fitness

Per

Generation

Avg. Fitness

Per

Generation

Figure 3.8 Graph of Best, Worst and Average Chromosome Fitness in Each

Generation Population Size = 500. Parameters of Pop=500,
Gen=lOOO, Px=O.8, Pm=O.Ol, Time=124,074 seconds.

Why does this work better? Using optimization and GA terminology,

the NHL schedule understands the general topology of the search space (or

part of the previous schedule). The initial starting point is usually the

previous schedule. The scheduling expert, because of years of experience, is

able to identify and exploit certain scheduling patterns. With the DSS, the

expert can experiment with possible schedules, and with the variety of

95

information and statistics available he can immediately generate the

information necessary to decide if this is a direction that he wishes to pursue

in terms of generating a schedule. In essence, the scheduler is behaving in

some respects like a GA, plus he has the additional ability of being able to

exploit local knowledge about the problem.

Table 3.6 Comparison of GA Schedule Results to the Actual NHL Schedule

NHL GA

Distance (miles) 982,831 1,308,933

Constraint 8.720 7.331

Total Fitness 0.4120 0.2400

The GA's was successful in evolving continuously improved

solutions. Unfortunately it was unable to find a solution which improved

upon the NHL's actual schedule. The primary factors for the GA not finding

an improved so.lution were the population size, chromosome

structure/ reproduction method, and problem difficulty.

Based on the author's previous research (Kostuk 1993) if the

population size is increased by an order of magnitude and the results do not

significantly improve, then it is very likely that even the new population size

is still too small. Hardware limitations prevented the population from being

set any higher than 2000 chromosomes. Any population size greater than

2000 would take a significant amount of computational effort. If this

approach was taken, then it would be recommended to subdivide the

population so that it can to be analyzed in parallel by several processors.

The work done in Chapter 2, and in the application section of GA texts

96

(Goldberg 1989, Michalewicz 1992a), indicate that in cases where the GA

underperforms, such as the case here, a change in the chromosome structure

or the reproductive strategy may improve the GA's performance. A perfect

example is the application of the GA to the Traveling Salesman Problem

(TSP). The first researchers who tried to solve the TSP using the GA had only

moderate success because the reproductive strategies were no more than

variations of traditional crossover. The edge recombination crossover

method used in Chapter 2 for the TSP example, was successful for a variety of

reasons. The most important reason being that all of the offspring created

with this method are legal and complete tours. If a similar method (in terms

of reproducing chromosomes which do not require repair) could be

developed for the NHL problem, significant inroads could be made.

There is always the possibility that the NHL problem is too difficult to

be solved efficiently with a GA. The problem space may be such that it is

deceptive to the GA. The GA 'thinks' a certain region will pay-off, but in fact

it is one of the worst solutions. Solution spaces for real world problems

which display this characteristic have not been documented. Quite possibly,

because they would represent failed research. Solution spaces which do

display this characteristic have been developed specifically to test the prowess

of the GA (Goldberg, 1989).

The GA has been known to quickly reach the neighbourhood of a

solution, but yet still fail to find the solution. Maybe this is such a problem

and it requires a hybrid solution. An example of such a problem is the TSP

with time windows. The traveling salesman must visit all of his clients, but

in doing so must still travel the shortest possible distance. The difference

97

between this model, and the classic TSP is that the clients are only available

for certain periods of time. An application of the time windows model is in

designing routes for school buses (Thangiah, et al, 1991). The GA's role in

this application was to rapidly find an approximate solution and then another

algorithm was applied to find the optimal routing. This method has also

been suggested by Costa (1992) specifically for the NHL problem.

3.4 Conclusions

The NHL problem is solvable by the GA, but to improve upon the

NHL and its DSS created schedule one of the following must occur:

•

computer architecture must improve so that increased population
sizes can be handled,

• a new reproductive strategy or chromosome structure must be

developed so illegal chromosomes are not reproduced,

• a hybrid solution method should be investigated.

98

4. THE GENETIC ALGORITHM AND LARGE SCALE PROBLEMS

This chapter's function is to serve as a forum to discuss the application of

the GA to large scale problems. Large scale may be a misnomer, a better term

may be real-world problems. Many real-world problems are so significant in size

or are so complex that they cannot be adequately modeled or represented by OR

models. The source of the complexity is often that these problems are a

combination of several models. Unfortunately you can not solve a problem

which is a combination of OR problems by combining OR solution techniques.

A discussion on the application of the GA to large scale problems, largely

based on the research involved with solving the NHL problem, will act as the

basis for this chapter. The chapter is divided into two sections. The first section

deals with factors that constrain the success of the GA application. The second

section covers suggested strategies for applying the GA.

4.1 Limiting Factors

Factors which could limit the success of the GA include the size of the

solution space, the complexity of the solution space, hardware/ software

limitations, inadequate chromosome representation and reproduction methods,

and time constraints.

Solution space size and solution space complexity are closely related.

Difficulties arising from the solution space's size will be dealt with first. The

more exact a model becomes, the larger the solution space grows. A good

example of this is the first problem solved in Chapter 2. By increasing the

resolution of the solution space to the hundredths, the solution space was

expanded to 400x800==320,OOO points from the necessary 4x8=32. For most real

99

world problems it is difficult to identify the extraneous information. The key is

to find the level of granularity that will still allow the model to generate a valid

solution, but to do so in a reasonable amount of time. When reducing the

model's resolution, there is a possibility that the optimal solution will be missed.

If the optimal solution is a spike the GA may explore the surrounding region, but

miss the optimum because of the lack of resolution. Solution spaces which can

not be reduced usually require long chromosomes to adequately search the

space. Large chromosomes generate problems in terms of hardware limitations

(usually storage issues).

Solution space complexity is a significant problem. Complexity is a

problem if the space is noisy (containing numerous spikes of information), or if it

is deceptive. If the space is noisy then it is difficult for the GA to evolve in the

direction of the optimum. The GA will spend much of its time exploring various

regions of the space but it will not be able to select specific regions as being

significantly better. This in turn means that the GA will not be able to focus its

resources on any specific region. The GA will flounder because there will be no,

or little, improvement from generation to generation. In a deceptive solution

space the GA is fooled into exploring sub-optimal regions. It puts more and

more resources into exploring regions where an optimum will not be found.

