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ABSTRACT  

The phytopathogenic fungus Leptosphaeria maculans can cause blackleg disease 

on crucifers, which results in significant yield losses. Fungal diseases involve 

interactions between pathogenic fungi and host plants. One aspect of these interactions is 

mediated by secondary metabolites produced by both fungi and host plants. Phytotoxins 

and elicitors as well as phytoanticipins and phytoalexins are metabolites produced by 

fungi and plants, respectively. This thesis describes and discusses the isolation, structure, 

biological activity and biosynthesis of the secondary metabolites produced by L. 

maculans. 

The elicitor-toxin activity bioassay guided isolation of elicitors and phytotoxins 

produced by L. maculans in a chemically defined medium lead to the isolation of general 

elicitors, sirodesmin PL (165) and deacetylsirodesmin PL (166), and specific elicitors, 

cerebrosides C (14) and D (31) from minimum medium (MM) culture under standard 

conditions. The known phytotoxins sirodesmin PL (165) and deacetylsirodesmin PL 

(166) induced the production of phytoalexin spirobrassinin (122) in both resistant plant 

species (brown mustard, Brassica juncea cv. Cutlass) and susceptible plant species 

(canola, B. napus cv. Westar). A mixture of cerebrosides C (14) and D (31) induced the 

production of the phytoalexin rutalexin (127) in resistant plant species (brown mustard, 

B. juncea cv. Cutlass) but not in susceptible plant species (canola, B. napus cv. Westar). 

New metabolites leptomaculins A-E (267-269, 272 and 274) and deacetylleptomaculins 

C-E (270, 273 and 275) were isolated from elicitor-phytotoxin active fractions but did 

not display detectable elicitor activity or phytotoxicity after purification.  

New metabolites maculansins A (299) and B (300), which were not detected in 

cultures of L. maculans incubated in MM, were isolated from cultures of L. maculans 

incubated in potato dextrose broth (PDB). Maculansins A (299) and B (300) displayed 

higher phytotoxicity on brown mustard than on canola and white mustard (Sinapis alba 

cv. Ochre) but did not elicit detectable production of phytoalexins in either brown 

mustard or canola. Metabolite 2,4-dihydroxy-3,6-dimethylbenzaldehyde (212) was 

produced in higher amount in cultures of L. maculans incubated in PDB than in MM and 

displayed strong inhibition effect on the root growth of brown mustard and canola.  
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L. maculans incubated in MM amended with high concentration of NaCl 

produced a new metabolite, 8-hydroxynaphthalene-1-sulfate (293), and a known 

metabolite, bulgarein (294), which are likely involved in the self-protection.  

The potential intermediates involved in the biosynthesis of sirodesmin PL (165) 

were investigated using deuterium labeled precursors: [3,3-2H2]-L-tyrosine (251a), [3,3-
2H2]O-prenyl-L-tyrosine (312a), E-[3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b), [5,5-
2H2]phomamide (171a), [2,3,3-2H3]-L-serine (233d) and [5,5-2H2]cyclo-L-tyr-L-ser 

(252a). Intact incorporation of [5,5-2H2]phomamide (171a) into sirodesmin PL (165) 

suggested that leptomaculin D (272) and E (274), and deacetylleptomaculin D (273) and 

E (275) are not intermediates in the biosynthesis of sirodesmin PL (165). They are more 

likely the catabolic metabolites of sirodesmin PL (165). Phomamide (171), the 

intermediate in the biosynthetic pathway of sirodesmin PL (165), is likely 

biosynthesized by coupling of prenyl tyrosine (312) with serine (233) rather than 

prenylation of cyclo-L-tyr-L-ser (252). When [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-

prenyl-L-tyrosine (312a), and E-[3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b) were fed 

into cultures of L. maculans, a β proton exchange was detected by 1H NMR through 

intrinsic steric isotope effect, which occurs before the formation of phomamide (171). 

The biosynthesis and catabolism of sirodesmin PL (165) were proposed based on the 

results obtained in this work. 
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COLOR FIGURES 

 
 MM + NaCl   MM + NaCl   MM Control 
 7 days incubation  6 days incubation  7 days incubation 

Figure I. 1. Cultures of Leptosphaeria maculans in minimal medium (MM) and MM 

containing high NaCl concentration (0.7 M). 

