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. Abstract

This thesis presents the design of an I'C for use in the analysis of
electrocardiograms (ECG's). This IC was developed because the pattern
recognition technique used in the analysis requires a relatively large amount
of computation, and custom hardware designed specifically for these
calculations is necessary to achieve the desired ECG analysis speed.

In this report, the morphology recognition algorithm, which IS based
upon the Bhattacharyya distance measure, is explained and then modified
into a form suitable for implementation in an IC. The major components of
the IC are identified as a square-root extractor, a multiplier, a register file,
and a system controller. A circuit description and an IC layout is developed
for each of these components. The circuits are developed using two circuit
simulation computer programs, SPICE and RNL, whose accuracy is checked
by comparing their simulation results to measurements taken from a

fabricated circuit. The NETLIST description of the complete LC design is
checked through RNL simulation.

The resulting design has a computational rate which is 10 to 25 times
faster than a design based upon a general purpose microprocessor performing
identical computations.
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Chapter 1

Introduction

This thesis investigates one application of integrated circuit (IC)
technology to a problem in the computer-aided analysis of electrocardiograms

(ECG's). The thesis objective is to design an IC which will improve the

performance of a computer ECG analysis system.

1.1. Background to ECG Processing

The purpose of computer analysis of ECG's IS to assist medical

personnel in the detection of heart disease. The computer does this by

analyzing the shape of the ECG waveform; a normal healthy heart produces

a regular and easily identifiable ECG waveform, but heart disease can cause

either long term changes in the shape of the ECG waveform or occasional

abnormal heartbeats which appear in the ECG as a wave shape notably

different from the wave shape produced by a normal heartbeat.

These abnormal heartbeats arc commonly called arrhythmias or

dysrhythmias, and in the 1960's, experience showed that in an unhealthy

heart, a type of arrhythmia called ventricular depolarization could trigger the

potentially fatal ventricular fibrillation (a state of the heart where the

muscles of the ventricles twitch in a feeble and irregular manner which

produces no useful pumping action) [1]. As a result, coronary care units

were set up to monitor a patient's ECG for abnormal heartbeats, and if

abnormal heartbeats occurred, drugs were administered to suppress them.

These specialized coronary care units were successful in reducing the in­

hospital mortality of patients suffering myocardial infarctions (a blockage of a

coronary artery) [2].
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The key to the success of these coronary care units was the monitoring

of the ECG signals for arrhythmias. To monitor the ECG signal, nurses or

other trained personnel watched the ECG signals for abnormal heartbeats.

However, this task was tedious and prone to errors, and computers were seen

as a way of reducing these problems. Since the health of the patient could

be affected by the performance of the computer ECG analysis system, it was

important that the computer program accurately and reliably report ECG

abnormalities. Developing a computer program which performed ECG

analysis as well as a human proved to be difficult. As a demonstration of

this, a comparison of the ability to diagnose heart disease through ECG's

was made between a well-known ECG analysis program, the U.S. Veteran's

Administration ECG analysis system, and hospital clinicians [3J. The results

showed that clinicians did superior analysis of ECG's with a correct diagnosis

of 59% versus the computer program's correct diagnosis rate of 50%.

These rates are low because there were many different heart diseases to

consider. However, when classifying heart beats into only two classes,

normal and abnormal, computer programs have been found to be more

successful. In the detection of a class of arrhythmias called premature

ventricular contractions (PVC's), computer programs have an accuracy of

95% [4], and while the use of automated ECG monitoring in the coronary

care unit has not been proven to reduce patient mortality, there is

agreement that automated arrhythmia analysis systems are more accurate

than ECG monitoring by human surveillance [4, 1J.

One disadvantage of the automated arrhythmia analysis programs,

though, is the generation of false alarms. Due to electrical noise or

movement of the patient connected to the ECG analysis system, the

automated arrhythmia analysis system may indicate an otherwise normal

heartbeat as an abnormal heartbeat. Such indications are called false

positives. The false positive rate is usually one per hour per patient [4J,

which is not a problem unless several patients are being monitored, in which

case, the high number of false alarms can demoralize the nursing staff [4].
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R.J. Bolton has proposed an ECG analysis algorithm [5] which is

not presently used in current ECG analysis programs. The proposed analysis

algorithm is based upon the Hilbert Transform. This algorithm has been

demonstrated to be useful in the detection of many ECG abnormalities, but

one drawback of this method is the large number of computations required

to perform the analysis. Over 7600 integer multiplications and 8600 square­

root extractions must be performed every second to analyze ECG data from

one lead, and if a microprocessor based ECG analysis system is to analyze

several leads in real-time, hardware designed to speed up the ECG analysis

calculations is required.

The hardware to do these calculations could be developed in a variety

of ways. One way would be to add a second (and possibly a third)

microprocessor to the ECG analysis system. Another way would be to

combine currently available IC's which provide functions such as

multiplication, data storage, and addition into a circuit that carries out the

intended calculations. Yet another option which has recently become

available to the electronics circuit designer would be to design an IC

specifically for morphology recognition. In order to learn about the

capabilities of IC technology m biomedical signal processing, the last

approach is taken in this thesis.

1.2. Integrated Circuit Design Approaches

The design of an IC involves the generation of a layout which is used

to pattern the designed circuit onto the surface of a silicon chip. The

generation of this layout may be performed by software or by human effort

although ideally, the generation of the layout should be completely automatic

in order to keep design costs to a minimum. However, automated IC layout

usually produces IC layouts which are larger and slower than hand-crafted

designs, and as a result of the trade-off between the lower design cost of

automated design versus the efficient use of silicon by hand-crafted designs,

three approaches to the generation of IC layout have evolved. They are

gate-array designs, standard-cell designs, and full custom designs.
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1.2.1. Gate-array Design

Gate-array Ie design begins with a chip where rows of transistors are

fabricated except for the interconnecting metal layers. The customer

customizes the chip for his application by designing the layout for the

interconnecting metal layers.

The transistors making up a gate-array Ie are grouped into cells which

in turn are placed In rows as depicted in Figure 1.1. A cell is made up of

4 to 16 transistors and the logic function which it performs is determined by
the transistor inter-connections made when the metal layer is added. Figure
1.2 shows the layout for a simple 4 transistor cell, and Figure 1.3 shows how

two functions can be made by changing the wiring of this basic four

transistor cell.

To design a gate-array IC, the designer designs a logic circuit by

specifying the inter-connection of logic functions either by schematic entry on

a graphics terminal or by a text description called a net-list. Table 1.1

gives a list of logic functions typically available to the designer. From the

designer's logic description, the generation of the layout of the

interconnecting metal layers IS almost completely automatic although it is

possible that software cannot complete the inter-connections between the cells

because the space available for cell inter-connection is fixed. Generally,

though, if 80% of the cells are used, software can complete the layout
without human intervention [6].

1.2.2. Standard Cell IC Design

Standard cell Ie design is based upon a function library. The function

library contains a complete layout description (often referred to as a cell) for

several logic functions. As with gate-array design, the designer specifies the

circuit in terms of logic functions in schematic or net-list form, and software

automatically generates the layout for the design. To generate the layout,
the software selects the appropriate cells from the library, places them in a
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NAND, Triple 2-input
NAND, Dual 2-input plus complement
NAND, Dual3-input
NAND, Triple 3-input plus complement
NAND, Triple 4-input
NAND, S-input
NOR, Triple2-input
NOR, Dual 2-input plus complement
NOR, Dual 3-input
NOR, Triple 3-input plus complement
NOR, Triple 4-input
NOR, 5-input
XOR, 2-input
AND-NOR, 2-2 with complement
OR-NAND, 2-2 with complement
Latch, 2-input NAND R-S with 2-1 NAND
Latch. 2-input NOR R-S with 2-1 NOR
D-Bip-ftop
D-ftip-ftop
Invertor,
Buffer,
Buffer,
Buffer,
MUX,

with set & reset

Quad
Clock. triple
Dual tristate inverting
Tristate non-jnvening
2-1

Table 1-1: A list of logic functions available to

the gate array designer [6].

manner which minimizes layout area while keeping the routing problem as

simple as possible, and then generates the interconnecting wiring to complete
the layout of the chip. Unlike gate-array design where only the metal layer

layouts are made by the customer, in standard cell design, the layout for all

layers is specified by the customer. This makes initial production costs more

expensive for standard cell design. However, standard cell design produces
smaller designs than gate-array because unneeded functions are not included

in the design. Performance is also better than gate-array designs because

the layout for each function is optimized for that particular function.
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1.2.3. Full Custom Design

The most labour intensive IC design method is the full custom design;
here, the designer can specify the size and placement of every transistor by

using an interactive colour graphics program to draw the layout.

Even though the designer has the ability to layout every transistor, this

does not mean that the full custom layout must be completely generated by
hand. Because of the cost of human labour, attempts are made to automate

as much layout generation as possible. For example, the program TPLA [7]
was used for this IC design to produce the layout for a programmable logic
array.

The ideal layout generator would be a silicon compiler. A silicon

compiler produces layout from a high-level description that allows the user to

specify the IC function in terms of operations like multiplication and addition

while hiding the circuit timing constraints and electrical circuit

characteristics. One example of a silicon compiler is the FIRST silicon

compiler [8]. FIRST provides the designer with primitive functions such as

MULTIPLY , DELAY, and MULTIPLEX. Once the designer describes the

IC function in terms of these primitives, FIRST develops the layout for the

primitives using composition procedures and a cell library, and then combines

these primitive layouts with an algorithm which tries to minimize the overall

layout area. After the primitive modules have been placed, routing

algorithms complete the inter-connections.

Because the full custom design approach has not yet been completely
automated and because the automated design tools which have been

developed are not yet refined enough to generate layout as well as humans,
the full custom design still requires a large amount of manual design. As a

result of this large initial design effort, full custom designs have the highest

start-up costs among the three design approaches presented.
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1.2.4. A Comparison of Three IC Design Approaches

Based upon an actual Ie design, a general comparison of the layout
area and design times of each of these three design approaches is given in

Table 1.2.

Hand-crafted
Gate Array Standard Cell Full cus tom

Layout Area 100% 75% 40%

Des i gn 2200 gates 2.5 months 4.0 months 13.0 months
Time 6000 gates 3 months 4.5 months 17.5 months

Table 1-2: A comparison of the design time and

efficiency for different Ie
design approaches [91.

As expected, the gate-array design approach required the least design effort,
but the resulting chip area consumes over two times the area of a hand­

crafted design.

The true cost of an Ie chip IS [101:

eOST

Ie
development cost

b f IC"
+ unit production cost

num er 0 s

+ unit test and packaging cost

Therefore selection of the design approach depends on the volume of

production as well as development time and performance requirements. The

economics of the three different approaches to I'C design, gate-array, standard

cell, and full custom, are compared to a design based on standard Ie's in

Figure 1.4.

The approach selected for this thesis is the full custom design
approach. At the time this project was initiated, this approach was the

most well developed.
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relative amortized

cost/production
device

1000 10000 100000

total number of devices produced

The positions of the abscissa scale points are the subject of constant debate.

Those shown above are averaged from the literature.

Figure 1-4: The economics of the different
rc design approaches [10].

1.3. Advantages and Disadvantages of Custom IC Design

Implementing a function in a custom designed I'C has advantages and

disadvantages over an implementation using standard off-the-shelf parts. One

major advantage of a custom I'C design is a reduced part count of the final

product. Fewer parts means circuit assembly cost is reduced, the final

product is more compact, and less power is consumed. Increased reliability

is another reported advantage of custom Ie design. Reference [11] reports

that large scale Ie's have a failure rate one seventh the failure rate of an

equivalent number of circuits made from small scale Ie's. On the other

hand, one disadvantage of custom Ie design is that once fabricated, changes
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to the circuit are expensive and are not done except during the development
stage where microsurgery techniques like cutting the metal layer wires with a

trace cutting probe and a microscope can be used. This contrasts sharply
with a design based on a microprocessor where software modifications are

possible at any time.

1.4. Application of IC Technology to Computer-aided
ECG Analysis

As mentioned earlier, ECG processing requires a large amount of

computation. This computation is highly repetitive; a few functions like

square-root, multiplication, and addition are repeated 961 times for each two

ECG patterns being compared. This computation can be performed using
standard parts such as microprocessors, but such devices are general purpose
machines and have a certain amount of overhead in terms of execution speed
and hardware. One solution to this problem is to take the approach taken

by many special purpose IC's such as direct memory access controllers, math

co-processors, and input/output processors whose purpose is to off-load time

consuming chores from the central processing unit. The proposed IC design
has a similar purpose in that it would relieve the central processing unit of
the computationally expensive part of ECG analysis. The proposed rc

design would offer a significantly faster (in terms of number of ECG patterns
analyzed per unit time) and smaller (as measured by circuit board area)
product than one based on a general-purpose microprocessor. An application
specific IC can offer these advantages because:

• :The function to be performed is built into hardware. There IS no
'need to fetch and decode instructions.

• ;the circuit can be designed to take advantage of concurrency in
.

an algorithm. For example, one part of a circuit may be taking
the square-root of a number, while another part is simultaneously
doing a multiplication.

• IC packaging can occupy several times the area of the IC chip.
By combining several standard parts into one IC, the area taken
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by IC packaging is reduced. As well, the interconnecting wiring
on a circuit board is scaled down when it is included on the I'C,

1.5. Project Objective

The objective of this thesis IS

morphology recognition calculations

to design an IC which performs the

in ECG waveform analysis. The

algorithm for this morphology recognition has already been developed and

tested in the form of a computer program. The requirements for this IC

design are:

• Perform the morphology recognition in a manner described in [5].
This algorithm has already been tested; significant changes should
be avoided otherwise further testing of the algorithm might be

necessary.

• The ability to process several ECG waveforms (heart beats) in
real time. No specific figures are given here because initially the
capability of IC technology for this application was not well
known. Instead, once the capability of the ECG processor is

known, it will be compared to other methods of computing
morphology recognition.

The design of this integrated circuit, called the ECG processor, involves the

following steps:

Step 1) Learn the use of software tools necessary for IC design. The design
of an IC is done almost entirely using computer software. NETLIST [12],
RNL (12], and MAX [13] are a few of the computer programs used to design
an IC. NETLIST is used to enter the circuit design at the transistor level

while RNL is used to simulate the operation of the designed circuit. MAX

lets the designer create the layout used to manufacture the IC. The layout

produced by the designer using MAX is converted to CIF [14] code, and the

CIF code is sent to the fabrication facility where it is used to make the IC.

Step 2) Develop the behavioural specifications of the IC. Behavioural

specifications describe how the IC functions. The specifications include

defining what outputs will appear for a given set of inputs, restrictions on
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the timing of the input signals, and expected timing of the output signals.

There are no formal rules for generating behaviour specifications, therefore it

is possible to make specifications which cannot be realized due to limitations

of the IC technology. Generating behavioural specifications involves some

feedback from the following design step either in the form of the designer's

experience, or in the form of modifications to the specifications as the design

progresses.

Step 3) Design of the logic which performs the functions defined III the

previous step. The design of the logic circuit usually involves the 'divide

and conquer' approach where the circuit to be designed is divided into sub­

circuits which are either previously designed or can be designed with little

effort.

Step 4) Develop the layout which IS the actual physical plan used to

fabricate the IC. The transistors and their inter-connections have been

defined in the previous step, the designer must now draw the circuit in the

form of the layout.

Step 5) Test the IC to verify its operation. For this project, the completed

IC design is not tested, but two sub-circuits which were part of this design

are tested. To test the IC's, a data generator is used to supply a set of

user defined digital inputs to the IC, and the response to the applied inputs

is recorded by a logic analyzer. The recorded data are then compared to the

expected set of outputs.

1.6. Outline of Thesis

This thesis is divided into SIX chapters. Aside from this introductory

chapter, a brief overview of each of these chapters is given below.

Chapter 2 introduces the terminology of ECG analysis systems and

provides the background information regarding the ECG analysis algorithm

for which this IC is being developed.
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Chapter 3 presents basic information useful for understanding the

design and operation of an IC. It covers the procedure for designing large
scale IC's as well as discussing the computer programs used for IC

development.

Chapter 4 presents the development of the IC for the application in the

ECG analysis system discussed in Chapter 2. It describes the flow of data

in and out of the IC and the operations the IC performs upon this data.

This chapter also provides a description of how the IC would be used as

part of an ECG analysis system.

Chapter 5 covers the design of the logic and electrical circuits necessary

to perform the functions presented in Chapter 4. It also includes the test

results of two fabricated sub-circuits, a discussion of the simulation of the

complete IC design, and a comparison of the proposed IC design's
performance to a general purpose microprocessor.

The final chapter concludes the thesis and summanzes the results of

the thesis work.
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Chapter 2

Morphology Recognition of ECG Waveforms

This chapter introduces the reader to the topic of ECG analysis. It

provides an explanation for the operation of a computer ECG analysis

system as well as a description of the ECG analysis algorithm for which the

proposed IC design is being developed.

The first section of this chapter discusses the orrgin of the ECG signal

and provides a few ECG waveform examples. The second section discusses

the general nature of computer ECG analysis, and the third section describes

the ECG analysis algorithm which is to be implemented on a custom IC

design.

2.1. The ECG Wa.veform

The electrocardiogram (ECG) IS a recording of the electrical signals

produced by the beating of the heart. Because muscle contraction IS an

electrochemical process, the contractions of large muscles like the heart

induce small ionic' currents throughout the body which can be detected by

measuring the voltage between two electrodes placed on the skin of a

patient. The simple electric circuit model in Figure 2.1 is an illustration of

this process where the heart is considered a current source, and the voltage

measured with the electrodes is generated by current flowing through the

resistance that exists between two points on the body surface. When plotted

along a time axis, this voltage traces a distinctive shape which provides

useful information on how the heart is functioning.
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The wave shape of an ECG signal IS due to the fact that all heart

muscle cells do not contract simultaneously; the contraction begins at one

point on the heart, and through a complex network of conductive tissue, the

muscle cells are stimulated and contract in a pre-determined order to

produce the characteristic ECG waveform shown in Figure 2.2. This figure
also shows the labels given by convention to the various segments of a

normal ECG waveform. The P-wave corresponds to the contraction of the

atria to pump the blood into the ventricles, and following the P-wave by
about 0.07 seconds to allow blood to flow into the ventricles, the ventricle

muscles contract to produce the highly visible QRS waveform. The

repolarization of the heart muscles in preparation for the next beat causes

the T wave.

Deviations from the normal order of contraction will show up In the

ECG trace as a waveform different from a normal waveform. Some

examples of these abnormal heartbeats or arrhythmias are given in Figure
2.3. The atrial flutter in Figure 2.3b is the rapid beating of the atria

(typically 300 beats per minute) while the ventricles continue to contract in

an almost normal manner at a rate one half to one quarter of the atrial

contraction rate. The premature ventricular contraction (commonly called a

PVC) in Figure 2.3c is a common arrhythmia which even occasionally occurs

In an undiseased heart. However, in a patient with heart disease, PVC's

may be a warning sign of serious heart problems. Figure 2.3d is an example
of ventricular fibrillation and is fatal if attempts to restore normal heart

rhythm are not made immediately. These three examples are only a part of

a list of several classes of arrhythmias. Besides the obvious shape or

morphology which characterizes some arrhythmias, diagnosis of heart disease

by ECG also includes measurements on the time delay between the P and R

waves (the P-R interval), the height of the various waves, the duration of

the QRS wave, the duration of the RS-T wave (the ST interval) and many

other characteristics of the ECG waveform. Experienced physicians use this

information from the ECG signal along with other patient data to determine

the health of the heart.
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a) ECG of normal sinus rhythm

b) ECG trace of atrial flutter

c) ECG trace of a PVC

d) ECG trace of ventricular fibrillation

Figure 2-3: Examples of ECG traces [171.
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2.2. The Automatic Interpretation of ECG waveforms

The analysis of arrhythmias IS based upon the observation that

arrhythmias may occur frequently or rarely, but certain types of arrhythmias

will give approximately the same ECG wave shape from one occurrence to

the next. It is this property that ECG morphology recognition programs can

take advantage of because once an abnormality IS recorded, its next

occurrence can be detected almost immediately by maintaining a list of the

various waveforms which have occurred in an ECG recording.

One point, though, should be made about the repeatability of ECG

waveforms. Gradual changes in the morphology of a normal QRS may occur

due to changes in the patient's body position and changes in skin-electrode

contact over time. These changes have to be accounted for by continuously

updating the reference patterns being used in morphology recognition [18].

The first step in the analysis of ECG's is the detection of a heartbeat.

This means locating the QRS waveform using methods such as a search for

one or more slopes in the waveform which exceed certain timing and voltage

thresholds [4].

Once a QRS waveform has been located, the waveform for that

heartbeat must be characterized in a way that allows the separation of

normal heartbeats from abnormal heartbeats and possibly the identification of

the type of abnormal heartbeat. Two common techniques used to identify

the ECG waveform are correlation methods and feature extraction methods.

Feature extraction methods are based upon the measurement of certain

properties of the ECG waveform such as the QRS duration, the QRS height,

and the area under the QRS wave [4]. Correlation techniques, on the other

hand, make a direct comparison of an unknown waveform with several

different known waveforms called templates.

After the ECG waveform has been characterized, some procedure or set
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of decision rules must be followed to obtain a classification of the unknown

waveform and the results reported to medical personnel. The results are

reported m a manner dependent upon the purpose of the ECG analysis

system. For example, diagnosis programs may indicate several diagnoses and

provide a probability for each diagnosis as does the u.s. Veteran's

Administration ECG analysis system while a monitoring system would

provide an alarm, an indication of the rate of occurrence of PVC's, and

tracings of the waveforms which caused the alarms.

2.3. The Hilbert Transform method for computer-aided
ECG analysis

This section introduces the Hilbert transform method for computer

ECG analysis. First, an outline of the proposed ECG analysis system is

grven in the form of a block diagram. This shows which part of the ECG

analysis algorithm 1S to be implemented on the IC and how it is to be

connected to the ECG analysis system. Next, a brief summary of the

properties of the Hilbert transform is given. In the last part of this section,

two important aspects of the ECG analysis algorithm are presented: the

recognition matrix and the measure of similarity between matrices. They are

important because the recognition matrix is the data upon which the ECG

processor is to operate on, and the similarity measure is the function to be

performed by the ECG processor.

2.3.1. The ECG Analysis Computer System

Figure 2.4 shows the block diagram for the proposed ECG analysis

system based upon the Hilbert Transform method of morphology recognition.

The host computer executes the ECG analysis programs and performs the

data transfer to and from the peripherals. The graphics terminal displays

ECG waveforms and the alphanumeric terminal interacts with medical

personnel for the purposes of classifying or verifying unknown waveforms,

providing information on the ECG's, and giving warnings of potentially
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serIOUS heart problems as indicated by ECG analysis. The printer and

plotter provide hard copies of requested information for documentation

purposes. Two disk drives are used to speed up the ECG data storage;

when the computer is switching between ECG analysis and other background

programs, the use of two disk drives prevents delays due to disk read/write

head movement. The analog to digital converter's resolution has not yet

been specified, but 8 bits would be reasonable for this system. The

sampling rate has not been defined, but a value of 500 samples per second is

used in [5] and so it is the value used in this thesis. The pre-filter includes
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Figure 2-4: Block diagram of a clinical

ECG analysis system [5].
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l :'\ an analog anti-aliasing filter and possibly a digital or analog filter to limit

the input bandwidth and remove 60 Hz noise. The Hilbert transform

processor, the QRS detector, and the VLSI morphology processor (the
morphology processor IS the ECG processor being designed) are functions

which were performed In software in the research stage, but for a real-time

system, they would be performed in hardware because their execution in

software would be too slow. The Hilbert transformer (the Hilbert transform

will be defined later) calculates the Hilbert transform of the ECG signal.

The QRS detector locates the peak of the R-wave for each heartbeat using

the Hilbert transformed signal. This signal is used to identify the R-wave

peak because the Hilbert transformed signal makes a zero crossing at major

inflection points like the peak of the R-wave in the EGG signal (this is true

only if the peaks are well separated). The hardware for both the Hilbert

Transform processor and the QRS detector are still under development. The

morphology processor 1S the ECG processor being developed in this thesis;

and its purpose is to provide the host computer with measures of similarity

between each newly recorded ECG waveform and a list of previously

classified reference waveforms.

One issue in the computer analysis of ECG's is the selection of the

leads used for the analysis. The position of electrodes on the body surface

of the patient is important in ECG analysis because their position directly

affects not only the morphology of the recording of a normal heartbeat, but

also how well certain abnormalities appear in the ECG. For this reason, the

number of electrodes used and their placement depends on the purpose of

the ECG analysis. A diagnostic system which is used by a physician to

help identify a specific heart disease uses 3 to 12 leads (the signal from one

lead is the potential difference between two electrodes). Here, many leads

are used for diagnosis since certain ECG abnormalities are more visible in

one lead position over another lead position and the physician (or diagnostic

computer program) wants as much information as possible before making a

diagnosis. In contrast to the diagnostic system which does not necessarily
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operate in real-time and allows computation time to be traded for diagnostic
accuracy, a monitoring system must operate in real-time. To keep the

hardware costs low for a monitoring system, only one or two leads are

monitored per patient. Single lead monitors are the most popular, but dual

lead monitors have two advantages. One advantage is a reduced sensitivity
to artefact (artefacts are signals which appear in an ECG but are not

generated by the heart) since artefacts may appear on one channel and not

the other. In this case, analysis continues as long as one good waveform is

available from either lead. The ARGUS monitoring system has been

developed for both single and dual channel ECG analysis, and experience
showed that the single channel version cannot analyze about 5% of the

recorded ECG data while the dual channel system was unable to analyze
about 2% of the ECG data [19]. This increased rejection of artefacts would

be useful in reducing the number of false positive PVC detections. The

second advantage of the two lead monitoring system is the ability to

recognize a greater variety of arrhythmias [1].

The ECG analysis system in [5] for which the ECG processor IC is

being developed is based upon a research system which uses one lead per

patient. However, the number of leads monitored per patient does not

necessarily affect the similarity calculation between two waveforms and one

consideration in the design of the ECG processor is that the number of leads

used per patient should not affect the operation of the ECG processor.

2.3.2. The Hilbert Transform

The key function upon which this morphology recognition algorithm IS

based is the Hilbert transform. It is defined as:

1

h(t) = -* f(t)
7rt

(where I denotes convolution) (2.1)

where f(t) is the input signal and h(t) is the Hilbert transform of f(t). The

impulse response and the frequency response of a discrete Hilbert transformer

are given in Figures 2.5 and 2.6. The ideal Hilbert transformer does not
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exist and practical circuits provide only approximations of the Hilbert

transform. For the application of morphology recognition, no tests have been

done to determine the tolerance of the morphology recognition algorithm to

approximations of Hilbert transforms, however, the frequency response and

the phase response should be as flat as possible in order to preserve the

time independent representation feature provided by this algorithm.

The most unique feature of the Hilbert transform morphology
recognition algorithm is the mapping of the input signal into a representation
called the recognition matrix. Other morphology recognition algorithms
usually isolate the waveform of one heartbeat and perform correlation

calculations between it and several reference patterns called templates. One

problem with this technique is that alignment along the time axis is

necessary for correlation calculations and the correlation calculations are

sensitive to even slight misalignments. Also, the alignment is difficult to do

for waveforms of different shapes. The Hilbert Transform technique
eliminates the problem of alignment along the time axis by representing the

ECG waveform shape in a way that eliminates the time dependence of the

data. The principle of this representation is demonstrated by plotting the

Hilbert transform of the signal against the signal itself as shown in Figure
2.7. The resulting plot has no time axis and is the same for two waveforms

whose shape is the same, but whose durations may be different. For

example, two sinusoidal waves of the same amplitude, but of different

frequencies both produce identical circles when plotted in a fashion similar to

Figure 2.7.

