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Abstract

Players and viewers of three-dimensional computer generated games and worlds view renderings

from the viewpoint of a virtual camera. As such, determining a good view of the scene is important

to present a good game or three-dimensional world. Previous research has developed technologies

to find good positions for the virtual camera, but little work has been done to automatically select

between multiple virtual cameras, similar to a human director at a sporting event. This thesis

describes a software tool to select among camera feeds from multiple virtual cameras in a vir-

tual environment using semiring-based constraint satisfaction techniques (SCSP), a soft constraint

approach. The system encodes a designer’s preferences, and selects the best camera feed even in

over-constrained or under-constrained environments. The system functions in real time for dynamic

scenes using only current information (i.e. no prediction). To reduce the camera selection time the

SCSP evaluation can be cached and converted to native code. This SCSP approach is implemented

in two virtual environments: a virtual hockey game using a spectator viewpoint, and a virtual 3D

maze game using a third person perspective. Comparisons against hard constraints are made using

constraint satisfaction problems.
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Chapter 1

Introduction

When filming a real television show, movie, or sports event, various camera persons control

individual cameras, and a director selects which of the camera feeds will be displayed on the screen.

This camera selection involves a trade-off, as different cameras display different subjects, objects,

angles, and zoom levels. A corresponding virtual director is needed in the virtual domain to select

between available virtual cameras. To manage the trade-off, the virtual director, as presented in

this thesis, uses a soft constraint satisfaction approach to balance different visual aspects of the

scene.

Some animation is scripted, such as movies. Other animation is primarily unscripted, such as

video games. In a scripted scene, the director can arrange for a coordination between the selected

camera and action in the scene. In an unscripted scene, however, camera selection must react to

the scene since action cannot be predicted. For this reason, different techniques are used in scripted

and unscripted scenes.

In this document, a scene with unpredictable action will be called a dynamic scene. A scripted

scene is entirely predictable; all future states are known when the scene begins. A scene in which

all objects and characters are placed at random at any given point in time is the most dynamic

scene possible, in that it is the least predictable. Action in other scenes falls in between these two

extremes, in that action is coherent, but not entirely predicatable.

The main prior work on camera selection is He et al.’s idiom approach [49] described more fully

in Chapter 3. While suitable for scripted scenes, it is unsuitable for dynamic scenes. In scripted

scenes only a small number of good transitions between cameras need be specified, reflecting a

director’s style and the rules of cinematography [64, 3]. The number of possible transitions is

usually low; when constructing idioms, Christenson et al.’s example considers selection from at

most two possible cameras at a time [18]. Guards are conditions that must be satisfied before the

system can transition to a different state; for example, a maximum duration of time. Thus, when

a guard on a transition is satisfied, the finite state machine selects the next camera feed.

In highly dynamic scenes, the best camera feed could come from any camera at any given

moment. When guards on multiple transitions are satisfied, the finite state machine is unable to

determine the best transition to select, rather, all transitions outgoing from the current state are
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considered equally preferable. A similar problem occurs if no guard is completely satisfied, the

current feed is displayed even if another camera feed is more preferable. The problem of camera

selection in dynamic scenes is currently unsolved - referring to He’s Virtual Cinematographer and

through the lens systems, Turkay et al. [82] mention, “All of these techniques require expert users

or predefined constraints and [are] not suitable for dynamic and crowded scenes”.

Previous works have focused on camera placement, which selects a location and angle for a

virtual camera in a virtual world (see Chapter 3). These systems could be used to place cameras for

the camera selection system to select among. Some of these systems use a constraint satisfaction

problem (CSP) approach (see Chapter 2.1.1 for the background on CSPs). Camera placement

strategies based on classical constraints (see Chapter 3.2), like camera selection methods, are unable

to rank solutions when there is more than one solution, and fail when there is no solution that

satisfies all the constraints. An exception is Bourne et al.’s weighted CSP (WCSP) approach.

Under a WCSP interpretation, a constraint is either satisfied or unsatisfied; its effect on the overall

selection is governed by the weight assigned to the given constraint. Constraints, however, cannot

be partially satisfied; gross violations of the constraint cost the same as slight violations. Also,

Bourne’s solution does not satisfactorily address the problem of camera selection, but rather he

states that a method better than He et al.’s solution is required [16].

Given infinite memory and processing power, the problems of virtual camera placement and

virtual camera selection become equivalent. Selecting a camera feed from an infinite number of

possible camera positions and orientations is equivalent to placing the camera in the scene. Al-

ternatively, a camera that is able to move to an arbitrary position and orientation in the scene

can produce the same output as a camera selection algorithm. Given limited resources, however,

solutions to the camera placement problem and the camera selection problem take different ap-

proaches. For example, camera placement algorithms can restrict their search to nearby positions,

while camera selection algorithms can consider a limited number of cameras that have sufficiently

different views from one another.

Camera selection can be solved as an optimization task, since one camera feed is displayed on

a display at any given time. That is, given the context, the camera that maximizes the designer’s

preferences should be chosen. A designer is a human who specifies preferences, whereas a director

is a human or virtual entity that selects a camera based on the designer’s preferences. As in the

camera placement problem described above, previous camera selection work treats camera selection

as a satisfaction task. The main problem with this approach is that solutions are ranked using a

binary ranking: the set of constraints is either satisfied or unsatisfied. Consequently, suboptimal

camera selection may result when multiple solutions satisfy all constraints, or when no solution

fully satisfies all of the constraints.

As its main contribution, this thesis presents a method to select camera feeds from among
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a set of camera feeds in dynamic virtual scenes by modularly encoding a designer’s preference in

independent functions (see the design in Chapter 5). These preferences combine under the semiring-

based constraint satisfaction techniques framework (SCSP) constructing a global preference yielding

a total order. Presented in Chapter 7, when given a designer’s preferences the SCSP solver can

select, in real time, the optimal camera feed from up to thousands of camera feeds. The trade-off

of number of constraints, camera feeds, and displays is also presented in Chapter 7. Modularly

encoding preferences is valuable since it provides the possibility of code reuse. Additionally, it may

be less fragile than a hand coded system (a rule-based system for example), since preferences are

combined in a systematic fashion.

The designer’s preferences are represented in static constraints, which remain fixed for a partic-

ular SCSP solution, while dynamic constraints change to reflect current circumstances in a dynamic

scene. Thus, the dynamic constraints are set by the system at run time to align solutions with the

current circumstances. The tuple with the highest preference in the total order indicates which

cameras to select for one or more displays. The system expands to automatically handle multiple

displays, providing a convenient method for increasing complexity in the SCSP system. Additional

displays require the algorithm solving the SCSP to optimize for multiple output variables. The

system is demonstrated in two domains: a spectator hockey game, and a third person perspective

maze game, presented in Chapters 4.1 and 4.2 respectively. These domains use OpenGL to render

the graphics, which is introduced in Section 2.3.

As the number of constraints increase, the time required to find the optimal solution increases.

To decrease the average time required to find a solution, the select camera feeds from previous

SCSP solutions are cached. If the state of the scene, encoded by the dynamic constraints, reoccurs,

the set of cameras to select is retrieved from the cache rather than performing another search. The

cache can also be converted to native code to decrease the time needed to select camera feeds.

These acceleration techniques are explained in Chapter 7.

Chapter 8 presents results in which different camera selection profiles result in different camera

selection. Section 8.3 compares the camera feeds selected using a SCSP method with a classical

CSP implementation. Conclusions and future work are presented in Chapter 9.
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Chapter 2

Background

This thesis work combines areas of artificial intelligence with computer graphics. Mainly, it

uses artificial intelligence techniques to solve a previously unsolved problem in computer graphic

animation. The subfield of artificial intelligence used is CSPs and its generalization to soft con-

straints, discussed in Sections 2.1.1 through 2.1.4. Using OpenGL for generating real time graphics,

a simulator is presented to experimentally apply the solution. The background to introduce the

OpenGL system is also discussed in this chapter (Section 2.3).

2.1 Constraint Satisfaction Problems

2.1.1 Classical Constraint Satisfaction Problems

A CSP is defined as a tuple 〈X,D,C〉 where X = {X1, . . . , Xn} is a set of variables, D =

{D1, . . . , Dn} is a set of domains, one for each variable, and C is a set of constraints between

variables [66]. For example, a binary constraint, Cij ⊂ Di ×Dj , specifies allowed combinations of

the domain values for the variables Xi and Xj . This section will consider CSPs with only binary

constraints, since a CSP with n-ary constraints can be converted to an equivalent CSP where all

constraints are either unary or binary [28]. This thesis considers domains of D that are finite, i.e.,

Di = {xi,1, . . . , xi,ki}. A solution to a CSP is an assignment, (X1 = x1,i1 , . . . , Xn = xn,in), such

that all constraints in C are satisfied, i.e., for each Cij ∈ C, ∃(xi,u, xj,v) ∈ Cij . For convenience

this assignment is written as (X1 = x1, . . . , Xn = xn), where each value assigned to Xi is from its

corresponding domain, Di, as done in Dechter’s book [30].

There are several search methods used to find a solution to a CSP. Generate-and-test is a naive

method that enumerates a sequence of assignments until a solution is found, or all possibilities have

been considered [55]. A technique called backtracking search explores the search space of possible

assignments in a depth-first fashion. Backtracking search can be considered as an implementation

of generate-and-test, but enables optimizations that a naive generate-and-test algorithm would

not employ. In backtracking search, the search space is organized in a tree structure where each

node, Ni, corresponds to a variable, Xi, and the branches out of Ni correspond to the values

from Di. Thus each internal Ni (nodes with both branches in and branches out) corresponds to a
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partial assignment because some variables are assigned values while others are not. For example, if

variables are considered in a left to right ordering, then a partial assignment is (X1 = x1, . . . , Xi−1 =

xi−1, Xi, . . . Xn) for 1 < i ≤ n. At the root node no values are assigned to variables and a leaf node

represents an assignment (also called a complete assignment). In a consistent partial assignment,

for each combination of variables assigned values, Xi = xi and Xj = xj , (xi, xj) ∈ Cij . Conversely,

in an inconsistent partial assignment there is at least one pair such that (xi, xj) /∈ Cij . A consistent

complete assignment is a solution.

Backtracking search traverses a tree structure of partial assignments, starting at the root node,

until it reaches a leaf node or encounters an inconsistent partial assignment. Upon reaching a leaf

node that corresponds to a solution, the search may be terminated and the solution returned. Al-

ternatively, the search can continue exhaustively in order to return all solutions. Upon encountering

an inconsistent assignment or inconsistent partial assignment, the search backtracks to a node with

a consistent partial assignment (or root node) and continues along one of its unexplored branches.

In this way, sections of the search space with an inconsistent partial assignment are pruned, in that

they are not explored, since further exploration of such spaces cannot lead to a solution. If the

search traverses all branches in the tree without finding a solution then the search terminates and

returns the empty solution.

In a backtracking search, the same consistency violation may occur in different branches of

the tree search, a problem called thrashing [63]. For example, consider a CSP where variables are

assigned values by backtracking search in the order X1, X2, and X3. Suppose X1 is assigned x1

for which there is no consistent value in D3. After assigning X1 = x1, X2 = x2, and X3 = x3,

an inconsistency between X1 and X3 is detected, i.e. (x1, x3) /∈ C13, causing the backtracking

algorithm to change the value at X2, which does not remove the inconsistency between X1 and X3.

A solution to thrashing is domain revision which removes inconsistent values from the domains

of variables [63]. Continuing with the above example, since there is no value in D3 that is consistent

with X1 = x1 then the value x1 could be removed from D1. This is more formally expressed as

¬∃xj ∈ D3 such that (x1, xj) ∈ C13. The removal results in another CSP where solutions to the

new CSP are also solutions to the original CSP. Additionally, because only inconsistent values are

removed, a solution to the CSP before domain revision is also a solution to the revised CSP.

A simple application of domain revision is forward checking [48]. With forward checking when

Xi is assigned a value, xi, the domain of every unassigned variable Xj that shares a constraint with

Xi is revised such that (xi, xj) ∈ Cij ,∀xj ∈ D′j , D′j ⊆ Dj , where D′j is the revised domain of Dj .

In the above example, if there is no consistent value for X3 when assigning X1 = x1, the domain

D3 will become empty. When D3 becomes empty the algorithm prunes the branch X1 = x1, and

avoids the thrashing in the above example.

Another application of domain revision is arc-consistency [63]. An arc is a constraint between
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two variables1. A constraint, Cij , is arc-consistent if ∀xi ∈ Di ∃xj ∈ Dj such that (xi, xj) ∈ Cij .

Inconsistent arcs can be made consistent by removing values from Di that cause the inconsistency.

A CSP is arc-consistent if all of its arcs are arc-consistent. Note that an arc-consistent CSP of the

above example would not experience the thrashing in the example, as x1 would be removed from

D1 making C13 arc-consistent.

Algorithms for ensuring arc-consistency can return an arc-consistent CSP given an input CSP

by removing domain values until consistency is reached [63]. The algorithm AC-1 iterates over the

constraints, removing values at each iteration until an iteration completes without removing any

domain values [63]. Another algorithm, AC-3, uses a queue of constraints to reduce the number

of times a constraint is examined [63]. (Following Macworth’s naming, AC-3 rather than AC-2

is used [63].) Initially all constraints are put on the queue. Each constraint is removed from the

queue for examination and the algorithm terminates when the queue is empty. Similar to AC-1,

constraints are made consistent by removing values from domains. If an element is removed from

the domain of Di then all of the constraints associated with Xi are put on the queue unless the

constraint is already on the queue. Note that if Cij causes the constraints of Xj to be put on the

queue, it is unnecessary to put Cji on the queue. Other algorithms, such as AC-4, AC-6, AC-7,

AC-8, AC-2000, AC-2001, etc., balance space with time and can more closely match worst case

complexity with the theoretical limit [73]. If e is the number of arcs and d is the size of the largest

domain, the time complexity of AC-3 is O(ek3)[30]. AC-4 achieves a time complexity of O(ek2) by

storing the amount of support for each domain from another variable’s domain [30].

Arc-consistency is sound, but not complete. In some cases of domain revision, the size of each

domain may become one, yielding a solution directly. Other times domain revision may result in

an empty domain. If the domain revision occurs before starting the search process, then an empty

domain results in the empty solution to the CSP (i.e. no solution). If the domain revision occurs

during a search process, then an empty domain causes the search to backtrack. When there are

multiple solutions to a CSP, enforcing arc-consistency can yield another CSP with fewer branches

in its backtracking search tree.

An alternative to domain revision for solving the thrashing problem is backjumping. When a

backjumping algorithm encounters a constraint violation it attempts to jump as early as possible in

the search tree without missing solutions. Continuing with the X1, X2, and X3 example, Gaschnig’s

backjumping algorithm would return to the X1 node upon a conflict detected at X3 since X1 is the

lowest variable in the search tree in conflict with X3 [42]. A graph-based backjumping algorithm

would also return to X1 since the graph structure indicates that X1 is the earliest variable that

could be involved in the constraint violation [40, 29]. As an improvment to Gasching’s backjumping,

1Constraints are called arcs when a CSP is represented graphically. Here the term arc-consistency is used, rather
than constraint-consistency, to align with published literature.
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graph-based backjumping methods are able to jump at internal dead nodes as well as at leaf nodes.

A conflict-directed backjumping algorithm combines the two backjumping algorithms to potentially

jump further than either method alone [72].

2.1.2 Partial Constraint Satisfaction

Some real world applications result in over-constrained CSPs in that they have no solution. In these

cases the solution to the problem can be redefined as an assignment that violates the fewest number

of constraints, a variant of CSP termed MaxCSP [41]. A user, however, may want to specify that

some constraints are more important to satisfy than others.

A constraint hierarchy specifies hard constraints and soft constraints [14, 15]. Hard constraints

must be satisfied to consider an assignment a solution. It is preferable that soft constraints are

satisfied, but an assignment containing unsatisfied soft constraints will still be considered a solution.

Two methods for solving constraint hierarchies are refinining algorithms and local propagation

techniques. Refining algorithms prioritize satisfying hard constraints followed by attempting to

satisfy the most preferred soft constraints [86, 60]. Local propagation techniques determine a value

for a variable and then propagate that assignment to other constraints (the value for a variable

may be set by a user) [74, 60]. These local propagation techniques can differ from arc consistency.

An example is DeltaBlue, which is an incremental algorithm [74]. DeltaBlue selects a value for a

variable based on a constraint, and propogates the effects to other variables. The selection of this

value changes the problem, where arc consistency algorithms return an equivalent problem. The

constraint hierarchy directs which soft constraints may be changed when satisfying hard constraints.

A partial constraint satisfaction problem (PCSP) is a generalization of MaxCSP where solu-

tions are assignments that violate an acceptable number of constraints or an acceptable degree of

consistency (cost, degrees of preference, etc.) [41, 12]. A valuation is the measure of the degree of

consistency. Another variation of a PCSP is a WCSP, where each constraint is assigned a weight

[41, 79]. The valuation is the sum of the weights of the consistent constraints. This section will

consider PCSPs with regards to the number of violated constraints, but WCSPs or other measures

of consistency follow in a straight-forward fashion.

A search algorithm for solving a PCSP, called branch and bound2, is similar to backtracking

search presented in Chapter 2.1.1. Branches are pruned when the number of constraint violations

of the current partial assignment exceeds a threshold, called the lower bound, rather than pruning

when encountering the first violation [56]. The current best solution is a good threshold, and its

use is almost universal. To improve the performance of branch and bound, search nodes may be

considered in a best first order, based on variable and value selection heuristics [30]. Rather than

traverse the tree in a left to right fashion, partial assignments with fewer violations are considered

2Branch and bound is widely used for optimization tasks, not only for solving PCSPs.

7



before partial assignments with more violations. This approach may evaluate fewer nodes, but its

memory use can approach breadth first search for large problems.

Many of the considerations involved with searching in CSPs have analogies for MaxCSP and

PCSP, including consistency propagation [41]. For example, Cooper and Schiex generalized the

arc consistency property from classical CSPs to WCSPs [23, 26]. Propagation techniques with soft

constraints are discussed more fully in Section 2.2.

2.1.3 Valued Constraint Satisfaction Problems

A valued constraint satisfaction problem (VCSP) is a tuple (X,D,C,Σ) [76, 75]. As before X is

a set of variables, and D is a set of corresponding domains. C is a set of cost functions, similar

to preferences in a SCSP, and Σ = (E,⊕,<). E is a set of valuations totally ordered by < and

combined using ⊕, which is closed. As examples, a valuation can encode a cost, weight, or penalty.

A SCSP generalizes a VCSP; if there is a total ordering on the elements of A in the SCSP (similar

to E in a VCSP), then the SCSP can be represented using a VCSP [23].

As with classical CSPs, PCSPs, and SCSPs; VCSPs can be made arc-consistent [23, 25]. When

the VCSP is binary, then general arc-consistency is also known as soft arc-consistency [26] (Section

2.2).

2.1.4 Semiring Constraint Satisfaction Problems

A SCSP is an abstract generalization for CSP and CSP-like problems. The abstraction identifies

common aspects of these problems and allows variants to be specified in a general way. For example,

classical CSPs and PCSPs are both instances of a SCSP [10]. Another variation, called Fuzzy CSPs,

will be explained later in this section after introducing a SCSP more formally [12].

The key idea in the generalization of SCSPs is to represent constraints as functions rather than

relations, as is the case with CSPs. In order to generalize different CSP-like variations, the SCSP

requires that the function return values that can be combined and compared in a few restricted

ways. The theory of SCSPs indicates what properties are essential to CSP-like problems and allows

a wide variety within these properties.

Formally, a SCSP is a tuple (S,X,C,D) where S is a semiring 〈A,+,×,0,1〉, C is a set of

constraints as explained below, and X and D are variables and domains as defined in Section 2.1.1.

The domains of the variables are typically discrete and finite [11, 12]. In a semiring, A is a set

containing 0 and 1. A represents the set of preference levels, or consistency. The symbols 0 and 1

depict the minimal and maximal values in the set A3. The operators + and × operate over pairs of

elements of A and are closed and associative. For use in constraint propagation, it is necessary to

3Bold 0 and bold 1 are symbols and not the numeric values 0 and 1
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impose the additional constraint that + be idempotent, i.e., a+a = a, in which case the semiring is

called a c-semiring [12]. For the operator ×, 1 acts as the unit element and 0 acts as the absorbing

element 4. For the operator +, 0 acts as the unit element [12, 9].

As an example, a classical CSP can be implemented in a SCSP framework using this notation.

A = {false, true}, the operator + is implemented with ∨ (OR) and the operator × is implemented

with ∧ (AND) [12]. A Fuzzy CSP is defined as 〈{0, 1},max,min, 0, 1〉 where max and min return

the maximum and minimum value of the pair of elements, respectively [36, 9, 24].

