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Abstract 
Trophically transmitted multiple host parasites have been known to have significant 

effects on their intermediate hosts through factors such as histopathology related to parasite 

development, as well as the well-known host behavioural alterations which are associated with 

increased transmission to the next host in the parasite life cycle. Ornithodiplostomum 

ptychocheilus is a multihost parasite which is trophically transmitted from its intermediate 

fathead minnow (Pimephales promelas) host to the definitive hosts, piscivorous birds. Within 

fathead minnows, this parasite causes histological damage of host tissue at its infection site – the 

superficial layers of the optic tectum and cerebellum – and is associated with the disruption of 

visually-mediated behaviours. Similar to many multihost parasites, the degree of host 

physiological and behavioural alterations during O. ptychocheilus infection has been found to be 

dependent upon parasite developmental stage and parasite burden.  

The described pathologies suggest that infection represents a direct cost to host energy 

budgets as well as survival costs related to host antipredator responses to visual stimuli. 

Therefore, I investigated the influence of O. ptychocheilus infection on host metabolic rates as 

well as during visually-mediated escape responses – an antipredator behaviour which requires 

rapid visual processing. First, I compared standard metabolic rate of uninfected and infected fish 

during the obligate growth period – a parasite developmental stage associated with significant O. 

ptychocheilus growth as well as host histopathology. I found that infection significantly 

increased metabolic rates at very low parasite loads, but standard metabolic rate gradually 

decreased with parasite numbers until it was comparable to or below that of uninfected fish. The 

following year, I measured fast-start response latencies of both newly infected hosts and 

minnows infected from the previous year to fast-moving visual stimuli approaching from above 

and the front (vertical and horizontal planes) across parasite developmental stages. I found that 

infection significantly reduced host abilities to respond to the stimulus, but this was dependent 

upon parasite load as well as the direction of stimulus approach. Surprisingly, the influence of 

infection was similar regardless of days post parasite exposure indicating that parasite 

development did not alter visual capabilities. Overall, my results suggest that, while infection-

induced pathologies are costly for hosts and may persist overtime, there appears to be significant 

host compensation to mitigate the pathologies associated with the obligate growth period.  
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Chapter 1 - Introduction: Phenotypic Alterations of Infected Hosts 

 

1.1 Infection-induced modifications to host physiology and behaviour 

Parasites, organisms which rely on a symbiotic relationship with a second, “host” 

organism, for resource acquisition and through this relationship cause harm to the host organism, 

have become recognized as influential components of ecosystems (Raffel et al., 2008). The 

discovery of complex networks of ecto- and endoparasites spanning a wide taxonomic range 

suggest a framework for a widespread influence of ecosystem dynamics (Lima et al., 2012). The 

significance of the parasite “role” has been primarily described through the direct modification 

of host phenotype and the resulting alterations in host intra- and interspecific interactions 

(Mikheev et al., 2010; Poulin, 2010). It is well-understood that the underlying physiological 

modifications of the host phenotype are responsible for the more conspicuous alterations 

associated with infection such as modified behaviour and morphology (Klein, 2003; Barber & 

Wright, 2005; Kelly et al., 2010). Although many of the specific physiological mechanisms 

targeted by infection are relatively unknown, previous investigations have attributed observed 

phenotypic alterations to parasite-induced neuro- (Shaw et al., 2009; Perrot-Minnot et al., 2014)  

and endocrine modulation (Trubiroha et al., 2010). This strongly suggests that parasite control of 

physiological pathways of their host lead to the observed behavioural and morphological 

outcomes and likely contribute to the alteration of other physiological functions such as 

metabolism (Wagner et al., 2005; Seppänen et al., 2009).  

Among the described phenotypic alterations, conspicuous infection-induced behaviours 

have been given considerable attention (Poulin & Maure, 2015). Fish are a well-studied group 

which has demonstrated significant alterations in behavioural patterns during infections (Crane et 

al., 2011; Curtis, 2014; Poulin & Maure, 2015). Often these changes can be attributed to 

unavoidable consequences of parasite presence known as pathology (Griffin et al., 2014), but 



 

 2 

some parasites modify host behaviour, specifically antipredator responses, as an adaptive 

strategy to facilitate transmission (McElroy & de Buron, 2014). Multihost parasites require more 

than one type of host to complete their life cycle and are a well-known example of a parasite 

group associated with modifications of host behaviours. In these systems, the life cycle of the 

parasite includes development in one or more intermediate hosts before reaching a final, 

definitive host in which the parasite sexually reproduces (Shaw et al., 2010; Seppälä et al., 2011; 

Fredensborg & Longoria, 2012). Many multihost parasites life cycles include an ontogenetic 

stage reliant on current host consumption by the parasite’s next host for transmission, forming a 

complex predator-prey-parasite system (Anderson, 1986; Bairagi & Adak, 2015). In these 

systems, parasite “manipulations” target antipredator responses of the current host to increase its 

vulnerability to the next host in the parasite life cycle. In general, complex parasite-induced 

modifications of host phenotypes which directly increase the probability of transmission to the 

next host in the parasite’s life cycle are accepted as examples of adaptive manipulation (Worth et 

al., 2013). However, Poulin has raised the possibility that any parasite induced-alteration which 

increases transmission may be considered adaptive if the parasite’s characteristic underlying the 

host change is inherited (Poulin, 2010). One well-known example of adaptive manipulation is the 

behavioural modification of Longnose (Fundulus similis) and California killifish (Fundulus 

parvipinnis) infected with Euhaplorchis californiensis, a trematode developing on the pial 

surface of the brain. Infected fish demonstrate conspicuous swimming behaviours near the 

water’s surface which attract the parasite’s final host: piscivorous birds – increasing the 

probability of fish consumption by birds 30-fold (Shaw et al., 2010; Fredensborg & Longoria, 

2012). The modifications of host behaviours during infection are associated with specific 

physiological alterations. In the California killifish, altered behaviours of infected fish 

correspond to changes in the levels of the neurotransmitters: serotonin and dopamine (Shaw et 

al., 2009; Shaw & Øverli, 2012).  

 

1.2 Infection conditions and associated host phenotypic alterations  

Infection conditions have been found to influence the parasite-induced modifications to 

host physiology and exhibited host behaviour. Two infection conditions which have been shown 

to significantly influence host functions and, thus, behaviours are parasite burden (Shirakashi & 

Goater, 2002; Santos & Santos, 2013) and parasite developmental stage (Shirakashi & Goater, 
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2005). Although multihost parasites are well-known to increase intermediate host vulnerability to 

the next host in the parasite’s life cycle, handicapping hosts during non-infective stages is 

detrimental to the parasite (Parker et al., 2009). As a result, ontogenetic parasite stages are 

essential in determining behavioural outcomes during multihost parasite infections.  Some hosts 

have even shown increased antipredator behaviours during non-infective parasite stages which 

have been proposed as parasite manipulations to avoid premature host consumption (Gopko et 

al., 2015). However, developing parasites have an increased reliance on host resources to 

facilitate growth. Consumption of host resources generally results in the deterioration and 

modification of host tissues, and, consequently, the disruption of normal host functions (Barber 

& Crompton, 1997; Sandland & Goater, 2000). Further, complicating infection-induced 

alterations associated with parasite ontogeny are the complex effects of parasite burden on host 

physiological and behavioural outcomes (Shirakashi & Goater, 2002; Fredensborg & Longoria, 

2012). This suggests that investigations of the combined influence of parasite development and 

burden are essential to understanding the role of infection in both parasite manipulations of host 

behaviour as well as infection-induced pathology.  

 

1.3 Model System: Ornithodiplostomum ptychocheilus infection of Pimephales promelas 

 The three-host life cycle of the trematode, Ornithodiplostomum ptychocheilus, is an 

example of a multihost parasite system which relies upon trophic transmission. The first 

intermediate host of O. ptychocheilus is the snail, Physa gyrina. This host is followed by a 

second intermediate fish host, the fathead minnow, Pimephales promelas. The final, definitive, 

hosts are piscivorous birds (Sandland & Goater, 2001). The infective stage of O. ptychocheilus to 

P. gyrina, the miracidium, is motile and hatches from eggs released into the water with the feces 

of piscivorous birds. After development and asexual reproduction within the snails, a second 

motile ontogenetic stage, the cercaria, is released to locate fish hosts. After infecting fathead 

minnows, the stage of O. ptychocheilus is known as the metacercaria. Metacercariae are 

trophically transmitted to piscivorous birds through consumption of infected minnows by the 

birds. Within the definitive bird host the parasite develops into an adult stage and undergoes 

sexual reproduction (Schleppe & Goater, 2004). 

 As the host of the trophically transmitted stage of this parasite, fathead minnows and their 

infection-induced phenotypic alterations, have been a focus of previous investigations. O. 
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ptychocheilus is a prevalent parasite of fathead minnows and wild minnows experience a wide 

range of parasite burdens with ≥ 400 metacercariae recorded in hosts (Sandland & Goater, 

2001). Minnows experience a peak exposure period to cercariae during the months of August 

and September (Sandland et al., 2008). This parasite infects hosts by penetrating the epidermal 

layer and migrating through host tissues to reach the superficial layers of the optic tectum, and 

cerebellum (Radabaugh, 1980; Matisz et al., 2010b). The optic tectum has been established as an 

integrative center for visual stimuli and information from the lateral line system (Arnold, 1974; 

Springer et al., 1977; Vissio et al., 2008) while the cerebellum is considered a center for sensory- 

motor function (Hodos, 2009). In vertebrate visual systems, the superficial layers of the optic 

tectum primarily receive topographically-organized visual information, while the deeper layers 

play a greater role in the integration of other sensory stimuli (Vissio et al., 2008). 

 Within hosts, this parasite develops for approximately 10 weeks before becoming 

infective to piscivorous bird (Shirakashi & Goater, 2001). During development, O. ptychocheilus 

undergoes three distinct stages: obligate growth, differentiation and consolidation, and 

encystment (Sandland & Goater, 2000). During the obligate growth period, the metacercariae 

develops within the tissues of the optic lobes and cerebellum and doubles in size. At the start of 

this period, the tegument of the metacercaria develops into a network of microvilli and 

microlaminae which extends into host tissue (Goater et al., 2005; Conn et al., 2008). Host cells in 

direct contact with this network show significant disruption and appear deteriorated (Goater et 

al., 2005). After this initial stage of development, the metacercaria undergoes encystment 

(development into a double-walled cyst) and consolidation. Following encystment, the parasite 

begins to migrate into the endomeniux above the optic tectum and cerebellum (Matisz et al., 

2010b). The onset of metacercariae migration to the endomenix generally occurs between 28-42 

days post infection (p.i.) and is associated with significant inflammation of the meninges. After 

this transition, the metacercariae completes development and becomes infective to definitive bird 

hosts (Goater et al., 2005).   