2.3.3. The Recognition Matrix

The plot in Figure 2.7 is just a demonstration and not the true

representation used in the morphology recognition algorithm. The actual

representation used by the Hilbert Transform morphology recognition
algorithm is a 31 by 31 element matrix called the recognition matrix. An

example of a recognition matrix is shown in Figure 2.8. Experiments carried
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Figure 2-7: Generation of the Hilbert Transform
representation.

out in [5] showed that the morphology recognition algorithm worked well for

matrix sizes of 15 by 15 to 31 by 31 elements. The larger size matrices

provided the greatest accuracy and so were selected for the I'C design. It
was also found that matrices should have an odd number of rows and

columns to prevent dithering when the signal is on the baseline.

Another view of the recognition matrix of Figure 2.8 is that of a two-
"�''''-

dimensional histogram as shown in Figure 2.9. In this view, each element of

the histogram can be considered to correspond to the number of ECG signal
sample points which were mapped into that particular area of the histogram.
To create a histogram, all elements are initially set to zero. Then by taking
one signal sample point at a time, the elements of certain locations of the

histogram are incremented by user defined amounts. The finished histogram
is the cumulative effect of the incrementing after all the sample points of one
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heartbeat have been processed. For a typical heart rate of 70 beats per
minute and a 500Hz sampling rate, this is typically 430 sample points. The

locations on the histogram to be incremented are determined by the value of

the digitized ECG signal, the corresponding Hilbert transform value, and the

mapping function. The amounts by which the elements are incremented by
are given by the potential function shown in Figure 2.10.

COLUMN OF
RECOGNITION MATRIX

j-1 j j+1
ROW ; -1

I
1

I
1

I
1

IOF
; 1 2 1RECOGNITION

MATRIX ;+1 1 1 1

Figure 2-10: The potential function used
in this thesis.

The mapping function is performed after all the sample points have

been collected for one heartbeat. The mapping function as defined in [5] is

based upon the following definitions and equations:

x(n) = nth sample point of ECG signal (2.2)

x(n) nth sample point of the
Hilbert transformed signal (2.3)

x(n) + Jx(n) pre-envelope of x(n) (2.4),
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v'x(nF+x(n)2 = envelope or magnitude of x(n) (2.5)

the maximum magnitude for
one heart beat (2.6)

¢(n)
x(n)

atan (x(n))
angle of the pre-envelope (2.7)

number of rows in the

recognition matrix (2.8)

number of columns 1Il the

recognition matrix (2.9)

K(ij) the potential function
centered on row i and column j
(see Figure 2.10) (2.1O)

A-.
I,J

z(n) z(n)
L K( (Nx+1+Nx -z++cos (¢(n))),(Ny+1+Ny -z-sin (¢(n))))

max max
all n

element of the ith row and
the jth column of the recognition matrix A. (2.11)

The purpose of changing the ECG data and its Hilbert transform into the

polar coordinates z(n)L ¢(n) is to scale the data by zmax and then convert

the scaled polar coordinates into the rectangular coordinates of the

recognition matrix.

While Equation 2.11 is useful for a research system, a system operating

1Il real-time would benefit by a mapping procedure which did not use the

sine or cosine functions. In order to provide a real-time implementation of

Equation 2.11 two methods of mapping the ECG data into a recognition

matrix are presented here: the first method will give the same results as

Equation 2.11 while the second method will give approximately the same

results and is faster than the first method.
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Method �

1. Find the square of the maximum magnitude of the envelope,
finding the largest value of x(n)2 + x(n)2.

2
zmax' by

2. Calculate the scale factor

a
maximum possible representation of x(n)

J z.�.%
4

The maximum possible representation of x(n) depends on the number of bits
used to represent x(n); if 8-bits are used, then the maximum value would be
255. The purpose of dividing i by 4 is to speed up the calculation ofmax

the square-root. If x(n)2 and x(n)2 are 8-bit values, zmax could be a 9-bit
value (see Equation 2.5) which could require the use of 16-bit arithmetic on

some microprocessors, but dividing by 4 permits the use of 8-bit hardware or

software math routines for the scale factor calculations.

3. Multiply each sample point by the scale factor.

Xs(n) = a x(n)

Each scaled sample point is now ready to be used as a pointer to the row

and column of the recognition matrix to which potential functions are to be
added.

4. For each sample point In the ECG waveform, add the potential function
to the location determined by

row - 5 most significant digits of the scaled value xs(n)
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column 5 most significant digits of the scaled value Xs(n).

The phrase 5 most significant digits is used because it does not assume to

resolution of the sample points is known. It IS another way of saying scale

the highest value of the scaled values, say, for example 255, to the largest
row or column of the matrix (that is 31 in this case). This method applies

only to unsigned integers, and the system designer must take care when

applying the above algorithm to two's complement numbers.

Method 2.

1. Find the maximum value of both x(n) and X (n) and call it xmax'

2. Calculate the scale factor

a
maXImum possible representation for x(n)

X
JIlaX

3. Follow through steps 3. and 4. of method 1.

This method will scale all waveforms into the recognition matrix, but not in

the same way as Equation 2.11. While method 1 scales according to the

maximum magnitude of the envelope z (n), method 2 scales according to the

maximum value of the sample points in x(n) and x(n). The selection of

these two mapping algorithms is the decision of the person programmmg the

host computer, and does not affect the design of the ECG processor.

2.3.4. Computing the Similarity between Matrices

Once a recognition matrix is created from newly acquired ECG data, it

must be compared to several reference matrices in order to be classified.

The function selected for the comparison is the Bhattacharyya distance

function [20]:
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Q (2.12)

Q distance between the probability distribution

Pc{x) and Pu(x)

probability distribution for class c

probability distribution for class u

the pattern space or in this case

the recognition matrix.

This distance function has been modified for use with recognition

matrices. The first change is the elimination of the -log operator because

it does not

The new function is now a similarity measure:

affect the decision on which two matrices are the best match.

max

where Q'

Q' (2.13)

the degree of similarity between class c and class u

The above equations are for continuous distributions; for this ECG processing

application, a discrete form is required:

max

where

2Nx+12Ny+l
L L jpcPu (2.14)
i=l j=l
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Qd the degree of similarity between the unknown
class u and the reference class c

u· .

Pu
1,)
-

Nu
M· .

Pc
t ,)

Nc
U the unknown recognition matrix

M(c) the reference recognition matrix for class c

Nu the number of points III the unknown matrix

Nc the number of points III reference matrix c.

Qd is calculated for several reference matrices and the unknown matrix

IS assigned to the class which produces the largest value of Qd provided that

a minimum level of similarity is met. If the unknown matrix does not fit

any of the reference matrices to a reasonable degree, the unknown matrix

itself may be stored as a reference matrix for future classification

calculations.

Because at first the square-root function appears to be a complex

function whose implementation in IC circuitry would consume a large area

on the IC, other distance measures for the classification process were

considered. One example that appears to require less computational effort

than the Bhattacharyya distance measure is the Patrick-Fisher distance

measure [20]:

mm

(2.15)

When modified for use with recognition matrices, this appears to require only

one subtraction and multiplication for each matrix element. However,

computational complexity depends on the number of bits being operated on
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as well as the functions being performed, and consideration of this must be

made when comparing these two distance functions. For example, the

square-root function compresses the dynamic range of the input values

whereas the square function of the Patrick-Fisher measure expands the

dynamic range. This means that if the recognition matrix elements are 8-bits,

their square-root will be 4-bits (more bits can be added to increase the

precision, but the dynamic range is still covered by 4-bits). As the square­

root is done first, all remammg functions need only operate on 4-bit data

(for example, a 4 x 4 multiplier). The square function, on the other hand,

will produce a 16 bit result which must later be operated on and stored.

As the chip design progresses, it will be seen that the chip area required for

the square-root extractor is offset by savings produced by the smaller data

SIze of the square-root output.

One idea which was tested while looking for other similarity measures

was simply to eliminate the square-root function and complete all other

calculations as before. While no mathematical justification could be made

for doing this, this test would ensure that the square-root extractor was a

necessary part of the ECG processor. In one test, the similarity between

various one-dimensional continuous probability distributions was computed.
The test showed that m the worst case, the similarity between two obviously

different distributions had a computed similarity measure equal to that of

identical distributions.

Because this did not prove that eliminating the square-root function

would always cause classification errors, another test closely resembling the

ECG analysis application was made. In this second test, all combinations of

2x2 matrices and 3x3 matrices were compared to each other. The results of

this test depended upon the sum of all elements in the matrices. If the sum

of the elements was greater than two, there were misclassifications. If the

sum of the elements was equal to two, then there were only ties, that IS, the

similarity between different matrices could equal that of a perfect match. A

study of the matrices which were classified correctly and those which were
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not showed that errors occurred when a sharply peaked distribution was

compared to a more even distribution of numbers.

The results of these tests showed that under certain conditions, there is

a possibility that the square-root extractor could be eliminated, but further

tests on recognition matrices used in ECG analysis would be necessary before

taking this step in the ECG processor design.

2.4. Summary

In the first section of this chapter, the origm of the ECG signal was

presented along with a few examples of normal and abnormal ECG

waveforms. Next, a brief description was given on the operation of a

computer ECG analysis system. In the final part of the chapter, the Hilbert

transform method for ECG analysis was discussed and the two main features

of this algorithm, the recognition matrix and the similarity measure, were

described in detail. This description included two methods for generating a

recognition matrix and the development of a similarity measure from the

Bhattacharyya distance function.
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Chapter 3

Integrated Circuit Design

. This chapter covers two aspects of I'C design. First, the techniques
used to manage the complexity of the design of a large digital circuit are

discussed, and then the computer programs used to design an I'C are

examined.

3.1. Ie Design Procedure

VLSI design requires all of the complexity management
discipline associated with complex software systems, but without
the underlying simplicity of a single sequential machine. Not
only must we deal with the problems of enormous concurrency,
but we must map the entire design onto a physical medium,
with constraints on space, time, and energy imposed by the
laws of physics. [21]

As indicated by this quote, VLSI design requires some methodology to

handle the large amount of data and the high number of decisions involved

with Ie design because for large lC's, the complete freedom to 'draw'

anything on the silicon chip overwhelms the average human designer. This

complexity of I'C design arises from the number of factors which must be

considered in I'C design including:

1. Keep chip area to a minimum. Yield, defined as the number of good chips
produced per total number of chips fabricated, decreases rapidly as area

increases because particle contamination is the main cause of fabrication

failure (see Table 3.1) and the probability of particle contamination is an

exponential function of the chip area.
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Particle contamination 30%
Design margin 6%

Photolithographic errors (e.g., alignment error) 9%
Material defects 6%
Process variation 9%

Total die loss 60%

Die yield (100% - die loss) 40%

Table 3-1: Typical sources of chip fabrication
failure for a 2J.l process [22].

characteristics can vary from wafer to wafer, from one point on a wafer to

another, and even across a large chip. To improve yield, circuits should be

designed to allow for variations from planned circuit speeds. Another

advantage of allowing for parameter variations is the possibility of using
more than one vendor to supply parts.

\, "\ 3. Design for testability. Testability is a measure of the fraction of the total

number of transistors in the Ie which can be tested in a reasonable length
of time. Because yield is low, every chip must be tested to separate good
chips from bad, but a complete test which provides 100% confidence in the

final product is sometimes difficult. On the other hand, testing a circuit

insufficiently could mean a field repair costing hundreds of times more than

the cost of the IC.

4. Make the chip easy to use. Like a programmer usmg a subroutine

written by another programmer, circuit designers using the chip want to

know how to use the chip while having to learn as little as possible.

5. Balance between a complex design which provides every function the chip
consumer wants, and a simple design which is easier to design and test, or

in other words, the Ie designer must decide what functions are a worthwhile

part of the design and which are not.
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This section presents two common methods available to manage the

complexity of Ie design: the use of hierarchical abstraction, and the use of a

global two-phase clock signal. Following this, another issue of Ie

complexity, the ability to test what has been designed, is discussed briefly.

3.1.1. Hierarchical abstraction

Abstraction means replacing an object with a simpler one that keeps
only the most important information about the original object's interactions

with the environment [23]. The value of abstraction is a data reduction

which allows the designer to concentrate on the important aspects of the

object during the design process. Since the average person cannot consider

all the details of an Ie design at one time, abstraction is important, and, as

illustrated in Figure 3.1, it has been applied to three representations in Ie

design: the physical or layout description, the behavioural or functional

description, and the structural or circuit description.

BEHAVIOIIAL $TRUCTUIIAL

----
...

IMCRU$ING
LEYI;LS OF

ABSTRACTION

PHYSICAL

Figure 3-1: Levels of abstraction commonly
used in I'C design [9].
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From this figure, it also can be seen that abstraction is not restricted to one

level; it may be applied several times to obtain a hierarchical abstraction

with the purpose of allowing the designer to comprehend all the necessary

detail at each level in the design. For Ie design, four or five levels of

abstraction have been found sufficient.

Another name for this hierarchical design approach is 'divide and

conquer'. Although the idea of a hierarchy is clear, the procedure for

'dividing' or partitioning a problem is not obvious. For instance, suppose

the problem is to design a circuit to calculate�. The first step, defining
the inputs and outputs is not difficult; the inputs are a and b, and the

output is Vab. Unless a circuit exists to calculate �, the designer would

attempt to do the obvious, that is, build the circuit up from a multiplier
and a square-root extractor. The designer then develops a circuit where two

8-bit inputs are multiplied to give a 16-bit result and the 8-bit square-root

extracted from the intermediate 16-bit result. This achieves the desired

value, however, the problem could have been divided into Vav'b. In this

case, two 8-bit square-root extractors provide two intermediate 4-bit results

which are multiplied to give�. Though it was originally not obvious,
this division yields a more compact design than the first approach at the

expense of precision in the resulting output. This example demonstrates the

problem of partitioning in a hierarchical design.

3.1.2. System timing

Co-ordinating the flow of data through the varIOUS parts of the IC is

another complex IC design problem. To help the designer organise the on­

chip data communication, methods, such as, 2-phase clocks, 4-phase clocks,
and self-timed signalling [14] have been developed. Synchronous systems

which are based upon a global clock signal are used extensively in IC design;

every microprocessor known by the author requires some type of clock signal,

The 2-phase clocking scheme is selected for the IC design in this thesis.
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Its advantages include: it IS a simple and easy-to-understand clock which

means the designer should make few implementation errors, it prevents race

conditions and closed feed-back loops, and it is useful for both static and

dynamic circuits. But there are a few limitations of the two-phase clock.

One problem is that the clock frequency is limited by the slowest circuit on

the chip. For example, 99% of the logic functions may be complete within

one tenth of a clock cycle, but a new clock cycle cannot begin until all logic
functions have been computed. Another problem is distributing the clock

throughout the chip so that the clock signal is the same everywhere in the

system. This signal is used as a reference for on-chip data communication,

and if the clock signal in one area on the chip is delayed relative to another

area on the chip, communication problems may arise when data is being

transferred between these two areas. One more problem, although minor, IS

synchronization failure which occurs when trying to read information into a

synchronous system from an asynchronous source. This problem arises from

the condition where it is possible for a flip-flop to exist in an unstable

equilibrium or metastable condition for an indefinite length of time. In this

state, circuit voltages are neither logic '1' nor logic '0', and although such a

state has a small probability of occurring, in an example grven in [14J a

value of 3xlO-12 is given which translates into an error every three days at a

data transfer rate of 1 MHz. The only solution to this problem is to detect

the metastable state and wait for it to end before continuing with the data.

The timing characteristics of the 2-phase clock are presented in Figure

3.2. ¢1 must be held high long enough to allow all inputs nodes to reach

their appropriate state while ¢2 must remain high until all logic element

outputs have attained their final state. Because both ¢1 and ¢2 must never

be high at the same time, t12 and t21 are greater than zero to allow for

clock skew between ¢1 and ¢2 and to allow for clock time differences among

the separate areas on the chip.
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Figure 3-2: A two-phase clock signal.

3.1.3. Design for testability

The techniques for designing for testability in IG's are not presented

here, but rather this is a brief introduction to testability to allow a further

discussion in later chapters.

Designing for testability has been found to reduce the production cost

of IC's [24]. Because of the low yield in IC production, an example of 40%

is given in Table 3.2, all IC's must be tested as thoroughly as possible to

ensure they work even though complete testing of an IC is difficult. The

problem is trying to control the logic state of tens of thousands of nodes and

observing their changes through a small number, say 64, pins. Unless

consideration is given to testability at the design stage, test time, and so IC

cost, grows exponentially with the number of gates in the IC design.

Designing for testability, on the other hand, can make this test time growth

almost linear [25].

Not many concrete figures on test times could be found In literature,

but one article did briefly describe a designer's experience in designing for

testability. In a report of one presentation at the 1985 IEEE International

Test Conference [26], the test time reported for a 4,000 circuit (gate) IC was

5 seconds while the test time for a 32,000 circuit (gate) IC was 100 seconds

(this time growth is not linear, but test time also depends on the type of
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circuits, and these are specific examples). Another benefit of testable circuits

cited in [26] was the ability to debug parts of the circuit through the use of

circuits designed specifically for circuit testing; in one given example, the

design of an exclusive-or gate was found to be faulty. Aside from this

report, a further illustration of the value of designing for testability is the

observation that a 5 to 10% increase in chip area is considered reasonable

for a reduction in test time [25].

3.2. Software for Ie Design

For the development of the ECG processor, IC design software can be

divided into three classifications: simulation software, layout software, and

circuit extraction software. The available programs for each of these

classifications and their use in this project are reviewed in the following
sections.

3.2.1. Simulation software

Simulation is important In IC design because the high start-up costs for

fabrication do not permit several prototype circuits. Even if cost were no

object, testing these circuits is difficult because of the small size of the

components and because of the limited drive capability of the IC transistors.

On the other hand, a simulator is not subject to these limitations, and it

can provide information on every node of a circuit.

The function of a simulator is to predict how a given circuit will act

before it is actually fabricated. A simulator is based upon a model which

approximates the basic components used in the design. The detail of the

model generally determines the accuracy and speed of the simulator, and

usually speed and accuracy are opposing forces. For this reason, different

levels of simulation have been developed; high-level simulators offer fast

calculations for circuits described as functions such as addition, shifting, and

register storage while low level simulators provide voltage and current

calculations for circuits described at the transistor level. High-level
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simulators will not check that the adder circuit actually will work; only that

if it does work, the circuit will function a certain way. To check that a

designed circuit does work, low-level simulators must be used. Figure 3.3

lists several simulators for various levels of simulation of which all but two,

CADDET and SUPRA, are available at the University of Saskatchewan.

high
level

low
level

CLASSIFICATION BEHAVIORAL LOGIC CIRCUIT DEVICE PROCESS

PROGRAM

ELEMENTS
MODELED

ISPS DABL DED/DlS RNl SPICE CADDEr SUPRA

*adder/ *adder/ *logic *MOS *MOS *MOS *lmpurity
subtractor subtractor gates transistor transistor transistor profile
*multlpller *multiplier *transistor *capacltor *bipolar
*logic *loglc *resistor transistor
functions functions *diode

*memory *memory *capaci tor
*res i s tor
*inductor

Figure 3-3: Simulators of IC development
ordered according to the level of simulation.

Some of the simulators available for the ECG processor project are

listed below along with some of their advantages and disadvantages.

3.2.1.1. ISPS

This register transfer simulator was developed to specify the behaviour

of digital systems and to evaluate computer architectures [27]. ISPS

compiles the user's description into machine code resulting In fast

simulations, but specifying circuits at the gate level can be tedious, so ISPS

is generally used to model circuits only at a high level.

ISPS was studied as one possible way to simulate the circuits for Ie

design, but it was not used because while descriptions of circuits made up of

adders, registers, and multiplexers are readily expressed In this language,

unusual functions like the square-root extractor are difficult to express.
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3.2.1.2. DABL

DABL is a Pascal-like logic simulation language supplied as part of the

logic simulation package for the Daisy workstation. The Daisy workstation is

a computer system designed specifically for digital circuit design and IC

layout. The levels of simulation provided by DABL range from the register

transfer level to gate level. One sample program supplied with the Daisy

models the functions of an 8085 microprocessor and is one example of this

simulator's versatility. To use DABL, the circuit designer writes procedures

for the required logic functions and connects these procedures through signal

variables. The designer must also provide the expected time delays for each

function. This is a good program to begin an IC design because the user

can start with a high-level description and work towards a gate level

description, but the DABL simulator was not used for the ECG processor

design because it was not available until mid-way through the project.

3.2.1.3. Logician Design Editor

This is a logic simulation package for the Daisy workstation which

requires the user to enter the schematic of the circuit to be simulated.

Schematic entry has the advantage of documenting the design while it is

being developed; updates and changes are easy to make. To investigate the

usefulness of this system for IC design, both the multiplier and the square-

root extractor were entered and simulated. Figure 3.4 shows the DED

schematic for the multiplier as a connection of several major function blocks.

Each function block, in turn, is also defined by a schematic diagram; Figure

3.5 is an expanded schematic showing a circuit at the gate level for the

CONTROL unit of the multiplier. This multiplier circuit was tested by

multiplying two sets of numbers, and the results are illustrated in Figure 3.6.

The complete ECG processor design was not entered usmg DED

because the following problems suggested another approach would be better .

• The schematic entry system is suited for circuit board layout, not

IC logic layout. IC layouts often take advantage of repetition of
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• The user must specify logic delays.
for initial calculations, but does not
of a working circuit.

This approach is reasonable
provide a positive indication
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logic blocks, but the schematic entry did not provide a means of
quickly replicating logic blocks.

• The transistor model did not support bi-directional signal transfer.
The transmission gate, a common element in CMOS IC design, is
a bi-directional element. A method for modelling a bi-directional
element was provided, but it was complex.

• The schematic could not be compared to the layout to ensure

that the circuit represented by the layout actually corresponded to
the circuit defined by the schematic diagram.

3.2.1.4. NETLIST-PRESIM..RNL

These programs are part of the University of Washington/Northwest
VLSI Consortium software package [12] developed specifically for IC design.
NETLIST is a LISP-like language which allows the user to specify circuits at

the transistor level. NETLIST supports the definitions of macros and loops
in the user's circuit description which enables it to specify large regular
circuits in a compact way. Once the circuit designer has specified a circuit,
the NETLIST program expands the user's macros and loops into a file which

lists every transistor in the circuit. Using this file as well as a file

describing the characteristics of the I'C technology, PRESIM generates the

binary circuit representation used by RNL for circuit simulation.

In the RNL simulation, switching delays in the circuit are calculated

using RC time constants. Each node has a capacitance and each transistor

is modelled by a switch in series with a resistor. When a transistor turns on

to change the state of a node, the node's capacitance must discharge through
the transistor's resistance. The time to change from one state to another

equals RC. The RNL model has been found to be useful, but attention

must be given to its limitations. One limitation is the existence of only
three states for a node: 0, 1, and X. Because some circuits, like 6-transistor

RAM cells, are sensitive to actual circuit voltages, RNL should not be used
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for their development. This docs not mean RNL cannot model such circuits,

but the circuit must be set up carefully so that RNL can model them.

Charge sharing is another property where the RNL circuit model is limited.

Normally, if nodes of different voltages are connected by a transistor turning

on, time would be required for charge to flow between nodes, but in RNL,

charge sharing is assumed to occur almost immediately. This has been found

to be a problem in the simulation of RAM cells.

3.2.1.5. SPICE

SPICE is a general purpose electronic circuit simulator developed at the

University of California. SPICE is used for circuit level simulation. Because

the simulation is slow, SPICE is generally used to develop circuits with 100'

transistors or less.

A modified version of SPICE called SPICE-PAC was used for the ECG·

processor design project. SPICE-PAC uses the same circuit models as

SPICE, but while SPICE is executed as a batch job, SPICE-PAC is an

interactive program. SPICE-PAC was further modified by the author to

create another program called PEPPER which allowed the output data to be

directed to a file for plotting purposes. This file was in a form which could

be used by the system plotting service TELLAGRAF. As well, a program

called SAGE was written which would plot the results of a circuit simulation

in logic analyzer format. The PEPPER - SAGE programs were useful for

developing small circuits.

3.2.1.6. SIMPSIN

SIMPSIN was a circuit simulator developed by the author specifically

for IC design. The reason for developing this simulator was due to

simulation problems encountered with SPICE; SPICE was slow with a typical

simulation time of 20 minutes for a 50 transistor circuit, and in addition to

this inconvenience, this version of SPICE had an occasional problem with

'convergence' or finding the solution to some circuits. It was believed that a

faster simulator could be developed because SPICE modelled circuits with
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more accuracy than was required for I'C circuits and because it was a

general purpose program with more features than necessary for IC design.

To create a faster simulator, the following characteristics of IC circuits

were taken advantage of:

• a limited voltage range of 0 to 5 volts, and a wider but still
limited range of circuit currents and capacitances would permit
integer representation of these quantities,

• only a few components, transistors, resistors, and capacitors need
to be modelled,

• a look-up table for transistor characteristics would eliminate the
repeated calculation of complex models.

A substantial Increase was thought possible by using integer arithmetic and

look-up tables.

The algorithm for this simulator was much like that for MOTIS [28].
Each node in the circuit had a capacitance, Cn, and the change in node

voltage, Vn' with respect to time depended upon the net current flow, Inet,
in or out of the node. That IS,

� t, Cn, and Inet had their units scaled so that � t equalled one. Inet was

the summation of currents in all transistors connected to the node. The

transistor currents, in turn, were calculated from two values, Vos, the drain

to source voltage, and VG' the gate voltage, by using Yns as a row pointer
and VG as a column pointer to a 50 by 50 matrix. The 50 by 50 matrix

size was chosen arbitrarily.

The SIMPSIN simulation package, as set up for the the Engineering
VAX 11/780 computer system, is shown in Figure 3.7. PEPPER converts

the transistor parameters into characteristic curves. PEPPER uses the

SPICE transistor model, but any model could be used. CONY scales the
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DEVICE PARAMETERS

OUTPUT DATA IN
TELlAGRAF FORMAT

TRANSISTOR CHARACTERISTICS
IN LOOK-UP TABLE FORMAT

TRANSISTOR CONNECTIVITY
AND

NODE CAPACITANCE

SIMULATION
RESULTS

TELLAGRAF
FORMAT PLOTS

Figure 3-1: Programs for the SIMPSIN simulation package.
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voltages and currents of the PEPPER data into units used by SIMPSIN and

then writes the scaled data into a look-up table format. SIMPSIN performs
the actual simulation and records the results to a file. TRANSO reformats

the simulation results of the files into a TELLAGRAF plot file format which

can be plotted by either TELLAGRAF or SAGE.

The results of a SIMPSIN and PEPPER (equivalent to SPICE)
simulations for the circuit in Figure 3.8 are given in Figure 3.9.

Figure 3-8: Circuit for the SIMPSIN simulation test.

Several node voltage waveforms agree quite well, but the output voltage is

notably different. This may be due to a different capacitance value for the

output node since SPICE calculates its node capacitances, but SIMPSIN has

its node capacitances supplied by the user.

SPICE used 25 seconds of CPU time to calculate the transient response

while SIMPSIN used 430 milliseconds. This is a speed improvement of 50

times, but this comparison is not fair. SIMPSIN, as written for this

demonstration, modelled only one size of transistor and an extra

multiplication would be needed to model different sizes of transistors. As

well, SIMPSIN is not as accurate as SPICE and so the specified accuracy for

a SPICE run should be reduced to allow SPICE to run faster. On the
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other hand, SIMPSIN could be modified for faster simulation. A variable

time step would eliminate iterations where circuit voltages do not change

quickly, and the division by Cn could be changed to a multiplication by

storing l/Cn rather than CJl' Writing the node voltages to a disk file after

every iteration may also have slowed SIMPSIN run times, but this would

depend upon whether this time is measured by the CPU timer variable

'sys$timer' and this information is 1I0t nu-nt.ioncd in VAX documentation.

