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Abstract

In many natural and laboratory conditions, plasmas are often in the non-equilibrium

state due to presence of stationary flows, when one particle species (or a special group, such

as group of high energy particles, i.e., beam) is moving with respect to the other plasma

components. Such situations are common for a number of different plasma applications such

as diagnostics with emissive plasma probes, plasma electronics devices and electric propulsion

devices. The presence of plasmas flows often leads to the instabilities in such systems and

subsequent development of large amplitude perturbations. The goal of this work is to develop

physical insights and numerical tools for studies of ion sound instabilities driven by the ion

flow in a system of a finite length. The ion sound waves are modified by the presence of

ion beam resulting in negative and positive energy modes. The instability develops due to

coupling of negative and positive energy modes mediated by reflections from the boundary.

It is shown that the wave dispersion due to deviation from quasi-neutrality is crucial for

the stability. In finite length system, the dispersion is characterized by the length of the

system measured in units of the Debye length. The instability is studied analytically and

the results are compared with direct initial value numerical simulations. The numerical tools

to simulate these systems are developed based on Godunov and multiple shooting methods.

The initial value simulations show the time dependent evolution from which the growth

rates were determined for different parameters of the system. The results of the simulations

were benchmarked against the analytical results in some limiting cases. In the pursuit of

simulation efficiency, the parallelization of the code was investigated for two basic types of

parallel systems: shared and distributed memory. The OpenMP and MPI library were used

correspondingly.
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Chapter 1

Introduction

Plasma is the most common form of substance in the visible universe, but what is plasma?

Plasma is an ionized gas of charged particles. Often it is called the fourth fundamental state

of matter, which occurs at high temperatures when neutral atoms are ionized to form a

gas of electrons and ions. Energies in excess of the ionization potential are required to

achieve this state. Because of the long-range nature of the Coulomb interactions plasmas

exhibit collective behavior leading to waves and fluctuations. Because of this variety of wave

phenomena, plasmas have been a test-bed for many developments in nonlinear wave theory

and turbulence [1]. Plasma studies are important for applications to space physics, as well

as for large number of laboratory devices used for material processing, plasma electronics,

electric propulsion etc.

Space and laboratory plasmas often include equilibrium flows of ions and/or electrons.

Such situations occur in various plasma devices for electric propulsion, plasma diodes, plasma

accelerators, plasma processing devices, and emissive probe diagnostics. Plasmas permeated

by energetic beams are also a common situation in space physics and astrophysics [2]. Such

plasmas represent a typical example of a non-equilibrium system prone to instabilities due to

the presence of a free energy reservoir from equilibrium flows. Therefore the issue of stability

properties of such plasma systems with flows is important.

This work is devoted to studies of one simple example of ion sound wave excitation when

the relative velocity between electrons and ions exceeds the ion sound velocity, v0 > cs. [1,3,4].

In infinite length plasmas, the instability may occur as a result of the kinetic interaction of

electrons with the ion beam (two-stream instability due to inverse Landau damping). On

other hand, a number of practical plasma configurations have finite length, and it is of

interest to investigate the modification/new regimes of instabilities related to the presence
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of boundaries. Instabilities due to accelerated ion flows are of interest for the sheath region

of plasma-material boundaries [5], plasma diodes [6, 7], double layers [8–11], and electric

propulsion systems [12]. In an infinite length plasma, the equilibrium ion flow v0 results in

the Doppler shift of the ion sound waves frequency, ω → ω − kv0. It is shown in this work

that in finite length systems, ion sound waves can be destabilized due to reflections from

boundaries and the coupling with ballistic modes, ω = kv0, supported by the ion flow. This

instability is different from the above noted two-stream type ion sound instability where the

kinetic resonances are important.

The Pierce plasma diode [13] is a well studied case of the instability driven by electron

flow in a finite length system. Various extensions of the instabilities in Pierce-like plasma

systems and related numerical and experimental studies have been discussed in the literature

[6, 14–18]. It is shown in this work that the problem of the ion sound waves in a system

with boundaries, in a special limit of strong dispersion, is formally reduced to the Pierce-like

equations. In our model we consider only fluid (hydrodynamic) effects, ions are assumed to

be cold (to avoid Landau damping) and have an uniform velocity with respect to the electron

component. Electrons are assumed to be in Boltzmann equilibrium (electron inertia effects

are neglected). We employ analytical and numerical methods to analyze the structure of

unstable eigen-modes, to determine the dispersion relations and conditions for the instability,

and to find the frequencies and growth rates of the unstable modes.

1.1 Ion sound oscillations

Ion sound oscillations are one of the simplest eigen-modes of finite temperature plasmas.

The ion sound wave is longitudinal oscillations of ions and electrons with properties similar

to sound waves in neutral gases. The restoring force is created by the electron compressibility

(pressure) and is transferred to ions via the electric field. The inertia is provided by ions.

These waves exist both in unmagnetized and magnetized plasmas. In Hall plasmas (when

ions are not magnetized) ion sound waves may propagate in any direction except exactly

perpendicular to the magnetic field. The simplest model of ion sound waves is obtained

from a hydrodynamic approach. We assume a fully ionized plasma of protons and electrons,

2



neglecting magnetic field effects. The relevant equations are

∂nα

∂t
+∇ · (nαvα) = 0, (1.1a)

mαnα

(
∂

∂t
+ vα · ∇

)
vα = −∇pα − eαnα∇φ, (1.1b)

∇2φ = −4π
∑

α

eαnα, (1.1c)

where Eqs. (1.1a,b) are continuity and momentum balance equations, the last Eq. (1.1c) is

a Poisson equation, α - a species index (i or e), n - particle density, v - velocity, p - pressure,

e - charge , φ - electrostatic potential.

Since electrons are much lighter than ions and the wave frequency is not too high (in

comparison with plasma frequency), we could neglect electron mass in the momentum balance

equation, resulting in
∇ne

ne

=
e

Te

∇φ ⇒ ne = n0 exp

(
eφ

Te

)
, (1.2)

where n0e is an electron density in equilibrium.

We will consider the situation when the ion temperature is much smaller than that of

electrons, Te ≫ Ti. This is often the case for laboratory collisionless plasma because electrons

have much larger mobility than ions. Moreover, it can be shown from the kinetic theory that

ion sound is subject to strong Landau damping when the ion temperature is of the order of

the electron temperature (Ti ∼ Te) [19]. So, imposing Ti = 0 (pi = 0) for ions one has

∂ni

∂t
+∇ · (nivi) = 0, (1.3a)

mi

(
∂

∂t
+ vi · ∇

)
vi + e∇φ = 0. (1.3b)

The electron and ion equations are closed with the Poisson equation

∇2φ = −4πe (ni − ne) . (1.4a)
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We study linear wave oscillations for small deviations from given stationary equilibrium.

Thus, we will expand all variables around the equilibrium

X(r, t) = X0(r) + X̃(r, t), (1.5)

where X0 is equilibrium value, X̃ - perturbation (below, all variables without index are

perturbed).

Considering the case without equilibrium flow (v0 = 0) and n0e = n0i = n0, the linearized

system takes the form

∂ni

∂t
+ n0∇ · vi = 0, (1.6a)

mi
∂vi

∂t
+ e∇φ = 0, (1.6b)

ne =
n0e

Te

φ, (1.6c)

∇2φ = −4πe (ni − ne) . (1.6d)

Using a quasi-neutral approximation ni = ne = n, Eqs. (1.6) are simplified giving the wave

equation for sound waves (
∇2 − 1

c2s

∂2

∂t2

)
n = 0, (1.7)

where c2s = Ti/mi is the ion sound velocity.

To obtain the dispersion relation, we seek solution for Eqs (1.6) or (1.7) in the form:

X ∼ ei(k·r−ωt). The dispersion equation for quasi-neutral case then is

ω2 = k2c2s. (1.8)

1.1.1 Dispersion of ion sound waves

To include the dispersion of the ion sound waves, we should replace quasi-neutrality

condition ni = ne = n with the Poisson equation (1.6d). In this case, the dispersion equation

will be

ω2 =
k2c2s

1 + k2d2e
, (1.9)
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where d2e = Ti/4πe
2n0 - Debye length (also known as Debye radius). The Debye length is

a natural plasma parameter which describes charge separation. This effect is also known as

Debye screening which means that the electric field of a charge in a plasma is screened at

distances roughly exceeding the Debye length.

