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ABSTRACT  

 Swine influenza viruses (SIV) are a common and an important cause of respiratory 

disease in pigs. Pigs can serve as mixing vessels for the evolution of reassortment viruses 

containing both avian and human signatures, which have the potential to cause pandemics. NS1 

protein of influenza A viruses is a major antagonist of host defence and it regulates multiple 

functions during infection by interacting with a variety of host proteins. Therefore, it is important 

to study swine viruses and NS1-interacting host factors in order to understand the mechanisms 

by which NS1 regulates virus replication and exerts its host defense functions. Influenza A 

viruses enter the host through the respiratory tract and infect epithelial cells in the respiratory 

tract, which form the primary sites of virus replication in the host. Thus, studying SIV infection 

in primary swine respiratory epithelial cells (SRECs) would resemble conditions similar to 

natural infection. 

 The objectives of this study were to identify NS1-interacting host factors in the virus-

infected SRECs and to understand the physiological role of at least one of the factors in influenza 

virus infection. The approaches to meet this objective were to generate a recombinant SIV 

carrying a Strep-tag in the NS1 protein, infect SRECs with the Strep-tag virus, purify NS1-

interacting host protein complex from the infected cells by pull-down using strep-tactin resin and 

then study the physiological role of one of the NS1-interacting partners during influenza 

infection. Using a reverse-genetics strategy, a recombinant virus carrying the Strep-tag NS1 was 

successfully rescued and the SRECs were infected with this recombinant virus. The Strep-tag in 

the NS1 protein facilitated the isolation of an intact NS1-interacting protein complex and the 

proteins present in the complex were identified by liquid chromatography-tandem mass 

spectrometry. The identified proteins were grouped to enrich for different functions using 
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bioinformatics. This gave an insight into the different functions that NS1 may regulate during 

infection and the potential host partners involved in these functions. 

 Among the host proteins identified as potential interaction partners, RNA helicases were 

particularly of interest to study. Influenza being an RNA virus, RNA helicases could have 

important functions in the virus life cycle. Among the identified RNA helicases, DDX3 has been 

shown to regulate IFNβ induction and affect the life cycle of a number of viruses. However, its 

function in influenza A virus life cycle has not been studied. Hence, this study explored whether 

DDX3 has any role in the influenza A virus life cycle. Immunoprecipitation studies revealed 

viral proteins NP and NS1 as direct interaction partners with DDX3. DDX3 is a known 

component of stress granules (SGs) and influenza A virus lacking the NS1 gene is reported to 

induce SG formation. Therefore, the role of DDX3 in SG formation, induced by PR8 influenza A 

virus lacking NS1 (PR8 del NS1) was explored. The results from this study showed that DDX3 

co-localized with NP in SGs indicating that DDX3 may interact with NP in the SGs. NS1 protein 

was found to inhibit virus-induced SGs and DDX3 downregulation impaired virus-induced SG 

formation. The contribution of the different domains of DDX3 to viral protein interaction and 

virus-induced SG formation was also studied. While DDX3 helicase domain did not interact with 

NS1 and NP, it was essential for DDX3 localization in virus induced SGs. Moreover, DDX3 

downregulation resulted in the increased replication of PR8 del NS1virus, accompanied by an 

impairment of SG induction in infected cells. 

 Since DDX3 is reported to regulate IFNβ induction, the role of DDX3 in influenza A 

virus induced IFNβ induction was also examined. Using small molecule inhibitors and siRNA-

mediated gene knockdown, the RIG-I pathway was identified as the major contributor of 
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influenza induced IFNβ induction in newborn porcine tracheal epithelial (NPTr) cells. DDX3 

downregulation and overexpression also showed that DDX3 has an inhibitory effect on IFNβ 

expression induced by both influenza infection and low molecular weight (LMW) poly I:C 

treatment, which is also a RIG-I ligand. RNA competition assay to identify the mechanism of 

DDX3-mediated inhibition, showed that RIG-I binding affinity to its ligands LMW poly I:C and 

influenza viral RNA (vRNA) is much higher than that of DDX3. Furthermore, DDX3 

downregulation enhanced titers of the PR8 del NS1 virus, while it did not affect the titers of the 

wild-type strains of PR8 and SIV/SK viruses. Overall, the results show that DDX3 has an 

antiviral role and the SG regulatory function of DDX3 has a profound effect on virus replication 

than the IFNβ regulatory function.  
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CHAPTER 1: LITERATURE REVIEW 

1.1 Influenza virus 

1.1.1 Classification 

 Influenza viruses belong to the family of Orthomyxoviridae. This family is composed of 

RNA viruses, which are negative-sense, single, stranded and have a segmented genome. The 

viruses in this family are divided into six different genera, namely influenza A, B and C viruses, 

Thogotovirus, Isavirus and Quaranfilvirus. All influenza viruses are further classified based on 

the antigenic nature of  their surface glycoproteins Hemagglutinin (HA) and Neuraminidase 

(NA) (461).  Different subtypes of HA and NA are distinguishable serologically, in that the 

antibodies of one virus subtype do not react with another subtype (461). So far, 18 different HA 

subtypes (H1 to H18) and 11 different NA subtypes (N1 to N11)  (155, 538, 586) have been 

identified for influenza A viruses, while influenza B HA and NA are each classified into two 

lineages, Victoria-like and Yamagata-like (49). 

 Different influenza viruses are named according to their genus, the species from which 

they were isolated (not included when isolated from humans), location of the isolate, the number 

of the isolate, the year of isolation and the HA and NA subtypes (only if it is an influenza A 

virus). For example, the nomenclature A/Sw/SK/18789/02 (H1N1) represents the type A 

influenza virus isolated from pigs (Sw-swine) in Saskatchewan (SK) as a virus isolate 18789, 

isolated in the year 2002 with the HA and NA subtype H1 and N1 respectively.  

1.1.2 Virion and genome structure 

Influenza virus is an enveloped virus and possess an outer layer lipid membrane derived 

from the host cell in which it multiples. The morphology of the virion is pleomorphic and can be 
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spherical (80-120 nm in diameter) or filamentous (up to several micrometers in length). Fresh 

clinical preparations are characterized by a significantly higher proportion of the filamentous 

virion (90), while multiple passages in egg and tissue culture renders the virion with a spherical 

morphology (87, 277). Reassortment and genetic studies in virus strains forming filamentous and 

spherical virions show that mutations within influenza A virus M1 and M2 protein affect the 

morphology of the virus particles (62, 125, 452). The surface glycoproteins HA, NA and Matrix 

protein 2 (M2) are embedded in the outer lipid membrane and project from the surface of the 

virion. The HA and NA projecting from the surface impart the virions the distinctive spikes that 

are readily observable in electron micrographs of negatively stained virus particles. The spikes 

are usually 10-14 nm long and are distributed at a ratio of 1: 4 (NA: HA) on the virion’s 

envelope. Underneath the lipid membrane, Matrix protein 1 (M1), which is the most abundant 

structural component of the virion, forms a shell and associates with the ribonucleoprotein 

complex (RNP) (56, 393). The proteins M1 and M2 modulate the filamentous and spherical 

morphology of influenza A viruses (62, 71). The RNP complex forms the core of the virus 

particle and is made up of viral RNA (vRNA), nucleoprotein NP and  polymerase proteins; 

polymerase basic 1 (PB1), polymerase basic 2 (PB2) and polymerase acidic (PA) (34). Nuclear 

export protein/non-structural protein 2 (NEP/NS2) has also been reported to be present in 

purified viral preparations (446) (Fig. 1.1). 

 The eight vRNA segments of the influenza A virus genome range in size from 890 to 

2341 bases and contain conserved sequences at the 3’ and 5’ ends flanking the coding region 

(112). These conserved regions, comprising 13 nucleotides at the 5’ end and 12 nucleotides at 

the 3’ end, display partial and inverted complementarity and form the core promoter region, 

which is important for regulation of virus replication. The core promoter is associated with the 
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heterotrimeric RNA polymerase containing PB1, PB2 and PA in the virion (139, 282). 

Additionally, each vRNA segment is encapsidated by multiple copies of  the NP protein forming 

a twisted rod-like structure (400). The secondary structure within the core promoter has been 

studied extensively, leading to the development of several models, which includes the panhandle 

model (221), RNA fork model (141) and corkscrew model (139). These secondary structures 

have been shown to be critical for polymerase binding, endonuclease activity and 

polyadenylation (67, 308, 309, 437).  

 The influenza A virus genome consists of 8 vRNA segments that encode up to 17 

proteins. The vRNA segments and the proteins derived from each segment are illustrated in Fig 

1.2. RNA segment 1 of the influenza A virus encodes the PB2 protein, which is an important 

component of the heterotrimeric virus polymerase complex and a major virulence determinant of 

influenza A viruses. The PB2 protein binds the 5’-cap of host pre-mRNA molecules and thus 

plays a key role in transcription initiation (186). The PB2 protein also plays a role in replication, 

since a single amino acid mutation has been reported to specifically affect replication but not 

transcription (160). The PB2 protein also affects virus pathogenicity and host range, as the amino 

acid at position 627 majorly contributes to this phenotype (295, 490, 507). Furthermore, PB2 

regulates antiviral innate immunity by interacting with mitochondrial antiviral signaling protein 

(MAVS) and inhibiting MAVS-mediated beta interferon (IFNβ) expression (180). 

The PB1 subunit of the RNA polymerase complex is encoded by RNA segment 2 of 

influenza A virus. The PB1 protein is responsible for the elongation of RNA during viral 

transcription and replication by catalyzing the sequential addition of nucleotides to the newly 

synthesized RNA chain (63, 175). The PB1 protein contains four highly conserved regions, each  
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From [Yitzhi Jane Tao, and Wenjie Zheng, Science 2012; 338:1545-1546]. Reprinted with permission from AAAS. 
See Appendix II for documentation to republish this material 

  

 Figure 1.1 Influenza A virus genome structure and organization. A schematic diagram of the structure 
of the influenza A virus particle is depicted. The eight single stranded RNA segments of antisense orientation 
encapsidated with NP comprise the genome. The genome is surrounded by a matrix made up of M1 protein. The 
viral polymerase complex (PA, PB1, PB2) are associated with the vRNA segments. The surface proteins HA, NA 
and the ion channel protein M2 are embedded in the lipid envelope of viral membrane and NEP is found associated 
with the virion. 
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ranging in size from 4-13 amino acids, which form a large functional domain important for 

polymerase activity (89). Additionally, PB1 is essential for the formation of the structural 

backbone and catalytic activities of the RNA polymerase (89). PB1 mRNA encodes two other 

proteins PB1-F2 and PB1-N40 by an alternate open reading frame (ORF) (83, 581). PB1-F2 is a 

multifunctional protein and varying sizes have been reported in different influenza strains (77). 

Its functions include direct or indirect roles in the apoptosis of immune cells via the 

mitochondrial pathway, exacerbation of pathogenicity in animal models, modulation of innate 

immune response in both in vitro and in vivo models, regulation of polymerase activity and 

enhancement of secondary bacterial infections (77). The PB1-N40 protein is translated from the 

fifth AUG codon of PB1 mRNA and lacks the first 39 AA of PB1 responsible for binding to the 

polymerase subunit PA (581); however, the precise function of PB1-N40 in influenza virus life 

cycle is unknown. The third RNA segment of influenza A virus encodes the third RNA 

polymerase subunit PA. The PA protein possesses the endonuclease activity of the viral 

polymerase, required to generate the capped primer necessary for viral mRNA transcription 

initiation (114, 604). Also the PA protein has been shown to possess proteolytic activity with two 

amino acid residues S624 and T157 present in the active site (194, 428, 458). RNA segment 3 

encodes three additional proteins; PA-X by a ribosomal frameshift, PA-N155 and PA-N182 by 

using alternative translation initiation sites (234, 387). The PA-X protein possesses the 

endonuclease domain of the PA protein but lacks the C-terminal domain necessary for binding to 

other RNA polymerase subunits (234). Thus, the PA-X subunit is believed to be involved in 

host-shutoff through its endonuclease activity (273). However, the exact molecular mechanisms 

involved in PA-X-mediated host shut-off remains unknown and needs further study. PA-N155 

and PA-N182 are N-terminal truncated forms of PA (387). Mutant viruses lacking PA-N155  
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 (Source: ViralZone:www.expasy.org/viralzone, SIB Swiss Institute of Bioinformatics). 
See Appendix II for documentation of permission to republish this material 

 

 Figure 1.2 Proteins encoded by 8 segments of the influenza A virus genome. RNA segment 1 encodes 
one protein, PB2. Segment 2 encodes three proteins, full-length PB1, PB1-F2 and PB1- N40 by alternate open 
reading frame (ORF). Segment 3 encodes the full-length PA, PA-N182 and PA-N155 by alternate ORF, PA-X by 
ribosomal frame shift. Segments 4, 5 and 6 each encode one full-length protein namely HA, NP and NA 
respectively. Segment 7 encodes full-length M1, two additional proteins M2 and M42 via alternative splicing. 
Segment 8 encodes three proteins, full-length NS1 protein, NEP protein by alternative splicing and NS3 also 
generated by alternative splicing (not described in this figure). 
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demonstrated slower replication kinetics and less pathogenicity in mice, while mutant viruses 

lacking PA-N182 replicated as efficiently as the wild-type virus (387). Even though PA-N155 

affects virus replication, the exact function and mechanism are unknown. Hence, the exact 

function of the N-terminal truncated PA proteins, PA-N155 and PA-N182, warrants further study 

and understanding. 

 The major surface glycoprotein HA of influenza A virus is encoded by RNA segment 4.  

The primary function of the HA protein is attachment to the sialic acid receptors and fusion 

activities. In virus-infected cells, HA is co-translationally translocated across the rough 

endoplasmic reticulum membrane and forms a precursor protein called HA0 (164). Viruses with 

the HA0 precursor remain non-infectious until being cleaved at the monobasic cleavage site by 

host trypsin-like proteases, found in the respiratory and gastrointestinal tracts, into HA1 and 

HA2 (94, 303). Some avian viruses of the H5 and H7 subtype possess multiple basic amino acids 

at the cleavage site, which is susceptible to cleavage by ubiquitous proteases, resulting in 

systemic spread and high pathogenicity in the host (132, 503, 558). Once the HA protein binds to 

the receptor, the virus is endocytosed and the low pH of the endosome triggers a dramatic 

conformational change. The cleaved HA facilitates a pH-mediated fusion of the endosomal and 

viral membrane, releasing the contents of the virion into the cytoplasm (494). The HA protein 

through its transmembrane domain mediates lipid raft association on the cell membrane, which is 

important for virus budding and replication (454). Influenza HA recognition of the sialic acid 

receptor is a key determinant of host range (427). Besides functioning in receptor binding and 

fusion, HA is a major antigenic determinant of influenza A viruses. Mutations in the HA protein 

caused by antigenic drifts and antigenic shifts can lead to the emergence of novel strains 

resulting in annual epidemics and sometimes global pandemics (528). 
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 RNA segment 5 of influenza encodes the NP protein. The NP protein is the structural unit 

of RNPs, covering the entire vRNA except at the ends. The NP protein is important for nuclear 

and cytoplasmic trafficking of RNPs. After uncoating, the RNPs have to be transported to the 

nucleus for transcription (210). This is achieved through recognition of the NP nuclear 

localization signal (NLS) by the cellular cargo protein karyopherin α (404). NP also interacts 

with M1 to form the NEP-M1-RNP complex necessary for CRM1-mediated nuclear export of 

vRNP to the cytoplasm (3). Newly synthesized NP is important for the regulation of the switch 

between transcription and replication (560). Furthermore, amino acids associated with MxA 

resistance have been identified in the NP protein of pandemic viruses, implicating NP function in 

evading innate immunity (354). 

 The second major surface glycoprotein on the influenza A virus envelope is the NA 

protein, encoded by RNA segment 6. The primary role of NA is to release newly synthesized 

viral particles from the host cell by cleaving the sialic acid receptors from the cell surface, 

thereby preventing virus aggregation and permitting virus spread (561). Additionally, NA 

cleaves the sialic acids from respiratory tract mucins and helps the virus reach and bind to the 

target cells during infection (364).  

 RNA segment 7 encodes three proteins; the matrix protein M1 and the ion channel 

proteins M2 and M42. M1 is the most abundant protein in influenza A virions and forms a shell 

surrounding the core RNP. Meanwhile, M2 is a proton channel that opens in response to the low 

pH of the endosome upon virion endocytosis, allowing proton influx into the virion and 

triggering dissociation of the viral RNP from the matrix proteins (218). M1 facilitates the export 

of newly synthesized RNPs into the cytoplasm by interacting with both RNP and NEP (3). 
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Several studies have shown the importance of M1 protein in virus budding. M1 interacts with 

both the plasma membrane and the RNPs facilitating vRNP recruitment into the budding virions 

(454). M1 may also crosslink the cytoplasmic tails of HA and NA mediating their incorporation 

into the budding virion. In addition, M1 interaction with the cytoplasmic tails of HA and NA 

allows M1 to associate with lipid rafts and triggers its polymerization at the virus budding site 

(174, 465).  

 In addition to binding HA, NA and NP, M1 also binds to the M2 protein and the M2 

cytoplasmic tail plays an important role in virus assembly and budding (454). The M1-M2 

interaction is important for filament formation of the virion and mutations in the M2 cytoplasmic 

tail result in the impaired recruitment of vRNPs to the budding virion (454). Besides these 

functions, membrane scission and the release of budding virion from the host cell membrane also 

requires the M2 protein (453). The M42 protein is expressed by alternative splicing and is a M2 

variant synthesized during infection with M2-null viruses (582). The M42 protein functionally 

complements the M2 protein, supporting efficient replication of the M2-null viruses (582). 

 RNA segment 8 encodes three proteins, NS1, NS2 (NEP) and NS3. Alternative mRNA 

splicing generates NEP and NS3 proteins. The NS1 protein is produced abundantly throughout 

the whole replication cycle and is encoded by the unspliced mRNA derived from RNA segment 

8. The NS1 protein is a major virulence factor and is a multifunctional protein interacting with a 

variety of host cell factors (189). It is a key protein used by influenza A viruses to counteract 

host antiviral defence mechanisms and is a well-studied type I IFN antagonist (189, 355). 

Through its multiple interactions with cellular and viral proteins, the NS1 protein exerts several 

functions in the infected cell, all of which favour virus replication. These multiple functions 
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include IFN antagonism, regulation of viral replication and polymerase activity, enhancement of 

viral mRNA translation, regulation of apoptosis, regulation of splicing and mRNA export (355). 

 The NEP protein is expressed by the alternative splicing of segment 8 mRNA. It interacts 

with the M1 protein and functions in the export of vRNP complexes from the nucleus to the 

cytoplasm (3). NS3 is another protein encoded by segment 8 mRNA via alternative splicing. The 

NS3 protein is not expressed by all the influenza A virus strains and the specific mutation which 

is responsible for the expression of  NS3 protein has been found in only 33 natural influenza A 

strains (476). It is speculated that the NS3 protein could be associated with adaptation to mice 

and other hosts, but it has not been proven yet (476).  

1.1.3 Influenza A virus life cycle 

 Influenza A virus life cycle (Fig. 1.3) starts with the attachment of the HA protein on the 

virion to some of the sialic acids on the cell surface. Linkages between the sialic acids and the 

carbohydrates in the cell surface glycoproteins can be of two types: α (2, 3) or α (2, 6). The HAs 

of human viruses preferentially bind to sialic acids with the α (2, 6) linkage, while HAs of avian 

viruses preferentially bind to sialic acid with the α (2, 3) linkage (93). Pigs contain both sialic 

acid linkages, which makes pigs an ideal mixing vessel for the reassortment of human and avian 

viruses (348). However, this specificity is not absolute, since avian and human cells have been 

reported to contain both sialic acid linkages (363). Recent studies suggest that HA receptor 

specificity may not be as simple as differentiating between two types of sialic acid linkages. 

Several other factors such as chain length, sulfation and fucosylation may also play a role in HA 

interaction with the receptor (85, 502). 
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After binding receptors on the cell surface, influenza A virus is taken into the cell via 

receptor-mediated endocytosis. Clathrin-mediated endocytosis has been the most studied and is 

considered the major entry pathway of influenza A viruses (362, 423). However, recent studies 

show that influenza A virus can also enter through a non-clathrin mediated pathway resembling 

micropinocytosis, which is the main route for non-selective uptake of extracellular fluid by cells 

(109). The endosome has a low pH of approximately 5-6, which aids in the fusion process. The 

low pH of the endosome causes a conformational change in the cleaved HA, which exposes the 

fusion peptide of HA2 subunit. This fusion peptide inserts itself into the endosomal membrane, 

bringing the viral and endosomal membranes into contact with each other, resulting in fusion 

(188, 197). In the endosome, another important transformation occurs inside the virion due to 

low pH. The transmembrane domain of the M2 protein on the lipid envelope forms an ion 

channel, which allows the influx of protons into the virion from the endosome (432). This 

acidifies the viral core releasing the vRNPs from M1 interactions (433). Fusion of the viral 

envelope with the endosomal membrane and acidification of the core results in uncoating of the 

virion and releases the vRNPs into the cytoplasm. 

 Influenza A viruses are one of the few RNA viruses, where genome replication and 

transcription take place inside the nucleus (210). Hence, the vRNPs must get into the nucleus for 

normal virus replication to proceed. The vRNPs are considered too large to allow for passive 

diffusion into the nucleus and hence must rely on active nuclear import mechanisms. The NLS 

on NP has been found to be both essential and sufficient for vRNP nuclear import. This transport 

occurs through the recognition of NP NLS by a cargo protein called importin α (96).  
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Squires, R Burke. (2009) Influenza Life Cycle,  http://www.reactome.org/figures/influenza_life_cycle_overview.jpg 
(18th December 2015). 

See Appendix II for documentation of permission to republish this material 

 Figure 1.3 Influenza A virus life cycle. The life cycle of influenza A virus begins with the surface protein 
Hemagglutinin (HA) binding to sialic acid receptors on the host cell. The virion is internalized in the endosome and 
the low pH of endosome cause the fusion of the viral and endosomal membrane and the viral RNP is released into 
the cytoplasm. The viral RNP is transported into the nucleus and transcription and replication take place in the 
nucleus. The viral mRNA is exported from the nucleus and is translated to make new viral proteins by the host 
translational machinery. The vRNA is exported from nucleus and is assembled along with the viral proteins 
including the surface proteins inserted into the budding lipid envelope. Budding proceeds and the virus is released 
after the NA on the virion surface cleaves the inhibitory sialic acids on the host cell surface. 
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 `Once in the nucleus, vRNA is initially used as a template for virus mRNA and cRNA 

synthesis (379). Viral mRNAs are incomplete copies of the template, transcription of which is 

dependent on the availability of 5’-capped cellular pre-mRNAs. The polymerase PB2 protein 

binds to the 5’-cap of cellular pre-mRNAs and the endonuclease function of PA protein cleaves 

the pre-mRNAs approximately 10 to 13 nucleotides from their 5’-caps (114, 130). This 5’-

capped segment is used as the primer and the PB1 protein catalyzes chain elongation and 

continues until it reaches a stretch of uridines approximately 16 nucleotides before the 5’end of 

vRNA, where it stutters resulting in the addition of poly(A) tail (63, 322). In contrast to mRNAs, 

cRNAs are uncapped full-length copies of vRNA without a poly(A) tail. Hence, the mechanism 

of transcription has to be different. Nevertheless, how the polymerase switches and coordinates 

exactly between the two modes of transcription and replication is not fully understood. Several 

mechanisms have been proposed to explain the switch, but it has been suggested that the 

availability of soluble NP might be an important trigger for the switch (38, 560). During the early 

stages of influenza A virus life cycle, synthesis of NP and NS1 mRNAs is favoured, which might 

lead to the accumulation of NP and trigger the switch from transcription to replication (203, 

479). 

Next, newly synthesized vRNA is coated with NP and the polymerase complex. The 

interaction of vRNPs with NEP and M1 facilitates their export from the nucleus to the cytoplasm 

(3). The HA and NA proteins are post-translationally modified and are directed onto lipid rafts 

on the apical plasma membrane (454). M2 binds to the raft periphery and brings together several 

other raft domains. M2 and M1 association with the vRNPs result in the accumulation of all the 

viral components to the plasma membrane (454). This initiates the process of budding and the 

viral envelope separates from the cell membrane. Finally, the enzymatic activity of the NA 
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protein removes the sialic acid receptors from the host cell surface preventing virus aggregation 

(491) and the virus is released to infect another viable cell and continue its spread. 

1.1.4 Evolution and genetics of influenza A viruses 

 RNA viruses possess low-fidelity RNA polymerases lacking the exonuclease 

proofreading ability and hence are inherently error-prone (216, 500). This results in very high 

mutation rates at the nucleotide level, but these high mutation rates may not always result in 

changes at the amino acid level. This is because of different selective pressures and evolutionary 

constraints on both the virus genes and the virus species. For example, although the nucleotide 

mutations occur at a similar frequency in all hosts, the amino acid mutations are very low in 

avian viruses infecting wild aquatic birds and thus they evolve very slowly, since they are well 

adapted to their hosts (37, 575). However, the evolutionary rates in human and mammalian 

viruses are much higher and the viral proteins continuously accumulate amino acid substitutions 

(575). Evolutionary rates among different proteins of the same virus species may also differ. For 

example, the M1 and M2 genes of human viruses have been shown to evolve very differently, 

with the M2 gene evolving much more rapidly when compared to the M1 gene, which showed 

almost no accretion of amino acid changes over a 55-year period (229, 575). The rate of 

evolution varies depending on the nature of the selective pressure and the evolutionary 

constraints. Surface proteins such as HA and NA might be subject to selective pressure by the 

host immune system, while internal proteins such as NP may not face any selective pressure by 

the  immune system, but undergo host-specific adaptive evolution (152, 176, 276).  

The genetic changes that drive evolution of influenza A viruses may occur by three 

different mechanisms: 1) mutations due to RNA polymerase errors, 2) reassortment and  
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Figure 1.4 Influenza A virus antigenic shift and antigenic drift. Antigenic shift. When two or more 
influenza A viruses co-infect a host, there is a potential for the gene segments to be exchanged (reassortment), which 
could result in a novel virus with a new set of HA and NA genes. When reassortment results in a virus with a new 
set of HA and NA subtypes, it is called antigenic shift and has the potential to cause pandemic, when the vast 
majority of the host has not encountered this new virus subtype previously. Antigenic drift. As influenza A viruses 
replicate, the genes undergo random mutations due to the error prone viral polymerase. When these random 
mutations occur in the surface proteins, it results in new antigenically distinct strains of the existing subtype and is 
called antigenic drift. When these mutations are selected by the host favourably for virus replication, it has the 
potential to cause epidemics. 
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3) recombination. As discussed earlier, influenza A virus RNA polymerase is highly error prone 

with mutation rates ranging from approximately 1×10-3 to 8×10-3 substitutions per site per year 

(82). Hence, with each round of replication more and more point mutations are introduced into 

the replicated genome, which may have a neutral, positive or negative effect on the replication 

and survival of the virus. Many of these changes may not be viable, but those that are 

advantageous could become dominant due to various selective pressures encountered by the 

virus. The effect of these gradual changes are more apparent when these mutations accumulate in 

the antigenic domains of surface glycoproteins HA and NA, since these proteins are under a 

strong selective pressure from the host immunity (82). When these mutations cause positive 

selection of the HA and NA variants by escaping from neutralizing antibodies, it results in the 

generation of a new antigenic variant, which is able to evade host immunity. This phenomenon 

of change in the antigenicity of the surface glycoproteins due to gradually accumulated 

mutations is called antigenic drift (74) (Fig. 1.4). Consequently, as a result of antigenic drift the 

virus can no longer be neutralized by the host antibodies raised against the parent strain, allowing 

the virus to spread more readily among the population, resulting in epidemics (572). Mutations in 

the HA or NA amino acid sequence occur at a frequency of less than 1% per year and the 

antigenic drift occurs on average every 2-8 years (74). While minor changes in the antigenicity 

of viruses is detectable at any time, changes large enough to reflect on hemagluttination-

inhibition assays accumulate over several years (106, 368, 556). 

When compared to the slow and gradual changes that occur during antigenic drift, 

reassortment causes abrupt changes in the genome content of the virus. When two or more 

viruses co-infect a host or cell at the same time, there is a potential for the viruses to exchange 

gene segments. This phenomenon of rearrangement of viral gene segments occurring when a cell 
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is infected with two or more genomic variants of influenza viruses is called reassortment (Fig. 

1.4) (513). From co-infection with two different viruses, reassortment can result in 28 or 256 

gene variants, which shows that this process can result in significant genetic diversity. These 

variants under the right selective pressure could be selected to evade immunity or adapt to a new 

host resulting in major pandemics. When reassortment results in the introduction of a HA or/and 

NA subtype that are antigenically distinct from the circulating influenza variant into a 

population, it is called antigenic shift (Fig. 1.4) (499). The importance of gene reassortment in 

the evolution of novel viruses is highlighted by the past and recent pandemics. Viruses 

responsible for Asian influenza in 1957 and Hong Kong influenza in 1968 were reassortant 

viruses, containing avian origin HA, PB1 and NA segments and avian origin HA and PB1 

segments in a human genetic background respectively (265, 304, 469). The 2009 pandemic 

H1N1 virus was also a result of reassortment. It was the result from reassorment of a triple 

reassortant virus with the Eurasian avian-like swine viruses. The triple reassortant viruses were a 

result of genetic exchange between the North American H3N2 virus and H1N2 swine viruses. As 

a result, the 2009 pandemic virus possessed PB2 and PA genes of North American avian virus 

origin, a PB1 gene of human H3N2 virus origin, HA (H1), NP, and NS genes of classical swine 

virus origin, and NA (N1) and M genes of Eurasian avian-like swine virus origin (395). 

Besides point mutations and reassortment, the viral genome can also evolve by 

recombination. Recombination can occur between two virus genomes or between the virus 

genome and the host. In influenza viruses, recombination occurs by template switching, where 

the polymerase jumps from one template to the other and then continues transcribing, thus 

producing RNA with genetic information combined from two different segments. Although 

recombination in influenza is rare, both types of recombinations have been reported and have 
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resulted in an evolutionary advantage for the virus. For example, insertion of 54 nucleotides of 

28S rRNA into an avian influenza virus HA gene and a 60-nucleotide insertion sequence from 

NP gene into a seal influenza virus HA gene, increased HA cleavability (274, 410). Other 

examples include conversion of a low pathogenic avian influenza virus to a high pathogenic 

variant after insertion of 21 nucleotides of the M segment or 30 nucleotides of the NP segment 

into the HA segment (421, 506). Viruses produced by recombination events can cause 

pandemics. For example, a recent phylogenetic analysis of the HA gene from the 1918 pandemic 

virus suggested that it may have been generated by recombination, where the sequence 

corresponding to the stalk region originated from a human-lineage influenza virus, while the 

globular domain of HA1 polypeptide originated from a swine virus (168). 

1.2 Overview of innate immunity and virus evasion strategies 

 Innate immune response provides the first line of immunological defence against 

infection. Innate immunity provides a broad range of protection using receptors and molecules 

that are non-specific to a particular pathogen but recognize unique patterns in microbial or viral 

components common to most pathogens known as pathogen-associated molecular patterns 

(PAMPs). The host recognizes these PAMPs using membrane bound or soluble germline-

encoded receptors called pattern-recognition receptors (PRRs). Three main classes of PRRs 

encoded by vertebrate hosts are Toll-Like Receptors (TLRs), Retinoic acid inducible gene-I 

(RIG-I)-like receptors (RLRs) and Nucleotide oligomerization and binding domain (NOD)-like 

receptors (NLRs). Additionally, lectin receptors also serve as a PRR in activating innate-

immunity during infection with certain viruses containing glycoproteins on the virion surface 

(332). Some of the major PRRs, ligands recognized and their cellular distribution are listed in 

Table 1.1. 
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1.2.1 Pathogen recognition receptors (PRRs) and pathogen associated molecular patterns 

(PAMPs) 

1.2.1.1 Toll-like receptors (TLRs) 

 Among the PRRs known today, TLRs were the first to be identified and were first 

recognized in Drosophila to be important for defense against fungal infections (315). 

