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Abstract

Background: The development of Hi-C (and related methods) has allowed for unprece-

dented sequence-level investigations into the structure-function relationship of the genome.

There has been extensive effort in developing new tools to analyze this data in order to better

understand the relationship between 3D genomic structure and function. While useful, the

existing tools are far from maturity and (in some cases) lack the generalizability that would

be required for application in a diverse set of organisms. This is problematic since the re-

search community has proposed many cross-species “hallmarks” of 3D genome organization

without confirming their existence in a variety of organisms.

Research Objective: Develop new, generalizable computational tools for Hi-C analysis

and 3D genome prediction.

Results: Three new computational tools were developed for Hi-C analysis or 3D genome

prediction: GrapHi-C (visualization), GeneRHi-C (3D prediction) and StoHi-C (3D predic-

tion). Each tool has the potential to be used for 3D genome analysis in both model and

non-model organisms since the underlying algorithms do not rely on any organism-specific

constraints. A brief description of each tool follows. GrapHi-C is a graph-based visualization

of Hi-C data. Unlike existing visualization methods, GrapHi-C allows for a more intuitive

structural visualization of the underlying data. GeneRHi-C and StoHi-C are tools that can

be used to predict 3D genome organizations from Hi-C data (the 3D-genome reconstruc-

tion problem). GeneRHi-C uses a combination of mixed integer programming and network

layout algorithms to generate 3D coordinates from a ploidy-dependent subset of the Hi-C

data. Alternatively, StoHi-C uses t-stochastic neighbour embedding with the complete set

of Hi-C data to generate 3D coordinates of the genome. Each tool was applied to multiple,

independent existing Hi-C datasets from fission yeast to demonstrate their utility. This is the

first time 3D genome prediction has been successfully applied to these datasets. Overall, the

tools developed here more clearly recapitulated documented features of fission yeast genomic

organization when compared to existing techniques. Future work will focus on extending and

applying these tools to analyze Hi-C datasets from other organisms.
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Chapter 1

Introduction

An object’s function is closely linked to its structure. This relationship is so natural that

it often does not become apparent until we are confronted with an abnormal structure that

changes an object’s function. Athens-based architect Katerina Kamprani has highlighted

this ubiquitous relationship in her Uncomfortable Objects collection. Figure 1.1 contains

a selection of three such “uncomfortable objects” that demonstrate how small changes in

structure can greatly impact an object’s utility and ease of use. These types of structure-

function relationships are ubiquitous and extend beyond everyday objects into areas like

cellular biology. Since cellular components like the genome cannot be seen by the naked eye,

biological assays must be used to help infer their 3D structure and associated function.

A B C

Figure 1.1: A selection of three images from the Uncomfortable Collection designed
by Katerina Kamprani © 2017. Each panel contains a representation of an object with
an abnormal structure (A: watering can, B: key, C: mug). Images were re-printed with
permission (e-mail correspondence, April 8, 2019).

Previously, investigations into the structure-function relationship of the genome were lim-

ited since they relied on imaging assays to ascertain 3D genomic organization and structure.

While useful, imaging assays have limited resolution leaving many questions unanswered. The
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recent development of Hi-C (and related methods) has allowed for unprecedented sequence-

level investigations into the structure-function relationship of the genome. Briefly, Hi-C is

a biological assay that is able to detect regions of the genome that are in close 3D spatial

proximity (or “interacting”). A visual depiction of the experimental protocol is provided in

Figure 1.2. More specifically, (1) cells are fixed with formaldehyde in order to covalently

cross-link genomic regions that are in close 3D proximity. (2) The cross-linked fragments

are then digested with a restriction enzyme to remove the potentially large interconnect-

ing segments of DNA and labelled with biotin (biotinylated). (3) Digested fragments are

ligated together. (4) The initial cross-linking is removed resulting in DNA fragments that

represent the two genomic regions that form an interaction. (5) Biotinylated products are

then purified using streptavidin beads allowing for the detection of fragments that were cut

by restriction enzymes. Finally, (6) sequencing primers are then ligated to the ends of the

purified fragments and high-throughput sequencing is performed.

(6) High-throughput sequencing

(5) Biotin purification

(4) Reverse cross-linking

(3) Re-ligation

(2) RE digestion and biotin labelling

(1) Cross-linking of interacting genomic regions

GR 2
GR 1

GR 2
GR 1

GR 2GR 1

GR 2
GR 1

GR 2
GR 1

GR 2
GR 1

GR 2GR 1

GR 2GR 1

Pore-C

GR 2
GR 1

GR 2
GR 1

GR 2GR 1

GR 2GR 1

Pore-C

GRGR 1

Figure 1.2: An overview of the typical experimental procedure for a Hi-C assay
(adapted from [92, 98]). Coloured boxes differentiate the general steps and are num-
bered accordingly. GR stands for Genomic Region. The blue lines represent the location
of a restriction enzyme cut site. The green circles represent a pair of genomic regions
being chemically cross-linked together. The orange circles represent biotin. The purple
symbol represents a streptavidin bead that can be used to purify molecules with a bi-
otin label. The red arrows represent the primers that are required for high-throughput
sequencing.
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The Hi-C experimental protocol results in a collection of paired-end sequencing reads.

A variety of computational tools are then used to generate a whole-genome contact map.

Lajoie et al. [86] provides an in-depth discussion of the computational steps and specific

tools required for this process. A general overview of this process is provided in Figure 1.3

in the panel titled “1. CONTACT MAP GENERATION”. As described by MacKay [99],

“a whole-genome contact map is a N × N matrix, where N is a genomic ‘bin’
representing a contiguous sequence of linear DNA [86, 101, 177]. In general, the
size of the whole-genome contact map (the number of genomic bins) is approxi-
mately equal to the total genome size divided by the Hi-C experimental resolution.
Each cell (Ai,j) of a whole-genome contact map (A) indicates the count of how
many times the genomic bin i was found to interact with the genomic bin j.
These counts are symmetric along the diagonal (i.e. Ai,j = Aj,i) and are often
referred to as the frequency of the interaction between Ai and Aj (or interaction
frequency).”

Once generated, a whole-genome contact map will serve as the starting point for down-

stream analysis. For instance, whole-genome contact maps can then be used to predict 3D

genome structure and ultimately help better understand the role of the 3D genome in various

biological functions like gene regulation [30, 34, 115, 151] and cellular differentiation [3, 4, 65].

The process of predicting 3D genomic structure from Hi-C data is computationally inten-

sive and requires a number of different methodologies. In general, the computational analysis

of Hi-C data can be broken down into the following four steps: (1) contact map generation,

(2) visualization, (3) pattern detection and (4) 3D genome prediction. A visual depiction

of this workflow is presented in Figure 1.3. There has been extensive effort in developing

computational tools and techniques in each of the four steps but it has been noted that these

tools are far from maturity [99, 176]. Furthermore, the current implementations of existing

tools for predicting 3D genome structure from Hi-C data lack the generalizability that would

be required for application in non-model organisms. This is due to their reliance on addi-

tional datasets or genomic substructures like topologically associating domains (TADs) [99].

The main objective of this thesis is to address this problem by developing new,

generalizable computational tools for Hi-C analysis. These new tools are imperative

as the research community begins to investigate and characterize 3D genome structure in a

more diverse set of organisms.
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Figure 1.3: An overview of the typical workflow for Hi-C analysis. Arrows depict the
flow of information throughout the analysis. Coloured boxes differentiate the general
steps. Grey text in the flow chart represents important input/output data or panel
labels (numbered and in capital letters). New computational tools that have been
developed as a part of this thesis are indicated in red text. Existing computational
tools or methodologies are represented in black text.
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The vast majority of research in 3D genomics has been conducted in model organisms. For

instance, Hi-C datasets from Homo sapiens (1675 datasets), Mus musculus (1045 datasets)

and Drosophila melanogaster (156 datasets) account for 89% of all the existing Hi-C datasets

in the Gene Expression Omnibus repository (as of January 30, 2020). This is problematic

since the research community has proposed many cross-species “hallmarks” of 3D genome

organization (such as chromosome territories, distinct regions of the nucleus occupied by a

single chromosome, and TADs, linear regions of self-interacting DNA) without confirming

their existence in a diverse set of organisms. Even more concerning is how some of the

existing tools rely on these “hallmarks” for pattern detection as well as predicting 3D genomic

structure. Additionally, it was recently highlighted that 3D genome prediction has only been

applied to an even smaller subset of the existing Hi-C data (less than 0.3%) [99]. The tools

presented in this thesis are a step towards correcting this bias by providing new options for

Hi-C data analysis that are generalizable to a diverse set of organisms.

The following chapters of this thesis consist of papers pertaining to the computational

analysis of the 3D genome. The citation and publication status of each paper is given at

the beginning of the corresponding chapter. Permission to reprint each paper was obtained

where required from the individual publishers and is available in Appendix A. Minor for-

matting modifications have be made to the manuscripts so they align with the University

of Saskatchewan’s thesis standards. Appendix B lists any major modifications or additions

to the published, in press or submitted manuscripts. I am the first author for each paper

and was responsible for writing the manuscripts and performing the bulk of the research. I

authored all of the software presented in this thesis except for step 1 of GeneRHi-C which

was done by Mats Carlsson. All manuscripts were extensively edited by the co-authors.

A brief overview of the contents of each chapter follows. Chapter 2 describes a new,

generalizable tool for Hi-C data visualization (GrapHi-C). Chapter 3 provides an overview of

the existing tools for predicting 3D genome structure from Hi-C data. Chapters 4 (GeneRHi-

C) and 5 (StoHi-C) describe two new tools for 3D genome prediction that overcome some

of the problems identified in Chapter 3. Additionally, Chapters 2, 4 and 5 apply multiple,

independent (in terms of strains and in some cases research groups) existing fission yeast

datasets to each tool in order to demonstrate their utility. Figure 1.3 indicates how these
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new tools fit into existing data analysis workflows. Finally, Chapter 6 provides a discussion

on the main contributions and limitations of each paper as well as potential future directions

stemming from this research.
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Chapter 2

GrapHi-C: Graph-Based Visualization of Hi-

C Datasets

Kimberly MacKay, Anthony Kusalik and Christopher Eskiw

Citation [101]: K MacKay, A Kusalik, CH Eskiw. GrapHi-C: graph-based visualization of

Hi-C datasets. BMC Research Notes. (2018) 11(1): 418. doi: https://doi.org/10.1186/

s13104-018-3507-2.

Detailed Contributions: Kimberly MacKay was responsible for writing the manuscript,

performing the research and authoring the software. A brief description of the contributions

for all listed authors can be found in Section 2.6.2.

As a reminder, the overarching goal of this thesis is to develop new, generalizable computa-

tional tools for Hi-C analysis and 3D genome prediction. GrapHi-C is a tool for visualizing

Hi-C datasets which is an important step in Hi-C analysis. Figure 1.3 indicates how GrapHi-C

fits into existing Hi-C data analysis workflows.

2.1 Abstract

Objectives: Hi-C is a proximity-based ligation reaction used to detect regions of the genome

that are close in 3D space (or “interacting”). Typically, results from Hi-C experiments (con-

tact maps) are visualized as heatmaps or Circos plots. While informative, these visualizations

do not directly represent genomic structure and folding, making the interpretation of the un-

derlying 3D genomic organization obscured. Our objective was to generate a graph-based

contact map representation that leads to a more intuitive structural visualization.
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Results: Normalized contact maps were converted into undirected graphs where each ver-

tex represented a genomic region and each edge represented a detected (intra- and inter-

chromosomal) or known (linear) interaction between two regions. Each edge was weighted

by the inverse of the linear distance (Hi-C experimental resolution) or the interaction fre-

quency from the contact map. Graphs were generated based on this representation scheme

for contact maps from existing fission yeast datasets. Originally, these datasets were used

to (1) identify specific principles influencing fission yeast genome organization and (2) un-

cover changes in fission yeast genome organization during the cell cycle. When compared to

the equivalent heatmaps and/or Circos plots, the graph-based visualizations more intuitively

depicted the changes in genome organization described in the original studies.

2.2 Introduction

One of the major problems in the genomic era is understanding how genomes are organized

and chromosomes are folded within cells. Genomic organization, specifically the close physi-

cal proximity of genetic elements located either distally on the same chromosome or located

on different chromosomes, greatly impacts cellular processes such as transcription, replication

and recombination [9]. The close physical proximity of two genetic elements is often referred

to as an “interaction”. Knowledge of what interactions are occurring and how they are medi-

ated is essential to understanding genome functions such as gene expression regulation. The

biological assay Hi-C [16, 93] (or one of its derivatives [28, 36, 44, 179]) can be used to detect

interactions between regions of the genome on the same chromosome (intra-chromosomal or

cis-interactions) or different chromosomes (inter-chromosomal or trans-interactions).

Briefly, Hi-C involves chemically cross-linking regions of the genome that are in close spa-

tial proximity. Restriction enzyme digestion and ligation is then preformed on the cross-linked

regions to generate chromatin/DNA complexes which can be identified by high-throughput

sequencing. The resultant sequence reads are mapped to a reference genome [7] to determine

the frequency with which each interaction occurs within the population of cells. The results

of a Hi-C experiment are often encoded as a symmetric N ×N matrix (contact map) where

N is the number of genomic “bins” into which the genome is partitioned. Each genomic bin
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represents a linear region of genomic DNA, where the number of bins is approximately equal

to the total genome size divided by the experimental resolution. For instance, a Hi-C exper-

iment in fission yeast that is able to attain 10 kB resolution will generate 1258 genomic bins,

each representing roughly 10 kB of linear DNA sequence. Each cell (CMi,j) of the contact

map records the interaction frequency between genomic bins i and j. Inherent systematic

biases within the whole-genome contact map are dampened by normalizing the interaction

frequencies. Typically, an ICE [68] or Knight-Ruiz [77, 90] normalization is applied to the

raw data resulting in fractional interaction frequencies.

In a typical workflow, normalized contact maps are initially visualized as heatmaps or

Circos [82] plots before further downstream analysis and 3D modelling [174]. While informa-

tive, these visualizations do not intuitively represent the complex organization and folding

of the genome in 3D space. This makes it difficult to quickly understand the underlying 3D

genome organization represented by the contact map. Our hypothesis is that representing

and visualizing contact maps as a graph will lead to a more intuitive structural visualiza-

tion of Hi-C data when compared to typical methods. We have developed a protocol called

GrapHi-C (pronounced “graphic”) for visualizing Hi-C data as a graph. GrapHi-C utilizes a

graph-based representation of a contact map and existing interactive tools for a more intu-

itive structural visualization of Hi-C data. We applied GrapHi-C to two existing datasets to

demonstrate the improvements it can bring to interpreting Hi-C data.

2.3 Results and Discussion

2.3.1 Graph-Based Representation

In GrapHi-C visualizations, a contact map is translated into an undirected graph where each

genomic bin is represented as a vertex and the detected or known interactions between bins

are represented as undirected weighted edges. Specifically, edges represent linear, cis- and

trans-interactions. Each edge is weighted with the inverse of the experimental resolution

(for linear interactions) or interaction frequency (for cis- and trans- interactions). The edges

representing bonafide in vivo linear connections between bins (i.e. the linear extent of the
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chromosome) add additional biological constraints. A formal description of the graphical

representation used in GrapHi-C is presented in Figure 2.1A.

2.3.2 Visualization Protocol

A Perl script was developed that is able to convert a normalized contact map into an adjacency

matrix based on the graph representation described above (available at: https://github.c

om/kimmackay/GrapHi-C, or Additional File 1). The output of this script can then be input

into a tool like Cytoscape [139] or Gephi [12] to generate a structural visualization. Utilizing

existing network visualization tools is advantageous since there are multiple plug-ins and

layouts available which allow for flexibility in visualization and subsequent analysis.

It should be noted that Hi-C data cannot be directly input into tools like Cytoscape

or Gephi. CytoHiC is the only existing Cytoscape plug-in for Hi-C data. It is used for

pairwise comparisons of contact maps based on genetic landmarks such as methylation [140]

and would provide a complementary analysis to GrapHi-C. The current version of CytoHiC

is not compatible with the latest major release of Cytoscape (released February 2013) and

the plug-in does not appear to be actively maintained. Unlike GrapHi-C, CytoHiC does not

include edges representing linear interactions. It also utilizes a different edge weight equation

to incorporate genetic landmarks into its comparison.

2.3.3 Applications

To demonstrate the value of the GrapHi-C visualization protocol, it was utilized to visualize

contact maps from existing fission yeast datasets where (1) fission yeast mutants were stud-

ied to determine principles of genomic organization [108] and (2) synchronized fission yeast

cells were used to track genomic organization throughout the cell cycle [152]. In each case,

normalized fission yeast contact maps (10 kB resolution) were downloaded from the Gene

Expression Omnibus database. The specific accession numbers are listed in the “Availability

of data and materials” section below. These contact maps were transformed into adjacency

matrices using the Perl script described above. The matrices were then input to the de-

veloped GrapHi-C protocol depicted in Figure 2.1B. For comparison, the normalized fission
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Contact Map Definitions:

CM = a N ⇥ N matrix

R = Hi-C experimental resolution (e.g. 10000)

C = {chr1...chrk} where
chrk ⇢ V such that each vertex in chrk corresponds to

a linear region of DNA in chromosome k

Graph Definitions:

G = (V, E)

V = {vi | 1  i  N}

E = Elinear [ Ecis [ Etrans where
Elinear ⇢ {{x, y} | x, y 2 chrk for some k and x 6= y} and
Ecis ⇢ {{x, y} | x, y 2 chrk for some k and x 6= y and CMx,y 6= 0} and
Etrans ⇢ {{x, y} | {x, y} ⇢ V and x 6= y and CMx,y 6= 0 and

x 2 chrk =) y 62 chrk}

w : E ! Q such that,

8{x, y} 2 Elinear, w(x, y) =
1

R
and

8{x, y} 2 Ecis [ Etrans, w(x, y) =
1

CMx,y

Contact Map

Adjacency 
Matrix

Perl Script

Cytoscape or 
Gephi

Graph Images

A B

Figure 2.1: A formal description of the graph representation and workflow
used by GrapHi-C. a The mathematical model used to represent a contact map as
an undirected graph in the GrapHi-C protocol. b Overview of the GrapHi-C protocol.
Each step of the workflow is indicated in a box where the different colours correspond
to: data input and output (grey), developed Perl script (purple), and an existing tool
(orange). An option for scaling the interaction frequencies is available in the developed
Perl script if future studies wish to use it.
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yeast contact maps were also visualized as heatmaps and Circos plots. The heatmaps were

generated using Java Treeview [129] which is the recommended visualization tool for contact

maps generated from Hi-C data analysis pipelines [59]. The Circos plots were visualized in

Cytoscape [139].

Application 1: To determine if GrapHi-C can recapitulate the differences between wild-

type and mutant fission yeast genome organization identified by Mizuguchi et. al [108],

the 999a wild-type and the rad21 mutant adjacency matrices were visualized in Cytoscape

using an edge-weighted spring embedded layout with the default parameters (Figure 2.2A-D).

Vertices along the periphery of the graph images correspond to genomic bins that represent

centromere and telomere regions. Since these regions are highly condensed and repetitive

(making the DNA difficult to assay and map), no interaction data was reported for them. All

edges (corresponding to cis-, trans- and linear interactions) were used to generate the GrapHi-

C images. To create the images in Figure 2.2, nodes were manually coloured according to

their corresponding chromosome and edges were hidden or revealed to highlight the cis- and

trans-interactions.

For comparison, heatmaps (Figure 2.2E, F) and Circos plots (Figure 2.2G, H) for the 999a

wild-type and the rad21 mutant contact maps were generated. These images represent the

standard, existing approach for the visualization of Hi-C data. They clearly demonstrate how

the traditional forms of visualization do not intuitively represent the complex organization

and folding of the genome in 3D space (Figure 2.2E-H). This makes it challenging to generate

hypotheses about how differences in the wild-type and mutant contact maps are reflected in

genome organization. On the contrary, the GrapHi-C visualizations (Figure 2.2A-D) clearly

highlight the loss of structural globules (intra-chromosomal structures) and the greater inter-

mingling of chromosomes in the mutant strain that was described in the original study [108].

The resultant visualizations for the rad21 mutant strain (Figure 2.2B, D) appear to be very

similar since the mutant contact map has smaller interaction frequency values (as compared

to the wild type) due to a greater intermingling of chromosomes. This results in the nodes

being placed closer together in the edge-weighted spring embedded layout. The rad21 in-

teraction frequency values are not scaled in order to maintain consistency when comparing

the wild-type and mutant strain visualizations. Overall, the GrapHi-C visualizations made
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Figure 2.2: Comparison of GrapHi-C Visualizations, Heatmaps and Circos
plots. Visualizations of the contact maps for the fission yeast 999a wild-type and rad21
mutant are displayed in the left and right columns, respectively. a–d The GrapHi-C
visualizations where vertices and linear interactions were coloured according to their
corresponding chromosome (chromosome 1: blue, chromosome 2: red, chromosome 3:
green). The grey dashed lines represent cis-interactions (a, b) and trans-interactions
(c, d). Graphs were visualized in Cytoscape using an edge-weighted spring embedded
layout. e, f The heatmaps generated with Java Treeview that correspond to the contact
maps. The opacity of a cell is directly related to the frequency of the interaction. g, h
The Circos plots that correspond to the contact maps. Circos plots were visualized in
Cytoscape. Vertices were coloured according to their corresponding chromosome (chro-
mosome 1: blue, chromosome 2: red, chromosome 3: green) and grey lines represent an
interaction between two vertices.
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it easier to quickly identify the principles of genome organization and associated biological

effects of the rad21 yeast mutant that were discovered in the original study. This suggests the

developed graph-based representation and structural visualization is a valid way to represent

contact maps.

Application 2: To determine if the GrapHi-C protocol was able to identify the same

cell cycle dependent alterations in genome organization described by Tanizawa et. al [152].

GrapHi-C images, based on the normalized contact maps for each time point, were visualized

in Gephi using the ForceAtlas2 layout [70] (Figure 3.3 – column 1). Similarly to Application

1, all edges (corresponding to cis-, trans- and linear interactions) were used to generate the

images. Nodes were manually coloured according to their corresponding chromosome and

edges were hidden in the exported images for simplicity. GrapHi-C images containing all the

edges for the 40, 60, 80 and 120 minute time points are provided in Additional Files 2-5. For

comparison, the heatmaps (Figure 3.3 – column 2) and Circos plots (Figure 3.3 – column

3) were generated based on the normalized contact maps for each cell cycle time point. As

mentioned previously, these images represent the standard, existing approach for Hi-C data

visualization.

In the original study, Tanizawa et. al [152] established that throughout the cell cycle,

small domains approximately 50 kB in size are consistently present. During mitosis (M) the

DNA condenses resulting in more cis-chromosomal interactions and fewer trans-chromosomal

interactions. Not only are the GrapHi-C visualizations able to recapitulate these identified

cell cycle dependant genomic alterations, they also intuitively highlight established features of

fission yeast genomic organization. For instance, during fission yeast interphase (comprised

of the G1, S and G2 phases) the chromosomes are organized in a polarized arrangement

(Rab1 -like configuration) where the centromeres of all three chromosomes are clustered at

one end of the nucleus and the telomeres of chromosomes 1 and 2 cluster at the opposite

end near the nuclear periphery [107]. Additionally, microscopy techniques have established

that all three chromosomes are organized into distinct chromosome territories within the

nucleus at all phases of the cell cycle [107, 109, 131]. These hallmarks of fission yeast genome

organization are distinctly recapitulated in the GrapHi-C visualizations. Furthermore, the

GrapHi-C visualizations clearly represent the established condensation of chromosomal DNA
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Figure 2.3: GrapHi-C Visualizations for Fission Yeast Contact Maps at
Various Stages of the Cell Cycle. Cell cycle labels and the corresponding time
points are given on the top of each panel. GrapH-C images are presented in column 1.
In these images, vertices were coloured according to their corresponding chromosome
(chromosome 1: purple, chromosome 2: orange, chromosome 3: green) and edges were
hidden. Graphs were visualized in Gephi using the ForceAtlas2 layout. The corre-
sponding heatmaps generated by Java Treeview are in column 2. In these heatmaps,
the opacity of a cell is directly related to the frequency of the interaction. Column
3 contains the Circos plots that correspond to the contact maps. Circos plots were
visualized in Cytoscape. Vertices were coloured according to their corresponding chro-
mosome (chromosome 1: blue, chromosome 2: red, chromosome 3: green) and grey
lines represent an interaction between two vertices. Note that the area inside the circle
appears to be solid grey due to the number (and subsequent density) of interactions in
these datasets.
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during mitosis and de-condensation during interphase [107]. Overall, GrapHi-C provides

a more intuitive representation of how the chromosomes are organized within the nucleus

during different phases of the cell cycle. The resultant images are informative additions

which support the in-depth analysis performed in the original study.