The results of the SIMPSIN program were not as good as expected.

Even with a speed improvement of 50 times, SIMPSIN could not compete

with event-driven logic simulators like RNL, and for cases where accuracy is

required, the proven models and flexibility of SPICE are more desirable than

those for SIMPSIN. SIMPSIN also has problems with its integer

quantification of node capacitance and current values; since the dynamic

range of current extends from leakage current, say O.lnA, to power supply

current, say lA, either a large word size or an exponential representation

should be used, but this would eliminate one part of SIMPSIN's speed

advantage. Despite these drawbacks, SIMPSIN may be useful for IC

development on a microcomputer where floating-point hardware IS not

available.

3.2.2. Layout Software

With the exception of the PLA, the layout of the IC was completed

using the MAX layout editor on the Daisy workstation. To use MAX, the

user entered his/her design with a graphics tablet and observed a colour

graphics display to view the layout. Once the layout was completed, the

CIF
_

OUT program converted the graphical information into a text file that

was sent to the Canadian Microelectronics Corporation for fabrication into an

IC.

The DRACULA program IS used to check the layout for design rule

violations. A design rule check takes two and one half hours for a small
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design, and up to four hours for a large design. An interactive design rule

checker is built into the MAX layout editor, but it is not capable of doing a

complete check.

The PLA IS generated from a truth table by a program called TPLA.

TPLA pieces together 'tiles' or sections of layout according to values in the

truth table. The Caesar layout editor is required to define the tiles used by
TPLA, but unfortunately it was not available at the time the controller was

being developed. Fortunately, example tiles were already defined for another

3 micron CMOS technology, and with some modifications such as changing
the layer names and adding two additional layers, the resulting layout passed
a CMOS3 design rule check. However, most of the geometric sizes were 20%

larger than necessary because the design was not based on CMOS3 rules.

3.2.3. Layout Circuit Extractors

Once a layout is completed, a check of its functionality is desired, and

to do this a layout extractor is used; it reads the geometrical description of

the layout and creates an electronic circuit description at the transistor level.

The circuit extractor used for the ECG processor design was MEXTRA.

MEXTRA generates a circuit description which is compatible with the

PRESIM-RNL simulator to allow a simulation based upon the layout. In

addition to extracting transistors and their interconnections, MEXTRA also

finds the gate dimensions of the extracted transistors and finds the

capacitance of each node due to layers attached to the node. These features

make the simulation based upon the layout more accurate than a simulation

based up on a NETLIST circuit description.

Other capabilities which could increase the accuracy of simulations

would be extractors which included the resistance of long wires (especially
polysilicon) and internode capacitance (caused by overlapping layers) although
measurements taken on the CMOS3 process did not show measurable cross­

talk between long wires or overlapping metal and polysilicon lines.
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3.2.4. The University of Saskatchewan Design System

Figure 3.10 is a description of the IC design environment used for this

project. Most of the programs have been mentioned previously, but those

which have not are briefly described here:

• GEN CONTROL - provides a fast way to specify the input and
output signal to the RNL simulator.

• GEN TIME - specification of the input signals to RNL can be
time-consuming and difficult to read. GEN TIME provides a

better way to specify these signals, especially repetitive signals.

• SIM2SPICE - translates the transistor list of a .sim file to a

SPICE compatible transistor list.

• STREAMOUT - converts the layout representation used by MAX
into a format called GDS.

• STREAMIN - converts the GDS layout representation into the
format used by MAX.

• CIF OUT - converts the MAX layout representation into CIF
format.

• CIF IN - converts the CIF layout representation into the MAX
format.

• CIF2KIC - converts the CIF layout representation into the KIC
format.

• KIC2CIF - converts the KIC layout representation into CIF
format.

• KIC - a layout editor available on the engineering VAX 11/780
computer.

• PEG - a program which translates a user's high-level description
of a Moore machine into a set of logic equations.

• EQNTOTT - generates a truth-table from a set of logic equations.

• PLA2NET - generates a transistor netlist for a PLA from a truth­
table.
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Not all programs reside on the same computer; MAX is part of the

Daisy workstation, NETLIST, PRESIM, and RNL are run on a MicroVAX

II, and PEPPER is run on the Engineering department's VAX 11/780. The

transfer of data between the MicroVAX and the VAX 11/780 is possible
through an Ethernet communication link while data transferred from the

Daisy to the VAX 11/780 is performed using magnetic tape.

3.3. Summary

This chapter covered the techniques used to manage the complexity of

IC design and some of the software used for this project.

Two methods were presented which allowed a designer to develop a

large IC circuit; they were hierarchical abstraction and a global two-phase
clock signal. Hierarchical abstraction reduces the amount of information the

designer needs to comprehend at one time by allowing him to concentrate on

only the most important aspects of IC design. The global two-phase clock

signal is a simple method of organizing on-chip data communication.

The final section of this chapter listed the software available for this IC

design. Examples of high-level and low-level simulators were given, and a

program for circuit simulation along with the simulation results was

presented. Finally, the organization of the software used for the design of

the ECG processor was depicted in diagram form; 23 separate programs for

design rule checking, logic simulation, circuit simulation, and layout

generation are part of the IC design package.
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Chapter 4

The Integrated Circuit Implementation
of the

Morphology Recognition Unit

This chapter presents the development of an IC for the morphology

recognition algorithm described in Chapter 2. The development IS presented
here in a hierarchical fashion beginning with a description of the algorithm

to be implemented, and then describing, at the register transfer level, the

functions necessary to carry out the morphology recognition algorithm. The

complete circuit description at the transistor level is left for Chapter 5

because it is not necessary for understanding the operation of the ECG

processor and because the circuit simulation results can be discussed in more

detail there.

The first section of this chapter presents the architecture of the ECG

processor including a description of the actual algorithm to be implemented
as well as a description of how the ECG processor would be connected to an

ECG analysis system. The next section reveals how each of the functional

blocks required by the ECG processor perform their intended function.

Following a description of the ECG processor operation, two sections, one

describing support hardware and the other describing support software, are

presented to clarify how the ECG processor is to be used in an ECG

analysis system. The last section is important for the production of the

ECG processor; it tells what test patterns should be used in the production

testing of the IC.
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4.1. Architecture of the ECG Processor

The design of the ECG processor begins with this section. First, the

ECG morphology recognition algorithm is simplified to shorten the design

time and to increase the probability of a successful IC design. This is

followed by a discussion of the interface between the ECG processor and the

ECG analysis system.

4.1.1. The Similarity Measure Algorithm

For a first time design, the complete morphology recognition algorithm
IS too complex to be implemented on a single IC, and therefore, as the first

step in the design, the functions to be carried out by the ECG processor are

simplified as much as possible. The simplification is accomplished by moving

seldom performed calculations and operations from the ECG processor to

software whenever possible. For example, the morphology recognition

algorithm can be divided into two operations: the mapping function where

the ECG data and its Hilbert transform are mapped into a recognition

matrix, and the Bhattacharyya distance calculations for comparing the

recognition matrices. Each of these functions could be implemented in either

hardware or software, but the similarity calculations are more complex than

the mapping calculations and are expected to be the bottleneck in the

morphology recognition calculations. Therefore, the IC design will

concentrate on the Bhattacharyya distance function while the mapping

function is treated as a separate function that is performed by the host

computer.

Calculating the distance between two recognition matrices using the

complete Bhattacharyya distance function is still a complex task. The task

was reduced in complexity in Chapter 2 by removing the -log 0 function to

produce a similarity measure based upon the Bhatt.acharyya distance:

�.�.
L

t,} t,}
max: Q =

I

vA.TBTt,l

(4.1)
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which can be further simplified by noting that the division by JAT BT does

not have to be part of the summation function. The ECG processor could

compute the value after the 'E in

1
max: Q = � VA..�.

J c: t,} t,}

ATBT ..

v.s

(4.2) ,

leaving the value (AT BT)-1/2 to be computed by the host computer. The

reason for having the host computer do this calculation is because it would

add considerably to the IC complexity to perform the required divide

function which otherwise would not have to be included, and since the divide

operation is calculated relatively infrequently, once every heartbeat, there

would be no substantial speed increase even if it were made part of the

ECG processor.

4.1.2. The ECG Processor Interface

So far, the function of the ECG processor has been simplified to

Li,j�.�., but the interface between the ECG processor and the device

using the ECG processor has yet to be defined. Through this interface must

pass the recognition matrix data for the ECG processor calculations and the

similarity measures generated by the ECG processor.

Several options were considered for the host computer - ECG processor

interface. Two options were the use of a standard serial port like the

RS-232, or the use of a parallel port. The advantage of using such

interfaces would be the ease with which the ECG processor could be

connected to a host computer. However, the rate of data transfer could be

too high for a serial or parallel port. A preliminary check was made

by assuming that the memory cycle time was the limiting factor in the

similarity calculations. With this assumption, to compare two matrices,

2x961 or 1922 memory accesses would be made with, say, a conservative
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memory cycle time of 500 ns, and the total calculation time would be about

1 ms. Two more assumptions, eight comparisons for each recorded

heartbeat and a heartbeat every second, would give a preliminary number of
1s

ECG leads at -8
- = 125 leads. With a sample rate of 500 Hz per lead, the
ms

rate for ECG data transfer would be 62,500 bytes per second, and the rate

of recognition matrix data transfer would be 120,000 bytes per second.

These rates would be too high for a serial port, but a parallel port remains

one possible alternative.

A third option for the ECG processor interface was a shared memory

configuration. In this case, the host computer which created the recognition
matrices would write its data to a memory to which the ECG processor also

had access. The memory for this approach would have to be external to the

ECG processor because the maximum on-chip data storage (based upon a

20j.l x 20j.l memory cell) is 600 bytes and would not be sufficient for evenone

recognition matrix. The main advantage of the shared memory approach

would be the elimination of the time needed to transfer information, but this

would come at the expense of an interface that would be more complex and

more dependent on the type of host computer.

The interface selected for the ECG processor IS based upon the shared

memory approach. This approach offers the highest morphology calculation

rate because the time necessary to transfer the matrix data between the

ECG processor and the host computer is eliminated. One problem with the

shared memory approach, in addition to the previously mentioned problem of

a complicated interface at the hardware level, is that the IC is made more

complex because a memory address unit must be included. However, by

giving the ECG processor direct access to the recognition matrix data, it

may also perform other functions that would not be possible through a

parallel port. For example, the elements of an unknown matrix must be

reset to zero before starting the recording of a new heartbeat. This highly

repetitive and simple task can now be moved from the host computer to the

ECG processor. Another task which can now be executed by the ECG
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processor is the updating of the reference matrices. This task involves

adding the elements of a newly classified unknown matrix to a reference

matrix to improve the definition of the reference matrix and to account for

slight changes of the ECG wave form with time as mentioned in Chapter 2.

The shared memory arrangement could be approached in one of four

ways, each with its own advantages and disadvantages.

Shared memory approach 1. One way to provide shared memory would be

to use a switched memory block for each recognition matrix, that is, several

1K memory chips could have their address and data lines multiplexed

between the host computer and the ECG processor. The memory blocks

would be connected to the host computer while a recognition matrix was

being constructed, and when finished, the memory address and data lines

would be switched to the ECG processor for the similarity calculations. This

approach was not considered further because each ECG lead would require a

switched memory block resulting in a circuit with several small 8K bit

memory chips and their associated switching circuits.

Shared memory approach 2. Another method for sharing memory would use

time division multiplexing where the memory would be available to the ECG

processor every other clock cycle and available to the host computer on the

alternate clock cycles.

Shared memory approach 3. Yet another technique for providing shared

memory would be to multiplex the address and data lines to a large, say

256K, block of memory and allow access to the memory as each device made

a request. Some type of arbitration unit would be necessary to resolve

conflicts when both devices tried to access memory at the same time, and

there would be a performance penalty since if the memory were being

accessed by one system, the other system would have to wait. One I'C IS

available which performs these functions. It is the the Intel 8207, and it

combines the refresh functions of a dynamic RAM controller with those of an

asynchronous dual-port arbiter and multiplexer 129].
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Shared memory approach 4. The least complex configuration would be based

upon dual-port RAM. This RAM has two sets of address and data lines

and memory accesses may be made independently from either set (there
could be some restrictions when writing to the. same location). The problem

with dual-port RAM would be that it is currently limited to small (8K-bit)
SIzes and is expensive, but this could change as 256K bit dual-port RAMs

have been successfully fabricated [30].

4.1.3. Data Structures

Once the shared memory configuration interface has been selected, the

format of data storage or a memory map must be defined. A first step in

this definition is the selection of a word size for the ECG processor. The

word size is based upon the most common unit of data which, in this case,

would be the element of the recognition matrix. In [5], the matrix elements

were stored as floating point variables, but the word size selected for this

project was 8 bits because:

• development of the ECG processor would be easier for 8-bits smce

the design would be smaller,

• 8-bits is a common word size for many computer systems,

• as a total of 500 sample points typically make up a recognition
matrix, the largest possible element value should be about 1000

which would occur only for a featureless signal. A time varying
signal would spread this total over several elements. Therefore,
the limit of 255 provided by an 8-bit word appears to be a

reasonable choice.

The choice of an 8-bit word IS a compromise. While the last point

men tioned above IS true for the unknown matrices, the reference matrices are

the sum of several recorded heartbeats, and therefore when adding data

to a reference matrix, care must be taken not to exceed 255. Another factor

in the consideration of word size is the required precision of the similarity

measures. As the measure in this design is the sum of several 8-bit values,
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its precision should be greater than 8-bits. However, no experiments were

conducted which tried to determine how the precision of the similarity

measure affected the accuracy of the ECG classification program, and since

there is no evidence that a higher precision is necessary, this leaves us to

assume that using 8-bits for a matrix element is sufficient. Once experience

with actual ECG data is acquired, the word size may be changed for future

versions of the chip.

The next point to be considered is how the two types of recognition

matrices, the unknown or unclassified matrix, and the reference matrix, are

to be stored in memory. The memory map for the proposed ECG processor

is given in Figure 4.1.
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UNKNOWN MATRI X
0

FOR LEAD 1

UNKNOWN MATRIX
1
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UNKNOWN MATRI X
2
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523264

FOR LEAD 32 i

Figure 4-1: The ECG Processor memory map.

This arrangement was developed during the design of the EGG processor and

so reasons for the layout of this memory map do not follow from the

information presented so far. Each matrix uses a full 1024 byte block even
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though each matrix has only 961 elements. The remaining 63 bytes in

shared memory are used to transfer information between the host computer

and the ECG processor. The reason for this choice is a considerable

simplification of the address unit. By keeping the matrix data aligned on

1024 byte borders, a 10-bit register and a 10-bit counter are eliminated.

Whether this is an economically good choice is difficult to determine without

knowing the fabrication cost of the circuits, but for a first time design, it

was felt this simplification was worthwhile.

The amount of memory required for data storage depends upon the

number of ECG leads being analyzed and the number of matrices stored per

lead. Each lead of ECG data requires 10 recognition matrices to be stored

In memory. For each lead, there are two unknown matrices, one which IS

being created as the ECG signal is being digitized, and the other which is in

the process of being classified by the ECG processor. As well, there are

eight reference matrices associated with each lead. The suggested mimmum

number of reference patterns per lead is recommended in [5] to be ten, but

this was reduced to eight because it simplifies the construction of the ECG

processor address unit and reduces the amount of on-chip storage. This is

not a serious limitation, though, because by creating two identical unknown

matrices from one lead of ECG data, 16 reference patterns are effectively

available, and this may be extended to 24 reference patterns by creating 3

identical matrices.

The total number of leads which can be analyzed has been found to

depend upon the speed of the host computer. For this reason, the memory

addressing capability of the ECG processor has been limited to the ability to

access data for 32 leads. The ECG processor would be capable of processing

more leads if its address bus were extended, but the host computer which

must map the ECG data into the recognition matrices would not be able to

map data fast enough to take advantage of this.

Because the reference matrices are not modified as often as the
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unknown matrices, reference matrices do not need to be in shared memory.

As shared memory is more expensive that standard memory, the reference

matrices are to be stored m a memory called dedicated RAM that is

accessible only by the ECG processor. Besides lowering memory costs, this

also reduces the address range of the shared memory block. This can be

important because otherwise the address range would be large, about 256K

bytes for 30 leads, and it may be difficult to design into some computer

systems.

The right half of Figure 4.1 shows the details of one 1024-byte shared

memory segment. The first 961 elements are the values of the matrix

elements. How the matrix elements are ordered within this 961 byte block

does not affect the result of the similarity calculations and therefore may be

done in a way that is most convenient to the mapping algorithm. Following

this are 16 bytes which hold the results of the ECG processor's calculations.

After the unknown matrix has been compared to eight reference matrices, the

resulting 8 16-bit similarity measures are written by the ECG processor to

these locations for use by the host computer. The next byte, called the

'stop-byte', is used to synchronize the ECG processor to the host computer.

When a zero is stored in this location and the ECG processor reads this

zero value, it will continuously poll this 'stop-byte' until a non-zero value is

detected. When the host computer is ready for the ECG processor to

continue, the host computer writes a non-zero value to this location, and

when the non-zero value is detected, the ECG processor resets the 'stop-byte'

back to zero and continues reading sequentially from the next shared

memory location. The next four locations are forward pointers which

identify the address of the next unknown matrix to be classified. Once these

pointers are loaded into the ECG processor's address registers, the ECG

processor 'jumps' to the appropriate memory segment to begin similarity

calculations for another matrix.

The recognition matrices in shared memory form a linked-list with the

forward pointer being located at the end of each matrix. The ECG
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processor reads the data from one matrix, writes its calculated values back

to memory, polls the 'stop-bytes' , and then reads the address for the next

matrix from the forward pointers at the end of the matrix. By using the

'stop-byte' and the forward pointers, the ECG processor IS completely

controlled by the host computer through shared memory. The host

computer does not have any indication of what the ECG processor is doing

at any given moment, and for this reason, the host computer must keep a

list of matrices being classified. It must also poll the 'stop-byte' locations to

determine when the similarity calculations are complete. This list of

matrices may be thought of as a queue. A matrix for classification is added

to the queue by putting its address at the end the matrix which was most

recently placed on the queue and changing the 'stop-byte' to a non-zero

value. By checking the 'stop-byte' for a zero value of matrices already

placed in the queue, the host computer can determine which matrices have

been classified.

4.1.4. ECG Processor Timing

The ECG processor is based upon a 2.5 MHz two-phase non­

overlapping clock. The frequency of 2.5 MHz was chosen as a target

frequency because the clock period would approximately correspond to a

memory access cycle time. Depending on the memory cycle time and the

shared memory arrangement used, the frequency could be changed. For

example, if the time multiplexed shared memory arrangement was used, the

clock period might be increased to twice the memory cycle time. In this

arrangement, the shared memory would be available to the ECG processor

for one half of a clock cycle, and available to the host computer for the

other half.

The maximum clock frequency may be higher than 2.5 MHz Since, as

mentioned in Chapter 3, the period needs only to be long enough for all

logic operations to finish. The function which will take the longest time to

complete in the ECG processor will be the accumulation function. For this
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operation, a read operation is made from the register file, the data added to

the multiplier output, and the result written back to the register file all

within one clock cycle. An estimate of the maximum clock frequency can

then be made by using data presented in the next chapter. The read and

write time to the register file is 60ns, and the add time is approximately
52ns giving a total time to completion of 172ns. This is the minimum clock

period which equals a clock frequency of 5.SMHz.

The memory read/write accesses are similar to those for the Motorola

6800 and MOS 6502 microprocessors except that the roles of <PI and <P2 have

been interchanged. As shown in Figure 4.2, the address lines begin to

change on the leading edge of <P2' and depending on the loading, they are

guaranteed to be valid tAV after this edge.

Figure 4-2: Memory read/write timing diagram.

For a read cycle, the data must be valid tDVR before the falling edge of <PI'
and for a write cycle, the data is made available tDVW after the rising edge
of <Pl' From an RNL simulation usmg 10pF loads on the LC pms, the tAV

propagation delay time is 29ns, the tDVW propagation delay time is 57ns,
and the tDVR set-up time is 17ns.
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4.1.5. Summary of the ECG Processor Functions

The flowchart in Figure 4.3 outlines the functions performed by the

ECG processor. After the ECG processor is released from its reset state, it

writes a zero to the 'stop-byte' and continues to poll this location for a non­

zero value. This gives the host computer time to set up the matrix data

and the forward pointers following the 'stop-byte'. It should be noted that

the 'stop-byte' is polled only every other cycle to allow the host computer

access to shared memory. Once the host computer writes a non-zero value

to this location, the ECG processor resets it back to zero and reads the

address of the next matrix to be classified. Then the next few steps are

repeated 961 times. For each cycle through this loop, an element is read

from the unknown matrix. If this value is non-zero, then this cycle is

followed by eight read cycles from dedicated memory to retrieve the

corresponding element from each of reference matrices, otherwise, if this value

is equal to zero, then only one read is made from dedicated memory. The

value from this one read is discarded and is only necessary because, as the

unit was designed, one cycle is needed to detect a non-zero value. Following

this are the cycles taken up by the update functions; these cycles are always

taken whether or not the update function performs any useful function.

Functions carried out during the update cycles include resetting the elements

of unknown matrices back to zero after they have been classified, and adding

the elements of a newly recorded matrix to a reference matrix. After this

loop has been completed 961 times, the ECG processor completes the

similarity calculations, writes its results to shared memory, and the begins

the process over by polling the next 'stop-byte'.

4.2. Function Blocks of the ECG Processor

The algorithm for the ECG processor has been presented and now in

this section, the function blocks necessary to carry out the algorithm are

described. A general block diagram for the ECG processor is presented in

Figure 4.4. The main components of the ECG processor have been identified
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Figure 4-3: Flowchart of the ECG Processor algorithm.
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Figure 4-4: The block diagram of the ECG Processor.

as the square-root extractor, the multiplier, the adder and register file for the

accumulation operations, the update adder for the update functions, a

memory address unit, and a control unit. In the following sections, a

register level diagram is presented for each of these function blocks along
with a description on how the unit operates and a discussion of the decisions

that were made in the unit's design. The final section presents the complete
ECG processor including the circuits necessary to tie the function blocks

together.

In the discussions of the square-root extractor and the multiplier,
references are made to two versions of each. This is because in the initial
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development of the ECG processor, the square-root extractor was to generate

an 8-hit result that provided an input to an 8x8-hit multiplier, hut the

precision of this root extractor was reduced to 4-bits at a later time. This

change was made because the reduction in circuit complexity was seen as a

way to speed up the circuit simulations which were becoming excessively
time consuming. This reduction in precision has an effect on the values

generated by the ECG processor, but further tests on the ECG analysis

algorithm would have to be made to determine the effect of this precision on

the accuracy of the ECG analysis. This design still demonstrates the

technique for calculating the similarity between two matrices, and if it is

found that more precision is required for the similarity calculations, future

work can continue with the 8-bit root extractor and the 8xS bit multiplier

presented here.

4.2.1. The Square-Root Extractor

Three approaches for the design of a square root extractor were

considered. One was an iterative process that used a multiplier and an

adder, components which were already part of the IC design, to converge on

the square-root much like the Newton-Raphson method for finding the root

of a function. The second root extraction technique under consideration was

the use of a look-up table in ROM, and the third option was a circuit

designed exclusively for square-root extraction. The look-up table would

require 256 words for an 8-bit input and so was rejected since it would be

too large for this project. If the input word size were reduced, this could

become a reasonable choice. The decision between the iterative process and

a custom circuit for square-root extraction was made after an initial survey

of literature. One paper, reference [31], described several iterative methods

for square-root extraction and gave the computation time and the hardware

requirements for each method. For a short word length like 8-bits, the

fastest algorithm with the least hardware requirements was:

(4.3)
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where Bk square-root approximation after Kth iteration

N value from which root IS taken

2

f(X) = a look-up table value for
X

accurate to 'p' bits

The Size of the look-up table, that is, the precision of 'p', determined how

fast this algorithm converged to the correct value of the square-root. A small

value of 'p' would require more multiplications for a given precision of the

result than a large value of 'p', but the look-up table would be smaller.

References [32, 33, 34] are three papers which presented circuits for the

direct extraction of square-roots. [32] is an early paper on the use of cellular

logic arrays for square-root extraction while [33] and [34] present improved

versions of the earlier circuit. Both [33] and [34] are based upon the same

controlled-add-subtract (CAS) cell with the main difference being that

[34] uses an almost completely regular layout which would be easy to

generate for an IC while [33] uses a more compact, but more irregular layout

pattern.

The circuit in [33] was the one selected for the ECG processor. It was

selected over the iterative method because for the small input word SIze

being used, the control circuitry and look-up table associated with this

method were thought to be similar in size to a cellular logic array. As well,

the iterative method would be considerably slower because two or three

multiplications would have to be performed for each square root while with

the logic array approach, not only is the root extraction faster than a

multiplication, but square-root extraction could take place concurrently with

any required multiplications. Of the two cellular logic array circuits,

[33] was selected over [34] because for a small circuit, the layout of an

irregular array would not be much more difficult than for a regular array

and the savings in chip area would make the effort worthwhile.
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The non-restoring square-root extraction method of [33] might be

compared to the long division method of square-root extraction where the

bits of the radicand are paired off and several trial subtractions are

successively performed. The square-root algorithm is difficult to describe

with mathematical equations, and so it is demonstrated in Figure 4.5 as a

pencil and paper calculation. Figure 4.6 substitutes a numerical value for

the variables in Figure 4.5 to provide a numerical example of this method of

square-root extraction.

As presented in [33], the circuit is completely combinational and once

the input value is stable, the extracted root is available after T seconds

where

(N2 - N)Tc
r=T,+· 2· +(N-2)Te {4.4}

and Ts and Tc are the full adder cell sum and carry delays, Te is the

exclusive-or gate delay, and N is the number of bits in the root. However,

when the initial design of the square-root extractor called for an 8-bit root,

it was decided to modify the design into a pipelined architecture because for

N=8, the total delay is about 28 carry delays which could become a limiting

factor in the system clock. By changing to a pipelined architecture, the

minimum clock period for the square-root extractor would be reduced from a

28 carry propagation delay to a 9 carry propagation delay. Another reason

for developing a pipelined root extractor was that it was desired to have an

8 word first-in first-out (FIFO) buffer before the multiplier. Because the

number of cycles required for multiplication depended on the values being

multiplied, having an 8 word FIFO buffer would allow 8 values to be read

from memory with no delay between reads, and then while the multiplier

was busy emptying the buffer, other functions, like the update function,

could access memory.

The circuit in 133], based upon the CAS cell in Figure 4.8, was
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A 0.a1a2a3a4aSa6a7aS
Q fA: 0·q1q2q3q4
R remainder after

.th
cycle�

.th
bit of remainder after ith cycler .. J

�J

a1 a2 a3 a4 as a6 a7 as
+ 1 1 X Iq1 --carry
--- r12 rll a3 a4

if q1 1, then complement [ ] + [0 ] 0 1 1

q2 _+__carry -- r24 r23 r22 r21 as a6

if q2 1, then complement [J + [ q1 0] 0 1 1

q3 _carry r3S r34 r33 r32 r31 a7 as

if q3 1, then complement [ ] + [q2 q1 0] 0 1 1

q4 _carry r46 r4S r44 r43 r42 r41

Figure 4-5: The square-root extraction algorithm.