The standard limitation for computer applications is processor speed and

available memory. Aside from the blatant limiting effect of processor speed, the

most restrictive hardware element is memory. If the memory is not physically

available, or the compiler can not take advantage of the available memory, the

GA is restricted in its ability to search the solution space. Large populations of

long chromosomes require significant amounts of memory. The only option

100

available is to select the chromosome structure and the alphabet size to reduce

the required memory. Unfortunately, chromosome length reduction does not

necessarily translate to efficient problem solution. Furthermore, the memory

efficient structure could be anything from a string to an n-dimensional entity.

The more complex the structure, the more thought required to devise an

appropriate reproductive strategy. An excellent example of the effects a

reproductive strategy can make can be found in Chapter 2. The Job Scheduling

Problem aSP) and the Traveling Salesman Problem (TSP) were shown to be

similar. Because they were similar each had the same chromosome structure and

alphabet. But, their reproduction strategies were significantly different and so

were their success rates.

No matter how well the GA is able to represent and solve a problem, if it

can not be done within a reasonable time frame then it is not a practical solution.

The only documented applications of the GA are in deterministic environments.

When a GA is used in repeated situations where the input parameters are varied,

but the standard model remains the same, the time window the GA requires to

solve the problem is well known. This eliminates most of the uncertainty

associated with the time the GA requires to solve the new problem, and allows

the GA to become an effective business tool.

The GA research community has speculated on the application of a GA in

a real-time system, but documented cases are not available. Imagine the GA as a

dynamic system with a non-continuous forcing function (impulses). For a real­

time system, the GA would run continuously. A person would update the input

parameters (these would act as an impulse to the system) and the GA would

evolve from its present steady state optimum, to a new optimal steady state

101

solution. This model assumes that the old optimum is already near the new

optimum, expediting the evolution to the new solution. This concept is only

valid if the new solution is always expected to be in the neighbourhood of the

previous solution. In reality, starting from an old optimum may trap the GA, by

not allowing it to search the solution space. If the solution is not in the

neighbouring region there is no advantage for the GA to start from the previous

solution since any starting point is as valid as any other.

4.2 Suggested Approaches

There are three basic approaches which can be followed to improve the

probability of success when applying the GA to a real-world problem: small­

scale prototypes, constraint relaxation, and the implementation of parallel

processing. Each of these approaches has their own benefits and drawbacks.

But, depending on the problem type, one may be more suitable than the others.

Small scale prototypes are the traditional engineering approach to solving

large projects. Tackling a smaller project makes the task more manageable, yet it

will still provide the necessary understanding of the final, full size, task. The

only problem with this approach is that scaling up the solution from the small­

scale problem may not work. The scaling up process may change the problem so

radically from what was originally modeled that the GA's performance may not

keep up. This will be particularly true for combinatorial problems as shown by

the author's previous research (Kostuk 1993). This is a common problem in the

Expert System field (Fox 1990).

Another methodology is to develop a model which is full scale, but with

relaxed constraints. This prototype may take slightly longer to develop than the

102

previous method, but once completed it is only slightly different than the final

product. More time is required but if successful, the likelihood of succeeding

with the final project is significantly higher than if a small-scale prototype had

been built. Again, the objective of this model is to simplify the model so the

designer has the opportunity to become more familiar with the basic process.

Once the familiarization period is complete the final constraints can be added.

The last approach is not so much a development strategy but an

implementation approach. Parallelization is the subdivision of a process into a

series of tasks which can be performed simultaneously, reducing the time

required to complete the task. Parallelization makes the most use out of existing

computational processor power. The GA is very amenable to parallelization, so

the process should be given serious consideration whenever possible.

Parallelization of the GA can be implemented a variety of ways. One

method which was used extensively when researching Chapters 2 and 3, and is

the simplest implementation of parallelization, is to run the GA on several

computers, each with different parameter sets. A complete suite of results are

generated without any special programming requirements. The second method

of implementing parallelization is to split the population amongst a variety of

processors. For each generation, the processors calculate the fitness of a sub­

population. The population and the appropriate statistics are centralized,

reproduction occurs, and the next generation is reassigned to the processors. The

third method of parallelization is applicable if more than one function is used to

assess fitness. For example, in the NHL problem, each chromosome was ranked

on distance and eleven other constraints. If these twelve constraints were each

assigned a processor, the total fitness of a chromosome could be calculated

103

simultaneously. The last method of implementing parallelization is to subdivide

the population and assign each subdivision to a processor (as mentioned in

method two). Each processor evolves a population a .predetermined number of

generations, and then a prespecified amount of emigration and immigration

occurs between the populations. The primary benefit of parallelization is a

decrease in solution time, as well as a reduction in memory requirements. In

fact, recent research has documented better than linear speed-up due to the

implementation of genetic programming parallelization (Koza and Andre 1995).

The primary drawback of the last two methods of parallelization is that it may be

difficult to implement on anything other than a parallel computer.

104

5. SUMMARY AND CONCLUSIONS

5.1 Summary

In general, it can be stated that the GA is a flexible solution technique.

The GA was shown to solve a variety of problem types, with little or no

modification. Although clearly a robust technique, it was also identified that

the GA's performance could be significantly improved through the careful

selection of various GA parameters: alphabet size, chromosome structure

and reproductive strategy.

The application of the GA to a variety of OR problems provided

significant insight on how to approach the NHL scheduling problem. In

particular, the experiments suggested a suitable chromosome structure (a

matrix), a reproductive strategy (crossover), as well as how to use the fitness

function to restrict the propagation of poor schedules. The GA's success in

solving the NHL scheduling problem was however limited. The GA was able

to successfully evolve better and better schedules over time, but none of the

schedules were found to improve upon the existing schedule presently in use

by the NHL.

5.2 Conclusions

The objective of this thesis was to explore the GA's ability to solve a

complex, real-world scheduling problem. The GA was unable to improve

upon the existing NHL schedule. There are three potential reasons for this

lack of success.

105

The first reason brought forth was a lack of computing power. The

equipment used to explore the GAts ability was unable to store population

sizes over 2000 chromosomes in memory. Because of the long length of the

chromosomes, significantly sized populations were required. Given the

chromosome length used for this problem, chromosome populations of at

least one order of magnitude larger than was possible to store in memory was

necessary to solve the NHL problem as it is presently formulated.

