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Abstract 
 
The Canadian livestock industry generates 150 million tonnes of manure annually and the 

majority of this manure is land applied. This practice allows the manure nutrients to be 

recycled to the soil crop system while improving soil fertility. However, land application 

of manure has the potential to negatively impact soil, water, and air quality if not 

managed properly. Microbial processes transform the manure nutrients into forms that are 

susceptible to leaching or volatilization. Balancing the nutrient loss dynamics from 

fertilized soil is very difficult because the nutrient transformations are affected by the soil 

environment such as air and water content, pH, and labile carbon content. All of these 

soil environmental factors can be influenced by manure application practices such as 

application rate, timing, and manure placement. Knowledge of how these management 

practices affect the soil environment can help producers make management decisions that 

reduce the likelihood of soil, water, and air contamination from manure application.   

 

Very few data exist on how manure application practices affect odour emissions after 

spreading. Therefore, the efficiency of subsurface application in reducing odours from 

manure spreading for both solid and liquid manure was assessed. Flux chambers and 

dynamic dilution olfactometry were used to measure odour emissions from five livestock 

manure species applied at three application rates using surface and subsurface application 

methods. The results indicated that odour concentrations from injected plots were up to 

66% (37% on average) lower than concentrations from broadcast applications. Injection 

seemed to have a larger impact on reducing odours from solid manure than liquid 

manure, mainly due to efficient manure coverage from solid manure injection. Odours 

measured immediately after solid manure applications were also 37% lower than from 

liquid manure applications. In general, odours from both manure types increased with 

higher application rates, but there was little difference in the odours among low, mid, and 

high application rates. The specific odour rate (odour emission rate per kg N applied) 

decreased with application rate due to the reduced surface area available for volatilization 

of compounds with higher application rates. Based on these results, injection of manure is 

an effective way to reduce the odour emissions immediately after spreading, particularly 
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for solid manure. However, other factors associated with manure injection, such as the 

increased power requirement and soil disturbance must be considered when evaluating 

the overall impact of manure injection versus surface application. 

 

The odour data collected in this study described how management practices affected 

odours immediately after spreading. Knowledge of how these practices affect the 

emission rate trend over time is required to apply dispersion models to optimize the 

minimum separation distances for manure spreading activities. The model parameters for 

an existing volatilization model were determined from field and literature data and the 

resulting model allowed the effects of application mode (surface vs. subsurface) and 

manure type (liquid vs. solid) on odour emissions for 48 hours after application to be 

simulated. The effects of injection depth and a coverage factor on emissions were also 

simulated. The modeled peak fluxes from liquid manure applications were higher than 

those for solid manure applications, but the extended duration of odour emissions from 

solid manure resulted in higher cumulative losses from solid manure applications. While 

the application rate had no effect on the initial odour flux, higher application rates 

resulted in higher peak fluxes, higher overall emissions, and longer odour durations for 

both manure types and application methods. Modest injection depths were shown to 

reduce odours from both liquid and solid manure applications compared to surface 

spreading. The percent reductions in cumulative odours due to injection were estimated 

assuming typical coverage factors. The general predictions of the model developed in this 

study agree reasonably well with odour emission rate trends reported in literature. Future 

work should focus on better estimation of the model parameters and the variation of 

effective diffusivity with time and soil conditions.  

 

Greenhouse gas (GHG) emissions from agricultural activities such as land application of 

livestock manure cannot be ignored when assessing overall emissions from 

anthropogenic sources. Like odour emissions, the magnitude of the GHG emissions will 

be influenced by management practices such as manure placement during land 

application. The GHG fluxes resulting from the surface and subsurface application of 

liquid and solid manure were also compared within 24 hours of application using a static 
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chamber and gas chromatography. The results showed that carbon dioxide equivalent 

(CO2-e) fluxes were approximately three times higher from the injected plots than the 

surface plots for both solid and liquid manure. The elevated CO2-e fluxes were mainly 

due to a pronounced increase in N2O fluxes which was likely caused by increased 

denitrification rates. The CO2-e fluxes from the liquid manure applications were also 

approximately three times higher than the CO2-e fluxes from the solid manure 

applications, probably due to higher levels of ammonium available for nitrification and 

subsequent denitrification. The CH4 fluxes were generally low and the treatments had no 

effect. The measured specific fluxes (total flux per kg N applied) remained relatively 

constant with application rate, indicating that, in this study, GHG emissions from manure 

applications were approximately proportional to the amount of land applied manure.  

 

While the data from this study showed that manure type and placement influenced short-

term nitrous oxide (N2O) emissions, manure management practices (particularly slurry 

injection or solid manure incorporation) have the potential to influence long-term 

emissions by changing the magnitude and pattern of the nitrogen cycle in the soil-plant 

system. Management practices also impact the magnitude of other nitrogen losses 

(ammonia volatilization, nitrate leaching) which affect indirect N2O emissions. A model 

that simulates the environmental conditions and nutrient transformations after manure 

application may allow a more reliable prediction of the effect of management practices 

on total GHG emissions. Numerous process-based models have been used to estimate 

N2O emissions as influenced by agricultural practices in Canada.  However, these models 

do not account for enhanced denitrification that potentially exists after slurry injection or 

manure incorporation, resulting in an underestimation of N2O emissions. A simple mass 

balance of nitrogen after application to land showed that enhanced denitrification can 

increase total N2O-N emissions by a factor of 5. By accounting for the increased 

microbial activity, slower oxygen diffusion and higher water filled pore space that exists 

after manure injection, models may better estimate N2O emissions from manure 

application practices. 
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Chapter 1 
 

1.0 Introduction and Objectives 
 

The agriculture and agri-food system is a substantial contributor to the Canadian 

economy, adding 8% to Canada’s gross domestic product (GDP) in 2005 (AAFC, 2008). 

Livestock production (including red meats, dairy and poultry) account for almost half of 

agriculture’s farm cash receipts. In 1996, livestock contributed 7.6 billion dollars to 

Canada’s economy (CFA, 2007). Livestock production is, therefore, a major component 

of the agricultural sector and Canada’s economy. 

 

The largest by-product of livestock production is manure. Approximately 150 million 

tonnes of manure are produced and handled each year in Canada (Statistics Canada, 

2006).  The most common method of manure disposal is to apply it to the land.  If applied 

in a timely fashion, manure is a valuable source of important plant nutrients such as 

nitrogen, phosphorus and potassium.  In addition to offsetting the cost of commercial 

nitrogen fertilizer, adding manure to soil improves soil tilth, organic matter content, and 

water holding capacity.  When applying manure to land, producers must ensure 

maximum utilization of the manure nutrients by crops while minimizing the negative 

environmental impacts.  Without this proper balance, the disposal of livestock waste can 

be costly and negatively impact the soil, water, and air surrounding the application site.  

 

Land application of manure results in complex biological and chemical interactions 

within the soil, water, and air.  While application of manure offers several benefits to the 

soil, poor management practices can result in nutrient, pathogen, and heavy metal build-

up in the topsoil, reducing the soil’s capacity to support healthy plant growth.  Applying 
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manure or slurries to land can also lead to groundwater contamination by nitrate after 

nitrification of the ammonium nitrogen present in the manure.  Excessive application 

rates, application on slopes, or application near bodies of water can lead to surface runoff 

and eutrophication of sloughs and creeks through phosphorus and nitrogen movement 

with the water.  Finally, manure spreading contributes to a large portion of the livestock 

industry’s odour and greenhouse gas emissions.  Although nitrate leaching has received 

much attention as an economic loss, a cause of eutrophication and a health hazard, 

gaseous emissions may eventually prove to be the most serious environmental concern 

(Jenkinson, 2001).  Concerns about clean air and water have resulted in opposition to 

both existing and proposed animal operations (Bickert, 2003).  

 

Livestock odours are a nuisance to neighbours and a potential health hazard to farmers 

and the community.  The negative public perception can also restrict the sustainable 

expansion of the industry since communities are often opposed to intensive livestock 

facility development.  Therefore, recent research efforts have examined technologies and 

practices to reduce odour emissions from the production buildings, manure storages, and 

manure spreading.  Various studies have shown that the best way of reducing ammonia 

volatilization and odour emissions from slurry application is to reduce the air contact of 

the slurry by incorporation or injection into the soil.  However, the efficiency of sub-

surface application in reducing odours from solid manure application has not been 

previously investigated.  Since almost two-thirds of the land receiving manure in Canada 

is applied with solid manure, practices to reduce ammonia volatilization and odour 

emissions from solid manure spreading need to be investigated.   

 

In addition to the issue of odours from manure spreading, greenhouse gas (GHG) 

emissions from organic fertilizer management and application are also a concern.  Up to 

10% of the global emissions of 16.2 Tg/year of nitrous oxide nitrogen (N2O-N) are 

reported to come from the nitrous oxide emitted after fertilizer and manure applications 

(Mosier et al., 1996). Statistics Canada (2006) reported that 36 million hectares of land 

were cropped in 2005 with 25 million hectares receiving commercial fertilizer and 3.4 

million hectares receiving manure. A further 10 to 30% of the global emissions of N2O-N 
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comes from the nitrous oxide (N2O) emitted from non-agricultural soils (Jenkinson, 2001; 

Van Groenigen, 2004).  Cole et al. (1997) suggested that with better application timing 

and management, N2O emissions from manure spreading can be reduced by 50%.  

Because of the magnitude of agricultural N2O emissions and the potential of carbon 

credit trading, greenhouse gas reducing technologies are an attractive option for livestock 

producers.  Injection or incorporation of manure into the soil may reduce odour 

emissions, but sub-surface application of fertilizers has the potential to affect the GHG 

emissions after manure application.  With new plans and strategies being put in place to 

reduce global GHG emissions, it is important to carefully analyze emissions that result 

from all technologies and practices.  

 

Even though there has been much recent research on gaseous emissions from agricultural 

soils, methods of emission measurement are not perfect. The main reason for this is that 

GHG emissions are highly variable in time and space, requiring a high number of 

repetitions from labour-intensive chambers or complex and costly micro-meteorological 

equipment. Similarly, odours are composed of more than 200 volatile organic compounds 

which are sensitive to sampling equipment and techniques. Since gaseous emissions are 

highly dependent on the environmental conditions at the time of collection, sampling 

protocols can also significantly affect the results. In order to improve the reliability of the 

measurements and results, proper sampling equipment and protocols must be used when 

assessing GHG and odour emissions from agricultural soils. 

 

The objective of this work is to provide a scientific comparison of greenhouse gas and 

odour emissions immediately after the application of solid and liquid manure using 

surface and sub-surface application methods.  Mechanistic models are developed to 

describe the patterns in odour emissions over time after application. Existing GHG 

emission models are examined and modifications are suggested to improve their 

estimates and account for the effects of subsurface application. These models will assist 

in predicting the dispersion of odours surrounding application sites and add to our 

understanding of the contribution of manure spreading to national GHG emissions. The 

data will allow the emission reduction potential of land application technologies to be 
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evaluated and may be used as a benchmark for agricultural carbon credit trading. If the 

greenhouse gas and odour emissions and dispersion surrounding livestock operations can 

be reliably predicted, better decisions on siting can be made so as to not cause nuisance 

or health threats  to neighbours while maximizing land-use efficiency and lowering the 

livestock industry’s contribution to agricultural GHG emissions.   

 

The specific objectives of this work include: 

� evaluating existing equipment and protocols for emission determination following 

land application of manures and, if required, developing new protocols and 

equipment for sample collection, 

� evaluating the relative odour and GHG emissions from various types of solid and 

liquid manure with both surface and sub-surface application, 

� developing and validating a mechanistic model for the prediction of the odour 

emission rates following land application of liquid and solid manure, and 

� reviewing the suitability of existing GHG emission models for the prediction of 

emissions following surface and subsurface application of manure. 

 

This thesis is organized into five independent papers.  Chapter 2 outlines manure 

application practices and associated environmental considerations.  Chapter 3 reports on 

the assessment of odour emissions measured from manure spreading trials while Chapter 

4 covers GHG emissions from manure spreading trials in Saskatchewan.  The 

development of a mechanistic model to predict the odour emission rate trend over time 

after application is covered in Chapter 5 and Chapter 6 includes the GHG emission model 

review. Finally, Chapter 7 presents the general conclusions and recommendations drawn 

from this work. 
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Chapter 2 
 

2.0 The Environmental Impact of Manure Spreading 
 

When properly managed, land application of manure is an environmentally responsible 

way to recycle manure nutrients and improve soil quality. Organic fertilizers have several 

benefits over synthetic fertilizers, including increasing the organic matter content and 

microbial activity in the soil and maintaining the soil’s ability to recycle nutrients. 

However, poor management practices have the potential to negatively influence the soil, 

water and air quality surrounding application sites. Over-application can result in nutrient 

and heavy metal build up in the soil or nutrient contamination of surface and ground 

water sources. The timing of manure application can also promote leachate losses as well 

as transformations that lead to gaseous losses of nitrogen compounds. Manure placement 

can enhance nutrient transformations such as denitrification by placing the nitrate and 

carbon rich material in partially anaerobic conditions. Enhanced denitrification may 

result in higher emissions of nitrous oxide. All manure management activities such as 

manure storage and land application have the potential to impact the microbial 

environment in the soil which affects the transformations of the nutrients in the manure 

and soil. Specific forms of nitrogen such as nitrate and ammonia are more susceptible to 

leaching or volatilization, increasing the risk of environmental contamination. Proper 

management of these manure management activities can minimize the risk and promote 

manure application as an environmentally sustainable practice. 
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2.1 Introduction  
 

Manure has been used for centuries as a fertilizer for crops and a conditioner for soil. In 

the early 1900’s, animal manures were viewed as a valuable by-product from livestock 

production since application to the land provided nutrients for the soil and crop and 

improved the soil tilth by increasing the organic matter content, reducing bulk density 

and improving water holding capacity. However, estimating nutrient application when 

spreading manure was a difficult task, so when mineral fertilizers were introduced during 

the 1940’s, farmers preferred this convenient and inexpensive alternative to animal 

manure. Animal manure, once viewed as an important soil conditioner and a source of 

crop nutrients, began to be viewed as a waste and potential pollutant (Bickert, 2003). 

Recently, environmental concerns, high nitrogen prices, the desire to improve topsoil 

conditions, and improvements to manure handling equipment have brought manure 

application back to the forefront as a viable alternative to synthetic fertilizer use. In order 

to minimize the adverse environmental impacts of manure application, management 

practices must consider proper methods of application and application rates. 

 

The challenge with treating manure as a fertilizer is its heterogeneous nature. 

Additionally, the relative concentration of the inorganic nutrients in livestock manure is 

much lower than commercial fertilizers, resulting in larger quantities being required for 

soil-crop systems (Laguë et al, 2005).  Handling large quantities of non-homogenous 

material can be quite challenging and costly. Because livestock manure contains both 

inorganic and organic forms of nitrogen, utilization and losses after land application are 

more complex than for synthetic fertilizers (Laguë et al., 2005). Furthermore, the 

nutrients in manure are usually not proportional to the nutrient requirements of the soil 

and the nutrient content of manure can vary between sources (Schoenau and Assefa, 

2004; Laguë et al., 2005; Schoenau, 2006). Uniform application can be a challenge 

because of manure’s heterogeneity, often resulting in over and under application of 

nutrients in the same field. Uniform application of liquid manure is generally easier to 

achieve than uniform application of solid manure due to the ability to pump and meter 
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liquid manure. Improved handling and distribution uniformity of solid manure was 

discussed in Laguë et al. (2006).  

 

Manure is handled and applied in the form in which it exists on the farm. Solid, semi-

solid or liquid manures are common, depending on the manure management system and 

type of animal. The total area in Canada applied with solid manure is twice as high as the 

total area applied with liquid manure (Statistics Canada, 2006, refer to Table 1.1). 

Generally, liquid manures can be applied quite evenly and with more control over the 

application rate due to its ability to be pumped and metered. Liquid manure can be 

applied using all of four techniques (broadcast surface application, banded surface 

application, direct injection and incorporation (Laguë et al., 2005)), but solid manure 

application is currently limited to broadcast surface application and incorporation. Recent 

work has resulted in manure prototype applicators to band apply and inject solid and 

semi-solid manure (Khalilian et al., 2002; Glancey and Adams, 1996; Laguë et al., 2008). 

Since solid manure application is common in Canada, environmentally sustainable 

methods of solid manure application are required.  

 

Choosing an application rate is a balancing act between time and energy efficiency and 

applying the appropriate amount of nutrients. Application rates should be based on the 

nutrient requirements of soil (considering residual nutrients, expected yield of crop, 

previous applications of manure, crop residues, etc), the nutrient content of the manure, 

and the application method. Typical crops grown in the prairies require between 50 and 

100 kg N per hectare for optimum growth, with lesser and varying amounts of other 

nutrients such as phosphorus (P), potassium (K) and sulphur (S). To reduce time spent in 

the field and soil compaction effects, farmers may apply high rates of manure once every 

two or three years rather than low rates once every year. While this is a common practice 

in the Canadian Prairies, repeated excessive application rates can exceed the nutrient 

requirements of the soil by two to three times in the application year, increasing the risk 

of contamination of the receiving environment (Schoenau and Davis, 2006). 
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Even with these economic limitations and physical challenges, manure application to land 

is a very common practice.  Virtually all of the 150 million tonnes of manure produced 

annually in Canada were applied to 3.5 million hectares of land in 2005 (Statistics 

Canada, 2006). Relatively small amounts of manure are used for energy production (i.e. 

biogas from anaerobic digesters), but even anaerobic digesters produce a sludge waste 

that is often land applied. A summary of the area applied with manure and the types of 

manure applied in Canada and Saskatchewan is presented in Table 2.1.  While 3.4 million 

hectares of land received manure N, just over 25 million hectares received commercial 

fertilizer (Statistics Canada, 2006). Hutchinson et al. (2007) reported that commercial 

fertilizer application represented 1.6 million tonnes of N input per year while animal 

manure application represented 375,000 tonnes of N input per year.  

 

Table 2.1.  Summary of land area applied with manure in Canada and Saskatchewan (Source: 

Statistics Canada, 2006). 

 Area applied in Canada (ha) Area applied in SK (ha) 

Composted manure1  
(incorporated) 

466,744 83,036 

Composted manure (not 
incorporated) 

223,777 32,330 

Solid manure (incorporated)2 948,047 163,905 
Solid manure (not incorporated) 656,370 83,097 
Liquid manure (injected) 617,687 38,894 
Liquid manure (surface) 465,373 6,161 
Liquid manure (irrigated) 21,484 919 
Total 3,399,482 408,342 

Total solid 2,294,938 (67.5%) 362,368 (88.7%) 
Total liquid 1,104,544 (32.5%) 45,974 (11.3%) 
Total surface applied 1,367,004 (40.2%) 122,507 (30%) 
Total sub-surface applied3 2,032,478 (59.8%) 285,835 (70%) 

1 “Composted” manure presumably refers to stockpiled solid manure from pen clean outs.  
2 Solid manure incorporated: majority was incorporated more than 7 days after application (i.e. during seeding or seed 

preparation). 
3 Total sub-surface applied includes incorporated solid manure and injected liquid manure. 

 

The vast area to which manure is applied every year means there is a high risk of 

extensive environmental damage if the manure is not applied properly. This paper 

discusses manure application practices such as timing, rates and modes of application and 

their impact on the soil, water and air surrounding the application site. Since the 

environmental impacts of manure application are highly dependent on nutrient dynamics, 

the microbial activity that drives nutrient transformations is discussed first. 
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2.2 Microbial activity and nutrient cycling 
 

The impacts of manure application on soil, water and air quality are dictated by the 

nutrient transformations and nutrient movement that follow manure application to the 

soil. The majority of nutrient transformations in the soil are performed by the abundant 

microbial population. Microbes survive and gain energy by breaking the carbon bonds of 

dissolved organic compounds, transferring electrons in the process (Li, 2007). All 

nutrients required for plant and microbial growth (nitrogen, carbon, phosphorus, sulphur, 

etc.) are abundantly available in most manures and undergo complex transformations 

after application due to these electron transfers. Grant et al. (2006) summarized the 

important microbial transformations that occur in soil for the prediction of nitrous oxide 

(N2O) emissions. These include: 

� mineralization and immobilization of ammonium by numerous microbial 

populations, 

� oxidation of dissolved organic carbon and reduction of oxygen by 

heterotrophs, 

� oxidation of dissolved organic carbon and reduction of nitrate, nitrite and N2O 

by denitrifiers, 

� oxidation of ammonium and reduction of oxygen by nitrifiers, 

� oxidation of nitrite and reduction of oxygen by nitrifiers, 

� oxidation of ammonium and reduction of nitrite by nitrifiers, 

� uptake of ammonium and reduction of oxygen by roots and mycorrhizae, and 

� cation exchange and ion pairing of ammonium. 

The basic transformations of nitrogen and carbon are most important when 

examining the environmental impacts of manure application and are discussed further. 

 

2.2.1 Nitrogen Transformations 

 

The nitrogen cycle in Figure 2.1 illustrates the complexity of nitrogen transformations 

which involve different microbial populations for each stage. Chemical transformations 
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of nitrogen such as nitrification, denitrification, mineralization, and N-fixation are 

performed by a variety of soil-inhabiting organisms. Physical transformations of N 

include several gaseous forms which move freely between soil and the atmosphere.  

 

 

Figure 2.1. The nitrogen cycle. (Reproduced with permission from Johnson et al. 2005).  

 

Although the nitrogen cycle has no “starting” point, nitrogen transformations can be 

examined by beginning with the application of organic and inorganic nitrogen (nitrate or 

ammonium) in the form of manure. After application to the soil, organic nitrogen is 

transformed to ammonium by soil microbes via mineralization, ammonium nitrogen is 

transformed to nitrite and nitrate by nitrification and some nitrate nitrogen is transformed 

to nitrogen gas by denitrification. Nitrous oxide is a by-product of both nitrification and 

denitrification (Watanabe et al., 1997).  

 

Ammonium is the plant available form of nitrogen that is taken up and synthesized by 

plants. Nitrate can also be utilized by plants, but since nitrate is negatively charged, it is 
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repelled by the negatively charged soil particles. This means nitrate nitrogen is 

susceptible to leaching into the groundwater. Nitrate rich water is a danger to human and 

animal health because if it enters the bloodstream it can block the blood’s ability to 

absorb oxygen. Another form of nitrogen, nitrous oxide, is recognized as a potent 

greenhouse gas with a global warming potential that is approximately 300 times higher 

than carbon dioxide over a 100 year time span (IPCC, 2007). Nitrous oxide is also known 

to react with stratospheric ozone and contributes to increased UV-B intensity at the 

earth’s surface (Socolow, 1999 in: Hutchinson et al., 2007). Since nitrate and nitrous 

oxide are the environmentally hazardous forms of nitrogen, the processes that have the 

potential to negatively impact the environment after manure application are nitrification 

and denitrification.  

 

Nitrification is the biological oxidation of ammonium to nitrate with nitrite as an 

intermediate (Bremner, 1997). Relatively small amounts of N2O are a byproduct of the 

nitrification reaction (Schmid et al., 2001). Nitrous oxide production during nitrification 

is thought to be produced when the nitrifiers are under stress (Lemke et al., 2009). 

Autotrophic microbes are largely, if not entirely, responsible for nitrification in most soils 

(US EPA, 2002). Various groups of heterotrophic bacteria and fungi can also carry out 

nitrification, although at a slower rate than autotrophic organisms (US EPA, 2002). The 

most frequently identified genus of ammonia oxidizing bacteria includes Nitrosomonas 

while the nitrite oxidizing bacteria includes Nitrobacter. The first stage of nitrification 

requires oxygen to oxidize the ammonia molecules to nitrite (US EPA, 2002). 

First stage of nitrification (Nitrosomonas): 

NH3 (or NH4
+
) + 02 � NO2

-
 + 3H

+
 + 2e

-
 

Second stage of nitrification (Nitrobacter): 

NO2
-
 + H2O � NO3

-
 + 2H

+
 + 2e

-
 

 

Nitrification may also lead to N2O production during oxidation of NH4
+, possibly as a 

response to NO2
- accumulation (Anderson and Levine, 1986 in: Petersen, 1999). 
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The breakdown of dissolved organic carbon (DOC) requires the transfer of electrons from 

the DOC to an electron acceptor. Since oxygen has a low Gibbs free energy value, it is 

the first candidate as an electron acceptor (Li, 2007). In oxygen limiting environments, 

microbes with the alternative capacity to reduce N oxides will use the chemically 

available oxygen in surrounding nitrate as an electron acceptor to reduce nitrite and 

nitrate to nitrogen gas. This is known as denitrification. 

 

Denitrification is the microbial reduction of nitrate successively to nitrite and then to the 

gases NO, N2O and N2 (NRCS, 2007). If the intermediate product N2O is able to escape 

from the anaerobic microsites before it has been further reduced to dinitrogen, a net 

emission of N2O will occur (Li, 2007). A wide range of heterotrophic bacteria and fungi 

are able to reduce NO3 and NO2 to N2O or N2 during denitrification under anaerobic 

conditions (Bateman and Baggs, 2005).  

 

The key factors that drive nitrification and denitrification are soil pH, soil temperature, 

ammonium and nitrate concentrations, levels of oxygen, amount of organic matter 

available to the denitrifying bacteria, and labile carbon content (Bremner, 1997). Other 

factors include water holding capacity of soil, irrigation practices, fertilizer rate and type, 

tillage practice, soil type, vegetation, land use practices and use of chemicals (Freney, 

1997). Hosen et al. (2000) also included factors such as soil aeration, soil water content, 

type of inorganic nitrogen (ammonium vs nitrate), soil types, soil texture, soil tillage, 

organic material availability, crops and vegetation, temperature and season. Basically, 

any factor that affects the amount of substrate available to microbes, their environment 

and ultimately their activity will influence nitrogen transformations. The factors that are 

most commonly affected by manure application practices are the oxygen and carbon 

contents of the manure and soil and the type of nitrogen available in the manure. 

 

Nitrification and denitrification can occur simultaneously in soils, although the rate of the 

two processes depends strongly on the soil oxygen content and the availability of organic 

material that can be utilized by denitrifiers for reduction of nitrate. Early work surmised 

that all of the N2O evolved from soils was produced through reduction of nitrate by 
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denitrifying microorganisms under anaerobic conditions (Meng et al., 2005). But now it 

is understood that nitrifying microbes also contribute to emissions of N2O from soils. 

Even so, the majority of N2O emissions from soils results from denitrification activity. 

 

The level of oxygen where denitrifiers take over from nitrifiers in various soil types has 

been examined by studying the effect of water filled pore space (WFPS) on nitrification 

and denitrification activity. WFPS represents the ratio of total pore space filled by water 

and is used to compare oxygen content rather than moisture content since different soil 

textures will have different volumes of pore space available for water and air. The WFPS 

for a coarse soil can be directly compared to the WFPS of a fine soil.  

 

At low WFPS (approximately 20%), microbial activity may be limited by substrate 

diffusion and water availability (Bateman and Baggs, 2005). However, as WFPS 

increases beyond approximately 60%, oxygen diffusion into the soil is restricted and 

anaerobic conditions are developed, promoting denitrification activity. Bateman and 

Baggs (2005) compared N2O production during denitrification, autotrophic nitrification 

and heterotrophic nitrification in a fertilized silt loam soil with a range of WFPS from 20 

to 70%. At 70% WFPS, all of the N2O emitted was produced during denitrification, but 

nitrification was the main process producing N2O at 35-60% WFPS. Linn and Doran 

(1984) also identified increased anaerobic microbial activity above 60% WFPS. Bateman 

and Baggs (2005) stated that aerobic denitrification was the predominant N2O producing 

process at water filled pore spaces as low as 20%. During aerobic denitrification, the first 

reduction step is not inhibited by oxygen unlike the membrane bound nitrate reductase of 

anaerobic denitrification (Bateman and Baggs, 2005). It was also noted that anaerobic 

denitrification may have been occurring in anaerobic microsites at this low WFPS 

(Bateman and Baggs, 2005).  

 

The type of applied nitrogen (NO3, NH4 or organic N) influences nitrification and 

denitrification since organic nitrogen, which is abundant in manure fertilizers, often also 

contains easily available carbon which may serve as substrate for denitrifying bacteria 

(Van Groenigen, 2004). Similarly, the type of land use can influence the transformations 
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during nitrification and denitrification because intensively cultivated low organic matter 

soils typically have less readily available carbon substrates for denitrifying bacteria than 

soils of higher organic matter content (Van Groenigen, 2004).  

  

2.2.2 Carbon Transformations 

 

Carbon compounds are abundant in both the soil and applied manure and are a source of 

energy for the microbial population. Autotrophic microbes (the majority of the nitrifiers) 

can use carbon dioxide (CO2) as a carbon (food) source while heterotrophic microbes (the 

majority of the denitrifiers) use organic molecules as a carbon source.  After application, 

the carbon in manure may be mineralized into CO2 or converted to methane (CH4) 

(NRCS, 2007). Bacteria and fungi in the soil mineralize carbon into CO2 under aerobic 

conditions and methanogens produce CH4 in very oxygen limited conditions. Under 

aerobic conditions, most soil microbes can use oxygen as an electron acceptor and break 

down the dissolved organic compounds and release CO2 to the atmosphere (Li, 2007). 

Some of the CO2 may be retained in soil gases and some of the carbon is bound into the 

soil as humic acid (NRCS, 2007). Since microbes that break down carbon also require 

nitrogen for production and growth, available nitrogen can become immobilized and is 

not usable by plants if there is an abundance of available carbon present.  

 

Powlson et al. (1997) noted that net methane fluxes are determined by the balance 

between production (by methanogenic bacteria) and consumption (by methanotrophic 

bacteria). Methanogenic bacteria are very strict anaerobes (Knowles, 1993) while 

methanotrophic bacteria are aerobic and have the ability to use methane as their sole 

carbon and energy source (Brigmon, 2001).  Both the production and consumption of 

methane may occur in the same soils (i.e.: production in an anaerobic zone below the 

water table or in microsites, and consumption in aerobic layers or microsites) (Powlson et 

al., 1997). Much of the methane generated in soil is oxidized before it reaches the 

atmosphere. In the soil, methane is oxidized to CO2 or assimilated into the microbial 

biomass, but the sink strength and carbon transformations are affected by land 

management, nitrogen fertilizers and soil pH (Powlson et al. 1997). 
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Nutrient transformations result in forms of nitrogen and carbon that are susceptible to 

various forms of transport including runoff, leaching or volatilization.  Nutrient losses 

mean fewer nutrients for the plants and an increased risk of environmental contamination. 

The risk of nutrient losses can be limited by applying the correct amount of nutrients 

required by the crop and applying them when and where the plants can effectively utilize 

them.  

 

2.3 Environmental Impacts of Manure Application 
 

When properly managed, land application is an environmentally responsible way to 

recycle manure nutrients. However, focusing only on nutrient recycling from manure 

application can result in the effects of other effluent constituents, such as microbial 

pathogens, heavy metals, and odorants being overlooked (Wang et al., 2004). Therefore, 

care must be taken to avoid nutrient overload which may have negative environmental 

impacts on the soil, water and air surrounding application sites. To avoid environmental 

risks, the most important factors to consider are the timing and rate of the organic 

fertilizer application. Matching application rates with the requirements of the soil and 

crop and applying the nutrients when the crop will use utilize them most efficiently 

dramatically reduces the risk of nutrient build-up, runoff and excessive gas emissions. 

Other considerations that impact the environmental risk of manure application include the 

type of manure, method of application, soil and weather conditions, and the type of 

cropping system. The following sections discuss these considerations in the context of 

their impacts on the soil, water and air quality surrounding application sites. 

 

2.3.1 Impacts on Soil 

 

The nutrient value of manure means this resource can be used to offset the cost of 

synthetic fertilizers. But manure and other organic amendments provide other benefits to 

the soil such as improved soil tilth and quality that are not always immediately apparent.  
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However, there are some detrimental effects such as nutrient build up that must be 

managed through proper timing and application rates (Schoenau and Assefa, 2004). 

 

Adding manure and other organic fertilizers to soil promotes the development of more 

stable aggregates by increasing the organic matter content. More stable aggregates reduce 

losses to wind and water erosion and improves soil aeration and water holding capacity. 

Organic fertilizers have also been shown to reduce bulk density of soil and hardpan over 

time (Schoenau and Assefa, 2004). These benefits lead not only to increased yield, but 

also improved soil quality, an important and long-term goal of agricultural producers. 

 

While comparing the effects of organic fertilizer application with mineral fertilizer 

application, researchers have discovered that organic manure application resulted in 

higher soil organic carbon and increased the soil’s ability to sequester carbon (Ding et al., 

2007). Almost all studies comparing manure application with no fertilizer application saw 

increased levels of organic carbon and total nitrogen in the top soil layer (Kingery et al., 

1994). In addition to increasing nutrient levels in the soil, carbon and nitrogen 

mineralization and transformation rates were generally higher in soils applied with 

organic fertilizer than in soils applied with mineral fertilizers (Flavel and Murphy, 2006; 

Ding et al., 2007), generally resulting in an improved environment for plant growth if 

these transformations occur when the plants require them. Applying manure also tends to 

shift soil pH towards neutrality, whether in acidic or alkaline soils, thus improving 

nutrient availability (Schoenau and Davis, 2006). As manure applications improve the 

environment for plant growth, they may also improve conditions for beneficial 

microorganisms, such as those that mineralize N into plant available forms (Schoenau 

and Davis, 2006). In a long term study of the effects of organic and inorganic (mineral) 

nitrogen fertilizers, Meng et al (2005) noted that manured soils had higher organic C and 

N contents but lower pH and bulk densities than soils that had received various mineral 

fertilizers. 

 

Application of commercial inorganic fertilizers like anhydrous ammonia, urea and 

ammonium nitrate allow more precise application of nutrients, but organic fertilizers 
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offer the benefit of “slow release” nutrients. The nutrients in organic materials like 

animal manures and compost are present in both organic and inorganic forms. Inorganic 

forms are usually immediately available to plants while the organic forms break down 

over time and become available to the plants after application. The release may not be 

complete until several years after application. While the ammonium N in manure may be 

considered entirely available for plant utilization, only a portion of the organic N (20-

30%) will mineralize over the growing season (Qian and Schoenau 2000a in: Schoenau 

and Davis, 2006). This “slow-release” of nutrients results in reduced rates of 

supplemental fertilizers for several years after the use of organic materials. Along with 

providing a direct source of carbon for soil organisms, organic amendments provide an 

indirect carbon source via increased plant growth and plant residue returns (Bunemann et 

al., 2006). In the end, organic fertilizers help soil provide a better environment for plant 

growth and these effects are longer lasting than with the use of commercial fertilizers.  

 

Of course, there are some cautions when applying manure. The nutrient content of 

organic fertilizers is highly variable, of relatively low concentration and often not in the 

relative proportions required by plants. Adding to this problem is the fact that organic 

fertilizers are heterogeneous, making it almost impossible to evenly apply the nutrients 

across the field. In addition, some organic materials are treated as a waste product and 

applying the material to the field is a means of disposing of the material, resulting in 

application rates that greatly exceed the nutrient requirements of the plants. If the 

nutrients applied to the soil are not used by the crop they will accumulate in the soil. 

Numerous studies have reported on the effects of elevated phosphorus, potassium, 

calcium, and magnesium contents in the top layer of the soil after repeated and long-term 

application of manures (Wang et al., 2004; Kingery et al., 1994). With some organic 

materials, such as biosolids or coal combustion by-products, heavy metal buildup in the 

soil can also cause concern (Shumann and Summer, 2004). Buildup of nutrients and 

heavy metals in the soil can result in plant toxicity or leaching and contamination of 

water sources in the vicinity of the application site.  
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The easiest way to avoid nutrient accumulation in the soil is to match the application of 

the nutrients to the requirements of the soil and crop. By testing the nutrient composition 

of the manure and soil and predicting the nutrient requirement of the crop, over-

application may be avoided. However, the nutrient balance in organic materials is not in 

the same proportion required by most crops so over or under-application of at least one 

nutrient is unavoidable. In the past, manure application rates have been chosen to meet 

the nitrogen requirements of the crop. But this often results in the over-application of 

phosphorus, resulting in phosphorous accumulation in the soil (Hooda et al., 2001 and 

Wang et al., 2004) which can result in eutrophication of surface waters. Application rates 

that meet the phosphorous requirement of the crop can often result in under-application 

of nitrogen, requiring supplemental application of a concentrated nitrogen source. Osei et 

al. (2000) concluded that moving from nitrogen to phosphorus-based manure application 

rates could significantly reduce phosphorus build-up at moderate cost to producers. Even 

greater phosphorus load reductions could be realized by composting the organic material 

before application, but the composting process results in higher costs to producers (Osei, 

et al., 2000). Phosphorus-based application rates often require supplemental N 

application and larger areas are required to dispose of all available manure. Sometimes 

the amount of land required for P-based application rates is not available or economically 

feasible. 

 

The method of application can also influence the impact of organic fertilizer application 

on soil quality. Subsurface application (injection or incorporation) disturbs the soil which 

can be either beneficial or detrimental, depending on the existing soil conditions. As 

already discussed, the concentration of nutrients in organic fertilizers is relatively low so 

a large volume of the material is required to meet nutrient requirements. Therefore, 

subsurface application of manure requires significant disturbance of the soil to 

accommodate the large volume of material. Heavy equipment traffic on sensitive soils 

may also lead to excessive soil compaction (McBride et al., 2000 in: Lague et al., 2005). 

Reduced tillage operations are favoured for soils at high risk of wind or water erosion so 

subsurface application of heterogeneous organic fertilizers may not be recommended in 

some cases (Laguë et al., 2005). On the other hand, injection or incorporation of organic 
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fertilizers can be useful for soil reclamation purposes by reducing hardpan and the bulk 

density of the topsoil. Furthermore, subsurface application results in better nutrient 

placement and Chen et al. (2001) reported an increase in yield due to injection of liquid 

manure because the nutrients present in the manure were more readily available to the 

plants. Mooleki et al. (2002a) (in: Schoenau and Davis, 2006) also concluded that, 

regardless of opener type, injecting the manure in bands gave higher crop yield and N 

recovery compared with broadcasted and incorporated treatments due to improved 

placement of nutrients. Finally, the level of soil disturbance can affect the size and 

orientation of the macropores in the topsoil, influencing the ability of water to flow 

through the soil.  

 

2.3.2 Impacts on Water 

 

Nutrient build-up in the soil can be toxic or harmful to plants, but an even larger danger is 

the potential for leaching or runoff and subsequent surface and ground water 

contamination. Nitrate leaching, phosphorus accumulation, eutrophication of surface 

waters, and pathogen and bacterial contamination of groundwater have all been reported 

as a result of poor manure management and land application practices. Water 

contamination poses serious human and animal health risks. Again, matching application 

rates and timing to the requirements of the soil and crop is critical to reduce the risk of 

environmental hazards. Other important considerations that impact the risk of water 

contamination after organic fertilizer application are the time between application and a 

rainfall event, soil conditions, topography, and the mode of application. 

 

The timing of application plays a large role in protecting water quality when using 

manure as a fertilizer. If the nutrients are applied in the spring or summer when they will 

be quickly used by the crop, there is little chance for leaching or runoff. Fall applications 

may be convenient to have an empty manure storage for winter, but the nutrients will not 

be utilized until spring, increasing the amount of time for nutrient transformations and 

losses. Winter applications to frozen soil are problematic because the nutrients stay on the 
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soil surface until spring thaw where spring runoff is likely to carry away a large portion 

of the nutrients and deposit them in nearby bodies of water (Muller et al., 1997 in: Webb 

et al., 2001; Wagner-Riddle et al., 1998). Spring applications are most desirable since the 

nutrients can be quickly used by the germinating crop. However, the higher soil 

temperatures in spring result in high levels of microbial activity, increasing the rate of 

nutrient transformations that promote nutrient losses.  

 

Application to soil immediately after or before a large rainfall event is also a risk for 

water contamination. Application after a rainfall when the topsoil may be saturated can 

increase the risk of runoff as infiltration of nutrients will be slowed. Rainfall can wash 

away nutrients on the surface or force them below the root zone and pose a major risk of 

bacterial and contamination of groundwater (Joy et al., 1998). Smith et al. (2007) 

suggested that organic fertilizers might be more environmentally sustainable than 

inorganic fertilizers, provided runoff events do not occur soon after application.  

 

The amount of contaminants available for leaching or runoff is obviously related to the 

application rate. In some areas, it is quite common to double or triple the recommended 

application rate based on N requirements and apply every 2 or 3 years instead of 

annually. However, in an experiment that doubled the recommended application rate of 

hen manure, Flavel and Murphy (2006) measured elevated levels of nitrate and phosphate 

concentrations in subsurface drain water in comparison to recommended application rates 

of hen manure and commercial fertilizer. Joy et al. (1998) suggested that excessive 

application rates can result in significant ground and surface water contamination by 

bacterial and other contaminants in the manure. Chinkuyu et al. (2002) reported that 

application rate of solid manure had no significant effect on surface runoff water from 

corn plots but Hao et al. (2004) stated that applying excessive amounts of any livestock 

manure to agricultural land may increase the risk of phosphorous loading to surface 

water. Flavel and Murphy (2006) concluded that application rates should be reduced to 

minimize leaching losses in regions where ground water quality is of a concern. 

 



22 
 

The mode of application is another key factor to control water contamination risks. Gupta 

et al. (1997) reported that the total nitrogen, total phosphorus, ammonium nitrogen and 

nitrate nitrogen concentrations were lower in runoff generated from disk-tilled plots 

compared to that from the no-till plots applied with liquid swine manure. However, Rotz 

et al., (2007) reported that, in a simulation study, nitrate leaching losses were increased 

after immediate incorporation of dairy manure. In another study, surface broadcast 

manure application resulted in significantly higher bacteria concentrations in runoff water 

compared to the injected and commercial fertilizer treatments (Wang et al., 2000). 

Generally, surface applied materials are at greater risk for runoff events (such as an 

immediate rainfall) so subsurface application may be recommended to protect surface 

water sources. However, injection of high application rates to soils with high water 

conductivities or a high water table may put groundwater sources at risk.  

 

Subsurface application can also affect the hydraulic conductivity of the soil by disturbing 

the macropores present in the top layer of the soil (Geohring et al., 2001). The size and 

continuity of the macropores dictate the type of water movement in the soil. Geohring et 

al. (2001) reported that plowing-in manure promotes matrix flow, resulting in reduced 

nutrient transport and lower concentrations in the drainage effluent. Une and Goss (2006) 

reported that the type of manure applied (solid vs. liquid) can also affect the type of flow 

within the soil. The authors stated that solid manure applications favoured matrix flow 

over macropore flow thereby increasing the water storage in the soil which tended to 

reduce the likelihood of runoff (Une and Goss, 2006).  

 

The soil conditions and type of cropping system at the time of application also play a role 

in the risk of water contamination. Cover crops or saturated soils may inhibit the 

immediate infiltration of nutrients from organic fertilizers, making the area susceptible to 

rainfall runoff. In areas with high annual rainfall, management practices such as 

contouring, strip cropping, conservation tillage, terraces and buffer strips may be used to 

control runoff. In some cases, secondary containment systems, sedimentation basins, or 

ponds may be necessary to collect runoff (Gilley et al., 2002). Through proper 
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management, manure can serve as a valuable nutrient source and soil amendment without 

causing environmental concerns (Gilley et al., 2002). 

 

2.3.3 Impacts on Air 

 

The impact of organic fertilizer application on air quality does not have the same human-

health implications as water quality issues, but odour and ammonia emissions from 

manure spreading are still considered a nuisance to the neighbours and can have an 

impact on the sustainability of the industry. In fact, Jenkinson (2001) suggested that, in 

the long term, gaseous emissions may eventually prove to be more environmentally 

damaging than impacts on the soil and water. Nitrous oxide (N2O, a potent greenhouse 

gas) is produced naturally in soils through nitrification and denitrification, but 

agricultural practices such as fertilizer and manure application, cultivation, legume 

cropping and irrigation can increase N2O production and emissions above background 

levels (Del Grosso et al., 2006). In fact, fertilizer application to agricultural soils is one of 

the main sources of nitrous oxide emissions in Canada (Banham and Haugen-Kozyra, 

2004), making greenhouse gas emissions from manure application a concern. Applying 

the material under the soil surface can minimize some offensive emissions but requires 

more energy, may not be feasible for all organic amendments, and may promote the 

generation of different types of gases. Gaseous emissions of N from manure applications 

generally occur through volatilization of ammonia and loss of N2 and N2O through 

nitrification-denitrification processes (Sharpe and Harper, 2002). These emissions are 

affected by waste characteristics, method of application, climatic conditions, and 

chemical and physical soil properties. Other variables that impact the gaseous emissions 

from land application of organic fertilizers are the application rate and type of manure 

applied. 

 

Land application of manure produces odour and ammonia emissions of very high 

concentration for relatively short durations. In most cases, odours from spreading organic 

fertilizers return to background levels within a day or two. However, GHG emissions 

from soil applied with organic fertilizers can be elevated for several years after 
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application, depending on the soil conditions and rainfall events. Ginting et al. (2003) 

noted that elevated emissions of GHG not only affects climate change but also to an 

increased risk of soil carbon and nitrogen depletion. In the long run, this could lead to the 

deterioration of soil health previously derived from the manure application (Ginting et al., 

2003). While Sherlock et al. (2002) noted elevated nitrous oxide emissions for up to 90 

days following application of pig slurry compared to an unfertilized plot, Ginting et al. 

(2003) found no residual effects of solid manure and compost application on GHG 

emissions up to 4 years after application compared to synthetic fertilizer and control 

plots. Therefore, the elevated GHG emissions from organic fertilizers may be no worse 

than the emissions from land applied with commercial fertilizers. 

 

Applying manure under the soil surface either by incorporation or injection is the most 

effective way to reduce ammonia and odour emissions. Less contact area between the 

manure and air results in lower volatilization rates. Nitrogen volatilization is also 

influenced by the ammoniacal-N concentration, rainfall, temperature, manure pH, water 

content and application rate (Schoenau and Assefa, 2004). Surface applied manures can 

lose up to 75% of the ammoniacal-N to volatilization within seven days (Beauchamp et 

al., 1982 in: Schoenau and Assefa, 2004) and numerous studies have reported on 

significant odour and ammonia emission reductions due to subsurface application of 

liquid manures and co-fermented slurries (Hanna et al., 2000; Pain et al., 1991; Lau et al., 

2003). However, Pain et al. (1991) concluded that no reduction in total emissions was 

detected when incorporation was delayed for 3 to 6 hrs after slurry application so 

injection or immediate incorporation is required to reduce gaseous losses after 

application. The depth of injection may also influence the amount of emissions from 

injected fields (Rahman et al., 2004). The authors found that odour emission rate 

increased significantly with increased injection depth and attributed this to the reduced 

amount of soil covering that resulted from the deeper injections. High volatilization 

losses lead to lower N availability (Beauchamp, 1983, Safley et al., 1980 in: Schoenau 

and Assefa, 2004) and contribute to odour emissions and acid deposition (Wulf et al., 

2002b). 
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Several studies have noted increased GHG emission rates from organic fertilizers applied 

below the soil surface compared to surface applied materials (Wulf et al., 2002a, 2002b; 

Agnew et al., 2008). The anaerobic conditions below the soil surface may promote the 

denitrification process, whose byproduct is nitrous oxide. Surface applying the material 

avoids the generation of excessive nitrous oxide emissions but allows ammonia 

volatilization and odour emissions. In terms of carbon dioxide equivalents, the increase in 

nitrous oxide emissions after injection might be as high as the reduction of ammonia 

losses or, as in the case of injection on grassland, might even increase overall GHG 

emissions (Wulf et al., 2002a). Nevertheless, it should be considered that detrimental 

effects of ammonia also include acidification, eutrophication and odour (Wulf et al., 

2002a). 

 

The application rate of the organic amendment also plays a role in the quantity of 

emissions from fertilized land. In the case of ammonia volatilization, manure application 

rate does not have an effect on the proportion of ammonia loss, but the total amount lost 

increased with increasing rates of application (Hoff et al., 1981 in: Schoenau and Assefa, 

2004). Rahman et al. (2004) found that odour emissions from manure injection did not 

change with application rate. Some data (Agnew et al., 2008) suggest that total GHG 

emissions from agronomic application rates of liquid and solid manure were not 

significantly different from emissions from unfertilized soil. Doubling and tripling the 

recommended application rate significantly increased overall GHG emissions. The same 

data suggest that the different types of organic fertilizers (liquid vs. solid) have different 

potentials for overall emissions. In general, liquid manure applications resulted in higher 

odour and GHG emissions than solid manure applications (Agnew et al., 2008). 

 

Some research has shown that repeated applications of mineral fertilizers can affect the 

ability of the microbial population to oxidize (uptake) methane, another potent 

greenhouse gas (Steudler et al., 1989; Schimel and Gulledge, 1998 in: Jarecki et al., 

2008). Hansen et al. (1993) also found that the addition of fertiliser nitrogen led to a 

decrease in CH4 uptake by the soil. This was attributed to competition between NH3 and 

CH4 for the same active site of monooxygenase enzymes which catalyse the first 
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oxidation step of CH4 and NH4
+ in methanotrophs and nitrifiers (Hansen et al., 1993). In 

addition, the ability of a microbial population to oxidize methane is influenced by the soil 

pH. Acidic soils, which can be a result of mineral fertilization, generally show little or no 

methane oxidation (Powlson et al., 1997). However, the effect of acidity varies, 

suggesting that it is not the acidity itself that affects methanotrophs but other changes that 

sometimes accompanies acidification (Boeckx, 1997).   

 

Powlson et al. (1997) also showed that long-term application of ammonium based 

commercial fertilizer (144 kg N/ha per year for 150 years) reduced methane uptake by 

50% compared with soil receiving no fertilizer. However, during the same period, 

applications of solid manure (35 t/ha per year for 150 years) had no inhibitory effect on 

the soil’s ability to oxidize methane despite the fact that the manure contained more N 

(240 kg N/ha per year) than the commercial fertilizer. Therefore, the form of the N 

applied has a significant effect on CH4 metabolism. One explanation for this could be the 

larger microbial biomass on manured plots that rapidly removes the ammonium, reducing 

the acidifying effect of fertilizer application. Another explanation could be that 

ammonium is released more slowly from manure compared with the instantaneous 

addition of ammonium from inorganic fertilizer (Powlson et al., 1997).  

 

The timing of manure applications can also influence the emissions surrounding an 

application site. Spring or early summer applications usually result in efficient nutrient 

utilization by the crop, but microbial activity is highest in warm soils and application of 

N to warm soils is usually considered to increase gaseous emissions. Additionally, since 

soil water content also influences the nutrient transformations, wet conditions in spring 

can promote denitrification. Rochette et al. (2004) reported higher N2O emissions 

following spring applications of manure and commercial fertilizer than fall applications. 

The authors attributed the difference to the increased nitrification and accumulation of 

nitrate nitrogen (NO3-N) after the spring application to warm soil. Subsequent rainfall 

increased the soil water content, promoting denitrification of the NO3-N. The fall 

applications did not experience significant nitrification and accumulation of NO3-N, 

limiting the production of N2O. However, N lost to ammonia volatilization or runoff was 



27 
 

not measured from the fall applications or accounted for in the comparison so total losses 

between spring and fall applications may be similar. Fluxes of CO2 and cumulated carbon 

dioxide carbon (CO2-C) losses were also greater for spring than for fall applications 

(Rochette et al. 2004). Watanabe et al. (1997) also noted lower peak N2O and CO2 fluxes 

after winter applications of swine and cattle manure than autumn applications, likely due 

to the lower soil temperature during the winter applications.  

 

 

2.4 Summary 
 

Manure application can provide the soil with nutrients required to sustain healthy crop 

growth, but poor application practices have the potential to negatively impact the soil, 

surface, and groundwater and air quality surrounding application sites. The nutrients in 

manure and soil are transformed via microbial activity into certain forms of nutrients 

which can be environmentally hazardous. Nitrate nitrogen can pollute surface and 

groundwater, posing a human health risk, ammonia emissions lower the N availability to 

crops, while nitrous oxide and methane contribute to the greenhouse gas effect. Balancing 

the N loss dynamics from fertilized soil is very difficult. In general, practices that reduce 

the amount of N lost to volatilization result in more N in the soil, increasing the area of 

land required to apply manure at agronomic rates. If producers fail to account for the 

increased percentage of N applied when incorporating or injecting, they increase the 

susceptibility of the N loss via leaching. However, the nutrient transformations are 

affected by the soil environment such as air and water content, pH, and labile carbon 

content. All of these soil environmental factors can be influenced by manure application 

practices such as application rate, timing and manure placement. Knowledge of how 

these management practices affect the soil environment can help producers make 

management decisions that reduce the likelihood of soil, water and air contamination 

from manure application.  
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Chapter 3 
 

3.0 Odour Emissions from Manure Spreading 
 
Land application of manure is a common method of manure handling in which the 

nutrients are returned to the soil. However, odours from manure application activities can 

hinder the expansion of the livestock industry because of the potential nuisance to 

neighbours. The objective of this study was to assess the effectiveness of subsurface 

application at reducing odours from manure spreading for both solid and liquid manure. 

Flux chambers and dynamic dilution olfactometry were used to assess odours from five 

livestock manure species applied at three application rates using surface and subsurface 

application methods. The results of the study indicated that odour concentrations from 

injected plots were up to 66% (37% on average) lower than concentrations from 

broadcasted applications. Injection seemed to have a larger impact on reducing odours 

from solid manure than liquid manure, mainly due to better manure coverage from solid 

manure injection. Odours from solid manure applications were also 37% lower than from 

liquid manure applications. In general, odours from liquid and solid manure increased 

with higher application rates, but there was little difference among one, two and three 

year application rates. The specific odour rate decreased with higher application rates due 

to the reduced surface area available for volatilization of compounds with higher 

application rates. Higher application rates did result in higher overall odour 

concentrations, but this increase was not proportional to the amount of N applied. Based 

on the results from this study, injection of manure is an effective way to reduce the 

overall odour emissions from manure spreading, particularly for solid manure. However, 

other factors associated with manure injection, such as the increased power requirement 
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and soil disturbance, as well nutrient transport and greenhouse gas emissions, must be 

considered when evaluating the overall impact of manure injection versus surface 

application. 

 
 

3.1 Introduction 
 
Land application of animal manure is an efficient and effective way of recycling 

important by-products from livestock production. Manure nutrients benefit soil crop-

systems by building up and maintaining soil fertility. In addition, manure can also 

improve soil tilth, increase its water-holding capacity, lessen wind and water erosion, and 

improve aeration, and promote the establishment and growth of beneficial organisms 

(Schoenau and Assefa, 2004). 

 

Virtually all of the 150 million tonnes of manure produced annually in Canada are land 

applied with almost 3.5 million hectares being treated with manure in 2005 (Statistics 

Canada, 2006). Manure spreading typically occurs during the spring and/or fall seasons to 

accommodate the manure production and storage as well as the field crop cycles. In some 

cases where the manure storage is of insufficient size, manure spreading may occur 

throughout the year. While manure spreading produces odours of short duration, these are 

considered more intense and more unpleasant than odours from the barns or manure 

storages. In fact, more than half of all complaints about intensive livestock facilities 

result directly from odour emissions following land application of manure (Choinière et 

al., 2007). Exposure to livestock odours is also a potential health concern (Schiffman and 

Williams, 2005). Odours are the main concern in communities where the development of 

a new livestock facility is proposed (Bickert, 2003).  

 

In order to allow for the sustainable growth of the livestock industry, odour emissions 

associated with livestock production must be reduced. A range of gaseous emission 

mitigation strategies have been developed across the different manure management 

stages, and land spreading is the source where the most cost-effective strategies can be 
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employed (Huijsmans et al., 2004). These mitigation strategies consist of alternative 

slurry application techniques and rapid incorporation of manures into the soil after 

application (Misselbrook, 2003). Since volatilization is the dominant transport 

mechanism contributing to odour emissions after manure spreading, reducing the contact 

area between the manure and the atmosphere will theoretically reduce odour emissions. 