1.1.2 Nonlinearity and wave breaking

When the amplitude of oscillations grows to a finite value we should take into account non-

linear terms in Eqs. (1.3). The simplest nonlinear effect can be shown using the quasi-neutral

approximation (ni = ne) in the equations with no equilibrium flow. This approximation is

valid for scales much larger than the Debye length (de). In this case the Eqs. (1.3) will have

the form

(
∂

∂t
+ vi · ∇

)
ln(ni) +∇ · vi = 0, (1.10a)

(
∂

∂t
+ vi · ∇

)
vi + c2s∇ln(ni) = 0. (1.10b)

It can be shown [20] that this system will lead us to

vt + vvz = 0 (1.11)

Burgers-type equation. This equation has a general solution [21] in the form

v(z, t) = f(z − vt), (1.12)

with the initial condition

v(z, t = 0) = f(z). (1.13)

This solution was discovered by Riemann in 1860. The correctness of solution (1.12) can be

verified by straightforward calculations. Using solution (1.12) one can obtain

vz =
f ′

1 + f ′t
, (1.14a)

vt = − vf ′

1 + f ′t
, (1.14b)
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where f ′ = df
dξ

, ξ = z − vt.

By substituting Eqs. (1.14) into Eq. (1.11) we can confirm that expression (1.12) is a

solution. Let us consider the Gaussian initial condition (red solid line in Fig. 1.1). It follows

from the solution that each point is moving with the velocity proportional to its amplitude,

so the top of the bell is moving faster than other regions. The evolution of the Gaussian

initial condition is illustrated in Fig. 1.1. We can see that the solution will tend to form a

vertical front. The front of the solution steepens with time (dash-dotted green line in Fig.

1.1) until the gradient of the velocity becomes infinite (vz = ∞). This happens when the

denominators in Eqs. (1.14) are zeros. After that point in time, the profile of the velocity

becomes a two-valued function (blue and yellow line on Fig. 1.1). This phenomenon is called

wave breaking. Generally speaking, the equation (1.11) becomes invalid after this point.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

v

 

 
t = 0
t = 0.3
t = 0.6
t = 0.9

Figure 1.1: Example of wave breaking, the solution to the Burgers’ equation (1.11).

1.1.3 Solitons

Nonlinear evolution of Eq. (1.11) leads to a multivalued solution. However, there are

processes which may limit the wave breaking. For example, it could be the viscosity. In

our case, the wave breaking is balanced by dispersion. Because of the dispersion, different
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harmonics will travel with different velocities. This effect could balance the nonlinear wave

breaking. For certain solution, when dispersion spreading is compensated by nonlinear steep-

ening the stationary traveling solutions with finite amplitude called solitons may exist. To

take dispersion into account one should include charge separation via Poisson equation (non

quasi-neutrality). This dynamics could be described by Eqs. (1.3). For one-dimensional case

∂ni

∂t
+

∂(nivi)

∂z
= 0, (1.15a)

∂vi
∂t

+ vi
∂vi
∂z

+
e

mi

∂φ

∂z
= 0, (1.15b)

∂2φ

∂z2
= −4πe

(
ni − n0 exp

(
eφ

Te

))
. (1.15c)

To find the stationary solution to the equations (1.15), one can look for the waves traveling

with the constant velocity U. This means that every function should depend on the variable

ξ = z − Ut. This gives us

(ni(vi − U))′ = 0, (1.16a)

(
v2i
2

− Uv′i +
e

mi

φ)′ = 0, (1.16b)

φ′′ = −4πe

(
ni − n0 exp

(
eφ

Te

))
, (1.16c)

where the derivative is taken with respect to ξ.

Integrating the two first equations in (1.16) and assuming that in the equilibrium vi = 0,

φ = 0, n = n0, one obtains

∂2φ

∂ξ2
= 4πen0


exp

(
eφ

Te

)
− 1√

1− 2
eφ

miU2


 . (1.17)

It is interesting to note that this equation could be rewritten in the form of nonlinear oscillator

equation
∂2φ

∂ξ2
= −dW (φ)

dφ
, (1.18)
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where the artificial potential W is

W = −
√

1− 2φ− T expφ/T + T + 1, (1.19)

in dimensionless units (
eφ

miU2
→ φ,

Te

miU2
→ T,

ξωpi

U
→ ξ). The integration constant was

chosen so that W (0) = 0. From Eq. (1.19) it follows that φ < 1/2. The violation of this

condition results in wave breaking. Physically this means that for large amplitudes dispersion

effects cannot stop wave breaking.

The artificial potential W can have two extrema: φ = 0 and φ = φ∗. Depending on the

value of T , the value of φ∗ could be either positive or negative. When T > 1 the extremum

is negative (φ∗ < 0). However, in this case the solution will not satisfy boundary conditions

at infinity (φ → 0 , when ξ → ±∞). When T < 1 the nonzero extremum is positive, the

axillary potential is shown on Fig. 1.2. The condition to avoid the wave breaking (φ < 1/2)

in dimensional units takes the form

U > cs, (1.20)

which means that solitons will travel faster than linear waves.

However, for solitons to exist we need one more condition which will exclude wave breaking

W (φ = 1/2) > 0. (1.21)

Finally Eqs. (1.20) and (1.21) will give us

cs < U < Uc ∼ 1.6cs. (1.22)

Therefore, localized traveling solutions (solitons) will exist for velocities satisfying (1.22).

1.1.4 Sheath solution

In addition to the soliton solutions, equation (1.17) has very important stationary solu-

tions which describe the plasma sheath.

We consider stationary solutions, so the time derivatives can be dropped. Then, one can

8
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Figure 1.2: The axillary potential for nonlinear-oscillator equation (1.18) for Te <
miU

2 (also known as the Sagdeev potential).

write Eqs. (1.15) as (the first two equations were integrated)

ni(z)vi(z) = const, (1.23a)

miv
2
i (z)

2
+ eφ(z) = const, (1.23b)

∂2φ

∂z2
= −4πe

(
ni − n0 exp

(
eφ

Te

))
. (1.23c)

Where we assumed that ions have initial velocity Us at z = 0. We cannot assume that ions

are immobile at this point because in this case the system (1.23) will have no solution, so

we assume that there is some pre-sheath region [22] where the weak electric field accelerates

ions, until the system (1.23) gets a solution. We will show below that there is a condition

on the speed of ions and we choose electrostatic potential to be zero at this point. Then the

system (1.23) can be reduced to Eq. (1.17) where U = Us. Integrating Eq. (1.17) and taking

into account the boundary conditions φ(z = 0) = φ′(z = 0) = 0 (which means that at this
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point the electric field is zero) we can write

φ′2 = 8πn0

[
Te

(
exp

(
eφ

Te

)
− 1

)
+

miU
2
s

2

(√
1− 2eφ

miU2
s

− 1

)]
. (1.24)

The right side of this equation should be positive which means that the ion density must

always be greater than the electron density in the sheath region, i.e. the sheath is electron

deficient: the electrons leave the sheath region into the wall due to much higher mobility.

There is some contradiction in choosing the electric field to be zero at z = 0 and postulating

that the ion velocity is finite. This problem occurs due to a singular nature of the system at

z = 0.

Expanding the right-hand side, one finds that for the existence of the sheath solution,

φ
′2 > 0, the following condition must be satisfied

Us ≥ cs, (1.25)

which is also known as the Bohm sheath condition.
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Chapter 2

Analytical theory of waves and instabilities

in plasmas with flows

In this section analytical theory for ion sound waves in a finite length system with ion

flow is developed. The ions are assumed to be cold, so their dynamics is described by

the equation of motion with zero pressure and continuity equations. The electrons are in

thermodynamical equilibrium so their perturbed density follows a Boltzmann distribution.