Subsequently several mouse and human homologs of the Drosophila Toll receptor were 

discovered, 10 in humans (TLR1 – TLR10) and 12 in mouse (TLR1-TLR9 and TLR11-TLR13) 

and hence were called Toll-like receptors (TLRs) (263, 519). The TLRs are type I 

transmembrane proteins that are composed of an amino-terminal leucine-rich repeat-containing 

ectodomain responsible for PAMP recognition, a transmembrane domain and a cytoplasmic 

carboxy-terminal Toll-interleukin-1 receptor homology (TIR) domain that relays downstream 

signalling events (5). TLR1, TLR2, TLR6 and TLR10 reside on the plasma membrane and 

recognize microbial cell wall and membrane components such as lipoprotein and peptidoglycans 

(263). TLR4 and TLR5 also localize to plasma membrane and recognize bacterial 

lipopolysaccharide (LPS) and flagellin respectively (263). TLR2, 4 and 6  recognize fungal 

components such as zymosan, mannan and β-glucan as well (263). TLR3, TLR7, 8 and 9 are 

localized in the endosomes and recognize different nucleic acid ligands. TLR3 recognizes 

double-stranded RNA (dsRNA), TLR7 and 8 recognize single stranded RNA (ssRNA) and TLR9 

engages unmethylated CpG DNA (6, 8, 263). TLR11 and TLR12 form a heterodimer to sense 

profilin form the parasite Toxoplasma gondii (18), while TLR13 detects bacterial 23S ribosomal 

RNA (323, 407). Differences in the signal transduction pathway exist among the TLRs, being 

either myeloid differential primary response 88 (MyD88)-dependent or TIR-domain containing  
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Pattern Recognition Receptor Microbial ligand recognised Cellular 
distribution 

TLR2/TLR1, TLR2/TLR6 

Lipoproteins and glycolipids of 
bacterial origin, viral envelope 
proteins and  viral proteins released 
into extracellular space 

Plasma membrane 

TLR3 dsRNA, poly I:C Endosome 

TLR4 Lipopolysaccharide (LPS), flagellin, 
viral glycoproteins Plasma membrane 

TLR5 Flagellin Plasma membrane 
TLR7/8 viral ssRNA Endosome 

TLR9 Bacterial and viral unmethylated 
CpG DNA Endosome 

TLR10 Unknown Plasma membrane 

RIG-I 

RNA containing dsRNA regions  of 
approximately 20 nt  with blunt ends 
containing a 5'-ppp moiety, low 
molecular weight poly I:C, short (25 
bp) and long dsRNA (>200 bp) with 
3' or 5' monophosphate 

Cytoplasm 

MDA5 
High molecular weight poly I:C, 
long dsRNA (1-2 kb) and short 
dsRNA (100 nt) 

Cytoplasm 

NLRP3 

leakage of ions from intracellular 
compartments, reactive oxygen 
species (ROS),activation by dsRNA 
through indirect mechanisms 

Cytoplasm 

Mannose-binding Lectins High Mannose and Fucose Secreted 

SP-A, SP-D Mannosylated and glycosylated 
proteins Secreted 

Galectins Glycans containing β-galactoside Secreted 
 

 Table 1.1 Pattern recognition receptors (PRRs) critical during viral infection, their ligands and 
cellular distribution. 
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adaptor inducing interferon-β (TRIF)-dependent (4, 261). All the TLRs except TLR3 use the 

MyD88-dependent pathway, which signals only through TRIF (588). TLR4 is unique in that it 

uses both the MyD88 and TRIF-dependent pathways for signalling (261, 518, 588).  

 Viral components are known to be sensed by several TLRs during influenza infection. 

However, TLR3 and TLR7 are the predominant TLRs important for sensing viral RNA. As 

discussed above, TLR3 senses dsRNA in endosomes. However, several studies have shown that 

no dsRNA is generated during influenza virus replication (431, 573) and that this is due to the 

helicase activity of cellular protein UAP56 (583). Therefore it is speculated that TLR3 

recognizes unidentified RNA structures present in the dying infected cells, which are 

phagocytosed by dendritic cells (DCs) (233, 474). During Influenza A virus infection, activation 

of TLR3 has been shown to be more proinflammatory than antiviral in that, more IL-6, IL-8 and 

less IFNβ was induced (307). Indeed TLR3-/- mice have been shown to have a survival advantage 

when compared to wild-type (WT) mice following lethal influenza virus infection, in spite of 

having higher viral loads and lower viral clearance (306). This shows that these proinflammatory 

cytokines are essential for the host to efficiently clear the virus. Similar to TLR3-/- mice, TLR4-/- 

mice have also been shown to survive better than the WT mice upon influenza A virus infection 

(226, 397). Interestingly, the virus does not produce the ligand sensed by TLR4 but the infected 

cell does. It was shown that oxidative phospholipid OxPAPC (226) and S100A9 (543) protein 

produced in response to acute lung injury caused by influenza A virus infection can act as a non-

PAMP or as a danger associated molecular pattern (DAMP) and stimulate the TLR4-TRIF 

pathway to induce proinflammatory cytokines.  
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 Plasmacytoid dendritic cells (pDCs) produce high levels of IFNα upon infection with the 

WT virus (68, 75, 143, 236, 389). In pDCs, TLR7 recognizes ssRNA genome in the endosome 

after the virus is taken up (115, 344). Endosomal acidification is required for this recognition and 

does not require viral replication. Signalling through this pathway induces production of type I 

IFN and pro-inflammatory cytokines in a MyD88-dependent manner (115, 344). 

 TLR10 is the only known TLR receptor in the family without a known agonist, function 

or signalling pathway. However, a role for TLR10 as an innate immune sensing receptor in 

influenza A virus infection has recently been reported (314). It was found that H5N1 virus 

infection induced robust TLR10 expression when compared to infection with a seasonal H1N1 

virus A/HK/54/98 and that both the virus replication and de novo protein synthesis is required 

for TLR10 induction (314). H5N1 and H1N1 infection of primary human macrophages and a 

monocyte cell line induced robust expression of type I and III IFNs and proinflammatory 

cytokines IL-6 and IL-8 in a TLR10-dependent manner (314). The authors also reported 

enhanced vRNP-induced IL-8 induction when TLR10 was exogenously expressed. 

1.2.1.2 RIG-I (retinoic acid inducible gene-I) like receptors 

 RIG-I like receptors (RLRs) are cytosolic sensors of viral RNA. Three central members 

of the RLR family are RIG-I, melanoma differentiation factor 5 (MDA5) and laboratory of 

genetics and physiology 2 (LGP2). They are present in the cytoplasm of most cell types and are 

strongly induced by IFNs (521). The RLRs are very similar to TLR3 in that both detect viral 

RNA and induce type I IFN and proinflammatory cytokines (8, 474). However, the fundamental 

difference between the two is that the TLR3 and other endosomal TLRs recognize viral nucleic 

acids that have reached the endosomes through endocytosis (518), while the RLRs being located 
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in the cytosol detect intracellular viral RNA from actively replicating viruses (260). The other 

difference is that the RLRs are active in most cell types, while the TLRs are restricted to 

specialized immune cells such as macrophages and dendritic cells (254).  

 The RLRs belong to the DExD/H-box (Asp-Glu-x-Asp/H) family of helicases and are 

characterized by a central ATPase containing a DExD/H box helicase domain (345). RIG-I and 

MDA5 contain a N-terminal CARD (caspase activation and recruitment domain) domain which 

mediates downstream signalling, while LGP2 lacks a CARD domain (599, 600). All three 

receptors have a C-terminal domain (CTD); RIG-I and LGP2 harbor a repressor domain (RD) in 

the CTD, while MDA5 does not. Because of the RD, RIG-I adopts a closed auto-inhibited 

conformation where the CARDs are sterically unavailable for signal transduction (91, 135, 289). 

Hence, its overexpression in the absence of an activating ligand does not result in signalling. 

MDA5 on the contrary does not have a RD and hence is believed to adopt an open conformation 

(44).  

 Even though RLRs share similar structural domains, they differ in their ligand binding 

specificities. The RIG-I ligand comprises an RNA molecule with a 5’ triphosphate (PPP) moiety 

and blunt-ended base-paired region of approximately 20 nt. The base pairing at the 5’ end could 

be due to secondary RNA structures such as hairpin or panhandle conformations on individual 

ssRNA (219, 431, 462, 463). Although 5’PPP-ssRNA is a ligand for RIG-I, RNAs lacking a 

5’PPP have also been reported to act as RIG-I agonists. Both short (25bp) dsRNA with a 3’ or 5’ 

monophosphate group and long (>200bp) dsRNA lacking terminal triphosphates have been 

reported to activate RIG-I (50, 517). Also, low molecular weight poly I:C (300-1000bp) and 

short dsRNA generated by T7 polymerase induces IFN in a RIG-I-dependent manner (255). The 



24 

 

requirement for 5’PPP moiety is believed to provide a mechanism of self-discrimination by RIG-

I. This is because the 5’PPP in cellular transcripts is either masked by a 7-methyl-guanosine cap 

(in case of mRNA) or is removed before export from the nucleus (in case of tRNA and rRNA). 

Distinct from RIG-I, MDA5 detects high molecular weight poly I:C (1000bp-8000bp), long 

dsRNA (1-2 kb) and short dsRNAs  (approx. 100nt) when present in large quantities (44, 45, 

133, 426, 585). It has been reported that MDA5 similar to RIG-I is able to discriminate self-RNA 

from non-self RNA using a specific molecular signature at the 5’ end. The 5' cap structures of 

eukaryotic mRNAs have ribose 2'-O-methylation and many viruses that replicate in the 

cytoplasm of eukaryotes have evolved 2'-O-methyltransferases to modify their mRNAs. It was 

shown that coronavirus mutants deficient in 2’-O-methyltransferases induced higher type I IFN 

expression in a MDA5-dependent manner (611). This observation suggests that RNA 

modifications such as 2'-O-methylation provide a molecular signature for the discrimination of 

self and non-self mRNA. 

  As observed with the differential recognition of RNA species, RIG-I and MDA5 detect 

mostly non-overlapping groups of viruses. RIG-I has been reported to induce innate immune 

signalling in response to infection by negative strand RNA viruses such as paramyxoviruses, 

orthomyxoviruses, rhabdoviruses such as vesicular stomatitis virus, Ebola virus and EBER RNA 

carried by Epstein-Barr virus (72, 256, 457, 598, 611). MDA5 senses positive strand RNA 

viruses such as picornaviruses (171, 256), while certain flaviviruses induce signalling via both 

RIG-I and MDA5 (79, 147, 256, 337, 508).  

 The third RLR LGP2, which lacks the CARD domain, binds dsRNA independent of 5’-

PPP and also differentially regulates RIG-I and MDA5 signalling (435). In another study, the 
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binding specificity of LGP2 was studied using surface plasmon resonance (516). It was reported 

that dsRNA and 5’PPP ssRNA both bound to LGP2, while ssRNA without a 5’PPP bound LGP2 

with a lower affinity (516). While LGP2 lacking the tandem CARD domain was initially 

believed to be a negative regulator, gene disruption studies show that it may be a positive 

regulator (553, 600). Hence, the exact ligand and the role of LGP2 in innate immunity to virus 

infection are still unclear. 

 Among the RLRs, RIG-I is important for influenza detection in epithelial cells, 

macrophages and conventional DCs (254). RIG-I has been shown to detect full length 5’PPP 

ssRNA viral genome (444), preferentially binding to shorter genomic segments as well as 

subgenomic defective interfering particles (35). Interestingly, a smaller U/A-rich region within 

the 3’ UTR of influenza genomic RNA induces IFN in a 5’PPP-independent manner (103). 

Despite these findings, it remained unknown whether the RIG-I ligand were naked RNA 

products generated during virus replication or whether the nucleocapsid encapsidated RNA could 

be recognized by RIG-I. Recent studies showed that RIG-I indeed interacts directly with the 

panhandle structure of incoming viral nucleocapsids, undergoes a conformational switch, 

oligomerizes and triggers the activation of IRF3 inducing IFN production (328, 574). 

1.2.1.3 NOD like receptors (NLRs) 

 NLRs comprise a large receptor family of 22 members in humans and are characterized 

by a conserved nucleotide oligomerization and binding domain (NOD) motif (198, 228). The 

proteins in this group share a common domain organization containing one of several amino-

terminal protein-protein interaction domains such as the CARD, pyrin domain (PYD), and 

baculovirus inhibitor repeat (BIR) domain, followed by an intermediary NOD domain. The 
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carboxyl terminus consists of a varying number of leucine-rich repeat (LRR) motifs with 

proposed functions of detecting PAMPs and danger associated molecular patterns (DAMPs), 

thus leading to NLR activation. 

 NLRs are subdivided into four subfamilies namely NLRA, NLRB, NLRP and NLRC 

based on the N-terminal effector domains (537). The NLRP and NLRC subfamilies comprise the 

larger number of members of the NLR family (20 proteins in humans). The NLRC subfamily 

consists of six members: NLRC1, NLRC2, NLRC3, NLRC4, NLRC5 and NLRX1. The proteins 

in this subfamily have one or two N-terminal CARD domains, which recruit caspase-1 or kinases 

to mediate downstream signalling. However, NLRC3, NLRC5 and NLRX1 are grouped into this 

subfamily due to their phylogenetic relationship, homology and have undefined N-terminal 

domains (385). NLRC1 and NLRC2 are stimulated following bacterial infection and they sense a 

specific muropeptide (diaminopimelic acid) and muramyl dipeptide from peptidoglycan 

respectively (169, 170). NLRC3 inhibits TLR4-dependent activation of NF-κB by interacting 

with TRAF6 to attenuate Lys63-linked ubiquitination of TRAF6 and activation of NF-κB (466). 

NLRC4 senses bacterial flagellin to activate caspase-1 and IL-1β (146, 377). NLRC5 is induced 

by IFNγ, LPS and Poly I:C (43). NLRC5 has a role in MHC-I expression and acts as a negative 

modulator of inflammatory pathways (43, 283). NLRX1 has been shown to regulate 

mitochondrial antiviral immunity (9, 383). Nevertheless, MAVS-dependent type I IFN response 

to poly I:C and sendai virus infection in NLRX1 knockout mice was similar to WT mice (23, 

443, 495). Thus, the exact role of NLRX1 in MAVS-mediated innate immunity is still under 

investigation. 
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 The NLRP subfamily comprises 14 proteins in humans, NLRP1-14 and is characterized 

by the presence of a N-terminal Pyrin domain (385, 537). Few members of this group have been 

studied in depth. Several NLRP family members such as NLRP1, NLRP2, NLRP3 and NLRP6 

are key components of caspase-1 activated complexes called inflammasomes. They activate 

caspase-1 through the recruitment of ASC (Apoptosis–associated speck-like protein containing a 

caspase recruitment domain) to the pyrin domain of NLRPs, leading to the processing and 

release of IL-1β, IL-18 and secretion of leaderless proteins like pro IL1-α and Fibroblast growth 

factor (FGF)-2 (124, 270, 358, 360). However, many NLRPs also have a negative role in 

immune response. NLRP2 and NLRP12 suppress NFκB signaling (11, 142). NLRP4 negatively 

regulates type I IFN signalling by targeting TBK1 for degradation and suppresses autophagy by 

associating with beclin-1 (98, 245). NLRP10 has been shown to have anti-inflammatory activity, 

where it inhibited the auto-processing of caspase-1, caspase-1-mediated IL-1β processing and 

suppressed the aggregation of ASC (227). Besides this role, NLRP10 is also an essential receptor 

in initiating adaptive immunity by DCs (123). NLRP5, NLRP17 and NLRP14 are associated 

with functions in development and reproduction (292), while NLRP1, NLRP2, NLRP9 and 

NLRP11 play a role in autoimmune diseases (242, 351, 515). 

 NLRP3-mediated inflammasome activation has been demonstrated to be important for 

innate defence against influenza A virus infection. NLRP3 deficient mice were more susceptible 

to pathogenic virus infection when compared to wild-type mice (10, 532). The enhanced 

morbidity in NLRP3 deficient mice correlated with a decrease in immune cell recruitment, 

cytokine and chemokine induction, while there was no defect in the control of virus replication 

(10, 532). These studies suggest that NLRP3-mediated inflammasome is not involved in antiviral 

resistance, but increases disease tolerance through cellular recruitment and induction of tissue 
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repair in infected tissues (532). Inflammasome activation and cytokine production requires two 

signals. Signal 1 activates NFκB which induces the transcription and translation of pro-IL-1β, 

pro-IL18 and NLRP3 genes (510). This is called priming. Activation of NFκB is mediated by the 

ligands of  TLR, IL-1 receptor and Tumor Necrosis Factor Receptor (510). Signal 2 is induced 

by signals resulting from host damage and this activates cleavage of caspase-1 leading to the 

secretion of mature IL-1β and IL-18 (510). It is believed that PAMP signals from commensal 

bacteria provide the signal 1 for inflammasome activation in the context of influenza A virus 

infection. Intact microbiota in mice provided signals for the expression of pro-IL-1β and pro-

IL18 mRNA at steady state and mice treated with antibiotics displayed delayed viral-clearance 

and exhibit impaired innate and adaptive immune response against influenza A virus infection (1, 

225). Several stimuli have been reported to provide the signal 2 for inflammasome activation 

during Influenza A virus infection. Influenza virus ssRNA, proton flux through virus encoded 

M2 ion channel in the trans-Golgi network and high-molecular weight PB1-F2 fibrils in the 

phagosomes of cells that have taken up dying virus-infected cells have all been reported to 

provide the signal 2 to activate the release of IL-1β and IL-18 (224, 367, 532).  

1.2.1.4 Lectin receptors 

 Lectins belong to a highly diverse group of proteins that recognize carbohydrates on 

glycoproteins and glycolipids and are involved in protein modulation, cell growth and 

homeostasis (165, 338). Mammalian lectins are categorized into many families based on their 

carbohydrate recognition domains (CRDs), as C-type, I-type, L-type, M-type, P-type, R-type, F-

box, chitinase-like lectins, galectins and intelectins (552). Some lectins, such as C-type lectins 

and galectins function as PRRs as they recognize viral components that are highly modified by 
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oligosaccharides and thus function in viral innate immunity (332). Mannose-binding lectin 

(MBL) belongs to the collectin family, which is a subgroup of C-type lectins. Characteristic of 

the collectin family MBL contains a cysteine-rich region, a collagen-like domain, a neck region 

and a CRD (529). MBL is biologically active in a tetramer form and functions as a soluble 

receptor in the complement cascade by recognizing carbohydrate patterns on the virus surface, 

leading to resistance against many viral infections (217, 484). Virus eradication does not occur 

by formation of membrane-attacking complex on the viral surface and is believed to be mediated 

by three mechanisms namely: 1) Virus neutralization by MBL-activated complement C3 and C4 

deposition on the viral surface, 2) Direct virus neutralization by MBL and 3) Prevention of 

interaction between viruses and its receptors (148, 238, 498, 596). Surfactant proteins SP-A and 

SP-D are also members of the collectin family and defend the viral invasion of the respiratory 

system as they are primarily secreted in the respiratory tract and lungs (207, 349, 559).They 

prevent infection by influenza A viruses by binding to glycosylated HA and NA on the viral 

surfaces (199, 200, 530). Mechanisms of SP-A and SP-D mediated antiviral activity against 

influenza include, inhibition of viral entry by viral aggregation and enhancement of viral 

clearance by recruitment of macrophages and neutrophils (199, 200, 530). The surfactant 

proteins also bind to the respiratory syncytial virus (RSV) glycoproteins F and G on the surface 

of the virion and enhances opsonisation of the virions and modulates host immune response 

against RSV infection (31, 166, 182). 

 Galectins are a group of 15 proteins that are secreted and associate with specific cell 

surface glycans containing beta-galactosides (30). Galectin-1 is a well-studied member of this 

family and is secreted by immune cells such as T-cells and stromal cells surrounding B-cells 

(327). It has been reported to bind to the envelope glycoproteins F and HA of Nipah virus (NiV) 
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and influenza A virus respectively (159, 591). Binding of galectin-1 to NiV-F leads to reduced 

NiV-induced syncytium formation, while galectin-1-HA association leads to inhibition of 

hemagglutination activity (159, 591). However, galectin proteins also function as a proviral 

factor facilitating the viral entry of some viruses (157, 375, 584). 

1.2.2 Effectors of innate immunity 

1.2.2.1 Physical barriers of innate immunity 

 The principle components of innate immunity comprise of the physical barriers (skin, 

mucosal epithelia), the chemical barriers (antimicrobial peptides, cytokines), the innate immune 

cells (macrophages, DCs) and the components of humoral immunity such as complement factors. 

All of these are the effectors of innate immunity. 

 The mucosal epithelia can be considered as any tissue that is able to secrete mucus and 

antimicrobial products across an epithelial layer and  is fortified by both innate and adaptive 

components of the immune system (370). The mucosal epithelial tissue is present in several sites 

including the respiratory tract, gastrointestinal tract, urogenital tract and eye conjunctiva and the 

epithelial cells present in these mucosal tissues form the main physical barriers providing innate 

defence.  

 Skin is the largest organ of the human body and provides an effective barrier to external 

assaults. Structurally, skin is made up of two layers, the outermost epidermis and inner dermis 

separated by a basement membrane. The uppermost layer of the epidermis, stratum corneum is 

comprised of keratinocytes, tightly linked by desmosomes in a hydrophobic cellular matrix 

forming the durable outer layers of the skin (2). Keratinocytes produce large quantities of the 
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protein keratin which forms the tough watertight surface of the skin and are also the main source 

of antimicrobial peptides (AMP) in the skin (2). Several types of AMP are produced in the skin 

and include cathelicidins, β-defensins, dermicidin and psoriasin, which have both antimicrobial 

and immunomodulatory functions (2). During a pathogenic insult or injury, recruited neutrophils, 

mast cells and other leukocytes produce the majority of AMP. Innate immune cells such as 

langerhan cells (specialized DC), macrophages, myeloid and plasmacytoid DCs and NK cells are 

also present in the lower parts of the epidermis (525). 

1.2.2.2 Cells of innate immunity 

 The innate immune cells can be divided into two categories. Those that are phagocytic, 

such as neutrophils, macrophages and dendritic cells and those containing enzymatic granules 

such as eosinophils, basophils, mast cells and natural killer (NK) cells. Neutrophils are relatively 

short-lived lasting only 6-8 hrs in circulation, but are the most abundant and important 

circulating leukocytes (286). They are typically the first responders recruited to the site of 

infection. Upon infection, stimulated endothelial cells close to the sites of inflammation expose a 

class of molecules called selectins. The Neutrophils are captured by the selectin molecule and 

they roll along the endothelial wall following a chemokine gradient, which is then followed by 

integrin-mediated firm adhesion (286). The neutrophils then traverse through the endothelium 

and arrive at the site of inflammation, where they unleash their antimicrobial arsenal to eliminate 

the invading pathogen. Neutrophils exert their antimicrobicidal activity by releasing granules 

containing enzymes and AMP such as myeloperoxidase, NADPH oxidase, defensins, lysozyme, 

several proteases, cathepsins and lactoferrin (557). Neutrophils can also phagocytose pathogens 

through receptor-mediated endocytosis via PRRs or through opsonisation (550). Neutrophils are 
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also known to kill microbes through NETosis, where they undergo active cell death releasing 

decondensed chromatin containing histones, antimicrobial granular and cytoplasmic proteins into 

extracellular space (13, 284). These structures are thought to kill microbes by exposing them to 

high local concentrations of antimicrobial compounds (13). 

 The macrophage is an important cell-type involved in innate immunity. Depletion of 

alveolar macrophages in pigs infected with influenza virus has been reported to result in 40% 

mortality and severe respiratory signs when compared to infected control pigs (278). Upon 

infection, infected epithelial cells increase the production of CCL2, which facilitates monocyte 

and macrophage recruitment through their CCR2 receptor (209, 325). Activated macrophages 

secrete proinflammatory cytokines such as IL-6, IL-8 and TNFα (39). The alveolar macrophages 

can phagocytose virus particles and apoptotic infected cells. They also modulate the adaptive 

immune response to influenza virus infection (202, 223, 578). 

 NK cells destroy virus-infected cells without the need for previous antigen stimulation. 

They recognize the weakened expression of MHC class I molecules on the surface of infected 

cells, which normally bind to inhibitory receptors on the surface of NK cells (301, 334, 541). 

Additionally, NK cells expressing the main triggering receptors NKp46 and NKp44 have been 

reported to recognize the HA protein expressed on the cell surface of influenza-infected cells 

(22, 352). NK cells have also been shown to lyse influenza virus-infected cells by recognition of 

HA through NKp46 (352). NK cells can also mediate antibody-dependent cell-mediated 

cytotoxicity by recognizing the Fc portion of antibodies bound to virus-infected cells through 

CD16 receptor (201, 509). The importance of the NKp46 receptor and NK cells during influenza  



33 

 

infection is evident in a study, where mice deficient of NKp46 receptor equivalent NCR-1  

displayed increased morbidity and mortality upon influenza virus infection (161). 

 DCs are the professional antigen presenting cells (APCs). During infection, they form an 

important bridge between the innate and adaptive immunity by presenting viral antigens to naïve 

and memory B and T lymphocytes (28, 185). During infection, DCs can acquire the antigen for 

presentation by two distinct mechanisms. First, DCs can be infected directly with influenza virus 

and the viral proteins can then be processed inside the cell, loaded onto MHC class I  molecules 

and presented to virus specific CD8+ cytotoxic T cells (CTLs) (28, 47, 595). The second 

mechanism is when DCs acquire antigens by phagocytosing virus particles and infected 

apoptotic cells, where the antigenic peptides are processed and loaded onto MHC class II (MHC-

II) molecules and presented to CD4+ helper T cells and CD8+ CTLs by cross-presentation (549). 

Thus, DCs serve an important function in the innate immune response during viral infection. 

1.2.2.3 Chemical mediators of innate immunity 

 IFNs are important chemical mediators of innate immunity and elicit distinct antiviral 

responses. They are grouped into three classes called type I, II and III IFNs, according to their 

amino acid sequence (442). In humans, type I IFNs comprise of multiple IFNα subtypes, one 

IFNβ gene and other genes of less well-defined roles such as IFN-ω, IFN-ε, IFN-τ, IFN-δ and 

IFN-κ, while IFNγ is the only member of type II IFN. IFNα/β are the major type I interferons 

secreted by cells in response to infectious agents, particularly viral pathogens. They have several 

major functions during infection. They are known to induce an antimicrobial state in 

neighbouring and infected cells via the induction of interferon stimulated genes (ISGs), modulate 

the innate immune response in a balanced manner and activate the adaptive immune system by 
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promoting antibody production and effector T cell responses (32). The Type III IFN gene family 

consists of three genes IFN-λ1, λ2 and λ3 and is more closely related in structure and sequence to 

the cytokine IL-10 (117). 

 Type I IFNs can be produced by almost any type of cell in the body in response to 

stimulation, whereas haematopoietic cells, particularly pDCs specialize in its secretion (512). 

The first step in the production of type I IFNs is the recognition of microbial pathogens by 

cellular PRRs. Several PRRs including RLRs, TLRs and NLRs sense different microbial 

components as described previously. Pathogen sensing by the PRRs initiates a signalling 

cascade, which culminates in the activation of transcription factors IRF-3, IRF-7 and NFκB.  The 

transcription factors then translocate to the nucleus, bind to the IFN gene promoter and induce 

transcription of the IFN gene. IRF3 and IRF7 are phosphorylated by cellular kinases and 

translocate to the nucleus after dimerization (262), whereas the IKK complex, consisting of IKK-

α, IKK-β and IKK-γ, phosphorylates the NFκB inhibitor IκB leading to its proteasome-

dependent degradation and release of functional NFκB to translocate to the nucleus (251). The 

type I IFNs can also be induced by host factors and cytokines such as TNF, which signals via 

IRF1 rather than through IRF3 and IRF7 (592). IFN-α/β exerts the antiviral effect in 

neighbouring and infected cells by binding and signalling through a heterodimeric 

transmembrane receptor termed the IFNα receptor (IFNAR), which is composed of two subunits 

IFNAR1 and IFNAR2. Type I IFN binding to IFNAR activates the receptor-associated protein 

tyrosine kinases Janus kinase I (JAK1) and Tyrosine kinase 2 (TYK2), which then phosphorylate 

the transcription factors signal transducer and activator of transcription 1 and 2 (STAT1 and 

STAT2) (27, 113). Phosphorylated STAT1 and STAT2 dimerize and translocate to the nucleus, 

where they assemble with IRF9 to form a trimolecular complex called IFN-stimulated gene  
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Figure 1.5 Receptors of type I, II and III IFNs. Distinct receptors are used by the three classes of IFNs. 
Type I IFNs signal through IFNα receptor (IFNAR), a heterodimer comprised of subunits IFNAR1 and IFNAR2. 
Type II IFNs signal through IFNγ receptor (IFNGR) comprised of subunits IFNGR1 and IFNGR2. Type III IFNs 
signal through IFNλ receptor (IFNLR), a heterodimer comprised of IL10Rβ and IFNLR1 subunits. Binding of the 
IFNs to their respective receptors trigger phosphorylation of the JAK and TYK kinases, which in turn phosphorylate 
the receptors at specific tyrosine residues leading to recruitment of STAT proteins and their phosphorylation. The 
STAT proteins dimerize and recruit other transcription factors to form a complex, which translocates to the nucleus 
and triggers transcription of genes regulated by IFN stimulated response elements (ISRE) and gamma-activated 
sequence (GAS) promoter sequences. 
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factor 3 (ISGF3). ISGF3 binds to DNA sequences known as IFN-stimulated response element 

(ISREs), activating the transcription of ISGs (Fig. 1.5) (468). The ISGs are primarily responsible 

for the antiviral effects of type I IFNs. 

 IFN-gamma (IFNγ) is the lone type II IFN and is known to be induced by many cell types 

such as macrophages, DCs, NK cells, NKT cells, CD4+ T cells, CD8+ T cells and B lymphocytes 

(371). The production of IFNγ is controlled by the cytokines IL-12 and IL-18, which are secreted 

by the APCs in response to infection (470). Even though IFNγ production is largely restricted to 

immune cells, IFNγ receptors (IFNGR) comprised of IFNGR1 and IFNGR2 chains are expressed 

by most cell types and hence are capable of responding to IFNγ (546). The IFNGR is made up of 

two ligand-binding IFNGR1 chains associated with two IFNGR2 chains that is involved in signal 

transduction (548). Upon IFNγ binding to IFNGR, kinases JAK1 and JAK2 bind to IFNGR1 and 

IFNGR2 subunits respectively and become tyrosine phosphorylated (371). Activated JAKs 

phosphorylate the IFNGR tails, which recruit the STAT1 monomers, which are again 

phosphorylated by the JAKs leading to STAT1 dissociation from the receptors and STAT1 

homodimerization (371). The STAT1 homodimer translocates to the nucleus, binds to γ-

activated sequence (GAS) elements to induce transcription of IFNγ responsive genes (Fig. 1.5) 

(371). Many of the transcribed genes are transcription factors and the major one is interferon 

response factor 1 (IRF1) (55). IFNγ secretion has many different immunomodulatory effects. It 

is involved in the upregulation of MHC-I molecules and in increasing the quality, quantity and 

repertoire of peptides loaded onto MHC-I (371). Other functions of IFNγ include upregulation of 

MHC-II molecules for efficient antigen presentation, development of a Th1 response and the 

activation of the microbicidal functions of macrophages (371). Type I and type II IFN are known 
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to induce the expression of a common set of ISGs as well as a distinct set of ISGs in order to 

exert its antiviral and immunomodulatory functions (331). 

 Type III IFNs or IFNλ consists of four proteins IFNλ1 (IL-29), λ2 (IL-28A), λ3 (IL-28B) 

and λ4. In contrast to type I IFNs, IFNλ was fairly recently discovered and shares many 

biological functions with type I IFN (288, 483). IFNλ expression is induced by the stimulation of 

the same PRRs that induce type I IFN expression, with one difference being the Ku70 DNA 

sensor that activates IFNλ but not the type I IFNs (305, 606). The IFNλ receptor (IFNLR) is a 

unique heterodimeric receptor which shares one subunit with the IL-10 family of cytokines 

called IL10Rβ and a second subunit specific to IFNλ called IFNLR1 or IL28Rα (Fig. 1.5) (288, 

483). In contrast to IFNAR which is expressed by almost all cell-types, IFNLR expression is 

restricted to epithelial cells and hepatocytes and because of this, IFNλ provides the therapeutic 

benefits of type I IFN and yet avoid the side-effects that come with type I IFN treatment (305). 

In terms of the transcription factors that induce IFNλ expression, it has been reported that IRF 

and NFκB can induce IFNλ expression independently, which is different from the concerted 

action of several transcription factors required for type I IFN induction (536). The IFNLR signals 

through a similar JAK-STAT pathway as the IFNAR complex and induces a subset of the same 

ISGs (467). However the magnitude of IFNλ stimulated response is generally lower than type I 

IFNs and lasts for a longer duration with a delayed peak response (357). 

1.2.3 Mode of action of IFNβ in inducing antiviral state 

 As discussed previously, IFNβ binding to its receptors triggers the transcription of a set 

of genes called ISGs. IFNβ inhibits virus replication and establishes an antiviral state through the 
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antiviral activity of these ISGs. ISGs affect various stages of a virus life cycle including virus 

entry, virus replication, virus translation, virus release and exit (Fig. 1.6). 