2.4 Conclusion

In this manuscript, we provide a protocol called GrapHi-C (pronounced “graphic”) for vi-

sualizing Hi-C data as a graph and developed a mathematical model for graph-based repre-

sentations of contact maps. In addition to edges that represent the detected cis- and trans-

interactions, we chose to include edges between each sequential genomic bin within a chromo-

some to better represent the linear extent of the genome. We developed a Perl script that can

be used to convert a contact map into an adjacency matrix related to the developed graph-

based representation. This matrix can then be input into a tool like Cytoscape or Gephi for

structural visualization. Even though the graph-based representation seems straightforward,

it is still novel in the genome structure community.

Overall, the developed GrapHi-C visualizations of the contact maps (compared to the

equivalent heatmaps and Circos plots) made it easier to quickly identify the changes in

genome organization identified in previous studies. Future work will focus on extending this

visualization to allow for the vertices to be coloured according to complementary -omics

datasets (such as gene expression, epigenetic markers or transcription factor binding sites)

and produce a 3D graph-based visualization. Additionally, we will apply it to organisms with

larger genomes to determine how well it scales to larger contact maps. Not only does the

graph-based representation of Hi-C data lead to a more intuitive visualization, it also has

the potential to lead to new ways of analyzing contact maps by leveraging tools and results

from graph theory.

16



2.5 Limitations

GrapHi-C has only been tested on Hi-C datasets from haploid organisms – it should also

be applied to organisms with higher ploidies to establish the robustness of the workflow.

Additionally, GrapHi-C needs to be tested on an unfavourable Hi-C dataset that contains

a multitude of disparate proximity relationships. Finally, the effect of visualizing a Hi-C

dataset with technical problems needs to be established.
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2.6.7 Availability of Data and Materials

The datasets supporting the conclusions of this article are available in the Gene Expression

Omnibus database, [accession number: GSE56849; https://www.ncbi.nlm.nih.gov/geo/q

uery/acc.cgi?acc=GSE56849, GSE93198; https://www.ncbi.nlm.nih.gov/geo/query/a

cc.cgi?acc=GSE93198]. The specific sample numbers for each application follow.

• Application 1:

– 999a (GSM1379427)

– rad21 (GSM1379430)

• Application 2:

– 20 minutes (GSM2446256)

– 30 minutes (GSM2446257)

– 40 minutes (GSM2446258)

– 50 minutes (GSM2446259)

– 60 minutes (GSM2446260)

– 70 minutes (GSM2446261)

– 80 minutes (GSM2446262)

– 120 minutes (GSM2446263)

Software Information

Project Name: GrapHi-C (pronounced “graphic”)

Project Home Page: https://github.com/kimmackay/GrapHi-C

Archived Version: v1.0.0

18

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56849
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56849
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93198
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93198
https://github.com/kimmackay/GrapHi-C


Operating System(s): Platform Independent

Programming Language: Perl

Other Requirements: Not Applicable

License: This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativeco

mmons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, PO Box 1866,

Mountain View, CA 94042, USA.

2.6.8 Archived Software

Additional File 1

Program 2.1: Perl script used for converting a contact map into an adjacency matrix

based on the graph representation in Figure 2.1A.

1 #!/usr/bin/perl
2 ## will generate an adjacency graph that can be input into
3 ## cytoscape to visualize a Hi -C dataset
4 ##
5 ## argument 1: the normalized whole -genome contact map
6 ## argument 2: total number of vertices (number of genomic bins)
7 ## argument 3: number of chromosomes
8 ## argument 4: the value you would like to use to define a linear
9 ## interaction frequency (experimental resolution)

10 ## argument 5: a value to scale the interaction frequencies from the
11 ## whole -genome contact map (enter 1 if you wish to not
12 ## scale the values)
13 ## argument 6: ’C’ or ’G’ to specify cytoscape or gephi visualization
14 ## argument 7: the output file name
15 ##
16 ## Kimberly MacKay
17 ## last updated: March 23, 2017
18 ## license: This work is licensed under the Creative Commons
19 ## Attribution -Non Commercial -ShareAlike 3.0 Unported License.
20 ## To view a copy of this license , visit
21 ## http :// creativecommons.org/licenses/by -nc -sa /3.0/ or send a letter
22 ## to Creative Commons , PO Box 1866, Mountain View , CA 94042, USA.
23

24 use strict;
25 use warnings;
26

27 ## check to ensure seven arguments were passed in
28 die "ERROR: must pass in seven arguments." if @ARGV != 7;
29
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30 my $hic_file = $ARGV [0];
31 my $num_nodes = $ARGV [1];
32 my $num_chr = $ARGV [2];
33

34 ## define the value of a linear frequency
35 my $linear_freq = $ARGV [3];
36

37 ## value to scale the interaction frequencies by
38 my $scale = $ARGV [4];
39

40 ## determine the visualization tool to be used
41 my $viz_tool = $ARGV [5];
42

43 ## get the output file name
44 my $out_file_name = $ARGV [6];
45

46 ## get the values for the start and end of each chromosome
47 ## from the user
48 my @chr_start;
49 my @chr_stop;
50

51 print "enter the starting genomic bin number for each chromosome.
52 Enter d when complete: ";
53

54 my $input = <STDIN >;
55 chomp $input;
56

57 while (!( $input =~ /d/))
58 {
59 # add the input to the array
60 push @chr_start , $input;
61

62 # get the next input
63 $input = <STDIN >;
64 chomp $input;
65 }
66

67 print "enter the ending genomic bin number for each chromosome.
68 Enter d when complete: ";
69

70 $input = <STDIN >;
71 chomp $input;
72

73 while (!( $input =~ /d/))
74 {
75 # add the input to the array
76 push @chr_stop , $input;
77

78 # get the next input
79 $input = <STDIN >;
80 chomp $input;
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81 }
82

83 ## gut check: ensure the size of the arrays is the same
84 die "ERROR: the number of chromosome start and end
85 positions should be equal." if $#chr_start != $#chr_stop;
86

87 #####################################################################
88 ## print out the linear interactions
89 #####################################################################
90

91 ## open the output file to print
92 open(my $out , ’>’, $out_file_name)
93 or die "Could not open $out_file_name";
94

95 ## print the first line of the output file
96 ## if it is for a cytoscape visualization , print out a different
97 ## header line then the header required for Gephi visualization
98 if($viz_tool eq "C")
99 {

100 print $out "source_node\tsink_node\tinteraction_type
101 \tassociated_freq\tsource_chr\tsink_chr\tlinear_edge_chr\n";
102 }
103 elsif($viz_tool eq "G")
104 {
105 print $out "Source\tTarget\tinteraction_type\tWeight\n";
106 }
107

108 ## for each chromosome
109 for(my $chr = 1; $chr <= $num_chr; $chr ++)
110 {
111 for(my $j = $chr_start[$chr -1]; $j < $chr_stop[$chr -1]; $j++)
112 {
113 ## if it is a cytoscape visualization , print out the inverse of
114 ## the linear frequency and relevant information
115 if($viz_tool eq "C")
116 {
117 print $out "bin".$j."\tbin".($j+1)."\tlinear\t".1/ $linear_freq.
118 "\t".$chr."\t".$chr."\t".$chr."\n";
119 }
120 ## if it is a gephi visualization , just print out the linear
121 ## frequency (it will be inverted by the force atlas 2 layout)
122 ## and relevant information
123 elsif($viz_tool eq "G")
124 {
125 print $out $j."\t".($j+1)."\tlinear".$chr."
126 \t".$linear_freq."\n";
127 }
128 }
129 }
130

131 close $out;
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132

133 #####################################################################
134 ## print out the non -linear interactions
135 #####################################################################
136

137 ## open the interaction matrix file
138 open WGCM , "$hic_file"
139 or die "ERROR: $hic_file could not be opened.";
140 chomp(my @hic_matrix = <WGCM >);
141 close WGCM;
142

143 ## convert the decimals to integers and store them in a new array
144 ## note: the 0th row and column of freq will be empty allow for a
145 ## more natural parsing later on
146 my @frequencies;
147

148 ## for each line after the header line
149 for(my $row = 1; $row <= $#hic_matrix; $row ++)
150 {
151 ## split the line
152 my @matrix_line = split /\t/, $hic_matrix[$row];
153

154 ## loop through the entire file to extract the frequencies
155 for(my $col = 1; $col <= $num_nodes; $col ++)
156 {
157 ## adjusts NA’s to 0’s
158 if($matrix_line[$col] =~ "NA")
159 {
160 $frequencies[$row][ $col] = 0;
161 }
162 else
163 {
164 ## just store the (potentially scaled) interaction frequency
165 $frequencies[$row][ $col] = $matrix_line[$col]* $scale;
166 }
167 }
168 }
169

170 ## re-open the output file to append to it
171 open($out , ’>>’, $out_file_name)
172 or die "Could not open $out_file_name";
173

174 ## loop through one half of the matrix and print out the edges
175 ## avoid the diagonal to prevent self -self interactions
176 for(my $row = 1; $row <= $#frequencies; $row ++)
177 {
178 for(my $col = $row +1; $col <= $#frequencies; $col ++)
179 {
180 ## if it is a non -zero frequency
181 if($frequencies[$row][ $col] != 0)
182 {
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183 ## get the source and sink chr numbers
184 my $source_chr;
185 my $uknown = 1;
186

187 for(my $j = 0; $j <= $#chr_stop && $uknown; $j++)
188 {
189 if($row <= $chr_stop[$j])
190 {
191 $source_chr = $j+1;
192 $uknown = 0;
193 }
194 }
195

196 my $sink_chr;
197 $uknown = 1;
198

199 for(my $j = 0; $j <= $#chr_stop && $uknown; $j++)
200 {
201 if($col <= $chr_stop[$j])
202 {
203 $sink_chr = $j+1;
204 $uknown = 0;
205 }
206 }
207

208 ## check if it is a intra or inter interaction
209 if($source_chr == $sink_chr)
210 {
211 ## print the intra -interaction
212 ## if it is a cytoscape visualization
213 if($viz_tool eq "C")
214 {
215 print $out "bin".$row."\tbin".$col."\tintra -interaction\t"
216 .$frequencies[$row][ $col]."\t".$source_chr."\t"
217 .$sink_chr."\t0\n";
218 }
219 ## if it is a gephi visualization
220 elsif($viz_tool eq "G")
221 {
222 print $out $row."\t".$col."\tintra -interaction\t".
223 $frequencies[$row][ $col]."\n";
224 }
225 }
226 else
227 {
228 ## print the inter -interaction
229 ## if it is a cytoscape visualization
230 if($viz_tool eq "C")
231 {
232 print $out "bin".$row."\tbin".$col."\tinter -interaction\t"
233 .$frequencies[$row][ $col]."\t".$source_chr."\t"
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234 .$sink_chr."\t0\n";
235 }
236 ## if it is a gephi visualization
237 elsif($viz_tool eq "G")
238 {
239 print $out $row."\t".$col."\tinter -interaction\t".
240 $frequencies[$row][ $col]."\n";
241 }
242 }
243 }
244 }
245 }
246 close $out;

2.6.9 Supplemental Figures

Additional File 2

Figure 2.4: GrapHi-C Visualization for Fission Yeast Contact Map During
M Phase (40 minutes). In this image, vertices were coloured according to their cor-
responding chromosome (chromosome 1: purple, chromosome 2: orange, chromosome
3: green). The cis- and trans-interactions edges are depicted with grey lines. Due to
the number (and subsequent density) of these lines, these appear to be a solid grey
area. The graph was visualized in Gephi using the ForceAtlas2 layout.
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Additional File 3

Figure 2.5: GrapHi-C Visualization for Fission Yeast Contact Map During
G1 (60 minutes). In this image, vertices were coloured according to their corre-
sponding chromosome (chromosome 1: purple, chromosome 2: orange, chromosome 3:
green). The cis- and trans-interactions edges are depicted with grey lines. Due to the
number (and subsequent density) of these lines, these appear to be a solid grey area.
The graph was visualized in Gephi using the ForceAtlas2 layout.

Additional File 4

Figure 2.6: GrapHi-C Visualization for Fission Yeast Contact Map During
S Phase (80 minutes). In this image, vertices were coloured according to their corre-
sponding chromosome (chromosome 1: purple, chromosome 2: orange, chromosome 3:
green). The cis- and trans-interactions edges are depicted with grey lines. Due to the
number (and subsequent density) of these lines, these appear to be a solid grey area.
The graph was visualized in Gephi using the ForceAtlas2 layout.
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Additional File 5

Figure 2.7: GrapHi-C Visualization for Fission Yeast Contact Map During
G2 (120 minutes). In this image, vertices were coloured according to their corre-
sponding chromosome (chromosome 1: purple, chromosome 2: orange, chromosome 3:
green). The cis- and trans-interactions edges are depicted with grey lines. Due to the
number (and subsequent density) of these lines, these appear to be a solid grey area.
The graph was visualized in Gephi using the ForceAtlas2 layout.
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As a reminder, the overarching goal of this thesis is to develop new, generalizable computa-

tional tools for Hi-C analysis and 3D genome prediction. This chapter provides a survey of

the existing tools for 3D genome prediction.

3.1 Abstract

The advent of high-resolution chromosome conformation capture assays (like 5C, Hi-C and

Pore-C) has allowed for unprecedented sequence-level investigations into the structure-function

relationship of the genome. In order to comprehensively understand this relationship, compu-
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tational tools are required that utilize data generated from these assays to predict 3D genome

organization (the 3D genome reconstruction problem). Many computational tools have been

developed that answer this need but a comprehensive comparison of their underlying algorith-

mic approaches has not been conducted. This manuscript provides a comprehensive review of

the existing computational tools (from November 2006 to September 2019, inclusive) that can

be used to predict 3D genome organizations from high-resolution chromosome conformation

capture data. Overall, existing tools were found to use a relatively small set of algorithms

from one or more of the following categories: dimensionality reduction, graph/network the-

ory, maximum likelihood estimation and statistical modelling. Solutions in each category

are far from maturity and the breadth and depth of various algorithmic categories have not

been fully explored. While the tools for predicting 3D structure for a genomic region or single

chromosome are diverse, there is a general lack of algorithmic diversity among computational

tools for predicting the complete 3D genome organization from high-resolution chromosome

conformation capture data.

Key Phrases

Genome Organization, 3D Genome Prediction, 3D Genome Reconstruction Problem, High-

Resolution Chromosome Conformation Capture Data, Hi-C, 5C

3.2 Introduction

This manuscript provides a survey of the existing computational tools that can be used for

predicting 3D genomic organization from high-resolution chromosome conformation capture

data. Relevant biological and computational background is provided in Section 3.3. Section

3.4 describes the 3D genome reconstruction problem (3D-GRP) formalism. Section 3.5 pro-

vides an overview of existing tools for solving the 3D-GRP. Two of these existing tools (one

consensus and one ensemble) are described in more detail in Section 3.6. Similarly, Section

3.7 provides an overview of existing tools for solving the related, but simpler, problem of pre-

dicting 3D organization for a single chromosome or genomic region. An exemplar consensus
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and ensemble tool for solving this simpler problem are discussed in more detail in Section

3.8. Finally, a discussion of the shortcomings of the existing approaches and future research

directions can be found in Section 3.9.

3.3 Background

Like many areas of biology, the relationship between genomic structure and function is closely

linked [10]. Alterations in the 3D organization of chromosomes have been demonstrated in

a wide variety of nuclear and cellular processes, including DNA translocation [10], differen-

tiation [83], serum response [103], therapeutic response [104] and response to DNA damage

[105]. The unique spatial organization of the genome that is seen under these different cellu-

lar conditions is hypothesized to be a crucial mechanism driving various nuclear and cellular

functions. It has been theorized that this dynamic organization of the genome may be driven

by global regulation of gene expression (or vice-versa) [6, 23, 27, 34, 91] since 3D genome

organization has been shown to facilitate interactions between genes and their regulatory

elements [150, 169].

Traditionally, microscopy techniques have been utilized to visualize the spatial organiza-

tion of chromosomes within the nucleus. While informative, they do not provide sequence-

level information about the observed organizations [43]. Therefore other biological techniques

must be used (either in combination or standalone) to allow for the sequence-level inference

of 3D genomic organization. Many such biological techniques have been developed to assay

the 3D genome organization at various sequence-level resolutions [10, 33, 38, 130]. In gen-

eral, these techniques are able to determine whether a single (or multiple) pair(s) of genomic

regions are in close 3D physical proximity. Genomic regions in close proximity are more

commonly referred to as “interacting”.

Table 3.1: Biological techniques that can be used to assay 3D genome organization.
Techniques are categorized based on the number of genomic regions they assay.

Category Biological Technique(s)

one-by-one chromosome conformation capture (3C) [36] and ChiP-loop [54]

one-by-all circularized chromosome conformation capture (4C) [141, 170, 179]
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many-by-many chromosome conformation capture carbon copy (5C) [44]

many-by-all Capture-C [66], Capture Hi-C (CHi-C) [45, 71], HiCap [128], Targeted

Chromatin Capture (T2C) [79]

all-by-all ChIA-PET [54], HiChIP [111], Hi-C [16, 74, 92], Pore-C [85] and

Tethered Chromatin Capture (TCC) [74]

The biological techniques used for detecting 3D genomic organization can be broadly

classified into the following categories based on the number of genomic regions they assay:

one-by-one (used to detect an interaction between a single pair of genomic regions); one-by-all

(used to detect all the interactions between one genomic region and the rest of the genome);

many-by-many (used to detect interactions between many genomic regions and many other

loci, where many is the number of loci on a chip or microarray); many-by-all (used to detect

interactions between many genomic regions and the rest of the genome); and all-by-all (used

to detect all the interactions occurring between mappable regions of the genome). Table 3.1

provides the specific names and citations for some of the biological techniques in each of these

categories. Briefly, these techniques all follow five general steps (with slight modifications):

(1) chemical cross-linking, (2) fragmentation, (3) ligation, (4) reverse cross-linking, and (5)

technique-specific detection. A visual overview of the general workflow for each technique can

be found in the review by Denker and de Laat [38]. Additional information regarding the bio-

logical background for these techniques can be found in the review recently published by Han

et al. [57]. For the purpose of this manuscript, “high-resolution chromosome conformation

capture” (HR-3C) will refer to the many-by-many, many-by-all and all-by-all techniques.

Algorithms for predicting 3D genome structure utilize a set of pairwise interactions and

associated frequencies as input. Typically, this data is extracted from the results of a many-

by-many, many-by-all or all-by-all (HR-3C) assay. The one-by-one and one-by-all techniques

do not generate enough pairwise data points to allow for an accurate prediction of 3D genomic

structure on their own. It is possible that the data from a one-by-one or one-by-all assay

could be combined with data from a HR-3C assay and used as input to a 3D prediction

algorithm, but this is not common practise in the field. The following paragraphs present a

brief overview of how a set of pairwise interactions and associated frequencies can be extracted
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from a HR-3C assay’s raw data (sequencing reads).

In general, HR-3C techniques utilize next-generation sequencing technologies to iden-

tify the sequences of interacting regions of the genome. Once these sequencing reads are

generated, they are typically processed through a read mapping and filtering pipeline like

HiCUP [167]. Briefly, this process involves quality control, read-splitting and independent

read-mapping. Mapping sequence reads to a reference genome results in the generation of

a matrix called a whole-genome contact map. A whole-genome contact map is a N × N

matrix, where N is the number of genomic “bins” where each bin represents a contiguous

sequence of linear DNA [86, 101, 177]. In general, the size of the whole-genome contact map

(the number of genomic bins) is approximately equal to the total genome size divided by the

assay’s experimental resolution. Each cell (Ai,j) of a whole-genome contact map (A) indicates

the count of how many times genomic bin i has been found to interact with genomic bin j.

These counts are symmetric along the diagonal (i.e. Ai,j = Aj,i) and are often referred to as

the frequency of the interaction between Ai and Aj (or interaction frequency).

After the whole-genome contact map is generated, interaction frequencies are normalized

to correct for some of the inherent biases resulting from HR-3C experiments. These biases

include (but are not limited to) discrepancies in DNA compaction or “visibility” [68], GC

content [64, 171] and copy number variation [137]. Various computational methods have

been developed to dampen these biases through normalization [29, 64, 77, 90, 145]. Most

commonly, an iterative correction and eigenvector (ICE) decomposition [68] or Knight-Ruiz

normalization [77, 90] is applied resulting in fractional interaction frequencies. ICE decom-

position aims to achieve equal visibility across all genomic regions and results in relative

interaction frequencies. Knight-Ruiz normalization performs matrix balancing resulting in

fractional interaction frequencies where the rows and columns sum to 1. A comprehensive

comparison of the normalization methods for HR-3C data has been recently published by

Lyu et al. [96].

Downstream analysis of normalized whole-genome contact maps has uncovered unique

genome-level patterns including distance-dependent interaction frequencies and more inter-

actions between genomic regions on the same chromosome (cis-chromosomal interactions)

than between regions on different chromosomes (trans-chromosomal interactions) [86, 92].
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Further computational analysis of whole-genome contact maps has revealed the presence of

various “hallmarks” of 3D genome organization. For instance, statistical analysis of whole-

genome contact maps has revealed the presence of structural subunits called topologically

associating domains (TADs) [41]. TADs are linear regions of DNA where interactions occur

more frequently within the domain instead of between domains [41]. Originally, TADs were

hypothesized to be structural building blocks for 3D genome organization but it has been

determined that they serve no structural importance [32, 175].

Normalized whole-genome contact maps can also be used to infer a 3D structure of the

genome (or a single genomic region). The process of predicting a model of the 3D genomic or-

ganization from a contact map is known as the 3D genome reconstruction problem (3D-GRP)

[132] (described in more detail below). Many computational methods have been developed

that utilize the data from HR-3C experiments to predict 3D genomic organization. Classi-

cally, existing programs have been broadly classified based on the number of genome models

the method produces. Ensemble tools generate a collection of structures which represent

the different genome organizations that may be present within a population of cells while

consensus tools generate one structure which represents the population-averaged genome

organization [86]. This manuscript provides a comprehensive review of the existing tools

published from November 2006 (the year 5C was first described [44]) to September 2019 that

use data extracted from HR-3C techniques to predict a 3D structure of complete genomes or

a genomic region (Sections 3.5 and 3.7, respectively). A brief overview of the main chromo-

some models used by these existing tools is provided in Section 3.4 of this manuscript. The

subsequent sections assume that the reader has some familiarity with the following concepts:

multi-dimensional scaling [80, 81], shortest path algorithms [40, 51, 72, 166], expectation

maximization [37], genetic algorithms [144], gradient descent (or ascent) [11], simulated an-

nealing [76, 149], and Markov chain Monte Carlo sampling [58].