The set of constraints, C, is a set where each constraint is a function from variables included

in the constraint to a preference value. Thus the constraint defines a function over some of the

variables from X. Constraints are not necessarily binary. Constraints can be joined using the join

operator, denoted ⊗, by using the × operator for each value in the domains of the variables included

in the functions. An example is provided later in this section using min as the join operator and

a global preference shown in Figure 2.1. Thus joining two constraints, Ci and Cj is denoted as

Ci ⊗ Cj . The combination of all constraints, using the ⊗ operator, yields the global preference

over the problem. Specifying the global preference directly can be intractable in practice, since the

number of tuples is exponential in the number of variables in X; specifying independent constraints

in multiple, smaller tables is more tractable. Typically, for implementation, the global preference is

obtained by a search, using the branch and bound method presented in Section 2.1.2, rather than

constructing the global preference table in memory.

When preferences are specified such that there is a total order (i.e. all values are comparable)

the join operation enables a ranking over the global preference [41]. A solution to a SCSP is a tuple

that has the maximum global preference. Chapter 5 defines a semiring and preference functions

such that a solution to the SCSP will indicate which camera should be chosen.

It may be that the solution found to a SCSP has an unacceptable preference level. In this case

the SCSP could be relaxed to form a new SCSP, and the solution to the new SCSP may have

an acceptable preference level [61, 60]. For example, a SCSP involving monetary profit could be

adjusted to identify variables that limit the assignment of a high profit to the profit variable. A

metric can be defined to identify how much each constraint differs from the corresponding original

constraint [43, 60].

As an example implementation, SCSPs have been used to encode scheduling for steel making

(hot strip mill) [60]. Related VCSPs, described in Section 2.1.3, have been used to encode the radio

link frequency assignment problem (RLFAP) [17]. In the RLFAP, broadcasting towers are to be

assigned frequencies such that they operate without noticable interference.

As a further example of a SCSP, consider a decision maker planning a meal consisting of a main

dish, a fruit, and a drink. Suppose the decision maker considers the main dish to be independent

4The unit element is sometimes refered to as the identity element in other areas of math.
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of the fruit and drink, but that the choice of drink is based on the fruit chosen. The preferences

for this example can be specified in the two functions shown in Figure 2.1, showing that stir fry is

preferred to pasta and an apple with water is the most preferred combination of fruit and drink.

The example assumes that preferences lie between zero and one inclusively where one is the most

preferred and zero is the least preferred.

Main Dish Preference

pasta .5

stir fry .8

Fruit Drink Preference

apple water .9

apple milk .2

pear water .5

pear milk .1

Figure 2.1: Example Preferences

Obviously, the best meal is {stir fry, apple, water}. This is a simple example. The best choice

is not always so obvious. The algorithm, however, must compute the preferences of tuples to

determine the highest preference. To find the best combination of meal, constraints can be joined

to construct the global preference. To this end the × operator combines preferences from the

two tables’ entries (and by extension any number of tables). Potential implementations of the ×

operator include the Fuzzy operator in which the combined preference is defined as the minimum

of the input tuples [12]. Another implementation will be defined in Chapter 5. Thus, using the

Fuzzy operator, each table entry of the joined function is defined as follows:

Cjoin = Ci ⊗ Cj(xi1 , . . . , xiki
, xj1 , . . . , xjkj

)

= Ci(xi1 , . . . , xiki
)× Cj(xj1 , . . . , xjkj

)

= min(Ci(xi1 , . . . , xiki
), Cj(xj1 , . . . , xjkj

))

Note that if variable xk appears in both Ci and Cj , then it appears only once in Ci ⊗ Cj . The

same variable may appear in Ci and Cj , so long as Ci and Cj return preference values to combine.

Table 2.1 shows the global preference for the meal example using the Fuzzy operator for combining

preferences where the best meal is stir fry, an apple, and water.

For large problems, storing the global preference as a table in memory can require an intractable

amount of memory. Instead, the global preference can be examined one tuple at a time using

search techniques described previously, such as branch and bound described in Section 2.1.2. This

is similar to the classical CSP generate-and-test search, where all tuples of the global constraint

could be generated, but backtracking search is used instead.

Also similar to classical CSP problems, constraint propagation can improve the performance of

a search algorithm in SCSP problems. Similar to classical constraint propagation algorithms, such
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Main Dish Fruit Drink Preference

pasta apple water min(.9, .5) = .5

pasta apple milk min(.2, .5) = .2

pasta pear water min(.5, .5) = .5

pasta pear milk min(.1, .5) = .1

stir fry apple water min(.9, .8) = .8

stir fry apple milk min(.2, .8) = .2

stir fry pear water min(.5, .8) = .5

stir fry pear milk min(.1, .8) = .1

Table 2.1: Example of Combined Preferences using the Fuzzy combination operator

as AC-3 described in Section 2.1.1, SCSP propogation algorithms can reduce the search space to

examine or prioritize searching more promising branches of the tree before less promising branches

(such as xAC) [51]. These propogation algorithms are discussed in more detail in Section 2.2.

2.2 Constraint Propogation in Partial Constraint Satisfac-

tion Problems

Similar to constraint propagation in CSPs, propagation techniques can be applied to soft constraints

satisfaction problems to transform them into an equivalent problem. Equivalent means that a

solution to the transformed problem is also a solution to the original problem. Typically, the

transformed problem is simpler than the original problem (unless, of course, the original problem

is already consistent). Many of these techniques hinge on the idea of improving the lower bound,

as well as removing domain values. Since the lower bound in branch and bound search typically

consists of costs, researchers have designed algorithms to project costs from binary constraints onto

the lower bound. The technique was developed in stages and some of the algorithms in this process

are presented in this section. The literature for a given technique typically refers to the algorithm

that enforces a property and the property itself using the same name. The meaning is usually clear

from the context of the sentence.

2.2.1 W-AC2001

As given, a constraint problem may be inconsistent. There may be a value in a domain that is never

assigned to any variable in any solution. For example, when colouring a political map, a unary

constraint may specify that no country can be coloured blue, since blue is reserved for colouring
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water. In such an example, assigning blue to a country will lead to an inconsistency, so the colour

blue could be removed from the domain of colours to assign to countries. Schiex et. al use the idea

of consistency to transform a soft constraint problem using their AC2001 algorithm [75]. Scheix

et. al ’s algorithm is designed to work with MAX-CSP problems, in which a solution satisfies the

maximum number of constraints. Larrosa adapts and extends their definition of consistency, used

in the W-AC*2001 algorithm for use with WCSPs [57].

Two key consistency measures in both AC2001 and W-AC*2001 are node consistency and

arc-consistency, which consider binary and unary constraints. From W-AC*2001, based in the

framework of a VCSP, the implementation is based on additive cost, where the cost sums when

joining tuples.

a⊕b = min{>, a + b}

where ⊕ combines values from E, and > is the maximum value in E. A solution is a complete

assignment, with the lowest cost.

A value is said to be node consistent if its valuation is less than the maximum cost, >. A

variable is node consistent if all of its values are node consistent. A value to be assigned to a

variable i in a binary constraint, is arc-consistent with respect to a given constraint Cij if it is node

consistent and there is support from Cij . To have support from constraint Cij means that there is

an assignment such that the resulting tuple has the minimum cost, denoted ⊥.

Variables can be made node consistent by removing inconsistent values from their domains.

Constraints can be made arc-consistent by projecting some costs onto unary constraints. When a

cost from a binary constraint, Cij , is projected onto a unary constraint, Ci, the valuation from the

Cij is added to Ci. The lowest cost from Cij for a given value of Xi = xi is subtracted from the

valuation of all tuples in Cij where Xi = xi. To handle tuples with a valuation of >, anything

subtracted from > results in >, since the join a ⊕ b is the minimum of > or a + b. A WCSP is

arc-consistent if all of its constraints are arc-consistent.

To help clarify the above, consider an example from [57] for W-AC2001, the adaptation of the

AC2001 algorithm for weighted constraints. Here the notation from Larossa’s paper is adapted to

be more similar to notation in this thesis. In the example X = {x, y}, x ∈ Dx, Dx = {a, b, c},

y ∈ Dy, Dy = {a, b, c}, E ∈ {0, 1, 2, 3}, ⊥ = 0, and > = 3. There are two unary constraints, shown

in Tables 2.2 and 2.3, and one binary constraint shown in Table 2.4.

A solution is x = b, y = b since there is no assignment with a lower additive cost. The example

is initially not node consistent, since the assignment x = c results in the tuple being assigned the

maximum cost of 3. Therefore c should be removed from Dx. The WCSP is not arc-consistent

since, when x is assigned a, there is no assignment to y in the binary constraint that has a cost of
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x Cost

a 0

b 1

c 3

Table 2.2: Example Unary Constraint over x

y Cost

a 2

b 1

c 2

Table 2.3: Example Unary Constraint over y

⊥. The cost of 1, from the tuple {x = a, y = c}, can be projected onto y = c. The tuple from the

unary constraint with y = c increases by 1 to 3, and all tuples in the binary constraint with y = c

decrease by one. Now y is no longer node consistent, however, since y = c is assigned a value of >

= 3. Therefore c should be removed from Dy. The results are shown in Tables 2.5, 2.6, and 2.7:

After the removal of c from Dy, the WCSP is not arc-consistent since there is no assignment

to x = a with a cost of ⊥ for the binary constraint. The cost from x = a, y = a can be projected

onto x = a, resulting in a cost of 1 for the tuple with value a in the unary constraint over x, and

a decrease by 1 in all tuples from the binary constraint where x = a. The WCSP is now node and

arc-consistent.

Notice that now the unary constraint over x has a cost of 1 whether x = a or x = b. Larrosa

extends the idea of node consistency in the algorithm W-AC*2001 to include this cost in a new

unary constraint, he calls C0. The value 1 can be subtracted from all tuples in the unary constraint

over x, and added to C0. When determining node consistency, C0 is added to the valuation of the

tuple. This version of node consistency is named NC*. Consequently, y = a in the unary constraint

over y now has a cost of 3 = >, so a can be removed from Dy. Thus, W-AC*2001 is able to

remove more values and make the search space smaller than W-AC2001, but at a cost of increased

computation.

2.2.2 Existential Directed Arc-Consistency

Section 2.2.1 introduced NC*, where the cost C0 is added to variables’ values’ costs when deter-

mining node consistency. Similarly, when a value, b, is considered in support of a binary constraint,
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x y Cost

a a 1

a b 2

a c 1

b a 0

b b 0

b c 2

c a 0

c b 0

c c 0

Table 2.4: Example Binary Constraint

x Cost

a 0

b 1

Table 2.5: Revised Unary Constraint over x after removing x = c

Cij(a, b), the unary cost from b can be added to the cost of the binary constraint. If this sum is

equal to ⊥, a constraint is considered full arc-consistent (FAC, FAC* if it also considered NC*)

[27]. A variable is considered FAC* if all of its values have at least one FAC* binary constraint. A

WCSP is considered FAC* if all of its variables are FAC*. The effect of using FAC* is the possible

removal of more values from domains in the WCSP (i.e. additional prunning).

There is no guarantee, however, that a WCSP can be converted into a FAC* WCSP. Costs may

transfer back and forth between variables, with no version of the WCSP having a FAC* property. If

an order is applied to the variables, then a WCSP can be made full directed arc-consistent (FDAC*)

[59]. In terms of the domains pruned, FDAC* prunes no more than FAC*.

y Cost

a 2

b 1

Table 2.6: Revised Unary Constraint over y after projecting {x = a, y = c} onto {y = c}
and removing removing y = c from unary constraint over y
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x y Cost

a a 1

a b 2

b a 0

b b 0

Table 2.7: Revised Binary Constraint after removing x = c from Dx, projecting {x = a, y =
c} onto {y = c}, and removing y = c from Dy

A binary constraint has simple support if it has a tuple with a cost of ⊥. A binary constraint has

full support if it has a tuple with the cost of ⊥ and the unary constraint of the supporting variable

also has a cost of ⊥. A variable is existential arc-consistent (EAC*) if at least one value has a unary

cost of ⊥ and it has full support in each of its binary constraints [27]. de Givrey et al. show that

this can cause a variable to cease being NC*; the cost from that variable can be absorbed into C0,

raising the lower bound on the problem. EAC* has stronger consistency than FDAC*, but weaker

than FAC*. Existential directional arc consistency (EDAC*) incorporates both FDAC* and EAC*.

2.2.3 Virtual Arc-Consistency

Virtual arc-consistency (VAC) uses CSP techniques to raise the lower bound C0 of a WCSP5

[22, 26]. The WCSP uses non-negative integer weights. VAC can raise the lower bound, even

when the WCSP is already EDAC*. Thus, it may be possible to prune more domain values from

variables, as they may exceed > after the WCSP has been made VAC. Recall, as also used in the

literature, the acronym VAC can refer to the algorithm or the level of consistency the algorithm

enforces.

A key step in the VAC technique is to create a corresponding CSP, named Bool(P ), from the

WCSP named P . If a weight on a constraint is not equal to ⊥ then it is false in Bool(P ), otherwise

the constraint is true. A problem P has the property VAC if Bool(P ) is consistent. Cooper et

al. show that if P is not VAC then the lower bound, C0, can be raised until P is VAC.

The technique works in three phases. The first phase of the technique makes Bool(P ) consistent

using classical arc-consistency [22]. During the propagation, the removal of supports from other

variables are recorded (i.e. for Cij(a, b), if a = 1, and b = 2 is found to satisfy the constraint then

b = 2 is a support for a = 1). If P is not VAC, then there will be a domain wipeout for some

variable of Bool(P ), meaning that there is no consistent value to assign. This implies that C0 could

be raised by some amount. Currently, at this point in the algorithm, the amount is unknown and

5In [22] C0 is named w0.
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is named λ.

The second phase of the algorithm uses the recorded information in reverse order to trace a

minimal sequence of arc-consistency operations that result in the domain wipe-out. The trace can

terminate when it reaches a value, call it d, with a cost greater than ⊥ in the WCSP. This implies

that λ can be no greater than d. Thus, the inferred value for λ is determined from the minimum

non-zero cost that appears in the trace. If d is reached by more than one trace then the cost

assigned λ from d is the cost of d divided by the number of traces that reach the value.

The third phase applies the sequence determined from phase one using soft consistency opera-

tions in the forward direction and the known value of λ, including the additional cost to C0 from

λ. Since the lower bound, C0, has been raised by λ, additional pruning may be possible compared

to the original WCSP. If λ may be fractional and P uses integer weights, λ is rounded up to the

nearest integer.

The VAC algorithm may repeat, slightly increasing C0 each time. A heuristic specifying the

minimum increment for λ can then force a termination [26]. After the process of making P VAC,

variables in P may not be NC*. Making P NC* can again raise the value of C0, since the cost

common to all values of a variable will be transfered into C0.

2.2.4 xAC

Horsch et al. generalize the arc-consistency algorithm with an approach they term “xAC” [51].

The view underlying the algorithm is that arc-consistency approximates satisfiability, and that this

approximation can be expressed in terms of the domains of single variables. Their approach is

based in the SCSP framework, but does not depend on specific assumptions from the framework,

such as the fact that 1 is an absorbing element for the + operator. The projection of the solution

to a single variable is called the marginal, a term borrowed from probability calculus. When the

problem is tree structured, arc-consistency algorithms compute the marginal exactly. When the

problem is not tree structured, arc-consistency algorithms approximate the marginal.

The marginal solution of a SCSP P on variable X can be determined from joining all constraints

and projecting them onto the variable X:

MX(P ) = (⊗c∈Cc) ⇓{X}

Here C is the set of constraints. The operator ⇓ projects contraints onto X using the SCSP +

operator. The constraints are first joined using the × operator to combine tuples. Then tuples

containing the same value for the X variable are compared using the + operator. The mathematical

operations for these operators depends on their definition in the semiring.

The computation of the marginal from the global solution is intractable in general. If the
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problem is tree structured then the marginal on X can be determined from the marginals of the

neighbours of X.

The algorithm iterates in steps until convergence, or a preset number of iterations is reached.

• The marginal distribution to each neighbour is computed (i.e. a variables value projected

onto a neighbour through constraints that are over the two variables).

• Marginals are exchanged with all neighbours.

• Each variable updates its marginals using the information received from its neighbours.

In more detail, the neighbours’ constraints are joined using the × operator, and projected onto

X using the + operator to combine tuples. If the problem is tree structured, then the marginal is

exact after g iterations, where g is the diameter of the graph.

As an example, consider a fuzzy SCSP where the operators + and × are instantiated using

max and min, respectively. Suppose the SCSP contains the variables X = {X,Y, Z} with domains

D = {{a, b}, {c, d}, {e, f}}, and preferences ranging between 0 and 1. Three unary and two binary

preferences are defined over the variables, as shown in Figure 2.2.

X Pref

a 0.7

b 0.3

Y Pref

c 0.9

d 0.8

Z Pref

e 0.9

f 0.2

X Y Pref

a c 0.3

a d 0.7

b c 0.5

b d 0.8

Y Z Pref

c e 0.3

c f 0.9

d e 0.4

d f 0.7

Figure 2.2: Example preferences for demonstrating xAC algorithm

The problem is tree structured, has diameter g = 2, and Y separates X and Z. The global

join is shown in Table 2.8. The marginals will converge after two iterations, shown in Figure 2.3.

Notice that the projection of the global join will result in the same marginals shown in the second

iteration in Figure 2.3.

X Y Z Preference X Y Z Preference

a c e 0.3 b c e 0.3

a c f 0.2 b c f 0.2

a d e 0.4 b d e 0.3

a d f 0.2 b d f 0.2

Table 2.8: The global join in the xAC example

17



First Iteration:

X Pref

a 0.7

b 0.3

Y Pref

c 0.3

d 0.4

Z Pref

e 0.4

f 0.2

Second Iteration:

X Pref

a 0.4

b 0.3

Y Pref

c 0.3

d 0.4

Z Pref

e 0.4

f 0.2

Figure 2.3: Two example iterations of the xAC algorithm

When the problem is not tree structured, constraint propagation can continue until convergence

or until a preset number of iterations. Marginals can be used in a branch and bound search as a

value ordering heuristic.

2.3 OpenGL

The graphics in the hockey and maze games, discussed in Chapter 4, are rendered using OpenGL

(Open Graphics Language). This section briefly introduces OpenGL, and the mathematics to

transform polygons into pixels on the display. Additionally, some of the preference values of some

constraints in the camera selection system depend on the location of objects projected to the display.

These values are partially determined using information from the OpenGL pipeline, such as the

location of the puck on a display in the hockey game, or the visibility of the player’s avatar in the

maze game.

OpenGL is based on the earlier Silicon Graphics’ IRIS GL [77] with objects modeled as sequences

of points [67][2][53]. Arbitrary polygons may be defined subject to the constraints that they are

co-planar and convex[2]. Concave polygons are forbidden as they complicate shading algorithms

and clipping algorithms, both described below.

2.3.1 Points and Transformations

OpenGL allows the definition of points in space and transformations to operate on those points,

chiefly translations, rotations, and scaling operations which move, rotate, and adjust the size of

polygons defined in the space. 3D points and 3D vectors are represented with four-valued vectors,
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referred to as homogeneous coordinates [8]. In matrix form, homogeneous coordinates are as follows:
x

y

z

w


where x, y, and z are the values from three dimensions and w is zero for vectors and non-zero for

points (typically w = 1) [2]. Note that, by convention, y is in the up direction, x is to the right,

and z is out of the display towards the viewer.

The addition of the fourth dimension (w) enables both rotations and translations to be computed

via matrix multiplication. For example, the matrix multiplications;
1 0 0 αx

0 1 0 αy

0 0 1 αz

0 0 0 1




x

y

z

w

 and


1 0 0 0

0 cos(θ) − sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1




x

y

z

w

,

perform a translation by a vector α and a rotation about the x axis by angle θ, respectively. Scaling

by a vector β and shearing in the x direction can be performed with the following matrices:
βx 0 0 0

0 βy 0 0

0 0 βz 0

0 0 0 1




x

y

z

w

 and


1 cot(θ) 0 0

0 1 0 0

0 0 1 0

0 0 0 1




x

y

z

1

 .

Rotations about the y and z axes are performed with similar matrices, as are shears in the y or

z direction6. Sequential transformations are multiplied into a single matrix by the associativity of

matrices and are applied to points by a hardware implementation for increased speed [2].

To specify a rotation about an arbitrary vector it is useful to employ quaternions [50, 68, 80].