1.2.3.1 Inhibitors of virus entry 

 Murine myxovirus resistance 1 (Mx1) and murine myxovirus resistance 2 (Mx2) proteins 

belong to a small family of dynamin-like large guanosine triphosphatases (GTPases) closely 

related to the dynamin GTPase family. The human proteins related to the murine Mx1 and Mx2 

proteins are MxA and MxB respectively (425). They have inhibitory activity against several 

different viruses and act by blocking the early steps of viral replication cycle (190). The mouse 

Mx1 protein is localized in the nucleus and inhibits primary transcription of influenza viral 

mRNAs and exhibits higher inhibitory activity towards the longer transcripts corresponding to 

the viral polymerases PB2, PB1 and PA (424). In contrary, the human MxA protein is localized 

in the nucleus and does not affect viral mRNA transcription and polyadenylation. However, it 

interferes with intracytoplasmic transport of viral mRNAs, viral protein synthesis and 

translocation of newly synthesized viral proteins to the cell nucleus (424). A recent study 

reported that Mx1 interacts with the viral proteins PB2 and NP and interferes with PB2-NP 

interaction, thereby reducing the viral polymerase activity (555). Furthermore, the human MxA 

protein has also been reported to interact with the viral protein NP (544). The Mx2 protein on the 

other hand does not have any known antiviral activity towards influenza viruses (333), but 

inhibits Human immunodeficiency virus -1 (HIV-1) and HIV-2 (178, 249, 333). Mx2 prevents 

the nuclear entry of the reverse transcribed genome, thereby ultimately inhibiting chromosomal 

integration of the HIV genome, which is a key step essential for HIV replication (178, 249, 333). 
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 Cholesterol 25-hydroxylase is an enzyme that catalyzes the secretion of oxysterol 25-

Hydroxycholesterol (25-HC) and is upregulated in response to TLR activation and is an IFN 

inducible gene that promotes resistance to a variety of viral infections (36, 52, 330). 25-HC 

broadly inhibits the growth of several enveloped viruses by directly modifying the cell 

membrane and thereby blocking membrane fusion between the virus and the cell (330). 25-HC 

has also been shown to act in both autocrine and paracrine fashion in macrophages infected with 

influenza virus (52). In addition, 25-HC is involved in prenylation of proteins, an important 

modification affecting the function of several viral and cellular proteins (467). 

 The IFITM family of proteins consists of five members, IFITM1, IFITM2, IFITM3, 

IFITM5 and IFITM10 (26, 492). Among these IFITM1, 2 and 3 have been shown to be IFN 

inducible and are known to affect the replication of a variety of viruses including influenza A 

viruses, severe acute respiratory syndrome coronavirus, flaviviruses, dengue virus and West Nile 

virus (64, 222, 239, 468). The IFITM proteins are able to inhibit such a diverse array of viruses 

because of their localization in different compartments including the plasma membrane, the 

endosome and the lysosomes (131, 222, 319, 602). IFITM3 is the most potent IFITM family 

member in restricting influenza virus replication and a model has been suggested where IFITM3 

prevents virus fusion trapping the virions in the endosomes, ultimately leading to their 

destruction in the lysosomes and autolysosomes (64, 131). Basal levels of IFITM3 restricted 

initial virus infection until IFN expression further reinforced the restriction by upregulating 

IFITM3 expression (64). Although the mechanism of restriction is unclear, a recent study 

showed that the entry of non-enveloped viruses such as reovirus that utilize the endosome-

dependent entry mechanism was also inhibited by the action of IFITM3 (25). This study showed 

that acidification and subsequent proteolysis of the reovirus capsid was affected in IFITM3 
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expressing cells leading to failed membrane penetration or subsequent lysosomal degradation of 

the virus particle. The IFITM proteins have also been suggested to alter the curvature and fluidity 

of the membrane, thereby inhibiting steps prior to membrane hemifusion (319). 

 The TRIM family constitutes a large family of proteins with diverse cellular activities, 

including E3 ubiquitin ligase activity (415). A well-known member of this is TRIM5α, which 

inhibits the early stages of HIV-1 life cycle (504). This study showed that TRIM5α might restrict 

HIV-1 replication by directly binding and ubiquitinating the capsid protein, adversely affecting 

the uncoating process. Another member of the TRIM family, TRIM22 also restricts HIV-1 by 

interfering with the trafficking of HIV-1 gag protein to the plasma membrane, leading to 

decreased virus particle production (32). TRIM22 also restricts influenza A virus replication by 

interacting with NP, leading to polyubiquitination and proteosomal degradation of NP (113). 

1.2.3.2 Inhibitors of virus translation and replication 

 Protein kinase R (PKR) is a major sensor of dsRNA in the cytoplasm. It binds to dsRNA 

produced from infection in the cytoplasm, leading to its activation. Activated PKR 

phosphorylates the translation initiation factor eIF2α, resulting in the shutdown of viral and 

cellular protein synthesis leading to the inhibition of virus replication (27, 456). PKR has also 

been shown to be instrumental in activating the NFκB pathway and in maintaining the integrity 

of IFNα and IFNβ mRNA during infection with certain viruses (293, 475). 

 2’-5’ oligoadenylate synthetase (OAS) is an IFN stimulated gene (455) and is activated 

by the dsRNA, which is produced during both RNA and DNA virus infections. Activation of 

OAS results in the production of 2’-5’ oligoadenylates from ATP (493). 2’-5’ oligoadenylates 
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 Figure 1.6 Antiviral activities of interferon stimulated genes. Interferon stimulated genes (ISGs) affect 
different stages of the life cycle of viruses starting from entry of the virus until virus exit and release. 
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then activate the ubiquitous cellular endoribonuclease RNaseL, which cleaves the viral RNA 

preferentially over cellular RNA (493). During influenza virus infection, RNaseL activity has a 

major contribution to IFN antiviral activity (380). It has been reported that mutant viruses with 

the NS1 R38A mutation are highly susceptible to IFN antiviral activity, while this inhibition is 

relieved upon the knockdown of RNaseL or in its absence in RNaseL-/- cells (380). 

 Interferon stimulated gene 15 (ISG15) is an ubiquitin like protein that is rapidly 

upregulated upon induction by type I IFNs (111). Upon induction, Herc5 the major E3 ligase for 

ISGylation mediates the ISGylation of more than 300 proteins co-translationally (121). The 

function of ISGylation of a majority of these proteins is unknown. However, ISG15 deficient 

mice have been shown to have increased susceptibility to infection by a number of viruses such 

as influenza, herpes and sindbis viruses, which underscores its important antiviral function in the 

host (316). While ISG15 exerts its antiviral function through targeting the influenza A NS1 

protein, a recent study has shown that ISG15-mediated protection of mice against influenza virus 

infection is through non-antiviral mechanisms, possibly through playing a role in lung repair 

after virus infection (384, 608). 

1.2.3.3 Inhibitors of virus release and exit 

 Viperin is a widely induced ISG and it has been reported to contribute to the antiviral 

activities against a number of viruses including Hepatitis C virus (HCV), sindbis virus, HIV, 

influenza and human cytomegalovirus (514). It exerts its antiviral function by inhibiting an 

enzyme in isoprenoid biosynthesis called farnesyl diphosphate synthase, which alters membrane 

fluidity. Since, influenza A virus and HIV-1 bud from lipid rafts, alterations in these rafts affects 

the budding and release of the virus particles from infected cells (391, 567).  



43 

 

 Tetherin is an important ISG and restricts virus release by inserting its N- and C-terminal 

domains simultaneously into both the virus envelope and the plasma membrane thereby retaining 

the virion to the plasma membrane (554). While its restrictive activity is well studied and well 

understood in HIV and has also been reported to have antiviral activity against several enveloped 

viruses, its antiviral role in influenza virus infection is not completely understood (511).  While 

some influenza virus strains have been shown to be sensitive to tetherin, several strains have 

been shown to be resistant to tetherin-mediated antiviral activity (172). The mechanism of 

tetherin antagonism in influenza viruses is believed to be mediated by the HA and NA proteins 

and may involve interference with tetherin expression (172). 

1.2.4 NS1 interaction with host proteins and its function in influenza virus life cycle  

 While the mechanisms of antigenic drift and antigenic shift help the virus in evading the 

adaptive immune response raised by the host, influenza A virus relies on the interaction of viral 

proteins to various components of the innate immune system to aid in evading the innate immune 

response (549).  

 NS1 is a multifunctional protein affecting a variety of host functions and is an important 

virulence factor for influenza A viruses (189, 290, 355). Influenza A viruses encoding NS1 with 

functional defects have been shown to be highly attenuated in various animal models (128, 156, 

447, 523). Recombinant viruses lacking the NS1 gene are severely attenuated in IFN competent 

systems but replicate well in IFN-deficient systems such as in Vero cells and 6-day old 

embryonated eggs (156, 523). Moreover, infection with influenza virus lacking the NS1 gene 

leads to enhanced expression of IFN and ISGs, when compared to WT virus infection (162).  
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 These findings show that NS1 and its functions could serve as ideal targets for the 

development of effective and new antiviral drugs. Indeed knowledge on the cellular interaction 

partners of NS1 and other viral proteins has resulted in the development of small molecule 

inhibitors with potent antiviral activity. For example, a fragment of cleavage and polyadenylation 

specificity factor 30 (CPSF30), which binds to the CPSF30 binding site on the NS1 protein has 

been shown to prevent NS1 binding to CPSF30 and abrogates the NS1 inhibitory function on 

3’end processing of cellular pre-mRNAs (545). Studies using siRNA-based approaches have 

identified many cellular factors involved in different steps of the influenza A virus life cycle. 

Drugs targeting some of these cellular factors have been screened and show potent antiviral 

activity against influenza A virus (105, 570). Thus, the identification of NS1 cellular interaction 

partners will provide valuable data for the development of future antiviral drugs and boost the 

knowledge on cellular mechanisms modulated by influenza NS1 to promote virus replication. 

Some of the well-known interactors of NS1 and their functions in influenza virus replication are 

discussed below (Fig. 1.7). 

 One of the well-known pathways activated during influenza virus replication is the 

PI3K/Akt signalling pathway (122). The PI3K/Akt pathway is regulated by influenza NS1 

protein through its direct interaction with the SH3 and C-terminal SH2 domain of p85β, which is 

the regulatory subunit of PI3K (489). The SH3 binding motif 1 of NS1 is required for this 

interaction and the PI3K/Akt pathway activation (487). The PI3K/Akt pathway activation 

inhibits virus-induced apoptosis through caspase-9 phosphorylation and treatment of cells with a 

PI3K specific inhibitor has been reported to reduce viral protein expression, viral RNA synthesis 

and vRNP nuclear export (487, 488). NS1 proteins of the 1918 pandemic virus and many avian 
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 Figure 1.7 The antiviral functions of influenza A NS1. Influenza A NS1 interacts with dsRNA and 
several host proteins to exert its antiviral function. By binding dsRNA and interacting with RIG-I and PKR, it has a 
direct effect on limiting the induction of IFN. NS1 inhibits cellular mRNA maturation by interacting with CPSF30 
and PABPII, while interaction with components of the nuclear export machinery blocks mRNA export. NS1 
interaction with p85β and CrkL activates the PI3K signalling pathway, which favours viral replication. 
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influenza A viruses contain a consensus class II SH3-binding sequence, which is necessary for 

binding to the N-terminal SH3 domain of two related adaptor proteins Crk/CrkL (206). While 

binding to these adaptor proteins did not influence the ability of NS1 to suppress IFNβ 

expression, it was found to be  associated with enhanced PI3K signalling (206). Several studies 

have shown that activation of the PI3K signalling pathway has many beneficial effects on viral 

replication, which includes delayed apoptosis induction in infected cells (340, 341, 597).  

 Another important cellular interaction partner of NS1 is CPSF30, which is an essential 

component of the 3’end cellular processing machinery of host pre-mRNAs (29). The NS1 protein 

binds CPSF30 and prevents its binding to the RNA substrate, which inhibits the 3’end cleavage 

and polyadenylation of host pre-mRNAs (394). Inhibition of this process also results in nuclear 

retention of cellular pre-mRNAs and restricts translation of these mRNAs (394). Through this 

mode of inhibition, NS1 prevents the post-transcriptional processing of several cellular antiviral 

pre-mRNAs including IFNβ pre-mRNA (399). While cellular pre-mRNAs are affected by this 

interaction, viral mRNAs are not since they obtain their poly(A) tail by the stuttering of viral 

polymerase on the vRNA template (609). NS1 also inhibits cellular mRNA export by binding to 

various components of the mRNA export machinery including NXF1/TAP, p15, Rae1 and E1B-

AP5, which form a protein complex (144, 460). The majority of host mRNA export is mediated 

through the heterodimeric transport receptor NXF1-p15, which interacts with both the mRNA 

and various nuclear pore complex (NPC) proteins called nucleoporins (505). Rae1 and E1B-AP5 

are also involved in nuclear export (24). They aid in the interaction of NXF1 to mRNAs and in 

the recruitment of Nup98 to NXF1 respectively to mediate mRNA export through the NPC (24, 

54). NS1 prevents the interaction of a complex containing these proteins with other members of 

the mRNA export machinery by either rearranging the NXF1/p15/Rae1/E1B-AP5 mRNA export 
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complex or by masking the binding sites of this complex (460). One of the well-established 

functions of NS1 is its selective enhancement of translation of viral mRNAs. NS1 achieves this 

through its interaction with the translation initiation factor eIF4GI and PABP1. Mapping studies 

showed that the eIF4GI and PABP1 interacting domains correlate to residues 81-113 and 1-81 of 

the NS1 protein respectively (70). The NS1 protein promotes viral mRNA translation by binding 

to the 5’ UTR of viral mRNA as well as with eIF4GI and PABP1 and aiding in the specific 

recruitment of the 43S complexes on the viral mRNA (70). 

 The NS1 protein of influenza A virus exerts its IFN antagonism by targeting several 

components of the innate immune system (Fig. 1.7). The NS1 protein is divided into an N-

terminal RNA-binding domain (AA 1-73) which binds to dsRNA and a C-terminal effector 

domain (AA 74-230) which binds to several host proteins (189). Expression of the dsRNA-

binding domain alone is sufficient to inhibit IFNβ induction, while substituting the amino acids 

of the dsRNA-binding domain (R38/K41) to alanine resulted in a reduction in the IFN inhibitory 

effect (568). Thus, dsRNA binding is important for the IFN antagonistic function of the NS1 

protein. The RIG-I protein is a major PRR responsible for IFN induction during influenza viruses 

(600). Upon binding viral RNA, RIG-I exposes the N-terminal CARD domain, which binds to 

another CARD containing protein MAVS. This results in the activation of a signalling cascade 

leading to the phosphorylation of transcription factors such as IRF3 and IRF7. The activation of 

these transcription factors cause the induction of IFNβ promoter (264, 587, 600). Moreover, the 

E3 ubiquitin ligase activity of TRIM25 induces K63-linked ubiquitination of the CARD domain, 

which has been shown to facilitate RIG-I interaction with MAVS and enhance IFNβ induction 

(151). The NS1 protein inhibits the RIG-I signalling pathway by directly interacting with both 

RIG-I and TRIM25. The NS1 protein binds directly to the second CARD domain of RIG-I and 
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inhibits RIG-I function (246, 378); meanwhile, amino acids E96/E97 and R38/K41 required for 

RNA binding activity in NS1 are necessary for interaction with TRIM25 (150). Mutation of 

these amino acids resulted in the loss of NS1’s ability to inhibit TRIM25-mediated RIG-I 

ubiquitination, RIG-I CARD-induced IRF3 phosphorylation, dimerization and IFNβ promoter 

activation (150). Thus, the NS1 protein is able to efficiently block the RIG-I signalling pathway. 

An important host defence pathway is the PKR pathway, which is activated upon binding 

dsRNA and leads to the phosphorylation of the translation initiation factor eIF2α (27, 456). 

eIF2α phosphorylation in turn results in the disruption of protein translation and prevents viral 

replication, since the virus depends on the host machinery for viral mRNA translation. NS1 

inhibits PKR activation by binding to and sequestering its ligand dsRNA and by binding directly 

to PKR (204, 343, 524). Residues 1-230 of PKR is required for direct interaction with NS1, 

while the dsRNA binding mutant of NS1 is also able to interact with PKR and inhibit its 

activation (321). This shows that NS1 is able to inhibit PKR by a mechanism independent of 

dsRNA binding. Thus, NS1 exerts its multifunctional nature and affects various stages of the 

virus life cycle by interacting with several host proteins.   

 NS1 being a multifunctional protein, new host interaction partners are being discovered 

routinely and hence the NS1 protein is believed to interact with additional host proteins that are 

yet to be identified (189, 355). 

1.3 DDX3 and virus life cycle 

1.3.1 Biological functions of DDX3 

 DDX3 belongs to the DEAD box RNA helicase family and harbors ATPase and RNA 

helicase activities (145, 594). DDX3 has two homologues, DDX3X and DDX3Y, which are 
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located on the X and Y chromosomes respectively (280, 296, 419). DDX3X is ubiquitously 

expressed in most tissues while DDX3Y expression is restricted to the male germline tissues 

(116). Like most other DEAD box helicases, DDX3X or DDX3 has been implicated in a number 

of functions related to RNA metabolism, including transcriptional regulation, translation, 

splicing, mRNA export and ribosome biogenesis (471). DDX3Y on the other hand is associated 

with male fertility and is essential for spermatogenesis in both humans and mice (134, 302). 

 Results from several studies show that DDX3 is a multifunctional protein (496) and its 

characteristic as a nucleocytoplasmic shuttling protein might be important for this pleiotropic 

function (594). The multiple functions of DDX3 protein in cellular RNA metabolism are 

discussed below. 

1.3.1.1 DDX3 in transcription 

DDX3 has a role in the transcriptional regulation of genes from different promoters 

including IFNβ, E-cadherin and P21 waf1/cip1 promoters (59, 80, 472, 497). However, the 

mechanism by which DDX3 regulates these promoters appears to be different. Chromatin 

immunoprecipitation studies have shown direct association of DDX3 with the IFNβ and E-

cadherin promoters (59, 497). However, the IFNβ promoter is upregulated by DDX3, while the 

E-cadherin promoter is downregulated. Alternatively, DDX3 regulates the P21 waf promoter by 

binding to the transcription factor Sp1 (80). In this case, P21 waf promoter activity is enhanced 

and regulation is Sp1-dependent. While the effect of DDX3 on the IFNβ promoter activity is 

independent of its helicase or ATPase activity (472, 497), DDX3 regulation on the P21 waf 

promoter requires ATPase but not unwinding activity (80). Therefore, the mechanism of action 

of DDX3 on the regulation of different promoters might be different with varied regulatory 
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outcomes. More future studies, examining the mechanism of promoter recruitment and the 

exploration of other DDX3 promoter targets are needed. Based on the function of other DEAD-

box helicases such as DDX5 and DDX17 acting as adaptors between promoter-specific 

transcription factors (149), it is  speculated that DDX3 also gets recruited to specific promoters 

in a similar manner. 

1.3.1.2 DDX3 and pre-mRNA splicing 

 Splicing is a key step in eukaryotic gene expression, where the introns are excised from 

pre-mRNA and the exons are ligated together to form a continuous reading frame catalyzed by 

the spliceosome complex (579). The protein composition of this spliceosome complex has been 

identified by mass spectrometry of purified mRNP complexes (445, 527). Among these proteins, 

the best characterized are the group of proteins belonging to the exon junction complex (EJC), 

which binds to spliced mRNA 20-24 nucleotides upstream of the exon-exon ligation site (526). 

In a study with affinity purified spliced mRNP complexes, DDX3 was identified as a novel 

mRNP protein and found to associate stably with the mRNPs via the EJC (376). Also, the 

association was splicing-dependent and DDX3 was found exclusively in the spliced mRNAs 

carrying an EJC (376). However, whether DDX3 knockdown or impairment has an effect on 

splicing is not yet known. Hence, the exact role of DDX3X in pre-mRNA splicing remains to be 

clarified. 

1.3.1.3 DDX3 and nuclear RNA export 

 Tip associated protein (TAP) is considered as a major receptor for mRNA export from 

the nucleus to the cytoplasm (253, 505). DDX3X was identified as a TAP interacting protein and 

as a result associates with TAP-associated mRNPs (298). Depletion of TAP causes nuclear 
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accumulation of DDX3 but it does not alter the mRNA distribution in the cell (298). Therefore, 

even though  DDX3 interacts with TAP and its export is at least partially TAP-dependent, it does 

not appear to be critical for the export of most cellular mRNAs (298). However, it is still 

possible that DDX3-TAP interaction is essential for the nuclear export of a small subset of 

mRNA. 

 Distinct from the TAP-mediated export pathway is the CRM1-dependent RNA export 

pathway. Several studies implicate DDX3X in the CRM1-dependent pathway. DDX3 was found 

to be essential for CRM1-mediated export of unspliced HIV RNA (594) and also as a component 

of the eIF4E-mediated mRNA export pathway (539). eIF4E enchances the mRNA export of 

genes that contain an approximately 50 nt element in the 3’ UTR known as the eIF4E-sensitive 

element (99). DDX3 was found to associate with these eIF4E-sensitive mRNPs  and its 

interaction with eIF4E was RNA-independent (539).  However, the role of DDX3X in this 

pathway is not yet well defined. 

1.3.1.4 DDX3 in translation and cytoplasmic stress granule formation 

 Even though several studies have investigated the role of DDX3 in translation, its 

function is still murky because of the contradicting results from these studies. In HeLa cells, 

DDX3 knockdown was found to dramatically decrease protein production from a β-globin 

reporter construct and the translation promoting function of DDX3 was determined to be 

mediated through its interaction with the translation initiation factor eIF3 (310). In another study, 

DDX3 depletion in Huh7 cells with the transfection of different reporter constructs showed 

downregulation of translation with both cap and IRES (Internal Ribosome Entry Site) containing 

mRNAs and that DDX3 assists 60S subunit joining process to assemble functional 80S ribosome 
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(163). Therefore, these studies concluded that DDX3 depletion has a negative role in general 

translation. However, a different study showed that DDX3 has an inhibitory effect on cap-

dependent translation but enhances hepatitis C virus IRES-mediated translation (485). The study 

ascribed this translation regulatory effect of DDX3 to its interaction with eIF4E and their 

observation with cap affinity chromatography analysis suggests that DDX3 traps eIF4E in a 

translationally inactive complex by blocking its interaction with eIF4G (485). Besides these 

studies, DDX3X has also been reported to target complex 5’-UTR of a subset of mRNAs, 

specifically promoting the translation of cyclin E1 mRNA (297). Thus, it remains to be clarified, 

whether DDX3 has a general effect on translation or it has a specific effect on a subset of 

mRNAs and whether the translation regulatory effect is inhibitory or enhancing. Most of the 

studies mentioned above have found associations of DDX3 with several translation initiation 

factors such as eIF4A, eIF4E, eIF4G, eIF3 and PABP. Therefore, despite the controversial data 

regarding the effect of DDX3 on translation, it is quite clear that it has some role in translation 

initiation. 

 Stress granules (SGs) are non-membranous cytoplasmic foci containing aggregates of 

untranslated mRNA in cells exposed to adverse stress conditions such as heat shock, UV 

irradiation, virus infection, hyperosmolarity and oxidative stress (15). Assembly of the SGs 

during stress conditions helps the cells to direct the translation machinery for the production of 

stress response factors and heat shock proteins by sequestering housekeeping mRNAs into the 

SGs (417). SG formation is initiated by the phosphorylation of eukaryotic translation initiation 

factor 2α (eIF2α) (269). eIF2α phosphorylation results in the reduced availability of eIF2α-GTP-

tRNAi
Met ternary complex which is required for translation initiation, thereby resulting in stalled 

translation initiation complexes (267). RNA-binding proteins such as TIAR  and TIA-1 then bind 
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to these stalled translation initiation complexes and facilitate the formation of SGs (269). 

Phosphorylation of eIF2α can occur by 4 different kinases activated by distinct types of stress 

(589). Heme-regulated translation inhibitor (HRI) kinase is activated in response to oxidative 

stress, GCN2 kinase is activated in response to nutrient deprivation and UV irradiation, PKR 

kinase is activated in response to viral infections, and PKR-like endoplasmic reticulum kinase 

(PERK) signals in response to endoplasmic reticulum stress. Many viruses induce SGs through 

the activation of PKR kinase and in some cases GCN2 by detection of viral RNA in the 

cytoplasm (46, 350). Many viruses have been reported to inhibit SG formation by various 

mechanisms underscoring the antiviral role of SGs (335, 409). 

 Many RNA helicases such as DDX1, DDX3, DDX6, eIF4A and RHAU have been shown 

to localize in SGs (69). A recent study reported localization of DDX3 in SG, induced by a 

variety of cellular stress including sorbitol, arsenite, DTT, heat shock treatment and UV 

irradiation. DDX3 was found to be a SG-nucleating factor and DDX3-eIF4E interaction was 

found to be essential for SG formation (486). This observation was found to provide a functional 

link between the translation inhibitory effect of DDX3 and its SG inducing capability, because 

eIF4E binding defective DDX3 mutant was unable to repress translation (486). However, another 

study reported that DDX3 knockdown did not impair arsenite-induced SG formation, even 

though overexpressed GFP-DDX3 was found to localize in SGs (298). Nevertheless, it is clear 

that DDX3 is localized in SGs along with the translation initiation factors it is known to interact 

with. Thus, DDX3 recruitment to the SGs might be an important link to explain its translation 

inhibitory phenotype and association with the translation initiation factors. Besides that, recent 

reports show that infection with PR8 influenza virus lacking the NS1 gene induces formation of 

SGs in the infected cell (271, 272). Influenza virus-induced SGs have antiviral properties and 
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several viral proteins, such as NS1, PA-X and NP have been reported to counteract SG formation 

(271, 272, 409). However, the role of DDX3 in influenza virus-induced SG formation is 

unknown and might be an interesting area of study. 

1.3.1.5 DDX3 in cellular signalling and IFNβ induction 

 DDX3 was identified in a genome wide siRNA screen for novel wnt-β catenin signalling 

regulators (97). The report suggests that DDX3 binds CK1ε, promoting its kinase activity and 

thereby enhances the phosphorylation of the scaffold protein dishevelled (Dvl). Antiviral PRRs 

such as TLRs and RLRs recognize different species of viral nucleic acids and induce type I IFNs 

(259, 534). Both the TLR3 and RIG-I pathway lead to the activation of IRF3, mediated by IKK-

related kinases TBK1 and IKKε. IRF3 then translocates to the nucleus and promotes 

transcription from the type I IFN promoter (138, 243, 254, 403, 482). DDX3 interacts with both 

TBK1 and IKKε and contributes to IFNβ induction (472, 497). DDX3 interacts directly with 

IKKε and enhances autophosphorylation and the activation of IKKε (183). Activated IKKε in 

turn phosphorylates DDX3 and the phosphorylated DDX3 recruits IRF3, facilitating the 

phosphorylation of IRF3 by IKKε (183). Phosphorylated DDX3 has also been shown to bind 

directly to IFNβ promoter and promote its transcription (497) (Fig. 1.8). Another recent study 

also suggested that DDX3 interacts directly with HCV RNA and then triggers MAVS-dependent 

signalling enhancing IFNβ induction (413). Even though all the above studies point to a role for 

DDX3 as an IFNβ enhancer, the exact mechanism by which it fulfills this function is 

controversial. Nevertheless, DDX3 being a multifunctional protein, it could be contributing to 

IFNβ induction through multiple mechanisms. Moreover, several viruses appear to target DDX3 

to counteract IFNβ induction, as discussed below in more detail. 
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1.3.2 DDX3 in virus infection 

 Several viruses such as HIV, HCV, Hepatitis B virus (HBV) and Vaccinia virus (VACV) 

either co-opt DDX3 as a cellular cofactor or inactivate the protein with specific viral factors to 

aid in viral replication. For example, DDX3 is a well-established cellular co-factor in HIV 

replication (388, 593, 594). Yedavalli et al. showed that DDX3 interacts with HIV rev protein 

and the cellular nuclear export protein CRM1 (594). Through this rev-DDX3 interaction, HIV 

was reported to target its partially spliced mRNAs for CRM1-mediated nuclear export (594). 

Based on these observations, DDX3 was reported to function as a cofactor essential for HIV-1 

replication. Another study also showed that DDX3 interacts with HIV Tat and enhances Tat 

function during HIV replication (593). A combination of DDX3 with other helicases such as 

DDX1, DDX5, DDX6, DDX21 and DDX56 synergistically enhanced Rev function but not Tat 

function (593). Only DDX3 specifically enhanced HIV-1 Tat function (593) . The ATPase- 

dependent RNA helicase activity of DDX3 was required for both Rev and Tat function(593, 594) 

and the interaction with Tat localized DDX3 to cytoplasmic P-bodies and stress granules (593). 

 Multiple studies have shown DDX3 to affect HCV virus life cycle. DDX3 was first 

identified as a HCV core-interacting protein by yeast two-hybrid assay. In this study DDX3 and 

core were found to co-localize in distinct spots in the perinuclear region of the cytoplasm (414). 

Another evidence implying DDX3 in the HCV virus life cycle came from the observation that 

DDX3 is downregulated in Hepatocellular carcinoma specimens (78). Proteomic analysis of lipid 

droplets in core expressing hepatoma cell lines identified DDX3 along with another DEAD box 

helicase DDX1 as present in the lipid droplet fraction (459). This observation suggested that 

lipid droplets containing HCV core protein may participate in RNA metabolism thereby affecting 
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 Figure 1.8 The role of DDX3 in IFNβ signalling pathway. Transcription factors and other proteins 
involved in RIG-I-mediated signalling cascade for IFNβ induction are shown in the figure. DDX3 has been reported 
to target the RIG-I-mediated IFNβ induction pathway by targeting the different components of the pathway as 
shown in the schematic. The multifunctional nature of DDX3 is believed to facilitate DDX3 interaction with these 
diverse components of the pathway. 
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HCV replication (459). Ariumi et al. demonstrated the reduced accumulation of both genome-

length HCV RNA (HCV-O, genotype 1b) and replicon RNA in DDX3 knockdown cells (20). 

Moreover, RNA replication of JFH1 (genotype 2a) and the release of core protein into the culture 

supernatants was suppressed in DDX3 knockdown cells. These results suggested that DDX3 is 

required for HCV replication. Several studies have shown that DDX3 upregulates IFNβ 

induction through several mechanisms (413, 472, 497). A recent study showed that DDX3-core 

interaction, besides other mechanisms, could aid in HCV replication by suppressing DDX3 

augmented IPS-1 signalling for IFNβ induction (411). Another mode of action of DDX3 in HCV 

replication has also been demonstrated. In this study, it has been shown that DDX3 interacts with 

the 3’ UTR of HCV genomic transcript activating IKKα (320). IKKα then translocates to the 

nucleus and induces CBP/p300-mediated transcriptional program, which enhances core-

associated lipid droplet formation to facilitate virus assembly (320). 

 DDX3 has also been implicated in the replication of other flaviviruses such as Japanese 

Encephalitis virus (JEV) and West Nile virus (WNV). DDX3 was shown to be required for JEV 

replication, because DDX3 knockdown inhibited JEV replication (317). DDX3 was shown to 

interact with JEV NS3, NS5 and bind to 5’ and 3’ UTR region (317). Also, DDX3 upregulated 

viral RNA translation and DDX3 helicase activity was found to be crucial for JEV replication 

(317). Many studies have shown that P-bodies are greatly diminished during WNV infection 

(126, 317). A recent study explored the fate of the P-body components after WNV infection (76).  

It was reported that many P-body components including DDX3 are recruited to virus replication 

sites and positively regulate viral replication (76).  
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 VACV K7 protein has a potent inhibitory effect on TLR-dependent and independent IRF 

activation and consequently IFNβ promoter induction (472). On further exploration VACV 

infection was found to stimulate DDX3 and K7 interaction and this interaction was found to be 

necessary for the IFN inhibitory function of K7 (472). Expression of DDX3 led to enhanced 

TBK1/IKKe-dependent IFNβ promoter induction, whereas suppression of DDX3 expression by 

RNAi inhibited this as well as virus or poly I:C-induced IRF3 activation (472). This was the first 

study to reveal an IFN stimulating function for DDX3. HBV was also found to use a strategy 

similar to VACV to inhibit IFN induction. HBV pol protein was reported to interact with DDX3 

and inhibit TBK1/IKKε activity by disrupting the interaction between IKKε and DDX3 (563). 

Even though DDX3-HBV pol interaction is beneficial for the virus because of reduced IFN 

induction, this might not be the only function. DDX3 has also been shown to inhibit HBV 

reverse transcription by binding to HBV pol and DDX3 was found to be incorporated into 

nucleocapsids (562). The ATPase motif and not the helicase motif of DDX3 was found to be 

essential for this polymerase inhibitory effect (562). 
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CHAPTER 2: RATIONALE, OBJECTIVES AND AIMS 

2.1 Rationale  

Influenza A viruses cause annual epidemics and recurring pandemics and are considered 

as a persistent global health issue. Additionally, sporadic cases of avian to human transmission of 

H5N1 and H7N9 avian influenza viruses have caused concerns regarding the pandemic potential 

of these viruses. Besides vaccines, antiviral drug therapy is an effective treatment measure for 

influenza-infected patients. Currently, FDA has approved two classes of drugs for prophylaxis 

and treatment of influenza virus infection, which include M2 ion channel inhibitors, such as 

amantadine, rimantadine and Neuraminidase inhibitors, such as oseltamivir and zanamavir. In 

addition, some countries have approved the use of several new drugs targeting additional viral 

functions. However, a major concern in using these drugs is the frequent emergence of drug-

resistant strains. Therefore, there is an urgent need for the development of new antiviral drugs, 

especially those targeting non-viral targets. Influenza A virus depends on the host cellular 

machinery for its replication and spread. Therefore, host factors would serve as an ideal non-viral 

target for the development of new antiviral therapy. Some examples of antiviral drugs targeting 

host factors include the sialidase DAS181 targeting the influenza virus receptor sialic acids and 

maraviroc, which targets the HIV-1 co-receptor CCR5 for HIV-I antiviral therapy. Therefore, it 

is critical to identify novel host cellular factors involved in the influenza A virus life cycle. 

Besides enhancing the current knowledge of influenza virus life cycle, such novel host factors 

may also serve as novel targets for next generation antiviral therapy. 