 

1.4 Primary objectives 

Previous investigations of this host parasite system have revealed a repertoire of phenotypic 

alterations of fathead minnow hosts including visuomotor processing disruption (Shirakashi & 

Goater, 2001; 2002; 2005), oxidative stress of liver cells (Stumbo et al., 2012), and distortion of 
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cranial morphology (Sandland & Goater, 2001). The degree of the observed changes correspond 

to distinct parasite developmental stages (Shirakashi & Goater, 2005) as well as the number of 

parasites within hosts (Shirakashi & Goater, 2001; 2002). Known host modifications associated 

with infection have significant implications for the existence of other infection-induced 

alterations of host phenotypes. The purpose of this thesis was to further explore the influence of 

O. ptychocheilus infections on physiological and behavioural modifications of fathead minnow 

hosts. 

 

Experiment 1: Infection-induced modification of host metabolism 

Metabolic alterations are a common byproduct of infection as both the consumption of 

host resources and associated tissue damage are energetically expensive for hosts. However, the 

direction of metabolic change during infection is specific to the parasite-host system (Robar et 

al., 2011), thus, the effects of O. ptychocheilus infection on fathead minnow hosts are difficult to 

predict.  

 

Objective: I investigated the relationship between host metabolic rate and parasite burden during 

the obligate growth period to determine if the high energetic demand of this ontogenetic stage 

significantly influences host metabolism.  

 

Hypothesis: I hypothesized that hosts would experience a modified metabolic rate associated 

with the number of developing parasites within the fish.  

 

Experiment 2: Infection-induced visuomotor processing disruption and predator escape 

As described, trophically transmitted parasites are often associated with parasite 

development-dependent alterations of host antipredator behaviours. Although antipredator 

responses have not be investigated in this parasite system, the reduced visuomotor capabilities 

observed during infection suggests that visually-mediated antipredator behaviours of infected 

fish may be less successful. Infection-induced visual processing disruption may be particularly 

costly during host responses to imminent threats when appropriate timing of escape onset is vital. 

Moreover, reduced visuomotor processing may increase the possibility of parasite transmission if 

it results in selective disruption of host responses to aerial predators. 
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Objective: I explored the latency of fast-start escape responses of infected fish to vertically and 

horizontally approaching stimuli to determine the influence of infection on host antipredator 

abilities to imminent aerial and aquatic threats in the context of parasite development and 

parasite load.  

 

Hypothesis: I hypothesized that infected hosts would exhibit delayed fast-start responses to 

threatening visual stimuli and that the degree of increase in response latency would depend upon 

parasite ontogeny, parasite burden and, the direction of stimulus approach. I predicted that the 

resulting patterns of response latencies would provide evidence for one of two scenarios. First, if 

infection-induced behavioural modifications are adaptive, then I expected longer response 

latencies to vertically approaching stimuli (i.e. aerial predation) in fish during the final stage of 

parasite development. Second, if alterations to host behaviour are a result of pathology, I 

predicted the response latencies to stimulus approaching from both planes would be similarly 

disrupted, and likely associated with the obligate growth period. 
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Chapter 2 - Infection-induced Modification of Host Metabolism  
 

2.1 Introduction 

Metabolism reflects host mitigation of infection-induced pathology 

Energetic cost associated with infection is a common pathology experienced by infected 

hosts due to parasite use of host tissues (Barber & Crompton, 1997; Raffel et al., 2008) as well as 

the energetic requirements of host compensatory responses such as immune function (Nilsson et 

al., 2007). Metabolism, as the physiological function which mobilizes host energy for other 

physiological processes, is often used to measure the extent of infection-related costs in host 

energy budgets. In many host-parasite systems measures of host oxygen consumption at rest 

have been used as a proxy for measures of metabolic rate during periods of otherwise low 

energetic demand. Studies of metabolic rate at rest revealed a range of responses to infection 

including increases (Powell et al., 2005; Jones et al., 2007; Seppänen et al., 2008; Filipsson et al., 

2017), decreases (Powell et al., 2005; Seppänen et al., 2009), and, most often, no change 

(Walkey & Meakins, 1970; Meakins & Walkey, 1975; Wagner et al., 2005; Leef et al., 2007; 

Seppänen et al., 2008; Lapointe et al., 2014; Thomas et al., 2014; Bruneaux et al., 2017; Powell 

& Gamperl, 2016). Fish even demonstrate species-specific metabolic alterations to infection by 

the same parasite (Powell et al., 2005). These results strongly suggest that the metabolic outcome 

of infection is dependent upon host’s ability to modify physiological processes to compensate for 

the energetic demand posed by the parasite. For example, fish hosts demonstrating comparable 

metabolic rates to uninfected individuals have exhibited physiological compensatory responses 

such as increased oxygen transport capacity of the gills and circulatory system (Fisk et al., 2002; 

Powell & Gamperl, 2016; Filipsson et al., 2017) as well as increased reliance on anaerobic 

metabolism (Powell & Gamperl, 2016).  
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As previously described, changing infection conditions have been shown to significantly 

influence the intensity of infection-induced metabolic changes. Current discussions related to the 

effects of infection conditions have been restricted to modified metabolism associated with 

parasite burden. Similar to the overall pattern of metabolic changes during infection, the 

relationship between host metabolic response and parasite burden vary across host-parasite 

systems. Under ambient oxygen and temperature conditions, fish hosts have demonstrated 

increased metabolic rate (Jones et al., 2007), decreased metabolic rate (Filipsson et al., 2017), 

and no significant change in metabolism in response to higher parasite burdens (Fisk et al., 

2002). However, the greatest implications of parasite burden may be the influence of parasite 

numbers on hosts’ ability to mobilize energy to respond to external stressors. Higher parasite 

burdens have been associated with reduced ability to acclimate to hypoxia (Fisk et al., 2002; 

Lapointe et al., 2014), reduced thermoregulatory capabilities (Lapointe et al., 2014; Lawlor, 

2016; Bruneaux et al., 2017), and increased recovery time following a period of stress (Thomas 

et al., 2014). Unlike parasite burden, metabolic changes associated with parasite development 

have not been directly investigated in fish hosts. However, in systems where the parasite exhibits 

different energy requirements during distinct developmental periods, host metabolism may 

change to meet the energetic demands of the parasite’s ontogenetic stage.  

Trematodes are an example of a parasite group in which parasite development influences the 

energetic challenge imposed by infection (Ballabeni, 1994; Goater et al., 2005). Surprisingly, 

although the early stage of development described in many of these systems has been associated 

with significant host damage and parasite growth, changes associated with metabolism have not 

yet been observed. One study of metabolic rates in a fish host revealed that Brown trout (Salmo 

trutta) and roach (Rutilus rutilus) infected with Diplostomum pseudospathaceum demonstrated 

ventilation rates similar to that of uninfected fish during the early stage of parasite development 

(Laitinen et al., 1996). Another investigation demonstrated similar relationship with host 

metabolism during infections with Diplostomum sp., a trematode which causes cataracts in the 

eye lens of fish, during the early stages of parasite development (Voutilainen, et al., 2008). In 

this study, changes in metabolic rate only occurred in chronic infections and coincided with 

increased foraging activity of infected fish presumably due to the impaired feeding abilities 

associated with cataract formation. These studies suggest that infected fish are able to 

compensate for the costs of infection associated with earlier infection periods.  
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Fish metabolic responses to infection suggest that metabolism is not a measure of the 

direct energetic costs of infection such as parasite consumption of host resources. Instead, it 

appears to be a useful indicator of the physiological compensation of hosts to the energetic 

demands associated with parasite presence and function (Fisk et al., 2002; Powell & Gamperl, 

2016; Filipsson et al., 2017). Therefore, measures of host metabolism can be considered a guide 

to understanding host strategies to mitigate the addition of infection-induced costs to host energy 

budgets. It also highlights the efficacy of host compensatory responses during different infection 

conditions such as parasite burden and parasite developmental stage.  

 

O. ptychocheilus-induced phenotypic alterations and host metabolism 

Direct measures of metabolism during O. ptychocheilus infections have not been 

investigated. However, studies have revealed infection-induced physiological changes, including 

oxidative stress (Stumbo et al., 2012), immune response (Matisz et al., 2010a), and tissue 

damage and repair (Shirakashi & Goater, 2005) which have been previously been linked to 

metabolic alterations. Similar to other parasite systems, these infection-induced changes are 

modified by parasite load and development, suggesting that these factors influence the degree of 

physiological change. Specifically, the pathologies associated with infection have demonstrated a 

non-linear relationship with parasite burden as well as increased pathology associated with the 

obligate growth period. This period is considered to be a particularly energetically demanding 

time in parasite development, illustrated by the formation of a microvillar network associated 

with resource acquisition which extends into and disrupts host tissue (Ballabeni, 1994; Goater et 

al., 2005). The increased energetic requirements of the parasite as well as the assumed cost of 

host tissue repair likely present a direct drain on host resources during this developmental stage. 

The disintegration of the microvillar network during later parasite stages indicates that the 

energetic demands of the parasite are reduced following the obligate period (Goater et al., 2005). 

This, along with the reduced pathology experienced by hosts during later developmental periods, 

suggests that infection becomes less energetically expensive overtime.  

The previous pathologies associated with O. ptychocheilus infection suggest that 

infection is energetically costly. It follows that these additional energetic demands elicit specific 

host responses to mitigate the effects of infection and that these responses are reflected in host 

metabolism. Therefore, investigations of metabolic rates during O. ptychocheilus infections will 
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provide a greater understanding of how fish hosts compensate for the energetic costs associated 

with infection-induced alterations in host physiology. To quantify the possible metabolic 

alterations associated with infection, I compared metabolic oxygen consumption between 

infected and uninfected fathead minnows during a period of rest. Due to the importance of 

parasite ontogeny and parasite burden in determining the degree of pathology experienced by 

hosts, both the number of parasites as well as the developmental stage of the parasite during 

experiments were recorded.  

 

3.2 Methods 

Ethics and safety statement 

All fish housing and experimental procedures were conducted following Canadian animal 

research standards as outlined by the Animal Research Ethics Board at the University of 

Saskatchewan. Biosafety Containment Risk Level 2 protocols for parasite containment 

procedures were approved by the appointed University Workplace Safety & Environmental 

Protection Biosafety Officer.  