However, objectively determined values of the odour reduction potential of these 

practices, particularly for solid manure, are limited since very little research has been 

dedicated to odour measurement after application of solid manure. Additionally, the set-

back distances between land applied sites and neighbours in Saskatchewan are not based 

on scientific data since odour dispersion and intensity data after land application are not 

available for the Saskatchewan climate.  Improved set-back distances based on scientific 

data will increase the area of land available for land application while reducing the odour 

nuisance to neighbours, allowing for environmentally sustainable growth of the industry.  

 

Establishing science-based set-back distances typically involves dispersion modeling. 

Well established point source dispersion models can be modified to handle area sources 

such as manure spreading. In order to predict odour surrounding application sites using 

dispersion models, detailed meteorological information is required along with reliable 

odour emission rates from the source. Source emission rates from manure spreading will 

vary over the first few hours after application and the magnitude and variation will 

depend on the type of manure, application rate, and application method. This information 

is currently unavailable and is required in order to apply dispersion modeling to manure 

spreading activities.  

 

If information regarding the odour emissions from different application techniques and 

the emission rate trend over the first few hours after application becomes available, then 

set-back distances for manure spreading can be established to minimize the odour 

nuisance to neighbours while maximizing land-use efficiency.  Properly sited and 

operated, livestock facilities create on-farm job opportunities, are an important 

contributor to the economic wealth of the province and nation, and pose no health or 

environmental risks for the community. 
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3.2 Literature Review 
 

3.2.1 Method of Odour Measurement 

 

Livestock odours are made up of over 200 volatile organic compounds (phenols, indoles, 

skatoles, etc., Qu and Feddes, 2004). The combinations or interactions of two or more of 

these compounds often contribute to the odour of a sample even more than the 

concentration of the individual gases themselves. Since odour is so complex, there are 

several odour indices available for odour quantification: odour strength (concentration 

and intensity), hedonic tone, character, and persistence (St. Croix Sensory, 2007). 

Currently, the accepted tool for odour quantification is the human nose. Since human 

odour perception is very subjective, with individuals having different odour sensitivities, 

thresholds and tolerances, odour measurement can be highly variable.  

 

3.2.1.1 Odour Strength by Olfactometry 

Odour strength (concentration) is directly related to the number of dilutions of fresh air 

required to bring the odorous air sample to its detection threshold (based on 50% panelist 

recognition). The higher the threshold value, the more dilutions are required to bring the 

odor to threshold, and thus the stronger the odour (St. Croix Sensory, 2007). Thus, the 

odour threshold can be defined in terms of a dimensionless dilution ratio. However, the 

pseudo-dimension of “Odour Units” (OU) is often used. Units of “Odour Units per cubic 

meter” (OU/m3) are also commonly applied in order to calculate odour emission rates (St. 

Croix Sensory, 2007). 

 

Olfactometers are standardized instruments for the measurement of odour concentration 

(Feddes et al., 2001) using the dilution to threshold method. The 8 port olfactometer at 

the University of Alberta, designed according to ASTM and CEN 13725 (2003) 

standards, is a dynamic triangular forced-choice olfactometer and can provide odour 

concentration and hedonic tone (offensiveness) measurements. With these olfactometers, 

panellists are presented with three air samples: two of the samples are odour-free air and 
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once contains diluted odour (Feddes et al., 2001). The panellist must choose one of these 

as a “forced choice” and indicate whether the choice is a guess, a detection or a 

recognition.  The dilution threshold (concentration) is established when 50% of the 

panellists have correctly identified the odour sample from the odour free samples 

(Choiniere and Barrington, 1998 in: Feddes et al., 2001). The panellists also rate the 

hedonic tone of the sample after the threshold has been reached. 

 

3.2.1.2 Odour Intensity by Nasal Rangers(TM)  

Olfactometers can provide a standardized measurement of odour concentration, but 

olfactometry analyses require that samples be collected and transported to an 

olfactometry lab. These samples are often not representative of the odours actually 

experienced in the field due to instantaneous shifts in wind direction and speed and bursts 

of odour emitted from the source.  The method of measuring odour directly in the field 

developed by St. Croix Sensory Inc. (Lake Elmo, MN, USA) uses trained human odour 

assessors (Nasal Rangers™) to quantify odour intensity, or the relative strength of the 

odour above the recognition threshold (St. Croix Sensory, 2007). The “relative” strength 

is defined by the standardized 8 point n-butanol reference scale (ASTM, 1997). Other 

studies have focused on the measurement of odour intensity using a modified, 5-point 

scale (Guo et al., 2001a).  The differences between these scales are presented in Table 

3.1. 

 
Table 3.1.  8-point and 5-point n-butanol reference scales for odour intensity measurement. 

8-point Scale (ASTM 1997) 5-point Scale (Guo et al. 2001a) 

Intensity 

Level 

 

Annoyance 

n-butanol in 

water (ppm) 

Intensity 

Level 

 

Description 

n-butanol in 

water (ppm) 

0 no odour 0 0 no odour 0 
1 not annoying 120    
2 a little annoying 240 1 very faint odour 250 
3 a little annoying 480    
4 annoying 960 2 faint odour 750 
5 annoying 1,940 3 moderate odour 2,250 
6 very annoying 3,880    
7 very annoying 7,750 4 strong odour 6,750 
8 extremely annoying 15,500 5 very strong odour 20,250 

 
While extensive training and use of the reference scale remove some of the subjectivity 

related to odour assessment, results from human sniffers in the field tend to be highly 



40 
 

variable. Also, coordinating assessors in the field during allowable weather conditions 

(based on temperature and wind speed and direction) can also be challenging. Finally, 

odour intensity is a “dimensionless” value that cannot be easily compared with other 

odour intensity studies because protocols and assessors are not always identical.  

 

St. Croix Sensory Inc. has also developed a field olfactometer, or Scentometer(TM), for the 

measurement of odour strength (dilution to threshold ratio) directly in the field.  The 

olfactometer creates a calibrated series of discrete dilutions by mixing the odorous 

ambient air with odour-free (carbon) filtered air.  Field olfactometry defines each discrete 

dilution level as a “Dilution to Threshold” (D/T) ratio where D/T is defined as the 

volume of odour-free air divided by the volume of odourous air (Hamel et al., 2004). This 

method allows the collection of odour concentration directly in the field, eliminating the 

need for chamber collection. However, issues with the sampling timing and missed wafts 

of odour make the field olfactometer results inconsistent. Attempts have been made to 

standardize measurement techniques in the field during and after land application of 

manure by Hamel et al. (2004), Brandt et al. (2008), and Sheffield (2005).  

 

3.2.1.3 GC-MS and Electronic Nose (E-nose) 

Two of the main issues relating to odour measurement are the subjectivity of the human 

nose and the effect of odour component mixtures. It would be advantageous to combine 

two or more different measurement techniques, such as gas chromatography (GC) and 

olfactometry to simultaneously assess the chemical composition of a sample along with 

the character and odour concentration. The combination of measuring odour and odorants 

is called gas chromatography-olfactometry-mass spectrometry more commonly called 

GC-MS Sniffer (UNSW, 2009). Assessment of odour samples by GC-MS Sniffer 

technology is a specialized and costly procedure. 

 

Electronic noses (E-noses) usually consist of an array of electronic chemical sensors 

selected to detect specific components and combinations in an odour sample. These 

electronic devices produce an almost instant response which is useful in many 

applications such as the food or perfume industries. However, because of the large 
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amount and variety of volatile organic compounds that make up manure odour, in 

addition to the synergistic mixing effect of manure compounds, E-noses are not well 

suited for manure odour assessment. Some studies have confirmed the detection of farm 

odour and the response to odour concentration for some electronic noses (Nimmermark, 

2001). Misselbrook et al. (1997) used an E-nose to measure odour concentration 

following application of cattle slurry to grassland and they demonstrated that the E-nose 

responded linearly to odour concentrations arising from cattle slurry applications. 

Alternatively, several researchers have noted that E-noses are only effective at assessing 

manure odours of very high concentration (Hobbs et al., 1995; Persaud et al., 1996) or 

they may not be sensitive to the particular compounds causing odour (Gralapp et al., 

2001). More recently, Qu et al. (2008) showed that integrating results from an 

AromaScan A32S electronic nose and hydrogen sulphide and ammonia detectors 

produced odour concentration results that correlated with an olfactometer for samples 

collected from swine manure sources. 

 

3.2.1.4 Other Odour Indices 

Odour measurement is generally focused on odour concentration. In recent years, odour 

researchers have been careful to include measures of other odour indices such as hedonic 

tone, character and persistence.  Hedonic tone is a measure of the pleasantness or 

unpleasantness of an odour and is sometimes measured by olfactometry.  Once the 

panellist correctly identifies the presence of the odour at two successive dilution levels, 

hedonic tone is measured at the next (stronger) dilution level (D. Martineau, personal 

communication, 06/07). Therefore, each panellist may measure hedonic tone at a 

different dilution level, making direct comparisons between panellists difficult to 

interpret. Further complicating the measurement of hedonic tone, the standard method for 

measurement requires assessment of pleasantness of an undiluted sample. However, 

assessment of undiluted samples may cause nose fatigue in the panellists and require 

samples of large volume.  

 

The character of an odour, also known as "odour quality," is reported using standard 

descriptor lists. Assessors report both what the odour "smells like" (e.g. sewer, banana, 
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etc.) and what the odour "feels like" (e.g. burning, tingling, cooling, etc.) (St. Croix 

Sensory, 2007). Persistency describes the rate at which an odour’s perceived intensity 

decreases as the odour is diluted (McGinley et al., 2000). Specific odour compounds like 

sulphur appear to make an odour more persistent than components like nitrogen (Feddes 

and Clark, 2006). Other factors that influence an odour’s annoyance are the duration and 

frequency of the odour event. For example, odours from manure spreading are unpleasant 

and intense but are often infrequent (2 or 3 times a year) while odours from livestock 

housing buildings and manure storages are less intense but almost constant throughout 

the year. 

 

All of the odour measurement methods described above, except the E-nose, rely on the 

human nose. With proper training, such measurements can be accurate, reliable and, for 

the most part, objective. However, each odour index has a unique unit of measurement.  

Concentration is measured in OU or OU/m3, intensity is an objective number on different 

reference scales, hedonic tone is a subjective number on yet another reference scale, 

character is usually a descriptive word or adjective, while persistence is a number that 

represents the exponent in Stevens Law (usually between -0.87 and -1.86 as reported by 

Ouellette et al., 2006). Choosing one odour index may not completely describe the odour 

but analyzing odour data that include different units of measurement and non-numeric 

results is very cumbersome. 

 

3.2.2 Description of Methods for Odour Sampling 

 

The method of odour collection will depend on the method of odour measurement and the 

goal of the odour research. For field measurements of odour intensity and odour dilution 

to threshold, assessors record odour data on site and samples are not required. Odour 

concentration, hedonic tone and persistence measured by olfactometry require samples to 

be collected in Tedlar bags (typically 10 L). Care must be taken to collect representative 

and consistent samples to ensure comparable results. Even when proper care is taken, 

results by olfactometry can be highly variable because human odour evaluation is 
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influenced by anxiety, distraction, fatigue, health status, personal comfort and/or visual 

cues (Brandt et al., 2008).  

 

Gaseous emissions have been collected in a variety of ways.  Non-point source odour 

emissions from manure-applied fields have been collected via static chambers (Hansen et 

al., 2006; Chen et al., 2001), dynamic chambers (Lau et al., 2003), wind tunnels (Lindvall 

et al., 1974; Rahman et al., 2004; Hanna et al., 2000; Pain et al., 1988, 1990; Misselbrook 

et al., 1997; Choinière et al., 2007; Moseley et al., 1998; Pahl et al., 2001), or by 

micrometeorological techniques (Phillips et al., 2000; Smith et al., 2007, Mkhabela et al., 

2007; Pain et al., 1991). 

 

3.2.2.1 Static Chambers (also called non-steady state or vented 

chambers) 

The static chamber method involves allowing gas emissions to collect in a container of 

known volume for set periods of time.  Samples are drawn at known intervals and the 

concentrations of the gases are measured and plotted versus time.  The gas emission rate 

and concentration at time zero can then be calculated. Typically, static chambers are not 

used for odour emission measurement since the lack of sweep air allows concentration 

build-up in the chamber, potentially suppressing emissions. Additionally, for a single flux 

measurement, static chambers require collection and analysis of at least three subsamples. 

This is so the rate of increase of gas concentration over time can be analyzed to determine 

the gaseous flux. Odour concentration measurements are costly, so measurement of odour 

flux with static chambers is typically not feasible.  

 

3.2.2.2 Dynamic Chambers 

The dynamic chamber (also called a steady state, flow-through, or open chamber) is a 

sealed, open-bottomed chamber that is placed on the odour emitting surface. During 

operation, clean dry air is forced into the chamber at a fixed slow rate.  Within the 

chamber, this air is mixed with the emitted odours by the physical layout of the device (in 

some chambers the mixing is aided by an impeller within the hood). The sample is drawn 
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from the chamber in the sample container, usually via a sampling lung or vacuum box, 

and the concentration of the emitted odour is measured in the sample bag by olfactometry 

(usually within 24 hours).  Excess air is expelled to the atmosphere through a small vent 

in the chamber. This vent also maintains the pressure in the hood close to atmospheric 

pressure.  Assuming complete mixing between the emissions and the sweep air, the 

emission rate can be calculated from the concentrations of the sample and the ambient air 

using a simple mass balance continuity equation (Equation 3.1). 

A

Q
CCf ambsampo *)( −= ρ  

 

Where: fo = gas flux (mg/m2-s), 

 ρ= density of measured gas (kg/m3), 

Csamp and Camb = concentration of sampled and sweep air, respectively (ppmm or 

OU/m3), 

 Q = flow rate of sweep air (m3/s), and 

 A = cross sectional area of chamber (m2). 

 

When using a dynamic chamber, particular care is required to ensure that the pressure 

inside the chamber is identical to the outside pressure (Smith and Watts, 1994a).  One 

advantage of the dynamic chamber compared to the static chamber is the simulation of 

the microenvironment above the enclosed soil surface. When properly designed and 

operated, dynamic chambers maintain conditions within the chamber nearly the same as 

those in the surrounding field. Disadvantages of the dynamic chamber include the need to 

measure the gas concentration of the sweep air for the mass balance calculation, and 

potential for gas build-up in the enclosure, suppressing emissions from the surface. 

Alternatively, low emissions may be difficult to measure if the sample gas is diluted 

beyond the measuring capabilities of the gas analyzer.  Additionally, the introduction of 

the sweep air can produce problematic air flow patterns, such as turbulent flow or 

stagnant zones within the chamber (Gao et al., 1997). 

 

(3.1) 
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Several assumptions are required to determine emissions from dynamic chamber 

measurements. These include: 

� airflow in chamber must be steady-state (i.e. the rate of air flow is not a function of 

time), 

� gas flux must be uniform over the entire covered surface and during the sampling 

interval, 

� the in-coming airstream and out-going airstream must be well mixed, and 

� the diffusive flux is dominant and the advective mass flow is negligible (Gao et al., 

1997). 

 

Other factors affecting the rate of emissions as sampled by a dynamic chamber are: 

� the small area of emitting surface enclosed by the hood does not account for spatial 

variation of emissions, 

� the suppression of the turbulent transport mechanism that carries the emissions away 

from the emitting surface may result in gas concentration build-up, and 

� imperfect mixing of the emissions and the sweep air provides erroneous results (Smith 

and Watts, 1994a). 

 

The chamber method of emission measurement is very well suited for replicated 

treatment experiments with many factors since large or full scale applications are not 

required (Greatorex, 2000). However, care must be taken to ensure that full-scale 

conditions are simulated during the small scale experiments to ensure the information 

gained can be applied to real world scenarios. In addition, McGinn (2006) stated that 

chamber techniques are sensitive enough to quantify mitigation practices (i.e., the relative 

change in emissions), but they are not suitable to determine “true” emission factors or 

cumulative emissions as required for inventory work.  

 

3.2.2.3 Wind Tunnels 

Wind tunnels are a special form of dynamic flux chamber.  Wind tunnels are portable, 

open-bottomed enclosures which are placed over the emitting surface. Ambient or filtered 

air is blown or drawn through the tunnel to mix with and transport the emissions away 
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from the emitting surface (Smith and Watts, 1994a). The selection of the appropriate 

wind speed to use in a wind tunnel is critical and should be reported whenever emission 

results from a wind tunnel are published. The main difference between wind tunnels and 

flux chambers is the specification of the airflow rate to simulate actual wind speeds and 

the laminar flow that usually exists within a wind tunnel. Generally, the air flow rate in a 

wind tunnel is much higher than the airflow rate in a flux hood, making the concentration 

measurement of low emissions with a wind tunnel difficult. The goal of the wind tunnel 

is to more closely simulate the natural air flow of the wind over the unenclosed surface 

and to prevent emission suppression due to concentration build-up under the cover 

(Hudson et al., 2009). Emissions of odours collected using wind tunnels are calculated 

using Equation 3.2. 

s

c

A

AVOC
E

**
=  

Where  E = odour emission rate, OU/m2-s, 

 OC = odour concentration (OU/m3), 

 V = velocity of air in the tunnel (m/s), 

 Ac = cross sectional area of the main chamber (m2), and 

 As = surface area covered by the tunnel (m2). 

 

3.2.2.4 Comparison of Dynamic Chambers and Wind Tunnels 

Some researchers have attempted to correlate odour emissions measured by a chamber 

with actual emissions (Navaratnasamy et al., 2005) and the difference in odour fluxes as 

measured by a dynamic chamber and a wind tunnel (Navaratnasamy et al., 2005; Hudson 

et al., 2009; Jiang and Kaye, 1996; Smith and Watts 1994a, 1994b). Navaratnasamy et al. 

(2005) compared odour emissions by operating a wind tunnel (flow rate 30 L/s) and a 

dynamic chamber (flow rate 1 L/s) with identical surface area dimensions (0.8 m x 0.4 m) 

on a reservoir of n-butanol (an alcohol used as an odour reference). This way, a 

theoretical “actual” emission rate could be calculated and compared with emission rates 

measured by the two chambers. Results from this study suggested that the odour 

concentration could be measured with relatively more confidence using the dynamic 

chamber method because the lower flow rate resulted in less dilution of the sample. The 

(3.2) 
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emission rate from the dynamic chamber was also closer to the theoretically calculated 

emission rate (Navaratnasamy et al., 2005). For the wind tunnel, the theoretically 

calculated emission rates were lower than corresponding measured emission rates by a 

factor of 4 (Navaratnasamy et al., 2005).  

 

Hudson et al. (2009) suggested that the performance of the dynamic chamber and wind 

tunnel depended on the physical differences of the surface from which measurements 

were collected (i.e.: wet vs. dry). The wind tunnel used in this study was 0.8 m x 0.4 m x 

0.25 m and was operated at a wind speed of 0.3 m/s. The dynamic chamber was circular 

with volume of 0.03 m3 and a surface area of 0.13 m2 and was operated at an airflow rate 

of 0.0833 L/s. Odour samples were collected from a variety of surfaces (compost pile, 

uncovered anaerobic lagoon, covered anaerobic lagoon, dry feedlot pad, wet feedlot pad) 

and the emissions calculated from both chambers compared. Odour concentrations were 

consistently higher from the dynamic chamber while the calculated emission rates were 

higher from the wind tunnel (due to the higher airflow rate and lack of suppression of 

emissions). There appeared to be no relationship between emission rates calculated from 

each chamber when all the data were pooled, but when the data from different surfaces 

were separated, significant linear relationships between the two collected methods were 

formed for the feedlot pad sources and anaerobic lagoon sources. 

 

Jiang and Kaye (1996) compared wind tunnel with dynamic chamber performance for the 

measurement of volatile organic compounds (VOC) emissions. A wind tunnel of 

undefined size was operated with a flow rate of 30 L/s to simulate surface wind speeds 

between 0.3 and 1 m/s while a dynamic chamber of undefined size was operated with 

sweep air flows of between 0.033 and 0.083 L/s. The emission rates measured using the 

two chambers were very similar for toluene (relatively high Henry’s law constant (KH) 

with units of Pa m3/mol), but differed greatly for acetone and methyl ethyl ketone 

(relatively low KH). This led the authors to conclude that dynamic chambers were 

suitable for measuring emissions of compounds with high KH, regardless of whether this 

was expressed as Pa m3/mol or in dimensionless form as a gas to aqueous (g/aq) ratio. 

When KH is greater than 250 Pa m3/mol (0.1009 dimensionless g/aq), volatilization is 
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liquid phase controlled. When KH is less than 2.5 Pa m3/mol (0.001009 dimensionless 

g/aq), volatilization is gas phase controlled. Jiang and Kaye (1996) concluded that 

dynamic chambers resulted in substantial underestimations of the emission rates, 

particularly when the VOC’s exhibited gas phase controlled volatilization processes. For 

gas phase controlled processes, volatilization is strongly influenced by wind speed, so the 

sweep air in dynamic chambers is not a suitable representation of ambient conditions. 

 

Smith and Watts (1994a, 1994b) examined odour emission rates from cattle feedlots and 

compared the literature values of odour emissions from manure spreading measured by 

dynamic chambers and wind tunnels. Smith and Watts (1994a) summarized the work in 

Pain et al. (1988) where wind tunnels were operated at 1 m/s and 3 m/s. Emission rates 

from the same source were higher when the velocity was 3 m/s due to the greater volume 

of air drawn through the tunnel at the higher speed.  In their review of the literature, they 

noted that dynamic chambers resulted in consistently lower emissions than wind tunnels. 

The authors suggest that this is due to the buildup of gases in the chamber suppressing 

emissions due to the lack of turbulent transport away from the emitting surface (Smith 

and Watts 1994a). Smith and Watts (1994b) noted that air speeds must be specified 

whenever wind tunnel emission rates are cited and the wind tunnels should be operated at 

ambient wind speeds. 

 

3.2.2.5 Micrometeorological Techniques 

Traditional micrometeorological techniques involve real time measurement of gas 

concentrations at various heights downwind of application sites. Typically, a mass 

balance method equates the average surface flux density of gas from plots to the 

difference between the integrated horizontal flux at a known downwind distance and the 

upwind edge of the field (Sherlock et al., 2002). These techniques allow calculation of 

cumulative emissions (grams of gas per day) rather than fluxes (grams of gas per m2 per 

hour). 

 

At this time, real time measurements of odour concentration by olfactometry are not 

possible. However, simplified versions of the micrometeorological technique exist for 
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odour measurement. Smith et al. (2007), Mkhabela et al. (2007) and Pain et al. (1991) 

utilized the theoretical profile shape (TPS) method to estimate odour emissions based on 

an integrated product of the wind speed and gas concentration at a single height above the 

treated surface. For relatively small areas, the atmospheric stability is assumed to have a 

minimal effect on the ratio of the horizontal flux to the vertical flux from the ground 

(Smith et al., 2007). Therefore, samples can be collected from a single height (ZINST) as 

defined in Gordon et al. (1988). The ZINST value is dependent on the surface roughness 

length and is assumed to be homogeneous over the source area (Smith et al., 2007). The 

odour flux (OU/m2-s) is then calculated using Equation 3.3. 

  

k

uOC
Flux

*
=  

 

Where: OC = odour concentration of sample (OU/m3), 

 u = wind speed (m/s), and 

k = a constant as defined in Gordon et al. (1988) based on experimental 

parameters. 

 

This method of odour emission measurement eliminates the need for chamber collection 

and is theoretically a more true representation of the odour in the air at the sample site. 

This allows the effect of meteorological variables such as temperature and wind speed on 

odour emissions to be determined (Mkhabela et al., 2007). However, odour samples 

drawn directly into bags from the air typically have low odour concentrations (<200 

OU/m3). Background odour concentrations of ambient air and Tedlar bags can be 

between 50 and 150 OU/m3 (Moseley et al., 1998; Qu and Feddes, 2006), making it 

difficult to see statistically significant results from samples collected this way. 

 

 

 

(3.3) 
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3.2.3  Manure Spreading Odour Emission Measurements in 

Literature 

 

The methods for odour emission measurement from manure spreading are discussed here 

while the results from these studies are summarized in Table D.1 in Appendix D and 

discussed in Section 3.5 of this chapter. 

 

3.2.3.1 Static Chambers 

Odour concentrations from slurry-applied land using static chambers were reported by 

Chen et al. (2001) and Hansen et al. (2006). Single samples were collected from the 

chamber headspace so flux calculations were not possible. Hansen et al. (2006) used a 

chamber (3.12 m2 and 1.87 m3) and compared odour concentrations after applying 

untreated slurry, anaerobically digested slurry, and digested and separated slurry at a rate 

of 30 t/ha. Odour concentrations measured by Hansen et al. (2006) ranged from 150 to 

1,000 OU/m3 and, while no statistically significant results could be found due to high 

variability, the untreated slurry resulted in the highest odour concentrations, followed by 

the digested slurry and the digested and separated slurry (Hansen et al., 2006). The 

authors showed that odour concentration actually increased 4 hrs after application of 

slurry, presumably due to the increased soil and slurry temperature. 

 

Similarly, Chen et al. (2001) used a semi-cylindrical “hood” that covered an area of 1 m2 

and compared odour concentrations after application of pig slurry using injection, slipper 

foot, aerated surface and dribble bar surface techniques. Odour concentration results 

obtained by Chen et al. (2001) ranged between 234 and 1094 OU/m3 for the manure 

application treatments. Although the results were highly variable, the authors concluded 

that injection and slipper foot application resulted in lower odour concentrations than 

surface applications. 
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3.2.3.2 Dynamic Chambers 

The earliest work on odour measurement by dynamic chambers (or wind tunnels) was by 

Lindvall et al. (1974). Instead of storing samples in bags, the authors used a mobile odour 

lab for odour concentration measurement in the field. A chamber of unspecified size and 

flow rate was used to collect samples after the application of untreated swine manure, 

aerated swine manure, swine manure treated with ammonium persulphate, swine urine, 

untreated cattle manure and composted cattle manure. Manure was “buried” via a harrow, 

plow and a disc harrow as well as injected using two types of machines. Current designs 

of wind tunnels used for odour research are based on this early “Lindvall Hood”. Results 

from this study indicated that injection reduced odours compared to surface application 

and aerobic treatment and ammonium persulphate additives also reduced odours 

compared to untreated manure. 

 

Lau et al. (2003) investigated odour emissions for manure spreading using a subsurface 

deposition applicator and liquid swine manure using a “surface isolation flux chamber” 

(0.0645 m3 volume, 0.19 m2 area) operated at 10 L/min.  A splash-plate applicator and 

sub-surface deposition system were used for manure application (70,000 L/ha).  The 

effect of time after application up to 2.5 hours was investigated. Odours from the sub-

surface application were lower that from splash plate application.   

 

3.2.3.3 Wind Tunnels 

Wind tunnels have been used extensively for odour emission research. In the late-80’s, 

Pain et al. (1988) used wind tunnels (1 m2 at 1 m/s) to investigate the effect of manure 

type (pig slurry, cattle slurry, separated cattle slurry) on odour emissions over time after 

application. The odour concentration measured 24 h after application was considerably 

lower than the concentration measured 2 h after application (Pain et al., 1988). In Pain et 

al. (1990), the same wind tunnel was used to study the effect of anaerobically digesting 

pig slurry from two different diets on the odour emissions after application at 80,000 

L/ha. While digestion reduced odours compared to raw manure, there was no difference 

in odour between the two diets (Pain et al., 1990). Misselbrook et al. (1997) compared 

odour emissions from spreading cattle slurry on grassland measured by a wind tunnel (1 
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m2 at 1 m/s) with two E-noses. Measurements were taken up to 15 hrs after application. 

The authors noted that odour concentrations returned to background levels within 2 h of 

application (Misselbrook et al., 1997). Moseley et al. (1998) compared odour emissions 

after application of anaerobically digested sewage sludge and pig slurry. They applied 

manure using 3 different methods (surface, slipper foot and improved injector tine) and 

measured odour emissions 5 min and 24 hrs after application using a wind tunnel (1 m2 at 

1 m/s). They concluded that odours from slipper foot application were equivalent to 

surface application while odours from injection were lower and equivalent to background 

odours (Moseley et al., 1988).  

 

Hanna et al. (2000) investigated the effects of application technique of liquid manure on 

odour emissions using the wind tunnel method (0.787 m2 at 2.2 m/s).   Samples were 

collected immediately after and one day after application. The highest odours came from 

broadcasted application while the “sweep application” resulted in odours similar to 

untreated soil. Odours returned to background levels within 24 h (Hanna et al., 2000). 

Pahl et al. (2001) used a wind tunnel (0.5 m2 at 0.35 m/s) to compare emissions from 

surface applied manure and manure applied with a shallow injector. However, the study 

involved no replicates and no control and the results were highly variable, providing no 

statistically significant results. Rahman et al. (2004) used a wind tunnel (0.3 m2 at 0.3 

m/s) and reported on the effects of sweep injection tools on soil surface profile, manure 

exposure and odour emissions using 3 tools, 3 depths, 2 speeds and 2 moisture contents. 

The odour concentration actually increased with injection depth and the authors found no 

correlation between application rate and odour concentration (Rahman et al., 2004).   

 

More recently, Choinière et al. (2007) developed a protocol using wind tunnels of 

unknown size and a wind speed of 0.3 m/s to examine the odour reducing potential after 

application of various manure and feed additives. The authors stated that the wind tunnel 

system provided statistically significant results, which is difficult to achieve in odour 

research due to the high variability of odour concentration measurements. 
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3.2.3.4 Micrometeorological Techniques 

Although the micrometeorological theoretical profile shape (TPS) approach is commonly 

used for ammonia volatilization measurements (Gordon et al., 1988; Huijsmans et al., 

2001), its use in odour emission measurements is still being studied (Pain et al., 1991; 

Mkhabela et al., 2007; Smith et al., 2007). Mkhabela et al. (2007) used this technique to 

study the effect of application rate, rainfall, meteorological conditions, and slurry dilution 

on odours after application of hog slurry. Doubling the rate had no effect on odours, but 

tripling the rate increased odours compared to a conventional rate (Mkhabela et al., 

2007). Also, applying slurry to soil after a simulated rainfall increased emissions and 

slurry dilution decreased odour emissions slightly (Mkhabela et al., 2007). Smith et al. 

(2007) also used the TPS approach in their study of the effects of type of manure (solid 

vs. liquid), application rate, and rainfall on emissions over time after application of swine 

manure. The authors noted that liquid manure initially generated higher odour emissions 

but odour emissions from solid manure persisted for longer. Also, increased application 

rates and applying manure after a heavy rainfall generally produced higher emissions 

(Smith et al., 2007). Pain et al. (1991) examined the effects of slurry type (pig vs. cattle) 

and application method (surface, rigid tines, rotary harrow and plough) on emissions over 

time after application. The authors concluded that odour concentrations were greater for 

pig than for cattle slurry and worthwhile reductions in total emissions over 48 h was 

achieved only by immediate ploughing (Pain et al., 1991). 

 

Phillips et al. (1990) used the micrometeorological method described in Denmead (1983) 

to analyze the effects of shallow injector, deep injector, trailing or hanging hoses (to 

place manure on soil surface but under residue cover), traveling irrigation gun and splash 

plate after application of slurry. Odour concentrations were measured up to 123 hrs after 

application so the emission rate trend over time could be observed.  The highest odour 

concentrations resulted from irrigation gun application, followed by splash plate, deep 

injection, shallow injection, and trailing hoses (Phillips et al., 1990). 
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3.2.4 Dispersion Models 

 

Establishing science-based setback distances for manure spreading should involve 

dispersion modeling. Air dispersion models are commonly used to predict the downwind 

movement of toxic gases from industrial sources. Since more than 60% of the air 

pollution complaints to regulators are related to odours (Leonardos, 1996), recent efforts 

have focused on assessing the suitability of using existing dispersion models to predict 

the transport and concentration of odours downwind of factories and intensive livestock 

facilities. The ability to predict the odour concentration surrounding such facilities will 

assist regulators in establishing separation distances to minimize the odour nuisance to 

neighbours and maximize the space available to expand the industry. Minimizing 

nuisance and using space more efficiently will help ensure the economic and 

environmental sustainability of the industries.  

 

3.2.4.1 Models for Odour Dispersion 

Guo et al., (2001b) and Zhou et al., (2005) summarized the air dispersion models 

applicable to odour dispersion modeling.  The suitability for odour dispersion modeling 

of several models (ISC, AUSPLUME, CALPUFF) as well as several special models 

(AODM, INPUFF, fluctuating plume model) have been examined by researchers around 

the world (Piringer et al., 2004; Schauberger et al., 2000; Mussio et al., 2001; Xing et al., 

2006).  Since odour dispersion modeling is mainly concerned with the near-field 

concentrations (within 1,000 m of the source), short-range models are favoured over 

long-range models.  

  

3.2.4.2 Factors that Affect Dispersion 

All dispersion models account for the main factors that affect the movement and 

diffusion of particles in the atmosphere.  These factors include weather stability and wind 

speed, strength and variability of the emission source, and the physical characteristics of 

the emission source (height, velocity and temperature of gas stream, etc.)  Most models 

include modules or algorithms to include the effects of topography and building 
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downwash while some models deal with specific types of emission sources (point, line, 

area, or volume sources).  It is essential that the users of the models understand the 

impacts of each of these effects on the dispersion process in order to properly interpret 

the results (Ministry for the Environment, 2000). 

 

3.2.4.3 Challenges of Dispersion Modeling 

While research has shown that atmospheric dispersion models are suitable for odour 

dispersion modeling, it remains a challenge to correctly apply the models to accurately 

predict downwind concentrations and determine appropriate separation distances.  

Problems associated with odour modeling include the high uncertainty in odour intensity 

measurements by human assessors, the variability in protocols for odour emission 

measurements, the uncertainty in the odour concentration and intensity conversion 

equation, and the uncertainty in using time-averaged odour data. Additionally, particulate 

dispersion models are based on the mass of the particulate. Uncertainty in estimation of 

the mass of odour and the potential physio-chemical change in odour over time make the 

application of these models problematic.  

 

Current research has largely focussed on validating dispersion models for use with 

livestock barns and manure storages (Xing et al., 2006). Additional problems arise when 

attempting to model emissions from activities such as the land application of manure. 

Manure-applied fields are a large, ground-level area source and the emission strength is 

spatially and temporally variable. Most likely, this type of situation would need to be 

idealized in order to be modeled, and a combination of several models with specialized 

modules would be required to accurately predict the downwind concentration of odour. 

However, factors that are a major concern with buildings and storages (i.e. building 

downwash) should not be an issue with modelling emissions from manure application.  
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3.2.5 Identification of Research Gaps and Objectives 

 

Based on the review of literature, the methodology for odour sample collection from 

manure application sites has not been well defined. Since manure spreading has been 

identified as an activity where odour reducing technologies may be successfully applied, 

baseline data on odour emissions from varying manure types and application methods are 

required to properly assess the effectiveness of odour reducing technologies. There have 

been few studies that comprehensively compared the odour emissions from liquid and 

solid manure at varying application rates and even fewer that compared the effects of 

injection or sub-surface application on odour emissions. 

 

Intensive livestock regulators would like to establish science-based set back distances for 

production buildings, manure storages and manure spreading activities. However, odour 

dispersion modeling for manure spreading is a challenging task that requires knowledge 

of the odour emission rate variation over time after application of manure. It is likely that 

the type of manure and method of application will affect not only the magnitude of the 

emission rate but also the trend of the variation over time, neither of which have been 

previously investigated. 

 

Based on the identification of these research gaps, the objectives of this research are: 

� to evaluate existing equipment and protocols for odour emission determination 

following land application of manures and, if required, develop new protocols and 

equipment for sample collection, 

� to evaluate the relative odour emissions from various types of solid and liquid 

manure with both surface and sub-surface application, and 

� to develop and validate mechanistic models for the prediction of odour 

volatilization following land application of liquid and solid manure. 

 

There are many challenges associated with odour emission measurement from land 

application of manure.  These challenges include the varying chemical composition of the 

manure between and within species, the difficulty in assessing actual field application 
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rates for full-scale field measurements, ensuring that representative samples are collected 

from the chambers, and varying background emissions from wet and dry agricultural soil. 

Lau et al. (2003) noted that odour concentration values collected by chambers also 

depend on factors such as induced airflow across the enclosure, amount of manure 

applied and ground surface area covered. In order to draw valuable conclusions related to 

the emissions from manure application, every attempt should be made to address and/or 

minimize these factors. 

 
 

3.3 Materials and Methods 
 

3.3.1 Selection of Measurement and Collection Techniques 

 

Although odour intensity, duration and frequency were identified as key odour indices 

related to odours from manure spreading, odour concentration offers the ability to 

calculate an emission rate and make statistical inferences among treatments. Therefore, 

triangular, forced choice dynamic dilution olfactometry (conforming to CEN (2003) 

standards) at the University of Alberta was used to analyze air samples for odour 

concentration (OU/m3) and hedonic tone. All samples were analyzed within 24 hours of 

collection. 

 

The literature review (Section 3.2.1) identified the wind tunnel as the preferred method of 

collecting odour emissions from an area source. However, preliminary testing of a wind 

tunnel showed that the use of typical wind speeds diluted the samples beyond the 

measuring capabilities of the olfactometer. Odours from a large area source, such as a 

field, are initially much more dilute than concentrated area sources such as a manure 

storage so the method to collect emissions from a manure storage may not be practical for 

use in a field. Navaratnasamy et al. (2005) also reported that the odour concentration of 

samples collected using a wind tunnel from a swine manure storage was too low to 

differentiate from the background odour in the sample bags. Frechen et al. (2004) 

reported the same problem using wind tunnel technology. Results from the study reported 
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in Navaratnasamy et al. (2005) suggested that the odour concentration (OU/m3) could be 

measured with relatively more confidence using a dynamic chamber than with a wind 

tunnel.  

 

Also, since the objective of the study was to compare emissions between solid and liquid 

manure and surface and sub-surface application, absolute or “true” odour emission 

readings were not necessary. As indicated in the literature review, the dynamic chamber 

can provide consistent and reproducible comparisons among multiple treatments. The 

conclusions drawn from such comparisons will be valid and valuable although the 

resulting data may not be directly comparable to other odour research utilizing wind 

tunnels.  

 

3.3.2 Measurement of Odour Emissions Using a Dynamic 

Chamber 

 

3.3.2.1 Description of the Dynamic Chamber 

The dynamic chamber used in Navaratnasamy et al. (2005) was designed to have the 

same surface area dimensions as a standard wind tunnel. This same chamber design was 

utilized in this study and is shown in Figure 3.1. The chamber was designed and built at 

the Alberta Agricultural Research Station in Lethbridge, AB.  The stainless steel collar 

(0.8 x 0.4 x 0.1 m) was designed to be placed on the emitting soil to form a good seal and 

the chamber (0.8 x 0.4 x 0.3 m) to be sealed to the collar with a Styrofoam gasket and 

clamps.  The chamber had a port for incoming air and an exhaust tube that included a 

sampling manifold.  All tubing on the dynamic chamber was made of Teflon to minimize 

odour contamination of the samples.  
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Figure 3.1 Dynamic chamber for odour emission measurement. 

 

3.3.2.2 Optimization of Flow Rate with CO2 Source 

The optimal volumetric flow rate for use in dynamic chambers used for odour 

measurement from manure application is not well defined in the literature. Researchers 

have used flow rates ranging from 0.167 to 1.0 L/s for varying designs of chambers. 

Selecting a low flow rate would result in improper mixing and suppression of emission 

within the chamber while selecting a high flow rate would excessively dilute the sample. 

The size and shape of the chamber would also influence the flow behaviour at the soil 

surface, so each chamber design requires a specific flow rate. 

 

In order to determine the performance of two different dynamic chambers (the 

rectangular chamber used in this study and a circular chamber used in previous work 

(Agnew et al., 2005)), a “flux simulation box” was designed and built to supply the 

chambers with a known flux of CO2. Since odour is difficult to simulate and measure, 

using odour tracers was considered impractical. Detailed information on the optimization 

of flow rate study can be found in Appendix A. 

 

The chambers were operated at a range of flow rates, from 0.236 to 1.888 L/s (0.5 – 4 

cfm) and samples were collected from the flux simulation box and each of the chambers.  

The flux from the box (the “actual flux”) ranged from 0.25 – 2.5 mg CO2/m
2-s and was 

Collar 

Inlet from compressor 

Charcoal filter 

Ambient sampling port 

Exhaust pipe/ 
Sampling manifold 

Inlet to chamber 
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compared to the flux collected in each of the chambers.  Both chambers performed well 

at 0.944 L/s (2 cfm or 56.6 L/min). Lower flow rates produced erratic results (the error 

between the chamber flux and the actual flux was over 80%) while the highest flow rate 

diluted the sample concentration to background levels. At a flow rate of 0.944 L/s, the 

error between the measured and actual flux was between 20 and 50%.  

 

While an initial objective of the optimization study was to establish a calibration curve 

for the chamber, it was discovered that varying environmental conditions (temperature, 

barometric pressure, soil moisture content, ambient CO2 concentration, etc.) influenced 

the chamber performance slightly (refer to Table A.1 in Appendix A), so a calibration 

curve would need to be developed for each set of environmental conditions. This was 

deemed impractical for this study. 

3.3.2.3 Operation of Dynamic Chamber 

During sample collection, the dynamic chamber was deployed on even ground at the 

sampling site and the collar was pushed into the soil approximately 5 cm to form a good 

seal.  Fresh air was supplied from a portable gas powered air compressor and passed 

through a rotameter for airflow rate adjustment and a charcoal air filter to remove 

background contaminants.  This sweep air (2 cfm or 0.944 L/s) was allowed to circulate 

in the chamber for at least 5 minutes before drawing the sample from the sampling 

manifold.  Samples were drawn through Teflon tubing into Tedlar bags with a vacuum 

box utilizing the sampling lung principle to prevent contamination of the odour sample.  

The bags were first purged with sample air during the 5 minute equilibration waiting 

period. The samples were analyzed within 24 hours of collection for odour concentration 

(OU/m3) and hedonic tone using olfactometry.  

 

Generally, emissions from dynamic chambers are calculated using Equation 3.1. In the 

case of odour emissions, the sample had an odour concentration with units of OU/m3. 

Also, the odour concentration of the filtered air entering the chamber was assumed to be 

negligible. Therefore, for the calculation of odour emission from dynamic chambers, 

Equation 3.4 was used. 
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A

Q
OCE *=  

 

Where E = odour flux (OU/m2-s),  

OC = odour concentration of sample (OU/m3), 

Q = flow rate in chamber (m3/s), and 

A = soil area enclosed by chamber (m2). 

 

Since uncertainty in odour concentration measurement is inherently high, the percent 

error in odour flux calculation as determined by Equation 3.4 was about 28% (refer to 

Appendix C). In addition, odour flux values from a dynamic chamber may not be directly 

comparable to values calculated using wind tunnel data due to the difference in flow rates 

used. Since the goal of this research was not to generate odour flux values but, rather, 

relative comparisons of emissions from different treatments, the majority of the data are 

analyzed and presented as odour concentration rather than odour flux. Odour fluxes are 

reported in Tables B.1.and B.3 in Appendix B. 

 

3.3.3 Experimental Design for Data Collection 

 

Odour emissions from surface and subsurface application of liquid and solid manure were 

measured on a plot scale rather than full-scale field testing to control variables such as 

application rate and application method and type of manure. Liquid swine and dairy 

manure and solid swine, poultry and feedlot manure were surface applied and injected at 

three application rates with 3 repetitions.  Application rates were selected based on 

recommended agronomic rates defined by the nitrogen content of the manure. A 

recommended “one-year” application rate (1X) would be applied annually to supply 

enough nitrogen for one year of crop growth. Two and three year application rates (2X 

and 3X), where larger quantities of manure are applied every two or three years, are 

common in the Canadian Prairies and were also used in this study. In some cases, full-

sized application equipment (i.e.: a liquid tanker injection truck and a solid prototype 

applicator) were used to apply the manure. Due to the logistical restrictions of the 

(3.4) 
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olfactometer lab, application equipment and land availability, simulated manure 

application as described below was used in some of the experiments.  

 

The experimental design for all sites was a completely randomized block design to 

account for soil variability at each site. A summary of the sites used in this study is 

shown in Table 3.2. For the Muenster location, manure was machine applied by the 

PAMI liquid manure injector tanker. Each block (repetition) contained 2 species of liquid 

manure, 2 modes of application and 3 application rates for the surface applied plots and 4 

application rates for the injected plots. Samples were also collected from 3 control plots 

(2 were undisturbed and 1 was disturbed to investigate the effect of soil disturbance on 

odour emissions).  

 

For the U of S Feedlot and Saskatoon area locations, manure application was simulated 

by hand. Each block (repetition) included two types of manure, two modes of application 

and four application rates, including a control rate of zero. Two sets of simulated 

application experiments were completed in 2007. One set utilized liquid dairy and solid 

feedlot manure and the other included liquid swine and solid swine manure.  

For the Humboldt area location, manure was machine applied by the PAMI prototype 

solid manure injector. Each block (repetition) included one type of manure, 2 application 

methods and 4 application rates, including a control rate of zero.  

 
Table 3.2. Summary of odour emission experiments conducted in 2006 and 2007. All experiments 

were randomized block designs and included surface and subsurface applications at 

several application rates. 

 

Year 

 

Location 

 

Type of manure 

 

Method of application 

2006 Muenster Liquid swine and liquid dairy PAMI tanker truck 
2007 U of S Feedlot Liquid dairy and solid feedlot Simulated application 
2007 Saskatoon area Liquid swine and solid swine Simulated application 
2007 Humboldt area Solid poultry Solid injection prototype 
Number of odour samples collected (not including samples that were “lost in transit”): 
 2006: 42 odour samples (all from machine application) 
 2007: 118 odour samples (94 from simulated application, 24 from machine application) 
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3.3.4 Manure Application 

 

3.3.4.1 Machine Application 

The Muenster plots utilizing the PAMI liquid injector tanker truck (Figure 3.2a) were 10 

m long and 3 m wide with 3 m spacing between plots. Liquid dairy and swine manure 

was applied along the entire 10-m length and measurements were taken at random spots 

in the middle of the plot (to ensure the target application rate had been reached). The flux 

chamber was deployed within 20 minutes of application.  For the injected plots, manure 

was injected to a depth of 7.5 to 10 cm. The chamber covered 2 furrows for the injected 

plots.  

 

The target application rates were chosen to simulate typical one-year and two-year 

application rates based on the nitrogen content of the manure. Since ammonia losses due 

to volatilization are approximately 60% lower for injected manure (Sommer and 

Hutchings, 2001), the injected application rates were reduced by 60% so the amount of N 

retained in the soil would be approximately the same for both application methods (refer 

to Table 3.3). Due to limitations of the achievable application rate, additional rates of one 

half and one quarter of one year rates were also used (surface applied manure at a 2 year 

rate was not feasible). The liquid manure application rates for the plot trial are outlined in 

Table 3.3 and the chemical properties of the manure used in these plots are in Table 3.4. 

 

The plots utilizing the solid manure injector prototype in the Humboldt trials (Figure 3.2b 

and 3.2c) were 10 m long and 3 m wide with no spacing between plots. Poultry manure 

was both surface-applied and injected to a depth of 7.5 to 10 cm. The dynamic chamber 

was deployed near the center of the plot within 10 minutes of application. For the injected 

plots, because the row spacing was 40 cm, the chamber covered only one furrow. The 

poultry manure application rates were the same as those used for the solid manure 

simulated application plots (Table 3.5) and the chemical properties of the poultry manure 

are listed in Table 3.6. 
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(a)           (b) 

 
           (c) 
Figure 3.2 Machine manure applications a) PAMI’s liquid manure injector tanker truck b) solid 

manure injection prototype (broadcast mode) c) solid manure injection prototype 

(injection mode). 

 

 

Table 3.3.  Liquid manure application rates for PAMI injector truck plots (Muenster).  

 Dairy (m
3
/ha) Swine (m

3
/ha) 

Rate Surface Injected Surface Injected 

0.25X 21 8 23 9 
0.5X 42 17 47 18 
1X 84 34 94 37 
2X n/a 68 n/a 75 

 
Table 3.4. Liquid manure chemical properties for PAMI injector truck plots (Muenster). 

 Total Solids 

(%) 

Ammonia as N 

(kg/m
3
) 

Total N 

(kg/m
3
) 

Swine manure 2.0 2.99 3.46 
Dairy manure 7.0 2.03 3.58 

 

3.3.4.2 Simulated Application 

Another set of smaller plots (2 m x 1 m) utilized simulated manure application of liquid 

and solid manure. The application rates were calculated based on the area of the plot and 

the volume and mass of liquid and solid manure, respectively, required to simulate 

typical application rates. For these plots, the application rates for surface and injected 

applications were equivalent. The application rates simulated in these plot trials are 
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outlined in Table 3.5 and the chemical properties of the manure used in these plots are in 

Table 3.6. 

 
Table 3.5. Liquid and solid manure application rates for simulated application plots. 

Rate Solid (Mg/ha) Liquid (m
3
/ha) 

1X 20.2 56.1 
2X 40.4 84.2 
3X 60.6 112.2 

 
Table 3.6.  Manure chemical properties used in simulated application plots. 

 Total Solids 

(%) 

Ammonia as N 

(kg/m
3
) 

Total N 

Solid feedlot 38.2 n/a 8.3 kg/Mg 
Liquid dairy 6.9 0.60* 2.5 kg/m3 
Solid swine 43.2 n/a 7.0 kg/Mg 
Liquid swine 2.8 2.88 3.24 kg/m3 
Solid poultry** 46.4 3.25 17.3 kg/Mg 

*Liquid dairy manure was “generated” by taking fresh semi-solid manure directly from alley of barn and 
diluted with equal parts of water, and applied within 12 hours of mixing, resulting in little time for 
microbial activity and generation of NH4-N. 
**Solid poultry used for machine application only. 

 

      
(a)                     (b)                (c) 

 
           (d)              (e)     (f)   (g) 
Figure 3.3  Simulated manure applications a) Liquid swine manure surface application (3X rate) b) 

Solid feedlot manure surface application (3X rate) c) Liquid injection furrows d) Liquid 

injection (2X rate) e) Solid injection furrow f) Solid injection (2X rate before covering) g) 

Solid injection odour measurement (2X rate after covering). 



66 
 

For liquid surface application, the manure was poured from a bucket over a 10 cm 

diameter “splash plate” about 30 cm above the surface of the ground and covered the 

entire plot (Figure 3.3a). For solid surface application, the pre-weighed manure was 

simply forked over each plot (Figure 3.3b).  For liquid injection, two furrows were cut 

into each plot 30 cm apart to a depth of 7.5 cm using a square spade (see Figure 3.3c) to 

simulate liquid injection achieved by the equipment used for machine application. The 

liquid manure was then poured through a pail spout evenly into each furrow (Figure 

3.3d).  

 

To simulate solid injection, a single furrow was cut into the soil using the spade.  Because 

solid injection results in more soil disturbance than liquid injection, the furrows for the 

solid injection were wider and the depth varied between 7 and 10 cm (see Figure 3.3e).  

Also, because the injector prototype spacing was 40 cm, the chambers could only 

accommodate one furrow.  The amount of manure applied to each plot was adjusted to 

accommodate the effective plot size of the injected plots. Solid manure injection for the 

2X application rate is pictured in Figure 3.3f (before covering) and 3.3g (after covering 

and with the flux chamber). 

 

3.3.5 Soil Properties 

 

The three sites (U of S Feedlot, Saskatoon area and Humboldt area) used for the 

experimental plots in 2007 were all in the dark brown chernozemic soil region of 

Saskatchewan. Individual soil properties for the three sites are listed in Table 3.7. The 

moisture content was assessed using the gravimetric oven dry method (104⁰C for 24 h) 

and the bulk density approximation was based on published values for the texture class. 

The nitrogen, organic carbon and organic matter contents were analyzed by ALS 

Laboratory Group in Saskatoon, SK using standards outlined in Nelson and Sommers 

(1996) and Tiessen and Moir (1993). The Muenster site (2006 odour data) was also a 

dark brown chernozemic soil, but additional soil properties were not analyzed. 
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Table 3.7. Soil properties for data collection sites. 

 

 

Site Location 

 

 

Texture 

Class 

Moisture 

Content 

Range  

(% d.b.) 

Bulk 

Density  

 

(g/cm
3
) 

Nitrogen 

Content 

 

(% LECO-N) 

Organic 

Carbon 

Content 

(%) 

Organic 

Matter 

Content 

(%) 

U of S 
Feedlot 

Sandy 
loam 

15.7 – 34.4 1.49 0.30 3.2 5.5 

Saskatoon 
area 

Loam 19.8 – 23.8 1.47 0.34 3.4 5.8 

Humboldt Clay 
loam 

26.1 – 31.9 1.31 0.44 4.4 7.5 

 
 

3.3.6 Statistical Analysis 

 

Humans are considered to respond logarithmically to odour concentration (Qu et al., 

2010) so calculations and statistical analyses on odour results were performed on the 

logarithm of the OU value. Based on a Kolmogorov-Smirnoff test (Greenberg, 2006), the 

log OU data were very close to being normally distributed so statistical analyses of the 

hedonic tone and log OU (odour concentration) were completed using Minitab v.15 and 

the General Linear Model procedure (Greenberg, 2006). Treatments were considered to 

have a significant effect on the result when the P value was less than 0.05 (95% level of 

confidence).  

 

Outliers, or infrequent observations, can cause problems in statistical analysis.  

Generally, if a measurement is greater than 2 standard deviations from the mean of all 

observations, it may be treated as an outlier and omitted from the data set.  However, 

because odour data are highly variable, this standard may be impractical and result in 

many outliers.  Therefore, for odour data to be treated as outliers, it was assumed that 

they must be greater than three standard deviations from the mean of all observations  

 

Low odour emissions or concentrations can also affect the results of the statistical 

analysis.  Other researchers have stated that background odour concentrations in the 

Tedlar bags used to transport odour samples can be as high as 50 to 150 OU/m3 (Moseley 

et al., 1998; Qu and Feddes, 2006).  Therefore, results less than 150 OU/m3 can 
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theoretically be treated as zero since it would be impossible for the odour panellists to 

differentiate between the background in the bag and odour in the actual sample. 

 

3.4 Results 
 
Due to the differences among application rates and methods of application between the 

2006 and 2007 odour data, the results were analyzed independently and will be presented 

separately. Tables B.1 and B.3 in Appendix B include numeric summaries of log OU, 

hedonic tone and odour emission rate data with and without outliers. Table B.4 is a 

numeric summary of all odour concentration and log OU data collected in this study. 

Figures B.1 to B.6 in Appendix B include additional graphical summaries of the odour 

concentration data from this study (without outliers). Appendix C includes an uncertainty 

analysis for the odour emission rate calculation (Equation 3.4). 

 

3.4.1 Data from 2006 Experiments 

 

3.4.1.1 Outliers 

Table B.2 (in Appendix B) identifies the outliers and the rationale behind their exclusion. 

For the 2006 odour data, one data point was identified as an outlier: rep 2 from the 1X 

surface application of liquid dairy manure. All statistical analyses reported in this section 

were completed on the data set excluding this outlier. There were no odour samples less 

than 150 OU/m3 in the 2006 data.  

 

3.4.1.2 Effect of Manure Species, Application Method and 

Application Rate 

For the 2006 odour data, the odours from swine manure were significantly higher than 

from dairy manure (P=0.000) and odours from the injected plots were significantly lower 

than from the surface applied plots (P=0.002). In the 2006 data set, injection significantly 

lowered odours from both the swine and dairy manures. However, there were no 

statistical differences among application rates (P=0.545), indicating odours from the 
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manured plots were not distinguishable from odours from the control plots. This was due 

to the lack of data from control plots during the 2006 experiment, resulting in a high 

variation of odour for the 0X application rate. In addition, the 2X application rate was 

injected only, resulting in lower odours from the 2X rate. 

 

A graphical summary of the log OU data is presented in Figure 3.4 (numeric summary in 

Tables B.1 and B.3 in Appendix B). Additional graphical and numerical summaries 

showing the effect of application method and rate on odour concentrations are shown in 

Appendix B. 