The second possible reason for failure was identified as a modeling

problem. From the experiments with the OR test suite in Chapter 2, it was

shown that chromosome structure and reproductive methods have a

significant effect on the success of the GA. In particular, the effort spent by the

GA repairing, or replacing poor chromosomes are quite computationally

expensive. If a method could have been developed which eliminated the

production of illegal chromosomes, more effort could have been focused on

exploring the valid solution space, instead of replacing chromosomes which

had left the valid solution space.

The third suggested source of failure was that the solution space was

too noisy, or possibly it was deceptive. A noisy solution space would not

allow the GA to focus on a particular region of the solution space. All regions

would appear equally viable. In the case that the solution space was

deceptive, regions which would appear to be conducive to an optimal

solution would actually contain average or even poor solutions. In either

case, the GA would hone in on a region, and then aimlessly flounder. If this

condition exists, it would suggest that a hybrid technique should be

implemented. The GA would be used to do an initial search, and the regions

106

identified as possible solutions would then be evaluated using another

optimization technique.

5.3 Further Investigation

It was stated in Chapter 3 that the GA solution to the NHL scheduling

problem may be improved if a different chromosome structure or

reproduction method could be developed. The following are two suggestions

for potential research for the NHL and similar large-scale scheduling

problems.

One of the reasons that a binary model was not considered was because

of the extreme memory requirements to store such a model. A possible

compromise would be to use the present chromosome structure to store each

chromosome, and then convert it to a binary representation for reproductive

purposes. The most natural chromosome structure to use with a binary

representation would be a three dimensional structure. The X and Y-axis

would represent the visitor and home teams. The Z-axis would represent the

date. Thus the prism would have dimensions of 24x24x180=103,680 (as

compared to the 24x180=4,320 character representation, which was actually

used). A 1 in the element of the prism would represent a game. Thus, if

{3,2,20}=1, Team 3 visits Team 2 on Day 20 of the schedule. Of course new

three dimensional reproductive operators would have to be developed. But,

since this method would be very similar to work that has been done in graph

theory (Grover, et al 1990), there may be a way to adapt the operators used in

the GA solution of the transportation problem, which also adopted methods

from this field.

107

Game Date Axis

Figure 5.1 Schematic Representation of a Three Dimensional

Chromosome Structure

In closing this thesis has demonstrated that the GA is a robust tool in

the sense that it can be used to solve a variety of problems with minimal

modifications. But, it was also shown that the GA's performance can be

significantly improved when knowledge about the problem structure was

exploited. Thus, the GA provides the Civil Engineer with another tool to

attack scheduling problems, especially those that have proven unwieldy to

existing or standard techniques.

108

REFERENCES

Baffes, P., and Wang, L. 1988. Mobile transporter path planning using a genetic

algorithm approach. Space Station Automation IV, 1006, pp. 226-234.

Beasley, J.E., and Chu, P.e. 1994. A genetic algorithm for the set covering problem.
Available from j.beasley@ic.ac.uk or p.chu@ic.ac.uk.

Cain, W.O., Jr. 1972. Bayesian discrete optimizing as an approach to a scheduling

problem: major league baseball. Ph.D. dissertation, Harvard University.

Chu, P.e., and Beasley, lE., 1995. A genetic algorithm for the set partitioning problem.
Available from http://mscmga.ms.ic.ac.uk/pchu/pchu.htmlor

http://mscmga.ms.ic.ac.uk/jeb/jeb.html

Colorni, A, Dorigo, M., and Maniezzo, V.M. 1990. Genetic algorithms and highly
constrained problems: the time-table case. Proceedings of the first international

conference on parallel problem solving from nature. Edited by Schewefel, H.-P.,

and Manner, R. Dortmund, Germany. pp. 55-59.

Costa, D. 1992 An evolutionary tabu search algorithm and the NHL scheduling problem.
Internal working paper for the Department of Mathematics, National Polytechnical

School of Lausanne.

Deb, K. 1991. Optimal design of a welded beam structure via genetic algorithms. AIAA

Journal, 29(11), pp. 2013-2015.

Ferland, J.A, and Fleurent, C. 1991. Computer aided scheduling for a sport league.
Infor. Vol. 29, No. 1:14-25.

Fox, B.R., and McMahon, M.B. 1991. Genetic operators for sequencing problems.
Foundations of Genetic Algorithms, edited by Rawlins, G. Morgan Kaufmann

Publishers, Los Altos, CA pp. 284-300.

Fox, Mark S. 1990. AI and expert system myths, legends, and facts. IEEE Expert. Feb.

1990. pp. 8-19.

Gabbert, P.S., Brown, D.E., Huntley, c.L., Markowicz, B.P., and Sappington, D.E.

1991. A system for learning routes and schedules with genetic algorithms.
Proceedings of the Fourth Internation Conference on Genetic Algorithms. pp. 430-

436.

Goldberg, D.E. 1983. Computer-aided gas pipeline operation using genetic algorithms and

rule learning. Ph.D. dissertation. University of Michigan.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading, MA: Addison-Wesley.

Grover, LJ., Michalewicz, Z., Elia, P.V., and Janikow, C.Z. 1990. Genetic algorithms
for drawing directed graphs. Methodologies for Intelligent Systems. Vol. 5, pp.

268-276.

109

Holland, J.H. 1992a. Adaptation in natural and artificial systems. Revised Second

Edition. Cambridge, MA. MIT Press.

Holland, J.H. 1992b. Genetic algorithms. Scientific American. Volume 267(1). pp.

66-73.

Irgon, A., Zolnowski, J., Murray, K., and Gersho, M. 1990. Expert system

development: a retrospective view of five systems. IEEE Expert. June 1990. pp. 25-

39.

Jenkins, W.M. 1991. Structural optimisation with the genetic algorithm. The Structural

Engineer, 69(24):418-422.

Johnston, P. 1991. Skating the red line. Canadian Business, May 1991, Toronto, ON.

CB Media Limited. pp.44-47.

Jones, R.D. 1989. Development of an automated airline crew bid generation system.

Interfaces, Vol. 19, No. 4:45-51.

Kostuk, K. 1993. Solving the boolean 6-multiplexer problem with genetic algorithm co­

evolution. Genetic Algorithms at Stanford. Stanford, CA. Stanford Bookstore. pp.

117-123.