The NS1 protein of influenza A virus is a multifunctional protein. In addition to its well-

known function to antagonise host defence mechanisms, NS1 is also involved in the regulation 

of viral polymerase activity, RNA export, splicing, translation and viral replication. NS1 exerts 
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its multifunctional nature through its interaction with a variety of host cell factors. Hence, 

identification of the host proteins that interact with NS1 during virus infection will provide an 

insight into the multiple functions regulated by NS1; leading to the identification of novel 

cellular pathways regulated by the influenza A NS1 protein. Additionally, some of the identified 

proteins could potentially be used as targets for future antiviral therapy. Even though many NS1 

interacting host proteins have already been identified, it is widely believed that many more NS1 

interactors are yet to be discovered. Therefore, there is a strong necessity for more studies to 

identify these NS1 interacting host factors. Epithelial cells in the respiratory tract serve as the 

primary site of replication during influenza infection. The respiratory epithelial cells also 

produce immunomodulatory cytokines and chemokines upon infection. Therefore, when 

compared to using continuous cell lines, studying influenza virus infection and NS1 host factor 

interactions on swine respiratory epithelial cells (SRECs) would resemble conditions similar to 

natural infection.  

2.2 Hypothesis 

 I hypothesize that the NS1 protein of influenza A virus antagonizes host antiviral 

defence mechanisms and regulates different functions in the virus life cycle by interacting 

with multiple host factors during infection.  

2.3 Objective and aims 

 The overall objective of my study is to identify the novel host proteins that interact 

with influenza A virus NS1 protein in physiological settings and to characterize the role of 

at least one of the identified cellular factors during influenza A virus infection. To achieve 

the objective, I propose the following aims and approaches. 
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2.3.1 Aim 1. Generation and characterization of a recombinant swine influenza virus (SIV) 

encoding Strep-tagged NS1  

2.3.1.1 To generate a recombinant virus encoding Strep-tag NS1 using reverse genetics. 

2.3.1.2 To characterize the phenotype of the virus in terms of growth property, NS1 

localization and protein expression kinetics compared to the wild-type virus. 

2.3.2 Aim 2. Isolation of primary SRECs and purification of the intact NS1 protein complex 

from infected SREC 

2.3.2.1 To isolate SRECs from the trachea of healthy pigs and confirm the purity of the 

isolated cells using fluorescence-activated cell sorting (FACS) analysis. 

2.3.2.2 To infect SRECs with the recombinant SIV encoding Strep-tag NS1 and purify 

the intact NS1 protein complex from the infected cell lysate using the streptactin resin. 

2.3.3 Aim 3. Identification of proteins in the purified NS1 protein complex and 

bioinformatics analysis 

2.3.3.1 To identify the host proteins co-precipitated with NS1 in the purified protein 

complex using liquid chromatography-tandem mass spectrometry.  

2.3.3.2 To analyze the dataset containing the host proteins using DAVID bioinformatics 

resources, STRING database and Cytoscape software tool to understand the potential host 

functions regulated by NS1. 
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2.3.4 Aim 4. Validation and characterization of one of the viral interaction partners: DDX3   

2.3.4.1 To confirm DDX3 interaction with NS1 by immunoprecipitation and to identify 

other potential viral proteins that interact with DDX3 by Western blotting from virus-

infected cell lysate. 

2.3.4.2 To characterize the RNA dependency of the interaction between DDX3 and viral 

proteins.  

2.3.4.3 To identify the domains in DDX3 that are important for NS1 and NP interaction.  

2.3.5 Aim 5. Validation and characterization of the role of DDX3 in influenza virus-induced 

SGs 

2.3.5.1 To study the kinetics of SG formation in influenza A virus-infected cells and to 

investigate the localization of DDX3 and NP interaction. 

2.3.5.2 To characterize the role of different domains of DDX3 in the recruitment of 

DDX3 to influenza A virus-induced SGs. 

2.3.5.3 To assess the effect of siRNA-mediated DDX3 knockdown on SG formation by 

immunofluorescence staining and how DDX3 knockdown affects influenza A virus 

propagation. 

2.3.6 Aim 6. Validation and characterization of the role of DDX3 in influenza A virus-

induced IFNβ expression 

2.3.6.1 To identify the major PRR responsible for influenza A virus-induced IFNβ 

expression using siRNA-mediated knockdown of the PRRs, RIG-I and TLR3.  
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2.3.6.2 To analyse the effect of DDX3 knockdown and overexpression on virus-induced 

IRF3 phosphorylation, IFNβ mRNA expression and IFNβ promoter activity.  

2.3.6.3 To investigate the mechanism of IFNβ inhibition by DDX3 using an in vitro 

competition assay.  

2.3.6.4 To test the effect of DDX3 downregulation on SIV/SK-WT and PR8 del NS1 

virus replication by examining the virus titer using plaque assay. 
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CHAPTER 3: NETWORK OF HOST FACTORS THAT INTERACT WITH NS1 

PROTEIN OF INFLUENZA A VIRUS 

Relationship of this study to the dissertation. 

 Influenza A virus NS1 is a multifunctional protein with critical host defense antagonistic 

properties (189). We hypothesized that the multifunctional nature of the protein is exerted 

through its interactions with cellular proteins. Therefore, we sought to study NS1 interactions 

with host proteins in infected cells by infecting epithelial cells with a recombinant virus 

expressing Strep-tagged NS1 protein.  

3.1 Abstract 

 Pigs are an important reservoir of influenza A viruses, due to their potential to host 

reassortment viruses with pandemic potential. NS1 protein is a key virulence factor of influenza 

A viruses and a major antagonist of innate immune responses. It is also involved in enhancing 

viral mRNA translation and regulation of virus replication. Being a protein with pleiotropic 

functions, NS1 has a variety of cellular interaction partners. Hence, studies on swine influenza 

viruses (SIV) and identification of swine influenza NS1-interacting host proteins is of great 

interest. Here, a recombinant SIV carrying a Strep-tag in the NS1 protein was constructed and 

primary swine respiratory epithelial cells (SRECs) were infected with this virus. The Strep-tag 

sequence in the NS1 protein enabled us to purify the intact NS1 protein and its interacting 

protein complex specifically. Cellular proteins present in the purified complex were identified by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a dataset of these proteins 

was generated. Four hundred and forty five proteins were identified by LC-MS/MS and among 

them 192 proteins were selected by setting up a threshold based on the mass spectrometry 
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parameters. The selected proteins were analyzed by bioinformatics and were categorized in the 

involvement of different functional groups such as translation, RNA processing, innate immunity 

and apoptosis. Protein interaction networks were derived using these data. The novel proteins 

and the networks revealed in this study will be the potential candidates for targeted study of the 

molecular interaction of NS1 with the host proteins, which will provide insights into the 

identification of new therapeutic targets to control influenza infection and disease pathogenesis. 
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3.2 Introduction 

          Influenza A viruses are globally important human and animal pathogens responsible for 

seasonal, epidemic and periodically world-wide pandemic outbreaks. Among these viruses, 

swine influenza viruses (SIV) are a common and an important cause of respiratory disease in 

pigs (86, 416). Pigs are an important host of influenza A viruses, which could harbor viruses 

with pandemic potential (7, 213, 275), as they are known to support the replication of both 

human and avian viruses. Hence, they serve as a mixing vessel for the generation of virus re-

assortments, which might result in more pathogenic and novel viruses, such as the pandemic 

2009 H1N1 virus that originated from pigs (7, 213, 275). Viruses being obligate parasites use 

diverse cellular machinery for replication and spread in the host. It is now widely recognized that 

the next generation of antivirals should be developed targeting cellular machinery rather than 

viral machinery, because historically viral targets are easily mutated by the virus to develop 

resistance against the drug (570). Host machinery, which is not under any evolutionary pressure 

to mutate, would be difficult for viruses to develop resistance against (339). Therefore, 

identification of host factors affecting SIV infection in its natural host is of paramount 

importance both for the basic understanding of the virus life cycle and for developing new 

antiviral therapy. 

The NS1 protein of influenza A viruses is involved in regulating splicing, mRNA export, 

translation and antagonizing host defenses. It fulfills these functions via interaction with multiple 

cellular partners (189, 355). Although a variety of NS1 interaction partners have been identified, 

there is still a great interest in discovering novel interaction partners (104, 478). In this study, a 

recombinant SIV carrying a Strep-tag in the NS1 protein was constructed and primary swine 

respiratory epithelial cells (SRECs) were infected with this virus. Studying SIV replication by 
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infecting the primary swine cells will resemble conditions close to natural infection and the 

Strep-tag sequence in the NS1 protein would enable us to purify the intact NS1 protein and its 

interacting protein complex specifically. Cellular proteins present in the purified complex were 

identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a dataset of 

these proteins was generated. The dataset was further analysed by bioinformatics and provided 

comprehensive networks of the host factors that interact with NS1. The novel proteins revealed 

in this study will be potential candidates for the targeted study of the molecular interaction of 

NS1 with host proteins.  

3.3 Materials and Methods 

3.3.1 Cells and viruses. Madin-Darby canine kidney (MDCK) cells were maintained in 

minimum essential medium (MEM) supplemented with 10% fetal bovine serum (FBS). SRECs 

were isolated and cultured as described elsewhere (590). Briefly, trachea from healthy 6-8 week 

old pigs were obtained after euthanization and washed in sterile Phosphate buffered saline (PBS). 

The trachea from each pig was transected longitudinally and the surface epithelium was pulled 

off the submucosa using a glass microscope slide. The epithelium was washed with Joklik’s 

MEM (JMEM) (Sigma-Aldrich) containing glutamine (2mM), Dithiothreitol (0.5 mg/ml) 

(Sigma-Aldrich), Deoxyribonuclease (10 µg/ml) (Sigma-Aldrich) and antibiotics for 3 hrs at 4˚C, 

changing the media every 1 hr. The tissue was then digested with protease XIV (Sigma-Aldrich) 

in the above media for 18 hrs at 4˚C. After 18 hrs, the protease XIV was neutralized by adding 

FBS to a final concentration of 20%. The media was filtered through a 70 µm cell strainer and 

the cells were pelleted down and washed with JMEM supplemented with 20% FBS. The cells 

were then resuspended in Bronchial Epithelial Growth Medium (BEGM) (Lonza Group Ltd.) 
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with added growth factors from the bullet kit (Lonza Group Ltd.) and then plated on an uncoated 

dish for 2-3 hrs and left in an incubator at 37˚C. Contaminating fibroblasts attach to the plate, 

while the epithelial cells are only lightly attached and can be easily dislodged by gentle agitation. 

The floating cells were once again washed in BEGM media and plated onto a type IV collagen 

(Sigma-Aldrich)-coated cell culture flask. Once the cells reached 100% confluency, they were 

split on to type IV collagen-coated flasks and propagated further. 

A/Sw/SK/18789/02 (H1N1) (SK02) virus was propagated in 11-day-old embryonated 

chicken eggs as described previously (487). Influenza virus titer was determined by plaque assay 

on MDCK cells. 

3.3.2 Antibodies. Rabbit polyclonal NS1 and NP antibodies were generated in our 

laboratory as previously described (488). The other antibodies were purchased from different 

sources as follows: Strep MAB-Classic antibody conjugated to horseradish peroxidise (HRP) 

(IBA), Alkaline Phosphatase (AP) – Conjugated anti-rabbit IgG (Jackson ImmunoResearch), 

Mouse anti human cytokeratin (pan) (AbD Serotec), Goat F (ab’)2 Anti-Mouse IgG1- FITC 

conjugate (Southern Biotech), mouse IgG1 negative control antibody (AbD Serotec), Goat anti-

Rabbit IgG secondary antibody, Alexa Fluor 594 (Life Technologies). 

3.3.3 Plasmid construction and generation of mutant viruses.  The DNA sequence 

corresponding to the Strep-tag (TGGTCACACCCACAGTTCGAAAAA) was introduced into 

pHW-SK-NS (361) plasmid by overlapping PCR. Plasmid pHW-SK-NS-Strep-replacement 

(plasmid #544) encodes SIV/SK-NS1 with AA 77-84 replaced by the Strep-tag, while plasmid 

pHW-SK-NS-Strep-insertion (plasmid #545) encodes SIV/SK-NS1 with the Strep-tag inserted 

between AA 79 and 80. 
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The recombinant viruses encoding the Strep-tag NS1 were rescued using an eight-

plasmid reverse genetics system (214). For the rescue of the recombinant viruses, plasmids 

pHW-SK-PB2, pHW-SK-PB1, pHW-SK-PA, pHW-SK-HA, pHW-SK-NP, pHW-SK-NA, 

pHW-SK-M (361) and one of either plasmids pHW-SK-NS-Strep-replacement or pHW-SK-NS-

Strep-insertion was transfected onto co-cultured MDCK and 293T cell. The rescued viruses 

designated SIV/SK-544 and SIV/SK-545 were propagated in 11-day-old embryonated eggs. 

3.3.4 Western blotting. A portion of the cell lysate (input), eluent or wash fractions from 

the Strep-tactin sepharose column and samples for protein expression kinetics were resolved by 

sodium dodecyl sulfate-10% polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

blotting was performed as described elsewhere (488). 

3.3.5 Immunofluorescent staining. MDCK cells were grown on glass chamber slides. 

After virus infection, the cells were washed with PBS, fixed and permeabilized with 1:1 acetone 

/methanol mixture at -20°C for 20 mins. The cells were washed in PBS, blocked in 5% goat 

serum in PBS for 45 mins and then incubated with the rabbit polyclonal NS1 antibody in 

blocking buffer for 2 hrs at room temperature or overnight at 4ºC. The cells were again washed 

in PBS and incubated with the Goat anti-Rabbit IgG secondary antibody, Alexa Fluor 594 (Life 

Technologies) secondary antibody in the blocking buffer for 1 hr at room temperature. After 

washing in PBS, the cells were mounted using Prolong Gold Antifade reagent (Life 

Technologies). Multiple images of different fields of view were captured using Leica TCS SP8 

confocal laser microscope. A representative of the multiple images is presented in the results. 
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3.3.6 Purification of Strep-tagged NS1 protein complex. SRECs were infected with 

SIV/SK-544 at an MOI of 2.0. At 16 h.p.i., cells were harvested in cell lysis buffer (Cell 

Signaling Technology) with protease inhibitor (Complete protease inhibitor cocktail tablets – 

Roche Diagnostics Corporation). The lysate was sonicated and then clarified by centrifugation at 

16200 ×g for 10 min at 4˚C in a standard micro centrifuge. The Strep-tactin sepharose resin 

(IBA) was washed 3 times with 4 column volume (CV) of cell lysis buffer, then added to the 

clarified lysate and incubated at 4˚C overnight. Next, the lysate-sepharose mixture was added to 

a polypropylene column (Qiagen) and washed extensively with wash buffer [100 mM Tris-Cl 

(pH 8.0), 150 mM NaCl, 1 mM EDTA] and the Strep-tag NS1 protein complex was then eluted 

from the sepharose resin with 3 CV of elution buffer (wash buffer with 2.5 mM desthibiotin). 

Protease inhibitor cocktail was added to the eluent to prevent degradation of the proteins and the 

proteins present in the complex were identified by LC-MS/MS at the University of Victoria-

Genome BC Proteomics Centre. 

 3.3.7 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of 

protein complex. The sample for LC-MS/MS analysis was first subjected to In-solution trypsin 

digestion. The sample was reduced with dithiothreitol (30 min at 37°C) and cysteine sulfhydryls 

were alkylated with iodoacetamide (30 min at 37°C in darkness). Twenty μg of trypsin 

(Promega) was added to each sample, at a sample to enzyme ratio of 50:1 and digested at 37°C 

for 16 hr. The sample was de-salted on a Waters HLB Oasis column, speed vac concentrated and 

then stored at -80°C prior to LC-MS/MS analysis. The above procedure and the LC-MS/MS 

analysis were performed at University of Victoria-Genome BC Proteomics Centre. 
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3.3.8 Analysis of LC-MS/MS data. The proteins identified by LC-MS/MS were 

enriched and grouped into different functional categories using the functional annotation tool of 

DAVID Bioinformatics Resources 6.7 (241). The proteins from our NS1-interacting complex 

were screened against the known NS1-host factor interactions from VirHostNet (Virus-Host 

Network) 2.0, which is a public knowledgebase dedicated to the management, analysis and 

integration of virus-host interactions (187, 392). Proteins annotated to be involved in innate 

immunity were screened using the Gene Ontology Analysis tool from InnateDB database (65, 

346, 347). 

3.3.9 Construction of protein-protein interaction networks.  Interaction networks of 

the proteins were generated through the use of STRING database (version 10) (237) and 

Cytoscape software (version 3.2.0) (477)  . 
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3.4 Results and Discussion 

3.4.1 Construction and characterization of Strep-tagged NS1 mutants 

The NS1 protein is made of a RNA-binding domain and an effector domain joined by a 

flexible and highly variable linker region (57, 438). Our lab had previously rescued mutant 

viruses having a TC tag insertion or a Strep-tag insertion in this variable region of NS1 (324, 

326). Since the objective was to study SIV NS1-interacting partners in its natural host, a 

recombinant SIV possessing a Strep-tag sequence (WSHPQFEK) in the linker region of NS1 

protein in the background of SK02 virus was rescued. The presence of the Strep-tag sequence 

would enable purification of the NS1 protein along with any associated proteins from the 

infected cell lysate. Two mutant viruses were rescued: SIV/SK-544 that encodes NS1 with a 

Strep-tag sequence replacing AA 77 to 84 and SIV/SK-545 that encodes NS1 with a Strep-tag 

sequence inserted between AA 79 and 80. 

The replication potential of the recombinant viruses were first assessed by comparing the 

plaque size and multiple cycle growth kinetics to that of the wild-type (WT) virus.  Even though 

plaque size of both mutants appear to be similar to the WT virus (Fig. 3.1A), SIV/SK-545 was 

attenuated in multi-cycle growth kinetics, while SIV/SK-544 displayed growth kinetics similar to 

the WT virus (Fig. 3.1B).  

 The phenotype of the mutant virus was further characterized to confirm that the 

introduction of Strep-tag sequence did not alter the function of NS1 protein. Since SIV/SK-544 

mutant virus displayed similar plaque size and growth kinetics to that of the WT virus, I focused 

on the SIV/SK-544 mutant. Influenza NS1 predominantly localizes in the nucleus of infected  
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 Figure 3.1 Characterization of recombinant Strep-tag NS1 viruses. A) MDCK cells were infected with 
either the WT virus or the recombinant Strep-tag NS1 viruses. At 48 h.p.i., plaques were visualized by staining with 
coomassie blue. B) MDCK cells were infected with either the WT virus or the recombinant Strep-tag viruses at an 
MOI of 0.001 in triplicates. Supernatant was collected every 24 hrs and the titer was determined by plaque assay on 
MDCK cells. A growth curve was plotted using the mean titer values at each time point and the associated standard 
deviation is displayed as error bar. C) MDCK cells were infected with either the WT virus or the mutant SIV-
SK/544 virus at an MOI of 2 on chamber slides. At 7-8 h.p.i. the cells were fixed, permeabilized and stained with 
rabbit anti-NS1 serum followed by Alexa fluor 594-conjugated anti rabbit antibody (red) and mounted with a 
mounting media containing DAPI stain (blue). A representative image of multiple fields of view is shown in the 
figure. 
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cells (181, 396) and its intracellular distribution is vital for its multifunctional ability. Therefore, 

WT and SIV/SK-544 virus-infected cells were immunostained with antibodies specific for NS1 

and the intracellular localization of NS1 protein in the infected cells was observed. As shown in 

Fig. 3.1C, NS1 localized to the nucleus and nucleolus in both SIV/SK-544 and WT virus-

infected cells, revealing a similar distribution pattern. These results show that introduction of the 

Strep-tag sequence did not affect the function of the recombinant virus and hence SIV/SK-544 

virus was used for further studies to isolate the intact NS1-interacting protein complex from the 

infected cells. 

3.4.2 Identification of the cellular interaction partners of NS1 protein from infected 

primary SRECs 

I believe that studying host-virus protein interaction in infected primary cells would result 

in the identification of novel interactors more relevant to the natural infection conditions. It has 

been reported that the primary site of replication in the host during influenza A virus infection is 

the respiratory epithelial cells in the trachea (353). Therefore, I was keen on isolating primary 

SRECs to study NS1-host protein interaction from these cells. Primary SRECs were isolated 

from the trachea of healthy 6-8 week old pigs and cultured on collagen-coated culture flasks. The 

cultured primary cells displayed typical cobble-stone morphology (data not shown) and almost 

all of the cultured cells stained positive for the epithelial cell marker cytokeratin (33) (Fig. 3.2A), 

confirming their epithelial nature.  

To ensure that the virus can replicate efficiently in primary SRECs, the SRECs were 

infected with the WT and mutant viruses at an MOI of 1 and the cell lysates were collected at 

different time points. The cell lysates were then subjected to Western blotting with antibodies 
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against NS1, NP and Strep-tag. The protein expression kinetics was found to be similar for both 

the WT virus and SIV/SK-544 virus in infected SRECs (Fig. 3.2B). While the NS1 antibody 

detected both WT NS1 and Strep-tagged NS1, only the Strep-tagged NS1 was detected by the 

antibody against Strep-tag. 

 Next, the accessibility of the Strep-tag to Strep-tactin, a derivative of streptavidin, which 

binds to the Strep-tag specifically with high affinity was tested (464). SRECs were infected with 

either the WT or SIV/SK-544 virus and at 16 hours post infection (h.p.i.), the cell lysate was 

prepared and subjected to a pull-down assay with the Strep-tactin resin, followed by Western 

blotting to determine the presence of NS1 in the eluent. Only NS1 from SIV/SK-544 infected 

cells could be pulled down efficiently, while the WT NS1 protein did not bind to the resin and 

was lost during the washes (Fig. 3.2C).  

The viral and cellular proteins present in the NS1 pull-down complex from the SIV/SK-

544 infected cell lysate and the WT virus-infected cell lysate were then identified by LC-

MS/MS. Only 5 cellular proteins were identified in the SIV/SK-WT eluent, whereas 445 cellular 

proteins were identified in the eluent from SIV/SK-544 infected cell lysate. The 5 cellular 

proteins identified in the SIV/SK-WT eluent were excluded from further analysis. While no viral 

proteins were identified in the SIV/SK-WT eluent, viral proteins PB2, PB1, PA, HA, NP and M1 

were identified in SIV/SK-544 eluent. The proteins present in the complex were identified using 

a software package called Mascot from Matrix Science (www.matrixscience.com) that compares 

the observed mass spectra data to a database of known proteins, to determine the most likely 

matches. For each protein match, Mascot calculates an overall protein score, which reflects the  

 

http://www.matrixscience.com/


76 

 

 

 

 

 

  
 Figure 3.2 FACS staining of SRECs, protein expression kinetics and NS1 protein Strep-
tactin pull-down from WT and SIV-SK-544 infected cells. A) SRECs were stained with an antibody 
against the epithelial cell marker cytokeratin and the purity of the cells were analysed using FACS 
machine. B) SRECs were infected with WT or SIV/SK-544 virus at an MOI of 1. Cell lysates collected at 
the indicated time points were subjected to Western blotting with antibodies specific for NP, NS1 and 
Strep-tag. C) SRECs were infected with either the WT virus or SIV/SK-544 virus at an MOI of 2. At 16 
h.p.i., cell lysate was collected and subjected to a pull-down assay with Strep-tactin sepharose. The Flow 
through (FT), Wash fractions (W1, W2) and the Eluent were collected and subjected to Western blotting 
with the antibody against NS1. 
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combined score of all the observed mass spectra that can be matched to amino acid sequences 

within that protein. Therefore, a higher score indicates a more confident match. To be more 

stringent in the specificity of the proteins chosen for analysis, we set the threshold to be a Mascot 

protein score of 150 and above. Additionally, we also excluded those proteins identified with a 

single peptide match by LC-MS/MS. By setting up this threshold and exclusion, the analysis was 

restricted to the proteins with the highest confidence scores and thereby I ended up with 192 

cellular proteins (43% of the total number, Table 3.1) for further analysis. 

3.4.3 Bioinformatics analysis of the protein dataset 

VirHostNet 2.0 database provides a high-confidence resource of manually curated 

interactions defined for a wide range of viral species including influenza. The influenza virus-

host interaction database in VirHostNet 2.0 was screened against the 192 top scoring proteins 

identified in the LC-MS/MS analysis. I found that 92 out of the 192 proteins have been 

documented in the VirHostNet 2.0 database as NS1-interacting partners (Table 3.1). This 

analysis gave further proof that the proteins identified in this study are valid NS1 protein 

interaction partners.  

NS1 exerts its multifunctional nature primarily by interacting with host proteins. 

Therefore, categorizing and grouping the proteins identified by LC-MS/MS based on their 

molecular functions in the host will reveal potential pathways that might be affected by NS1 

expression during infection. The proteins in this dataset were therefore analysed using the 

DAVID bioinformatics resources (241) to enrich for different functional annotations (Table 3.2). 

These include protein translation, RNA processing and splicing, Cytoskeleton and microtubules  
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 Table 3.1 List of proteins above a protein score of 150 in the purified NS1 protein complex. The table 
represents the list of all proteins in the purified protein complex, identified using LC-MS/MS with a protein score of 
150 and above. The proteins documented in the VirHostNet 2.0 database as known NS1-interacting partners are 
highlighted with a dark tan colour. 
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and apoptosis. These are known to be important host functions regulated during influenza 

infection.  

 To understand the interaction between the identified proteins, interaction networks of the 

proteins grouped in each of the enriched functional categories mentioned above were generated 

using STRING database and Cytoscape software (Figures 3.3-3.6). Here, the role of NS1 in 

affecting these functions, known NS1-host interaction partners involved in these functions and 

how the identified proteins fit in the context of influenza A virus infection and NS1 function are 

discussed. 

3.4.4 Protein translation and viral replication 

 There are several reports supporting a role for NS1 in the selective translation of viral 

mRNAs over cellular mRNAs (107, 158, 356, 420). It is widely believed that NS1 interacts with 

the 5’UTR of viral mRNA, eIF4GI and PABP1 and facilitates the recruitment of 40S ribosomal 

subunit bound to eIF3, thereby enhancing the selective translation of viral mRNA (189, 355). 

NS1 protein has also been shown to interact with hStaufen (STAU1) causing its redistribution. 

Co-localization of both proteins in the ribosomal and polysomal fraction in influenza virus- 

infected cells have also been reported (129). As STAU1 is known to contribute towards the 

microtubular transport of cellular mRNAs to polysomes, this interaction is also thought to 

enhance the selective translation of viral mRNA by NS1. Besides regulating translation, NS1 is 

also known to regulate virus replication by interacting with the viral RNP and RNA motifs in 

positive-strand viral RNAs (356, 448). In addition, NS1 also fulfills this function by interacting 

with cellular proteins such as DDX21, hnRNPU, hnRNPA2/B1 and hnRNPF proteins  
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 Table 3.2 Enriched functions as analyzed by DAVID resources 
and InnateDB. This table represents the different enriched functional 
categories identified using DAVID bioinformatics resources and contains 
the proteins belonging to each functional category. Proteins related to innate 
immunity were grouped using InnateDB database. 
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 Figure 3.3 Interaction network of proteins involved in translation. The proteins classified as related to 
the translation machinery (Table 3.2) were analyzed by STRING database and an interaction network was generated 
using Cytoscape. The edges connecting NS1 and known NS1-interacting host proteins are represented by dashed 
lines and the NS1-interacting host protein nodes are highlighted by an octagon shaped border. Nodes represent the 
proteins in the network. Edges represent the interaction connecting the two nodes.  
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(81, 311, 430, 569). In line with these observations, PABP1, STAU1, eIF3F, DDX21, hnRNPU 

and hnRNP proteins were identified in the NS1-interacting complex in this study (Table 3.1). 

Among the NS1-associating host proteins, 59 proteins were grouped by DAVID to have a 

function in translation with a P value equal to 4.8×10-56 (Fig. 3.3) (Table 3.2).  

3.4.5 Splicing and nuclear export of viral mRNA 

 Once the vRNP is in the cytoplasm, it is transported into the nucleus by the nuclear 

import machinery in association with the viral proteins (96, 564). Once in the nucleus, genomic 

replication, transcription and pre-mRNA processing takes place. Influenza viruses are unique 

among RNA viruses in that the whole replication cycle takes place inside the nucleus and not in 

the cytoplasm (210), since the virus needs the host splicing machinery to splice the NS1 and M 

mRNA into smaller NEP and M2 mRNA respectively (299, 300). Additionally, viral transcripts 

are exported through the NXF1 protein which is recruited to the viral transcripts by a complex of 

proteins made up of THO complex (THOC1-7), UAP56 and Aly/REF (601).  

NS1 protein affects several functions in RNA processing. Influenza NS1 is reported to 

increase the splicing of viral M mRNA but does not appear to affect the splicing of its own 

mRNA (449, 450). Contrary to this enhancing effect, influenza NS1 protein is known to inhibit 

cellular pre-mRNA splicing by associating with spliceosomes and U6 snRNA, contributing to 

host’s shut-off (342). hnRNP proteins are abundant nuclear proteins known to be bound to pre-

mRNAs in the nucleus (119) and they function in the splicing and nuclear export of pre-mRNA 

in eukaryotic cells (88, 119). Influenza NS1 protein is proposed to have a function in the nuclear 

export of viral mRNAs and has been shown to interact with several proteins involved in nuclear 

export including NXF1. Its binding to the cellular protein CPSF inhibits polyadenylation of host 
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 Figure 3.4 Interaction network of proteins involved in RNA processing. The proteins classified as 
related to the RNA processing machinery (Table 3.2) were analyzed by STRING database and an interaction 
network was generated using Cytoscape. The edges connecting NS1 and known NS1-interacting host proteins are 
represented by dashed lines and the NS1-interacting host protein nodes are highlighted by an octagon shaped border. 
Nodes represent the proteins in the network. Edges represent the interaction connecting the two nodes.  
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pre-mRNAs and prevents their nuclear export (394, 460). Among the NS1-associating host 

proteins, 41 proteins and 24 proteins were grouped by DAVID to be involved in RNA processing 

(P = 2.6×10-21) and RNA splicing (P = 7.4×10-13) respectively, including CPSF1, CPSF2, 8 out 

of the 20 known hnRNP proteins and THOC4 (Fig. 3.4) (Table 3.2).  

3.4.6 Apoptosis and Innate immunity 

Even though proteins from my dataset were weakly enriched for the apoptosis function 

by DAVID (P = 0.12), it is an important pathway affecting both the virus and host during 

influenza A virus life cycle (Fig. 3.5A) (Table 3.2). Hence, I was keen on exploring the potential 

contribution of the proteins in the dataset to the apoptosis pathway.  

Apoptosis is an important innate immune mechanism to maintain homeostasis in the host 

and is a major pathway regulated during influenza virus infection (212, 522). Influenza A virus 

has been documented to modulate apoptosis to favour efficient virus replication by interacting 

with several host proteins through its viral proteins, including NS1 (208, 232). A recent study 

showed that NS1 interaction with β-tubulin disrupts the cellular microtubule network and thereby 

commits the cell to apoptosis (192). NS1 interaction with the p85 regulatory subunit and 

CRK/CRKL prevents premature cell-death and facilitates enhanced virus replication (122, 220, 

489). Additionally, the microtubule and cytoskeleton network  also contributes to trafficking of 

vRNPs from the cytoplasm to the cell periphery for assembly and budding of the virus (12). 

Thus, the microtubule network and apoptosis pathways are key players in the influenza A virus 

life cycle. Furthermore, 20 proteins in the dataset belong to the microtubule and cytoskeleton 

network, as analyzed by DAVID bioinformatics resources (P = 1.6×10-4) (Fig. 3.5B) (Table 3.2). 

 NS1 is a known antagonist of innate immune response. InnateDB is a manually curated 
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 Figure 3.5 Interaction network of proteins involved in the Apoptosis & Cytoskeleton network. The 
proteins classified as belonging to the a) apoptosis pathway and b) cytoskeleton network (Table 3.2) were analyzed 
by STRING database and an interaction network was generated using Cytoscape. The edges connecting NS1 and 
known NS1-interacting host proteins are represented by dashed lines and the NS1-interacting host protein nodes are 
highlighted by an octagon shaped border. Nodes represent the proteins in the network. Edges represent the 
interaction connecting the two nodes.  

 
 

A 

B 



88 

 

knowledgebase of the genes, proteins, interactions and signalling responses in mammalian innate 

immunity (65). Therefore, I screened the dataset against the genes present in the innateDB 

database, which have been annotated to have a role in innate immune response. Eighteen proteins 

from the dataset were identified, which belonged to this database (Table 3.2). Several proteins 

listed in the table are well known interactors of NS1. DHX9 and DDX21 interact with NS1 and 

regulate virus replication (81, 326), CRKL interaction with NS1 induces enhanced PI3K 

signalling (597), while other proteins such as FXR1 and ILF3,  have known functions during 

influenza A virus infection but have not been reported to interact with NS1 (565, 610). Hence, 

NS1 being an antagonist of innate immune responses, it might be interesting to study the 

interaction of these cellular proteins with NS1 and their function. A protein interaction network 

of these host factors revealed strong associations between these proteins (Fig. 3.6).  