A 0 1 1 1 1 0 0 1 12110
1 1

q1 1""'__ 0 0 1 1

1 0 1 1

q2 O...,__ 1 1 1 0 1 0

1 0 0 1 1

q3 1 0 1 1 0 1 0 1

1 0 1 0 1 1

q4 = 1 0 0 0 0 0 0

Q = qlq2q3q4 10112 1110

Figure 4-6: A numerical example of square-root extraction.
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converted to a pipelined root-extractor by placing a register between each

row of CA8 cells as shown in Figure 4.7. In this figure, A"Ao was the

input value, and 87-80 was the extracted root. The register latched the

intermediate quotient and remainder values of the previous stage of the

pipeline when 4>1 was high, and then the outputs of the registers would

change when 4>2 was high. A square-root could be initiated every cycle and

8 cycles were required to extract a square-root

When the design of the ECG processor Was changed so that only a 4-

bit quotient was needed, the circuit In Figure 4.7 was modified by

eliminating the last four rows of the array. The extractor still remained

pipelined because its ability to act as a FIFO buffer, now a 4-word buffer,

was still utilised.

A FORTRAN program was written to simulate the logic of the circuit

presented in [33]. The quotients obtained from this method were compared

to the floating-point quotients computed by the FORTRAN 8QRTO

function, and, as expected for a 4-bit word size, Figure 4.9 shows the error

of the square-root extractor to be quite large for certain input values. The

percent error is largest when the magnitude of the input value is small. As

well, the figure shows that the extracted root is always less than the root

obtained from the floating-point function. This means that the similarity

value computed between two matrices will always be less than expected.

Because the error increases when the input values are small, it is

possible that classification errors will be made when few non-zero elements

exist in a matrix, or when the matrix is composed mainly of elements with

small magnitude. Whether this is a problem in the ECG processor should

be determined with actual data. Two possible solutions to this problem are

to increase the precision of the square-root, or to maintain values of L' Ai
and L' Bi on the IC rather than having the host computer compute AT and

BT. The problem with incorrect classification arises from the consistent

rounding down of VA; and � which makes Li (�)2 and L:i (�)2 less
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Figure 4-8: The controlled add/subtract cell schematic.

equal.

than AT and BT even though, if the precision were sufficient, they would be

The accumulated loss can make the similarity value between two

identical matrices less than that between two slightly dissimilar matrices.

For example, consider the simple case of comparing {2,2} to {2,2} and

{12s,100}. Using the 4-bit precision of the proposed circuit, the similarity
calculation results between {2,2} and {2,2} is 0.5 while the results between

. .

{2,2} and {12s,lOO} are 0.671. Using La A.i and L' s, in place of AT and

BT eliminates the inaccuracies due to the consistent rounding down of v�
and..fii;. Both proposals for increased accuracy, however, increase the area

of the chip.
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OUTPUT ERROR OF SQUARE-ROOT EXlRACTOR

50-----------------------------------------------

- % difference
true value - calculated value

true value
x 100

<40

10

30

20

O����__�L-�--._����--�__�._��--�

o 0.2 0..... 0.6 0.8 ,

normalized 8-bit input value

Figure 4-9: The error In a 4-bit square-root extractor.

4.2.2. The Multiplier

Two types of multipliers were developed for this project. The first

multiplier was based upon canonical signed digit (CSD) recoding. The CSD

multiplier was developed for an early version of the ECG processor, but

when the requirements for an 8x8 bit multiplier were changed to a 4x4 bit

multiplier, the CSD multiplier was exchanged for a pipelined multiplier

because for small arguments like 4-bits, the CSD multiplier becomes less

efficient.

4.2.2.1. The CSD Multiplier

For the first version of the ECG processor, an 8x8 bit multiplier was

needed. It was decided rather than USIng a non-receded multiplier, it

would be more interesting to investigate the usefulness of CSD coding In

digital multiplication circuits. This multiplier would be a shift-and-add
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multiplier and eSD coding was expected to improve the performance of the

multiplier because it would reduce the average number of add operations per

multiply to a minimum. eSD coding had been investigated in earlier work

{35] and the expected performance improvement was known, however, the

cost of this improved performance as measured in terms of increased circuit

complexity and area would have to be determined from an actual Ie layout.

The speed improvement offered by CSD coding is based on the

operation of a shift-and-add multiplier where an addition or subtraction must

be performed for every non-zero digit in one of the unsigned binary

multiplier arguments. On average, for a non-receded multiplier, the number

of addition/subtractions is half the number of bits of the multiplier input,

that is, if it is an 8x8 bit multiplier, the average multiplication would

require four add/subtract operations. By receding the multiplier input with

some receding algorithm, the number of addition/subtractions can be

reduced, and in the case of eSD coding, the number of add/subtract

operations can be reduced to a minimum. The number of non-zero digits,

N, in a B-bit eSD coded value is given in (35] as:

1 1 1
N:-+-(l- (__)B)

3 9B 2
(4.5)

For large values of 'B', the average number of non-zero bits in a number is

1/3 which means an average of 33% fewer add/subtract operations are

required for a eSD multiplication when compared. to a non-receded

multiplication. As 'B' is made smaller, the average number of add/subtract

operations becomes the same as for a non-receded multiplier. For an 8x8-bit

multiplier, 30% fewer add/subtracts are required, and for a 4x4-bit

multiplier, 28% fewer add/subtracts are required. One disadvantage with

eSD coding is that each digit is represented by one of three values from the

set {-1,0,1} making the storage requirement for CSD coded numbers greater

than that for non-receded binary numbers. For example, in the multiplier

presented here, one 8-bit two's complement binary number is converted to a
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CSD representation which requires two 8-bit words; one word IS the

magnitude word which marks all non-zero digits with a '1', and the other

word is a sign word which indicates whether the corresponding digit in the

magnitude word is a '1' or a '-1'.

To demonstrate the CSD code representation, the following numerical

example is presented. The conversion from two's complement notation to

CSD code is based upon the logic diagram shown in Figure 4.10.

Binary unsigned

o 1 1 o o 1 1 1 2
=

CSD code

1 o -1 o 1 o o -1

Binary Representation of CSD code

1
o

o

o
1

1

o

o
1

o
o

o

o

o
1
1

= magnitude word
= sign word

One option in the design of this multiplier is whether to convert one or

both multiplier inputs to CSD code. By converting both inputs, the one

with the least number of non-zero inputs could be selected as the multiplier
while the other became the multiplicand. According to [37]' when both

operands are converted to CSD code, an average of approximately 16% fewer

add/subtract operations would be required for an 8x8 multiplier when

compared to the case where only one input was converted. However,

additional hardware would be necessary to make the selection between two CSD

coded operands. For this multiplier, it was decided to convert only one

value to CSD code because for the application in the ECG processor; the

same converted value could be used to multiply eight other values and so

only one CSD conversion would be necessary for all eight multiplications.

Another option in the design of the multiplier was the number of shift

operations which could be performed per clock cycle. Since the total
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multiply time equals the number of add/subtract cycles plus the number of

shift operations which occur when the adder/subtractor IS not busy, the

ability to shift more than one bit at a time can speed up the multiplication.

The fastest multiplication would take place if a barrel shifter were used; a

barrel shifter can shift its input value any number of bit positions in one

clock cycle and it could eliminate all multiplication time taken up by shift

operations. However, the barrel shifter can grow to be large for big word

sizes because the number of transistors in the shifter equals n2 where 'n' is

the bit size of the input word.

In order to determine the benefits of the ability to shift more than one

bit position per clock cycle, a computer program was written to compute the

average multiply time assuming that an add/subtract operation took one

cycle, a shift that occurred when the adder was not busy also took one

cycle, and that all input values had an equal chance of appearing. Figure

4.11 compares the average multiply time of an 8x8-bit multiplier for various

shift lengths of both the CSD multiplier and a non-receded multiplier. The

greatest improvement occurs when a change is made from a one bit shift per

cycle to a two bit shift per cycle while the improvement beyond a four bit

shift per cycle is negligible.

This multiplier was designed to shift two bits per cycle not only

because the greatest performance improvement was to be had at this point,

but also because CSD code has the property of having no two consecutive

digits as non-zero. This meant that the shifter and the control circuitry

were simplified to 17 gates as shown in Figure 4.12.

A block diagram of the multiplier is shown in Figure 4.13, and the

timing diagram for a sample multiplication is given in Figure 4.14. The

number of cycles taken in this example represents the maximum for an 8-bit

signed multiplication.

To compare the area and speed characteristics of the CSD multiplier to
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23.587.
NUloIeER or SHinS PER CLOCK CYCLE:

MULTIPLY TIME VERSUS MULTI-BIT SHIFT ABIUTY

•

o

Figure 4-11:

Legend
_ 81nory
Il!iII CSO Rocodod

Multiplication time versus multi-bit shift ability.

a non-receded multiplier, the areas of the various multiplier components were

determined from the final layout of the CSD multiplier. Then by
eliminating the components which would not be necessary for the non­

recoded multiplier, the area of the non-recoded multiplier was determined.
This method of comparison should be accurate because both multipliers
would have similar maximum clock rates and would be based upon the same

technology. Even if changes like using a dynamic shift register instead of a

static shift register, were made to one multiplier, this improvement would
also apply to the other multiplier.

The areas of the CSD multiplier components are listed In Table 4.1.
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bit 1

Figure 4-12: The schematic diagram of the multiplier controller.
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datil
bus

cld
1

illd
2

zero 3

product xxxx

-----multiplication time ---- .. -,-----..J

1

1 'cld' is asserted to load the eso converter with '99'

1 'ald' is asserted to load the multiplicand shift register
with '17' and to begin the multiplication process.

3 'zero' is asserted by the multiplier when the multiplication is complete.

Figure �14: The timing diagram for the CSD multiplier.
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The areas given are based upon the 5J.l design scale and not the 3#
fabrication scale.

CSD Multiplier Component Areas

Component
adder/subtractor
2-to-l multiplexer
zerodet
control
areas

CSD converter

multiplier register
reset-able latch
addend register
output latch
sign/magnitude shifters
multiplicand shifter

TOTAL

Table 4-1:

Area �1.206xlO
O.352xlOS
O.083xlOS
1.086xlOS

O.313xl06
O.194xlOS
O.48OxlOS
0.41SxlOS
0.41SxlOS
2 x 0.48OxlOS
O.9S0xlOS

S.4SSxlOS

Areas of the CSD multiplier components.

To find the area of the non-recoded multiplier, the areas of the multiplexer
unit, one 8-bit shift register, and the CSD code converter were eliminated

from the total CSD multiplier area. The control areas for these multipliers
were assumed to be constant as the control requirements were similar in

complexity.

The comparison of the speed and area characteristics between the CSD

multiplier and the non-recoded multiplier is summarized in Table 4.2. The

results show that by the area x time measure, the C8D multiplier is superior
to non-recoded multipliers. For both of these multipliers, the time for shift

operations could be nearly eliminated by increasing the clock rate so that

while an add operation may take several clock cycles, a shift could be

performed every clock cycle. In this case, the CSD coded multiplier would

be 30% faster, consume about 21.5% more area, and have about a 15%

smaller area-time product than a non-recoded multiplier.
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CSD Multiplier versus One-shift Non-recoded Multiplier

Non-recoded
CSD coded
% difference

Ave. mult time

(cycles)
7.5
3.6
-41%

Area

(x106Jl2)
1.975
2.328
21.5%

Time x Area

11.9
8.1
-32%

Table 4-2: Comparison of multiplier speed area characteristics.

4.2.2.2. The Pipelined Array Multiplier

When the multiplier requirements changed from an 8x8 bit multiplier to

a 4x4 bit multiplier, it was decided to change from the CSD coded

multiplier to an array multiplier presented in [38]. The reason for the

change was because for the smaller input word SIze, the CSD coded

multiplier becomes only slightly smaller yet significantly slower than the

array multiplier. As a demonstration of this, the area of the CSD multiplier

was estimated from the CSD layout of the previous section by assuming that

all areas, except the CONTROL unit, were halved, and the area of the array

multiplier was found directly from its layout. The resulting area for the

CSD coded multiplier was 1.36xl06Jl2 while the area for the array multiplier
was 1.72x106Jl2 (on the 3Jl fabrication scale). Besides being faster, the fixed

multiplication time made the design of the complete ECG processor easier.

However, the array multiplier's advantage quickly disappears as the input

word size is increased since the area of the CSD multiplier increases in the

order of 4N for an NxN bit multiplier while the area increase for the array

multiplier increases in the order of N2.

The principle of operation for the pipelined multiplier is straight

forward. A register diagram of the multiplier is given in Figure 4.15. There

are three adders in series each of which add shifted values of the

multiplicand to compute the final product. Whether a shifted value of the

multiplicand is to become part of the product or not is determined by the
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bits in the multiplier register. For example, if the least significant bit of the

multiplier operand is set, then the unshifted value of the multiplicand is

added towards the product. If the second least significant bit is set, then the

multiplicand value shifted left by two is added towards the product. The

third multiplier bit adds the multiplicand value shifted left by two bit

positions, and the fourth, or most significant, bit adds the multiplicand value

shifted left by 3 bit positions.

Figure 4.16 shows the timing diagram for the pipelined multiplier.

¢,

data bus

product

load
multiplier

Figure 4-16: The timing diagram for the array multiplier.

The multiplier operand is the first value loaded; it. IS loaded into both the

multiplier and multiplicand registers although the resulting value of this

multiplication, the square of the multiplier operand, is not used. Following
the multiplier register load, the multiplicands are loaded at a rate one every

clock cycle, and four cycles later, the corresponding products are available at

a rate of one every clock cycle.
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4.2.3. The Register File

To perform the summation function of Equation 4.2, an accumulating

register is needed, and since the unknown matrix is being compared to 8

reference matrices, 8 accumulating registers are required for the EGG

processor. These registers could have been built up from d-Iatches, but

considerable area can be saved if a memory similar to random access

memory (RAM) is used.

The two main types of RAM are dynamic and static; dynamic RAM

uses capacitance to store information while static RAM uses a flip-flop.

Dynamic RAM is more compact than static RAM, but it IS more

complicated to use because charge leaks from the capacitors which store the

information and control circuitry must be developed to periodically refresh

the memory cells. For this design, the static RAM was selected for two

reasons: one reason was that static RAM was easier to use, and the other

reason was that initially it was decided to make the ECG processor

completely static. A complete static design would allow the clock to be

stopped at any time and would give the circuit designer more flexibility

when designing the shared memory interface.

The register level diagram for the register file is shown in Figure 4.17.

It stores 8 16-bit words. The 16-bit word size was selected because it

allowed a comfortable margin from overflow in the accumulation operations.

The expected largest accumulation for a similarity calculation would occur

when all 500 sample points of an ECG wave form were spread evenly over

the recognition matrix and the reference matrix were the sum of, say, ten

such matrices. The total then would be about 961 x v20v'2 � 6000 which

would require a 13 bit representation. As can be seen, fewer bits could have

been used for the accumulation process, but as 2 8-bit words must be

written to shared memory, the extra three bits were seen as a way to guard

against overflow.
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The memory address is controlled through a shift register rather than

an address decoder because each location III memory is always accessed

sequentially and so there is no need for an address decoder. RAM, then, is

not a completely accurate term for the register file, but aside from the shift

register which could be replaced by an address decoder, it was felt that the

memory could be considered as a RAM.

The memory outputs are connected to the ECG processor data bus

through tri-state buffers. As the data bus IS 8-bits wide, the tri-state buffers

are divided into two groups: one for writing the lower 8-bits of the register
file contents, and the other for the higher 8-bits. The outputs are also

connected to an adder through an AND gate. The purpose of the AND

gate is to provide a zero input to the adder for the initial summation

iteration of the similarity calculation. This was necessary because

otherwise the contents of the memory from some previous calculation would

be accumulated into the new calculations. Another solution might have been

to write a zero value to all memory locations before beginning the

accumulation process, but the selected approach eliminated the controller

states necessary to clear all memory locations.

To change the address of the memory, two signals are used. An

asserted LOAD signal loads the shift register so that the first row of the

memory IS always selected. The SHIFT signal is asserted to access the next

higher row of memory; the change in the row select occurs when either clock

signal goes high, and the memory data lines should be valid before the same

clock signal goes low. The WRITE signal enables the column drivers to

write the value of the memory input lines into the memory.
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4.2.4. The Update Adder

As mentioned in the previous section, the ECG processor was to have

the ability to move data between shared and dedicated RAM, to reset

matrix elements to zero, and to add unknown matrix values to reference

matrices. These are the functions carried out by the update adder shown in

Figure 4.18. A complete description of the update adder functions is given

by Equations 4.6 and 4.7:

1 then

C5xA C4xB
A +- +---

1 + C3 1 + C2
(4.6)

1 then

C5xA C4xB
B +- +---

1 + C3 1 + C2
(4.7)

where B is the unknown matrix, A is the reference matrix, and bits

C2-C7 are control bits which may be either 1 or o. These bits define the

function of the update adder. Suppose, for example, that the unknown

matrix B was to be reset to zero. Then C6, C5, and C4 would have a

value of zero, and C7 would be set to one. Another example would be

dividing the elements of the unknown matrix by two and adding them to a

reference matrix to give the function

B
A +- A+-

2

C3 and C6 would be set to 0 and C5, C4, C2, and C7 would be set to 1.

The option of dividing a matrix element by two was provided because the

maximum element magnitude of 255 would be quickly exceeded if several

matrices were added together as in the case of the reference matrices;

dividing the data by 2 before the addition would help prevent overflow.
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These control bits are set by loading the control register from shared

memory; the load occurs during the loading of the forward address pointers.
Of the 16 bits available for the forward pointer to the matrices for the

update function, only nine bits are needed. This leaves seven extra bits of

which six are selected for the control register.

Figure 4.18 shows how the update adder performs its functions.

Register 1 stores the unknown matrix element value while register 2 stores

the reference matrix value. The multiplexers following these registers

perform the optional divide by two function by selecting either the register
value or the register value shifted right by one position. The output of the

adder is NOR'd with the carry out signal to ensure that the output value is

255 should an addition overflow occur. This effectively 'clips' the matrix

data and distorts the recognition matrix, but it was seen as the best

approximation in the event of an overflow. The output enable line enables

the tri-state buffer to write the update adder results to external memory.

The logic for the 'write request' and 'write grant' signals is connected

to the control bits C6 and C7. If C6 is reset then no write can be made to

dedicated memory, and if C7 is reset then the update adder results are not

written to the unknown matrix. If both of these bits are reset, then the

update function is effectively disabled.

4.2.5. The Memory Address Unit

As the ECG processor operates upon data from an external memory, it

must have a memory address unit that provides the appropriate addresses

for the requested data. In the 64 unknown matrices and the 256 reference

matrices, four types of data are accessed through a 19-bit address bus.

These four types of data are:

• the unknown matrix element for the similarity calculations,

• the reference matrix element for the similarity calculations,
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• the unknown matrix element for the update adder,

• the reference matrix element for the update adder.

The circuit for computing these addresses is shown in Figure 4.19.

The 10-bit counter is used to sequentially access the matrix elements.
Because all matrix data are aligned along 1024 byte borders, the least ten

significant bits are common to all four types of data. From the circuit

diagram, it can be seen that this counter may be loaded with one of two

values. This counter is normally reset to zero at the start of each similarity
matrix calculation, but when the ECG processor is in the 'reset' state, it is

initially reset to 978 to allow the immediate polling of the 'stop-byte'.
There is also a 3-bit counter which provides the address of each reference
matrix. For each unknown matrix element access, an element from each of

the 8 reference matrices is accessed by incrementing this counter eight times.

The lower 13 bits of the address bus discussed so far are used to

access individual elements of the matrices for the similarity calculations. The

remaining 6 most significant bits do not change during the calculation

process and are kept in a 6-bit register. They are used to provide the

address of the matrix being classified. This register only changes value

when, at the end of the similarity calculations for one matrix, a forward

pointer to the next matrix is loaded into this register.

There is also a 9-bit register which stores the addresses of the unknown

and reference matrices being accessed for the update function. The 9 most

significant address bits of the address bus are multiplexed between the 6-bit

register plus 3-bit counter combination and the 9-bit register in order to

select between the address for the similarity calculations and the address for

the data required by the update adder unit.

The connection of the address bus to shared memory 1S different from

the connection to' dedicated memory because not all bits of the address bus

are required for each memory segment. The three bits which select the
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reference matrix in the dedicated memory are not needed for the shared

memory, and the bit which selects the one of the two unknown matrices for

each of the ECG leads is not required for dedicated memory. The address

for the shared memory uses the bits {A(19:14) A(10:1)} and the address for

the dedicated memory uses the bits {A{19:15) A{13:1)}. There is a separate

line which selects between shared memory and dedicated memory.

4.2.6. The Control Unit

The function blocks presented so far provide the ability to operate upon

data, but a circuit is necessary for co-ordinating the movement of data

between the function blocks as well as in and out of the IC. This is the

role of the controller. The controller issues a sequence of signals which

enable each major component of the ECG processor to read and write data

to and from the data bus and to initiate their intended functions.

The most general and common type of controller used in IC design is

the finite state machine (FSM). As shown in Figure 4.20, the FSM uses a

feedback path along with combinational logic to generate the desired

sequence of digital signals.

PLA implementation of a finite-state machine.

___.,

I

AND plane I OR plane

1-

t- -- t !- - -1
Phase I� I

.

I Phase �

� Reglsler-

ltnpulS11 L_l. 11ou'Puls!
Stare

Feedba ..:k paths Y,

Figure 4-20: The block diagram of a finite state machine [14].

Each combination of outputs is associated with some FSM state which can

be identified by the binary number formed by the feedback path. The FSM

can change states every cycle with the state for the next cycle being
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determined by the current state and the input signals. When the input
signals to a FSM are clocked, as they are in this design, its operation is

totally synchronous and the outputs can change only during a dock signal
transition. The asynchronous FSM has unclocked inputs and therefore, its

outputs may change at any time during a clock cycle. A synchronous FSM
is easier to design than an asynchronous FSM, but the disadvantage of the

synchronous machine is that the output signals are always delayed by one

clock cycle in response to the input signals. It is for this reason that, in the

ECG processor, when a zero value is read from an unknown matrix element,
one read from a reference matrix must be made even though the data is not

used; the controller cannot react to the information that the unknown matrix

element is zero in time to change the operation of the next cycle.

The combinational logic for an FSM could possibly be constructed from

logic gates where the gates would decode every combination of inputs into

the desired combination of outputs, but such an approach is complex and

can be difficult to change and debug. For the controller being designed
here, such complex logic functions are mapped onto a regular structure called
the programmable logic array (PLA). A PLA is much like a read only
memory (ROM) where every possible combination of outputs is stored and
the input bits provide the address of the appropriate ROM location, but the
PLA is more compact because it only stores the defined output combinations,
and generally, the number of defined output combinations is only a fraction
of the total number of possible output combinations. The advantage of the

PLA structure for large combinational circuits IS that because of the high
degree of regularity, the layout generation for a PLA is highly automated
and so changes in the control sequence are relatively easy to make.

For the ECG processor, a controller is necessary for:

• loading the address and control registers,

• incrementing the address counters,
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• loading the recognition matrix data into the similarity calculation
unit,

• writing the contents of the register file to memory,

• loading the update adder and writing its results to memory.

A total of 22 output signals from the controller are required to co-ordinate

these functions, and to determine the sequence of change for these output

signals, 5 input signals are used. These signals include information such as

whether the data on the data bus is equal to zero, whether the similarity
calculation unit has completed its function, and whether the last element of

the recognition matrix has been read.

A state diagram for the ECG processor controller is grven m Figure
4.21. The diagram identifies each of the 21 states with a brief statement.

A complete state diagram would include the output state for each output,

but listing all 22 output signals would make the diagram appear too

complex.

The following listing is the controller description in the PEG finite

state machine compiler language.

diagram in Figure 4.21.

This listing corresponds to the state

The Controller Finite State Machine Description

PEG decription of ECG processor PLA controller

INPUTS: zero eom end accum rowS;

OUTPUTS: addl addh dbl lr! lr2 Ir3 load! load2 uale incrow
newmat share wr ramI ramh UWT lvs lvd start update inc! inc2;

power on reset begins at this point
(once reset IS release a zero is written to shared memory)

reset! ASSERT dbl addh addl lrl lr2 Ir3 load! load2;
ASSERT dbl share wr addh addl;

-- loop to wait for 'go-ahead' from host computer
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This loop is
repeated 7 times,
once for each
reference matrix.

�
read unknown
matrix ement

reset,.l

reset=l
unknown
matrix =0
element

b

unknown
matrix � 0
element

value=O

done=l

write
a '0' to

Sb
register 1

�
r�2 .�register 3 -------..,.V\J
Figure 4-21: The controller state diagram.
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read unknown
matrix element
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function

read reference
matrix element

fo�e
function

write calculation
results to
reference matrix

end-of-matrix=O

write calculation a

results to
unknown matrix

end-of-matrix=l

end=O

to

end=l

Figure 4-21 continued
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(a shared memory location is read every other cycle
until a non-zero value is detected. Then zero is written

back to that location and continues with next part)
waiting ASSERT share addl addh newmat;

IF zero THEN waiting;
ASSERT dbl share addh addl wr inc1;

the next 3 locations are pointers to data for the

next set of cacluations; they are read into 3 registers

ASSERT share addl Ir1 inc1;
ASSERT share addl lr2 inc1;
ASSERT share addl lr3 load1 load2;

read a value from the unknown matrix. If it is zero

then do not read values from reference matrices

matcal ASSERT share addl addh start;
ASSERT inc2 addh addl;
IF zero THEN skipcal;

-- read 7 more values from reference matrices into calculator

calc ASSERT inc2 addh addl;
IF NOT accum THEN calc;

this section performs the update matrix functions

A value is read from an unknown matrix and from a reference

matrix and some value is optionally written to the unknown or

reference matrix
matrix calculations continue at the next element unless

eom (end of matrix) signal is detected

skipcal ASSERT update lvs share.addh;
ASSERT update lvd addh;
ASSERT update uwr addh uale;
ASSERT update uwr addh uale share load2 inc1;
IF NOT eom THEN matcal;

-- wait for pipeline to empty before reading RAM

wait4end: IF NOT end THEN wait4end;

the 8 16- bit registers of the ECG processor are written

to shared memory one byte at a time

ASSERT newmat ;
ASSERT ramI wr share addl addh incl;
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!oopy
ASSERT ramh wr share add! addh inc!;
ASSERT incrow ;
ASSERT raml wr share add! addh inc1;
ASSERT ramh wr share add! addh inc1;
IF NOT rowS THEN loopy ELSE waiting;

The PEG program will generate a set of logic equations which are

converted to a truth table by the program EQNTOTT. Besides producing a

truth table, EQNTOTT will also attempt to reduce the number of minterms

so that the size of the resulting PLA is minimized. TPLA then will

generate a PLA layout from the truth table.

4.3. Support Hardware

To make the ECG processor part of the ECG analysis system, an

oscillator for the ECG processor clock, a memory, and an interface circuit to

the host computer bus are required. However, this section will concentrate

on the memory circuits and leave out a discussion of the clock circuits and

the bus interface circuit because the bus interface circuit depends on the

type of host computer and the clock circuit for the ECG processor is

generated externally in this version of the ECG processor. An external clock

is used in the development of the ECG processor because the timing and

voltage characteristics of the clock signal can be controlled better than if an

on-chip oscillator circuit were used. Once the IC is tested with various clock

signals, an on-chip oscillator can be added.

The most important aspect of the support hardware is the design of

the shared memory. As far as the designer is concerned, the use of dual­

port RAM would be the simplest method as the dual-port RAM has two

sets of address and data lines. One set could be used for the ECG

processor, and the other for the host computer. The problems associated

with simultaneous access to common memory locations are resolved with

circuitry built into the dual-port RAM. One example of dual-port RAM is

the Hitachi HD63310 CMOS static RAM which has a storage capacity of Ik­

by-8 bits [39]. A circuit using the dual-port RAM, as suggested in [39J,
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would look like Figure 4.22. Either system makes a memory access by
negating RDS for a read operation or WRS for a write operation and waits

for Ready to go low when the memory operation IS complete. A

microprocessor like the 68000 has a DTACK pin which the Ready line can

drive directly, but the ECG processor would have to have its clock halted.