 

Fish collection and maintenance  

To ensure that the minnows used during experiments were parasite free, I raised fathead 

minnow fry in the laboratory. To my knowledge, cercariae have not been known to infect fathead 

minnow embryos, therefore, fry were obtained from eggs collected from a nearby wild 

population. Egg collection followed a previously established protocol (Chivers & Smith, 1994): 

artificial spawning sites (i.e. 3-4.5 cm diameter clay pots) were provided to fathead minnows at 

Feedlot Pond, a drainage pond bordering the University of Saskatchewan’s Beef Research 

Station, during May-July 2016. Spawning sites were spread along the surrounding shore in an 

effort to maximize genetic variability of eggs collected. Sites were gently inspected at least twice 

a week to determine the presence or absence of eggs and the maturity of clutches. Eggs were 

only collected near hatching time to increase hatching success in the lab. A total of 24 clutches 

were collected and stored in holding tanks maintained at approximately 20°C. To discourage the 

growth of harmful pathogens in holding tank water during egg storage and the initial hatching 

period, approximately 0.5-1 ml of methylene blue was added for every 3.8 liters of water in 

holding tanks. After hatching, the fry were raised in smaller tanks and fed a diet of larval brine 
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shrimp. Upon reaching 3-5 weeks of age, they were transferred to several larger holding tanks, 

where they gradually transitioned to a diet of Tetramin commercial fish food and maintained at a 

slightly lower temperature of approximately 19°C in a 14:10h light/dark cycle.  

 

Collection of infected snails 

Due to the multiple host life cycle of O. ptychocheilus, the infective stage of this parasite 

to fathead minnows (the cercaria) was obtained via infected Physa gyrina snails. In a wild 

system containing a heavily infected minnow population approximately 2% of P. gyrina are 

infected (Cameron Goater, pers. comm.). Therefore, snails were also collected from Feedlot 

Pond, a minnow population known to have high parasite burdens, to increase the probability of 

finding infected snails. This had the added benefit of exposing the young of the year in the lab to 

parasites released from a snail population that they would have encountered in the wild. P. 

gyrina were collected during August and September – months associated with a peak in parasite 

release. Following collection, snails were maintained in a Biosafety Level 2 containment zone. 

Infected snails release thousands of cercariae a day for a period of approximately a 

month. In order to determine if wild caught snails were infected, individual snails were placed in 

100 ml of water and exposed to direct artificial light to induce cercariae release. Following a 

period of 1-2 h, the surrounding water was examined to determine if cercariae were present. In 

snail holding containers with visible cercariae, 1-3 ml of the water was examined under a 

dissecting scope to determine if the cercariae were likely to be O. ptychocheilus. Between 3-5 

fish were exposed to the remaining cercariae-filled water from potential O. ptychocheilus-

infected snails to verify the parasite species. To my knowledge, only O. ptychocheilus is known 

to infect the brain tissue of fathead minnows. Therefore, a week following exposure, when the 

metacercariae were large enough to be readily visible within the brain tissue under a dissecting 

microscope, minnows were euthanized with a Tricaine (MS 222) overdose and the fish brains 

were inspected for parasite presence (see Parasite counts). After confirmation, infected snails 

were placed in separate holding containers and kept until fish infection procedures. Due to the 

significant physiological cost imposed on the snail during O. ptychocheilus infection, only one 

infected individual survived for cercariae collection during experiments. 
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Fish exposure to O. ptychocheilus 

Minnow infection protocol followed a previously established method (Shirakashi & 

Goater, 2005).  Minnows were 3-5 months old during exposure procedures – an age range 

representative of wild young of the year during the first O. ptychocheilus exposure (Sandland et 

al., 2008). In preparation for fish exposure to cercariae, the infected snail was placed 100 ml of 

fresh water for 5-7 h to ensure sufficient concentration of parasites in the water. The infected 

snail was then removed and returned to the holding container. Cercariae density within the water 

was estimated by counting the total number of cercariae within 1 ml 3 times and averaging the 

results of all counts. Counts were conducted under a dissecting scope in a small petri dish over a 

1 x 1 cm grid. To facilitate count accuracy, 3 drops of 70% ethanol was added to slow parasite 

movement. Estimates of parasite numbers within the cercariae-filled water were recorded and 

used to determine the parasite exposure doses for the fish. Two fish exposures staggered one 

week apart were completed prior to the conclusion of the cercariae release period. 

Forty-eight similarly-sized minnows were arbitrarily chosen from holding tanks for the 

first parasite exposure period and transported to a larger Biosafety Level 2 containment area. 

Within this zone, individual fish were placed in 100 ml of system water and minnows were 

transferred to 3 rows of 6 individual exposure containers. Each row was randomly assigned and 

then exposed to 1 of 3 cercariae doses – low (5-30), high (75-100), or zero (clean system water) 

– for a 1.5-2 h period. These doses are within the range of parasite loads found in minnow hosts 

of two Alberta lakes with a high prevalence of O. ptychocheilus infection (Sandland et al., 2008) 

as well as infection levels found in wild-caught minnows from Feedlot Pond.  A 1-ml pipette was 

used to add the exposure doses into the individual holding containers. After exposure, fish were 

separated according to the assigned infection levels and placed into their original holding tanks 

with other minnows in their infection group. The remaining cercariae-filled and fish exposure 

water was sterilized with a 1% bleach solution and disposed of and all items and surfaces used 

during infection procedures were disinfected in accordance with Biosafety Level 2 protocols. A 

second exposure of 18 minnows (6 minnows per treatment) was conducted the following week. 

This was the final exposure period of minnows in this experiment as cercariae release ended 

soon after.  
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Respirometry system set up 

A Loligo ® Systems intermittent flow respirometer and AutoResp™ version 2 software 

was used to measure the aerobic metabolic rate (MO2) of minnows. Specifically, the standard 

metabolic rate (SMR) was compared across minnow infection groups. SMR is considered an 

estimation of metabolic rate at rest and is a common measure used to determine metabolic 

responses to stressors such as parasitic infection (Seppänen et al., 2008; 2009). During 

experiments, individual fish were housed in four cylindrical chambers. Each chamber was 50-

mm long with a diameter of 33 mm and had a volume of 43 ml. Fish included in the experiment 

maintained the mass (g) to water volume (ml) ratio within the desired range (between 1:20 and 

1:100) (Svendsen et al., 2016). The chambers were covered in opaque black electrical tape to 

visually separate the fish during trials. MO2 was measured via a fiber optic probe connecting an 

oxygen sensor within each chamber to a single oxygen regulation unit (OXY-REG). During 

experiments, the chambers were connected to individual water recirculation loops, each with a 

peristaltic pump to control water flow. This apparatus was then added to a water bath and the 

recirculation units were attached to a single flush pump which regulated the addition of water 

from the bath to the system. The water bath also contained an air pump, heating coil, and a 

temperature probe monitored by the temperature control unit (TEMP-REG). As metabolic rate is 

significantly influenced by even small temperature changes (Svendsen et al., 2016), the water 

bath was maintained at 19˚C with a hysteresis of 0.04 to match fish holding tank temperatures.  

Prior to fish introduction into the system, the oxygen sensors in each chamber were 

calibrated through exposure to a maximum and minimum concentration of oxygen, following 

previously established methods (Svendsen et al., 2016). The sensor was aerated by maximally 

bubbling an air stone in the water bath surrounding the oxygen sensor over a several-hour period 

to create the maximum oxygen saturation value (MO2, max). The minimum oxygen concentration 

(MO2, min) was accomplished through multiple-hour exposure of the oxygen sensor to a Na2SO3 

solution. 

 

Respirometry trials 

All infection groups were represented during each trial and all testing was completed 

between days 4-28 post exposure to remain within the time frame of the obligate growth period.  

One day prior to trials, the mass of each of four minnows was measured and the fish were 
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transferred individually into one of four empty 37-L holding tanks. Here they underwent a 24-

hour food deprivation period at holding tank temperatures (19°C) in an effort to avoid digestion-

related effects on MO2 measures during trials (Chabot et al., 2016).  

Prior to fish introduction the next day, the chambers and associated water recirculation 

loops were thoroughly cleaned with a 1% bleach solution to remove significant microbial 

growth. Microbial oxygen consumption can strongly influence measurements, especially when 

measuring the MO2 of smaller fish (Clark et al., 2013). To ensure microbial oxygen consumption 

(i.e. background respiration) did not become a confounding factor during trials, MO2 within the 

chambers was measured prior to fish introduction. Trials only commenced if resulting MO2 

values were less than 10, indicating that background respiration was low. Following trial 

conclusion and fish removal from chambers, microbial oxygen consumption was measured 

again.  These pre and post measurements of background respiration, known as blanks, were later 

used to correct MO2 data collected during trials prior to analysis.  

Upon completion of the first blank, minnows were placed into the chambers prior to 

18:00 hours. This ensured a sufficient acclimation period was included in trials to allow fish to 

recover from handling. Minnows spent at least 14 h in the respirometer chambers at 19°C in a 

quiet, undisturbed room to facilitate an eventual resting state in the fish. It was essential that fish 

reach a period of “calm” during trials – marked by low MO2 – for an accurate measurement of 

SMR. During the overnight period, multiple measurements of MO2 were recorded as the 

intermittent flow respirometer cycled through three periods: a flow through (flush), a 

measurement, and a wait. During flush periods, deoxygenated water in the chamber is replaced 

with oxygenated water. Then the chambers close and a recirculation pump mixes the water inside 

the chamber to allow for a more accurate estimation of oxygen saturation, and, thus, MO2. For a 

brief “wait” period after the chamber closes and the flush pump stops, measurements are not 

recorded. After this delay, MO2 (i.e. the decline in dissolved oxygen concentration within the 

chamber) is recorded continuously while the chamber is closed. In this experiment, oxygen in the 

chamber was measured for 480 sec followed by 300-sec flush and 90-min wait periods for 

approximately 4 MO2 measurements per hour. The trial was concluded at 10:00 hours the 

following day and fish were removed from the chambers, transported to individual holding tanks 

and fed. If a fish did not reach a period of calm during the trial period, it was given at least a 2-
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day recovery prior to a second trial. Any fish (n=1) that failed to become calm following the 

second trial attempt was removed from experiments.  

 

Parasite counts 

After the completion of trials, fish were euthanized with a Tricaine (MS 222) overdose. Fish 

were removed from the solution after several minutes upon the cessation of all gill movement 

and frozen at -20ºC until dissection. During dissection, sharp, curved tweezers were used to peel 

back the cranium of minnows. The intact brain was then carefully removed by detaching the 

spinal cord and gently scooping and lifting the tissue out of the brain case with the curved 

tweezers. The brain was transferred to a glass slide and then gently mushed with second glass 

side. The two slides were held together with small metal clamps to ensure that the brain tissue 

was not significantly moved after the second slide was applied. The brain was then observed 

against a 1x1 cm grid under a dissecting scope. In place of the right microscope lens was a Dino-

Lite Eyepiece HR 5 Megapixel which allowed for images and videos of the brain to be taken 

with DinoCapture 2.0 software. The slides were cleaned thoroughly between uses and inspected 

under the microscope to ensure that no parasites from the previous brain were transferred and 

later counted erroneously. Finally, the images from each brain were pieced together and 

enhanced in GIMP version 2.8.4. A small black dot was placed over each parasite during counts 

to avoid double counting. 