Quaternions enable smoother rotations than adjusting three angles about x, y and z axes. A

quaternion is composed of a scalar plus a vector:

q = (s, (x, y, z))

A quaternion can be made into a unit quaternion by dividing through by its magnitude:

q̂ =
q

||q||

6A shear can be constructed from a sequence of rotations, translations, and scalings but is important enough to
consider it a basic transformation [2].
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where

||q|| =
√
s2 + x2 + y2 + z2

A quaternion can represent a rotation about an arbitrary vector. A rotation of angle θ about a

unit vector (x, y, z) is specified by the following:

Rotθ,(x,y,z) = [cos(θ/2), sin(θ/2) · (x, y, z)]

To combine a rotation defined by a quaternion with matrices in the display pipeline, the quater-

nion must be converted to a rotation matrix [68]. A unit quaternion (s, (x, y, z)) corresponds to

the rotation matrix:


1− 2 · y2 − 2 · z2 2 · x · y − 2 · s · z 2 · x · z + 2 · s · y

2 · x · y + 2 · s · z 1− 2 · x2 − 2 · z2 2 · y · z − 2 · s · x

2 · x · z − 2 · s · y 2 · y · z + 2 · s · x 1− 2 · x2 − 2 · y2

.

2.3.2 Projections

In order to be viewed, a three-dimensional scene must be projected onto a two-dimensional display.

Two such projections are orthographic projection (a.k.a. orthogonal projection), shown in Figure

2.4, and perspective projection, shown in Figure 2.5. An orthographic projection projects onto a

plane by setting points’ z coordinates to zero, assuming the viewer is looking down the z-axis, and

the camera is at the origin with the up vector oriented along the positive y-axis.

The default view volume is a cube with corner points (-1,-1,1) and (1,1,-1). Polygons outside

this volume are ignored during the projection. Polygons partially inside the volume are redefined

as the portion enclosed by the volume, called clipping. Since clipping a convex polygon results in

another convex polygon, clipping can be done simply (as opposed to clipping resulting in multiple

polygons). If the view volume is not in its default orientation it must be transformed and the same

transformation applied to all vertices in the 3D scene.

The perspective projection can be determined from simple Euclidian geometry. For a point at

(Px, Py, −Pz) the projected value of Px is x∗ = NPx/(−Pz) and similarly y∗ = NPy/(−Pz) where

the viewer is located at (0,0,0) and N is the distance from the viewer to the view plane [53]. Rather

than set z∗ to the view plane distance, let z∗ = (aPz + b)/(−Pz) where a and b are calculated using

the far and near planes of the view volume.

a = −Far +Near

Far −Near
, b =

−2× Far ×Near
Far −Near
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Projection Plane

Object

Figure 2.4: Orthogonal Projection

Using these definitions, z∗ is considered a pseudo-depth because it is not the true depth to a vertex,

but does preserve the depth ordering of vertices in the view volume.

The projection matrix is defined as [53];
N 0 0 0

0 N 0 0

0 0 a b

0 0 -1 0

.

Multiplying the point (wPx, wPy, wPz, w) by this matrix yields (wNPx, wNPy, w(aPz+b),−wPz).

(Using homogeneous coordinates a scalar multiple of a point is the same point – i.e. if w is not

1). Dividing through by −wPz (called perspective division) and discarding the fourth component

yields (
N Px

−Pz
, N

Py

−Pz
, aPz+b
−Pz

)
,

which are x∗, y∗, and z∗ defined previously. The transformation to the default view volume and

perspective projection can be combined into a single matrix.

Techniques to avoid displaying portions of polygons obscured by other polygons are referred to

as hidden surface removal algorithms. The painter’s algorithm assumes polygons are ordered from

back to front when sent to the rendering pipeline similar to the way a painter paints foreground
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Projection Plane

Object

Figure 2.5: Perspective Projection

objects over background objects [2]. The z-buffer algorithm uses pseudo-depth values to determine

visibility during rasterization. Rasterization converts vertices of a polygon to pixels using scan line

algorithms. As shown in Figure 2.6, the polygon edges are used as endpoints to scan across the

interior (the convex polygon requirement simplifies this process).

vertex

vertex

vertex

pixel

Figure 2.6: Rasterization

The z-buffer algorithm associates a pseudo-depth value in a depth buffer with each pixel in the

frame buffer proportional to the true depth. Initially the pseudo-depths are all set to a maximum

value, but are updated as pixels are determined. The frame buffer is written to only if the new

pseudo-depth value is lower than the current pseudo-depth [53].

Scaling to the default view volume may distort the scene. However, the viewport transformation,
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which transforms points from the view plane to the viewport (i.e. the area displayed on the screen),

can restore the aspect ratio.

2.3.3 Shading

In OpenGL, and other rendering methods, the intensity, I, of light at a point is governed by the

Phong model [71] and is applied for each light source.

I =
1

a+ bd+ cd2
(kdLd~l · ~N + ksLs(~r · ~v)α) + kaLa

Variable d is the distance from a light source and 1
a+bd+cd2 is a quadratic attenuation term rep-

resenting a decrease in light intensity as the distance from the light source increases. Specifying

constant, linear, and quadratic terms allows for greater control of the attenuation. The kdLd~l · ~N

term represents diffuse lighting illumination which occurs when light interacts with a rough surface

and is reflected in many directions. Ld is the diffuse intensity from the light source, ~l is the unit

vector of the incident light, and ~N is the unit normal of the surface at the point of incidence.

Specular highlights are governed by the ksLs(~r · ~v)α term where Ls is the specular intensity of the

light source, ~r is a unit vector along the direction of the reflected light, and ~v is a unit vector in

the direction from the point of incidence to the viewer. The parameter α governs the spread of the

specular highlight. The ambient light in the scene, La, accounts for light after many reflections off

of objects in the scene and is approximated as a constant. The kd, ks, and ka terms characterize

the surface’s interaction with each category of light and together are called the material properties

[2]. The Phong model can be applied separately to red, green, and blue components of light.

Three types of shading utilize the Phong model: flat shading, Gouraud (i.e. interpolative)

shading, and Phong shading. Flat shading assumes the viewer and light source are located an

infinite distance away so that the angle of the incident light (~l), viewing vector (~v), and reflected

light (~r) remain constant across a polygon. Assuming a constant normal ( ~N) across the polygon’s

surface, the intensity of the light at any point on the polygon is constant so the lighting calculation

only needs to be performed once for a given polygon and light source.

To counter the abrupt colour changes encountered in flat shading, Gouraud shading computes

the light intensities at the vertices of a given polygon and interpolates pixel colours across the

polygon [45]. To create smooth colour transitions between adjacent polygons, the vertices’ normals

are set to the average of the adjacent polygon normals. Phong shading [71] differs from Gouraud

shading by interpolating the normals, rather than the colour intensities, across the polygon. At

each pixel the Phong model of lighting is applied.
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2.4 Chapter Summary

This chapter introduces the background of the two subfields used in this thesis, SCSPs for selecting

camera feeds, and OpenGL for rendering graphics. A SCSP generalizes classical constraint satisfac-

tion problems to the language of preferences. Subsequently, a solution to a problem is not a tuple

that satisfies all the constraints, but one that maximizes a preference value (or minimizes a cost).

Constraint propagation algorithms, using node and arc-consistency, can simplify a problem, such

as a WCSP, to a simpler problem that has the same solution. OpenGL renders polygons specified

as points, to the display as pixels. Vertices of polygons are processed in homogeneous coordinates,

using matrix multiplication. A Phong lighting model colours pixels shown on the display.

Section 6.2 uses points from the OpenGL pipline to determine the location of objects on the

display, to set dynamic constraints.

24



Chapter 3

Related Work in Virtual Cinematography

Computers can produce realistic looking images, but placing and aiming the virtual camera to

acquire aesthetically pleasing images or animations is typically done manually. Specifying low level

camera parameters is tedious, especially when the programmer provides them for each time step

in an animation. Even with a still image, a frustrating process of trial and error can ensue as the

user sequentially guesses where to move the camera.

Some three-dimensional computer games solve the camera placement problem by fixing the

camera to the main character’s view. This solution, however, fails to take advantage of certain film

techniques that have developed during the first half of the twentieth century to which film audiences

became acclimatized, even if they do not actively recognize their use [3, 64]. For example, a wide

shot showing a far away view of a scene, called an establishing shot, usually introduces a scene.

By utilizing these understood conventions, games and other three-dimensional applications can

produce more expressive and pleasing output.

Researchers are attempting to solve these problems by creating methods to automatically place

and aim the virtual camera. Earlier work concentrates on camera placement, while more recent

work desires to instill aesthetics and emotions into the virtual filming process.

3.1 Through-the-Lens Techniques

An early and widely cited paper by Blinn [13] introduces the problem of camera placement and a

solution in a restricted environment. Blinn’s system automatically positions and aims the camera

to generate an animation of a spacecraft during the time it passes a planet. Figure 3.1 shows a

frame from the animation. Blinn’s system directly computes a transformation matrix to position

and aim the camera given the points on the spacecraft and planet, and the distance between the

craft and the camera.

To produce a more interesting animation, Blinn describes how to generate transitional sequences

that align with the spaceship-planet sequences. These transitional sequences need not have a planet

in the background for the entire duration, and they position the camera in such a way that the

spaceship and planet align with other sequences already described. Thus the camera can follow a
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Figure 3.1: Voyager Fly-By (http://www.pbs.org/wgbh/nova/specialfx2/images /voy-
ager.jpeg)

spaceship as it passes a planet, follow the ship as it flies into space and continue as it passes another

object such as a planet, moon, or asteroid.

Gleicher and Witkin describe a more general “Through-the-Lens Camera Control” system where

the user pins points in the world coordinate system to points in the screen coordinate system [44].

The user selects points on the three-dimensional model to keep at roughly the same position on the

screen as the scene evolves in time. The computer solves for the camera position and angle that

keeps the pinned points in the same location in the screen coordinate system as the scene changes.

Figure 3.2 presents an example of pinning two corners of a cube to the screen.

Figure 3.2: Through-the-Lens example. As the camera moves in the direction of the arrows,
the corners of the cube are pinned to their initial screen coordinate positions. The camera
rotates and adjusts the level of zoom to achieve this. [44]

Additionally, the user may drag a pinned point to a desired location, and the camera’s parame-

ters will adjust over time to move the point to the desired position in the screen coordinate system.

An arbitrary number of points can be pinned to the image subject to the number of degrees of

freedom. An example exceeding the number of degrees of freedom includes pinning two points of

an object to two points in the screen coordinate system and requesting that a third point travel

too far off screen to be simultaneously viewed. Conflicts, such as exceeding the number of degrees
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of freedom or requesting that a point move in two directions, can either be forbidden by the user

interface or handled by distributing the error uniformly using a least-squares solution.

In this more general environment it becomes necessary to solve non-linear algebraic systems for

which there is no general recipe. Blinn solves for the transformation matrices directly, whereas-

Gleicher and Witkin determine the change in world space velocity. Possible methods of acquiring

this velocity include interpolating between key frames, or it may be given by the user via mouse

movements. The change in world space velocity is mapped to a change in camera velocity and

integrated using a discrete time step to determine the camera’s position and orientation. Using

position feedback, a corrective term reduces errors that accumulate over time due to the integration

method.

Christie and Hosobe extend Gleicher and Witkin’s idea to cover camera, lighting, and objects

under a common technique they call Through-the-Lens Cinematography [19]. As in the work from

Gleicher and Witkin [44], the user pins points from the world coordinate system to points in the

screen coordinate system to indirectly control the camera. Additionally, the user can specify that

points translate or rotate objects in the world coordinate system. Christie and Hosobe provide an

example of pinning an airplane’s wing tip while moving the other wing tip, thereby rotating the

plane about the fixed wing tip.

Points in the world coordinate system are virtually attached to their destination by fictitious

springs. A deviation from a spring’s rest length produces a force under Hooke’s law (F = −k∆x),

which is mapped to acceleration using Newton’s second law of motion (F = ma). The user can

adjust the value of m to achieve the desired rate of acceleration at a point.

In addition to points, the camera and objects are controlled via lines, circles, or splines. For

example, the user could keep an airplane wing in the output image by drawing a line along the top

of it. These more complicated primitives, however, are mapped to one or more individual points

before the virtual springs are attached.

Manipulating lighting is similar to manipulating objects or the camera, the user moves the

center of a specular highlight to the desired destination and the system moves the lights to produce

the highlight in the specified location.

3.2 Constrained Solutions

Predating the through the lens techniques done by Christie and Witken, Drucker and Zelter in-

troduce a framework called CamDroid for specifying camera constraints [34, 35, 32]. Rather than

providing constraints via a virtual lens, constraints are encoded in camera modules. Modules are

software encodings that represent shots in cinematography and are programmed using a text editor

or a visual editor, where constraints can be dragged and dropped into a module. When filming with
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a virtual camera, sequential shots may align and appear as a continuous shot belying the sequential

camera modules controlling the output. Multiple constraints may make up an individual module.

For example, one constraint may insist that the camera remain at a specified height, while another

constraint directs the gaze of the camera. A constrained optimizing solver combines constraints to

produce the final camera parameters for a particular module [32]. Branching connections between

modules governs the order of modules selected to produce the final animation.

An example application of CamDroid is a virtual painting museum. A screen shot is shown in

Figure 3.3. The system plans a path through the museum to visit all user requested paintings. The

path satisfying the constraints is constructed as follows. The order of room to visit is determined

by an A* search where edges represent the rooms’ doors and nodes represent rooms [34]. The rooms

containing paintings to visit are ordered, subject to the adjacency conditions, using an exhaustive

search. The path between doors within each room is constructed by following the distance gradient

within each room. The gradient is constructed as follows. Each room is projected onto the two-

dimensional floor and discretized into cells where each cell is open or contains an obstruction.

For each open cell, a distance from the originating door is computed travelling along any of 32

directions of movement (recall that a Manhattan distance uses four directions: N, E, S and W. A

32-way connectivity map can use the outer 32 cells of a 9 × 9 grid). A discrete path from the exit

to the entrance can be constructed by descending the distance gradient.

Figure 3.3: Camera Shot of the Virtual Museum [34]

To avoid grazing paintings a simulated circular repulsive gradient emanates from each painting,

and is combined with the distance gradient. To avoid becoming trapped in local minima, a breadth

first search uses the gradient information to construct a path from entrance to exit. To create

smoother movement, a spline is fitted to the cells that make up the path using a least squares

curve fitting method. Additional tangency constraints on the spline ensure the path goes through

doorways in a perpendicular fashion.

Less complicated camera constraints ensure the camera remains at a constant height, a sensible

up vector is maintained, and the camera is aimed at paintings, when available, and along the

direction of motion otherwise. Each constraint can be encoded into a module to be included in the
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overall system.

In a subsequent paper, CamDroid is applied to filming a conversation and a football game, as

additional examples [35]. When filming a conversation, two (imaginary) vertical lines divide the

screen into thirds. One constraint specifies that the person facing the camera should be along the

two thirds line while another constraint specifies that the person facing away should be along the

one third line. Other constraints specify that the world should be aligned up, the camera should

be close to aimed directly onto the character facing the camera, and the field of view should be

between twenty and sixty degrees. The system can identify which character is speaking and films,

the conversation by interconnecting two camera modules - one for when each character is speaking.

As for filming a virtual football game the camera can track individual characters or the ball, or

orbit about a player.

A paper from Bares et al. also presents a constraint based camera positioning system [5] using

a subset of the constraints available in Drucker and Zelter’s work [34, 35]. Users may specify

vantage angle, viewing distance, occlusion avoidance, and require that the camera remain confined

to a room. Specifications have optimal settings and acceptable ranges. The constraint system first

eliminates ineligible regions of the search space. For example, specifying a vantage angle eliminates

other unsatisfactory angles. The union of the resulting space with eligible space, specified by

the viewing distance, further constrains the solution space. From the refined solution space an

individual specification, or an average of the given specifications, is selected [5]. For example, if

there are three optimal vantage angles specified for three individual objects, one of these vantage

angles could be selected subject to the condition that it falls into an established region of acceptable

solutions. In a subsequent paper from Bares et al. [7] the space is heuristically and recursively

searched. A finite number of candidate shots are proposed and evaluated with the best shots

recursively refined.

If it is impossible to simultaneously satisfy all requirements, then the weaker requirements are

removed for a solution satisfying the most important constraints. If no solution can be found even

after removing weak constraints, then the output visualization may employ multiple views. As an

example, suppose two characters are too far apart to simultaneously satisfy the viewing distance

requirement. The system may generate a far camera shot of the two characters and then provide

aninset of each character in the upper corners of the image.

To facilitate entering constraints, Bares et al. use a storyboard system that acts as a graphical

user interface [7, 6]. Users provide optimal, maximum, and minimum specifications for various

attributes and indicate weaker constraints. (As mentioned above weaker constraints can be ignored

if needed to arrive at a solution.) For example, the size of a character in the output image is set

by manipulating a large and small box to indicate the allowable dimensions. The range of viewing

angles for an object, field of view, and occlusion are similarly defined. Partial occlusion allows
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a degree of overlap between objects and provides a sense of depth in the image. Constraints are

exported to the constraint solver to determine the camera parameters.

3.3 Camera Positioning using Weighted Constraints

A difficulty with the constraint approach in Section 3.2 occurs when the problem is over-constrained

so that no solution is possible. Bares’ work allows removal of weaker constraints to find a solution,

but it may be better to satisfy multiple weaker constraints than one strong constraint at the expense

of multiple weaker ones. With this in mind, Bourne et al. introduce the use of weighted constraints

to position a virtual camera [16]. They determine the camera’s position (x, y, and z) through an

increasingly focused search to maximize the combined weighted preference.

The soft constraints, or preferences, to satisfy are height (length), distance (length), and orien-

tation (degrees) which are assigned an increased cost as they deviate from their target positions.

Weights assign importance to each preference and are normalized to account for differences in scale.

The overall preference is the weighted average of the included preferences. A coherence preference

discounts solutions nearby the current camera position to avoid the camera jumping to more distant

solutions. When desired, an occlusion preference can prefer a line of sight to the main subject by

determining intersections between four rays from the target to the camera with objects in the scene

(using similar calculations to ray tracing [85]). Hard constraints, as presented in Section 2.1.1 and

used in Section 3.2, can be approximated by using a very high weight.

A sliding octree solver (the spatial data structure is shown in Figure 3.4) determines where to

position the camera. Given the distance the camera is permitted to move each frame, eight positions

in the space are considered. Upon determining the best candidate position using the preferences

given, the permitted camera movement is reduced and the octree solver determines a finer position

starting from the current solution. Thus the sliding octree solver can iteratively determine the

most preferred camera position, even when the constraints can not all be fully satisfied. Where

hard constraint approaches may yield multiple solutions, the soft constraint approach can order the

solutions by preference.

Figure 3.4: The octree spatial data structure. (Figure 4 from Bourne et al. [16])

Different weights on the preferences yield different filming styles, similar to idioms that will be
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discussed in Section 3.4. Defining the weights for a particular filming style defines a camera profile,

and combining camera profiles enables filming cinematographic sequences. Figure 3.5 shows exam-

ple state transitions between camera profiles for filming a conversation. When multiple characters

are filmed the target is a weighted average between the characters, with the speaker given a higher

weight.

establishing shot two−shot

over−the−shoulder close−up

Figure 3.5: Example state transitions between camera profiles. (Figure 11 from Bourne et
al. [16])

A high enough weight on the coherence preference prevents jumping abruptly to a new position

when changing camera profiles.

Alam and Goodwin build on the weighted constraints of Bourne et al. by determining isocurves

that bound regions that satisfy a constraint [1]. They present a 2D example using a total weight

cost for a problem given as follows:

k1ρ1 + l1θ1 + k2ρ2 + l2θ2.

Here ρ1 is the difference between the desired position and current position with respect to visual

constraints, and θ1 is the difference between the desired angle and current angle with respect to

visual constraints. Variables ρ2 and θ2 are the difference in position and angle of frame coherence

constraints, to prevent the virtual camera from moving too quickly in position or angle. Frame

coherence is also discussed in Section 3.7. Variables k1, l1, k2, and l2 are weights that determine

how important each constraint is to satisfy.

If the visual constraints have higher weights than the frame coherence constraints then an

isocurve bounds the region of acceptable visual constraint solutions, given by ρ1/ρ10 + θ1/θ10 =

constant, where ρ10 and θ10 are the ranges of acceptable values for ρ1 and θ1. If the constant is 1

then the isocurve bounds the region that contains positions that satisfy the visual constraints. If

the constraint is greater than one then there is no solution that satisfies all the constraints, and

a solution to return lies along the isocurve. If the frame coherence constraints have higher weight

than the visual constraints, then the isocurve is made from ρ2 and θ2. A binary search finds a

solution with minimum total weighted cost in real-time.
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3.4 Encoding Filming Styles

Drucker et al. [34] mention the problem of cuts between shots, which is partially addressed in the

filming a conversation example [35]. This problem is dealt with more generally in He, Cohen, and

Saliesins’ work [49] where they present a system of hierarchical idioms. Each idiom prescribes

the sequence of shots for filming a scene. These idioms are alluded to in cinematography books

as general filming instructions for aspiring cinematographers [3, 64]. For example, a conversation

between two actors may start with an establishing shot and then alternate between the two actors,

with a far shot used periodically to re-establish the scene. Variations on the rules of an idiom lead

to a new idiom, which represents a different style of filming.