These are the conditions for ion sound waves described by equation (1.9). Normally, in

an infinite (periodic) system, the addition of the equilibrium ion flow results in a Doppler

shift of the basic (ion sound) mode. It is shown below that the addition of the walls with

specific boundary conditions leads to the instability. The boundary conditions are those of

the standard Pierce problem: these are natural physical boundary conditions for the case of

the ion beam emitted from the left wall.

2.1 Infinite (periodic) systems

The system with an equilibrium ion flow v0 is described by equations similar to Eqs. (1.6)

with the addition of the v0 · ∇ term to the convective derivative

(
∂

∂t
+ v0 · ∇

)
ni + n0∇ · vi = 0, (2.1a)

(
∂

∂t
+ v0 · ∇

)
vi +

e

mi

∇φ = 0, (2.1b)

ne =
n0e

Te

φ, (2.1c)

∇2φ = −4πe (ni − ne) . (2.1d)
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At first, we consider the infinite system so the solution can be sought in the form of plane

wave (∼ ei(k·r−ωt)). In quasi-neutral approximation (ni = ne) one has

ω = v0 · k± csk. (2.2)

In general case, the dispersion equation takes the form

ω = v0 · k± csk√
1 + k2d2e

. (2.3)

In infinite system, the role of the equilibrium flow is reduced to a simple Doppler shift in the

frequency.

2.2 Finite length systems

In real systems we have boundaries which could affect wave dynamics in plasmas. To

simplify this problem, we restrict ourselves to one-dimensional problem with two boundaries.

To take those boundaries into account, we cannot look for a solution in X ∼ ei(k·r−ωt) form,

but replace it with a weaker form X ∼ e−iωt. Substituting this into Eqs. (2.1) and neglecting

all dimensions except z

− iωni + v0
∂ni

∂z
+ n0

∂vi
∂z

= 0, (2.4a)

− iωvi + v0
∂vi
∂z

+
e

mi

∂φ

∂z
= 0, (2.4b)

ne =
n0e

Te

φ, (2.4c)

∂2φ

∂z2
= −4πe (ni − ne) . (2.4d)

The boundary conditions are

φ(z = 0) = φ(z = L) = ni(z = 0) = vi(z = 0) = 0, (2.5)
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where L is the length of the system.

In the general case this system can be reduced to the equation

v20φ
′′′′ − 2iωv0φ

′′′ +

[
ω2
pi − ω2 − v20

d2e

]
φ′′ +

2iωv0
d2e

φ′ +
ω2

d2e
φ = 0, (2.6)

which clearly shows the singular nature of the perturbation due to a finite v0. Obviously in

the limit of v0 → 0 one obtains the dispersion equation in form of Eq. (1.9). Seeking solution

to Eq. (2.6) in the form φ ∼ eλz leads to the equation for λ

v20λ
4 − 2iωv0λ

3 + λ2

[
ω2
pi − ω2 − v20

d2e

]
+

2iωv0
d2e

λ+
ω2

d2e
= 0,

or, in more convenient form,

d2e

(
λ− iω

v0

)2(
λ2 − 1

d2e

)
+

c2s
v20

λ2 = 0, (2.7)

which corresponds to Eq. (2.3).

2.2.1 Full quasi-neutrality case

Dispersion plays an important role in the instability mechanism. For length scales much

longer than the Debye length, charge separation is not important and one can consider the

fully quasi-neutral case, ni = ne, corresponding to the absence of the dispersion. In this

limit, the system (2.4) will reduce to the form

φ′′ +
2iωv0
c2s − v20

φ′ +
ω2

c2s − v20
φ = 0, (2.8)

where the prime is a derivative with respect to z.

The general solution of this equation has the form

φ(z) = C1 exp

(
iωz

v0 + cs

)
+ C2 exp

(
iωz

v0 − cs

)
. (2.9)
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By imposing the condition (2.5), we obtain the equation for ω, which define C1, C2 and ω

ωn = πn
v20 − c2s
Lcs

, n ∈ Z. (2.10)

It is worth to note that the Eq. (2.10) is not valid in the zero electron temperature limit,

(Te → 0, cs → 0) because in this case the solution for the electrostatic potential will be

different from Eq. (2.9)

φ(z) = (C1 + C2z)e
iω

v0
z
, (2.11)

while boundary conditions will give us the frequency

ωn =
2πn

L
v0, n ∈ Z. (2.12)

Therefore, the non-dispersive waves are stable. As it will be shown below, the wave dispersion

is crucial for the instability mechanism.

2.2.2 Weak dispersion case

In the long systems, de ≪ L, the dispersion is weak, kde ≪ 1, where the wave number

k ∼ 1/L. Using dispersion equation for plasma without flows (1.9), one gets the estimates

for the mode frequency

ω ∼ kcs or ω ∼ de
L
ωpi. (2.13)

We solve Eq. (2.7) treating the Debye length as a small parameter; thus, it has four roots [23]

where two of them are small ∼ O(1) and two of them are large ∼ O(1/de). The first pair

coincides with those in the quasi-neutral case

λ1,2 =
iω

v0 ± cs
+O(d2e) ∼ O(1). (2.14)

The second pair is

λ3,4 = ± i

v0de

√
c2s − v20 +

iωc2s
v0

1

c2s − v20
+O(de) ∼ O(

1

de
). (2.15)
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Since all roots are different, we can write the general solution of Eq. (2.6) in the following

form

φ(z) = C1e
λ1z + C2e

λ2z + C3e
λ3z + C4e

λ4z. (2.16)

The perturbed ion velocity and density from the full system (1.1) are found as

4πeni =
φ

d2e
− φ′′, (2.17)

4πen0vi =
v0
d2e

φ+
c2s − v20
iωd2e

φ′ − v0φ
′′ +

v20
iω

φ′′′. (2.18)

The dispersion equation is obtained as a condition for the existence of a nontrivial solution

for C1,C2,C3,C4 in the linear system of equations (2.5)

D = det




1 1 1 1

eλ1L eλ2L eλ3L eλ4L

λ2
1 λ2

2 λ2
3 λ2

4

µ1 µ2 µ3 µ4




= 0, (2.19)

where

µk =

(
c2s
v20

− 1

)
λk + d2eλ

3
k. (2.20)

The dispersion equation (2.19) is difficult to solve analytically as there are numerous solutions

on the whole complex plane. However, we are interested only in those with the largest

imaginary part, since these unstable modes will dominate. The numerical solution of Eq.

(2.19) for the long system, with the length larger than the Debye length, L = 10de, is shown

in Fig. 2.1a. The mode frequency is consistent with estimation (2.13).

For a fixed system length L, the instability growth rate depends on the dimensionless ion

flow velocity v0/cs. The unstable regions are alternating with oscillatory (ℜ(ω) 6= 0) and

aperiodic (ℜ(ω) = 0) zones. The boundaries of the zones could be found analytically using

the fact that at the boundary the wave frequency is zero. Expanding Eq. (2.19) in a Taylor

series

D(ω) = D(0) +
∂D(0)

∂ω
ω +O(ω2) = 0, (2.21)
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and using that D(0) ≡ 0 and ∂D(0)
∂ω

= 0, one finds

v20
c2s

=
1

1 + π2n2 d2e
L2

, where n = 1, 2, 3.... (2.22)

Solutions to equation (2.22) correspond to zones boundaries in Fig. 2.1.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04
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0.06

a) Im(ω/ωpi)

Re(ω/ωpi)

0.0 0.2 0.4 0.6 0.8 1.0

v0/cs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

b) Im(ω/ωpi)

Re(ω/ωpi)

Figure 2.1: The alternating zones of aperiodic (ℜ(ω) = 0) and oscillatory (ℜ(ω) 6= 0)
instabilities; a) the solution of the analytical dispersion equation (2.19), b) results of
numerical simulations.

2.2.3 Strong dispersion case

In the short wavelength limit (kde ≫ 1 or de ≫ L), the dispersion modifies the solution.