This can be done by preventing the clock signal <PI from going low until

Ready went low. This is the purpose of the D-flip-flop in the ECG

processor's clock circuit in Figure 4.22; the circuitry after the flip-flop is used

to generate a non-overlapping two-phase clock from the flip-flop output.

The problem with the dual-port RAM approach is that the 64 48-pin
RAM chips used in this design would consume considerable circuit board

area. Another approach to the shared memory problem would be to

multiplex the address and data lines to 64k-bytes of RAM. The key circuit

for this approach would be the arbiter circuit which would allocate the use

of the shared memory between the two independent processors. In this

design, it would allocate the memory to the first processor which demanded

it. This should be a straight forward design problem except for the

synchronisation failure problem mentioned in Chapter 3. This problem exists

in the arbiter because it is possible for two asynchronous circuits to generate
a request simultaneously, and while the chance of this occurrmg is small,
both the host computer and the ECG processor would have to wait until the

arbiter made a decision between the two requests. The arbiter may take an

indefinite amount of time to make this decision. The circuit in Figure 4.23,
based on the nMOS interlock element from [14], shows one way of

implementing the arbiter function. To use this circuit, the request lines,

REQ, are negated when the host computer or the ECG processor attempt to

access the shared RAM, and the mutually exclusive outputs, ACKI and

ACK2, signal the multiplexers to connect the RAM to either the host

computer bus or the ECG processor.

The results of SPICE simulations of the arbiter circuit using CMOS3

simulation parameters are shown in Figure 4.24. The top part of the figure
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address 1 address 2

req2

ack2

ac.k.l

address out

Figure 4-23: A CMOS arbiter circuit [14].

shows that 4 ns after REQI requests a memory access, ACKI signals the

multiplexers to connect the memory to the device which made the request,

and the bottom part of the figure shows the results of an attempt at a

simultaneous access. According to the simulation, the arbiter finally selects

ACK2 after about 25 ns. This simulation is just a demonstration of the

arbitration process and may not be accurate because in the metastable state,

the arbiter is extremely sensitive to circuit capacitances and transistor gains

and both could have different values than an actual circuit. That the

SPICE simulation did leave the metastable state means the simulation was

somehow biased towards ACK2 even though the circuit as described in the

SPICE input was perfectly symmetrical. The simulation does demonstrate,

though, that ACKI and ACK2 are mutually exclusive and that they could

be used to drive the multiplexers in the shared RAM circuit. It should be

noted that ACKI and ACK2 are not the same as the Ready line of the

dual-port RAM because ACK1 and ACK2 change state at the beginning of

the memory access cycle while Ready changes state when the memory access

was complete. This means that when using ACK1 to generate a signal like

the DTACK signal for the 68000 microprocessor, memory access time would

have to be accounted for.
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As long as dual-port RAM is limited to a small size like 8k-bits, the

multiplexer address and data line approach to shared memory would

consume less circuit board area. Further development of the ECG processor

could include the arbiter circuit, the multiplexers, and possibly even a

dynamic memory refresh controller on the ECG processor chip itself.

4.4. Support Software

This section discusses some of the aspects of the host computer

software necessary for the use of the ECG processor and is based upon

material presented in [40]. This software is required because by itself, the

ECG processor cannot perform any useful functions; it needs the host

computer to supply the address of the recognition matrices to be compared

and the addresses of the matrices to be modified by the update functions.

The discussion on software is broken down into several process descriptions

where each process may be considered as a single program, and these

programs have been given different levels of priority so that the host

computer can keep up with the continuous stream of ECG data. For

instance, the highest level process, the mapping of ECG data into a

recognition matrix, cannot be delayed because the ECG data arrives

continuously at 500 Hz and any delays would cause a loss of ECG data.

1. The high level process

This is an interrupt driven process which is called for every sample

point on the ECG signal. To minimize the interrupt processing overhead,

data should be taken for all ECG leads for every interrupt. This gives a

500Hz interrupt rate due to ECG signal sampling. For each ECG lead, this

process should:

• read the ECG sample value and its corresponding Hilbert

transformed value,

• map this data into the recognition matrix using a method

described in Chapter 2,
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• at the end of a heartbeat for a particular lead, enter the unknown
matrix into the classification queue. Placing a matrix into the
classification queue involves placing the address of the new matrix
in the forward pointer at the end of the last matrix entered in
the queue.

To carry out the mapping process, the following data structures are required:

•.a table of pointers to the base addresses of the unknown

recognition matrices; there IS a pointer for each ECG lead,

• a table a scale factors for each lead. The scale factor normalizes
the peak voltage of the ECG signal to fit inside a recognition
matrix,

• a list of matrices entered into the classification queue.

The table of pointers IS necessary because each lead could be mapped into

one of two possible unknown matrices. When one unknown recognition
matrix is completed at the end of a heartbeat, it is submitted to the

classification queue and mapping for the next heartbeat's ECG data

continues in the alternate unknown matrix. This change in the unknown

matrix is accomplished by changing the pointer in the pointer table.

Depending upon the speed of the host computer and the complexity of

the mapping function, this process IS expected to be the most time

consuming function on the host computer. An assembly language program

for the mapping function was written for the 68000 microprocessor to

determine an approximate host computer load for this process. Assuming

that the beginning and end of .each heartbeat and the peak signal amplitude
were determined by hardware other than the host computer, the estimated

time to map the ECG data for 32 leads with an 8MHz microprocessor clock

would be 2.2ms per interrupt. As sample points are taken every 2ms, this

means over 100% of the processor time would be used for this mapping

process, and that the capability of the ECG processor currently exceeds the

ability of a host computer based upon the 68000 microprocessor.
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2. The medium level process

This process polls the 'stop-byte' locations In shared memory in order

to determine which similarity calculations the EeG processor has been

completed. After a valid forward pointer has been written at the end of a

recognition matrix, the 'stop-byte' locations are changed by the host

computer to a non-zero value. As the EeG processor encounters these 'stop-

bytes' , they are changed back to zero. Thus, if the host computer keeps
track of which matrices have been entered into the classification queue, then

by checking these matrices for a 'stop-byte' value of zero, the computer

can determine which unknown matrices have been through the similarity
calculations. Once this process has determined which similarity calculations

are complete, it can read the values computed by the EeG processor and

complete the similarity calculations by multiplying them by (ATBTt1/2. The

estimated load of this process for an 8MHz 68000 microprocessor is 0.13% of

available processor time per EeG lead assuming a 60 beats per minute heart

rate. This shows that implementing the complete similarity calculation on

the chip would not substantially improve the EeG analysis performance.
After the similarity values have been calculated, they are passed to lower

level processes for use in the EeG analysis program.

3. Low level processes

These are the background processes which are expected to be able to

keep up with the data produced by the higher level processes. The low level

processes include:

• using the results of the similarity calculations along with other

information extracted from the EeG signal, to classify the

heartbeat. The host computer may also take some action like

operator notification as a result of the classification,

• schedule matrices to have their elements reset to zero In

preparation for data produced by the next heartbeat. As well,
unknown matrix data may be added to a reference matrix. These

are functions of the EeG processor's update function and are

organized in an update queue In a similar manner as the

classification queue,
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• perform input and output to peripherals such as the disk drive

and the operator's terminal.

The inter-action among the processes IS complex and the actual

performance of such a system IS difficult to predict because the

computational requirements for all the processes have not been determined.

However, the mapping function is expected to be the most time consuming

because of the large volume of data produced by 500Hz sampling of the

EGG leads which must also be scaled through a multiplication. Other

functions like the classification of the heartbeat, while complex, are done

relatively infrequently with a rate of about once per second per ECG lead.

This assumes, however, that most of the other ECG analysis functions such

as identifying the P, Q, R, S, and T waves are not performed by the host

computer but by external hardware.

4.5. Test Patterns for the ECG Processor

After the ECG processor has been fabricated, it is necessary to test the

IC as thoroughly as possible to ensure that a faulty chip IS not made part

of a completed ECG analysis system. The most thorough test of the chip
would be to apply all possible input combinations under worst case

conditions and compare the output to the output of a known good circuit.

However, with 961 8-bit elements per recognition matrix, testing all possible

ways of comparing two recognition matrices would require 256961x256961

input combinations, a number too large to be realistically considered. A

more realistic test procedure takes advantage of the property that trying all

input combinations IS generally not necessary because many input

combinations are redundant.

One method for generating the input combinations, or test vectors, to

test the nodes of a purely combinational digital circuit is based upon the D­

algorithm. To do this, for each node in the circuit, the D-algorithm assumes

that a node is faulty and is stuck at either a logic '0' or a logic '1', and
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then it attempts to find the input combination which meets two

requirements: one requirement is that the input forces the node to assume

the value opposite to the state at which it would be stuck; and the second

requirement is that input combination makes the circuit output dependent
upon the state of the node being tested, that is, if the node is faulty, the

output must be different from the case where the node is not faulty. The

D-algorithm is not a perfect means of generating test vectors as it models

only two kinds of faults, the stuck-at-1 fault and the stuck-at-O fault, which

are not always good assumptions for CMOS circuits [41]. As well, the D­

algorithm considers only single faults.

The D-algorithm could not be directly applied to a circuit like the

ECG processor because it is a sequential and not a combinational circuit.

However, one technique has been developed, called the Level Sensitive Scan

Design method [24], which attempts to make a sequential circuit testable

using combinational circuit test techniques by making all memory elements in

the circuit part of a single shift register. These memory elements would be

designed to perform two functions. In the test phase of the circuit they act

as a shift register; an input combination is shifted into this shift register to

provide inputs to all combinational logic circuit elements, and then the

outputs of these logic circuits are read into the shift register and shifted out

to external test equipment for comparison to a value generated by a good

chip. In the normal operating mode, these memory elements function as

registers, flip-flops, and latches.

In the case of the ECG processor, designing a circuit which was easy

to test was not found to be difficult and neither of the above design for

testability techniques were required to improve the circuit testability. This

was for three reasons.

1. One reason was ,that most of the ECG processor's registers, counters,

and adders were located logically close to output pins. The address registers
and counters were easily set-up from the data bus, and observed through the
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address bus, and the internal RAM and update adder were accessible

through the data bus.

2. The second reason for the circuit being easy to test was because of the

small input word size for the functions in the ECG processor. For example,
only 256 different inputs were required to fully test the square-root extractor

and multiplier, and the largest address counter was only lO-bits meaning it

was completely tested in 1024 clock cycles.

Trying this approach for the 16-bit adder does not work because of the

input word size; 232 input combinations would be necessary. But trying all

input combinations is not necessary for a complete test. The ability of all

circuit nodes to change states can be checked by observing the sum of four

input combinations. If A and B were the inputs to the adder, the input
combinations would be:

(A) (B) (Expected Sum)

(0000 0000 0000 0000) (0000 0000 0000 0000) (0000 0000 0000 0000)

(0111 1111 1111 1111) (0000 0000 0000 0001) (1000 0000 0000 0000)

(1010 1010 1010 1011) (1010 1010 1010 1010) (0101 0101 0101 0101)

(0101 0101 0101 0101) (0101 0101 0101 0101) (1010 1010 1010 1010)

� The third reason for the ECG processor being easy to test was that

the accumulating registers can be used as a check sum registers, that is,
after a series of inputs which are known to give a certain result are entered

into the ECG processor, the results of the computations are accumulated in

RAM and can be recalled and compared to a set of 'correct' results. If

there is an error at any point in the calculations, it should show up as an

unexpected accumulated value stored in RAM. The check sum approach is

not a guaranteed method of error detection because errors could accumulate

in a way to produce the correct value. The probability of this occurring in
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occurrmg m the ECG processor has not been calculated, but for a 16-bit

register, the odds of such an event, assurrnng a random value produced by a

faulty circuit, would be 1/65,536. This probability is reduced even further

because eight separate accumulation operations are performed for each

unknown matrix classification.

A set of test vectors has not been developed for the ECG processor

because their development would require considerable computer processing

time; the simulation of 40 clock cycles of the ECG processor required about

20 minutes of MicroVAX II CPU time, and at least 980 clock cycles would

be used to tryout one test vector. What is presented instead is a

description on how the test vector generation problem could be approached.

To test the PtA controller and the address counters, it IS only

necessary to cycle through the unknown matrix comparison cycle once.

This exercises all the controller states, puts the address counters through
their full address range, and allows all the data necessary to completely test

the square-root extractor to be read from external memory. It is also

possible to provide the data to completely test the multiplier, but the data

for the multiplier must account for the fact that the data first passes

through the square-root extractor before reaching the multiplier.

To test the on-chip RAM, the final values in the accumulating registers
should be made to equal alternating bit patterns like, for example, {0101
0101 0101 0101} for even memory locations and {101O 1010 1010 101O} for

odd memory locations. Then the complete matrix calculations should be

repeated to give results which toggle every memory bit location in RAM.

This ensures that all memory locations have the ability to store a logic '1'

and a logic '0'. The alternating bit pattern is selected so that shorts

between memory locations are detected.

The address registers and the update adder functions can be tested

through a repeated reset of the ECG processor. Since the first action taken
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by the ECG processor after a reset is to load forward pointers into the

address registers, several different values can be loaded into these registers
through the repeated application of the reset signal. This avoids having to

cycle through a complete matrix calculation before changing these registers.
The contents of these registers are readily observed through the address

lines. The repeated reset approach also allows testing of several update
adder functions without having to wait for a completed matrix calculation for

each function test.

These tests can be performed relatively quickly. Two complete unknown

matrix calculations take about 6ms with a 2.5MHz clock, and the testing of

the address registers and the update adder add a small amount to this test

time.

4.6. Summary

The first section of this chapter covered the definition of the algorithm
to be implemented on the IC, the selection of an interface between the ECG

processor and the host computer, and the development of the ECG processor

memory map.

In the second section, a register level description was given for each of

the major function blocks of the ECG processor. Along with these

descriptions were provided alternate design approaches and reasons why the

selected approach was taken.

The next two sections described the external hardware and the host

computer software which would be necessary to make the ECG processor

part of an ECG analysis system.

The final section told how the test vectors required for testing a

fabricated ECG processor could be developed to provide a thorough test of

the ECG processor's internal circuitry.
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The chapter should have given the reader an understanding on how to

use the ECG processor as well as an understanding of how the computations
are executed on the IC.

A detailed block diagram of the ECG processor based upon the

completed Netlist description is presented in Appendix A. This diagram
includes the signal lines and circuitry needed to tie together all the functions

presented in this chapter.
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Chapter 5

Circuit Design, Simulation, and Testing

The purpose of this chapter is to present the circuits at the transistor

level for the functions defined in Chapter 4. While Chapter 4 was concerned

with the design of the ECG processor at the algorithmic level, this chapter

concentrates on the logical and electrical circuit development. Together,

these two chapters provide a complete description of the ECG processor.

This chapter is divided into five sections. The first section defines the

simulation parameters with which the circuit simulations are performed. To

show that we can have confidence in these simulation parameters, a

comparison is made between the simulation of a circuit and its actual

measured performance. The second section presents the basic building blocks

for the construction of the ECG processor. These building blocks are

collected into a cell library which includes common logic functions such as

the inverter, the NAND, NOR, and XOR gates and larger circuits such as

counter cells, shift-register cells, and add/subtract cells. Other more

specialized circuits like input pad protection, output pad circuits, and

memory cells are also discussed. The third section presents the test results

for two working design submissions: the accumulating adder, and the random

access memory. The fourth section presents a simulation of the complete

ECG processor which shows, as far as the simulation can predict, that the

design performs its intended function. The fifth and final section discusses

the expected performance of the ECG processor and makes comparisons

between it and other techniques for computing the similarity between two

recognition matrices.
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5.1. The Simulation Parameters

Important to the accurate simulation of an electrical circuit are good

models for the circuit elements and accurate parameters for these models.

For this design, the circuit models are already available as part of the

simulation programs, but the model parameters, which are directly influenced

by the manufacturing process and the layout of the circuit, must be

determined especially for Northern Telecom's CMOS3 fabrication process.

The process dependent parameters can be determined either by usmg a

description of the fabrication process or by measurements taken directly from

fabricated circuit elements. The layout dependent parameters like transistor

gate dimensions are taken from an examination of the layout.

In this section, the process dependent parameters for SPICE simulation

are examined and then used to develop the parameters for the RNL

simulator. In the final part of this section, the results of simulations for a

ring oscillator circuit are compared to its measured characteristics.

5.1.1. The SPICE Simulation Parameters

The parameters used for SPICE simulation as provided by the

Canadian Microelectronics Corporation are listed in Table 5.1.

.MODEL NCHAN NMOS LEVEL=3,TOX=500E-IO,NS1JB=1. 7E16,XJ=O. 6E-6,VTO=O. 7,
+ UO=775,TBETA=O.11,GAMYA=1.1,KAPPA=1,ETA=O.05,

+ VllAX=lE5,NFS=O,PB=O.7, JS=lE-5,LD=O. 35B-6,RSH=25,
+ CJ=4.4E-4,MJ=O.5,CJSW=4E-IO,MJSW=O.3,CGSO=3E-IO,

+ CGDO=3E-IO,KP=50E-6,CGBO=5E-IO
.MODEL PCHAN PMOS LEVEL=3,TOX=500E-IO,NSUB=5E15,XJ=O.5E,..6,VTO=-O.8,

+ UO=250,THETA=O.13,GAMMA=O.6,KAPPA=1,ETA=O.3,

+ VYAX=O.7E5,NFS=O,PB--O.6,JS=lE-5,LD=O.25E-6,RSH=80,

+ CJ=1.5E�4,MJ=O. 6, CJSW=4E-IO,MJSW=O. 6, CGSO=2. 5E-IO

+ CGDO=2.5E-IO,KP=16E-6,CGBO=5E-lO

.OPTIONS DEFAD=35E-12 DEFAS=35E-12

Table 5-1: SPICE parameters for the CMOS3 process.
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These parameters can be grouped into three classes: one class defining

the DC characteristics of the transistor; the second class defining the

transistor capacitances which are important for modelling the switching

characteristics; and a third class which includes the manufacturing process

parameters like substrate doping levels and gate oxide thickness. A brief

description of the significant parameters in each of these classes IS provided

here beginning with parameters affecting the DC characteristics:

• VTO (volts) = the zero-bias threshold voltage. The threshold

voltage is defined as the voltage where a channel is created

between the drain and source and current begins to flow through
the channel. Actually, there is some drain to source current flow

when the gate is below the threshold voltage and the current flow

increases exponentially as the gate voltage increases past VTO.

Another definition of threshold voltage for an nMOS transistor is

the gate voltage which makes the concentration of electrons on the

silicon surface under the gate equal to the concentration of holes

deep in the substrate.

• KP (ampere/volts2) = the transconductance parameter which when

multiplied by the transistor gate width/length ratio gives the gain
factor of the transistor.

• GAMMA (volts1/2) = the bulk threshold parameter. This is used

to determine the effect of source-to-substrate voltage on the

threshold voltage.

• PB (volts) = the p-n junction potential between the source and

substrate, and the drain and substrate.

For the transistor's switching characteristics, the following parameters are

used to provide data for inter-terminal capacitances.

• CJ (Farads/meter2) the zero-bias capacitance between the

bottom of the source and drain diffusions and the substrate.

• CJS\V (Farads/meter) - the zero-bias sidewall capacitance
between the sides of the source and drain diffusions and the

substrate.

• CGSO (Farads/meter) == the gate-to-source overlap capacitance

• CGDO (Farads/meter) = the gate-to-drain overlap capacitance
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• CGBO (Farads/meter) = the, gate-to-substrate overlap capacitance

Besides these parameters, there are process dependent parameters like the

gate oxide thickness (TOX), the depth of source and drain diffusions (XJ),
and the substrate doping level (NSUB) which are used by SPICE to

compute the gate capacitance and any other parameters which are not

provided by the user.

Layout dependent parameters like gate width (W), gate length (L),
drain and source areas (AD and AS), and drain and source perimeters (PD
and PS), can be specified for each individual transistor. SPICE then uses

these values to compute the total drain and source capacitances and the

transistor gain.

One note should be made about. how AS and AD are used in this

thesis because the diffusion areas are generally a significant part of circuit

capacitance. When generating a SPICE circuit listing from a layout, AS and

AD are set to zero because the capacitances due to drain and source

diffusions are computed by the program generating the SPICE listing. They
are included as ideal capacitors, and in order not to count this capacitance

twice, AS and AD must be set to zero. However, there are minor disadvan tages

to this approach. This approach to computing drain and source capacitance
has a small effect on the computed p-n junction leakage currents when the

transistor IS in the off state since AS and AD are used in these calculations,
and it does not account for the voltage dependent characteristics of

these capacitances. To remedy these problems, a program to convert a

'.sim' file to a SPICE listing would have to be written which computed the

drain and source areas and included A S and AD with the transistor

specifications.

On the other hand, a SPICE listing generated from NETLIST or by
hand has AS and AD set to a default value of 35.x10-12m2 which equals the

drain and source areas of a minimum size transistor. This default value is

used because the NETLIST to SPICE conversion program does not compute
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AS or AD and there are no layer areas given III a NETLIST description
from which capacitances can be computed. The use of a default drain and

source area is one way to estimate these capacitances.

An accurate model of the transistor is one requirement for a good
simulation; accurate models for the interconnecting wiring is another. For

the simulators in this project, the only effect of interconnecting wiring which

is considered is the wiring capacitance to ground. Inter-node capacitance,
resistance, and transmission line effects are ignored because the circuit

extractor, MEXTRA, is unable to produce from the layout the required
information for these effects. What MEXTRA does generate (the '-0' option
is used with MEXTRA) is information abou t the total area and perimeter
length for each layer attached to a node. Both area and perimeter
information are included to account for both the parallel plate capacitance
and the edge effect capacitance. The program SIM2SPICE then uses the

user-defined information III Table 5.2 to convert the layer information

generated by MEXTRA into the circuit capacitances for the SPICE circuit

description. The values III Table 5.2 are provided by the Canadian

Microelectronics Corporation [42].

Sim2spice layer capacitances

Polysilicon area capacitance
Polysilicon perimeter cap.
Diffusion area capacitance
Diffusion perimeter cap.
Metal area capacitance
Metal perimeter capacitance

60 fF / ILm2
20 fF / Jim
300 fF / 11m2
400 fF/ JIm
27 fF/l1m2
40 fF/pm

Table 5-2: Sim2spice layer capacitance constants

In Figure 5.1, a cornpartson of the measured characteristic curves for a
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transistor fabricated with the C110S3 process IS compared to the curves

predicted by a SPICE simulation. The length and width of the transistor

gate are 3f-l. There is a general match between the two sets of data, but

the error is largest for low and high gate voltages. For example, at VG=5V
and VDS=5V, the measured channel current ID is 248f-lA while the SPICE

value is 220f-lA. The simulation error III this case is -11%. At the low gate

voltage of 1V, the measured current IS 525nA while the SPICE predicted
value is 4060nA: an error of 1500%. This last error, however, is not as

serIOUS as the percentage implies. These low currents only affect how long

charge may be stored on a node capacitance and do not affect the time

delay computations. As well, these low currents are difficult to measure;

they are affected by temperature and ambient light levels. The previous
error with VG=5V, though, does affect the time delay estimations, and from

this comparison, it is expected that SPICE simulations predict a slower than

actual circuit operation. Besides these errors in the normal operating region,
the SPICE simulation results begin to diverge from the measured

characteristics when the drain-to-source voltage is greater than lOY.

Whether these errors are due to model limitations, the selection of

parameter values, or a measurement based on only one sample is not known.

The parameter values could be modified to give a better fit of the

characteristic curves, but this has not been attempted because the average

characteristics of a large sample of transistors should be used as a reference.

However, if the transistors were properly characterized, one paper, reference

[43]' describes a technique where a computer program searches for an

optimum fit between the measured and SPICE simulation curves by changing

several model parameters.
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5.1.2. The RNL Simuilltion Pnrmueters

The RNL transistor model, though much simpler than the SPICE

model, still needs to be calibrated for a specific process, and since the

Canadian Microelectronics Corporation does not provide the model

parameters for RNL as they do for SPICE, this section will describe the

method by which the RNL model was calibrated.

Before describing the calibration method, a brief summary of RNL IS

presented here.

RNL models a circuit by usmg a resistor in series with a switch to

model a transistor and by representing all circuit loads as a capacitance to

ground. The state of each node is recorded as being either a '0', '1', or 'X'

where '0' moans the node has a voltage below a specified low-voltage

threshold, '1' means the node voltage is above a specified high-voltage

threshold, and 'X' means the node voltage is unknown. The capacitance for

each node is found the same way as described in the previous section with

the layer areas being multiplied by a constant to obtain a capacitance. The

selection of a transistor resistance, however, IS more complex and three

different resistance values are used in finding its switching delay. The

'static' resistance value is used to predict the final state of a node; all the

'static' resistances connected to a node form a voltage divider network

between the power supply and ground. The final state of the node is

determined by computing the node voltage from this voltage divider network

and assigning the state as specified by the threshold voltages. While the

'static' resistance is good for calculating the final steady-state voltage level of

a node, it does not necessarily give a good prediction of the. transistor

switching times, and for this reason the 'dynamic-high' and 'dynamic-low'

resistances must also be specified for each transistor. These values are used

to predict when a node will change state after a transistor turns 'on' or 'off'.

For example, if a node is at logic '1' and a transistor turns 'on' which,

when using the static resistance analysis, RNL predicts will make the final
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final state of the node equal to '0'. The time delay until the node actually

changes from '1' to '0' is determined by the node capacitance multiplied by

the 'dynamic-low' resistance to ground. The other switching resistance,

'dynamic-high', is the resistance of the paths to VOO and is used for a '0' to

'1' transition delay calculation. These dynamic resistances are divided into

two classes because pMOS transistors are generally poor conductors of low

logic levels and nMOS transistors are poor conductors of high logic levels,

and as a result, low-to-high transition times do not necessarily equal high-to­

low transition times.

To determine what these resistance values should be, tests based upon

SPICE simulations were made. For the static resistances, a voltage divider

network like that shown in Figure 5.2 was used; the effective static resistance

equalled the drain to source voltage divided by the drain to source current.

40K-SOK

40K-50K

Figure 5-2: Voltage divider network for

measuring static resistances.

This static resistance value was difficult to determine accurately because it

was strongly dependent upon the biasing voltages. For these tests, the drain

to source voltage was kept low, in the range of O.2V to 2V, because this was

the 'linear-resistance' operating region and also because they Were the lowest

effective resistances encountered in normal operation. Using these resistances

provided the worst case analysis of pull-up and pull-down transistors.
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For measuring the dynamic resistances, the circuits m Figure 5.3 were

used.

nMOS p�10S

Dynamic-high L{ �rresistance I.C.=OV I.C.=OV

T T

res i stance ��.C.=5V
T

Dynamic-low

All capacitors IpF

Figure 5-3: Circuits for measuring the

dynamic resistances.