 

Statistical analysis 

 MO2 values during the period of calm were corrected for background (microbial) 

respiration and the lowest 10 values during this period were averaged to obtain a mean oxygen 

consumption value for each fish. To avoid the influence of hypoxia on fish metabolism, MO2 

measurements were removed from analyses if oxygen saturation within the chambers fell below 

90% (Svendsen et al., 2016). One fish was removed from analyses because it did not reach a 

resting period during either of two trial attempts it experienced.  

Statistical analyses were conducted in R 3.4.3 (www.rproject.org). Changes in metabolic 

function were analyzed with a mixed-effect model (package lmerTest) with respirometry 

chamber and trial period designated as random effects and time period post infection (first and 

second half of the obligate growth period) and infection status (uninfected, low, and high) run as 
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fixed. The influence of infection on MO2 (in mg of O2 per kg of fish per hour) were analyzed 

with the model: MO2 = infection status * time period + (chamber/run). Due to low infection 

success (see results) and a few instances of fish rerun through the respirometer, trial period could 

not be run by day and was split into sequential 2-day periods. A Tukey’s HSD test was used for 

post hoc analyses of significant fixed effects and a p < 0.05 was considered significant. The 

regression function in R was used to analyze the relationship between MO2 and parasite load, 

mass, and days p.i. as well as the relationship between mass and parasite load in infected fish.  

 

2.3 Results 

Infection success 

Parasite counts revealed that overall infection success was lower than that of previous 

studies which reported wide ranges of parasite numbers in infected minnows: 3-209 

metacercariae (Shirakashi & Goater, 2002) and 1-128 metacercariae (Shirakashi & Goater, 

2001). This resulted in fewer infected fish (n = 12) than expected and the scope of the results was 

limited to low parasite burdens (2-24 metacercariae). To avoid possible confounds related to 

parasite exposure or missed metacercariae during parasite counts, minnows which were exposed 

to cercariae, but were not observed to have metacercariae were removed from analysis (n = 11). 

 

Infection-induced modifications of SMR 

Infection was not found to have a significant overall effect on SMR and MO2 between 

infected and uninfected fish were remarkably similar (F1,19 = 0.004, p = 0.948; Figure 2.1). 

However, a linear regression analysis revealed that infection resulted in an initial increase in 

MO2 at very low infection rates followed by a significant downward trend with higher parasite 

numbers (F1,10 = -3.84, p = 0.003). The negative relationship between parasite load and MO2 

indicates that the metabolic rate of infected fish decreased with the number of metacercariae to 

levels comparable to and below that of uninfected fish (Figure 2.2). Although low infection rates 

limit possible conclusions of metabolic modifications at higher parasite burdens, the results 

suggest that infection has a depressive effect on metabolic rate at more intermediate parasite 

loads. This parasite undergoes significant developmental changes over the course of the obligate 

growth period. However, time period post parasite or sham exposures did not influence SMR 

regardless of infection status (F1,19 = 1.08, p = 0.312). This was further illustrated by a cubic 
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regression analysis which indicated no influence of days p.i. on SMR of infected fish (F3,8 = 

0.31, p = 0.816; Figure 2.3). Fish mass is known to influence metabolic rates and parasite 

burdens; however, a quartic regression analysis showed no significant effect of mass on the MO2 

of infected fish (F4,7 = 2.67, p = 0.122) and a cubic regression analysis demonstrated no 

significant relationship between fish mass and parasite burden (F3,8 = 2.35, p = 0.149). The 

chamber housing the fish during experiments and the trial period (i.e. “run”) did not influence 

fish MO2 (p > 0.99 for both factors). 

 

 

 

 

 

 

 

 

Figure 2.1 Mean ± SE MO2 of uninfected and infected minnows. 
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Figure 2.2 The relationship between the MO2 of infected minnows and parasite number (n = 12, 

R2 = 0.56). Mean MO2 of uninfected fish is represented by a dashed line (n = 11).  

 

 
Figure 2.3 The relationship between the MO2 of infected minnows and Days p.i. (n = 12,           

R2 = -0.23). 
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2.4 Discussion 

Most previous investigations have explored metabolic responses of hosts experiencing 

infections in tissues which directly control aerobic metabolic function through factors such as 

oxygen transport through the gills (Leef et al., 2007; Filipsson et al., 2017) or circulatory system 

(Wagner et al., 2005; Lapointe et al., 2014; Powell & Gamperl, 2016; Bruneaux et al., 2017) as 

well as the disruption of energetic absorption associated with infection of the digestive tract 

(Walkey & Meakins, 1970; Laxmareddy & Benarjee, 2013). Although decreases in metabolic 

rate during these infections can be attributed at least in part to metabolic disruption, many fish 

appear to maintain metabolic rates comparable to uninfected fish through a mitigation of these 

pathologies. Similar to previous studies, my results indicate a reduction of the inherent costs 

associated with infection with the metabolism of infected hosts eventually matching or moving 

below rates of uninfected fish at relatively low parasite burdens. This finding was somewhat 

surprising as this parasite is not known to directly influence metabolic function and brain tissue 

is known to be energetically expensive (Nilsson, 1996; Soengas & Aldegunde, 2002). It suggests 

that the observed host metabolic rates are a result of either parasite- or host-induced alterations 

of host energetics.  

Although we did not measure other aspects of host energetics in this study, previous 

investigations indicate that hosts utilize multiple avenues of behavioural and physiological 

mitigation of infection-induced costs. There have been few previous studies of host metabolic 

rates during trematode infection, however, behavioural investigations suggest that fish are able to 

maintain relatively normal functions during the obligate growth period while experiencing a 

wide range of parasite numbers (Shirakashi & Goater, 2002; Voutilainen et al., 2008). These 

results indicate that the pathologies associated with infection are significantly reduced through 

host or parasite modification. As previously described, one study of host metabolism during 

infections with Diplostomum sp. found similar metabolic rates in uninfected and infected fish 

during the early stages of parasite development (Voutilainen et al., 2008). Metabolic rate was 

increased during the later stages of infection after cataract formation and was associated with an 

increase in foraging activity in an effort to offset impaired feeding abilities due to obstructed 

vision. To my knowledge this is the only previous study which included direct measures of 

aerobic metabolism, but it suggests that hosts play an important role in mitigating the increased 

energetic demands associated with the obligate growth period. 
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One of the most common methods employed by hosts to meet energetic demands 

associated with infection is the reallocation of energy from other functions such as activity and 

growth. Previous studies of fathead minnows during trematode infections have shown evidence 

of decreased activity (Shirakashi & Goater, 2002) and mass (James et al., 2008) as compensatory 

responses to infection. For example, O. ptychocheilus-infected fish significantly decreased 

activity during a short observation period. This only occurred at infection levels much higher 

than those reported in this experiment (150  31 metacercariae) (Shirakashi & Goater, 2002). 

However, it is possible that infected fish with low to intermediate numbers of parasites may 

experience more subtle decreases in activity throughout the day. Changes in fish mass during O. 

ptychocheilus infection have not been investigated, but fathead minnows infected by another 

trematode, Ornithodiplostomum sp. – a parasite which encysts within the abdominal cavity and 

undergoes a similar developmental pattern to O. ptychocheilus (Matisz & Goater, 2010) – 

demonstrated significantly reduced mass in the middle of the obligate growth period compared to 

uninfected fish (James et al., 2008). Although parasite burdens ranged from 20-120 

metacercariae, mean differences in mass between the low and high infection status groups were 

comparable among infected fish. If fathead minnows show similar compensatory responses to O. 

ptychocheilus infection, these results may suggest that hosts are able to meet the energetic 

demands of infection by reallocating energy from growth or by increasing reliance on energetic 

reserves. In this scenario, my results suggest that hosts may only be able to tolerate a very small 

number of parasites before it is necessary to utilize resources otherwise devoted to growth or 

storage. 

Although the redistribution of energy is often an important strategy to meet energetic 

demands associated with infections, reducing the drain of other infection-related challenges can 

also play a significant role in host energy budgets. For example, one of the main challenges to 

host energetics during infection appears to be the maintenance of defensive systems. 

Specifically, modifications to stress responses (Madison et al., 2013) and immune function 

(Secombes & Chappell, 1996; Kutyrev et al., 2014) have been observed during infection. These 

host defenses have been directly linked to increases in metabolic rate (Skinner et al., 2010; 

Murray et al., 2017). Although this is the first investigation of host energetics during O. 

ptychocheilus infections, evidence of infection-induced alterations of fathead minnow 

physiological defenses have been found previously and may suggest parasite-related energetic 
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alterations. In one study, oxidative stress in liver tissue has been observed during the obligate 

growth period of O. ptychocheilus infection (Stumbo et al., 2012). Oxidative stress was only 

evident during day 5 of the early stage of parasite development (coinciding with extensive 

development of the microvillar network) suggesting that this response may be reduced or 

restricted to the immediate infection site thereafter. Although the specific mechanisms are not 

well understood, suppression of host physiological defensive systems such as immune function is 

often associated with infection by helminth parasites (Maizels & Yazdanbakhsh, 2003; Kutyrev 

et al., 2014). In my results, the steady decrease in metabolic rate associated with parasite burden 

may indicate that the successful suppression of host defensive systems increases with 

metacercariae numbers. Therefore, individual O. ptychocheilus may facilitate the protection of 

surrounding metacercariae from host defenses.  

The suppression of host defensive functions is likely necessary for parasite survival, 

however, as discussed, significantly handicapping hosts during non-infective stages is 

maladaptive for trophically transmitted parasites. Therefore, parasite alterations of host defenses 

such as immunosuppression may be highly selective for specific functions. For example, 

helminth parasites have often been associated with a depression of the inflammatory immune 

response, which can cause increased tissue damage, while other immune activity such as host 

tissue repair and protection from parasite-released toxins is promoted (Gause et al., 2013). In 

terms of O. ptychocheilus infections, the inflammatory response has been observed following 

metacercarial encystment when parasite interactions with host tissue appear significantly reduced 

(Matisz et al., 2010a). This indicates that this immune response may be suppressed only during 

the obligate growth period. The return of normal immune function has significant implications 

for host energetics after the early stages of parasite development and supports previous findings 

of development-dependent effects of trematodes on host metabolism.  