In software implementations, each idiom is encoded as a finite state machine (FSM) where

transitions represent a new shot in filming (i.e. a cut). Conditions on transitions govern the cuts

between shots, such as the maximum or minimum duration of one shot or a change in events. An

exception mechanism can wrest control away from the regular flow of transitions through an idiom,

which is useful for dealing with occlusion. When an actor of interest becomes occluded, a timer is

started. When the timer exceeds a threshold, the camera cuts to another shot with an unoccluded

view of the actor. A FSM can be thought to represent a style of filming, in the sense that it encodes

how a human director changes from one camera to another.

Hierarchical organizing idioms help select which idiom to use for a particular shot. Idioms lower

in the hierarchy are more specific than idioms higher in the hierarchy, so the lowest applicable idiom

should be used for filming. As an example, consider an idiom for filming two people. Knowing

nothing else may dictate the use of a general two actor idiom. If it is known that the two actors

are talking, however, then a more specific talking idiom can be used. Similarly, if the two actors

are fighting then a fighting idiom can be employed. Using a hierarchy ensures that there is always

an idiom available to govern filming.

Associated with each state is a camera module specifying the virtual camera’s parameters.

The authors’ implementation uses 16 camera modules (apex shot, internal shot, external shot,

etc.), which are fairly rigid in their implementation [49]. However, they express interest in a more

flexible constraint solving technique, similar to Drucker et al.’s implementation, as future work. A

constraint implementation could differ from most other automated camera placement work since

the camera modules can exert subtle changes on the objects in the scene. For instance, when filming

two actors close up the actors are moved closer to each other resulting in a better looking scene.

This is similar to Mascelli’s cinematography advice to remove distracting objects from a scene in

such a way that the audience doesn’t notice [64].

Christianson et al. [18] also use idioms, but their paper focuses more on users constructing idioms

using a Declarative Camera Control Language (DCCL). Structures in DCCL are constructed from
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four basic primitives: fragments, views, placements, and movement endpoints. A fragment is a

part of a shot where the camera’s velocity is continuous. This means the camera is stationary or

moving in a simple motion, such as an arc. When a shot is made up of multiple fragments the end

and start of adjoining fragments must align. With some fragments, movement endpoints indicate

how much of the screen the actor covers while they are moving. Views can be extreme, close-up,

medium, full, or long and the placement of the camera can be internal, external, parallel, or apex

as shown in Figure 3.6.

line of interestA B

externalexternal

apex

internal

Figure 3.6: Camera placement is specified relative to “the line of interest”. From Figure 1
of Christianson [18] which is an adaptation of Figure 4.11 in Arijon [3].

The system to compile and run DCCL is called “The Camera Planning System (CPS)” [18].

Given an animation trace (a sequence of the positions and orientations of virtual characters) CPS

determines the activity being performed. In the example application, twelve activities defined

include moving, turning, looking, and stopping for which one or more idioms are assigned as

possibilities for the virtual camera’s parameters. Thus, given an animation trace, a tree structure

can be constructed which contains all possible relevant idiom combinations. A “Heuristic Evaluator”

selects the branch of the tree for final rendering based on four criteria: smooth transitions between

fragments, avoiding crossing the imaginary line between actors, avoiding very long or very short

fragments, and avoiding fragments in which the camera pans backwards. While the exhaustive

approach taken in the work done by Christianson et al. is intractable in general, the number of

idioms per action is kept low resulting in a low branching factor (only four of the twelve activities

have two possible idioms, the remainder have only one) [18].
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3.5 Other Camera Selection Mechanisms

Assa et al. present a method to select a camera from a set of cameras based on human motion

in a scene [4]. A sequence of selected camera shots generated by their system is shown in Figure

3.7. Their approach uses the correlation of 3D input data with the pixels seen through a particular

camera feed and selects the camera feed with the highest correlation. Their method does not require

specifications from a human, but rather selects the viewpoint that displays the most motion.

Figure 3.7: Camera viewpoint selected to show motion [4]

Passos et al. train a neural network to select a camera feed in a car racing game as shown in

Figure 3.8 [4]. While a human player controls the race car, another human director selects which

view to display from among three camera feeds. This input is used to train a neural network, which

Passos et al. report is able to replicate the human director with 100% accuracy.

Figure 3.8: Car racing game to train neural network [69]

Lino et al. present a cinematography system which includes a camera cutting aspect [62]. Their

work uses director volumes to determine where to position the camera and map candiate camera

positions, such as a location having full or partial visibility of key subjects. Their camera planning

approach utilizes frame coherence, and their system can handle occlusion of non-moving objects.

The camera selection mechanism is based on idioms, and includes narrative elements modelled using

semantic tags. The semantic tag includes things such as the following: a key subject stands up, a

key subject talks to another subject, show dominance of one subject over another, show conflict,
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and show isolation. The system executes in real time and uses the semantic tags when selecting an

idiom.

3.6 Automatically Determining Camera Target

In the work described above, the user directly or indirectly specifies the target object to film and

assumes that the angle to film the target object is reasonable. CamDroid films the paintings in a

virtual museum from a path through the museum, and Bourne’s camera system attempts to film the

player’s avatar from an unoccluded position [34, 16]. Some recent work attempts to automatically

determine the object to film and the best angle at which to film it.

Turkay et al.’s work uses an information theoretic approach to determine subjects to film in a

crowded scene [82]. Their system films characters walking around and films interesting action, where

‘interesting’ means ‘unexpected’. A character’s future location is predicted based on their past

action using their position, direction, and speed which are projected onto a two dimensional plane

(i.e. the ground). A historical probability function predicts future actions using a weighted linear

combination of past actions from a discrete number of time steps, which is a user tunable parameter.

Players’ expected movements are grouped into cells on a grid and compared to actual movement in

each cell. Cells with a difference between the predicted movements and actual movements exceeding

a threshold are considered for filming. When no cell exceeds the threshold, the camera makes a tour

over cells where players move together, keeping track of visited cells to avoid excessive repetition.

Work by Vazquez determines a good viewpoint to film an object using view stability on depth

images [83]. A view is stable if views from nearby viewpoints are similar. Two viewpoints are

considered similar if their depth images are small when compressed together. To consider 320

positions about an object currently, using 256 × 256 gray scale images, requires approximately 10

minutes of calculation [83], and is largely independent of the complexity of the model. Future work

with adaptive or a hierarchical approach may reduce the computational time. Vazquez’s paper

argues that the views generated by the system are close to preferred views. Examples are shown

in Figure 3.9.

3.7 Balancing Camera Placement and Frame-Coherence

With the camera positioning systems previously described, the virtual camera may move erratically

as it seeks out the optimal position, particularly with a constrained solution ([5] for example). In

a paper by Halper, Helbing, and Strothotte [47] a balance is sought between optimal camera

placement and smooth camera motions, referred to as “frame-coherence”. The system respects

frame-coherence by following four principles: solving from an existing state, parameter relaxation,

occlusion avoidance, and look-ahead algorithms.
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Figure 3.9: Viewpoints selected using view stability [83]

The constraint solver determines camera position by starting from existing camera parameters

to find nearby solutions. From its current state the camera’s parameters are adjusted closer to a

goal state in parameter space, such as position or angle, solving constraints in an order to minimally

influence the output of previous solutions. For example, adjusting the size of the subject by moving

the camera closer or further away does not alter the angle used to aim the camera.

Similar to Bares et al.’s work [5], each goal has a tolerance region which contains acceptable, but

suboptimal, solutions. Parameter relaxation [47] refers to this tolerance region where the optimal

settings of the constraints are not strictly obeyed. If a parameter of a proposed solution falls outside

of the tolerance region it must be placed at the edge of the region. When too many parameters fall

outside their tolerances a transitional cut may be selected.

To avoid occlusion, Halper et al. use a hardware accelerated variation of a technique described

by Feiner and Seligmann [39]. The technique [39] identifies regions from which all desired targets

(subjects and objects) are visible. An example in two dimensions is shown in Figure 3.10. Similar

to algorithms for projecting a scene onto the image plane in Section 2.3 (as in z-buffer algorithms

[2, 53]), areas of occlusion are determined as shown for one target on the left side of Figure 3.10.

As additional targets are added, the number of occluded areas increases (right side of Figure 3.10).
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Remaining non-shadow areas contain unoccluded views of all subjects, although it may not be

possible to simultaneously aim the camera at all subjects (for example, if the camera is placed

between the two subjects).

Figure 3.10: Potential Visibility Regions. White areas have an unoccluded view of the
subject(s).

Feiner et al.’s technique of determining occluded areas differs by partitioning space into a binary

spatial partition (BSP) tree containing shadows or unoccluded views [39]. Problems with this

technique arise when using graphics hardware rendering algorithms to accelerate the approach,

since the shadows must be cast onto something. Locations on the periphery can be selected, but

this leaves some valid locations without a chance of being selected. Additionally, the user is unable

to rank potential solutions and, in some cases, the accelerated technique misses finding a solution

when one exists. Halper et al. present the example, shown in Figure 3.11, where the camera on

the periphery is unable to find an unoccluded view [47]. An unoccluded view exists at point P in

Figure 3.11, but this point is not on the periphery.

Halper et al.’s solution is Potential Visibility Regions (PVR). Shadows are cast onto user con-

structed polygons roughly facing the object or objects of interest. Brighter PVRs indicate a pref-

erence for camera placement. After the camera is positioned at each target and shadows are cast

by the occluding objects onto the PVR polygons, the brightest remaining area on a PVR indicates

the preferred unoccluded view of all targets.

PVRs may be generated at a lower resolution than the final output image, and the occluding

geometry may be simplified in order to increase the algorithm’s speed. This results in the potential

for the algorithm to be applied in real-time using a graphics chip. The cost of solving for multiple

subjects is linear with respect to the number of subjects.

Look-ahead algorithms, which assume the future locations of objects based on their trajectories

and accelerations, also improve frame coherence. The constraint solver is applied to this predicted
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Target

P

Figure 3.11: Camera is unable to find an unoccluded view (for example, at position P) of
the target.

state. Deviations from the planned camera trajectory may occur, but overall the prediction method

increases smooth camera movements (at the cost of added computation). Alternatively, if the cost

of object prediction is too great, the constraint solver may bias its solutions to ones that fall near

the predicted path of just the camera rather than considering future locations of objects.

3.8 Encoding Emotional Content

Human cinematographers use camera angles and other cinematographic techniques to enhance the

emotional content of a film shot. Including emotional content via filming techniques is, for the most

part, ignored with virtual cinematography systems. Some researchers, however, have made efforts

to infuse emotional content into automated virtual compositions.

Work from Tomlinson, Blumberg, and Nain describes a filming system incorporating emotions

and motivations to enhance the filming style of their virtual cinematography system [81]. Their

reactive and interactive system uses happy, sad, angry, surprised, fearful, and disgusted emotions

to modify the filming parameters. For example, a happy state may include bouncy and swooping

camera motions with a brightly illuminated scene and many close-up shots. Conversely, a sad state

may include slow sweeping arcs and dim lighting. Occlusions are avoided by moving the camera

forward until the camera passes the occlusion.

Their approach is to consider the camera as a special actor in a virtual environment, along

with other virtual actors. They call the camera “CameraCreature”. Each actor has a simple

emotional model that modifies the CameraCreature’s emotions, weighted by the actor’s importance,
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the intensity of the emotion, and the amount of recent screen time of the actor.

Motivations select which type of shot is called for. For example, a motivation termed Desire-

ToEstablish causes a wide establishing shot. This particular motivation rises at a constant rate, but

is self-inhibiting and causes periodic establishing shots to occur, unless a more pressing motivation

takes precedence. DesireForTwoShot is the default motivation having a constant, reasonably high

value. It frames two characters in the shot as shown in Figure 3.12.

Figure 3.12: A two shot framing. [81]

Characters may request shots which are incorporated as a motivation in the CameraCrea-

ture. Two such character motivations are DesireForCloseUp and DesireForActionShot which are

requested when an actor determines their current activity deserves a close-up or action shot respec-

tively. To prevent frequent cuts between shots, or between two shots with close motivational values

(which the authors term “behavioural aliasing”), a motivation must have twice the intensity as the

current motivation to take over. Their system is demonstrated using a simple game in which the

main character is assigned a high importance so the camera only cuts to another character when

they are doing something very important.

Kennedy and Mercer present another method of incorporating emotion into a planned virtual

filming sequence [54]. Their system modifies the emotional content of an animation by merging a

knowledge base with a user’s directions. The user defines characters, objects, and actions while

the computer adjusts the camera and lighting (the user can over-ride the computer’s choices). A

planning agent (written in LISP) uses the knowledge base to generate plans to control the camera

and lighting. For example, a scary scene may use dim lighting and close-up camera shots. In terms

of camera cuts, the user may specify fastpaced cuts or slowpaced cuts resulting in many short cuts,

or fewer long cuts, respectively. Images are generated using the POVray ray-tracer. Figure 3.13

shows a happy rendering, while Figure 3.14 shows a scary rendering of the same scene. In the
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happy rendering the computer has chosen a more distant camera position from the subject and

front lighting, while the scary rendering uses a closer shot and back lighting.

Figure 3.13: Two Variations of the Same Scene with Different Emotional Content: Happy
Entrance [54]

Figure 3.14: Two Variations of the Same Scene with Different Emotional Content: Scary
Entrance [54]

3.9 Occlusion

Occlusion is typically ignored or avoided (i.e. by moving the camera to an unobstructed viewpoint).

Through-the-lens techniques ignore occlusion, and instead depend on the user to avoid specifying

camera movements resulting in occluded views. Constrained solutions search for unoccluded loca-

tions to place the camera using either explicit or implicit occlusion constraints. For their virtual

cinematographer, He et al. use a timer to reposition the camera if a subject becomes occluded for
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too long [49]. Bare’s approach allows the user to specify tolerances for occlusion and permits a

requirement for one object to occlude another by a certain amount [5]. When avoiding occlusion,

however, Bare’s solution repositions the camera.

Seligmann and Feiner also deal with occlusion when displaying intent-based three-dimensional

illustrations [39, 78]. Although not intended for virtual cinematography, their approach suggests an

alternative to merely avoiding occlusions when generating three-dimensional illustrations to help

follow textual instructions. As such, the user generating the illustration can specify an unoccludable

object, an action to perform, and style rules to govern the generation of the illustration, such as

how much of the item must be displayed in order to maintain context. Actions to illustrate include

pushing, pulling, loosening, lifting, and inserting. Given this input, the intent-based illustration

system (IBIS) generates an appropriate illustration [78], possibly with meta-objects, such as an

arrow to show which way to turn a knob.

A potential problem, when generating an illustration, is that the unoccludable object may be

occluded from all viewing positions, such as replacing a battery inside an electronic device. To solve

this problem, Seligmann and Feiner introduce cutaway views and ghosting [39]. Ghosting displays

the occluding object as semi-transparent so the user can see through to the unoccludable object

(such as a battery). Cutaways remove the part of the object that occludes the unoccludable object.

Figures 3.15 and 3.16 show a ghosting and cutaway view of a battery inside a radio. Multiple passes

of the z-buffer algorithm create cutaway views. First, a mask that covers the unoccludable object

is rendered and assigned the minimum distance to the screen. When using z-buffer algorithms

([2, 53]) this ensures that no occludable object will be drawn to the region where the unoccludable

object will be rendered, since occludable objects will be deemed to be behind the mask. Next the

occludable objects are rendered. Lastly the distance is reset to the maximum distance possible and

the unoccludable object is rendered. Since the distances have been reset, the unoccludable object

will be fully visible.

There are potential problems with this approach. One is that the context of the unoccludable

object may be lost since occludable objects behind the mask will not be rendered, even if they

are behind the unoccludable object. Another problem is dealing with self occlusion, or multiple

unoccludable objects. To maintain context the masks are typically only slightly larger than the

unoccludable object. To deal with multiple unoccludable objects and self occlusion, the IBIS system

can generate a composite illustration where inserts show the illustration from multiple viewpoints.

3.10 Cinematography in Computer Video Games

With the advent of three-dimensional computer games, the choice of camera placement can strongly

affect the enjoyment of the game. As stated by Christie et al. “Camera systems are increasingly
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Figure 3.15: Illustration Showing a Battery inside a Radio: Ghosting [39]

Figure 3.16: Illustration Showing a Battery inside a Radio: Cutaway View [39]

becoming decisive elements to the success of computer games.” [20]. They discuss three main

types of camera placement in video games: first person, third person, and action replays [20, 19].

A first person view makes the camera placement problem trivial (since the camera view is the

player’s view), with the most common genre to use this type of view being the first person shooter.

A downside of a first person view is a rigid fixed camera position. Additionally, first person

viewpoints are associated with a lower player-character identification than a third person viewpoint

[47]. A third person viewpoint increases the likelihood of the player taking on the role of his or her

character. With rigid camera positions, to ensure a correct shot showing all the necessary character

interactions, the game must be limited to pre-defined scenarios [47] 1.

A third person point of view typically tracks the main character from a fixed set of positions

1Halper et al. don’t provide an example, but LucasArts’ Monkey Island (1990) would be an example where the
avatar interacts with other characters that are placed so as to present a good framing for the camera.
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relative to the player [20, 19]. Both Christie et al. and Halper present the Tomb Raider series

[37] as an example of successful games using this viewpoint. However, the options for camera

placement become limited in tight spots, resulting in unsatisfactory views. Christie and Olivier

give the example shown in Figures 3.17 and 3.18 from Tomb Raider: Angel of Darkness. When

the heroine’s back is against the wall the camera is forced to move in front of her, resulting in an

awkward view for the player. In Figure 3.17 the player must aim facing the avatar, where in Figure

3.18 the player’s viewpoint is more closely aligned with the avatar’s aim. Halper also mentions the

problem of awkward views in close spaces in the Tomb Raider series [47].

Figure 3.17: Camera Positions in Tomb Raider: Angel of Darkness: Bad Camera Position
[21]

Full Spectrum Warrior (Pandemic Studios) is a game that gives more consideration to camera

positions as described by Christie et al. [20]. For example, camera occlusion is avoided through the

use of ray casting to prevent views that are blocked by objects. When the camera path is forced

through a wall or obstacle, the camera jumps to the scene beyond the wall to avoid passing through

solid objects. Other games that have received praise for their “exceedingly competent” [81] camera

systems are Zelda and SuperMario64 (both for Nintendo 64). With the exception of fear, however,

video games have failed to incorporate emotional content into their filming style [81].

Full Spectrum Warrior, and other games, show a progression in the use of cameras in games,

but as noted by Christie and Olivier, currently the use of automated editing and cinematographic

techniques in games is rare, and where apparent, it is implemented using ad-hoc techniques [19].

Some games solve the camera placement problem by having the player act as the camera man in

addition to playing the game. As an example, in The Sims 2 [38] the user selects actions with the

left mouse button, and rotates or translates the camera when pressing the middle or right mouse
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Figure 3.18: Camera Positions in Tomb Raider: Angel of Darkness: Good Camera Position
[21]

buttons respectively. To avoid camera occlusion the user can specify whether walls in a house are

shown, not shown, or use a cutaway view based on the camera angle (there is no solution in the

game to objects or characters occluding the camera).

Action replays, used heavily in modern games, highlight significant events such as a car crash

in a driving game, or a goal in a football game [20, 19]. In an action replay the player temporarily

becomes a spectator, either to emphasize a recent event, or to summarize the events in a game to

bring a player up to speed. Drucker and He see an expansion of the spectator aspect of computer

games [33]. Just as there are many spectators of a sporting event, there could be online spectators

of multiplayer video games, either to preview a game or merely as entertainment. As a spectator,

the camera position need not be one of the players’ viewpoints. For example, in a war game a

spectator could be given a strategic hill-top view, while the players may be restricted to a first

person ground troop view.

3.11 Chapter Summary

Automated systems exist for placing, moving, and selecting a virtual camera in a virtual world.

Through-the-lens systems enable a user to specify points to pin to the screen, while constrained

approaches specify camera constraints to satisfy. Some systems avoid over-constrained problems,

while others drop weaker constraints, or maximize the weights of the satisfied constraints. Selecting

a camera can be specified in idioms, which are encoded in a hierarchical finite state machine. Other

methods of selecting a camera include correlating motion with pixels on the screen, or training a
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neural network. Some systems incorporate emotional content into their filming style by adapting

the lighting, camera cuts, or camera angle to correspond to an emotional state. Two important

aspects of virtual cinematography include frame coherence and occlusion. Frame coherence prevents

the camera from rapidly moving to a position far from the current position. Occlusion avoidance

maintains an unobstructed view of the actors, based on a timer that counts occlusion duration, or

by moving the camera to an unobstructed viewpoint. An area not fully explored in previous work,

which will be addressed in the remained of this thesis, is camera selection in dynamic scenes.
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Chapter 4

Problem Domains

To test camera selection, two virtual environments are constructed: a spectator perspective

hockey game and a third person perspective maze game, shown in Figures 4.1 and 4.3.