The charge of a large capacitor was allowed to build-up or discharge through

a transistor. The resulting curves of the capacitor voltage versus time were

not exponential, but for the purposes of determining the dynamic resistances,

they were assumed to be exponential. The effective dynamic resistance could

then be determined by measuring the RC time constant. In the case of a

decaying node voltage, 't' and 'V(t)' were taken from the SPICE output and

the effective dynamic-low resistance calculated by:

t V(t)
Rdyn-low = - Clog [-5-}
The results of these tests are recorded in Figure 5.4. This figure is

actually the file used by PRESEvl to generate a circuit description for RNL.
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cat net2_conflg

layet capacitances fo NT CMOS3 process

note: capacitances have been reduced to 70' of their original
value because RilL calculates delay time based on

R • C. R * C is a time constant to which a voltage drops
to 30' (or rises to 70') of its final value. Oelay times
are measured at the 50' point. The delay to the 50'

point Is .7RC.
capma .0000189 metal area (0.OOOOZ7)
capmp .000028 metal perimeter (0.00004)
cappa .000042 poly area (0.00006)
cappp .000014 poly perimeter (0.00002)
capda .00025 n+ diff area (0.00044) note: less than .7 of ori9inal
; because mextra treats all diffusion as n+ so use ave.

capdp •.00028 nt dIffusion perimeter note above:
cappda •.000105 p+ dUf area (0.00015)
cappdp .00028 ; p+ dlff perimeter
capga .00.0483 ; gate area (0.00069)1!lbesides the .7 reduced by factor
; set some flags for more accurate circuit extraction
diffper im 0 ;do not Include d iff per imeter along gate
dlffext 8 ;no default
lambda 1
;
; set threshold voltages (voltages are normalized to the range 0 -) 1)
lowthresh 0.3
hlghthresh 0.8

:esistance tables (from SPICE simulations using JAN/86 CMC manual data)
format: RESIS7ANCE (ENH Or P-CH�l (STATIC or DYNAMIC-HIGH or DYNAMIC-"O'il)

WIDTH LENGTH RESISTANCE( in ohms I
supposedly, linear Interpolation is done by presim (how good?]

; no t.e e table good for range width: 3 -� 100 length 3
resistance enh static 3 3 7500
resistance enh static 5 3 3900
resistance enh static 7 3 2600
resistance enh static 9 3 2000
resistance enh static 11 3 1600
resistance enh static 20 3 890
resistance enh static 100 3 160 ;extrapolated
resistance p-chan static 3 3 32700
resistance p-chan static 5 3 16000
resistance p-chan static 7 3 10500
resistance p-chan static 9 3 8300
resistance p-chan static 11 3 6200
resistance p-chan statiC 20 3 3300
r�sistance p-chan static 100 3 530 ;extrapolated
resistance enh dynamic-high 3 3 29000
:esistance enh dynamic-high 5 3 18000
resistance enh dynamic-high 7 3 13000
resistance enh dynamic-high 9 3 10000
�esistance enh dynamic-high 11 3 8600
xesistance enh dynamic-high 20 3 4600
reSistance enh dynamic-high 100 3 940 ;extrapolated
resistance p-chan dynamic-high 3 3 47000
resistance p-chan dynamiC-high 5 3 29000
resistance p-chan dynamic-high 7 3 21000
resistance p-chan dynamic-high 9 3 16000
resistan.ce p-chan dynamic-high 11 3 13000
resil5tance p-chan dynamic-high 20 3 7300
resistance p-chan dynamiC-high 100 3 1470;extxapolated
resistance enh dynamic-low 3 3 16000
resistance enh dynamic-low 5 3 9500
reSistance enh dynamic-low 7 J 6800
res�stance enh dynamic-low 9 5300
:e3istance enh dynamic-low 11 3 4400
resistance enh dynamic-low 20 3 2400
re3istance enh dynamic-low lOe 3 450 i�xtrapoia�ed
resistance p-chan dynamic-low 3 : 79000
=esiztance p-c�an �ynamic-l�� 5 47CO:
=e�istance p-chan dynamic-lew 7 34000
resistance p-chan dynamic-law 9 ' 25000
resistance p-chan dynamic-low 11 3 210�0
resistance p-chan dynamic-low 20 3 12000
resistance p-chan dynamic-low 100 3 2450 ;extrapolated

Figure 5-4: The Presim configuration file.
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It includes the constants for the layer area-to-node capacitance conversion

constants as well as the definition of the threshold voltages and some

simulation flags. As can be seen, the resistances are specified for several

sizes of transistors although it was not necessary because PRESIM will

interpolate or extrapolate the resistances according to each transistor's gate

width and length.

The capacitances In this figure are based upon the same values used by

the SIM2SPICE program described in the previous section, but they are

multiplied by 0.7. These capacitances are scaled this way because RNL

calculates transition times by computing RetTectivexCeffective' This equals the

time to reach 70% of the node's final voltage, but time delays are usually

specified by signal crossings at the 50% voltage level. To make the

adjustment for the time to reach the 50% voltage level, 0.7RC is used for

the time delay computations.

One comment should be made about the 'diffext' flag in the

configuration file. This flag is set to some non-zero value for NETLIST

based simulations because the capacitance due to interconnecting wiring is

usually not part of a NETLIST description, and to help offset this missing

capacitance, a diffusion layer is assumed to extend 'diffext' microns past the

transistor gate. A diffusion area equal to the gate width times 'diffext' 1S

then assumed to exist for each transistor source and drain and provides a

simple estimation of node capacitance.

5.1.3. Simulation Results Versus Measured Values

In a simple test of the IC simulator's accuracy in predicting transistor

switching times, a layout for a ring oscillator circuit was created and the

oscillation frequency predicted by the RNL and SPICE simulations of this

circuit was compared to the measured frequency of the fabricated circuit.

To cover the varIOUS levels of simulation, three types of simulation were

performed: an RNL simulation based upon a NETLIST circuit description; an
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RNL simulation based upon a circuit description extracted from the layout;
and a SPICE simulation also based upon an extracted circuit description.
This test provides an easy-to-measure value for an inverter's switching time,

but the test was limited as a test of a simulator's overall ability because

only one type of circuit, the inverter, was tested.

The ring oscillator logic schematic IS shown In Figure 5.5.

OUTPUT

Figure 5-5: Ring oscillator schematic.

For the inverters in the loop, all pMOS transistors have a gate length of 31J

and a gate width of 5.4Jl while the nMOS circuits have the same gate length
but a gate width of 3Jl. The inverter driving the oscilloscope has a pMOS
transistor gate length of 3J.t and a gate width of 35Jl and an nMOS

transistor gate width of 20Jl. The circuit was analyzed on a 'Wentworth

microanalytical probing system, and the power was supplied by a Hewlett­

Packard 4145A semiconductor parameter analyzer. The resulting frequency
measurements are shown in Figure 5.6.

The power supply current was measured with the oscilloscope
disconnected. The power supply current was not constant; initially, it was

measured at l.061mA, and then after a test where the power supply voltage
was raised to 10 volts, the 5 volt power supply current increased to 1.24mA.

The cause of this increase was not determined, but it may have been caused

by heating effects at the higher power supply voltage or the circuit

characteristics may have been altered at the higher voltage.

Table 5.3 shows the predicted and the measured rmg oscillator
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FREQUENCY VS POWER SUPPLY VOLTAGE

m:QUENCY (Hz)
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POWER SUPP\..Y YOLJ'AGE (voHa)

Figure 5-6: Ring oscillator frequency versus

power supply voltage.

performance and the error of the simulations with respect to the

measurement. As expected, the SPICE simulation predicted a lower than

actual circuit speed performance while the NETLIST circuit description gave

a too high circuit speed prediction.

Frequency
% error

13MHz
-17%

Ring oscillator performance

RNL RNL tNETLIST Measured
16:MHz 22:MHz 15.6MHz
2.6% 41%

SPICE
--

Table 5-3: Predicted and measured oscillator frequencies.



137

One key component in the simulation accuracy is the node capacitance

and it is useful to compare node capacitances for the various simulators.

This comparison helps reveal whether the simulation inaccuracies are due to

poor transistor parameters or poor inter-connect wmng capacitance

parameters. The node capacitances are listed in Table 5.4.

Node capacitances

Output node
Internal node

SPICE

O.257pF
O.0312pF*

RNt

O.290pF
O.0518pF

RNL/NETLIST
O.214pF
O.0363pF

*does not include gate capacitance which SPICE itself calculates.

Table 5-4: Node capacitances for various simulators.

From this it can be seen that the NETLIST based simulation predicts a

circuit speed simulation that is too high because the node capacitances are

too low. The cause of the discrepancy between the SPICE and RNL circuit

descriptions, though, is not clear because the node capacitances for SPICE

appear to be lower or equal to the RNL node capacitances.

For more accurate simulations, more attention should be given to

developing good model parameters in future projects. What is required is a

test structure and a test method to determine the SPICE model parameters

and the inter-connect wiring capacitance parameters since both play an

important role in simulation accuracy.
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5.2. Integrated Circuit Development

In this section, the circuits for the basic building blocks of the ECG

processor are discussed. The first circuits to be presented are the most

common logic functions like inverters, tri-state buffers, latches, shift-register

cells, flip-flops, and add/subtract cells which make up a basic cell library.

Many of the cells in this library have their layout arranged so that they
have a common cell height and may be placed next to each other to share

power supply lines; this approach is much like the standard-cell IC design
method. As well, the layout of add/subtract cells, shift-register cells, and

latches are also arranged to allow any number of them to be placed together
to create functions for any desired operand length. After the library cells

are presented, the special purpose circuits like the static memory, the PLA,

and the input and output pad circuitry are discussed.

5.2.1. The Library Cells

A schematic diagram for each of the cells in the library is presented

along with a description of the circuit operation whenever necessary. A

NETLIST description of these cells is given in Appendix B.

1. Inverters and tri-state inverter

The schematics for these circuits are grven lJl Figure 5.7. The inverters

are available with varying load driving capability with pull-up/pull-down gate

widths of 5.41l/31l, 121l/5.41l, 251l/151l, 351l/20Il, 50Il/30Il, and 70Il/40Il.

2. NAND, NOR, XOR, and XNOR logic functions

The schematics for these logic functions are grven lJl Figure 5.8. The

NAND gate is available with two load driving capabilities: the NAND6

transistor gates have twice the gate 'width/length ratioes of the NAND gate

transistors. The exclusive-OR and exclusive-NOR gates use ten transistors

rather than the six-transistor version presented in [38] because SPICE
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A

EN ,__------�

EN-·)------------'

INVERTER TRI-STATE INVERTER

Figure 5-7: Schematic for inverter and
tri-state inverter.

simulations showed that the six-transistor design was not fully-restoring and

did not pull the output below .3VDD for certain loads.

RNL simulations were performed on circuits extracted from the layout.

With a one inverter load (0.022pF), the maximum delay times predicted by

RNL for the NAND, NOR, and XOR gates were 1.5ns, 3.2ns, and 4.0ns

respectively.

3. D-Iatch

The D-Iatch schematic IS given III Figure 5.9. When 'ck' IS logic 1 and

'ck-' is logic 0, the output logic state equals the input logic state. When

'ck' is logic 0 and 'ck-' is logic 1, the output equals the value of the logic

state when 'ck' and 'ck-' make the transition to these logic states.

The latch is completely static.
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A

]I

XNOR GATE

]I

;�AlW GATE I�OR GATE

Figure 5-8: Schematic for NAND, NOR, XOR,
and XNOR gates.
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Figure 5-9:

D-LATCH WITH CLEAR INPUT

Schematic for D-latch and

D-latch with Reset.
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The schematic for the SR latch is given 111 Figure 4.10. For the illegal
state where R=1 and Sr=L, both Q and Q- are logic o.

R

s

�------------�Q-

Figure 5-10:

5. Shift-register cell

Schematic for SR latch.

The schematic for the shift-register cell which is used to make a

parallel loading serial-out shift-register IS shown in Figure 5.11. It shifts

data according to a two-phase non-overlapping clock, and it is completely
static as long as either phase of the clock is in the logic 1 state. Because of

the static design, the layout area is much larger than for a dynamic design;
a dynamic design would use five transistors as opposed to this twelve

transistor circuit. The maximum clock frequency based upon a RNL

simulation of the extracted circuit is 156 MHz, but this is with perfect clock

signals having no time delays between phases.



DI�-------------------

LD >-------------+----_.

LD-�------��----�--�

C2��--J_------------------�

C2-) •

:3 I 3

3

3

Cl�----------------------------------------�

Cl->--------------------------------------------------------------------�

Figure 5·11: The shift register schematic.

....
o£lo.
W



144

6. Add/subtract cell

Also referred to as the controlled add/subtract cell, this cell is based

upon the schematic diagram shown in Figure 4.8. The logic is completely
static. The layout for this cell is shown in Figure 5.12.

The carry delay time is the limiting factor m the adder's computation
time, and the overall adder delay is

Addtime = 3TXOR + (N-1)TCARRY
where N is the number of add cells, TCARRY is the worst case delay from a

carry-in transition to a carry-out transition, and TXOR is the XOR gate
delay. TXOR is assumed to be a small fraction of the total delay time,
therefore, determination of the add time depends upon TCARRY' TCARRY
from an RNL simulation of an extracted circuit was found to be 3.7ns, and
so for a 16-bit adder, gives the expected adder computation time to be about

60ns.

The add/subtract cell can be modified to an add-only cell by
eliminating the top-most XOR gate.

7. The counter cell

This cell is intended as a building block for the 10-bit and and 3-bit

address counters. Two features of this counter cell are:

• it may be pre-loaded with any value,

• the outputs change simultaneously when the clock signal 4>2 makes
a low-to-high transition to provide synchronous operation.

The schematic for the counter cell is shown in Figure 5.13.
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Figure 5-12: Layout for the add/subtract cell.
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5.2.2. Special Purpose Cells

The IC cells studied in this section have been separated from the

previous section because more care must be taken in their design. The

previous section dealt with logic cells which perform their intended functions

under a wide range of input rise and fall times and output loads; their

layouts were not critical for correct operation. However, in the cells in this

section, transistor sizes do affect the correct operation of the circuits and

more attention must be given to the analog characteristics of the circuit

design.

5.2.2.1. Static Memory Development

Static memory is based upon a cell which uses positive feedback to

retain information for as long as power is applied. A common type of 6-

transistor CMOS RAM cell is shown in Figure 5.14. This circuit consists of

two cross-coupled inverters with each inverter output being connected to a

level sensing line through an nMOS pass transistor.

-+__------�-+_ Row select

(worOI

BIT BIT

Figure 5-14: Schematic for the 6-transistor
static RAM cell.

The ratio of the size of the pass transistors to the nMOS pull-down
transistors is critical to the correct operation of the memory cell. A general
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rule for the srzrng of these transistors is that the conductance of the pull­
down transistors should be three times the conductance of the pass

transistors, and the conductance of the pass-transistor should be several

times that of the pMOS pull-up transistor [44]. The actual transistor sizes

depend on the ratio of the sense line capacitance to memory cell capacitance.

Reading and writing to the memory cell depends upon the voltages of

both the BIT and BIT sense lines. When writing to the cell, the BIT line

is set to the logic level to be stored and the BIT is set to the complement
logic level. Then, when the WORD line is asserted, the voltages applied
to the cell unbalance the cross-coupled inverters enough so that positive
feedback causes the cell to assume the desired state.

When reading the contents of the cell, both the BIT and BIT sense

lines are pre-charged to equal voltages in the range O.6VDD to VDD. The

sense lines should have equal voltages which are greater than the VINV of

the memory cell inverters in order not to unbalance the cell when the

WORD line is selected. Once the memory cell is selected, the memory cell

should cause a detectable voltage difference between the BIT and BIT lines.

If the conductance of the pass transistors is too high, the contents of the cell

will be erased, and if the pass transistor conductance is too low, the time

taken for a read operation will increase and the write operation may not

work correctly. The transistor width-to-length ratioes used in this design are

shown in Figure 5.14 and were verified using SPICE simulation.

Figure 5.15 shows the memory column driver which precharges the BIT

and BIT lines. The PRECHARGE line is used to raise the voltages on the

sense lines to the high voltage level for the read operation. For the write

operation, the sense lines are driven through a tri-state inverter.

Usually, for the fastest operation in the read cycle, a differential

amplifier is used to detect the memory cell state from the voltages on the

BIT and BIT sense lines, but to keep the memory compact, this design uses
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OATA W

Figure 5-15: Memory column driver circuit.

WRITE WRITE PRECAARGE·

BIT

only an inverter to restore the sense line voltages to normal logic levels.

The loss in speed is not critical here because the RAM is already fast

enough for this application. Memory speed depends upon the capacitance of

the sense lines, and since a relatively small number of memory cells are

connected to the sense lines, the sense lines are lightly loaded making the

memory relatively fast. When there are many memory cells per sense line,

the line voltages change slowly due to the increased capacitance, and the

need for a differential amplifier to detect small voltage differences becomes

stronger.

The row drivers assert the WORD select lines. The logic for the

function, shown in Figure 5.16, is not complex. The enable line is included

to provide the ability to de-select all WORD lines. This is important for

the sense line precharge operations and for changing the memory address.
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ENABLE

Figure 5-16: Memory row select circuit.

The static memory has a control unit which provides the signals

necessary for the row driver enable function, the sense line precharge

function, and the write enable lines. The schematic for this circuit is shown

in Figure 5.17. The monostable multivibrators are used to enable the

memory on the nsmg transitions of both clock signals <PI and <P2' This

means that this memory is designed for synchronous operation. Because

transitions of both clock cycles are detected, two memory accesses may be

made per clock cycle, and for this application, a memory read is performed

during the <PI clock phase, and a memory write operation is made during a

<P2 clock phase.

The operation of the control circuit depicted in Figure 5.17 is as

follows. When <PI or <P2 makes a transition to a logic 1 level, the

monostable multivibrator sets the SR latch to the logic 1 state. This, in

turn, disables all row select lines, and in the case of a read operation,

enables the precharging of the sense lines.

BIT, are sufficiently precharged, the SR

When both sense lines, BIT and

latch IS reset, the precharge

transistors are turned off, and the row select lines enabled.

5.2.2.2. PLA Circuit Development

As discussed earlier, the layout of the PLA is fixed by the PLA

generator TPLA. However, a check of the PLA circuitry is done to verify

that the pull-up and pull-down transistors are ratioed correctly and to

determine the worst case delay time. The check of pull-up and pull-down
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transistor sizes IS especially important because the layout pattern was

developed for a different IC fabrication process.

SPICE modelling of a PLA circuit IS straight forward and only one

input and output of the PLA needs to be considered. The PLA circuit used

for this simulation is shown in Figure 5.18. The resistances and capacitances
have been added to account for the worst case values, which III this case,

includes a 1000Jl polysilicon wire connected to 10 transistors III the AND

plane of the PLA, and 150Jl diffusion wires to ground for both the AND

and OR planes. From the SPICE simulation, the delay time for a low-to­

high transition is 55ns and the high-to-low transition time is 60ns.

5.2.2.3. Input Protection

A test of the dielectric breakdown voltage of the gate oxide showed

that a MOS transistor fabricated in CMOS3 technology can be permanently

damaged when a voltage greater than 50 volts is applied between the gate

and the substrate. Since it is possible that during handling, an IC can

be exposed to static charges greater than 2000 volts [45], a means of limiting
the on-chip voltages to less than 50 volts IS necessary. One type of input

protection which IS used for this project IS shown in Figure 5.19. The

diodes clamp the input voltages relative to the substrate to the range - Vdiode

to VDD+Vdiode. The resistance is used to help dissipate energy when

current surges do occur.

The layout for this input protection circuit has been fabricated and has

been found to limit the range of input voltages. However, the heating effects

of dissipating static discharges has not been accounted for and the present

design will not withstand large current surges. More work must be done to

develop input protection which will survive the electrostatic discharges

normally encountered in IC handling.



Figure 5-18: PLA circuit model for simulation.
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PAD

Figure 5-19: Input protection circuit.

5.2.2.4. Output Pad Drivers

To drive off-chip loads which typically have capacitances three orders of

magnitude greater than the on-chip node capacitances, a buffer with high

gam transistors IS necessary. For this purpose, the circuit shown in Figure
5.20 is used.

DATA OUT

TRI-STATE

"J6/3

138/3

PAD

Figure 5-20: Output pad driver.

The output transistor gate widths for the pMOS and nMOS transistors

are 138J.l and 96J.l respectively. These values were selected through SPICE

simulation to drive a 10pF load (equivalent to one oscilloscope probe) with a
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IOns delay time. To drive these transistors, a large inverter with pull-up
and pull-down transistor gate widths of 30/1 and 16/1 is used. These gate
widths are the geometrical means of the transistor widths of a standard

transistor and the output transistor widths and provide the minimum delay
time for driving a large capacitive load from a minimum size inverter output

with a single intermediate buffer.

Another feature of this pad driver is that it has a tri-state capability;
by asserting the TRI-STATE signal, both output transistors are in the off­

state and the pad may be used as an input pad.

A demonstration of the pad driver's performance is shown in Figure
5.21. The delay time for a high-to-low transition is IOns while the low-to­

high transition time is 15ns for a lOpF load.

5.3. Test Results of Two Sub-circuits

A total of five integrated circuit designs were submitted for fabrication.

They included an 8-bit accumulating adder, a PLA- based finite state

machine, an 8-bit by 8-bit canonical signed digit multiplier, and an 8-bit

square-root extractor. The multiplier and square-root extractor did not work

because of layout errors. The finite-state machine worked, but not as

intended. The 8-bit accumulating add/subtract unit, which was based on the

same layout for the multiplier's add/subtract unit, did work as did the static

RAM.

5.3.1. The 8-bit Accumulating Add/Subtract Unit

This add/subtract unit is part of the add/subtract function of the shift­

and-add multiplier. It was one of the first designs and was fabricated with

the CMOSlB technology.

The circuit for testing this Ie IS shown 1Il Figure 5.22.



Pad driver output fall time

Load = lOpF II lOMSL
Sweep = 50ns I division

Pad driver output rise time

Load = lOpF II lOMs1
Sweep = 50ns I division

Figure 5-21: Pad d river output characteristics.
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The test was conducted in two steps. In the first step, a push button

was used to generate a two-phase clock signal; in this way, the addition and

subtraction of numbers could be verified using a row of logic level indicators

provided on the breadboard. In the second step, the data generator was

used to generate the two-phase clock, and the data analyzer was connected

to the outputs of the device under test. The purpose of this test was to

find the maximum operating frequency of the accumulator by increasing the

clock frequency until errors appeared at its output. To do this, at clock

frequency of IMHz, the data analyzer recorded the outputs of the

accumulator in its memory. Then the logic analyzer was placed in a sample

and compare mode where the outputs of the analyzer were sampled and

compared to the contents in the logic analyzer's memory; any differences

would be high-lighted in an error map. To synchronize the logic analyzer to

the test clock frequency, the logic analyzer was set up to sample the

accumulator's output at a fixed time interval after the clock transition.

Then the data generator's clock frequency was increased until errors appeared

in the data generator's memory map. This occurred at 9.98 MHz.

Two problems appeared in the test; one was an intermittent large

power supply current at clock frequencies greater than lOMHz, and the other

was electrostatic damage to some inputs. The power supply current surges

were thought to be caused by latch-up in the pad drivers though this was

difficult to determine because of the intermittent nature of the fault. In

future versions of the pad driver design, the pMOS drivers were separated

from the nMOS drivers by a greater distance. This problem has not since

been noted in the CMOS3 designs. The second problem, electrostatic

discharge faults, was due to a lack of input protection circuitry. Many of

the damaged chips functioned, but the damaged inputs had an input

impedance measured by a Fluke 80lDA multi-meter as between 1 and lOMO

(the input impedance of an undamaged input was greater than the 20MO

range of the meter) and appeared to be a logic 1 in the functional tests of

the circuit regardless of the applied input voltage. Rudimentary ESD
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protection was included in future CMOS designs and the number of cases of

ESD appeared to decrease though it was not eliminated. This demonstrated

that the present input protection circuitry still needed to be improved for

use in commercial circuit designs.

5.3.2. The 8-word Static RAM

This RAM circuit was designed for the storage of eight 20-bit words,

however, due to limitations of the number of input and output pins, bits 0

to 16 were connected together to create a circuit that functioned as though
it had eight 4-bit words. As well, the address decoder was not included to

because it permitted only sequential access of the memory, and random

access tests were desired.

Two types of tests for the RAM were performed. One test determined

the access time of a read operation, and the other test ensured that various

combinations of inputs could be stored without affecting neighbouring

memory cell locations. The test circuit for the RAM is shown in Figure

5.23, and a sample of the resulting read access time is shown in Figure 5.24.

Allowing for the IOns delay time of the pad driver, the measured read access

time, as measured from the clock input is 60ns. To test the write cycle

time, the data generator and data analyzer were used in a similar manner as

described in the previous section and the clock frequency increased until the

period equalled the read access time. The data generator provided data

which were written, read, re-written, and re-read to and from the various

memory locations. The data analyzer recorded the results of these operations
and no errors were reported when the clock period equalled the memory read

time. This showed that the time for a write operation was equal to or less

than the read cycle time.
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Figure 5-24: Memory read access time.

5.4. Simulation Results for the ECG Processor

The complete circuit description of the ECG processor IS included in

the NETLIST description in Appendix B. This NETLIST description has

been translated by the NETLIST program to a transistor net list which, in

turn, was prepared for RNL simulation using PRESIM and the configuration
file presented in the first section of this chapter.

One change was made in the NETLIST circuit for the purposes of

simulation. The change made was in the value to which the lower ten bits

of the address were compared to signal the end of the matrix In the

original design, this value was 960, but for simulation purposes, this value

was changed to 3 because the time to cycle through a 961 element matrix

was excessive and not necessary. For example, the simulation of forty clock
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cycles required about 20 minutes of CPU time, and so a test using a 961

element matrix would have required about 33 hours of CPU time. This was

unrealistic especially smce a simulation would be re-run several times as

errors in the circuit were uncovered. This change, however, did not affect

the thoroughness of the check of the ECG processor's algorithm because

these cycles were repetitions of the same control sequence. A matrix using

only 4 elements provided as thorough a test of the ECG processor's

algorithm as did a 961 element matrix and required the simulation of only

40 clock cycles per matrix classification.

The input signals for testing the ECG processor were first specified in

hand drawn timing diagrams. This information was then translated into text

form and entered into a computer file using the input specification code for

the GEN TIME program. The GEN TllvlE program then converted this

file into an RNL input stimulus file. It would have been possible to specify

the RNL input directly, but the GEN TIME specification format was more

compact and less prone to errors.

The specification of the RNL inputs pointed out one area in which

RNL simulation could be improved. As the programs are set up at present,

the user must know the sequence of events before the simulation actually

takes place. For complex circuits with long simulation times, however, this

can be tedious, and what would be useful in this situation would be an

input stimulus which was conditional upon the current simulation state.

This would actually combine the low level simulation at the transistor level

provided by RNL with high level algorithmic descriptions made possible by

the conditional input stimulus statements. With this approach, the user

could use the simulation to both verify the circuit and predict how the

circuit would behave for a given input stimulus.

Once the RNL input signal file was created using GEN
_
TIME, the

RNL simulation was performed and the RNL output recorded in a logic

analyzer tabular format. The recorded data included values of data buses
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internal to the ECG processor as well as its I/O ports. Once the RNL

output was recorded, its output values were compared to the expected values

listed on the timing diagrams. Of particular interest were whether the

correct addresses were computed by the ECG processor, and whether the

final similarity values were as predicted.

The input test sequence included a reset period, a sequence where the

matrix data was read, and a sequence where the results were written to

external memory. During the reset period, the ECG processor polled the

first 'stop-byte' location until it found a non-zero value. Then it wrote a

zero value to back this location, and read the following address pointers into

the appropriate address and control registers. Then the recognition matrix

data was read into the ECG processor. This data included the unknown

matrix matrix [3,0,55,0] and the reference matrices [0,0,0,0], [16,0,0,0],

[0,0,1,0], [1,0,�,0), [92,0,255,0], [12,0,0,0], [0,0,200,0], and [6,0,1,0). In the next

phase of operation, the resulting similarity values computed by the

simulation were were written to external memory. These values were 0, 4,

7, 8, 114, 3, 98, and 9, and they agreed with hand computations. The

addresses, read/write signals, and shared/dedicated memory select lines also

had their expected values.