3.4 Problem Formalism

As mentioned above, the process of predicting a 3D genomic organization from HR-3C data

is known as the 3D genome reconstruction problem (3D-GRP) [132]. It should be noted that
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the 3D-GRP has also been referred to as the 3D chromatin structure modelling problem [178]

and that these two phrases can be used interchangeably. More formally, the 3D-GRP can be

formulated as an optimization problem that tries to optimize the combined distance between

multiple pairs of genomic regions. Informally, this is represented as a geometry problem [61]

where the genomic bins are encoded as points and the goal is to find each point’s (x, y, z)

coordinates such that the pairwise distances between points best capture the corresponding

interaction frequencies. It is assumed that, on average, a pair of genomic regions with a

small interaction frequency will be further away in 3D space than a pair of genomic regions

with a higher interaction frequency [6, 13, 14, 46, 52, 63, 87, 127, 163]. This relationship is

often modelled through the following inverse function for a given pair of genomic regions (i

and j): disti,j = 1
Aαi,j

where dist is the distance between the two genomic regions, Ai,j is the

corresponding normalized interaction frequency (a value between 0 and 1) from the whole-

genome contact map, and α is an exponential factor with a value typically between 0.1 and

3.0 [156]. Most existing methods focus on finding the optimal value (or a set of values) for

α and each point’s (x, y, z) coordinates so that the computed distances closely recapitulate

the original normalized frequencies from the whole-genome contact map [132]. Formally, the

3D-GRP can be defined in the following way when Euclidean distance is used:

Given a whole-genome contact map A with bins from 1..N , determine α and each point’s

(x, y, z) coordinates such that

for i = 1..N and j = 1..N

disti,j =
1

Aαi,j

(3.1)

and the sum

N∑
i=1,j=1

∣∣∣∣∣disti,j −
√(

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
)∣∣∣∣∣ (3.2)

is minimized and
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(xi, yi, zi) 6= (xj, yj, zj) where 1 ≤ i ≤ N , 1 ≤ j ≤ N , i 6= j (3.3)

In order to predict a 3D organization for a complete genome or genomic region, individual

chromosomes need to be modelled as a set of points that can be assigned 3D coordinates.

In general, existing methods use one of the following chromosome models. (1) Beads: each

individual chromosome is represented as a collection of M beads where M is the number

of genomic bins that constitute the linear extent of a chromosome. (2) Beads-on-a-String:

again, each individual chromosome is represented as a collection of M beads. Unlike the

beads model, “strings” of a fixed length are used to connect each pair of adjacent beads.

Typically, these represent beads that are linearly adjacent on a chromosome. (3) Beads-on-

a-Spring: this representation is similar to (2) but beads on an individual chromosome are

connected with “springs” to represent the linear extent of a chromosome. Springs typically

have a variable length that is based on attractive and repulsive forces of the connected beads.

(4) Graph/Network: each bin from the whole-genome contact map is represented as a node

in a network. Edges between nodes represent interactions from the contact map. Often,

edges between bins on the same chromosome that are linearly adjacent are not included. (5)

Polymer: each chromosome is represented as a line which is composed of consecutive line

segments. Each line segment encodes a genomic bin or a genomic region that is delimited by

two endonuclease restriction sites. (6) Piecewise curve: this is a mathematical formulation

where each chromosome is represented as a set of connected 3D curves. Each curve represents

an individual genomic bin or region.

3.5 Existing Tools for Solving the 3D-GRP

A comprehensive list of the existing computational tools for predicting 3D genomic orga-

nization from HR-3C data is available in Table 3.2. This table represents the majority of

tools in the existing literature at the time of manuscript submission. Additional information

regarding how these manuscripts were selected can be found in Section 3.13.1.
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Table 3.2: Existing computational tools for predicting 3D genome organization from
HR-3C data. Tools are categorized as either consensus or ensemble and then listed in al-
phabetical order. Tools marked with an asterisk (*) did not appear to be actively main-
tained at the time of manuscript submission. Column headings are as follows: Name,
the tool’s name or abbreviated reference (Panel labels from Figure 3.1 are provided
in parentheses); Technique, the general algorithmic strategy employed; CHR Model,
a description of the chromosome model utilized; Additional Data, any additional bio-
logical datasets required; a priori Constraints, a descriptor denoting whether a priori
information is required and/or assumed; Language, the programming language used
to implement the tool; Availability Mode, a description of how the tool was deployed;
Website, a link to the tool. Abbreviations are as follows: MDS, Multi-Dimensional Scal-
ing; MLE, Maximum Likelihood Estimation; LAD, lamin-associated domains; DamID,
DNA adenine methyltransferase identification. IPOPT is a software library used for
nonlinear optimization. A dash indicates “not applicable”, “not available”, or “none”,
as appropriate.

Name Technique CHR
Model

Additional
Data

a priori
Con-

straints

Language Availability
Mode

Website

A. Consensus Methods

Diament
and Tuller

(Figure
3.1A) [39]

MDS Beads-on-a-
String

Orthologous
relationships

organism-
specific
(nuclear
radius,

elasticity
between
adjacent
beads,

minimum
distance
between

homolgous
CHRs,

nucleolous
position,
CHR 12
position

C++ ;
requires
IPOPT

Source Code http://www.

cs.tau.ac.

il/~tamirtu

l/reconstr

uction.zip

Duan et al.
(Figure
3.1B)

[6, 46, 151]

MDS Beads-on-a-
String

— organism-
specific
(CHR12
position,

nucleolous
size and

position);
spatial

(1000 nm
nucleus,
distance
between

beads (30 or
75 nm for

cis-beads, or
trans-beads,
respectively)

— — —
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Kapilevich
et al.

(Figure
3.1C) [75]

MDS and
Genetic

Algorithm

Graph — — Python2 Source Code https://gi

thub.com/s

kkap/mdsga

miniMDS
(Figure

3.1D) [125]

MDS with
Divide-and-

Conquer
Approach

Beads — dataset-
specific

(must have
TADs)

Python2 or
Python3

Source Code https:

//github.c

om/seqcode

/miniMDS

Segal and
Bengtsson

(Figure
3.1E,F)

[132]

MDS Graph — — — — —

Stevens et
al. (Figure
3.1G) [146]

Simulated
Annealing

Beads-on-a-
String

— dataset-
specific

(must be
from a

single-cell)

Python2 or
Python3

Source Code https:

//github.c

om/TheLaue

Lab/nuc dyn

amics

B. Ensemble Methods

Chrom3D
(Figure

3.1H) [120]

Monte Carlo
Optimiza-

tion

Beads-on-a-
String

LAD dataset-
specific

(must have
TADs)

C++ Source Code https:

//github.c

om/Chrom3D

/Chrom3D

Kalhor et
al. (Figure
3.1I) [74]

Simulated
Annealing

Beads — dataset-
specific

(must be
from a
diploid

organism,
cannot be

pre-phased)

— — —

Li et al.
(Figure

3.1J) [89]

Expectation
Maximiza-

tion

Beads LAD,
DamID
(only

applicable
to fruit fly
datasets)

organism-
specific
(nuclear
radius,

minimum
distance
between
adjacent

beads and
homolgous

CHRs);
dataset-
specific
(must

contain
TADs)

Python2 Source Code https:

//github.c

om/alberla

b/3DGenome

FruitFly/

tree/v1.0.0

LorDG*
(Figure

3.1K) [156]

Gradient
Ascent

Beads — — — — https:

//missouri

.app.box.c

om/v/LorDG
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Tjong et al.
(Figure

3.1L) [154]

Expectation
Maximiza-

tion

Beads — dataset-
specific

(must be
from a
diploid

organism,
cannot be

pre-phased)

— — —

C. Consensus or Ensemble Methods

3D-GNOME
(Figure
3.1M)

[147, 148]

Simulated
Annealing
or MDS

(low-res);
Polymer
Physics

(high-res)

Beads-on-a-
Spring

— dataset-
specific

(must be
from

organisms
that contain

CTCF
motif)

— Web Server http://3dgn

ome.cent.u

w.edu.pl/

In Table 3.2, the existing tools are categorized based on the number of predicted genome

organizations they produce (i.e. ensemble vs consensus). Tools marked with an asterisk (*)

did not appear to be actively maintained (DAAM) at the time of manuscript submission. This

designation was given if the software presented in the original manuscript(s) could no longer

be accessed. Typically, this was due to obsolete or nonfunctional website uniform resource

locators (URLs). An example of the output produced by each tool can be found in Figure

3.1. In each case, the images were extracted from the corresponding original publication.

Permission was obtained to reprint these images where required 1. All of the existing tools

utilize either heuristics or approximations in their solution.

Five of the seven consensus methods and three of the six ensemble methods listed in

Table 3.2 provide access to the source code or a web interface. As mentioned in Table 3.2, the

method developed by Stevens et al. only works with single-cell interaction data while all other

methods accept interaction data from a population of cells. Currently, none of the available,

actively maintained ensemble methods are usable for solving the 3D-GRP in the general case.

This is because they rely on hypothesized “hallmarks” of genome organization like TADs,

the presence of binding motifs for proteins often found at TAD boundaries (like CTCF)

or require diploid, un-phased datasets to make their predictions. This is problematic since

these genomic “hallmarks” have been shown to not exist in some organisms like Arabidopsis

thaliana [42, 142]. This could pose a major barrier going forward as investigations into the

3D genomic organization of non-model organisms continues.
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Figure 3.1: An example of a predicted 3D genome organization from each of the
existing consensus (A-G) and ensemble (H-M) tools. Tool name or abbreviated reference
can be found at the top of each panel and the organisms (and cell type, when applicable)
are listed at the bottom of the panel. The abbreviation ESCs stands for embryonic stem
cells. Permission was obtained to reprint these images where required 3.12.
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3.6 Exemplar 3D-GRP Tools

The following section provides a more detailed discussion of an exemplar consensus and an

exemplar ensemble method for solving the 3D-GRP. These methods were chosen since they

were the most recent additions to the set of tools presented in Table 3.2 that have been used

by the community to predict 3D genome structure based on real (rather than simulated)

HR-3C datasets.

3.6.1 Consensus: miniMDS

miniMDS [125] is a consensus method that combines metric multi-dimensional scaling (MDS)

with a divide-and-conquer approach to solve the 3D-GRP. Briefly and in general terms, the

local structure of each chromosome is solved and then fitted to a low-resolution global genome

prediction. First, a hidden Markov model is used to locally partition each chromosome into

a set of subproblems. This hidden Markov model is derived from the TAD-finding algorithm

developed by Dixon et al. [41] to identify local regions of a chromosome where edges of

the region preferentially interact with the opposite side of the region. Each subproblem

is then converted to a distance matrix based on equation 3.4 and metric MDS is used to

solve a high-resolution local structure. It should be noted that the zero-distances (typically

unmappable genomic regions) are ignored by MDS. This step is then repeated for each

complete chromosome at a lower-resolution. High-resolution local structures are fitted to

these lower-resolution chromosome structures using the Kabsch algorithm [73]. Finally, this

fitting is repeated at an even lower resolution using the whole dataset to generate a low

resolution global 3D structure. This global structure is then used as the final guide to

position the chromosome structures resulting in a completed 3D genome prediction. An

example of the output produced by miniMDS can be seen in Figure 3.1D. miniMDS should

be used with caution in organisms where the existence of TADs or TAD-like structures has

not been established since the hidden Markov model used for the initial division relies on the

presence of TAD-like structures.
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disti,j =

 A−0.25
i,j if Ai,j > 0

0 if Ai,j = 0

(3.4)

3.6.2 Ensemble: Li et al.

The method developed by Li et al. [89] is an ensemble method that incorporates data from

lamina-DamID experiments (which are able to detect interactions between the nuclear lamina

and genomic regions) with HR-3C data to predict a 3D genomic organization at TAD-level

resolution. The data from lamina-DamID experiments allows for the identification of which

TAD regions interact with the nuclear envelope (the periphery of the nucleus; abbreviated

NE). Briefly, this method uses maximum likelihood estimation to find a set of 3D genome

structures that have statistically consistent TAD-TAD and TAD-NE interactions. Specif-

ically, this method uses a variant of expectation maximization described by Tjong et al.

[154] to optimize this joint probability. It incorporates additional spatial constraints into

the optimization based on known features of the Drosophila melanogaster (fruit fly) genome.

These Drosophila-specific constraints are based on microscopy imaging and include the nu-

clear radius, a maximum distance between chromosome copies, a maximum distance between

adjacent TADs, links between heterochromatin regions, links between adjacent TADs, and

centromere anchoring to the nucleolus. Due to these additional constraints, this method

should only be applied to datasets from Drosophila melanogaster and would not be suitable

for solving the 3D-GRP in the general case. An example of the output produced by this tool

can be seen in Figure 3.1J. This method could potentially be applied to other organisms with

TADs if the required organism-specific spatial constraints are available.
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3.7 Predicting 3D Structures for Genomic Regions or

Single Chromosomes

There are significantly more tools available that can be used to predict 3D structure of a

single genomic region or chromosome from HR-3C data. For the purpose of this manuscript,

we will refer to this as 3D regional prediction. The increased number of available tools for 3D

regional prediction is likely because it is a much simpler (and often smaller) problem than the

3D-GRP since it does not have to take trans-chromosomal interactions (interactions between

genomic regions on different chromosomes) into account. In the majority of cases, it would be

computationally infeasible to apply these tools to the 3D-GRP due to their underlying time

complexities. It may be possible to overcome this problem by applying a divide-and-conquer

approach similar to miniMDS [125].

Table 3.3: Existing computational tools for predicting 3D organization for a genomic
region from HR-3C data. Tools are categorized as either consensus or ensemble and
then listed in alphabetical order. Tools marked with an asterisk (*) did not appear to be
actively maintained at the time of submission. Column headings are as follows: Name,
the tool’s name or abbreviated reference (Panel labels from Figures 3.2 and 3.3 are
provided in parentheses); Technique, the general algorithmic strategy employed; CHR
model, a description of the chromosome model utilized; Additional Data, any additional
biological datasets required; a priori Constraints, a descriptor denoting whether a priori
information is required and/or assumed; Language, the programming language used
to implement the tool; Availability Mode, a description of how the tool was deployed;
Website, a link to the tool’s source code. Abbreviations are as follows: IMP, Integrative
Modeling Platform (https://integrativemodeling.org/); MDS, Multi-Dimensional
Scaling; MLE, Maximum Likelihood Estimation; MCMC, Markov Chain Monte Carlo.
A dash indicates “not applicable”, “not available”, or “none”, as appropriate.

Name Technique CHR
Model

Additional
Data

a priori
Con-

straints

Language Availability
Mode

Website

A. Consensus Methods

AutoChrom3D*
[122]

MLE Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — http://ibi.

hzau.edu.c

n/3dmodel/
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BACH
(Figure

3.2A) [63]

MCMC Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

C++ Source Code http://www.

fas.harvar

d.edu/~jun

liu/BACH/

Chiariello et
al. (Figure
3.2B) [24]

Polymer
Modelling
(String &
Binders
Switch)

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —

ChromSDE
(Figure

3.2C) [178]

Semi-
Definite

Program-
ming

Graph — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —

5C3D*
[50, 53]

Gradient
Descent

Beads
(Distributed
in a Cube)

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — http:

//dostiela

b.biochem.

mcgill.ca/

HSA* [182] Simulated
Annealing

with MCMC

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — http://ouya

nglab.jax.

org/hsa/

PASTIS
(MDS -
Figure

3.2D) [163]

MDS Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Python2 Source Code http://proj

ets.cbio.m

ines-paris

tech.fr/~n

varoquaux/

pastis/

PASTIS
(NMDS -

Figure
3.2D) [163]

Non-Metric
MDS

Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Python2 Source Code http://proj

ets.cbio.m

ines-paris

tech.fr/~n

varoquaux/

pastis/

PASTIS
(PM1 -
Figure

3.2D) [163]

MLE Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Python2 Source Code http://proj

ets.cbio.m

ines-paris

tech.fr/~n

varoquaux/

pastis/
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PASTIS
(PM2 -
Figure

3.2D) [163]

MLE Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Python2 Source Code http://proj

ets.cbio.m

ines-paris

tech.fr/~n

varoquaux/

pastis/

RPR
(Figure

3.2E) [61]

MDS &
Recurrence

Plots

Beads — dataset-
specifc

(must be
from a

single-cell,
must be
from a
haploid

organism or
pre-phased)

Matlab Source Code
(embedded
in a PDF)

https://me

dia.nature

.com/origi

nal/nature

-assets/sr

ep/2016/16

1011/srep3

4982/extre

f/srep3498

2-s1.pdf

ShRec3D
(Figure
3.2F)

[87, 110]

Shortest
Path and

MDS

Beads-on-a-
Spring

— organism-
specific
(nuclear
radius),
dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Matlab Source Code https:

//sites.go

ogle.com/s

ite/julien

mozziconac

ci/home/so

ftwares

ShRec3D+
(Figure

3.2G) [88]

Shortest
Path and

MDS

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased),
user-specific
(value of for

alpha)

— — —

SuperRec
(Figure

3.2H) [177]

Shortest
Path and

MDS

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Python and
Linux

Executable

Source Code http:

//www.cs.c

ityu.edu.h

k/~shuaicl

i/SuperRec/

3DChrom
(Figure

3.2I) [95]

MDS Beads — dataset-
specific

(must have
TADs, must
be from a
haploid

organism or
pre-phased)

C++;
requires
IPOPT

Source Code
or Web
Server

http://dna.

cs.miami.e

du/3DChrom/
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tPAM
(Figure

3.2J) [116]

MCMC Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —

tREX* [117] Truncated
Random

Effect
Expression

Model

Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — http:

//www.stat

.osu.edu/~s

tatgen/Sof

tware/tRex

Zhang et al.
(Figure

3.2K) [176]

MCMC Piecewise
Curve

(Helical)

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

C++ Source Code https:

//rsquared

1427.githu

b.io/phm/

B. Ensemble Methods

BACH-MIX
(Figure

3.3A) [63]

MCMC Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

C++ Source Code http://www.

fas.harvar

d.edu/~jun

liu/BACH/

Caudai et
al. (Figure
3.3B) [22]

Simulated
Annealing &

MCMC

Beads — dataset-
specific
(must

contain
TADs, must
be from a
haploid

organism or
pre-phased)

Python2 Source Code https://bm

cbioinform

atics.biom

edcentral.

com/articl

es/10.1186

/s12859-01

5-0667-0

(Additional

File 2)

Chromsome3D
(Figure

3.3C) [1]

Simulated
Annealing

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Perl Source Code
or Web
Server

http:

//sysbio.r

net.missou

ri.edu/chr

omosome3d/

ChromStruct
4 (Figure
3.3D) [21]

Simulated
Annealing &

MCMC

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —
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GEM
(Figure

3.3E) [180]

Manifold
Learning &
Expectation
Maximiza-

tion

Graph — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Matlab Source Code https:

//github.c

om/mlcb-th

u/GEM

Giorgetti et
al. (Figure
3.3F) [56]

Polymer
Modelling

Beads-on-a-
String

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —

IMP (Figure
3.3G)

[13, 14, 157]

Monte Carlo
Optimiza-

tion

Beads — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

C++ or
Python

Binary or
Source Code

https:

//integrat

ivemodelin

g.org/

InfMod3DGen
(Figure

3.3H) [165]

Expectation
Maximiza-

tion

Polymer — dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

Matlab Source Code https://gi

thub.com/w

angsy11/In

fMod3DGen

ISD (Figure
3.3I) [20]

Hamiltonian
Monte Carlo

Beads — dataset-
specifc

(must be
from a

single-cell,
must be
from a

haploid or
diploid

organism)

Python Source Code https://gi

thub.com/m

ichaelhabe

ck/isdhic

MBO
(Figure

3.3J) [119]

Shortest
Path and

MDS

Beads — dataset-
specifc

(must be
from a

single-cell,
must be
from a

haploid or
diploid

organism)

Matlab Source Code http://folk

.uio.no/jo

naspau/mbo/

MCMC5C
(Figure

3.3K) [127]

MCMC Piecewise
Curve

(Linear)

— organism-
specific

(homologous
chromo-

somes must
make

mutually
exclusive
contacts)

— — —
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Meluzzi and
Arya

(Figure
3.3L) [106]

Polymer
Physics &
Adaptive

Filter
Theory

Beads-on-a-
Spring

— dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —

Nagano et
al. (Figure
3.3M) [112]

Simulated
Annealing

Beads-on-a-
String

— dataset-
specifc

(must be
from a

single-cell,
must be
from a
haploid

organism or
pre-phased)

— — —

TADbit
(Figure
3.3O)

[135, 157]

IMP Beads — organisms-
specific

(must have
TADs)

Python2 Source Code https:

//github.c

om/3DGenom

es/tadbit

Trieu and
Cheng
(Figure

3.3N) [155]

Gradient
Descent

Beads — organism-
specific
(only

applicable
to datasets
from Homo

sapiens),
dataset-
specific

(must be
from a
haploid

organism or
pre-phased)

— — —

Table 3.3 provides a list of the computational techniques that utilize HR-3C data to

predict a 3D structure for a given genomic region instead of the whole genome. As described

above, tools have been categorized in the following ways: DAAM (*), consensus, and/or

ensemble. An example of the output produced by each actively maintained consensus and

ensemble tool can be found in Figures 3.2 and 3.3, respectively. In each case, the images were

extracted from the corresponding original publication. Permission was obtained to reprint

these images where required 2 3
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Figure 3.2: An example of a predicted region organization from each of the existing
regional consensus tools. Tool name or abbreviated reference can be found at the top
of each panel and the organisms (and specific region, when applicable) are listed at the
bottom of the panel. The abbreviation CHR stands for chromosome. Permission was
obtained to reprint these images where required 3.12.
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Figure 3.3: An example of a predicted region organization from each of the existing
regional ensemble tools. Tool name or abbreviated reference can be found at the top
of each panel and the organisms (and specific region, when applicable) are listed at the
bottom of the panel. The abbreviation CHR stands for chromosome. Permission was
obtained to reprint these images where required 3.12.
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3.8 Exemplar Regional 3D Prediction Tools

The following section provides a more detailed discussion of an exemplar consensus and an

exemplar ensemble method for predicting 3D structure of a single genomic region or chromo-

some. ShRec3D+ was chosen as the exemplar consensus method since it is the most recent

version of one of the popular and highly cited tools, ShRec3D [87, 110]. Chromosome3D was

chosen as the exemplar ensemble method since it is the most recent addition to set of en-

semble tools presented in Table 3.3 (Chromosome3D) that has been used by the community

to predict 3D regional structures (beyond TAD-level resolution) from real population-based

HR-3C data (rather than simulated data).

3.8.1 Consensus: ShRec3D+

ShRec3D+ [88] is a consensus method that is based on ShRec3D [87, 110] and ChromSDE

[178]. An overview of the approach taken by ShRec3D+ is as follows. First, interactions are

converted into a weighted graph where edge weight (which represents the distance between

two vertices) is initially calculated with equation 3.5 where α is a user-selected value between

0.0 and 2.0. Second, the Floyd-Warshall algorithm is applied to optimize the distances so

that the vertices satisfy the triangle inequality. Finally, classical MDS is applied to calculate

the (x, y, z) coordinates of each vertex in the graph. An example of the output produced by

ShRec3D+ can be seen in Figure 3.2G. ShRec3D+ does not optimize the value of α like its

predecessor ShRec3D. This was done to improve runtime but adds a significant potential for

user error in new applications because the user might unintentionally specify an inappropriate

value.

wi,j =

 A−αi,j if Ai,j > 0

∞ if Ai,j = 0

(3.5)
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3.8.2 Ensemble: Chromosome3D

Chromsome3D [1] is an ensemble method that models a genomic region as a string of beads.

Interaction frequencies are converted to distances based on equation 3.6 where K is a scaling

constant and α is a tuneable parameter with suggested values of 11 and 1/3, respectively.