 
Maculansin A (299)   Sirodesmin PL (165) 

Figure I. 2. A leaf of Brassica juncea cv. Cutlass treated with maculansin A (299) and 

sirodesmin PL (165).  

 xxxii



 
Control Maculansin A (299) 

Figure I. 3. A leaf of Brassica juncea cv. Cutlass treated with maculansin A (299) and 

control.  

 

A 

B 

C 

Figure I. 4. Plants (rows: A, Brassica juncea cv. Cutlass; B, B. napus cv. Westar; C, 

Sinapis alba cv. Ochre) treated with maculansin A (299) (from left to right: 1.0 mM 

(sirodesmin PL (165)), 1.0 mM, 0.2 mM, 0.1 mM, and control).  

 xxxiii



 
Treated with SGF  Control  

Figure I. 5. A leaf of Brassica juncea cv. Cutlass treated with spore germination fluids 

(SGF) produced by Leptosphaeria maculans inoculated on the leaves of B. napus cv. 

Westar and control.  
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CHAPTER 1: INTRODUCTION 

1.1 GENERAL OBJECTIVES  

The phytopathogenic fungus Leptosphaeria maculans can cause blackleg disease 

on crucifers, which results in significant yield losses. Fungal diseases involve 

interactions between pathogenic fungi and host plants. One aspect of these interactions is 

mediated by secondary metabolites produced by both fungi and host plants. Phytotoxins 

and elicitors as well as phytoanticipins and phytoalexins are secondary metabolites 

produced by fungi and plants, respectively. The study of phytotoxins and elicitors 

produced by L. maculans will help to understand the chemical means utilized by this 

pathogenic fungus to infect its host plants. This thesis describes and discusses the 

isolation, structure, biological activity and biosynthesis of the secondary metabolites 

produced by L. maculans. This research includes: 

• Isolation of secondary metabolites with phytotoxin and/or elicitor activity  

• Structural elucidation of metabolites isolated from L. maculans 

• Biological assays of metabolites isolated from L. maculans 

• Study of sirodesmin PL biosynthetic precursors (a phytotoxin produced by L. 

maculans)  
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1.2 CHEMICAL INTERACTIONS BETWEEN FUNGI AND THEIR HOST 

PLANTS 

Metabolites synthesized and utilized by all living organisms are called primary 

metabolites, i.e. metabolites essential for life: carbohydrates, amino acids, common fatty 

acids, and nucleotides, (Mann, 1994). On the other hand, the metabolites that are 

synthesized and utilized by a specific group of living organisms are called secondary 

metabolites and have very diverse chemical structures. Based on the biosynthetic origin, 

secondary metabolites include polyketides, isoprenoids, shikimates, alkaloids and 

metabolites of mixed biosynthetic origin (Mann, 1994). Secondary metabolites are 

produced by living organisms during a particular stage of growth and development or 

during periods of stress caused by nutritional limitation or microbial attack. Secondary 

metabolites are not essential for life but are important in fitness and survival and play 

important roles in the plant-microbe interaction. After hundreds of millions of years of 

co-evolution, plants evolved sophisticated defense mechanisms to protect them from the 

attack of pathogens. One of these defense mechanisms involves preformed and induced 

metabolites. One group of these preformed metabolites is called phytoanticipins, which 

are low molecular weight, antimicrobial compounds that are present in plants before 

challenge by microorganisms or are produced after infection solely from preexisting 

constituents (Grayer and Kokubun, 2001; Osbourn, 1996; Vanetten et al., 1994). The 

presence of phytoanticipins, acting as the first layer of chemical barriers, can inhibit the 

growth of fungi. For example, the preformed saponins avenacins (1 to 4) are the first 

layer of chemical barriers in oats (Avena sativa). Oats are resistant to the wheat 

(Triticum aestivum) root pathogen Gaeumannomyces graminis var. tritici due to the 

presence of avenacins in healthy oat plants. Mutants of oats that do not produce 

avenacins are susceptible to G. graminis var. tritici (Papadopoulou et al., 1999). 