3.4.7 SIV/SK-NS1 polymorphisms and their potential contribution to interaction partners        

 It is well documented that significant polymorphisms exist in the NS1 sequences among 

various strains (355). SK02 virus is a wholly avian virus isolated from pigs (250) and because of 

this the NS1 protein has some unique sequences and motifs. NS1 protein of influenza A viruses 

are known to have a PDZ-binding motif (PBM) at the last four amino acid residues (406). As the 

name suggests, PBMs confer binding to proteins containing a characteristic structure called the 

PDZ domain. PDZ domain-containing proteins act as scaffolds to assemble protein complexes 

and function in cell signalling and cell polarity (196, 401). Human influenza A virus isolates 

contain a PBM with varied sequences depending on the strain and the NS1 of H5N1 avian 

influenza A virus isolates from human infections generally have a PBM with the sequence ESEV 

(173). Some studies have shown that avian NS1 with the ESEV PBM can bind the PDZ proteins 
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Scribble, Dlg1, MAGI-1, MAGI-2, MAGI-3 and an indirect association with Lin7C (173, 329, 

531). The SK02 virus used in this study for infections has the same avian signature ESEV PBM 

(AA 227-230) in the NS1 protein. Therefore, I was interested in finding out, whether any of the 

above mentioned proteins have been identified in my pull-down complex. Consistent with the 

literature, Dlg1 and Lin7C were indeed present in the dataset (Table 3.2). This interaction 

decreases tight junction integrity of the epithelial cells and benefit virus replication (173, 329, 

531). Other PDZ containing proteins identified in my complex but not included in gene ontology 

analysis include Pdlim5 and Pdlim7 proteins, which could have a role in cytoskeleton 

organization (247). SK02 virus also has a partial nucleolar localization signal (NoLS) comprising 

the basic amino acids in positions 219, 220 and 224 as per the consensus NoLS identified by 

Melen et al. (374) and nucleolar localization of SK02 NS1 was also observed in this study (Fig. 

3.1C). 

 It has been observed that most avian influenza A viruses have a class II SH3 domain in 

the NS1 protein with the sequence PPLPPK at AA 212-217, while this motif is rarely seen in 

human influenza A viruses (206). NS1 proteins with this sequence have been shown to bind to 

the cellular adaptor protein CRK/CRKL, while the NS1 proteins of human influenza A viruses 

do not bind to this sequence (206, 220). Consequently, NS1-CRK/CRKL interaction inhibits the 

virus-induced activation of JNK-ATF2 pathway, which in turn prevents premature cell death and 

thereby facilitates enhanced virus replication (220). The NS1 protein of SK02 also possesses a 

class II SH3 binding motif and CRK/CRKL protein was identified in the pull-down complex 

(Table 3.1). All these unique interactions could have a significant effect on the pathogenesis of 

the virus at the cellular level. 
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Figure 3.6 Interaction network of innate immunity related proteins. The proteins classified as 
belonging to the innate-immune response pathway (Table 3.2) were analyzed by STRING database and an 
interaction network was generated using Cytoscape. The edges connecting NS1 and known NS1-interacting host 
proteins are represented by dashed lines and the NS1-interacting host protein nodes are highlighted by an octagon 
shaped border. Nodes represent the proteins in the network. Edges represent the interaction connecting the two 
nodes.  
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3.4.8 Validation of NS1 interaction with RNA helicases DHX9 and DDX3 

Influenza being an RNA virus, RNA helicases could have a critical role in the virus life 

cycle. Several RNA helicases such as DDX1, DHX9, DDX3, DDX21, DDX17 and DHX15 were 

identified in the NS1-interacting complex. Hence, I was interested in understanding whether any 

of these helicases interact with NS1 and the mechanism by which they affect the virus life cycle. 

A previously published study in our lab, confirmed DHX9 as an NS1 interaction partner and its 

pro-viral role in enhancing viral transcription and replication during infection was also 

established (326). In chapter 4 of this thesis, DDX3 has been studied and confirmed to be a NS1 

interaction partner. Additionally, knockdown of DDX3 enhanced virus replication and was found 

to play an antiviral role mediated through stress granule formation (see chapter 4). These two 

studies confirmed DHX9 and DDX3 as authentic NS1 interaction partners, serving as a 

validation for the approach used in this work to study the cellular proteins interacting with NS1 

protein. 

3.4.9 Conclusion 

Through bioinformatics analysis of the NS1-interacting complex, we grouped the 

identified cellular partners into diverse functional categories. This shows that the large protein 

complex associating with NS1 form part of smaller complexes with distinct cellular functions. 

Even though our data cannot characterize the cellular partners as direct or indirect NS1 

interacting partners, our analysis provides an insight into the potential NS1 regulated cellular 

pathways important for influenza infection. Validation and characterization of these associations 

will provide a deeper understanding of the virus-host interplay, the co-evolution mechanisms that 

moulded the host-pathogen relationship and will help in the identification of new therapeutic 
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targets to control influenza infection and disease pathogenesis.
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CHAPTER 4: DDX3 INTERACTS WITH INFLUENZA A NS1 AND NP PROTEINS AND 

EXERTS ANTIVIRAL FUNCTION THROUGH THE REGULATION OF STRESS 

GRANULE FORMATION 

Relationship of this study to the dissertation. 

 In the previous study, DDX3 was identified to be associated with NS1 as part of a larger 

NS1 interacting protein complex. Therefore, in this study we tested and characterized the 

interaction of DDX3 with NS1 and other viral proteins. Existing literature about DDX3 function 

in SGs as an essential nucleating factor (486), prompted us to explore the function of DDX3 in 

influenza virus-induced SGs. 

4.1 Abstract 

DDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein 

affecting the life cycle of a variety of viruses. DDX3 was identified as a NS1 associating partner 

in chapter 3. However, its role in influenza virus infection is unknown. In this study, the potential 

role of DDX3 in influenza A virus life cycle was explored.  The interaction of DDX3 and NS1 

was first validated. In the search of other potential viral proteins that interact with DDX3, NP 

was also observed to interact with DDX3 in virus-infected cells. The contribution of the different 

domains in DDX3 to its NS1- and NP- interaction was examined. Stress granules (SGs) are 

known to be antiviral and do form in influenza A virus-infected cells expressing defective NS1 

protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. 

Thus, the role of DDX3 in affecting influenza A virus infection through regulation of SGs was 

further explored. Results from this work showed that SGs were formed in infected cells upon 

infection with a mutant influenza A virus lacking a functional NS1 (del NS1) protein and DDX3 
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co-localized with NP in SGs. Furthermore, the DDX3 helicase domain was identified not to 

interact with NS1 and NP; however, it was essential for DDX3 localization in virus induced SGs.  

Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. 

DDX3-NP interaction may be important for NP recruitment into SGs and DDX3-NS1 interaction 

may play a role in NS1 mediated SG inhibition in an eIF2α-independent manner. Taken together, 

these results identified DDX3 as an antiviral protein with a role in virus-induced SG formation.  
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4.2 Introduction 

 DDX3 belongs to the DEAD box RNA helicase family and harbors ATPase and RNA 

helicase activities (145). Like most other DEAD box helicases, DDX3 is a multifunctional 

protein with functions related to RNA metabolism, RNA export, ribosome biogenesis, cellular 

signalling and apoptosis (19, 480). DDX3 is known to enhance antiviral innate immunity by 

interacting with specific proteins of the type I IFN pathway (547). However, many viruses 

employ viral proteins such as Vaccinia virus (VACV) K7, Hepatitis B virus (HBV) pol and 

Hepatitis C virus (HCV) core protein to counteract DDX3 function and in turn use DDX3 to 

enhance their own replication (20, 76, 459, 472, 563). Contrary to its antiviral function, DDX3 is 

required for the replication of several viruses such as Human Immunodeficiency virus (HIV), 

West Nile virus (WNV), Japanese encephalitis virus (JEV), HCV and Norovirus (547). 

Therefore, existing literature portrays DDX3 both as a host factor required for viral replication as 

well as a component of the antiviral innate immune response. 

 Stress granules (SGs) are discrete cytoplasmic foci containing untranslated mRNA in 

nucleoprotein aggregates. They form in eukaryotic cells in response to a variety of environmental 

stress conditions including viral infections (409). The first step in the signalling cascade leading 

to SG assembly is the phosphorylation of eukaryotic translation initiation factor-2α (eIF2α), 

which can be regulated by any of the four serine/threonine kinases, namely double stranded 

RNA-dependent protein kinase R (PKR), Heme-regulated translation inhibitor kinase (HRI), 

PKR-like endoplasmic reticulum kinase (PERK) and General Control Nonderepressible 2 

(GCN2) (17, 402, 434). PKR is activated by heat, UV irradiation and viral infections (580), HRI 

is activated in erythroid cells subject to oxidative stress and when levels of free heme are limiting 

during hemoglobin assembly (167, 191), PERK is activated in response to unfolded protein 
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accumulation in endoplasmic reticulum (195, 422) and GCN2 is activated during amino acid 

deprivation (281). The phosphorylation of eIF2α reduces the availability of ternary complex 

eIF2-GTP-tRNAiMet, which is required to load the initiator tRNAiMet onto the small ribosomal 

subunit to initiate translation (267). This results in the accumulation of stalled translation 

preinitiation complexes containing the translationally inactive messenger ribonucleoproteins, 

which recruit the RNA-binding proteins such as T-cell intracellular antigen-1 (TIA-1) and TIA-1 

related protein (TIAR). These RNA-binding proteins in turn mediate the formation of SGs (266). 

 Several RNA helicases including DDX3 have been shown to localize in SGs (69). A 

recent study reported that DDX3 localized in the SGs, induced by a variety of cellular stresses 

including sorbitol, arsenite, DTT, heat shock treatment and UV irradiation. Further, DDX3 was 

found to be a SG-nucleating factor and DDX3-eIF4E interaction is essential for SG formation 

(486). Many viruses induce SGs through the activation of PKR kinase and in some cases GCN2 

by the detection of viral RNA in the cytoplasm (46, 350). Most viruses including influenza A 

virus have mechanisms to inhibit SG formation, implicating the antiviral role of SGs in the virus 

life cycle (409). In case of influenza A viruses, NS1 protein is known to inactivate PKR, thereby  

preventing eIF2α phosphorylation and SG formation (272). Besides NS1, the nucleoprotein (NP) 

and polymerase-acidic protein-X (PA-X) have also been shown to aid influenza virus in 

overcoming stress induced translation arrest (271). Besides inducing translation arrest, SGs have 

also been shown to play a role in interferon (IFN) synthesis by sequestering retinoic acid 

inducible gene I (RIG-I) and influenza viral RNA (vRNA), thereby serving as a platform for the 

sensing of viral RNA by RIG-I (408). In addition, other antiviral proteins such as MDA5, LGP2, 

RNaseL, OAS and PKR also localize in influenza virus-induced SGs (408). These studies 

underscore the antiviral role that SGs play in influenza infection and highlight the involvement 
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of DDX3 in virus life cycle and SG formation. These studies prompted the exploration of the 

role of DDX3 in influenza A virus induced SG formation.  

 Several host factors involved in RNA metabolism including DDX3 have been shown to 

associate with the viral polymerase complex and co-localize with NP (244). However, detailed 

studies on the viral interaction partners and the function of DDX3 during influenza A virus 

replication were not conducted. Another study, attempting to assess the effect of DDX3 

downregulation on influenza A virus polymerase activity, could not determine conclusively 

whether DDX3 regulates this function (58).Thus, in this study the role of DDX3 during influenza 

virus infection and the mechanism of DDX3-mediated regulation on influenza virus replication 

was investigated. DDX3 was established as an interaction partner with the viral NS1 and NP 

proteins and it was observed to localize in virus induced SGs. NS1 was  able to counteract virus-

induced SG formation and DDX3 localization into these SGs. The domains in DDX3 that are 

critical for interaction with NS1, NP and SG formation was also identified. Moreover, 

knockdown of DDX3 impaired SG formation and increased virus titers upon infection with PR8 

NS1 deletion virus. Thus, DDX3 was established as an antiviral protein for influenza A virus 

infection with a prominent role in regulating SG formation, which warrants further study and 

understanding. 
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4.3 Materials and Methods  

4.3.1 Cells and viruses. Madin-Darby canine kidney (MDCK) cells and new born 

porcine tracheal epithelial (NPTr) cells were maintained in minimum essential medium (MEM) 

supplemented with 10% fetal bovine serum (FBS) (Life Technologies). 293T cells were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS. 

 Influenza A/Puerto Rico/8/34 (H1N1) (PR8-WT) and A/Sw/SK/18789/02 (H1N1) 

(SIV/SK-WT) viruses were propagated in 11-day-old embryonated chicken eggs as described 

previously (487). PR8 virus lacking NS1 protein (del NS1) was kindly provided by Dr. Garcia-

Sastre and was propagated in Vero cells maintained in MEM with 10% FBS. PR8-WT and 

SIV/SK-WT virus were titrated by plaque assay on MDCK cells, while del NS1 was titrated on 

Vero cells. PR8 virus carrying the mutations R38A and K41A in NS1 was rescued by reverse 

genetics (214). The virus was propagated using a MDCK cell line stably expressing the NS1 

protein (MDCK-NS1) and titrated by plaque assay on the MDCK-NS1 cell line.  

4.3.2 Antibodies and reagents. Rabbit polyclonal NS1 and NP antibodies were 

generated in our laboratory as previously described (488). The other antibodies were purchased 

from different sources as follows: Mouse anti-HA antibody and Mouse anti-Flag M2 antibody 

(Sigma-Aldrich), Rabbit anti-flag DYKDDDDK tag antibody (Cell signaling technology), 

Mouse anti-Influenza A NP AA5H antibody (AbD Serotec), Rabbit polyclonal antibody to 

DDX3 (Abcam), Rabbit polyclonal antibody to PABP1 (Abcam), Rabbit polyclonal to HA tag – 

ChIP grade (Abcam), Mouse monoclonal antibody to β-actin (Cell Signaling Technology), Goat 

anti-TIA-1 antibody (Santa Cruz), Donkey anti-Rabbit IgG secondary antibody, Alexa Fluor 405 

(Abcam), Donkey anti-Mouse IgG secondary antibody, Alexa Fluor 488 ( Life Technologies), 

Donkey anti-Goat secondary antibody, Alexa Fluor 633 (Life Technologies), IRDye 680RD anti-
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Rabbit antibody (LI-COR), IRDye 800CW anti-mouse antibody (LI-COR). Horse serum used in 

immunofluorescent staining was purchased from Life Technologies. Stellaris FISH probes 

specific to PR8 M vRNA for Fluorescence in situ hybridization (FISH) assay were purchased 

from Biosearch technologies. 

4.3.3 Transfection and immunoprecipitation (IP). To examine DDX3 interaction with 

the viral proteins, 293T cells were seeded at a density of 1×106 cells/well in six-well plates. One 

μg of each plasmid expressing the protein of interest was transfected using TransIT-LT1 as per 

the manufacturer’s recommendation. For transfection in NPTr cells, Lipofectamine LTX with 

PLUS reagent (Life Technologies) was used as per the manufacturer’s recommendation. The 

plasmids used for transfection include, pcDNA-HA-DDX3, pcDNA-SK-NP, pcDNA-PR8-NP, 

pcDNA-PR8-NS1 and pCMV-3×Flag-PR8-NS1, pCMV-3×Flag-DDX3 (DDX3), pCMV-

3×Flag-core helicase DDX3 (DDX3-CH), pCMV-3×Flag-C-term deletion DDX3 (DDX3-del 

CTD) and pCMV-3×Flag-N-term deletion DDX3 (DDX3-del NTD). The protein of interest was 

cloned into pCMV-3×Flag and pcDNA-HA plasmids such that the Flag- or HA-tag is fused to 

the N-terminal sequence of the expressed fusion protein. For examining protein interactions by 

IP, the cell lysate was collected in 1 ml Flag lysis buffer (FLB) (50 mM Tris HCl, pH 7.4, with 

150 mM NaCl, 1 mM EDTA, and 1% TRITON X-100). The cell lysate was then sonicated and 

cleared of cellular debris by centrifugation. For RNase A treatment, RNase A (Life 

Technologies) was added to the lysate at a concentration of 10 μg/ml and incubated on ice for 30 

mins before proceeding with the immunoprecipitation assay. 

For IP, 1.5 μg of mouse anti-HA (Sigma-Aldrich) or mouse monoclonal anti-Flag M2 

(Sigma-Aldrich) antibody or mouse anti-Influenza A NP (AbD Serotec) antibody was added to 

the cell lysate and incubated with gentle rocking at 4°C for 1 hr and 15 mins. Then, 35 µl of 
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Dynabeads Protein G (Life Technologies) was added to the lysate and incubated for another 1 hr 

and 15 mins with gentle rocking at 4°C. The beads were then washed extensively with FLB and 

the precipitated proteins were subjected to Western blotting with appropriate antibodies. The IP 

data presented are representative of multiple experiments. 

4.3.4 Western blotting. Samples were resolved by sodium dodecyl sulfate-10% 

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto nitrocellulose membranes 

(Bio-Rad). Membranes were blocked with 10% skim milk for 30 minutes and then incubated 

with a primary antibody diluted in Tris Buffered Sodium chloride solution with 0.1% Tween-20 

(TBST) at 4°C overnight. The following primary antibodies were used for Western blotting: 

Rabbit polyclonal to NS1 and Rabbit polyclonal to NP (in-house generated), Rabbit anti-Flag 

DYKDDDDK tag antibody (Cell signaling technology), Rabbit polyclonal antibody to DDX3 

(Abcam), Rabbit polyclonal to HA tag–ChIP grade (Abcam), Mouse monoclonal antibody to β-

actin (Cell Signaling Technology). After washing in TBST, the membranes were incubated in 

TBST containing IRDye 680RD Goat anti-Rabbit IgG antibody or IRDye 800CW Goat anti-

Mouse IgG antibody. Membranes were washed again in TBST and scanned using an Odyssey 

imager (Li-Cor Biosciences).  

4.3.5 Immunofluorescent staining. NPTr cells were grown on glass chamber slides. 

After the experimental treatment and/or infection, the cells were washed with PBS, fixed with 

4% Paraformaldehyde (PFA) in PBS for 15 mins at room temperature and then permeabilized 

with ice-cold methanol for 15 mins at room temperature. The cells were washed in PBS, blocked 

in 5% horse serum in PBS for 45 mins and then incubated with the primary antibody in the 

blocking buffer for 2 hrs at room temperature or overnight at 4ºC (266). The following primary 

antibodies were used for immunostaining: Mouse anti-Flag M2 antibody (Sigma), Rabbit anti-
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Flag DYKDDDDK tag antibody (Cell signaling technology), Mouse anti-Influenza A NP AA5H 

antibody (AbD Serotec), Rabbit polyclonal antibody to DDX3 (Abcam), Rabbit polyclonal 

antibody to PABP1 (Abcam), Goat anti-TIA-1 antibody (Santa Cruz). The cells were again 

washed in PBS and incubated with the Alexa Fluor conjugated secondary antibodies in the 

blocking buffer for 1 hr at room temperature. After washing in PBS, the cells were mounted 

using Prolong Gold Antifade reagent (Life Technologies). Multiple images of different fields of 

view were captured using Leica TCS SP8 confocal laser microscope. A representative of the 

multiple images is presented in the results. 

For the quantification of the number of SG forming cells, approximately 50 cells showing 

positive immunostaining for NP were considered from two random microscopy panels. The 

number of cells showing punctuate TIA-1 staining among the NP positive cells were counted 

visually. 

4.3.6 Knockdown of DDX3. NPTr cells were plated at a density of 4×104 cells/well in 

24-well plate, 3.8 ×104 cells/well in 4-well chamber slide and 8 ×104 cells/well in 12-well plate. 

Next day, medium was replaced with OptiMEM and the siRNA containing transfection mix was 

made with OptiMEM and Lipofectamine 2000 as per manufacturer’s protocol. The siRNA 

mixture containing four independent siRNAs targeting DDX3 (GS1654) and the Negative 

siRNA (SI03650318) were obtained from Qiagen. The transfection mix was added to the cells in 

OptiMEM for 5-6 hrs. Then, it was replaced with complete media and incubated for 48 hrs 

before proceeding with the experimental treatment. 

4.3.7 FISH Assay. For the FISH assay, cells were washed with PBS and fixed with 4% 

Paraformaldehyde (PFA) for 10 min at room temperature after virus infection. After washing 

with PBS, the cells were permeabilized with 70% ethanol overnight at 4°C. The cells were then 
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incubated in a hybridization solution [10% dextran sulfate, 2mM vanadyl-ribonucleoside 

complex, 0.02% RNA-free BSA, 1mg/ml E.coli tRNA, 2× saline-sodium citrate (SSC) and 10% 

formamide] containing 125 nM vRNA probe (Stellaris FISH probes, Biosearch Technologies)  at 

28°C overnight in the dark. The cells were then washed again and imaged with a Leica TCS SP8 

confocal laser microscope after adding the mounting solution. The Stellaris FISH probes against 

the M vRNA segment were conjugated with the Quasar 670 Dye. The probes were custom 

designed using the Stellaris probe designer (version 4.1) with the sequence of the M segment as 

the target. A total of 39 probes were generated and this mixture of vRNA probes were used in the 

FISH assay to visualize the M vRNA in the infected cells. 

To visualize DDX3 and NP, primary antibodies against the two proteins were added to 

the hybridization solution along with the vRNA probe during the overnight incubation period 

described above. Next day, the cells were washed and incubated with the respective Alexa Fluor 

secondary antibodies in the hybridization solution for 1 hr in the dark at room temperature. Cells 

were washed again and observed with the confocal microscope. Multiple images of different 

fields of view were captured using Leica TCS SP8 confocal laser microscope. A representative 

of the multiple images is presented in the results. 
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4.4 Results 

4.4.1 DDX3 interacts with viral NS1 and NP proteins 

 DDX3 is known to affect the life cycle of a number of viruses by interacting with their 

respective viral proteins such as HIV Tat, HCV core, HBV pol and VACV K7  (480). Therefore, 

I speculated that DDX3 could affect the influenza A virus life cycle by interacting with one or 

several of the influenza A virus proteins during infection. To identify the DDX3 interaction 

partners, I tested the interaction between HA-tagged DDX3 and the viral proteins expressed 

during infection by IP. 293T cells were first transfected with the HA-tagged DDX3 plasmid and 

then were infected with the influenza virus for 11-12 hrs. The cell lysate was subjected to IP with 

an antibody against the HA tag. The precipitated proteins were then subjected to Western 

blotting with antibodies against the HA-tag, viral NS1 protein and NP protein, respectively. As 

shown in Fig. 4.1A, expression of the viral proteins is similar in the input of the infected cell 

lysates (lane 1 and 3); both the NS1 and NP proteins were co-precipitated readily with HA-

DDX3 (lane 2) but not with HA-vector (lane 4). Neither HA-DDX3 nor the viral proteins were 

detected in the input and pull-down samples, when HA-vector was transfected in uninfected cells 

(lane 5 and 6). These data demonstrated that the viral proteins NS1 and NP interact with the 

DDX3 protein during infection.  

 To examine whether or not NS1 and NP interaction is dependent upon the expression of 

other viral proteins,  293T cells were co-transfected with Flag or HA-tagged DDX3 and NS1 or 

NP expressing plasmids and their interaction was tested by precipitating DDX3 from the lysate. 

To verify NS1 and DDX3 interaction, the Flag-DDX3 or Flag-vector plasmid was transfected 

along with or without NS1 expressing plasmid and the cell lysates were subjected to IP with Flag 

antibody. As shown in Fig. 4.1B, the input NS1 protein expression was similar in lane 1 and 3, 
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but NS1 was detected in the precipitated complex only when Flag-DDX3 was expressed and not 

when Flag-vector was expressed (lane 2 vs. 4). To verify NP and DDX3 interaction, HA-DDX3 

or HA-vector plasmid was transfected along with or without the NP expressing plasmid (note, 

Flag-beads bind to NP protein non-specifically, thus I used HA-tag) and the cell lysates were 

subjected to IP with the HA antibody. As shown in Fig. 4.1C, the input NP protein expression 

was similar in lane 1 and 3, but NP was detected in the precipitated complex only when HA-

DDX3 was expressed and not when HA-vector was expressed (lane 2 vs. 4). These results 

showed that the NS1 and NP proteins can interact with DDX3 independent of infection and other 

viral components. 

 To further confirm this interaction, reciprocal pull-down assay was conducted. Flag-NS1 

or Flag-vector plasmid was co-transfected with the HA-DDX3 or HA-vector plasmid in 293T 

cells and the cell lysates were then subjected to IP using the Flag antibody. As shown in Fig. 

4.1D, Flag-NS1 co-precipitated HA-tagged DDX3 (lane 2), while HA-DDX3 was not detected in 

the precipitated complex expressing Flag-vector and HA-DDX3 (lane 4). For DDX3 and NP 

interaction, 293T cells were transfected with HA-DDX3 or HA-vector and then were infected 

with the wild-type (WT) virus. The cells were subjected to IP with NP antibody. As shown in 

Fig. 4.1E, HA-DDX3 co-precipitated with NP (lane 2) in infected cell lysate. No HA-DDX3 was 

detected in the precipitated complex of the mock-infected cell lysate, which does not express NP 

(lane 4). When HA-vector was expressed in infected cells, although NP was precipitated 

successfully, no HA-DDX3 was detected (lane 6). These results demonstrated that NS1 and NP 

interact with DDX3 during infection and the interaction is specific. 
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Figure 4.1 Identification and characterization of viral proteins interacting with DDX3. A) 293T cells 
were transfected with HA-DDX3 or HA-vector plasmid. At 36 h.p.t., cells were infected with SK-WT at an MOI of 
1 or left uninfected. Cell lysates were prepared at 11-12 h.p.i and subjected to IP with HA-antibody. Precipitated 
proteins were subjected to Western blotting using antibodies against HA-tag, NS1 and NP proteins. B) Flag-DDX3 
or flag vector plasmid was co-transfected with or without PR8-NS1 expressing plasmid in 293T cells. At 48 h.p.t., 
cell lysates were collected and subjected to IP with Flag antibody. Precipitated proteins were subjected to Western 
blotting using antibodies against Flag-tag and NS1 protein. C) HA-DDX3 or HA vector plasmid was transfected 
with or without SIV/SK-NP expressing plasmid in 293T cells. At 48 h.p.t., cell lysates were collected and subjected 
to IP with HA antibody. Precipitated proteins were subjected to Western blotting using antibodies against HA-tag 
and NP protein. D) Flag-PR8 NS1 or flag vector plasmid was co-transfected with HA-DDX3 or HA-vector in 293T 
cells. At 48 h.p.t., cell lysates were collected and subjected to IP with Flag antibody and Protein-G dynabeads. 
Precipitated proteins were subjected to western blotting using antibodies against Flag-tag and HA-tag. E) HA-DDX3 
or HA vector plasmid was transfected into 293T cells and were either infected with SIV/SK-WT at an MOI of 1 or 
left uninfected. At 11-12 h.p.i., cell lysates were collected and subjected to IP with NP antibody. Precipitated 
proteins were subjected to Western blotting using antibodies against NP protein and HA-tag. I/P refers to input and 
P/D refers to pull-down. The data presented is representative of multiple independent experiments. 
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4.4.2 DDX3-NS1 and DDX3-NP interaction is RNA independent 

NS1, NP and DDX3 exhibit RNA binding activity (436, 439, 496). Therefore, I was 

interested in investigating whether DDX3-NS1 and DDX3-NP interactions were mediated by 

RNA. To this end, plasmids expressing the NS1 protein and HA-DDX3 were co-transfected in 

293T cells and the cell lysates were pre-treated with RNase A before subjecting to IP with HA 

antibody. Efficient degradation of RNA in the sample by the RNase A treatment was confirmed 

by measuring rRNA ratio (28S/18S) and RNA integrity number (RIN) (291, 473) using Agilent 

2100 Bio analyzer (data not shown). As shown in Fig. 4.2A, while NS1 was not co-precipitated 

with HA-vector (lane 4), NS1 was co-precipitated with HA-DDX3 irrespective of the RNase A 

treatment (lane 2 vs. 5). It is well established that the substitution of R38 and K41 amino acids to 

alanine in NS1 disrupts its RNA binding activity (566). Therefore, NS1 with the R38A/K41A 

mutation (MT NS1) and HA-DDX3 were co-expressed in 293T cells and HA-DDX3-MT NS1 

interaction was tested by IP using an antibody against HA tag. Surprisingly, MT NS1 was not co-

precipitated with HA-DDX3 (Fig. 4.2B, lane 2). Additionally, the interaction of HA-DDX3 and 

MT NS1 expressed during infection with the PR8 virus expressing the NS1 protein containing 

R38A/K41A mutations (MT virus) was also tested (Fig. 4.2C). Similar to the results in co-

transfection with plasmids, the MT NS1 expressed during infection did not co-precipitate with 

HA-DDX3 (Fig. 4.2C, lane 2). These data suggest that even though DDX3-NS1 interaction is 

RNA independent, the R38/K41 site in NS1 that is important for RNA binding activity by itself 

is essential for interaction with DDX3. 

 To investigate the RNA dependency of DDX3-NP interaction, cells were co-transfected 

with the plasmids expressing HA-DDX3 and NP respectively. Cell lysates were treated with 

RNase A before being subjected to IP with HA antibody. The RNase A treatment efficiency was 
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tested as described before. As shown in Fig. 4.2D, Western blotting detected the NP protein in 

the precipitated complex in HA-DDX3 expressing cell lysate irrespective of the RNase A 

treatment (lane 2 vs. 5), whereas NP was not co-precipitated with HA-vector (lane 4). This 

suggested that the interaction between DDX3 and NP is independent of RNA.  

4.4.3 C-terminal domain of DDX3 has a predominant role in mediating DDX3 interaction 

with NS1 and NP 

 DDX3 belongs to the DEAD box family of proteins and like all the helicases in the 

family contains a core-helicase domain flanked by a highly variable N- and C-terminal region 

(451, 496). The core-helicase domain in human DDX3 comprises residues 168-582, while the 

flanking N- and C-terminal regions comprise residues 1-167 and 583-662 respectively (215). 

Based on the sequence alignment with other DEAD box helicases, the core-helicase domain 

contains the nine conserved motifs involved in ATPase, helicase and RNA binding activity 

(153). The N-terminal region contains a conserved leucine rich nuclear export signal and is 

critical for CRM1-mediated nuclear export and eIF4E binding (480, 486, 496), while an SR-rich 

region in the C-terminus is associated in an interaction with the nuclear export receptor 

NXF1/TAP (298). Therefore, Flag-tagged plasmids expressing different truncated DDX3 

mutants were constructed and their ability to interact with NS1 and NP was examined. As shown 

in Fig. 4.3A, plasmids expressing Flag-tagged full length DDX3 and three truncation mutants 

expressing the core helicase domain of DDX3 alone (AA 168-582, DDX3-CH), DDX3 lacking 

the C-terminal domain (AA 1-582, DDX3- del CTD) or DDX3 lacking the N-terminal domain 

(AA 168-662, DDX3- del NTD) were  constructed. To identify the domains critical for NS1 and 

NP interaction, 293T cells were co-transfected with one of the Flag-tagged DDX3 truncation 

mutant plasmids and a plasmid expressing either NS1 or NP. Cell lysates were subjected to IP 
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 Figure 4.2 RNA dependency of DDX3 interaction with NS1 and NP. A) PR8-NS1 expressing plasmid 
was co-transfected with HA-DDX3 or HA-vector plasmid in 293T cells. At 48 h.p.t., cell lysate was collected, pre-
treated with RNaseA at 10 μg/ml or left untreated and subjected to IP with HA antibody.  B) HA-DDX3 or HA-
vector plasmid was co-transfected with or without plasmid expressing PR8-NS1 R38A/K41A (MT NS1) in 293T 
cells. At 48 h.p.t., cell lysate was collected and subjected to IP with HA antibody. C) 293T cells were transfected 
with HA-DDX3 or HA-vector plasmid. At 24 h.p.t., cells were either infected with PR8 virus carrying R38A/K41A 
mutation in NS1 (MT virus) at an MOI of 10 or left uninfected. At 24 h.p.i., cell lysate was collected and subjected 
to IP with HA antibody. (A, B, C) Precipitated proteins were subjected to Western blotting using antibodies against 
HA-tag and NS1 protein. D) SIV/SK-NP expressing plasmid was co-transfected with HA-DDX3 or HA-vector 
plasmid in 293T cells. At 48 h.p.t., cell lysates were collected, pre-treated with RNase A at 10 μg/ml or left 
untreated and subjected to IP with HA antibody. Precipitated proteins were subjected to Western blotting using 
antibodies against HA-tag and NP protein. I/P refers to input and P/D refers to pull-down. The data presented is 
representative of multiple independent experiments. 
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Figure 4.3 Identification of DDX3 protein domains critical for viral protein interaction. A) Flag-tagged 

plasmid expressing different DDX3 truncations were constructed to identify the domains important for NS1 and NP 
interaction and for SG formation. A schematic of the domains cloned into each plasmid is shown in the figure. (B, 
C) PR8-NP or PR8-NS1 expressing plasmid was co-transfected with one of the Flag-tagged plasmids expressing 
different DDX3 truncations in 293T cells. At 48 h.p.t., cell lysate was collected and subjected to IP with Flag 
antibody (B) or NP antibody (C). Precipitated proteins were subjected to Western blotting using antibodies against 
NS1 protein and Flag-tag (B), or NP protein and Flag-tag (C). I/P refers to input and P/D refers to pull-down. The 
data presented is representative of multiple independent experiments. 
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with the Flag antibody (for DDX3-NS1 interaction) or with the NP antibody (for DDX3-NP 

interaction). As shown in Fig. 4.3B, the full-length DDX3 protein demonstrated strong 

interaction with NS1 (lanes 2 and 10), whereas the core-helicase domain of DDX3 lost the ability 

to interact with NS1 (lane 4). Addition of the N-terminal domain slightly restored the interaction 

with NS1 (lane 12), whereas the addition of the C-terminal region had a stronger influence on 

restoring the interaction with NS1 (lane 14). Considering the amount of pulled down truncated 

DDX3 in this sample, the effect is more profound. IP of DDX3 truncation and NP showed 

similar results to those observed in Fig. 4.3B. As shown in Fig. 4.3C, while the full-length DDX3 

protein was co-precipitated with NP (lanes 2 and 12), the core-helicase domain of DDX3 was not 

(lane 6). While addition of the N-terminal domain of DDX3 restored interaction slightly (lane 

14), C-terminal domain addition had a stronger impact on restoring the interaction with NP (lane 

18). Additionally, none of the DDX3 truncations or full-length DDX3 bound to the beads when 

expressed alone, demonstrating the specificity of the interaction of DDX3 and its truncated 

proteins with NP (lanes 4, 8, 16 and 20). These results suggested that the C-terminal domain (AA 

583-662) and the N-terminal domain (AA 1-167) are essential for DDX3 interaction with its viral 

partners, although the C-terminal domain has a more prominent role than the N-terminal domain. 