Simulated annealing is then used to find the (x, y, z) coordinates for each bead such that

the absolute difference between the predicted distances (based on the (x, y, z) coordinates)

and initial calculated distances (based on the interaction frequencies) are minimized. This

is repeated twenty times to generate an ensemble of potential 3D genomic structures. This

set of structures is ranked using Spearman’s rank correlation coefficient to determine which

predicted structures best represent the initially distances calculated based on the interaction

frequencies. An example of the output produced by Chromosome3D can be seen in Figure

3.3C. Chromsome3D has been shown to outperform ShRec3D when the input data set is

noisy [1], which is a characteristic of HR-3C datasets.

disti,j =
K

Aαi,j/average(A
α
i,j)

(3.6)

3.9 Future Directions

There is a lack of algorithmically diverse solutions to the 3D-GRP that could be applied to

a wide-variety of organisms (we refer to this as generalizable for this manuscript). Five of

the six consensus methods use a MDS as a part of their approach for solving the 3D-GRP.

MDS presents many potential issues which are described in Section 3.9.2. The remaining

method by Stevens et al. can only be used with single-cell HR-3C data. Additionally, none

of the available ensemble methods are usable for solving the 3D-GRP in the general case.

Only two of the five ensemble methods provide source code and are actively maintained.

These two methods also require additional biological datasets (DamID and/or LAD) for 3D

genome prediction. These types of datasets are not commonly gathered with HR-3C assays;

therefore, these solutions are not applicable in the general case. Finally, the web application

3D-GNOME only works with the pre-computed HR-3C datasets hosted on the website. As
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investigations into the 3D genome organization continue, it is possible that the existing tools

can not be utilized for applications in organisms with larger, more complicated genomes

(when compared to Homo sapiens). The reasons and potential solutions are described in the

subsections below.

3.9.1 Computational Limitations

As mentioned previously, the current formulation of the 3D-GRP is a combinatorial optimiza-

tion problem. Combinatorial optimization problems are known to be demanding in terms

of computational resources like memory. This is potentially problematic because it adds an

upper bound on the number of genomic bins that can be input into existing tools based on

available computational resources. This could render certain 3D-GRP solutions impractical

for generating high-resolution predictions and/or predictions from organisms with genomes

larger than Homo sapiens. For instance, these computational limitations cause polymer mod-

els to have a genome size and/or resolution limit (i.e. number of “beads”). For these polymer

modelling based solutions, the current upper bound on the number of genomic regions that

can be predicted has been reported to be 10,000 [153]. The majority of the existing tools

have a O(N3) time complexity since they rely on MDS and/or the Floyd Warshall algorithm.

As the resolution of GR-3C data increases so does the value for N . This will necessitate

investigations into more efficient approaches. Fortunately, combinatorial optimization prob-

lems have been extensively studied in computer science and many of the existing solutions

for solving these types of problems could be leveraged in 3D-GRP solutions. Existing tools

like miniMDS have utilized a divide-and-conquer approach to overcome the computational

limitations [125]. It is expected that approaches like this (as well as others that take ad-

vantage of parallelism or distributed algorithms) will become more common as advances in

HR-3C assays continue to allow researchers to obtain finer genomic resolutions. Future re-

search should focus on establishing solutions that are more computationally efficient and/or

take advantage of parallel or distributed algorithms to overcome the current computational

limitations.
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3.9.2 Increasing Algorithmic Diversity

Algorithms for solving the 3D-GRP are far from maturity [176]. While there is some algo-

rithmic diversity in the set of existing tools, the full breadth and depth of solutions in each

category have yet to be explored. As mentioned above, five of the six consensus methods use

a MDS as a part of their approach for solving the 3D-GRP. Many issues have been noted per-

taining to the use of MDS as a part of solutions to the 3D-GRP. For instance, because HR-3C

assays represent a heterogeneous population of genome organizations, there is often not a

single unique solution. Therefore, the distances calculated by MDS often conflict and cannot

be accurately or completely calculated [1]. Furthermore, it is known that standard MDS

techniques are inaccurate for sparse high-resolution data [125]. t-Stochastic neighbourhood

embedding (tSNE) has been shown to be more accurate than MDS for datasets with these

characteristics [159, 160, 161, 162] and is a promising technique for new 3D-GRP solutions.

All of the existing methods utilize Euclidean distances in their solutions to the 3D-GRP

but the utility of other distance functions (such as relative Sorensen distances, Canberra

distances and cosine (similarity) distances) could and should be investigated going forward

to increase the accuracy of predicted models. This is especially pertinent in the case of

solutions to the 3D-GRP since it is known that Euclidean distances are often not suitable

for sparse, high-dimensional datasets [2] which is the case with many whole-genome con-

tact maps. Finally, most of the existing tools model the chromosome as a set of beads or

beads-on-a-string/spring. While this seems like a natural representation, the utility of other

chromosome models should be investigated.

In general, there is a lack of algorithmic diversity in the existing set of tools for solving

the 3D-GRP. Figure 3.4 provides a visual depiction of the different algorithmic strategies

employed by 3D-GRP solutions (purple boxes), 3D regional prediction solutions (orange

boxes) and both (green boxes). Additionally, we highlight a few algorithmic strategies that,

to the best of our knowledge, have not yet been utilized for predicting 3D structures of the

genome or genetic region (grey boxes). In our opinion, these represent promising areas of

exploration for new tool development but there are many other algorithms and algorithm

types well-suited for combinatorial optimization problems that could also be investigated.
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Figure 3.4: An overview of the algorithmic techniques used by existing tools for
solving the 3D-GRP (purple boxes), 3D regional prediction (orange boxes) and both
(green boxes). A small selection of unexplored algorithmic strategies are indicated with
grey boxes. Lines originate at a black dot and represent the hierarchical relationship
between each algorithmic approach (more general to more specific).

While the community has made great strides in developing solutions to the 3D-GRP, a lot

of work remains to be done as investigations into the 3D genome organization of non-model

organisms begins.

3.9.3 Applications to Other Organisms

An increase in algorithmic diversity is necessary to facilitate 3D genome analysis in non-

model organisms. As mentioned previously, many methods rely on the presence of previously

proposed “hallmarks” of genomic organization like TADs for prediction. This is troubling
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since the presence of these “hallmarks” has not been verified in a wide variety of organisms.

For instance, recently it was found that TADs are not present in certain plant species like

Arabadopsis thaliana [42] and are therefore not a conserved hallmark of genome organization.

Methods like miniMDS that rely on TADs or TAD-like structures for efficient computation

would not be applicable to organisms like Arabadopsis thaliana.

Many of the existing tools have only been utilized with data generated from standard

model organisms such as Saccharomyces cerevisiae, Mus musculus or Homo sapiens. Table

3.4 presents an overview of the datasources that have been used by existing tools for solving

the 3D-GRP. They are separated with black outlines into the following groups based on

their origin: simulated data, parasite, virus, bacteria, yeast, insect, worm, fish, chicken,

mice, primate, human, plant. Data sources used in the original manuscript are represented

with a grey box. Applications of the tool were determined by reviewing all of the original

publications citing articles. The exact number of articles reviewed for each tool is provided

in the second column of Table 3.4. Valid applications of a tool in a different organism and/or

dataset than the original paper are indicated with purple (successful) or orange (unsuccessful)

boxes. There are many organisms that have Hi-C data available but 3D genomic predictions

have not been performed with any of it (Table 3.4; white boxes). Interestingly, at the time of

publication there were over 3200 Hi-C datasets deposited in the Gene Expression Omnibus

dataset, but complete 3D genome prediction has only been applied to less than 10 unique

datasets. This provides an interesting area of future exploration and application in the 3D

genomics community.

None of the existing tools have been applied to organisms with a ploidy greater than

2. As such, it is not clear whether these tools can be effectively utilized for predicting 3D

genome structure in organisms with higher ploidies such as Triticum aestivum (bread wheat;

hexaploid) [181]. Additionally, many of the 3D regional tools do not effectively deal with

datasets from polyploid organisms and therefore, could not be applied to polyploid datasets

(or extended to solve the 3D-GRP irregardless of computational complexity). This can be

seen when looking at the applications presented in the original manuscripts of the regional

tools where most chose to use either a haploid organism, pre-phased data, or a genomic region

from the X chromosome of male cells. How to effectively deconvolute interaction signals from
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Table 3.4: An overview of the data sources that have been used by existing tools for
solving the 3D-GRP. Tool name is provided in the first column and follows the same
ordering presented in Table 3.2. The number of citations that were examined is given
in column 2. Data sources are listed in the first row and have been separated (black
outlines) into the following groups based on their origin: simulated data, parasite, virus,
bacteria, yeast, insect, worm, fish, chicken, mice, primate, human, plant. Grey boxes
represent the datasource that was used in the original manuscript. Applications of the
tool in other organisms are indicated with purple (successful) or orange (unsuccessful)
boxes. Datasets that have not been applied to a tool are indicated with a white box.
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Diament	and	Tuller		 9

Duan	et	al.		 832

Kapilevich	et	al.		 1

miniMDS		 27

Segal	and	Bengtsson		 17

Stevens	et	al.		 327

Chrom3D		 62

Kalhor	et	al.		 472

Li	et	al.		 30

LorDG*		 24

Tjong	et	al.		 92

3D-GNOME		 51

distinct chromosome copies (the ploidy problem) still remains a large, unanswered question

in the field. While it may be possible to address this problem during read mapping and/or

pre-processing steps, solutions built-in to 3D-GRP tools should also be investigated.

3.10 Conclusion

There has been a great deal of success predicting 3D genome organizations from HR-3C

data originating from model organisms like Saccharomyces cerevisiae and Homo sapiens.

Addressing the challenges outlined in Section 3.9 above will be crucial as the field continues
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to evolve and be extended to non-model organisms (especially ones with larger, non-standard

genomes). The set of existing tools for solving the 3D-GRP is far from mature and cannot

be applied to analyze 3D genome organization across various species. A tool that can be

used to predict 3D genome structure across organisms is urgently needed. Many of the

existing solution approaches in computer science for overcoming the difficulties associated

with optimization problems like the 3D-GRP have not yet been explored. These types of

solutions are likely to be an area of major development in the coming years within the 3D

genome community. While a great deal of foundational work has been done, there is a clear

lack of generalizable, algorithmically diverse computational tools for predicting the complete

3D genome organization from HR-3C data.

3.11 Key Points

• Many computational solutions exist for predicting 3D genome organizations in a select

few model organisms.

• These existing tools cannot necessarily be applied to non-model organisms due to in-

herent constraints imposed by the underlying techniques.

• New tools are required to facilitate 3D genome organization studies in non-model or-

ganisms.

• There are many promising algorithmic areas that have not yet been applied to the

3D-GRP.

• There are many existing Hi-C datasets that have not been used to predict 3D genomic

organization with existing tools.

3.12 Endnotes

1. Permission to reprint was obtained for the following panels: B (license number: 4758870758295), C (©2018

IEEE, with permission), G (license number: 4758871194345), H(license number: 4817790396726), I (license

number: 4758871306477). All other panels contain images that are allowed to be reprinted under a Creative
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Commons License. Additional information pertaining to reprint permissions for each image can be found in

Section 3.14.

2. Permission to reprint was obtained for the following panels in Figure 2: C (©2013 Mary Ann Liebert, Inc

and Journal of Computational Biology, with permission), F (license number: 4758871501440), G (©2018

IEEE, with permission), I (©2018 IEEE, with permission), J (license number: 4758901288689), K (©2018

IEEE, with permission). All other panels contain images that are allowed to be reprinted under a Creative

Commons License. Additional information pertaining to reprint permissions for each image can be found in

Section 3.14.

3. Permission to reprint was obtained for the following panels in Figure 3: D (©2018 IEEE, with permission),

F (license number: 4759011183449), G (license number: 4759011283587), M (license number 4759011388011).

Additional information pertaining to reprint permissions for each image can be found in Section 3.14.

3.13 Supplemental Information

3.13.1 Extended Methodology

• Manuscripts describing existing tools were identified through a google scholar (https:

//scholar.google.com/) literature search using the key phrases: “3D genome recon-

struction problem”, “3D genome prediction”, “3D genome structure” and “3D genome

organization”. The results were restricted to papers published from 2006 (the year 5C

was first described [44]) to September 1, 2019 and filtered to only include peer-reviewed

manuscripts describing software for predicting 3D genome organizations or 3D regional

organizations.

• Applications of existing tools were identified by examining all manuscripts that cited

the original publications (as of January 8, 2020).

• Organisms with available Hi-C datasets (for Table 3.4) were determined by using “Hi-

C” as a search term in the Gene Expression Omnibus database (https://www.ncbi.n

lm.nih.gov/geo/). Results were extracted on January 8, 2020.
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Chapter 4

GeneRHi-C: 3D Genome Reconstruction from

Hi-C Data

Kimberly MacKay, Mats Carlsson and Anthony Kusalik

Citation [98]: K MacKay, M Carlsson and A Kusalik. GeneRHi-C: 3D GENomE Recon-

struction from Hi-C data. 10th International Conference on Computational Systems-Biology
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Detailed Contributions: Kimberly MacKay was responsible for writing the manuscript.

In addition, she wrote the software for Step 2 and 3 of GeneRHi-C and performed the

visualization. All of the listed authors worked together to develop the Mathematical Models

(CM, GM and IP). A brief description of the contributions for all listed authors can be

found in Section 4.10.2.

As a reminder, the overarching goal of this thesis is to develop new, generalizable computa-

tional tools for Hi-C analysis and 3D genome prediction. GeneRHi-C is a tool for predicting

3D genome organization from Hi-C datasets. Figure 1.3 indicates how GeneRHi-C fits into

existing Hi-C data analysis workflows.

4.1 Abstract

Background: Many computational methods have been developed that leverage the results

from biological experiments (such as Hi-C) to infer the 3D organization of the genome.

Formally, this is referred to as the 3D genome reconstruction problem (3D-GRP). Hi-C data

is now being generated at increasingly high resolutions. As this resolution increases, it has
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become computationally infeasible to predict a 3D genome organization with the majority

of existing methods. None of the existing solution methods have utilized a non-procedural

programming approach (such as integer programming) despite the established advantages

and successful applications of such approaches for predicting high-resolution 3D structures of

other biomolecules. Our objective was to develop a new solution to the 3D-GRP that utilizes

non-procedural programming to realize the same advantages.

Results: In this paper, we present a three-step consensus method (called GeneRHi-C;

pronounced “generic”) for solving the 3D-GRP which utilizes both new and existing tech-

niques. Briefly, (1) the dimensionality of the 3D-GRP is reduced by identifying a biologically

plausible, ploidy-dependent subset of interactions from the Hi-C data. This is performed by

modelling the task as an optimization problem and solving it efficiently with an implementa-

tion in a non-procedural programming language. The second step (2) generates a biological

network (graph) that represents the subset of interactions identified in the previous step.

Briefly, genomic bins are represented as nodes in the network with weighted-edges repre-

senting known and detected interactions. Finally, the third step (3) uses the ForceAtlas

3D network layout algorithm to calculate (x, y, z) coordinates for each genomic region in

the contact map. The resultant predicted genome organization represents the interactions

of a population-averaged consensus structure. The overall workflow was tested with Hi-C

data from Schizosaccharomyces pombe (fission yeast). The resulting 3D structure clearly

recapitulated previously established features of fission yeast 3D genome organization.

Conclusion: Overall, GeneRHi-C demonstrates the power of non-procedural programming

and graph theoretic techniques for providing an efficient, generalizable solution to the 3D-

GRP.

Project Homepage: https://github.com/kimmackay/GeneRHi-C

4.2 Key Words

3D Genome Reconstruction Problem, Mathematical Modelling, Declarative Programming,

Integer Programming, Network Layouts
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Figure 4.1: A representation of the DNA-DNA interactions that can occur within the
3D genome structure. Panels give the following representations. A: the linear locations
of the genes undergoing a trans-interaction between two hypothetical chromosomes, K
and L. B: a trans-interaction. C: a nucleus with the coloured lines representing the
separate chromosomes from Babaei et al. [8]. D: a cis-interaction. These genes might
be linearly “distant” but still have a detectable interaction in 3D space. E: the linear
locations of the genes that are undergoing a 3D cis-interaction. The orange and pink
regions in panels A, B, D and E are examples of possible gene locations. The red circles
in panels B and D represent the genomic regions involved in an interaction.

4.3 Introduction

Within the nucleus, a cell’s genetic information undergoes extensive folding and reorganiza-

tion throughout normal physiological processes. Just like in origami where the same piece

of paper folded in different ways allows the paper to take on different forms and potential

functions, it is possible that different genomic organizations are related to various nuclear

functions. Until recently, it has been extremely difficult to comprehensively investigate this

relationship due to the lack of high-resolution and high-throughput techniques for identify-

ing genomic organizations. The development of a biological technique called Hi-C (based on

chromosome conformation capture) [92] has made it possible to detect the complete set of

genomic regions simultaneously in close physical proximity. This proximity is often referred

to as an “interaction” between two genomic regions. These interactions can be categorized as

either intra-chromosomal (cis) interactions or inter-chromosomal (trans) interactions (Figure

4.1).

Hi-C [92] is a biological technique that utilizes next generation sequencing technologies

to detect regions of the genome that are interacting in 3D space. These regions may be

located on different chromosomes or distally on the same chromosome. An overview of the

experimental procedure is depicted in Figure 4.2. Briefly, (1) cells are fixed with formaldehyde

in order to covalently cross-link genomic regions that are in close 3D proximity. (2) The cross-
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linked fragments are then digested with a restriction enzyme to remove the potentially large

non-interacting interconnecting segments of DNA. (3) The sticky ends generated through

the restriction digest are filled in with biotinylated nucleotides. (4) Digested fragments are

ligated together. (5) The initial cross-linking is removed, resulting in DNA fragments that

represent the two genomic regions that form an interaction. (6) The biotinylated products

are purified using streptavidin beads allowing for the detection of fragments that were cut

by restriction enzymes. (7) Paired-end sequencing is then performed and the resultant reads

are mapped to a reference genome using a Hi-C specific read mapper [7].

GR 2
GR 1

(7) Paired-end 
Sequencing

(6) Biotin pull-down

(5) Cross-link reversal

(4) Intra-molecular 
ligation

(3) Biotin labelling

(2) Restriction digest

(1) Cross-linking 
of interacting 

genomic regions

GR 2GR 1

GR 2
GR 1

GR 2
GR 1

GR 2
GR 1

GR 2GR 1

GR 2GR 1

Figure 4.2: A simplified overview of the Hi-C protocol adapted from reference [92].
GR stands for “genomic region”. The blue lines represent the location of a restriction
enzyme cut site; green circles, a pair of genomic regions being chemically cross-linked
together; orange circles, biotin; and red arrows, the primers that are required for paired-
end sequencing. The purple symbol in step (6) represents a streptavidin bead that can
be used to purify molecules with a biotin label.
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Mapping the raw data of a Hi-C experiment to a reference genome results in the gener-

ation of a N × N matrix (a whole-genome contact map) where N is the number of “bins”

which represent linear regions of genomic DNA. In general, the number of genomic bins is

approximately equal to the total genome size divided by the Hi-C experimental resolution.

Whole-genome contact maps are characteristically sparse and symmetric along the diagonal.

Each cell (Ai,j) of a contact map (A) records the count of how many times the genomic bin

i was found to interact with the genomic bin j. These counts are often referred to as the fre-

quency of the interaction between Ai and Aj (or interaction frequency). Inherent systematic

biases within the whole-genome contact map are dampened by normalizing the interaction

frequencies. Typically, an iterative correction and eigenvector decomposition (ICE) [68] or

Knight-Ruiz (KR) [77, 90] normalization are/is applied to the raw data resulting in fractional

interaction frequencies. It should be noted that during the normalization process interactions

involving highly repetitive genomic regions such as centromere and/or telomere regions are

often removed from the contact map (represented as 'NA') due to large amounts of noise

and/or low signal [86].

The normalized whole-genome contact maps can be used to infer the 3D organization of

the genome. The process of predicting a model of the 3D genomic organization from a contact

map is known as the 3D genome reconstruction problem (3D-GRP) [132]. Typically this is

done by converting the normalized interaction frequencies into a set of corresponding pairwise

Euclidean distances. In general it is assumed that a pair of genomic regions with a higher

interaction frequency will often be closer in 3D space than a pair of genomic regions with a

lower interaction frequency [46, 63, 87]. Most computational tools for solving the 3D-GRP

then take the predicted pairwise Euclidean distances as input and produce a visualization

of the 3D genome by modelling the chromatin fibre as a polymer [136]. In general, most

existing programs can be broadly classified as either (1) consensus or (2) ensemble methods.

Consensus methods generate a single population-averaged genomic model that best represents

the whole-genome contact map, while ensemble methods produce a collection of genome

models that represent the inherent heterogeneity of genome organizations within a population

of cells [86].

As the resolution of whole-genome contact maps increases, it is computationally infeasible
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to predict a 3D genome organization with many of the existing methods. One notable excep-

tion is the method miniMDS [125] which uses a divide-and-conquer approach to overcome

this problem. In order to divide the overall problem into subproblems, miniMDS utilizes

an algorithm for detecting chromosomal sub-domains called TADs to make the initial divi-

sion. Unfortunately, this makes it inapplicable to organisms which do not have TADs like

Arabadopsis thaliana [42, 94]. To overcome this, we have developed a generalizable, three-step

consensus method for solving the 3D-GRP called GeneRHi-C (3D Genome Reconstruction

from Hi-C data; pronounced “generic”). Unlike other 3D-GRP solutions, GeneRHi-C does

not rely on chromosomal sub-domains or organism specific constraints in the prediction pro-

cess making it generalizable to any organism. Briefly, GeneRHi-C preforms the following

three steps: (1) dimensionality reduction, (2) graph representation and (3) calculation of

(x, y, z) coordinates. The resulting 3D genome organization represents the interactions of

a population-averaged consensus structure. In order to demonstrate its utility GeneRHi-C

was used to predict a 3D genome organization from an existing Schizosaccharomyces pombe

(fission yeast) Hi-C dataset.

4.4 Computational Workflow

4.4.1 Step 1: Dimensionality Reduction

Under normal cellular conditions, a given genomic region can be simultaneously involved

in more than one interaction within the genome [48]. In contrast, a single genomic region

within an individual cell is only able to participate in one Hi-C mediated interaction due

to inherent restrictions within the biochemistry of the Hi-C experimental protocol [163]. In

diploid organisms (organisms with two genomic copies) single cell Hi-C reactions are only

able to detect two Hi-C mediated interactions per genomic region, one for each genomic

copy [112]. An analogous restriction can be assumed in haploid organisms (organisms with

only one genomic copy), where a single genomic region can only be actively detected in

one Hi-C mediated interaction in a single cell. Using this restriction, a model of the 3D

genome organization can be constructed from a whole-genome contact map by selecting a
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A B C

1 2 3 4 5 6

1 - 0.5 0.2 0.1 0.1 0.1

2 0.5 - 0.4 0.4 0.1 0.1

3 0.2 0.4 - 0.3 0.5 0.2

4 0.1 0.4 0.3 - 0.6 0.4

5 0.1 0.1 0.5 0.6 - 0.4

6 0.1 0.1 0.2 0.4 0.4 -

1 2 3 4 5 6

1 - 0.5 0.2 0.1 0.1 0.1

2 0.5 - 0.4 0.4 0.1 0.1

3 0.2 0.4 - 0.3 0.5 0.2

4 0.1 0.4 0.3 - 0.6 0.4

5 0.1 0.1 0.5 0.6 - 0.4

6 0.1 0.1 0.2 0.4 0.4 -

1 2 3 4 5 6

1 - 0.5 0.2 0.1 0.1 0.1

2 0.5 - 0.4 0.4 0.1 0.1

3 0.2 0.4 - 0.3 0.5 0.2

4 0.1 0.4 0.3 - 0.6 0.4

5 0.1 0.1 0.5 0.6 - 0.4

6 0.1 0.1 0.2 0.4 0.4 -

Figure 4.3: An example of two (of many) possible solutions to a 3D genome recon-
struction problem. For all of the panels: the symmetric lower half of the contact map is
indicated in light grey, the diagonal that represents “self-self” interactions is indicated
in green and the genomic bin labels are represented in dark grey. For panels B and
C: the blue boxes represent the subset of frequencies that could be selected as possible
solutions (for m = 1). Panel B is a representation of a valid, non-optimal solution from
the greedy algorithm and panel C is a representation of the valid optimal solution for
the contact map where the sum of the selected interaction frequencies are 1.3 and 1.4,
respectively.

ploidy-dependent subset of the interactions for each genomic region that maximizes the sum

of the corresponding interaction frequencies. The mathematical model and corresponding

implementation presented in this paper focus on modelling the 3D organization of haploid

genomes but, as outlined in Section 4.7.3, could be extended to organisms with higher ploidies.