In this limit, the ion sound modes are reduced to the oscillations with the frequency of the

order of ω ∼ ωpi. In this case, the reciprocal of the Debye length (1/de) is considered as a

16



small parameter. Then the roots of the Eq. (2.7) are [23]

λ1,2 = 0 and λ3,4 = i
ω ± ωpi

v0
, (2.23)

and the general solution

φ(z) = C1 exp

(
i
ω + ωpi

v0
z

)
+ C2 exp

(
i
ω − ωpi

v0
z

)
+ C3z + C4. (2.24)

This situation becomes mathematically equivalent to the Pierce instability. Imposing bound-

ary conditions (2.5), one obtains an homogeneous linear system, which has nontrivial solutions

when the following dispersion equation is satisfied

2ξα(1− eiξcosα) + i(ξ2 + α2)sinαeiξ + i
ξ2

α
(ξ2 − α2) = 0, (2.25)

where ξ = Lω/v0 and α = Lωp/v0.

It was shown [13,19] that the dispersion equation (2.25) has the following stability prop-

erties:

α < π - has stable solution, (2.26)

(2N − 1)π < α < 2Nπ - has aperiodic instability, (2.27)

2Nπ < α < (2N − 1)π - has oscillatory instability, (2.28)

where N = 1, 2, 3...., with a maximum growth rate γ ∼ v0/L.

There are many roots of the dispersion equation (2.25) on whole complex plane; as before,

we choose only roots which have the largest imaginary part. The solutions which meet these

criteria are shown in Fig. 2.2. The alternating aperiodic and oscillatory instability zones

exist similar to the weak dispersion case. Fig. 2.1 also shows the results of direct initial value

simulations described in the next section.
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Im(ω/ωpi) - analytical results

Re(ω/ωpi) - analytical results

Im(ω/ωpi) - simulation results

Re(ω/ωpi) - simulation results

Figure 2.2: The oscillatory (ℜ(ω) 6= 0) and aperiodic (ℜ(ω) = 0) instabilities in
strong dispersion case. The analytical solution of (2.25) and numerical simulations for
L = 0.1de.

2.2.4 Traveling wave solution

We can try to solve Eqs. (2.1) in a different way. Let us rewrite it in the form

ω2
pi∇2φ =

(
∂

∂t
+ v0 · ∇

)2(
φ

d2e
−∇2φ

)
(2.29)

or in one-dimensional case

ω2
pi

∂2φ

∂z2
=

(
∂

∂t
+ v0

∂

∂z

)2(
φ

d2e
− ∂2φ

∂z2

)
. (2.30)

Let us choose new variables as

η = z − v0t, (2.31a)

τ = t. (2.31b)
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Then

∂

∂t
= −v0

∂

∂η
+

∂

∂τ
, (2.32a)

∂

∂z
=

∂

∂η
, (2.32b)

∂

∂t
+ v0

∂

∂z
=

∂

∂τ
. (2.32c)

Substituting this into Eq. (2.30), one has

ω2
p

∂2φ

∂η2
=

(
∂

∂τ

)2(
φ

d2e
− ∂2φ

∂η2

)
, (2.33)

or,
∂2φ

∂τ 2
− c2s

∂2φ

∂η2
= d2e

∂4φ

∂τ 2∂η2
. (2.34)

This is a homogeneous equation, so we can try separation of variables

φ = T (τ)R(η), (2.35)

which leads us to the following equation

R

R′′
= d2e + c2s

T

T ′′
. (2.36)

Since we cannot have an exponentially growing solution in space, for some κ we have

R

R′′
= − 1

κ2
(2.37)

which gives

R′′ + κ2R = 0 and T ′′ + Ω2T = 0, (2.38)

where Ω agrees with Eq. (1.9).

The approach described in this section is very appealing for infinite plasmas. However,

in case of finite length systems with fixed boundaries all complexity described earlier are

hidden in boundaries. After change of variables all boundary conditions will depend on time
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producing the same level of complexity as before. The approach where problem is solved in

the moving reference frame is often useful as has been discussed in literature [7, 24].

2.3 Excitation of low hybrid waves by the ion beam

propagating perpendicular to the external field

It turns out the that mathematical structure of the equations we have studied so far is

similar to a different problem which has important applications in electric propulsion and

plasma processing, namely, to the problem of the excitation of low hybrid waves in Hall

thrusters and magnetrons. Both of these devices have an external magnetic field so that the

electrons are magnetized, ρe ≪ L, which allows the trapping of electrons in the magnetic

field. The magnetic field is weak so the ions are not magnetized due to their large Larmor

radius, ρi ≫ L. A typical Hall thruster configuration has cylindrical geometry with the

electric field directed along the cylinder axis, while the magnetic field is mostly in radial

direction. The schematic configuration of the Hall thruster is shown in Fig. 2.3, and the

fields geometry in Fig. 2.4.

This type of electric propulsion has been widely and successfully used on various satellites

due to its high efficiency and relatively simple construction [25]. However, despite successful

applications, the nature of the electron transport in these devices is not fully understood [26],

[27]. It is presumed that plasma fluctuations are the reason for enhanced transport. It was

suggested that low hybrid modes may be excited due to finite length effects [12].

To describe simplest equilibrium state we will use two-fluid MHD equations with magne-

tized electrons and non-magnetized ions. Since we are trying to study the boundary effects,

we are neglecting temperature effects (Te = Ti = 0), all friction forces among different species

and considering only a quasi-neutral case. For ion equilibrium we can write flow conservation

(integrated continuity equation) ni0Vi0 = constant and energy conservation (integrated Euler

equation)
miV

2

i0
(z)

2
+ eφo(z) = constant, where Vi0 is the projection on the z-axis, since it

is the axis along the constant electric field. So we can see that in Hall truster, ions travel

along cylinder axis with velocity Vi0 =
√

V 2
i00 +

2eE0z
mi

where we have chosen φ(z = 0) = 0

and Vi(z = 0) = Vi00 and assumed that the electric field is constant. As for electrons, in
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Figure 2.3: Schematic of the Hall thruster.

Figure 2.4: Geometry of the electric and magnetic field and flow.

the guiding center approximation they will rotate with ”E×B” speed (Ve0 = cE0

B0

êφ where

E0 , B0 - stationary electric and magnetic fields, êφ - poloidal direction unit vector in Hall

thruster cylinder.)

Let us consider quasi-neutral perturbation of ion and electron velocity with density as well

as electrostatic potential dependent only on a z-direction. In this case linearized equations
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will take the form

∂Viz

∂t
+ Vi0

∂Viz

∂z
+ Viz

∂Vi0

∂z
+

e

mi

∂φ

∂z
= 0, (2.39a)

∂n

∂t
+ n0

∂Viz

∂z
+ Vi0

∂n

∂z
+ Viz

∂n0

∂z
+ n

∂Vi0

∂z
= 0, (2.39b)

∂Vex

∂t
− e

me

∂φ

∂z
+

e

mec
VeyB0 = 0, (2.39c)

∂Vey

∂t
− e

mec
VexB0 = 0, (2.39d)

∂n

∂t
+ n0

∂Vex

∂z
= 0, (2.39e)

where Viz,Vex,Vey - perturbation of ion and electron velocity, φ - perturbation of electrostatic

potential, n - density perturbation.

The boundary conditions for perturbations are

φ(0) = φ(L) = n(0) = Viz(0) = 0. (2.40)

As previously, we assume time dependence in the form X(z, t) = X(z)e−iωt having

− iωViz + Vi0
∂Viz

∂z
+ Viz

∂Vi0

∂z
+

e

mi

∂φ

∂z
= 0, (2.41a)

− iωn+ n0
∂Viz

∂z
+ Vi0

∂n

∂z
+ Viz

∂n0

∂z
+ n

∂Vi0

∂z
= 0, (2.41b)

∂2φ

∂z2
=

nme

n0e
(ω2 − ω2

ce), (2.41c)

where ωce = eB0

mec
electron-cyclotron frequency. Assuming that the ion equilibrium velocity

is constant in space (Vi0 ∼ const) and the frequency of the considered perturbation is much

smaller than electron cyclotron frequency (|ω| ≪ |ωce|) we have

− iωn+ Vi0
∂n

∂z
+ n0

∂Viz

∂z
= 0, (2.42a)

− iωViz + Vi0
∂Viz

∂z
+

e

mi

∂φ

∂z
= 0, (2.42b)

∂2φ

∂z2
= −meω

2
ce

en0

n. (2.42c)
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These equations lead to equation mathematically equivalent to Pierce dispersion equations

(Section 2.2.3). So dispersion equation will be the same as Eq. (2.25) if we replace α →
αh = ωlhL

Vi0

where ωlh =
√
ωceωci =

eB0

c
√
mime

and ξ → ξh = Lω
Vi0

. From this it follows that in this

situation we will have all instabilities discussed in section 2.2.3.