Koza, J.R., and Andre, D. 1995. Parallel genetic programming on a network of

transputers. Stanford University Internal Report Number STAN-CS-TR-95-1542.

Available from elib.stanford.edu Ipub/reports/cs/tr/9511542.

Koza, J.R. 1993. Genetic algorithms class notes, Stanford University, unpublished.

Koza,lR. 1992. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA. MIT Press.

Larson, R.C., and Odoni, A.R. 1981. Urban Operations Research. Englewood Cliffs,
NJ. Prentice-Hall, Inc.

Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Programs.
New York, NY. Springer-Verlag.

Michalewicz, Z. 1992. Genetic2 computer software code. Available from

ftp.aic.nrl.nay.mil Ipub/galistlsources-code/ga-source.

Powell, W.B., Sheffi, Y., Nickerson, K.S., Butterbaugh, K., and Atherton, S.A. 1988.

Maximizing profits for north american van lines' truckload division: a new

framework for pricing and operations. Interfaces, Vol. 18, No. 1 Jan.- Feb.

1988:21-4l.

Singer, D., and Moritz., P. 1987. Expert system for scheduling cleaning operations for

municipal canal systems. International Journal of Systems Science, Vol. 18, No.

7: 1217-1226.

Thangiah, S.R., and Nygard, K. 1992. School bus routing using genetic algorithms.

Applications of Artificial Intelligence X: Knowledge-Based Systems. Vol.

1707:387-398.

110

Thangiah, S.R., Nygard, K., and JueU, P.L. 1991. Gideon: a genetic algorithm system
for vehicle routing with time windows. Proceedings of the Seventh IEEE Conference

on Artificial Intelligence Application. Miami, FL. pp.322-328.

Waters, C.D.J. 1990. Expert systems for vehicle scheduling. Journal of the Operational
Research Society. Vol. 41, No. 6.:505-515.

III

APPENDIX A

Background on the Genetic Algorithm

With an Example

112

A.I An Example Application

The best way to illustrate how the Genetic Algorithm (GA) works is to

step through a simple example. A problem will be selected, formulated, and

developed. Basic GA terminology and techniques will be explained as they are

brought forth.

A simple, yet illustrative, problem is to find the maximum value of a

quadratic function. The objective of this exercise is not to challenge the GA, but

to illustrate how it works. The function selected is -x2 + 360x. From basic

calculus the maximum is easily found to be 180.

A.2 The Four Major Preparatory Steps

With the application selected, the GA can now be designed. There are

four major preparatory steps that must be completed when designing a GA. The

first step is to select a representation scheme. The representation scheme is also

known as the chromosome structure. In the GA the chromosome represents

either a potential solution, or the inputs to a model or simulation which is

external to the GA. Traditionally chromosomes represent a solution to the

problem in question. In the emerging area of Genetic Programming external

simulations are applied more frequently (Koza 1992). A chromosome is made up

of genes, the number of genes in the chromosome determines its length. For

example the chromosome in Figure A.1 is made up of eight genes, thus its length

is eight.

01100001

Figure A.I An Example of a Chromosome Structure

113

The number of values which are possible in each gene position define the

alphabet size. These values or alleles can come from an alphabet size as small as

two characters to one of several hundred characters (an impractical size, but

nonetheless still possible). The most fundamental alphabet size is two (a binary

alphabet). Binary alphabets are the most efficient representation for searching a

solution space, but, this representation is not always the most convenient for

real-world problems. For this simplistic problem the binary scheme will be

effective. The chromosome represents a binary number of length eight. Thus,

the example chromosome can be interpreted as 97.1

The GA utilizes a population of chromosomes in its search for the best or

optimal solution. Experience is the only way to estimate the optimal population

size prior to running the algorithm. The only consistent rule of thumb is that the

larger the population size the less time that will be necessary to find a solution to

the problem. Post-processing methods exist to determine an optimal population

size. But, the number of runs required to make a reasonable estimate make this

prohibitive for anything but trivial problems, or problems which must be solved

repeatedly.

The second preparatory step is to identify a fitness measure.

Chromosome fitness determines which members of the population are better

1 The day-to-day number system is the decimal or base 10 system. Each place holder can be any

one of ten numbers from 0 to 9. In a binary system there are only two numbers, 0 and 1. Thus, 10

which is ten (lxl01 + Oxl00) in the decimal system, is two in the binary or base 2 system (lx21 +

Ox20). For the example chromosome, its binary representation of 01100001 can be interpreted as

(Ox27 + lx26 + lx25 + Ox24 + Ox23 + Ox22 + Ox21 + lx20 = 64 + 31 + 1 = 97).

114

solutions (and by what amount). For the example chromosome its fitness is f(x)

= -(97)2 + (360 x 97) = 25,511.2

The third step is to select population parameters to control the GA. The

parameters of note (which will be defined later) are: population size, maximum

number of generations, probability of crossover (crossover rate), and probability

of mutation (mutation rate).

The last step is to determine the method for terminating a run and how to

designate the results. Genetic Algorithm termination can occur when an optimal

solution is found, a prespecified performance level is attained, or after the

maximum generations (time steps) have been completed. The method for

designating the results could be either the best individual of the last generation

or the best individual of the run (the best of the best). Since one rarely knows the

solution in advance, most GA applications terminate after the completion of a

prespecified number of generations. The solution is the best (most fit) individual

of the run. This will be the method used for all examples in this thesis.

A.3 Applying the Genetic Algorithm

Now that an understanding of the basic elements of the GA exists, it is

time to step back and take a look at the general methodology of the GA. The GA

can be broken down into four steps:

• Generate an initial population of solutions to the problem on hand.

• Measure the fitness of each solution (and also determine if there is a

solution in the population that meets the desired criteria).

2 The fitness is calculated by substituting the decimal interpretation of the chromosome into the

fitness function. Since the decimal value of the chromosome is 97, the fitness is 25,511.

115

•

Reproduce the population in a manner such that the best chromosomes

are present in the next generation proportional to their fitness relative

to the population's average fitness. (The more fit the chromosome, the

more offspring it will have.)

• Continue the process until a desired or satisfactory solution is

obtained.

As noted above, the first step is to generate the initial population. The

initial population is generated probabilisticly. The genes are randomly set at 0 or

1. Thus, generating an initial population of eight chromosomes of length eight is

comparable to flipping a coin Sixty-four times. Table A.l contains information on

the initial population of chromosomes.