4.1 Hockey Game

Figure 4.1: Screen Capture of Hockey Game

Ten cameras are placed on one side of the rink, as shown by the white camera men in the two

views in Figure 4.2. These cameras were chosen to approximately cover the entire ice rink with

some cameras having closer views and others having a view further from the rink 1. The cameras

are placed only on one side of the rink to avoid crossing the line of interest, similar to a broadcast

hockey game. The line of interest is an imaginary line dividing the scenes in two; crossing the line

1Using ten cameras is arbitrary, but was chosen to correspond to initial manual tests of the simulator where a
user selects a camera by pressing the number keys 0 through 9.
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of interest is typically considered dissorienting to the viewer [3, 64]. Nearly every part of the rink is

visible from at least one camera, but in some parts of the rink, such as near the closer boards, the

puck is not visible to any camera. Changes between cameras are abrupt. Such changes are called

jump shots [46], and correspond to usual camera transitions in a broadcast hockey game.

Another configuration of the system allows for an arbitrary number of cameras, randomly placed

around the rink. This is useful in Chapter 7 when measuring the time needed to select a camera

feed based on the number of cameras available.

Figure 4.2: Side View and Top View Showing Camera Placement in Hockey Game

The logic controlling each hockey player is deliberately simple. On each team, the player closest

to the puck (not including the goalie) moves toward the puck while the other players move toward

predefined positions depending on whether the puck is in the home, middle, or visitor region of the

ice. Goalies are placed on a hemisphere in the net area facing the puck. When the closest player

reaches the puck one of three actions are taken.

• If the player is in the opponent’s end of the rink, then the player shoots the puck toward the

opponent’s net.

• Otherwise, if there is a teammate closer to the opponent’s end the player passes the puck

forward to the closest teammate that is closer to the opponent’s end of the rink.

• Otherwise the player bumps the puck forward to the opponent’s end of the ice.

If the goalie stops the puck, then the goalie holds the puck until it is reached by the closest

non-goalie player. If the goalie misses a shot on net a goal is scored when the puck passes the goal

line. The players skate toward pre-defined positions for a new face-off, and the physical simulation

of the puck continues for 200 frames before reseting to the face-off position.

Player motion is defined as follows. Each player can change their acceleration, which affects their

velocity and thus their position on the rink, assuming Newtonian mechanics. A player’s acceleration
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is governed by their distance from their desired position. This causes players to accelerate quickly

and slow as they reach their desired destination. The puck also has velocity, which effects position,

and friction and gravity influnce the puck’s velocity. The puck bounces after intersecting with a

board by reversing the puck’s velocity corresponding to the board’s normal. This means the puck’s

z direction is reversed when the puck bounces off a side board. The puck’s y value is set to zero

when it has contact with the ice so the puck does not bounce up and down on the ice.

For the purpose of creating a dynamic scene, randomness is introduced to the action as described

in the following list. For comparison, the hockey rink is 200 units long with the nets placed at

x = −77 and x = 77 units. The z direction is across the ice and the positive y direction is up.

The velocity and position of players and the puck is updated every 17 ms (approximately 60 frames

per second). In the simulation there is one time slice per frame. Thus the terms time slice and

time between frames imply the same amount of time (i.e. 17 ms), although time slice refers to

the physical simulation where as time between frames refers to the time before rendering the next

image.

• Deciding which team moves first at each frame is randomized. Thus if the blue and red player

reach the puck at the same time then there is a 50% chance for each player that they will

control the puck at that time slice.

• The maximum velocity players reach is randomized between 0.9 and 1.15 units per time slice

for each player. Similarly the maximum acceleration is randomized between 0.4 and 0.5625

units per time slice squared. Also, a player’s acceleration is randomized at each time slide to

add ±0.02 units per time slice squared.

• When the puck is bumped forward by a player, it receives 1.6 times the player’s velocity in

the x direction and the player’s velocity in the z direction ±10% (recall the x direction is

lengthwise on the ice and the z direction is across the ice).

• When passing the puck, the range of the puck’s velocity is 2.5 times the player’s velocity ±0.6

units per frame in the x direction and ±0.4 units per frame in the z direction.

• When the puck is shot on net, its velocity is as follows: 4.0 ± 0.65 units per frame in the x

direction, 0.7± 0.7 units per frame in the y direction and 4.0± 1.25 units per frame in the z

direction.

• The goalie can hold the puck if it is up to 6 units away from the goalie’s position. At each

frame there is a 10% chance that the goalie will miss the puck.

The cumulative effect of the randomness introduced to the game is that the resulting action is

unpredictable in that the puck and players’ locations at any point in the game are only known at

the start of the game, or after a goal. Thus the scene is a dynamic one.
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4.2 Maze Game

The maze game is a third person perspective shooter where the human user controls an avatar to

find target boxes in a 3D maze. The user can shoot a box at target boxes as shown in Figure 4.3.

In Figure 4.3 the target box has a question mark texture, while the box fired by the player (a firing

box) is to the left of the target box. After a target box has been hit the texture changes to a happy

face. The user wins when all target boxes have been hit, either by a firing box or the avatar, as

shown in Figure 4.4. 32 virtual cameras encircle the avatar in two rings parallel to the xz plane,

consisting of 16 cameras in each ring, as depicted in Figure 4.5. The nearer ring is located at three

units from the avatar, and the further ring is located at seven units from the avatar. To decrease the

degree to which the avatar’s head blocks the user’s view, cameras to the left or right of the avatar

are offset slightly left or right respectively (0.5 units for the outer ring and 0.35 units for the inner

ring). Cameras in the outer ring are positioned at 0.5 units above the xz plane, whereas cameras

in the inner ring are positioned at 0.9 units above the xz plane, the latter gives the perspective of

looking over the avatar’s shoulder. Smooth camera changes are performed by linearly interpolating

between camera views in angle and position, rather than having abrupt camera feed changes, as in

the hockey game.

Figure 4.3: Maze Game - player firing a box (left) at a target box

In the maze game there is no randomness introduced by the program, but the avatar is controlled

by a human user. Thus the user’s actions are unknown to the system beforehand and, from the

perspective of a designer, the scene is dynamic.

4.3 Chapter Summary

This chapter introduces the two test environments for the SCSP camera selection system. The

hockey game is a spectator viewpoint game where the players are controlled by the computer.
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Figure 4.4: Maze Game - user has won

While the hockey players’ logic is simple, the overall play is non-trivial. Randomness introduced

into the players’ actions creates a test system for dynamic scenes. By default, ten cameras are

placed at fixed locations, but an arbitrary number of cameras in random locations can be specified

at run time.

The maze game provides a third person perspective viewpoint. The user controls an avatar to

find target boxes in a three-dimensional maze. Since the user’s actions are not known beforehand,

the game also produces dynamic scenes.

50



Figure 4.5: Camera Placement Around Avatar in Maze Game as depicted from a top down
viewpoint.
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Chapter 5

Design of the SCSP Camera Selection System

Current camera selection systems, such as the method presented by He et al., perform camera

selection, but with shortcomings. First, the system will typically specify transitions only to a

limited number of cameras. This approach may work for scripted scenes where the action is known

beforehand, but can be problematic in dynamic scenes where it is preferable to choose among many

cameras at run time. For example, in a hockey or soccer game the next camera selected may be

the one that best shows the puck or ball, regardless of the previous camera. In He et al.’s method

the user has to provide the guards on transitions (the conditions to satisfy) for changing to another

camera. The number of guards to specify is the sum of the number of potential cameras from each

camera. For example, if there are ten cameras, and transitions are specified so as to transition to

any other camera, then there are 90 guards to specify assuming that a guard is not required for a

camera to transition to itself.

In addition to the designer potentially specifying many guards, current systems can remain with

a suboptimal camera selection choice when no guard is fully satisfied. Suppose in a soccer game,

camera three is currently selected, camera four has a partial view of the ball, and the ball is out

of the field of view of all other cameras (including camera three). Also suppose that the designer

specifies in the guards that the ball be visible in the camera’s field of view. If the guard on the

transition to camera four requires the ball to be fully visible, then the system will continue to select

camera three even though camera four shows more of the soccer ball. A similar situation occurs

when all cameras have the ball in their field of view. In this case all of the guards on transitions are

satisfied and the system cannot differentiate between them (the ball may be more centered in one

camera’s field of view, which may be more preferred). If the guard is instead specified that the ball

be in the center of the camera’s field of view, then the initial problem will occur when the ball is

in the field of view, but not centered. The camera selection system may remain with a suboptimal

selection since the guard is not fully satisfied.

A problem with He et al.’s idiom approach is the hard constraint nature of the guards on the

transitions. An additional problem is that each guard is designed independently of the other guards,

resulting in the specification of many guards for the designer. Using soft constraints addresses the

following shortcomings of He et al.’s idiom approach: choosing a camera feed from many cameras,
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selecting a camera feed in a dynamic environment, and selecting the best camera feed when no

camera feed satisfies all the specified requirements, or when more than one camera feed satisfies

all the specified requirements. Using a SCSP approach means the solution is over finite, discrete

variables from an arbitrary domain – arbitrary in the sense that it is up to the designer to choses

which variables to include and the preferences to encode over those variables. Shown in Tables

5.1 and 5.2 are a summary of the constraints used in the hockey and maze games, introduced in

Sections 4.1 and 4.2. These constraints will be explained in more detail in the remainder of this

chapter. Specified soft constraints, introduced in Section 2.1.4, define the problem to optimize.

Since constraints are defined under a SCSP interpretation, partial satisfaction of constraints is

permitted.

Name Use

KeepCentered Prefer views where the puck is in the center of the camera’s

field of view

DistanceToCamera Prefer views where the puck is closer to the camera

FrameCoherence Prefer that the camera does not change too often or remain

on one camera for too long

WasFeedx Prefer that the same camera feed remain on the same display

CenterScorer Prefer that the scoring player appear in the center of the

camera’s field of view

SeeScorer Prefer that the scoring player appear closer to the camera

Table 5.1: Summary of Constraints used in the Hockey Game

Name Use

BiasCameras Prefer camera viewpoints that are behind the player

SeeTarget Prefer camera views where a target box is visible

SeeAvatar Prefer camera views where the user’s avatar is visible

SeeFiringBox Prefer camera views where the firing box is visible

PassThroughWalls Prefer to change to a camera that does not require

passing through a wall

Table 5.2: Summary of Constraints used in the Maze Game
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5.1 Selecting a SCSP Constraint Framework for Camera Se-

lection

There are several ways to choose operators, but some may be more appropriate than others. A Fuzzy

SCSP, briefly described in Section 2.1.4, could be used to represent the camera selection problem,

but may not be sufficiently discriminating to accurately reflect a designer’s preference. The issue

lies in using min for combining tuples which can cause ties for the highest global preference, even

when the input tuples are not equal. As an example, consider joining two independent constraints

where tuple1 and tuple2 from the first constraint are to be combined with tuple3 from the second

constraint. Suppose that tuple1 has a significantly higher preference than tuple2, and that tuple3

has a lower preference than either tuple1 or tuple2. When joined using the Fuzzy join, tuple1×tuple3
has the same preference as tuple2×tuple3 since the minimum in each case is tuple3. Using a different

join operation could rank tuple1 × tuple3 as more preferred than tuple2 × tuple3, which may be

desirable.

A definition and use of a different semiring can avoid combined preferences from becoming equal

when the input valuations are not equal. Consider,

S = 〈[0, 1], f+, f×,0,1〉

and X, C, and D remain as before. The operator, f×, is the usual arithmetic multiplication and

can combine valuations similar to the Fuzzy join. The preference value of each combined tuple is

defined using usual arithmetic multiplication:

Cjoin

(
x1, . . . xiki

, xj1 , . . . xjkj

)
= Ci(xi1 , . . . , xiki

)× Cj(xj1 , . . . , xjkj
)

The operator f+ is defined to be max.

Indeed, S is a semiring since it satisfies the properties of a semiring. Satisfying the properties

of the semiring trivially follows from the properties of arithmetic multiplication (associative, dis-

tributive, etc.), and the properties of max (commutative, associative, etc.) [12]. For further details

see Appendix B.

Returning to the meal example from Section 2.1.4, Table 5.3 shows the resulting preference

distribution for the meal example using multiplication to combine preferences. Note that this

SCSP join results in an ordering that is similar to the Fuzzy SCSP join in Table 2.1, but has more

distinctions between the tuples.

To employ constraint propagation in a SCSP (Section 2.1.4), it is necessary to define a projection

operator for S [31, 30, 51]. A projection operator for S can be defined as Ci⇓X∗ , where ⇓ denotes
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Main Dish Fruit Drink Preference

pasta apple water .9× .5 = .45

pasta apple milk .2× .5 = .1

pasta pear water .5× .5 = .25

pasta pear milk .1× .5 = .05

stir fry apple water .9× .8 = .72

stir fry apple milk .2× .8 = .16

stir fry pear water .5× .8 = .4

stir fry pear milk .1× .8 = .08

Table 5.3: Example of Combined Preferences

projection, Ci ∈ C is a constraint, and X∗ ⊆ X denotes the subset of variables on which to project.

The new constraint Ci⇓X∗ , is defined over the variables:

vars(Ci⇓X∗) = vars(Ci) ∩X∗

where vars(Ci⇓X∗) and vars(Ci) denote the variables involved in constraints Ci⇓X∗ and Ci re-

spectively, and ∩ denotes intersection. Let Xi,1, . . . , Xi,ki be the variables in vars(Ci⇓X∗) and

Yj,1, . . . , Yj,lj be the variables in vars(Ci) but not in vars(Ci⇓X∗).

For each tuple in the projected constraint, the preference value is calculated as follows:

Ci⇓X∗(Xi,1,...,Xi,ki
) =

∑
Yj,1,...,Yj,lj

Ci(Xi,1, . . . , Xi,ki , Yj,1, . . . , Yj,lj )

where Ci⇓X∗ is the projected constraint over Xi,1, . . . , Xi,ki and not over Yj,1, . . . , Yj,lj (the order

of the variables is not important in the projection). The
∑

operator is the prefix form of f+, which

is the application of the f+ to a set of tuples. Remember that multiple tuples in Ci project onto

the same tuple in Ci⇓X∗ , unless vars(Ci) ⊆ X∗. In this semiring implementation,
∑

returns the

maximum preference value of the tuples considered, since f+ is defined as max.

For example, projecting the preference function in Table 5.3 from the set of variables {Main

Dish, Fruit, Drink} onto the set {Main Dish} is computed as follows, with the resulting preference

displayed in Table 5.4.

max (.45, .1, .25, .05) = .45

max (.72, .16, .4, .08) = .72
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Main Dish Preference

pasta 0.45

stir fry 0.72

Table 5.4: C
Table 5.3⇓{Main Dish}(Main Dish)

A SCSP solver joins constraints to construct the global preference, and the resulting tuple with

the highest preference is selected as the solution. In the meal example, shown in Table 5.3, the

tuple with highest preference determines the choice of foods for a meal. In the case of a camera

selection system, the tuple with the highest preference determines the camera feed to select.

An advantage to this SCSP approach is that constraints are defined modularly, based on in-

ferred independence of a human designer, resulting in fewer tuples for the designer to specify than

specifying the global preference directly. The case is similar to the argument used by Pearl when

discussing independence in probabilistic relationships. Pearl claims people easily recognize inde-

pendence relationships, compared to providing numerical estimates, when discussing probabilistic

knowledge:

Further light on the structure of probabilistic knowledge can be shed by observing how
people handle the notion of independence. Whereas a person may show reluctance to
giving a numerical estimate for a conditional probability P (xi|xj), that person can usu-
ally state with ease whether xi and xj are dependent or independent, namely, whether
or not knowing the truth of xi will alter the belief in xj . [70]

Recognizing independence relationships reduces the number of preferences the designer must specify

(specify the preference of multiple small tables rather than provide the global preference directly),

and recognizing independence relationships is easier than providing numerical parameters. This

style of preference encoding accommodates arbitrarily complex relationships, while permitting sim-

plifications where independence relationships hold.

5.2 Variables used in SCSP Constraints for Camera Selec-

tion

In the SCSP approach presented in this thesis, soft constraints are classified into two main types:

static constraints set at design time, and dynamic constraints set at run time. Constraints set

at design time represent the preferences of a designer, for example, that a subject appear in the

center of the screen. Constraints defined at run time reflect the current environment, for example,

that a subject is currently out of the camera’s view. Without the information encoded by dynamic

constraints, the solver may choose an optimal solution that reflects fantasy rather than reality. For
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example, the solver may select a solution with the subject on screen and centered, where in reality,

the subject is out of the camera’s view.

Consider an example where the designer prefers the puck in the center of the camera’s field of

view. This preference, named KeepCentered can be encoded in a table, as shown in Table 5.5. Here

X = {Location}, D = {{center,border,out-of-view}}, and C = {KeepCentered}.

Location Preference

center 1.0

border 0.7

out-of-view 0.3

Table 5.5: Static KeepCentered Preference

Note that the preference values lie between 0 and 1, where a higher preference value implies

more preferred. Currently the SCSP solver would find a highest preference of 1.0 for {Location =

center}.

The method, as described so far, selects the tuple from the global preference with the best

camera feed, given the model of the problem as represented under a SCSP interpretation. The tuple

selected, however, does not indicate which camera feed caused that tuple to be chosen, but merely

contains the values of the variables the designer chose to represent the problem, and the preference.

To address this issue of not knowing which camera feed to select, a variable feed indicates which

camera feed is responsible for a tuple having the best preference. The feed variable indicates which

camera feed to select, and can be retrieved from the tuple with the highest preference to indicate

which camera feed will be selected. Returning to the preference shown in Table 5.5, suppose the

example system has two equally preferred camera feeds, as shown in Table 5.6.

Feed Preference

one 1.0

two 1.0

Table 5.6: CameraFeed Preference

Now the tuples with the highest preference are {Location = center, Feed = one} and {Location

= center, Feed = two}. Suppose that the hockey puck is currently in the border region of camera

one’s field of view and out of camera two’s field of view. These constraints can be represented by

a dynamic constraint, as shown in Table 5.7, set by the system during execution.

The tuple with the highest preference is now {Location = border, Feed = one} and the preference
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Feed Location Preference

one center 0.0

one border 1.0

one out-of-view 0.0

two center 0.0

two border 0.0

two out-of-view 1.0

Table 5.7: Dynamic KeepCentered Preference

value is 0.7. The Feed variable indicates that camera feed one should be displayed on the screen.

5.3 Multiple Displays

The SCSP selection system, presented so far, applies to one display but extends to multiple displays

under the existing framework. When using multiple displays, the variables that represent the

settings for the cameras are duplicated for each display to enable each display to have its own

preference over camera variables.

Suppose in the hockey game a designer prefers the puck be centered in the first display, but out

of view on the second display. A preference to not show an item or character may seem strange as

a preference for a hockey game, but may encode a designer’s preference to show events happening

away from the puck, such as pulling the goalie1. In other genres of game, the designer may want

to introduce a sense of mystery or suspense by delaying showing an enemy boss. One method of

specifying a preference to show different areas of interest on different displays is to use the Location

variable, and set a high preference to show the object on one display, and a low preference on the

other display. However, if the same Location variable is used on each display, selecting a near zoom

on one display also selects a near zoom on the other displays.

Duplicating the variable name with an index for each display, for each non-feed variable, pro-

vides a unique variable name for each display. Table 5.8 shows two KeepCentered preferences for

two displays to encode the designer’s preference to show the puck only on one screen. A corre-

sponding dynamic constraint for each preference synchronizes the SCSP selection with the virtual

environment. When a variable state is shared among all displays, such as a goal being scored in

the hockey game, all displays can use the same variable. In this case there is no need to duplicate

the variable name since synchronizing this particular variable’s state for all displays is the desired

1This examples serves as possible motivation for this preference. Pulling the goalie is not implemented in the
simulator.
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behaviour.

Location1 Preference Location2 Preference

center 1.0 center 0.3

border 0.7 border 0.7

out-of-view 0.3 out-of-view 1.0

Table 5.8: Static KeepCentered Preferences with Two Displays

5.4 Additional Preferences for the Hockey Game

Section 5.2 introduced the KeepCentered constraint to keep the puck in the center of a camera’s

field of view. Another preference, DistanceToCamera influences how large the puck appears on the

display, as shown in Table 5.92. The ratios between the preferences are not as large as with Keep-

Centered shown in Table 5.5, implying that in an over-constrained problem KeepCentered will be

satisfied before DistanceToCamera. The corresponding dynamic constraint for DistanceToCamera

is not shown but is similar to Table 5.7.

Distance Preference

near 1.0

medium 0.8

far 0.5

Table 5.9: Static DistanceToCamera Preference

The designer may want to influence how long a display remains on the same camera feed. A

temporal constraint, FrameCoherence3, prevents rapid changes between camera feeds or remaining

on one camera too long. As Table 5.10 shows, feeds currently used for less than five seconds are

preferred to camera feeds selected for more than ten seconds. The last two values in Table 5.10 are

values that can only be used to describe cameras that are not currently selected.