The clock frequencies used for this simulation were 2.5MHz and

3.73MHz. The higher clock frequency was included in this test because, as

was shown in the first section, a NETLIST based simulation predicts faster

operation than actual circuit performance, and to account for the simulation's

overly fast circuit speed prediction, the clock frequency had to be increased.

5.5. The Expected Performance of the ECG Processor

To estimate the performance of the ECG processor, it is necessary to

find the time required to compute the similarity of one unknown matrix to

eight reference matrices. This cannot be determined exactly because the

computation time depends upon the number of non-zero elements in the
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unknown matrix, but a minimum time, a maximum time, and an expected

time may be found. If all elements equal zero, then six clock cyc1es are

required for each matrix element giving a total of 5800 clock cycles per

classification. If all elements are non..zero, then 12 clock cycles are taken per

matrix element and the total number of clock cycles per classification is

11600 clock cycles. From an inspection of a recognition matrix in [5],
approximately 75% of the elements are zero which means the expected

similarity computation time is 7300 clock cycles. Given a 400ns memory

cycle time, this equals 2.9ms per classification, or a rate of 340 classifications

per second. This computational rate, however, is not fully utilized in the

current version of the ECG processor because its memory addressing

capability is limited to 32 leads and the required average classification rate

for 32 leads assuming an average heart rate of 60 beats per minute is 32

classifications per second. This high computational rate gives the ECG

processor a comfortable margin against a sudden increase in the average

heart rate and allows for future versions of the chip to have the memory

addressing capability extended for possible use In multiple lead ECG

monitoring systems.

To give a better understanding of the ECG processor's computational

abilities, assembly language programs were written for the Intel 8086 and

Motorola 68000 microprocessors to perform the identical functions as the

ECG processor. As well, the computing ability of the FPS-loo array

processor was also investigated as another means of computing the similarity

function. The classification rate for each of these approaches was estimated

by finding the time required to execute the assembly language programs.

The results are summarized in Table 5.5. In all cases, 75% of the matrix

elements were assumed to equal zero. The FPS-lOO array processor

estimation was based upon the 750ns per element computation time for

computing the dot product between two matrices [46}, and instead of the

recognition matrix elements, the VAX 11/780 would pass the square-root

values to the array processor. The square-root extraction would be
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performed by table look-up and the resulting data transfer rate would be

250ns per element. An attempt was made to measure the data transfer rate,

but the VAX 11/780 system timer was too coarse with only a 10ms

resolution.

INTEL 8088 K>TO.ROLA 68000 VAX 111780 wi th ECG PROCESSOR
4.77 foIiz clock 8 foIiz clock FPS-IOO Array Processor 2.5 foIiz clock
(IBM PC)

ESTIMATED CLASSIFICATI�i TIME
260 50 16FOR EIGHT CLASSES (milliseconds) 2.9

ESTIMATED COMPARISOii RATE
25 150 500(matrices/second) 2760

NUMBER OF LEADS
3 19 60 32(average heartrate of 60 bpm

with 8 classes per lead)

Table 5-5: The ECG performance versus

microprocessors.

5.6. Summary

The beginning of this chapter discussed the simulation parameters for

MOS IC's and compared some simulation results to measured values to check

the validity of both the simulator and the simulation parameters. The RNL

simulation based upon the extracted circuit predicted the ring oscillator

frequency to within 2.6%.

The second part of the chapter showed the development of the logic
circuits necessary to build the ECG processor. This included standard logic
gates as well as static memory, PLA circuits, and input/output circuits.

The third section discussed the testing and test results of two

fabricated Ie's.

The fourth section told of how the ECG processor simulation was

performed and reported that the simulation was successful.

The final part of this chapter discussed the expected performance of the
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ECG processor and compared its performance to general purpose processors

performing identical functions. The ECG processor's performance greatly

exceeded the other means of computing the similarity value.
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Chapter 6

Conclusions and Future Work

The objective of this thesis was to develop an IC which would improve
the performance of an ECG analysis system. This was done by shifting the

most computationally intensive part of the ECG analysis algorithm from the

host computer to an IC developed specifically for these calculations. The

performance of this device, measured in terms of the rate of comparing

morphology of heart beats, was 2760 comparisons per second. This provided
a comparison rate of 10 to 25 times faster than what could be achieved by
either an Intel 8088 or a Motorola 68000 microprocessor based design.

As a starting point for this design, information was presented about

ECG analysis in general and the analysis algorithm used for a proposed
analysis system. Two important aspects of this algorithm directly related to

the IC design were then discussed: one was the technique for generating

recognition matrices; and the other was the algorithm used to compute the

similarity between two recognition matrices. Two methods were described for

generating the recognition matrices. These methods used integer arithmetic

and were suitable for implementation on a microprocessor.

Chapter 3 introduced the principles of IC design and described the IC

design software which was used to develop the ECG processor. Particular

attention was given to logic and circuit simulation computer programs

because they were the key to a successful IC design. Programs like ISPS,

DABL, the Logician Design Editor, RNL, and SPICE were investigated as

possible means by which the ECG Processor could be developed. As well, a

computer program that used a look-up table to model the transistor
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characteristics and charge storage for all circuit nodes was written to perform
circuit simulation for IC design. For a given test circuit, the simulation

results of the new simulator compared well to those of SPICE while using
only one-fiftieth of the computer time required by SPICE. Another

important program developed for this project was a graphics program for

plotting SPICE results III a logic analyzer format. A summary of 23

computer programs used as part of this IC design project is given at the end

of Chapter 3.

In the first part of Chapter 4, the similarity computation algorithm was

simplified from the Bhattacharyya distance function to a summation of the

products of square-roots. Once the exact computational requirements were

specified, the interface between the ECG processor and the host computer
was discussed. The shared memory approach was selected as the means of

moving data between the ECG processor and the host computer, and a

memory map showing how the data was to be stored was developed. As

well, other functions related to the ECG analysis algorithm such as the

matrix update functions were described.

In the next section of Chapter 4, the major components of the IC

design were identified, and techniques for square-root extraction,
multiplication, data storage, and external memory address computation were

discussed. For the square-root function, an 8-bit pipelined square-root
extractor based upon a non-restoring root extraction algorithm was

developed. In the case of the multiplier, more than one method of

multiplication were considered. The first multiplier was an 8-bit by 8-bit

signed multiplier which used canonical signed digit recoding to achieve an

average multiplication time 41% faster than a similar design not using
recoding. The cost for this faster multiplication was a 22% increase in the

multiplier layout area. The second multiplier design that was selected for

the final version of the ECG Processor design was a 4-bit by 4-bit pipe lined

unsigned multiplier. Finally, the required support hardware and software

were outlined in order to describe how the ECG processor would become

part of an ECG analysis system.
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In Chapter 5, the circuits necessary to perform the functions presented
m Chapter 4 were developed. First, the accuracy of the simulation software

was checked by comparing simulation results to the measurements taken

from a ring oscillator circuit. Circuit descriptions were then given for logic
gates, add/subtract cells, shift-register cells, PLA circuits, memory circuits,
input protection circuits, and output pad drivers. The testing of two sub­

circuits, the static RAM and the accumulating adder/subtractor, was

described, and the test results presented. In the final part of this chapter,
the simulation for the complete ECG processor was discussed and, according
to the simulation, the circuit would work as intended.

The mam contributions of this thesis are:

1. A NETLIST description of a 8346 transistor circuit which
computes the similarity between two recognition matrices,

2. A simulation of the NETLIST description to check its correctness,

3. The layouts for a pipelined square-root extractor, a 4x4 pipe lined
multiplier, an 8x8 CSD shift-and-add multiplier, an 8-word 16-bit
word register file, and a PLA controller for the ECG processor,

4. The fabrication and testing of five sub-circuits including the
register file, the 8-bit by 8-bit CSD recoded multiplier, the square­
root extractor, a PLA-based finite-state machine, and the
accumulating add/subtract unit of the CSD multiplier.

As a reference for future designs, the layout areas in fabrication scale

units and the transistor counts for the major blocks of the IC design are

summarized in Table 6.1.

6.1. Future Work

The purpose of designing this IC was to develop a circuit which would

aid a computer system in the real-time analysis of ECG's. While the

objective of designing this circuit has been met, much work remams m

building a complete ECG analysis system. In applying this ECG Processor

to ECG analysis, the following areas require further study:
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Transistor Transistor
Com2onent Area count densit�

4x4 Multiplier 2.06x106Jl2 1431 695 tr/mm2
Root Extractor 1.40x106Jl2 1266 904 tr/mm2
Control Unit 1.07x106Jl2 763 713 tr/mm2
Address Unit 1042
Register File 1. 05x106Jl2 1320 1257 tr/mm2

Table 6-1: Major component areas and transistor counts.

1. Complete the layout and test of the ECG Processor. This
involves combining the layouts for the multiplier, the square-root
extractor, the controller, and the register file circuits into a circuit
matching the NETLIST circuit description. This layout can then
be checked by extracting the circuit description and performing an

RNL simulation. The RNL simulation can use the same input
stimulus developed for testing the NETLIST description.

2. Fully develop the shared memory interface. One of the
approaches for shared memory design presented in this thesis
could be selected and tested by using a microprocessor in place of
the ECG Processor. In this way, development of the interface
need not wait for the completion of the ECG Processor. To
design an even more compact system, circuits for refreshing
dynamic RAM and providing dual-port memory access could also
be included on the same chip as the ECG processor.

3. Write computer programs to control the ECG Processor. The
time critical operation of generating the recognition matrices from
the ECG signal data should be written in assembly language, but
the other programs like maintaining the classification and update
queues, reading the ECG Processor's results, and completing the
similarity calculations could be written in a programming language
like 'C'.

4. Further study is needed on the required accuracy of the ECG
Processor's computations. The accuracy of the current design
could possibly be inadequate for reliable morphology recognition.
However, its computational rate is higher than required, and so

future versions of this chip could trade a slower computational
rate for increased accuracy.
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Appendix A

ECG Processor Circuit Diagram

Figure A.l shows the block diagram for the ECG processor. This

diagram is based upon the top level of the hierarchical NETLIST description
of this circuit; the component blocks and signal names correspond to those

used in the NETLIST description. As part of the documentation important
to understanding the operation of the ECG processor, a brief summary of

the major component blocks and signals is given below.

A.I. Summary of the major circuit blocks

• 16-bit shift register - used to coordinate activity in the similarity
calculation unit. A 1 bit is shifted through this register for every
non-zero unknown matrix element. This bit identifies the location
of this matrix element as it passes through the square-root
pipeline, and it marks the first element from the unknown matrix
as it passes through the multiplier and is added to the register
file.

• addu - the external memory address unit. It is made up of

registers and counters which count through the addresses of all
matrix elements.

• addcon - a parallel loading shift register which selects the row for
the register file. It provides sequential access for all words in this

memory.

• control - a 5-input, 22-output PLA with 5 feedback lines. It

provides the control signals which synchronize major on-chip
functions. The inputs are read when </>1 is high, and the outputs
change when </>2 goes high.

• mult - a 4x4 bit unsigned pipelined multiplier.
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• ram � a static register file of 8 l�bit words.

• root � a pipelined square-root extractor.

• zerotest � an 8�input NAND gate which indicates when the bus
contents are equal to zero.

A.2. Summary of the ECG Processor signals

Signals generated by the ECG processor

• 4>1 � phase 1 of a non-overlapping two phase clock signal.

• 4>2 � phase 2 of a non-overlapping two phase clock signal.

• extadd � the external address bus.

• extbus � the external data bus.

• shareout � indicates when an access IS being made to shared
memory.

• reset � a signal which resets the control unit to state 0 and loads
the address counters with the with the address of the first 'stop­
byte'.

• write � a signal which indicates a write operation to external

memory.

Signals from the control unit

• addh � when asserted, it allows the 9 most significant bits of the
address to change to their next computed value.

• addl � when asserted, it allows the 10 least significant bits of the
address to change to their next computed value.

• clr- � the complement of the reset signal. When asserted, it
forces the next state of the controller to be state o.

• dbl � when asserted, it forces the the internal data bus to assume

the value o.

• incl � increments the Ifl-hit counter of the memory address unit

by 1.
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• inc2 - increments the 3-bit counter of the memory address unit by
1.

• incrow - used to advance the selected row of the the register file.

• load l - resets the lO-bit counter of the memory address unit.

• load2 - resets the 3-bit counter of the memory address unit.

• lrl - loads address register 1 (the next lead number to be

classified) of the memory address unit with data from the data
bus.

• Ir2 - loads address register 2 (the next lead number and reference
matrix for the update function) of the memory address unit with
data from the data bus.

• Ir3 - loads address register 3 of the memory address unit and the
matrix update control register with the contents from the data
bus.

• lvd - a signal to load a matrix update unit latch with a value
from the reference matrix.

• lvs - a signal to load a matrix update unit latch with a value
from the unknown matrix.

• newmat - asserted once at the start of every matrix calculation.
It resets the selected row of the register file to row 1, and it
causes the latch of the register file output to clear its contents so

that the accumulation operations begin without adding to the
results of previous accumulation operations.

• share - asserted when an access to shared memory is being made.

• start - is asserted when reading a matrix element from the

unknown matrix.

• ramh - when asserted, it connects the upper 8 bits of the register
file to the data bus.

• raml - when asserted, it connects the lower 8 bits of the register
file to the data bus.

• update - signals the memory address unit to output the address
for the next operands of the matrix update function.
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• wrmem - used to signal a write operation to external memory.

Signals generated by the matrix update unit

• u5[8:1] - the output of the 8-bit adder.

• u6[8:1] - the output of the 8-bit adder NOR'd with the adder's

carry out. This rounds down all overflows to 255.

• ucon[7:2] - the contents of the control register which controls the

operation of the matrix update unit.

• uldj'uld- - signals to load the control register.

• uld1/uldl- - signals to load an unknown matrix element value into
a latch.

• uld2/uld2- - signals to load an unknown matrix element value into
a latch.

• uwrt- - a signal which is asserted when the results of the matrix

update function are to be written to external memory. It will

only be asserted if the control bits are set accordingly.

Signals from the memory address unit

• addr[19:1] - the address value used as input to the pad drivers.

• eom - the end-of-matrix signal which is asserted when the last
matrix element is being accessed.

Signals from the data bus driver

• aa[8:1] - the contents of the external data bus latch.

• bb[8:1] - the contents of the external data bus latch AND'ed by
the dbl- signal.

• bld/bld- - causes the external data bus latch to be transparent
when 4>1 is high.

• bus[8:1] - the internal data bus of the ECG processor.

• rlsbus - when asserted, the external data bus is driven by the
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ECG processor (for the write operation), otherwise, the ECG
processor data bus port is in a high impedance state.

Signals from the similarity calculation unit

• a[4:1] - the output of the square-root extractor.

• accum - resets the register file to row 1 and begins the
accumulation process for the next eight values produced by the
multiplier.

• b[8:1] - the output of the multiplier.

• c[16:1] - the contents of the register file output latch.

• ckkl/ckkl- - a buffered 4>1 signal and its complement.

• ckk2/ckk2- - a buffered 4>2 signal and its complement.

• d[16:1] - the sum of e[8:1] and c[16:1].
• done - signals the last of 8 values produced by the multiplier
circuit.

• e[8:1] - the contents of the multiplier output latch.

• end - asserted when the data bus contents equal zero.

• endload - signals the last of 8 values to be read from the
reference matrices.

• loadmr - asserted when the multiplier's multiplier register IS to be
loaded.

• n2 - asserted when a value read from the unknown matrix does
not equal zero. Provides the input to the 16-bit shift register.

• out1[16:11 - the output of the register file.

• out2[16:1] the complemented output of the register file.

• rdy - indicates when the selected row of the register file may
change.

• row8 - signals that row 8 of the register file has been selected.
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• rowone - when asserted, the first row of the register file IS

selected.

• reg inc - enables the incrementing of the row select circuit for the

register file.

• toggl - increments the selected row of the register file by one.

• wr - indicates a write operation to the register file.

• zero- - not asserted when the data bus contents are equal to zero.
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Appendix B

NETLIST Description of the ECG Processor

To complete the documentation of the ECG processor, a NETLIST

description is presented here. The description is hierarchical and it is stored

on disk with an hierarchical directory structure. A summary of this

directory structure may be found after the NETLIST description.

B.l. The NETLIST Circuit Description

The top of the hierarchical description

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

master control store - a PLA which provides the control signals
for all parts of the ECG processor

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(load "fpub/goulet/net4fcontrolfcontrol.net")
(load "fpub/goulet/net4flibfdlatch.net")
(load "/pub/goulet/net4/control/platch.net")
(load "fpubfgoulet/net4flib/linv.net")
(load "fpub/goulet/net4/lib/lnand.net")
(load "/pubfgoulet/net4flibfrs.net")

(node bus ref addr)
(node input output

zero eom end accum endload row8
addl addh dbl lr1 lr2 lr3 load1 load2 uale incrow

newmat share shareout wrmem write ramI ramh uwr Ivs Ivd start

incl inc2 in out reset cIr- update
ckl ckl- ck2 ck2- phil phi2 �

n80 n8l n82 rlsbus uwrt-)
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(control output input)

(connect in.1 zero)
(connect in.2 eom)
(connect in.3 end)
(connect in.4 endload)
(connect in.5 row8)
(connect out.27 inc2)
(connect out.26 inc1)
(connect out.25 update)
(connect out.24 start)
(connect out.23 lvd)
(connect out.22 lvs)
(connect out.21 uwr)
(connect out.20 ramh)
(connect out.19 ramI)
(connect out.18 wrmem)
(connect out.17 share)
(connect out.16 newmat)
(connect out.15 incrow)
(connect out.14 uale)
(connect out.13 load2)
(connect out.12 loadl)
(connect out.11 Ir3)
(connect out.IO Ir2)
(connect out.9 Irl)
(connect out.8 dbl)
(connect out.7 addh)
(connect out.6 addl)

output latches (dynamic)
(repeat i I 27 (platch output.i ck2 ck2- out. i))

input latches (feedback latches are resettable to force state

zero upon reset)
(repeat 1 I 5 (dlatch in.i ck1 ckl- input. i))
(repeat 1 6 10 (rdlatch in.i clr- ck1 ck1- input. i))

connect feedback

(repeat i 1 5 (connect in.(+ (- 5 i) 6) out.i))

clock drives

(linv6 phil ck1-)
(linv6 ck1- ck1)
(linvlO phi2 ck2-)
(linv10 ck2- ck2)

(linv reset clr-)
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+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

memory address counters (mac) - stores address pointers for
matrices and counters for matrix calculations

, +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(load "/pub/goulet/net4/lib/lxor.net")
(load "/pub/goulet/net4/address/counter/countb.net")
(load "/pub/goulet/net4/address/addu.net")
(load "/pub/goulet/net4/lib/paddriver.net")

(node extaddr)

(addu bus lrl Ir2 lr3 load1 load2 inc1 inc2 addl addh
update reset phil phi2 addr eom)

address line drivers

(repeat i 1 19 (paddr addr.i extaddr.i))

g1ve a realistic load

(repeat i 1 19 (capacitance extaddr.i 10))

paddriver for shared memory request line
(paddr share shareout)
(capacitance shareout 10)

paddriver for write memory p1n

(linv wrmem nBO)
(lnand uwrt- n80 nBl)
(paddr nBI write)
(linv nB1 nB2)
(linv6 n82 rlsbus)

(capacitance write 10)

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

data bus interface (dbi) - provides the drive and tri-state capability
for both the external data bus and the internal data bus

, +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(node extbus aa bb oe n60 n61 n62 dbl- bId bld- dry drv-)

(linv rlsbus n62)
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(HnvlO n62 oe)
(repeat 1 1 8 (paddrt bus.i oe extbus.i))

(repeat 1 1 8 (dlatch extbus.i bId bld- aa.i)
(lnand dbl- aa.i bb.i)
(tbuf bb.i dry drv- bus.i))

(Hnv dbl db l- )

(lnand dbl- rlsbus n61)
(linv10 n61 drv-)
(Hnv10 drv- dry)
(linv6 phil bld-)
(Hnv6 bld- bId)

give a realistic load to the bus
(repeat i 1 8 (capacitance extbus.i 10))

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SIMILARITY CALCULATION UNIT v3.0
feb 16, 1987

,

;- inputs: bus = input and output to SCU
newmat = indicates beginning of new matrix-sets accumulator to zero

incrow = causes the next higher address of ram to be accessed on phi
ramI = connects low order word of ram to bus
ramh = connects high order word of ram to bus
sysset = initializes a flip flop on system reset

outputs: last = goes high when last value is being added to ram

done = goes high one cycle after last

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(node phil phi2 ckk1 ckk1- ckk2 ckk2-)

(node n1 n2 n3 n3a n4 n4a n5 n6 07 n8 n9 n10 nIl n12 n13 n14 n15 n16
n17 n18)

(node n50 n51 n52 n53 n54)
(node wr abc d e row rdy out1 out2 so cry sysset)
(node zero- loadmr last reginc done toggl rowone enl enl-)
(node enh enh-)

(load "/pub/goulet/net4/lib/lnor.net")
(load "/pub/goulet/net4/lib/addcell.net")

(load "root/latch. net")



185

(load "root/root.net")

(load Iram/6ram.net")
(load "ram/cdrive.net")
(load "ram/rdrive.net")
(load "ram/mono.net")
(load "ram/precharg.netft)
(load "ram/addcon/mon02.netft)
(load "ram/addcon/shift.netft)
(load "ram/addcon/addcon.net")
(load ftram/ram. net")

(load "mult/rlatch.netft)
(load "mult/madcell.netft)
(load "mult/mult.netft)

(load "zerotest/zerotest.netft)

; test for bus=()

(zerotest bus zero-)
(linv6 zero- zero)

shift register which provides control signals
(linv10 phil ckkl-)
(linvlO ckkl- ckkl)
(linv10 phi2 ckk2-)
(linvlO ckk2- ckk2)
(lnand start zero- nl)
(linv nl n2)
(latch n2 ckk1 ckkl- ckk2 ckk2- 50.1)

(repeat i 2 16 (latch 50.(- i 1) ckkl ckkl- ckk2 ckk2- so.i))

taps are placed on the shift register to obtain timed control signals
(lnand phil so.4 n3)
(linv6 n3 loadmr)
(lnand phil 50.7 n3a)
(linv6 n3a endload)
(lnand phil 50.8 n4)
(linv6 n4 accum)
(linv 50.9 n4a)
(linv6 n4a reginc)
(lnand phil 50.15 n5)
(linv6 n5 last)
(lnand phil 50.16 n6)
(linv6 n6 done)

square-root extractor
(linv phil n17)
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(Hnv phi2 nlS)
(linv20 n17 n7)
(linv20 n18 nS)
(root bus n7 nS a)

multiplier
(mult a loadmr phil phi2 b)

ram used as accumulating registers
(ram d wr rdy phil wr row out1 out2)

(linv row.8 n54)
(linv6 n54 rowS)

(addcon rowone toggl sysset rdy row)

(rs accum done n10 nIl)

(linv6 n10 end)

(lnand n10 phi2 n14)
(Hnv n14 wr)

(lnor accum newmat n12)
(linv n12 rowone)

(rs reginc done n50 n51)
(lnor n50 incrow n52)
(Hnv n52 n53)
(lnand n53 phil n13)
(linv n13 toggl)

resttable latch used for accumulator calculations

(rs newmat done n15 n16)
(repeat i 1 16 (rdlatch out!. i n16 ckk1 ckk1- c. i»

latch for multiplier result
(repeat i 1 8 (dlatch b.i ckk1 ckkl- e.i»

adder for accumulator

(repeat i 9 16 (connect GND e.i»
(connect GND cry.O)
(repeat i 1 16 (addcell e.i c.i cry.(- 1 1) d.i cry.i»

tri-state buffers connecting RAM to bus

(linv6 ramh enh-)
(Hnv6 enh- enh)
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(linv6 ramI enl-)
(linv6 enl- enl)
(repeat i 1 8 (tbuf out2.i enl enl- bus.i))
(repeat i 9 16 (tbuf out2.i enh enh- bus. (- 1 8)))

;+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Matrix Update Unit (MUU)

permits the clearing (elements=O), transfer, and addition of
two matrices with one being a reference matrix, and the other
being the unknown matrix (in shared ram)

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(node n70 n71 n72 n73 n74 n75 n76 uld uld- uldl uldl- uId2 uld2-
halfl halfl- half2 half2- u1 u2 u3 u4 u5 u6 ucon ucry
ubus ubus-)

control register - stores control bits
(linv6 Ir3 uld-)
(linv6 uld- uld)
(repeat i 2 7 (dlatch bus.i uid uId- ucon.i))

two resettable input registers
(linv6 Ivs uId1-)
(linv6 uld1- uld1)
(linv ucon.4 n75)
(repeat i 1 8 (rdlatch bus.i n75 uld1 uld1- u1.i))

(linv6 lvd uld2-)
(linv6 uld2- uld2)
(linv ucon.5 n76)
(repeat i 1 8 (rdlatch bus.i n76 uld2 uld2- u2.i))

multiplexers provide divide by 2 function
(linv6 ucon.2 half1-)
(linv6 half1- half1)
(repeat i 1 8 (ptrans half1 u1.i u3.i)

(etrans half1- ul. i u3. i)
(ptrans half1- u1.(+ i 1) u3.i)
(etrans half1 u1.(+ i 1) u3.i))

(connect GND ul. 9)
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(linv6 ucon.3 half2-)
(linv6 half2- half2)
(repeat i 1 8 (ptrans half2 u2.i u4.i)

(etrans half2- u2.i u4.i)
(ptrans half2- u2.(+ i 1) u4.i)
(etrans half2 u2.(+ i 1) u4.i»

(connect GND u2.9)

adder with an output limit of 255 (if overflow, output=255)
actual output is inverted

(repeat i 1 8 (addcell u3.i u4.i ucry.(- i 1) u5.i ucry.i)
(lnor ucry.8 u5.i u6.i»

(connect GND ucry.O)

tri-state output buffer
< the tri-state lines are under-driven to slow the enable>
< output transition. This was done to allow the busdriver >
< unit time to release the bus before the update adder was >
< connected to the bus (yes, I know, not good design >
< practice, but it was either this or a long wire from one>
< side of the chip to another) >

(linv uwrt- ubus)
(linv ubus ubus-)
(repeat i 1 8 (tbuf u6.i ubus ubus- bus. i»

write signal generate under control of control register

(linv share n70)
(linv n70 n71)
(lnand n70 ucon.6 n72)
(lnand n71 ucon.7 n73)
(lnand n72 n73 n74)
(lnand n74 uwr uwrt-)

The pipelined sguare�root extractor

a circuit for a pipelined square-root extractor

input: in(8:1) in.8 is most significant digit
ck1 phase 1 clock signal
ck2 phase 2 clock signal

output: out(4:1)

(load nfpubfgouletfnet4frootflatch.netn)
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(load n/pub/goulet/net4/lib/cascell.netn)
(load n/pub/goulet/net4/root/rowl.netn)
(load n/pub/goulet/net4/root/row2.netn)
(load n/pub/goulet/net4/root/row3.netn)
(load n/pub/goulet/net4/root/row4.netn)

(macro root (in ck1 ck2 out)
(local n2 n3 n4 nS n6 ck1- ck2- )

(row1 in ck1 ck1- ck2 ck2- n2)
(row2 n2 ck1 ckl- ck2 ck2- n3)
(row3 n3 ckl ckl- ck2 ck2- n4)
(row4 n4 ckl ckl- ck2 ck2- nS)

output buffers
(repeat i 1 4 (linv n5.i n6.i) (linv n6.i out. i))
(linv20 ckl ckl-)
(linv20 ck2 ck2-)

)
1st stage of an eight stage root extractor

(macro rowl (in ckl ckl- ck2 ck2- n)
(local x dum c )

(repeat i I 7 (latch in.i ckl ckl- ck2 ck2- n.i))
(latch in.S ckl ckl- ck2 ck2- x.l)
(cascell VDD x.l n.7 GND n.8 n.9)
)