Overall, my results indicate that infection modifies host energetics and these changes are 

reflected in host resting metabolic function. Although it is difficult to determine the relative 

influence of parasites-induced changes and host compensatory responses in the observed 

metabolic outcomes, it is likely that both play a role in metabolic alterations. Future 

investigations of minnow metabolic rates over the course of O. ptychocheilus development and 

across a wide range of parasite burdens will provide a greater understanding of how host 

energetics are modified by various infection conditions. The persistence of the observed 
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metabolic alterations during trematode infections are not well understood. Unlike the majority of 

previous investigations of host metabolism during infection, O. ptychocheilus is a parasite that 

has been associated with reduced histopathology over time. After the completion of the obligate 

growth period, the metacercariae encysts, and appears to be in a dormant state. Although host 

recovery following the obligate growth period likely depends on parasite burden, this suggests 

that the parasite may not directly alter host metabolic function during later developmental stages.  

The evaluation of the underlying physiological and behavioural factors which influence 

the observed metabolic outcomes are necessary to determine the mechanisms which modify 

metabolic rates during trematode infections. This can be accomplished through the inclusion of 

measures which illustrate infection-induced changes to host energetics such as growth, daily 

activity, immune responses, and metabolic capacity (e.g. oxygen transport and tissue absorption 

capabilities). The close association between parasite burden and depression of metabolic rate 

strongly suggest that physiological and behavioural changes influencing host energetics are 

responses to factors which increase with parasite burden such as histological damage or parasite-

released products. Therefore, studies of the interactions between with host tissues and 

metacercariae may provide a greater understanding of how parasite presence modifies host 

metabolism during rest.  
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Chapter 3 - Infection-induced Visuomotor Processing Disruption and 

Predator Escape  
 

3.1 Introduction 

O. ptychocheilus infection and associated OMR disruption 

As previously described, infection with some trophically transmitted parasites has been 

associated with alterations of host antipredator behaviours in such a way as to increase the 

transmission of the parasite to definitive hosts – known as adaptive manipulation (Worth et al., 

2013). Although there are many controversies surrounding the precise definition of what 

constitutes a manipulative parasite strategy, it is generally agreed that increased transmission to 

target hosts is an essential component of this phenomenon. Indeed, Poulin’s more inclusive 

definition of adaptive manipulation encompasses any parasite-induced alteration of hosts if it 

both increases transmission and the parasite’s trait underlying host changes is heritable (Poulin, 

2010). To consider a wide variety of mechanisms by which trophically transmitted parasites may 

facilitate their transmission to target hosts, I will frame this study under Poulin’s broader 

definition of parasite manipulative strategies.  

Although the infection site of O. ptychocheilus in the optic tectum and cerebellum provides 

an efficient avenue for parasite manipulation, antipredator responses have not previously been 

investigated in the trophically transmitted host (fathead minnow). However, previous 

investigations have indicated that O. ptychocheilus infection has been associated with the 

disruption of visually-mediated behaviours, presumably due to parasite preference for the 

superficial layers of the optic tectum. The optic tectum has been associated with the regulation of 

visually-mediated behaviours through mechanisms such as optomotor response (OMR) (Arnold, 

1974; Springer et al., 1977). OMR is defined as the movement of an animal in response to visual 

stimuli as it moves relative to its background (Shirakashi & Goater, 2005). It is thought to be 

essential for schooling, the detection of movement, and orientation (Arnold, 1974). An earlier 

study found complete disruption of OMR-controlled behaviours in goldfish (Carassius auratus) 

following the removal of the optic tectum (Springer et al., 1977).  More recent investigations in 
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zebrafish suggest that OMR disruption of the goldfish study was due to removal of deeper tectal 

regions, as zebrafish with these brain regions intact retained normal OMR (Roeser & Baier, 

2003; Temizer et al., 2015). Interestingly, O. ptychocheilus infection is associated with a 

disruption of OMR performance comparable to the earlier investigation of goldfish with 

ablations of the optic tectum (Shirakashi & Goater, 2001). This suggests that the reduced OMR 

performance of infected fish is not necessarily a direct result of the histological damage of the 

superficial optic tectum layers associated with infection.  

Similar to infection-induced pathologies of other host-parasite systems, the severity of OMR 

disruption in hosts is dependent upon O. ptychocheilus development and parasite burden. One 

study found that infection resulted in the overall decrease of OMR performance across 

ontogenetic stages, however, this difference was only significant during the obligate growth 

period (Shirakashi & Goater, 2005). This result is somewhat surprising as an intermediate host of 

a trophically transmitted parasite developmental stage is an obvious target of parasite 

manipulation. It suggests that OMR disruption was a pathology associated with the parasite-

induced deterioration of host brain tissue during the initial stage of parasite development. In 

comparison, the relationship between OMR performance and parasite load was not linear, but 

rather followed an inverse U-shape relationship: OMR performance was reduced in fish with low 

(5-20 metacercariae) and very high (150  31 metacercariae) parasite burdens while OMR 

performance of fish with more intermediate parasite numbers was comparable to that of 

uninfected fish (Shirakashi & Goater, 2002). The underlying mechanisms driving this 

relationship have not been determined. However, the duration of the obligate growth period has 

been shown to be inversely density dependent, with increased growth and size of metacercariae 

in lower level infections (Sandland & Goater, 2001). Observed OMR outcomes may be related to 

benefits associated with density-dependent inhibition of parasite growth at intermediate 

intensities. Beyond a threshold, the energetic demands of the parasites and subsequent 

histological damage may overwhelm the protection of density-limited parasite development. 

Despite the apparent recovery of hosts following the obligate growth period, mature O. 

ptychocheilus infections have been associated with inhibited visuomotor learning (Shirakashi & 

Goater, 2005) as well as reduced OMR in fish with lower parasite numbers suggesting that the 

influence of parasite burden on infection-induced changes persists overtime (Shirakashi & 

Goater, 2001).  
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Infection-induced interruption of visual processing: implications for visually-mediated fast-start 

responses 

 Vision is one of the main avenues of sensory information in aquatic systems (Hartman & 

Abrahams, 2000). As a result, many antipredator behaviours are visually-mediated and play a 

crucial role in survival (Godin, 1997; Temizer et al., 2015). Therefore, the disruption of visual 

processing associated with O. ptychocheilus infection has important implications for threat 

recognition, and consequently, appropriate displays of defensive behaviour (Blaxter & Fuiman, 

1990; Domenici, 2002; Ferrari et al., 2010). An important component of the antipredator 

response is escape behaviour. Mediated by fast-acting Mauthner neurons as well as other 

reticulospinal neurons in the brainstem, the aptly named fast-start responses, or c-starts, are 

initiated during an imminent predator threat and are, therefore, directly linked to survival (Eaton 

et al., 1984; Korn & Faber, 2005). Their importance in prey survival has prompted investigations 

into the factors which influence escape performance such as distance travelled, speed and 

acceleration (Webb, 1976; Harper & Blake, 1990; Walker, et al., 2005), response latencies 

(Eaton et al., 1984; Binning et al., 2014), and response distance (Dill, 1974). Response latencies 

in particular have often been used as a measure of escape performance. Short response latencies 

have been associated with successful escape from live aerial (Lotem et al., 1991; Katzir & 

Camhi, 1993) and aquatic predators (Meager et al., 2006). 

Despite the well-known influence of trophically transmitted parasites on antipredator 

responses, response latencies to visual stimuli have not been investigated in fish hosts with 

known infection-induced disruption of the visual system. However, increased response latencies 

during environmental visual disruption and experimental ablation of the optic tectum have been 

described. For example, slower responses of juvenile Atlantic cod (Gadus morhua) to 

threatening visual stimuli in turbid water, contributed to a 73% decrease in escape success 

compared to responses in clear water (Meager et al., 2006).  In comparison, zebrafish with optic 

tectum ablations demonstrated longer response latencies and fewer fast-start responses, resulting 

in a significant decrease in escape probability (Temizer et al., 2015). Increased response latencies 

of fish in turbid environments as well as following optic tectum damage indicate that infection-

induced disruption of vision has significant implications for host’s ability to respond quickly and 

successfully avoid threatening visual stimuli. Also, as described, the infection site provides an 
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efficient route of parasite-induced modifications of host antipredator behaviours in an effort to 

increase transmission. Therefore, determining the vulnerability of fathead minnows housing 

developing and infective stages to target hosts and non-target predators is necessary to establish 

if alterations to minnow behaviour are in accordance with the adaptive manipulation hypothesis.  

Fathead minnows are prey for many aerial and aquatic predators and must perceive both 

vertically and horizontally approaching stimuli. In order to simulate aerial and aquatic predators, 

we explored escape behaviours to a visual stimulus from two approach angles: directly above 

and forward approaching. Due to the importance of parasite developmental stage and number on 

the degree of OMR disruption experienced by hosts, I expected the intensity of infection-induced 

modification of host response latencies to depend on infection conditions.  

 

3.2 Methods 

Ethics statement and safety practices  

All fish maintenance and experimental procedures were again conducted in accordance 

with Canadian animal research standards and Biosafety Containment Risk Level 2 protocols.  

 

Fish exposure to O. ptychocheilus 

One-year old minnows raised from eggs collected between June-August 2016 at Feedlot 

Pond were used in this experiment. Snails were again collected from Feedlot Pond and infection 

status was determined following previously described protocol. For this experiment, cercariae 

were obtained from two infected snails and combined in preparation for fish exposure. Intended 

parasite exposure doses were low: 15-30, intermediate: 55-70, high: 95-120, and none (clean 

system water) to provide a range of parasite burdens found in the wild. Exposure doses were 

higher than expected parasite loads, due to the assumption that many cercariae infection attempts 

would not be successful. Cercariae were exposed to minnows between 1-5 h after release to 

address concerns associated with cercariae viability during fish exposure for the respirometry 

experiment. Following the conclusion of the 1.5-2 h exposure period, fish were sorted according 

to infection dose and gently transferred to 38-L holding tanks. The location of fish from each 

treatment was concealed from observers and holding tanks were color-coded according to 

infection status. A total of 6 parasite exposures were staggered over the course of 5 weeks during 

September and October 2017 with all treatments included in each exposure period. This ensured 
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that experiments with fish during the early stage of infections occurred closer to the time frame 

of trials conducted during later parasite developmental stages. A group of fish containing later 

stages of infection from 2016 exposures were also included in the approaching visual stimulus 

experiments to compare responses with fish infection groups exposed in 2017. 