4.4.4 DDX3 localizes in the SGs in response to del NS1 virus infection 

 DDX3 has been documented to localize to cytoplasmic SGs and has been reported to be 

an essential SG-nucleating factor (179, 298, 486). Several other host proteins such as NF90, 

RAP55 and FMRP known to localize to SGs and involved in SG formation have also been 

shown to associate with influenza NP and NS1 (381, 565, 576, 610). Influenza A virus lacking a 

functional NS1 and those that are impaired in NS1 RNA binding activity have been shown to 

induce robust SG formation, while the WT virus expressing a fully functional NS1 does not 
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induce SGs throughout the virus life cycle (272, 408). A recent study revealed that viral NP is 

recruited into SGs and that the expression of NS1 is able to inhibit the formation of RAP55 and 

NP associated SGs (381). These studies led to the speculation that DDX3 could localize in 

influenza virus-induced SGs and may affect the virus life cycle by interacting with NP in the 

SGs.  In order to test this hypothesis, I first examined SG formation and DDX3 localization upon 

virus infection in NPTr cells. Unlike many human cell-lines such as A549 and HeLa cells 

derived from carcinomatous tissues, NPTr cell-line was established following serial culture of 

primary cells (136). Additionally, the cell-line is derived from trachea, which is the primary site 

of influenza virus replication during infection (353). Thus, infection of NPTr cells would 

resemble conditions similar to natural infection and hence we used NPTr cells to study SG 

formation.   

 I infected NPTr cells with either a recombinant PR8 virus completely lacking the 

functional NS1 protein (del NS1) (156) or the WT PR8 virus and observed the formation of SGs 

at different time points by staining the SG specific marker T-cell restricted intracellular antigen-1 

(TIA-1, red) (266). In addition, I also stained the viral NP (green) protein and cellular DDX3 

(blue) to identify the infected cells and the localization of DDX3. As shown in Fig. 4.4A, no 

cytoplasmic punctate staining with TIA-1 was observed in the mock-infected cells and at any of 

the time points tested in the WT virus-infected cells, indicating SGs did not form in these 

conditions. However, in the del NS1 virus-infected cells, SGs started to form at 6 h.p.i. and were 

sustained throughout the time points tested. More strikingly, DDX3 co-localization with TIA-1 

in the virus-induced SGs at all the time points when SG formation was observed. In order to 

confirm the formation of SGs in del NS1 virus-infected cells, the cells were stained for another 

SG marker PABP1 (266). The cells were also stained for NP (green) to identify the infected cells   
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Figure 4.4 Kinetics of SG formation in PR8-WT and del NS1virus-infected cells and vRNA and NP 
localization in SGs. A) SG formation was analyzed by immunofluorescent staining of NPTr cells either mock-
infected or infected with PR8-WT or del NS1 virus at an MOI of 0.5. The cells were stained at predetermined time 
points. Virus-infected cells were identified by antibody staining for NP (green), SGs were indicated by staining for 
TIA-1 (red) and DDX3 localization was observed by staining for DDX3 (blue). B) SG formation was further 
confirmed by immunofluorescent staining of NPTr cells either mock-infected or infected with PR8-WT or del NS1 
at an MOI of 0.5. The cells were stained at 11 h.p.i. Virus-infected cells were identified by antibody staining for NP 
(green), SGs were indicated by staining for TIA-1 (red) and PABP1 (blue), both of which are SG markers. C) 
Zoomed in image of a del NS1 virus-infected cell stained at 11 h.p.i. for DDX3 (blue), TIA-1 (SG marker) (red) and 
NP (green). The white arrowheads show NP co-localization with TIA-1 and DDX3, all of which form punctate 
structures characteristic of SG formation and localization. D) NPTr cells were infected with del NS1 virus at an MOI 
of 0.5 or mock uninfected. At 11 h.p.i., the cells were subjected to FISH (red) using probes specific for vRNA of M 
segment and counter stained with antibodies against DDX3 (blue) and NP (green). A representative image from 
multiple fields of view is shown in the figure. 
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and TIA-1 (red). As shown in Fig. 4.4B, no punctate staining with PABP1 (blue) or TIA-1 (red) 

was observed in the mock-infected and WT virus-infected cells. However, TIA-1 and PABP1 co-

localized and formed cytoplasmic punctate staining in the del NS1 virus-infected cells. Thus, 

these results confirm the formation of SGs and present TIA-1 as an authentic marker for 

observing SG formation in del NS1 infected cells. 

4.4.5 DDX3 and NP co-localize in SGs but vRNA is not sequestered in virus induced SGs 

 The above described IP experiments clearly demonstrate the interaction between the viral 

NP protein and cellular DDX3 during infection (Fig.4.1A, 4.1C, 4.1E and 4.2D). Therefore, I 

was interested in studying where the NP and DDX3 interaction could occur in virus-infected 

cells. In the immunofluorescent staining experiment, I noticed that NP also formed some 

granules in the cytoplasm, which co-localized with DDX3 and TIA-1 staining (Fig. 4.4C), 

suggesting that DDX3 interacts with NP in the virus-induced SGs. Since the NP protein 

encapsidates influenza viral RNA (vRNA) to form the viral ribonucleoprotein (vRNP) complex, 

which is essential for viral transcription and replication (436), I wanted to understand whether 

the NP staining in the SGs is a result of vRNP being recruited to virus-induced SGs. FISH assay 

was conducted using a probe against the M vRNA segment. As shown in Fig 4.4D, FISH 

analysis clearly showed that vRNA (red) did not co-localize with the granular NP (green) in SGs. 

Note that, granular DDX3 was always observed to co-localize with TIA-1 in virus-infected cells 

(Fig. 4.4A and 4.4C). Therefore, in this particular experiment, DDX3 (blue) granule formation 

was used as a marker for the SGs. These results demonstrated that NP and DDX3 co-localized in 

virus-induced SGs, while vRNA/vRNP is not sequestered in these SGs. 
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4.4.6 Influenza virus NS1 inhibits virus-induced SG formation and DDX3 localization in 

SGs 

 SGs did not form at any of the time points tested with the WT virus infection, but SG 

formation was readily observed in the cells infected with the del NS1 virus (Fig 4.4A) starting at 

6 h.p.i. Therefore, it was speculated that expression of the NS1 protein might be inhibiting the 

virus-induced SG formation and DDX3 localization in SGs in the WT virus-infected cells. To 

test this, SG induction upon del NS1 virus infection was studied in cells expressing the WT NS1 

protein. NPTr cells were transfected with plasmids expressing Flag-tagged NS1 protein (Flag-

NS1) or Flag-vector and then the cells were infected with the del NS1 virus. To study DDX3 

recruitment into the SGs, cells were stained with antibodies against DDX3 (blue), TIA-1 (red) 

and Flag (green) (Fig. 4.5A). To monitor del NS1 virus-infected cells, the cells were also stained 

with antibodies against Flag (blue), NP (green) and TIA-1(red) (Fig. 4.5B). As expected, SGs 

and granular DDX3 were not found in the NS1 expressing cells upon del NS1 virus infection 

formation, such as oxidative stress induced SG formation via treatment with sodium arsenite (Fig 

4.5A and 4.5B). Additionally, the ability of NS1 to inhibit other forms of stress induced SG 

formation, such as oxidative stress induced SG formation via treatment with sodium arsenite 

(NaAs) was also tested (369). For this, NPTr cells were transfected with the plasmid expressing 

Flag-tagged NS1 protein (Flag-NS1) or Flag-vector and then treated with NaAs for 1 hr. Cells 

were then stained with antibodies against DDX3 (blue), TIA-1 (red) and Flag (green) (Fig. 4.5C). 

Contrary to the results observed with del NS1 virus induced SGs, NS1 expression did not 

interfere with NaAs induced SG formation and was even recruited to these SGs in a few cells 

(Fig. 4.5C).  
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 Figure 4.5 Effect of NS1 on virus-induced and NaAs-induced SG formation. NPTr cells were 
transfected with 500 ng of Flag-NS1 or Flag-vector plasmid (A, B). At 36 h.p.t., the cells were infected with del 
NS1 virus at an MOI of 0.5. At 11 h.p.i., one set of cells were stained with antibodies against Flag-tag (green), 
DDX3 (blue) and TIA-1(SG marker) (red) (A) and the other set of cells were stained with antibodies against Flag-
tag (blue), NP (green) and TIA-1 (SG marker) (red) (B). C) At 46-48 h.p.t., the cells were treated with 0.75 mM 
NaAs for 1 hr and were then stained with antibodies against Flag-tag (green), DDX3 (blue) and TIA-1(SG marker) 
(red). A representative image from multiple fields of view is shown in the figure. 
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4.4.7 The core-helicase domain of DDX3 alone is sufficient for its localization into del NS1 

virus induced SGs  

 To further the understanding of DDX3 function in virus-induced SGs, studying the 

relative importance of the DDX3 domains in SG localization was considered. NPTr cells were 

transfected with plasmids encoding either the Flag-tagged full-length or the truncated versions of 

DDX3 (described in Fig. 4.3A) and then infected with the del NS1 virus. At 11 h.p.i., cells were 

stained with antibodies against Flag (blue), TIA-1 (red) and NP (green). As shown in Fig. 4.6, 

full-length DDX3 co-localized with the virus induced SGs and so did the core-helicase domain 

(DDX3-CH) and the C-terminal deleted DDX3 (DDX3-del CTD). However, of the many 

microscopic fields examined, none of the N-terminal deleted DDX3 (DDX3-del NTD) 

expressing cells exhibited SG formation upon virus infection.  

4.4.8 DDX3 down-regulation interferes with SG formation and enhances virus replication  

 The dominant negative effect of the N-terminal deleted DDX3 on SG formation (Fig 4.6) 

led to the hypothesis that DDX3 is not just recruited passively into SGs and might have a critical 

function in the formation of SGs. To confirm this speculation, NPTr cells were treated with 

siRNA specific to DDX3 (siRNA-DDX3) and SG formation in del NS1 virus-infected cells was 

observed (Fig. 4.7A). The infected cells were stained with antibodies against DDX3 (blue), TIA-

1 (red) and NP (green). Treatment with the DDX3 siRNA resulted in a significant reduction of 

endogenous DDX3 expression when compared to the off-target siRNA treated cells (siRNA-OT) 

(Fig 4.7A, DDX3 panels) and interestingly, virus-induced SG formation was also suppressed in 

the cells with DDX3 downregulation (Fig. 4.7A, TIA-1 and NP panels). Notably, the quantitation 

of infected cells exhibiting virus-induced SGs showed that the number of SG forming cells 

diminished by 60% in the DDX3 siRNA treated cells when compared to the off-target siRNA 
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 Figure 4.6 Characterization of DDX3 domains in virus -induced SG formation. NPTr cells were 
transfected with 500 ng of plasmids expressing flag-tagged DDX3 truncations. At 36 h.p.t., the cells were infected 
with del NS1 virus at an MOI of 0.5 and at 11 h.p.i., cells were stained with antibodies against Flag-tag (blue), TIA-
1(SG marker) (red) and NP (green). A representative image from multiple fields of view is shown in the figure. 
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 treated cells. This observation suggested that DDX3 is not just passively recruited to the SGs but 

has a critical function in the formation of virus induced SGs. 

 From the above data, it is clear that DDX3 has a critical function in virus-induced SG 

formation, but the effect of DDX3 downregulation and SG formation on virus replication is not 

known. Thus, DDX3 siRNA and off-target siRNA treated cells were infected with either PR8 

WT, del NS1 or SIV/SK-WT virus (a field isolated strain) (250) and the virus titer was examined 

every 12 hrs. Downregulation of endogenous DDX3 expression was confirmed by subjecting the 

DDX3 siRNA and off-target siRNA treated cells to Western blotting with the antibodies against 

DDX3 and β-actin (Fig 4.7B). The normalization of DDX3 level to the β-actin level in the same 

sample showed that the siRNA-DDX3 treated cells demonstrated a 50% reduction in endogenous 

DDX3 expression compared to the off-target siRNA treated cells (Fig. 4.7B). Moreover, DDX3 

siRNA treatment resulted in an increased virus titer with the del NS1 virus infection at all the 

time points tested. The peak difference with 10-fold increase in virus titre was observed at 36 

h.p.i. However, DDX3 downregulation did not cause any significant difference in the virus titers 

upon PR8-WT virus infection and SIV/SK-WT virus infection (Fig. 4.7C). The degree of 

cytopathic effect on the infected cells was also more severe in the del NS1 virus-infected and 

DDX3 knocked-down cells, while DDX3 knockdown alone did not result in the cytotoxicity 

(Fig. 4.7D).  
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 Figure 4.7 Effect of DDX3 downregulation on virus-induced SG formation and virus titer. NPTr cells 
were transfected with siRNA specific to DDX3 or off-target siRNA. A) At 48 h.p. siRNA treatment, the cells were 
infected with del NS1 virus at an MOI of 0.5. At 11 h.p.i., the cells were stained for DDX3 (blue), TIA-1 (SG 
marker) (red) and NP (green). A representative of multiple fields of view is shown in the figure. B) At 48 h.p. 
siRNA treatment, the cell lysates were subjected to Western blotting with antibodies against DDX3 and β-actin. The 
level of DDX3 expression was determined by normalizing the intensity of the DDX3 bands with the corresponding 
β-actin bands for each siRNA treatment and is represented as a graph below the western blot images.  At 48 h.p. 
siRNA treatment, the cells were infected in triplicates with either PR8-WT, del NS1 or SIV/SK-WT virus at an MOI 
of 0.01. The supernatant was collected every 12 hrs and the virus titer at each time point was determined by plaque 
assay. A growth curve was plotted using the mean titer values at each time point and the associated standard 
deviation is displayed as error bar (C). The cytopathic effect of the cells infected by del NS1 virus and mock-
infected cells were documented under the microscope (D). 
 

D 

D 



122 

 

4.5 Discussion 

 DEAD-box proteins are the largest helicase family in eukaryotes and are multifunctional 

proteins involved in various aspects of RNA metabolism, cell-cycle regulation, tumorigenesis 

and virus life cycle (19). Several RNA helicases including DDX1, DDX6, RHAU, eIF4A and 

DDX3 localize in SGs (69). Among these, DDX3 has been reported to function as an essential 

component for SG assembly and interacts with other SG proteins such as eIF4E and PABP1 

(486). DDX3 interaction with eIF4E traps eIF4E and the associated mRNA in a translationally 

inactive complex, thus inhibiting cap-dependent translation (485). The formation of this inactive 

complex and the inhibition of translation in turn triggers SG assembly (486). This study shows 

that infection with the del NS1 virus triggers SG formation and that DDX3 and NP localize in 

these SGs (Figures 4.4A and 4.4C). The impairment of virus-induced SG formation and 

increased replication of del NS1 virus upon DDX3 knockdown was also observed (Figures 4.7A, 

4.7B and 4.7C). These results suggested that DDX3 functions as an antiviral protein and DDX3 

co-localization in virus-induced SGs may have a major contribution to this antiviral function. 

This is in agreement with the previous studies, which have shown SG formation to negatively 

affect influenza virus replication (272, 381). The antiviral function of DDX3 could be exerted in 

several ways. In one study, it was reported that the vRNA along with RIG-I is sequestered into 

virus-induced SGs and that these SGs serve as a platform for RNA detection by RIG-I (408). 

Because DDX3 interacts with NP, it is possible that DDX3 sequesters the NP bound vRNA into 

the SGs. Even though staining for RIG-I in the del NS1virus-infected cells was not performed, 

the results clearly showed that the vRNA does not localize in SG-containing NP (Fig. 4.4D). 

Therefore, it seems less likely that DDX3 exerts its antiviral role through facilitating vRNA 

sensing by RLR in the SGs. Another possible mechanism of antiviral function exists by 
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sequestering the viral mRNA into SGs through DDX3 interaction with the translation initiation 

factor eIF4E. During influenza virus infection, eIF4E binds the viral mRNA in the cytoplasm 

after nuclear export and triggers the recruitment of other factors such as eIF4G and PABP1 to 

initiate translation (48). As mentioned above DDX3 inhibits translation by binding eIF4E and 

locking it in a translationally inactive state in SGs. Therefore, it is conceivable that DDX3 

inhibits viral mRNA translation by binding to eIF4E-viral mRNP complex, trapping it in a 

translationally inactive state and thereby sequestering the eIF4E-viral mRNP into the SGs. 

However, as the FISH assay requires a mixture of probes for the target RNA molecules, it would 

be difficult to differentiate cRNA from viral mRNA. Thus, additional studies are needed to 

confirm the viral mRNA localization in SGs and to explore the contribution of DDX3-eIF4E 

interaction to SG nucleation. The third possible mechanism is through sequestration of NP into 

the SGs via DDX3-NP direct interaction, as observed from the IP (Figures 4.1A, 4.1C, 4.1E) and 

immunofluorescent staining experiments (Figures 4.4A, 4.4C). NP is a highly conserved viral 

protein with a primary function of encapsidating the viral genome (436). However, NP is a 

multifunctional protein with additional functions in the nuclear and cytoplasmic trafficking of 

vRNA, the viral polymerase activity and in the regulation of transcription and replication during 

the virus life cycle (84, 318). Therefore, sequestration of NP protein from the appropriate cellular 

compartments into SGs as observed in this study (Fig 4.4C), could have a serious negative effect 

on viral replication. Taken together, these data suggest that DDX3-NP interaction could 

sequester NP into the virus-induced SGs, isolating it away from the proper cellular 

compartments. This reduces the availability of NP to wield its normal cellular functions and has 

an unfavourable effect on virus replication. Additionally, ectopic NP expression at high levels 

inhibits SG formation in an eIF2α-independent manner through an unknown mechanism (271). 
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Thus, NP sequestration into the SGs could serve as a mechanism to counteract its SG 

antagonistic function. 

 It has been reported that NaAs treatment induces oxidative stress and SG assembly via 

activating the eIF2α kinase HRI (369), while del NS1 virus infection activates the PKR kinase. 

NS1 is able to inhibit PKR activation but not the HRI kinase activation (272, 381), which might 

explain the ability of NS1 to supress virus-induced SG formation (Fig. 4.5A, 4.5B) and the 

inability of NS1 to suppress NaAs-induced SG formation (Fig. 4.5C). Failure of NS1 to suppress 

SG assembly in NaAs-treated cells was also observed by Khaperskyy et al., in his study (271). 

These data provide a glimpse into the distinct pathways activated by NaAs treatment and 

influenza virus for SG assembly. 

 Studies with DDX3 truncations in inducing SG formation revealed that the core helicase 

domain of DDX3 alone is sufficient for SG localization during virus infection, while addition of 

the N-terminal domain does not affect its localization (Fig. 4.6). Interestingly, we observed that 

addition of the C-terminal domain though has a negative effect on the formation of SGs itself 

(Fig. 4.6). This prompts the speculation that the N-terminal deleted DDX3 has a dominant 

negative effect on SG formation. Moreover, downregulation of DDX3 also weakens virus-

induced SG formation (Fig. 4.7A). These results portray DDX3 as an essential factor for virus-

induced SG formation, which is supportive of another study which identified DDX3 as an 

essential nucleating factor for oxidative stress-induced SG formation (486).  

 In this study, it was observed that the WT virus-infected cells do not form SGs 

throughout the infection at all the time points tested (Fig. 4.4A). The NS1 protein was identified 

to be responsible for the SG inhibitory function, since SGs did not form in the del NS1 virus-

infected cells upon NS1 expression (Figures 4.5A, 4.5B). Previous studies have demonstrated the 
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ability of NS1 to inhibit SG formation (271, 381). The NS1 protein is believed to suppress SG 

formation through its ability to inhibit the activation of eIF2α kinase PKR. However, formation 

of SGs can occur independent of eIF2α phosphorylation (eIF2α-P), upon treatment with drugs 

that interfere with translation initiation and when certain translation initiation factors are depleted 

with siRNA treatment (100, 279, 366, 382). More specifically, SGs are induced by depletion of 

PABP1, eIF4E and by preventing eIF4E association with eIF4G (382). Many viruses such as 

Poliovirus, Herpes Simplex Virus (HSV) and Mammalian Orthoreovirus are known to modulate 

SG formation independent of eIF2α-P (137, 440, 577). HSV ICP8 protein binds to G3BP, while 

Poliovirus viral 3C proteinase cleaves G3BP to counteract eIF2α-independent SG formation 

(418, 577). Hence, an alternative NS1-mediated mechanism to inhibit the SG formation 

downstream of eIF2α may exist. The NS1 protein of influenza is reported to enhance viral 

mRNA translation through facilitating ribosomal recruitment by interacting with the viral 

mRNA, eIF4G and PABP1 (70). In this study, the existence of DDX3 and NS1 interaction is 

clearly demonstrated (Figures 4.1A, 4.1B, 4.1D). DDX3 interaction with eIF4E prevents eIF4E-

eIF4G association thereby trapping the associated mRNA in a translationally inactive complex 

inducing the formation of SGs (486). DDX3 also interacts with PABP1, which is a key 

component of SGs (486). During WT influenza virus infection, it is reasonable to speculate that 

NS1 besides interacting with DDX3, also associates with the viral mRNA, PABP1 and eIF4F 

(comprises eIF4E, eIF4G and eIF4A). This might prevent DDX3 binding to eIF4E and PABP1. 

Inability of DDX3 to interact with eIF4E and PABP1 could in turn suppress SG formation, 

which might be an additional mechanism to explain the resistance of WT virus-infected cells to 

SG formation.     
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 In this study, the role of DDX3 as an antiviral protein during influenza virus infection is 

reported for the first time. DDX3 localizes in SGs upon virus infection and is critical for virus-

induced SG formation. DDX3 is able to interact with the viral proteins NS1 and NP in infected 

cells, NP but not vRNA is sequestered in the SGs. As reflected in the discussion, NP recruitment 

into the SGs mediated through DDX3-NP interaction could contribute to DDX3’s antiviral 

function; and NS1 interaction with DDX3 might suppress SG formation in WT virus-infected 

cells. Supportive of SG mediated DDX3 antiviral function, DDX3 downregulation suppresses 

SG formation and increases virus titer in the del NS1 virus-infected cells. Overall, a novel 

antiviral function for DDX3 was discovered, which is mediated through SG formation during 

influenza virus infection.  
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CHAPTER 5: THE ROLE OF DDX3 IN REGULATING INTERFERON BETA 
EXPRESSION DURING INFLUENZA VIRUS INFECTION 

Relationship of this study to the dissertation. 

 In Chapter 3, DDX3 was identified associated with NS1 as part of a larger NS1-

interacting complex. Additionally, DDX3 was also identified as an innate-immunity related 

protein. Many studies with various viruses portray DDX3 as a regulator of IFNβ induction, 

which is mediated through DDX3 interaction with different components of the RIG-I mediated 

IFNβ induction pathway (19, 547). Therefore, we investigated the functional role of DDX3 in 

influenza virus-induced IFNβ induction pathway. 

5.1 Abstract 

 DDX3 is a multifunctional protein and has been reported to affect the life cycle of 

various viruses. More importantly, DDX3 regulates antiviral innate immunity by affecting the 

various steps of interferon beta (IFNβ) signalling pathway during infection by several viruses. 

However, its function in influenza A virus-induced IFNβ induction is unknown. In this work, the 

role of DDX3 in influenza A virus-induced IFNβ expression is investigated. Through siRNA 

gene knockdown, the RIG-I was identified as the dominant signalling pathway responsible for 

IFNβ induction during influenza A virus infection. DDX3 downregulation and overexpression 

studies showed that DDX3 inhibits influenza A virus-induced IFNβ expression. Additionally, 

DDX3 inhibition of IFNβ expression using Low Molecular Weight (LMW) poly I:C, which is 

another RIG-I ligand, was also confirmed. Then, attempts were made to identify the mechanism 

by which DDX3 exerts its IFNβ inhibitory effect. RNA competition assay showed that RIG-I 

affinity to LMW poly I:C and influenza viral RNA (vRNA) is much higher than that of DDX3. 

Furthermore, DDX3 downregulation enhanced titers of an influenza virus lacking the NS1 gene 
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(PR8 del NS1), while it did not affect the titers of a WT virus (SIV/SK), which possess a fully 

functional NS1 gene. In the  previous chapter the increase in PR8 del NS1 virus titers  was 

observed to correlate with decreased stress granule (SG) formation in cells with DDX3 

downregulation. Overall, the results suggest that, even though DDX3 has a function in IFNβ 

inhibition, its role in SG formation is dominant during PR8 del NS1 virus life cycle, while 

additional mechanisms might be in place to counteract the increased IFNβ induction during WT 

virus infection. The mechanism by which DDX3 exerts its IFNβ inhibitory function still needs 

further study. 
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5.2 Introduction 

 Influenza A virus infection initiates in the respiratory tract and in most cases is restricted 

within this organ (533). Upon entering the host through the upper respiratory tract, the virus has 

to counter a number of host defence mechanisms to facilitate its spread and replication in the 

host. One of the most important defence mechanisms employed by the host during virus 

infections is the secretion of type I interferons (IFNs) (257). The type I IFN family is primarily 

comprised of cytokines IFNα and IFNβ and induces an antiviral state in both the infected and 

neighbouring bystander cells via the induction of transcription of  a set of genes called IFN 

stimulated genes (ISGs) (230). The ISGs interfere with multiple stages of the virus life cycle 

through various mechanisms and are responsible for maintaining the antiviral state in the 

infected and neighbouring uninfected cells (230). While plasmacytoid dendritic cells are the 

predominant producers of IFNα, most cell-types and more importantly epithelial cells produce 

IFNβ in response to influenza infection (140, 248).  

 IFNα/β secretion usually occurs in response to stimulation of receptors known as pattern 

recognition receptors (PRRs) by ligands of microbial origin (294, 390). These receptors can be 

located on the cell surface, in the endosomal compartments or in the cytosol and are divided into 

three main classes, namely: Toll-like receptors (TLRs), Retinoic acid inducible gene I (RIG-I) 

like receptors (RLRs) and Nucleotide oligomerization and binding domain (NOD) like receptors 

(294). The two major sensors involved in type I IFN induction during influenza infection are the 

TLRs and RLRs (154). Among the TLRs, TLR3 and TLR7 are important for influenza virus 

detection and they recognize double-stranded RNA (dsRNA) and single-stranded RNA (ssRNA) 

respectively in the endosomal compartment (53, 344). Binding of the RNA ligand to TLR3 and 



130 

 

TLR7 results in the recruitment of adaptor molecules TRIF and Myd88 respectively. 

Additionally, the influenza A virus RNA is also recognized in the cytoplasm by RIG-I, which 

belongs to the RLR family (600). RIG-I recognizes 5’-triphosphate dsRNA with a minimum 

length of around 10 bp, which resembles the “panhandle” structure of the vRNA generated 

during influenza virus infection (14, 285, 328). Binding of the RIG-I ligand results in a 

conformational change that exposes the caspase activation and recruitment domain (CARD), 

leading to RIG-I ubiqutination by TRIM25 and RIPLET, which promotes the interaction of RIG-

I with the adaptor molecule MAVS (151, 412). Interaction of all three receptors with their 

respective adaptors results in the subsequent activation of transcription factors such as IFN 

regulatory factor-3 (IRF3), IFN regulatory factor-7 (IRF7) and Nuclear factor kappa beta 

(NFκB), leading to type I IFN production (429). 

 DDX3 is an ATPase-dependent RNA helicase, which belongs to the DEAD – box RNA 

helicase family (95, 145, 235). DDX3 has been implicated as a target of several viral proteins 

and is known to regulate different stages of the life cycle of a variety of viruses such as Hepatitis 

C virus (HCV), Hepatitis B virus (HBV), West Nile virus (WNV), Human immunodeficiency 

syndrome virus-1 (HIV), Japanese Encephalitis virus (JEV) and Vaccinia virus (VACV) (19). 

More importantly, DDX3 has been shown to have a role in antiviral innate immunity through 

enhancing IFNβ induction by targeting different host factors in the interferon signalling pathway 

(19). During virus infection, several transcription factors including IRF-3 are activated which 

translocates to the nucleus from the cytoplasm and triggers type-I IFN production (429). 

Following virus infection, IRF-3 activation occurs via phosphorylation by the kinases TBK1 and 

IKKε (429). DDX3 has been reported to upregulate IFNβ production through its interaction with 

IKKε or TBK1 (472, 497). DDX3 also acts as a transcriptional regulator by binding to the IFNβ 
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promoter (497). Furthermore, DDX3 has been shown to bind dsRNA and interact with RIG-I and 

its adaptor MAVS, acting as a scaffold to enhance MAVS-mediated IFN signalling (413). In 

order to offset the augmented IFN signalling, several viruses have been shown to target DDX3 as 

well. HCV core protein can disrupt DDX3-MAVS interaction (411), while HBV core protein 

disrupts DDX3-TBK1/IKKε interaction (563, 603) and suppress IFNβ induction. Similarly, 

VACV K7 protein targets DDX3 and inhibits IFNβ induction (472).  

 Even though many studies explored the function of DDX3 in regulating IFNβ induction 

during virus infection, there is no such study investigating DDX3 and its role in regulating 

influenza induced IFNβ induction. Therefore, this work utilized gene knockdown and 

overexpression studies to understand whether DDX3 has any regulatory role in influenza A 

virus-induced IFNβ induction. DDX3 exerts an inhibitory effect on influenza A virus-induced 

IFNβ induction and the competition assays with RIG-I ligands, poly I:C and influenza vRNA, 

demonstrated that DDX3 does not exert its inhibitory effect by competing with RIG-I for its 

ligand. In addition, this study on influenza A virus replication in DDX3 downregulated cells 

showed that the increase in IFNβ transcription does not affect influenza A virus replication.
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5.3 Materials and Methods 

5.3.1 Cells and viruses. Madin-Darby canine kidney (MDCK) cells and new born porcine 

tracheal epithelial (NPTr) cells were maintained in minimum essential medium (MEM) 

supplemented with 10% fetal bovine serum (FBS) (Life Technologies). 293T cells were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS. 

 A/Sw/SK/18789/02 (H1N1) (SIV/SK) viruses were propagated in 11-day-old 

embryonated chicken eggs as described previously (487). PR8 virus lacking the NS1 protein 

(PR8 del  NS1) was kindly provided by Dr. Garcia-Sastre and was propagated in Vero cells 

maintained in MEM with 10% FBS. PR8 virus was titrated by plaque assay on MDCK cells and 

PR8 del NS1 virus was titrated on Vero cells. 

5.3.2 Antibodies and reagents. Rabbit polyclonal NS1 antibody was generated in our 

laboratory as previously described (488). The other antibodies were purchased from different 

sources as follows: Rabbit anti-Flag DYKDDDDK tag antibody (Cell signaling technology), 

Rabbit polyclonal antibody to DDX3 (Abcam), Rabbit polyclonal to HA tag – ChIP grade 

(Abcam), Mouse monoclonal antibody to β-actin (Cell Signaling Technology), Rabbit 

monoclonal antibody to Phospho-IRF3 (Ser396) (Cell signaling technology), Rabbit polyclonal 

to IRF3 (Abcam), IRDye 680RD anti-Rabbit antibody (LI-COR), IRDye 800CW anti-mouse 

antibody (LI-COR). Other reagents were purchased from the following sources as follows: 

RNeasy mini kit (Qiagen), SuperScript III Reverse Transcriptase (Life Technologies), Platinum 

SYBR Green super mix (Bio-Rad), Pierce Magnetic RNA-Protein pull-down kit (Thermo Fisher 

Scientific), Biotin (Long Arm) Hydrazide (Vector laboratories), BrightStar BioDetect kit 

(Ambion), IRDye 800CW streptavidin (LI-COR), TransIT-LT1 (Mirus Bio LLC), Lipofectamine 
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LTX with PLUS (Life Technologies), Lipofectamine 2000 (Life Technologies), Low Molecular 

Weight (LMW) poly I:C (Invivogen), BX795 (Invivogen), MAXIscript T7 in vitro transcription 

kit (Ambion). 