; 2nd stageof an eight stage root extractor

(macro row2 (in ckl ckl- ck2 ck2- n)
(local x dum c)

(repeat i I S (latch in.i ckl ck1- ck2 ck2- n.i))

(latch in.6 ckl ck1- ck2 ck2- x.l)
(latch in.7 ckl ckl- ck2 ck2- x.2)
(latch in.8 ckl ckl- ck2 ck2- x.3)
(latch in.9 ck1 ckl- ck2 ck2- n.7)
(casce l I VDD x.l n.S GND n.6 c.l)
(cascell x.2 GND c.l VDD n.S c.2)
(cascell GND x.3 c.2 n.7 dum.l n.9)
)

; 3rd stage of an eight stage root extractor

(macro row3 (in ck1 ckl- ck2 ck2- n)
(local x dum c)
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(repeat i 1 3 (latch in.i ck1 ck1- ck2 ck2- n.i))
(latch inA ck1 ck1- ck2 ck2- xv l )
(latch in.S ckl ckl- ck2 ck2- x.2)
(latch in.6 ckl ckl- ck2 ck2- x.3)
(latch in.7 ckl ckl- ck2 ck2- n.B)
(latch in.B ckl ckl- ck2 ck2- x.4)
(latch in.9 ckl ckl- ck2 ck2- n.6)

(cascell VDD x.l n.3 GND n.4 c.l)
(cascell x.2 GND c.l VDD n.S c.2)
(cascell n.B x.3 c.2 n.6 n.7 c.3)
(cascell GND x.4 c.3 n.6 dum.l n.9)
)

stage 4 of an eight stage root extractor

(macrc row4 (in ck1 ckl- ck2 ck2- n)
(local x dum c)

(latch in.l ckl ckl- ck2 ck2- x.7)
(repeat i 2 S (latch in.i ckl ckl- ck2 ck2- x.(- 1 1)))
(latch in.6 ckl ckl- ck2 ck2- n.3)
(latch in.7 ckl ckl- ck2 ck2- x.S)
(latch in.B ckl ckl- ck2 ck2- n.4)
(latch in.9 ckl ckl- ck2 ck2- n.2)

(cascell VDD x.l x.7 GND dum.2 c.l)
(cascell x.2 GND c.l VDD dum.3 c.2)
(cascell n.3 x.3 c.2 n.2 dum.4 c.3)
(cascell n.4 xA c.3 n.2 dum.S c.4)
(cascell GND x.S c.4 n.2 dum.l n.l)
)

latch

(macro latch (in ckl ckl- ck2 ck2- out)
(local nl n2 n3 n4 nS n6 n7 nB n9 nlO nIl)

(ptrans in VDD nB 3 3)
(ptrans ckl- nB nl 3 3)
(etrans ckl nl n9 3 3)
(etrans in n9 GND 3 3)

(ptrans nl VDD n2 S 3)
(etrans nl n2 GND 3 3)

(ptrans n2 VDD n3 3 3)
(ptrans ckl n3 nl 3 3)
(etrans ckl- nl n4 3 3)
(etrans n2 n4 GND 3 3)
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(ptrans n2 VDD n10 3 3)
(ptrans ck2- n10 n5 3 3)
(etrans ck2 n5 nIl 3 3)
(etrans n2 n11 GND 3 3)

(ptrans n5 VDD out 6 3)
(etrans n5 out GND 4 3)

(ptrans out VDD n6 3 3)
(ptrans ck2 n6 n5 3 3)
(etrans ck2- n5 n7 3 3)
(etrans out n7 GND 3 3)

)

The pipelined 4x4 bit multiplier

; a 4x4 bit pipe lined multiplier

(macro mult (a loadmr phil phi2 c)

(local a1 a2 a3 b1 b2 b3 c1 c2 col co2 co3 ck1 ck2 ckl- ck2- mrl
m m- 1 1-)

register for the MULTIPLIER
(linv6 loadmr 1-)
(linv6 1- 1)
(repeat i I 4 (dlatch a. i 1 1- mrl. i))

buffers for the MULTIPLIER register output
(repeat i 1 4 (linv6 mrl.i m-.i)

(linv6 m-. i m. i))

resetta'ble latch

(:repeat i 1 4 (rlatch a. i m.l ckl ckl- ck2 ck2- a1. i))

shift by 1 register
(repeat i I 4 (latch a. i ckl ckf - ck2 ck2- b1. (+ 1 1)))

adder I

(connect GND al.6) (connect GND al.5) (connect GND bl.l)
(connect GND bl.6) (connect GND col.O)

(repeat i I 6 (maddcell al.i bl.i col.(- i 1) m.2 m-.2 cl.i col.i))

intermediate result register
(repeat i I 6 (latch c1.i ckl ckl- ck2 ck2- a2.i))
(latch col.6 ck1 ckl- ck2 ck2- a2.7)
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shift by 2 register
(repeat i 2 5 (latch b1.i ck1 ck1- ck2 ck2- b2.(+ 1 1)))

adder 2

(connect GND b2.1) (connect GND b2.2) (connect GND b2.7)
(connect GND co2.0)

(repeat i 1 7 (maddcell a2.i b2.i co2.(- i 1) m.3 m-.3 c2.i co2.i))

intermediate result register
(repeat i 1 7 (latch c2.i ck1 ck1- ck2 ck2- a3.i))
(latch co2.7 ck1 ckl- ck2 ck2- 303.8)

shift by 3 register
(repeat i 3 6 (latch b2.i ck1 ckl- ck2 ck2- b3.(+ 1 1)))

adder 3

(repeat i 1 3 (connect GND b3.i))
(connect GND b3.8) (connect GND co3.0)

(repeat i 1 8 (maddcell a.3.i b3.i co3.(- i 1) m.4 m-.4 c.i co3.i))

some drivers for the clock signals
(linv20 phil ckl-)
(linv20 ckl- ckl)
(linv20 phi2 ck2-)
(linv20 ck2- ck2)

)
; a latch with a clear input
(macro rlatch (in clr- ck1 ck1- ck2 ck2- out)

(local n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 nIl n12)

(ptrans clr- VDD nl 3 3)
(ptrans in VDD n8 3 3)
(ptrans ckl- n8 n1 3 3)
(etrans ck1 nl n9 3 3)
(etrans' in n9 n12 3 3)
(etrans clr- n12 GND 3 3)

(ptrans nl VDD n2 5 3)
(etrans n1 n2 GND 3 3)

(ptrans n2 VDD n3 3 3)
(ptrans ckl n3 nl 3 3)
(etrans ck1- n1 n4 3 3)
(etrans n2 n4 GND 3 3)

(ptrans n2 VDD nl0 3 3)
(ptrans ck2- nl0 n5 3 3)
(etrans ck2 n5 nIl 3 3)
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(etrans n2 n11 GND 3 3)

(ptrans nS VDD out 6 3)
(etrans nS out GND 4 3)

(ptrans out VDD n6 3 3)
(ptrans ck2 n6 nS 3 3)
(etrans ck2- nS n7 3 3)
(etrans out n7 GND 3 3)

)

The descriEtion of the external memor:r address unit

netlist for the address unit macro

(node cnt hadd deda sima)

(macro addu (datab lr! lr2 lr3 load1 load2 inc! inc2 eal eah
dedadd reset phil phi2 addr eom)

(local n1 n2 n3 n4 nS n6 n7 n8 n9 n10 n11 n12 n13 n14 n1S n16
n17 n18 n19 n20 n21 n22 n23 n24 n2S n26 n27 n28 n29 n30
n31 n32 n33 n34 n3S dum1 dum2 qb qb- qb2 qb2- init dum3
n36 n31 n38 n39 n40 n41)

low order address latch

(lnand eal phi2 n1)
(linv10 n1 n2)
(linv10 n2 n3)
(repeat i 1 10 (dlatch cnt.i n2 n3 addr.i))

; comparator signals end of matrix calculations

; (changed to '3' for test purposes-should be 961)
(ptrans cnt.1 VDD n4 9 3)
(ptrans cnt.2 VDD n4 9 3)
(etrans VDD n4 GND 3 18)

(etrans cnt.3 nS GND 6 3)
(etrans cnt.4 nS GND 6 3)
(etrans cnt.S nS GND 6 3)
(etrans cnt.6 n5 GND 6 3)
(etrans cnt.7 nS GND 6 3)
(etrans cnt.8 n5 GND 6 3)
(etrans cnt.9 n5 GND 6 3)
(etrans cnt.10 n5 GND 6 3)
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(ptrans GND VDD n5 3 12)

(linv n4 n6)
(lnand n6 n5 n35)
(linv n35 eom)

counter for low order address
load-counter logic
(lnand phil loadl n7)
(linvlO n7 n8)
(linvlO n8 n9)
increment-counter logic
(lnand phil incl nlO)
(linvlO nlO nll)
(linvlO nIl n12)
counter-logic
increment counter logic
(lnand phi2 incl n36)
(linvlO n36 n37)
(linvlO n37 n38)
(repeat i 1 10 (countb init.i qb.(- 1 1) n8 n9 nIl n12

n37 n38 qb.i cnt.i))
(connect qb.O VDD)

logic to control the address loaded into the counter

(modified to load '20' for test purposes - should be 978

(rs reset incl dum3 n13)
(linv6 nl3 n15)
(connect init.IO GND)
(connect init.9 GND)
(connect init.8 GND)
(connect init.7 GND)
(connect init.6 GND)
(connect init.5 n15)
(connect init.4 GND)
(connect init.3 n15)
(connect init.2 GND)
(connect init.l GND)

high order address word latch

(lnand phi2 eah n16)
(linvlO nl6 n17)
(linvlO n17 n18)
(repeat i 1 9 (dlatch hadd.i n17 n18 addr.(+ i 10)))

multiplexor to choose between similarity calculation address and

update function address
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(linvl0 dedadd n19)
(linvl0 n19 n20)
{repeat i 1 9

(ptrans n20 S1ma.1 hadd.i 3 3)
(etrans nl9 sima. i hadd , i 3 3)
(ptrans nI9 deda.i hadd.i 3 3)
(etrans n20 deda.i hadd.i 3 3)
)

high order similarity address counter

(lnand phil lrl n21)
(linv6 n2I n22)
(linv6 n22 n23)
(repeat i 1 6 (dlatch datab.i n22 n23 sima.(+ 1 3)))

(lnand phil inc2 n24)
(linv6 n24 n2S)
(linv6 n25 n26)
(lnand phil load2 n27)
(linv6 n27 n28)
(linv6 n28 n29)
(lnand phi2 inc2 n39)
(linv6 n39 n40)
(linv6 n40 n41)
(repeat i 1 3 (countb GND qb2.(- i 1) n28 n29

n25 n26 n40 n41 qb2.i sima.i))
(connect qb2.0 VDD)

high order update function address latch

(lnand Ir2 phil n30)
(linv10 n30 n31)
(linvlO n3l n32)
(repeat i 1 8 (dlatch datab.i n3l n32 deda.i))
(lnand lr3 phil n33)
(linv n34 n33)
(dlatch datab.1 n33 n34 deda.9)

)

a single bit of a ripple carry counter

increments on phi2, output changes on phil
,

(macro countb (di ci I 1- cki ckl- ck2 ck2- co s)

(local nl n2 nlO nIl n13 nl2 n14 n15 nI8 n19 n20

a b)

(dlatch s ck2 ck2- a)
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(lnand acinI)
(linv6 n1 co)
(lxor a ci b)

a loadable latch - loads on phil
(ptrans b VDD n10 5.4 3)
(ptrans ckl- n10 n12 5.4 3)
(etrans ckl n12 n14 3 3)
(etrans b n14 GND 4 3)

(ptrans di VDD n15 5.4 3)
(ptrans 1- n15 n12 5.4 3)
(etrans 1 n12 n18 3 3)
(etrans di n18 GND 4 3)

(Hnv n12 s)
(ptrans s VDD n19 3 3)
(ptrans 1 n19 n13 3 3)
(ptrans ck1 n13 n12 3 3)
(etrans ck1- n12 nll 3 3)
(etrans 1- nIl n20 3 3)
(etrans s n20 GND 3 3)

)

A description of the register file

circuit for a complete 8 word 16-bit word memory

(macro ram (in wr rdy- phil phi2 row out1 out2)
(local d d- sel rdy w w- p-)

(linvlO wr w-)
(linv10 w- w)

(repeat i 1 8

(repeat J 1 16

(6ram d. j d-.j sel.i)))

(repeat i 1 16

(cdrive in.i w w- p- d.i d-.i))

(repeat i 1 8

(rdrive row.i rdy sel. i))

(precharg phil phi2 wr d.1 d-.1 p- rdy rdy-)
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output buffers
(repeat 1 1 16 (linv d-.i outl.i)

(linv d.i out2.i) )
)

6-transistor ram memory cell

(macro 6ram (d d- sell
(local a a-)

(threshold a .4 .8)
(threshold a- .4 .8)

(etrans sel a d 3 3)
(etrans sel a- d- 3 3)

(ptrans a VDD a- 3 3)
(etrans a a- GND 6 3)
(ptrans a- VDD a 3 3)
(etrans a- a GND 6 3)

)
bit(column) line driver for ram memory

(macro cdrive (i w w- p- d d-)

(local nl n2 n3 n4 n5)

(ptrans i VDD nl 5.4 3)
(etrans i nl GND 3 3)

(ptrans i VDD n2 20 3)
(ptrans w- n2 d- 20 3)
(etrans w d- n3 10 3)
(etrans i n3 GND 10 3)

(ptrans nl VDD n4 20 3)
(ptrans w- n4 d 20 3)
(etrans w d n5 10 3)
(etrans nl n5 GND 10 3)

(ptrans p- VDD d- 15 3)
(ptrans p- VDD d 15 3)

)

; row select driver

(macro rdrive (row rdy sell
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(local n1 n2 )

(ptrans rdy VDD nl S.4 3)
(ptrans row VDD nl S.4 3)
(etrans row nl n2 3 3)
(etrans rdy n2 GND 3 3)

(ptrans nl VDD sel 10 3)
(etrans nl sel GND S 3)

)

a monostable multivibrator (one-shot) for use in self-timed circuits

(macro mono (i 0)
(local nl n2 n3 n4 nS n6)

(threshold 0 .2 .S) low high-threshold because charge sharing causes

output to generate an 'x' state when input goes
from 1 to 0

(ptrans i VDD nl 3 3)
(etrans i nl GND 3 6)
(ptrans nl VDD n2 3 3)
(etrans nl n2 GND 3 6)
(ptrans n2 VDD n3 3 3)
(etrans n2 n3 GND 3 6)
(ptrans n3 VDD nS 3 3)
(etrans n3 nS GND 3 6)
(ptrans nS VDD n6 3 3)
(etrans nS n6 GND 3 6)

(ptrans n6 VDD 0 S.4 3)
(ptrans i VDD 0 S.4 3)
(etrans n6 0 n4 3 3)
(etrans i n4 GND 3 3)

)

self-timed circuit to control precharge of bit lines and row select
enable signals. Signal generation begins on a leading clock edge

(macro precharg (phil phi2 w d d- p- rdy rdy-)
(local nl n2 n3 n4 nS n6 n7 n8)

(mono phil nl)
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(mono phi2 n2)
(lnand n1 n2 n3)

(lnand d d- n4)
(lnand n4 n5 n6)
(Hnv w n5)

(rs n3 n6 n8 n7)
(Hnv10 n8 p-)
(linv6 n7 rdy-)
(linv10 rdy- rdy) )

The zerotest circuit

zerotest has a low output only when all 9 inputs are low

(macro zerotest (word zero-)
(local n1 n5 n10)

(etrans word.1 GND n1 5 3)
(etrans word.2 GND n1 5 3)
(etrans word.3 GND n1 5 3)
(etrans word.4 GND n1 5 3)
(ptrans GND VDD n1 3 4)

(etrans word.8 GND n5 5 3)
(etrans word.7 GND n5 5 3)
(etrans word.6 GND n5 5 3)
(etrans word.5 GND n5 5 3)
(ptrans GND VDD n5 3 4)

(ptrans n1 VDD zero- 5.4 3)
(ptrans n5 VDD zero- 5.4 3)
(etrans n1 zero- n10 3 3)
(etrans n5 n10 GND 3 3)

)

Definition of the addcell macro

one-bit full adder
a & bare 1 bit from each operand, ci is carry in, co is carry out

s = sum

(macro addcell (a b ci s co)
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(local n2 n3 n4)

(lxor b a n2)
(Inand6 ci n2 n3)
(Inand6 a b n4)
(Inand6 n3 n4 co)
(lxor ci n2 s) )

Definition of the controlled add/subtract cell

one-bit full adder-subtractor
a 8& bare 1 bit from each operand, ci is carry 1n, co 1S carry out

p=O for add, p=l for subtract (b-a) s is sum

(load "/pub/goulet/net/lib/lxor.net")
(load "/pub/goulet/net/lib/lnand.net")

(macro cascell (a b ci p s co)
(local n1 n2 n3 n4)

(lxor a p n1)
(lxor b n1 n2)
(lnand ci n2 n3)
(lnand n1 b n4)
(lnand n3 n4 co)
(lxor ci n2 s) )

Definition of some buffer circuits

a resettable non-inverting buffer
,

(macro buffer1 (in out)
(local n1 )

(ptrans in VDD n1 3 3)
(etrans in n1 GND 3 3)
(ptrans n1 VDD out 7.2 3)
(etrans n1 out GND 3.6 3)

)

a selection of non-inverting buffers
,

(macro rbuffer1 (in out clr-)
(local n1 n2)

(ptrans in VDD n2 3 3)
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(ptrans clr- VDD n2 5.4 3)
(etrans in n2 n1 3 3)
(etrans clr- n1 GND 3 3)
(ptrans n2 VDD out 7.2 3)
(etrans n2 out GND 3.6 3)

)

Definition of some inverter circuits

file includes some miscellaneous inverters of varying drive capability

the number in the inverter name stands for the width of the n-channel
transistor

(macro linv (a b)
(ptrans a VDD b 5.4 3)
(etrans a b GND 3 3)
)

(macro linv6 (a b)
(ptrans a VDD b 12 3)
(etrans a b GND 6 3)
)

(macro linv10 (a b)
(ptrans a VDD b 18 3)
(etrans a b GND 10 3)
)

(macro linv15 (a b)
(ptrans a VDD b 25 3)
(etrans a b GND 15 3)
)

(macro linv30 (a b)
(ptrans a VDD b 50 3)
(etrans a b GND 30 3)
)

(macro linv40 (a b)
(ptrans a VDD b 70 3)
(etrans a b GND 40 3)
)

(macro linv20 (a b)
(ptrans a VDD b 35 3)
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(etrans a b GND 20 3)
)

; tri-state inverter

(macro tbuf (a en en- b)
(local n1 n2)
(ptrans a VDD n1 10 3)
(ptrans en- n1 b 10 3)
(etrans en b n2 5 3 )
(etrans a n2 GND 5 3)

)

Definition of ad-latch

dlatch - static d type latch

(macro dlatch (d c c- q)
(local n1 n2 n3 n4 n5)

(ptrans d VDD n1 5.4 3)
(ptrans c� n1 n3 5.4 3)
(etrans c n3 n2 3 3)
(etrans d n2 GND 3 3)

(ptrans q VDD n4 3 3)
(ptrans c n4 n3 3 3)
(etrans c- n3 n5 3 3)·
(etrans q n5 GND 3 3)

(ptrans n3 VDD q 5.4 3)
(etrans n3 q GND 3 3)

)

rdlatch - a static d - type latch with a clr- input

(macro rdlatch (d clr- c c- q)
(local n1 n2 n3 n4 n5 n6 n7)

(ptrans d VDD n1 5.4 3)
(ptrans c- n1 n3 5.4 3)
(etrans c n3 n2 3 3)
(etrans d Il2 n6 3 3)
(etrans clr- n6 GND 3 3)

(ptrans clr- VDD n3 3 3)
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(ptrans q YDD n4 3 3)
(ptrans c n4 n3 3 3)
(etrans c- n3 n5 3 3)
(etrans q n5 n7 3 3)
(etrans clr- n7 GND 3 3)

(ptrans n3 YDn q 5.4 3)
(etrans n3 q GND 3 3)

)

Definition of some logic gates

; 3 input nand gate
(macro l3nand (a b c d)

(local n1 n2)

(ptrans a VDD d 5.4 3)
(ptrans b VDD d 5.4 3)
(ptrans c VDD d 5.4 3)
(etrans a d n1 3 3)
(etrans b n1 n2 3 3)
(etrans c n2 GND 4 3)
)

2-input nand gate c = a.b

7

(macro lnand (a b c)
(local n1)

(ptrans a VDD c 5 3)
(ptrans b VDD c 5 3)
(etrans a c n1 4 3)
(etrans b n1 GND 5 3)
)

(macro lnand6 (a b c)
(local n1)

larger version of nand gate

(ptrans a VDD c 10 3)
(ptrans b VDD c 10 3)
(etrans a c n1 6 3)
(etrans b n1 GND 6 3)
)

nand gate with the function = note (a+b).c )
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(macro lornand (a b c d)
(local nl n2)

(ptrans a VDD nl 5.4 3)
(ptrans b nl d 5.4 3)
(ptrans c VDD d 5.4 3)
(etrans c d n2 3 3)
(etrans a n2 GND 3 3)
(etrans b n2 GND 3 3)
)

; 2-input nor gate c = a + b

(macro lnor (a b c)
(local nl)

(ptrans a VOD nl 6 3)
(ptrans b nl c 6 3)
(etrans a c GND 3 3)
(etrans b c GND 3 3)
)

2-input XOR gate 10-transistor design; fully restored logic level

; c = a (xor) b

(macro Ixor (a b c)
(local nl n2 n3 n5)

(ptrans b VDD nl 8 3)
(ptrans a nl n2 8 3)
(etrans b n2 GND 3 3)
(etrans a n2 GND 3 3)
(ptrans n2 n3 c 8 3)
(etrans n2 c GND 3 3)
(etrans a c n5 3 3)
(etrans b n5 GND 3 3)
(ptrans a VDD n3 8 3)
(ptrans b VDD n3 8 3)

)

2-input xnor gate ilO transistor design - fully restored logic levels

; c = a (xnor) b

(macro lxnor (a b c)
(local nl n2 n3 n4)
(ptrans a VDD nl 8 3)
(ptrans b nl c 8 3)
(etrans n2 c n3 3 3)
(etrans b n3 GND 3 3)
(etrans a n3 GND 3 3)
(ptrans n2 VDD c 5 3)

,j
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(ptrans b VDD n2 5 3)
(ptrans a VDD n2 5 3)
(etrans b n2 n4 3 3)
(etrans a n4 GND 3 3)

)

Definition of the output pad drivers

pad�driver netlists used for 3-u designs

tri-state pad-driver

(macro paddrt (in oe pad)

(local nl' n2 n3 n4 n5 n6 n7 n8 )

(ptrans in VDD n8 5.4 3)
(etrans in nB GND 3 3)

(ptrans oe VDD nl 5.4 3)
(ptrans n8 VDD nl 5.4 3)
(etrans oe nl n2 3 3)
(etrans n8 n2 GND 3 3)

(ptrans oe VDD n5 5.4 3)
(etrans oe n5 GND 3 3)

(ptrans nB VDD n3 12 3)
(ptrans n5 n3 n4 12 3)
(etrans nB n4 GND 3 3)
(etrans n5 n4 GND 3 3)

(ptrans n4 VDD n6 30 3)
(etrans n4 n6 GND 16 3)

(ptrans n1 VDD n7 30 3)
(etrans n1 n7 GND 16 3)

(ptrans n6 VDD pad 138 3)
(etrans n7 pad GND 96 3)

)

plain pad driver
,

(macro paddr (in pad)
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(local n1 n2 n3)
(ptrans in VDD n1 5.4 3)
(etrans in n1 GND 3 3)
(ptrans n1 VDD n2 15 3)
(etrans nl n2 GND 10 3)
(ptrans n2 VDD n3 50 3)
(etrans n2 n3 GND 30 3)
(ptrans n3 VDD pad 138 3)
(etrans n3 pad GND 96 3)

)

Definition of the SR latch

; rs flip-flop using 2 nor gates

(macro rs (s r q q-)
(local n1 n2)

(ptrans s VDD n1 7.2 3)
(ptrans q n1 q- 7�2 3)
(etrans s q- GND 3 3)
(etrans q q- GND 3 3)

(ptrans r VDD n2 7.2 3)
(ptrans q- n2 q 7.2 3)
(etrans r q GND 3 3)
(etrans q- q GND 3 3)

)

B.2. Summary of the Directory Structure

This is a summary of the hierachical directory structure for the

NETLIST description as listed by the unix command Is.

*** The Topmost directory name is NET4 ***

address
lib

ram

test4.net
root

zerotest

control
mult

net4/address:
addu. net counter

net4/address/counter:
countb.net



net4/control:
control.peg

net4/lib:
addcell. net
buffers. net
cascell. net

net4/mult:
rlatch.net

net4/ram:
6ram.net
ram. net

control.net

delayl.net
delay2.net
dlatch.net

madcell.net

precharg.net
mono. net

net4/ram/addcon:
addcon.net mono2.net

net4/root:
latch. net
row4.net

net4/zerotest:
zerotest.net

row2.net
rowl.net
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platch.net

linv.net
lnand.net
lnor.net

mult.net

addcon
rdrive.net

shift. net

row3.net

lxnor.net
lxor.net

paddriver.net

cdrive.net

root. net

rs.net



r---

exto.dcit...:I)

p4dcl-rivcf"'S

o.clclrCt'\:1]

¢,

02.

res.et

o.ctdu.

inc!

ineZ...J

MEMORYADORESSUW1T

IIL'::=
100",

�\0"d2.t!J
hl
W

t>,

<l>z.

¢I�c.kkl
v�(,k.k\-
�1�C.kk2.VL..::._c.klca-
IOkld
c.kltl-

IN......,.....A_I-

----. r-

I !

!
I I
,

I
I

� I
,

I
! I
I ,
I

_j

<!U'O

eom

end
enclloc.cl

.... td - Uc.o".+

control
rowS

\.\<:.o,,(1-:2.J'
,

u.<.0(\.3

feeoib=k

5" s: _!II _, +- £ s: +- i. C\I-�w-����w16�V� -���d_� -u.D -=�!: 6 d_'o E II E f � 3"::' 611 "vd6"e O!d).).J!l-d�:s_'-<�Q..�C:-

:sg<l"3). j--
,_ s::

MATRIX UPDATE UNIT CONTROL UNIT
,",wr

- _.- _jL
!....__

Si'll""'\:; to ...nd -fro", the co"tro! unit gre underlined_

�,

1-'-
- -

-I
- - - - -

-,
- - - - - -

1-
- -

I :01"".,
I

• J I I

I
I
I
I

I
I
I
I

LSIMILARITY CALCULATION UNIT

"""It

bra:l)

I :
I

I

I I
I

o...tz.C'6:I) -.1
.....r.:o

olla.t-dl

bu,,[S:I)

ro,..,8

-��
'" �

." I i
I I

')0 ':.;;r':t: d

j

��_---------,------�

0",121:1,:,]

II
II
II
I : �..

clf;'60;I)

I I DATA BUS DRIVER

I I
'_j L

r...,..

�.

n.Y"_t"

*"e_ "",.

_ttl_:I)

'1'1...T4'r"r'" D_�_�_ ..�_ \,1 __ '- ..2: _

175

I

-I
I
I
I
I

e.xtbl.&!o La:1 J

write

I
I
I

I.
I
I,

_j


	Book
	Front Matter
	Title
	Copyright
	Abstract
	Acknowledgements
	Contents
	Figures
	Tables

	Body
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Back Matter
	Bibliography
	Appendix
	Appendix B