In the limit of zero ion velocity and no boundaries, transverse electrostatic oscillations

are possible, referred to as so-called lower hybrid waves. Plugging n, Viz, φ ∼ ei(kz−ωt) into

Eqs. (2.41) and neglecting flows, the dispersion equation will be

ω2 =
ω2
ce

1 + mi

me

≈ me

mi

ω2
ce ≡ ω2

lh, (2.43)

where ω2
lh is a lower hybrid frequency.

Hall thrusters are very important propulsion devices which are widely used in space mis-

sions. Unfortunately, they are not fully understood yet. The main unsolved issue is anoma-

lous transport which dramatically decreases efficiency. Plasma fluctuations are believed to

be the main reason for this transport. Lower hybrid modes excited due to finite length effects

could be an important sources of such plasma fluctuations.
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Chapter 3

Numerical methods, algorithms and paral-

lelization

Exact analytical solution of the systems discussed are not always possible, which requires

a numerical solution. The nature of this system suggests that the solution will be a combina-

tion of traveling waves, which imposes some constraints on the choice of numerical methods.

Moreover our system consists of two different types of equations that require different numeri-

cal algorithms. Different methods have been investigated and we have chosen those which are

easier to generalize for nonlinear case and simple to parallelize. Here we consider a linearized

version of the discussed problem.

3.1 Dimensionless equations

For numerical studies, it is often convenient to rewrite the equations into dimensionless

form. Let us introduce

n∗ =
n

n0

, z∗ =
z

de
, φ∗ =

eφ

Te

, t∗ = tωpi, v
∗
0 =

v0
cs
.

This scaling transforms the system (2.4) into the following equations (stars were omitted for

convenience)

∂n

∂t
+ v0

∂n

∂z
+

∂v

∂z
= 0, (3.1a)

∂v

∂t
+ v0

∂v

∂z
+

∂φ

∂z
= 0, (3.1b)

∂2φ

∂z2
= φ− n. (3.1c)
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It is important to note that the scale of the wave phase velocity is vφ ∼ ±1+ v0 (±cs + v0 in

dimension form). Thus, in the long wave length limit, dimensionless value v0 = 1 separates

two situations: (a) v0 > 1 - waves are traveling only in one direction; (b) v0 < 1 - waves are

traveling in both directions.

3.2 Numerical methods

The above system (3.1) cannot be solved in time explicitly because the Poisson equation

(3.1c) is implicit in time. Thus we divide our initial value problem into two sub-problems:

1. The explicit initial value problem (IVP), which can be advanced in time

∂n

∂t
+ v0

∂n

∂z
+

∂v

∂z
= 0, (3.2a)

∂v

∂t
+ v0

∂v

∂z
+

∂φ

∂z
= 0, (3.2b)

φ(z), n(t = 0, z), v(t = 0, z). - given. (3.2c)

2. The Poisson equation which is a boundary value problem (BVP)

∂2φ

∂z2
= φ− n, (3.3a)

φ(0) = φ(L) = 0, (3.3b)

n(z) - given. (3.3c)

Systems (3.3) and (3.2) are solved in time with the following algorithm implemented

iteratively on each time step. We set up the initial profiles of ion density and velocity.

The Poisson equation (3.3a) is solved at the beginning of each time step. It uses given ion

density profile (either from the initial condition or from previous time step) to produce the

electrostatic potential profile. The known potential distribution allows us to solve Eqs. (3.2)

in time. This gives us new ion density and velocity profiles. The above algorithm is illustrated

in Fig. 3.1.
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Figure 3.1: Algorithm for the solution of Eqs. (3.1).

3.2.1 Multiple shooting method

Commonly, the shooting methods [28] and finite difference schemes [29] are the methods

of choice for a BVP. We implemented a shooting method due to its simplicity. We chose

multiple shooting method (MSM) because it is easy to parallelize, has no disadvantages of

simple shooting methods (e.g., limitations on a system length) [30], and (since our system

is linear) MSM reduces to a system of IVPs and linear system of equations. To apply the

multiple shooting method to the system (3.3), it is common to write it in the form

∂y

∂z
= A · y + b, (3.4a)

B0 · y(0) +BL · y(L) = 0, (3.4b)

b(z) - given, (3.4c)

where

y =


 φ
∂φ

∂z


 ,b = −


0

n


A =


0 1

1 0


 , B0 =


1 0

0 0


 , BL =


0 0

1 0


 .

In the multiple shooting method we divide the domain into many small subintervals. On

every subinterval, we have the IVP with artificial initial conditions as shown in Fig. 3.2.

The solution on every subinterval is given by

yn(z, cn−1) = Yn(z)cn−1 + vn(z), where Yn(z) =


cosh(z − zn−1) sinh(z − zn−1)

sinh(z − zn−1) cosh(z − zn−1)


 .
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Figure 3.2: Set of IVPs on subintervals (0 = z0 < z1 < ... < zN = L).

Yn is the fundamental solution, vn(z) is some particular solution with zero initial conditions,

and cn−1 is the patching coefficients which is determined from boundary conditions on subin-

tervals. The next key step of multiple shooting method is to impose equations that provide

continuity of the solution and satisfy the boundary conditions. At this step, we obtain a

number of algebraic equations to solve. In our case due to linearity of Eqs. (3.4) we have the

following linear system

Ac = r,

where

A =




−Y1(z1) I

−Y2(z2) I

...

−YN−1(zN−1) I

B0 −BLYN(L)




,

27



c =




c0

c1

...

cN−2

cN−1




, r =




v1(z)

v2(z)

...

vN−1(z)

−BLvN(L)




Thus, the solution of the original BVP by MSM consists of two principal steps:

1. Solve IVPs on subintervals. In our case, we use fourth order Runge-Kutta method.

Pseudo-code for serial implementation is shown below:

A = Fundamental solution;
Find B with IC at 0 ;
for i = sub interval do

B = RK4(IC=C(i));
end
G = GE(A,B);
for i = sub interval do

φ = RK4(IC = C(i));
end

2. Because Eqs. (3.4) are linear, our system of algebraic equations is linear, so we can

use Gaussian elimination (GE) method [31] to obtain a solution. Illustration for the

algorithm is given below:

for k = 1 ... m: do
Find pivot for column k ;
i max := argmax (i = k ... m, abs(A[i, k]));
if A[i max, k] = 0 then

error ”Matrix is singular!”
end
swap rows(k, i max);
Do for all rows below pivot ;
for i = k + 1 ... m: do

Do for all remaining elements in current row ;
for j = k ... n: do

A[i, j] := A[i, j] - A[k, j] * (A[i, k] / A[k, k])
end
Fill lower triangular matrix with zeros: A[i, k] := 0

end
end
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3.2.2 Godunov scheme

The next step is to solve IVP (3.2) in time. It is a system of hyperbolic PDEs, which

can be expressed in a conservative form. This fact is related to the nature of continuity and

Euler equations, which are conservative

∂U

∂t
+

∂F(U)

∂z
= 0, (3.5)

where

U =


n

v


 , F =


v0n+ v

v0v + φ


.

This form suggests to treat our system with a class of finite volume methods [32]. At

the beginning we choose the simplest first-order upwind scheme [33], because for the high

velocity of the ion flow we know that the waves propagate only in one direction. The simplest

upwind scheme is given by

Un+1
j = Un

j +
∆t

∆z
(Fn

j − Fn
j−1).

However, we cannot use this scheme for the situations when the waves propagate in opposite

directions. Let’s define matrix Â as

Â =
∂F̄

∂ū
.