5.3.3 Plasmid construction. pcDNA-HA-DDX3 was kindly provided by Dr. Suresh Tikoo 

(VIDO-InterVac, University of Saskatchewan, Canada). pCMV-3×Flag-DDX3 and pCMV-

3xFlag-RIG-I plasmids were used for expression of Flag-DDX3 and Flag-RIG-I in 293T cells. 

Full-length DDX3 was amplified from pcDNA-HA-DDX3 plasmid and cloned into pCMV-

3×Flag plasmid at EcoRI/KpnI sites generating the pCMV-3×Flag-DDX3 plasmid. For the IFNβ 

luciferase activity assay p125Luc plasmid, which encodes the luciferase gene under the control 

of the IFN-β promoter and pCMV-rLuc, which encodes renilla luciferase under the control of a 

CMV promoter were used. 

5.3.4 Transfection and Western Blotting. For transfection in 293T cells, 2 μl of TransIT-

LT1 was used for every 1 μg of plasmid DNA. TransIT-LT1 and DNA were diluted in Opti-

MEM media and the mixture was incubated for 20 mins at room temperature, it was added to the 

cells overlaid in Opti-MEM media. The media was then replaced with complete media 5-6 hrs 

post transfection (h.p.t.). For NPTr transfection, 3 μl of Lipofectamine LTX and 0.5 μl of PLUS 

reagent was used for every 500 ng of plasmid DNA to prepare the transfection mix in Opti-

MEM. After incubating the transfection mix at room temperature for 20 mins the mixture was 

added to the cells overlaid with Opti-MEM media. The media was changed to complete media 5-

6 h.p.t. 500 ng of LMW poly I:C was transfected into 293T and NPTr cells complexed with 2 μl 

Lipofectamine 2000 to test for IFNβ expression and IFNβ promoter induction.  
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Cell lysate and purified proteins were resolved by sodium dodecyl sulfate-10% 

polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting was performed as 

described elsewhere (488). 

5.3.5 siRNA transfection. NPTr cells were plated at a density of 4×104 cells/well in 24-

well plate. Next day, medium was replaced with OptiMEM. The siRNA (final concentration of 

100 nM) containing transfection mix was prepared with OptiMEM and Lipofectamine 2000 as 

per manufacturer’s protocol. The transfection mix was added to the cells in OptiMEM. After 5-6 

hrs, the media was replaced with complete media and incubated for 48 hrs before proceeding 

with the experimental treatment. 

 DDX3 siRNA (GS1654) and Negative siRNA (SI03650318) were obtained from Qiagen. 

Custom siRNA specific for RIG-I and TLR3 were also obtained from Qiagen. Three siRNAs 

targeted to different regions of porcine RIG-I gene are of the following sequences: 5’-

CAUAACUCUUGGAGGCUUAdTdT-3’, 5’-GGCAAAGAGCAUCUUUGAAdTdT-3’, 5’-

GGACCACUGACAGAUUUAAdTdT-3’. Three siRNAs targeted to different regions of porcine 

TLR3 genes are of the following sequences: 5’-AAUUGUUAAUAGCAUCAAAdTdT-3’, 5’-

GAGAAACUUUGCUUAGAAUdTdT-3’, 5’-GGAAGAUAACAACUUUCCAdTdT-3’. 

5.3.6 Real-Time PCR. RNA was extracted from cells using the RNeasy mini kit. 500 ng 

of extracted RNA was used for reverse transcription using oligo(dT)20 primer and SuperScript III  

reverse transcriptase to generate  cDNA. The cDNA was then combined with the primer set and 

SYBR green super mix and  Quantitative real-time PCR (qPCR) reaction was performed in an 

iCycler IQ5 multicolor real-time PCR detection system (Bio-Rad, Hercules, CA). The following 

primers were used for Quantitative real-time PCR (qPCR): porcine IFNβ forward, 5'-
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CCGAATTCGCTAACAAGTGCATCCTCC-3'; porcine IFNβ reverse, 5'-

GCGAAGCTTTCAGTTCCGGAGGTAATC-3'; porcine DDX3 forward, 5'-

GCCGCAAACAATACCCAATCTC-3'; porcine DDX3 reverse, 5'-

CATAAACCACGCAAGGACGAAC-3'; porcine RPL19 forward, 5'-

AACTCCCGTCAGCAGATCC-3'; porcine RPL19 reverse, 5'-AGTACCCTTCCGCTTACCG-

3'. 

The qPCR conditions were 95◦C for 120 s, followed by 45 cycles with denaturation at 

95◦C for 15 s, annealing at 60◦C for 30 s and elongation at 72◦C for 30 s. The Cycle threshold (Ct) 

values of the internal control gene RPL19 was used for normalization of IFNβ and DDX3 

expression. Data are presented as relative gene expression to that of untreated cells using the 

formula 2-(ΔCt of test sample − ΔCt of untreated control sample). Real-time PCR was conducted in triplicate for 

each sample and the mean value was calculated. Final figures represent the results from at least 

two independent experiments. 

5.3.7 Luciferase reporter assay. 293T cells or NPTr cells were transfected with a 

plasmid expressing a firefly luciferase gene under the regulation of an IFNβ promoter (p125Luc), 

a plasmid expressing renilla luciferase under the regulation of a CMV promoter (pCMV-rLuc) 

for normalization and increasing concentrations of HA-DDX3 or Flag-DDX3 plasmid or the 

vector plasmids. Forty eight h.p.t., 293T cells were transfected with 500 ng LMW poly I:C using 

Lipofectamine 2000. Thirty h.p.t., NPTr cells were infected with PR8 del NS1 virus at an MOI 

of 1. The cell lysate was collected 16 h.p. poly I:C transfection or infection.  The relative 

luciferase activity was then determined using the Dual-luciferase reporter assay system 

(Promega) as per the manufacturer’s protocol. 
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5.3.8 In vitro transcription. For in vitro transcription of the NS vRNA, a DNA template 

for in vitro transcription was first generated by PCR using pHW-SK-NS plasmid (361) as 

template and the primers 5’-

TAATACGACTCACTATAGGTAGAAACAAGGGTGTTTTTTAG-3’ (forward primer) and 

5’-GGCAAAAGCAGGGTGACAAAAA-3’ (reverse primer). The forward primer contains T7 

promoter sequence (TAATACGACTCACTATAGG) followed by the sequence corresponding to 

the 5’ non coding region (NCR) of NS vRNA (TAGAAACAAGGGTGTTTTTTAG) while the 

reverse primer contains sequence complementary to the 3’ NCR of NS vRNA. The DNA 

segment thus generated, containing the T7 promoter sequence and the SIV/SK NS gene segment, 

was then used as template in the in vitro reaction using the MAXIscript T7 in vitro transcription 

kit. The in vitro transcribed NS vRNA was resolved on a 4% urea polyacrylamide gel and 

visualized using 1× SYBR Gold Nucleic Acid Gel Stain (Life Technologies). 

5.3.9 Biotinylation and RNA-protein pull down. LMW poly I:C was biotinylated using 

Pierce RNA 3’ end desthiobiotinylation kit as per the manufacturer’s recommended protocol. 

Briefly, 6.6 μg of LMW poly I:C was incubated with the RNA ligase reaction buffer, RNase 

inhibitor, Biotinylated Cytidine Bisphosphate, T4 RNA ligase and 30% Polyethylene glycol at 

16°C overnight. Next day, the poly I:C in the reaction was separated into the aqueous phase 

using chloroform:isoamyl alcohol mixture and precipitated with ethanol. The precipitated pellet 

was then re-dissolved in water and contains the purified biotinylated LMW poly I:C (BPIC). PR8 

vRNA and NS vRNA were biotinylated using Biotin (Long arm) hydrazide as described 

elsewhere (73). Briefly, the T7 transcribed and purified vRNA was diluted in 100 mM sodium 

acetate, pH 4.5 to a final volume of 90 μl. Then 10 μl of NaIO4 solution (21.4 mg/ml) was added, 

mixed and incubated for 1 hr at 4°C in the dark. The RNA from this reaction was then purified 
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by RNeasy mini kit and the RNA was resuspended in 70 μl RNase-free water. To this, 10 μl of 

1M sodium acetate pH 6.0 and 20 μl of Biotin (Long arm) Hydrazide dissolved in dimethyl 

formamide (18.5 mg/ml) were added and incubated overnight at room temperature in the dark. 

Next day, biotinylated RNA was recovered by purification using the RNeasy mini kit. 

For detection, BPIC and vRNA were dot blotted onto Amersham Hybond-N membrane 

(GE Healthcare) and cross-linked using a commercial UV-light cross-linking instrument at 120 

mJ/cm2 for a 60 second exposure. After cross-linking, BrightStar biodetect kit or IRdye 800CW 

streptavidin were used for detection of the biotinylated ligand. For detection using the BrightStar 

biodetect kit, the membrane containing the UV-cross-linked RNA was washed in wash buffer 

several times and then blocked in blocking buffer for 30 mins at room temperature. After 

blocking, the membrane was incubated with Strep-Alkaline Phosphatase diluted in the blocking 

buffer for 30 mins at room temperature. The membrane was again washed and a substrate for 

alkaline-phosphatase, CDP-Star was added to the membrane and exposed to an autoradiographic 

film for detection. For detection using the IRdye 800CW streptavidin, the UV-cross-linked 

membrane was blocked in Odyssey blocking buffer (Li-Cor) containing 1% SDS and then 

incubated with IRDye 800CW streptavidin (1:10000) in blocking buffer for 1 hr at room 

temperature. The membrane was then washed in PBS containing 0.1% Tween 20 and then 

scanned using an Odyssey imager (Li-Cor). 

For studying the binding efficiency of RIG-I and DDX3 with LMW poly I:C and vRNA, 

Flag-RIG-I and Flag-DDX3 were first purified from 293T cells. 293T cells were transfected with 

1 μg of pCMV-3×Flag-RIG-I or pCMV-3×Flag-DDX3 plasmids. At 48 h.p.t, the cell lysate was 

collected and subjected to immunoprecipitation using Anti-Flag M2 affinity gel (Sigma-Aldrich). 
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The immunoprecipitated proteins were eluted under native conditions by competition with Flag 

peptide (Sigma-Aldrich). The eluent thus contains the purified protein, which is then used in the 

RNA-protein pull down experiment. Interaction between purified Flag-DDX3, Flag-RIG-I and 

poly I:C or vRNA were studied using the Pierce RNA-protein pull down kit. Biotinylated LMW 

poly I:C (BPIC) or biotinylated vRNA were first bound to the Streptavidin magnetic beads 

supplied in the kit. The eluent containing either purified Flag-RIG-I or Flag-DDX3 (described 

above) were then incubated with the Streptavidin magnetic beads bound to either of the RNA 

species (BPIC or biotinylated vRNA) in protein-RNA binding buffer for 1 hr at 4°C with gentle 

rotation. The magnetic beads were then washed several times and the protein complex bound to 

either poly I:C or vRNA were eluted using the elution buffer supplied in the kit. 

5.3.10 Statistical analysis. The statistical significance of differences was calculated 

using GraphPad Prism 6 (GraphPad Software, Inc., USA) with parametric t-tests to obtain the P-

value. Data are shown as mean ± SD (standard deviation) of at least two independent 

experiments. Significant differences between treatments and controls are represented by an 

asterisk (P < 0.05) or two asterisks (P < 0.01).  
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5.4 Results 

5.4.1 IFNβ mRNA expression is mediated through RIG-I during influenza virus infection 

 Influenza A virus recognition and IFN secretion can occur by a variety of PRRs such as 

TLR3, TLR7, TLR8, RIG-I and NLRP3 during virus infection (233). Among these, a subset of 

PRRs including the TLR3 and RIG-I receptors activate a distinct signalling pathway requiring 

the IKK related kinases TBK1 and IKKε and are also known to be the major receptors for IFNβ 

production (154, 260, 520). Therefore, NPTr cells were treated with BX795, an inhibitor of 

TBK1/IKKε (92), and then infected with the SIV/SK virus to confirm that the TLR3/RIG-I-

mediated pathway does have a major contribution in influenza A virus-induced IFNβ expression. 

As shown in Fig. 5.1A, the IFNβ mRNA expression was significantly reduced in the BX795 

treated cells at both 1μM and 10μM concentrations, when compared to the DMSO treated cells. 

This showed that TBK1/IKKε activation is indeed required for influenza A virus-induced IFNβ 

mRNA expression. Since both the TLR3 and RIG-I signalling utilize the TBK1/IKKε kinases for 

IFNβ induction, the relative contribution of the two PRRs in IFNβ signalling was tested. For this, 

the cells were treated with siRNA specific to TLR3 or RIG-I and the IFNβ mRNA expression 

after infection with SIV/SK virus was analysed. Both the TLR3 and RIG-I siRNA treatment 

resulted in a significant downregulation of the respective genes as quantified by qPCR (Fig. 5.1E 

and 5.1F). However, RIG-I downregulation and not TLR3 downregulation resulted in almost a 

90% decrease in virus-induced IFNβ mRNA expression (Fig. 5.1C vs Fig. 5.1B). Since, TLR3 

knockdown (KD) did not affect the IFNβ mRNA expression, I wanted to determine whether 

TLR3 is still functional in the NPTr cells. It has been reported that poly I:C present in the 

extracellular space (naked poly I:C) is internalized through endocytosis and is recognized by 
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TLR3, whereas poly I:C delivered intracellularly by complexing with a transfection reagent is 

recognized by cytoplasmic receptors such as RIG-I and MDA5 (8, 108). Therefore, if TLR3 is 

functional, IFNβ induction upon treatment with naked poly I:C should be inhibited in TLR3 KD 

cells. As shown in Fig. 5.1D, upon treatment with naked poly I:C, TLR3 downregulation resulted 

in a 65% decrease in the IFNβ induction, when compared to the cells treated with off-target 

siRNA (SiOT), while there was no significant decrease in the IFNβ expression in RIG-I 

downregulated cells, showing that TLR3 is indeed functional in NPTr cells. 

5.4.2 DDX3 downregulation results in increased IRF-3 phosphorylation and IFNβ mRNA 

expression upon influenza virus infection 

 Next, the role of DDX3 in virus-induced IFNβ expression was examined. IRF3 

phosphorylation occurs upstream of IFNβ transcription in the RIG-I signalling pathway (429). 

Therefore, the phosphorylation status of IRF3 in virus-infected cells during downregulated 

DDX3 expression was verified. NPTr cells were treated with either siRNA specific to DDX3 or 

SiOT and then infected with SIV/SK virus. IRF3 phosphorylation status in the DDX3 siRNA 

treated cells and SiOT treated cells were compared at 10 hrs post infection (h.p.i.) and at 12 h.p.i. 

by Western blotting. As shown in Fig. 5.2A, DDX3 siRNA treatment resulted in efficient 

knockdown of the gene (WB: DDX3 panel – lanes 1 vs 2 and lanes 3 vs 4). While total IRF3 

protein expression remains the same irrespective of the siRNA treatment (WB: IRF3 panel), the 

level of phosphorylation of IRF3 is higher in the DDX3 siRNA treated cells when compared to 

the SiOT treated cells (WB: p-IRF3 panel - lanes 1 vs 2 and lanes 3 vs 4). Phosphorylated IRF3 

dimerizes, translocates to the nucleus, associates with the IFNβ promoter region and acts as a 

transcription factor inducing IFNβ mRNA transcription (429). Hence, any increase in IRF3 
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phosphorylation should also result in increased IFNβ mRNA expression. Consequently, IFNβ 

mRNA expression in DDX3 KD cells upon SIV/SK infection was studied. As shown in Fig. 

5.2D, DDX3 expression was efficiently downregulated upon treatment with the siRNA specific 

to DDX3. While, a 38-fold increase (when compared to untreated and uninfected cells) in IFNβ 

mRNA expression was observed in the SiOT treated/virus-infected cells, DDX3 downregulation 

resulted in a significant increase in IFNβ mRNA expression (92- fold increase when compared to 

untreated and uninfected cells) in response to virus infection, when compared to the SiOT 

treated/virus-infected cells (Fig. 5.2B). NS1 protein of influenza is a well-known IFN antagonist 

and influenza viruses with non-functional NS1 protein are robust inducers of IFNβ (23, 355). 

Therefore, I examined whether a similar IFNβ enhancement is also observed upon infection with 

the PR8 del NS1 virus, which lacks the NS1 gene (156). As shown in Fig. 5.2C, PR8 del NS1 

virus infection resulted in a robust IFNβ mRNA expression (72-fold increase relative to 

uninfected and untreated cells) in the SiOT treated cells and DDX3 downregulation in PR8 del 

NS1 infected cells resulted in a significant enhancement in IFNβ mRNA expression (178-fold 

increase relative to uninfected and untreated cells), when compared to the SiOT treated and PR8 

del NS1 virus-infected cells.  

5.4.3 DDX3 regulates IFNβ mRNA expression triggered by the RIG-I agonist LMW poly 

I:C 

 From previous experiments, virus-induced IFNβ mRNA expression was observed to be 

mediated through RIG-I and DDX3 downregulation was established to affect the virus-induced 

IFNβ mRNA expression. Therefore, the effect of DDX3 in regulating IFNβ mRNA expression  
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Figure 5.1 Influenza virus-induced IFNβ expression is mediated through the RIG-I pathway. A) NPTr 
cells were pre-treated with the TBK1/IKKε inhibitor at a concentration of 1 μM or 10 μM or mock-treated with the 
corresponding volume of DMSO for 1 hr. After 1 hr, the cells were infected with SIV/SK virus at an MOI of 1 and 
the inhibitor was present in the media throughout infection. B) NPTr cells were transfected with either siRNA 
specific to TLR3 or with off-target siRNA (SiOT) for 48-52 hrs. Then, the cells were infected with SIV/SK virus at 
an MOI of 1. C) NPTr cells were treated with either siRNA specific to RIG-I or with SiOT for 48-52 hrs. Then, the 
cells were infected with SIV/SK virus at an MOI of 1. (A, B, C) At 16 h.p.i., the cell lysate was collected and RNA 
extraction and reverse transcription performed to generate the cDNA. The cDNA was then used in qPCR 
experiments to determine IFNβ mRNA expression. D) NPTr cells were transfected with either TLR3 siRNA or RIG-
I siRNA, SiOT, or left untreated and 48-52 h.p. siRNA treatment, the cells were treated with 250 ng of naked poly 
I:C.  At 6 h.p. treatment, the cell lysate was collected and RNA extraction and reverse transcription performed. The 
level of IFNβ expression was determined using qPCR with the cDNA from each treatment as template. (E, F) NPTr 
cells transfected with TLR3 siRNA or RIG-I siRNA or SiOT were collected 48-52 hrs post treatment. (E) TLR3 
expression and (F) RIG-I expression was determined using qPCR. Real-time PCR was conducted in triplicate for 
each sample and the mean value was calculated. Final figures represent the results from at least two independent 
experiments and the associated standard deviation is displayed as error bar. Significant differences between 
treatments and controls are represented by an asterisk (P < 0.05) or two asterisks (P < 0.01). Samples were 
considered statistically different with a significance of p < 0.05%. 
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 Figure 5.2 IRF3 phosphorylation and IFNβ mRNA expression is enhanced in DDX3 KD cells. NPTr 
cells were transfected with siRNA specific to DDX3 or SiOT for 48-52 hrs. A) Then, the cells were infected with 
SIV/SK virus at an MOI of 1. At 10 and 12 h.p.i., the cell lysate was collected and subjected to Western blotting 
using antibodies against DDX3, IRF3, Phospho-IRF3, NS1 and β-actin. B) Then, the cells were infected with 
SIV/SK virus at an MOI of 1. At 10 h.p.i., the cell lysate was collected and RNA extraction and reverse transcription 
performed to generate the cDNA. The cDNA was then used in qPCR experiments to determine IFNβ mRNA 
expression. C) Then, the cells were infected with PR8 del NS1 virus at an MOI of 1. At 8 h.p.i., the cell lysate was 
collected and RNA extraction and reverse transcription performed to generate the cDNA. The cDNA was then used 
in qPCR experiments to determine IFNβ mRNA expression. D) Then, the cell lysate was collected and RNA 
extraction and reverse transcription performed to generate the cDNA. The cDNA was then used in qPCR 
experiments to determine DDX3 mRNA expression. Real-time PCR was conducted in triplicate for each sample and 
the mean value was calculated. Final figures represent the results from three independent experiments and the 
associated standard deviation is displayed as error bar. Significant differences between treatments and controls are 
represented by an asterisk (P < 0.05) or two asterisks (P < 0.01). Samples were considered statistically different with 
a significance of p < 0.05%. 
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induced by an alternative RIG-I agonist was examined. Short or LMW poly I:C ranging in size 

from 0.2 – 1 kb, when complexed with a transfection reagent has been reported to trigger IFNβ 

expression preferentially through the RIG-I pathway (108, 255). Therefore, first LMW poly I:C 

(complexed with lipofectamine 2000) was transfected in NPTr cells and the effect of TLR3 and 

RIG-I siRNA knockdown on IFNβ mRNA expression levels was studied. As shown in Fig. 5.3B, 

the TLR3 siRNA and RIG-I siRNA treatment resulted in the efficient knockdown of the 

respective genes. Even though TLR3 downregulation reduced the IFNβ mRNA expression 

levels, the level of decline was much more pronounced in the RIG-I KD cells when compared to 

the TLR3 KD cells (Fig. 5.3A). TLR3 KD resulted in a 30% decrease in the IFNβ mRNA 

expression levels, while RIG-I KD resulted in a 62% decrease in the IFNβ mRNA expression 

levels when compared to the SiOT treated cells. This showed that, the complexed LMW poly I:C 

triggers IFNβ mRNA expression preferentially through the RIG-I pathway. As a result, the effect 

of DDX3 KD on IFNβ mRNA expression induced by complexed LMW poly I:C was examined. 

As shown in Fig. 5.3D, DDX3 siRNA treatment resulted in efficient DDX3 KD. In addition, 

DDX3 downregulation resulted in a significant increase in the IFNβ mRNA expression induced 

by the complexed LMW poly I:C, when compared to the SiOT treated cells (Fig. 5.3C).  

5.4.4 DDX3 overexpression decreases IFNβ promoter activity  

 For additional confirmation of the inhibitory effect of DDX3 on IFNβ expression, DDX3 

was over expressed and IFNβ promoter activity was studied using luciferase reporter assay. IFNβ 

promoter activation during complexed LMW poly I:C treatment was first tested. Expression of 

HA-DDX3 or HA-Vector alone did not cause any significant induction of the IFNβ promoter, 

while treatment with the complexed LMW poly I:C (complexed and transfected with 
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 Figure 5.3 IFNβ mRNA expression mediated through complexed poly I:C. (A,B) NPTr cells were 
treated with TLR3 siRNA, RIG-I siRNA or SiOT for 48-52  hrs. A) The cells were then treated with LMW poly I:C 
complexed with lipofectamine 2000. At 6 h.p. treatment, the cell lysate was collected and RNA extraction and 
reverse transcription performed to generate the cDNA. The cDNA was then used in qPCR experiments to determine 
IFNβ mRNA expression. B) TLR3 siRNA, RIG-I siRNA and SiOT treated cells were collected and RNA extraction 
and reverse transcription performed to generate the cDNA. The cDNA was then used in qPCR experiments to 
determine TLR3 mRNA and RIG-I mRNA expression. (C, D) NPTr cells were transfected with siRNA specific to 
DDX3 or SiOT for 48-52 hrs. C) Then, the cells were treated with LMW poly I:C complexed with lipofectamine 
2000. At 6 h.p. treatment, the cell lysate was collected and RNA extraction and reverse transcription performed to 
generate the cDNA. The cDNA was then used in qPCR experiments to determine IFNβ mRNA expression. D) Then, 
the cell lysate was collected and RNA extraction and reverse transcription performed to generate the cDNA. The 
cDNA was then used in qPCR experiments to determine DDX3 mRNA expression. Real-time PCR was conducted 
in triplicate for each sample and the mean value was calculated. Final figures represent the results from three 
independent experiments and the associated standard deviation is displayed as error bar. Significant differences 
between treatments and controls are represented by an asterisk (P < 0.05) or two asterisks (P < 0.01). Samples were 
considered statistically different with a significance of p < 0.05%. 
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lipofectamine 2000) did result in a robust induction of the IFNβ promoter (Fig. 5.4A). Increasing 

the amount of plasmid expressing DDX3 suppressed the LMW poly I:C-induced IFNβ promoter 

activity significantly in a dose-dependent manner, while the IFNβ promoter activity in the cells 

expressing HA-vector was similar to the mock plasmid transfected cells (Fig. 5.4A). DDX3 

expression level was monitored in the transfected cells by Western blotting using an antibody 

against the HA-tag and as shown in the lower panel of Fig. 5.4A, the DDX3 expression levels 

were robust and they increased with increasing amount of transfected HA-DDX3 plasmid.  

  IFNβ promoter activity induced by PR8 del NS1 virus infection was then tested. A dose-

dependent decline in the IFNβ response was observed upon Flag-DDX3 expression in the virus-

infected cells, while Flag-vector did not affect the IFNβ promoter activity (Fig. 5.4B). DDX3 

expression levels were monitored by Western blotting using a Flag-tag antibody and increasing 

concentrations of the Flag-DDX3 plasmid correlated with increasing expression levels of the 

Flag-DDX3 protein (Fig. 5.4B – lower panel). 

5.4.5 RIG-I and DDX3 bind to LMW poly I:C, but DDX3 is unable to compete with RIG-I 

for binding to poly I:C 

 Both RIG-I and DDX3 are known to bind to poly I:C and dsRNA (145, 240, 413). 

Therefore, I wanted to investigate whether DDX3 could compete with RIG-I for the RNA 

ligands (poly I:C and dsRNA), thereby limiting the recognition of  ligand by RIG-I and in turn 

inhibiting IFNβ production. To test this, experiments were set up to confirm the ability of RIG-I 

and DDX3 to bind to poly I:C. Thus, Flag-RIG-I or Flag-DDX3 were expressed in 293T cells 

and were then purified under native conditions by immunoprecipitation (IP) using Flag antibody 

conjugated to agarose. The lysate and the eluent were subjected to Western blotting using Flag- 
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 Figure 5.4 Effect of DDX3 overexpression on influenza virus and complexed poly I:C-mediated IFNβ 
mRNA expression. 293T cells (A) or NPTr cells (B) were transfected with different plasmids, one containing the 
firefly luciferase gene under the control of an IFNβ promoter and another one containing the renilla luciferase gene 
under the control of a CMV promoter (as a transfection control). A) Besides these plasmids, 293T cells were also 
transfected with plasmids expressing HA-DDX3 or the HA vector with increasing concentrations of the plasmid 
from 0 ng to 80 ng. At 48 hrs post transfection (h.p.t.), the cells were either treated with LMW polyI:C complexed 
with  lipofectamine 2000 or left untreated. At 16 h.p. treatment, the IFNβ promoter activity was determined by 
measuring the luminescence using a luminometer. In order to confirm HA-DDX3 expression, one set of cells were 
collected 48 hrs post transfection and subjected to Western blotting using antibodies against the HA-tag and β-actin. 
β-actin expression was used as loading control. B) Besides these plasmids, NPTr cells were also transfected with 
plasmids expressing Flag-DDX3 or the Flag-vector with increasing concentrations of the plasmid from 0 ng to 160 
ng. At 30 hrs post transfection, the cells were infected with PR8 del NS1 virus at an MOI of 1or left uninfected. At 
16 h.p.i., the IFNβ promoter activity was determined by measuring the luminescence using a luminometer. In order 
to confirm Flag-DDX3 expression, one set of cells were collected 30 hrs post transfection and subjected to Western 
blotting using antibodies against the Flag-tag and β-actin. β-actin expression was used as loading control. Luciferase 
assay was conducted in triplicate for each sample and the mean value was calculated. Final figures represent the 
results from three independent experiments and the associated standard deviation is displayed as error bar. 
Significant differences between treatments and controls are represented by an asterisk (P < 0.05) or two asterisks (P 
< 0.01). Samples were considered statistically different with a significance of p < 0.05%. 
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tag antibody. As shown in Fig. 5.5A, Flag-RIG-I and Flag-DDX3 were successfully expressed in 

the 293T cell-lysate input (lanes 1 and 5), while expression of the proteins were not observed in 

the vector transfected cell lysates (lanes 2 and 6). In addition, immunoprecipitation and elution 

(via competition with Flag peptide) of the two proteins was also successful, as observed from the 

significant enrichment of the two proteins in the eluent (lanes 3 and 7). Either of the purified 

proteins were then incubated with biotin-labelled LMW poly I:C (BPIC) bound to streptavidin 

magnetic beads and subjected to RNA-protein pull down. The poly I:C bound protein complex 

was purified using the streptavidin magnetic beads after extensive washing. BPIC was detected 

in the eluent, showing that BPIC was not washed away and was bound to the streptavidin beads 

throughout the procedure (Fig 5.5B - bottom panels). The proteins in the eluent were then 

subjected to Western blotting with Flag antibody. Both RIG-I and DDX3 were detected in the 

eluent containing BPIC, while neither of the two proteins were present in the eluent when 

unlabelled LMW poly I:C was used as a bait (Fig. 5.5B - top panels). Next, I tested whether 

DDX3 can compete with RIG-I for binding to the LMW poly I:C. Flag-RIG-I and Flag-DDX3 

were purified from 293T cell lysate by IP. The lysate and the eluent were subjected to Western 

blotting using Flag-tag antibody. As shown in Fig. 5.5C, Flag-RIG-I and Flag-DDX3 were 

successfully expressed in the 293T cell-lysate input (lanes 1 and 2), while expression of the 

proteins were not observed in the vector transfected cell lysate (lane 3). In addition, 

immunoprecipitation and elution (via competition with Flag peptide) of the two proteins was also 

successful, as observed from the significant enrichment of the two proteins in the eluent (lanes 4 

and 5). Purified RIG-I or DDX3 was incubated separately with BPIC or RIG-I and increasing 

amounts of DDX3 were incubated together with BPIC and the amount of RIG-I and DDX3 

pulled down along with BPIC in the eluent was observed. If DDX3 competes with RIG-I for 
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poly I:C binding, one would observe an increase in the amount of DDX3 in the BPIC pull-down 

complex corresponding to a decline in the amount of RIG-I in the pull-down complex. However, 

no competition between DDX3 and RIG-I was observed. As shown in Fig 5.5D, DDX3 was 

barely detected in the eluents of biotin-labelled LMW poly I:C (lane 2 and 3), whereas intense 

RIG-I band was readily detected in the eluent (lane 1), indicating that DDX3 has a much lower 

affinity with poly I:C than RIG-I. Meanwhile, the addition of increasing amounts of DDX3 did 

not change RIG-I binding (lane 4 and 5).  