Table A.I An Initial Population of Chromosomes

Relative Proportional
Chromosome x fitness Fitness Weighting
1 10011101 157 31871 1.161 0.145

2 01011100 92 24656 0.898 0.112

3 11110011 243 28431 1.036 0.129

4 01001011 75 21375 0.779 0.097

5 11101111 239 28919 1.053 0.132

6 11110001 241 28679 1.045 0.131

7 01100000 96 25344 0.923 0.115

8 10000111 135 30375 1.106 0.138

L= 219650

Avg.= 27456

The format used for Table A.l follows a standard layout established by

Goldberg's seminal text on GAs (Goldberg 1989). The headings appear slightly

cryptic at first, so some explanations should be made now so the reader can focus

on the table's content and not on its form.

116

Table A.2 A Key to the Standard GA Chromosome Fitness Table

Explanation of Heading

Table

Heading
Each chromosome in the population is labeled to track its contribution

to the next generation.

#

Chromosome The chromosome itself.

x

Fitness

Relative

Fitness

Proportional
Weighting

The decimal equivalent of the binary representation of the

chromosome.

A measure of the chromosome's strength based on some

predetermined fitness function. For this example the fitness function

is -x2 + 360x.

This value is calculated once the fitness of all the chromosomes is

established. Relative fitness is the ratio of the chromosome's fitness to

the population's average fitness.

A ratio of the chromosome's fitness to the sum of the population's
fitness. The sum of the proportional weighting is 1.0. If regions on a

roulette wheel were set proportional to the relative fitness of the

chromosomes (Figure A.2) then the proportion of the wheel allocated

to each would be equal to the values in this column.

•Chromosome 1

0.115 0.138 o Chromosome

III Chromosome

0.131 0.145
[J Chromosome

0.132 0.112
•Chromosome

•Chromosome

0.097 0.129 9 Chromosome

lID Chromosome

Figure A.2 Roulette Wheel with Proportional Weighting

Superimposing the location of the chromosomes from Table A.I on a graph of the

function gives the following:

117

35000

30000

25000

(/)
20000(/)

Q)

.5
u::: 15000

10000

5000

0

0

.>�
/

.

...

/
•

Fitness

Function

•
Initial

Population

100 200 300 400

Chromosome Value (Base 10)

Figure A.3 Fitness of the Initial Population's Chromosomes

An interesting analogy is to imagine trying to find the highest elevation of

a hill by dropping paratroopers onto the terrain. Once the original paratroopers

are dropped (the initial population of eight chromosomes) they check their

elevation above some datum. The elevation of each paratrooper is equivalent to

each chromosome's fitness. Each paratrooper radios back his elevation to the

pilot, who will drop more paratroopers in the areas where the paratroopers are

higher than the average paratrooper elevation. This is continued until the peak is

found (Koza 1993). In the GA, after the fitness of each chromosome is found, its

relative fitness is calculated. Using a Monte-Carlo simulation, each chromosome

is given a weighting on a roulette wheel proportional to its relative fitness. The

wheel is spun enough times to create a new population (in this example it was

eight times). Probabilisticly, the chromosomes which are above average fitness

will be proportionately over-represented in the mating pool for the next

generation, where those that are below average will proportionately lose their

representation. In this example the initial population does not have any

118

individuals who are particularly stronger or weaker than its counterparts,

consequently they all have relatively the same likelihood of being selected to

reproduce.

Reproduction by proportional representation alone does not introduce an

improved solution. If reproduction was the only operator used to improve the

population, the only improvement would be an increase in the average fitness.

Eventually the average fitness would equal the fitness of the best individual in

the initial population. No more improvement would occur and no new regions

of the search space would ever be explored. Two operators are used to introduce

new solutions to the population: crossover and mutation

Reproduction with crossover introduces changes to the population more

quickly than mutation. Crossover rates are much higher than mutation rates but

this is not the basis for crossover's greater influence. Crossover combines two

solutions to explore new regions within the solution space {Holland 1992a}. If

the parent solutions are similar they will produce offspring which are located

nearby. If the parents are significantly different, then the offspring will be

located in a new and possibly unexplored region of the solution space. The

survival of specific chromosomes is not as important as the survival of groups of

chromosomes which belong to certain regions of the search space (specifically the

region where the optimum is located). As long as the region containing the

optimal solution is explored by chromosomes, then a solution will be found.

There are various forms of crossover. The example problem will examine

simple crossover. In simple crossover, chromosomes are randomly selected two

at a time from the mating pool {which was created with the roulette wheel

119

selection}. Chromosomes four and five from the initial population will be used

to illustrate simple crossover. These chromosomes will act as the parents for two

members of the next generation.

Parent 1 (Chromosome 4) 1 1 1 0

� II�
1 1

Parent 2 (Chromosome 5) 1 1 1 1 0 1

Child 1 1 1 1 0

� II�
0 1

Child 2 1 1 1 1 1 1

Figure A.4 Reproduction of Two Chromosomes

Once two chromosomes are selected the ctossover point needs to be

determined. There are eight crossover sites for a chromosome of length eight.

Most GAs will randomly select a point between one and the chromosome's

length (inclusive). If the crossover point is less than the chromosome's length

genetic information is mixed, creating new offspring. If the crossover point is

equal to the chromosome's length, each parent is passed to the next generation as

offspring (no mixing of genetic material occurs). Biologically this is equivalent to

cloning.

Figure A.4 illustrates the basic process of simple crossover. Parent 1 and

Parent 2 pass their genes up to the crossover point (denoted by the double bar)

directly to Child 1 and Child 2 respectively. From the crossover point to the end

of the chromosome, Parent 1 transfers its genes to Child 2 and Parent 2 to Child

1. Table A.3 contains the second generation of chromosomes.

120

Table A.3 The Second Generation of Chromosomes

Relative Proportional
Parents Xsite Chromosome x Fitness Fitness Weighting
1 (4,5) 5 01101111 111 27639 0.923 0.115

2 (4,5) 5 11110001 241 28679 0.958 0.120

3 (7,7) 2 10000111 135 30375 1.014 0.127

4 (7,7) 2 10000111 135 30375 1.014 0.127

5 (4,7) 6 10101111 175 32375 1.081 0.135

6 (4,7) 6 11010101 213 31311 1.046 0.131

7 (2,7) 2 10000111 135 30375 1.014 0.127

8 (2,7) 2 11110011 243 28431 0.949 0.119

L= 239560

Avg.= 29945

Two things should be noted about Table A.3. First, two columns have

been added to the standard table layout: Parents, and Xsite. The first column,

Parents, shows which two chromosomes were mated to generate the present

chromosome. The Xsite column shows the crossover site used in the

reproduction process. The second point to note is that Chromosomes 1 and 2

have the same parents as the example in Figure AA. But, Chromosomes 1 and 2

are not the same as the two offspring in the example.