Naively, a greedy heuristic could be employed to model the 3D fission yeast genome orga-

nization using the strategy described above. Briefly, the subset of interactions representing

the solution set can be chosen by sorting and selecting the interactions with the largest cor-

responding frequency values. This process would then be repeated, rejecting any frequency

for a region of the genome that has already been selected. This heuristic will fail to take

into account the situation where lower frequencies, which were rejected by selecting a higher

frequency interaction, actually result in a greater overall maximum value for the sum of all

selected frequencies within the solution. An example of this can be seen in Figure 4.3 where

panel A is a hypothetical whole-genome contact map and panels B and C represent two

possible solution matrices with different overall frequency sums. Specifically, Figure 4.3B fol-

lows the greedy heuristic described above which results in a non-optimal solution where the

selected frequencies sum to 1.3. Figure 4.3C shows the optimal solution where the selected
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frequencies sum to 1.4. This type of optimization problem has been shown to be well-suited

for solutions using non-procedural computational paradigms.

We have developed and tested three mathematical models (CP, GM, IP) to reduce the

dimensionality of the 3D-GRP which describe the relationships present within the whole-

genome contact map. These mathematical models differ in terms of their problem represen-

tation, underlying non-procedural implementation and overall generalizability. Briefly, the

CP mathematical model is encoded as a set of constraints over finite domains with constraint

programming [126]. The GM mathematical model represents the problem as a maximum-

weight matching [47] and is encoded as a logic program that uses Kolmogorov’s Blossom V

algorithm [78]. The IP mathematical model is encoded with integer programming [168] and

is described in more detail below. Each model takes a normalized whole-genome contact

map as input. As mentioned previously, such a contact map is a N × N matrix where the

genome has been partitioned into N genomic bins. For a hypothetical whole-genome contact

map (A), each cell (Ai,j) records the normalized interaction frequency between genomic bins

i and j. By construction, the contact map is symmetric (Ai,j = Aj,i for all i, j), and its main

diagonal elements are all zero (Ai,i = 0 for all i).

The current formulations of the CP and GM mathematical models are only valid for

haploid organisms whereas the IP mathematical model can be applied to organisms with

any ploidy through an additional parameter called m. The value of m encodes the maximal

number of interactions in which a given genomic bin can be involved based on the source

organism’s ploidy. For instance, m would be set to the following values based on the number of

chromosome copies present: m = 1 (haploid), m = 2 (diploid; common in mammals), m = 4

(tetraploid; common in plants). Since the IP mathematical model is the most general, it

will be the focus for the rest of this manuscript. Additional details on the CP and GM

mathematical models can be found on the project homepage at GitHub 4 as well as in the

first pre-print version of this paper [97]. For the purpose of this thesis, this information was

also added to Section 4.10.4.

The mathematical model IP uses integer programming [168] and is valid for any value of

m. It is based on introducing variables xi,j that assume a value of 1 if genomic bin i interacts

with genomic bin j, and 0 otherwise. The goal of this model is to solve xi,j for all i, j. The
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complete model is given in Mathematical Model 1. It was implemented in SICStus Prolog 5

[19] and solved using the mixed integer programming based Gurobi Optimizer 6 [69]. The

implemented program using this representation with the hypothetical whole-genome contact

map depicted in Figure 4.3A is shown in Additional File 1 7. An example associated data

file for this program is given in Additional File 2 8 and is based on the interaction frequency

values from the hypothetical whole-genome contact map depicted in Figure 4.3A. For the

fission yeast results, all of this has been automated in a makefile that is available on the

project homepage 9.

maximize ∑
(i,j)∈E

Ai,jxi,j (4.1)

subject to: ∑
(i,j)∈E

xi,j +
∑

(j,i)∈E

xj,i ≤ m, ∀i ∈ V (4.2)

xi,j ∈ {0, 1}, ∀(i, j) ∈ E (4.3)

Mathematical Model 1: The IP model, for any m. V is the set {1, . . . , N}
representing the genomic bins. E is the set {(i, j) | i < j ∧ Ai,j > 0} representing
the interactions whose frequencies (weights) are given by A.

4.4.2 Step 2: Graph Representation

The reduced set of interactions is converted into an undirected graph based on the graphical

representation of Hi-C data described in GrapHi-C [101]. Briefly, the nodes in the network

represent the individual genomic bins of the whole-genome contact map and the edges repre-

sent either selected interactions between bins or known linear interactions between adjacent

bins. Linear interactions add additional biological constraints by representing the bonafide

in vivo linear connections between bins (i.e. the linear extent of the chromosome). Unlike

GrapHi-C, each edge is weighted using either: the interaction frequency divided by a dy-

namics coefficient for cis- and trans- interactions (described in more detail below) or the
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experimental resolution for linear interactions.

4.4.3 Step 3: Calculation of (x, y, z) Coordinates

Finally, the ForceAtlas 3D network layout algorithm provided as a Gephi plugin 10 (which is

an extension of the ForceAtlas2 layout [70]) is used to calculate (x, y, z) coordinates for the

centre of each node in the network. Recall that each node represents a genomic bin from the

whole-genome contact map.

4.5 Problem Decomposition

When the IP implementation for step 1 was run on a complete fission yeast whole-genome

contact map there was only a single trans-chromosomal interaction within the solution set

making it difficult to infer the organization of the chromosomes in relation to each other. The

low number of trans-chromosomal interactions is likely due to the fact that cis-interactions

are known to have higher interaction frequencies than trans-interactions within the genome

[35, 86]. This makes it more likely for cis-interactions to be included in the solution set

since the goal of the mathematical models described above is to select a maximal subset of

interaction frequencies. Since the disparity between cis- and trans- interaction frequencies is

an inherent characteristic of whole-genome contact maps, all optimization-based solutions to

the 3D-GRP must use an additional strategy to overcome this.

There are a number of possible strategies to deal with the disparity between cis- and

trans- interaction frequencies such as data transformation or problem decomposition. Here

the original computational problem (the 3D-GRP) has been decomposed into subproblems

(described in more detail below) where the cis-chromosomal subproblems represent the in-

dividual chromosome structure while the trans-chromosomal subproblems represent how the

chromosomes are organized in relation to each other within the nucleus. Each subproblem

has been locally solved and the results are combined to retain the selected interactions from

each subproblem. This is similar to the divide-and-conquer strategy employed by miniMDS

which aims to first solve local substructures and then fit the results onto a global organization

[125].
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A single whole-genome contact map can be naturally divided into a finite, organism

specific number of subproblems representing its constituent cis-interactions and pairwise

trans-interactions. Each subproblem can be defined within the whole-genome contact map

by specifying the range of genomic bins that correspond to the cis- or trans-interactions for

each chromosome. In general, the number of subproblems for a whole-genome contact map

with k chromosomes is equal to k(k−1)
2

+ k where k(k−1)
2

represents the number of pairwise

trans-interaction subproblems and k represents the number of cis-interaction subproblems.

For example, because fission yeast has three chromosomes, its whole-genome contact map

can be naturally partitioned into six subproblems (three cis- and three trans-interaction

subproblems) to be solved in parallel. The location of these subproblems within a fission-

yeast whole-genome contact map are depicted in Figure 4.4.

2

3

2/3

1 1/31/2

Figure 4.4: Identification of subproblems within the fission yeast contact map. The
large grey triangle represents the portion of the contact map that does not need to be
processed since all contact maps are mirrored along the diagonal. The blue triangles
represent the subsections of the contact map that correspond to intra-chromosomal
interactions, while the orange squares represent the subsections that correspond to the
inter-chromosomal interactions. The label on the blue and orange areas represent the
chromosome(s) involved in the interactions within that subsection of the contact map.
In terms of the intra-chromosomal interactions, chromosome 1 contains the largest
number of genomic bins while chromosomes 2 and 3 account for 34 and 80 percent
fewer bins, respectively.

In order to solve the entire 3D-GRP, programs corresponding to the cis-interaction and

pairwise trans-interaction subproblems can be generated and run independently. The solu-

tions from each subproblem are then combined to reconstruct the entire 3D genomic model.

This step is a heuristic which utilizes a novel metric (called the “dynamics coefficient”) to ac-
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count for the instances when a single genomic region participates in more than m subproblem

solutions; i.e. more than m interactions. Instead of discarding interactions from subproblem

solutions involving the same genomic region when this region has already been selected in m

interactions, each identified interaction is maintained and associated with a region-specific

dynamics coefficient to encode the mobility (or lack of mobility) of that genomic region.

Briefly, the dynamics coefficient for each genomic region is calculated by scanning all of the

resultant files for each subproblem and counting how many times a specific genomic bin is

found across the subproblem solution sets. The more interactions a genomic region is involved

in, the higher its corresponding dynamics coefficient, and vice versa.

In general, the dynamics coefficient is an integer value in the range of 0 to k where k is

the number of chromosomes present in the genome. For example, in fission yeast (k = 3)

if genomic bin 1 was involved in an interaction in the solution sets of the chromosome 1

cis-interaction subproblem and the chromosome 1/2 trans-interaction subproblem it would

have a dynamics coefficient of 2, whereas if it was involved in an interaction in each of

the relevant trans-interaction subproblems and the cis-interaction subproblem it would have

an associated dynamics coefficient of 3. A higher dynamics coefficient suggests that the

corresponding genomic region has been more mobile within the genome and that there is

less certainty about its fixed position within the model. This is similar to the B factor (also

known as the temperature factor or the Debye-Waller factor) generated with protein x-ray

crystallography experiments [84]. The B factor encodes the degree of uncertainty associated

with computed atomic positions in 3D space.

The dynamics coefficient is used to calculate edge weights for cis- and trans-interactions

in step 2 of the GeneRHi-C workflow (Ai,j/d where Ai.j is the interaction frequency and

d is the dynamics coefficient). These weights are then used to visualized the predicted

model. Although this use causes violation of the initial ploidy restriction used to constrain

each subproblem, it is still biologically valid. As mentioned previously, it is possible for a

given genomic bin to be involved in more than one interaction in 3D space [24, 48], even

though Hi-C is only able to detect one pairwise interaction per restriction site within a single

haploid cell. Additionally, the dynamics coefficient allows the program to encode some of

the mobility of genome organization into the predicted model by representing the certainty
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of whether an interaction is fixed within the population of cells. Overall, this decomposition

approach results in a larger number of trans-chromosomal interactions being included in the

final solution set. It also has been applied to the CP and GM mathematical models and

should be utilized in future applications of GeneRHi-C.

4.6 Results

The above workflow was tested with an existing fission yeast Hi-C dataset (GEO accession

number: GSM1379427 [108]). All programs were run on a server-grade computer with suffi-

cient main memory to represent the entire problem. All times reported in this and subsequent

sections are elapsed times. Results from the CP and GM mathematical models can be found

on the project homepage at GitHub 11 as well as in the first pre-print version of this paper

[97]. For the purpose of this thesis, this information was also added to Section 4.10.4.

4.6.1 Step 1: Dimensionality Reduction

The implementation of the IP model for the complete whole-genome fission yeast contact

map (m = 1; |V | = 1258, |E| = 745595) was able to identify the optimal solution set in

294.44 seconds using the Gurobi optimizer. As mentioned above (and depicted in Figure

4.6A), only one trans-chromosomal interaction was represented in the solution set. This

outcome made it difficult to infer the organization of the chromosomes in relation to each

other. In order to overcome this, the decomposition approach described above was used. Six

separate subprograms were generated and run independently. The size of each subproblem

in terms of V and E, as well as the time it took to identify the optimal solution, is presented

in Table 4.1 (total summed run time of 40.07 seconds).

4.6.2 Step 2: Graph Representation

The results from each subproblem were combined as described above and converted into a

GrapHi-C [101] representation using the generate gephi input subproblems.pl script 12.

Please note this is an extension of the original GrapHi-C script that allows for the dynamics
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Table 4.1: Subproblem sizes and elapsed times (runtime) for the IP mathematical
model applied to the fission yeast dataset.

Subproblem Number of
Vertices (|V |)

Number of Edges
(|E|)

Run Time
(seconds)

chromosome 1
cis-interaction

558 148734 15.75

chromosome 2
cis-interaction

454 96562 9.26

chromosome 3
cis-interaction

246 27255 2.06

chromosome 1/2
trans-interaction

454 241022 4.90

chromosome 1/3
trans-interaction

246 128472 4.70

chromosome 2/3
trans-interaction

246 103550 3.40

coefficient to be included in the edge-weight calculation. This step took less than 1 second

of execution time.

4.6.3 Step 3: Calculation of (x, y, z) Coordinates

The graph generated in Step 2 was used as input to the ForceAtlas 3D network layout

algorithm. The resulting layout was exported to a .gexf file and (x, y, z) coordinates were

extracted using the gexf2xyz.py script on the project homepage 13. This step took less than

10 seconds of execution time.

4.6.4 Visualization

The results were visualized in Gephi (Figure 4.5) [12]. Nodes were coloured according to their

chromosome number (Panel A) or genomic feature (Panel B). We would like to stress that

this graph-based visualization is not a polymer model of the DNA chain that is often seen in

other 3D genome prediction tools. Therefore, the smoothness of the edges is not a result of

any bending rigidity constraints. Instead, it is a result of the visualization tool (Gephi) and

the network layout applied.
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Figure 4.5: Visualization of the Predicted Genome Model Using the IP Model and
Comparison with Fluorescence In Situ Hybridization. In Panels A and B, circles depict
the genomic bins, grey lines represent cis- and trans-interaction edges selected by the
IP model, and line lengths are proportional to original edge-weight calculated in step 2.
In Panel A, circles are coloured according to their corresponding chromosome (CHR1:
purple, CHR2: orange, CHR3: green). In Panel B, the following genomic features are
highlighted: telomeres (green), centromeres (red) and nuclear DNA (blue) Panel C is a
Fluorescence In Situ Hybridization image that depicts the locations of telomeres (green),
and the spindle pole body (red) during fission yeast mitotic interphase (generated by
Asakawa et al. [5] - reprint license: 4823220956979).
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One of the most well–documented features of fission yeast genomic organization is the 3D

clustering of centromeres and telomeres within the nucleus [25, 55]. In order to determine

whether the yeast model predicted by GeneRHi-C was able to recapitulate these features,

the genomic bins corresponding to centromeres and telomeres were coloured in the Gephi

visualization (see Figure 4.5B). This figure provides evidence that the predicted genome

model is consistent with established principles of fission yeast chromosomal organization

including: (1) chromosomal organization into a hemispherical region, (2) a single centromere

cluster and (3) the presence of two telomere clusters (chromosome 1/2) located near the

nuclear periphery, opposite the centromere cluster [107, 108, 158]. Additionally, the clustering

in the GeneRHi-C predicted model is consistent with the clustering seen in previous fission

yeast 3D genome predictions [151]. This provides confidence in the accuracy that was achieved

using the GeneRHi-C workflow with fission yeast data. This type of evaluation (comparison

to known genome and chromosome structural features) is typical within the 3D genome

community [114, 155]. Future work (described in Section 4.7.2) will extend this evaluation

to provide a more comprehensive snapshot of GeneRHi-C’s reconstruction ability.

4.7 Discussion

4.7.1 Effect of m on Genome Organization in Fission Yeast

As mentioned previously, it is possible that each genomic region could be involved with more

than one interaction within the genome but is restricted to m Hi-C interactions (where m

is organism ploidy). To determine whether or not relaxing this restriction would result in

a more comprehensive genomic model without having to use the decomposition approach

described in Section 4.5, the GeneRHi-C workflow with the IP mathematical model was

tested with values of m from 1 to 6 for the same fission yeast Hi-C dataset (GSM1379427

[108]). As mentioned previously, the IP mathematical model allows for a single genomic

bin to be involved in more than one Hi-C mediated interaction in the predicted genome

organization. Recall that the CP and GM mathematical models could not be used for this

since they are only valid for m = 1.
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For each value of m, the program was able to find an optimal solution in 294.44, 13.20,

104.46, 15.31, 38.79, and 16.94 seconds for m = 1..6, respectively. The results were visualized

using Gephi (Figure 4.6). Nodes were coloured according to their chromosome number. The

nodes in the graph represent the individual genomic bins of the whole-genome contact map

and the edges represent either selected interactions between bins or known linear interactions

between adjacent bins. The results presented in Figure 4.6 indicate that relaxing the ploidy

restriction (by increasing the value of m) did not result in a more comprehensive genomic

model. This is consistent with the work of Diament and Tuller [39] which suggested that as

little as 5 % of the original Hi-C data is required to generate biologically accurate 3D genome

models [132].

Figure 4.6: Visualization of the Predicted Genome Model Using the IP Model with
Various m Values. Circles depict the genomic bins, grey lines represent trans-interaction
edges selected by the IP model, and line lengths are proportional to the associated in-
teraction frequency (Ai,j). Circles are coloured according to their corresponding chro-
mosome (CHR1: purple, CHR2: orange, CHR3: green). The results for each m values
are presented in the following panels: A (m = 1), B (m = 2), C (m = 3), D (m = 4),
E (m = 5), F (m = 6).

Minimal numbers of trans-chromosomal interactions were selected by the model regardless

of what the parameter m was set to. Specifically the following number of trans-chromosomal

interactions were observed in each solution set: 1 (m = 1), 0 (m = 2), 1 (m = 3), 2 (m = 4),

2 (m = 5), 3 (m = 6). As mentioned previously, this is likely due to the fact that cis-

chromosomal interactions occur more frequently than trans-chromosomal interactions within
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the genome resulting in higher interaction frequency values [35]. The decomposition strategy

described in Section 4.5 can again be applied to circumvent this issue.

4.7.2 Evaluation

The 3D genomics community does not have a standardized methodology for evaluating 3D

genome reconstruction tools like GeneRHi-C. Ideally, 3D genome reconstruction tools would

be evaluated using synthetic Hi-C datasets with known ground-truth structures. The 3D

models predicted from these synthetic datasets could then be compared with their ground

truth counter-parts using measures like the Spearman correlation coefficient and root-mean-

square deviation. Unfortunately, a standardized dataset of synthetic 3D structures and asso-

ciated Hi-C matrices for tool evaluation does not exist. We are actively working towards the

creation of this type of data. Once it has been generated it will be used to evaluate GeneRHi-

C’s reconstruction ability using the methodology described above. This methodology could

also be employed to develop a ranked-list of all existing 3D genome reconstruction tools.

4.7.3 Application to Organisms with Higher Ploidies and/or Larger

Genomes

The IP mathematical model described above could be applied to organisms with higher

ploidies by specifying the value of the m parameter. For instance, m could be modified in

the following ways according to the number of chromosome copies present: m = 2 (diploid;

common in mammals), m = 4 (tetraploid; common in plants), and so on. One issue that

would need to be addressed in organisms with higher ploidies is phasing the interactions to

each chromosome copy. This could potentially be solved using existing phasing tools [26] and

additional biological data [17, 134].

Utilizing the decomposition approach described in Section 4.5 allows one to take advantage

of coarse-grained parallelism ensuring the mathematical models are scaleable to organisms

with larger genomes (and more chromosomes). This type of parallelism is easy to obtain on

many types of computational infrastructure. As an example, this decomposition could be

easily applied to a whole-genome contact map from Homo sapiens. This contact map would
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result in the generation of 276 subproblems (given k = 23 and the number of subproblems

= k(k−1)
2

+ k). It should be noted that the size of these subproblems would likely be larger

than what was seen in the fission yeast example (depending on the Hi-C resolution).

4.7.4 Future Work

Future work will focus on the validation, modification and extension of the GeneRHi-C.

Specifically, an extensive biological validation of the predicted genome models will be per-

formed with targeted chromosome conformation capture assays and advanced microscopy

techniques to better characterize the biological accuracy of the developed mathematical

model. Different types of data transformations will be explored to address the disproportion-

ate numbers of cis- and trans-chromosomal interactions in the whole-genome contact map in

case they result in a better alternative to the decomposition approach described in Section

4.5. The IP mathematical model will be utilized as a computational framework which will

be extended and further developed to incorporate a variety of additional genomic datasets

and information types into the prediction process. For example, each genomic bin could have

an associated list of variables representing the genes found within that bin and their corre-

sponding gene expression values. Constraints could then be applied to favour interactions

between regions with similar expression profiles. The IP mathematical model will also be

utilized as a starting point for predicting the 3D genomic structure of organisms with higher

ploidies by applying the modifications suggested in Section 4.7.3.

4.8 Conclusion

This is the first time a non-procedural programming approach has been used to model the

3D genome organization from Hi-C data. Specifically, we developed a three-step consensus

method (called GeneRHi-C; pronounced “generic”) for solving the 3D-GRP which utilizes

both new and existing techniques. Briefly, (1) the IP mathematical model is used to reduce

the dimensionality of the 3D-GRP by identifying a biologically plausible, ploidy-dependent

subset of interactions from the Hi-C data. A decomposition approach is used in this step to

generate a more comprehensive 3D genome organization. k(k−1)
2

+ k separate subproblems
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(one for each set of cis-chromosomal interactions and one for each set of pairwise trans-

chromosomal interactions) are independently solved and combined. A novel coefficient is

defined to aid in combining the results of each subproblem (the dynamics coefficient) which

allows a level of positional uncertainty to be encoded into the predicted genomic organization.

The second step (2) generates a biological network (graph) that represents the subset of

interactions identified in the previous step. Briefly, genomic bins are represented as nodes

in the network with weighted-edges representing known and detected interactions. Finally,

the third step (3) uses the ForceAtlas 3D network layout algorithm to calculate (x, y, z)

coordinates for each genomic region in the contact map. The resultant predicted genome

organization represents the interactions of a population-averaged consensus structure. The

GeneRHi-C workflow was tested with Hi-C data from Schizosaccharomyces pombe (fission

yeast). This predicted 3D genome organization was then validated through literature search

which verified that the GeneRHi-C prediction recapitulated key documented features of the

yeast genome. Overall, GeneRHi-C demonstrates the power of non-procedural programming

and graph theoretic techniques for providing an efficient, generalizable solution to the 3D-

GRP and is a step towards a better understanding of the relationship between genomic

structure and function.