 

Visual stimulus chambers  

Vertically approaching stimulus experiments were conducted in a 66 x 66 x 41 cm 

corrugated plastic tank with a clear acrylic base. Inside the tank, a clear 63-cm diameter circular 

plastic insert ensured that the experimental fish did not use the corners of the arena as a shelter 

(Figure 3.2). To provide even lighting throughout the experimental chamber, LED light strips 

were wrapped around the sides of the tank. Water depth was approximately 9 cm during trials 

and maintained at 20°C to match holding tank temperature. The visual stimulus, a 10-cm 

diameter white disc with a 4.5 cm diameter black circle in the center, was connected to a 

remotely activated electromagnet via a 5 4
5⁄  -cm bolt at the center of the visual stimulus (Figure 

3.1). The weight of the bolt, as well as the additional weight of four nuts evenly spaced around 

the edge of upper surface of the disc reduced horizontal motion of the stimulus during the fall. 

Following release, the movement of the disc towards the fish simulated a visual stimulus of a 

black circle increasing in size and is known to induce fast-start responses (Fuiman et al., 2005; 

Fuiman et al., 2006). The stimulus was connected to a wooden bar above the tank with braided 

fishing line to minimize the mechanical stimuli associated with the drop. When fully extended, 

the length of the fishing line held the visual stimulus just above the water level. I did not let the 

disc break the water surface, to reduce the possibility that the response of the fish was affected 

by mechanical cues, however, fish may have experienced air pressure waves associated with the 

drop. A mirror at a 45° angle was placed underneath the transparent bottom of the experimental 

tank, allowing the response of the fish to be recorded with an unobstructed view, using a high-

speed camera (Casio Exilim EX-ZR100v) at 480 fps.  

The horizontally approaching visual stimulus set up comprised of a 6.8-L glass aquarium 

placed on a tabletop with an overhanging metal frame. The side of the aquarium facing away 

from the observer was wrapped in opaque, black plastic while the side closest to the observer 

was covered in dark window tinting (5% visual light transmission). The tank end facing towards 

the stimulus was clear, and the fish was restricted to this side of the tank by a white corrugated 
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plastic divider arranged halfway along the long side. Attached to the metal frame above the tank 

was a 75-cm wooden dowel with the previously described visual stimulus (10-cm diameter white 

disc surrounding a 4.5-cm diameter black circle center). The disc was secured to an 

electromagnet 42 cm away from the tank face (Figure 3.3). Upon release, the disc swung forward 

towards the tank. An attached cord limited the stimulus arc to a point immediately prior to 

reaching the tank. This prevented mechanical stimuli from the disc striking the aquarium face. 

Lights attached to the metal frame as well as the tabletop below illuminated the set up. Again, a 

high-speed Casio Exilim EX-ZR100 camera recording at 480 fps, was positioned above the 

aquarium to simultaneous view both the experimental chamber and the stimulus. 

 

Visual stimulus trials 

In both vertically and horizontally moving visual stimulus experiments, fish were placed 

individually in experimental chambers and given 7 min to acclimate prior to stimulus release.  

Following this 7-min period, the high-speed video cameras were turned on and fish were 

observed until they moved into the zone of the experimental chamber where the observer would 

initiate stimulus drop. During the vertically approaching stimulus trials, the stimulus was only 

dropped if the fish was approximately one body length away or closer to the area beneath the 

disc. During horizontally approaching stimulus trials, the body of the fish had to be more than 

half-way over the dotted-line dividing the arena on the tank side facing the visual stimulus. For 

both visual experiments, the observer only initiated disc release if the fish was moving calmly 

and slowly in the experimental drop zone. This ensured that minnows were not already 

demonstrating fear responses such as dashing or freezing prior to the introduction of the 

stimulus.  The average speed of stimulus approach during vertical trials was 0.12 cm
ms⁄ . During 

horizontal trials disc approach towards tank A was slightly faster than tank B with average 

approach speeds of 0.07 cm
ms⁄  and 0.09 cm

ms⁄ , respectively. 

After the drop, a fish was considered to have responded if it moved after stimulus release and 

prior to drop completion. The initial stimulus-motivated movement exhibited by the fish was 

recorded as a response. If the fish did not move at all during stimulus approach, it was described 

as showing no response to the visual stimulus. In the case of a non-response, the stimulus was 

reset for another attempt. Testing was concluded when fish either demonstrated a response to the 

disc or continued to show no response after 3 trials. This distinction was only relevant for the 
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horizontal stimulus trials as fish in the vertical stimulus trials consistently demonstrated escape 

c-starts to disc approach. 

 

Video analysis 

Videos of the visual stimulus trials were uploaded and enhanced in Shotcut version 18.01.02. 

Video length was trimmed to the time frame of the drop and edited to enhance the visibility of 

fish profile within the arena – increasing the accuracy of identifying the moment of fish 

response. Fish response latency and fish position within the tank after the initiation of disc 

release was recorded for both directions of stimulus approach. Again, only stimulus-motivated 

movement within the time period of the drop was considered a response. Response latency was 

found by calculating the difference between the moment of stimulus release and the beginning of 

fish response. Due to the observation of three distinct responses during horizontally approaching 

trials, response type – movement away (primarily full escape c-starts; Figure 3.4), stimulus 

inspection (c-start-like movement towards the disc; Figure 3.4), and non-response – was also 

recorded. 

 

 

 

 

  

Figure 3.1 Diagram of stimulus used for visual experiments. 
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Figure 3.2 Vertically approaching stimulus experiment set up (diagram components not to scale, for descriptive purposes only). 
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Figure 3.3 Horizontally approaching stimulus experiment set up (diagram components not to scale, for descriptive purposes only).      
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Figure 3.4 Fish images showing the stages of c-starts during escape and stimulus inspection behaviour.
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Parasite counts 

Following visual trials, fish were euthanized with a Tricaine overdose and previously 

described parasite count procedures were followed with one modification: fish dissection 

occurred immediately after euthanasia. Although previous parasite counts were considered 

accurate, procedures were modified because brain removal from freshly euthanized fish was 

achieved more successfully, and the movement of living parasites within the brain tissue 

increased parasite visibility. The DinoCapture 2.0 for Windows software was again used to take 

images of the brain, which were later were pieced together and edited in GIMP version 2.8.4. A 

sample of 10 fish (5 infected and 5 uninfected) were investigated for the presence of other 

parasitic infections by Dr. Elemir Simko of the Department of Veterinary Pathology at the 

University of Saskatchewan’s Western College of Veterinary Medicine. 

 

Statistical analysis  

Statistical analyses were conducted in R 3.4.3 (www.rproject.org). Responses to both the 

vertically and horizontally approaching stimuli were analyzed with mixed-effect models 

(package lmerTest) with fish position within the experimental chamber and tank designated as 

random effects and time period post infection and infection status run as fixed. Response 

latencies for vertically approaching stimulus trials did not follow a normal distribution, however, 

mixed models are robust to deviations in normality and the large sample size of this experiment 

allowed for appropriate conclusions with a parametric model. The influence of infection on 

response latencies to a vertically approaching visual stimulus were analyzed with the model: 

latency = infection status * time period + (position/tank). Fish included in this experiment were 

separated into 4 infection groups (uninfected, low, intermediate, and high) for analysis. Time 

period post infection was delineated according to parasite development periods: obligate growth, 

development within a double-walled cyst, and infectivity to bird hosts. The previously described 

model was also used to analyze the influence of the late stage of parasite development on fish 

response latency. In this model, the factor “time period” encompassed early stage maturity 

(newly infective parasites) and late stage maturity (infections > 1-year-old). Due to the lower 

parasite burdens of fish following the 2016 exposures, high infection levels were excluded from 

the factor “infection status” to ensure that infection status groups were comparable. A Tukey’s 

HSD test was used for post hoc analyses of significant fixed effects with a p < 0.05 considered 
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significant. The significance of random effects was determined via likelihood ratio tests, again, a 

p < 0.05 was considered significant. The regression function in R was used to determine the 

relationship between response latency and parasite load for infected fish. 

Sixty-four of the fish run through the vertically approaching visual stimulus trials were 

also tested in response to the forward (horizontally) approaching visual stimulus. The influence 

of infection on fish response latencies to the horizontally approaching visual stimulus was 

analyzed with the model: latency = infection status * time period + (fish angle/tank) + (tank 

side/tank) + (run/tank). Due to the small sample size and higher numbers of fish with low 

infection rates, minnows were separated into 3 infection groups (uninfected, low, and 

intermediate-high) for analysis. Time period post exposure was defined according to the 3 

parasite development periods described previously. A few fish in each infection status group 

experienced multiple trials due to initial non-responses. Therefore, the random factor “run” was 

included to determine if previous experience with the stimulus affected fish responses. The 

model for the forward approaching stimulus was used to analyze the influence of late stage 

parasite development on fish response latency by restricting the factor “time period” to early 

stage parasite maturity (newly infective parasites) and late stage parasite maturity (infections > 

1-year-old), and by excluding fish with high parasite burdens from the factor “infection status”.  

The influence of infection and time period on response type was analyzed using the 

previously described model with “response type” replacing “latency” and the random factor 

“run” removed due to the inclusion of non-response fish: response type = infection status * time 

period + (fish angle/tank) + (tank side/tank). The influence of infection and time period on active 

response types (flight and stimulus inspection) was analyzed using the same model with the 

random factor “run” included to investigate if previous experience with the stimulus influenced 

the type of active response exhibited: response type = infection status * time period + (fish 

angle/tank) + (tank side/tank) + (run/tank). Again, a Tukey’s HSD test was used for post hoc 

analyses of significant fixed effects and likelihood ratio tests were used for analyses of random 

effects with a p < 0.05 considered significant for both tests. The regression function in R was 

used to determine the relationship between response latency and parasite load for infected fish. 

 



 

 

 

35 

3.3 Results 

Infection success 

Experimental infections were more successful in infected fish used during the visual 

stimulus experiments. Parasite counts spanned a minimum of 1 to a maximum of 151 

metacercariae, encompassing a wide range of parasite burdens observed in the wild. This 

suggests that the modifications to fish exposure procedures in preparation for visual experiments 

(i.e. the use of two infected snails as parasite sources as well as cercariae less than 5 h old) 

helped to achieve the desired scope of infection levels.  

Further investigations of parasitic infection conducted by Dr. Simko discovered one other 

parasite present in O. ptychocheilus-infected fish. Experimentally infected females harbored 

large ovarian cysts containing a microsporidian parasite. Uninfected fish were found to be 

parasite-free indicating that this second infection was a result of contaminated parasite exposure 

water related to the use of wild-caught infected snails. Although the cysts may have influenced 

some aspects of host behaviours, their location suggests that the infection was unlikely to have 

directly modified responses to visual stimuli. Therefore, I consider the results to reflect O. 

ptychocheilus-induced alterations of host behaviour. 