Table A.4 Difference in Offspring Due to Mutation

Child 1 Child 2

Example
Table 1.2

11101001

01101111

11110111

11110001

The earlier example did not include mutation, in contrast, the GA utilizes both

reproduction and mutation. Mutation also introduces new genetic information

to the population. The mutation rate or probability of mutation is usually set

equal to the inverse of the chromosome length. For this example, the mutation

rate would be one in eight (or 0.125). This means that for every eight genes

transferred, approximately one mutation will occur. Mutation is easy to

implement when a binary alphabet is in use. Once it is determined that mutation

121

should occur, it is simply a matter of changing a zero to a one, or a one to a zero

(also known as a bit flip). As in nature mutation can be recessive or progressive.

When searching for a specific value (as in the example) high mutation rates (high

being defined as greater than the inverse of the population size) are usually

recessive. What happens is that as the population begins to converge (fitness is

generally high), the mutation operator is more likely to decrease the fitness than

to increase it. Conversely, when a chromosome is weak, it is more likely that

mutation will increase the fitness of a chromosome. So although often beneficial

in the early stages of evolution, high mutation rates will eventually counteract

the benefits of crossover. Some GA researchers have stated that mutation is not

necessary at all (Koza 1993). The author's personal experience with Genetic

Programming (a sub-field of GA) has shown this to be true, but not for GAs. In

fact, personal observations have shown that without mutation, the GA tends to

prematurely converge because of a lack of genetic diversity.

Figures A.5 and A.6 illustrate the progressive improvement of the GA.

Figure A.5 is a graph of the data from Table A.3. Note how the chromosomes in

Figure A.4 have become more clumped as compared to Figure A.3. Notice also

how they have "moved up the hill." Figure A.6 shows an almost perfect solution

(from the fifth generation), where the most fit chromosome (with a value of 181)

has a fitness of 32,399. The exact solution (180) was found by the sixteenth

generation. This behaviour is typical of a GA. Convergence to an approximate

solution was relatively rapid and was then followed by slow incremental

improvements to the exact solution.

122

35000

30000

25000

IJ)
20000IJ)

Q)

.5
tr 15000

10000

5000

0

0

•
Seoond

Generation

Fitness

Function

100 200 300

Chromosome Value (Base 10)

Figure A.S Fitness of the Second Generation of Chromosomes

35000

30000

25000

IJ)
20000IJ)

Q)

.5
15000u:::

10000

5000

0

0

......... --............._.

<,
•

1 00 200

Chromosome Value (Sase 1 0)

•
Fifth

Generation

Fitness

Function

300

Figure A.6 A Near-Optimal Solution is Almost Found

123

400

400

APPENDIXB

Sample Program Code for the Genetic Algorithm

124

The following figures make up the basic code used in this reasearch.

The code is based on Goldberg's Simple Genetic Algorithm (Goldberg 1989)

wihch was originally translated to a dialect of C by Adam Conru while he was

a graduate student at Stanford. That C code was further refined by the author

so that it would compile using the Think C compiler on an Macintosh

computer.

It should be noted that the code for this program was written to

optimize a fitness function of x10 and the chromosome structure is a 30 bit

binary string.

1* ** *1

1* Based on Goldberg's Simple Genetic Algorithm *1

1* Originally converted to C by Adam Conru *1

1* Modified for Think C by Kent J. Kostuk *1

1* *** *1

#include -cstdio.h»

#include -cstring.h»
#include -cmath.h»

#include -cstdlib.h»

#include -cerrno.h»

1** *1

1* define the global variables and structure types *1

1** *1

int maxgen.gen;

#define maxstring 30

#define maxpop 100

typedef struct

{int chrom[maxstring];
float x;

float fitness;

int parentl , parent2;
int xsite;

[individual;

1* Genotype = bit string *1

1* Phenotype = unsigned integer *1

1* Objective function value *1

1* cross pt *1

typedef struct

125

{individual people[maxpop];
float avg, max, min;
int nmutation, ncross;

int popsize, lchrom, gen;

float pcross, pmutation,sumfitness;
}population;

population oldpop, newpop;

int parentl , parent2, childl, child2;

Figure B.t Definition of the global variables and data structures.

1* Two non-overlapping populations *1

1* *** *1

1* Utilities *1

1* MyRand: returns a float from 0 to n *1

1* Flip: is a biased coing *1

1* 1 is heads, all else is 0 *1

1* rnd: returns an integer between low and high inclusive *1

1* *** *1

1* Returns a random float from 0 to n *1

float MyRand(float n)

{return(n*randO/RAND_MAX);}

1* Flip a biased coin - 1 if heads else 0 *1

int flip(float probability)
{if (MyRand(l) < probability)

{retumt l); }
else

{return(O); }

1* Pick a random integer between low and high inclusively *1

int rnd(int low,int high)
{return (low + floor(O.S + MyRand(high-Iow)));}

Figure B.2 Random number utility functions.

1** *1

1* Decoding and Objective Functions *1

1* Change these for different problem *1

1** *1

1* Fitness function - f(x) = x**n

float objfunc(float x)

{return(pow(x,lO));}

*1

126

1* Decode string as unsigned binary integer *1

1* Really only necessary if you need to intrepret the *1

1* chromosome represesnetation. *1

float decode(population *pop, int IndivID)

{int j;
int lbitsepop-c-lchrorn;
float accum, powerof2;
accum = 0.0; powerof2 = 1;

for G=O; jclbits; j++)

{if (pop->people[IndivID].chrom[j]==I) {accum = accum + powerof2;}

powerof2 = powerof2
*

2;}

return(accuml1073741823.0);} 1* return value from 0 to 1 *1

Figure B.3 Fitness function calculation function and the function used to

convert a 30 bit string to a base 10 float.