The eigenvalues of this matrix have physical interpretation. They are phase velocities of

waves. So when λ1, λ2 eigenvalues of Â have different signs the waves propagate in oppo-

site direction and we have to use more advanced methods. This is due to the fact that the

upwind scheme calculates the next point in time (U(t+∆t, z)) based on two points located

back in space and time (U(t, z),U(t, z − ∆z)), so when we have waves traveling in one di-

rection, hyperbolic PDE exact domain of dependence are included on approximate domain

of dependence. However, in our case there are waves propagating in both directions and ap-

proximate domain of dependence is no longer subset of exact domain. In other words, those

waves will make the upwind scheme unconditionally unstable. To treat this issue we used
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Lax-Friedrichs [32] and Harten, Lax, Van Leer (HLL) [34] methods. Lax-Friedrichs scheme

shows quite nice results, and it is much simpler than HLL methods, but it requires high

discretization for correct results due to high numerical viscosity. Another drawback is that

when solution contains large gradients (sharp edges), it could exhibit the Gibbs phenomenon

(type of numerical instability). The Lax-Friedrichs scheme is written in the form

un+1
i =

1

2
(un

i+1 + un
i−1)− a

∆t

2∆x
(un

i+1 − un
i−1).

We also tried MacCormack method, but it showed oscillatory behavior, since it has no numer-

ical viscosity as Lax-Friedrichs method. In such situations the family of Godunov methods

can be of interest. Such schemes use the solution of Riemann problem on computational

cells. There are two classes of methods: approximate Riemann solvers and exact Riemann

solvers. We used one kind of approximate Riemann solver - the HLL method, which assumes

a Riemann solution consisting of just two waves separating three constant states. If sRi−1/2

and sLi−1/2 are upper and lower bounds of wave velocities respectively, the solution can be

expressed as

ũ(x, t) =





ui−1 if
x

t
≤ sLi−1/2,

uHLL
i−1/2 if sLi−1/2 ≤

x

t
≤ sRi−1/2,

ui if sRi−1/2 ≤
x

t
.

Where intermediate state is obtained as

uHLL
i−1/2 =

sRi−1/2ui − sLi−1/2ui−1

sRi−1/2 − sLi−1/2

− fi − fi−1

sRi−1/2 − sLi−1/2

.
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The HLL flux can be found in the form

fi−1/2 =





fi−1 if
x

t
≤ sLi−1/2,

fHLL
i−1/2 if sLi−1/2 ≤

x

t
≤ sRi−1/2,

fi if sRi−1/2 ≤
x

t
.

And an intermediate flux is

fHLL
i−1/2 =

sRi−1/2fi−1 − sLi−1/2fi + sRi−1/2s
L
i−1/2(ui − ui−1)

sRi−1/2 − sLi−1/2

.

We can estimate upper and lower bounds of waves velocity from the expression for the phase

velocity (2.3)

sR,L = v0 ±
1√

1 + k2
max

, (3.6)

where kmax = 1
L
.

Thus, we use upwind scheme, when both waves propagate in one direction and HLL

method when waves go in the opposite directions. The logic of the code for HLL scheme is

introduced below
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Calculate sl and sr as v0 ± 1;
for k = 1 ... N: do

Initialize local v and n;
if sl > 0 then

Calculate flow with upwind scheme;
update local v and n;

end
if sr < 0 then

Calculate flow with backward scheme;
update local v and n;

end
if sl ≤ 0 and sr ≥ 0 then

Calculate flow with HLL scheme;
update local v and n;

end
Update global v and n;

end

As usual for finite difference methods for solving hyperbolic PDEs HLL method has the

restrictions on ∆t and ∆x, which is called a Courant-Friedrichs-Lewy (CFL) condition and

can be presented as [35]

C = ∆t
n∑

i=1

uxi

∆xi

≤ Cmax.

where u is the magnitude of the velocity, ∆t is the time step ∆x is the length interval.

So, the space step ∆x usually was chosen according to the time step ∆t. For multiple

shooting method the common measure of the error is the exp (L), where L is the length of

sub-interval. Our goal is to choose number of intervals large enough to reduce the error, but

no too large, because it will cause the increasing of Gaussian elimination operations, which

are quite expensive in terms of the processor time. After a number of experiments it was

discovered that for most cases we do not need more than 10 subintervals.

3.3 Code structure

In the pursuit of an object-oriented approach a class NIonBeam was created which serves

as a storage for all methods and functions which we need to perform simulations. Class
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Function Description

NIonBeam(const char* IFN,int flag) Constructor to create initial con-
ditions

NIonBeam(const char* IFN,const char* OFN) Main constructor to start simula-
tion

GetIC() Read initial contitions from file
WriteResultsTo(const char* filename) Write results to files
RandomIC (double amplitude) Generate random IC
GaussIC (double amplitude,double scale,double
position)

Generate Gauss distributed IC

SinIC (double amplitude,double fr) Generate sime distributed IC
UniformIC (double amplitude) Generate uniform IC
NIonBeam() Destructor

Table 3.1: List of accessory functions used in project

contains both versions of functions with and without parallelization. Moreover, we wanted

to compare different numerical methods, or use their combinations, so there are several

additional functions for different schemes. There are functions to create initial conditions

and to read and write data to files. The full list of accessory functions is given in Table 3.1.

The full list of numerical methods and supplementary functions is given in Table 3.2.

The following functions were parallelized: MShooting(), HLL(), NIonBeam(const char*

IFN,const char* OFN). All above mentioned functions can be called from the main program:

main.c.

3.4 Parallel implementation

In order to be able to calculate large systems with high resolution parallelization of the

code becomes necessary.

3.4.1 Parallelization of numerical methods using MPI.

A large popularity of distributed memory systems and their ability to work with enormous

amount of data leads us to a Message Passing Interface (MPI) library, which is one of the

most flexible and convenient tools to work with distributed memory systems [36]. Because,

our problem consists of two separate tasks (BVP and IVP), it is best to parallelize those two
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Function Description
NIonBeam::Shooting () Single shooting method
MShooting(int number) Multiple shooting method
LaxFriedrichs() Lax-Friedrichs method
MacCormac() Maccormac method
HLL() HLL method
MShooting Create FM() Create matrix with fundamental

solution for IVPs
gauss eliminate(double *a, double *b, double *x,
int n)

Gaussian elimination

RK4 2d shooting(double a) Runge-Kutta to use in single
shooting

RK4 MSH V(int t1,int t2,double *v1,double *v2) Runge-Kutta to use in multiple
shooting to update v and n

RK4 MSH(double *s,int number) Runge-Kutta to use in multiple
shooting to update φ

swap row(double *a, double *b, int r1, int r2, int
n)

Swap row function for Gaussian
Elimination

Table 3.2: List of numerical methods and supplementary functions used in project

problems separately.

1. MPI parallelization for multiple shooting. To solve the system of linear equations,

it is common to use Gaussian elimination (GE) [37]. Initially, we planned to parallelize

this part of the code as well however, as we mentioned above, number of subintervals

when we wanted to execute GE is around 10. It means that the ratio of the number

of spatial steps for the upwind scheme to the number of steps for multiple shooting is

about 103 − 104. It means, that the time which our code spends on these calculations

is relatively small. Typically for our task, size of the matrix was about 32x32 and

execution time of the serial version was about 10ms per iteration. As a result, we

decided to leave this part of the code in the serial form for now. Algorithm for parallel

multiple shooting implementation is shown below.
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if rank == 0 then
A = Fundamental solution;

end
for i=local start...local end do

B = RK4(IC=(i));
end
for i = sub interval do

B = RK4(IC=C(i));
end
GATHER all data to process with rank = 0;

if rank == 0 then
G = GE(A,B);

end
SCATTER G to each process;

for i=local start...local end do
φ = RK4(IC = C(i));

end

2. MPI parallelization for HLL scheme. First, we should divide our space domain into

equal pieces for each processor. It is important to note that those sub-domains should

intersect (this intersection is called boundary buffer). Next, we should scatter the

initial conditions on those sub-domains from the main processor. Solve all subintervals

separately. The MPI parallelization algorithm is illustrated on Fig. 3.3. Below one can

see the pseudo-code for HLL scheme:

35



Calculate sl and sr as v0 ± 1;
if rank == 0 then

Send first and last element of the subinterval to processor = rank - 1;
Receive first and last element of the subinterval to processor = rank - 1;

end
if rank == P - 1 then

Send first and last element of the subinterval to processor = rank + 1;
Receive first and last element of the subinterval to processor = rank + 1;

end
for i=local start...local end do

Initialize local v and n;
if sl > 0 then

Calculate flow with upwind scheme;
update local v and n;

end
if sr < 0 then

Calculate flow with backward scheme;
update local v and n;

end
if sl ≤ 0 and sr ≥ 0 then

Calculate flow with HLL scheme;
update local v and n;

end
Update global v and n;

end

Figure 3.3: MPI parallelization for upwind scheme. Each processor solves in time
separate space interval.
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3.4.2 Parallelization of numerical methods using OpenMP.