5.4.6 RIG-I binds to influenza vRNA at a much higher affinity than DDX3 

 LMW poly I:C is not the authentic ligand during influenza A virus infection. Therefore, I 

wanted to confirm the above findings with influenza vRNA, which is the true RIG-I ligand 

during influenza A virus infection (444). For this purpose, the vRNA extracted from purified 

PR8 virions (PR8 vRNA) and in vitro transcribed vRNA of the NS gene segment (NS vRNA) 

were tested (Fig. 5.6A). Flag-RIG-I and Flag-DDX3 protein were purified from 293T cell lysates 

by IP with Flag-M2 Agarose (Fig. 5.6B). Biotinylated PR8 vRNA and NS vRNA were incubated 

with the purified Flag-RIG-I or Flag-DDX3 protein and the protein-vRNA complex was purified 

using streptavidin magnetic beads. Both of the biotin-labelled vRNA species bound efficiently to 

the streptavidin beads, since both the biotin-labelled PR8 vRNA and biotin-labelled NS vRNA 

were detected in the eluent of biotin-labelled RNA species (Fig. 5.6C – bottom panel). While 

RIG-I bound to both of the biotin-labelled vRNA species (lane 1 and 3), DDX3 did not bind to 

either of the biotin-labelled vRNA species (lane 5 and 7) (Fig 5.6C – top panel). 
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 Figure 5.5 DDX3 and RIG-I competition assay with LMW poly I:C. (A,C) 293T cells were transfected 
with 1µg of plasmid expressing Flag-DDX3 or Flag-RIG-I or Flag-vector. At 48 h.p.t., cell lysate was collected, 
Flag-DDX3 and Flag-RIG-I were purified using Anti-Flag M2 Agarose. The input cell lysate and the purified 
protein were subjected to Western blotting using  Flag-tag antibody. B) Biotinylated LMW poly I:C or non-labelled 
LMW poly I:C was first incubated with magnetic streptavidin beads and then washed to remove unbound poly I:C. 
The beads were then incubated with purified Flag-DDX3 or Flag- RIG-I, then washed several times to remove the 
unbound protein and the streptavidin bound poly I:C-protein complex was then eluted  with the elution buffer. The 
eluent was then run on a gel and the bound Flag-DDX3 and Flag-RIG-I was then detected by Western blotting using 
Flag-tag antibody. The input poly I:C and eluent were then blotted onto a Hybond membrane, crosslinked by UV 
and detected using Ambion BrightStar BioDetect kit. D) The purified proteins were then mixed together at a ratio of 
1:2 ( lane 4- 100 ng Flag-RIG-I and 140 ng Flag-DDX3) or at a ratio of 1:3 (lane 5 – 100 ng Flag-RIG-I and 210 ng 
Flag-DDX3), Flag-RIG-I alone ( lane 1- 100 ng), Flag-DDX3 alone  at 140 ng (lane 2) or at 210 ng ( lane 3) and 
then incubated with Biotinylated LMW poly I:C. The LMW poly I:C along with any interacting protein was isolated 
using Streptavidin Magnetic Beads. The amount of Flag-tagged protein in the eluent was determined by Western 
blot using an anti-Flag antibody and the eluent was blotted on a HyBond membrane and the biotinylated poly I:C 
present in the eluent was detected using Streptavidin conjugated with IRDye 800CW from Licor. 
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 Figure 5.6 Viral RNA (vRNA) interaction with RIG-I and DDX3. A) Viral RNA was isolated from 
purified PR8 virion using the Qiagen RNeasy mini kit and NS vRNA of SIV/SK-WT virus was in vitro transcribed 
from a NS gene template containing the T7 promoter sequence using the Ambion MaxiScript T7 polymerase kit. 
The RNA was run on a urea-polyacrylamide gel along with a RNA ladder and visualized by staining with SYBR 
Gold. The identity of the bands corresponding to the different vRNA segments (for PR8 vRNA lane) is labelled on 
the right-hand side of the image. B) 293T cells were transfected with 1µg of plasmid expressing Flag-DDX3 or 
Flag-RIG-I or Flag-vector. At 48 h.p.t., cell lysate was collected and Flag-DDX3 and Flag-RIG-I were purified 
using Anti-Flag M2 Agarose. The input cell lysate and the purified protein were subjected to Western blotting using 
antibody against Flag-tag. C) Biotinylated or non-labelled PR8 vRNA, biotinylated or non-labelled NS vRNA was 
first incubated with magnetic streptavidin beads and then washed to remove RNA. The RNA bound beads were then 
incubated with purified Flag-DDX3 or Flag-RIG-I, then washed several times to remove the unbound protein and 
the streptavidin bound poly I:C-protein complex was then eluted with the supplied elution buffer. The eluent was 
then run on a gel and the bound Flag-DDX3 or Flag-RIG-I was then detected by Western blot using antibody against 
Flag-tag. The eluent was also blotted onto a Hybond membrane, crosslinked by UV and the vRNA present in the 
eluent were detected using Streptavidin conjugated with IRDye 800CW from Licor. 
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5.4.7 The overall effect of DDX3 regulation on IFNβ expression and SG formation affects 

PR8 del NS1 virus replication but not WT virus replication 

 Previously, in chapter 4, suppression of virus-induced SG formation was observed in 

DDX3 siRNA treated cells (Fig. 4.7A). Here, we observed an enhancement of virus-induced 

IFNβ expression in DDX3 siRNA treated cells. Even though DDX3-mediated IFNβ inhibition 

should be detrimental to virus replication, we observed an increase in the virus titer of PR8 del 

NS1 virus (chapter 4, Figures 4.7B and 4.7C). The increase in virus replication correlated with 

DDX3 inhibition on SG formation. These results suggest that while the SG regulatory function 

of DDX3 has a dominant role in influencing influenza virus replication, the IFNβ inhibitory 

function of DDX3 has only a minor role in the virus life cycle. 
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5.5 Discussion 

 The innate immune system detects viral infections through the recognition of unique 

molecules in the pathogen or through the recognition of unique molecules generated during 

infection called pathogen associated molecular patterns (PAMPS) (372, 373). Influenza A virus 

is recognized by members of at least three classes of PRRs: the toll-like receptors (TLR3, TLR7 

and TLR8), RIG-I and the NOD-like receptor family member NLRP3 (233). TLR3 and RIG-I 

are the major sensors of influenza A virus infection in epithelial cells and distinct from other 

PRRs, they signal through the activation of TBK1/IKKε (260, 307, 520). Therefore, we tested 

the contribution of the two receptors in IFNβ signalling by using a TBK1/IKKε inhibitor BX795 

(92), which showed that TBK1/IKKε activation does play a major role in virus-induced IFNβ 

induction (Fig. 5.1A). Then, the individual contribution of the two receptors was tested by 

siRNA-mediated knockdown and this showed that the RIG-I receptor and not the TLR3 receptor 

has a major role in virus-IFNβ induction (Figures 5.1B, 5.1C, 5.1E and 5.1F). 

 Many studies have shown that DDX3 enhances the activation of IRF3 and induction of 

IFNβ (183, 413, 472, 497). However, in this study I report that DDX3 inhibits IRF3 activation 

and IFNβ induction (Figures 5.2A, 5.2B, 5.2C, 5.3C, 5.4A and 5.4B). The reason for this 

discrepancy might be due to the multifunctional nature of DDX3 and differences in the cell-type 

and RIG-I ligand used in the studies. DDX3 is a multifunctional protein affecting every step of 

gene expression including transcription, RNA splicing, RNA export and translation (19, 471). 

Importantly, several studies have reported a role for DDX3 in translational regulation (19, 471). 

While initially, it was suggested that DDX3 has an inhibitory role on cap-dependent protein 

translation (485) another study reported that DDX3 does not have any significant effect on 
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general translation (310). In order to explain these contradictory results, it has been suggested 

that the level of DDX3 expression might influence whether it has a positive or negative effect on 

translation and that the overexpression of DDX3 might have a translation repressive effect (471). 

It is also interesting to note the diversity in the mechanisms proposed to explain the role of 

DDX3 in enhancing IFNβ induction. Even though existing studies agree that DDX3 upregulates 

IFNβ induction, there are differences in the mechanisms proposed by these studies to explain this 

enhancing effect. While many studies reported that DDX3 functions through TBK1/IKKε 

interaction to enhance IFNβ induction (183, 472, 497), another study showed that DDX3 does 

not affect TBK1/IKKε-mediated IFNβ induction and suggested a new mechanism where DDX3 

acted as a viral sensor forming a complex with RIG-I/MDA5 and IPS-1 (413). DDX3 is also 

recruited to the IFNβ promoter region, suggesting that it can act as a transcriptional regulator 

(497). Hence, these studies show that DDX3 can influence multiple steps of the IFNβ gene 

expression and IFNβ induction pathway and that the observed phenotype can vary depending on 

experimental conditions such as level of DDX3 expression, cell-type and the ligand used. In line 

with this, the experimental conditions in this work differ considerably from the above described 

studies. The differences include the RIG-I ligand (LMW poly I:C vs poly I:C containing both 

low and high molecular weight species), differences in method of delivery and dosage of poly 

I:C, differences in plasmids and the amount transfected to express DDX3 and cell-type specific 

differences (porcine NPTr vs human cell line). In addition, it is also important to note that these 

studies were accomplished through infection with pathogens other than influenza. Observations 

from the previous study showed that DDX3 interacts with the viral proteins NP and NS1 and 

suggests a regulatory role for DDX3 in influenza induced stress granule (SG) formation (see 

chapter 4). Hence, DDX3 being a multifunctional protein could be utilized in functions and 
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pathways distinctly different from other pathogens through its interaction with viral proteins NS1 

and NP during influenza infection. Therefore, another reason for the contradictory observation 

could be the differences in the life cycle of the pathogens. In this study, attempts were made to 

find out the mechanisms by which DDX3 inhibits IFNβ induction upon virus infection. DDX3 

and RIG-I are both RNA helicases and are known to bind to dsRNA and poly I:C (145, 240, 

413), but unlike RIG-I, DDX3 does not have a signalling domain corresponding to the RIG-I 

CARD domains (480, 496). RIG-I is a well-documented sensor of the viral RNA and poly I:C in 

the cytoplasm, which upon activation induces expression of the type I IFN (177). Therefore, the 

speculation that DDX3 might inhibit RIG-I activation by competing for the RIG-I ligands such 

as poly I:C and viral RNA were tested. However, in vitro experiments clearly demonstrate that 

RIG-I binds LMW poly I:C and influenza vRNA with an affinity much higher than that of DDX3 

(Figures 5.5D and 5.6C). Therefore, it does not seem possible that DDX3 exerts its IFNβ 

inhibitory effect by competing with the RIG-I ligand. However, DDX3 being a multifunctional 

protein could contribute to DDX3-mediated IFNβ inhibition by several other mechanisms. 

DDX3 interacts with the influenza virus proteins NP, NS1 (see chapter 4) and has also been 

shown to form a complex with RIG-I and MAVS (413). In addition, NS1 interacts with RIG-I 

and is a major antagonist of IFNβ induction (378). Therefore, it may be interesting to study the 

interplay between the viral proteins, RIG-I and DDX3 in IFNβ induction. Also of interest would 

be understanding whether DDX3-mediated SG regulation (see chapter 4) has any role in IFNβ 

regulation, since one study has reported SGs as important platforms for viral RNA sensing (408). 

 Besides inhibiting type I IFN production at multiple steps of the IFN induction pathway, 

the influenza NS1 protein also inhibits the function of IFN-induced antiviral proteins (23, 290). 

Viral proteins other than NS1 have also been shown to inhibit IFN induction (180, 231, 551). 
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Therefore, even when IFN transcription is enhanced upon DDX3 downregulation (Figures 5.2B 

and 5.2C), mechanisms still exist to counteract IFNβ protein expression and IFNβ-mediated 

antiviral responses at the post-transcriptional level. This might explain the unresponsive effect of 

DDX3 downregulation and enhanced IFNβ transcription on SIV/SK virus replication (chapter 4, 

Figures 4.7B and 4.7C). However, PR8 del NS1 virus replication was affected by DDX3 

downregulation. Even though DDX3 KD increased PR8 del NS1 virus-induced IFNβ expression 

(Fig. 5.2C), an anticipated reduction in the virus replication was not observed. In contrast, 

increased virus replication of the PR8 del NS1 virus in DDX3 KD cells was observed (chapter 4, 

Figures 4.7B and 4.7C). This could be explained by the multifunctional nature of the DDX3 

protein (19). In this study, DDX3 was observed to be an essential factor of virus-induced stress 

granules (SGs) during PR8 del NS1 virus infection, as DDX3 KD suppressed virus-induced SG 

formation (see chapter 4, Fig. 4.7A). Additionally, DDX3 KD promoted PR8 del NS1 virus 

replication (see chapter 4, Figures 4.7B and 4.7C). Several studies show that SGs possess 

antiviral functions and SG formation is inhibitory to virus replication (272, 381, 409). Thus, 

suppression of SG formation correlated with the increase in PR8 del NS1 virus replication in 

DDX3 siRNA treated cells. DDX3 being a multifunctional protein, it could influence both the 

IFNβ induction and SG formation pathways during influenza virus infection. However, as these 

results suggest, the SG regulatory function of DDX3 might have a much profound effect on virus 

replication than the IFNβ regulatory function of DDX3. 

 In conclusion, the role of DDX3 in regulating virus-induced IFNβ expression has been 

established. DDX3 regulation on influenza induced IFNβ expression occurs upstream of IRF3 

phosphorylation and the mechanism by which it inhibits IFNβ induction requires further study. 

Additionally, it will be interesting to study the phosphorylation status of IRF3, TBK1/IKKε upon 
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DDX3 downregulation and overexpression in LMW poly I:C transfected cells. This will give a 

better insight into the mechanism by which DDX3 inhibits IFNβ induction and to understand 

whether the repressive effect might be mediated at the translational level. 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 

 Influenza A viruses cause frequent epidemics and annual deaths of about 500,000 people 

worldwide (535), an effective prophylactic and therapeutic measure against influenza infection is 

essential. The effectiveness of the vaccines developed each year varies depending on several 

factors and the currently available therapeutic arsenal against influenza virus infections is limited 

to two main classes of drugs, namely the inhibitors of viral neuraminidase (zanamivir and 

oseltamivir)  and of the viral ion channel protein M2 (rimantadine and amantadine) (102, 205). 

The emergence of resistant virus strains to these drugs poses a serious problem for the public 

health and global economy (66, 398). Therefore, there is an urgent need for the discovery of new 

antiviral drugs, which are protected from the virus drug resistance mechanisms. There is a 

growing realisation among the scientific community that the best approach to achieving this aim, 

would be to target cellular host factors instead of targeting the traditional virus factors. While the 

virus-factors are under pressure to mutate when confronted with drugs affecting the virus life 

cycle, host-factors are not. Another significant advantage of this approach is that by targeting 

cellular factors, a broad-spectrum antiviral activity could be achieved, since several viruses may 

depend on the same cellular pathway. Additionally, by targeting cellular factors, there is a 

possibility that existing drugs approved for human disorders could be re-directed for use in 

antiviral therapy.  

 In spite of these advantages, there are also some disadvantages in targeting cellular 

factors. As cellular factors may be critical for proper functioning of the cell and in regulating 

homeostasis, interfering with these processes might lead to cytotoxic and undesirable effects. To 

minimize this undesirable effect, treatment time has to be limited, which makes this approach 
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more suitable for treating acute virus infections such as influenza virus infections. Some of the 

recent studies have been successful in employing approaches to validate drugs targeting host 

factors, in order to achieve antiviral activity against influenza (105, 570). One among them is the 

sialidase drug DAS181, which removes sialic acids on respiratory epithelial cells and prevents 

virus attachment to the receptor (42). Resistance to the drug was minimal and unstable upon 

extensive passaging of influenza virus in the presence of DAS181 (540). Other approaches using 

inhibitors to target cellular proteases and the Raf/MEK/ERK signalling pathway have also been 

demonstrated to be successful in inhibiting virus infection (60, 61, 120). Treatment with 

immunomodulatory drugs targeting the host immune system, such as COX-2 inhibitors and S1P 

agonists have been found to alleviate tissue damage caused by virus-induced cytokines and also 

suppress virus replication (312, 313, 359). Additionally, many other inhibitors that target cellular 

factors are known to affect various stages of the influenza virus life cycle leading to reduced 

virus replication (386). Thus, targeting host proteins could lead to the development of novel and 

broad-spectrum antivirals. Therefore, identification of cellular factors that affect virus replication 

is critical. 

 Many different strategies have been used to identify and study cellular interaction 

partners of viral proteins. One of the earliest and widely used approach is the yeast-two-hybrid 

(Y2H) assay, which was employed by Shapira et al. to study host protein interactions with 10 

major influenza A virus proteins (478). Many of the earliest known cellular factors affecting 

influenza virus replication were discovered using this approach and it is still used in recent 

studies to identify novel virus-host interaction partners (184, 394, 405, 481). Recently, the Y2H 

assay system was used to identify host-factors interacting with NS1 and NEP proteins. Seventy-

nine cellular proteins interacting with NS1 and NEP proteins from 9 different influenza virus 



161 

 

strains were identified (104). However, the disadvantage of using this approach is that only dual 

interactions can be studied and virus-host protein interactions in the context of virus infection or 

in specific protein complexes cannot be studied.  

 Genome wide siRNA screens have also been used to identify cellular factors required for 

viral replication (501, 571). Numerous studies have used the RNAi approach and have been 

critical for expanding the knowledge about the cellular pathways important for virus replication 

(64, 193, 252, 287, 478). Even though RNAi is a powerful method, there are some limitations to 

this approach. High-throughput RNAi screening is restricted by the number of genes covered in 

the siRNA library, the efficiency of knockdown and the inability to study genes that affect cell-

growth and survival. Even though a large amount of data generated through these studies is 

available on the cellular factors involved in virus replication, there is very little overlap among 

the different studies (105, 501, 571). The lack of overlap suggests that these datasets are far from 

being comprehensive and hence, additional studies are needed for identification and validation of 

the viral protein interaction partners. 

 Another approach employed is to isolate protein complexes by affinity tag purification 

using tagged viral protein constructs. The proteins in the isolated complex can then be identified 

using mass spectrometry. Cellular proteins that interact with the influenza vRNP and the 

polymerase complex have been identified using this approach (244, 365). However, the viral 

proteins were expressed artificially and hence the observed interactions may not take place in 

virus-infected cells. It would be ideal to express the tagged viral protein in the context of 

infection, which would need integration of the tag sequence within the virus genome. The 

segmented nature of influenza A virus genome and specific packaging mechanisms of  viral 
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RNA, make incorporation of the affinity tag at either the N- or C-terminus of the influenza A 

virus ORF challenging (118). However, advancements in the understanding of the architecture of 

influenza A virus genome have made possible the generation of recombinant viruses encoding 

affinity-tagged viral proteins for studying viral protein interactions from virus-infected cells 

(324, 326, 441).  

 In this study, a strategy was devised to insert a Strep-tag sequence in NS1 protein in order 

to analyze protein interactions of NS1 occurring during physiological virus replication. The 

flexible and variable nature of the linker region between the RNA-binding domain (RD) and 

effector domain (ED) of NS1 has been demonstrated in several studies. Large scale sequence 

analysis of the NS1 sequence from various influenza A virus strains showed that the amino acid 

residues D74-L77 and K79-R83 in the linker region between the RD and ED of NS1 is highly 

variable (101). Moreover, an X-ray structure study on NS1 observed the region  corresponding to 

residues 75-79 as not well-defined, which shows that the linker region is highly flexible in nature 

(57). This region is amenable for modifications, which was demonstrated by previous studies in 

our lab involving tetracysteine (TC) tag and Strep-tag insertions in NS1 (57, 324, 326). Taking 

advantage of this knowledge, an eight amino acid Strep-tag sequence was inserted in the SK02 

NS1 linker region and a recombinant SK02 virus encoding a Strep-tag NS1 (SIV/SK-544) with 

growth properties and protein expression kinetics similar to the WT virus was successfully 

rescued (Section 3.4.1). This resulted in the introduction of the Strep-tag sequence in NS1 

without affecting the packaging signals or splicing of NS gene segment. Most of the existing 

studies to identify NS1-interacting host partners have been performed with well-established cell 

lines. However, studying NS1-host protein interactions in primary cell lines would yield novel 

interaction partners. The epithelial cells in the respiratory tract serve as the primary sites of viral 
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replication during influenza infection (353). Therefore, epithelial cells from the trachea of 

healthy pigs were isolated. The purity was then confirmed by FACS analysis using a specific 

marker for epithelial cells called cytokeratin (Section 3.4.2). The epithelial cells were then used 

for infection with the recombinant virus. 

 The Strep-tag sequence is engineered to bind with high affinity and reversibly to strep-

tactin, enabling the isolation of  intact protein complexes (464). Thus, SRECs were infected with 

SIV/SK-544 and the presence of Strep-tag sequence in the NS1 protein facilitated the 

purification of an intact NS1-interacting protein complex (Section 3.4.2). The host and viral 

proteins present in the purified NS1 – host protein complex were identified by LC-MS/MS. 

Since NS1 interaction with cellular proteins is critical for its multifunctional nature, the host 

proteins present in the purified complex could in turn provide an understanding of the pathways 

regulated by NS1 during infection. Therefore, DAVID bioinformatics resources was used to 

group proteins in my dataset and identified the pathways enriched by these proteins. Several host 

functions important for virus replication were identified by this analysis and protein-interaction 

networks derived using STRING database. Cytoscape helped visualize the interactions among 

the cellular proteins and NS1 in each group (Section 3.4.3-3.4.6). Thus, bioinformatics analysis 

of the protein dataset provided an insight into the different host functions that may be regulated 

through NS1 during virus infection. Many of the previously known NS1-interacting proteins 

such as PABP1, DHX9, DDX21 and CRKL were identified in this study. Additionally, 92 out of 

the 192 proteins analysed in my dataset were listed as known NS1 interactors in the VirHostNet 

2.0 database, which increased the confidence in my dataset. Meanwhile, some of the well-known 

NS1 binding partners such as p85β and CPSF30 were not identified in the NS1-interacting 

protein complex. The absence of these well-known NS1-interacting partners could be due to the 



164 

 

polymorphisms in the protein sequence of the NS1 used in this study. Examples of these 

polymorphisms playing a role in binding to different cellular partners have been demonstrated in 

other studies (104, 478). 

 SGs are aggregates of  inactive mRNPs enriched in translation initiation factors and 40S 

ribosome subunits (15). SG formation is triggered by a variety of environmental stress conditions 

including viral infection. The stress conditions induce the activation of a variety of different 

eIF2α kinases all of which result in the phosphorylation of eIF2α. This triggers SG formation 

(15). Virus infection commonly activates PKR kinase which in turn phosphorylates eIF2α, 

resulting in the inhibition of translation initiation (350). SGs are generally inhibitory to virus 

replication due to their role in inducing translational arrest. As a result, viruses typically suppress 

SG formation at some point in their life cycle. The mechanisms used by viruses to disrupt SG 

formation are varied. These include: i) cleavage of proteins essential for SG formation, ii) co-

opting of SG proteins to other functions necessary for virus replication and iii) inhibition of PKR 

activation (336). Studies demonstrated that poliovirus protein 3C proteinase cleaves the SG-

nucleating protein G3BP1 and prevents SG formation during the late stages of infection (577); 

HCV redistributes several P-body and SG proteins such as DDX6, DDX3, G3BP1, RCK/p54 and 

Xrn1 to virus induced cytoplasmic lipid droplets, thereby facilitating virus replication and 

restricting SG assembly at the same time (21). Influenza A virus on the other hand inhibits SG 

formation throughout the virus life-cycle by antagonizing PKR activation and thereby preventing 

eIF2α phosphorylation (272). SG inhibition is mediated through the PKR antagonistic function 

of NS1 and influenza viruses with functional defects in NS1 protein are unable to suppress SG 

formation (272, 408). Moreover, two other influenza virus proteins NP and PA-X have also been 
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shown to inhibit both eIF2α-dependent and independent SG formation through unknown 

mechanisms (271). 

 DDX3 was identified as a NS1-interacting partner during virus infection in this study 

(Figures 4.1A and 4.1B). This prompted the study of the function of DDX3 in influenza A virus 

life cycle. Given the fact that DDX3 has been reported to localize in SGs and function as an 

essential factor for SG formation in response to a variety of stresses such as sorbitol, arsenite, 

heat shock, DTT and UV irradiation (486), I set up my research direction to study DDX3’s 

function in regulating influenza A virus infection through SG formation. The interaction of 

DDX3 with NS1 and NP proteins was confirmed by IP experiments either in the context of virus 

infection or with ectopically expressed proteins. Furthermore, the interactions were demonstrated 

to be RNA independent (Section 4.4.1-4.4.2).  Upon immunostaining PR8 del NS1 virus-infected 

cells for DDX3 and the SG marker TIA-1, it was shown that DDX3 does localize in PR8 del 

NS1 virus induced SGs. SGs started to appear from 6 h.p.i. and DDX3 localized in SGs at all the 

time points tested until 11 h.p.i, where SG formation was observed (Section 4.4.4). Strikingly NP 

also formed granules and co-localized with DDX3 and TIA-1 in SGs, which suggested that 

DDX3 and NP interaction occurs in virus-induced SGs. While NP localization in SGs has been 

observed in other studies (271, 381, 408), Onomoto et al. reported that NP localized to the SGs is 

associated with the vRNA and the SGs serve as a platform for vRNA sensing by RIG-I (408). 

However, in this study vRNA was not sequestered in the SGs as demonstrated by FISH analysis, 

suggesting that the NP localized in SGs is not associated with vRNA (Section 4.4.5). 

Additionally, no SG formation was observed in WT virus-infected cells at any of the time points 

tested, which could be explained by the SG inhibitory activity of NS1, possibly through 

preventing PKR phosphorylation (Section 4.4.4 and 4.4.6). SG formation has been reported to 
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suppress influenza virus replication in other studies, based on the observed reduction in NP 

expression intensity and the number of NP expressing cells (272, 381). Whether SG formation 

results in a reduction in the actual virus titers was not tested. In my study, influenza virus titers 

upon DDX3 knockdown were tested. DDX3 downregulation resulted in SG suppression, which 

correlated with increased virus titers in PR8 del NS1 virus-infected cells (Section 4.4.8), 

suggesting that DDX3 is an antiviral protein with a critical role in virus-induced SG formation. 

 In addition to DDX3, another SG component RAP55 has also been reported to be 

involved in SG/P-body (PB) formation and has also been shown to interact with NS1 (381). It 

was shown that NS1 inhibits RAP55 associated SG/P-body formation. The study also reported 

that NS1 and NP colocalize in RAP55 associated P-bodies. Moreover, P-bodies formed during 

the early stages of WT virus infection and retreated as the infection progressed into the late 

stages (381). Similar to SGs, P-bodies contain translationally inactive mRNAs. But, unlike SGs 

they contain the proteins needed for mRNA degradation such as the decapping enzyme DCP1 

and 5’-3’ exonuclease XRN1 (127). While SGs are induced by different stress responses, P-

bodies are present in resting cells as well as in stress induced cells and both granules can increase 

in size and number in response to stress (110, 127). Recent studies suggest that SGs and P-bodies 

physically interact with each other and many components including mRNA and proteins may be 

exchanged between the two compartments (127, 268). Based on the above findings it might be 

interesting to study the role of P-bodies and whether SG and P-body interact and exchange 

components during influenza A virus infection. Interestingly Ded1p, the yeast homologue of 

DDX3 is a component of P-bodies and is involved in the movement of mRNAs between the 

polysomes and P-bodies (40, 41). Moreover, DDX3 has been observed to localize in the interface 

of SGs and P-bodies and has been suggested to be involved in regulating the transfer of 
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molecules between the two granular compartments (486). Therefore, DDX3 could have 

additional roles if a P-body-SG linkage exists during influenza infection.  

 DDX3 has also been reported to interact with different components of the IFNβ induction 

pathway and enhance IFNβ expression (19). DDX3 achieves this through its interaction with 

IKKε, TBK1 and by directly binding to the IFNβ promoter (19). Several viruses have evolved 

mechanisms to counteract this function by employing viral proteins to interact with DDX3 and 

subvert its IFN modulatory activity. HCV core protein, HBV pol protein and VACV K7 protein 

interact with DDX3 and counteract its IFN modulatory function (480). However, interaction of 

these proteins with DDX3 affects virus replication by interfering with other stages of the virus 

life cycle. For example, HCV core protein interaction with DDX3 re-localizes DDX3 to HCV 

assembly sites called lipid droplets and facilitates HCV replication, while HBV pol interaction 

with DDX3 interferes with the initial step of reverse transcription and negatively affects virus 

replication (21, 562). DDX3 also interacts with the 3’UTR of HCV genomic RNA and induces a 

CBP/p300-mediated transcriptional program, which is beneficial for HCV replication (320). 

DDX3 is required for the replication of several other viruses. DDX3 promotes the translation of 

JEV viral RNA and many P-body components including DDX3 are recruited to WNV replication 

sites (76, 317). Many studies have also reported that DDX3 is required for HIV replication and 

this function is mediated by its interaction with viral proteins Rev and Tat (388, 593). These 

studies show that DDX3 can affect virus life cycle through multiple mechanisms and 

underscores the multifunctional nature of the protein. Additionally, it is interesting to note that 

several SG/PB components, such as PABP1, YBX1, STAU1, ILF3, DDX1, FXR1, G3BP1, 

hnRNP K, ATXN2L, MOV10 were identified in the NS1-interacting protein complex (16, 51, 

211). PABP1, YBX1, STAU1, FXR1, hnRNP K have proviral roles in influenza replication (70, 
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129, 258, 542, 610), while DDX1, ILF3 and MOV10 have antiviral functions (565, 605, 607). 

Therefore, it would be interesting to investigate how the functions of these proteins affect SG 

formation and how SG formation affects the functions of these proteins in the context of virus 

replication. 

 Even though the role of DDX3 in regulating virus induced IFN was studied, it remains 

unknown for influenza A virus replication. Thus, the potential contribution of DDX3 to this 

critical host defence pathway was explored. Since TLR3 and RIG-I are the major receptors for 

sensing influenza virus infection (260, 307, 520), the relative contribution of the two pathways to 

influenza virus-induced IFNβ induction was first determined. Gene knockdown assay showed 

that IFNβ expression in influenza virus-infected cells is mediated primarily through the RIG-I 

pathway, while TLR3 contribution to IFNβ induction is minimal (Section 5.4.1). Downregulation 

of DDX3 resulted in increased IRF3 phosphorylation and increased IFNβ mRNA expression in 

WT influenza virus-infected cells. A similar increase in IFNβ expression upon DDX3 

downregulation was also observed in PR8 del NS1 virus-infected cells and LMW poly I:C 

transfected cells, which is a RIG-I agonist (108, 255) (Sections 5.4.2-5.4.3). The ability of LMW 

poly I:C to trigger IFNβ expression preferentially through the RIG-I pathway was also confirmed 

(Section 5.4.3). In agreement with the results observed upon DDX3 downregulation, DDX3 

over-expression suppressed influenza A virus and LMW poly I:C induced IFNβ induction 

(Section 5.4.4). 

 DDX3 and RIG-I are both capable of binding to RNA (145, 240, 413). Therefore, I 

investigated whether DDX3 could exert its IFNβ inhibitory effect by competing with RIG-I for 

its ligand. Competition assays with purified RIG-I, DDX3 and biotinylated LMW poly I:C 
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showed that DDX3 could not compete with RIG-I for binding to poly I:C due to its low affinity 

to the molecule when compared to RIG-I (Section 5.4.5). Studies with biotinylated vRNA also 

showed the binding affinity of RIG-I to vRNA to be much higher than DDX3 (Section 5.4.6). 

Even though, DDX3 downregulation increased influenza A virus induced IFNβ expression, it did 

not have any effect on SIV/SK virus replication, while PR8 del NS1 virus replication was 

enhanced (Sections 4.4.8 and 5.4.7). The ability of NS1 protein to inhibit the function of ISGs 

and inhibit the multiple steps of IFNβ expression pathway (23, 290) might explain the lack of 

any effect on SIV/SK virus replication in DDX3 knockdown cells. While DDX3 does increase 

IFNβ mRNA expression in PR8 del NS1 virus-infected cells, the SG inhibitory function has a 

much more profound effect resulting in the observed increase in virus replication. 

 Many known antiviral components such as OAS, RNaseL, RIG-I, MDA5 and several 

regulators of RIG-I activation including TRIM25, RIPLET and MEX3C have been shown to co-

localize in SGs (409). A recent study also suggests that SGs might act as a platform for 

facilitating the RIG-I sensing of viral RNAs during influenza infection (408). More importantly, 

constitutively expressed DDX3 acts as a viral RNA sensor during the initial stages of infection 

by forming a complex with MAVS and thereby triggering IFNβ production (413). Considering 

the localization of DDX3 in SGs and its known interaction with the components of RIG-I 

signalling pathway, it would be interesting to investigate whether and how DDX3 localization in 

SGs affects RIG-I-mediated IFNβ induction during influenza A virus infection. 

 In order to gain a better understanding of the role of DDX3 in influenza replication, 

several key findings resulting from this study could be explored further as follows. Strong 

interaction between the viral proteins NS1 and NP and DDX3 was observed in this study. 
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Identification of domains in NS1 and NP that are important for DDX3 interaction could help in 

understanding the SG recruitment of NP and NS1 and the role of these proteins in SG formation. 

More importantly, the role of NS1-DDX3 interaction in SG formation and influenza A virus 

replication needs further analysis. In this study, the R38A/K41A mutation in NS1 disrupts 

interaction with DDX3, showing that these two amino acids are important for DDX3 interaction. 

Influenza A virus with this mutation is able to induce PKR phosphorylation and SG formation 

(272). The inability of this mutant NS1 to interact with DDX3 could be utilized to study the role 

of DDX3-NS1 interaction in SG formation, if PKR phosphorylation induced SG formation does 

not occur. Therefore, further studies on DDX3-interacting domains in NS1 protein, could help in 

developing a mutant NS1 capable of inducing PKR phosphorylation but still able to interact with 

DDX3 and vice versa. Such a mutant could help dissect the relative contribution of NS1-DDX3 

interaction in SG recruitment and formation. Even though this study shows that DDX3 antiviral 

activity correlates with SG formation, the mechanism of antiviral activity still needs to be 

determined. Studies on determining the identity of viral RNA components (vRNA, cRNA or 

mRNA) recruited to SGs and the stage of virus life cycle that is negatively impacted by the SG 

formation could provide more information on the antiviral mechanism. As discussed previously, 

P-bodies have been observed during the early stages of WT virus infection. DDX3 could have a 

role in the formation of P-bodies, which possess mRNA silencing activity similar to SGs (127). 

Therefore, studies on the role of P-bodies and the function of DDX3 in P-body formation could 

provide a better understanding on the impact of mRNP granules on influenza A virus replication. 

Moreover, exploring the role of SGs in influenza A virus-induced IFNβ induction may also 

provide knowledge on the antiviral mechanisms of SGs. 
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 In conclusion, successful isolation of an intact NS1 protein complex from primary SREC 

infected with a recombinant Strep-tag NS1 virus was demonstrated. Bioinformatics analysis of 

the protein dataset helped identify important host functions that may be regulated by NS1 during 

influenza A virus infection. DDX3 as an antiviral protein with a critical role in influenza A virus-

induced SG formation was established. DDX3 also regulates IFNβ expression in influenza A 

virus-infected cells, which demonstrates the multifunctional nature of the protein. However, the 

NS1 protein of influenza A virus is able to suppress SG formation in WT virus-infected cells and 

might also counteract the effects of increased IFNβ transcription. This shows the evolutionary 

interplay between the host and virus in developing defense strategies for survival and replication 

of the virus. Additionally, results from this study also suggest that the function of DDX3 in SG 

formation has a strong effect on virus replication when compared to its IFNβ regulatory function. 
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