4.9 Endnotes

4. https://github.com/kimmackay/GeneRHi-C/tree/master/step1

5. http://sicstus.sics.se

6. http://www.gurobi.com/

7. https://github.com/kimmackay/GeneRHi-C/blob/master/step1/IP/supplementary files/additional f

ile 1.pl

8. https://github.com/kimmackay/GeneRHi-C/blob/master/step1/IP/supplementary files/additional f

ile 2.csv

9. https://github.com/kimmackay/GeneRHi-C/tree/master/step1/IP
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10. https://gephi.org/plugins/

11. https://github.com/kimmackay/GeneRHi-C/tree/master/step1

12. https://github.com/kimmackay/GeneRHi-C/tree/master/step2/scripts

13. https://github.com/kimmackay/GeneRHi-C/tree/master/step3

4.10 Supplemental Information

The following files are available on the project homepage. Additional file 1: The im-

plemented program using the IP mathematical model. Additional file 2: An example

data file (.csv file) depicting the interaction frequencies from the hypothetical whole-genome

contact map depicted in Figure 4.3A utilized by the IP model. Availability of data and

material: The datasets utilized in this article are available in the Gene Expression Omnibus

database (accession number: GSM1379427; https://www.ncbi.nlm.nih.gov/geo/query/a

cc.cgi?acc=GSM1379427). Software information: Project Name: GeneRHi-C (pro-

nounced “generic”); Project Homepage: https://github.com/kimmackay/GeneRHi-C;

Programming language(s): SICtus Prolog (Step 1), Perl (Step 2), Python (Step 3);

Other requirements: A local version of the Gurobi solver is required to run the IP model

(commercial software that is freely available to academic users).
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4.10.4 Additional Mathematical Models

Two additional mathematical models (CP and GM) were developed, implemented and tested

as a part of this research. This work is well-documented in the original pre-print [97] and

on the project homepage 14 but could not be included in the final manuscript due to space

limitations. For the purpose of this thesis, information pertaining to these models has been

extracted from the pre-print [97] and is provided below. Please note, some of the following

text was written by Mats Carlsson.

CP Mathematical Model

The CP mathematical model, is encoded with Constraint Programming [126]. This model is

valid for m = 1 only and requires integral Ai,j values due to the implementation (described

below). It is based on introducing variables Mi where Mi = j if genomic bin i interacts with

genomic bin j, and Mi = i otherwise. The goal of this model is to solve Mi for all i. The

model is given in Mathematical Model 2. Since this model encodes a combinatorial problem,

its time complexity is exponential in the worst case.

maximize ∑
i∈V

Ai,Mi
(4.4)

subject to:

Mi = j ↔Mj = i, ∀i, j ∈ V (4.5)

Mi ∈ {i} ∪ {j | Ai,j > 0}, ∀i ∈ V (4.6)

Mathematical Model 2: The CP model, valid for m = 1 and integral interaction
frequencies (Ai,j) only. V is the set {1, . . . , N} representing the genomic bins.
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The CP mathematical model (depicted in Mathematical Model 2) was implemented in

MiniZinc [113] with the OR-Tools constraint solver from Google 15. An archived version

of the MiniZinc program based on the hypothetical whole-genome contact map depicted in

Figure 4.3A is provided below (Program 4.5). The corresponding datafile for this hypothetical

whole-genome contact map 16 as well as the implementation for the fission yeast dataset 17

can be found on the project homepage. This model leverages the fact that the solution will

never contain more than m × N interactions making it scalable to larger genomes in terms

of space complexity. It is worth noting that Equation (4.5) can be encoded by the inverse

global constraint 18, whereas Equation (4.4) is encoded with one element constraint per row

of A plus one sum constraint. These constraints are propagated by efficient algorithms in

many constraint programming solvers.

The MiniZinc program corresponding to the complete fission yeast genome could not be

solved to optimality after several days of run time on a server-grade computer. In an attempt

to overcome this, the divide-and-conquer approach described above was applied. A MiniZinc

program for each cis- or trans- subproblem was generated and run independently. Similarly

to the complete whole-genome contact map, not a single cis- or trans- problem could be

solved to optimality in several days.

GM Mathematical Model

Our GM mathematical model is an optimal solution that works in polynomial time, but it

is only valid for the m = 1 case. By representing the contact map as an undirected graph

with N vertices (genomic bins) and N(N−1)
2

edges (interactions) the 3D-GRP can be regarded

as the problem of computing a maximum-weight matching for the graph G = (V,E). A

matching in a graph is a set of edges where no two edges share an endpoint. Each edge

has an associated weight, and the weight of the matching is simply the sum of the weights

of the edges in the matching. In the GM model, the vertices V are the set of genomic

bins, the edges E are the set {(i, j) | i < j ∧ Ai,j > 0}, and the weights are given by A.

An O(|V | · |E| log |V |) implementation of the weighted matching problem was reported by

Mehlhorn and Schäfer [102], and is provided in the LEDA algorithm library 19. However,

the LEDA algorithm library was not accessible for this research. In order to overcome
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this, we utilized an encoding proposed by Mehlhorn [102] to convert our maximum-weight

matching problem into an auxiliary perfect matching problem [47]. This encoding is used in

our model, given in Mathematical Model 3. Additionally, by using this encoding we were

able to use Kolmogorov’s Blossom V algorithm [78], which was available for this research and

is considered the most efficient implementation of Edmonds algorithm.

Solve the maximum-weight perfect matching problem for the graph G′ = (V ′, E ′) and
weight function f : E ′ 7→ R, i.e.:

maximize ∑
(i,j)∈E′′

f(i, j) (4.7)

subject to:

V ′ = {i | i ∈ V } ∪ {i+N | i ∈ V } (4.8)

E ′ = {(i, j) | (i, j) ∈ E} ∪ {(i+N, j +N) | (i, j) ∈ E} ∪ {(i, i+N) | i ∈ V } (4.9)

E ′′ ⊆ E ′ is a perfect matching for G′ (4.10)

f(i, j) =


Ai,j , if i ≤ N ∧ j ≤ N
Ai−N,j−N , if i > N ∧ j > N
0 , otherwise

(4.11)

Mathematical Model 3: The GM model, for m = 1 only. V is the set {1, . . . , N}
representing the genomic bins. E is the set {(i, j) | i < j ∧ Ai,j > 0} representing
the interactions and the weights are given by A. f(i, j) is the function used to
calculate edge weight. G′ = (V ′, E ′) is an extended graph used to map G = (V,E)
to a maximum-weight perfect matching problem. This mapping to maximum-
weight perfect matching was given by Mehlhorn [102].

The GM mathematical model (depicted in Mathematical Model 3) was implemented in

SICStus Prolog 20 [19] using Kolmogorov’s Blossom V algorithm [78]. The implemented

program using this representation for the hypothetical whole-genome contact map depicted

in Figure 4.3A is presented in Program 4.6. An example associated data file for this pro-

gram can be found on the project homepage 21. The program is run by: (1) invoking the

compile adjacency predicate with a data file and (2) invoking the match blossom5 predi-

cate. In this example, this would be done by invoking: compile adjacency(‘testMap.csv’,
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Table 4.3: Subproblem sizes and elapsed times (runtime) for the GM mathematical
model applied to the fission yeast dataset.

Subproblem Number of
Vertices (|V |)

Number of Edges
(|E|)

Run Time
(seconds)

chromosome 1
cis-interaction

558 148734 0.164

chromosome 2
cis-interaction

454 96562 0.055

chromosome 3
cis-interaction

246 27255 0.008

chromosome 1/2
trans-interaction

454 241022 9.645

chromosome 1/3
trans-interaction

246 128472 7.203

chromosome 2/3
trans-interaction

246 103550 1.552

testMap), followed by match blossom5(testMap,[1],[1]). For the fission yeast results,

all of this has been automated in a makefile that is available on the project homepage 22.

The SICStus Prolog implementation of the GM mathematical model was able to predict

a fission yeast genomic organization in 1.088 seconds (m = 1; for the complete whole-genome

contact map where |V | = 1258, |E| = 745595). In this matching, only one edge repre-

senting a trans-chromosomal interaction was included while the rest of the edges depicted

cis-chromosomal interactions. This made it difficult to infer the organization of the chromo-

somes in relation to each other. In order to overcome this the divide-and-conquer approach

described above was applied. Specifically, six separate matchings were identified: one for each

chromosome’s cis-interactions and one for each set of pairwise trans-chromosomal interac-

tions. A SICStus Prolog program for each cis- or trans- subproblem was run independently.

For each subproblem, the time it took to identify the optimal solution is presented in Table

4.3. These results were identical to that of the IP mathematical model but were identified

significantly faster. Therefore, the GM model is preferable over the CP model when m = 1

(i.e. for application in haploid organisms).
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4.10.5 Archived Software

GeneRHi-C Step 1

Program 4.2: Archived version of the script used for step 1 of GeneRHi-C (authored

by Mats Carlsson).

1 :- use_module(library(lists )).
2 :- use_module(library(csv)).
3 :- use_module(library(system3 )).
4

5 chromosome(pombe , 1, 1, 558).
6 chromosome(pombe , 2, 559, 1012).
7 chromosome(pombe , 3, 1013, 1258).
8 chromosome(elegans , 1, 1, 302).
9 chromosome(elegans , 2, 303, 608).

10 chromosome(elegans , 3, 609, 884).
11 chromosome(elegans , 4, 885, 1234).
12 chromosome(elegans , 5, 1235, 1653).
13 chromosome(elegans , 6, 1654, 2008).
14

15 solve_ip(Species , Set1 , Set2 , M) :-
16 load_files(Species),
17 retractall(edge(_,_,_)),
18 ( adjacency(B1, B2, F, Chr1 , Chr2),
19 B1 < B2 ,
20 ( member(Chr1 , Set1), member(Chr2 , Set2) -> true
21 ; member(Chr1 , Set2), member(Chr2 , Set1) -> true
22 ),
23 assertz(edge(B1 , B2 , F)),
24 fail
25 ; true
26 ),
27 % findall(edge(I,J,W), edge(I,J,W), Edges),
28 findall(I-J, (edge(I,J,_); edge(J,I,_)), Pairs0),
29 keysort(Pairs0 , Pairs1),
30 keyclumped(Pairs1 , Pairs2),
31 tell(’/tmp/all.lp’),
32 write(’Maximize\n obj:’),
33 ( foreach(I1-J1,Pairs1),
34 fromto(’ ’,S1 ,S2 ,_)
35 do ( I1 >J1 -> S1 = S2
36 ; edge(I1, J1, F1),
37 format(’~a~w X_~d_~d’, [S1 ,F1 ,I1 ,J1]),
38 S2 = ’ + ’
39 )
40 ), nl,
41 write(’Subject To\n’),
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42 ( foreach(I2-J2s ,Pairs2),
43 param(M)
44 do ( length(J2s ,Len), Len =< M -> true
45 ; ( foreach(J2,J2s),
46 fromto(’ ’,S3 ,’ + ’,_),
47 param(I2)
48 do sort2(I2, J2, I3, J3),
49 format(’~aX_~d_~d’, [S3 ,I3 ,J3])
50 ),
51 format(’ <= ~d\n’, [M])
52 )
53 ),
54 write(’Binary\n’),
55 ( foreach(I4-J4,Pairs1)
56 do ( I4 >J4 -> true
57 ; format(’ X_~d_~d\n’, [I4,J4])
58 )
59 ),
60 write(’End\n’),
61 told ,
62 system(’gurobi_all ’),
63 parse_solution.
64

65 parse_solution :-
66 see(’/tmp/all.sol’),
67 retractall(solution(_,_,_)),
68 read_line(_),
69 read_line(_),
70 repeat ,
71 read_line(Codes),
72 ( Codes = end_of_file -> true
73 ; tok_sol_line(I, J, 1, Codes , []),
74 edge(I, J, W),
75 assertz(solution(I,J,W)),
76 fail
77 ), !,
78 seen ,
79 findall(W, solution(_,_,W), Ws),
80 length(Ws , Size),
81 sumlist(Ws , Weight),
82 format(’% Gurobi computed a set of ~d edges and weight ~w\n’,
83 [Size ,Weight]),
84 findall(0, (solution(I,J,W), print_tab ([I,J,W])), _).
85

86 tok_sol_line(I, J, Z01) --> "X_",
87 tok_int(0, I), "_",
88 tok_int(0, J), " ",
89 tok_int(0, Z01).
90

91 tok_int(Int0 , Int) --> [D], {D >= 0’0, D =< 0’9}, !,
92 {Int1 is 10* Int0 + D - 0’0},
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93 tok_int(Int1 , Int).
94 tok_int(Int , Int) --> [].
95

96 print_tab(L) :-
97 (foreach(X,L) do write(X), write(’ ’)),
98 nl.
99

100 parse_record(Record , B1 , B2 , F) :-
101 Record = [integer(B1 ,_), integer(B2 ,_), float(F,_)].
102

103 bin2chr(Bin , Species , Chr) :-
104 chromosome(Species , Chr , A, B),
105 Bin >= A,
106 Bin =< B, !.
107

108 sort2(X, Y, X, Y) :- X =< Y, !.
109 sort2(X, Y, Y, X).

GeneRHi-C Step 2

Program 4.3: Archived version of the script used for step 2 of GeneRHi-C.

1 #!/usr/bin/perl
2 ## generates the two files (nodes.tsv and edges.tsv)
3 ## needed for gephi visualization
4 ##
5 ## argument 1: the number of chromsomes
6 ## argument 2: the experimental resolution
7 ## argument 3: the number of subproblems (or result files that
8 ## need to be integrated)
9 ## agrument 4: the beginning out the output files names

10 ##
11 ## Kimberly MacKay Nov 9, 2017
12 ## license: This work is licensed under the Creative Commons
13 ## Attribution -NonCommercial -ShareAlike 3.0 Unported License.
14 ## To view a copy of this license , visit
15 ## http :// creativecommons.org/licenses/by -nc -sa /3.0/ or send
16 ## a letter to Creative Commons , PO Box 1866, Mountain View ,
17 ## CA 94042, USA.
18

19 use strict;
20 use warnings;
21

22 ## check to ensure four arguments were passed in
23 die "ERROR: must pass in four arguments." if @ARGV != 4;
24

25 my $num_chr = $ARGV [0];
26 my $experimental_resolution = $ARGV [1];
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27 my $num_sub_problems = $ARGV [2];
28 my $out_file = $ARGV [3];
29

30 # scan each of the results files and collect the result in
31 # this hash table
32 my %interactions;
33 my %dynamics_coefficents;
34

35 #####################################################################
36 ## initialize variables
37 #####################################################################
38

39 ## get the ending index of each chromosome
40 my @stop_index;
41 for(my $chr = 1; $chr <= $num_chr; $chr ++)
42 {
43 print STDERR "What is the ending index of CHR".$chr."? ";
44 my $input = <STDIN >;
45 $stop_index[$chr] = int($input );
46 }
47

48 $stop_index [0] = 0;
49

50 ## make an array that maps genomic bin to the
51 ## corresponding chromosome
52 my @chrs;
53 my $bin = 1;
54 for(my $j = 1; $j <= $num_chr; $j++)
55 {
56 for(my $i = $bin; $i <= $stop_index[$j]; $i++)
57 {
58 $chrs[$bin] = $j;
59 $bin = $bin +1;
60 }
61 }
62

63 #####################################################################
64 ## print the *_nodes.tsv file
65 #####################################################################
66

67 ## open the *_nodes.tsv file for printing
68 open(my $NODE_FILE , ’>’, $out_file."_nodes.tsv")
69 or die "Could not open file: ".$out_file."_nodes.tsv";
70

71 # print the header line
72 print $NODE_FILE "id \t label \t chromosome\n";
73

74 # chromosome counter
75 my $c = 1;
76

77 # for each genomic bin;
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78 for(my $row = 1; $row <= $stop_index[$num_chr ]; $row ++)
79 {
80 # print the node information
81 print $NODE_FILE $row."\tbin".$row."\t$c\n";
82

83 if($row == $stop_index[$c])
84 {
85 # increment the chromosome counter
86 $c = $c + 1;
87 }
88 }
89

90 # close the *_nodes.tsv file
91 close $NODE_FILE;
92

93 #####################################################################
94 ## print the *_edges.tsv file
95 #####################################################################
96

97 ## NOTE: when using the ForceAtlas2 layout - a larger weight will
98 ## result in nodes being closer together. In this layout , edge weight
99 ## represents the strength of the attraction

100

101 # open the *_edges.tsv file for printing
102 open(my $EDGE_FILE , ’>’, $out_file."_edges.tsv")
103 or die "Could not open file: ".$out_file."_edges.tsv";
104

105 # print the header line
106 print $EDGE_FILE "Source\tTarget\tType_of_interaction\tWeight\n";
107

108 # chromosome counter
109 $c = 1;
110

111 # print out the linear interactions and their "distances" according
112 # to the requency value or experimental resolution
113 # (for s.pombe was 10 kb)
114 for(my $row = 1; $row <= $stop_index[$num_chr ]; $row ++)
115 {
116 if($row < $stop_index[$c])
117 {
118 # experimental resolution is not inverted since edge weight
119 # represents the strength of the attraction
120 print $EDGE_FILE $row."\t".( $row +1)."\tlinear".$c."\t".
121 ($experimental_resolution )."\n";
122 }
123 else
124 {
125 # increment the chromosome counter
126 $c = $c + 1;
127 }
128
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129 # initialize the dynamics_coefficients hash for each bin to be = 0
130 $dynamics_coefficents{$row} = 0;
131 }
132

133 ## Scan the result files
134

135 # for each intra -interaction
136 for(my $sp = 0; $sp < $num_sub_problems; $sp ++)
137 {
138 # read in the result file
139 print STDERR "subproblem ".($sp +1).
140 ": give the path for the results file: ";
141 chomp(my $out_file = <STDIN >);
142

143 ## open the file
144 open RESULTS , "$out_file"
145 or die "ERROR: $out_file could not be opened.";
146 chomp(my @results_file = <RESULTS >);
147 close RESULTS;
148

149 # a boolean flag to let us know once the adjacency results start
150 my $read_results = 0;
151

152 for(my $i = 0; $i <= $#results_file; $i++)
153 {
154

155 if($read_results)
156 {
157 ## split the line from the clp file
158 my @results_line = split /\s+/, $results_file[$i];
159

160 ## get node1
161 my $node1 = $results_line [0];
162

163 ## get node(s)2
164 my $node2 = $results_line [1];
165

166 ## get the corresponding frequency
167 ## scale by $experimental_resolution
168 my $freq = $results_line [2] * $experimental_resolution;
169

170 ## determine if it is a cis - or trans - interaction
171 my $chr1 = $chrs[$results_line [0]];
172 my $chr2 = $chrs[$results_line [1]];
173

174 ## if it is a cis - interaction
175 if($chr1 == $chr2)
176 {
177 # add it to the hash
178 $interactions{"cis_".$node1."_".$node2 }{ NODE1_BIN} = $node1;
179
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180 $interactions{"cis_".$node1."_".$node2 }{ NODE2_BIN} = $node2;
181

182 $interactions{"cis_".$node1."_".$node2 }{ INTERACTION_FREQ} =
183 $freq;
184 $interactions{"cis_".$node1."_".$node2 }{ INTERACTION_TYPE} =
185 "cis";
186

187 $dynamics_coefficents{$node1} =
188 $dynamics_coefficents{$node1} + 1;
189 $dynamics_coefficents{$node2} =
190 $dynamics_coefficents{$node2} + 1;
191 }
192 ## if it is a trans - interaction
193 else
194 {
195 # add it to the hash
196 $interactions{"trans_".$node1."_".$node2 }{ NODE1_BIN} = $node1;
197 $interactions{"trans_".$node1."_".$node2 }{ NODE1_CHR} = $chr1;
198

199 $interactions{"trans_".$node1."_".$node2 }{ NODE2_BIN} = $node2;
200 $interactions{"trans_".$node1."_".$node2 }{ NODE2_CHR} = $chr2;
201

202 $interactions{"trans_".$node1."_".$node2 }{ INTERACTION_FREQ} =
203 $freq;
204 $interactions{"trans_".$node1."_".$node2 }{ INTERACTION_TYPE} =
205 "trans";
206

207 $dynamics_coefficents{$node1} =
208 $dynamics_coefficents{$node1} + 1;
209 $dynamics_coefficents{$node2} =
210 $dynamics_coefficents{$node2} + 1;
211 }
212 }
213

214 ## check to see if we should start reading during the next
215 ## iteration; results start after a comment line beginning with %
216 if($results_file[$i] =~ /^%/)
217 {
218 $read_results = 1;
219 }
220 }
221 }
222

223 #####################################################################
224 ## print out the cis and trans interactions and their "distances"
225 ## according to the frequency value and dynamics coefficient
226 #####################################################################
227

228 foreach my $selected_interaction (sort keys %interactions)
229 {
230 # calculate the average dynamics coefficient between
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231 # the two bins involved in the interactions
232 my $d_coefficient =
233 ($dynamics_coefficents{
234 $interactions{
235 $selected_interaction }{
236 NODE1_BIN }} +
237 $dynamics_coefficents{
238 $interactions
239 {$selected_interaction }{
240 NODE2_BIN }})/2;
241

242 # print the interaction
243 print $EDGE_FILE $interactions{$selected_interaction }{ NODE1_BIN}
244 ."\t".$interactions{$selected_interaction }{ NODE2_BIN}
245 ."\t".$interactions{$selected_interaction }{ INTERACTION_TYPE}
246 ."\t".( $interactions{$selected_interaction }{
247 INTERACTION_FREQ }/ $d_coefficient )."\n";
248 }
249

250 END {
251 warn "this script took ", time - $^T, " seconds\n";
252 }

GeneRHi-C Step 3

Program 4.4: Archived version of the script used for step 3 of GeneRHi-C.

1 ## script for calculating xyz coordinates in GeneRHi -C
2 ## coordinates will be output in a csv format (Node ,X,Y,Z)
3 ## Argument 1: the input file name ( .gexf file)
4 ## Argument 2: the output file name
5 ##
6 ## Kimberly MacKay Oct 16, 2019
7 ## license: This work is licensed under the Creative Commons
8 ## Attribution -NonCommercial -ShareAlike 3.0 Unported License.
9 ## To view a copy of this license , visit

10 ## http :// creativecommons.org/licenses/by -nc -sa /3.0/ or send
11 ## a letter to Creative Commons , PO Box 1866, Mountain View ,
12 ## CA 94042, USA.
13

14 import sys
15 import csv
16

17 # read in the gexf file , and parse appropriately
18 infilename = sys.argv [1]
19 infile = open(infilename , ’r’)
20

21 allNodes = []
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22 nodeID = ""
23 xyz = []
24

25 for line in infile:
26 # if we are at a new node
27 if "<node id=" in line:
28 # add the old information to the list
29 allNodes.append ([ nodeID] + xyz)
30

31 l = line.split(’"’)
32

33 # resent the variables
34 nodeID = l[3]
35 xyz = []
36 # if we are at a line with position information
37 elif "<viz:position" in line:
38 # split the line
39 l = line.split(’"’)
40

41 # store the position information
42 xyz = [l[1], l[3]]
43

44 # add the remaining node information
45 allNodes.append ([ nodeID] + xyz)
46

47 # output the results
48 outfilename = sys.argv [2]
49 header = ["Node", "X", "Y", "Z"]
50

51 outfile = open(outfilename , ’w’)
52 csv_wr = csv.writer(outfile)
53

54 csv_wr.writerow(header)
55 csv_wr.writerows(allNodes)
56

57 infile.close()
58 outfile.close()

CP Implementation

Program 4.5: Archived version of the implementation for the CP mathematical model

(authored by Mats Carlsson).