  

(a) (b) 

 

(c) 

Figure 3.4 Graphical summary of 2006 odour data (log OU), a) Effect of manure species, b) effect of 

application mode, and c) effect of application rate. Error bars represent the standard 

error of the mean.  
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3.4.1.3 Specific Odour Emission Rate (OU per kg N per s) 

To determine the effect of application rate on odour emissions, three application rates 

were chosen based on preliminary analyses of the nitrogen content of the manure. Due to 

limitations of the equipment used to apply the manure in 2006, surface applications in 

excess of 95 m3/ha (10,000 gal/acre) were not possible. Therefore, additional rates were 

calculated by dividing the one year rate by two and four. In addition, for the 2006 plots, 

the application rates were adjusted for the injected treatments since losses of N due to 

volatilization are lower for injected manure (Sommer and Hutchings, 2001). After the 

final analyses of the nitrogen content of the manure were available, the actual N 

application rates for the plot trials were calculated. A summary of the actual application 

rates of total N and NH4-N for the different rates and application methods used in the 

2006 plots are shown in Table 3.8. 

 
Table 3.8. Summary of actual N application rates for 2006 plot trials. 

   kg N-tot/ha kg NH4-N/ha 

 Total N 

kg/m
3
 

NH4-N 

kg/m
3
 

 

0.25X 

 

0.5X 

 

1X 

 

0.25X 

 

0.5X 

 

1X 

Swine (Surf) 3.5 3.0 80 163 326 69 141 281 
Swine (Inj) 3.5 3.0 31 62 128 27 54 111 
Dairy (Surf) 3.6 2.0 75 150 301 43 85 170 
Dairy (Inj) 3.6 2.0 29 57 114 16 35 69 

 

Since the actual application rates based on N content of the manure were not the same for 

both manure species, specific odour rates were calculated by dividing the odour emission 

rate by the total N application rate. The resulting odour rates (“N specific odour flux”) 

have units of OU/kg-N-s and allowed better comparisons among manure types. 

 

The specific odour fluxes for the 2006 data are shown in Figure 3.5. Specific odour 

fluxes from swine manure applications are still significantly higher than from dairy 

applications. However, based on the 2006 specific odour flux data, injecting manure 

actually increases specific odour emissions. The magnitudes of the odour emissions from 

the injected plots were indeed lower than the surface plots, but this was mainly due to the 

lower application rate rather than reduced volatilization and/or diffusion of odour 

compounds. Also, the specific odour decreased with application rate, suggesting that the 

proportion of manure compounds that volatilize decreases with application rate. This is 
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probably due to the solid manure “piling” and the liquid manure “ponding” at higher 

application rates, limiting the surface area in contact with the air and limiting 

volatilization. 

 

  
(a) (b) 

 
(c) 

 
Figure 3.5. Specific odour rate (OU/kg N-tot-s) for 2006 plot trials, a) effect of manure species, b) 

effect of application mode, and c) effect of application rate.  

 
Specific odour rates in terms of kg NH4 applied were also calculated and analyzed, but 

the trends were very similar to those calculated in terms of kg N-total. Additional graphs 

showing the effect of manure type, application method and application rate on specific 

odour rates are shown in Appendix B. 

 

3.4.2 Results from 2007 

 

3.4.2.1 Outliers 

Table B.2 identifies the outliers and the rationale behind their exclusion. For the 2007 

odour data, 2 data points were identified as outliers: repetitions 1 and 2 from the 3X 
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injection of liquid swine manure. All statistical analyses reported in this section were 

completed on the data set excluding outliers. 

 

Several of the control plots from 2007 returned odour concentrations less than 150 

OU/m3. In addition, nearly all of the solid swine injected plots (all rates, all reps except 

2X-3) returned odour concentrations less than 150 OU/m3. This indicates that the odour 

from the solid swine injected plots was not distinguishable from the background odour in 

the Tedlar bags. Even so, these data were not omitted from the data set. 

 

3.4.2.2 Effect of Manure Species, Application Method and 

Application Rate 

For the 2007 odour data, results at the 95% level of confidence indicated that odours from 

liquid manure application were significantly higher than odours from solid manure 

application (P=0.001) and odours from the 1X, 2X and 3X application rates were 

statistically higher than odours from the control plots (P=0.000). When the two 2007 

outliers were excluded, the odour emissions from the injected treatments were 

significantly lower than emissions from the surface applied treatments (P=0.002).  

 

When examined individually, injection significantly decreased odour emissions from 

liquid dairy manure (P=0.000) and solid swine manure (P=0.000) (see Figure B.5b in 

Appendix B). The odours from the solid feedlot manure were too low to determine a 

statistical trend (P=0.274) while the odours from the poultry manure plots were too 

variable to determine a statistical trend (P=0.196). Alternatively, injection of the liquid 

swine manure actually significantly increased odour emissions (P=0.002), even when the 

two outliers were omitted. A graphical summary of the log OU data is presented in Figure 

3.6 (numeric summary in Tables B.1 and B.3 in Appendix B). Additional graphical and 

numeric summaries showing the effect of application method and rate on solid manure 

and liquid manure separately are shown in Appendix B. 

 

The effects of treatment interactions were assessed for the 2007 odour data only. The P 

values for the type*mode, type*rate, mode*rate and type*mode*rate interactions were 
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0.066, 0.031, 0.251 and 0.541, respectively. Therefore, only type*rate interaction was 

significant at the 95% level of confidence. These interactions are plotted in Figure B.8 in 

Appendix B. The type*rate interaction indicates that odour concentration increases at a 

different rate for solid manure than liquid manure. However, this was due to an arbitrary 

assignment of control plots to either “solid” or “liquid” manure. If the control odours are 

ignored on the interaction plot, the rate of increase in odour concentration is the same for 

both manure types. 

 

  
(a) (b) 

  
(c) (d) 

 
Figure 3.6 Graphical summary of 2007 odour data (log OU), a) effect of manure type, b) effect of 

application mode, c) effect of application rate, and d) effect of manure species. Error bars 

represent the standard error of the mean.  

 

3.4.2.3 Control Odours 

It was hypothesized that soil moisture content and soil disturbance may affect odour 

concentration and hedonic tone from samples collected from the experimental plots. To 

determine whether soil moisture was a factor, the log OU values from the control plots 

were plotted against soil moisture content in Figure 3.7 (2007 data only). There was no 

apparent correlation between soil moisture content and odour concentration. Similarly, 
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there was no correlation between soil moisture content and hedonic tone (Figure B.7 in 

Appendix B). 

 

  
(a) (b) 

 
Figure 3.7  Control odours (a) effect of soil moisture (% d.b.) on control (0X) odours, and (b) effect of 

soil disturbance on control odours. Error bars represent the standard error of the mean.  

 
Some research has suggested that injection of manure may increase odour concentrations 

since injection results in soil disturbance, contributing to the amount of odour compounds 

present in the air immediately above the soil surface (Rahman et al., 2004). Comparing 

the log OU data between the disturbed and undisturbed control plots from the 2007 data 

shows the disturbed plots had slightly higher odour concentrations than the undisturbed 

control plots (Figure 3.7b). However, this difference was not statistically significant 

(P=0.367), suggesting that the soil disturbance resulting from manure injection does not 

contribute to the overall odour emissions from manure application. Similarly, the hedonic 

tones were the same for both control treatments.  

 

3.4.2.4 Specific Odour Emission Rate 

For the 2007 plot trials, the application rates were set to 100, 300, and 500 kg N/ha 

respectively based on preliminary analyses of the nitrogen content of the manure. 

Injected and surface applied plots received the same application rates. After the final 

analyses of the nitrogen content of the manure were available, the actual application rates 

for the 2007 plot trials were calculated and are presented in Table 3.9. 
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The 2007 specific odour rate data are graphically summarized in Figure 3.8. The specific 

odour rate results showed significant differences for type of manure (P=0.000), mode of 

application (P=0.016) and application rate (P=0.026). In contrast with the 2006 data, 

injection did decrease odours compared to surface application. Again, specific odour 

decreased with application rate due to limited surface area contact with the higher 

application rates. The specific odour fluxes from the three types of solid manure were 

similar to each other and were all lower than the specific odour rate from the two liquid 

manures. 

 

Table 3.9. Summary of actual N application rates for 2007 plot trials. 

   kg Ntot/ha kg NH4-N/ha 

Manure Total N NH4-N 1X 2X 3X 1X 2X 3X 

Feedlot 8.3 kg/Mg 2.1 kg/Mg(1) 168 335 503 42 85 127 
Swine (S) 7.0 kg/Mg 1.8 kg/Mg(1) 141 283 424 35 71 106 
Poultry 17.3 kg/Mg 3.3 kg/Mg 350 700 1050 66 131 197 
Dairy 2.5 kg/m3 0.60 kg/m3(2) 140 211 281 34 51 67 
Swine (L) 3.2 kg/m3 2.9 kg/m3 182 273 364 161 242 323 

1 NH4-N analysis for the solid feedlot and solid swine manure were not available. Literature values (Webb et al., 2001) state that 
approximately 25% of total N is in the form of plant available NH4-N for these types of manure.  

2 Liquid dairy manure was “generated” by taking fresh semi-solid manure directly from alley of barn and diluted with equal parts of 
water, and applied within 12 hours of mixing, resulting in little time for microbial activity and generation of NH4-N. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3.8. Specific odour rate (OU/kg Ntot-s) for 2007 plot trials, a) effect of manure type, b) effect of 

application mode, c) effect of application rate, and d) effect of manure species. 



76 
 

Additional graphs showing the effect of manure type, application method and application 

rate on specific odour rates are shown in Appendix B. 

 

3.4.2.5 Hedonic Tone 

Even though hedonic tone is considered a subjective measure, the results show interesting 

trends for odours from manure application. For the 2007 data, odour from the solid 

manure plots were considered more pleasant than odour from the liquid manure plots 

(P=0.000). Although the odour from the surface application was slightly more pleasant 

than from the injected applications, this difference was not statistically significant 

(P=0.502). Not surprisingly, odour from the control plots were significantly more 

pleasant than odours from the 1X, 2X and 3X application rates (P=0.027). There were no 

significant differences among hedonic tones for the 2006 odour data.  

 

3.5 Discussion 
 

3.5.1 Comparison Between 2006 and 2007 Data 

 

The 2006 data are not directly comparable to the 2007 data since manure was 

mechanically applied in 2006 and hand applied in 2007. In addition, the manure sources 

were different between the two years. The liquid swine and dairy manure used in 2006 

were obtained from commercial livestock facilities. In 2007, the dairy manure came from 

the U of S research barn and was diluted to obtain a similar solids content as 2006, and 

the liquid swine manure was obtained from a small livestock facility with underground 

concrete storage tanks (compared to the earthen manure storages in 2006). In the 2006 

data set, odours from swine manure were significantly higher than odours from dairy 

manure while, in 2007, the odours from the swine manure were lower than dairy manure. 

The liquid swine and liquid dairy data in 2007 were collected at different sites, however, 

making the comparison between swine and dairy manure difficult due to varying 

background effects. Additionally, even though the odour samples were analyzed at the 
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same olfactometry lab in both years, different panellists may have analyzed each set of 

samples, resulting in different odour concentration values. One other study directly 

compared odour emissions between liquid swine and dairy manure (Oh et al., 2004). For 

three application techniques (splash plate, hose spreader, hose spreader + disk harrow), 

the odour from the swine manure was higher than odour from the dairy manure (Oh et al., 

2004). In another study, Pain et al. (1988) showed no difference in the odour emission 

rate trend over time between separated cattle slurry and pig slurry.  

 

3.5.2 Effect of Application Method on Odours 

 

As expected, odour emissions from injected plots were generally lower than odour 

emissions from surface applied manure plots. Overall, the odour concentrations from the 

injected plots were 37% lower than from the surface plots. Injection decreased odour 

concentrations from solid manure application by 47% while injection decreased odours 

from liquid manure by 24%. Therefore, injection appeared to reduce odours more 

effectively and consistently for solid manure than for liquid manure.  

 

When examined individually, injection decreased odours by 62, 27, 46, and 66% for 

liquid dairy, solid feedlot, solid poultry and solid swine, respectively.  For the liquid 

swine manure, the odours from the injected treatment were actually 136% higher than the 

surface odours as measured immediately after application. This was probably due to 

ponding of manure on the surface for the 2X and 3X application rates, resulting in high 

concentrations of manure on the surface of the soil directly beneath the dynamic 

chamber. The injection of solid manure by hand and by the prototype resulted in 90 to 

100% manure coverage and provided consistently lower odours compared to the surface 

applied plots. Finally, the two outliers in the 2007 data set were from the liquid swine 

injection plots (3X), making the adjusted data for the liquid swine injected plots more 

variable due to lack of data points.   

 

In 2006, injection actually increased the specific odour flux while, in 2007, injected 

decreased the specific odour flux. To allow a better comparison with the 2006 data, only 
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the liquid manure results from 2007 were analyzed to determine the effect of application 

method on specific odour flux. For the 2007 liquid manure specific odour data, the results 

from the injected plots were lower than from the surface plots, but the difference was not 

significant (P=0.082). This indicates that injection tends to reduce odours on a per kg N 

applied basis, but this reduction may not be statistically significant.  

 

Several researchers have concluded that incorporation or “burying” manure during or 

after application will result in lower odour emissions compared to surface applications 

(Lindvall et al., 1974; Phillips et al., 1990; Lau et al., 2003; Moseley et al., 1998). Oh et 

al. (2004) showed that odours from a hose spreader were six times lower than those from 

a splash plate while Hanna et al. (2000) reported that most incorporation methods 

(narrow knife, sweep, chisel) reduced odour levels by 20 to 90% from the odour level 

emitted after broadcast application. Lau et al. (2003) reported a decrease in odours of 8 to 

38% between surface and sub-surface deposition. However, Pain et al. (1991) noted that a 

worthwhile reduction (52%) in total odour over 48 hrs was achieved only by immediate 

ploughing. No reduction in total emissions was detected when incorporation was delayed 

for 3 to 6 hrs after slurry application (Pain et al., 1991). The observed percent reduction 

in odours from injected plots versus surface plots in this study is similar to those reported 

in literature.  

 

3.5.3   Effect of Manure Type on Odours 

 

The results from this study indicate that odour concentrations from liquid manure were 

37% higher than odour concentrations from solid manure. This difference is even higher 

(68%) when the specific odour fluxes of liquid and solid manure treatments were 

compared. This suggests that when liquid and solid manure are applied at comparable N 

rates, the liquid manure will likely generate higher odour emissions.  

 

Of the solid manure species, the poultry manure applications resulted in the highest odour 

concentrations. However, the amount of N applied per plot was higher for the poultry 

manure than for the feedlot and solid swine manure because of the high N content of the 
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poultry manure. When the specific odour fluxes were calculated, odours from the poultry 

manure applications are equivalent to the solid swine and feedlot manure applications.   

 

The conclusion that odours from liquid manure applications were higher than solid 

manure applications is valid only for the first 20 minutes after application since all 

samples were collected within 20 minutes. Smith et al., (2007) monitored odour 

emissions over a 42 hour period after application and noted that overall odour emissions 

from liquid manure applications were lower than emissions from solid manure 

applications. The authors attributed this result to the infiltration capacity of the soil; the 

liquid manure infiltrated quickly but the solid manure remained on the surface, 

generating higher emissions for an extended period of time (Smith et al., 2007). 

 

3.5.4  Effect of Application Rate on Odours 

 

Generally, for the 2007 data, odour concentrations from 1X, 2X and 3X application rates 

were significantly higher than odour concentrations from non-manured plots. While the 

2X and 3X application rates generated 10 to 15% higher odour concentrations than the 

1X rate, the difference was not statistically significant. This trend was observed for both 

solid and liquid manure. Injection seemed to be more effective at reducing odour 

concentrations from the 1X application rate (54% reduction) than the 2X and 3X 

application rates (33% reductions). 

 

An interesting trend was observed for the effect of application rate on the specific odour 

data. The specific odour data represents the odour flux per kg N applied. Even though 

nitrogen compounds such as ammonia are not strongly correlated with odour emission, 

application rates are often based on N content so the specific odour flux allows 

comparison among different manure types and application rates. Although the odour 

concentrations increased with application rate, this increase was not proportional to the 

increase in amount of N applied. This resulted in a decreasing trend between application 

rate and specific odour rate (Figures 3.5c and 3.8c). Again, this is explained by the 

“piling” or “ponding” effect of the manure at higher application rates resulting in less 
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contact area and volatilization between the manure and the atmosphere. It must be 

stressed that increasing the application rate is not a viable strategy to reduce odour 

emissions. This information merely shows that odour concentrations per kg N applied 

decrease as the application rate increases. These data also confirm that volatilization is 

likely the dominant mechanism that generates odours from manure spreading. 

 

Smith et al. (2008) and Mkhabela et al. (2007) utilized micrometeorological methods to 

study the effect of liquid manure application rates on total odour emissions. Although 

their results were not statistically significant, Mkhabela et al. (2007) concluded that 

doubling the rate had no effect on odour emissions but tripling the rate increased 

emissions relative to conventional (1 year) application rates up to 44%. Smith et al. 

(2007) noted that 2X and 5X application rates generated 22 and 38% more odour, 

respectively, than 1X application rates. Rahman et al. (2004) used wind tunnels to 

measure odours from three application rates but found no correlation between odours and 

application rate. 

 

Pain et al. (1988) compared the emission rate trend over time after application between 

two application rates (50,000 and 200,000 L/ha). Similar trends were observed for both 

application rates, the only difference being the magnitude of emissions shortly after 

application. There was no evidence that odour from higher rates of slurry application 

were detectable for a longer period (Pain et al., 1988).  

 

3.5.5 Effect of Time after Application on Odours 

 

Although it was not directly studied in this phase of the research, the effect of time after 

application on odour emissions has been studied in literature (Lau et al., 2003; 

Misselbrook et al., 1997; Smith et al., 2007; Moseley et al., 1998; Hanna et al., 2000; 

Pain et al., 1988, 1991). These researchers concluded that odours after manure spreading 

return to background levels within 24 hrs. Injection or incorporation of the manure tends 

to decrease this time to as little as 4 hrs after application. Lau et al. (2003) also noted that 

the difference in odours between surface and sub-surface deposition over time after 
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application decreased, although odours from surface applications were still up to 25% 

higher than sub-surface applications 2.5 hrs after spreading. Results in Pain et al. (1991) 

show similar emission rate trends over time for an unincorporated control, rigid tines, 

rotary harrow and plough incorporation. The initial magnitudes of emissions are different 

for each incorporation method, but within 12 hrs they had the same emissions and the 

trend is very similar from 12 hrs to 48 hrs after application.  

 

The results from the current study suggest that liquid manure may generate higher 

emissions initially, but the emissions likely return to background levels very quickly 

while solid manure generates lower emissions initially, but may take longer to return to 

background levels. Knowledge of the emission rate versus time relationship over the first 

few hours after application for both solid and liquid manure with surface and subsurface 

application will be crucial for modelling of odour dispersion and calculating overall 

odour emissions from application sites.  

 

3.5.6  Comparison of Results with Literature Values 

 

As previously discussed, results from manure odour research are highly variable due to 

different environmental conditions, manure sources, and sampling and measurement 

techniques. Reporting of odour data also differs with some researchers quoting odour 

emission rates as OU/m3 and others calculating odours per L of slurry applied. In some 

cases, odour fluxes are reported with units of OU m/s (odour concentration as OU 

multiplied by wind speed in wind tunnel) instead of OU/m2-s (odour concentration as 

OU/m3 multiplied by wind speed). All these factors make comparisons among results 

very difficult. In addition, odour emissions measured by micrometeorological or wind 

tunnel methods are normally considered “true” emission rates whereas odour data 

collected using flux chambers (as in this study) are valid only for comparison purposes. 

Nonetheless, a summary of literature values of odour concentrations and emission rates 

after land application is presented in Table D.1 in Appendix D. The odour concentrations 

and relative reduction in odours in this study compare well with other studies using wind 
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tunnels, but the flux rates in literature and this study vary greatly, likely due to collection 

and calculation methods. 

 

 

3.6 Conclusions 
 

Dynamic flux chambers were used in this study for surface odour emission measurement. 

A sweep air flow rate of 0.944 L/s proved to work well for the magnitude of odour 

emissions arising from manure spreading activities. However, care must be taken to 

ensure an accurate measurement of the sweep air flow rate as this source of error can 

significantly increase the error associated with the odour flux measurement (refer to 

Appendix C). In addition, sweep air flow rates in excess of 0.944 L/s have the potential to 

dilute the sample beyond measuring capabilities of the olfactometer. Whenever possible, 

it is recommended to obtain baseline odour emission data to better select an appropriate 

sweep air flow rate as a rate of 0.944 L/s may also result in suppression of emissions and 

erroneous results.  

 

The results of the plot studies indicated that odour concentrations from injected plots 

were up to 37% lower than concentrations from broadcasted applications. Injection 

seemed to have a larger impact on reducing odours from solid manure than liquid 

manure. In fact, odours from injected liquid swine manure were actually higher than 

odours from surface applied liquid swine manure due to ponding of manure on the 

surface at high application rates. Injection had no effect on the hedonic tone. 

 

Odours from solid manure were 37% lower than from liquid manure. In general, odours 

from liquid and solid manure increased with higher application rates, but there was little 

difference among the one, two and three year application rates. For the plots applied with 

the PAMI truck, the odour concentrations from the swine manure were higher than the 

concentrations from the dairy manure, but this trend was reversed in the simulated 
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application plots. The odour from the solid manure applications was considered more 

pleasant than the odour from the liquid manure applications.  

 

The calculation of a specific odour flux (the odour emission rate as calculated by 

Equation 3.4 divided by the amount of N applied) resulted in some interesting trends. For 

the 2006 data, injection actually increased the specific odour rate, meaning that the 

observed overall reduction in odour concentration was due more to the reduction in 

application rate than the reduced volatilization of compounds. For the 2007 data, 

injection decreased both odour concentration and specific odour rate for all manure types 

except liquid swine. It was also noted that the specific odour rate decreased with higher 

application rates. This was due to the reduced surface area available for volatilization of 

compounds with higher application rates. Higher application rates do result in higher 

overall odour concentrations, but this increase is not proportional to the amount of N 

applied. 

 

Based on the results from this study, injection of manure is an effective way to reduce the 

overall odour emissions from manure spreading, particularly for solid manure. However, 

other factors associated with manure injection, such as the increased power requirement 

and soil disturbance, as well nutrient transport and greenhouse gas emissions, must be 

considered when evaluating the overall impact of manure injection versus surface 

application.  
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Appendix A—Use of a Flux Simulation Box to 

Determine Optimal Flow Rate in Flux 

Chamber 
 
Note: This work was presented and published in the conference proceedings for the 

ASAE Sectional Meeting in Brookings, SD in 2005 (Agnew et al., 2005). 

 

Introduction 

 

Since the volumetric flow rate of the sweep air in a dynamic flux chamber for odour 

measurement from manure application was not well defined in literature, experiments 

were carried out to determine the optimal flow rate. The performance of two flux 

chambers was assessed by operating them on a flux simulation chamber based on the 

design used by Widén and Lindroth (2003).   

 

 

Materials and Methods 

 

An airtight box with an open top (1.22 m wide, 2.44 m long, 1.22 m high) (4x8x4 feet) 

was constructed of oak plywood (Figure A.1).  Ports in the flux simulation box allowed 

for instrumentation (carbon dioxide source, pressure barometer, collection tube, gas 

release valve, and electrical cable).  A gas collection tube ran diagonally from the 

collection port to the opposite corner at the opposite end of the box.  Openings were 

located at even intervals along the tube.  The total surface area of all the holes was 

equivalent to the cross sectional area of the collection tube to ensure that the tube drew 

air from the inside of the box evenly. The inside of the box was braced with a 50.8 mm (2 

inch) round steel bar which could be expanded by means of a threaded steel rod to 

provide walls with support. Two small air circulation fans were attached to the support 

rod to ensure good mixing of the air inside the box.  The top of the flux simulation box 

was then covered with coarse and fine wire mesh and two layers of cotton to provide 

unrestricted airflow through the top of the box.  The top of the flux simulation box was 

large and sturdy enough to allow placement of both flux chambers and a wind tunnel for 

performance evaluation. 

 

Carbon dioxide gas pumped into the flux simulation box through the gas supply port and 

gas was continuously drawn from the inside of the box through the collection tube and 

analyzed for CO2 concentration using a Guardian Plus Infra-Red Carbon Dioxide 

Monitor (±2%, 0 to 3,000 ppm).  Once the gas concentration inside the box reached the 

desired level (approximately 2500 ppm), the CO2 supply was turned off and the 



93 
 

circulating fans inside the box were turned on.  The CO2 then emitted through the surface 

of the box, simulating gas emission fluxes.  The emitting flux could be measured by 

monitoring the CO2 concentration inside the box over specific time intervals as indicated 

in Equation A.1. 

 

 
Figure A.1. Overall view of flux simulation box (1.22 m wide, 2.44 m long, 1.22 m high) (4 ft x 8 ft x 4 

ft), with an open top and no soil.  Ports on the front panel are (from left to right): CO2 

supply port, water manometer for monitoring pressure inside box, variable control for 

circulating fan speed, power bar for supply for fans, CO2 analyzer, and collection 

manifold.  A gas relief valve was installed at the back of the box. 
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Where Fluxbox = the CO2 flux emitting from the surface (mg CO2/m
2-s), 

 V = the volume of the flux simulation box (2.56 m3), 

Ct1 = the concentration of the gas in the box at the beginning of the sampling period 

(ppm), 

Ct2 = the concentration of the gas in the box at the end of the sampling period 

(ppm), 

 ρCO2 = the density of CO2 at ambient temperature and pressure (1.8 kg/m3), 

 A = the surface area of the flux simulation box (2.97 m2), and 

 (t2 - t1) = the sampling time (s). 

 

Both flux chambers were placed on the top of flux simulation box to collect the CO2 

emitting from the simulated surface.  The flux chambers were operated at a variety of air 

(A.1) 
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flow rates (0.5, 1, 2, 3, 4 cfm) to determine the effect of chamber flow rate on measured 

flux.  Once the CO2 flux from the simulation box had reached steady state (approximately 

20 minutes after gas injection), the chambers were placed and sealed on the surface and 

supplied with fresh air through the compressor, rotameter and charcoal air filter.  The flux 

chambers were also allowed to reach steady-state before sampling began (about 20 minutes 

after starting compressor).  Each sampling period was approximately one hour during 

which approximately 10 to 20 fluxes were measured.  The CO2 concentration in the flux 

simulation box was measured and recorded at the beginning and end of the sampling 

period and samples were drawn from the flux chamber into Tedlar bags at even intervals 

during the sampling period.  An ambient air sample was also drawn from the ambient 

sample port between the charcoal air filter and the chamber inlet midway through the 

sampling period for ambient CO2 concentration determination.  At the end of the sampling 

period, the time was recorded and the concentration of the sample drawn from the chamber 

was measured and recorded.  The CO2 flux measured by the flux chambers was calculated 

using Equation A.2: 

chamber

chamber

ambientsampleCOchamber
A

Q
CCFlux )(2 −= ρ  

Where Fluxchamber = the CO2 flux collected by the chamber (mg CO2/m
2-s), 

 ρCO2 = the density of CO2 at ambient temperature and pressure (1.8 kg/m3), 

Csample = the CO2 concentration of the sample collected from the flux chamber 

(ppm), 

 Cambient = the CO2 concentration of the ambient air (ppm), 

 Qchamber = the air flow rate supplied to the flux chamber (m3/s), and 

Achamber = the cross sectional area of the flux chamber (0.323 m2 for the rectangular 

chamber and 0.28 m2 for the circular chamber). 

 

Testing was completed on the calibration box in two stages: open top with no soil, and 

open top with soil.  The open top/no soil tests were used to determine if the airflow in the 

flux chambers affected the CO2 flux from the calibration box.  The open top/with soil 

tests were used to assess the performance of the chambers under simulated field 

conditions at the various flow rates. 

 

 

Results and Discussion 

 

Open Top without Soil 

Since it was possible that the airflow in the chamber on top of the calibration box could 

affect the natural flux of the CO2 exiting the simulation box, the simulation box flux was 

measured with no chambers and with both chambers running at the same time at 1, 2, and 

3 cfm.  As shown in Figure A.2, the best fit lines for each set of data are very similar, 

(A.2) 
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indicating that neither the presence of flow in the chambers nor the magnitude of the flow 

rate in the chambers affected the CO2 flux exiting the box. 

 

These tests were also used to establish a sampling protocol.  The chambers were allowed 

to run for at least 20 minutes prior to sampling to ensure steady-state had been reached, 

and the lines and bags were flushed with sample air for at least 30 seconds before 

samples were drawn. 
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Figure A.2. Effect of chamber flow rate on actual flux with no chamber (n/a), 0.000472 m

3
/s (1 cfm), 

0.000944 m
3
/s (2 cfm), and 0.001416 m

3
/s (3 cfm) flow rates in each chamber. 

 

Open Top with Soil  

A uniform layer of clay-loam soil 3.5 cm thick was added on top of the calibration box to 

simulate the soil surface expected in the field.  It was assumed that the soil was inert and 

would not emit significant amounts of CO2. 

 

The actual CO2 flux from the box was determined using Equation A.1 and compared to 

the flux collected in the chambers at 0.000236, 0.000472, 0.000944, 0.001416, and 

0.001888 m3/s (0.5, 1, 2, 3, and 4 cfm) using Equation A.2.  Flow rates of 0.000236 and 

0.000472 m3/s (0.5 and 1 cfm) produced erratic results (>80% error), probably due to the 

low air exchange rates per minute within the flux chambers.  At 0.001888 m3/s (4 cfm), 

the airflow rate diluted the samples to background concentrations, resulting in erroneous 

flux calculations.  Flow rates of 0.000944 and 0.001416 m3/s (2 and 3 cfm) worked well 

(25 to 40% error), depending on the magnitude of the flux exiting the box.  Full testing 

with replications was performed for 0.000944 m3/s (2 cfm) only (Figures A.3a and A.3b).  

A summary of the slope and intercept values for each replication and for each chamber 

can be found in Table A.1.  The circular chamber had a tendency to underestimate the 
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actual flux while the rectangular chamber had a tendency to overestimate the actual flux, 

however, no distinct trends were observed. 
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(a)        (b) 
Figure A.3. Calibration of (a) rectangular flux chamber and (b) circular flux chamber at 2 cfm (3 

reps).  Chamber and actual fluxes have units of mg CO2/m
2
-s. 

 
Table A.1. Summary of slope and intercept values for flux chamber calibration equations. 

Chamber Rep Slope Intercept R
2
 

Rectangular 1 0.8095 -0.0475 0.97 

Rectangular 2 1.858 -0.0642 0.94 

Rectangular 3 1.1609 0.1125 0.97 

Circular 1 0.6754 -0.118 0.98 

Circular 2 1.1702 0.0116 0.96 

Circular 3 0.6088 0.0395 0.90 

 

The differences in the values for slope among the repetitions may be explained by the 

different operating conditions among each repetition.  Since they were performed on 

different days, the changing atmospheric pressure and relative humidity may have 

skewed the results.  The moisture content of the soil layer on top of the calibration box 

did not vary by more than 2% (w.b.) between each repetition.  The changing ambient CO2 

concentration may also have affected the concentration gradient between the flux 

simulation box and the atmosphere. Nonetheless, these results indicate that, for the 

rectangular chamber design, the optimal sweep airflow rate was 0.944 L/s (2 cfm). 

Additionally, it was possible to establish a calibration equation for this chamber for each 

set of atmospheric conditions and ambient CO2 concentration. 

 

Another explanation for the varying value of slope was that the flux through the soil layer 

was ‘short circuiting’ and not emitting evenly across the entire surface area of the 

calibration box.  The flux may have been higher outside the areas covered by the flux 
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chambers, resulting in a deflated flux chamber reading. Further testing where the top of 

the flux simulation box was closed except for the chambers was completed. Those results 

are not reported here. 

 

 

Conclusions 

 

The rectangular flux chamber allowed for calculation of emissions within 50% of the 

actual emissions when the flow rate of the sweep air was 0.944 L/s (2 cfm). This 

experiment also shows that calibration curves can be generated for these chambers, but 

calibration will be specific for each set of environmental conditions (temperature, 

humidity, etc.). Also, for proper calibration for odour emissions, an odour tracer should 

be used. 
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Appendix B—Odour Data 
 
Table B.1.  Summary of odour, hedonic tone and odour emission rate results from 2006 and 2007 

data (including outliers). Different letters following mean values of Log OU and Hedonic 

Tone indicate significant differences within that group at the 95% level of confidence. 

        Log OU Hedonic Tone 

Odour Emission Rate 

(OU/m
2
-s) 

   Group   n Mean   SE Mean   SE Mean 

2007 Species dairy 24 2.68  0.083 2.86  0.110 1.40 
  feedlot 24 2.44  0.034 2.94  0.130 0.80 
  swine (s) 23 2.30  0.056 3.16  0.090 0.58 
  poultry 24 2.64  0.052 2.80  0.075 1.28 
  swine (l) 23 2.66  0.097 2.09  0.094 1.34 
           
 Type solid 71 2.46 a 0.063 2.97 a 0.059 0.84 
  liquid 47 2.67 b 0.032 2.48 b 0.091 1.37 
           
 Mode surface 58 2.60 a 0.043 2.80 a 0.094 1.16 
  injected 60 2.49 a 0.048 2.74 a 0.073 0.90 
           
 Rate 0X 28 2.31 a 0.031 3.04 a 0.120 0.60 
  1X 30 2.64 b 0.062 2.68 b 0.110 1.28 
  2X 30 2.61 b 0.060 2.63 b 0.100 1.19 
    3X 30 2.70 b 0.079 2.76 b 0.110 1.46 

           
2006 Species dairy 21 2.56 a 0.056 2.14 a 0.120 1.06 

  swine 21 2.87 b 0.022 2.00 a 0.051 2.17 
           
 Mode surface 17 2.84 a 0.063 1.88 a 0.100 2.02 
  injected 25 2.63 b 0.041 2.20 a 0.070 1.25 
           
 Rate 0X 3 2.71 a 0.150 2.10 a 0.210 1.50 
  0.25X 11 2.65 a 0.061 1.96 a 0.140 1.31 
  0.5X 11 2.72 a 0.063 2.01 a 0.068 1.53 
  1X 11 2.83 a 0.097 2.05 a 0.160 1.98 

    2X 6 2.61 a 0.081 2.43 a 0.110 1.19 
Note: A hedonic tone of 1 was labelled as “dislike extremely” and 9 was labelled as “like extremely”. A hedonic tone of 5 was 
considered neutral. 

 

Table B.2.  Outliers (2006 and 2007 odour data). For all 2006 data, average value for Log OU = 

2.71±0.25. For all 2007 data, average value for Log OU = 2.55±0.36. Data points beyond 3 

standard deviations were considered outliers. 

Year Type Species Mode Rate Rep Log OU 

2006 Liquid Dairy Surface 1X 2 3.46 
2007 Liquid Swine Injected 3X 1 3.91 
2007 Liquid Swine Injected 3X 2 3.86 
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Table B.3.  Summary of odour, hedonic tone and odour emission rate results from 2006 and 2007 

data (excluding outliers). Different letters following mean values of Log OU and Hedonic 

Tone indicate significant differences within that group at the 95% level of confidence. 

        Log OU Hedonic Tone 

Odour Emission 

Rate (OU/m
2
-s) 

   Group   n Mean   SE Mean   SE Mean  

2007 Species dairy 24 2.68  0.083 2.86  0.110 1.40 
  feedlot 24 2.44  0.034 2.94  0.130 0.80 
  swine (s) 23 2.30  0.056 3.16  0.090 0.58 
  poultry 24 2.64  0.052 2.80  0.075 1.28 
  swine (l) 21 2.55  0.059 2.09  0.094 1.04 
           
 Type solid 71 2.46 a 0.063 2.97 a 0.059 0.84 
  liquid 45 2.62 b 0.053 2.48 b 0.091 1.22 
           
 Mode surface 58 2.60 a 0.043 2.80 a 0.094 1.16 
  injected 58 2.44 b 0.036 2.74 a 0.073 0.80 
           
 Rate 0X 28 2.31 a 0.031 3.04 a 0.120 0.60 
  1X 30 2.54 b 0.062 2.68 b 0.110 1.01 
  2X 30 2.61 b 0.060 2.63 b 0.100 1.19 
    3X 28 2.62 b 0.056 2.76 b 0.110 1.22 

           
2006 Species dairy 20 2.51 a 0.034 2.14 a 0.120 0.95 

  swine 21 2.87 b 0.022 2.00 a 0.051 2.17 
           
 Mode surface 16 2.80 a 0.052 1.88 a 0.100 1.84 
  injected 25 2.63 b 0.041 2.20 a 0.070 1.25 
           
 Rate 0X 3 2.71 a 0.150 2.10 a 0.210 1.50 
  0.25X 11 2.65 a 0.061 1.96 a 0.140 1.31 
  0.5X 11 2.72 a 0.063 2.01 a 0.068 1.53 
  1X 10 2.77 a 0.082 2.05 a 0.160 1.72 

    2X 6 2.61 a 0.081 2.43 a 0.110 1.19 
*Odour emissions from bare soil averaged 0.603 ± 0.0043 OU/m2-s, suggesting that odours from solid swine manure are not 
statistically different than odours from bare soil. 
Note: A hedonic tone of 1 was labelled as “dislike extremely” and 9 was labelled as “like extremely”. A hedonic tone of 5 was 
considered neutral. 
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Table B.4. Summary of odour concentration (OU/m
3
) and Log OU data. 

Year Type Species Mode Rate n Concentration Stdev Log OU Stdev  

2006 Liquid Dairy Injected 0.25X 3 288.7 95.3 2.4419 0.1614  
    0.5X 3 345 101.8 2.5255 0.1262  
    0X 1 263 * 2.5587 *  
    1X 3 263 71 2.4078 0.13  
        2X 3 288.3 92.4 2.4462 0.1302  

2006 Liquid Dairy Surface 0.25X 3 349 22.5 2.5422 0.0286  
    0.5X 2 362 0 2.5587 0 Note: 1 sample lost 
    0X 1 362 * 2.5587 *  
        1X 1 912 * 2.96 * Note: 1 outlier, 1 sample lost 

2006 Liquid Swine Injected 0.25X 3 659.3 58.8 2.818 0.0383  
    0.5X 3 554 36.4 2.7429 0.0291  
    1X 3 816.3 94 2.9099 0.0501  
        2X 3 598.3 40.4 2.7763 0.0288  

2006 Liquid Swine Surface 0.25X 2 744 238 2.86 0.142 Note: 1 sample lost 
    0.5X 3 991 136.8 2.9934 0.0579  
    0X 1 1024 * 3.0103 *  
        1X 3 849.3 108.5 2.9266 0.0579  

2007 Liquid Dairy Injected 0X 3 182.9 31.5 2.2579 0.075  
    1X 3 433 373 2.534 0.355  
    2X 3 316.7 108.1 2.4835 0.1505  
        3X 3 591 279 2.734 0.23  

2007 Liquid Dairy Surface 0X 3 138.5 45.7 2.124 0.1542  
    1X 3 1528 574 3.161 0.181  
    2X 3 1276 357 3.0939 0.1263  
        3X 3 1117 191 3.0437 0.0766  

2007 Liquid Swine Injected 0X 3 221.8 37.9 2.3416 0.0766  
    1X 3 461.3 48.3 2.6624 0.0452  
    2X 3 1026 887 2.91 0.351  
        3X 1 1290 * 3.1106 * Note: 2 outliers 

2007 Liquid Swine Surface 0X 2 209 92.4 2.298 0.199 Note: 1 sample lost 
    1X 3 292.5 67.1 2.4584 0.1003  
    2X 3 271.1 61.3 2.4252 0.1043  
        3X 3 292.5 67.1 2.4584 0.1003  

2007 Solid Feedlot Injected 0X 3 250.7 20.5 2.3982 0.0348  
    1X 3 240.4 33.1 2.3783 0.06  
    2X 3 289.7 44.1 2.4584 0.0695  
        3X 3 240.5 33.3 2.3784 0.06  

2007 Solid Feedlot Surface 0X 3 232.1 53.3 2.358 0.1003  
    1X 3 219.82 14.26 2.3414 0.0287  
    2X 3 292.5 67.1 2.4584 0.1003  
        3X 3 651 370 2.743 0.334  

2007 Solid Swine Injected 0X 3 124.8 21.2 2.0918 0.076  
    1X 3 114.12 0.315 2.0574 0.0012  
    2X 3 126.8 35.6 2.0911 0.1267  
        3X 3 134.02 17.14 2.1247 0.0579  

2007 Solid Swine Surface 0X 2 198.1 57.6 2.2875 0.1281 Note: 1 sample lost 
    1X 3 299.3 157.1 2.439 0.217  
    2X 3 490.9 155.1 2.6741 0.1537  
        3X 3 439.1 66.8 2.639 0.0695  

2007 Solid Poultry Injected 0X 3 378.4 48.4 2.5754 0.0579  
    1X 3 322.51 0 2.5085 0  
    2X 3 471.1 152.2 2.6591 0.1327  
        3X 3 367.1 113.8 2.5487 0.1498  

2007 Solid Poultry Surface 0X 3 261.1 92.4 2.399 0.1512  
    1X 3 1057 1076 2.88 0.418  
    2X 3 978 1055 2.823 0.452  
        3X 3 565 185 2.7345 0.1564  
           
     2006 avg 568.8 84.3 2.708 0.075  
     2007 avg 459.8 181.8 2.529 0.140  
     max 1528 1076 3.161 0.452  
     min 114.12 0 2.0574 0  
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Figure B.1. Overall odour concentration (OU/m
3
) data from 2006 a) effect of manure type, b) effect 

of application method, and c) effect of application rate. 
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Figure B.2. Detailed odour concentration (OU/m

3
) data from 2006 a) effect of application mode and 

manure type, b) effect of application rate and manure type, c) effect of application mode 

and application rate, and d) effect of manure type, application mode and application rate. 
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Figure B.3. Specific odour rate (OU/kg N-s) data from 2006 a) effect of application mode and manure 

type, b) effect of application rate and manure type, c) effect of application mode and 

application rate, and d) effect of manure type, application mode and application rate. 
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Figure B.4. Overall odour concentration (OU/m

3
) data from 2007 a) effect of manure type, b) effect 

of application method, c) effect of application rate, and d) effect of manure species. 
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Figure B.5. Detailed odour concentration (OU/m

3
) data from 2007 a) effect of application mode and 

manure type, b) effect of application mode and manure species, c) effect of manure type 

and application rate, d) effect of application mode and application rate, and e) effect of 

manure type, application mode and application rate. 
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(e) 

 
Figure B.6. Specific odour rate (OU/kg N-s) data from 2007 a) effect of application mode and manure 

type, b) effect of application mode and manure species, c) effect of manure type and 

application rate, d) effect of application mode and application rate, and e) effect of 

manure type, application mode and application rate. 
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Figure B.7. Effect of soil moisture content (% d.b.) on hedonic tone from control (0X) plots. 

 

 
 

Figure B.8. Effect of treatment interactions on log OU data. Only the type*rate interaction was 

statistically significant (P=0.031). 
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Appendix C—Uncertainty Analysis for Odour Flux 

Calculation 

 
The equation used to calculate odour emission rate from a flux box was  

A

Q
CE *=  

Where E = odour emission (OU/m2-s),  

C = odour concentration of sample (OU/m3), 

Q = flow rate in chamber (m3/s), and 

A = soil area enclosed by chamber (m2). 

 

Therefore, the uncertainty in odour emission depends on the uncertainty in: 

1. odour concentration measurement 

2. flow rate measurement 

3. area measurement 

 

1. The uncertainty in odour concentration measurement is high because of the huge 

number of factors that affect odour production, collection and measurement.  

From the entire 2006 and 2007 data set, the standard deviation of the odour 

concentration measurements of like treatments (maximum 3 reps) ranged from 0 

to 1075 OU/m3. The average value of the standard deviations was 133 OU/m3.  

The odour concentration measurements ranged from 114 to 1528 OU/m3 with an 

average value of 514 OU/m3. An overall uncertainty of 26% (133 divided by 514) 

for odour concentration measurement is low, but this value was based on this data 

set which was relatively large. [C = 514 ±133 OU/m3] 

2. The uncertainty in the flow rate measurement was based on the precision and 

accuracy of the rotameter used to measure the flow rate, which was set to 

0.0009439 m3/s. The specifications for the rotameter stated an uncertainty of 10%. 

[Q = 0.0009439±0.00009439 m3/s] 

3. The uncertainty in the area of the chamber is related to the uncertainty in the 

measurement of the length and width.  The uncertainty in the measurement of the 

length and width comes from the tolerance of the measuring tape used (1 cm).  If 

the length was 0.8 m (±0.01 m) and the width was 0.4 m (±0.01 m), the maximum 

area is 0.3321 m2 and the average area is 0.32 m2.  Therefore the uncertainty in 

the area measurement is ±0.0121 m2. [A = 0.32±0.0121 m2] 

 

To complete the uncertainty analysis, Equation C.1 was partially differentiated with 

respect to each of the 3 variables outlined above.   

(C.1) 
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The partial derivatives (C.2, C.3 and C.4) were assessed using average values for 

concentration, flow rate and area (C = 514 OU/m3, A = 0.32 m2, Q = 0.0009438 m3/s). 

The overall error in the E calculation was then calculated using Equation C.5. 
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The ∂C, ∂Q and ∂A values were 133 OU/m3, 0.00009439 m3/s and 0.0121 m2 

respectively. The E value in the denominator was calculated using Equation C.1. and 

typical C, A and Q values. This resulted in a percent error in odour flux calculation of 

28%.  It was clear from the analysis that the error in odour concentration measurement 

and the error associated with the flow rate measurement contributed the most to this 

uncertainty. Improving the accuracy of odour concentration measurement by 10% (so 

overall uncertainty in odour concentration measurement is only 15%) would reduce the 

uncertainty in the flux calculation to 18%.  

(C.2) (C.3) (C.4) 

(C.5) 
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Appendix D—Summary of Literature Values 
 
Table D.1. Summary of literature values for odours from manure spreading. 

 

Reference 

Collection 

Method 

Odour Values and Units 

(as reported) 

 

Treatments 

 

Comments 

Pain et al. 
(1988) 

Wind tunnel  
(1 m2, 1 m/s) 

285 OU 
<70 OU 
34 to 11 OU/m2-hr 

2 hrs after spreading 
24 hrs after spreading 
Separated cattle and pig slurry 

 

Pain et al. 
(1990) 

Wind tunnel  
(1 m2, 1 m/s) 

34 – 1100 OU/m3 
4.5 – 49.7 x 103 OU/L 

Raw vs digested pig slurry 
application 

No difference between 
two diets 

Misselbrook 
et al. (1997) 

Wind tunnel 
(1 m2, 1 m/s) 

102 – 879 OU/m3 Cattle slurry application up to 15 hrs 
after application 

Odours returned to 
background within 2 hrs 

Moseley et 
al. (1988) 

Wind tunnel 
(1 m2, 1 m/s) 

50 – 250 OU/m3 Raw vs digested pig slurry by 
different methods 

Surface = slipper foot 
>>injection = control for 
pig slurry 

Hanna et al. 
(2000) 

Wind tunnel 
(0.787 m2, 2.2 
m/s) 

12 – 240 OU 
140 – 1604 OU 
25 – 136 OU 

Untreated 
Broadcast at application 
Sweep at application 

Odours returned to 
background within 24 hrs 

Pahl et al. 
(2001) 

Wind tunnel 
(0.5 m2, 0.35 m/s) 

448 OU/m3 
420 OU/m3 

Injection 
Surface 

No reps, no control 

Rahman et 
al. (2004) 

Wind tunnel 
(0.3 m2, 0.3 m/s) 

377 OU/m3 
732 OU/m3 

50 mm injection depth 
100 mm injection depth 

No correlation between 
application rate and odour 

Chen et al. 
(2001) 

Static chamber 
(1 m2) 

234 – 1094 OU/m3  Surface = aerated surface 
> slipper foot = injection 

Hansen et 
al. (2006) 

Static chamber 
(3.12 m2, 1.87 m3) 

150 – 1000 OU/m3  Untreated slurry > 
digested slurry > digested 
+ separated slurry 

Lindvall et 
al. (1974) 

Chamber/tunnel 
(unknown specs) 

1.50 log OU 
4.09 log OU 

Injected 
Surface 

Aerobic treatment of 
slurry and solid cattle 
manure reduced odours, 
as did ammonium 
persulphate additive 

Lau et al. 
(2003) 

Flux chamber 
(0.0645 m3, 0.19 
m2, 10 L/min) 

39000 OU, 28647 OU/L, 
34.21 OU m/s 
3215 OU, 2440 OU/L, 2,82 
OU m/s 

Splash plate immediately following 
application 
Sub-surface deposition 2.5 hrs after 
application 

 

Pain et al. 
(1991) 

TPS (micromet) 183 – 1076 OU/m3 
<100 OU/m3 
Max 350x103 OU/s-m3 
slurry 

Immediately after application 
24 hrs after application 
Pig and cattle slurry for a variety of 
application methods 

 

Mkhabela et 
al. (2007) 

TPS (micromet) 1-203 OU/m3 
0.8 – 2.8x106 OU/m2 

Application rates, rainfall, slurry 
dilution, time after application 

 

Smith et al. 
(2007) 

TPS (micromet) 34 – 108 OU/m3 
2.2 – 11.0 OU/m2-s 
0.55 – 1.3x106 OU/m2 

Manure type, application rates, 
rainfall, time after application 

 

Phillips et 
al. (1990) 

Micromet 28 OU/L 
35 OU/L 
133 OU/L 
182 OU/L 
249 OU/L 
6520 OU/L 
200,000 – 50,000 OU/m2-hr 

Background 
Hoses 
Shallow injection 
Deep injection 
Splash plate 
Irrigation gun 
Immediately to 24 hrs after 
application 

 

This study Flux chamber 
(0.944 m3/s, 0.323 
m2) 

552 OU/m3 (1.16 OU/m2-s) 
348 OU/m3 (0.90 OU/m2-s) 

Surface application 
Subsurface application 

Includes a variety of 
manure species (solid and 
liquid) and three 
application rates 
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Chapter 4 

 

4.0 Greenhouse Gas Emissions from Land 

Application of Manure 
 
Greenhouse gas (GHG) emissions from agricultural activities such as land application of 

livestock manure cannot be ignored when assessing overall emissions from 

anthropogenic sources. The magnitude of these emissions will be influenced by 

management practices such as manure placement during land application. The objective 

of this work was to compare GHG fluxes resulting from the surface and subsurface 

application of liquid and solid manure. For this comparison, all measurements were made 

24 hours after application. The results showed that subsurface application significantly 

increased carbon dioxide equivalent (CO2-e) fluxes for both solid and liquid manure. The 

overall CO2-e fluxes from the injected treatments were 3.2 times higher than CO2-e 

fluxes from the surface applied plots, mainly due to a pronounced increase in N2O fluxes 

which was likely caused by increased denitrification rates. The CO2-e fluxes from the 

liquid manure applications were also higher than the CO2-e fluxes from the solid manure 

applications, probably due to higher levels of ammonium available for nitrification and 

subsequent denitrification. The CH4 fluxes were generally low and were not influenced 

by the treatments in this study. For this particular study, the specific fluxes (total flux per 

kg N applied) were not influenced by application rate, indicating that GHG emissions 

from manure applications were approximately proportional to the amount of manure 

applied.  
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4.1 Introduction 
 

During the last 150 to 200 years, human activity has increased the atmosphere’s content 

of carbon dioxide (CO2) by 30%, of methane (CH4) by 145%, and of nitrous oxide (N2O) 

by 15% based on International Panel on Climate Change (IPCC) data (Greatorex, 2000). 

In addition, with the near elimination of chlorofluorocarbons (CFC’s), N2O is now the 

principal anthropogenic ozone-depleting substance (Ravishankara et al., 2009). These 

greenhouse gases (GHG) also contribute to the “greenhouse effect” of the atmosphere 

which is believed to play a major role in the global warming of Earth’s  climate (IPCC, 

2007). The Kyoto Protocol, a multi-national agreement, was put in place at the end of the 

twentieth century with the goal of significantly reducing anthropogenic emissions of 

these greenhouse gases. Canada’s commitment under the Kyoto Protocol was to reduce 

net annual greenhouse gas emissions by 6% relative to the 1990 levels of 608 Mt by 

2008-2012 (Kebreab et al., 2006). This commitment has resulted in widespread research 

on emission reducing strategies and technologies that cover all aspects of society 

including manufacturing, transportation, industry, and agriculture. More recently, the 

Conference of Parties (COP) meeting of the IPCC held in Copenhagen, Denmark in 2009 

has further emphasized the urgent need to limit anthropogenic GHG emissions, including 

those from agricultural sources.  

 

It has been estimated that agricultural activities contribute to 20% of anthropogenic GHG 

emissions (Lovanh et al., 2008) and  more specifically to 60 to 80% of total N2O 

emissions (Jarecki et al., 2008). Agricultural emissions include CO2 from burning fossil 

fuels, CH4 from enteric fermentation in ruminant animals, CO2 and CH4 from storage of 

livestock manure and N2O from fertilizer and manure application to land. The land 

application of manure and fertilizers contributes to 50% of Canadian agricultural GHG 

emissions (Kebreab et al., 2006) and is the main source of agricultural N2O because 

fertilizer and manure applications significantly increase microbial production of N2O 

from soils (Davidson, 2009). Nitrous oxide’s high global warming potential (298 times 

that of CO2, over 100 years (IPCC 2007)) makes it a large contributor to GHG budgets.  
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Soil surface N2O emissions following application of animal manure are estimated to 

account for approximately 3.5 billion tonnes of carbon dioxide equivalents (CO2-e) 

annually in Canada (Desjardins and Riznek, 2000) or 9% of all anthropogenic sources of 

N2O (Rochette et al., 2004). Moreover, the addition of manure to soil results in complex 

biological and chemical interactions among the soil, water and air (Ginting et al., 2003). 

This suggests that emissions from manure application are transient, difficult to predict 

and depend on several uncontrollable factors. Nevertheless, because N2O production is 

sensitive to environmental conditions and management practices, there exists a high 

potential for mitigating emissions resulting from land application of manure. 

 

Despite the Kyoto Protocol and the need to mitigate GHG emissions, there is even greater 

public pressure and emphasis on reducing nuisance odour emissions associated with 

manure spreading. Strategies to that effect may include diet manipulation, manure 

additives, timing of application with wind and/or rainfall, and burying or injecting the 

manure into the ground. Sub-surface application of both solid and liquid manure is the 

most common method to reduce odours from manure spreading, but it also has the 

potential to increase N2O production due to increased anaerobic microbial activity 

beneath the soil surface (Wulf et al., 2002b). Although reducing odour emissions is 

important in the short term to help sustain the livestock industry, the long term effects of 

increased GHG emissions may hinder the industry in the future. The International Panel 

on Climate Change (IPCC) has recognized that studies are required on the interactions 

between these gases because it is of concern that strategies to reduce emission of one gas 

may increase emission of others (IPCC, 1997). 

 

Over 65% of the land applied with manure in Canada in 2005 received solid manure 

(Statistics Canada, 2006) and the most common practice to reduce odour emissions is 

sub-surface application (See Table 2.1 in Chapter 2). While the effectiveness of 

subsurface application of solid manure on reducing odour emissions was assessed in 

Chapter 3, the impact of subsurface application of manure on GHG emissions needs to be 

investigated. The impact of manure type and application rate on relative GHG emissions 
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from manure spreading also needs to be studied so that the carbon footprint of different 

manure management strategies can be better assessed. 

 

4.2  Literature Review 
 

4.2.1 GHG Emission Measurement from Area Sources 

 

Agricultural GHG emissions have been collected and measured in a variety of ways.  

Non-point source emissions from a large area (such as a field that has been treated with 

manure) are most commonly monitored by means of static or non-steady state chambers 

(Chadwick et al., 2000; Ginting et al., 2003; Lessard et al., 1996, 1997; Lovanh et al., 

2008; Petersen, 1999; Rochette et al., 2000a, 2000b; Van Groenigen et al., 2004; Wulf et 

al., 2002b; etc.) or micrometeorological techniques (Sharpe and Harper, 1997; Sherlock 

et al., 2002; Wagner-Riddle et al., 1997). A limited number of studies have reported on 

the use of dynamic (steady state) chambers for GHG emission measurement (Christensen 

et al., 1996; Chadwick et al., 2000). Steady state chambers are typically not useful for 

measuring relatively low GHG fluxes, as is the case from manure applications. This is 

due to the low sensitivity of analytical equipment such as gas chromatography. Refer to 

Chapter 3 for details on steady-state or dynamic chambers.  