1* *** *1

1* Collect Users Parameters *1

1* *** *1

void InitData(population *pop)
1* Interactive data inquiry and setup *1

tint I;

float F;

printf("\n\n\n\n");

printf("A Simple Genetic Algorithm\n");

printf("Author: A.B.Conru Modified for Think C by K.J.Kostuk\n\n");

printf("******** SGA Data Entry and Initialization ************\n\n");

pop-»popsizee 1 00;

pop->lchrom=30;

maxgen=90;

pop->pcrossefl,8;

pop->pmutation=.O I;

printf("Enter 1 to use defaults\n"); scanf("%d",&I);
if (1!=I)

{printf("Enter population size ------- > "); scanf("%d",&I);pop->popsize=l;

printf("Enter chromosome length ----- > "); scanf("%d",&I);pop->lchrom=l;

printf("Enter max. generations
------ > "); scanf("%d",&I); maxgenel;

printf("Enter crossover probability
- > "); scanf("%f' ,&F);pop->pcross=F;

printf("Enter mutation probability
-- > "); scanf("%f' ,&F);pop->pmutation=F;}

pop-e-nmutation = 0;

pop-»ncross = 0; }

Figure B.4 The procedure used to collect the user's GA parameters.

1* ** *1

1* Initialization of population *1

1* ** *1

void InitPop(population *pop)

127

/* Initialize a population at random */

{intj,c;
for (j=0; j-cpop-e-popsize; j++)

{for (c=U; c-cpop-c-lchrom; c++) {pop->people[j].chrom[c] = flip(0.5);}

pop-e-peoplelj].x = decode(pop,j); /* Decode the string */

pop->people[j].fitness = objfunc(pop->people[j].x); /* Evaluate inital fitness */

pop-c-peoplejjl.parentl = 0;

pop->people[j].parent2 = 0;

pop->peoplefj].xsite = 0;

}

}

Figure B.S Procedure generating the initial population.

/* ** */

/* Population Statistics Calculations */

/* ** */

void Statistics(population *pop) /* Calculate population *1

{int j; /* statistics */

float f;
/* Initialize local variables */

pop-e-sumfitness = 0; pop-e-min = 999999; pop-e-max
= -999999;

1* Loop for max, min, sumfitness *1

for (j=D; jcpop-c-popsize; j++)

[f=pop->people[j] .fitness;

pop-e-sumfitness =pop-c-sumfitness + f; /*

if (f>pop->max) pop-e-max
= f; 1*

if (fcpop-e-min) pop-e-min = f; 1*

}
/* Calculate average */

pop-e-avg =pop->sumfitness/pop->popsize;}

Accumulate fitness sum

New max

New min

*/

*1

*1

Figure B.6 Population statistics procedure. Calculates the maximum,

minimum and average fitness of a generation.

1** */

1* Initial Report *1

1** *1

1* Initial report *1

int InitReport(char *outfile, population *pop)
{FILE *file;
if «file = fopenfoutfile.l'w")') == NULL)

{printf("%s: can't open %s\n
"

,outfile,outfile);

retum(O);}

fprintf(file," ---\n");

fprintf(file,
"

I A Simple Genetic Algorithm
- SGA - v1.0 l\n");

fprintf(file,
"
---\n\n");

128

fprintf(file,
II

SGA Parameters\n ");

fprintf(file,
II

--------------------\n\n ");

fprintf(file,
II

Population size (popsize) = %d\n
II

,pop->popsize);

fprintf(file,
II

Chromosome length (lchrom) = %d\n",pop->lchrom);

fprintf(file," Maximum # of generation (maxgen) ;:: %d\n",maxgen);

fprintf(file," Crossover probability (pcross) = %f\n",pop->pcross);
fprintf(file," Mutation probability (pmutation) = %f\n\n",pop->pmutation);
fprintf(file," Initial Generation Statistics\n");

fprintf(file,
II

--------------------------------\n\n ");

fprintf(filc," Initial population maximum fitness = %f\n",pop->max);
fprintf(file," Initial population average fitness = %f\n" .pop-e-avg);
fprintf(file," Initial population minimum fitness = %f\n",pop->min);
fprintf(file ,

II

Initial population sum of fitness = %f\n\n",pop->sumfitness);

fprintf(file
II

,

==\n");

1* Repeat some of the output to screen *1

printf(" SGA Parameters\n");

printf("
--------------------\n\n");

printf(" Population size (popsize)

printf(" Chromosome length (lchrom)

printf(" Maximum # of generation (maxgen)

printf(" Crossover probability (pcross)

printf(" Mutation probability (pmutation)

printf(" Initial Generation Statistics\n");

printf(" --------------------------------\n\n");

printf(" Initial population maximum fitness

printf(" Initial population average fitness

printf(" Initial population minimum fitness

printf(" Initial population sum of fitness

fclose(file);

retum(l);

}

= %i\n",pop->popsize);
= %i\n",pop->lchrom);
= %i\n",maxgen);
= %f\n",pop->pcross);
= %f\n\n" .pop-c-pmutation);

= %f\n",pop->max);
= %f\n",pop->avg);
= %f\n",pop->min);
= %f\n" .pop-c-sumfitness);

Figure B.7 Procedure used to generate a report on the initial population.

1** *1

1* Create Spaces
- for aesthetics only *1

1** *1

void Spaces(FILE *file, int n)

{int i;
for (i=Il; i-cn; i++)

fprintf(file," ");

}

Figure B.B A utility procedure used to generate n spaces.