A potentially unwanted viewing effect occurs when using FrameCoherence and multiple displays.

A camera feed selected for less than two seconds has a high preference, but the preference does not

2The valuations are arbitrarily determined by a user. These valuations may seem high, but in this case, were
choosen to reflect that all settings of Distance are acceptable, although some are more preferable. This is in contrast
to the KeepCentered constraint, when in some cases, out-of-view is usually unacceptable.

3We call this constraint FrameCoherence since its function is to maintain camera frame coherence, similar to the
frame coherence objective in [47].
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Duration Pref

selected for less than two seconds 1.0

selected two to five seconds 0.9

selected five to ten seconds 0.4

selected more than ten seconds 0.3

selected less than two seconds ago 0.1

not recently selected 0.7

Table 5.10: Preference for Frame Coherence

specify on which display the feed should be shown. Thus, the feed could rapidly switch between

different feeds. To avoid this, a wasFeedx variable is introduced for each display, where x indicates

the display. To prefer the same feed remain on a given display, the designer specifies the preference

of selecting a feed based on which feed is currently selected on a given display. When used with fixed

position cameras, wasFeedx can also be used to design a constraint to avoid switching to another

feed that is less than 30◦ different from the current camera, a desirable property with jump cuts

[46]. Dynamic constraints using wasFeedx differ from dynamic constraints presented so far, in that

the previous dynamic constraints are binary (involving two variables) where dynamic constraints

using wasFeedx are unary (over one variable).

The designer may decide to change preferences depending on game events, such as a goal being

scored in the hockey game. When combined with a dynamic GoalScored constraint, a goalScored

variable with domain {yes, no} allows the designer to specify preferences depending on whether a

goal is scored or not. For example, the preference from Table 5.5 can be replaced with the preference

shown in Table 5.11 to indicate that the puck is preferred in the center of the field of view only

when a goal has not been scored. Note that equal preference values indicate that the designer is

indifferent between the choices.

The designer may choose to see the scoring player after the goal has been scored. The preferences

seeScorer and centerScorer are similar to the preference in Table 5.11, but with respect to the

scoring player rather than the puck.

While the constraints presented so far may appear simple on their own, the combination of

preferences used is non-trivial. A more complicated constraint graph is shown in Figure 5.1 using 4

screens, 29 variables (shown in boxes), and 59 constraints (shown with lines) . Constraints ending

in a dot imply unary constraints. Static constraints are shown in black while dynamic constraints

are shown in red. Recall that the numbers on the ends of variables indicate settings for the

indicated feed, these numbers are used to provide a unique variable name for each display. Notice

the constraint graph shows static constraints between camera feeds. These constraints encode the
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goalScored Location Preference

yes center 1.0

yes border 1.0

yes out-of-view 1.0

no center 1.0

no border 0.7

no out-of-view 0.3

Table 5.11: Static KeepCentered preference when considering if a goal has been scored or
not.

designer’s preference that each display show a different camera viewpoint. Tuples that select the

same camera for two different feeds are assigned a preference of 0.1, while other tuples are assigned

a preference of 1.0. The implentation of preferences shown in Figure 5.1 is a proof of concept, not

a proposed camera system. Commercial interests could use this system to encode more complex

preferences using the SCSP approach.

seeThePuck03 seeThePuck04

seeThePuck02goalScored

centerScorer01 centerScorer02

seeScorer01 seeScorer02

cameraFeed02cameraFeed01

seeThePuck01

thePuckSize01

thePuckSize03 thePuckSize04

thePuckSize02

seeScorer04

centerScorer04

seeScorer03

frameCoherence02

wasFeed02

cameraFeed03 cameraFeed04

frameCoherence01

wasFeed01

wasFeed04

frameCoherence04frameCoherence03

wasFeed03
centerScorer03

Figure 5.1: Constraint Graph Example using Four Displays

5.5 Preferences for the Maze Game

One way the maze game differs from the hockey game is that the user controls the avatar. Con-

sequently, views behind the avatar are preferred since the user’s view and the avatar’s view are

aligned and make the avatar easier to control. The constraint BiasCameras prefers view points

behind the avatar. Shown in Table 5.12, BiasCameras is similar to Table 5.6 but has 32 domain
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values for Feed. Notice that camera feeds 1, 2, 3, 16, 17, and 18 have a higher preference value

than other tuples, since these camera feeds are behind the avatar. Also notice that camera feeds

from the outer ring (1 through 16) are preferred to those on the inner ring (17 through 32)4. The

static constraint BiasCameras does not need a corresponding dynamic constraint, as the cameras

are fixed relative to the user’s avatar. Consequently, the number of the camera behind the avatar

does not change during the maze game.

Feed Preference Feed Preference

1 1.0 17 0.8

2 0.9 18 0.7

3 0.8 19 0.6

4 0.7 20 0.5

5 0.6 21 0.4

6 0.6 22 0.4

7 0.6 23 0.4

8 0.6 24 0.4

9 0.6 25 0.4

10 0.6 26 0.4

11 0.6 27 0.4

12 0.6 28 0.4

13 0.6 31 0.4

14 0.6 30 0.4

15 0.7 31 0.5

16 0.8 32 0.6

Table 5.12: BiasCameras preference

Occlusion constraints keep particular characters or objects in view. In the maze game the user

searches for targets, so views with a target are preferred to those without. However, the target

may be occluded by a wall. A constraint, SeeTarget over the variable targetVisible encodes the

preference to see a target, as shown in Table 5.13. The preference to see the avatar, SeeAvatar,

and to see a firing box, SeeFiringBox, are similar, and shown in Tables 5.14 and 5.15 respectively.

In this example, SeeFiringBox reflects an equal preference to see the firing box well, or some, and

a low preference for a poor view of the firing box.

Users may find a camera change that passes through a wall disorienting. The preference SeeA-

4See Figure 4.5 for camera locations for this example.
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targetVisible Preference

unoccluded 1.0

partially occluded 0.9

occluded 0.4

Table 5.13: SeeTarget preference

seeAvatar Preference

unoccluded 1.0

partially occluded 0.6

occluded 0.1

Table 5.14: SeeAvatar preference

vatar decreases the preference for views where the avatar is not visible, but does not affect the path

between the cameras, which may pass through a wall. The preference PassThroughWall over the

variable passThroughWall decreases the preference for camera transitions that pass through a wall.

Details of the implementation of the corresponding dynamic constraint are presented in Chapter 6.

5.6 Chapter Summary

This chapter introduces the constraints used under the SCSP camera selection system as imple-

mented in the hockey and maze games. The join operator, ⊗, is implemented using arithmetic

multiplication for each combination of tuples. Preferences for the hockey game are already summa-

rized at the beginning of this chapter in Table 5.1, while the maze game preferences are summarized

in Table 5.2. With multiple displays, additional static constraints may require each display to show

a different camera feed.

seeFiringBox Preference

unoccluded 1.0

partially occluded 1.0

occluded 0.1

Table 5.15: SeeFiringBox preference
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passThroughWall Preference

no 1.0

few 0.2

lots 0.1

Table 5.16: PassThroughWall preference
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Chapter 6

Implementation Details

This chapter presents the implementation of several dynamic constraints in the hockey and maze

games, and explains details of the SCSP solver. Dynamic constraints are set by the system at run

time; this chapter explains how they are set. Chapter 5 introduces static and dynamic constraints,

and a high level view of combining constraints. An exhaustive join, however, is intractable for large

problems, so a branch and bound search process is used instead. While a branch and bound search

is also intractable for large problems its execution time may be much less than an exhaustive join

due to the effect of pruning branches. The times required to perform a branch and bound search

on example domains are presented in Chapter 7.

6.1 Frame Rate in Simulation

The amount of time the SCSP solver has to select a camera depends on how frequently the camera

selection is made. While the camera selection procedure could be run every frame of the simulation,

it may not be desirable as it could result in overly frequent camera changes. The timers in the

hockey and maze games are set to update objects’ movement at 60 frames per second. An acceptable

viewer experience was found when the hockey game solves for a camera selection every 30 frames

and the maze game every 20 frames.

6.2 Dynamic Constraints

Dynamic constraints require the system to set the preference values at run time to reflect the

current situation in the virtual environment. Each dynamic constraint has a function in the virtual

environment that returns an array of preference values appropriate to the constraint. For example,

the dynamic constraint for KeepCentered, shown in Table 5.7, returns an array of preferences ordered

by Feed and then Location. Thus, the function determines the location of the puck in the field of

view for each camera. To determine the location of the puck on the display, the puck is projected

to the display using the matrices, described in Sections 2.3.1 and 2.3.2, which are retreived from

the OpenGL pipeline. The puck’s x and y coordinates on the display are returned as floating point

values in which values of -1 and +1 are at the limits of the display. If the puck’s x and y values are
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between -0.4 and +0.4 then the puck’s location on the screen is center. Values outside this range,

but on the display map the puck location to border, and values that result in the puck not shown on

the screen map to out-of-view. The DistanceToCamera is similarly determined, but uses the puck’s

z coordinate. The dynamic constraints for CenterScorer and SeeScorer are similarly encoded but

use the scoring player as input instead of the puck. When no goal has been scored these values are

set to out-of-view and far respectively.

The preferences for the binary dynamic constraint, FrameCoherence, are set using an array of

times and an array of cameras currently selected. The array of times records the last time each

camera feed was selected. The array of cameras records which camera is selected on each display.

Each time the system selects a camera these arrays are updated. The preference values of each tuple

are set to 1.0 or 0.0 by comparing the current time to the last time the camera was selected. For

example, if the same camera is selected, and has been selected for less than two seconds, then the

state selected for less than two seconds would receive a preference value of 1.0 while the other states

would be assigned preference values of 0.0. Similarly, the unary dynamic constraint for wasFeedx

is set by examining which camera is currently used for display x.

The unary dynamic constraint for GoalScored is dependent on whether a goal is scored or not.

A goal is considered to be scored for 200 frames after the puck crosses the goal line, as this is

roughly the time required for players to return to a face-off position.

To set the dynamic occlusion constraints in the maze game the avatar and each object are

bounded by non-visible boxes, which are divided into smaller boxes and projected to an imaginary

2D screen, defining rectangles. The screen is imaginary in the sense that the bounding boxes are

not displayed to the user. The imaginary screen, however, is aligned with the user’s display so that

decisions performed using the imaginary screen appropriately apply to the game.

Target and firing boxes are divided into 8 smaller boxes, as shown in Figure 6.1, while the avatar

is divided into 27 smaller boxes (3 × 3 × 3). Other objects in the maze, such as wall segments, are

similarly projected to rectangles on an imaginary screen (but not first subdivided) and compared

to the rectangles of the object of interest to determine overlap.

The dynamic constraint, TargetVisible, is constructed using a simple counting technique. Since

each smaller box projected to the imaginary screen defines a rectangle, the number of resulting

non-overlapped rectangles determines the dynamic constraint assignment to TargetVisible. Since

an object can’t be occluded by an object behind it, a rectangle from a smaller box is only considered

occluded if it is overlapped by a rectangle from a closer occluding object. When setting the dynamic

SeeAvatar constraint, the system assigns a preferences of 1.0 to unoccluded if 15 or more of 27

rectangles are visible, partially occluded if between 10 and 14 rectangles are visible, and occluded

if fewer than 10 rectangles are visible1. Preference values of 0.0 are assigned to the other states.

1This is one implementation. Other groupings for occlusion are possible.
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Firing and target boxes are similarly assigned preferences to SeeFiringBox and SeeTarget based on

more than six, three to six, or fewer than three visible rectangles respectively.

Figure 6.1: Occlusion constraints are determined by counting the number of visible rect-
angles. An object is first bound by an imaginary box (left). The box is divided into smaller
boxes (middle). The smaller boxes are projected to rectangles onto a screen, for counting
which rectangles are visible (right).

The dynamic constraint values from SeeAvatar are used to set the dynamic constraint PassThrough-

Wall. The system considers potential paths, which are a sequence of cameras between a starting

camera and ending camera. Since camera changes interpolate the angle between the currently se-

lected camera and the next selected camera, the interpolated camera values periodically align with

camera values available for selecting, for which occlusion information is known from setting the

SeeAvatar dynamic constraint. To determine if a path is occluded, the system counts the number

of occluded cameras along a proposed path of the rings of cameras as shown in Figure 4.5. When

changing from one camera to another, the camera rotates left or right by determining which angle

is smaller between the current and next camera position. Note these cameras may not be adjacent

to one another in position. If passing along the inner or outer ring, only cameras on that ring are

considered. If passing from one ring to another, occluded cameras from both rings are considered.

If no cameras along the proposed path are occluded, PassThroughWall assigns a preference

value of 1.0 to state no and 0.0 to states few and lots. Similarly, if one camera is occluded then 1.0

is assigned to few and a preference value of 1.0 is assigned to state lots if two or more cameras on

the proposed path are occluded (with other states assigned a preference value of 0.0).

6.3 SCSP Solver

The global tuple with the highest preference is found via a best first, branch and bound tree search.

The search assigns single values to a variable at each node until, at leaf nodes, all variables are

assigned a value representing an assignment. A maximum degree heuristic determines the order in

which variables are assigned values; variables participating in more constraints are assigned values

earlier than variables participating in fewer constraints [84, 58]. Since dynamic constraints prune

many branches the memory used by the best first search solver is typically not large relative to the
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amount of memory available in modern computer systems. The bound on the memory required is

most strongly determined by the number of displays and secondly by the number of camera feeds.

A more formal analysis appears in Section 6.4. In memory restricted implementations a depth-first

search could be used2. The best first strategy, however, has the potential advantage over the depth-

first search of expanding fewer nodes in the tree since the best solution may be reached earlier in

the search.

Partial assignments have a preference level associated with them that can be used to prioritize

which nodes are expanded before others. As an example, to assign a preference level to a partial

assignment, consider binary constraints. Assume the variables are ordered such that variables with

lower indices are assigned values before variables with higher indices. Assume that the variables

X1 . . . Xk are assigned values xi . . . xk respectively. The preference value associated with a particular

variable, i, can be determined by multiplying all the constraints involving i and variables with an

index lower than i.

Ubi =

i−1∏
j=1

Cji(xj , xi), i > 1

where each Ubi groups constraints based on the maximum index of the variables involved, and
∏

implies arithmetic multiplication, since the variables in the constraint are assigned values xj and xi.

The purpose of stopping the product at i− 1 avoids double counting, such as including constraints

C12 and C21. If the designer has not provided a preference function for a Cji, then a preference

value of all ones can be assumed, as this leaves the valuation unchanged. In implementation the

computation is avoided as it does not change the valuation.

Ub denotes an upper bound since the valuations monotonically non-increase as each constraint

is applied. The preference assigned to the partial assignment is the product of the Ubi valuations.

Ub =

k∏
i=2

Ubi

Note that at leaf nodes, the upper bound is the same as the actual valuation assigned to the tuple,

since the partial assignment has become a full assignment. Non-binary constraints, such as unary

constraints, can be used to calculate Ub in a similar fashion.

For example, if there are three variables assigned values, X1 = x1, X2 = x2, and X3 = x3, then

the partial assignment can be determined as follows (k=3).

Ub2 =

2−1∏
j=1

Cji(xj , xi)

2The best first search can be converted to a depth-first search by changing the ranking function, in the priority
queue, such that more recently added nodes are preferred to less recently added nodes.
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= C12(x1, x2)

Ub3 =

3−1∏
j=1

Cji(xj , xi)

= C13(x1, x3)× C23(x2, x3)

Ub =

3∏
i=2

Ubi

= C12(x1, x2)× C13(x1, x3)× C23(x2, x3)

The valuation of the partial assignment depends on the values assigned to the variables and the

valuations of the preference functions Cji.

The best first search is implemented using a priority queue. Retrieving the next branch to

expand from a priority queue, based on current preference value, expands branches with higher

preference before branches with lower preference. The search begins pruning branches once a

solution from a complete assignment has been found. If a branch to expand has a lower current

preference than the assignment already found then the search discards the branch as it contains no

solutions with higher preference than the solution already found.

Dynamic constraints cause aggressive pruning, as often only one branch contains a non-zero

preference value. Consequently, propagation techniques to accelerate the search were not used.

Camera selection systems with a large number of constraints may execute slowly due to a large

number of nodes for the search process to expand. While they may cause aggressive pruning,

dynamic constraints do not have the same pruning effect on output variables since it is not known

beforehand which value assignment will result in the maximum preference level. As a result,

mulitiple output variables, such as using the camera selection system with multiple displays, will

result in an increase in the number of nodes to consider, assuming there is more than one camera to

select. In such cases constraint propagation techniques may be added to the system, or the SCSP

solver can be converted into an approximate native code solution, as discussed in Chapter 7.

6.4 Discussion on Complexity

The number of leaf nodes a general branch and bound searches is bounded by nb, where n is the

depth of the tree (i.e. the number of variables to set), and b is the branching factor (i.e. the largest

domain of the variables). With the camera selection SCSP system, however, the combination of

dynamic constraints with a best first value ordering leads to a possible tighter bound on the number

of leaf nodes. As implemented, dynamic constraints will have only one non-zero value. As a result

of using multiplication for combining tuples, the search process will traverse the branch with the

non-zero value first due to the best first value ordering. When the search later begins traversing
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a branch with a zero preference, the branch will be pruned, since another, non-zero solution will

have already been identified.

The consequence on complexity analysis is, that during a typical search, only camera feed

variables are expanded beyond a single branch while dynamic constraints effectively allow pruning

of the majority of the sub-trees. Constraints affect the time required to select a camera, as they

determine the preference of a tuple. The most significant influence on search complexity, however,

is the number of displays (or output variables as mentioned in future work, Section 9.1), followed

by the number of feeds. There are exactly d displays. For each display, f feeds are considered.

Therefore the total number of choices to explore is fd. All other variables in the model are set

by dynamic constraints at run time and have a branching factor of one. Thus the worst case time

complexity to select a feed for each display is O(fd). This result will be used in Chapter 7 to

help transform experimental data into a form more suitable for computing an equation using linear

regression.

Concerning memory use, in the worst case all of the O(fd) nodes of the tree are stored in the

queue, waiting for expansion. Thus the memory use is bounded by O(fd)3.

6.5 Chapter Summary

Dynamic constraints require that the preference values be set at run time. Each dynamic constraint

has a procedure for setting these preference values. For example, KeepCentered and SeeScorer

project the puck or player to an imaginary screen to set the appropriate visibility. To set the

FrameCoherence constraint, the last time each camera was selected is retrieved from an array.

Occlusion in the maze game is handled by dividing and projecting a bounding box to the screen

and counting the number of parts visible. The occlusion constraint is used in the PassThroughWall

preference to determine if a camera transition passes through one or more walls.

The best tuple indicates which camera feeds to select and is found using a best first, branch and

bound, tree search. When expanding the tree, variables involved in more constraints are expanded

before those with fewer, and values resulting in a higher partial preference are explored before those

with a lower preference. While the number of leaf nodes examined in a tree search is bounded in

general by nb, consideration of dynamic constraints allows a tighter bound of O(fd), where f is the

number of feeds, and d is the number of displays.

3Recall from Section 6.3 that the memory use could be reduced, at the cost of a longer search time, by changing
to a depth first search, rather than a best-first search.
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Chapter 7

Acceleration Techniques

For larger SCSP problems, the process of searching for the tuple with the highest preference

value can require an unacceptable length of time. If a camera selection is needed every frame at

60 frames a second, then camera selection must be complete in approximately 17 milliseconds,

assuming the required processing resources are available to the SCSP selection algorithm for the

entire 17 milliseconds1. Graphs in Section 7.1, which will be discussed further in this chapter, show

some conditions under which camera selection is possible in less than 17 milliseconds, and some

conditions where camera selection requires longer than 17 milliseconds. Propagation techniques,

discussed in Section 2.2, can reduce the time required to find a solution but can still require an

unacceptable length of time.

In a game using the SCSP camera selection system, such as the hockey simulation, configurations

occur more than once. This means that the variables affecting the dynamic constraints have the

same values as a previous search. Instead of searching for the tuple again, the previously computed

camera feed can be retrieved from a cache (see Section 7.1) or a decision tree that has been compiled

to native code (see Section 7.3). These methods return a choice of camera feed in less time, but

the solutions may be approximate in the case of a decision tree, or a solution may not be found

if it has not been entered into the cache. The cache is able to find more configurations of game

states as the number of cache entries increases. The larger the number of samples used to build a

decision tree, the more accurately it encodes the results of the SCSP search.

7.1 Cache

As time goes on in the simulation, configurations reoccur whenever dynamic constraints for the

current evaluation are identical to a previous evaluation. Recall that the dynamic constraints

specify the state of the simulation to the SCSP solver; a cache takes advantage of this temporal

locality to reduce the average evaluation time to select a camera. Rather than repeat a search to

find the tuple with the highest preference, the cameras to select can be retrieved from a cache using

1It may be that one core of the processor handles the camera selection system, while other cores handle other
aspects of game pay .
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a hash function.