 

4.2.1.1 Static Chambers 

Static (or non-steady state) chambers allow gases emitted from a surface to collect within 

a known volume during a known period of time. If the chamber also includes a vent to 

the atmosphere for pressure equilibration, it can also be referred to as a vented flux 

chamber. Sub-samples are drawn from the chamber at known intervals so the rate of 

change in gas concentration can be determined, typically using regression analysis. The 

rate of change in gas concentration is used with chamber volume and surface area and gas 

density to calculate surface gas flux using Equation 4.1.  

 



115 
 

t

C

A

V
F

∆
∆

= ρ  

 

where: F = surface gas flux (mg/m2-s), 

 ρ = density of gas (kg/m3), 

V = volume of chamber (m3), 

 A = area of chamber (m2), and 

 ∆C/∆t = rate of change of gas concentration (ppm/s). 

 

Other forms of this equation that account for the temperature and partial pressure of water 

vapour in the chamber have also been used (Rochette and Hutchinson, 2005 in: Rochette 

et al. 2008; Ginting et al., 2003; Hutchinson and Livingston, 1993) because temperature 

and pressure inside the chamber can affect the build-up of gases.  

 

Since there is no sweep air flow through the chamber, the gases are not diluted, making 

the measurement of low fluxes possible and reasonably accurate. However, fluxes 

measured using chamber methods are often highly variable or erratic due to the spatial 

and temporal variability of non-point emission sources. Using numerous chambers and 

frequent sampling can help account for these variations, but this approach is time 

consuming and expensive. Another way to account for spatial variability of N2O fluxes is 

to use “mega-chambers”. Mega-chambers allow trace gas fluxes to be averaged over 

several tens of square meters and typically consist of tent-like, tunnel shaped 

constructions (Greatorex, 2000) which are also very cumbersome.  

 

Another major drawback of static chambers is their effect on the microclimate of the 

measured surface. The build-up of gases in the chamber can theoretically suppress 

emissions from the soil over time by decreasing the concentration gradient between the 

soil surface and the atmosphere immediately above it. This will result in a non-linear gas 

concentration build-up in the headspace and underestimation of the flux when Equation 

4.1 is used. Hutchinson and Mosier (1981) developed a formula to account for this. By 

assuming that there is a plane of constant gas concentration not affected by the chamber, 

(4.1) 
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that the diffusion of the gas is steady-state, and that gas concentration increases linearly 

with depth, these authors have suggested that the gas flux can be calculated using 

Equation 4.2. 
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where: fo = gas flux (mass per unit area per unit time), 

 ρ = density of gas (mass per unit volume), 

 V = volume of chamber, 

 A = cross sectional area of chamber, 

 t = time interval, 

 Co = concentration of sub-sample drawn at time = 0, 

 C1 = concentration of sub-sample drawn at time = t1, and 

C2 = concentration of sub-sample drawn at time = t2 (t2 = 2t1 for the equation to be 

valid). 

 

GHG fluxes from the same manure application experiment were calculated using both 

Equations 4.1 and 4.2 by Lovanh et al. (2008). These authors found that GHG fluxes 

calculated using linear regression and Equation 4.1 were consistently lower than fluxes 

calculated using Equation 4.2.  

 

The size of the chamber should be such that it maximizes surface area (accounts for 

spatial variation) while minimizing the headspace volume (for accurate determination of 

low gas concentrations). Caution must be used with short chambers (<50 mm height) 

since a small error in volume determination caused by uneven soil surfaces will have a 

greater impact on flux calculation than with taller chambers (Rochette et al.,1997; 

Rochette and Bertrand, 2008). A chamber height of 150 mm is appropriate for most 

agricultural situations (Rochette and Bertrand, 2008). The geometry of the chamber 

(square, rectangular, or cylindrical) has little impact on its performance as long as 

adequate air mixing is achieved (Rochette and Bertrand, 2008). To ensure adequate 

(4.2) 
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mixing of the headspace volume and to minimize the effects of gas build-up, forced air 

movement should be included inside the chamber. Rochette and Bertrand (2008) discuss 

the benefits of a variable speed fan to simulate ambient mixing.  

The length of time a chamber is deployed and the sampling interval varies widely in 

literature, ranging from 20 minutes to several hours. Hutchinson and Mosier (1981) stated 

that shorter enclosure times (less than 30 minutes) are preferred for N2O flux 

measurement because shorter times result in fewer disturbances of the microsite and 

results in smaller changes in the N2O production rate. However, enclosure time should be 

such that the increase in gas concentration is large enough to be reliably measured by the 

instrumentation. In other words, the concentration increase measured over each time 

interval must be at least three times greater than the standard deviation of repetitive 

analyses of a standard gas mixture; otherwise, random analytical errors can have an 

inordinately large influence on the flux computed using Equation 4.2 (Hutchinson and 

Mosier, 1981). 

 

Pressure disturbances due to wind and air movement around the chambers will also 

influence the gas flux from the soil (Hutchinson and Livingston, 1993).  Positive and 

negative pressure variations are then generated around the chamber, and unsteady 

increases of the gas concentrations may be observed (Rochette et al, 1997). Fan-induced 

turbulence can also influence flux measurements. Adding a vent to the chamber permits 

pressure equilibration between a closed cover and its surroundings, reducing the effect of 

the cover on the microsite. Vent design should be such that it transmits barometric 

pressure fluctuations while minimizing air leakage or contamination (Hutchinson and 

Mosier, 1981). Vent dimensions for a 60 L static chamber are outlined in Rochette and 

Bertrand (2008).  

 

Thermal insulation and reflective covering are recommended to minimize heating by 

solar radiation (Hutchinson and Mosier, 1981). Un-insulated chambers may lead to 

significant temperature changes of the headspace during deployment, altering the volume 

of gas sampled by up to 5% (Greatorex, 2000). In addition, temperature fluctuations can 

have an impact on trace gas production, consumption and transport processes in the 
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covered soil. However, the effects of temperature perturbations are minimal over 

relatively short deployment times (Hutchinson and Livingston, 1993). 

 

Other changes to the soil system resulting from chamber deployment include compaction 

of the soil or changes to biological systems (when the collar is inserted into the soil, root 

systems or the soil can be disturbed), affecting the overall gas flux (Hutchinson and 

Livingston, 1993). Static chamber enclosures are also impractical for tall stands of crop 

or grass. Most chamber methods are not suitable for studying dynamic events like rainfall 

or diurnal temperature fluctuations, since the deployment may rapidly interfere with the 

soil conditions (Greatorex, 2000).   

 

Rochette et al. (1992) discussed the operation of dynamic open and dynamic closed static 

chambers. Dynamic open chambers operate in the same way as dynamic chambers with a 

sweep air stream but, in dynamic closed systems, air is circulated from the chamber to a 

gas analyzer and returned to the chamber. Dynamic closed chambers can facilitate shorter 

deployment periods by providing a greater number and frequency of gas concentration 

measurements as well as provide early detection of experimental problems (Rochette and 

Bertrand, 2008). However, dynamic closed chambers are limited to gas species for which 

a suitable portable analyzer is available and the short deployment times make it difficult 

to measure low emission rates (i.e.; N2O, CH4) (Rochette and Bertrand, 2008).  

 

4.2.1.2 Micrometeorological Methods 

Micrometeorological techniques measure the turbulent transfer of gases from the ground 

surface to the lower atmosphere.  They are able to measure gaseous fluxes over a larger 

area than is possible with static or dynamic chambers, with the added advantage that they 

do not disturb the conditions at the soil surface.  The limitations of these techniques 

involve the requirement for expensive and sophisticated equipment, relatively level 

terrain and complex calculations (Bogner et al., 1997 in: Greatorex, 2000).   

 

Among the micrometeorological techniques, the eddy covariance or eddy correlation 

technique is the most direct one for flux measurements. The vertical flux of the gas is 
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calculated as the mean product of the fluctuations of gas concentration and the vertical 

wind speed at a given height above the surface over a given period. It requires 

simultaneous, high frequency measurement of the vertical air velocity and the 

concentration of the target air constituent.  Gas sensors are required to measure the target 

gas concentration with a time resolution of 10 Hz or better.  For trace gas analysis, laser 

and infrared spectroscopy devices are used.  

 

Gradient techniques, in contrast to eddy covariance, represent an indirect measurement of 

trace gas fluxes.  In this method, the transport of a trace gas due to the turbulent air 

movement is described in analogy to the molecular diffusion.  Gradient measurements 

require continuous and simultaneous measurement of trace gas concentration, 

temperature and the horizontal wind velocity at various heights above the ground.  An 

advantage of the gradient technique over the eddy correlation technique is that it does not 

require instruments with a high measuring frequency.  This can lead to savings in 

equipment and maintenance costs.  However, the use of gradient techniques is limited to 

situations in which the air has blown over a homogeneous exchange surface for a long 

distance, up to 500-1000 m (Denmead and Raupach, 1993).   

 

Tracer methods rely on the simultaneous measurement of the concentrations of both the 

target gas and an inert tracer released at a known rate (Greatorex, 2000).  If the tracer gas 

is released in a way that resembles the emission of the target gas, the concentration ratio 

of the two gases measured downwind can then be related to the ratio of their fluxes.  

Tracer methods can be a valuable alternative to micrometeorological methods when 

sources are limited in size and the micrometeorological conditions are unfavourable.  

However, small errors in estimation of the tracer gas release rate can lead to sizeable 

errors in the estimation of the target gas emission rate.  Also, tracer ratio methods are 

restricted to situations where the plume of interest is not mixed with another nearby 

source.  Also, the target gas concentration must be sufficiently high to distinguish it from 

background levels (Greatorex, 2000). 
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The mass balance micrometeorological technique is useful for small plot research 

because it does not require the large fetches needed for gradient and eddy correlation 

approaches (Denmead and Raupach, 1993).  Plot dimensions are typically tens of meters 

instead of hundreds of meters and the instrumentation requirements can be quite simple.  

This method equates the flux of gas into the atmosphere from a treated area of limited 

upwind extent with the rate at which it is transported by the wind across the downwind 

edge (Denmead and Raupach, 1993).  However, the upwind concentration profile must be 

measured as well as the downwind and the calculation of flux requires subtraction of 

experimentally determined data, which can be an error-prone procedure (Denmead and 

Raupach, 1993).  Therefore, this technique is best suited to experimental treatments 

where the fluxes are large compared to normal emissions. The main advantage of the 

mass balance technique is that, in certain situations, it is possible to infer the surface flux 

from measurements of the horizontal flux at just one height above the plot center 

(Denmead and Raupach, 1993). 

 

Measurements of the concentration of the gases for all micrometeorological methods can 

be made using a variety of techniques (gas chromatography, Fourier transform infrared 

spectroscopy, or tuneable diode laser spectrometers).  The type of instrumentation used 

will depend on the expected magnitude of the concentration.  Nitrous oxide fluxes from 

agricultural soils are often large enough to result in measurable concentrations, but 

methane fluxes are often harder to detect because of their low concentrations.  

Micrometeorological methods are usually applied for nitrous oxide flux measurements, 

simply because methane emissions from agricultural soils are of very marginal 

importance in the greenhouse gas balance (Greatorex, 2000). 

 

Micrometeorological techniques do not interfere with the emission source, can handle 

measurements in crop canopies and allow the user to study dynamic events.  They also 

account for spatial variability and are suitable for inventory studies rather than process-

oriented studies.  However, the experimental site needs to be flat and homogeneous for 

the entire fetch in all wind directions.  The difference in mean trace gas concentrations 

determined between the ground level and higher levels is typically very small and may 



121 
 

lead to substantial analytical error.  In addition, even when the fetch requirements (up to 

500-1000 m) are met, it is unrealistic to expect micrometeorological methods to provide 

reliable flux measurements 24 hours a day (Denmead and Raupach, 1993).  Methods of 

measuring the low wind speeds that occur at night are imprecise, rain and dew can cause 

hazards, boundary layers are often not well developed at night, and rapid changes in the 

stratification of the boundary layer can make time-averaged concentration profiles 

unreliable (Denmead and Raupach, 1993). Another drawback of direct 

micrometeorological techniques such as eddy correlation is the interference of vegetation 

(Chahuneau et al., 1989 in: Rochette et al. 1992).  

 

In some cases, combinations of two or more methods are employed to measure gas fluxes 

from agricultural soils when more than one gas is of interest.  For example, Sherlock et 

al. (2002) utilized different methods for different gases.  Since ammonia is very reactive 

with water compared with CH4 and N2O, the elevated ammonia concentration in a static 

chamber will reduce ammonia emissions from the soil covered by the chamber.  The 

ammonia emissions, therefore, were measured with a micrometeorological mass balance 

technique that does not affect the ammonia concentration above the soil.  Static chambers 

were used to measure surface fluxes of both CH4 and N2O since these gases were less 

reactive with water and were much less affected by increases in chamber headspace 

concentration.   

 

4.2.1.3 Comparison of Collection Methods 

The performance of dynamic open and dynamic closed systems was compared by 

Cropper et al. (1985 in: Rochette et al., 1992). Dynamic open chambers yielded larger 

soil respiration estimates than static chambers. Rochette et al. (1992) saw the same trend 

and noted that the difference in measured fluxes between dynamic closed and static 

chambers was larger at higher CO2 fluxes. Marshall and Debell (1980) drew the same 

conclusion for ammonia capture following urea fertilization. The static chambers resulted 

in the lowest amounts of volatile ammonia while the dynamic closed chambers resulted 

in the highest amount of capture (Marshall and Debell, 1980), presumably due to the 

suppression of emissions due to the lower concentration gradient in the static chamber. 
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Rochette et al. (1997) stated that there was a good correlation between static chambers 

and dynamic closed chambers for individual soil textures, indicating that there could be 

an interaction between soil properties and the microclimate within the chamber. 

 

A short study by Rochette et al. (1997) (41 hrs during one weekend) showed a positive 

correlation between carbon dioxide flux measured by a dynamic closed chamber and 

eddy correlation.  Christensen et al. (1996) monitored N2O emissions using 

micrometeorological and dynamic chamber techniques (3 sizes of chamber and a sweep 

flow rate of 1.5 L/min).  The authors concluded that there was no bias between the 

different approaches used to measure the N2O emission and that the precision of the 

measurements was determined by the spatial variability of the N2O emissions at the site 

and the variability inherent in the individual techniques (Christensen et al., 1996). 

 

4.2.2    GHG Emissions from Fertilizer and Manure Application 

in Literature 

 

There have been numerous laboratory, plot and field scale studies comparing GHG 

emissions from manure application to GHG emissions resulting from fertilizer 

applications. Lab scale studies allowed greater control over variables such as soil 

properties and weather conditions. Researchers conducting lab scale studies typically 

used packed soil cores, incubation chambers, and headspace covers to study the effects of 

various treatments on gas production rates. These methods allowed assessment of 

denitrification and nitrification rates using nitrification inhibitors to determine the origin 

of N2O emissions. Plot and field scale studies allowed for a more realistic investigation of 

the effects of manure type (liquid vs. solid) and application method (surface with and 

without incorporation, trail hose application, aeration, injection, etc.), as well as 

application rate, soil texture, and other variables on GHG emissions. Those studies and 

their main findings are summarized here. 
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4.2.2.1 Emissions from Fertilizer vs. Manure Application  

Several studies have found that denitrification rates were higher after manure application 

than after fertilizer application at similar N application rates (Paul and Zebarth, 1997; 

Barton and Schipper, 2001; etc.). Most authors agreed that, unlike fertilizer application, 

manure not only affects soil N, but is also a source of available C compounds which can 

stimulate denitrification and affect the denitrifier community abundance and activity 

(Miller et al., 2009; Rochette et al., 2000b). Increased C availability can enhance 

denitrification by providing C to denitrifiers and by increasing soil respiration, resulting 

in decreased oxygen concentrations (Beauchamp et al., 1989 in: Miler et al., 2009). 

Because of this dependence on available C, Miller et al. (2009) suggested that emission 

mitigation strategies should focus on C availability as well as N management. 

Alternatively, it was postulated that manure may also decrease N2O fluxes in the short 

term because manure organic N may be less readily available for nitrification and 

denitrification processes (Rochette et al., 2008). Therefore, the net impact of manure 

application on N2O in a given situation will depend on manure characteristics, soil 

physical properties, soil C and N levels and climatic conditions (Rochette et al., 2008).  

 

Several field studies found that GHG emissions from manure application were higher 

than emissions from fertilizer applications with comparable N application rates (Akiyama 

and Tsuruta, 2003; Barton and Schipper, 2001; Meng et al., 2005; Wagner Riddle et al., 

1997, Lemke et al., 1999; Helgason et al., 2005; Ellert and Janzen, 2008). Additionally, 

Lessard et al. (1997) found no significant differences among CH4 fluxes from application 

of stockpiled solid manure, composted solid manure, and fertilizer, but trends showed 

that manured plots had higher fluxes. Similarly, Petersen (1999) found no significant 

difference in N2O emissions between manure and fertilizer application, but the highest 

N2O flux came from the slurry applied treatment.  

 

Conversely, Rochette et al. (2000a) reported that manure application had little or variable 

effect on CO2 emissions from 2 rates of pig slurry and 1 rate of commercial fertilizer 

application. Also, Bouwman et al. (2002) published a summary of field studies that 

showed that the N2O emitted per kg of N added was 20% lower for animal manures than 
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for synthetic N fertilizers. This could have been due to the volatilization of ammonia in 

some types of manure reducing the actual N applied as well as the fact that manures are 

often applied to perennial grasses which have a high N uptake potential, reducing N 

available for N2O (Rochette et al., 2008). 

 

Finally, Van Groenigen et al. (2004) measured N2O fluxes from 4 rates of commercial 

fertilizer and cattle slurry applications, and combinations of the two sources on two 

different soils. The authors hypothesized that the combination treatment would result in 

higher fluxes because of the abundance of readily available C and N, but this was not the 

case. For both sandy and clay soils, fertilizer application resulted in the highest N losses, 

followed by slurry application and finally combination applications (Van Groenigen et 

al., 2004). Perala et al. (2006) also showed that slurry application produced higher 

cumulative N2O emissions compared to slurry+fertilizer and fertilizer alone, but there 

were no significant differences. On the other hand, Dittert et al. (2005) did observe a 

significantly higher N2O-N flux from a slurry+fertilizer application compared to when 

the fertilizer and slurry were applied alone due to the availability of both N and C. 

 

4.2.2.2 Comparison of Emissions from Different Manure Types 

Several studies have noted that GHG emissions from liquid manure applications differ 

from emissions from solid manure applications. In a laboratory scale study, it was found 

that applications of liquid manure resulted in immediate and intense denitrification while 

those of solid manure resulted in less intense but prolonged denitrification (Loro et al., 

1997). Tenuta et al. (2000) also reported that solid manure applied to the soil provided a 

“more sustained release” of available C as the bedding material decomposed, promoting 

denitrification enzyme activity for longer periods. The majority of solid manure C and N 

is in the form of organic matter, but anaerobic conditions during storage of liquid manure 

results in high levels of easily decomposable C species and mineral N, resulting in higher 

emissions from liquid manure applications in the short term (Rochette et al., 2008). 

Differences in emissions between solid and liquid manure applications can be explained 

by the easier access to the highly diluted substrates in slurry than in solid manure, which 

usually forms clods which physically protects inner substrates from decomposers 
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(Rochette et al., 2000a). Solid manure application adds recalcitrant forms of C and N to 

the soil, suggesting that although their potential to stimulate nitrification and 

denitrification may be less than that of liquid manures, the stimulatory effect of solid 

manures may extend over longer periods (Lemke et al., 2009).  

 

Rochette et al. (2008) referred to several studies that stated that N2O losses were higher 

from soils amended with liquid than solid manures (Loro et al., 1997; Chadwick et al., 

2000), although they found no significant trend in their study. In a compilation of 

information, Gregorich et al. (2005) concluded that annual N2O fluxes from solid manure 

applications were lower than N2O fluxes from liquid manure applications. The authors 

noted that the N in solid manure would become available over a longer period, but the 

lower emissions following application of solid manure may have resulted from the uptake 

of available N by growing plants. Gregorich et al. (2005) also noted that short 

measurement periods (i.e.: one year) following application of solid manure may not fully 

account for all of the manure-induced emission of N2O due to long-term mineralization 

of C and N. Indeed, Mogge et al. (1999 in: Rochette et al., 2008) reported that emission 

from soils with a long history (30 yr) of repeated application of solid manure were higher 

than emissions from liquid manured soils and concluded that nitrification was the major 

contributor to N2O production.  

 

GHG emissions also vary with animal type due to different diets, feed conversions, and 

management of the manure (Chadwick et al., 2000). Chadwick et al. (2000) monitored 

N2O emissions from pig slurry, beef manure, dairy slurry, layer manure and pig manure. 

The pig slurry and beef manure resulted in immediate emissions of N2O, likely due to 

rapid nitrification of NH4 or denitrification of NO3 already in manure (beef manure) and 

the high C content and moisture content (pig slurry) (Chadwick et al., 2000). N2O from 

other manure types were not significantly different from untreated control plots 

(Chadwick et al., 2000). Watanabe et al. (1997) noted that CO2 and N2O-N fluxes were 

higher from swine excrement applications than from cattle excrement applications, but N 

contents were not normalized. In a lab scale study, Chadwick and Pain (1997) noted that 

pig slurry generated more CH4 than dairy slurry in clay soils, but there was no difference 
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between manure types on sandy soils. This may have been due to the lower C:N ratio of 

the pig slurry and the rapid infiltration and oxidation in the sandy soil (Chadwick and 

Pain, 1997). 

 

Manure treatments such as anaerobic digestion, slurry separation, slurry aeration, and 

straw covered manure storages may also affect GHG emissions after land application. For 

example, anaerobic digestion alters the availability of C in the substrate, affecting the 

potential N2O production (Petersen, 1999). Amon et al. (2005) monitored CH4 and N2O 

emissions after application of dairy cattle slurry with several treatments (control, slurry 

separation, anaerobic digestion, slurry aeration and straw covered storage). The 

proportion of CH4 emissions from land application (“total” emissions are from storage 

and spreading) were highest for the separated slurry while the untreated slurry produced 

no CH4 emissions after application (Amon et al., 2005). The proportion of N2O emissions 

from land application was highest for separated slurry followed by straw covered, 

untreated, aerated, and digested slurry (Amon et al., 2005).  

 

4.2.2.3   Comparison of Emissions from Different Application 

Methods 

The greater contact of injected slurry with soil can induce favourable conditions for N2O 

and CH4 formation because of restricted aeration in the vicinity of the injected manure 

(Wulf et al., 2002b; Flessa and Beese, 2000). Many researchers have hypothesized that 

injection or subsurface application of manure will promote denitrification (Comfort et al., 

1988; Wulf et al. 2002b). However, Wulf et al. (2002b) noted that literature results on the 

effect of injection and incorporation on GHG after manure application are contradictory 

as some show an increase in emissions due to injection and others show no differences. 

For example, in a laboratory scale study, Dendooven et al. (1998) found no difference in 

CO2 and N2O production within 15 days of injecting pig slurry versus surface 

application. Flessa and Beese (2000), however, did note significantly higher N2O and 

CH4 emissions from an injection treatment compared to a surface treatment, but CO2 flux 

was not affected by application method. Lovanh et al. (2008) and Sistani et al. (2008) 

showed that surface application of swine slurry produced higher, but not significantly 
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higher, fluxes of N2O compared to row injection and aerway injection (surface 

application over artificially perforated or aerated soil). The aerated treatment resulted in 

the highest CH4 flux (Sistani et al., 2008). Weslien et al. (1998) reported slightly, but not 

significantly, higher emissions after banding+harrowing compared with trenching, 

shallow injection and band-spreading. Harrowing was thought to spread around the 

manure under the soil, creating more hot spots and partially anaerobic regions while 

injection resulted in complete denitrification, producing N2 instead of N2O (Weslien et 

al., 1998). However, Perala et al. (2006) showed that slurry injection produced higher 

cumulative N2O emissions than slurry incorporation, but the difference was not 

significant. The authors also noted that CH4 oxidation (uptake) was highest for the 

injected treatments, but fluxes were all close to zero (Perala et al., 2006). 

 

Wulf et al. (2002b) compared GHG emissions from splash plate, trail hose, trail shoe and 

injection methods. Results indicated that trail hose application with immediate 

incorporation resulted in the lowest GHG emissions on arable land while trail shoe 

application had the smallest risk of high GHG emissions on grassland. Wulf et al. 

(2002b) stated that, in terms of CO2 equivalents, the increase in N2O emissions after 

injection might be as high as the reduction of NH3 losses or, as in the case of injection on 

grassland, might even increase overall GHG emissions. Injection also resulted in 

prolonged CH4 emissions (although they still lasted less than 4 days) (Wulf et al., 2002b). 

The flux patterns for different application techniques varied, but cumulative emissions 

showed injection increased overall emissions (Wulf et al., 2002b). The authors attributed 

this result to the promotion of anaerobic sites and diffusion constraints that occur with the 

injection technique. 

 

4.2.2.4 Correlating GHG Emissions with Soil Properties 

Microbial activity and GHG emissions are highly dependent on soil properties such as 

nutrient content, moisture and oxygen availability. For example, Bergstrom et al. (2001) 

attributed the N2O production after fertilizer application to the nitrification of ammonium 

as regulated by soil water and NO3 contents. However, Barton and Schipper (2001) 

concluded that there was no good correlation between N2O production and soil properties 
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due to variability in threshold values existing for nitrification and denitrification and the 

lack of ability to measure soil properties in soil microsites.  

 

Soil texture (fine vs. coarse) has often been found to play a role in GHG emissions after 

N application. The small pores and lower oxygen content in fine textured soils likely 

promote denitrification and N2O emission (Gregorich et al., 2005; Bouwman et al., 2002; 

Van Groenigen et al., 2004), but Jarecki et al., (2008) and Mkhabela et al. (2006 in: 

Jarecki et al., 2008) observed higher N2O emissions from coarse textured soils than from 

fine textured soils. Rochette et al. (2008) also noted that, for certain periods of 

measurement, N2O fluxes from clay soil were lower than from sandy soil, presumably 

due to slow gas diffusion in wet clay that allowed further reduction of N2O into N2 before 

it reached the soil surface. Less reduction occurred in the sandy soil, resulting in higher 

N2O fluxes (Rochette et al., 2008). However, both field and modeling studies have 

concluded that N2O emissions from agricultural soils were on average higher from fine 

than from coarse textured soils (Rochette et al., 2008). Overall emissions of CO2 and CH4 

were higher from a clay soil than a sandy soil in a lab scale study as well (Chadwick and 

Pain, 1997). This is supported by the lower redox potentials of fine-textured soils as a 

result of lower air filled porosity and greater resistance to O2 diffusion (Rochette et al, 

2008). Lower total emissions from sandy soil may also be due to nitrate leaching and 

rapid crop uptake (Van Groenigen et al., 2004).  

 

Level of soil compaction played a role in N losses from soils applied with fertilizer and 

cattle slurry in Hansen et al. (1993). There was no difference in N2O fluxes between 

fertilizer and slurry applications for uncompacted soil, but a significantly higher N2O flux 

came from the compacted, fertilized treatment (Hansen et al., 1993).  

  

Water filled pore space (WFPS) influences oxygen availability and diffusivity and is also 

thought to impact GHG emissions. Results from a study by Bateman and Baggs (2005) 

indicated that the majority of N2O emissions from a fertilized silt loam soil with a water 

filled pore space (WFPS) between 35 and 50% were the result of the nitrification process. 

In that study, N2O emissions increased by a factor of 10 at a WFPS of 60% and N2O 
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emissions were entirely due to the denitrification process at a WFPS of 70%. Davidson 

(1991 in: Jarecki et al., 2008) provided a general relationship between WFPS and N2O 

emissions between 30 and 90% with a peak N2O production occurring at approximately 

65% WFPS. Jarecki et al. (2008) noted that within a given soil type, fertility regime, and 

cropping system a relationship like this may be valid, but generalizations across soils and 

management systems are likely to be poor. In fact, Maljanen et al. (2007 in: Jarecki et al., 

2008) noted that peak N2O emissions continued to increase with WFPS in the range of 80 

to 90%. Conversely, Sharpe and Harper (1997) used irrigated swine effluent and 

micrometeorological techniques and found that N2O fluxes were not related to soil water 

content. Petersen (1999) also found that soil water content had no effect on N2O 

emissions from fertilizer and slurry application. 

 

Manure type and application method are also thought to influence soil WFPS by adding 

moisture and changing the soil structure, thus influencing GHG emissions. Perala et al. 

(2006) noted that slurry injection increased WFPS to levels that promote denitrification 

and Sherlock et al. (2002) stated that slurry addition made soil anaerobic for a “lengthy 

period”. Comfort et al. (1988) reported that the water content in the injection zone 

remained higher than the surrounding soil for 99 days after application. However, 

Rochette et al. (2004) concluded that pig slurry application had no effect on soil water 

content and temperature. 

 

Miller et al. (2009) monitored microbial (denitrifier) populations and N2O emissions after 

liquid dairy and swine manure applications on a lab scale and found no relationship 

between denitrifier abundance and denitrification and N2O emissions. Comfort et al. 

(1990) used a lab scale experiment with nitrification inhibitors to compare nitrification 

and denitrification after injection of dairy slurry. Simulated rainfall had little effect on 

denitrification and N2O production, possibly due to a limitation in readily oxidizable 

carbon (C) (Comfort et al., 1990). 

 

Other soil properties like temperature, NO3 content and pH are also believed to influence 

GHG emissions. Meng et al. (2005) reviewed several studies that reported that lower soil 
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temperatures significantly reduced the nitrification rates but did not greatly decrease 

denitrification. Another reference in Meng et al. (2005) stated that there are threshold 

values for WFPS, temperature and NO3 concentration, under which N2O fluxes are 

relatively low. Petersen (1999) reported that the soil NO3 content had no effect on N2O 

while Goodroad et al. (1984) concluded that soil pH did not affect N2O fluxes. 

 

4.2.2.5 Effect of Application Timing on GHG Emissions 

Proper timing of manure application is important to minimize nutrient losses. Applying 

the nutrients when the plants require them (i.e.: active growing season) is thought to 

reduce the chances of leaching, runoff, and volatilization losses. Lower N2O fluxes from 

spring applications were reported in Thompson and Pain, (1989), Allen et al. (1996), and 

Chadwick (1997) as reported in Rochette et al. (2004). However, Rochette et al. (2004) 

and Barton and Schipper (2001) reported higher emissions following spring applications 

than fall applications due to higher soil temperature and moisture levels in the spring. 

Rochette et al. (2004) also hypothesized that wet and cool fall conditions limited net 

nitrification and resulted in little accumulation of NO3, thus limiting potential for 

subsequent denitrification and N2O emissions. However, other N losses occur during fall 

and winter (runoff, leaching) that are not accounted for in either study, so overall N 

losses between the spring and fall treatments may have been similar with the spring 

losses being mainly gaseous. Wagner Riddle et al. (1997), Grant et al. (2004), Smith et al. 

(2004) and Wagner Riddle and Thurtell (1998) reported on the significance of spring 

thaw emissions of N2O. Reasons for high fluxes during spring thaw involve the rapid 

nitrification-denitrification at the soil surface and/or the release of N2O accumulated 

below the frozen layer in the soil profile (Cates and Keeney, 1987 in: Wagner Riddle et 

al. (1997)). These authors stressed that spring thaw N2O fluxes should not be neglected 

when considering livestock GHG contributions. 

 

4.2.2.6 Effect of Application Rate on GHG Emissions 

Nitrous oxide fluxes increased linearly with fertilizer application rate in the information 

compiled by Gregorich et al. (2005). Generally, for manure application, GHG emissions 
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in the short term increase with application rate for both solid (Chang et al., 1998) and 

liquid (Paul et al., 1993) manure since any N not used by the plants is available for 

denitrification. However, other studies that measured cumulative N losses over longer 

periods found that rate of manure application had little effect on overall N2O emissions 

(Hansen et al., 1993). Lessard et al. (1996) noted that application rate did not affect GHG 

flux but did affect NH4-N and NO3-N contents in soil profile. In Rochette et al. (2000b), 

the addition of the second 60 Mg/ha resulted in a greater incremental increase of 

emissions than the first 60 Mg/ha, suggesting a non-linear relationship between 

application rate and N2O flux. Van Groenigen et al. (2004) also concluded that N2O 

emissions were not linearly related to N application rates and the effect of application rate 

varied with type and application rate of fertilizer. 

 

In terms of C fluxes from different rates of manure application, Rochette et al. (2000a) 

reported a linear response of C oxidation to the amount of liquid manure added, 

suggesting that there were no physical or chemical limitations to increased microbial 

activity with increased amount of liquid manure added. In contrast, Gregorich et al. 

(1998) reported that the CO2 flux increased proportionately less for the second increment 

of manure added than for the first increment.  

 

4.2.2.7   Diurnal Variations, Time to Peak and Duration of GHG 

Emissions 

The overall flux of gases depends on many soil environmental factors including soil 

moisture and temperature so the daily variation and length of time between application 

and peak fluxes can vary widely. Several researchers have noted diurnal variation in N2O 

fluxes. However, Akiyama and Tsuruta (2003) observed no clear pattern for daily peak 

fluxes, indicating that there is no time of day where maximum or minimum fluxes can be 

consistently measured (Goodroad et al., 1984). 

 

Large fluxes of N2O can occur weeks or even months following manure application due 

to a large rainfall event. In other cases, the largest flux of N2O can occur shortly after 

application (within 24 hrs) as in Barton and Schipper (2001), Sharpe and Harper (1997) 
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and Dittert et al. (2005). Paul et al. (1993) noted that N2O fluxes peaked within 4 days of 

application. Lessard et al. (1996) reported that 67% of total N2O emitted occurred in the 

first 7 weeks following application. Rochette et al. stated that the effect of manure 

application on N2O flux was limited to 30 days (2000b) or 60 days (2008) following 

application. Watanabe et al. (1997) reported that N2O fluxes decreased to background 

levels (emissions from bare soil) within 110 days of manure application. They noted 

varying times to peak flux between winter and autumn experiments, presumably due to 

soil temperature differences (Watanabe et al., 1997). Other studies have shown highly 

variable time courses for peak response following animal waste application (Sharpe and 

Harper, 2002; Cabrera et al., 1994; etc.) 

 

Methane emissions following manure spreading are typically short-lived because the 

majority of CH4 flux from manure amended soils comes from the volatilization of CH4 

compounds in the manure. In Chadwick et al. (2000) and Chadwick and Pain (1997), 

emissions of CH4 began immediately and more than 90% of CH4 emitted was lost in the 

first 24 hrs in most cases. Sherlock et al., (2002) and Dittert et al. (2005) also noted that 

CH4 emissions commenced immediately after application and peaked within 12 hrs of 

application. Weslien et al. (1998) also noted that the highest emissions of methane took 

place immediately after spreading using a variety of methods and were hardly detectable 

during the following measurements for most of the treatments. 

 

Carbon dioxide fluxes are also sensitive to environmental factors, but the majority of CO2 

emissions following manure spreading occurred within 70 days of application (Rochette 

et al., 2000a). Ginting et al. (2003) noted that soil receiving manure or compost had 

similar CO2 emission as the control or fertilized soil as early as one month after 

application. 

 

4.2.2.8 Reported Fluxes 

Tables E.1 to E.3 in Appendix E contain a complete listing of literature values for 

reported GHG flux values, including the measurement technique, gases measured, units 

of measurement and treatment applications in tabular form. 



133 
 

4.2.3    Modeling GHG Emissions from Fertilizer and Manure 

Applications 

 

Manure handling and application methods affect not only the magnitude of the initial flux 

of GHG after application, but also the emission rate trend over time after application. For 

example, Loro et al. (1997) noted in their lab-scale study that emissions from solid 

manure applications lasted longer than emissions from liquid manure applications, likely 

due to the high levels of C in solid manure mineralizing over time and becoming 

available to the denitrifiers. In addition, the increased contact with microbes due to 

injection of manure may promote N2O emissions in the short term, but rapid 

decomposition beneath the soil surface may mean that fluxes a few days after application 

are reduced. Some studies that reported on the effect of application technique on GHG 

fluxes only measured fluxes one or two times after application (Lovanh et al., 2008, 

Sistani et al., 2008) while others continually monitored fluxes over the course of 2 to 18 

weeks (Weslien et al., 1998, Perala et al., 2006, Flessa and Beese, 2000, Wulf et al., 

2002b). Of the studies that measured cumulative losses over a longer period, only Wulf et 

al. (2002b) found that injection resulted in significantly higher GHG emissions on a field 

scale. Collecting continuous GHG flux data from sites over several weeks is labour-

intensive and does not always provide further insight or ability to clearly distinguish 

treatment effects. Therefore, a model that simulates the environmental conditions and 

nutrient transformations after manure application may be a more efficient approach to the 

prediction of the effect of management practices on total GHG emissions. 

 

The mass balance of soil gas must take account of three mechanisms: 1) microbiological 

production, 2) diffusive transport, and 3) input to or output from soil N2O reservoirs (Yoh 

et al., 1997). The mechanisms responsible for and interacting with gaseous movement in 

soils include adsorption, diffusion, volatilization, degradation, leaching, mineralization, 

and immobilization turnover. Several well established models exist for N transformation 

prediction, including the DeNitrification-DeComposition model (DNDC, Li and Aber, 

2000) and the ecosys model (Grant et al., 2006). The DNDC model is a computer 

simulation model of carbon and nitrogen biogeochemistry in agro-ecosystems. DNDC 
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can be used for predicting crop growth, soil temperature and moisture regimes, soil 

carbon dynamics, nitrogen leaching, and emissions of trace gases including N2O, CH4, 

and CO2 (DNDC, 2009).  In the ecosys model, the key biological processes 

(mineralization, immobilization, nitrification, denitrification, root and mycorrhzial 

uptake) controlling the generation of N2O are coupled with the key physical processes 

(convection, diffusion, volatilization, dissolution) controlling the transport of the gaseous 

reactants and products of these biological processes. These models have been used on a 

regional scale to predict GHG losses from agro-ecosystems and can be used to help 

predict the impact of different manure management strategies on overall GHG emissions. 

The application of these and other models to estimate emissions from manure spreading 

is discussed in Chapter 6. 

 

4.2.4  Identification of Research Gaps and Objectives 

 

Research on emissions from land application of manure usually focuses on one type of 

gas. For example, ammonia emissions from manure spreading have been reported by, 

among others, Bittman et al., (2005), Huijsmans et al., (2001), Wulf et al. (2002a), and 

Rodhe et al., (2004); and odour emissions are discussed by Hanna et al., (2000), Lau et 

al., (2003), Pain et al., (1991), and Smith et al., (2007). The emissions of GHG’s have 

been investigated by Amon et al., (2005), Chadwick et al., (2000), Lessard et al., (1996, 

1997), and Rochette et al., (2000a, 2000b, 2004, 2008). Very few researchers have 

evaluated both GHG and odour emissions from the same land application experiment. 

The International Panel on Climate Change (IPCC) has recognized that studies are 

required on the interactions among gases because it is of concern that strategies to reduce 

emission of one gas may increase emission of other ones (IPCC, 1998). 

 

Furthermore, the majority of research to date on GHG emissions resulting from the land 

application of manure has focused on liquid manure, even though more than two thirds of 

land applied with manure in Canada receives solid or composted manure (Statistics 

Canada, 2006).  Thus, there exists a distinct need for research on emissions from solid 

manure application. Another important element to consider is the impact of manure 
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management systems, such as surface broadcasting or injection of manure, on GHG 

emissions. The injection or incorporation of manure into the soil has the potential to 

increase these GHG emissions from manure spreading, which is an important 

consideration when attempting to assess agriculture’s contribution to a region’s total 

GHG emissions. With new plans and strategies being put in place to reduce global GHG 

emissions, it is important to carefully analyze emissions that result from new 

technologies or practices. There are very few comprehensive studies that have addressed 

the effect of subsurface application on GHG emissions, particularly for solid manure. 

 

Finally, since manure type and application method are likely to affect microbial activity 

and emissions for up to a year after application, the emission rate over time relationship 

must be examined. This will provide a more accurate assessment of the impact of manure 

management practices on the overall emissions.  

 

Therefore, the objective of this research was to compare GHG emissions between liquid 

and solid manure and surface and subsurface application. Specific objectives included:  

� to evaluate existing equipment and protocols for GHG emission determination 

following land application of manures and, if required, develop new protocols and 

equipment for sample collection, 

� to evaluate the relative GHG emissions from various types of solid and liquid 

manure with both surface and sub-surface application, and 

� to examine and modify an existing nutrient transformation model to better predict 

GHG emissions following surface and sub-surface land application of liquid and 

solid manure (refer to Chapter 6). 
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4.3 Materials and Methods 
 

4.3.1 Selection of Sampling and Measurement Techniques 

 

Since this study involved comparisons among multiple treatments, the static (closed) 

chamber technique was selected to collect GHG flux data. Gas concentrations were 

assessed using gas chromatography. Refer to Appendix F for gas chromatography 

specifications. 

 

The significance and magnitude of the rate of increase of gas concentration in the 

chamber headspace to determine gas flux was evaluated on a case by case basis. In many 

cases, the Hutchinson and Mosier flux model (Equation 4.2) was technically valid. 

However, linear and polynomial regression allowed more reliable calculation of the rate 

of change of concentration and offered the ability to perform a statistical test to determine 

the significance of the regression model. Since the chamber enclosure time was short in 

this study, the effect of the chamber on the concentration gradient was thought to be 

minimal, eliminating the need for the Hutchinson and Mosier flux model. Therefore, 

fluxes were calculated using Equation 4.1 and linear or quadratic regression was used to 

determine the rate of change in gas concentration. Sample calculations and a comparison 

of flux values calculated using Equations 4.1 and 4.2 can be found in Appendix G. 

 

4.3.1.1 Description and Operation of Static Chamber 

Two identical static chambers were constructed for assessing the GHG emissions from 

surfaces applied with manure and are depicted in Figure 4.1. The chambers were 0.60 m 

in diameter (0.283 m2 surface area) and 0.15 m high, made of corrugated PVC tube.  The 

chambers were capped with 6.35 mm thick PVC plates. Small, battery powered (9 volt) 

computer cooling fans were wired inside the chamber to facilitate good mixing of the 

sample gases. The cap also included a sampling port and septum and an open port (30 

mm high, 10 mm diameter) for pressure equalization and depth measurements. The 

exterior of the chambers were painted white to minimize adsorptive heating inside the 
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chamber during deployment. The internal headspace varied, depending on how deeply 

the chamber was inserted in the soil, but the average headspace was 0.040 m3. 

 

  

(a) (b) 

Figure 4.1.  Static chambers for greenhouse gas emission measurement a) exterior view and b) 

interior view. 

 

Samples were collected for GHG flux determination approximately 24 hrs after 

application of manure. Initial testing showed that, for samples collected immediately after 

application, the rate of concentration change in the headspace was too erratic to calculate 

reliable flux estimates. Although CH4 fluxes after manure application are generally short-

lived (less than 12 hrs), N2O and CO2 were considered the main gases of concern, so 

sampling was delayed until 24 hrs after application. All GHG samples were collected in 

the morning between 0900 and 1200 to minimize the effects of diurnal variations. 

 

For each gas measurement, the chamber fan was turned on and the chamber was 

deployed on the ground at the sampling site. The chamber was quickly pushed into the 

soil approximately 5 cm to form a good seal and prevent the gases from escaping the 

chamber. Pushing the chamber into the soil is thought to affect long-term emissions by 

altering the soil and root structure, but it will have a minimal impact on short-term 

emissions. To collect a sample from the chamber, a needle was inserted into the septum, 

the 20 mL syringe was purged 3 times with the headspace air without withdrawing the 

needle, and the 20 mL sample was drawn. The sample was then injected into a 12 mL 

evacuated ExetainerTM containing a dessicant to absorb any moisture in the sample. 

Samples were drawn from the sampling port at equal intervals (5, 10, 15 minutes) after 

Switch and battery pack for fan 

Sampling port  
Open port 

Sampling port 

Fan 

Open port 
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chamber deployment. Upwind ambient samples were collected periodically during the 

sampling session to represent the time = 0 sample. Ambient samples were drawn into the 

syringe from a height of 1 m above the ground. 

 

The 15-min enclosure time was selected due to the logistical constraints of coordinating 

the field testing with odour measurements. The results of a preliminary plot trial also 

indicated that the concentration differences during a 15-min enclosure time were larger 

than 0.015 ppm, satisfying the criteria set out by Hutchinson and Mosier (1981) to reduce 

instrument error due to the standard deviation of the results from the gas chromatograph 

(the standard deviation of N2O concentration determination was ±0.005 ppm). However, 

fluxes were measured immediately after application during the preliminary plot trial and 

they were measured 24 hrs after application during the full factorial study. Therefore, 

concentration differences were lower during the full factorial study, often falling below 

Hutchinson and Mosier’s 0.015 ppm criteria. However, the measured fluxes were 

statistically significant based on the regression analysis and significant treatment effects 

were also observed so the 15-min enclosure time appeared sufficient. The low 

concentration differences did result in high uncertainties associated with the flux 

measurement (8-50% for CO2, 9-55% for N2O, >100% for CH4, Appendix H). 

 

After initial tests with the open port and a manometer showed no significant pressure 

fluctuations in the chamber at various ambient wind speeds, the open port was plugged 

with a semi-permeable foam membrane during gas sampling. After each sampling period 

was completed, the port was opened and a depth gauge was dropped into the port to 

measure the actual height of the deployed chamber. The chamber was rotated 90 degrees 

three successive times so a total of four depth measurements were collected. The average 

of the four depth measurements was used to calculate chamber volume.  

 

The static chambers were tested on a calibration box which simulated carbon dioxide 

(CO2) flux as described in Agnew et al. (2005).  During these tests, the chambers 

underestimated the actual CO2 flux by more than 50%.  However, these laboratory tests 

simulated very low CO2 fluxes (approximately 0.3 mg/m2-s) while the fluxes observed 



139 
 

during the field tests were much higher, approximately 10 times higher than the simulated 

flux. Therefore, the field chamber measurements were likely more accurate than the 

calibration chamber measurements.  

 

4.3.2 Experimental Design for Data Collection 

 

Greenhouse gas emissions from surface and subsurface application of liquid and solid 

manure were measured on a plot scale, rather than full-scale field testing to control 

variables such as application rate and application method and type of manure. Liquid 

swine and dairy manures and solid swine, poultry and feedlot manures were surface 

applied and injected at three application rates with 3 replications in a randomized block 

design. Application rates (1X, 2X, 3X) were chosen to simulate one year, two year and 

three year agronomic rates based on N content. Details of the experimental design for the 

U of S Feedlot, Saskatoon Area and Humboldt Area plots in 2007 can be found in 

Chapter 3 (Odour Emissions from Manure Spreading). Additional GHG measurements 

were collected in 2007 from long-term solid and liquid manure and newly established 

solid manure application sites located near Dixon, SK. Refer to Tables 4.1 and 4.2 for 

details. 

 
Table 4.1 Summary of GHG data collection in 2007. 

Location Type(s) of manure Method of application Application treatments 

Dixon Liquid swine PAMI tanker truck Long term liquid plots* 
Dixon Composted feedlot Solid injection prototype New solid plots* 
Dixon Composted feedlot Solid injection prototype Long term solid plots* 
U of S Feedlot Liquid dairy and solid feedlot Simulated application Surface and subsurface, 4 rates 
Saskatoon area Liquid swine and solid swine Simulated application Surface and subsurface, 4 rates 
Humboldt area Solid poultry Solid injection prototype Surface and subsurface, 4 rates 

* Details for these plots listed in Table 4.2 
Number of GHG samples collected: 
 56 flux measurements (all machine application—long term sites at Dixon) 
 123 flux measurements (99 simulated application, 24 machine application) 

 

The Dixon data included emissions from a long-term liquid swine injection site (PAMI 

low disturbance injector tanker truck), a long-term solid feedlot application site where the 

manure was surface applied and incorporated (hand applied until 2007, solid manure 

injector prototype in 2007), and a new solid feedlot application site (solid manure injector 

prototype) where gaseous measurements were collected from the surface applied plots 



140 
 

only. The liquid plots included control treatments, application rate treatments, a water 

treatment and a broadcast + incorporation treatment. The solid plots included control 

treatments, application rate treatments and a delayed incorporation treatment. A summary 

of treatments for the Dixon sites are listed in Table 4.2. These plots and the manure 

application schedule were established in 1997 and accommodated a rotation of canola, 

wheat, flax, and barley. For this study, GHG samples were collected in the spring of 2007 

from flax stubble 24 hrs after manure application.  

 
Table 4.2 Summary of treatments for Dixon manure application sites. 

Long-term liquid Long-term solid New solid 

Control Control Control 
Disturbed control 1X annually 1X annually 
1X annually 2X every 2 years 2X annually 
2X every 2 years 2X annually 3X annually 
2X annually 4X every 3 years  
4X annually 4X annually  
1X water annually 1X annually delayed incorporation  
1X annually broadcast and incorporated   

 
 

4.3.3 Manure Application 

 

For the Dixon plots and the Humboldt Area plots, full-sized application equipment (the 

PAMI liquid tanker truck and the PAMI solid prototype applicator) were used to apply 

the manure. Due to logistical constraints, the manure application was “simulated” by 

hand for the U of S Feedlot and Saskatoon Area plots.  

 

Equipment details for machine applied plots and procedures for simulated application 

plots can be found in Chapter 3. The application rates used in the machine and simulated 

application plot trials are outlined in Tables 4.3 and 4.4, and the chemical properties of 

the manure used in these plots are in Tables 4.5 and 4.6. 

 
Table 4.3 Liquid and solid manure application rates for machine application plots. 

Rate Solid (Mg/ha) Liquid (m
3
/ha) 

1X 20 30 
2X 40 60 
3X 60 - 
4X 80 120 
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Table 4.4 Liquid and solid manure application rates for simulated application plots. 

Rate Solid (Mg/ha) Liquid (m
3
/ha) 

1X 20.2 56.1 
2X 40.4 84.2 
3X 60.6 112.2 

 
Table 4.5  Manure chemical properties used in machine application plots. 

 Total Solids 

(%) 

NH4 

(kg/m
3
) 

Total N 

Composted beef (long term plots) n/a 0.05 4.79 kg/m3 
Composted beef (new solid plots) n/a 0.042 4.99 kg/m3 
Liquid swine n/a 1.8 2.07 kg/m3 
Solid poultry 46.4 3.25 17.3 kg/Mg 

 
Table 4.6  Manure chemical properties used in simulated application plots. 

 Total Solids 

(%) 

Ammonia as N 

(kg/m
3
) 

Total N 

Solid feedlot 38.2 n/a 8.3 kg/Mg 
Liquid dairy 6.9 0.601 2.5 kg/m3 
Solid swine 43.2 n/a 7.0 kg/Mg 
Liquid swine 2.8 2.88 3.24 kg/m3 

1Value is lower than typical because liquid dairy manure was “generated” by taking fresh semi-solid manure 
directly from alley of barn and diluted with equal parts of water, and applied within 12 hours of mixing, 
resulting in little time for microbial activity and generation of NH4-N. 

 
For one randomized block experiment (liquid dairy), additional disturbed control plots 

were applied with a 1X (56.1 m3/ha) rate of water to investigate whether the application 

of liquid promoted the generation of significant GHG’s. 

 

4.3.4 Soil Properties 

 

All plots were located in wheat, flax or barley stubble and had no commercial fertilizer 

application after the crop was harvested the previous year. Soil samples were collected 

from each site on each day of emission sampling to provide data on basic soil 

characteristics. Samples were collected using a 10-cm soil probe from four locations 

immediately surrounding the plot site. Sub-samples were used for moisture content 

analysis by oven drying according to ASTM standards (D2216-05) and the remaining 

sample was dried and frozen for nutrient and particle size analysis. The bulk density 

approximation was based on published values for the texture class. The nitrogen, organic 

carbon and organic matter contents were analyzed by ALS Laboratory Group in 

Saskatoon, SK using standards outlined in Nelson and Sommers (1996) and Tiessen and 
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Moir (1993). A summary of the soil properties for the locations used in this study is 

presented in Table 4.7.  

 

Table 4.7. Soil properties for data collection sites. 

 

 

Site Location 

 

 

Texture 

Class 

Moisture 

Content 

Range  

(% d.b.) 

Bulk 

Density 

 

(g/cm
3
) 

Nitrogen 

Content 

 

(% LECO-N) 

Organic 

Carbon 

Content 

(%) 

Organic 

Matter 

Content 

(%) 

U of S 
Feedlot 

Sandy 
loam 

15.7 – 34.4 1.49 0.30 3.2 5.5 

Saskatoon 
area 

Loam 19.8 – 23.8 1.47 0.34 3.4 5.8 

Humboldt Clay 
loam 

26.1 – 31.9 1.31 0.44 4.4 7.5 

Dixon Loam n/a 1.29 0.47 3.2 5.4 

 

4.3.5 Statistical Analysis 

 
To calculate GHG flux using Equation 4.1, the rate of increase in concentration was 

determined using regression analysis. The fit of linear and quadratic models were 

analyzed by comparing the P values of the regression. If the P values for both regressions 

were greater than 0.15, the regression was deemed insignificant and the flux assumed to 

be zero. Of the significant fluxes, the regression model with the lowest P value was 

differentiated with respect to time to determine the slope of the regression at t = 0. This 

value was used as the ∆C/∆t term in Equation 4.1 to calculate gas flux. Details of the 

fluxes calculated from the significant and non-significant and linear vs. quadratic 

regressions can be found in Appendix G.  

 

The CO2, N2O and CO2 equivalent (CO2-e) fluxes were highly variable with many small 

values including zeros. Based on the Kolmogorov-Smirnoff test (Greenberg, 2006), the 

CO2, N2O and CO2-e fluxes were not normally distributed (P<0.05) so non-parametric 

statistical analyses were employed, as in Bergstrom et al. (2001). The CH4 fluxes were 

normally distributed (P>0.150).  

 

For the non-normally distributed fluxes, individual flux values were assumed to be 

outliers if they fell beyond three interquartile ranges from the upper quartile (Pett, 1997). 
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Since the data were highly variable and dependent on the treatments, quartiles and 

interquartile ranges were calculated for each individual treatment to identify the outliers. 

The N2O and CO2 outliers were reintroduced for the CO2-e calculation and CO2-e outliers 

were assessed individually.  

 

The Kruskal Wallis non-parametric test (Greenberg, 2006) was used to determine 

significance of treatment effects on N2O, CO2 and CO2-e fluxes. Treatment effects on 

CH4 fluxes were analyzed using ANOVA. Treatments were considered to have a 

significant effect on the flux when the P value was less than 0.05 to provide a high level 

of confidence (95%). All statistical analyses were performed using Minitab software 

(version 15) (Greenberg, 2006).  

 

Although non-parametric statistical analysis deals with median values to determine 

significance, all graphs and tables list treatment means and standard errors for easier 

interpretation. Outliers were treated as missing data and insignificant fluxes were 

considered as zero.  

 

4.4 Results 
 

Due to the differences among treatments and application rates between the factorial 

experiment (U of S Feedlot, Saskatoon Area and Humboldt Area plots) and the long term 

experiment (Dixon plots), the GHG emission results were analyzed independently and 

will be presented separately.  

 

Most of the plots produced significant N2O and CO2 fluxes, but very few CH4 fluxes had 

significant regressions for the rate of increase in gas concentration in the headspace. 

Furthermore, the significant CH4 fluxes were very low and varied between positive 

(emission of CH4) and negative (uptake or CH4 oxidation) values. Therefore, the carbon 

dioxide equivalent (CO2-e) calculation excluded the CH4 fluxes and accounted for N2O 
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(with a global warming potential of 310) and CO2 only. Additional graphical and numeric 

summaries of the GHG fluxes are in Appendix I.   