1 %% Load the relevant libraries
2 include "globals.mzn";
3

4 %% Variable Declarations
5 int: N;

95



6

7 %% first chromosome of interest
8 set of 1..N: Chr1;
9

10 %% second chromosome of interest
11 set of 1..N: Chr2;
12

13 %% the given frequency map , assumed symmetric , main diagonal = 0
14 array [1..N,1..N] of int: map;
15

16 %% main decision variables
17 array [1..N] of var 1..N: match;
18

19 %% objective per row
20 array [1..N] of var int: rowobj;
21

22 %% total objective , N.B. counting each binding twice
23 var int: dobj;
24

25 %% mask out all entries not connecting Chr1 and Chr2
26 int: masked_map (1..N: i, 1..N: j) =
27 if i in Chr1 /\ j in Chr2 then
28 map[i,j]
29 else if i in Chr2 /\ j in Chr1 then
30 map[i,j]
31 else 0 endif endif;
32

33 %% assertion: frequency map is symmetric
34 constraint
35 forall(i in 1..N, j in 1..N where i<j)
36 (assert(masked_map(i,j) = masked_map(j,i), "Asymmetry!"));
37

38 %% constrain the objective , one slice per row
39 constraint
40 forall(i in 1..N)
41 (rowobj[i] = [masked_map(i,j) | j in 1..N][match[i]]);
42

43 %% constrain the total objective
44 constraint
45 dobj = sum(i in 1..N)( rowobj[i]);
46

47 %% domination: prevent zero -frequency edges
48 constraint
49 forall(i in 1..N)
50 (match[i] in {i} union {j | j in 1..N where masked_map(i,j) >0});
51

52 %% domination: prevent obviously suboptimal solutions
53 constraint
54 forall(i in 1..N, j in 1..N where
55 masked_map(i,j)>0)( rowobj[i] + rowobj[j] >= 1);
56
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57 %% essential matching constraint
58 constraint
59 inverse(match , match) :: domain;
60

61 %% Solve
62 solve :: int_search(rowobj , max_regret , indomain_max , complete)
63 maximize(dobj);
64

65 %% output the results
66 output
67 ["edge (\(i),\( match[i])). % benefit = \( rowobj[i])\n" |
68 i in 1..N where fix(match[i])>i] ++
69 ["objective (\( dobj div 2)).\n"] ++
70 [];

GM Implementation

Program 4.6: Archived version of the implementation for the GM mathematical

model (authored by Mats Carlsson).

1 %% Note: this program assumes a local version of BlossumV
2 %% exists on the computer. The majority of this program formats the
3 %% input file in order to pass the data to BlossumV and parses
4 %% the output generated by that solver. The program makes use of the
5 %% temporary files /tmp/all.in and /tmp/all.out.
6

7 :- use_module(library(lists )).
8 :- use_module(library(csv)).
9 :- use_module(library(system3 )).

10

11 chromosome(testMap , 1, 1, 6).
12

13 genome_size(testMap , 6).
14

15 scale_factor(testMap , 1.0E1).
16

17 compile_adjacency(Path , Species) :-
18 retractall(adjacency(_,_,_,_,_)),
19 see(Path),
20 read_record(_),
21 repeat ,
22 read_record(Record),
23 ( Record = end_of_file -> true
24 ; parse_record(Record , B1, B2, F),
25 bin2chr(B1 , Species , Chr1),
26 bin2chr(B2 , Species , Chr2),
27 assertz(adjacency(B1 , B2 , F, Chr1 , Chr2)),
28 fail
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29 ), !,
30 seen ,
31 save_predicates ([ adjacency /5], Species ).
32

33 match_blossom5(Species , Set1 , Set2) :-
34 load_files(Species),
35 retractall(edge(_,_,_)),
36 ( adjacency(B1, B2, F, Chr1 , Chr2),
37 B1 < B2 ,
38 ( member(Chr1 , Set1), member(Chr2 , Set2) -> true
39 ; member(Chr1 , Set2), member(Chr2 , Set1) -> true
40 ),
41 assertz(edge(B1 , B2 , F)),
42 fail
43 ; true
44 ),
45 findall(edge(I,J,W), edge(I,J,W), Edges),
46 length(Edges , E),
47 genome_size(Species , N),
48 scale_factor(Species , Scale),
49 tell(’/tmp/all.in’),
50 NN is 2*N,
51 EEN is 2*E+N,
52 print_tab ([NN ,EEN]),
53 ( foreach(edge(I1,J1,W1),Edges),
54 param(Scale)
55 do I11 is I1 -1,
56 J11 is J1 -1,
57 W11 is integer(-Scale*W1),
58 print_tab ([I11 ,J11 ,W11])
59 ),
60 ( foreach(edge(I2,J2,W2),Edges),
61 param(N,Scale)
62 do I21 is I2+N-1,
63 J21 is J2+N-1,
64 W21 is integer(-Scale*W2),
65 print_tab ([I21 ,J21 ,W21])
66 ),
67 ( for(K,1,N),
68 param(N)
69 do K1 is K-1,
70 K2 is K+N-1,
71 print_tab ([K1,K2 ,0])
72 ),
73 told ,
74 system(’blossom5 -e /tmp/all.in -w /tmp/all.out ’),
75 see(’/tmp/all.out’),
76 retractall(solution(_,_,_)),
77 read_line(_),
78 repeat ,
79 read_line(Codes),
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80 ( Codes = end_of_file -> true
81 ; append(Icodes , [0’ |Jcodes], Codes),
82 number_codes(I0 , Icodes),
83 number_codes(J0 , Jcodes),
84 I is I0+1,
85 J is J0+1,
86 edge(I, J, W),
87 assertz(solution(I,J,W)),
88 fail
89 ), !,
90 seen ,
91 findall(W, solution(_,_,W), Ws),
92 length(Ws , Size),
93 sumlist(Ws , Weight),
94 format(’% Blossom V computed a matching of size ~d and weight ~w\n’,
95 [Size ,Weight]),
96 findall(0, (solution(I,J,W), print_tab ([I,J,W])), _).
97

98 print_tab(L) :-
99 (foreach(X,L) do write(X), write(’ ’)),

100 nl.
101

102 parse_record(Record , B1 , B2 , F) :-
103 Record = [integer(B1 ,_), integer(B2 ,_), float(F,_)].
104

105 bin2chr(Bin , Species , Chr) :-
106 chromosome(Species , Chr , A, B),
107 Bin >= A,
108 Bin =< B, !.

4.11 Supplemental Endnotes

14. https://github.com/kimmackay/GeneRHi-C/tree/master/step1

15. https://developers.google.com/optimization/

16. https://github.com/kimmackay/GeneRHi-C/blob/master/step1/CP/supplementary/additional file 2

.dzn

17. https://github.com/kimmackay/GeneRHi-C/tree/master/step1/CP/pombe

18. http://www.minizinc.org/doc-lib/doc-globals-channeling.html

19. http://www.algorithmic-solutions.com/
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Chapter 5

StoHi-C: Using t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) to Predict 3D Genome

Organization from Hi-C Data

Kimberly MacKay Anthony Kusalik
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Detailed Contributions: Kimberly MacKay was responsible for writing the manuscript,

performing the research and authoring the software. A brief description of the contributions

for all listed authors can be found in Section 5.6.1.

As a reminder, the overarching goal of this thesis is to develop new, generalizable computa-

tional tools for Hi-C analysis and 3D genome prediction. StoHi-C is a tool for predicting 3D

genome organization from Hi-C datasets. Figure 1.3 indicates how StoHi-C fits into existing

Hi-C data analysis workflows.

Additional Background: t-Stochastic Neighbourhood Embedding (t-SNE) is a non-linear

dimensionality reduction technique that belongs to the class of stochastic neighbourhood

embedding methods [60, 159, 160, 161, 162]. These methods use manifold-based learning

to determine a low-dimensional representation of a given dataset while preserving local

structure. [60, 160]. Briefly, a low-dimensional embedding is selected by minimizing the

Kullback-Leibler divergence [124]. In order to find the optimal (or near-optimal) solution,
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this minimization is repeated multiple times with different stochastically-selected seeds. Ul-

timately, the embedding that resulted in the lowest Kullback-Leibler divergence is reported

[159, 160, 161, 162].

5.1 Abstract

In order to comprehensively understand the structure-function relationship of the genome,

3D genome structures must first be predicted from biological data (like Hi-C) using compu-

tational tools. Many of these existing tools rely partially or completely on multi-dimensional

scaling (MDS) to embed predicted structures in 3D space. MDS is known to have inherent

problems when applied to high-dimensional datasets like Hi-C. Alternatively, t-Distributed

Stochastic Neighbor Embedding (t-SNE) is able to overcome these problems but has not

been applied to predict 3D genome structures. In this manuscript, we present a new work-

flow called StoHi-C (pronounced “stoic”) that uses t-SNE to predict 3D genome structure

from Hi-C data. StoHi-C was used to predict 3D genome structures for multiple, indepen-

dent existing fission yeast Hi-C datasets. Overall, StoHi-C was able to generate 3D genome

structures that more clearly exhibit the established principles of fission yeast 3D genomic

organization

5.2 Introduction

Understanding the structure-function relationship of various biomolecules has been the foun-

dation of molecular biology research for many years. Recently, the development of Hi-C (and

related methods) has resulted in the generation of unprecedented sequence-level investiga-

tions into the structure-function relationship of the genome [15, 16, 92]. Hi-C is able to detect

regions of the genome that are “interacting” (i.e. in close 3D spatial proximity). Typically,

this is done by mapping Hi-C sequence reads to a reference genome [86, 99, 101, 167]. This

results in the generation of a whole-genome contact map which is a N × N matrix where

N is the number of “bins” which represent linear regions of genomic DNA. Each cell within

a whole-genome contact map records a count of how many times two genomic regions were
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found in close proximity within a population of cells [86, 99, 101]. This is more commonly

referred to as an interaction count. Interaction counts are often normalized using methods

like iterative correction and eigenvector (ICE) decomposition [68, 164] to reduce inherent

biases within Hi-C datasets [90, 96, 138, 143, 145, 172]. This normalization process results

in fractional interaction counts also known as interaction frequencies.

Normalized whole-genome contact maps can be used to infer 3D genomic structure(s).

This is known as the 3D genome reconstruction problem (3D-GRP) [99, 132] or the 3D

chromatin structure modelling problem [178]. For the purpose of this manuscript, we will

be using the term 3D-GRP. A formal representation of the 3D-GRP is provided by MacKay

and Kusalik [99]. Briefly, normalized interaction frequencies are converted into a set of

pairwise distances (based on the inverse of the interaction frequency). This calculation uses

the assumption that a pair of genomic regions with a small interaction frequency will be

further away in 3D space than a pair of genomic regions with a higher interaction frequency

[6, 13, 14, 46, 52, 63, 87, 99, 127, 133, 163]. Each genomic bin’s (x, y, z) coordinates are then

calculated using various optimization techniques [99].

Many of the existing tools for solving the 3D-GRP rely on multi-dimensional scaling

(MDS) either completely or partially to predict and embed genomic structures in 3D space.

MDS is known to have inherent problems when calculating embeddings from population-

based, sparse, high-dimensional datasets (which are characteristics of Hi-C datasets) [1, 125].

Alternatively, t-Stochastic Neighbourhood Embedding (t-SNE) has resulted in more accurate

embeddings for datasets with these characteristics [159, 160, 161, 162]. Recently, Zhu et al.

[180] were able to predict 3D structures of individual chromosomes using a manifold-learning

approach (similar to t-SNE) combined with multi-conformation optimization. Their tool was

shown to outperform many of the existing MDS-based methods but could not be applied to

the entire 3D-GRP due to the underlying time complexity of multi-conformation optimization

[180]. Based on the results of this regional prediction tool, t-SNE should result in more

accurate solutions to the 3D-GRP when compared to existing MDS methods. To test this

hypothesis, we developed a new workflow called StoHi-C (pronounced “stoic”) that uses t-

SNE to predict 3D genome structure from Hi-C data. StoHi-C and MDS were used to predict

3D genome structure for four existing fission yeast datasets (wild-type, G1-arrested, rad21
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deletion and clr4D deletion). Overall, StoHi-C was able to more clearly recapitulate well-

documented features of fission yeast chromosomal organization (such as the RabI structure)

when compared to the MDS method.

5.3 Methods

StoHi-C is a two step workflow that involves (1) 3D embedding and (2) visualization. A

more detailed description of each step is provided in the subsections below. Each step can

be run independently or users can invoke an automated shell script 23 that runs each step

in succession. Complete documentation describing expected inputs, outputs and software

requirements can be found on the project homepage 24. In the subsequent sections, the

StoHi-C workflow is described in general, but also provides details regarding the specific

illustrative examples presented in this paper.

5.3.1 Step 1: 3D Embedding

The 3D coordinates for each genomic bin are calculated using t-SNE [159, 160, 161, 162].

A python script 25 was developed that accepts a normalized whole-genome contact map

as input and outputs the (x, y, z) coordinates for each genomic bin. An example of the

required input and expected output can be found on the project homepage. This script

uses the TSNE method from the sklearn.manifold library to embed genomic bins in 3D

space. The exact parameter values that were used for the fission yeast datasets as well

as a brief description their function follow: n components = 3 (embedding dimensionality),

perplexity=5.0 (number of nearest neighbours), early exaggeration=3.0 (controls the

tightness of clusters), n iter=5000 (maximum number of iterations), method=‘exact’ (do

not use the Barnes-Hut approximation), init=‘pca’ (use a principle component analysis to

initialize the embedding). These values were selected based on the suggestions provided on

t-SNE’s homepage 26.
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5.3.2 Step 2: Visualization

Once the (x, y, z) coordinates are generated, a multitude of different tools can be used for

visualization. Three options are discussed below but any graphing or network visualization

tool that accepts 3D coordinates (where x, y, z values are space-delimited with each point

on a separate row) could be used.

1. plot.ly: A python script plotly viz.py 27 was developed that accepts the (x, y, z)

coordinates generated in Step 1 and produces a static PNG image and an interactive 3D

graph (HTML) using the plot.ly library [123]. The interactive graph can be opened

in any web browser. This option was used to generate the figures for the illustrative

examples in this manuscript.

2. matplotlib: A python script matplotlib viz.py 28 was developed that accepts the

(x, y, z) coordinates generated in Step 1 and produces a static PNG image of the

corresponding 3D graph as well as a simple MP4 animation that rotates around the

y-axis. This script uses the py.plot and animation modules from the matplotlib

library [67] as well as the mpl toolkits.mplot3d toolkit 29.

3. Chart Studio : Alternatively, plot.ly has a web-based, interactive version available

online called Chart Studio 30. The 3D coordinates can be directly uploaded to the

website to generate an interactive graph. Chart Studio has provided a detailed tutorial

on generating this type of visualization 31. Customized styles such as colours, labels,

size, transparency, etc. for nodes and/or edges can then be set directly by the user

through the graphical user interface. Additional node and/or edge attributes can be

added to the 3D graph to incorporate complementary biological datasets (if available)

with the visualization.

Options 1 and 2 have been automated for the visualization of fission yeast datasets with

10kb resolution. Applying them to datasets from other organisms or datasets with different

resolutions would require slight adjustments to the scripts. Documentation of how to make

these changes is provided on the project homepage 32. Option 3 can not be automated since

it is a graphical user interface.
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5.3.3 Comparison with MDS

In order to compare the results of StoHi-C with MDS, the generation of (x, y, z) coordinates in

step 1 was also done with metric-MDS. The use of metric-MDS for 3D genome prediction has

been widely used since 2010 [46, 151]. Similarly to Step 1 of the StoHi-C workflow, a python

script was developed 33 that accepts a normalized whole-genome contact map as input and

outputs the (x, y, z) coordinates for each genomic bin. This script uses the MDS method from

the sklearn.manifold library [121] to embed genomic bins in 3D space. The exact parameter

values that were used for the fission yeast datasets as well as a brief description of their

function follow: n components = 3 (embedding dimensionality), metric=True (use metric

MDS), max iter=5000 (maximum number of iterations), dissimilarity=‘precomputed’

(use a custom dissimilarity matrix). To be consistent with the StoHi-C workflow, the plot.ly

script used for Step 2 (described above) was used to visualize the results for the illustrative

examples in this manuscript.

5.3.4 Data Availability

The datasets supporting the conclusions of this article were originally generated by Mizuguchi

et al. [108] and are available in the Gene Expression Omnibus database (accession number:

GSE56849 34). The specific sample numbers are 999a wild-type (GSM1379427), G1-arrested

(GSM1379429), rad21-K1 mutation (GSM1379430) and clr4 deletion (GSM1379431).

5.3.5 Web Resources

StoHi-C is freely available at https://github.com/kimmackay/StoHi-C and is licensed un-

der the Creative Commons Attribution-NonCommercial-ShareAlike 3.0. It requires Python3

and local copies the following libraries: numpy, sklearn and plot.ly. These libraries are

open access and can be downloaded through a package manager like pip or conda. Archived

versions of the scripts used to generate the results in this manuscript are available as supple-

mental data.
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5.4 Results & Discussion

The StoHi-C workflow and MDS method described above were used to generate 3D genome

predictions for four existing Hi-C fission yeast datasets (999a wild type, G1-arrested, rad21-

K1 mutation, and clr4 deletion) [108]. Depending on the method, either t-SNE or MDS

was used to generate (x, y, z) coordinates. These results were then visualized with plot.ly

which generates both static images and interactive graphs. Images representing the genomic

predictions for each dataset with the StoHi-C workflow (Panels A,C,E,G) and MDS method

(Panels B,D,F,H) are presented in Figure 5.1. Interactive versions of each plot.ly graph

can be found on the project homepage 35. Additionally, the project homepage contains the

resultant images and animations generated with the matplotlib visualization for the 999a

wild-type dataset 36 37.

Based on the results presented in Figure 5.1, the 3D genomic predictions generated with

StoHi-C more clearly represent known features of fission yeast chromosomal organization

when compared to the MDS method. The StoHi-C predictions (Figure 5.1A,C,E,G) all

clearly depict universal hallmarks of genome organization (e.g. chromosome territories [31])

as well as fission yeast specific features (e.g. RabI configuration [49, 107]). Meanwhile, the

MDS predictions all resulted in a hairball-like configuration with no apparent biological sig-

nificance (Figure 5.1B,D,F,H). This is likely due to a fundamental difference in the algorithms

underlying t-SNE and MDS. One of the goals of t-SNE is to preserve the local structure of

high-dimensional datasets by placing similar features close together in the final embedding

[159, 160, 161, 162]. MDS does the opposite, focusing on placing dissimilar features further

away in the embedding [62].

StoHi-C has a worst-case time complexity of O(N2) (the time complexity of t-SNE [161])

where N is the number of genomic bins. This can be improved to O(N logN) by using the

Barnes-Hut approximation [160] which may be necessary for larger datasets. Classical metric-

MDS has a worst-case time complexity of O(N3) [173] suggesting StoHi-C’s runtime would

be better than MDS-based methods in the extreme worst case. Table 5.1 lists the elapsed

runtime required to embed and visualize each dataset using both the StoHi-C workflow and

MDS method. These timings do not represent a comprehensive complexity analysis and
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Figure 5.1: Visualizations of 3D genome predictions for four fission yeast datasets
using StoHi-C and MDS. Panels A,C,E and G show 3D genome predictions produced
with the StoHi-C workflow, while Panels B,D,F, and H depict the 3D genome predic-
tions generated with MDS. In all panels, chromosomes are indicated with the following
colours: purple (chromosome 1), orange (chromosome 2), green (chromosome 3). Cor-
responding datasets are indicated in the black box directly above the panels (999a
wild-type: Panels A and B; G1-arrested: Panels C and G; rad21-K1 mutation: Panels
E and F; clr4 deletion: Panels G and H). In each panel, the X, Y and Z axes are
indicated with a corresponding label.

instead are presented to provide context as to whether or not these methods are practical

for Hi-C-sized datasets. Interestingly, the MDS embedding is much faster than the t-SNE

embedding with average elapsed times of 0.53 seconds and 11.0 seconds, respectively. This

could be due to efficiencies in the implementations of the two algorithms.

To the best of our knowledge, none of the existing methods for predicting 3D genomic

organization have been successfully applied to the datasets used in this paper. Previously,

Tanizawa et al. [151] applied MDS to chromosome conformation capture data from fission

yeast but the results were not able to recapitulate the RabI configuration of fission yeast

chromosomes. StoHi-C was able to produce 3D genomic predictions that are consistent

with the large body of work depicting fission yeast genomic organization including the RabI
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Table 5.1: Elapsed Runtimes for 3D genome prediction with the StoHi-C workflow
and MDS method. Elapsed runtimes are shown in seconds for the embedding (step 1),
visualization (step 2) and complete workflow (total).

StoHi-C Elapsed Time MDS Elapsed Time
Dataset Step 1 Step 2 Total Step 1 Step 2 Total
999a Wildtype 10.6 5.7 16.2 0.54 5.7 6.2
G1-Arrested 11.7 6.3 18.0 0.52 5.9 6.4
rad21-K1 Mutation 10.8 6.3 17.1 0.54 5.8 6.3
clr4 Deletion 10.7 5.8 16.5 0.51 5.6 6.1

configuration. This is the first time the RabI configuration has been successfully predicted

from fission yeast Hi-C data. This is surprising when considering the relative simplicity of

the fission yeast genome, but more understandable due to existing tools heavy reliance on

MDS. It should be noted that polymer modelling of the same datasets was not successful

[108].

While StoHi-C appears to be working well with data from the haploid organism fission

yeast, additional step(s) may be required to apply it to organisms with higher ploidy (diploid,

hexaploid, etc.) if the data is not pre-phased. This is because StoHi-C will have to determine

which chromosome copy (or copies) contribute to the detected interactions (the ploidy prob-

lem). For now, users should preprocess polyploid Hi-C data with existing phasing tools (see

review by Browning and Browning [18]) prior to using StoHi-C. To solve this problem more

permanently, future work will focus on extending StoHi-C to include a step that performs

phasing. This is something we are actively working toward in the hopes of applying StoHi-C

to polyploid organisms. Once this has been completed, it will be deployed as a new version

on the project homepage.

In this manuscript, we present a new workflow called StoHi-C (pronounced “stoic”) that

uses t-SNE to predict 3D genome structure from Hi-C data. Unlike MDS, t-SNE is well-

suited for embedding population-based, sparse, high-dimensional data in 3D space. StoHi-C

was used to predict 3D genome structures for four fission yeast Hi-C datasets. The results

were compared to the 3D genomic structures predicted from the same datasets using a MDS

approach. The 3D genomic predictions generated with StoHi-C more clearly represent known
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features of fission yeast chromosomal organization when compared to the MDS method. Ad-

ditionally, this is the first time the RabI 3D genomic organization was successfully predicted

from fission yeast Hi-C data. Overall, StoHi-C was able to generate 3D genome structures

that more clearly exhibit the established principles of fission yeast 3D genomic organization

when compared to the MDS results.

5.5 Endnotes

23. https://github.com/kimmackay/StoHi-C/blob/master/stohic.sh

24. https://github.com/kimmackay/StoHi-C/

25. https://github.com/kimmackay/StoHi-C/blob/master/step1/tSNE/run tSNE.py

26. https://lvdmaaten.github.io/tsne/

27. https://github.com/kimmackay/StoHi-C/blob/master/step2/plotly viz.py

28. https://github.com/kimmackay/StoHi-C/blob/master/step2/matplotlib viz.py

29. https://matplotlib.org/mpl toolkits/mplot3d/index.html#matplotlib-mplot3d-toolkit

30. https://chart-studio.plot.ly/create/#/

31. https://plotly.github.io/make-a-3d-scatter-plot/

32. https://github.com/kimmackay/StoHi-C/issues

33. https://github.com/kimmackay/StoHi-C/blob/master/step1/MDS/run MDS.py

34. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56849

35. https://github.com/kimmackay/StoHi-C/tree/master/interactive visualizations/

36. https://github.com/kimmackay/StoHi-C/tree/master/step2/tSNE results/matplotlib/999a WT

37. https://github.com/kimmackay/StoHi-C/tree/master/step2/MDS results/matplotlib/999a WT
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5.6 Supplemental Information

5.6.1 Author Contributions

KM preformed the research and wrote the manuscript. AK supervised the research and

edited the manuscript.

5.6.2 Funding Information

This work was supported by the Natural Sciences and Engineering Research Council of

Canada [RGPIN 37207 to AK, Vanier Canada Graduate Scholarship to KM].

5.6.3 Archived Software

The following scripts are archived versions of the scripts used to generate the results presented

in this manuscript. For the most recent version and/or to report any software problems please

see the project homepage at https://github.com/kimmackay/StoHi-C/

Supplementary Script 1: StoHi-C

Program 5.7: Archived version of the shell script used to run each step of StoHi-C in

succession.