129

1* *** *1

1* Population Report *1

1* *** *1

int Report(char *outftle)

{int c,j;
FILE *file;
if «file = fopen(outfile, "a"» == NULL)

{printf("%s: can't open %s\n",outfile,outfile);

return(O); }

fprintf(file,"Population Report for Generation %i\n",gen);
fprintf(file," # string x fitness parents xsitein");

for (c=O; c-coldpop.popsize; c++)

{fprintf(file," %d ",c);

1* New string (offspring) *1

for (jenewpop.lchrorn; joO; j--) {fprintf(file,"%d" ,newpop.people[c].chrom[j-l]);}
Spaces(file ,40-newpop.lchrom);

fprintf(file,"%5f %6.4f (%i %i) %i",newpop.people[c].x,

newpop.people[c].fitness,newpop.peopIe[c].parentl ,newpop.people]c].parent2,
newpop.people[c] .xsite);

fprintf(file,"\n");
}

1* Generation statistics and accumulated values *1

fprintf(file," Gen=%2i max=%6.4f min=%6.4f avg=%6.4f sum=%6.4f nMut=%i

nCross=%i\n"
,

gen,newpop.max,newpop.min,newpop.avg,newpop.sumfitness,

newpop.nmutation,newpop.ncross);

fprintf'(file
"---

,

==\n");

printf(" Gen=%2i max=%6.4f min=%6.4f avg=%6.4f sum=%6.4f nmutation=%i

ncross=%i\n"
,

gen,newpop.max,newpop.min,newpop.avg,newpop.sumfitness,
newpop.nmutation,newpop.ncross);

fclosetfile);

return(l);}

Figure B.9 Reporting procedure used to store data on the chromosome in

each generation

130

1* *** *1

1* Initialization Coordinator *1

1* *** *1

void initializet)

{InitData(&oldpop); 1* Collect user's parameter settings *1

InitPop(&oldpop); 1* Generate initial population *1

Statistics(&oldpop); 1* Collect statistics on population *1

newpopeoldpop; 1* Save old population in new population *1

InitReport("SGA-Report",&oldpop); 1* Generate initial report *1

Report("SGA-Report");} 1* Save population data *1

Figure B.lO Procedure used to generate the intial population.

1* *** *1

1* triops.sga *1

1*3-operators:Reproduction (select), Crossover (crossover) & Mutation (mutation) *1

1* *** *1

int select(population *pop)
1* Select a single individual via roulette wheel selection *1

{float RandPt, partsum; 1* Random point on wheel, partial sum *1

int j; 1* population index *1

partsum
= 0.0; j = 0; 1* Zero out counter and accumulator *1

RandPt = MyRand(pop->sumfitness); 1* Wheel point calc. uses random number [0,1] *1

while (jcpop-opopsize-I && partsum < RandPt)

{j++; partsum += pop-c-peopleljl.fitness.]
returnG);}

1* Find wheel slot *1

1* Mutate an allele wi pmutation, count number of mutations *1

int mutation(population *pop, int AlleleVal)

{if (flip(pop->pmutation)==I) 1* Flip the biased coin *1

{pop->nmutation=pop-»nmutation-c 1;

if (AlleleVal==I) return(O); else return(l); 1* Change bit value *1

}
else

{return(AlleleVal); 1* No change */}

}

1* Cross 2 parent strings, place in 2 child strings *1

int crossover(int parentI, int parent2, population *LastPop,
int childl, int child2, population *pop)

{int j.jcross;
if (flip(pop->pcross)==l)

{jcross = rnd(l,pop->lchrom-l);

pop-»ncrossepop-»ncross+ I ; }
else

{jcross = pop-c-lchrom.]

1* 1st exchange, 1 to 1 and 2 to 2

for G=O; j<jcross; j++)

1* Do crossover with pcross *1

1* Cross between 1 and 1-1 *1

1* Increment crossover counter *1

1* Otherwise set cross site to *1

1* force mutation *1

*1

131

{pop-e-people]child 1] .chrom[j] = mutation(pop,LastPop->people[parent 1] .chrom[j]);

pop->people[child2].chrom[j] = mutation(pop,LastPop->people[parent2].chrom[j]);}

1* 2nd exchange, 1 to 2 and 2 to 1 *1

if (jcross !=pop->lchrom) 1* Skip if cross site is lchrom--no crossover *1

{for (j=jcross; jcpop-»Ichrom; j++)
{ pop->people[child 1] .chrom [j] = mutation(pop,LastPop->people[parent2] .chrom [j]);

pop->people[child2].chrom[j] = mutation(pop,LastPop->people[parentl].chrom[j]);} }

returntjcross); }

Figure B.ll The base procedure to the algorithm. Chromosome selection,

mutation and reproduction functions are included here. Note

that mutation is called from the crossover function.

1* *** *1

1* generate.sga *1

1* *** *1

void GenerationO
1* Create a new generation through select, crossover, and mutation *1

1* Note: generation assumes an even-numbered popsize *1

{ int j, mate 1, mate2, jcross;

newpop.nmutationeO:

newpop.ncross=u;
1* select, crossover, and mutation until newpop is filled *1

for U=O; jcoldpop.popsize; j=j+Z)
{matel = select(&oldpop); 1* pick pair of mates *1

mate2 = select(&oldpop);
1* Crossover and mutation - mutation embedded within crossover *1

jcross=crossovertmate 1 .matez.ecoldpop.jj+ 1 ,&newpop);

1* Decode string, evaluate fitness, & record parentage date on both children *1

newpop.people[j].x = decode(&newpop,j);

newpop.people[j].fitness = objfunc(newpop.people[j].x);
newpop.people[j].parentI = mate I;

newpop.people[j].parent2 = mate2;

newpop.people[j].xsite = jcross;

newpop.people[j+ I].x = decode(&newpop,j+ 1);

newpop.people[j+ I] .fitness = objfunc(newpop.people[j+ I] .x);

newpop.people[j+l].parentl = mate I;

newpop.people[j+ l].parent2 = mate2;

newpop.people[j+ l].xsite = jcross;} }

Figure B.12 The procedure used to generate a new generation/ population of

chromosomes. Chromosomes are selected via roulette wheel

selection; reproduction and mutation follow. Finally, the

chromosomes are decoded and their fitness is calculated.

132

1* *** *1

1* Main program *1

1* *** *1

maim)

{gen = 0;

srand(308);

initializet);
while (gen < maxgen)

{gen++;
Generationf);
S tatistics(&newpop);

Report("SGA-Report");
oldpop

=

newpop;

}

}

/*

/*

Initial population stuff

Main iterative loop

*/

*/

/*

/*

/*

/*

Generate new population
Calculate population stats

Report on generation
advance the generation

*/

*/

*/

*/

Figure B.13 Main procedure directs the flow of the algorithm. Note all of the

work necessary to generate an initial population is performed in

the initializeO procedure.

133

	Book
	Cover
	Front Matter
	Title
	Copyright
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	Body
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Back Matter
	References
	Appendix A
	Appendix B