 

4.4.1 Factorial Experiment Results 

 

Using the regression analysis outlined in Section 3.5, 95 of the 123 N2O fluxes were 

significant, 107 of the 123 CO2 fluxes were significant and 45 of the 123 CH4 fluxes were 

significant. The treatment effects (liquid vs. solid, surface vs. injected, application rate) 

on N2O, CH4, CO2 and CO2-e fluxes are presented separately, following a discussion of 

outliers and control fluxes.  

 

4.4.1.1 Outliers 

Although the data were highly variable, outliers can affect data analysis and conclusions. 

Therefore, outliers were excluded from the statistical analysis. There were 11 N2O flux 

outliers (out of 95 significant fluxes), 3 CO2 flux outliers (out of 107 significant fluxes) 

and 3 CO2-e flux outliers (out of 117 significant fluxes). These outlier values and the 

rationale for their exclusion are included in Appendix I.  

 

4.4.1.2 Control Fluxes 

Microbial activity in soil is highly dependent on soil moisture content, so it follows that 

GHG emissions may be dependent on soil moisture content. The scatter-plot describing 

the relationship between soil moisture content and N2O emissions for the simulated 

application plot data are presented in Figure 4.2a (scatter-plots for effect of soil moisture 

on CO2 and CO2-e are in Figure I.1 in Appendix I). Based on these data, there doesn’t 

appear to be a trend between moisture content and CO2-e fluxes measured 24 hours after 

application, but the maximum fluxes appear to be confined to a small range of moisture 

contents (20-25% db) which corresponded to a WFPS range of 44 to 51% for these soils 

(average wet bulk density 1.42 Mg/m3). 
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Since the fluxes may have also been influenced by the amount of soil disturbance due to 

injection, the fluxes were compared between disturbed and undisturbed control plots. 

While emissions from the disturbed control plots tended to be higher than emissions from 

the undisturbed control plots, the difference was not significant for any of the gases 

measured (P = 0.243 for N2O, 0.052 for CO2, 0.775 for CH4 and 0.131 for CO2-e, Figure 

4.2b). The low P value for CO2 indicates that soil disturbance tended to increase CO2 

flux, likely due to increased soil respiration due to enhanced soil microbe exposure to the 

atmosphere.  

 

  
(a) (b)  

 
Figure 4.2. Control fluxes (a) scatter plot of N2O emissions (µg/m

2
-s) versus oven dry basis soil 

moisture content (%), (b) effect of soil disturbance on background fluxes.  

 
The results from the disturbed control plots applied with a 1X rate of water showed that 

the emissions from these disturbed control plots were higher but not significantly 

different from the other control plots in that block (P = 0.146, data not shown). This 

suggests that the moisture applied when injecting manure did not affect the microbial 

population enough to alter the GHG emissions occurring one day after manure 

application. 

 

The background N2O fluxes varied significantly among locations (U of S Feedlot < 

Humboldt Area < Saskatoon Area, P = 0.003). This made it necessary to calculate a 

“manure induced” N2O flux to account for the varying N2O emitted from bare soil when 

analyzing the treatment effects on the N2O flux. Since the background N2O fluxes varied 

only with location, the data were pooled by location to determine overall background 

N2O flux. These values are summarized in Table 4.8. The CO2, CH4 and CO2-e fluxes 
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from the control plots did not vary by location (P = 0.243, 0.335 and 0.194, respectively). 

The overall background CO2, CH4 and CO2-e fluxes were 58.0, 0.0387 and 71.8 µg/m2-s, 

respectively. 

 
Table 4.8.  Summary of background N2O fluxes by location (µg/m

2
-s). Numbers in brackets represent 

the standard error of the mean value. 

Location 
Background N2O Flux 

n Mean 

U of S Feedlot 13 0.0052 (0.00158) 
Saskatoon Area 11 0.0679 (0.0168) 
Humboldt Area 6 0.0168 (0.0066) 

 
 

4.4.1.3 N2O Fluxes 

The treatment effects on N2O fluxes were analyzed for each location separately due to the 

varying background N2O fluxes at each location. The N2O fluxes from the Saskatoon 

Area plots (liquid and solid swine manure) were significantly higher than the N2O fluxes 

from the other two locations. Figure 4.3 is a graphical summary of the treatment effects 

on the N2O fluxes from all three locations.  

 

Injection significantly increased N2O fluxes from all locations (P=0.007, 0.001, 0.000 for 

U of S, Saskatoon Area and Humboldt Area, respectively, Figure 4.3a). N2O fluxes from 

liquid manure were significantly higher than from solid manure at the U of S (P=0.002) 

and Saskatoon Area (P=0.007) locations (only solid manure was spread at Humboldt 

Area location, Figure 4.3b). Interestingly, application rate had no significant effect on 

N2O flux (P = 0.585, 0.447, 0.477 for the U of S, Saskatoon Area and Humboldt Area, 

respectively), although the mean N2O flux increased with application rate at most sites 

(Figure 4.3c). This indicates that there was no difference in N2O flux between the control 

and manured plots (median values for N2O flux for 0X, 1X, 2X and 3X rates for 

Saskatoon Area plots were: 0.049, 0.061, 0.028, and 0.111 µg/m2-s, respectively). 
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(a) (b) 

 
(c) 

Figure 4.3.  Treatment effects on N2O fluxes (µg/m
2
-s) for all three locations. (a) effect of application 

method, (b) effect of manure type, and (c) effect of application rate. Data does not include 

background correction. 

 
 
Because the background N2O fluxes varied by location, the “manure induced” N2O flux 

was also calculated by subtracting the mean background flux of each location from the 

total fluxes obtained at that location. Analysis of these manure induced fluxes showed 

that injection significantly increased the N2O from the manure (P=0.000) and the manure 

induced N2O fluxes were higher from liquid manure applications than solid manure 

applications (P=0.025). In fact, the mean manure induced N2O flux from the surface 

applications and solid manure showed N2O uptake by the soil while injected applications 

and liquid manure showed N2O emission (refer to Table 4.9).  The solid feedlot, solid 

swine and liquid dairy applications had negative manure induced N2O fluxes while the 

solid poultry and liquid swine had positive manure induced N2O fluxes (refer to Table 

4.9). Similar to the absolute N2O flux analysis above, the application rate did not affect 

manure induced N2O fluxes (P=0.243). The poultry manure generated significantly 

higher manure induced N2O fluxes than the other solid manures. 
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Table 4.9. Summary of manure induced N2O fluxes (µg/m
2
-s). Separate analyses were carried out for 

the overall data, solid manure and liquid manures. 

  n P value Mean Std Err 

Overall Injected 58 
0.000 

0.2505 0.0805 
 Surface 52 -0.0305 0.0052 
 Liquid 46 

0.025 
0.2870 0.1010 

 Solid 64 -0.0040 0.0096 
 0X 30 

0.243 

-0.0170 0.0066 
 1X 28 0.1019 0.0726 
 2X 26 0.1581 0.0917 
 3X 26 0.2490 0.1420 
Solid Injected 33 

0.015 
0.0195 0.0167 

 Surface 31 -0.0291 0.0064 
 Feedlot 20 

0.000 
-0.0078 0.0024 

 Poultry 21 0.0507 0.0216 
 Swine (S) 23 -0.0506 0.0108 
Liquid Injected 25 

0.000 
0.5550 0.1690 

 Surface 21 -0.0326 0.0091 
 Dairy 24 

0.613 
-0.0003 0.0114 

 Swine (L) 22 0.6000 0.8960 

 
 

4.4.1.4 CO2 Fluxes 

Since background CO2 fluxes did not vary by location, the statistical analysis was 

performed on the overall pooled data. The overall analysis showed that injection 

significantly increased CO2 flux (P=0.003, Figure 4.4a) and fluxes from liquid manure 

were higher than from solid manure (P=0.000, Figure 4.4b). The CO2 flux increased with 

application rate. Although the differences among the 1X, 2X and 3X application rates 

were not significant, CO2 fluxes from the manured plots were significantly higher than 

from the control plots (P=0.021, Figure 4.4c). The poultry manure plots generated the 

highest fluxes of the solid manures while the liquid swine plots generated the highest CO2 

fluxes of the liquid manures (Figure 4.4d).  

 

The effects of application method and rate were analyzed separately for liquid and solid 

manure to determine if there were any interesting trends. Injection seemed to increase the 

CO2 flux more for liquid manure than solid manure and fluxes from the injected and 

liquid plots increased more rapidly with higher application rates than fluxes from surface 

applied and solid manure plots. These plots of interactions are shown in Figure I.2 in 

Appendix I.  
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(a) (b) 

  
(c) (d) 

Figure 4.4.  Graphical summary of absolute CO2 fluxes. Vertical axes represent CO2 flux (µg/m
2
-s). 

Solid bars and line error bars correspond to average values and standard errors of the 

means, respectively. (a) Effect of application method, (b) effect of manure type, (c) effect 

of application rate, (d) effect of manure species. 

 
 

4.4.1.5 CH4 Fluxes 

Only 45 of the 123 CH4 fluxes had a significant regression analysis, so non-significant 

fluxes were treated as missing data, not as zero as was done in the CO2 and N2O flux 

analysis. So many CH4 fluxes were non-significant that to treat them as zero resulted in 

highly skewed data (Table I.10 in Appendix I summarized CH4 data with non-significant 

fluxes as zero). The methane fluxes varied between emission (positive) and uptake 

(negative) but there were no significant differences among any of the treatments. The 

CH4 fluxes with significant regression analyses are summarized in Table 4.10.  

 

Plots applied with solid manure tended to oxidize CH4 (negative flux) while plots applied 

with liquid manure emitted CH4. There was a trend for the injected plots to have lower 

CH4 fluxes and application rate had no obvious trend on CH4 flux. The feedlot and 
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poultry manures tended to oxidize CH4 as well, whereas the dairy and both liquid and 

solid swine manures emitted CH4.  

 
Table 4.10.  Summary of CH4 fluxes with significant regression analyses. Mean and standard error of 

fluxes have units of µg/m
2
-s. 

 n P value Mean Std Err 

Liquid 20 
0.249 

0.0488 0.0227 
Solid 25 -0.0109 0.038 
Injected 24 

0.676 
0.012 0.0367 

Surface 21 0.0198 0.0292 
0X 13 

0.308 

0.0387 0.0422 
1X 13 -0.0582 0.0424 
2X 9 0.0414 0.0513 
3X 10 0.0583 0.0528 
Dairy 15 

0.155 

0.0585 0.0257 
Feedlot 2 -0.3759 0.0476 
Poultry 11 -0.0265 0.0359 
Swine (L) 5 0.0196 0.0507 
Swine (S) 12 0.0642 0.0538 

 

4.4.1.6 CO2-e Fluxes 

To account for the high global warming potential of N2O (310 times that of CO2), the 

carbon dioxide equivalent (CO2-e) values were calculated (Table 4.11). Since the CH4 

fluxes were low with few significant fluxes, CH4 was excluded from the CO2-e 

calculation. Therefore, CO2-e equalled the N2O flux multiplied by 310 plus the CO2 flux. 

 

Since the CO2 fluxes were more than double the carbon dioxide equivalent N2O fluxes 

(overall mean CO2 flux = 137.5 µg/m2-s and overall mean carbon dioxide equivalent N2O 

flux = 51.4 µg/m2-s), the CO2-e flux trends and treatment significances were very similar 

to the CO2 flux trends (refer to Figure 4.4). The treatment effects on CO2-e fluxes are 

shown in Figure I.3 in Appendix I.  

 

When the effect of injection on CO2-e fluxes was analyzed for each manure species, 

injection significantly increased CO2-e fluxes from liquid swine and solid poultry manure 

(P=0.002, 0.017 respectively). Injection tended to increase CO2-e fluxes from solid swine 

manure (P=0.074) while injection had no significant effect on feedlot and liquid dairy 

manure (P=0.621 and 0.312, respectively). A summary of the CO2-e flux values for the 

overall data, solid manure and liquid manure is presented in Table 4.11. 
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Table 4.11. Summary of CO2-e flux data (µg/m
2
-s). 

  N P value Mean Std Err 

Overall Injected 61 
0.001 

279.6 54.4 
 Surface 55 86.1 11.6 
 Liquid 49 

0.000 
342.7 64.9 

 Solid 67 74.7 9.1 
 0X 32 

0.054 

71.8 10.4 
 1X 29 163.4 45.9 
 2X 29 240.2 63.3 
 3X 26 299.6 99.0 

Solid Feedlot 23 
0.000 

23.0 4.6 
 Poultry 21 109.7 20.9 
 Swine (S) 23 94.3 12.3 
 Injected 34 

0.030 
99.6 15.5 

 Surface 33 49.0 7.2 
 0X 17 

0.578 

49.4 6.2 
 1X 17 60.7 15.3 
 2X 17 104.9 24.9 
 3X 16 84.2 19.7 

Liquid Dairy 26 
0.034 

157.6 20.6 
 Swine (L) 23 552.0 124.0 
 Injected 27 

0.009 
506.0 107.0 

 Surface 22 22.3 22.3 
 0X 15 

0.002 

97.3 19.4 
 1X 12 308.9 95.9 
 2X 12 432.0 133.0 
 3X 10 644.0 120.0 

 

The contributions of N2O to CO2-e as a percentage for the three locations are summarized 

in Table 4.12. The contribution of N2O to CO2-e was analyzed by calculating the 

percentage of CO2-e that was made up of carbon dioxide equivalent N2O. Treatments 

where the CO2 fluxes were insignificant (zero) were excluded. These percentages were 

analyzed to determine treatment effects. Again, because the background N2O flux varied 

by location, the contributions of N2O to CO2-e were analyzed separately for each 

location. Injection significantly increased the contribution of N2O to CO2-e at all 

locations (P=0.004 in Humboldt Area plots, 0.002 in Saskatoon Area plots and 0.045 in 

U of S feedlot plots). The contribution of N2O to CO2-e tended to be higher from liquid 

manure applications, but there were no significant trends (P=0.073 in Saskatoon Area 

plots and 0.222 in U of S Feedlot plots). Application rate had no effect on the percentage 

contribution of N2O to CO2-e.  
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Table 4.12.   Contributions of carbon dioxide equivalent N2O to overall CO2-e, expressed as a 

percentage. 

Location Treatment n P-value Mean (%) Std Err (%) 

U of S Feedlot Injected 21 
0.045 

5 1 
 Surface 20 3 1 
 Liquid 26 

0.222 
3 1 

 Solid 15 5 2 
Saskatoon area Injected 23 

0.002 
29 3 

 Surface 22 14 4 
 Liquid 22 

0.073 
27 4 

 Solid 23 16 2 
Humboldt area Injected 11 

0.004 
21 3 

 Surface 10 9 3 

 

4.4.1.7 Specific Fluxes 

Since the total N application rates were not the same for the different manure types and 

species, specific GHG flux rates were calculated by dividing the flux values by the total 

N application rates outlined in Table 4.13. Specific flux values were calculated for all 3 

greenhouse gases based on application of total N. Only the results of CO2-e per kg total N 

are presented in Figure 4.5. The specific flux trends for N2O and CO2 can be found in 

Figures I.4 and I.5 in Appendix I.  

 
Table 4.13. Summary of actual N application rates for factorial experiment plots. 

  kg N-tot/ha 

Manure Total N 1X 2X 3X 

Feedlot 8.3 kg/Mg 168 335 503 
Swine (S) 7.0 kg/Mg 141 283 424 
Poultry 17.3 kg/Mg 350 700 1050 
Dairy 2.5 kg/m3 140 211 281 

Swine (L) 3.2 kg/m3 182 273 364 

 

Similar to the absolute CO2 and CO2-e flux analyses, specific CO2-e fluxes (Figure 4.5) 

were significantly higher from the injected plots (P=0.005) and from the liquid manure 

(P=0.000). Again, there was no statistical difference among the 1X, 2X and 3X 

application rates (P=0.428). This suggests that the rate of increase of absolute GHG flux 

with application rate is proportional to the rate of increase of applied N. In terms of 

specific CO2-e flux, the solid swine manure emitted the most GHG’s of the solid manures 

while the liquid swine manure emitted the most GHG’s of the liquid manures. 
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(a) (b) 

  
(c) (d) 

Figure 4.5.  Treatment effects on mean specific CO2-e fluxes (mg/kg N applied-s). Solid bars and line 

error bars correspond to average values and standard errors of the means, respectively. 

(a) Effect of application method, (b) effect of manure type, (c) effect of application rate, 

and (d) effect of manure species. 

 
 

4.4.2 Long Term Experiment Results (Dixon Results) 

 

Comparisons between liquid and solid manure and surface and subsurface applications 

were difficult to make with the Dixon data since the experiment was not designed to 

make these comparisons. The goal of the Dixon experiment was to assess the long-term 

effects of repeated manure applications. However, a few valid conclusions can be drawn 

from these data. 

 

There were many fluxes that could not be distinguished from zero (insignificant 

regression) but no outliers in the Dixon flux data. Of the 56 fluxes measured, 29, 49 and 

23 of the N2O, CO2 and CH4 fluxes had significant regressions, respectively. Generally, 

absolute emissions from the Dixon sites were lower than from the factorial plot sites, 
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despite the fact that the Dixon site included repeated solid and liquid manure application 

treatments. However, some of the plots from the long term site included treatments that 

were applied every 2 or 3 years, but not in the year the fluxes were measured. This 

resulted in the collection of more samples from plots that had received no manure than in 

the factorial experimental design. Furthermore, the nitrogen application rates were lower 

in the Dixon plots (Table 4.14) compared to the factorial experiment plots (Table 4.13). 

 

 Table 4.14. Summary of actual N application rates for Dixon plots. 

 Total N kg N-tot/ha 

Manure kg/m
3
 1X 2X 3X 4X 

Liquid swine 2.1 68 136 - 272 
Long-term solid feedlot 4.79 73 146 - 292 

New solid feedlot 4.99 100 200 300 - 

 

A comparison of overall absolute fluxes from long term sites and the factorial experiment 

plots is shown in Table 4.15.  

 

Table 4.15.  Comparison of overall mean fluxes from Dixon and factorial (all other locations) 

experiments. All fluxes are in µg/m
2
-s. Numbers in brackets represent the standard error 

of the mean. 

 N2O Flux CO2 Flux CH4 Flux 

 Dixon Factorial Dixon Factorial Dixon Factorial 

Liquid 
0.0456 

(0.0139) 
0.344 

(0.104) 
144 

(27.8) 
238.8 
(36.3) 

-0.0027 
(0.0196) 

0.0488 
(0.0227) 

Solid 
0.01090 

(0.00606) 
0.03371 

(0.00589) 
26.5 

(7.62) 
65.5 

(7.48) 
-0.1300 
(0.0172) 

-0.0109 
(0.038) 

0X 
0.00714 

(0.00596) 
0.03051 

(0.00813) 
58.2 

(23.3) 
58.0 

(7.94) 
-0.0503 
(0.0477) 

0.0387 
(0.0422) 

 

The magnitudes of the specific fluxes from the Dixon plots were comparable to the 

specific CO2-e fluxes in the factorial experiment (Figure 4.5). The specific CO2-e fluxes 

from the long-term liquid plots at Dixon ranged from 5 mg/kg N-s for the 2X injected 

treatment to 60 mg/kg N-s for the 1X incorporated treatment. The new solid feedlot plots 

yielded specific CO2-e fluxes below 1 mg/kg N-s while the long-term solid feedlot plots 

had specific CO2-e fluxes that ranged from 1 to 5 mg/kg N-s.  
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4.4.2.1 Treatment Effects on N2O Flux 

Injection did not appear to affect N2O flux from the plots applied with a 1X rate of liquid 

swine manure compared to the same rate when it was broadcasted and incorporated 

(P=0.513). However, the 4X liquid rate had significantly higher N2O fluxes than all other 

liquid treatments (P=0.037). The 2X2 (a 2X rate applied every 2 years, no manure 

applied the year the fluxes were measured) plot appeared to have lower N2O fluxes than 

the control plots. Refer to Figure 4.6 for a summary of the N2O fluxes from liquid manure 

treatments. 

 

 
Figure 4.6.  Summary of treatment effects on N2O fluxes from liquid manure treatments in Dixon 

experiment. 0X represents control (no manure) plots, 1XS are the annually surface 

applied and incorporated plots, 1XI are the annually injected plots, 1XW are the annual 

water injected plots, 2X are the annually injected plots, 2X2 are the injected plots applied 

every two years (no manure in year of flux measurement) and 4X are the annually 

injected high rate plots. 

 
There were no differences between the overall N2O fluxes from the long term and new 

solid plots (P=0.454) and application rate had no effect on N2O fluxes from either the 

long term or new solid plots (P=0.618 for new plots, P=0.454 for long term plots, data 

not shown). As was the case for the liquid plots, there were no significant differences 

between the control plots and multi-year application rate plots, indicating that high rate 

applications of both solid and liquid manure appeared to have no residual effect on N2O 

fluxes in a non-application year. There was also no difference between the 1X surface 

application with immediate incorporation and 1X delayed incorporation of solid manure 

treatments (data not shown). 
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4.4.2.2 Treatment Effects on CO2 Flux 

These data indicate that injection resulted in lower CO2 fluxes compared to surface 

application and incorporation of 1X rate of liquid swine manure. In fact, the 1X surface 

application and incorporation of liquid manure was significantly higher than all the other 

liquid treatments (P=0.040). Again, the annual 4X rate resulted in high emissions 

whereas 2X annual and 2X semi-annual rates were not different from the control plots. 

Refer to Figure 4.7 for a summary of the CO2 fluxes from the liquid manure treatments. 

 

 
Figure 4.7.  Summary of treatment effects on CO2 fluxes from liquid manure treatments in Dixon 

experiment. Notations are the same as those defined in Figure 4.6. 

 
The long term solid plots had an overall higher CO2 flux than the new solid plots 

(P=0.000), but application rate had no effect on the CO2 flux from either set of plots 

(P=0.379 for new plots and 0.254 for long term plots, data not shown). There did not 

appear to be a difference in fluxes between the immediate and delayed incorporation 

solid 1X plots (P=0.688). The 4X rate of solid manure applied every 3 years seemed to 

have a higher CO2 flux in the non-application year than the control and 2X rate applied 

every 2 years (P=0.060, data not shown).  

 

4.4.2.3 Treatment Effects on CH4 Flux 

While there was no difference in CO2 and N2O fluxes between liquid and solid manure 

plots, the solid manure plots had a significantly lower CH4 flux than the liquid manure 

plots (P=0.000, data not shown). Since fluxes from both solid and liquid plots were 

negative, this suggests that soil applied with solid manure becomes a better CH4 sink. 
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There were no other significant differences in CH4 flux among treatments (data not 

shown). 

 

4.5 Discussion 
 

4.5.1  Effect of Application Method and Manure Type on GHG 

Emissions 

 

Not unexpectedly, injection of manure increased overall CO2-e emissions measured 24 

hrs after application. The CO2-e fluxes from the injected treatments were 3.2 times higher 

than CO2-e fluxes from the surface treatments (specific CO2-e flux was also 3.2 times 

higher from injected plots). While both CO2 and N2O emissions significantly increased 

with injection, the increase in N2O flux was more pronounced. The overall mean CO2 

flux from the injected plots was 2.5 times higher than from the surface plots (median 

specific CO2 flux increased by 2 times) while the overall mean N2O flux from the 

injected plots was 13.5 times higher than from the surface plots (median specific N2O 

flux was 5 times higher and mean manure induced flux was 10 times higher). This 

suggests that the enhanced microbial decomposition and increased CO2 respiration due to 

increased contact between microbes and substrates under the soil surface is not entirely 

responsible for the increased emissions due to injection. When manure is placed under 

the surface, soil is likely to become partially or fully anaerobic due to reduced diffusion 

rates and rapid microbial activity that depletes the available oxygen very soon after 

application. Microbes that degrade organic material in anaerobic or partially anaerobic 

conditions then use nitrate as a terminal electron acceptor and produce more N2O through 

denitrification than microbes that degrade organic material in aerobic conditions (refer to 

Chapter 2). Although the final product of denitrification is an inert gas (N2), incomplete 

denitrification can result in a significant net emission of N2O. Incomplete denitrification 

can be a result of carbon deficiency (not enough substrate for denitrifier activity) or high 

diffusion rates resulting in gases reaching the atmosphere before denitrification is 

complete. 
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The enhanced microbial dynamics due to manure injection is further demonstrated by the 

correlations between CO2 and N2O fluxes, shown in Figure I.6 in Appendix I. While the 

correlation coefficient value (square root of the R2 value) was low in most cases (0.157 

for liquid swine surface), some treatments had correlation coefficients as high as 0.92 

(liquid swine injection). All treatments except the surface-applied solid feedlot plots had 

positive correlations and the injected treatments had noticeably higher correlation 

coefficients than the surface treatments. This means that even when the conditions 

promote high N2O flux, the CO2 flux was also high, particularly for the injected plots. 

Since aerobic microbes are responsible for mineralization and oxidation of C compounds 

to CO2, it’s possible that the N2O generated from manure injection is mainly due to 

aerobic denitrification.  

 

Manure injection appeared to have very little impact on CH4 fluxes measured 24 hrs after 

application. This was likely due to the fact that the majority of CH4 emissions from 

manure spreading are from the volatilization of CH4 already in the manure and occur 

within 12 hrs after application (Chadwick et al., 2000, Chadwick and Pain, 1997, Weslien 

et al., 1998). In some cases, methanogens may produce CH4 under the soil due to the 

availability of nutrients and the anaerobic conditions, but that process was not observed 

in this study. It is likely that the redox potential does not drop low enough for 

methanogensis to begin. In fact, injected manures had slightly lower CH4 flux rates than 

surface applied manures. Since methanogens are strict anaerobes and conditions are 

unlikely to become completely anaerobic in the soil matrix (except for microsites), it is 

unlikely to see significant CH4 production after manure application.  

 

Since solid manure injection requires specialized equipment, most subsurface 

applications of solid manure are achieved through incorporation. Provided the manure is 

incorporated immediately after application, the microbial activity beneath the soil is 

likely to be similar for both subsurface application techniques, suggesting that 

incorporation of solid manure will also increase GHG fluxes measured 24 hrs after 

application compared to surface applications. One study directly compared N2O fluxes 

from injection and incorporation of liquid manure (Weslien et al., 1998). Although the 
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results were not statistically significant, the authors noted higher fluxes from the 

incorporation method than the injection method, similar to the CO2 flux observations at 

the Dixon site in this study. Weslien et al. (1998) postulated that harrowing spread around 

the manure under the soil, creating more anaerobic microsites that resulted in incomplete 

denitrification and N2O emissions while injection seemed to result in complete 

denitrification, producing N2 instead of N2O. On the other hand, Perala et al. (2006) 

found that injection of slurry resulted in higher N2O emissions but lower CH4 emissions 

than incorporation of manure and the results from this study found no difference in N2O 

flux between injection and incorporation of liquid swine manure.   

 

While previous research has sometimes found few significant trends in the effect of 

manure application on GHG fluxes, most previous researchers have noted significantly 

higher fluxes from liquid manure applications than solid manure applications in the short 

term. Results from this study also indicate that GHG fluxes measured 24 hours after 

application from liquid manure were higher than from solid manure (CO2-e fluxes were 

4.5 times higher and specific CO2-e fluxes were 7.5 times higher). The manure induced 

N2O flux was almost 100 times higher from liquid applications than from solid 

applications while the CO2 and specific CO2 fluxes were 3.5 and 7.5 times higher, 

respectively. Soils that received liquid manure applications also tended to have higher 

CH4 fluxes than the soils applied with solid manure. 

 

Because liquid manures are usually stored under anaerobic conditions, liquid manure 

contains higher levels of water-soluble carbon and nitrogen (Banham and Haugen-

Kozyra, 2004; Moolecki et al., 2002), leading to increased rates of nitrification and 

denitrification after it is applied to the soil. In solid manure, nutrients are physically 

protected from the attack of decomposers by the solid matrix (Rochette et al., 2004). 

Additionally, the N and C in solid manures tend to be in organic forms that release 

available N very slowly (Qian and Schoenau, 2002). The low NH4-N content in solid 

manure results in less nitrification to NO3 and subsequent denitrification to N2O.  In fact, 

feedlot manure addition can actually initially immobilize inorganic N (Jeff Schoenau, 

personal communication, 11/09), as suggested by the negative manure induced N2O flux 
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for solid manure (Table 4.9). However, due to the inclusion of bedding material such as 

straw, solid manures tend to have high total C contents which can be mineralized to CO2 

over time. This abundance of C in solid manure may result in higher cumulative 

emissions from solid manure applications, as was observed in Loro et al. (1997). In fact, 

many researchers have noted that available C content is as important as NO3 and O2 

concentrations in driving the N transformation process (Myrold and Tiedje, 1985; 

Hojberg et al., 1994 in: Rochette et al., 2000b). One exception was the suggestion by 

Chadwick et al. (1999) that switching from straw-based cattle systems to slurry based 

systems would reduce N2O emissions. They stated that encouraging anaerobic conditions 

during storage would actually reduce N2O emissions because anaerobic conditions inhibit 

nitrate production and hence, formation of N2O after application. However, when land 

applied, rapid nitrification of NH4 accumulated during anaerobic storage may result in a 

large pulse of N2O produced as noted in this study. Interestingly, switching from straw 

based systems may actually abate N2O emissions due to the reduction in total C content, 

not the inhibition of NO3 production.  

 

As discussed in the literature review (Sections 4.2.2.2 and 4.2.2.3), all of the previous 

research that also reported increased emissions after subsurface application used liquid 

manure or slurry. The effect of injection on emissions from solid manure has not been 

investigated. When the results from the solid manure applications were analyzed 

separately from the liquid manure applications, the N2O flux (mean flux, median specific 

flux and manure induced flux) were significantly higher from the injected plots for both 

manure types, but the magnitude of increase was much higher from the liquid plots. For 

example, the manure induced N2O flux from the solid plots was 2.67 times higher due to 

injection while the manure induced N2O flux from the liquid plots was 19 times higher 

due to injection. Therefore the liquid manure with more N in ammonium form coupled 

with the addition of liquid that can increase WFPS is more likely to be affected by 

placement strategy when it comes to N2O emissions. 

 

The results from the different manure species indicated that injection significantly 

increased N2O fluxes from the liquid swine and solid poultry manures, likely due to their 
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higher NH4 contents. The ammonium probably rapidly nitrified to NO3 which was then 

susceptible to denitrification and transformation to N2O. Since both the nitrification and 

denitrification processes are sources of N2O (Firestone and Davidson, 1989), this rapid 

nitrification is a significant source of N2O from those manures. Interestingly, injection 

significantly increased CO2 fluxes from only the liquid swine and solid poultry manures 

as well, suggesting that the microbial activity and decomposition were higher in the soil 

after the application of those manures. The differences between surface fluxes and 

injected N2O fluxes were too small and variable to determine significance for the other 

manure species. The recalcitrant nature of some cattle manures and composts (Qian and 

Schoenau, 2002) could explain a reduced effect of placement for the feedlot manure. 

 
In order to fully assess the effect of application method and manure type on total GHG 

emissions, fluxes should be monitored over several weeks or months after application. 

Alternatively, mechanistic models that predict nutrient transformations may be used to 

simulate the effects of varying environmental conditions associated with different 

application techniques and manure types. This way, the entire effect of applying liquid or 

solid manure and the placement of the manure on total GHG emissions can be assessed. 

Indeed, part of the reason for variable results reported in the literature is due to the 

different time scales used in the assessment. Previous researchers have monitored fluxes 

anywhere from 72 hrs up to 6 months after application (Lovanh et al., 2008; Sistani et al., 

2008; Weslien et al., 1998; Perala et al., 2006; Flessa and Beese, 2000; Wulf et al., 

2002b) and up to one year after application (Chang et al., 1998; Goodroad et al., 1984; 

Rochette et al., 2004). Since manure type and application method are likely to affect 

fluxes in the longer term, comparisons after only 24 or 72 hrs will not represent the full 

impact of the manure or application treatment. Similarly, measurements made several 

weeks or months after application may miss important short-term pulses of GHG.  

 

4.5.2 Effect of Application Rate on GHG Emissions 

 

Generally, absolute fluxes of N2O and CO2 increased with application rate, although only 

the CO2 fluxes from the manured plots were distinguishable from the control plots. 
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Although it is not apparent based on the Figure 4.3c, which shows the effect of 

application rate on mean N2O fluxes, the statistical test used the median values which 

were highly variable and resulted in no significant difference among application rates 

(including 0X). Even though the critical P value was set to a conservative 0.05 in this 

study, the P values for the effect of application rate on N2O flux at each of the locations 

were high (0.585, 0.447, 0.477). However, the manure did significantly contribute to CO2 

and CO2-e fluxes as those values were significantly affected by manure application. 

Therefore, it appears that manure addition increased microbial populations and activity 

(and thus, CO2 by respiration), but the onset of N transformations such as nitrification 

and denitrification may not have yet been sufficient to produce significant, measurable 

increases in N2O flux with the different rates. The amount of manure applied (1X, 2X or 

3X) did not affect CO2 or CO2-e flux in the short-term. 

 

In line with findings of the current study, Hansen et al. (1993) also found no effect of 

manure application rate on N2O flux. However, the authors noted that increasing levels of 

cattle slurry resulted in a reduction in N2O flux per kg NH4-N applied (Hansen et al., 

1993). Gregorich et al. (1998) also found a non-proportional CO2 flux response with 

increasing application rate suggesting that proportionately more manure C was retained 

in the soil with increasing levels of manure applied. This effect could be due to the fact 

that the microbial population has a finite capacity for respiration and activity. When the 

GHG fluxes from this study were expressed on a per kg N applied basis (i.e.: specific 

flux), CO2-e fluxes decreased (but not significantly) with application rate (Figure 4.5c). 

In Chapter 3, the decrease in specific odour flux with application rate was explained by 

the manure “piling” at higher application rates, reducing the contact area between the 

manure and the air. This does not seem to be a factor for the specific GHG fluxes, 

probably due to the increased time between application and gas flux measurement which 

allowed the microbes better access to particle surfaces. These results suggest that GHG 

emissions from manure application may be proportional to the amount of N applied, at 

least over the range of rates examined. These results agree with the IPCC assumption that 

N losses increase proportionally with the amount of N applied (IPCC, 1997; Penman et 

al., 2000).  
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The analysis of interactions (Figure I.2 in Appendix I) showed that the absolute N2O and 

CO2-e fluxes increased with application rate much faster for liquid and injected manures, 

suggesting that the effect of application rate may depend on manure type and application 

method. However, when the interactions of the specific N2O and CO2-e fluxes were 

plotted, there was no interaction between manure type or application method with 

application rate. 

 

4.5.3 Effect of Soil Properties on GHG Fluxes 

 

The WFPS of the soil in this study never exceeded 60%, so the observation by Bateman 

and Baggs (2005) that denitrification and N2O production peaks between 60 and 70% 

WFPS could not be confirmed. However, an increase in N2O flux was observed from the 

control plots at an oven dry basis moisture content of 25% compared to higher moisture 

contents (up to 55%, Figure 4.2a). For those soils, this corresponds to a WFPS of 

approximately 55%. It is possible that denitrification had already begun at this WFPS 

level in anaerobic microsites. There is increasing evidence that aerobic denitrification 

may be significant in environments where oxygen is not limiting or partially limiting 

because many bacteria are capable of nitrate respiration in the presence of oxygen 

(Bateman and Baggs, 2005). 

 

Some researchers have suggested that application of liquids at high rates may increase the 

WFPS of the topsoil long enough to promote N2O emissions by denitrification. For a 

typical soil with dry bulk density of 1.1 g/cm3, a 3X application rate (112 m3/ha or 12,000 

gal/acre) can raise the WFPS by approximately 25% initially. This means that if a soil is 

originally at 38% WFPS (20% wet basis moisture content), a 3X application of liquid 

manure will temporarily raise the WFPS to 63% where denitrification is more likely to 

occur. The length of time the WFPS remains above 60% depends on the soil drainage, the 

depth of the topsoil, and evapotranspiration, among other factors. It is unclear how long 

the WFPS must remain above 60% to promote denitrification, but it is unlikely that the 

high rate application of liquid manure will cause an increase in WFPS long enough to 

make a large difference. Fischer and Whalen (2005) noted increased emissions within a 
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day of increased WFPS and it took a few days to restore aerobic conditions, likely via 

drainage. The 1X application of water had no effect on GHG fluxes in this study, mainly 

because it did not raise the WFPS above 50%.  

There was no obvious explanation for the higher background N2O flux from the 

Saskatoon Area site based on the soil property analysis shown in Table 4.7. The soil 

texture, nitrogen, carbon and organic matter contents were all considered intermediate 

compared to the U of S Feedlot and Humboldt Area sites. However, the fertilizer and 

manure application history of the Saskatoon Area site was unclear and it is possible that 

the Saskatoon Area site received swine manure at some point in the past, unlike the other 

two sites. 

 

4.5.4 Effect of Long Term Manure Application on GHG Fluxes 

 

It is possible that repeated applications of manure, particularly solid manure, may result 

in higher emissions than single applications of manure made to a field for the first time. 

Chang et al. (1998) monitored N2O emissions after repeated (21 annual applications) 

applications of solid feedlot manure at 3 rates. The emission rates from the long term 

experiment were similar to long-term N-fertilizer or combining N-fertilizer and manure 

application, but they were higher than short-term studies with similar manure. This 

reflects the accumulation of NO3 and organic matter from repeated manuring and 

suggests that N2O emissions from long-term manured soils may be underestimated by 

quantifying fluxes from short-term manuring sites (from literature). The release of 

inorganic N through mineralization with time also contributed to the higher N losses from 

the long term sites (Chang et al., 1998). Earlier studies demonstrated that long-term 

application of feedlot manure resulted in the accumulation of both organic C and NO3 in 

the soil profile (Sommerfeldt et al., 1988; Chang and Janzen, 1996 in: Chang et al., 

1998). In contrast, results from this study showed that fluxes from the long term site at 

Dixon were actually lower than from the short term sites (although the complete N 

application history of the short term sites is uncertain). However, repeated applications of 

swine manure may have been the reason for increased background fluxes from the 

Saskatoon Area plots. 
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4.5.5 Contribution of CO2, CH4 and N2O to overall GHG 

Emissions 

 

Compared to CO2 and N2O fluxes, CH4 fluxes were negligible when examining the 

GHG’s after manure application. For liquid manure applications, N2O emissions 

contributed to a slightly higher proportion of the total emission than for solid manure 

applications. This difference was probably due to the high availability of ammonium in 

liquid form (Mooleki et al., 2002). The N2O emissions contributed to a significantly 

higher proportion of the total emission in the injected applications compared to the 

surface treatments, probably due to the anaerobic conditions under the soil surface 

promoting denitrification. 

 

Although more than 80% of the total CO2-e emissions from manure applied plots comes 

from CO2 (Figure 4.8), N2O fluxes appear to be more sensitive to management practices 

and environmental conditions. CO2 production is the result of oxidation of soil C by 

heterotrophs, which is driven by the availability of substrates (Rochette and Gregorich, 

1998 in: Rochette et al. 2000a). Therefore, CO2 fluxes are a result of microbial 

respiration and are less easily controlled whereas N2O can be managed by limiting 

unused N in the soil profile (matching application rates to crop requirements) and by 

discouraging conditions for denitrification such as by managing placement. 

 

 

Figure 4.8. Contribution of CO2 and CO2 equivalent N2O to overall CO2-e flux from manure applied 

plots (2007 data only). This information is summarized in Table 4.12 for each location. 
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4.6 Summary and Conclusions 
 

The GHG fluxes from solid and liquid manure using both surface and sub-surface 

application methods were measured using static chambers and gas chromatography. 

Results are presented as absolute flux for all gases (CO2, CH4, N2O), specific flux (gas 

flux per kg N applied) for all gases, and manure induced flux (background or control flux 

subtracted from the absolute or actual flux) for N2O. The results of the absolute flux 

analysis showed that injection significantly increased CO2-e fluxes for both solid and 

liquid manure. The overall CO2-e fluxes from the injected treatments were 3.2 times 

higher than CO2-e fluxes from the surface applied plots, mainly due to a pronounced 

increase in N2O fluxes. This is explained by creating conditions with liquid injection that 

are highly conducive to the conversion of the available N and C to GHG, especially N to 

N2O and N2 by denitrification.  

 

The CO2-e fluxes from the liquid manure applications were also higher than the CO2-e 

fluxes from the solid manure applications. This was likely due to a high proportion of N 

in liquid manure in the ammonium form due to the anaerobic conditions during liquid 

manure storage (Schoenau and Davis, 2006). The solid manures used in this study had 

very little ammonium available for nitrification and denitrification. However, this 

comparison was made only 24 hrs after application. Solid manure generally has a higher 

C content, which will mineralize over time, likely providing for sustained denitrification 

if the conditions remain anaerobic. It is likely that conditions beneath the soil surface will 

remain anaerobic for long periods of time as the diffusion rate of oxygen into the topsoil 

is often lower than the rate of oxygen use by the increased microbial activity. 

 

The CH4 fluxes were generally low and the treatments had no effect in this study. Solid 

manure applications tended to have lower CH4 fluxes than liquid manure and injected 

plots tended to have lower CH4 fluxes than surface applied plots. Overall, the CH4 

emissions from manure application are typically short lived and insignificant compared to 

CH4 emissions from enteric fermentation. 
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Doubling and tripling a one year agronomic application rate had no significant effect on 

the CO2-e fluxes, although the absolute flux tended to increase with increased application 

rate. However, the specific flux (the flux per kg N applied) remained relatively constant 

with application rate. This indicates that GHG emissions from manure applications were 

approximately proportional to the amount of manure applied in this study.  

 

When deciding whether or not to inject manure, producers must evaluate the overall 

environmental and economic impact of the technology. On one hand, subsurface 

application of livestock manure often constitutes an effective means to reduce odour 

emissions (refer to Chapter 3). However, the need to limit odour complaints must be 

weighed against the potential economic and environmental costs associated with 

increased GHG emissions. Since it appears that subsurface application of both solid and 

liquid manure will increase total GHG emissions over a period of time after application, 

it may not be possible to reduce both odour and GHG emissions using that particular 

management practice. In addition, other environmental and economic issues related to 

subsurface manure application, such as increased soil compaction, increased energy 

requirements, soil disturbance, and the increased field area required to dispose of the 

manure at agronomic rates, must also be considered when assessing the overall impacts 

of manure injection compared to surface application. 
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Appendix F—Gas Chromatography Specifications 
 

CO2 concentration analysis utilized a Varian Micro GC CP-2003 with a Poraplot U 

column (10 m long, 0.32 mm inner diameter, 100ºC) with a 150 ms injection time and a 

110ºC injector temperature.  The CO2 was identified using a thermal conductivity 

detector (TCD) with helium carrier gas.  The initial and final pressures of the Micro GC 

were 100 kPa. The detection limit for CO2 was 80 ppm. 

 

N2O and CH4 concentration analysis utilized a Varian CP-3800 gas chromatograph with 

an injector temperature of 70ºC and a split ratio of five.  N2O was detected with one of 2 

electron capture detectors (ECD’s) with Poraplot Q coated fused silica columns (10 m 

long, 0.32 mm diameter, 0.32 µm film thickness).  Oven and detector temperatures for the 

ECD’s were 35 and 370ºC respectively and the front and back pressures were 12.5 and 20 

psi respectively.  Front and back column flows were 7.9 and 14.4 mL/min.   

 

The detector used for CH4 detection was a flame ionization detector (FID) with a fused 

silica column coated with carboplot P7 (25 m long, 0.53 mm diameter, 0.25 µm film 

thickness).  The FID pressure was 15 psi and the column flow was 3 mL/min.  The oven 

and detector temperatures were 35 and 200ºC respectively.  The carrier gas for both 

detectors was helium. The detection limits for N2O and CH4 were 60 and 360 ppb, 

respectively. 
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Appendix G—Sample Calculations for Flux 

Calculation and Comparison of 

Calculation Methods 

 
The following outlines the calculation of chamber volume and CO2 and N2O gas flux by 

both calculation methods (Hutchinson and Mosier and regression) for the solid swine 

surface applied 3X plot (rep 3).  

 
Table G.1. Gas concentration data from solid swine surface 3X-3 plot. 

Time (min) N2O concentration (ppm) CO2 concentration (ppm) 

0 0.29905 383.196 

5 0.47018 579.087 

10 0.60096 707.5627 

15 0.69571 753.4675 

 

Depths measured through open port: 0.13, 0.14, 0.175, 0.195 m (average = 0.16  m). 

 

The volume of the chamber was calculated from this average depth using Equation G.1. 

 

vareaheightV −= *  

 

Where V = chamber volume (m3), 

Height = average internal height of chamber (average depth – 0.03 m where 0.03 

m is the height of the open port above the top of the inside of the chamber) , 

Area = average cross sectional area of chamber (0.2826 m2), and 

v = average volume of internal components (0.00038015 m3) as measured by 

water displacement before construction. 

 

For this plot, V = (0.16-0.03)*0.2826-0.00038015 = 0.03636 m3 

 

G.1: Sample calculation for N2O flux using Hutchinson and Mosier model 

 

1,ln
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Where F = gas flux (mass per unit area per unit time), 

 ρ = density of gas (1.96 kg/m3 for both N2O and CO2), 

 V = volume of chamber (0.03636 m3), 

(G.1) 

(G.2) 
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 A = cross sectional area of chamber (0.2826 m2), 

 t = time interval (5 min), 

 Co = concentration of sub-sample drawn at time = 0, 

 C1 = concentration of sub-sample drawn at time = t1, and 

C2 = concentration of sub-sample drawn at time = t2 (t2 = 2t1 for the equation to be 

valid). 

 

47018.060096.0

29905.047018.0
ln

)29905.060096.0)47018.0(2min)(5(2826.0
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G.2: Sample calculation for N2O flux using regression analysis 

 

t

C

A

V
F

∆
∆

= ρ  

 

Where F = gas flux (mass per unit area per unit time), 

ρ = gas density (1.96 kg/m3), 

V = chamber volume (0.03636 m3), 

A = chamber area (0.2826 m2), and 

∆C/∆t = rate of change in gas concentration at t = 0 (by regression, ppm/min). 

 

∆C/∆t was found using regression analysis. The concentration was plotted vs time and 

linear and quadratic regressions were fitted. The significance of each regression was 

analyzed using Minitab v. 15.  

 

(G.3) 
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Figure G.1. Linear and quadratic regression analysis of N2O concentration change over time for the 

swine solid surface 3X-3 plot. 

 

In this case, both regressions were significant (P<0.015), indicating the first order term in 

the linear regression equation and the second order term in the quadratic regression 

equation were significant. But since the linear regression had a lower P value, it was 

deemed to describe the variation in concentration over time more efficiently. Therefore, 

the linear regression equation was differentiated with respect to time and analyzed at t = 0 

to determine ∆C/∆t. 

 

0264.0=
dt

dC
 

 

Therefore, dC/dt at t = 0 is 0.0264 ppm/min. 

 

The flux (F) was 
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For comparison, the flux (F) using the quadratic regression would be: 

 

0379.0)(0016.0 +−= t
dt

dC
 

 

Therefore, dC/dt at t = 0 is 0.0379 ppm/min. 

The flux (F) would be 0.159 µg/m2-s (30% higher than linear regression result). 

 

G.3: Sample calculation for CO2 flux using Hutchinson and Mosier model 

 

The chamber area, chamber volume and gas density are the same as the N2O flux 

calculation. The CO2 concentrations over time are shown in Table G.1. 
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G.4: Sample calculation for CO2 flux using regression analysis 

 

Again, regression analysis was used to determine ∆C/∆t. 
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Figure G.2. Linear and quadratic regression analysis of CO2 concentration change over time for the 

swine solid surface 3X-3 plot. 

 

Again, both regressions were significant (P<0.015), but this time, since the quadratic 

regression had a lower P value, it was deemed to describe the variation in concentration 

over time more efficiently. Therefore, the quadratic regression equation was 

differentiated with respect to time and analyzed at t = 0 to determine ∆C/∆t. 

 

284.47)(999.2 +−= t
dt

dC
 

 

Therefore, dC/dt at t = 0 is 47.284 ppm/min. The flux works out to be 198.73 µg/m2-s.  

By comparison, if the linear regression value of dC/dt at t = 0 is used (24.786 ppm/min), 

the flux becomes 104.17 µg/m2-s.  

 

G.5: Discussion and comparison of calculation methods 

 

A summary of results for the fluxes for the sample plot are shown in Table G.2. Both the 

linear and quadratic regressions are shown for comparison, but, for the final analysis in 

this case, the linear model was used for the N2O flux and the quadratic model was used 

for the CO2 flux.  
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Table G.2. Summary of N2O and CO2 flux results for solid swine surface 3X-2 plot. 

Method N2O flux (µg/m
2
-s) CO2 flux (µg/m

2
-s) 

Hutchinson and Mosier 0.164 201.83 

Linear regression 0.111 104.17 

Quadratic regression 0.159 198.73 

 

The Hutchinson and Mosier model was considered valid if the natural log term in the 

model was greater than 1. Using this criteria, the model was valid for 86 of the 123 N2O 

fluxes (70%), and it was valid for 86 of the 123 CO2 fluxes (70%). However, if the model 

was valid for the N2O flux from a plot, it was not necessarily valid for the CO2 from that 

plot, and vice versa. It was noted that the Hutchinson and Mosier model tended to be 

invalid when the flux was low (i.e.: from the solid feedlot surface plots) for both gases. 

 

In most cases where the Hutchinson and Mosier model was valid (the natural log term 

was greater than zero), the quadratic regression was significant. The flux calculated using 

the quadratic regression was always higher than the flux calculated using the linear 

regression (as was the case in Lovanh et al., 2008) and was usually very close to the flux 

calculated using the Hutchinson and Mosier model (refer to Table C.2). This was not 

unexpected since the Hutchinson and Mosier model is a curvilinear relationship to 

account for the suppression of emissions due to decreased concentration gradient. 

However, the Hutchinson and Mosier model only accounts for the first three data points 

whereas the quadratic regression accounts for all four data points. Also, there was no way 

to determine if the Hutchinson and Mosier model was statistically significant (the flux is 

significantly different from zero) whereas there was a statistical test for the regression 

models.  

 

Due to their lower P values during the regression analysis, linear regression models were 

used in the majority of cases. A summary of the number of times linear regression was 

used vs. quadratic regression is shown in Table G.3. 

 
Table G.3. Summary of regression frequencies. Both gases had a total of 123 fluxes. 

 

Gas 

Number of linear 

regressions used 

Number of quadratic 

regressions used 

Number of insignificant 

regressions 

N2O 83 12 28 

CO2 94 13 16 
Note: the quadratic regression was significant but not used (because linear regression had a lower P value) 

10 times for N2O and 17 times for CO2 flux analysis. A breakdown of which treatments these occurred in 

appears in Tables I.6 and I.8 in Appendix I.  

 

A comparison of fluxes and P values for the main treatments calculated using the 

Hutchinson and Mosier model and regression models appears in Tables G.4 and G.5.  In 
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Table G.4, when the Hutchinson and Mosier model was not valid, a modified linear 

regression described in Ginting et al. (2003) was used to calculate the flux using Equation 

G.3. For Table G.5, the regression (linear or quadratic) with the lower P value was used. 

If the P value for both regressions was greater than 0.15, the flux was technically not 

significantly different from zero and was assumed to be zero.  

 
Table G.4.  Summary of fluxes and P values as calculated using the Hutchinson and Mosier model. 

All fluxes have units of µg/m
2
-s. 

Treatment N 

Mean 

N2O flux P value 

Mean 

CO2 flux P value 

Mean 

CO2-e flux P value 

Liquid 51 0.493 
0.101 

436.8 
0.000 

589.6 
0.000 

Solid 72 0.082 144.6 170.0 

   
Injected 63 0.422 

0.000 
300.0 

0.035 
430.9 

0.026 
Surface 60 0.074 229.8 252.7 

   
0X 33 0.052 

0.245 

104.2 

0.000 

120.3 

0.001 
1X 30 0.249 208.9 286.1 

2X 30 0.331 334.5 437.0 

3X 30 0.397 431.5 555.0 
 

 Table G.5.  Summary of fluxes and P values as calculated using linear or quadratic regression. All 

fluxes have units of µg/m
2
-s. 

Treatment n 

Mean 

N2O flux P value 

Mean 

CO2 flux P value 

Mean 

CO2-e flux P value 

Liquid 51 0.334 
0.049 

252.2 
0.000 

242.7 
0.000 

Solid 72 0.055 71.81 74.97 

   
Injected 63 0.292 

0.000 
190.2 

0.003 
279.6 

0.001 
Surface 60 0.044 100.8 86.1 

   
0X 33 0.047 

0.201 

61.52 

0.021 

71.8 

0.054 
1X 30 0.160 122.3 163.4 

2X 30 0.196 180.9 240.2 

3X 30 0.292 230.2 299.6 

 

Overall, the fluxes calculated using the Hutchinson and Mosier model were 31, 45 and 

49% higher for N2O, CO2 and CO2-e than the regression analysis, respectively. However, 

the trends and treatment effects were very similar for both methods, even for a 

conservative critical P value of 0.05. Although the calculation method had little effect on 

the treatment comparisons, regression analysis is recommended for future studies of this 

nature. Regression analysis works well with relatively low fluxes, allows for statistical 
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tests to ensure the flux is significantly different from zero and allows the use of all data 

points collected.  
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 Appendix H—Sensitivity Analysis of Flux Calculation 
 
The equation used to calculate GHG flux from the static chamber was  

 

11 −−== dtVdCA
A

V

dt

dC
F ρρ  

 

Where F = GHG flux (mg/m2-min),  

 ρ = density of gas (kg/m3), 

 dC = change in concentration (ppm), 

 dt = change in time (min), 

 V = volume of chamber (m3), and 

 A = area of chamber (m2). 

 

Therefore, the uncertainty in GHG emission depends on the uncertainty in: 

1. Density of gas (±0.1 kg/m3 for all three gases) 

2. Gas concentration measurement (±4 ppm for CH4, ±0.01 ppm for N2O, ±20 ppm 

for CO2) 

3. Time measurement (±0.333 min) 

4. Volume measurement/calculation (±0.001089 m3) 

5. Area measurement (±0.0095 m2) 

 

1. At 20⁰C, the density of methane is 0.72 kg/m3, the density of carbon dioxide is 1.96 

kg/m3 and the density of nitrous oxide is 1.96 kg/m3.  The uncertainty of all of these 

densities comes from the density fluctuation due to temperature during the sampling 

period.  This uncertainty (due to temp fluctuation of approximately 10⁰C) was 

approximately 0.1 kg/m3. 

2. The uncertainty in the gas concentration measurement comes from the gas 

chromatograph specifications.  The uncertainty in CH4 measurement was ±2 ppm,  

±0.005 ppm for N2O and ±10 ppm for CO2.  Because the equation uses a delta C 

value, the overall error in the gas concentrations was two times the uncertainty in the 

individual measurements. 

3. The uncertainty in the time measurement was variable and depended on the skill of 

the user and their ability to draw samples at the designated time.  From experience, 

the time uncertainty for any one measurement was 10 seconds (0.167 min).  Again, 

because the equation uses delta t, the overall uncertainty was ±0.333 min. 

4. The uncertainty in the volume measurement is related to the uncertainty in the 

depth/height, area and volume of internal components measurements (Equation C.1 

in Appendix C). Instead of doing additional complex error calculations, the overall 

(H.1) 
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uncertainty in volume measurement was assumed to be the standard deviation of all 

volume measurement/calculations done in the field (a total of 123 measurements). 

Therefore, the uncertainty in the volume measurement was ±0.001089 m3). 

5. The uncertainty in the area was determined knowing the tolerance of the measuring 

device used to measure the diameter of the chamber at 4 locations around the 

perimeter (0.01 m).  With an average diameter of 0.60 m ±0.01 m, the uncertainty in 

the area calculation was ±0.0095 m2. 

 

To complete the uncertainty analysis, Equation H.1 was partially differentiated with 

respect to each of the 5 variables outlined above.   

 

dt

dC

A

VF
=

∂
∂

ρ
 

Adt

V

dC

F ρ
=

∂
∂

 
2Adt

VdC

dt

F ρ−
=

∂
∂

 

 

Adt

dC

V

F ρ
=

∂
∂

                             
dtA

VdC

A

F
2

ρ−
=

∂
∂

 

 

The partial derivatives (H.2, H.3, H.4, H.5, and H.6) were assessed using average values 

from the undisturbed control plot from the poultry trial (rep 2). This plot was chosen 

because it had significant, linear regressions for the CO2 and N2O fluxes. In addition, the 

flux from this plot was relatively low which would result in a higher error. Therefore, the 

errors calculated here could be considered a worst case scenario. The parameter values 

for this plot are summarized in Table H.1. 