 

Vertically approaching visual stimulus 

Infection status had a significant effect on fish response latencies to the visual stimulus 

released from above (F3,104.8 = 3.64, p = 0.015). Post hoc analyses revealed a pattern of intensity-

dependent increases in response latencies (Figure 3.5). Fish with high parasite burdens (≥ 50 

metacercariae) were slower to respond to the stimulus than any other infection status group, 

although only the comparison between minnows with high parasite burdens and uninfected fish 

was significant (p = 0.002). The relationship between minnows with low level infections and fish 

with high parasite burdens (1-20 metacercariae) neared significance (p = 0.054), while the trend 

of faster response latencies in minnows with intermediate parasite loads (21-49 metacercariae) 

compared to fish with high infection levels was not as strong (p = 0.093). Response latencies 

between minnows with low infection and intermediate infection levels and uninfected fish were 

comparable. A quadratic regression analysis further illustrated this intensity-dependent increase 

in response latencies of infected fish and showed an increase in response latency with parasite 

numbers (F2,76 = 6.73, p = 0.002; Figure 3.6). Again, this result appears to be primarily driven by 
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slower responses in fish with 50 parasites or more. This indicates that infection does not 

represent a significant disruption of appropriate fast-start responses to visual stimuli approaching 

from above until parasite burdens surpass a threshold number. Fish position within the tank did 

not influence the described patterns of minnow response latencies (p > 0.99), suggesting that 

stimulus visibility during release was similar across trials.  

In contrast to previous studies of visually-mediated behaviours in O. ptychocheilus-infected 

minnows, the behaviour of infected fish did not appear to be influenced by parasite 

developmental stage. The pattern of response latencies across fish infection status groups was 

comparable regardless of parasite development (F2, 105.5 = 1.17, p = 0.315; Figure 3.7) or the 

maturity of the infective stage (F1,16 = 0.16, p = 0.696; Figure 3.8).  

 

 

 

 

 
Figure 3.5 Mean  SE response latencies elicited by the vertically approaching stimulus across 

infection status groups. Significant relationships are indicated by *. 
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Figure 3.6 The relationship between the response latency of infected minnows to the vertically 

approaching stimulus and the number of parasites (n = 79, R2 = 0.13). 

 
 
 
 

 
Figure 3.7 Mean  SE response latencies of uninfected (“Un”), low (“L”), intermediate (“In”), 

and high (“H”) fish infection groups to the vertically approaching stimulus during the time frame 

associated with each O. ptychocheilus developmental stage. 
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Figure 3.8 Mean  SE response latencies of uninfected (“Un”), low (“L”), and intermediate 

(“In”) fish infection groups to the vertically approaching stimulus according to the maturity of 

the late stage O. ptychocheilus infections.  

 

Horizontally approaching visual stimulus  

Similar to fish responses to visual stimuli released from above, response latencies of 

minnows to the forward approaching disc depended on infection status (F2,44.4 = 7.18, p = 0.002). 

The post hoc analysis again revealed that infected fish groups demonstrated slower responses 

compared to uninfected fish (Figure 3.9). However, unlike response latencies to the vertically 

approaching stimulus, this relationship was significant in fish with low parasite loads (1-20 

metacercariae, p = 0.03) and fish with intermediate-high parasite burdens (> 20 metacercariae, p 

= 0.041). In contrast to response latencies to vertically approaching visual stimuli, the cubic 

regression analysis demonstrated no significant pattern between parasite numbers and fast-start 

response latencies of infected fish to forward approaching stimuli (F3,31 = 0.45, p = 0.717; Figure 

3.10). Similar to response patterns to visual stimuli dropped from above, parasite developmental 

stage did not influence the relationship between infection status and response latency to the 

horizontally approaching stimulus (F2, 44.8 = 1.06, p = 0.355; Figure 3.11). The maturity of the 

infective stage did not affect response latencies: fish housing newly infective parasites responded 

comparably to fish with infections from the previous year (F1,9 = 1.69, p = 0.249; Figure 3.12). 

Fish position during the stimulus drop (body angle relative to the stimulus and nearness of fish to 

the aquarium sides) also did not influence responses (p > 0.99 for each factor).  

 As described, in contrast to the vertically approaching visual stimulus trials, fish 

demonstrated three distinct responses to stimulus approach on a horizontal plane: escape, no 

response, and stimulus inspection (described here as obvious movement towards the disc 
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following release). The results did not show a significant relationship between response type and 

infection status (F2,53.4 = 1.94, p = 0.154; Figure 3.13). However, only uninfected fish or 

minnows with low and intermediate intensity infections (1-32 parasites) were observed to 

demonstrate stimulus inspection behaviours following disc release. This suggests that parasite 

burden of infected fish has an effect on the expression of other antipredator behaviours and the 

lack of significance in the results may be a result of small sample size. Time post parasite or 

sham exposures did not appear to influence which of the three types of fish responses were 

exhibited (F2,54.4 = 0.733, p = 0.485). However, there was a difference in active response types 

between time periods (F2,45.7 = 4.05, p = 0.024). Post hoc analyses revealed that stimulus 

inspections occurring more often during the last time period than the first (p = 0.053) or the 

middle time frame post parasite or sham exposures (p = 0.076) although these trends were not 

significant (Figure 3.14). Fish position within the aquarium during the stimulus drop did not 

significantly affect fish response types (p > 0.99 and p = 0.747, body angle and fish proximity to 

aquarium sides, respectively).  

A small number of fish from each infection group completed multiple trials due to initial 

non-response reactions to the stimulus (Figure 3.15). Experience with multiple trials did not 

significantly affect fish response latency (p = 0.376) or the type of active fish responses exhibited 

(p > 0.99), which indicates that fish did not modify responses to according to previous 

knowledge of the apparatus.  
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Figure 3.9 Mean ± SE response latencies of fish infection groups to the horizontally approaching 

stimulus. Significant relationships are indicated by *. 

 
Figure 3.10 The relationship between the response latency of infected minnows to the 

horizontally approaching stimulus and the numbers of parasites (n = 35, R2 = -0.05) 
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Figure 3.11 Mean  SE response latencies of uninfected (“Un”), low (“L”), and intermediate-

high (“In-H”) fish infection groups to the horizontally approaching stimulus during the time 

frame associated with each O. ptychocheilus developmental stage. 

 
 
 
 

 
Figure 3.12 Mean  SE response latencies of uninfected (“Un”), low (“L”), and intermediate 

(“In”) fish infection groups to the horizontally approaching stimulus according to the maturity of 

the late stage O. ptychocheilus infections. 
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Figure 3.13 The proportion of minnows in each infection status group exhibiting different 

response types to the horizontally approaching stimulus. Stimulus inspection is represented in 

dark gray, non-response behaviours in light gray, and movement away in white. 

 
Figure 3.14 The proportion of actively responding minnows (movement away, and stimulus 

inspections) in each time period post parasite or sham exposure. Stimulus inspection and 

movement away are represented in light gray and white respectively. 
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Figure 3.15 The proportion of actively responding minnows (movement away and stimulus 

inspections) in each infection status group which experienced multiple trials. Fish which 

demonstrated responses to the stimulus during the first trial are represented in white while fish 

experiencing multiple trials prior to a response are shown in light gray. 

 
 

3.4 Discussion 

Overall, infection appeared to increase response latencies to visual stimuli for both horizontal 

and vertical visual experiments. This follows patterns of previous reports suggesting an overall 

decrease in visual capabilities of infected fish (Shirakashi & Goater, 2002; 2005) and illustrates 

the importance of the superficial layers of the optic tectum for interpreting visual information 

(Avitan et al., 2016). However, the differences between the patterns of response latencies 

associated with parasite burden during vertical and horizontal visual trials was unexpected. The 

relationship between parasite burden and response latencies during the vertical stimulus 

experiment suggested that fish are relatively resistant to infection-induced visual processing 

disruption at lower parasite burdens. Any mitigation of the reduced visual capabilities associated 

with infection appeared overwhelmed as parasite numbers increased. This also was somewhat 

similar to observed patterns between high parasite burdens and changes in OMR performance 

found previously (Shirakashi & Goater, 2002; 2005). However, visual processing disruption was 
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associated with much higher parasite loads during OMR trials (150 ± 31 metacercariae) than 

experienced by the high parasite group in the vertical stimulus experiment (≥ 50 parasites).  

The relationship between response latencies to vertically approaching stimuli and parasite 

burden in this study suggests that this visually-mediated behaviour is more sensitive to the 

histopathology related to parasite development. This supports previous studies suggesting that 

the upper regions of the optic tectum play a more direct role during responses to approaching 

visual stimuli than during OMR (Roeser & Baier, 2003; Temizer et al., 2015). However, the 

relationship between parasite burden and response latencies to stimuli approaching on a 

horizontal plane more closely followed the pattern associated with previous investigations of 

OMR with the disruption of visually-mediated behaviours beginning at low parasite loads. The 

spread of parasite numbers of infected fish included in the horizontally approaching visual 

stimulus trials did not extend past 121 parasites, but, with a greater range of infection intensities, 

it is possible that I would have eventually seen a non-linear relationship similar to previous 

investigations of OMR (Shirakashi & Goater, 2001; 2002).  

The observed differences in response latencies patterns between the visual stimulus 

experiments suggest that the results may be related to the quality of information across the visual 

field. A previous comparison between escape responses in turbid and clear water has shown that 

the amount and quality of visual information available to fish is important in determining 

responses latencies associated with fish assessment of risk (Meager et al., 2006). Similarly, the 

threshold of visual information required to elicit an escape response may change according to the 

region of the visual field. For instance, in an assessment of the visual field of two cyprinid prey 

species, although visual coverage extends above the head, the fronto-dorsal regions of the visual 

field were associated with the highest acuity (Pita et al., 2015). Therefore, the visual information 

threshold may be lower for rapidly approaching visual stimuli on a vertical plane. Thus, fish may 

consistently respond with escape behaviours to avoid costly mistakes. At higher infection levels 

when visual disruption is greatest, fish are presumably unable to perceive the stimulus as quickly 

and, consequently, demonstrate delayed responses. In comparison, the forward approaching 

visual stimulus was viewed from the proportion of the visual field with the highest acuity which 

allowed fish to increase the visual information gathered to determine risk. Uninfected fish were 

likely able to quickly accumulate visual information to assess risk and respond rapidly while 

infected fish may have required more visual information due to disrupted visual processing. The 
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similarities of response latencies between the two infected fish groups suggests that the effects of 

infection are mitigated across parasite burdens.  