The demonstration system requires more time to select from a higher number of cameras.

Consequently, at some number of cameras the system can no longer be considered to function in

real time. This limit will depend on the hardware used and the designer’s definition of real time.

This section presents graphs that show the limits of the system using a given set of hardware

with, or without, using a cache. Graphs in this secton containing values that exceed a camera

selection time longer than 16.6ms (60 frames per second) contain a dashed red line indicating the

60 frames per second limit. Simulations were performed on a Intel Core 2 Duo 2.4GHz computer

with 8GB of RAM and Windows Vista 64 Professional (although the simulation executable is

32 bit). Two constraints, KeepCentered and DistanceToCamera, are found to result in acceptable

camera selection quality so simulations with two, three, and four constraints were recorded2. During

a simulation, the time needed to search for the camera feed to select was recorded twice when a

camera selection was needed – once without a cache and once with a cache.

The simluation was allowed to execute for 500 samples, which corresponds to approximately

4.25 minutes of game play, long enough for both teams to score multiple goals. The actual time

of the simulation may exceed 4.25 minutes, as the time required for camera selection is added to

the game play time. The 4.25 minute duration is based on 500 samples, with a camera decision

made every 30 frames and a 17 millisecond period between frames. Cameras are placed randomly

(within a given range of locations and angles), and the cache is implemented using a hash table

with arrays for items mapped to the same hash value. The time from each of the simulation’s 500

samples were then averaged to determine an average time for camera feed selection.

To reduce the effect of outliers, the simulation was repeated five times and averaged, resulting

in 2500 samples per data point on a graph. Outliers can occur due to the randomness in the

simluation. For example, some of the abilities of the simulated hockey players, such as maximum

speed, are randomized and it could be that one side scores many goals while the other scores none.

This could result in more cache hits, since similar conditions occur when a goal is scored by a given

team.

Figure 7.1 plots the average time to select a camera based on the number of cameras available.

Figure 7.1 uses two constraints: KeepCentered and DistanceToCamera. The blue squares plot the

average time without using cache to select a camera, while the orange triangles plot the time using

cache.

As shown in Figure 7.1, the time to select a camera feed is approximately a linear function

based on the number of cameras. Using linear regression, the equation to describe the time in

2Each simulation required approximately a month to complete, due to the number of samples, and adding a pause
before performing a search. This pause provides the operating system time for background operations.
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Figure 7.1: Computation Time: Cache vs. No Cache with One Display, constraints Keep-
Centered and DistanceToCamera

milliseconds needed to select the camera feed (without using cache) is as follows:

time for selection = 0.006888× (number of camera feeds) + 0.8071

From this equation, the maximum number of cameras from which the camera can select a feed

in 1
60

th
of a second (i.e. 60 frames per second) is approximately 2302. When cache is used the

maximum number of camera feeds to select among increases to 3388. This assumes that the SCSP

system has dedicated resources, and does not have to wait for a CPU time slice or memory access.

Consquently, 2302 describes an upper bound as the maximum number of cameras permitted per

frame, which will decrease if other algorithms are using the same computational resources. Table 7.1

summarizes the computations for one, two, three and four displays with and without using cache.

Tables 7.2 and 7.3 show values when FrameCoherence and GoalScored constraints are added. Note

that using a cache decreases the average computational time, not each SCSP search.

Selecting a camera feed every frame may be unneccesary, as a designer may determine that

acceptable camera selections can be done every 30 frames when the simulation is running at 60

frames per second. This decision results in a camera selection twice per second. If the SCSP camera

selection system uses the half a second to select a camera, then the theoretical maximum number

of cameras the system can select from increases to 72472 without using a cache and 105487 when

using a cache. Values for two, three, and four displays are shown in the last column of Table 7.13.

3The calculation without cache and four displays resulted in a negative root for the theoretical number of cameras.

73



The first column of Table 7.1 provides the number of points on which the linear regression is based.

Cameras Displays Cache Regression Equation Maximum Every

Tested used Cameras 30 Frames

999 1 no y = 0.807100 + 0.006888x 2302 72472

999 1 yes y = 0.623600 + 0.004734x 3388 105487

100 2 no y = 2.800000 + 0.010760x2 35 214

100 2 yes y = 0.965200 + 0.006904x2 47 268

29 3 no y = 9.378195 + 0.000189x3 33 137

29 3 yes y = −2.168223 + 0.006645x3 14 42

26 4 no y = 124.400000 + 0.030440x4 - 10

26 4 yes y = −69.700000 + 0.013220x4 8 14

Table 7.1: Maximum Number of Cameras using constraints KeepCentered and DistanceTo-
Camera. The x variable is the number of cameras and y is time in milliseconds. Maximum
Cameras is for camera selection every frame, at 60 frames per second. Every 30 Frames
applies to selecting a camera at 30 frame intervals, when running at 60 frames per second
(i.e. camera selection every half a second).

Recall from Section 6.4 that the time required by the SCSP search is bounded by O(fd).

Consequently, to determine a regression equation the times for two, three, and four displays are

first transformed by using a model based on the square, cube, or fourth root, respectively, of the

measured calculation time4. This exponential relationship is also reflected in the exponents in

Tables 7.1 through 7.3. Appendix C provides graphs of the transformed data that visually verifies

the linear relationship. The R2 values for the regression equations in Tables 7.1 through 7.3 are

all above 0.96 and all but four are above 0.99. The occasional negative y-intercept for the cache

formulas in the regression equations may be explained since the equations are constructed assuming

that the data is linear, when the beginning entries of data sets using cache do not appear linear

until after approximately ten cameras. The graphs and tables show that the number of camera

feeds from which the system can select is most strongly determined by the number of displays and

then the number of constraints.

The likelihood of getting a cache hit increases as the number of entries in the cache increases.

Consequently, when using a cache the average time for camera selection will decrease as the number

of cache entries increases. Figures 7.13 through 7.16 repeat the experiments with four constraints

but use 5000 samples per simulation instead of 500. For comparison, the results from the simulations

This is likely due to the relatively large intercept calculated by R.
4The regression equation was determined using the statistical software package R. R version 2.14.0 (2011-10-31)

(C) 2011 The R Foundation for Statistical Computing.
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Cameras Displays Cache Regression Equation Maximum Every

Tested used Cameras 30 Frames

999 1 no y = 0.914000 + 0.010270x 1533 48596

999 1 yes y = 0.751100 + 0.008690x 1831 57450

100 2 no y = 9.598782 + 0.000243x2 170 1421

100 2 yes y = 7.624495 + 0.017294x2 22 168

44 3 no y = −20.180000 + 0.044170x3 9 22

44 3 yes y = −47.260000 + 0.004326x3 24 50

21 4 no y = 220.2000000.058680x4 - 8

21 4 yes y = −56.5900000.054470x4 6 10

Table 7.2: Maximum Number of Cameras using constraints KeepCentered, DistanceTo-
Camera, and FrameCoherence.

using 500 samples are also shown on the graph. The purple circles show the improvement afforded

from having a larger number of entries in the cache.

Figures 7.1 through 7.16 show that the cache improves the average camera selection time but

has noticeable lag with a large number of displays and cameras. The cache technique, however,

may still be practical since best first search is an anytime algorithm. The search can return the best

current feed selection in a timely fashion while a background process continues to search for the

optimal feed. Subsequent requests, using the same dynamic constraints, use the improved camera

selection from the cache. An ever increasing backlog of requests may be avoided by prioritizing

background searches based on the frequency of access of the cache entry. Infrequent combinations

of dynamic constraints may never be searched if the cache entry is eventually removed from the

cache due to cache conflicts from other, more frequently accessed, cache entries.
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Cameras Displays Cache Regression Equation Maximum Every

Tested used Cameras 30 Frames

999 1 no y = 0.858200 + 0.019840x 796 25158

999 1 yes y = 0.662500 + 0.018090x 884 27602

100 2 no y = 7.776151 + 0.048449x2 13 100

100 2 yes y = 5.110177 + 0.046619x2 15 103

33 3 no y = −4.962245 + 0.098270x3 6 17

33 3 yes y = −42.500000 + 0.094780x3 8 17

20 4 no y = −13.540000 + 0.146100x4 3 7

20 4 yes y = −389.900000 + 0.132900x4 7 9

Table 7.3: Maximum Number of Cameras using using constraints KeepCentered, Distance-
ToCamera, FrameCoherence, and GoalScored.
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Figure 7.2: Computation Time: Cache vs. No Cache with Two Displays, constraints
KeepCentered and DistanceToCamera
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Figure 7.3: Computation Time: Cache vs. No Cache with Three Displays, constraints
KeepCentered and DistanceToCamera
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Figure 7.4: Computation Time: Cache vs. No Cache with Four Displays, constraints
KeepCentered and DistanceToCamera
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Figure 7.5: Cache vs. No Cache with One Display, constraints KeepCentered, DistanceTo-
Camera, and FrameCoherence
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Figure 7.6: Cache vs. No Cache with Two Displays, constraints KeepCentered, Distance-
ToCamera, and FrameCoherence
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Figure 7.7: Cache vs. No Cache with Three Displays, constraints KeepCentered, Distance-
ToCamera, and FrameCoherence
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Figure 7.8: Cache vs. No Cache with Four Displays, constraints KeepCentered, Distance-
ToCamera, and FrameCoherence
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Figure 7.9: Cache vs. No Cache with One Display, constraints KeepCentered, DistanceTo-
Camera, FrameCoherence, and GoalScored
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Figure 7.10: Cache vs. No Cache with Two Displays, constraints KeepCentered, Distance-
ToCamera, FrameCoherence, and GoalScored
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Figure 7.11: Cache vs. No Cache with Three Displays, constraints KeepCentered, Dis-
tanceToCamera, FrameCoherence, and GoalScored
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Figure 7.12: Cache vs. No Cache with Four Displays, constraints KeepCentered, Distance-
ToCamera, FrameCoherence, and GoalScored
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Figure 7.13: Cache vs. No Cache with One Display, 5000 samples per simulation, con-
straints KeepCentered, DistanceToCamera, FrameCoherence, and GoalScored
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Figure 7.14: Cache vs. No Cache with Two Displays, 5000 samples per simulation, con-
straints KeepCentered, DistanceToCamera, FrameCoherence, and GoalScored
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Figure 7.15: Cache vs. No Cache with Three Displays, 5000 samples per simulation,
constraints KeepCentered, DistanceToCamera, FrameCoherence, and GoalScored
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Figure 7.16: Cache vs. No Cache with Four Displays, 5000 samples per simulation, con-
straints KeepCentered, DistanceToCamera, FrameCoherence, and GoalScored
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7.2 Native Code Systems

One brute force way to design a camera selection system is to encode the camera selection system

in a series of if-then-else statements. These could potentially execute more quickly than searching

for the best feed selection. Maintaining large if-then structures is likely to be difficult and error

prone, just as maintaining large expert systems are difficult to maintain and extend [52].

An advantage of using a SCSP approach over native code is that the designer can focus on

camera selection at an abstract level; for example, specifying that the puck remain in the center

of the camera’s field of view, instead of using the puck’s x, y, and z coordinates directly. Also, a

SCSP automatically balances constraints when not all constraints can be simultaneously satisfied,

rather than require the designer to write rules for over-constrained situations. Thirdly, preferences

are easy to modify by changing them in a small table. With native code, changing one if-statement

can have unexpected interactions.

7.3 Conversion to Native Code via Offline Computation

To achieve the potential benefits of both approaches, the SCSP system can be converted automat-

ically to native code. Thus, the camera selection system is designed under the SCSP scheme, but

potentially executes in less time.

A näıve conversion would consider all dynamic constraint combinations and map them to the

appropriate camera feed. However, the number of states in the input space is prohibitive, even

for relatively few constraints. Considering only KeepCentered and DistanceToCamera, with ten

cameras and one display, results in a search space of 320 tuples. If each input is evaluated every

0.006888 milliseconds (from Table 7.1) it would take almost 7 hours to evaluate all input combi-

nations. Adding additional constraints, however, increases the number of combinations, and thus

evaluation time, with exponential complexity, assuming the new constraints contain new variables.

Using the four constraints and one display as in Figure 7.9, there are 320 × 610 × 210 tuples in the

search space, and would require a approximately 130,000,000 years of computation (at 0.0189822

milliseconds per evaluation, from Table 7.3). Adding more displays would increase the time taken

to evaluate each input tuple, but would not increase the search space since more displays do not

increase the number of dynamic constraints.

In practice, relatively few dynamic constraint combinations occur. Some combinations are self

contradictory and never occur. For example, the puck being in the center of camera one’s field

of view may mean that the puck is not simultaneously in the center of camera ten’s field of view.

Likely dynamic constraint combinations are generated by sampling game execution, and stored in

a cache large enough to avoid cache conflicts. This avoids a situation where an existing tuple is
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removed from the cache. The samples form a training set from which a decision tree is generated

using an information gain heuristic. Entropy in a data set is computed as follows [65]5:

I = −
n∑
i=1

ci × log2 (ci)

where n is the number of camera feed combinations and ci is the relative frequency that the given

combination occurs. For example, if you consider the possible outcomes of a fair coin, then the

entropy is one, since the probability of heads is one half (c1) and the probability of tails is one

half (c2). When constructing the decision tree, each variable is considered according to how much

it reduces the information in the data set given the variable. When considering a variable, the

training data set is split depending on the value assigned to the variable. Information is computed

for each of the data sets and combined by averaging the information values computed. The variable

that results in the minimal amount of information is selected as the next node in the decision tree.

The decision tree is written to C code if-statements which are compiled to native code, which

can be done offline. In testing the native code, the size of the dynamic linking library containing

the native code remained reasonable, such as 42 kilobytes based on 100 samples and 478 kilobytes

based on 5000 samples. When the native code is provided with dynamic constraints that were not

in the sampling, it returns the most frequently used camera feed in the decision tree’s subtree.

Figures 7.17, 7.18, and 7.19 compare the quality of the native code camera selection to the quality

of the SCSP camera selection, with a sequentially increasing number of constraints. Notice that the

quality of native code camera selection approaches the quality of the SCSP system asymptotically.

Consequently, a high performance can be achieved in a relatively short time period as shown

in Figure 7.17 which uses the KeepCentered and DistanceToCamera preferences with one to five

displays. Notice from Figure 7.17 that the number of displays has little effect on the quality of

the solution. With large SCSP systems the collection of cache samples can be done in parallel, as

can the conversion to native code, to reduce conversion time. The time to retrieve a value from

the decision tree is very short as the time is bounded by O(n) where n is the number of variables

included in dynamic constraints used in the simulation. In practice this retrieval time is negligible

even with a large number of cameras and displays.

As constraints are added, such as in Figures 7.18 and 7.19, the sample space increases in size but

the asymptotic nature remains. Figure 7.18 shows the data from one display and two constraints

from Figure 7.17 in blue, and three constraints in orange. For testing, multiple decision trees were

constructed and converted to native code. The number of samples used to construct the decision

tree is shown along the x-axis of the graph. To determine the quality of returned solution, the

native code solution was compared to the SCSP solution for 15000 samples. This means that

after the decision tree was compiled the resulting native code was used to determine camera feed

5Here log2(0) is assigned 0 to prevent an infinite assignment of information.
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Figure 7.17: Native Code Performance versus optimal SCSP solution (Two Constraints,
KeepCentered, DistanceToCamera plus different camera feed on each display)

selection during a new simulation. Each time the native code made a selection the SCSP solution

was run using the same input parameters. The valuation of the SCSP solution was compared to the

valuation of the native code solution. For each native code output, the above process was repeated

for 15000 camera feed selections and the ratio of the native code valuations to SCSP valuations

were averaged to make one data point on the graph.

The search space is very large. For example, the potential number of input combinations is

310 × 310 × 610 for the constraints KeepCentered, DistanceToCamera, and FrameCoherence when

ten cameras are used. Figure 7.19 shows the orange line from Figure 7.18 in blue and the data from

testing with four constraints in orange. The potential number of input combinations with the four

preferences used is 310× 310× 610× 310 = 12449449430074295092224 (the SeeScorer constraint has

been added). Note that 30000 samples is approximately 0.00000000000000024% of the number of

input combinations, but on average can select a camera feed with more than 92.5% of the value of

the SCSP solution.

As mentioned previously, and as shown from Figures 7.17, 7.18, and 7.19, the number of samples

required to achieve a given percentage of the value of the SCSP solution depends primarily on the

number of dynamic constraints. While increasing the number of displays increases the number of

dynamic constraints, the additional dynamic constraints are correlated (in Figure 7.17 the value

of a dynamic constraint for a particular camera is the same on all displays). As the number of

displays increases, however, the time required to generate the decision tree also increases. With
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Figure 7.18: Native Code Performance versus SCSP solution (One Display). The blue line
ends since the experiment reached approximately 100% of the SCSP solution.

one display and 10 cameras there are 10 camera combinations to select from. However, with two,

three, four and five displays there are 100, 1000, 10000, and 100000 camera combinations to select

from. Constructing a decision tree from 2500 samples from five displays required approximately

half a day of computation using a quad core 3.0GHz Penryn processor6.

7.4 Chapter Summary

The SCSP camera feed selection system can choose cameras by searching for the tuple with the

highest preference, but the search time can become lengthy with a large number of constraints or

displays. With one display the number of camera feeds to select among in real time ranges into the

thousands, and with two displays the number of camera feeds can reach into the hundreds. When a

cache is employed, the average time to select a camera feed decreases, as some tuples can be found

in the cache rather than recomputed. The larger the number of tuples in the cache the greater the

benefit.

With a large number of cameras, constraints, or displays, the time to determine a camera feed

can exceed a real time requirement. In these cases the cache can be converted to native code via

a decision tree. The quality of the camera selection from the native code increases asymptotically,

6The conversion program was written in Java, which may only use one of the processor’s cores.
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Figure 7.19: Native Code Performance versus SCSP solution (One Display). The blue
line in this figure is the orange line in Figure 7.18. The blue line here shows points every
thousand samples, instead of hundred samples as in Figure 7.18.

compared to the optimal SCSP solution, as the number of samples used to construct the code

increases. Hence a system capable of producing solutions (approximately 92% of the SCSP solution)

can be constructed offline, before the final build, from samples composing a small fraction of the

overall input space.
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Chapter 8

Results

Thus far, this thesis has presented a system to encode a designer’s preferences for camera selec-

tion and a system to optimize the combination of the individual preference functions. Additionally,

if desired, the camera selection system can be converted into a native code solution, resulting in a

decrease in camera selection time and an approximate solution.

To demonstrate that, given the input preferences, the system chooses the correct camera feed,

this chapter presents resulting screen shots determined by the example preferences. The preferences

presented are examples only; a designer may choose different preferences. Section 8.1 uses example

preferences with the virtual hockey game, and Section 8.2 uses example preferences with the maze

game. Section 8.3 compares a SCSP system with a traditional CSP system to select cameras in the

hockey game.

8.1 Examples from the Hockey Game

As a first example preference, a designer may want to keep the puck visually centered in the selected

camera’s field of view, and to have it appear closer to the camera. It may be that the hockey game

is easier to follow if the puck is kept centered in the screen, and it may be easier to see the puck

if it is larger. The preferences KeepCentered and DistanceToCamera in Tables 8.1 and 8.2 provide

these directions to the SCSP solver1.

Location Preference

center 1.0

border 0.7

out-of-view 0.3

Table 8.1: Example of Static KeepCentered Preference

1These tables are the same preference functions as Tables 5.5 and 5.9. They are presented here for the reader’s
convenience.
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Distance Preference

near 1.0

medium 0.8

far 0.5

Table 8.2: Example of Static DistanceToCamera Preference

When a solution cannot be found using the highest preference value from each table, the system

must determine a trade-off for more fully satisfying one preference function than another. Since

multiplication is used for combining preferences, the ratio between preference values (in the same

table) determines the decrease in the preference of the solution found. Note the ratios between

changing states in the preference tables. Changing from center to border in KeepCentered has

an approximate ratio of 1.43, where changing from near to medium in DistanceToCamera has an

approximate ratio of 1.25. This means that, in a situation where the SCSP solver must select from

two cameras where one camera’s state is { KeepCentered = center, DistanceToCamera = medium

} and the other camera’s state is { KeepCentered = border, DistanceToCamera = near }, the first

camera will be chosen as there is more of a penalty for changing from center to border as changing

from near to medium.

Figures 8.1 and 8.2 show screen captures of the same game with different preferences. The left

image uses only KeepCentered, the middle image uses only DistanceToCamera, and the right image

uses both preferences. Note that the right image in each figure has the puck centered more than

the middle image, and the puck closer to the camera than in the left image. The middle image from

Figure 8.2 shows a selected camera, where the puck is close to the camera even though the puck is

not in the camera’s field of view, as this satisfies the DistanceToPuck, and the KeepCentered is not

applied to the middle image. The resulting camera selection, from the preferences KeepCentered

and DistanceToCamera, produces an enjoyable viewing experience for some viewers as it follows the

example designer’s preferences2. As mentioned before, in respect to the ratios between preferences,

the system will automatically select a view with the puck centered if a view with the puck centered

and close to the camera is not available.