 
Table H.1. Parameter values for poultry undisturbed control plot (rep 2).  

dC (CO2) 80±20 ppm ρ (CO2) 1.96±0.10 kg/m3 

dC (CH4) -0.4±4 ppm ρ (CH4) 0.72±0.10 kg/m3 

dC (N2O) 0.01926±0.0100 ppm ρ (N2O) 1.96±0.10 kg/m3 

dt 15.00±0.33 min A 0.2826±0.0095 m2 

V 0.04554±0.001089 m3   

 

The overall error in the flux calculation was then calculated using Equation H.7. 

 

F

A
A

F
V

V

F
dt

dt

F
dC

dC

FF
22222

Fin error  %


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
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∂
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+



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
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∂
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=
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ρ
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The F value in the denominator was calculated using Equation H.1 and the typical values 

shown in Table H.1. This resulted in errors of 26%, >100% and 52% for CO2, CH4 and 

(H.2) (H.3) (H.4) 

(H.7) 

(H.5) (H.6) 
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N2O, respectively. For all three gases, the largest contributor to the error was the 

uncertainty in the gas concentration measurement, followed by the uncertainty in the 

density of the gases. At higher fluxes, the error was considerably lower. For all plots, the 

range in uncertainties was 8-50% for CO2, 9-55% for N2O and >100% for CH4.   
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Appendix I—Experimental Data 
 

Table I.1. N2O Outliers 

----------µg/m2-s---------- 

Treatment Flux Critical Value 

1 LDS 2X-2 0.0208 0.0169 

2 LDS 3X-2 0.0474 0.0169 

3 LDI 2X-3 0.076 0.0677 

4 SFS 0X-2 0.0258 0.0024 

5 SFS 1X-1 0.0033 0.0024 

6 SFS 2X-2 0.0152 0.0024 

7 SFI 0X-2 0.0973 0.0526 

8 LSS 0X-3 0.5147 0.3216 

9 LSS 3X-2 0.5519 0.3216 

10 SSI 2X-1 0.2721 0.1937 

11 SSI 2X-2 0.2049 0.1937 

12 SPS 2X-3 0.0572 0.0239 

13 SPS 3X-1 0.286 0.0239 

14 SPI 1X-2 0.495 0.3741 

15 SPI 2X-3 0.4175 0.3741 
 

 

Table I.2. CO2 Outliers 

------------µg/m2-s----------- 

Treatment Flux Critical Value 

1 LDS 3X-2 549.4 535.3 

2 SFI 0X-2 174.3 124.8 

3 LSS 3X-2 613.1 473.8 

4 SSS 3X-3 199.0 138.1 

5 SPS 2X-1 278.0 225.7 
 

 

 

Table I.3. CO2-e Outliers 

-------------µg/m2-s------------- 

Treatment Flux Critical Value 

1 LDS 3X-2 564.1 539.2 

2 SFI 0X-2 204.5 117.6 

3 LSS 3X-2 784.2 517.8 

4 SSS 3X-3 233.5 148.6 

5 SPS 2X-1 282.9 237.9 

6 SPS 3X-1 254.7 237.9 

7 SPI 1X-2 421.2 409.0 
 

 

Note: The three letters represent treatment (below), -X represents rate (control, 1 year, 2 year or 3 year 
rate), and the last number indicates repetition.  

Note: For CO2-e outliers, previous outliers were reintroduced and the critical values and CO2-e outliers 
were determined independent from the N2O and CO2 outliers. There were no CH4 outliers. 

 
Table I.4. Summary of treatment codes. 

LDS Liquid dairy surface SSS Solid swine surface 
LDI Liquid dairy injected SSI Solid swine injected 
SFS Solid feedlot surface LSS Liquid swine surface 
SFI Solid feedlot injected LSI Liquid swine injected 
SPS Solid poultry surface SPI Solid poultry injected 
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Table I.5. N2O data summary (without outliers). 

Location Type Species Mode Rate n mean stderr  

U of S Solid Feedlot Injected 0X 2 0.0000 0.0000 1 outlier 

1X 3 0.0166 0.0118  

2X 3 0.0020 0.0020  

        3X 3 0.0142 0.0083  

U of S Solid Feedlot Surface 0X 2 0.0000 0.0000 1 outlier 

1X 2 0.0000 0.0000 1 outlier 

2X 2 0.0000 0.0000 1 outlier 

        3X 3 0.0000 0.0000  

U of S Liquid Dairy Injected 0X 6 0.0083 0.0022  

1X 3 0.0116 0.0058  

2X 2 0.0383 0.0082 1 outlier 

        3X 3 0.0375 0.0113  

U of S Liquid Dairy Surface 0X 3 0.0060 0.0034  

1X 3 0.0062 0.0031  

2X 2 0.0050 0.0050 1 outlier 

        3X 2 0.0087 0.0004 1 outlier 

Saskatoon Area Solid Swine Injected 0X 3 0.0299 0.0092  

1X 3 0.0594 0.0114  

2X 1 0.0000 - 2 outliers 

        3X 3 0.0691 0.0393  

Saskatoon Area Solid Swine Surface 0X 3 0.0612 0.0234  

1X 3 0.0256 0.0178  

2X 3 0.0239 0.0239  

        3X 3 0.0622 0.0328  

Saskatoon Area Liquid Swine Injected 0X 3 0.1198 0.0365  

1X 3 1.1190 0.3310  

2X 3 1.4830 0.1670  

        3X 3 2.2290 0.4250  

Saskatoon Area Liquid Swine Surface 0X 2 0.0571 0.0571 1 outlier 

1X 3 0.0283 0.0186  

2X 3 0.0186 0.0097  

        3X 2 0.0864 0.0455 1 outlier 

Humboldt Area Solid Poultry Injected 0X 3 0.0280 0.0078  

1X 2 0.1373 0.0273 1 outlier 

2X 2 0.0555 0.0045 1 outlier 

        3X 3 0.1448 0.0288  

Humboldt Area Solid Poultry Surface 0X 3 0.0055 0.0055  

1X 3 0.0081 0.0014  

2X 2 0.0138 0.0018 1 outlier 

        3X 2 0.0132 0.0016 1 outlier 
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Table I.6. N2O data summary (with outliers). 

Location Type Species Mode Rate n mean stderr Other information 

U of S Solid Feedlot Injected 0X 3 0.0324 0.0324 4 linear, 2 quadratic, 6 insignificant 

1X 3 0.0166 0.0118 1 quadratic significant but not used 

2X 3 0.0020 0.0020 

        3X 3 0.0142 0.0083   

U of S Solid Feedlot Surface 0X 3 0.0086 0.0086 2 linear, 1 quadratic, 9 insignificant 

1X 3 0.0011 0.0011 

2X 3 0.0051 0.0051 

        3X 3 0.0000 0.0000   

U of S Liquid Dairy Injected 0X 6 0.0083 0.0022 13 linear, 0 quadratic, 2 insignificant 

1X 3 0.0116 0.0058 

2X 3 0.0509 0.0134 

        3X 3 0.0375 0.0113   

U of S Liquid Dairy Surface 0X 3 0.0060 0.0034 8 linear, 1 quadratic, 3 insignificant 

1X 3 0.0062 0.0031 

2X 3 0.0103 0.0060 

        3X 3 0.0216 0.0129   

Saskatoon Area Solid Swine Injected 0X 3 0.0299 0.0092 11 linear, 1 insignificant 

1X 3 0.0594 0.0114 1 quadratic significant but not used 

2X 3 0.1590 0.0818 

        3X 3 0.0691 0.0393   

Saskatoon Area Solid Swine Surface 0X 3 0.0612 0.0234 8 linear, 1 quadratic, 3 insignificant 

1X 3 0.0256 0.0178 2 quadratic significant but not used 

2X 3 0.0239 0.0239 

        3X 3 0.0622 0.0328   

Saskatoon Area Liquid Swine Injected 0X 3 0.1198 0.0365 12 linear 

1X 3 1.1190 0.3310 3 quadratic significant but not used 

2X 3 1.4830 0.1670 

        3X 3 2.2290 0.4250   

Saskatoon Area Liquid Swine Surface 0X 3 0.2100 0.1560 9 linear, 1 quadratic, 2 insignificant 

1X 3 0.0283 0.0186 

2X 3 0.0186 0.0097 

        3X 3 0.2420 0.1570   

Humboldt Area Solid Poultry Injected 0X 3 0.0280 0.0078 7 linear, 5 quadratic 

1X 3 0.2570 0.1200 2 quadratic significant but not used 

2X 3 0.1760 0.1210 

        3X 3 0.1448 0.0288   

Humboldt Area Solid Poultry Surface 0X 3 0.0055 0.0055 9 linear, 1 quadratic, 2 insignificant 

1X 3 0.0081 0.0014 1 quadratic significant but not used 

2X 3 0.0282 0.0145 

        3X 3 0.1041 0.0909   
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Table I.7. CO2 data summary (without outliers). 

Location Type Species Mode Rate n mean stderr  

U of S Solid Feedlot Injected 0X 2 22.1 22.1 1 outlier 

1X 3 36.3 19.8  

2X 3 20.7 11.0  

3X 3 0.0 0.0  

U of S Solid Feedlot Surface 0X 3 43.4 2.7  

1X 3 12.9 12.9  

2X 3 20.0 11.6  

3X 3 13.6 1.5  

U of S Liquid Dairy Injected 0X 6 82.1 19.7  

1X 3 140.9 14.7  

2X 3 241.0 39.3  

3X 3 287.9 59.8  

U of S Liquid Dairy Surface 0X 3 42.6 4.0  

1X 3 137.9 39.9  

2X 3 249.1 30.6  

3X 2 96.1 86.1 1 outlier 

Saskatoon Area Solid Swine Injected 0X 3 50.5 15.4  

1X 3 67.4 3.7  

2X 3 147.3 10.8  

3X 3 107.9 39.5  

Saskatoon Area Solid Swine Surface 0X 3 47.5 6.6  

1X 3 19.2 12.0  

2X 3 85.0 4.6  

3X 2 87.2 17.7 1 outlier 

Saskatoon Area Liquid Swine Injected 0X 3 111.3 64.4  

1X 3 417.9 98.0  

2X 3 683.0 151.0  

3X 3 918.0 90.8  

Saskatoon Area Liquid Swine Surface 0X 3 62.0 17.6  

1X 3 155.9 89.4  

2X 3 69.8 6.4  

3X 2 242.7 53.1 1 outlier 

Humboldt Area Solid Poultry Injected 0X 3 57.9 8.3  

1X 3 196.7 35.5  

2X 3 129.3 73.8  

3X 3 144.3 19.7  

Humboldt Area Solid Poultry Surface 0X 3 24.5 13.5  

1X 3 38.3 24.7  

2X 2 107.3 58.4 1 outlier 

        3X 3 99.5 34.2  
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Table I.8. CO2 data summary (with outliers). 

Location Type Species Mode Rate n mean stderr Other information 

U of S Solid Feedlot Injected 0X 3 72.8 52.3 6 linear, 6 insignificant 

1X 3 36.3 19.8 1 quadratic significant but not used 

2X 3 20.7 11.0 

        3X 3 0.0 0.0   

U of S Solid Feedlot Surface 0X 3 43.4 2.7 9 linear, 3 insignificant 

1X 3 12.9 12.9 1 quadratic significant but not used 

2X 3 20.0 11.6 

        3X 3 13.6 1.5   

U of S Liquid Dairy Injected 0X 6 82.1 19.7 14 linear, 1 quadratic 

1X 3 140.9 14.7 4 quadratic significant but not used 

2X 3 241.0 39.3 

        3X 3 287.9 59.8   

U of S Liquid Dairy Surface 0X 3 42.6 4.0 10 linear, 1 quadratic, 1 insignificant 

1X 3 137.9 39.9 

2X 3 249.1 30.6 

        3X 3 241.0 162.0   

Saskatoon Area Solid Swine Injected 0X 3 50.5 15.4 11 linear, 1 quadratic 

1X 3 67.4 3.7 3 quadratic significant but not used 

2X 3 147.3 10.8 

        3X 3 107.9 39.5   

Saskatoon Area Solid Swine Surface 0X 3 47.5 6.6 7 linear, 4 quadratic, 1 insignificant 

1X 3 19.2 12.0 

2X 3 85.0 4.6 

        3X 3 124.5 38.7   

Saskatoon Area Liquid Swine Injected 0X 3 111.3 64.4 11 linear, 1 insignficant 

1X 3 417.9 98.0 3 quadratic significant but not used 

2X 3 683.0 151.0 

        3X 3 918.0 90.8   

Saskatoon Area Liquid Swine Surface 0X 3 62.0 17.6 9 linear, 2 quadratic, 1 insignificant 

1X 3 155.9 89.4 3 quadratic significant but not used 

2X 3 69.8 6.4 

        3X 3 366.0 127.0   

Humboldt Area Solid Poultry Injected 0X 3 57.9 8.3 8 linear, 3 quadratic, 1 insignificant 

1X 3 196.7 35.5 1 quadratic significant but not used 

2X 3 129.3 73.8 

        3X 3 144.3 19.7   

Humboldt Area Solid Poultry Surface 0X 3 24.5 13.5 9 linear, 1 quadratic, 2 insignificant 

1X 3 38.3 24.7 1 quadratic significant but not used 

2X 3 164.2 66.1 

        3X 3 99.5 34.2   
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Table I.9. CH4 data summary (insignificants as missing). 

Location Type Species Mode Rate n mean stderr 

U of S Solid Feedlot Injected 0X 0 - - 

1X 1 -0.424 - 

2X 1 -0.328 - 

        3X 0 - - 

U of S Solid Feedlot Surface 0X 0 - - 

1X 0 - - 

2X 0 - - 

        3X 0 - - 

U of S Liquid Dairy Injected 0X 3 -0.026 0.027 

1X 1 0.003 0.015 

2X 1 0.105 0.015 

        3X 0 0.198 0.057 

U of S Liquid Dairy Surface 0X 1 -0.053 - 

1X 2 0.041 0.004 

2X 1 0.130 - 

        3X 1 -0.131 - 

Saskatoon Area Solid Swine Injected 0X 0 - - 

1X 2 -0.161 0.096 

2X 0 - - 

        3X 2 0.005 0.264 

Saskatoon Area Solid Swine Surface 0X 3 0.211 0.074 

1X 2 0.091 0.009 

2X 2 0.112 0.078 

        3X 1 0.045 - 

Saskatoon Area Liquid Swine Injected 0X 1 0.115 - 

1X 1 0.017 - 

2X 1 0.121 - 

        3X 0 - - 

Saskatoon Area Liquid Swine Surface 0X 1 -0.159 - 

1X 0 - - 

2X 0 - - 

        3X 1 0.004 - 

Humboldt Area Solid Poultry Injected 0X 2 0.136 0.078 

1X 1 0.014 - 

2X 1 0.063 - 

        3X 1 0.017 - 

Humboldt Area Solid Poultry Surface 0X 2 -0.113 0.067 

1X 2 -0.155 0.051 

2X 1 -0.048 - 

        3X 1 -0.075 - 
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Table I.10. CH4 data summary (insignificants as zero). 

Location Type Species Mode Rate n mean stderr 

U of S Solid Feedlot Injected 0X 3 0.000 0.000 

1X 3 -0.141 0.141 

2X 3 -0.109 0.109 

        3X 3 0.000 0.000 

U of S Solid Feedlot Surface 0X 3 0.000 0.000 

1X 3 0.000 0.000 

2X 3 0.000 0.000 

        3X 3 0.000 0.000 

U of S Liquid Dairy Injected 0X 6 -0.013 0.014 

1X 3 0.002 0.009 

2X 3 0.070 0.036 

        3X 3 0.199 0.057 

U of S Liquid Dairy Surface 0X 3 -0.015 0.015 

1X 3 0.027 0.014 

2X 3 0.043 0.043 

        3X 3 -0.004 0.004 

Saskatoon Area Solid Swine Injected 0X 3 0.000 0.000 

1X 3 -0.107 0.769 

2X 3 0.000 0.000 

        3X 3 0.003 0.152 

Saskatoon Area Solid Swine Surface 0X 3 0.211 0.074 

1X 3 0.061 0.031 

2X 3 0.075 0.059 

        3X 3 0.015 0.015 

Saskatoon Area Liquid Swine Injected 0X 3 0.038 0.038 

1X 3 0.006 0.006 

2X 3 0.040 0.040 

        3X 3 0.000 0.000 

Saskatoon Area Liquid Swine Surface 0X 3 -0.053 0.053 

1X 3 0.000 0.000 

2X 3 0.000 0.000 

        3X 3 0.001 0.001 

Humboldt Area Solid Poultry Injected 0X 3 0.091 0.064 

1X 3 0.005 0.005 

2X 3 0.021 0.021 

        3X 3 0.006 0.006 

Humboldt Area Solid Poultry Surface 0X 3 -0.075 0.054 

1X 3 -0.104 0.060 

2X 3 -0.016 0.016 

        3X 3 -0.025 0.025 
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Table I.11. CO2-e data summary (without outliers). 

Location Type Species Mode Rate n mean stderr  

U of S Solid Feedlot Injected 0X 2 22.10 3.18 1 outlier 

1X 3 41.40 40.50  

2X 3 21.30 32.40  

3X 3 4.39 86.20  

U of S Solid Feedlot Surface 0X 3 46.11 22.10  

1X 3 13.20 22.30  

2X 3 21.60 11.10  

3X 3 13.62 2.57  

U of S Liquid Dairy Injected 0X 6 84.70 19.50  

1X 3 144.50 16.20  

2X 3 256.70 40.50  

3X 3 299.50 62.80  

U of S Liquid Dairy Surface 0X 3 44.49 3.18  

1X 3 139.80 40.50  

2X 3 252.30 32.40  

3X 2 88.80 86.20 1 outlier 

Saskatoon Area Solid Swine Injected 0X 3 59.70 17.80  

1X 3 85.79 4.09  

2X 3 196.50 15.40  

3X 3 129.30 50.50  

Saskatoon Area Solid Swine Surface 0X 3 66.48 9.17  

1X 3 27.13 8.25  

2X 3 92.37 8.57  

3X 2 98.90 29.40 1 outlier 

Saskatoon Area Liquid Swine Injected 0X 3 148.40 72.60  

1X 3 787.00 198.00  

2X 3 1143.00 196.00  

3X 3 1609.00 207.00  

Saskatoon Area Liquid Swine Surface 0X 3 124.00 53.00  

1X 3 164.70 94.70  

2X 3 75.58 9.35  

3X 2 269.50 67.20 1 outlier 

Humboldt Area Solid Poultry Injected 0X 3 66.55 8.43  

1X 2 203.74 7.83 1 outlier 

2X 3 184.00 108.00  

3X 3 189.10 16.30  

Humboldt Area Solid Poultry Surface 0X 3 26.20 14.90  

1X 3 40.80 24.90  

2X 2 118.00 65.40 1 outlier 

        3X 2 70.30 13.00 1 outlier 
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Table I.12. CO2-e data summary (with outliers). 

Location Type Species Mode Rate n mean stderr 

U of S Solid Feedlot Injected 0X 3 82.90 62.10 

1X 3 41.40 40.50 

2X 3 21.30 32.40 

        3X 3 4.39 86.20 

U of S Solid Feedlot Surface 0X 3 46.11 22.10 

1X 3 13.20 22.30 

2X 3 21.60 11.10 

        3X 3 13.62 2.57 

U of S Liquid Dairy Injected 0X 6 84.70 19.50 

1X 3 144.50 16.20 

2X 3 256.70 40.50 

        3X 3 299.50 62.80 

U of S Liquid Dairy Surface 0X 3 44.49 3.18 

1X 3 139.80 40.50 

2X 3 252.30 32.40 

        3X 3 247.00 166.00 

Saskatoon Area Solid Swine Injected 0X 3 59.70 17.80 

1X 3 85.79 4.09 

2X 3 196.50 15.40 

        3X 3 129.30 50.50 

Saskatoon Area Solid Swine Surface 0X 3 66.48 9.17 

1X 3 27.13 8.25 

2X 3 92.37 8.57 

        3X 3 143.80 48.00 

Saskatoon Area Liquid Swine Injected 0X 3 148.40 72.60 

1X 3 787.00 198.00 

2X 3 1143.00 196.00 

        3X 3 1609.00 207.00 

Saskatoon Area Liquid Swine Surface 0X 3 124.00 53.00 

1X 3 164.70 94.70 

2X 3 75.58 9.35 

        3X 3 441.00 176.00 

Humboldt Area Solid Poultry Injected 0X 3 66.55 8.43 

1X 3 276.20 72.60 

2X 3 131.70 61.90 

        3X 3 189.10 16.30 

Humboldt Area Solid Poultry Surface 0X 3 26.20 14.90 

1X 3 40.80 24.90 

2X 3 118.00 65.40 

        3X 3 70.30 13.00 
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(a) (b) 

 

Figure I.1.  Effect of soil moisutre content on background a) CO2 and b) CO2-e fluxes.  
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Figure I.2.  Interactions plots for CO2 flux. All interactions were statistically significant (P=0.000 for 

type*mode, P=0.001 for type*rate, P=0.024 for mode*rate and P=0.019 for type*mode*rate). 

Interaction trends and significances were very similar for CO2-e and N2O fluxes. 
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(a) (b) 

 
(c) (d) 

Figure I.3.  Graphical summary of absolute CO2-e fluxes. Vertical axes represent CO2-e flux (µg/m
2
-s). (a) 

Effect of application method, (b) effect of manure type, (c) effect of application rate, (d) effect of 

manure species. 
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(a) (b) 

(c) (d) 
Figure I.4.  Treatment effects on mean specific N2O fluxes (µg N2O/kg N applied/s). (a) Effect of application 

method, (b) effect of manure type, (c) effect of application rate, and (d) effect of manure species. 
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(a) (b) 

(c) (d) 
Figure I.5.  Treatment effects on mean specific CO2 fluxes (mg CO2/kg N applied/s). (a) Effect of application 

method, (b) effect of manure type, (c) effect of application rate, and (d) effect of manure species. 
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Figure I.6.  Correlation of CO2 and N2O fluxes based on manure type and application method. Vertical axes 

represent CO2 flux (µg/m
2
-s).and horizontal axes represent N2O flux (µg/m

2
-s). Note the different 

scales for both CO2 and N2O flux among different treatments.  
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Chapter 5 

 

5.0 Prediction of Odour Emission Rate after Land 

Application of Manure 
 

The measurement or modelling of emission rate trends is essential for the application of 

dispersion models which can help to optimize separation distances between manure spreading 

activities and neighbours. The model parameters for an existing volatilization model were 

determined from field and literature data and the resulting model allowed the effects of 

application mode (surface vs. subsurface) and manure type (liquid vs. solid) on odour emissions 

to be simulated. The effects of injection depth and a coverage factor on emissions were also 

simulated. The modeled peak fluxes from liquid manure applications were higher than those for 

solid manure applications, but the extended duration of odour emissions for solid manure 

resulted in higher cumulative losses of odour from solid manure applications. While the 

application rate had no effect on the initial odour flux, higher application rates resulted in higher 

peak fluxes, higher overall emissions, and longer odour durations for both manure types and 

application methods. In general, the ranking of cumulative odour emissions was: solid surface > 

liquid surface >> liquid injected > solid injected. When typical coverage factors were assumed, 

the percent reduction in cumulative odours due to injection were approximately 75, 55, and 30% 

for liquid manure at 1X, 2X, and 3X application rates, respectively and 90, 80, and 70% for solid 

manure. Injection depths as low as 0.05 m (5 cm) were shown by the model to significantly 

reduce odours from both liquid and solid manure applications compared to surface spreading. 

The general predictions of the model developed in this study agree with odour emission rate 

trends and percent reductions of odour due to injection reported in literature. Future work should 
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focus on better estimation of the model parameters and the variation of effective diffusivity with 

time and soil conditions.  

 

5.1 Introduction 
 

In order to allow for the sustainable growth of the livestock industry, management practices that 

reduce or control the odour emissions associated with livestock production must be adopted. 

Livestock odours are commonly recognized to come from three main sources: production 

buildings, manure storages, and land application of manure. There has been considerable 

research on measuring emissions and estimating the dispersion of odours from buildings and 

manure storages, but little effort has been spent on modeling the dispersion of odours from land 

application activities. While manure spreading produces odours of short duration, they are 

considered more intense and more unpleasant than odours from the barns or manure storages. In 

fact, more than half of all complaints about intensive livestock facilities directly result from 

odour emissions following land application of manure (Choinière et al., 2007). Mkhabela et al. 

(2008) also noted that land spreading of manure draws more complaints about nuisance odour 

than any other aspect of livestock production (AAFC, 1998; Philips et al., 1991 in: Mkhabela et 

al., 2008). Specific management practices such as subsurface application of manure have been 

shown to reduce the odour emissions immediately after application (refer to Chapter 3). In order 

to predict the impact of these practices on odour surrounding application sites using dispersion 

models, reliable odour emission rates from the source are required. Source emission rates from 

manure spreading will vary over the first few hours after application and the magnitude and 

variation will depend on the type of manure, application rate and application method. This 

information is currently unavailable and is required to apply dispersion modeling to manure 

spreading activities. 

 

Traditional methods of odour measurement (wind tunnels, steady-state chambers, Nasal 

Rangers(TM)) make it difficult to measure odour variation over time. Micrometeorological 

methods have been adapted for use in odour measurement studies (Pain et al., 1991; Mkhabela et 

al., 2007, Huijsmans et al., 2001), but a full assessment of the impact of management activities 
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on odour emissions over time after application would require a large and costly experimental 

design. A modeling approach may be a more prudent way to gather information on the impacts 

of application method, application rate, and manure type on the odour emission rate variation 

over time after application. Process-based modeling with computer simulation is a cost-effective 

procedure for quantifying and evaluating emissions across diverse production systems (Montes 

et al., 2009). 

 

If the odour emission rate trend over the first few hours after manure application with different 

methods and manure types can be reliably predicted, then dispersion models (such as the 

Gaussian ISC model or INPUFF model (Xing et al., 2006) can be used to establish set-back 

distances for manure spreading. This will minimize the odour nuisance to neighbours while 

maximizing land-use efficiency.  Therefore, the objectives of this work were 1) to review 

existing emission rate models and conduct further model development using data and insight 

gathered in a field study of odour emissions and 2) to assess the applicability of the developed 

model in estimating the effects of manure type, application mode, and application rate on the 

odour emission rate trend over time after application. 

 

5.2 Literature Review 
 

5.2.1 Emission rate models 

 

A review of literature discussing modeling of emissions from a surface revealed very few 

references to odour emission rate models. The majority of work related to manure emissions 

dealt with ammonia and there were several well developed mechanistic models that predicted 

emissions of volatile organic compounds (VOC’s) from landfills. Some of these landfill models 

accounted for a covering material over the landfill and allowed for constant or variable source 

emissions. Other models dealt with VOC emissions from aeration basins or building materials. 
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5.2.1.1 Ammonia emission models  

Ni (1999) provided a very good review of several mechanistic models of ammonia (NH3) release 

from liquid manure, including ammonia release from slurry applied fields. All of the ammonia 

release models discussed were developed on the basis of some physical insight such as the 

enzymatic and microbial generation of NH3, the diffusion mass transfer of NH3 in manure, the 

chemistry of NH3 in aqueous solution, and the convective mass transfer of NH3 gas from the 

manure surface into the free air stream (Ni, 1999). The paper reviewed the general structure and 

elements of 30 existing models for ammonia emissions but did not specifically discuss the 

application of models to emissions from manure spreading. The author did note that the 

determination of the convective mass transfer coefficient is essential in developing an accurate 

NH3 emission model (Ni, 1999). 

 

Mansel et al. (2005) developed a process-based (empirical) model to estimate the ammonia 

emissions from an entire livestock facility, including a submodel to account for ammonia 

emissions from the land application of manure. While the authors compared the results of their 

full process-based approach with the GIS-based ammonia emission model developed for the 

Western Regional Air Partnership (WRAP) model, they did not reveal the details or validation 

results from the land application submodel. The authors noted that ammonia emissions from land 

application depend on type of manure, crop management practices and climatic conditions. In 

order to use the land application submodel, data regarding the nutrient content of the manure, 

specific application and crop management practices, and environmental conditions are required.  

 

Menzi et al. (1998) presented an empirical model for ammonia emissions after manure 

application. The effects of manure dry matter content, total ammoniacal nitrogen (TAN), 

application rate, and solar radiation on emissions were studied with wind tunnel experiments. 

Their regression analysis related emission rate (kg NH3-N/ha) with TAN, application rate and 

saturation deficit (where saturation deficit is related to relative humidity (RH) and temperature). 

This empirical model is valid only for the conditions under which the data were collected. This 

experiment and empirical model did not indicate a significant relationship between dry matter 

content and NH3 emissions, probably due to the low level and small range of dry matter contents 

used in this study (Menzi et al., 1998). 
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Misselbrook et al. (2005) also developed an empirical model to predict ammonia losses 

following application of manure. The authors noted that the key parameters driving ammonia 

emissions after manure spreading were the wind speed, dry matter content for slurries, and 

rainfall for solid manures. For each experiment, the cumulative NH3 loss with time was fitted 

with a Michaelis-Menten type curve: 

mKt

t
NtN

+
= max)(  

where N(t) is the cumulative loss at time t (kg N/ha), and Nmax and Km are model parameters 

representing total loss as time approaches infinity and time at which loss reaches one half of 

maximum, respectively. 

 

Although application rate was not a key parameter in their study, Misselbrook et al. (2005) noted 

that increasing slurry application rate had been shown to decrease the proportion of TAN emitted 

as NH3 according to Frost (1994) and Thompson et al. (1990) due to the decreased surface area 

to volume ratio for higher application rates (Misselbrook et al., 2005). The same researchers also 

suggested that rapid mineralization during the measurement period increased the potential for 

NH3 loss from solid manure application sites (Misselbrook et al., 2005). 

 

Plöchl (2001) presented a neural network approach for modelling ammonia emissions after 

manure spreading. The author used published data to train the neural network and determine the 

empirical constants Nmax and Km for the Michaelis-Menten function. Input parameters of the 

neural network included DM, pH, ammonium concentration, ammonium applied, vegetation 

type, minimum temperature, maximum temperature, precipitation, wind speed, and irradiation. 

Plöchl (2001) theorized that two steps control the kinetics of the ammonia emission process: 

desorption from the surface and diffusive transport across the boundary layer. These processes 

are functions of manure pH, wind velocity at the surface, surface area and surface characteristics, 

and air and manure temperature. In this analysis, no comparison of application methods was 

made because of the low availability of data sets reflecting the differences in emission due to 

different application methods (Plöchl, 2001). In order to determine the effects of incorporating or 

injecting manure, it is essential to understand the dynamics of the emissions from the soil 

(5.1) 
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surface. It is not yet clear whether incorporation of manure into the soil affects only the 

maximum emission (Nmax) or if these methods also affect the emission dynamics, which would 

be expressed in a change of the Km value (Plöchl, 2001).  

 

Génermont and Cellier (1997) presented a mechanistic model for ammonia volatilization from 

manure application that combines an atmospheric transfer model with a model of the soil 

processes responsible for the release of ammonia to the atmosphere. The model accounts for the 

physical and chemical equilibria in each soil layer, heat and water transfers between the soil 

layers, aqueous and gaseous ammoniacal N transfers between the soil layers and transfer of 

ammonia gas to the atmosphere. The model uses readily available input data including soil, 

meteorological and slurry data. In this model, it was assumed that the physical properties of the 

soil did not change with time after the slurry has been spread. Depending on the soil and manure 

type and the application rate, this assumption may not be valid. Also, since ammonia 

volatilization occurs over a short time (2-3 weeks), nitrogen transformations by organic matter 

and organic N mineralization, uptake by plants, oxidation or nitrification were not accounted for 

(Génermont and Cellier, 1997). The researchers tested the model against data collected from a 

field study (dairy cattle slurry applied at a rate of 133 m3/ha or 114 kg N/ha) where 

micrometeorological methods were used to measure ammonia fluxes over 10 days after 

application of slurry. The calculated loss was 57 kg/ha and measured loss was 62 kg/ha. In 

general, the predicted fluxes on the first day were underestimated. However, the surface areas of 

manure patches and droplets were not constant, and the varying manure pH (an effect of 

emission itself) were not consistent with the model assumptions (Plöchl, 2001).  

 

5.2.1.2 Volatile organic compound emission models 

In contrast to the ammonia emission models, almost all models discussing volatile organic 

compound (VOC) emissions from landfills found in literature were mechanistic models. Most 

volatilization models included a convective mass transfer model and involved Henry’s Law 

which relates the concentration of dissolved compounds in water to an equilibrium concentration 

of the compound in the air space immediately above the solution.  
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Several of the VOC emission models accounted for a covering layer through which compounds 

must first diffuse before they volatilize into the atmosphere. Additionally, some landfill models 

assumed a constant VOC generation term but others used an exponentially decaying model to 

describe the VOC generation term.  

 

Rotenberg and Mamane (1998) provided a very detailed discussion of a model for estimating 

emissions of VOC’s from landfills. Their model described a landfill as two uniform layers 

including the waste layer and the soil cover. Several assumptions were made in the development 

of the model: 

� Gas movement is only in upward direction  

� Bottom layer is impervious (no leaching) 

� Rapid removal of gases takes place at  upper surface by wind 

� VOC’s are continuously and uniformly produced in the waste layer 

� VOC generation is the net difference between production and removal within the waste 

layer 

� Diffusion coefficients are assumed constant within a particular layer (in reality, diffusion 

coefficients are time and space dependent and depend on soil temperature, water content, 

meteorological conditions and composition of the soil cover layer) 

� No gases accumulate in the cover layer (rate of diffusion from the soil cover is faster than 

from the waste layer) 

� All gases entering the soil cover from the waste layer reach the atmosphere (emission rate 

from waste layer = emission rate from soil cover) 

� The concentration of VOCs at the interface between the waste and the air space in the soil 

cover layer can be described using Henry’s Law 

 

For the case where the waste is covered with a soil layer additional assumptions are needed: 

� There is no change in VOC’s concentration at the bottom of the waste layer 

� VOC concentration at the interface may be described by Henry’s Law 

� Initial VOC’s concentration is the same all around the waste layer 
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This model was applied to emissions from an exposed waste layer and emissions from a covered 

waste layer. In addition, the model used both a constant production rate and a rate that decreased 

exponentially with time. The time scale for this model was very long, up to 4,000 days.  

 

Karimi et al. (1986, 1988) presented another model describing emissions of VOC’s from 

landfills where different types of covers were present. The model is based on the model used by 

Farmer et al. (1980), which is based on the theory of flow through porous media and accounts for 

the diffusion transport and volatilization of the pollutants. The vapour flux of the pollutant is 

determined from Fick’s first law that states the diffusion flux is equal to the product of 

diffusivity and concentration gradient. The required inputs include the concentrations of the 

pollutant in the air at the bottom of the waste layer and the surface of the soil, the thickness of 

the soil layer and the apparent diffusivity of the volatile pollutant (Karimi et al., 1986).  

 

Karimi et al. (1988) discussed the application of this model to a landfill covered by different 

composite materials. The model as presented represents a single-layer soil cover but the authors 

extended the model for estimation of volatilization flux through composite, two-layer covers. 

Karimi et al. (1988) identified various factors that control emissions through soil covers such as 

the soil bulk density, water content, total porosity, and air filled porosity as well as volatility 

characteristics of VOC’s. The equation for mass flux (g/cm2-s) included the following variables: 

� Depth of soil layer (cm) 

� Molecular weight of component (g/mol) 

� Total pressure (atm) 

� Partial pressures of component at bottom and top of soil (atm) 

� Universal gas constant (L atm/K-mol) 

� Absolute temp (K) 

� Apparent vapor diffusion coefficient of component in soil (cm2/s) 

 

Karimi et al. (1988) noted that the emission flux was dependent on two important variables: the 

volatility of the VOC indicated by its vapor pressure and the molecular diffusivity of VOC 

through the air. 
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Lin and Hildemann (1995) presented a very complex, nonsteady-state model for VOC emissions 

from landfills that accounted for biogas flow, leachate flow, diffusion, adsorption, degradation, 

volatilization, and mass transfer limitations through a top cover. In other models, the required 

assumptions oversimplify the landfill environment and cause the emission rate to be 

overestimated since, in addition to the gas route, contaminants can also dissolve into leachate and 

be carried away (Lin and Hildemann, 1995). Furthermore, lab studies have shown that the 

emission rate is unsteady (Rickabaugh and Kinman, 1993). Lin and Hildemann (1995) also 

recognized that contaminants in the subsurface can be present in a vapour, liquid, solid, or 

adsorbed phase. The extent of adsorption depends greatly on the moisture content of the soil; 

volatile compounds adsorb most strongly to soil under conditions where the moisture content is 

low (Lin and Hildemann, 1995). In addition to oxidation of VOC’s in the cover layer, adsorption 

is assumed to be one of the mechanisms that result in lower emission rates from covered 

landfills. However, while reducing the emission rate, adsorption results in prolonged emission 

duration (Lin and Hildemann, 1995). The authors noted that adsorption coefficients and effective 

diffusivities are the most difficult parameters to estimate accurately, especially since adsorption 

coefficients within dry systems have only recently begun to become available. 

 

The input parameters for the model described in Lin and Hildemann (1995) included: 

� Landfill characteristics 

o Cover depth, bulk density of soil, volumetric air content, volumetric water content 

� Chemical properties 

o Gaseous diffusivity in soil, aqueous diffusivity in soil, gaseous diffusivity in 

cover, overall first order degradation rate, gas/solid adsorption coefficient, 

liquid/solid adsorption coefficient, Henry’s Law constant 

� Field measurements 

o Bulk gas velocity, bulk leachate velocity, mass transfer coefficient,  (per day) 

concentration gradients, etc. 

 

Generally, the above models performed well in their prediction of VOC diffusion and 

volatilization into the atmosphere. The model in Karimi et al. (1986) was successfully used in the 

design of landfill covers while the model in Rotenberg and Mamane (1998) allowed the 
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estimation of the effects of landfill covers on VOC emission rates in the first few years of 

operation. The complex model presented in Lin and Hildemann (1995) allowed for modeling of 

VOC movement in landfills in three dimensions as well as the prediction of changes in 

subsurface concentrations and emission fluxes with times based on different initial physical and 

chemical conditions. 

5.2.1.3 Organic chemical movement in soil 

A mathematical model presented by Jury et al. (1983, 1984a, 1984b, 1984c, 1990) described the 

transport and loss of soil-applied organic chemicals. Later versions of the model included 

movement of organic compounds by vapor or liquid diffusion and mass flow through a soil layer 

devoid of the same chemical (Jury et al., 1990). While diffusing through the soil layer, it was 

assumed that the compounds undergo first-order degradation and linear equilibrium adsorption 

while loss to the atmosphere is governed by vapor diffusion through a stagnant air boundary 

layer (Jury et al., 1990). The model was intended to help classify organic chemicals for their 

relative susceptibility to different loss pathways including volatilization, leaching, and 

degradation (Jury et al., 1983). The authors stated that, although the model was designed to 

predict the movement of pesticides, it was applicable to other trace organics that may be of 

environmental concern (Jury et al., 1983).  

 

The Jury model assumed that compounds exist in three phases within the soil matrix: adsorbed, 

liquid and gaseous. Prediction of how the applied chemical would partition between these three 

phases in soil was achieved by defining expressions for the adsorbed-liquid partitioning and the 

liquid-vapour partitioning. The adsorbed-liquid partitioning expression was partially dependent 

on the soil organic matter content while the liquid-vapour partitioning expression was 

represented through Henry’s Law.  

 

The degradation rate was defined as a direct assessment of the persistence of a compound (Jury 

et al., 1983). A net, first-order degradation rate was assumed for all degradative processes in all 

phases. The first-order degradation rate constant (µ, per day) was related to the half life (T1/2, 

day) of the compound by: 
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2/1
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T
=µ  

 

The authors noted that temperature, water content, and microbial populations could also 

influence degradation processes and measured rate constants considerably. Thus, this property 

was deemed both extremely important and extremely difficult to assess (Jury et al., 1983).  

 

A mass balance was applied in Jury et al. (1983), assuming a one-dimensional, homogeneous 

porous medium undergoing first-order decay: 
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where Js is the solute mass flow (upward) per soil area per time (g/m2-s), CT is the mass of solute 

per soil volume (g/m3), µ is the first order degradation rate constant (per day), t is time (day), and 

Z is soil depth (m). 

 

Ignoring adsorbed phase transport and hydrodynamic dispersion, the mass flux was written as 
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Where the first term represents gaseous diffusion, the second term describes liquid diffusion, and 

the third term describes convection of solute by mass flow of a soil solution. DG and DL represent 

the effective gaseous and liquid diffusivities, respectively. Hydrodynamic dispersion due to 

water velocity variations was neglected because average water fluxes were assumed negligible in 

uniform soils. Using partition coefficients for the solid, liquid, and gaseous phases and the 

assumption of linear, equilibrium partitioning, Equations 5.3 and 5.4 were rewritten in terms of 

the total concentration: 
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where DE is the effective diffusion coefficient and VE is the effective solute convection velocity.  

 

The following boundary conditions were identified: 

CT(Z,0) = 0 if 0<Z<L, 

CT(Z,0) = 0 if Z>L, 

CT(Z,0) = Co if L<Z<L+W, 

CT(∞,t) = 0, and 

CT(L+W,t) = 0. 

 

Applying these boundary conditions and Fick’s Law for the gas flux across the stagnant 

boundary layer, Equations 5.5 and 5.6 were successively and analytically solved to provide 

expressions relating the total concentration and the volatilization flux to the relevant parameters. 

The relevant parameters in the full Jury model included complex terms such as effective water 

velocity, water evaporation, a boundary transfer coefficient (HE, m/s), and complementary error 

functions. However, as shown by Jury et al. (1984a), compounds with large Henry’s constant 

(KH) were insensitive to the thickness of the boundary layer. Therefore, a simplified solution to 

the model with HE approaching infinity adequately described the behaviour of compounds with 

large Henry’s constant. The model was further simplified by assuming zero water evaporation. 

The simplified model parameters included initial concentration, degradation rate, effective 

diffusivity, depth of contaminated layer, and depth of covering layer.   

 

5.2.1.4 Odour emission rate model 

Liao et al. (1998, 2000) used the Jury model with a decaying source strength and variable 

manure thickness layer to model VOC (p-cresol, toluene, xylene) volatilization from stored pig 

slurry. The model assumed that pig slurry was undisturbed and the components were released 

from the slurry layer, transported through a “clean” manure layer (assumed to have the same 

properties as water) as well as a manure-air interface boundary. The model simulated time-

dependent volatilization, the depletion of source contaminant via both volatilization and 

(5.6) 
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degradation, and could be used with a contaminated zone of finite thickness. Previously, Liao et 

al. (1997) published a diffusion transport model that utilized a steady-state approach which did 

not account for source depletion via volatilization and the stratified characteristics in the manure 

pit due to solids settling could also not be shown.  

 

Liang and Liao (2004) used the complex form of the Jury model (where convective velocity was 

not negligible and the boundary transfer coefficient did not approach infinity) to develop a VOC-

odour transport model. The model was used to develop a multiple airflow regions gamma model 

to characterize the extent of mixing and predicted mixing heterogeneity in a ventilated livestock 

building (Liang and Liao, 2004). VOC-odour profiles were generated for a variety of 

environmental conditions. 

 

Finally, Smith (1995) modified a Gaussian plume dispersion model to predict spatial average 

odour emissions from a large area source. However, this “backward calculation” approach 

required simultaneous point measurements of odour concentration and wind speed at a location 

immediately downwind of the source (Smith, 1995).   

 

5.2.1.5 Other Models 

Other models deal with VOC emissions from wastewater treatment facilities or from stored 

building materials. The steady-state model described by Yaghamaei and Rashidkhani (2005) 

deals with VOC emissions from wastewater aeration tanks and includes provisions for VOC 

convection, volatilization and biodegradation. Biodegradation of compounds was calculated 

using Monod kinetics, and the transfer of volatile compounds between a liquid phase and a gas 

phase (volatilization) was modeled as a quasi-equilibrium process. In order to model the 

volatilization process, the mass transfer constant, concentration of VOC in effluent, the 

equilibrium water phase concentration and the volume of the tank were required. Chern and 

Chou (1999) also discuss VOC emission rates from surface aerators and include a factor for 

emissions from a sprayed droplet in addition to emissions from a turbulent surface. Tansel and 

Eyma (1999) used a general mass balance approach for VOC emissions from wastewater 

treatment plants and focused on losses due to volatilization and biodegradation. The authors 

noted that volatilization depends on concentration and properties of the volatile compound, 
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characteristics of the liquid phase, and the surrounding gas phase conditions while 

biodegradation depends on structure of compound, metabolic requirements of the microbes, and 

site-specific environmental conditions (Tansel and Eyma, 1999). 

 

Several other researchers reported on VOC emission models that predict emissions from stored 

building materials (Haghighat and Zhang, 1999; Huang and Haghighat, 2002, Cox et al., 2002). 

Generally, building materials are assumed to be homogeneous and the time scale of 50 hrs is 

considerably shorter than landfill models. The model described by Huang and Haghighat (2002) 

considered mass diffusion processes within the material and the mass convection and diffusion 

processes in the boundary layer.  

 

5.2.2 Effective diffusivity 

 

Other than mass flow in the soil-water phase, the two dominant transport processes for 

contaminants in soil are vapour and liquid diffusion (Jury et al., 1983). The diffusivities of 

numerous gases in air are defined in literature as Dg
a with units of area per unit time. The 

diffusivities of gases in liquid (Dl
w) are less well defined but are commonly assumed to be 1000 

times lower than the diffusivity of the same gas in air. The diffusivity of a gas through a medium 

(such as soil) is defined as the effective diffusivity (DE). This soil gas diffusion coefficient is 

usually equated to the air-gas diffusion coefficient (Dg
a) multiplied by a tortuosity factor to 

account for the reduced flow area and increased path length of diffusing gas molecules in soil. A 

simplistic formula presented by Kirkham and Powers (1972) presented an average tortuosity 

factor of 0.5 for most soils, so the effective diffusivity was equal to half the vapour diffusivity 

for a given gas. Other researchers have concluded that effective diffusivity of a compound is a 

complex function of soil type, soil conditions, water content, porosity, chemical type, and 

micrometeorological conditions (Karimi et al., 1988).  

 

In general, the effective diffusivity of a volatile pollutant in soil can be calculated if vapour 

diffusivity of the pollutant in air, air filled porosity of covering soil, and total porosity of 

covering soil are known (Karimi et al., 1986, Millington and Quirk, 1961). The Millington-Quirk 
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tortuosity model is shown in Equation 5.7. The soil liquid diffusion coefficient DL is set equal to 

the water-liquid diffusion coefficient (Dl
w) multiplied by the tortuosity factor. 
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where DE = effective diffusivity in material (m2/day), 

 Dg
a= diffusivity of gas in air (m2/day), 

 εa = air filled porosity (decimal), and 

 ε = total porosity (decimal). 

 

Generally, effective diffusivity through a dry soil is higher than through a wet soil because 

diffusivity through air is higher than diffusivity through water (Karimi et al., 1988). However, 

Karimi et al. (1988) found that adding liquid to a porous system reduced the effective diffusivity 

more than what would be expected due to the reduction of gas-filled pore space. They theorized 

that the presence of liquid was not merely responsible for reducing porosity, but also 

significantly modifying the pore geometry and the length of passage of the chemical (i.e.: 

tortuosity). Therefore, apparent gas diffusion through a porous medium is clearly a function of 

both internal geometry and porosity (Karimi et al., 1988).  

 

According to Jury et al. (1990), the effective diffusion coefficient defines the rate of mass 

transfer between the liquid and gas phases. Thus DE depends on the combined mass transfer 

through liquid and gas boundary layers (Liao et al., 2000) and can be expressed as:  
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where DE = effective diffusion coefficient in material (m2/s), 

εa = air content (decimal), 

Dg
a = diffusivity in air (m2/s), 

KH = Henry’s law constant (dimensionless, gas to aqueous ratio), 

(5.7) 

(5.8) 
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Dl
w = diffusivity in water (m2/s), 

ε = porosity (decimal), 

ρb = bulk density (kg/m3), 

foc = organic carbon (decimal), 

Koc = organic carbon partition coefficient (m3/kg), and 

θ = moisture content (decimal). 

 

The assumption of homogeneous, isotropic material is required to apply this more complex 

expression for DE. 

 

The diffusivities of specific odour compounds (p-cresol, toluene, p-xylene) in air were 

summarized in Liang and Liao (2004) along with Henry’s constant, organic carbon partition 

coefficients and degradation rates. Those values are summarized in Table 5.1. 

 

Table 5.1.  Summary of characteristics of odour components (Liang and Liao, 2004). 

 Dg
a
 (m

2
/s) Dl

w
 (m

2
/s) KH (g/aq) Koc (m

3
/kg) µ (d

-1
) 

p-cresol 7.7 x 10-6 7.7 x 10-10 6.38 x 10-5 0.047 1.034 
toluene 8.8 x 10-6 8.8 x 10-10 0.271 0.126 3.15 x 10-2 
p-xylene 7.1 x 10-6 7.1 x 10-10 0.201 0.126 2.48 x 10-2 
Odour (avg) 7.87x10-6 7.87x10-10 0.1573 0.099667 0.3634 
 

5.2.3 Summary 

 

This review of previous work on the modeling of emission rates for odours and VOCs allows for 

the identification of guidelines related to the modeling of dour emissions resulting from the land 

application of manure: 

� Such models must account for the volatilization of odour compounds in the short term 

(less than 48 hours), the degradation of odour compounds, and, in the case of injected or 

soil-incorporated manure, diffusion of odour compounds through the soil. 

� Losses of odour compounds via other pathways (e.g. leaching, horizontal movement, 

etc.), convective transport, and changes in micrometeorological conditions during the 

modeling period may be assumed negligible. 



229 
 

5.3 Materials and Methods 
 

On the basis of the guidelines presented in Section 5.2.3 above and of their simple interpretation, 

the Jury model was selected as a starting point to develop an odour emission rate model for the 

purposes of this study. 

 

5.3.1 Jury model 

 

As discussed in Section 5.2.1.3, a simplified version of the Jury model has been used for 

compounds with large Henry’s constant and zero water evaporation. The Henry’s constant (KH) 

value for odour was estimated to be 0.1573 (dimensionless, gas to aqueous ratio) in Liang and 

Liao (2004), which was the average of the KH values for three of the main odour components (p-

cresol, toluene, xylene—refer to Table 5.1). According to Jiang and Kaye (1996), volatilization 

of compounds with a KH value greater than 0.1009 are considered to be liquid phase controlled. 

Therefore, odour is also considered to have a large KH and the solution to the model for large KH 

where HE approaches infinity adequately described the behaviour of odour. Since odours from 

manure application occurred in the short term for static micrometeorological conditions, water 

evaporation was assumed negligible. For the case of zero water evaporation (VE = 0) and zero 

boundary layer thickness (HE � infinity), the Jury model describing volatilization of compounds 

from a surface becomes: 
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and the volatilization flux from a buried layer of manure located initially between z = L and z = 

L+W was: 
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(5.9) 

(5.10) 
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where  Js = odour flux (OU/m2-s), 

Co = initial odour concentration (OU/m3), 

 µ = first order degradation rate constant (d-1), 

 W = thickness of contaminated material (m), 

 L = thickness of covering material (m), 

 DE = effective diffusion coefficient of odour in slurry (m2/s), and 

 t = time (days). 

 

Note that as the covering layer thickness (L) approaches zero, Equation 5.10 approaches 

Equation 5.9. The assumptions required for this model included: 

� the contaminant resides in three phases: an adsorbed phase, a dissolved phase, and a 

gaseous phase, 

� the adsorbed and dissolved phases undergo reversible, linear equilibrium adsorption, 

� the dissolved and gaseous phases are in equilibrium in accordance with Henry’s law, 

� the contaminant undergoes first-order biological/chemical degradation, 

� the contaminant moves in one dimension through the medium in accordance with the 

principle of mass balance, 

� the soil properties (total porosity, gas-filled porosity, water content, bulk density, organic 

carbon fraction, temperature) are constant in space and time (required to apply Equation 

5.8 for DE), 

� the water flux (convective mass transfer) is negligible or significantly lower than 

volatilization flux, 

� hydrodynamic dispersion can be ignored, 

� the contaminant layer is uniform with thickness W at t=0, 

� the vapour phase of contaminants diffuse up through an initially uncontaminated layer of 

thickness L and a stagnant air boundary layer of thickness d, 

� the concentration of the contaminant above boundary layer thickness is negligible, and 

� the contaminant does not exist below contaminated layer.  
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5.3.2 Model inputs 

 

5.3.2.1 Initial odour concentration (Co) 

The effect of manure type, application method, and application rate on initial odour 

concentration was determined from the experimental data discussed in Chapter 3. Since placing 

the manure under the soil does not change the chemical characteristics of the manure, the initial 

odour concentration was the same for surface and subsurface applied manures. However, the 

initial odour concentration was influenced by manure type. Based on those results, the average 

initial odour concentration for liquid manure was 700 OU/m3 and the average initial odour 

concentration for solid manure was 400 OU/m3. Even though those concentration values were 

collected 20 minutes after application, they were used to represent the initial concentration at 

time zero (Co) in this preliminary model. Since application rate (1X, 2X, 3X) did not 

significantly affect odour concentration, the Co value did not change with application rate in the 

model.  

 

5.3.2.2 First order degradation rate constant (µ) 

The first order degradation rate constant was related to the half life of the compound of interest 

according to Equation 5.2. The first order degradation rate constant for odour in air was 

estimated by Liang and Liao (2004) to be 0.3634 day-1 which represents a half life of 1.91 days. 

Liao et al. (2000) reported a degradation rate of 0.0315 day-1 (half life of 22 days) for dust-borne 

odour in swine barns. However, the degradation rate constant is theoretically dependent on 

manure type and application method due to the physical behaviour of manure, chemical 

composition, and potential for rapid microbial degradation. Since liquid manure infiltrated into 

the soil quickly while solid manure stayed on the surface, the half life of solid manure was 

assumed to be longer than liquid manure. Furthermore, the manure placement was assumed to 

impact the degradation rate constant, particularly for solid manure. Manure placed under the soil 

surface theoretically had a shorter half life than manure placed on the surface due to rapid 

microbial activity and consumption of the volatile organic compounds in the manure. A 

summary of degradation rate constants used in this simulation is shown in Table 5.2. 
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Table 5.2.   Summary of degradation rate constants (µ) used in odour emission rate simulation. 

 Surface Subsurface 
 Degradation rate 

(day-1) 
Half life 

(day) 
Degradation rate 

(day-1) 
Half life 

(day) 
Solid 0.0315 22 0.166 4.2 

Liquid 0.363 1.91 0.363 1.91 
 

5.3.2.3 Thickness of contaminated material (W) 

The thickness of the contaminated material (W) depended on the application rate and application 

method. Obviously, the application rate dictated the volume of manure placed on or in the soil 

and thus, the thickness of the manure layer. Since subsurface application of manure required 

application in narrower bands, the manure thickness was higher for injected manure than surface 

applied manure at the same rate. The effective application area was approximately half for 

injection, so the W values were doubled for subsurface applications. Theoretically, the manure 

thickness will change with time for liquid manure as it infiltrates into the soil, but at this stage of 

model development, W was held constant. This infiltration effect was instead handled by altering 

the degradation rate constant for liquid manure.  

 

The W values were estimated from the application rates used in the experimental plots in 2007, 

shown again in Table 5.3. Dividing the liquid rates (m3/ha) by the 10,000 m2/ha conversion 

factor converted the rate units to a thickness unit (m). Similarly, the solid application rates 

(Mg/ha) were converted to a length by dividing by an average bulk density (500 kg/m3) and 

multiplying by the same conversion factor. The W values used in this simulation are outlined in 

Table 5.4. 

 

Table 5.3.   Application rates for liquid and solid manure used in experimental plots and simulations. 