In addition to distributed memory systems we decided to parallelize our code for shared

memory systems with the OpenMP library.

OpenMP can be a good alternative to MPI when there is no access to distributed memory

systems. Shared memory system can be a good choice for current personal workstations which

become more powerful and can be considered as almost like shared-memory systems. The

OpenMP has another advantage. The OpenMP library provide higher level of abstraction

in parallel programming compared the MPI. Low-level parallel programming libraries (e.g.

MPI) which allow you to control low level processes is more complicated. This complication

usually decreases the efficiency of the programs. There is an opinion that ”non-trivial multi-

threaded programs are incomprehensible to humans” [38].

Parallelization algorithms using the OpenMP is close to that we choose for the MPI.

However, there is a difference. When using the OpenMP library one should be careful with

variable scope. It is impossible to enclose variables in shared clause in OpenMP when they

are not declared. So class variables are not declared until the instance of class is not declared.

Algorithm is presented below.

# pragma;

for i=1 ... N do
A = 0;

end
# pragma single;

for i=1 ... N do
A = Fundamental solution;

end
# pragma;

for i=1 ... N do
B = RK4(IC=C(i));

end
# pragma single;

for i=1 ... N do
φ = RK4(IC = C(i));

end

Parallelization of the Godunov method is done in a very simple way. We initialize n and

37



v values as local variables on master processor. Then we computed next values for n and v

in parallel. Finally, we update global n and v on master processor. The algorithm is shown

below.

# pragma single;

for i=1 ... N do
initialize local n and local v ;

end
# pragma ;

for i=1 ... N do
if sl > 0 then

Calculate flow with upwind scheme;
update local n and local v;

end
if sr < 0 then

Calculate flow with backward scheme;
update local n and local v;

end
if sl ≤ 0 and sr ≥ 0 then

Calculate flow with HLL scheme;
update local n and local v;

end

end
# pragma single;

for i=1 ... N do
Update global v and n;

end

3.5 Parallel scalability

Two versions of software (OpenMP and MPI) were tested on Westgrid cluster Nestor

(https://www.westgrid.ca/ ). Two types of initial data sets were used with high and low time

and space resolutions. This allows as to test speedup with different ratios of communication

and calculation time. Execution time and speedup as a function of processors number are

shown on Figs. 3.4, 3.5. The graph shows the efficiency of parallelization.

It is seen that OpenMP implementation speedup decreases when number of processors
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Figure 3.4: Execution time and speedup as a function of processors number for low
resolution data with MPI and OpenMP on Nestor.

Figure 3.5: Execution time and speedup as a function of processors number for high
resolution data with MPI and OpenMP on Nestor.

become higher than 8 which means that one node has only 8 cores.

MPI implementation also become slow when we using more than one node (more than

8 cores) which confirm the fact that interconnection between the nodes is much slower than

between the cores.

Comparing data with high and low resolutions, we see that when communication over

computation time ratio is decreasing the time scalability becomes much better.
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Chapter 4

Simulation results

The purpose of this work is to study some general properties of plasma systems with

the ion beam and develop numerical tools for the initial value problem of the eigen modes

evolution. The final goal would be to investigate the nonlinear stage of the related instability.

At this stage we have tested the linear module of the numerical code.

The results of numerical simulations are compared with analytical results for weak and

strong dispersion cases. We start our simulations with initial conditions of a uniformly

distributed random noise (e.g. Fig. 4.1) and observe the evolution of the following quantities

N2 =

∫ L

0

n2(z)dz, Φ2 =

∫ L

0

φ2(z)dz, V 2 =

∫ L

0

v2(z)dz. (4.1)

Depending on the value of input parameters (L, v0) damped (stable) or growing (unstable)

solutions were observed; examples of (4.1) evolution are shown on Figs. 4.2, 4.3, 4.4. Unstable

solutions were fitted to the following curves

N2, V 2,Φ2 ∼ cos(2ℜ(ω)t+ θ)e2γt, (4.2)

to determine the real frequencies and growth rates.

When the length of the system exceeds the Debye length (L ∼ 10de), the weak dispersion

results are recovered. Example of frequency and growth rate dependence as a function of the

ion flow velocity v0 are shown in Figs. 2.1b , 4.7, 4.5, 4.6. These graphs are similar to the

analytical results shown in Fig. 2.1a. In fact, the difference of the analytical and numerical

results are of the order of the magnitude of the small parameter of the analytical theory

(de/L). Due to the increasing density of the instability zones, very high resolution is required
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Figure 4.1: Example of random density initial conditions.

to recover the singular part (v0 → 0) of the analytical solution.

From the theory we know that instability will not occur in quasi-neutral case. In other

words, charge separation is crucial for the instability to occur. Because in the long system

charge separation is less prominent, we can expect decrease of instability growth rate with

system length. This is confirmed by simulations for L = 5 (Fig. 4.7), L = 10 (Fig. 4.5) and

L = 15 (Fig. 4.6).

In the regime when the length of the system is much smaller than the Debye length

(L ∼ 0.1de), the difference between analytical solution of strong dispersion approximation

and numerical solution was less than few percent. This comparison is shown in Fig. 2.2.

4.1 The form of unstable eigenfunctions

The number of zeros of unstable spatial eigenfunctions of density, velocity and electrostatic

potential correlate with the zone number (2.26) and in strong dispersion case is defined by

the value of the α parameter. In more general case, the stability of the system is governed

by two parameters (v0, L). However in general case the number of zeros correlates with a

number of zone as well, examples of eigenfunctions are shown in Fig. 4.8.

In aperiodic zones (where real part of frequency is zero), the number of nodes does not

change during the time evolution. In oscillatory zones, some nodes disappear at later times
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Figure 4.2: Evolution example of ln(N2) in stable case.

as shown in Fig. 4.8d.

4.2 The evolution of unstable eigenfunctions

In weakly dispersive case (kde ≪ 1), the addition of the Doppler shift due to the ion flow

velocity results in the main order modification for the propagating modes velocities

v1,2 = v0 ± cs, (4.3)

which correspond to the one pair of the of the roots of Eq. (2.7). Two other roots describe

the slow dispersion effects. We have chosen very long system (L = 1000de) so the dispersion

is weak and two wave packets are well separated. Gaussian function localized in the middle of

the system was chosen as an initial condition, Fig. 4.9a. Fig. 4.9b shows that the Gaussian

peak separated into two wave packets moving in opposite directions with velocities v1,2 from

Eq. (4.3). The right wave packet meets the wall at the right and passes through the wall
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Figure 4.3: Evolution example of ln(N2) in case of aperiodic instability.

with almost no reflection, as shown in Figs. 4.9c and 4.9d. Instability occurs when the slow

wave packet meets the left wall (with Dirichlet boundary conditions for all variables) and is

reflected, Fig. 4.9e. At a later time, the reflected wave and dispersion tail overlap forming

an unstable eigenfunction, Fig 4.9e.

In strong dispersion case the equation (1.9) implies that oscillations with the ion plasma

frequency will occur. The short system was chosen (L = 0.1de) to demonstrate this regime.