An issue with using only the preferences KeepCentered and DistanceToCamera is that the

camera feed may change too quickly. When the camera feed changes, it seems that a viewer needs

a short time to locate the puck on the screen. Additionally, a view may become stale in the

sense that changing to another camera feed after a while may add more visual interest. These

2What is enjoyable may differ from person to person, but at minimum the author thought the camera selection
was beneficial. It allows the action of the game to be followed by keeping the puck in view, and zoomed in when
possible.
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Figure 8.1: Screenshots from using KeepCentered, DistanceToCamera, and both con-
straints, resulting in the left, middle and right images, respectively. Notice the puck is
centered in the left image, close to the camera in the middle image, and centered and close
to the camera in the right image, correctly applying the input preferences.

two considerations, not changing too quickly and not remaining on one camera feed for too long,

can be encoded into a preference named FrameCoherence (already defined in Section 5.4). Figures

8.3 and 8.4 show the use of the FrameCoherence constraint. Figure 8.3 shows nine seconds of

play using KeepCentered and DistanceToCamera constraints, while Figure 8.4 shows the same nine

seconds of play, adding FrameCoherence as a constraint. It can be seen from the images that the

camera feed changes more often in Figure 8.3 than Figure 8.4. Frames labeled five through nine

in Figure 8.3 show the camera feed changing every second, while in Figure 8.4 the feed changes

between frames labeled one and two, and frames labeled seven and eight. This illustrates the effect

of a higher preference for remaining on the same feed when the camera has been selected for five

seconds or less, and a lower preference for remaining on the same feed for longer than five seconds.

The choice of five seconds is arbitrary and depends on the implementation of the constraint and

the designer’s preference values. With the example constraints, the system typically implements

a trade-off between satisfying the following constraints: selecting a camera feed where the puck

is centered, selecting a camera feed where the puck is close to the camera, and not changing the

camera feed too frequently. The result is a game that is similar to using only the former two

constraints but with the effect of remaining with the same camera feed for a reasonable length of

time.

8.2 Examples from the Maze Game

The SCSP solver in the maze game also selects cameras from the tuple with the highest preference.

When possible, the avatar is kept in the field of view and the camera adjusts to show a target box or

the firing box. When the avatar is placed just in front of a wall the camera changes to show a front
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Figure 8.2: Screenshots from using KeepCentered, DistanceToCamera, and both con-
straints, resulting in the left, middle, and right images, respectively. In the middle image,
even though the puck is out-of-view of the camera’s field of view, the puck is close to the
camera.

view of the avatar, as opposed to showing a view with the wall blocking the avatar. Transitions

through walls are avoided when possible. In an over-constrained case, where the camera cannot

simultaneously show a firing box and a target box, the camera follows the firing box, as such an

action has a higher associated preference. When the firing box hits a wall, or disappears at its

expiry time, the selected camera feed changes to show the target box again.

The maze game is included in this thesis to demonstrate that the camera selection system

functions in a first person shooter game (the maze game) in addition to a game with a spectator

viewpoint (the hockey game). While the camera selection system correctly implements the prefer-

ences, the avatar is difficult to control and aiming at targets is difficult from positions other than

behind the avatar. One solution to making the avatar easier to control is to implement the prefer-

ence to always select the camera feed that is behind the avatar. While this is a valid constraint, it

does not demonstrate the benefit of using the camera selection system, as the system will always

choose the same camera. Another solution, to provide the benefits of easier control of the avatar

and showing target boxes, is to use a two display system as shown in Figure 8.5. The larger view

provides a viewpoint from behind the avatar. The inset view in Figure 8.5 selects a camera feed

that provides hints to the user, in this case that a target box is to the avatar’s right. If a user has

two screens, the inset view can be shown on the second monitor.

When playing the maze game with two screens the avatar can be controlled from the main

screen (with a viewpoint from behind the avatar) and the user can look at the hint display to

determine the next goal of the game. For example, sometimes after a target box is hit with a firing

box, the hint camera changes to a viewpoint showing the next target box. In another example,

when the avatar is backed against a wall, the main display shows the wall (since the wall occludes
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Figure 8.3: Screenshots from nine seconds of play without frame coherence. Notice the
frequent camera changes between frames.

the avatar), while the hint camera changes to show the front of the avatar. By looking at the hint

display, the user can determine when to move forward to move away from the wall. Thus, using

different preferences for each display can combine the effects for easier control of the avatar, and

show key game elements (such as targets).

8.3 Evaluation: CSP versus SCSP solutions

Camera placement methods have used CSPs with hard constraints, and He et. al ’s Virtual Cin-

ematographer [49] uses hard constraints, in that guards on transitions between states are either

satisfied or unsatisfied. Since there are no implementations of these systems available, this chapter

presents a comparison between a hard constraint system (CSP) and the soft constraint system

introduced in this work (SCSP).
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Figure 8.4: Screenshots from nine seconds of play with frame coherence. Notice the same
camera is selected from frames two through seven. After five seconds there is less of a
penalty for changing to another camera, explaining the camera change between frames seven
and eight.

The SCSP camera selection system can be viewed as a tool. The question of whether or not this

tool is better than a previous tool is similar to asking whether a new paint brush can paint a better

picture than a previous paint brush. In the case of a new paint brush, whether or not a painted

picture is better depends on the skill of the artist. Similarly, whether the SCSP camera selection

system performs better that a previous system depends on the designer’s goals. Additionally,

“better” in this argument is a subjective judgement and depends on the person doing the evaluating.

Consequently, rather than demonstrate that a new tool is better, this section will show that the

SCSP camera selection system is useful, mainly that the SCSP system can handle over-constrained

problems, where systems based on hard constraints cannot handle over-constrained problems. Note

that the SCSP camera selection system was not tested directly against previous implementations
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Figure 8.5: Maze Screen shot showing camera behind avatar, and hint camera

such as the Virtual Cinematographer but, for comparison purposes, preferences are mapped to hard

constraints as the example shown in Table 8.3.

Location SCSP Pref CSP Value

center 1.0 true

border 0.7 true

out 0.3 false

Table 8.3: Example SCSP to CSP mapping for testing

Similarly, for Tables 5.9 and 5.10 values 0.5 and greater are mapped to true and values less than

0.5 are mapped to false. Other mappings are possible. For example, the designer may or may not

consider a preference of 0.7 to satisfy the constraint.

For each number of displays, the hockey game was run with KeepCentered and DistanceTo-

Camera for at least 10000 camera feed selections. Additional static constraints preferred different

camera feeds on each screen. The tests were repeated with an added FrameCoherence constraint.

The number of times the hard constraint system found a solution was recorded and compared to

the total number of searches. The results are shown as a percentage in Table 8.4. As Table 8.4

shows, the CSP method frequently finds solutions when the problem is under-constrained (such as

with one display) but finds solutions less often as the problem becomes over-constrained. When the

system is executed using three constraints and five displays, the CSP method finds no solutions.

The SCSP solution was able to find a solution 100% of the time, albeit by partially satisfying
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Display Count Two Constraints Three Constraints

1 98.4% 91.5%

2 91.6% 69.2%

3 65.4% 35.6%

4 44.0% 18.4%

5 3.4% 0.0%

Table 8.4: Percent of Samples CSP solved

constraints as the system became over-constrained. Notice in Table 8.4 that the percentage of

solutions decreases with the same number of displays when the number of constraints increases

from two to three, a trend that continues as additional constraints are added to the system.

8.4 Chapter Summary

The hockey and maze games are able to use a designer’s preferences as input, and produce the

corresponding camera selection. In the hockey game, preference values for the constraints Keep-

Centered and DistanceToCamera keep the puck in the center of the camera’s field of view and

select views where the puck is larger in the camera’s field of view. An additional FrameCoherence

constraint can prevent the system from changing camera feeds too frequently or from remaining

on one camera feed for too long. When the problem is over-constrained, the camera selection sys-

tem will select the best available solution, determined by trade-offs according to the ratio between

preference values. In the maze game, a high preference to select the camera behind the avatar can

facilitate aiming the avatar, while a help display can show important game details, such as the

next target box. Additionally, when the view of the avatar on the main display is occluded, the

hint display can show an unobstructed view of the avatar. Testing shows that the SCSP camera

selection system can determine a camera feed in over-constrained problems, where a traditional

CSP selection system finds fewer solutions as the problem becomes more constrained.
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Chapter 9

Conclusion

Prior to this thesis work, the problem of selecting a virtual camera in a dynamic scene in real

time was unsolved. The SCSP camera selection system provides a method to select from multiple

cameras in real time, in a dynamic scene, such as a video game. The number of cameras that can

be handled in real time depends on the acceptable length for a search. Graphs, in Chapter 7, show

the trade-offs between number of cameras, number of displays, and number of constraints. For one

display, the number of cameras permitted ranges from hundreds to thousands depending on the

constraints used in the search.

The system selects a camera based on static and dynamic constraints. Specifying a designer’s

static preferences in modular tables makes the preference specification tractable, since the potential

search space is exponential in size (Section 6.4). Dynamic constraints, set by the system at run

time, cause the SCSP selection system to choose camera configurations that currently exist (as

opposed to selecting a prefered configuration that is not available). The SCSP camera selection

system is flexible, in that it can handle arbitrary constraints as long as the designer provides the

preferences for the constraint, and the corresponding dynamic constraint is implemented in the

simulator. Some preferences, such as specifying that two displays use different feeds, do not need

a corresponding dynamic constraint. The use of a SCSP camera selection system may allow users

to customize the camera selection system after a game’s release if the preferences of the camera

selection system are exposed to the user.

Modifying and expanding a system based on the SCSP framework can be more manageable

than a system based on rules (Section 7.3). When a camera selection system based on rules is

desired, perhaps for a faster selection system for a commercial product, the SCSP preferences

can be converted to native code. This involves storing searches in a cache. The cache itself can

decrease the average search time, since when dynamic constraints are the same as a previous case

the result can be retrieved from cache. Alternatively, the cache can be converted to a decision tree,

which can be converted to native machine code. The preference value of the native code solution

asymptotically approaches the preference value of the SCSP system with the number of samples

used to generate the native code. When converting to native code, the specification of preferences

is still entered in modular tables under the SCSP framework.
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Differing from previous systems, the SCSP camera selection system is robust, in that it can han-

dle over-constrained and under-constrained problems automatically, based on the level of preference

provided by the designer. A CSP system is unable to determine a camera feed when the problem is

over-constrained, or select from among multiple solutions when the problem is under-constrained

unless an objective function over the CSP solutions is used, similar to PCSP systems. However,

previous work has used hard CSP systems without such an objective function. In the case of the

Virtual Cinematographer by He et al., the system may continue to select a suboptimal camera

feed since the guard on a transition is not fully satisfied. In the case of a CSP, the system may

simply determine that there is no solution, since not all constraints can be satisfied. The SCSP

solution chooses the tuple with the highest available preference, regardless of whether the problem

is over-constrained or under-constrained.

This thesis details two example games demonstrating the use of the SCSP camera selection

system. The first is a spectator viewpoint hockey game. Constraints implemented in the hockey

game include the preference to keep the hockey puck centered in the display, as well as to select

cameras where the puck is closer to the camera. Other preferences include showing the scorer after

a goal, and frame coherence. Frame coherence is a temporal constraint that decreases the frequency

of camera changes, except when the display has remained on the same camera feed for a long time.

The second example game is a third person perspective maze game. It uses constraints to prevent

the user’s avatar from being occluded, as well as keeping the firing and target boxes from being

occluded. Since transitions between cameras are linearly interpreted, other constraints prevent the

camera from passing through walls.

As shown in Chapter 8, the system can naturally extend to multiple displays. For the hockey

simulation, constraints can specify that each screen show a different feed. In the maze game, the

first display can allow the user to control their avatar, while a second display functions as a hint

camera. The first display offers easier control by showing a viewpoint from behind the avatar. The

hint camera can change camera feed to show important events or objects. For example, the hint

camera can show a target box that is off screen of the first display. As well, if the first camera’s

view is occluded by a wall, the hint camera can show the user an unoccluded view of the avatar.

As its main contribution, this work solves the problem of camera selection in dynamic scenes.

This system can function in real time, with up to thousands of camera feeds. The number of displays,

since they are output variables, most strongly affects the limit on the number of manageable camera

feeds, while the number of constraints also affects the number of cameras permitted. For a reduced

decision time, if an approximate solution is permitted, the system can use cache or be converted

to native code. Furthermore, the SCSP system finds the camera feed corresponding to the highest

preference, where previous work may either not return a solution or return a suboptimal solution.

In summary, the SCSP approach provides a tool to select a camera feed in dynamic scenes.
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Instead of having a designer explicitly create hand coded rules for the camera to select, as in a rule-

based system, the system will combine the designer’s preferences automatically. For large systems

with many displays and possible camera feeds the time required for the system to return a solution

may exceed real time limits. In these cases the SCSP preferences can be automatically converted

to a native code system at the cost that the native code system approaches the optimal solution

found by the SCSP asymptotically, as the number of samples used to create the native code system

approaches the size of the search space.

9.1 Future Work

For future work, the SCSP solution can be extended to new domains. Hockey tends to have the

puck as one focus of interest. Other games, such as capture the flag, have simultaneous multiple

points of interest. Using multiple displays, each area of interest could be shown to the viewer.

Baseball is another game with multiple visual areas of interest. While the pitcher is throwing a

ball an opposing player may be trying to steal a base, or the system could show players tagging

up when a ball is caught in the outfield. Car racing is another game environment that can have

multiple visual points of interest that may be well suited to a SCSP camera selection system.

The SCSP camera selection system may also be expanded to handle selecting feeds from real

cameras. In amateur sports, the camera selected may come from a number of fixed cameras or

spectators who film the game. Typically, in order for the system to select a camera feed in the

virtual hockey game, the puck’s location must be known. If this information can be extracted from

the environment, then the SCSP camera selection system should function using real footage in a

similar fashion to the virtual hockey environment. Other games, such as basketball, should be

similar to hockey in that there is usually a single major point of interest.

Additional output variables, other than the camera feed for a particular display, may be added

to the system. For example, the system may be able to select the number of displays that are

needed at run time. In the maze game the hint camera could appear only when needed and only

in a location where it does not obscure important game elements. Also the system could generate

replay summaries including the number of cameras needed to display information. When the system

generates replays for later viewing, selecting zero displays would indicate that nothing interesting

is currently happening and the system should skip to the next scene to show.

Differing from the sports domain, the SCSP camera selection system may be adaptable to

produce a rough, or perhaps final, cut of video footage, either real or virtual. For example, multiple

YouTube videos of the same event may be combined to show a viewpoint that reflects a designer’s

aesthetics. If the input is photos instead of video, the system may be able to automatically produce

a slide show.
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Currently dynamic constraints reflect the state of the simulation with certainty. The system

may be expanded to probabilistic dynamic constraints that predict future dynamic constraints with

a degree of certainty. For example, the future location of the puck in a display’s field of view may

have a probability distribution that would then map to a probability distribution for the dynamic

constraint.

Also as future work is a further examination of the SCSP camera selection system’s preferences

in comparison to utility theory. Preferences may be mapped to, or inputted as, utility values.

With appropriate SCSP combination operators the system could manipulate utilities, rather than

preferences. It is currently unclear how this change would effect the camera feed selected.

Future work could balance competing output interests using this system with only minor modifi-

cation, such as adding the additional output variables. Examples of such variables include selecting

appropriate advertising in the background of a sports game, or removing occluding objects. With

respect to advertising, a nearer, or more centered advertisement space may be more valuable. With

respect to occlusion, the SCSP approach may determine that it is preferred to remove an occluding

player or object (such as a goalie when the play is at the other end of the rink) or to make the

player semi-transparent to still present a view of the puck.
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Appendix A

A Program for Designing SCSP Constraints

Figure A.1: Java Program for Constructing Constraints

In order to make entering static and dynamic constraints easier for a designer, a java program,
shown in Figure A.1, provides a GUI to write the preference XML file. As input the java program
takes a C++ file where variables for the constraints are marked with a visibleVariable type, which
is a pointer to an array of double values ( #define visibleVariable double * ). A comment line
below the line starting with visibleVariable lists the states in the domain of the variable. If the
function marked with a visibleVariable return type is for a dynamic constraint, then it is numbered
so that it can be called by number using a function pointer array. Thus, the java GUI allows the
designer/director to construct static preferences with preference values, and dynamic preferences
that the system will call by number at run time.

The code below shows the camera feed for display one with 10 states, which is used in static
constraints.

visibleVariable cameraFeed01()

/*Cam0,Cam1,Cam2,Cam3,Cam4,Cam5,Cam6,Cam7,Cam8,Cam9*/

{

return NULL;

}

Usually the GUI will create a variable for each potential display to break potential name de-
pendencies. For example, KeepCentered will have location01 .. location n variables where n is the
number of potential displays. However, if a comment listing only one is provided then there will
only be one variable available in the GUI as shown for the goalScored variable/function. goalScored
may be used either in a static constraint (of arbitrary degree), or as a unary dynamic constraint.

visibleVariable goalScored() /*only one*/

/*yes,no*/

{

// only two possibilities

double * returnValue = (double*)malloc(2*sizeof(double));

if(goal == 0) // return no

{

returnValue[0] = 0.0;
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returnValue[1] = 1.0;

}

else // return yes

{

returnValue[0] = 1.0;

returnValue[1] = 0.0;

}

return returnValue;

}

Elsewhere in the C++ code the goalScored function is assigned function number 13 as shown
below.

tableCallFunction[13] = goalScored;

The dynamic constraint is set at run time using the following function with the parameter 13,
which calls the goalScored function.

double * getTablePreferences(int requestedTable)

{

double * temp = (*tableCallFunction[requestedTable])();

return temp;

}

Functions that have a number appended on their name by the java GUI to break name de-
pendencies call the same function to set the dynamic constraint. So seeScorer01, seeScorer02, and
seeScorer03 all call the seeScorer function to set the dynamic constraint.
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Appendix B

S Satisfies Properties of a Semiring

S = 〈[0, 1], f+, f×,0,1〉

where f+ is implemented using max, and f× is implented using arithmetic multiplication.

• A = [0, 1] is a set with 0,1 ∈ A.

• The + operator, max is commutative

max(a, b) = max(b, a)

=

{
a if a ≥ b
b if b > a

• The + operator, max is associative

max(a,max(b, c)) = max(max(a, b), c)

=

 a if a ≥ b and a ≥ c
b if b > a and b ≥ c
c if c > a and c > b

• 0 is the unit element for the + operator, max

max(0, a) = a = max(a,0)

• The × operator, implemented with arithmetic multiplication, is associative with 1 as its unit
element and 0 as its absorbing element, since arithmetic multiplication has these properties.

• The × operator distributes over max. i.e., for any a, b, c ∈ A

a×max(b, c) = max((a× b), (a× c))

=

{
a× b if b ≥ c
a× c if c > b
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Appendix C

Graphs used to Support Modeling using Linear

Regression

Shown here are graphs generated using a model where the time required to select a camera is
a function of the number of cameras, raised to the power of the number of displays. Under this
model each graph should appear roughly linear, since the data is first transformed (linear, square
root, cube root, or fourth root as determined by the number of displays). Graphs of experiments
using only one display are not shown in this appendix, since the graph is already linear. The
transformations shown here were done using Microsoft Excel, so there may be minor variations in
the transformations compared to the regression analysis performed by R.
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Figure C.1: Cache vs. No Cache with Two Displays, constraints KeepCentered and Dis-
tanceToCamera
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Figure C.2: Cache vs. No Cache with Three Displays, constraints KeepCentered and
DistanceToCamera
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Figure C.3: Cache vs. No Cache with Four Displays, constraints KeepCentered and Dis-
tanceToCamera
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Figure C.4: Cache vs. No Cache with Two Displays, constraints KeepCentered, Distance-
ToCamera, and FrameCoherence
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Figure C.5: Cache vs. No Cache with Three Displays, constraints KeepCentered, Distance-
ToCamera, and FrameCoherence
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Figure C.6: Cache vs. No Cache with Four Displays, constraints KeepCentered, Distance-
ToCamera, and FrameCoherence
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Figure C.7: Cache vs. No Cache with Two Displays, constraints KeepCentered, Distance-
ToCamera, FrameCoherence, and GoalScored

112



0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Cu
be

 R
oo

t 
of

 T
im

e 
in

 M
ill

is
ec

on
ds

Number of Cameras

Evaluation without Cache

Evaluation with Cache

Figure C.8: Cache vs. No Cache with Three Displays, constraints KeepCentered, Distance-
ToCamera, FrameCoherence, and GoalScored
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Figure C.9: Cache vs. No Cache with Four Displays, constraints KeepCentered, Distance-
ToCamera, FrameCoherence, and GoalScored
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