 Liquid (m3/ha) Solid (Mg/ha) 
1X 56 20 
2X 85 40 
3X 112 60 

  

Table 5.4.   Summary of contaminated material thicknesses (W) used in simulations. 

 W for liquid manure (m) W for solid manure (m) 
Application rate Surface Subsurface Surface Subsurface 

1X 0.0056 0.01 0.0055 0.01 
2X 0.0084 0.016 0.009 0.018 
3X 0.0112 0.022 0.012 0.024 
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5.3.2.4 Thickness of covering material (L) 

The thickness of the covering material depended on injection depth. Theoretically, this value 

could range from 0 (for surface application) to infinity. The average injection depth for both 

liquid and solid manure was 0.075 m (7.5 cm) during the experimental data collection. To model 

the effect of injection depth on odour emission rate, the value of the thickness of covering 

material was varied from 0 to 0.2 m during the simulation. 

 

5.3.2.5 Time (t) 

Time (t) was the time after application. Odours generally return to background levels within 24 

hrs of application (Hanna et al., 2000; Misselbrook et al., 1997), so the modeling period was 

limited to two days. Since the Jury model was invalid at t = 0, the first time step was set to 20 

min (0.33 hr) to match the timing of the experimental data collected in the field. Time steps of 10 

min (0.167 hr) were used thereafter to a maximum time of 2880 min (48 hr).  

 

5.3.2.6 Effective diffusivity (DE) 

For surface applied solid manure, DE referred to the diffusivity of odour in solid manure. For 

surface applied liquid manure, DE referred to the diffusivity of odour in manure-amended soil. 

For injected solid and liquid manure, DE referred to the diffusivity of odour in the covering soil. 

The complex model for determining DE proposed by Jury et al. (Equation 5.8) was initially 

expected to more accurately assess this important property during simulations. However, for 

manure amended soil, the assumption of homogeneous and isotropic soil properties was not 

valid. Therefore, the Millington-Quirk model (Equation 5.7) was used in this study to estimate 

DE values based on approximate air filled porosity and total porosity. Total porosity was 

estimated from the soil textural class (sandy soil porosity ranges from 0.43 and 0.36 and clayey 

soil porosity ranges from 0.58 and 0.51 (Buol et al., 2003)). The air-filled porosity was estimated 

to be the total porosity minus the volumetric water content.  

 

As the manure infiltrated into the soil, the air filled porosity (and thus, DE) theoretically changed. 

Therefore, DE was a function of time based on the loosely approximated initial air filled porosity 

of the soil. Theoretically, the starting air filled porosity (and thus, DE) also depended on manure 
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type and application method. In the first few hours after application, the DE value increased (as 

the manure drained) based on the power law to a maximum value, then it remained constant for 

the remainder of the modeling period. The initial DE value depended on only manure type for 

surface applied manure, but it depended on manure type and injection depth for subsurface 

applied manures. Expressions relating DE as a function of time (t) and injection depth (L) are 

outlined in Table 5.5. 

 

Table 5.5.   Expressions for DE (m
2
/hr) as a function of time (t, hr) and injection depth (L, m) used in 

simulations. 

Liquid surface 
DE = 4x10-7t3.21 t ≤ 12.6 hr 
DE = 1.53x10-3 t > 12.6 hr 

Solid surface 
DE = 1x10-7t2.95 t ≤ 32.8 hr 
DE = 3.75x10-3 t > 32.8 hr 

Liquid injected 
L ≥ 0.06 m 

DE = 2x10-5t1.59 t ≤ 8.7 hr 
DE = 1x10-3 t > 8.7 hr 

L < 0.06 m 
DE = 7.87x10-2[0.9L+0.01+0.024t]3.33 t ≤ 8.7 hr 
DE = 7.87x10-2[0.9L+0.2178]3.33 t > 8.7 hr 

Solid injected 
L ≥ 0.1 m 

DE = 2x10-8t3.51 t ≤ 32.8 hr 
DE = 3.47x10-3 t > 32.8 hr 

L < 0.1 m 
DE = 7.87x10-2[-0.09L+0.011+0.012t]3.33 t ≤ 32.8 hr 
DE = 7.87x10-2[-0.09L+0.4046] t > 32.8 hr 

 

For comparison, the DE values of odour in a soil with porosity of 60% and a variety of water 

contents are listed in Table 5.6.  

 

Table 5.6.   Effective diffusivity of odour in soil (porosity = 60%) with a variety of water contents based on 

Millington-Quirk diffusivity model. The diffusivity of odour vapour in air is 2.83x10
-2

 m
2
/hr. 

Soil Conditions DE (m
2
/hr) Note 

Oven dry θ = 0%, εa = 60% 1.44x10-2  
Dry θ = 20%, εa = 40% 3.72x10-3 similar to maximum DE for solid surface 

Wet θ = 30%, εa = 30% 1.42x10-3 similar to maximum DE for liquid surface 

Saturated θ = 55%, εa = 5% 3.66x10-6  
θ = volumetric water content, εa = air filled porosity 

 

5.3.2.7 Coverage factor (CF) 

During the plot experiment in 2007, it was difficult to achieve perfect soil coverage during 

manure injection. As a result, the odour emission rate from injected manure behaved as if there 

was manure both on the surface and under the soil. The manure left on the surface contributed to 
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an odour emission immediately after application while the odour in the manure below the surface 

had to diffuse through the cover layer before being volatilized to the atmosphere. The amount of 

manure that behaved as if it were surface applied depended on the percent coverage achieved 

during the injection operation. To account for this, a percent coverage factor was introduced into 

the model. If the user entered 100% coverage, the odour emission behaved as if injected; if the 

user entered 0% coverage, the odour emission behaved as if surface applied. If the user entered 

50% coverage, the model treated half of the manure applied as surface applied and half as 

injected and so forth.   

 

5.3.3 Excel spreadsheet and simulations 

 

Due to its relative simplicity, the model was built as an Excel spreadsheet to calculate DE, odour 

source concentration, diffusion factor, odour flux, odour emission, and cumulative odour 

emission for each time step. Odour source concentration was defined as the first term of the Jury 

model while the diffusion factor was defined as the remaining terms. 
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The input requirements included initial odour concentration (400 OU/m3 for solid manure and 

700 OU/m3 for liquid manure), application rate (1X, 2X, or 3X), injection depth (0 to 0.2 m), and 

coverage factor (0 to 100%).  

 

The “odour source” concentration varied with time as well as manure type and application 

method due to the different degradation rates defined in Table 5.2. The odour source variation 

with time is shown in Figure 5.1. 

 

(5.10) 

Odour source 
concentration 

Diffusion factor 
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(a) 

  

(b) (c) 

Figure 5.1. Odour source variation with time, manure type, and application method, a) liquid vs. solid 

manure, b) injected vs. surface applied liquid manure, c) injected vs. surface applied solid 

manure. 

 

The diffusion factor (m/hr) varied with time and was a function of injection depth, DE, and 

application rate. As an illustration, the diffusion factor variation with time for surface applied 

solid and liquid manure applied at a 3X rate is shown in Figure 5.2. 
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Figure 5.2. Diffusion factor variation with time for both solid and liquid manure surface applied at a 3X 

application rate. 

 

Odour flux (OU/m2-s) was defined as the product of the odour source and the diffusion factor as 

in Equation 5.10. In order to scale the model so that the resulting odour fluxes were in the range 

of the odour fluxes observed in the plot experiment (Chapter 3), a scaling factor of 80,000 was 

applied to both solid and liquid manure odour fluxes. This scaling factor is specific to the data 

collected in this study, but it does not affect the overall behaviour or trend of the modeled fluxes. 

Odour emissions (OU/m2) were calculated by multiplying the odour flux by the time step (20 

min (0.33 hr) for the first flux, 10 min (0.167 hr) for the remaining fluxes). Finally, the 

cumulative odour emission was calculated by successively summing the odour emissions. 

 

The time to peak flux and duration of odours (length of time when the odour emission was 

“noticeable”) were also assessed using the model outputs. To define a “noticeable” odour flux, a 

suitable background flux was identified. In the plot experiments, background odour emissions 

from the control plots averaged 0.60 OU/m2-s or 2160 OU/m2-hr. This translated into an odour 

concentration of 204 OU/m3. However, literature stated that background odour in Tedlar bags 

used to collect odour samples ranged from 50 to 150 OU/m3 (Moseley et al., 1998; Qu and 

Feddes, 2006). To be conservative, a concentration of 25 OU/m3 was assumed to translate into an 

odour emission of approximately 250 OU/m2-hr and, for this study, the duration of odour 

emissions was defined as the time the odour flux was greater than 250 OU/m2-hr. 
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5.3.4 Validation data collection 

 

In order to validate the model, additional plot data were collected in May, 2009. Since it was not 

possible to measure odour concentration using olfactometry at that time (the olfactometer lab 

was temporarily shut down), the treatment effects on odour emission trend over time were to be 

assessed by monitoring the p-cresol concentrations in samples collected after spreading. Since 

the odour volatilization model used diffusivity constants for p-cresol to represent the diffusivity 

of odour, measuring p-cresol concentrations was deemed appropriate for model validation.  

 

To reliably measure p-cresol concentrations, sample air from the dynamic flux chamber (0.32 

m2, operated at 0.944 L/s, refer to Chapter 3) was drawn through sorbent tubes (XAD-7, SKC, 

Inc.) using a sampling pump (Airchek XR5000 Model 210-5000, SKC, Inc.). Sample air was 

drawn through the tube at 750 mL/min for 15 minutes to represent a sample volume of 11.25 L. 

For concentration measurement, the tubes were extracted with methanol and analyzed by 

GC/MSD. A preliminary experiment with samples collected in the dairy barn resulted in 

measureable p-cresol concentrations (average of 0.01 mg/m3) using this protocol.  

 

Using this protocol, 66 p-cresol samples were collected. Six control samples were collected (3 

from undisturbed soil, 3 from disturbed soil) as well as samples from a factorial experiment with 

3 repetitions: 

� 2 manure types (solid, liquid) 

� 2 application methods (surface, subsurface) 

� 1 application rate (2X as defined in 2007 data collection) 

� times after application (immediately, 30 min, 60 min, 150 min, 300 min) 

 

Unfortunately, due to an equipment malfunction at the analysis laboratory (Saskatchewan 

Research Council), the samples could only be analyzed for p-cresol concentration using a 

GC/FID with a detection limit of 0.05 mg/m3. None of the 66 samples registered a p-cresol 

concentration above the detection limit. The inability to detect p-cresol using the vented chamber 

and sorbent tube method may also have been due to the fact that p-cresol, with a KH value of 

6.38x10-5 (dimensionless, gas/aqueous ratio) is considered to be gas phase controlled. According 
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to Jiang and Kaye (1996), vented chambers are not suitable for measuring emissions of gas phase 

controlled substances because their volatilization is strongly influenced by wind speed, which is 

not well controlled with a vented chamber. Due to these measurement issues, validation of the 

model with experimental data was not possible for this study. General field observations were 

used to establish baseline values for the degradation rates and variation of DE with time. Studies 

where odour was monitored over time after application (Lau et al., 2003; Misselbrook et al., 

1997; Smith et al., 2007, 2008; Pain et al., 1998; Mkhabela et al., 2007, 2008) were used for a 

preliminary validation.  

 

5.4 Results and Discussion 
 

5.4.1 General model observations 

 

The odour flux (OU/m2-hr) variation with time showed that the odour flux reached a maximum 

value within three to five hours of application (Figure 5.3a). This was due to the variation in 

effective diffusivity with time. Initially, the low effective diffusivity of the soil inhibited odour 

movement, but as air spaces opened up in the topsoil, odour readily volatilized to the 

atmosphere. The peak flux for liquid manure was higher than the peak flux for solid manure at 

comparable application rates (due to a higher initial concentration value), but the odour flux from 

solid manure applications took longer to return to background levels (<250 OU/m2-hr) due to a 

lower degradation rate (Figure 5.3a). 

 

Subsurface application with 100% coverage delayed the appearance of the peak flux 

considerably. This was due to the time it took for the odour compounds to diffuse through the 

cover layer. During this time, the odour compounds underwent degradation so the peak flux was 

lower for subsurface applied manure than surface applied manure (Figure 5.3b and 5.3c). 

Subsurface application resulted in lower fluxes, but the duration of the odour event was similar 

to the surface application. 
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(a) 

  

(b) (c) 

Figure 5.3. Odour flux simulation for a 3X application rate, a) solid vs. liquid manure, b) effect of application 

method for liquid manure (injection depth = 0.1 m, 100% coverage), c) effect of application 

method for solid manure (injection depth = 0.1 m, 100% coverage). 

 

Even though the peak flux for solid manure was lower than for liquid manure, the longer 

duration of odour flux for solid manure resulted in higher cumulative odour emission (Figure 

5.4). Due to the degradation of odour compounds for subsurface applied solid manure, the 

cumulative odour was lowest for solid manure placed beneath the soil surface (Figure 5.4).  
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Figure 5.4. Simulated cumulative odour emissions from surface and subsurface applied liquid and solid 

manure applied at a 3X application rate. Injection depth was set to 0.1 m for both solid and liquid 

manure with 100% coverage. 

 

Finally, when the percent coverage was less than 100% for injected manure, there were two 

distinct peaks on the odour flux graph (Figure 5.5a). The first peak represented the odours from 

the manure left on the surface while the second peak represented the odours from the manure 

beneath the soil surface. 

 

  

(a) (b) 

Figure 5.5. Odour flux (a) and cumulative odour emission (b) for injected manure with 75% coverage. 

Application rate was 3X, injection depth was 0.1 m.  
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5.4.2 Effect of manure type and application rate on odour emission 

trend 

 

The results of the odour model simulation for solid and liquid surface applied manure at three 

application rates are shown in Table 5.7. For each manure type, the peak flux and cumulative 

emission increased with application rate. This was due only to the increase in thickness of the 

contaminated layer (W) in the model. The initial odour concentration (Co) did not change with 

application rate. 

 

Table 5.7.  Effect of manure type and application rate on odour emission trend for surface applied manure. 

  LIQUID SOLID 

  1X 2X 3X 1X 2X 3X 

Peak flux (OU/m
2
-hr) 18724 20214 21678 11010 13570 15333 

Time of peak (hr) 1.5 1.7 2 2.3 3.2 3.7 

Cumulative emission (OU/m
2
) 38675 50257 59849 43031 66055 84791 

Start time (hr) 0 0 0 0 0 0 

End time (hr) 5.7 6.7 7.3 11.2 14.7 17.3 

Duration 5.7 6.7 7.3 11.2 14.7 17.3 

 

The time between application and peak flux also increased with application rate. This was 

presumably also due to the larger thickness of material at the higher application rates. The 

thicker the layer, the longer it took for all of the compounds to diffuse to the top layer and begin 

volatilizing to the atmosphere. The duration of the odour event also increased slightly with 

application rate for both manure types. The duration of odours from solid manure applications 

were approximately double the duration for liquid manure applications at comparable application 

rates. 

 

5.4.3 Effect of application mode and application rate on odour 

emission trend 

 

The effect of injection and application rate on the odour emission trend is summarized in Table 

5.8 for liquid manure and Table 5.9 for solid manure. The peak fluxes for injected liquid manure 

were 88, 83 and 79% lower than the peak fluxes for surface applied liquid manure for the 1X, 2X 

and 3X application rates, respectively. Similarly, liquid injection reduced the cumulative odour 
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emission by 77, 73 and 70% for 1X, 2X and 3X application rate, respectively. The reduction in 

peak fluxes for subsurface applied solid manure were 96, 94, and 93% while the reduction in 

cumulative emissions were 91, 90, and 90%  for the 1X, 2X, and 3X application rates, 

respectively. These results suggest that injection should be very effective at reducing odours 

from both solid and liquid manure applications. However, this simulation assumes 100% soil 

coverage, which is often not achieved in the field. Refer to Section 5.4.5 for a discussion on the 

effect of soil coverage on odour reduction. 

 

The model results indicate that injection of liquid manure actually increases the odour event 

duration slightly (Table 5.8), which is counterintuitive. However, following Lin and Hildemann 

(1995), adsorption was assumed to be one of the mechanisms that would result in lower initial 

emission rates. These authors showed that, in covered landfills, adsorption reduced the emission 

rate but resulted in prolonged emission duration. Conversely, subsurface application of solid 

manure did decrease the duration of the odour event (Table 5.9), likely due to the increased 

degradation rate defined for subsurface applied solid manure.  

 

Table 5.8.  Effect of application mode and application rate on odour emission rate trend for liquid manure. 

  LIQUID SURFACE LIQUID SUBSURFACE 

  1X 2X 3X 1X 2X 3X 

Peak flux (OU/m
2
-hr) 18724 20569 21678 2259 3435 4480 

Time of peak (hr) 1.5 1.8 2 5.7 5.7 5.8 

Cumulative emission (OU/m
2
) 38675 50257 59849 8957 13755 18178 

Start time (hr) 0 0 0 3.7 3.7 3.7 

End time (hr) 5.7 6.7 7.3 10.8 11.8 12.5 

Duration 5.7 6.7 7.3 7.1 8.1 8.8 

 

Table 5.9.  Effect of application mode and application rate on odour emission rate trend for solid manure. 

  SOLID SURFACE SOLID SUBSURFACE 

  1X 2X 3X 1X 2X 3X 

Peak flux (OU/m
2
-hr) 11010 13570 15333 493 839 1073 

Time of peak (hr) 2.3 3.2 3.7 13.3 13.5 13.7 

Cumulative emission (OU/m
2
) 43031 66055 84909 3700 6381 8251 

Start time (hr) 0 0 0 11 10.5 10.5 

End time (hr) 11.2 14.7 17.3 17.5 19.8 20.8 

Duration 11.2 14.7 17.3 6.5 9.3 10.3 
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5.4.4 Effect of depth of injection on odour emission trend 

 

The effect of injection depth (L) on the odour emission trend for an application rate of 2X is 

shown in Table 5.10 for liquid manure. Note that the peak flux and cumulative emissions when 

the injection depth was zero were actually higher than the peak flux and cumulative emissions 

for surface applied liquid manure at the 2X rate. This was because the values in Table 4.4 

assumed subsurface application (even when injection depth was zero) in narrower bands and an 

effective application area of approximately half that of surface application. This meant that there 

was less area for volatilization in the banded application, but the contaminated layer thickness 

was doubled, resulting in higher flux values. A modest depth of 1 cm (0.01 m) resulted in a 

lower peak flux and cumulative emission than the surface application, even with the higher 

contaminated layer thickness. Increasing the injection depth to 20 cm (0.2 m) reduced the 

cumulative emission by 70% compared to the typical injection depth of 10 cm (0.1 m). In 

practice, if injection to 20 cm was achieved with perfect coverage, the odours would likely be 

negligible. By the time the odours diffused through the cover layer, the volatile components of 

odour may be consumed or altered by the soil microorganisms. This effect could be better 

captured by altering the degradation rate constant for subsurface applied liquid manure. 

 

Table 5.10. Effect of injection depth on odour emission rate trend for liquid manure. 

  LIQUID SUBSURFACE--VARYING L for 2X APPLICATION RATE 

  0 m 0.01 m 0.05 m 0.10 m 0.15 m 0.2 m 

Peak flux (OU/m
2
-hr) 22759 17517 7753 3435 1632 905 

Time of peak (hr) 2.3 3.2 4.3 5.7 7 8 

Cumulative emission (OU/m
2
) 73152 45217 25815 13755 7290 4134 

Start time (hr) 0 1.7 2.7 3.7 4.8 6 

End time (hr) 8.2 9.5 11 11.8 12 11.8 

Duration 8.2 7.8 8.3 8.1 7.2 5.8 

 

The effect of injection depth (L) on the odour emission trend for an application rate of 2X is 

shown in Table 5.11 for solid manure. In this case, the peak flux and cumulative emissions for a 

depth of 0 m were slightly lower than those for the surface applied 2X solid manure. The 

difference was due to the lower effective application area for the subsurface application. In this 

case, the higher degradation rate for injected solid manure resulted in lower emissions, even 

though the contaminated layer thickness was higher. Again, increasing the injection depth to 20 
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cm (0.2 m) reduced the predicted cumulative odour emissions by almost 60% compared to a 

typical 10 cm depth. However, injection of solid manure is an energy-intensive operation and 

incorporation depths of one or five cm are more common. Based on these simulated results, 

placing solid manure beneath 1-cm of soil would reduce cumulative odour losses by 44% and 

placing it beneath 5-cm of soil would reduce cumulative odour losses by 79%.  

 

Table 5.11. Effect of injection depth on odour emission rate trend for solid manure. 

  SOLID SUBSURFACE--VARYING L for 2X APPLICATION RATE 

  0 m 0.01 m 0.05 m 0.10 m 0.15 m 0.2 m 

Peak flux (OU/m
2
-hr) 10486 7226 2076 831 464 289 

Time of peak (hr) 4 5.8 10.2 13.2 15.8 17.7 

Cumulative emission (OU/m
2
) 62404 35094 13239 6381 3920 2624 

Start time (hr) 0 3.2 7.2 10.5 13.2 16.2 

End time (hr) 13.3 15.2 18.3 19.8 20.2 19.8 

Duration 13.3 12 11.1 9.3 7 3.6 

 

5.4.5 Effect of coverage factor on odour emission trend 

 

The effects of the soil coverage factor on the odour emission trends are summarized in Table 

5.12 for liquid manure and Table 5.13 for solid manure. For this simulation, the application rate 

was 2X and the injection depth was held constant at 10 cm (0.1 m). Theoretically, the simulation 

for 0% coverage should behave exactly the same as the simulation for the injection with 0 m 

depth because they are both essentially surface applied in bands. However, the coverage factor 

module was designed to treat a portion of the applied manure as strictly surface applied and the 

remainder as injected. So, for the 0% coverage simulation, the module treated all of the manure 

as if it were surface applied and generated odour emission trend data from the surface applied 

module.  
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Table 5.12. Effect of coverage factor on odour emission trend for injected liquid manure. 

  LIQUID SUBSURFACE, 2X APPLICATION RATE, L = 0.1 m 

  0% 10% 25% 50% 75% 100% 

Peak flux (OU/m
2
-hr) 20569 17960 14379 8653 3490 3435 

Time of peak (hr) 1.8 1.7 1.7 1.3 1 5.7 

Cumulative emission (OU/m
2
) 50257 42436 32269 19519 12775 13755 

Start time (hr) 0 0 0 0 0 3.7 

End time (hr) 6.7 6.5 7 9 10.6 11.8 

Duration 6.7 6.5 7 9 10.6 8.1 

 

Table 5.13. Effect of coverage factor on odour emission trend for injected solid manure. 

  SOLID SUBSURFACE, 2X APPLICATION RATE, L = 0.1 m 

  0% 10% 25% 50% 75% 100% 

Peak flux (OU/m
2
-hr) 13570 11662 9000 5071 1918 839 

Time of peak (hr) 3.2 2.8 2.7 2.2 1.5 13.5 

Cumulative emission (OU/m
2
) 66055 54315 39004 19744 8626 6381 

Start time (hr) 0 0 0 0 0 10.5 

End time (hr) 14.7 13.7 12.3 8 4.2 19.8 

Duration 14.7 13.7 12.3 8 4.2 9.3 

 

Obviously, as the coverage factor increased, the peak fluxes decreased for both solid and liquid 

manure. However, the cumulative odour loss for 100% coverage is actually slightly higher than 

for 75% coverage for liquid manure. For 75% coverage, a portion of the odour compounds 

volatilize immediately after application and this results in a smaller secondary peak as the 

compounds beneath the surface diffuse to the surface. For 100% coverage, all of the compounds 

are available to diffuse to the surface and volatilize. For liquid manure injection, the model 

results indicated that an 85% coverage factor would minimize cumulative odour losses while a 

coverage factor of 93% would minimize cumulative odour losses for solid manure injection. 

However, peak fluxes were lowest when the coverage was 100%. 

 

A better estimate of the effect of subsurface application on reducing the odour emission rate and 

cumulative odours can be made if reasonable coverage factors are assumed for solid and liquid 

manure at various application rates. For this comparison, the coverage factors for the subsurface 

application of liquid manure were estimated to be 70, 45, and 20% at 1X, 2X, and 3X, 

respectively and 80, 65, and 50% for solid manure at 1X, 2X, and 3X, respectively. The peak 

flux, cumulative odour emissions, and percent reduction due to injection for liquid and solid 

manure at three application rates are summarized in Tables 5.14 and 5.15, respectively. 
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Table 5.14.  Effect of subsurface application on the reduction of peak odour fluxes and cumulative odour 

emissions for liquid manure application at three application rates. Injection depth was assumed to 

be 0.10 m and coverage factor was 70, 45, and 20% for 1X, 2X, and 3X, respectively. 

 1X 2X 3X 

 Surface Injected % Diff Surface Injected % Diff Surface Injected % Diff 

Peak flux 

(OU/m
2
-hr) 

18724 3843 79 20569 9704 53 21678 16607 23 

Cumulative 

emission 

(OU/m
2
) 

38675 9384 76 50257 21624 57 59849 42635 29 

 

Table 5.15.  Effect of subsurface application on the reduction of peak odour fluxes and cumulative odour 

emissions for solid manure application at three application rates. Injection depth was assumed to 

be 0.10 m and coverage factor was 80, 65, and 50% for 1X, 2X, and 3X, respectively. 

 1X 2X 3X 

 Surface Injected % Diff Surface Injected % Diff Surface Injected % Diff 

Peak flux 

(OU/m
2
-hr) 

11010 1191 89 13510 3060 77 15333 5711 63 

Cumulative 

emission 

(OU/m
2
) 

43031 4562 89 66055 12106 82 84909 25441 70 

 

Compared to the odour emission reduction due to injection discussed in Section 5.4.3 (>90% for 

solid manure, >70% for liquid manure), these emission reduction values are more reasonable and 

comparable to those found in literature. This was not unexpected as literature values were 

collected during actual field applications where coverage factors are typically in the 50-80% 

range and decrease with higher application rates. 

 

The coverage factor had no clear effect on the duration of the odour event. Increasing the 

coverage from 10 to 75% actually increased the duration for liquid manure (but peak fluxes and 

cumulative losses were lower) while it decreased the duration for solid manure.  

 

5.4.6 Model validation  

 

As discussed in Section 5.3.4, no usable p-cresol (odour) data were obtained from the validation 

experiment. Therefore, baseline values for the degradation rates and effective diffusivities were 

established from a combination of literature values and field experience. Adjusting some of these 

values (particularly the degradation rate for surface and/or injected liquid manure) may provide 

more realistic results. 
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5.4.6.1 Validation with experimental data 

The experimental data collected in 2007 (covered in Chapter 3) were used to scale the odour 

fluxes occurring 20 minutes after application. To allow comparison with the model results, the 

coverage factor achieved in the field for the subsurface plots were estimated to be 70, 45, and 

20% for liquid manure at 1X, 2X, and 3X, respectively and 80, 65, and 50% for solid manure at 

1X, 2X, and 3X, respectively. For this simulation, the injection depth was set to 0.075 m to 

coincide with the plot experiments. The comparison between the experimental fluxes and 

modeled fluxes at 20 min after application is shown in Table 5.16. 

 

Table 5.16. Comparison of measured and modeled 20 min fluxes. 

 

Treatment 

Application 

Rate 

Measured 20 min flux 

(OU/m
2
-hr) 

Coverage 

factor (%) 

Modeled 20 min flux 

(OU/m
2
-hr) 

Liquid surface 
1X 9580 - 9103 
2X 8140 - 9103 
3X 7416 - 9103 

Solid surface 
1X 5526 - 5102 
2X 6178 - 5102 
3X 5803 - 5102 

Liquid injected 
1X 4702 70 2772 
2X 7063 45 4991 
3X 8060 20 7259 

Solid injected 
1X 2375 80 1020 
2X 3114 65 1785 
3X 2603 50 2551 

 

In the analysis of the experimental data collected in 2007, the application rate did not 

significantly affect odour emissions (refer to Chapter 3). Therefore, the initial concentration in 

the model did not change with application rate. The thickness of the contaminated material did 

increase with application rate. However, this thickness did not impact the flux until 40 to 60 min 

after application. Therefore, the modeled surface flux at 20 minutes was not affected by 

application rate. The magnitudes of the modeled surface fluxes were similar to the actual surface 

fluxes (due to the 80,000 scaling factor applied to the flux calculation). While the model 

appeared to underestimate the fluxes for subsurface applications slightly, the magnitudes were 

also similar. The increase in modeled emissions with application rate was due only to the 

decrease in coverage factor. 

 

The experimental data showed that the initial flux from surface applied liquid manure was 24% 

higher than the initial flux for surface applied solid manure. The model results showed that the 
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odour flux from liquid manure was 44% higher than from solid manure for this same 

comparison. Similarly, the initial flux from the injected liquid manure was 55% higher than 

injected solid manure while the model results showed that odour flux from liquid manure was 

64% higher. 

 

5.4.6.2 Validation with literature values 

Smith et al. (2007, 2008) used micrometeorological methods to monitor the odour emission rate 

trend over time after application of liquid and solid manure. Their application rates (30,000 L/ha 

for liquid, 30 Mg/ha for solid) corresponded to approximately 1X and 2X rates for liquid and 

solid manure used in this study, respectively. Cumulative odours measured over 42 hours were, 

on average, 940,0000 OU/m2 for solid manure and 830,000 OU/m2 for liquid manure. A model 

run of surface applied solid (2X) and liquid (1X) manure resulted in predicted cumulative odour 

emissions that were approximately 10 times lower than those reported in Smith et al. (2007). The 

model predicted odours from solid manure applications that were 41% higher than liquid manure 

applications, compared to 12% higher measured by Smith et al. (2007). Smith et al. (2007) also 

found that increasing the liquid application rate from an equivalent 1X to an equivalent 2X rate 

increased total emissions by approximately 25%. The model results of the current study were in 

quite close agreement, with cumulative odour emissions from 2X surface applied liquid manure 

that were 23% higher than 1X surface applied liquid manure. 

 

Smith et al. (2007) also examined odour flux evolution with time for solid and liquid manure 

applied to the surface. They took odour flux measurements immediately after application and 1, 

6, 24, and 48 hours after application. Their results showed the maximum flux occurred one hour 

after application. Liquid manure resulted in a higher peak than solid manure, but the odours from 

the solid manure application took longer to return to background levels, resulting in higher 

overall emissions from solid manure applications (Smith et al., 2007). The peak flux for liquid 

manure was approximately 10 OU/m2-s (36,000 OU/m2-hr) and 6 OU/m2-s (21,600 OU/m2-hr) 

for solid manure. In the model, simulated peak fluxes from liquid and solid manure applications 

were approximately 19,000 and 14,000 OU/m2-hr, respectively for similar application rates. 
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Rahman et al. (2001) noted that emissions measured immediately after liquid manure injection 

were not influenced by application rate. The model results also show no change in odour flux 

immediately after application for different application rates, but the coverage factor was assumed 

to be 100% for all rates. At higher application rates, coverage factors tend to decrease which will 

result in increased fluxes immediately after application, as shown in Table 5.16. Additionally, 

increasing the application rate resulted in higher values for the material thickness (W), which 

resulted in higher cumulative odour emissions for the higher application rates.  

 

Micrometeorological methods were used by Mkhabela et al. (2007) to monitor odour emissions 

over time after application of liquid manure. Fluxes were measured at 0, 2, 4, 6, 18, 24, 30, and 

48 hours after slurry application. Peak fluxes appeared to occur during the 6 hour measurement, 

corresponding well with the modeled results. The magnitudes of the peak fluxes were 72,000 

OU/m2-hr as measured in Mkhabela et al. (2008) and 21,000 OU/m2-hr predicted by the model at 

3X liquid surface applied. Mkhabela et al. (2008) also showed that the application rate did not 

affect the general trend of the emission rate over time after application, but the magnitudes of the 

fluxes were higher for the 3X rate. Similar results were obtained in the model output, shown in 

Figure 5.6 for 1X and 3X rates of surface applied liquid manure. 

 

 

Figure 5.6. Effect of application rate on simulated odour emission rate trend over the first 12 hrs after surface 

application of liquid manure. 

 

In Mkhabela et al. (2008), cumulative odour emissions from an equivalent 1X application over a 

48 hour period were, on average, 1.3x106 OU/m2, two orders of magnitude higher than the 

modeled emissions. Increasing the application rate to 2X and 3X resulted in 10 and 40% higher 
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cumulative losses than the 1X rate, respectively, while the model resulted in a 22 and 35% 

increase over the 1X rate in cumulative odour emissions.  

 

Lau et al. (2003) used a vented chamber to monitor odour emissions after surface and subsurface 

application of liquid manure at an equivalent rate of 2X. Odour emissions were measured 0.5, 

1.5, and 2.5 hours after application. Their highest emissions were measured at the 0.5 hour mark 

for both application methods and they successively decreased over time. In contrast, the model 

predicted that peak fluxes occurred three to five hours after application. Lau et al. (2003) noted 

that the odour reduction due to injection was highest at 0.5 hours after application and lessened 

slightly as time went by. The model results also showed that the odour reduction due to injection 

was greatest immediately after application. However, due to the time required to diffuse through 

the cover layer, the flux from subsurface applied manure was delayed significantly and occurred 

when the odour flux from the surface applied manure had already returned to background levels. 

Therefore, the model predicts odour flux from injected manure that is higher than the odour flux 

from the surface applied manure over a period of about 4 hours approximately 10 hours after 

application (Figure 5.7a). The trend of odour reduction over time observed by Lau et al. (2003) 

was better simulated by assuming a percent coverage of only 50% for the injected manure, as 

shown in Figure 5.7b. In this simulation, the maximum reduction was observed approximately 

one hour after application, and this reduction decreased over time. In this case, the odour flux 

from both the surface and injected manure returned to background at the same time, 

approximately five hours after application. 
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(a) (b) 

Figure 5.7. Model predicted odour reduction over time due to injection for liquid manure application at 2X 

rate, a) assuming 100% coverage for injected manure, b) assuming 50% coverage for injected 

manure. 

 

Other studies that have measured odour emission include those by Misselbrook et al. (1997) and 

Pain et al. (1991) who used micrometeorological methods to collect information on the odour 

emission trend over time after application of manure. However, these authors reported their 

results using odour concentration, which was not directly comparable to the model outputs. The 

data reported by these authors suggested that the peak odour concentrations occurred 

immediately after application and odour decreased exponentially over time over the first 10 

hours after application. Local increases in odour after the 10 hour mark were attributed to 

increases in wind speed. The dependence of the micrometeorological calculation on wind speed 

may have been the reason why the modelled cumulative emissions were 10 to 100 times lower 

than those reported in Smith et al. (2004, 2008) and Mkhabela et al. (2007, 2008). 

 

5.4.7 Model limitations 

 

While most of the assumptions for the Jury model listed in Section 5.3.1 of this chapter are valid 

for general cases of manure application, others may lead to over- or under-estimations of odour 

volatilization. For example, assuming zero water velocity neglects mass transport of 

contaminants upward and downward, such that convective and leaching losses were assumed 

negligible. However, under certain conditions, prolonged upward flow of water due to 

evaporation and capillary rise may occur when shallow water tables are present. In such cases, 
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compounds that are not strongly sorbed and that have significant concentrations in the dissolved 

phase may have their volatilization losses enhanced when water is flowing upward and 

discharging at the surface (Jury et al., 1990). Therefore, for high application rates and soils with 

high water tables, the assumptions of zero water velocity may not be valid. However, Lin and 

Hildemann (1995) stated that contaminants, even those with large Henry’s constant considered to 

be liquid phase controlled, tended to volatilize before they leached out. Therefore, leaching 

losses of contaminants contributing to odour are likely to be negligible. 

 

The main limitation of the current model is the assumption of static meteorological conditions. 

There will be a diurnal variation in ambient and soil temperature during the 48 hour modeling 

period and this temperature change will alter the effective diffusivity of the soil, the main 

component of the model. In addition, the model assumed no rainfall during the 48 hour modeling 

period. Addition of water to the soil will also affect the effective diffusivity of the soil. The 

effect of rainfall before and after manure application was discussed in Smith et al. (2008). The 

authors stated that rainfall before spreading reduced the infiltration capacity of the soil, 

sometimes resulting in higher emission. Rainfall after spreading always reduced overall 

emissions because of the enhanced downward movement of contaminants (Smith et al., 2008). 

Mkhabela et al. (2008) also reported that fluxes were significantly dependent on weather 

conditions (wind speed, net radiation, evapotranspiration). While the effective diffusivity in this 

model is time dependent, the expressions developed in Table 5.5 were meant to capture only the 

change in air filled pore space as the manure first saturated the soil then drained away. 

Accounting for all of the effects of the changing ambient conditions on effective diffusivity 

would be very complex and was beyond the scope of this study. 

 

The current version of the model does not allow for input of application rate as a continuous 

variable. Input of application rate is limited to discrete values of 1X, 2X, and 3X which are 

approximately comparable to one, two, and three year application rates. Modification of the 

model should allow the user to input an application rate based on total mass, volume, or nitrogen 

applied per hectare. 
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There were other minor inconsistencies in the current model, such as the results for injected 

manure with zero depth or 0% coverage. This particular problem may be dealt with by not 

allowing these extreme values to be valid for the injected module. If the injection depth or 

coverage factors are zero, the model should simply simulate surface application. Better estimates 

of µ may also result in having 100% coverage simulate the lowest cumulative odour loss (as 

opposed to 85% coverage for solid injection and 93% coverage for liquid injection). Other 

inconsistencies such as the duration of odours and presence of odour when depth is great (>0.2 

m) may be solved with better estimates of the effect of manure type and application method on 

the degradation rate constant. Inclusion of degradation rates that reflect variable effects of soil 

and environmental conditions like texture and moisture would also likely improve model 

predictions. 

 

 

5.5 Conclusions and Recommendations 
 

A model that predicts the odour emission rate and cumulative emissions from land applied 

manure was developed using the mathematical model developed by Jury et al. (1990) to predict 

the movement of organic chemicals in soil. Modifications to the model allowed the effects of 

application mode (surface vs. subsurface), manure type (liquid vs. solid) on odour emissions to 

be simulated. The effects of injection depth and a coverage factor on emissions were also 

simulated. Model parameters (initial concentration, degradation rate, effective diffusivity 

variation with time, and a scaling factor) were estimated from experimental data collected in 

2007 and literature values. These parameters resulted in modeled results that agreed reasonably 

well with literature values. 

 

In general, peak fluxes were observed to occur between two and five hours after application. 

Peak fluxes from liquid manure applications were higher than those for solid manure 

applications, but the extended duration of odour emissions for solid manure resulted in higher 

cumulative losses from solid manure applications. The duration of odour emissions >250 

OU/m2-hr was also longer for solid applications than for liquid applications. While the 
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application rate had no effect on the initial odour flux, higher application rates resulted in higher 

peak fluxes, higher overall emissions, and longer odour durations for both manure types and 

application methods. In general, the ranking of cumulative odour emissions was: solid surface > 

liquid surface >> liquid injected > solid injected.  

 

The model results showed that, for perfect 100% coverage, injection reduced peak fluxes and 

cumulative odours by more than 90% for solid manure and more than 80% for liquid manure. 

When typical coverage factors were assumed, the percent reduction in cumulative odours due to 

injection were approximately 75, 55, and 30% for liquid manure at 1X, 2X, and 3X application 

rates, respectively (Table 5.14) and 90, 80, and 70% for solid manure (Table 5.15). The model 

also suggested that the odour event duration was longer for subsurface application than surface 

application, even though the peak flux and cumulative losses were lower with injection. Finally, 

injection depths as low as 0.05 m (5 cm) were shown to significantly reduce odours from both 

liquid and solid manure applications compared to surface spreading. 

 

The performance of this basic volatilization model in terms of odour prediction reveals that it 

may be possible to mathematically predict the odour emission rate trend after the land 

application of manure. The model provides baseline information on the impact of manure type, 

application method, application rate, depth of injection, and coverage factor on the odour 

emission trend. Further development is required to make the results more robust and practical. 

Future work should focus on better estimation of the first order degradation rate constant and the 

variation of effective diffusivity with time and soil conditions. Estimating the effect of transient 

weather conditions on the effective diffusivity can also help predict the effect of rainfall and 

temperature on odour emissions from manure spreading. These emission rate trends are essential 

for the application of dispersion models to optimize the minimum separation distances for 

manure spreading activities. 
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Chapter 6 

 

6.0  Better Prediction of Nitrous Oxide (N2O) Emission 

Rate from Manure Spreading 
 

A significant portion of anthropogenic nitrous oxide (N2O) emissions come from the land 

application of fertilizers and manure (Mosier et al., 1996. Although N2O is naturally produced in 

soils, manure management practices such as slurry injection or solid manure incorporation have 

the potential to influence both the short-term and long-term emissions by changing the 

magnitude and pattern of the nitrogen cycle in the soil-plant system. Management practices also 

impact the magnitude of other nitrogen losses (ammonia volatilization, nitrate leaching) which 

affect indirect N2O emissions. A better understanding of the effects of application method on the 

short- and long-term direct and indirect N2O emissions is required to better estimate national 

agricultural greenhouse gas (GHG) emissions. Results from a simple field study showed that 

injection increased 7-day cumulative nitrous oxide emissions from solid manure by 22 times 

compared to surface application. Overall carbon dioxide equivalent cumulative emissions were 

increased by a factor of 5 due to injection of solid manure. Collecting continuous GHG flux data 

from sites over several weeks or months is labour-intensive and does not always provide 

statistically distinguishable results. Therefore, a model that simulates the environmental 

conditions and nutrient transformations after manure application may allow a more convenient 

and reliable prediction of the effect of management practices on total GHG emissions. 

 

Numerous process-based models have been used to estimate N2O emissions as influenced by 

agricultural practices in Canada.  These models simulate trace gas fluxes of carbon and nitrogen 

among the atmosphere, vegetation, and soil while submodels account for nitrogen gas emissions 
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from nitrification and denitrification. However, these models do not account for enhanced 

denitrification that potentially exists after slurry injection or manure incorporation, resulting in 

an underestimation of N2O emissions. A simple mass balance of nitrogen after application to 

land shows that enhanced denitrification can increase total N2O-N emissions by a factor of 5. By 

accounting for the increased microbial activity, slower oxygen diffusion and higher water filled 

pore space that exists after manure injection, models may better estimate N2O emissions from 

manure application practices. 

 

6.1 Introduction 
 

Agriculture contributes to approximately 50% of the global anthropogenic nitrous oxide (N2O) 

emissions (IPCC, 2001) and 72% of Canadian anthropogenic N2O emissions (Environment 

Canada, 2005) (Rochette et al., 2008a). Manure and fertilizer application are the main source of 

agricultural N2O emissions. The rate of N2O production in soils is controlled by complex 

interactions among oxygen, nitrate, ammonium, available carbon, moisture, and temperature 

(Hutchinson et al., 2007). As described in Chapter 2, N2O is produced during nutrient 

transformations such as nitrification and denitrification. Although N2O is naturally produced in 

soils, manure management practices such as subsurface application of manure (liquid or solid) 

have the potential to increase both the short-term and long-term N2O emissions by altering the 

nitrogen cycle in the soil-plant system. Carbon credit trading makes the magnitude and reduction 

of GHG emissions an important part of manure management decisions. Understanding the effect 

of application method on the short- and long-term N2O emissions for both solid and liquid 

manure is required to better estimate the overall contribution of land application of manure to 

agricultural GHG emissions, and develop beneficial manure management practice (BMP) 

recommendations that consider impacts on GHG production along with other factors.   

 

In addition to their impact on direct N2O emissions, manure management techniques have an 

impact on the magnitude of indirect N2O emissions. Indirect N2O is defined as N2O production 

originating from nitrogen that was emitted or transported from the source in a form other than 

N2O (Del Grosso et al., 2006). For example, manure application (particularly broadcasted slurry) 
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results in high rates of ammonia volatilization. Volatilized N that is later deposited on soils 

marginally adds to the N pool in the soil. This added N increases the substrates available for 

nitrification and denitrification, resulting in higher N2O emissions. Additionally, application 

method can influence nitrate (NO3) leaching which can also contribute to indirect N2O emissions 

(Del Grosso et al., 2006).  

 

The impacts of manure type and application method on short-term, direct GHG fluxes were 

analyzed in Chapter 4. Those results clearly showed that N2O and CO2-e fluxes were 

significantly higher from liquid manure and subsurface applications. However, since 

measurements were made at only one time after application (24 hours), the complete impacts of 

manure type and application method on total emissions could not be assessed. It was 

hypothesized that manure type and placement would have long term effects on the GHG 

emissions. Loro et al. (1997) noted that solid manure application resulted in initially lower but 

more sustained GHG emissions than liquid manure application. This result was attributed to the 

organic form of nutrients present in solid manure. Organic N that was mineralized over time 

provided a steady supply of substrate for nutrient transformations producing N2O. The high 

ammonium N content in liquid manure was rapidly nitrified to NO3 and was either quickly used 

by plants or denitrified to N2O and N2. As a result of these phenomena, Loro et al. (1997) 

observed high, short bursts of N2O fluxes immediately after application of liquid manure.  

 

In addition to manure form, application method (surface vs. subsurface) is also expected to 

influence the patterns of N2O production over time. Enhanced rapid microbial activity beneath 

the soil surface may produce high amounts of CO2 and N2O immediately after application, but 

rapid substrate utilization and depletion may result in lower GHG emissions from injected 

manure over subsequent time periods. Some studies that reported on the effect of application 

technique on GHG fluxes only measured fluxes one or two times after application (Lovanh et al., 

2008, Sistani et al., 2008) while others continually monitored fluxes over the course of 2 to 6 

weeks (Weslien et al., 1998, Perala et al., 2006, Flessa and Beese, 2000, Wulf et al., 2002). Of 

the studies that measured cumulative losses over a longer period, only Wulf et al. (2002) found 

that injection resulted in significantly higher GHG emissions on a field scale. Collecting 

continuous GHG flux data from sites over several weeks or months is labour-intensive and does 
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not always provide statistically distinguishable results. Therefore, a model that simulates the 

environmental conditions and nutrient transformations after manure application may allow a 

more reliable prediction of the effect of management practices on total GHG emissions. 

 

The objectives of this component of the thesis research work were:  

� to assess if different manure application methods impact longer-term (7 day) GHG 

emissions,  

� to review GHG prediction models to determine if they can account for the effects of 

application method on total N2O emissions from manure application, 

� to estimate the magnitude of the effects of application method on total direct and indirect 

emissions, and 

� to suggest any modifications to the models that might be required to account for these 

effects.  

 

 

6.2 Field Assessment of Impact of Application Method on 

Longer-term GHG Emissions 
 

To determine if manure type and application method have an impact on GHG emissions beyond 

24 hours after application, GHG fluxes were measured daily for seven days after application of 

solid feedlot and liquid dairy manure. For this study, manure application was simulated by hand 

as described in Chapter 3 (Section 3.3.4.2). Fluxes were measured using static chambers and the 

same methodology used in the 2007 experiment (Chapter 4, Section 4.3.1.1) between May 20 

and 29, 2009 at the U of S feedlot. The sandy loam soil properties are outlined in Table 4.7 in 

Chapter 4. Manure samples from this experiment were not analyzed but were obtained from the 

same sources as the 2007 experiment. The effects of manure type, application method, and time 

after application on GHG fluxes were determined using a factorial experiment with 3 replications 

including: 

� 2 manure types (solid feedlot, liquid dairy) 

� 2 application methods (surface, subsurface) 
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� 1 application rate (2X as defined in Table 4.4 of Chapter 4) 

� 5 times after application (1 day, 2 days, 3 days, 5 days, 7 days) 

 

Disturbed and undisturbed control flux samples were also collected on each sampling day.  

Analysis of the GHG flux data over time showed highly variable fluxes for most treatments over 

the sampling period (7 days). The solid manure injected plots saw a surprisingly steady increase 

in N2O fluxes over the sampling period (Figure 6.1a). Figure 6.1b shows the N2O flux trend over 

time for all treatments except solid injected (different y-axis scale). Most of the treatments 

(except solid injected) were indistinguishable from each other (and in some cases, the control) 

for each measurement day, but there was a general decreasing trend with time.  

 

The CO2 flux was highly variable and most treatments were indistinguishable from each other on 

most days (Figure 6.2). Unlike the N2O flux, the CO2 flux remained relatively constant with 

time. Due to the high N2O flux from the solid injected treatment, the overall CO2-e flux has a 

trend similar to the N2O flux trend (Figure 6.3).  

 

Overall data showed that fluxes from the injected plots were higher than fluxes from the surface 

plots, but unlike the 2007 data, the fluxes from the solid manure were higher than fluxes from the 

liquid manure. It was likely that the solid manure collected from the beef feedlot was fresher for 

this experiment than in 2007. The total carbon and inorganic N contents are higher in fresh 

manure than in stockpiled or composted manure (Larney et al., 2006) which would affect the gas 

production rates, particularly denitrification in anaerobic zones under the soil. The fact that even 

the surface applied solid manure had relatively high N2O fluxes (Figure 6.1b) agrees with the 

theory that the manure had higher levels of available N and C than in the 2007 experiment. 

However, high C:N ratios (as in the solid manure) and longer oxygen diffusion paths (as with the 

injected manure) usually result in complete denitrification and emission of N2 rather than N2O. 

Nonetheless, the solid manure injected treatment saw a significant emission of N2O over the 

seven day sampling period.  
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(a) 

 

(b) 

Figure 6.1.  N2O flux trend over seven days after application (a) all treatments, (b) all treatments except solid 

injected. Error bars represent the standard error of the mean (positive error only—negative error 

bar is symmetric). 
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Figure 6.2. CO2 flux trend over seven days after application. Error bars represent the standard error of the 

mean (positive error only—negative error bar is symmetric). 

 

 

 

Figure 6.3. CO2-e flux trend over seven days after application. Error bars represent the standard error of the 

mean (positive error only—negative error bar is symmetric). 

 

The seven day cumulative losses of N2O and CO2-e were calculated by assuming that the fluxes 

measured on each day were constant for the 24 or 48 hours before the next flux measurement. 

Those results are shown in Table 6.1 for each treatment. Injection increased N2O emissions by 



268 
 

22 times for solid manure and doubled N2O emissions for liquid manure. Injection increased the 

overall CO2-e emissions by 5 times for solid manure and 1.3 times for liquid manure.  

 

Table 6.1 Estimated seven day cumulative emissions of N2O and CO2-e for surface and subsurface application 

of liquid and solid manure. 

 Cumulative emission 

 (mg N2O/ha) (g CO2-e/ha) 

Solid surface 158 309 
Solid injected 3461 1572 
Liquid surface 35 383 
Liquid injected 68 501 

Control 6 51 
 

One explanation for the significant increase in N2O flux from the solid injected plots could be the 

fact that the solid manure is immobile beneath the soil surface. If anaerobic or partially anaerobic 

zones develop, they are likely to remain so until the available N is transformed, typically to N2O 

and N2 via denitrification. Injected liquid manure generates high fluxes of N2O for a short period 

(as shown in previous results and in Figure 3b for day 1), but as the liquid manure infiltrates and 

drains from the top soil zone relatively quickly, the water filled pore space decreases, resulting in 

steady or declining N2O fluxes over time (Figure 3b for days 2 to 7).  

 

The results in Chapter 4 indicated that the manure application method influenced short-term 

(within 24 hours) GHG emissions while the results of this seven day study showed that 

application method also influenced longer-term (within 7 days) emissions. In fact, injection of 

solid manure appeared to dramatically increase N2O emissions compared to surface application 

for at least seven days after application. If solid manure is injected during a period when there is 

no plant uptake (as in this study), more of the added N is likely to contribute to N2O production 

since uptake of ammonium N by plants reduces the amount of ammonium left behind in the soil 

that can be nitrified to nitrate and subsequently be denitrified. Since the organic nutrients in solid 

manure mineralize over time, denitrification and N2O emissions could occur over an extended 

period of time. Extended emissions of N2O after subsurface application could be a significant 

factor in the overall impact of application method on GHG emissions. 
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6.3 Review of Greenhouse Gas Prediction Models 
 

Since GHG emissions became a global environmental concern in the early 1990’s, much effort 

has been spent on developing models that estimate regional and national GHG inventories. These 

models have evolved from simple, single factor empirical relationships to complex, process-

based models that account for all of the environmental conditions that influence GHG production 

and emission. Several of these methodologies and models are summarized in the following 

sections, with focus on how they treat emissions from manure applications. 

 

6.3.1 IPCC methodology 

 

Since its inception in 1988, The Intergovernmental Panel on Climate Change (IPCC) has been 

developing methodologies for estimating carbon and nitrogen fluxes for regional and national 

inventories. Agricultural N2O emissions are assumed to be derived from three principle sources: 

1) direct emissions from soil N, 2) emissions from animal waste management systems, and 3) 

indirect emissions from N lost to the agricultural system through leaching, runoff, or atmospheric 

deposition. Each source has at least one emission factor (EF), which estimates the proportion of 

the total N input that is emitted as N2O. Emission factors have a defined default value and a 

specified range, derived by IPCC from published information. The IPCC emission factors are 

essentially production based and do not account for climate, land use management practices, soil 

types, and other controlling variables. The advantages of the IPCC methodology are its 

simplicity, global coverage, transparency, and use of readily available information (Hutchinson 

et al., 2007). 

 

Of the three main sources of agricultural N2O emissions, land application of manure contributes 

to 1) and 3). The current IPCC methodology for predicting N2O from agricultural land assumes a 

default EF of 1.25% (IPCC 1997) or 1% (IPCC 2006) of all N added to the soil (Chen et al., 

2008). While 1.25 or 1% of unvolatilized N inputs are lost from soil as direct N2O emission, 

approximately 10% of synthetic fertilizer N and 20% of organic fertilizer N applied is assumed 

to be volatilized (Del Grosso et al., 2006), regardless of application method. Furthermore, 30% 
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of applied N is assumed to leach or run off into the groundwater or surface waters (Del Grosso et 

al., 2006). Indirect N2O emission is the sum of 1% of the volatilized gases (NH3) and 2.5% 

(IPCC 1997) or 0.75% (IPCC 2006) of the nitrate leached to surface or ground waters (Del 

Grosso et al., 2006). Therefore, in this approach to N2O prediction, manure placement does not 

affect total N2O emissions.  

 

This Tier I IPCC approach does not account for regional differences in agroecosystem 

characteristics (Hutchinson et al., 2007). Yet, we know that important differences exist across the 

country in the interactions between climate, soil properties, crop type, fertilizer use, and 

agricultural management that can lead to marked differences in N2O emission patterns at the 

national scale (Li et al., 1996 in: Hutchinson et al., 2007). A Tier II methodology for estimating 

the N2O emissions from agricultural soils was developed according to the main framework 

proposed by IPCC (1997) in Hutchinson et al. (2007). It accounted for the sources identified by 

the Tier I approach such as the stimulation of N2O production by the addition of N as synthetic 

fertilizers, animal manure, crop residues and mineralization of native soil organic matter. The 

Tier II approach proposed the following changes: 

1. Emissions are calculated at a regional scale to take advantage of activity data that are 

available at small spatial scales and to account for the influence of local conditions on 

soil N2O dynamics, 

2. A spatially and temporally variable emission factor based on climate moisture regime 

replaces the Tier I EF (1 to 1.25% of applied N), 

3. The influence of several management practices (soil tillage, summer fallow and 

irrigation) is added, 

4. The contribution of emissions during winter and spring thaw are included, 

5. The impact of landscape position on N2O emissions is accounted for, 

6. The influence of soil texture is added, and 

7. The contribution of biological N fixation is omitted based on the findings of Rochette and 

Janzen (2005) that the contribution of biological N fixation to N2O emissions are 

negligible. 
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Rochette et al. (2008b) noted that different Canadian regions required the application of different 

EF’s for direct emissions, as indicated by the second item in the list above. The relatively low 

N2O emissions in the Canadian Prairies compared to Eastern Canada were attributed to the fact 

that N2O production in the Prairies is often not limited by mineral N availability, but by other 

factors, including low denitrification activity under the well-aerated soil conditions in the semi-

arid environment of the Prairies (Rochette et al., 2008b). Therefore, lower fertilizer induced 

emission factors should be applied in the dry Prairie region (Rochette et al., 2008b). 