Initial condition was chosen in the form of the Gaussian function localized in the middle. The

evolution is shown in Figs. 4.10. First frame is an initial Gaussian peak which travels with

the velocity of the ion flow (v0); at the same time another peak arises from the left border

and starts to travel with same velocity. Note that in case of strong dispersion, the ion sound

phase velocity is much reduced, ω/k < cs. When the initial Gaussian peak meets the right

boundary (which has no boundary conditions except the one for electrostatic potential) it

passes through, while another peak starts to transform to unstable eigenfunction at the left

boundary.
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Figure 4.4: Evolution example of ln(N2) in case of periodic instability.
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Figure 4.5: Alternating oscillatory (ℜ(ω) 6= 0) and aperiodic (ℜ(ω) = 0) instabilities
zones in the intermediate system length L = 10; numerical simulations results.
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Figure 4.6: Alternating oscillatory (ℜ(ω) 6= 0) and aperiodic (ℜ(ω) = 0) instabilities
zones in the intermediate system length L = 15; numerical simulations results.
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Figure 4.7: Alternating oscillatory (ℜ(ω) 6= 0) and aperiodic (ℜ(ω) = 0) instabilities
zones in the intermediate system length L = 5; numerical simulations results.
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(b) zone #2 v0 = 0.78

0 2 4 6 8 10

z

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

n

v

φ

(c) zone #3 v0 = 0.65
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Figure 4.8: Unstable spatial eigenfunctions of density, velocity and electrostatic po-
tential for L = 10, for different instability zones from Fig. 2.1. Zone numbers in Fig.
2.1 are counted from the right, with the right outermost aperiodic zone as #1. The
last figure (d) shows temporal decreasing of nodes number due to oscillation.
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Figure 4.9: Evolution of the initial Gaussian pulse in the weak dispersion case: (a)
initial condition; (b) initial perturbation splits into two traveling wave packets, the
one traveling to the right with v0 + cs = 1.9 and the one traveling to the left with
v0 − cs = −0.1; (c) the right wave packet is passing through the right wall barely
reflecting; (d) the beginning of the reflection of the left wave packet from the wall and
forming of the unstable eigen-function.
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Figure 4.10: Dynamics in the strong dispersion case: (a) initial state; (b) the initial
Gauss pulse travels with the velocity v0 = 0.025 to the right, another pulse start to
grow and travels to the right with the same velocity; (c) the initial pulse approaches
the left boundary and the unstable eigen-function forms.
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Chapter 5

Summary and conclusions

We have investigated the ion acoustic instability induced by the ion flow in a finite length

system; the situation which is relevant to various plasma devices such as electric propulsion

and emissive probe diagnostics. It was shown that the length of the system measured in

units of the Debye length and ion flow velocity measured in units of the ion acoustic velocity

are important parameters which control the instability. Analytical theory was developed and

confirmed by the results of direct initial value numerical simulations. We have investigated

the structure of the eigenfunctions in the unstable zones. It is shown that the order of

the instability zone correlates with a number of nodes in the corresponding eigenfunction.

Our numerical simulations show that the instability occurs as a result of the mode coupling

mediated by the boundaries. The specific results of this work are:

1. Instability criteria, wave frequency and growth rates were obtained [23]. It was estab-

lished that the criteria for the instability due to finite length effects are different from

those for the standard kinetic ion sound instability [39].

2. It was shown that the instability occurs as a result of negative and positive energy

modes coupling via wall boundary conditions.

3. A parallel fluid simulation code was developed. A good agreement between analytical

and numerical results was demonstrated.

The excitation of large scale perturbations and soliton formation was observed in a num-

ber of experiments [40, 41]. Similar structures may be excited by the ion flow due to the

mechanism identified in this work which is operative in systems of a finite length and in

situations when the ion flow velocity is below the ion acoustic speed. The excitation of ion
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sound waves in a finite length system was observed in numerical particle-in-cell simulations

with emissive walls [42, 43]. The mechanism described in this work can also be relevant to

the instabilities observed in double layer experiments [10, 44, 45].

5.1 Instability criteria

For long systems (de ≪ L) the analytical dispersion equation (Eq. (2.19), Fig. 2.1)

was obtained describing the aperiodic and oscillatory instability zones. The boundaries of

the instabilities are defined by the condition (2.22). The instability criterion could also be

written in the form
1

1 + π2 d2e
L2

>
v20
c2s
. (5.1)

For short systems (de ≫ L) the dispersion equation (Eq. (2.25), Fig. 2.2) was obtained in

the form equivalent to the Pierce dispersion equation. In this case, the following instability

criterion has been obtained

Lωpi/π > v0. (5.2)

The instability mechanism in a finite length system is different from the kinetic ion sound

instability [39] in infinite plasmas. The dispersion equation for the latter can be written in

the form

1 +
ω2
pi

k2c2s
−

ω2
pi

ω − kv0
+ i

√
π

2

me

mi

ω2
piω

k3c3s
= 0. (5.3)

Treating ǫ =
√

π
2
me

mi

as a small parameter, one obtains the growth rate

γ =
ǫkcs

2(1 + k2d2e)
2

(
−1± v0

cs

√
1 + k2d2e

)
. (5.4)

The instability condition has a form

1

1 + k2d2e
<

v20
c2s
, (5.5)

which is complementary to the condition (5.1).
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5.2 Instability mechanism

Ion sound waves on the background of the equilibrium ion flow are described by Eqs.

(2.1). For infinite length system (periodic boundary conditions), those equations result in

the dielectric permittivity:

ε(ω, k) = 1 +
1

k2d2e
−

ω2
pi

(ω − kv0)2
, (5.6)

The wave mode energy [46] corresponding to Eq. (5.6) is

E(ω, k) = ω
∂ε

∂ω
|kφ|2 =

2k2φ2ωω2
pi

(ω − kv0)3
, (5.7)

It follows that the Doppler shift due to the ion flow results in negative energy perturbations

for ω < kv0. Coupling of negative and positive energy modes results in reactive instabilities

[47, 48]. In our case, the mode coupling occurs due to boundary conditions on the left wall

as illustrated in Fig. 5.1. In Fig. 5.1a and 5.1b traveling wave packet arrives at the left

boundary and starts forming the reflected wave. Further interaction of the reflected and

original waves forms an unstable mode with an increasing (in time) amplitude as is shown

in Figs. 5.1c and 5.1d.

The right boundary (with impinging ion flow), where only the potential is fixed, produces

very little reflection, so that the reflected wave amplitude is much smaller than that of the

incident wave (note the different scale in Fig.5.2c). There is no instability for the reflection

from such a boundary as is illustrated in Fig. 5.2.

5.3 Parallel fluid simulations

Our system consists of different types of equations, thus, we have to use various approaches

to allow simple generalization for nonlinear case and straightforward parallelization.

The implicit form of the initial value problem (3.1) suggests to make the inversion of Poisson

equation (3.1c) at every time step. A number of different methods were used: calculation

of the explicit integral, simple shooting method, relaxation and multiple shooting meth-
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Figure 5.1: Formation of unstable eigenfunction due to reflection of the wave packet
from the emitting boundary on the left.

ods. It was found that the multiple shooting method works better than the other methods.

The multiple shooting method is relatively fast (for example in comparison with straightfor-

ward integral evaluation), easy to parallelize (comparing to relaxation methods) and has a

straightforward generalization for the nonlinear case. Then, the conservative pair of equa-

tions (continuity and Euler equations) in system (3.1) was solved with different approaches.

The fact that in our system the waves propagate in opposite directions produces a restriction

for finite difference schemes. For example, a simple upwind scheme will be uncondition-

ally unstable. To solve this issue, MacCormac, Lax–Friedrichs, and Godunov methods were

tested. We have found that only the Godunov scheme proved to be useful, since MacCormac
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Figure 5.2: Reflection from the boundary with free density and velocity perturbations
(on the right).

method showed oscillatory behavior while Lax–Friedrichs method has big artificial viscosity.

Even though Godunov is only first order method, it leaves on open opportunity for high order

generalization, for example, with WENO algorithm [49] which looks very promising for this

problem.

The parallelization with the most common paradigms of shared and distributed memory

were done. The well known libraries OpenMP and MPI were chosen correspondingly. The

time benchmark tests for both version of the code were done and we can conclude that both

approaches could significantly improve elapsed times. It is hard to conclude which method

is the best because the speedup depends on the type of the hardware in use. So if one has

limited number of cores and fast interconnect speed between them it is wise to use OpenMP,

however if one has large number of processors available, the MPI will suit better.
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