Although differences in visual information quality across the visual field could have 

influenced the observed patterns of response latencies between the horizontal and vertical 

stimuli, it is likely that the slow approach speed of the horizontal stimulus was an important 

factor. The speed of stimulus approach is known to influence fast-start response latencies 

because it is directly related to time until predator contact (i.e. risk of capture) (Tyrrell & 

Fernández-Juricic, 2015) and previous investigations of escape response latencies of fathead 

minnows have described slower turning movements and reduced response distance associated 

with slower aquatic predator approach (Webb, 1982). In my experiments, this may have resulted 

in a different determination of risk posed by the forward approaching stimulus among infection 

groups. Fish with presumably higher visual capabilities (i.e. uninfected fish) may have associated 

the slower stimulus with lower risk. Again, if fish from both infection groups required more 

visual information to initiate fast-start responses, visual processing disruption associated with 

infection could have contributed to slower responses compared to other infection groups. It also 

points to an explanation for the occurrence of stimulus inspection behaviours in uninfected fish 

and fish with low and intermediate-level infections (<32 metacercariae). Fish with higher 

infection levels demonstrated consistent escape c-start responses which may be related to a 

reduced ability to determine the level of risk associated with approach speed.  

Despite the significant influence of infection on host responses latencies, one of the most 

surprising results was the discovery that response latencies of infected fish did not change over 

time during either visual experiment even in fish infected with metacercariae over 1-year-old. 

This suggests that fish may be largely able to reduce infection-induced pathologies during the 

obligate growth period until parasite burdens become too high. However, the overall increase in 

response latencies to both vertical and forward approaching visual stimuli indicate that infection 

does result in a significant disruption of visual processing during the obligate growth period 

which persists even after tissue repair. This is consistent with previous investigations of visually-

mediated responses during infection with infected fish continuing to demonstrate reduced OMR 

performance even after regeneration of the superficial layers of the optic tectum (Sandland & 

Goater, 2001). The similarities between host behaviour during the parasite’s infective and 

noninfective stages appear to indicate that the observed behavioural outcomes are a result of 
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pathology. However, the persistence of infection-induced disruption of visual processing during 

infective parasite stages supports prior suggestions of a subtle adaptive modification of host 

behaviour. The mechanisms of such behavioural alterations are unclear, however, during a 

previous study of OMR, it was suggested that site selection of the parasite could facilitate 

transmission by maintaining pathology within the site during infectivity (Shirakashi & Goater, 

2005). More recent investigations have indicated that O. ptychocheilus infection of fathead 

minnows (Pan et al., 2016) as well as Diplostomum phoxini infection of the superficial layers of 

the optic tectum and cerebellum of Eurasian minnows (Phoxinus phoxinus) (Kekäläinen et al., 

2014) may modify host personality traits such as boldness.  

Slight modifications of host personality may increase host vulnerability without parasites 

incurring high fitness costs associated with conspicuous changes to host behaviour in a common 

prey species like the fathead minnow. Further, the differences found in the relationship between 

response latency and parasite burden when comparing the vertically and horizontally 

approaching stimuli indicate that O. ptychocheilus infection may result in a selective disruption 

of antipredator responses. Specifically, the comparability between response latencies of infected 

minnows to the forward approaching stimulus suggests that the influence of infection on 

vulnerability to aquatic predators is mitigated across parasite burdens. Thus, the fish appear able 

to avoid increases in vulnerability to non-target predators during high infection levels. In 

contrast, the results suggest that infected minnows are unable to reduce infection-induced 

disruptions of escape response to stimuli approaching from above as parasite numbers increase. 

If so, my results indicate that a threshold number of parasites are required to achieve desired 

behavioural alterations to facilitate transmission, a phenomenon which has also been described in 

killifish infected with Euhaplorchis californiensis (Lafferty & Morris, 1996). However, it is 

possible that more subtle alterations of host antipredator responses are occurring during low 

parasite burdens and that minnow vulnerability to aerial predation may be much higher than the 

current results suggest.  

These findings may provide an important insight into infection-induced alterations of 

antipredator behaviours to multiple predator types, however, the possible role of visual stimulus 

approach velocities in determining behavioural outcomes, make it difficult to determine if the 

observed pattern between response latency and parasite burden are indicative of a selective 

disruption of host antipredator responses. Therefore, future investigations of fast-start responses 
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to approaching visual stimuli on vertical and horizontal planes with comparable stimulus 

velocities will provide a greater understanding of the role of infection-related alterations to host 

visual fields during escape responses. Further, a more direct determination of host susceptibility 

to aerial predation will provide a more conclusive answer to the central question of adaptive 

manipulation in the O. ptychocheilus-fathead minnow system. The inclusion of other fast-start 

response parameters such as reactive distance, flight distance, and fish acceleration in response 

to multiple stimulus velocities may help us better determine host evaluation of risk (Meager et 

al., 2006) as well as escape probabilities (Temizer et al., 2015).  

Host visual fields and the location of the area associated with highest visual acuity may 

become particularly important in determining how parasites modify host behaviours during 

infective stages. For example, subtle modifications of behaviour may increase vulnerability to 

aerial predation if infection exaggerates visual capabilities across the visual field. Also, although 

the disruption of visual processing is likely an important avenue of defensive response alteration, 

infection of the cerebellum has significant implications for host susceptibility to predation as 

well. Ablation of the cerebellum has been associated with reduced motor and cognitive 

capabilities in fish (Rodríguez et al., 2005). Specifically, lesions of the corpus cerebelli have 

been found to disrupt both swimming abilities (Roberts et al., 1992) and classical fear 

conditioning (Yoshida et al., 2004) suggesting that damage to the cerebellum may have 

widespread consequences for host defensive responses. However, this is speculative as there is 

currently little understanding of both fathead minnow visual fields as well as how infection-

induced disruption of the optic tectum and cerebellum modifies response capabilities. Also, the 

90º angle of the vertical visual stimulus drop relative to the fish is likely an extreme angle of 

approach for an aerial predator (Lotem et al., 1991; Katzir & Camhi, 1993). It is clear that further 

investigations of more subtle alterations to host behaviour are needed to uncover possible O. 

ptychocheilus “manipulations”. Future investigations into factors such as the repeatability of and 

correlations between host personality traits which may influence appropriate responses in an 

antipredator context as well as the changes in these parameters overtime may uncover significant 

infection-induced alterations of host antipredator responses. 
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Chapter 4 - Concluding Remarks 

Following patterns of previous investigations of O. ptychocheilus pathologies, my results 

suggest that infection is associated with significant alterations to host physiology and behaviour. 

In particular, my observations provide further evidence for the significant role of parasite burden 

in the degree of infection-induced changes experienced by hosts (Sandland & Goater, 2001; 

Shirakashi & Goater, 2002; 2005). The parasite loads experienced by infected fish in the 

described experiments encompass a range of infection levels found in the wild and, therefore, 

have great implications for fish metabolic rates and antipredator responses of wild hosts. For 

example, the parasite burdens experienced by hosts during measures of SMR are comparable to 

parasite numbers experienced by various low infection rate populations, as well as many young 

of the year in populations with higher infection rates, and the higher levels of infection of fish 

during visual experiments reach the upper range of parasite burdens found in several populations 

around Saskatchewan and Alberta.  

In contrast to previous investigations of visually-mediated behaviours, one of the most 

interesting results of my experiments is the continued infection-induced disruption of host 

visually-mediated escape behaviours during later parasite developmental stages, which suggests 

that the influence of O. ptychocheilus presence persists overtime. As discussed, this may be an 

example of a subtle adaptive manipulation and, in this scenario, my results suggest that higher 

parasite burdens are needed to significantly increase fish host vulnerability to piscivorous birds. 

Another possibility is that there is significant physiological compensation to mitigate infection-

induced disruption of escape responses during the obligate growth period. This is indicated by  

the maintenance of relatively normal host behaviour during the developmental stages of O. 

ptychocheilus (Shirakashi & Goater, 2002; 2005), as well as the negative relationship between 

metabolic rate and parasite numbers I observed. However, as the specific underlying mechanisms 

of the metabolic outcomes in the results are unknown, it is not clear if this represents a 

compensatory response by hosts. 

 



 

 

 

49 

Comparisons between the results of the metabolic and behavioural experiments are tentative, 

as they were conducted during different years when minnows were different ages. In fact, it is 

likely that the minnows used during visual experiments experienced their first infections at an 

older age than fish in the wild, which may have influenced host responses. The scope of the 

investigation into infection-induced metabolic changes was also comparatively limited, with 

experimental fish representing a reduced range of infection conditions (i.e. parasite ontogeny and 

the infection rate experienced by hosts). Therefore, future investigations of O. ptychocheilus 

infection of fathead minnow hosts should determine the specific mechanisms underlying 

behavioural and metabolic alterations during different stages of a first infection within a single 

young host. Moreover, monitoring changes across multiple exposures as fish age may provide a 

more realistic set of fish infection conditions, since wild hosts often experience multiple 

infection events overtime, and therefore, house various ages of infections. Further, previous 

research suggests that fish may be able to better compensate for infection-related pathologies if 

smaller exposures occur over a longer period of time (Sandland et al., 2001). Therefore, the 

described results may represent host responses under more extreme infection conditions. The 

inclusion of these factors in future studies will lead to a better understanding of O. ptychocheilus 

modifications of host metabolism and antipredator behaviours. Also, as modifications to resting 

metabolic rate or SMR are indicative of hosts’ ability to utilize energy (Biro & Stamps, 2010) 

and perform high energy activities (Slavík et al., 2017), investigations of the metabolic capacity 

related to aerobic scope will help us to understand how parasite-induced alterations to 

metabolism influence host behaviour. This not only has implications for a wide variety of host 

behaviours, including antipredator responses, it also is indicative of thermoregulatory capabilities 

(Lapointe et al., 2014; Bruneaux et al., 2017) and the ability to tolerate anoxia (Petersen & 

Gamperl, 2010). 

Although the discussed limitations of my experiments make conclusions regarding and 

comparisons between metabolic and behavioural alterations challenging, my results provide an 

important insight into the O. ptychocheilus-induced phenotypic alterations of intermediate 

fathead minnow hosts. In particular, my investigations have significant implications for the 

respective roles of O. ptychocheilus and intermediate minnow hosts in the observed 

physiological and behavioural outcomes of infected fish. Beyond the O. ptychocheilus-fathead 

minnow system, my findings also contribute to the growing body of research describing the 
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possible presence of subtle manipulations of hosts behaviour by trophically transmitted parasites 

as well as explore the relatively unknown alterations of aerobic metabolism related to distinct 

periods of trematode development. These findings will provide a platform on which future 

investigations can build comprehensive explorations of similar trophically transmitted parasite 

systems. 
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