 

The IPCC methodology also does not account for the effect of less frequent applications of 

manure at higher rates. In areas where over-application of nutrients is not a concern, producers 

can apply manure at triple the recommended rate every three years rather than applying the 

recommended rate every year to reduce costs and compaction. Emission factors from these three-

year applications may be considerably different from factors for annual applications in the first 

year, particularly the leaching and run-off factor. In subsequent years, the emission factors for all 

the nutrient pathways (volatilization, leaching, run-off) will likely be lower than the first year, 

but higher than emission factors for bare soil due to residual and mineralized nutrients. The 

emission factors for multi-year applications of manure need to be established. 

 

Nitrogen application contributes to approximately 45% of direct sources of N2O in Canada (35% 

from synthetic N fertilizer and 10% from manure application) (Rochette et al., 2008b). However, 

estimating N2O losses after land application of manure and fertilizers requires much guess work, 

and in most inventories using IPCC methodology, the application method was not a factor in the 

N2O emission estimation.  

 

6.3.2 Simplified process models 

 

Heinen (2006) compiled a description of N2O emission models that used readily available inputs. 

These simplified process models were easy to use but did not consider the complex feedback of 

microbial processes or gaseous diffusion. The most basic models were based on soil property or 

organic carbon dynamics or first order decay processes. Some of these models included 

denitrification as a function of nitrate, water content, temperature, pH, carbon content. Such 
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models were practical to use in studies where denitrification at a field scale was to be determined 

(Heinen, 2006). 

 

The popular “hole in pipe” (HIP) model (Firestone and Davidson, 1989) depicted N gas fluxes as 

by-products of gross inorganic N fluxes, a direct result of the soil microbial activity regulated by 

soil environmental conditions, which in turn control 1) the nitrification and denitrification 

processes dictating N fluxes through the “process pipe”, 2) the partitioning of N gases via the 

size of holes in the pipe through which NO, N2O or N2 leak, and 3) the diffusion of trace gas 

across the aqueous-air interface (Chen et al., 2008). However, the potential loss of N2O or NO 

from total mineralized N was set to an empirical default value of 2%, which tended to 

overestimate emissions in most agro-ecosystems (Chen et al., 2008).  

 

In various simplified process models, denitrification, nitrification, and nitrate content have all 

been described using Michaelis-Menten kinetics. Michaelis-Menten kinetics describe an 

asymptotic relationship between emission rate and substrate concentration and are used to 

describe the behaviour of many enzymes and microbial populations. Cumulative ammonia losses 

were described using Michaelis-Menten kinetics in Chapter 5. Michaelis-Menten parameters 

represent maximum concentration as time approaches infinity and the time at which the 

concentration reaches half of maximum.  

 

For example, Müller et al. (1997) reported on a mechanistic model for N2O emission via 

nitrification and denitrification (KNOM). While denitrification was modelled according to 

Michaelis-Menten kinetics, the N2O via nitrification was modelled by a function of soil 

temperature and soil water content. The relevant Michaelis-Menten parameters of each process 

were estimated from soil temperature, soil water content and soil mineral N concentrations. The 

DAISY model was another simplified process model that adopted Michaelis-Menten kinetics to 

calculate nitrification rate (Wu and McGechan, 1998). Michaelis-Menten parameters ranged 

from 100 g N2O-N/ha-day to 1000 g N2O-N/ha-day depending on driving factors in Müller et al. 

(1997).  

 



273 
 

While none of the models that utilize Michaelis-Menten kinetics discussed the impact of N 

application method on the denitrification potential and subsequent N2O production, the effect of 

subsurface application of N on N2O emissions could be captured by deriving appropriate 

Michaelis-Menten parameters. For N2O emissions, application method is likely to affect both the 

maximum value (Nmax) as well as the time at which the concentration reaches half of maximum 

(Km).  

 

Using a different approach, nitrification of ammonium to nitrate in the SOILN model (the N 

submodel for the Swedish soil water and heat model SOIL) was considered to be a first-order 

rate process, driven by the excess of ammonium above an assumed equilibrium ammonium to 

nitrate ratio (Wu and McGechan, 1998). McGechan et al. (2001) used the SOILN model to 

investigate the effects of nitrogen management scenarios on nitrate drainage flows, total gaseous 

nitrogen losses, and crop yields. Slurry spreading equipment options included a vacuum tanker 

with a splash plate and a tanker-mounted shallow injector. Results showed that denitrification 

losses were more than twice as high from grassland compared with the arable cropland due to 

larger nitrogen pools, particularly organic nitrogen, in the grassland soil (McGechan et al., 2001). 

However, denitrification losses differed little between the different slurry management options 

(McGechan et al., 2001). This suggests that the model does not account for the enhanced 

denitrification that occurs after manure injection. 

 

Single and multivariate regression analyses have produced various models that predict N2O loss 

based on factors such as application rate, soil aeration, soil temperature, soil mineral-N, and land 

use factors (Mosier et al., 1983; Sozanska et al., 2002 and Conen et al., 2000 in: Chen et al., 

2008). However, these regression models are applicable to conditions specified in the study and 

none of the regression models accounted for the method of application. 

 

6.3.3 Ecosystem models 

 

While the IPCC methodology is useful for obtaining rough estimates of national GHG emissions, 

it does not include any interaction or feedback between various components of the N cycle. 

Therefore, it is not possible to assess the potential impacts of any agricultural management other 
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than total N addition on emissions. Likewise, the simplified process models are limited to 

simulating soil N2O production through nitrification and denitrification. However, the 

mechanisms responsible for and interacting with gaseous N transformation and movement in 

soils include adsorption, diffusion, volatilization, degradation, leaching, nitrification, 

denitrification, mineralization, immobilization, and plant uptake. Since fertilizer type and 

placement are likely to affect several of these mechanisms, a more sophisticated model is 

required to accurately simulate the effects of subsurface application on total GHG emissions. 

 

There are numerous “microbial growth models” that model the dynamics of the microbial 

organisms responsible for the N cycling process. All of these models account for soil-air 

atmosphere and climate interactions, plant growth, C and N cycling, and land use management 

(Chen et al., 2008). In the N cycling component of each model, the contributions of N2O from 

both denitrification and nitrification are estimated (Chen et al., 2008). In most of these models, 

the growth of the microbial biomass was calculated by a first-order kinetic equation in which 

their relative growth rate was described by a double Monod equation consisting of rate-limiting 

factors for C and N substrates (Chen et al., 2008).  

 

Microbial growth models allow simulations of the more intricate soil processes and feedbacks 

within the system, and testing management changes. Several field scale process-based models 

exist that include modules for N transformation prediction, including the DeNitrification-

DeComposition model (DNDC, Li et al., 1992a,b), DAYCENT (Del Grosso et al., 2006), and the 

ecosys model (Grant et al., 2001; 2006). These models have been used on a regional scale to 

predict GHG losses from agro-ecosystems and are described in Sections 6.3.3.1 to 6.3.3.3. A 

summary of the structure and functionality of these models (from Chen et al., 2008) is included 

in Table 6.2. Section 6.3.4 discusses the application of these and other models to estimate the 

emissions as influenced by agricultural practices.  

 

6.3.3.1 DNDC 

The DNDC model (Li, 2007a) is a computer simulation model of carbon and nitrogen 

biogeochemistry in agro-ecosystems. DNDC can be used for predicting crop growth, soil 

temperature and moisture regimes, soil carbon dynamics, nitrogen leaching, and emissions of 
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trace gases including N2O, CH4, and CO2 (DNDC, 2007).  It was specifically developed to 

predict daily N2O fluxes through the nitrification and denitrification pathways, CO2 production 

from decomposition of organic matter and root respiration, as well as anaerobic CH4 production 

within agro-ecosystems. The DNDC model consists of two components. The first component 

includes soil climate, crop growth and decomposition submodels, predicts soil temperature, 

water content, pH fluctuation, redox potential (Eh), and substrate concentration profiles (DNDC, 

2009). 

 

The denitrification submodel of DNDC is activated when soil water content increases or when 

soil oxygen availability decreases due to rain, irrigation, or cold temperatures. Denitrification is 

simulated via the basic laws of sequential chemical kinetic reactions to calculate NO, N2O and 

N2 fluxes (NO3
- � NO2

- � NO � N2O � N2) with a fraction of the N pool converting directly 

to N2O (Chen et al., 2008). The DNDC model simulates relative growth rates of nitrate, nitrite, 

NO, and N2O denitrifiers based on soil Eh, pH, dissolved organic C and N oxides. An innovative 

concept called “anaerobic balloon” was developed in the model to divide the soil matrix into 

aerobic and anaerobic parts. Only the substrates located in the anaerobic zone are engaged in the 

denitrification process (Chen et al., 2008).  Diffusion rates of N2O in the soil matrix are a 

function of soil porosity, soil water content, soil temperature, and soil clay content.  

 

Input parameters for the DNDC model include information for eight submodels: crop, tillage, 

fertilization, manure amendment, weeding, flooding, irrigation, and grazing/cutting. Within the 

manure amendment submodel, the number and dates of manure applications, manure type 

(farmyard manure, green manure, straw, liquid animal waste, and compost), application rate (kg 

C/ha) and C/N ratio of the manure are required. While application method is not included in the 

manure application submodel, surface application and injection can be specified for the 

fertilization submodel. The DNDC documentation notes that injection is typically used for 

anhydrous ammonia.  

 

6.3.3.2 DAYCENT 

DAYCENT is the daily time step version of the CENTURY ecosystem model (Parton et al. 

1988a, b in: Chen et al., 2008) which can simulate trace gas fluxes of NO, N2O and N2 from soils 
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as well as terrestrial CH4 formation and oxidation. The finer time scale is used in DAYCENT 

because trace gas fluxes are often short term episodic events in response to rainfall, snow melt, 

or irrigation. DAYCENT includes submodels for land productivity, decomposition of dead plant 

material and soil organic matter (SOM), soil water and temperature dynamics, and trace gas 

fluxes. The model was designed to be linked with larger-scale nutrient cycling models 

(CENTURY) so that estimates of soil N gas flux through natural and managed systems can be 

improved (Del Grosso et al., 2000).  

 

In the nitrification submodel, N2O emissions are simulated as a function of soil ammonium 

content, soil water content, temperature, pH and soil texture (Parton et al., 1996 in: Chen et al., 

2008). Nitrification is limited by moisture stress when soil water filled pore space (WFPS) is too 

low and by oxygen availability when WFPS is too high. N2O emissions from nitrification are 

estimated using a fixed fraction of the soil nitrification rate (i.e.: 2%).  

 

The denitrification submodel simulates N2O and N2 emissions as a function of soil nitrate 

(electron acceptor), oxygen availability (competing electron acceptor), labile C availability 

(electron donor), and soil physical properties related to texture that influence gas diffusion rates 

(Del Grosso et al., 2000 in: Chen et al., 2008). Simulated heterotrophic CO2 respiration is used as 

a surrogate for labile C availability and the oxygen status of the soil is calculated as a function of 

WFPS, soil physical properties that control gas diffusivity, and O2 demand (simulated 

heterotrophic respiration rates) (Parton et al., 2001). Denitrification is triggered when soil WFPS 

exceeds a texture-related threshold, and then it increases exponentially as WFPS increases and 

levels off as the soil approaches saturation (Del Grosso et al., 2000). 

 

The denitrification submodel assumes that the process controlled by the molecular species or 

environmental conditions is the one that is most limiting. Between 55 and 90% WFPS, 

denitrification rates increase exponentially and the rate of increase levels off as soils approach 

saturation. No denitrification is assumed to occur at WFPS < 55%. The model assumes that 

denitrification occurs in anoxic microsites when NO3 and C are available (Del Grosso et al. 

2000).  
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Input data for DAYCENT includes daily weather variables (max/min air temperature, 

precipitation, solar radiation, relative humidity, wind speed), site-specific soil properties (such as 

bulk density, soil water contents at wilting point, field capacity and saturation and saturated soil 

hydraulic conductivity), and current and historical land use (Del Grosso et al., 2006). Outputs 

include daily N-gas flux (N2O, NOx, N2), CH4 uptake, CO2 flux from heterotrophic soil 

respiration, actual evapotranspiration, soil NO3, water content, and temperature by horizon, soil 

NH4 in top 15 cm, H2O and NO3 leaching, weekly live biomass, soil organic C and N, and 

several other ecosystem parameters (Del Grosso et al., 2006). While DAYCENT is designed to 

handle N inputs in the form of fertilizer, manure application and application mode do not appear 

to be factors.  

 

6.3.3.3 ecosys 

In the ecosys model, the key biological processes (mineralization, immobilization, nitrification, 

denitrification, root and mycorrhizial uptake) controlling the generation of N2O were coupled 

with the key physical processes (convection, diffusion, volatilization, dissolution) controlling the 

transport of the gaseous reactants and products of these biological processes (Grant et al., 2006). 

The model integrates temporal scales from seconds to centuries and is made up of seven 

submodels. The production of gaseous C and N products is associated with the microbial activity 

submodel. Microbial populations undergo first-order decomposition, the products of which are 

partitioned between humus and microbial residue according to a function of soil clay content. 

 

Compared to the other models, ecosys has a large input data requirement: hourly or daily climate 

variables, site geographic information, soil properties by layers, plant characteristics and land use 

management. This model has been used to predict the impact of different manure management 

strategies on overall GHG emissions in Canada and the US. Model results in Grant et al. (2006) 

indicated that N2O emissions rose non-linearly with fertilizer application rates when these rates 

caused mineral N availability to exceed ecosystem (crop + soil) N uptake capacity. However, 

there appears to be no work with ecosys to determine the impact of manure type and application 

method on total GHG emissions. Chen et al. (2008) noted that the parameterization of such an 

extremely comprehensive model is very difficult for inexperienced users.   
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Table 6.2.  Structure and functionality of three field scale N2O simulation models (adapted from Chen et al., 

2008). 

Model DAYCENT DNDC ecosys 

Time step Daily Daily Seconds to centuries 
C cycling 8 C pools 8 C pools 6 organic states, 4 

organic matter-microbe 

complexes and 6 

biological organization 

N cycling* 6 processes, NH3, NO, 

N2O and N2 

6 processes, NH3, NO, 

N2O and N2 

6 processes, NH3, N2O 

and N2 

Nitrification First-order kinetics, N2O 

fixed proportion (2%) 

Nitrifier dynamics, N2O 

fixed proportion 

(0.25%) 

Nitrifier dynamics, N2O 

dynamic 

Denitrification Based on WFPS 

threshold driven and 

first-order kinetics  

Denitrifier dynamics 

and “anaerobic balloon” 

driven 

Denitrifier dynamics 

Gas diffusion Soil diffusivity based on 

soil texture 

Diffusion proportion Dynamic 

Land use Crops, pastures, forests Crops, pastures, forests Crops, pastures, forests 

Applications USA, Canada, Australia, 

New Zealand and 

Europe 

USA, Australia, New 

Zealand, Europe, China 

and India 

USA and Canada 

*Note:   all 3 of these models include the N cycling processes of mineralization, immobilization, ammonia 

volatilization, nitrification, denitrification and nitrate leaching. 

 

6.3.4 Model Applications 

6.3.4.1 IPCC methodology 

The IPCC methodology has been extensively used to estimate national GHG inventories, but 

because of its lack of detail, it is difficult to use IPCC methodology to estimate the effect of 

management practices on GHG emissions. Recently, Rochette et al. (2008a) developed a 

country-specific IPCC methodology for estimating N2O emissions from agricultural soils. Their 

Tier II approach was outlined in Section 3.1 and required an estimation of the regional emission 

factors for N inputs, spring thaw, tillage intensity, soil texture, irrigation, landscape, summer 

fallow, and other sources of N2O emissions. While this approach allowed simulation of more 

management-specific scenarios than the Tier I methodology, it does not account for the effects of 

subsurface application of fertilizers and manures.  
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6.3.4.2 DNDC 

Most studies utilizing DNDC have focused on the effect of N-fertilizer application rate, crop 

rotation, tillage practices, use of cover crops, and use of manure as a fertilizer on trace gas 

fluxes. While different application methods are available for fertilizer application (i.e.: injection 

of anhydrous ammonia), manure can only be surface applied. Li et al. (1996) stated that, of the 

agricultural practices simulated including fertilizer amount, fertilizer type, fertilizing depth, 

fertilizing timing, tillage, and manure content, manure additions had the most pronounced impact 

on N2O emissions. The main effect of manure application is the addition of organic matter into 

the soil organic carbon (SOC) pool and increasing N2O emission rates through elevating nitrate 

and soluble C concentrations in soils. Spreading of manure increases the C content required for 

denitrification, enhances soil nitrogen mineralization, and increases the efficiency of N2O 

production (Li et al., 2007b). But the negative effect of increase in N2O emission was offset by 

the positive effect of the increase in SOC, resulting in net C sequestration (Li, 1995).  

 

Smith et al. (2004) utilized the DNDC model to estimate the inter-annual variations of N2O 

emissions from agricultural soils in Canada. Simulations were carried out for three soil textures 

in seven soil groups, with two to four crop rotations within each soil group using climate data 

from 1970 to 1999. There was a general trend towards increasing N2O emissions over time, 

attributed to an increase in N-fertilizer application and higher daily minimum temperatures. 

Grant et al. (2004) used the DNDC model to predict the effects of converting cultivated land to 

grassland, converting from conventional tillage to no-tillage, elimination of summer fallow, 

increasing and decreasing N application rates, and spring vs. fall applications of fertilizer on N2O 

emissions. The results were sometimes region-specific (i.e.: converting to no-till has a different 

effect in western Canada than eastern Canada), but increasing N application rates always 

increased N2O emissions.  

 

Neufeldt et al. (2006) noted that neither economic nor ecosystem models alone can provide an 

integrated estimate of the economic and environmental effects of different mitigation options. 

Therefore, the authors coupled an economic farm emission model (EFEM) that simulated how 

agricultural policies and the socioeconomic frameworks influence farmer decisions on 

management options, with an ecosystem model (DNDC) that used the information on land-use 
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distribution and intensity to simulate GHG emissions as a function of climate, soil, and 

management specific parameters (Neufeldt et al., 2006). Coupling the models allowed evaluation 

of the environmental effectiveness and the economic viability of possible GHG mitigation 

measures at regional scales. Although manure application method was not considered a factor, 

this type of model would allow a full assessment of the impact of manure injection, including 

environmental factors like increased N2O as well as economic implications related to carbon 

credits and increased energy consumption.  

 

6.3.4.3 DNDC vs IPCC 

Several studies have directly compared estimates of emissions from the DNDC model and IPCC 

methodology. Since DNDC only predicts direct N2O emissions, most studies only calculated 

direct N2O emissions using IPCC. Hutchinson et al. (2007) concluded that the DNDC model 

estimated higher direct N2O losses than the Tier II IPCC approach for Canadian agroecosystems. 

Conversely, Horak and Siska (2006) showed that the DNDC simulations for N2O emission from 

sandy loam soil in the Slovak republic were lower than IPCC methodology estimations (1.25% 

EF), but they were within the ±1% error for most years. While the authors stated that manure 

application and mode and timing of application showed strong inter-annual variability in 

emissions, these factors are not accounted for in either model. Essential data for estimating trace 

gas fluxes included fertilizer use, the mass of residue in the soil and the amount of crop residue 

produced.  

 

IPCC and DNDC were used to estimate the effect of landscape location (shoulder, footslope, 

etc.) on N2O emissions at two sites in Canada (Smith et al., 2002). The two sites provided a 

variety of crops, management practices, soils, and climates for testing the models. While the 

DNDC resulted in an underestimation of 8% for the footslope position and an overestimation of 

46% for the shoulder position compared to measured fluxes, the DNDC model was more 

accurate than IPCC methodology at estimating N2O emissions at both sites (Smith et al., 2002).  

 



281 
 

6.3.4.4 DAYCENT 

In validation studies, the DAYCENT model was relatively simple and more empirical compared 

to more detailed ecosystem models (Grant and Pattey, 2003 in: Chen et al., 2008). In USA 

systems, it has been shown to accurately simulate mean annual N2O emissions, however its 

ability to replicate daily emissions is less reliable (Del Grosso et al., 2000 in: Chen et al., 2008).  

 

In Del Grosso et al. (2008), DAYCENT was used to estimate N2O emissions from irrigated 

cropping systems in Colorado. The model overestimated N2O emissions and underestimated NO3 

levels, particularly for treatments receiving no N fertilizer. The model results were improved by 

lowering the amount of N2O emitted per unit of N nitrified from 2% to 1%, but the treatments 

receiving no N fertilizer were still overestimated by more than a factor of two. The authors 

suggested that DAYCENT could be improved by reducing the background nitrification rate and 

by accounting for the impact of changes in microbial community structure on denitrification 

rates. DAYCENT could also be improved by raising the minimum threshold of soil NH4 required 

for nitrification to occur. DAYCENT simulations in Del Grosso et al. (2009) showed that 

precision application of fertilizer and use of nitrification inhibitors reduced gaseous N losses and 

NO3 leaching by allowing for more N uptake by the plants. No-till cultivation, which facilitates 

C sequestration in soils, combined with nitrification inhibitors, provided the maximum reduction 

in GHG fluxes among the scenarios considered. Reduced fertilizer application rates reduced 

gaseous N losses, but yields were reduced by a similar proportion (Del Grosso et al., 2009). 

Manure application and application mode were not considered in any reported DAYCENT 

simulations. 

 

6.3.4.5 Integrated Farm System Model (IFSM) 

The Integrated Farm System Management (IFSM) model was developed by the USDA 

Agricultural Research Service, University Park, Pa. It is a process-level whole-farm simulation 

model that includes major components for soil processes, crop growth, field operations, feed 

storage, feeding, herd production, manure handling, and economics (Rotz et al., 2009). IFSM 

predicts the effect of management options on farm profitability and environmental pollutants 

such as nitrate leaching, ammonia volatilization, and phosphorus runoff (Chianese et al., 2009a).  
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The N2O module of DAYCENT was used to predict gaseous N emissions from cropland in 

IFSM (Chianese et al., 2009c). Emissions of N2O from soils were predicted by DAYCENT as 

the sum of nitrification and denitrification losses. The soil N cycle was already simulated in prior 

versions of IFSM using the Nitrate Leaching and Economic Analysis Package (NLEAP) model 

(Shaffer et al., 1991) so the soil nitrification rate and nitrate concentrations were available. 

Emission of N2O due to denitrification was a function of the soil nitrate concentration, the soil 

respiration, WFPS, ratio of N2 to N2O emission, soil bulk density, and active soil depth. The 

effects of soil nitrate and CO2 flux on denitrification were predicted by empirical equations, as 

described by Parton et al. (2001). In IFSM, the Millington-Quirk model (Millington and Quirk, 

1961) was used to predict effective diffusivity of gas through soil due to its simplicity. To 

implement the prediction of N2O emissions using DAYCENT submodel in IFSM, seven inputs 

were needed: soil nitrification rate, soil bulk density, nitrate concentration in each soil layer, CO2 

flux, WFPS, air-filled pore space, and total porosity (Chianese et al., 2009c).  

 

The effect of manure type and application method could be simulated in IFSM. Two types of 

livestock farms could be simulated: dairy and beef. Within each livestock farm, manure could be 

managed as liquid-slurry, slurry, semi-solid and solid. Application method options included no 

incorporation, incorporation within a week, incorporation within two days, and incorporation 

within the same day. Application rates could be specified based on mass of N per hectare and 

selection of manure as N source. The type and amount of bedding material could also be 

specified, along with length of manure storage. Based on the documentation for IFSM (Rotz et 

al., 2009), manure incorporation affected only the ammonia volatilization and did not influence 

the denitrification rate in the simulation. By reducing the ammonia volatilization rate, 

incorporation increased the N available for denitrification, but the anaerobic conditions beneath 

the soil surface and resulting enhanced denitrification were not accounted for. 

 

Preliminary simulations using IFSM showed that, for solid manure applications, incorporation 

within same day or 2 days reduced total ammonia lost by 35% compared to no incorporation, but 

N2O emissions (total and maximum daily) were unchanged. For liquid manure application, 

incorporation within same day or two days reduced total ammonia by more than 50% and total 

N2O emission increased slightly (less than 10%), likely due to the increased N available for 
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denitrification. The maximum daily N2O emission did not change with application method. Other 

factors such as soil texture had significant effects on the total N2O emissions with emissions 

from heavy clay soils being two to three times higher than emissions from loam soils. These 

results are consistent with the explanation in the documentation; the enhanced denitrification due 

to subsurface application was not considered a factor in the IFSM model.  

 

6.3.4.6 FarmGHG 

Weiske et al. (2006) presented the effect of mitigation options on GHG emissions of dairy farms 

in Europe using the flow-based simulation model FarmGHG described by Olesen et al. (2004) in 

Weiske et al. (2006). The model calculated C and N budgets of the whole farm including imports 

and exports and quantified all direct and indirect gaseous emissions of the farming system. IPCC 

emission factors were used to calculate direct and indirect N2O emissions. The GHG reduction 

measures studied included (but were not limited to) improving the manure application 

techniques. Specifically, slurry application by trail hose and by injection was compared to 

broadcasting. Default factors from various literature sources were used to determine the effective 

applied N (total applied N – volatilized N) and leached N from different application methods. 

 

The results from Weiske et al. (2006) showed that trail hose and injection reduced GHG 

emissions by 0.7% and 3.2%, respectively, compared to broadcasting, mainly due to lower 

indirect losses. For trail hose application, the reduction of NH3 emission reported in the literature 

amounted to 10-40% and the reduction was up to 90% for injection of slurry (Weiske et al., 

2006). The improved application method influenced the fertilizer replacement values of the 

applied liquid part of FYM and slurries. The effect of improved application techniques were 

calculated by not only adapting emission factors, but also by changing manure storage time, NH3 

volatilization, and nitrate leaching since the improved N fertilizer replacement value would result 

in lower application rates. The authors concluded that improved manure application techniques 

reduced NH3 volatilization and thus indirect N2O emissions, resulting in more nitrogen 

effectively being applied to the soil. This increased nitrate leaching (and subsequent indirect N2O 

emissions), increased the amount of nitrogen available for the crop which resulted in an increase 

in crop yields. However, the authors noted that there was a trade-off between higher yields and 

higher costs associated with improved manure handling techniques (Weiske et al., 2006). Since 
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subsurface application resulted in an overall decrease in emissions, the reduction of indirect 

emissions from lower ammonia volatilization was higher than the increase of indirect emissions 

from nitrate leaching. However, the enhanced denitrification was not accounted for, so direct 

N2O emissions were likely underestimated.  

 

6.4 Discussion 
 

6.4.1 Impact of application method on nitrogen transformations 

 

When assessing N transformations and total N loss from manure spreading, the ammonia (NH3) 

volatilization and nitrate (NO3) movement obviously must be considered. The IPCC 

methodology suggests that 1% of volatilized N and 0.75% of leached N are considered indirect 

sources of N2O-N. The IPCC methodology suggests that 20% of applied manure N will be 

volatilized, regardless of application method. Although this study did not comprehensively study 

the ammonia emissions from manure spreading, preliminary unpublished data suggested that 

subsurface application of solid poultry manure reduced ammonia emissions by 98% immediately 

after application. The effect of subsurface application on reducing ammonia emissions from 

slurry has been well documented to be up to 90% (Huijsmans et al., 2001; Weiske et al., 2006), 

depending on the manure type, weather conditions and application rate. This reduction value is 

important because reducing ammonia losses increases the amount of N available for plant uptake 

and microbial transformations like nitrification and denitrification. However, injection of liquid 

swine manure increases plant N recovery in Saskatchewan soils (Mooleki et al., 2002). If plant 

uptake of ammonium occurs before the ammonium has a chance to nitrify, N2O emissions should 

be reduced accordingly. Subsurface placement may increase the proportion of ammonium added 

that is assimilated by crop roots, since the ammonium will be closer to the roots. This is another 

placement aspect that models do not appear to take into consideration. In addition, leaching 

losses were estimated to be 30% of applied N in the IPCC methodology (Del Grosso et al., 

2006). But leaching losses may be affected by application method due to increased effective 

application rate and placement deeper in the soil profile. 



285 
 

To illustrate the effect of these trade-offs between NH3 volatilization and direct and indirect 

emissions of N2O (as well as the impact of enhanced denitrification), a mass balance of nitrogen 

after application was estimated. As depicted in Figure 6.4, the input N was assumed to take six 

possible pathways: 

1. Ammonia volatilization (contributing to indirect N2O) 

2. Nitrate runoff (contributing to indirect N2O) 

3. Nitrate leaching (contributing to indirect N2O) 

4. Ammonium and nitrate uptake in plants 

5. Organic N retained in soil 

6. Nitrification/denitrification (contributing to direct N2O) 

  

In each category bubble of the outputs depicted in Figure 6.4, the top number represents the 

actual mass of total N that is lost or retained in that pathway. The bottom number represents the 

percentage (or proportion) of the total input N that is lost or retained in that pathway. These 

percentages were derived from selected literature values summarized in Table 6.3.  Note that the 

anticipated range of values would be greater if all sources and conditions surrounding land 

application of manure were covered.  

 

Table 6.3. Literature values for approximate N mass balance after manure spreading. 

 
Reference 

 
Volatilization 

 
Runoff/Leaching 

Plant uptake Soil 
retention 

 
Denitrification 

Zhou et al. 
(2009) 

2-4% 11-15% 32-39% 2-6% 30-40% 

Cameron et al. 
(1995) 

10% 5% 35% 14% 39% 

Carey et al. 
(1997) 

15-26% 8-19% 20% 14-18% 30% 

Whalen and 
DeBerardinis 

(2007) 

5-20% 25-117% 5-20% <2% 

Zhou et al. (2009): liquid cattle waste applied to Japanese paddy fields 
Cameron et al. (1995): pig effluent applied to stony pasture land in New Zealand 
Carey et al. (1997): pig effluent applied to pasture land in New Zealand 
Whalen et al. (2007): irrigated liquid swine waste applied to arable land in US 

 

In most studies, the percent lost to denitrification was assumed to be the difference between the 

amount of N applied and the amount of N recovered in the other pathways. This likely 

overestimated the loss to denitrification due to system leakage or measurement errors. In some 

cases, the amount of N lost to a pathway varied due to conditions specific to the study. For 
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example, the volatilization losses in Zhou et al. (2009) were very low due to application to 

flooded rice fields. In Whalen et al. (2007), the plant uptake of N exceeded 100%, possibly due 

to mineralization and nitrification of residual organic N in the soil. Nitrogen losses by processes 

like leaching are likely to be much different under semi-arid conditions in Western Canada 

versus humid New Zealand as reported by Carey et al (1997). 

 

 

Figure 6.4. Mass balance of nitrogen after manure spreading. Values represent Case 1 conditions. 

 

Other studies reported on the ratio of N2O:N2O+N2 which gives an indication of the degree of 

incomplete denitrification which results in a net emission of N2O. Mkhabela et al. (2008) 

reported the ratio to be between 0.5 and 1.2 while others reported the ratio to be as low as 0.1 to 

0.4 (Elmi et al., 2003, Lowrance et al., 1998, Webster and Hopkins, 1996 in: Mkhabela et al., 

2008).  Incomplete denitrification is thought to be dependent on the carbon to nitrogen ratio and 

water filled pore space (WFPS). If the carbon content cannot sustain the complete reduction of 

nitrate to nitrogen gas, the denitrification process will be incomplete and a net emission of N2O 

will occur. Also, when the WFPS is between 45 and 75%, both nitrification and denitrification 
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can occur, increasing the chance of a net N2O emission since N2O is a by-product of both 

processes.  

 

The nitrogen pathways are also known to change with management practices, weather and soil 

conditions, and application rate. For this illustration, the weather and soil conditions and 

application rate were assumed to be such that they did not promote excessive losses via 

runoff/leaching or volatilization. Generally, it is known that subsurface application reduces 

losses of NH3 to volatilization, reduces runoff losses of NO3, increases leaching losses of NO3, 

and increases plant uptake. However, the effect of subsurface application on the 

nitrification/denitrification potential is not well known, but it could significantly impact the 

estimation of N2O emissions from manure spreading. The effects of subsurface application and 

degree of denitrification on total N losses and N2O emissions were estimated by examining five 

different cases, outlined in Tables 6.4 and 6.5.  

 

Table 6.4. Illustrative cases to estimate the effects of injection and degree of denitrification on total N losses 

and N2O emissions. 

Case 1 Surface application (base case) 
Case 2 Injection, assuming no enhanced denitrification 
Case 3 Injection, assuming enhanced denitrification 
Case 4 Injection, assuming enhanced denitrification and limited plant uptake 
Case 5 Surface application, assuming limited plant uptake 

 

Table 6.5. Effect of injection and degree of denitrification on N pathways. 

  % of unvolatilized that goes to  
 

Case 
% 

volatilized 
 

runoff 
 

leaching 
 

plant uptake 
soil 

retention 
 

nit/denit 
% of denitrified N 

that is N2O 
1 20 15 15 35 30 5 20 
2 5 5 20 40 30 5 20 
3 5 5 20 40 25 10 50 
4 5 5 25 10 35 25 50 
5 20 15 15 10 35 25 20 

 

In Figure 6.4, the fraction that NH3 and NO3 contribute to indirect N2O emissions were assumed 

to be 1% and 0.75%, respectively, based on IPCC estimates. The fractions of applied N that are 

lost to each pathway were assumed to vary based on the cases outlined in Table 6.4 and are 

included in Table 6.5. Figure 6.4 shows the mass balance for Case 1.  
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For each case, the total N lost was calculated (sum of volatilized N, runoff N, leached N and 

denitrified N), as well as indirect N2O-N (sum of indirect N2O-N from volatilized N, runoff N 

and leached N) and direct N2O-N (N2O-N from denitrification). Those results are summarized in 

Table 6.6.  

 

Table 6.6. Total N lost and N2O-N emitted from manure spreading for different management cases for 100 kg 

applied. 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Total N lost (kg) 48.00 33.50 38.25 57.25 64.00 

Direct N2O-N (kg) 0.80 0.95 4.75 11.88 4.00 

Indirect N2O-N (kg) 0.38 0.23 0.23 0.26 0.38 

Total N2O-N (kg) 1.18 1.18 4.98 12.14 4.38 

 

The values for case 1 follow the IPCC assumptions that 20% of N will be volatilized as NH3 and 

30% will be lost to runoff/leaching. The IPCC emission factors estimate that total N2O-N 

emissions will be between 1 and 1.25% of N applied (between 1 and 1.25 kg in this case). Since 

total N2O-N emitted in case 1 is within this range, the percentages estimated in Table 6.5 for case 

1 are reasonable. 

 

Based on these results, overall N loss is minimized when manure is injected, provided it is 

applied when there will be significant plant uptake (cases 2 and 3). The total N2O-N from case 1 

(surface application) is equivalent to case 2 (injected) because the percentage lost to 

denitrification is assumed to be the same. The indirect N2O-N is lower in case 2 because of lower 

NH3 volatilization, but direct N2O-N is slightly higher due to a higher fraction of unvolatilized N 

available for denitrification. Overall N loss is considerably lower in case 2 because of improved 

plant uptake. 

 

In case 3, injection is assumed to enhance denitrification, so the percent lost to denitrification is 

increased from 5% to 10%. In addition, the proportion of denitrified N that is emitted as N2O is 

increased from 20% to 50% in case 3. Both of these changes are reasonable since injection 

results in conditions that promote N2O production through nitrification (increased microbial 

contact) and denitrification (low oxygen). These changes result in N2O-N emissions that are 

more than four times higher than those in case 2. In cases 4 and 5, since there is limited plant 
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uptake, excess N is available for denitrification. Total N losses and N2O-N emissions are 

considerably higher than the base case. 

 

6.4.2 Improved modeling of emissions from manure injection 

 

To better estimate the emission factors used in the above illustration, the ecosystem models 

described previously need to be modified to account for the important chemical and physical 

phenomena associated with the fate of applied N and N2O production after manure injection. 

This will be site-specific and involve accounting for the enhanced denitrification that occurs after 

manure injection. This enhanced denitrification is likely due to: 

� rapid microbial activity (due to tillage action and close contact between soil and manure) 

utilizing existing oxygen, 

� slow oxygen diffusion into soil, and 

� increased and fluctuating WFPS due to slurry application. 

 

These three conditions exist for both surface and subsurface applied manure, but their effects are 

magnified for subsurface applications. Injected manure has a much higher surface area contact 

with the microbes in the soil and the diffusion path for oxygen is greater for injected manure than 

surface applied manure. Because injected manure is applied in narrower bands than surface 

applied manure, the same volume will have a larger impact on the WFPS for injected manure. 

 

The first two conditions produce partially anaerobic conditions which promote denitrification 

and N2O generation. While increasing the WFPS is likely to further reduce air content, the effect 

of fluctuating WFPS may also result in increased N2O production. Müller et al. (1997) noted that 

the highest N2O emissions were commonly observed under fluctuating moisture conditions. Such 

conditions promoted varying rates of enzyme production, and highest N2O emissions were 

observed during times when the system adjusts to the new situation (Firestone and Tiedge 1979 

in: Müller et al., 1997). However, not all microbiological processes in the soil will adjust equally 

fast to the new conditions, leading to situations where N2O production rates may be much larger 

than N2O reduction rates and therefore resulting in substantially enhanced N2O emissions 

(Müller et al., 1997). The effect of injection on WFPS is likely to be short-lived, particularly for 
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slurry injection. The rapid microbial activity in anaerobic conditions will contribute the most to 

N2O emissions after manure injection. For solid manure injection, the minimal movement and 

slow release of the substrate will likely contribute to elevated emissions for an extended period 

of time. 

 

In the DNDC model, denitrification is activated when soil water content increases or when soil 

oxygen availability decreases due to rain, irrigation, or cold temperatures. It is likely that the 

model does not account for increased soil water content or reduced oxygen diffusion for manure 

injection. As well, in DNDC, denitrification occurs in the “anaerobic balloon”. When subsurface 

application of manure is simulated, the anaerobic balloon could be expanded. In DAYCENT, 

denitrification is also highly dependent on WFPS so the effect of manure injection on WFPS 

needs to be included. The model also needs to account for the changes in microbial community 

structure due to injection on denitrification rates. Another aspect of manure injection that must 

be accounted for in these models is the greater retention of N in the soil and the better ability of 

crop roots to access and take up the manure N before it undergoes nitrification. Subsurface 

application will place the ammonium closer to the roots, increasing availability and potential 

plant uptake, reducing the potential for denitrification during the growing season. 

 

For the simplified process models that use Michaelis-Menten kinetics to describe cumulative 

N2O emissions, the model parameters (Nmax, Km) that describe the maximum emission and time 

at which the emission rate is half of the maximum would theoretically be dependent on 

application method. However, an ammonia loss calculator developed by Alberta Agriculture and 

Rural Development (Guoliang Qu, personal communication) assumed that the Km value in the 

Michaelis-Menten function for cumulative ammonia emission was not dependent on application 

mode (broadcast, banding, sleighfoot, shallow injection, deep injection). The maximum value 

(Nmax) was dependent on application method. Both parameters (Nmax and Km) were dependent on 

other variables such as soil moisture, air temperature, wind speed, dry matter content of manure, 

total ammoniacal N in manure, and application rate. However, ammonia emissions are driven 

primarily by volatilization and are not dependent on microbial processes like nitrification and 

denitrification. The complex interactions that drive N2O emissions after manure spreading mean 

that both Michaelis-Menten parameters could be affected by method of application. 
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Unfortunately, the only way to determine these parameters is empirically by analyzing available 

data, or by collecting specific data under controlled conditions.  

 

6.5 Conclusions 
 

Agricultural management practices can have a large impact on the net emission of greenhouse 

gases, particularly N2O from application of N fertilizer and manure. Previous work showed that 

application method influenced short-term direct emissions while a simple follow-up study 

showed that application method also affects longer-term direct emissions. The nutrient 

transformations that drive N2O production and the effects of soil and environmental conditions 

that dictate diffusion and emission are very complex. Therefore, a comprehensive whole-farm 

evaluation is needed, which can be achieved through simulation models. Existing methodologies 

and models either do not include manure application method as a management practice or they 

do not account for the changes in the physical and chemical soil environment caused by manure 

injection. These omissions result in uncertainties in estimation of N2O emissions from manure 

spreading, particularly manure injection. In most models, denitrification is governed by oxygen 

content and water filled pore space. By incorporating the effects of manure application on these 

parameters, as well as the enhanced microbial activity due to intimate contact between the 

manure and soil, the effect of application method on long-term direct and indirect emissions can 

be simulated. This will allow the improved estimation of the economic and environmental 

impacts of manure injection, which can be incorporated into decision support systems for 

agricultural GHG mitigation.   
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Chapter 7 

 

7.0 General Summary and Discussion 
 

The general summary and recommendations of this thesis are presented here, starting with a 

review of the project objectives, a summary of chapter two to chapter six, and a list of general 

conclusions. 

 

7.1 Summary of Thesis 
 

Land application of livestock manure is a very common practice that can potentially impact soil, 

water, and air quality surrounding the application site. Very little data exist on the impacts of 

manure type and application method on odour and greenhouse gas emissions. Therefore, the 

objectives of this work included: 

� evaluating existing equipment and protocols for emission determination following land 

application of manure and, if required, developing new protocols and equipment for 

sample collection (Chapter 3 for odour and Chapter 4 for greenhouse gas emissions), 

� evaluating the relative odour and GHG emissions from various types of solid and liquid 

manure following surface and sub-surface application (Chapter 3 for odour and Chapter 4 

for greenhouse gas emissions), 

� developing and validating a mechanistic model for the prediction of the odour emission 

rate following land application of liquid and solid manure (Chapter 5), and 

� reviewing the suitability of existing GHG emission models for the prediction of 

emissions following surface and subsurface application of manure (Chapter 6). 
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As discussed in Chapter 2, organic fertilizers like livestock manure have several benefits over 

synthetic fertilizers, including increasing the organic matter content and microbial activity in the 

soil and maintaining the soil’s ability to recycle nutrients. However, over-application or improper 

timing of manure application can result in contamination of the soil and water or excessive 

atmospheric emissions. The nutrients in manure and soil are transformed via microbial processes 

such as mineralization, nitrification and denitrification. Specific forms of nitrogen such as nitrate 

and ammonia are more susceptible to leaching or volatilization, increasing the risk of 

environmental contamination. Nitrate nitrogen can pollute surface and groundwater, posing a 

human health risk, ammonia emissions lower the N availability to crops, while nitrous oxide and 

methane contribute to the greenhouse gas effect. Balancing the N loss dynamics from fertilized 

soil is very difficult because the nutrient transformations are affected by the soil environment 

such as air and water content, pH, and labile carbon content. All of these soil environmental 

factors can be influenced by manure application practices such as application rate, timing and 

manure placement. Knowledge of how these management practices affect the soil environment 

can help producers make management decisions that reduce the likelihood of soil, water and air 

contamination from manure application.  

 

In addition to specific environmental risks, manure spreading also results in odour emissions. 

Odours from manure application activities can hinder the expansion of the livestock industry 

because of the potential nuisance to neighbours. Chapter 3 investigated the effects of 

management practices such as application mode and application rate on odour emissions from 

both solid and liquid manure spreading. First, sampling methods and protocols for assessing 

odour emissions from manure spreading were established. Dynamic flux chambers were used in 

this study for surface odour emission measurement. Based on the results of an experiment with a 

simulated carbon dioxide flux, a sweep air flow rate of 0.944 L/s was used in the chamber. It was 

noted that the optimal sweep air flow rate depended on the magnitude of the measured emissions. 

It was recommended to obtain baseline odour emission data to better select an appropriate sweep 

air flow rate.   

 

Odour emission data were collected immediately after application of five livestock manure 

species applied at three application rates using surface and subsurface application methods.  The 
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results of the study indicated that odour concentrations from injected plots were up to 66% (37% 

on average) lower than concentrations from broadcasted applications. Injection seemed to have a 

larger impact on reducing odours from solid manure than liquid manure, mainly due to better 

manure coverage from solid manure injection. Odours from solid manure applications were also 

37% lower than from liquid manure applications. In general, odours from liquid and solid 

manure increased with higher application rates, but there was little difference among one, two 

and three year application rates. The specific odour rate decreased with higher application rates 

due to the reduced surface area available for volatilization of compounds with higher application 

rates. Higher application rates did result in higher overall odour concentrations, but this increase 

was not proportional to the amount of N applied.  

 

While the effects of manure type, application method, and application rate on odour emissions 

measured one time after application were discussed in Chapter 3, the odour emission rate trend 

over the first 48 hours after application was modeled in Chapter 5. The emission rate trend over 

time after application is essential for the application of dispersion models to optimize the 

minimum separation distances for manure spreading activities. The model parameters for an 

existing volatilization model were determined from field and literature data and the resulting 

model allowed the effects of application mode (surface vs. subsurface) and manure type (liquid 

vs. solid) on odour emissions to be simulated. The effects of injection depth and a coverage 

factor on emissions were also simulated.  

 

The modeled peak fluxes from liquid manure applications were higher than those for solid 

manure applications, but the extended duration of odour emissions for solid manure resulted in 

higher cumulative losses from solid manure applications. While the application rate had no effect 

on the initial odour flux, higher application rates resulted in higher peak fluxes, higher overall 

emissions, and longer odour durations for both manure types and application methods. When 

typical coverage factors were assumed, the reductions in cumulative odours due to injection were 

approximately 75, 55, and 30% for liquid manure at 1X, 2X, and 3X application rates, 

respectively and 90, 80, and 70% for solid manure. Injection depths as low as 0.05 m were 

shown to significantly reduce odours from both liquid and solid manure applications compared 

to surface spreading.  
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Based on the results obtained in Chapters 3 and 5 of this thesis, injection or subsurface 

application of manure was identified as an effective way to reduce odour emissions from manure 

application, particularly for solid manure. However, placing the manure under the soil surface 

has the potential to increase greenhouse gas (GHG) emissions due to enhanced microbial 

activity. Therefore, the impact of manure type and application method on GHG emissions from 

manure spreading was investigated in Chapter 4. For this initial comparison, all measurements 

were made 24 hours after application. Samples were collected using the static chamber technique 

and the samples were analyzed using gas chromatography.  

 

The GHG results in Chapter 4 showed that subsurface application significantly increased carbon 

dioxide equivalent (CO2-e) fluxes for both solid and liquid manure. The overall CO2-e fluxes 

from the injected treatments were 3.2 times higher than CO2-e fluxes from the surface applied 

plots. This was explained by the creation of conditions, particularly with liquid injection, that 

were highly conducive to the conversion of the available N and C to GHG, especially N to N2O 

and N2 by denitrification. The CO2-e fluxes from the liquid manure applications were also higher 

than the CO2-e fluxes from the solid manure applications, probably due to higher levels of 

ammonium available for nitrification and subsequent denitrification. The CH4 fluxes were 

generally low and the treatments had no effect in this study. For this particular study, the 

measured specific fluxes (total flux per kg N applied) remained relatively constant with 

application rate, indicating that GHG emissions from manure applications were approximately 

proportional to the amount of manure applied to the land.  

 

It was stressed that these comparisons were only valid for the first 24 hrs following land 

application. Manure type and application method have the potential to impact long term GHG 

emissions. For example, solid manure generally has a higher C content, which will mineralize 

slowly over time, likely providing for sustained denitrification if the conditions remain 

anaerobic. It is likely that conditions beneath the soil surface will remain anaerobic for long 

periods of time as the diffusion rate of oxygen into the topsoil is often lower than the rate of 

oxygen use by the increased microbial activity. This could result in the total emissions from solid 

manure application being higher than total emissions from liquid manure application. In Chapter 

6, application method was shown to influence longer-term emissions. The seven day cumulative 



303 
 

nitrous oxide emissions were 22 times higher from the injected solid manure than the surface 

applied solid manure.  

 

Because of those results, the ability of existing GHG emission models to predict the long term 

emissions following surface and subsurface application of manure was assessed in Chapter 6. 

Numerous process based models exist for the estimation of regional and national GHG 

inventories, ranging from simplified process models and methodologies to complex ecosystem 

models. However, most models do not account for application method and those that do include 

an application mode do not account for enhanced denitrification that exists after slurry injection 

or manure incorporation. If the results from the seven day study are any indication, the omission 

of enhanced denitrification in the models could potentially result in a significant underestimation 

of N2O emissions from manure spreading.  

 
In most models, denitrification is governed by oxygen content and water filled pore space. By 

incorporating the effects of manure application on these parameters, as well as the enhanced 

microbial activity due to intimate contact between the manure and soil, the effect of application 

method on long-term direct and indirect emissions can be better simulated. Modifications to 

these models will allow the improved estimation of the economic and environmental impacts of 

manure injection, which can be incorporated into decision support systems for agricultural GHG 

mitigation.   

 

7.2 General Conclusions 
 

The general conclusions of this study are summarized here: 

1. Vented flux chambers and dynamic dilution olfactometry are well suited for comparing 

odour emissions among several field treatments. A sweep airflow rate in the flux chamber 

of 0.944 L/s worked well for the magnitude of emissions in this study. Proper selection of 

the sweep airflow rate prevents sample dilution and suppression of emissions from the 

surface. 

2. Subsurface application of manure significantly reduced odour emissions measured 

immediately after application of both solid and liquid manure. Subsurface application 
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appeared to reduce odours more efficiently for solid manure, mainly due to improved soil 

coverage at the higher application rates. 

3. Liquid manure generated significantly higher odour emissions than solid manure 

immediately after application. 

4. Odour emissions increased with application rate, but there was no significant difference 

among the one-, two-, and three-year application rates. 

5. Specific odour emissions (OU (kg N)-1 s-1) actually decreased with application rate. This 

was likely due to reduced contact area between manure and air (resulting in less 

volatilization) at higher application rates. 

6. The odour model results showed that liquid manure applications resulted in a higher peak 

flux than solid manure applications, but cumulative odour emissions (over 48 hours) were 

higher from solid manure applications. This is due to the higher degradation rate of odour 

in liquid manure and the infiltration of liquid manure into the topsoil. 

7. The odour model results showed that injection reduced overall emissions for both manure 

types and all application rates, even when reasonable coverage factors were assumed. 

Modest injection depths were also shown to significantly reduce odours compared to 

surface applications. 

8. The static chamber technique was well suited for comparing greenhouse gas fluxes 

among several treatments. Because soil fluxes in the Canadian Prairies are relatively low, 

the rate of increase in gas concentration in the chamber headspace was best represented 

by linear (and occasionally quadratic) regression models. 

9. Subsurface application significantly increased nitrous oxide and carbon dioxide 

equivalent fluxes measured 24 hours after application. This was because the conditions 

beneath the surface enhanced denitrification activity.  

10.  Greenhouse gas emissions from liquid manure applications were significantly higher 

than emissions from solid manure applications measured 24 hours after application. 

11. Greenhouse gas emissions measured 24 hours after application increased with application 

rate, but there was no difference among one-, two-, and three-year application rates. The 

increase in greenhouse gas emissions with application rate were approximately 

proportional to the amount of nitrogen applied. 
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12. Subsurface application increased longer-term (7 day) greenhouse gas emissions, 

particularly nitrous oxide from solid manure injection. 

13. Existing methodologies and process-based models for estimating greenhouse gas 

emissions do not account for the enhanced denitrification that occurs after subsurface 

application of manure. Model modifications that account for the effect of manure 

injection on water filled pore space, microbial respiration, and denitrification activity 

may improve the ability of models to estimate the impact of application method on 

overall greenhouse gas emissions.  

 

7.3 General Discussion and Recommendations for Future 

Work 
 

Manure management decision support systems can be valuable tools for livestock producers, 

allowing them to analyze the economic and environmental implications of different manure 

management strategies. Most decision support systems consider the collection, handling, and 

storage requirements of different manure types (liquid, semi-solid, and solid), as well as the 

nutrient value of the manure and the energy/cost associated with land application of the manure. 

Many of these decision support systems also include estimates of emission factors for ammonia, 

odour and greenhouse gases from the buildings, storages, and land spreading activities. However, 

there are very few data on the effects of different management strategies (e.g.: subsurface 

application of solid manure) on these emissions. The information presented in this thesis may 

influence decisions regarding subsurface application of manure.    

 

When deciding whether or not to inject manure, producers must evaluate the overall 

environmental and economic impact of the technology. On one hand, subsurface application of 

livestock manure often constitutes an effective means to reduce odour emissions. However, the 

need to limit odour complaints must be weighed against the potential economic and 

environmental costs associated with increased GHG emissions. Since it appears that subsurface 

application of both solid and liquid manure will increase total GHG emissions over a period of 

time after application, it may not be possible to reduce both odour and GHG emissions using that 
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particular management practice. If manure must be injected due to odour or other concerns, 

nitrous oxide emissions may be limited by adopting management practices that limit nutrient loss 

such as matching the application rate to the soil and plant requirements and applying when 

nutrient uptake is highest. Since denitrification is highly dependent on water filled pore space, 

nitrate content, and labile carbon content, manure should not be injected into wet soils, the use of 

nitrification inhibitors to limit N2O emissions should be investigated, and manure with high 

carbon (bedding) content should not be injected. 

 

In addition to elevated GHG emissions, other environmental and economic issues related to 

subsurface manure application, such as increased soil compaction, increased energy 

requirements, soil disturbance, and the increased field area required to dispose of the manure at 

agronomic rates, must also be considered when assessing the overall impacts of manure injection 

compared to surface application. Also, the ability of subsurface application to reduce ammonia 

loss to the air and increase overall plant nitrogen recovery must be considered. The ammonia 

emissions will potentially contribute to greenhouse gas production somewhere in the terrestrial 

environment when the nitrogen re-enters the system. These “whole farm and ecosystem 

assessments” can be made easier by well designed decision support systems. 

 

Odour dispersion modeling is another tool that is often used to help design or site livestock 

facilities to minimize the odour nuisance to neighbours. Dispersion modeling can be used to 

establish minimum separation distances between neighbours and buildings and storages. 

However, the majority of odour complaints are due to manure spreading activities. Dispersion 

modeling cannot be easily applied to manure spreading because the source emission rate needs to 

be known for the entire modeling period. Manure type, application rate, and application method 

are likely to affect this emission rate trend. Therefore, a preliminary model was developed to 

predict the odour emission rate trend over time after application. The model simulated emissions 

over 48 hours and was based on manure type, application method, application rate, injection 

depth, and coverage factor (for subsurface applications). The modelled trends for odour flux 

variation over time after application and cumulative odour emissions mimicked those found in 

literature. The percent reductions in odour emissions due to injection calculated from the model 

also agreed with percent reduction values found in literature. A sensitivity analysis showed that 
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of the model parameters, effective diffusivity and odour degradation rate influenced the model 

results the most. Therefore, future work should focus on better estimation of how manure type 

and application method influence odour degradation rate, and more precise calculation of the 

variation of effective diffusivity with time and soil conditions. In addition, the effect of weather 

factors such as temperature fluctuation and rainfall infiltration into the topsoil need to be 

incorporated into the model to improve the accuracy of the simulated results. 

 

With the potential for carbon credit revenue for farmers, greenhouse gas emission models will 

become important tools for calculating carbon emissions and credits. However, most of these 

models are not sensitive enough to assess the effects of different manure management strategies 

on total greenhouse gas emissions. Unlike odour emissions, greenhouse gas emissions are 

governed by complex microbial and environmental factors which can influence short- and long-

term direct and indirect emissions. Robust and reliable baseline data are required to assess the 

total impact of manure injection on long-term greenhouse gas emissions. This data can be used to 

validate the suggested modifications to the models. These models can then be used to assess the 

relative decrease or increase in emissions due to different management practices. The modified 

models could also be used to provide better estimates of regional and national greenhouse gas 

emissions from the agriculture industry. 

 

Emissions from manure spreading constitute a large portion of total livestock emissions. With 

new plans and strategies being put in place to reduce global greenhouse gas emissions, it is 

important to carefully analyze emissions that result from new technologies or practices. If the 

greenhouse gas and odour emissions and dispersion surrounding application sites can be reliably 

predicted, better decisions can be made so as to not cause nuisance to neighbours while 

maximizing land-use efficiency and lowering the livestock industry’s contribution to agricultural 

GHG emissions. These decisions require better understanding of the factors that affect odour and 

greenhouse gas emissions. The information presented in this thesis provides a baseline with 

which to start making better manure management decisions.    

 