1 #!/bin/bash
2 ## Simple shell script that runs both steps of the StoHi -C workflow
3 ## Author: Kimberly MacKay
4 ## Date: December 16, 2019
5

6 ## the script requires the following command -line inputs:
7 ## Argument 1: should be the name of the whole -genome contact map
8 ## Argument 2: is the name of the output file for the XYZ coordinates
9 ## Argument 3: is the name of the output file for the distance matrix

10 ## Argument 4: is the filename for the resultant image
11 ## Argument 5: is the filename for the resultant interactive graph
12 ## (html)
13

14 # LISCENSE INFORMATION
15 # This work is licensed under the Creative Commons Attribution -Non
16 # Commercial -ShareAlike 3.0 Unported License. To view a copy of this
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17 # license , visit http :// creativecommons.org/licenses/by-nc-sa/3.0/ or
18 # send a letter to Creative Commons , PO Box 1866, Mountain View , CA
19 # 94042 , USA.
20

21 echo "running step 1..."
22 python ./ step1/tSNE/run_tSNE.py $1 $2 $3
23

24 echo "running step 2..."
25 python ./ step2/plotly_viz.py $2 $4 $5

Supplementary Script 2: StoHi-C Step 1

Program 5.8: Archived version of the the Python script used for Step 1 of StoHi-C.

1 # StoHi -C Step 1: 3D embedding using tSNE
2 # This script takes a normalized whole -genome contact map as input
3 # and embeds the genomic bins in 3D space using TSNE from
4 # sklearn.manifold
5

6 # Argument 1: the file name of the normalized whole -genome
7 # contact map
8 # Argument 2: the output file name for the XYZ coordinates
9 # Argument 3: the output file name for the distance matrix

10 # generated by tSNE
11

12 # AUTHOR INFORMATION:
13 # Kimberly MacKay
14 # kimberly.mackay@usask.ca
15 # @mackayka (twitter)
16

17 # Authored on April 30, 2019
18

19 # LISCENSE INFORMATION
20 # This work is licensed under the Creative Commons Attribution -Non
21 # Commercial -ShareAlike 3.0 Unported License. To view a copy of this
22 # license , visit http :// creativecommons.org/licenses/by-nc-sa/3.0/ or
23 # send a letter to Creative Commons , PO Box 1866, Mountain View , CA
24 # 94042 , USA.
25

26 # import relevant libraries
27 import numpy as np
28 from sklearn.manifold import TSNE
29 import time
30 import sys
31

32 # define function for reading in data
33 def populate_matrix(filename , matrix ):
34 infile = open(filename , "r")
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35

36 row = 0
37

38 for line in infile:
39 line = line.rstrip ()
40 data = line.split("\t")
41

42 col = 0
43

44 # loop through all the elements in the line
45 for val in data:
46 if val == ’NA’:
47 dist = 0.0
48 elif float(val) == 0.0:
49 dist = 0.0
50 else:
51 dist = 1.0/( float(val )**2)
52

53 matrix[row][col] = dist
54

55 # enforce that matrix[i][j] == matrix[j][i]
56 matrix[col][row] = dist
57

58 col = col + 1
59 row = row + 1
60

61 infile.close()
62 return matrix
63

64 # grab command line arguments
65 input_file = sys.argv [1]
66 coord_file = sys.argv [2]
67 dist_file = sys.argv [3]
68

69 # initialize the distance matrix
70 dist_matrix = np.zeros ((1258 ,1258))
71 dist_matrix = populate_matrix(input_file , dist_matrix)
72

73 # gut check that all the self -self interactions are zero
74 if sum(dist_matrix.diagonal ()) != 0:
75 print("WARNING: non -zero elements present in the diagonal")
76

77 #run TSNE
78 start_time = time.time()
79

80 # parameters
81 # n_components = dimensionality
82 # perplexity = # of nearest neighbours
83 # early_exaggeration = determines how "close" nodes will be in the
84 # final embedding
85 # n_iter = maximum number of iterations for the optimization
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86 # method = exact (alternative would be an approximation)
87 # init = run PCA and use those results as input to tSNE
88 data_embedded = TSNE(n_components = 3, perplexity =5.0,
89 early_exaggeration =3.0, n_iter =5000 , method=’exact ’,
90 init=’pca’). fit_transform(dist_matrix)
91

92 stop_time = time.time()
93

94 print("tSNE runtime: " + str(stop_time - start_time) + " seconds")
95

96 # output embedded data
97 np.savetxt(coord_file , data_embedded)
98

99 # output distance matrix
100 np.savetxt(dist_file , dist_matrix)

Supplementary Script 3: StoHi-C Step 2

Program 5.9: Archived version of the the Python script used for Step 2 of StoHi-C.

1 ## 3D visualization and basic animation of XYZ coordinates from step
2 ## 1 of StoHi -C. This script uses plotly to generate a 3D scatter
3 ## plot currently all the parameters are hardcoded for s. pombe data
4

5 ## Argument 1: the XYZ co -ordinates for each genomic bin generated
6 ## from step 1 this file should have the XYZ coords for each
7 ## bin on a separate lineeach coord should be separated by
8 ## white space , bins should be in sorted numerical order ,
9 ## there shouldn ’t be any column or row labels

10 ## Argument 2: the name of the file for the output image
11 ## Argument 3: the name of the file for the output html
12 ## (interactive graph)
13

14 # AUTHOR INFORMATION:
15 # Kimberly MacKay
16 # kimberly.mackay@usask.ca
17 # @mackayka (twitter)
18

19 # Authored on Dec. 12, 2019
20

21 # LISCENSE INFORMATION
22 # This work is licensed under the Creative Commons Attribution -Non
23 # Commercial -ShareAlike 3.0 Unported License. To view a copy of this
24 # license , visit http :// creativecommons.org/licenses/by-nc-sa/3.0/ or
25 # send a letter to Creative Commons , PO Box 1866, Mountain View , CA
26 # 94042 , USA.
27

28 # import relavent libraries
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29 import sys
30 import time
31 import numpy as np
32 from plotly import graph_objs as go
33 import chart_studio.plotly as py
34 import plotly.io as pio
35

36 start_time = time.time()
37

38 outimagename = sys.argv [2]
39 outfilename = sys.argv [3]
40

41 # read in the data
42 filename = sys.argv [1]
43 data_embedded = np.loadtxt(filename)
44

45

46 # generate a figure of the results
47 fig = go.Figure ()
48

49

50 # chr1 - Fission Yeast
51 fig.add_trace(go.Scatter3d( x=data_embedded [0:558 ,0] ,
52 y=data_embedded [0:558 ,1] ,
53 z=data_embedded [0:558 ,2] ,
54 mode=’markers ’,
55 opacity =0.5,
56 name="CHR1 "))
57

58 # chr2 - Fission Yeast
59 fig.add_trace(go.Scatter3d( x=data_embedded [558:1012 ,0] ,
60 y=data_embedded [558:1012 ,1] ,
61 z=data_embedded [558:1012 ,2] ,
62 mode=’markers ’,
63 opacity =0.5,
64 name="CHR2 "))
65

66 # chr3 - Fission Yeast
67 fig.add_trace(go.Scatter3d( x=data_embedded [1012:1258 ,0] ,
68 y=data_embedded [1012:1258 ,1] ,
69 z=data_embedded [1012:1258 ,2] ,
70 mode=’markers ’,
71 opacity =0.5,
72 name="CHR3 "))
73

74

75 # set marker size
76 fig.update_traces(marker=dict(size =5))
77

78 # set axis titles
79 fig.update_layout(scene = dict(

115



80 xaxis_title=’X’,
81 yaxis_title=’Y’,
82 zaxis_title=’Z’))
83

84 # set background colours , remove tick labels
85 fig.update_layout(scene = dict(
86 xaxis = dict(
87 backgroundcolor ="rgb (245 ,245 ,245)" ,
88 gridcolor ="white",
89 showbackground=True ,
90 zerolinecolor ="white",
91 showticklabels=False ,),
92 yaxis = dict(
93 backgroundcolor ="rgb (230 ,230 ,230)" ,
94 gridcolor =" white",
95 showbackground=True ,
96 zerolinecolor ="white",
97 showticklabels=False ,),
98 zaxis = dict(
99 backgroundcolor ="rgb (215 ,215 ,215)" ,

100 gridcolor =" white",
101 showbackground=True ,
102 zerolinecolor ="white",
103 showticklabels=False ,),))
104

105 # output results
106 fig.write_image(outimagename)
107 plot_url = pio.write_html(fig , file=outfilename , auto_open=False)
108

109 stop_time = time.time()
110 print("Step 2 runtime: " + str(stop_time - start_time) + " seconds ")

Supplementary Script 5: MDS

Program 5.10: Archived version of the shell script used to generate MDS embedding

and visualize results.

1 #!/bin/bash
2 ## Simple shell script that runs and visualizes the MDS prediction
3 ## Author: Kimberly MacKay
4 ## Date: December 16, 2019
5

6 ## the script requires the following command -line inputs:
7 ## Argument 1: should be the name of the whole -genome contact map
8 ## Argument 2: is the name of the output file for the XYZ coordinates
9 ## Argument 3: is the name of the output file for the distance matrix

10 ## Argument 4: is the filename for the resultant image
11 ## Argument 5: is the filename for the resultant interactive graph
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12 ## (html)
13

14 # LISCENSE INFORMATION
15 # This work is licensed under the Creative Commons Attribution -Non
16 # Commercial -ShareAlike 3.0 Unported License. To view a copy of this
17 # license , visit http :// creativecommons.org/licenses/by-nc-sa/3.0/ or
18 # send a letter to Creative Commons , PO Box 1866, Mountain View , CA
19 # 94042 , USA.
20

21 echo "running step 1..."
22 python ./ step1/MDS/run_MDS.py $1 $2 $3
23

24 echo "running step 2..."
25 python ./ step2/plotly_viz.py $2 $4 $5

Supplementary Script 5: MDS Step 1

Program 5.11: Archived version of the the Python script used to generate 3D coor-

dinates with MDS.

1 # MDS Step 1: 3D embedding using MDS
2 # This script takes a normalized whole -genome contact map as input
3 # and embeds the genomic bins in 3D space using MDS from
4 # sklearn.manifold
5 # Argument 1: the file name of the normalized whole -genome
6 # contact map
7 # Argument 2: the output file name for the XYZ coordinates
8 # Argument 3: the output file name for the distance matrix
9 # generated

10

11 # AUTHOR INFORMATION:
12 # Kimberly MacKay
13 # kimberly.mackay@usask.ca
14 # @mackayka (twitter)
15

16 # Authored on April 30, 2019
17

18 # LISCENSE INFORMATION
19 # This work is licensed under the Creative Commons Attribution -Non
20 # Commercial -ShareAlike 3.0 Unported License. To view a copy of this
21 # license , visit http :// creativecommons.org/licenses/by-nc-sa/3.0/ or
22 # send a letter to Creative Commons , PO Box 1866, Mountain View , CA
23 # 94042 , USA.
24

25 # import relevant libraries
26 import numpy as np
27 from sklearn.manifold import MDS
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28 from sklearn.decomposition import PCA
29 import time
30 import sys
31

32 # define function for reading in data
33 # note for MDS it takes a dissimilarity matrix
34 def populate_matrix(filename , matrix ):
35 infile = open(filename , "r")
36

37 row = 0
38

39 for line in infile:
40 line = line.rstrip ()
41 data = line.split("\t")
42

43 col = 0
44

45 # loop through all the elements in the line
46 for val in data:
47 # need to do a smarter imputation of missing data
48 if val == ’NA’:
49 dist = 0.0
50 elif float(val) == 0.0:
51 dist = 0.0
52 else:
53 dist = (1.0/( float(val )**2))
54

55 matrix[row][col] = dist
56 # enforce that matrix[i][j] == matrix[j][i]
57 matrix[col][row] = dist
58

59 col = col + 1
60 row = row + 1
61

62 infile.close()
63 return matrix
64

65

66 # grab command line arguments
67 input_file = sys.argv [1]
68 coord_file = sys.argv [2]
69 dist_file = sys.argv [3]
70

71 # initialize the distance matrix
72 dist_matrix = np.zeros ((1258 ,1258))
73 dist_matrix = populate_matrix(input_file , dist_matrix)
74

75 # gut check that all the self -self interactions are zero
76 if sum(dist_matrix.diagonal ()) != 0:
77 print("WARNING: non -zero elements present in the diagonal")
78
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79 # compute the dissimilarity matrix
80 dissimilarity_matrix = 1 - dist_matrix
81

82 #run MDS
83 #print("running MDS...")
84 start_time = time.time()
85

86 data_embedded = MDS(n_components =3, metric=True , max_iter =5000 ,
87 dissimilarity=’precomputed ’).
88 fit_transform(dissimilarity_matrix)
89

90 stop_time = time.time()
91

92 print("MDS runtime: " + str(stop_time - start_time) + " seconds")
93

94 # output embedded data
95 np.savetxt(coord_file , data_embedded)
96

97 # output distance matrix
98 np.savetxt(dist_file , dist_matrix)
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Chapter 6

Discussion & Conclusion

6.1 Main Contributions

The overarching goal of this thesis was to develop new computational tools for Hi-C analysis

and 3D genome prediction. To answer this objective, we developed new tools for Hi-C

analysis (GrapHi-C – Chapter 2) and 3D genome prediction (GeneRHi-C and StoHi-C –

Chapters 4 and 5, respectively). Figure 1.3 highlights how these new tools fit into existing

Hi-C analysis workflows. All of the tools developed in this thesis were applied to existing

fission yeast dataset(s) and were shown to more clearly recapitulate documented features of

fission yeast genomic organization when compared to existing methods. We also performed a

comprehensive survey of the existing tools for predicting 3D genome structure from Hi-C data

(Chapter 3). The following provides a brief discussion on the main findings and conclusions

from each paper.

In Chapter 2, we described a new tool called GrapHi-C that can be used for visualizing

Hi-C datasets. Briefly, we developed a mathematical model for graph-based representations

of contact maps that explicitly encodes linearly adjacent regions (i.e. regions on the same

chromosome) as well as cis- and trans- interactions. GrapHi-C was applied to multiple ex-

isting fission yeast datasets and the resulting images were compared to the corresponding

heatmaps and Circos plots. Overall, it was shown that GrapHi-C generates a more in-

tuitive, structural visualization of Hi-C data. Even though the graph-based representation

seems straightforward, this representation was still novel in the genome structure community.

Overall, the developed GrapHi-C visualizations of the contact maps (compared to the equiv-

alent heatmaps and Circos plots) made it easier to quickly identify the changes in genome

organization identified in previous studies.
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As depicted in Figure 1.3, 3D genomic prediction can be a part of Hi-C analysis work-

flows. More formally, 3D genome prediction from Hi-C (or related) data is known as the

3D-GRP. Many existing tools for solving the 3D-GRP have been published. The manuscript

presented in Chapter 3, provides a comprehensive review of these tools (from November 2006

to September 2019, inclusive). Over 40 tools were examined and characterized. Overall, we

determined that many of these existing tools could not be applied to non-model organisms

due to inherent constraints imposed by the underlying techniques. Additionally, existing

tools relied on a relatively small set of algorithmic strategies. While this is not inherently

problematic, we were able to identify some of the unexplored algorithmic areas that will be

promising as the community moves towards the development of more general tools. Finally,

we investigated which organisms and/or datasets each tool had successfully used for predict-

ing 3D genomic structure. This analysis showed that while a diverse set of Hi-C data exists,

the vast majority has not been applied to 3D genome prediction. Interestingly, none of the

existing tools have been able to successfully predict 3D genomic structure from the simple

model organism fission yeast [99]. This was surprising since simpler model organisms like

fission yeast are often used to demonstrate a tools utility before moving on towards more

complex organisms.

In order to address the problems presented in Chapter 3, two new tools for solving the

3D-GRP were developed (GeneRHi-C – Chapter 4 and StoHi-C – Chapter 5). Both tools use

algorithmic strategies that had not been employed by existing 3D-GRP solutions and result

in consensus predictions of 3D genome organization. Specifically, GeneRHi-C predicts 3D

genomic structure by using integer programming combined with 3D network layouts while

StoHi-C uses t-SNE. GeneRHi-C utilizes a ploidy dependent subset of interactions while

StoHi-C uses the complete contact map. To demonstrate their utility, they were used to

predict 3D genome organization from an existing fission yeast dataset. As mentioned previ-

ously, none of the existing tools have been successful in reconstructing genome organization

from this dataset. Alternatively, both GeneRHi-C and StoHi-C were able to successfully re-

construct known hallmarks of fission yeast genomic organization like the RabI chromosomal

configuration. While they do not solve all of the problems identified in Chapter 3, they are

a step towards more generalizable solutions to the 3D-GRP.
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6.2 Main Limitations

All of the tools presented in this thesis have only been tested with Hi-C datasets from

fission yeast (a haploid organism with a relatively small genome). In order to gain a more

comprehensive understanding of their utility, these tools should be applied to a more diverse

collection of datasets, with a variety of qualities and ploidies. The current formulations of

GeneRHi-C and StoHi-C can only be applied to datasets from haploid organisms or datasets

that have been pre-phased. This restriction is quite common in the set of existing tools [99]

but it is not desirable since it limits investigations of 3D genomic structure to a small set of

organisms and/or datasets.

6.3 Future Work

While a great deal of foundational research has been done by the 3D genomics community,

many areas remain unexplored. For instance, 3D genomic prediction has not been applied to

over 99% of the existing Hi-C datasets in the Gene Expression Omnibus database [99]. Addi-

tionally, tools for predicting 3D genome organization have not been used with Hi-C datasets

from organisms with triploid or higher ploidy [99]. Future work will focus on addressing this

imbalance by extending and applying the tools presented in this thesis to underrepresented

organisms. These genomic predictions could then be integrated with other types of biologi-

cal data to better understand underlying mechanisms of phenomena like gene regulation and

complex traits. Currently, we are using the tools presented here to help characterize and

predict 3D genome organization in Brassica napus (canola).

For the tools presented in this thesis, future work will focus on extending them to ad-

dress the limitations described above as well as providing added functionality. For instance,

GrapHi-C will be extended to allow for the co-visualization of complementary -omics datasets

(such as gene expression, epigenetic markers or transcription factor binding sites). We will

also establish how well GrapHi-C performs with unfavourable Hi-C datasets or datasets with

technical problems. GeneRHi-C and StoHi-C will be extended to allow for additional -omics

datasets to be incorporated into the prediction and/or final visualization. Additionally,
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GeneRHi-C and StoHi-C will be modified so that they can be used with polyploid datasets.

Finally, feature(s) will be added to these tools that allow for the selection of substructures

surrounding genes or genomic regions of interest.

Interestingly, a formal proof of the complexity associated with the 3D-GRP has not

been published. In more accessible terms, a formal proof of 3D-GRP complexity would give

the community a better understanding of how hard the problem is and allow for the easy

identification of computational strategies (or approximations) that could be used to generate

efficient solutions. Future work will focus on generating this proof. Initial analysis has

suggested that the current formulation of the 3D-GRP (given in Chapter 3) might be NP-

hard but faster approximations exist that could exist. Once this proof has been finalized, a

new tool for solving the 3D-GRP (or an approximation) will be developed that is more efficient

then existing methods. This is important as the size of 3D-GRP problems is increasing due

to higher resolution datasets and/or applications to organisms with larger genomes.

As mentioned in Section 4.7.2, one of the major bottlenecks affecting the 3D genomics

community is a lack of “ground-truth” structures and associated datasets that could be

used to evaluate the accuracy of 3D-GRP tools. This is a problem since it is difficult to

assess which of the existing methods does the “best” job of reconstructing genomic structure.

Typically, tools are benchmarked based on other factors like runtime and visual comparison

with microscopy images. While useful, these metrics do not give a complete representation of

a given tool’s reconstruction accuracy. Future work will focus on generating synthetic datasets

(that maintain the characteristics of Hi-C data) with known ground-truth structures. Once

these are generated, we will preform a comprehensive evaluation of existing tools for solving

the 3D-GRP using this dataset as well as other metrics currently used by the community.

This type of evaluation is imperative in-order to gain a sequence-level understanding of the

structure-function relationship of the genome.

Future work will also include a comprehensive analysis to characterize the effect(s) of

reference genome selection in Hi-C analysis and 3D genomic predictions. As indicated in

Figure 1.3 (Panel 1), all of the existing Hi-C analysis tools require a reference genome to

generate a whole-genome contact map. While useful, the choice of reference genome could

introduce various biases or inaccuracies into the analysis pipeline. We will assess whether
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different reference genomes (i.e. ones generated from short versus long read sequencing) result

in different 3D predictions. Finally, we will characterize the potential biological implications

of reference genome selection in regards to 3D genome predictions.

6.4 Conclusion

As mentioned previously, the overarching goal of this thesis was to develop new, generalizable

computational tools for Hi-C analysis and 3D genome prediction. To answer this objective,

we developed new tools for Hi-C analysis (GrapHi-C – Chapter 2) and 3D genome prediction

(GeneRHi-C and StoHi-C – Chapters 4 and 5, respectively). Figure 1.3 highlights how these

new tools fit into existing Hi-C analysis workflows. All the tools were applied to multiple

existing fission yeast datasets and were shown to more clearly recapitulate documented fea-

tures of fission yeast genomic organization when compared to existing techniques. We also

performed a comprehensive survey of the existing tools for predicting 3D genome structure

from Hi-C data (Chapter 3). Overall, the manuscripts presented in this thesis provide new

options for Hi-C data analysis and are a step towards a more comprehensive understanding

of the structure-function relationship of the genome.
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Appendix B

Modifications to Published Manuscripts

For all manuscripts: Minor formatting modifications have be made so the manuscripts align
with the University of Saskatchewan’s standards for thesis documents. To be consistent across
chapters, existing information regarding acknowledgements, author contributions, funding
and archived software has been moved to a section titled “Supplemental Information”.

Additionally the following modifications have been made:

• Chapter 2 (GrapHi-C)

– The section header “Main Text” was removed for consistency.

– The section titled “Declarations” was renamed to “Supplemental Information”
and subsections were re-ordered within this section to maintain consistency across
chapters.

– The section titled “Additional Files” was separated into two new subsections un-
der “Supplemental Information” named “Archived Software” and “Supplemental
Figures”.

• Chapter 3

– The section titled “Supplementary Information” was renamed to “Supplemental
Information” and now appears before Appendix A.

– Sections titled “Acknowledgements”, “Author Information” and “Funding” were
moved to corresponding subsections in Supplemental Information.

– Section 3.13.3 was added to provide a brief description of the author contributions.

– Appendix A was renamed to Section 3.14.

– Alternative reprint licenses are listed in the footnotes and Section 3.14 for use of
images in a thesis (as opposed to a journal article).

– Footnotes were converted to endnotes and are listed in a separate section.

• Chapter 4 (GeneRHi-C)

– Figure 4.5 was updated to include a FISH image of fission yeast genome organi-
zation.

– Subsections Under Section 4.10 were reordered to maintain consistency with other
manuscripts.

– Archived versions of the programs used to generate the results of GeneRHi-C
have been provided as supplementary material (Section 4.10.5). These were not
included in the published version of the manuscript as per the submission guide-
lines for the conference.
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– Footnotes were converted to endnotes and are listed in a separate section.

– The following sentence was added to Section 4.4.1 and 4.6 “For the purpose of
this thesis, this information was also added to Section 4.10.4.”

– Section 4.10.4 was added to describe the CP and GM mathematical models that
were also developed.

• Chapter 5 (StoHi-C)

– Additional background on the t-SNE method was added to the preamble for this
chapter.

– Section 5.6.1 was added to provide a brief description of the author contributions.

– Funding information was moved from “Acknowledgments” to a new section titled
“Funding Information” (Section 5.6.2) for consistency.

– Reference labels were changed from author/date to numeric.
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