Therefore, the phytoanticipins avenacins effectively inhibit the growth of the pathogen 

G. graminis var. tritici. However, successful pathogens can detoxify phytoanticipins, and 

further infect host plants (Vanetten et al., 2001). The oat root pathogen G. graminis var. 

avenae produces a glycosidase that removes the sugar residue from avenacins. The 

resulting metabolites are not antifungal, therefore, oat plants are susceptible to G. 

graminis var. avenae (Thordal-Christensen, 2003; Vanetten et al., 1995). In another 
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example, phytoanticipins produced by rice act as the first chemical barriers to inhibit the 

colonization by rice blast fungus Pyricularia oryzae. 5-(8'Z-Heptadecenyl)resorcinol (5) 

and a mixture of its homologues (6-8 and 9) were isolated from etiolated rice seedlings 

and showed antifungal activity against rice blast fungi (Suzuki et al., 1996). These 5-

alkylresorcinols were newly produced after germination and the concentration reached to 

50 μg/g fresh weight on day 6 (Suzuki et al., 1996). From older rice plants hydroxy and 

epoxy fatty acids (such as 10 and 11) showing antifungal activity were isolated (Kato et 

al., 1993b). However, it seems that P. oryzue can avoid these phytoanticipins using a 

specific ATP-binding cassette (ABC) transporter, which can take away these 

antimicrobial metabolites produced by rice (Urban et al., 1999). 
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Fungi produce a variety of toxic metabolites, phytotoxins, which cause damage 

on plant tissues and usually play a role in the establishment of infection on plants 
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(Walton, 1996; Walton and Panaccione, 1993; Wolpert et al., 2002). Pyriculol (12) was 

the first phytotoxin isolated from the rice blast fungus (Iwasaki et al., 1969; Suzuki et al., 

1987). Pyriculol (12) was shown to cause dark necrotic spots on rice leaves, similar to 

the rice blast fungus. Pyricuol (13), a pyriculol related metabolite, was isolated from the 

same fungus, and caused more serious damage on rice leaves than pyriculol (12) (Kim et 

al., 1998; Nakamura et al., 2005).  
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Once fungi overcome preformed barriers to initiate colonization of plants, the 

recognition of elicitors by plants becomes the key step determining the outcome of the 

interaction. Elicitors are signal molecules produced by pathogens (exogenous) or plants 

(endogenous) (Montesano et al., 2003). If elicitors are recognized by plants, defense 

mechanisms are induced, for example, the production of phytoalexins and reactive 

oxygen species (ROS), as well as the hypersensitive response (HR, a programmed cell 

death) at the site of infection. The timely recognition of elicitors and subsequent 

induction of defense mechanisms most of the time can stop further infection by fungi. 

For example, the sphingolipid cerebroside C (14), which was isolated from diverse 

pathogenic fungi (Koga et al., 1998; Umemura et al., 2004), induced the production of 

the rice phytoalexin momilactone A (15), and further conferred disease resistance of rice 

plants to the rice blast fungus (Umemura et al., 2004).  
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Phytoalexins, acting as the second chemical barriers of plant defense 

mechanisms, are low molecular weight, antimicrobial compounds that are both 

synthesized de novo by and accumulated in plants after exposure to microorganisms 

(Bailey and Mansfield, 1982). For example, the flavanone phytoalexin sakuranetin (16) 

was detected in blast-infected rice leaves and the content in a resistant cultivar after 

infection with P. oryzue was much higher than in a susceptible cultivar, which indicated 

that sakuranetin (16) contributed to defense in the resistant cultivar (Kodama et al., 

1992). Many successful fungi have a way to circumvent phytoalexins. For example, 

brassinin oxidase, which is produced by L. maculans, oxidizes brassinin (17), a 

phytoalexin produced by crucifers, to indole-3-carboxaldehyde (18). Aldehyde 18 

showed no antifungal activity against L. maculans (Scheme 1.1, Pedras and Ahiahonu, 

2005).  

N
H

NH
S

S

17

N
H

CHO

 18  
Scheme 1.1. Detoxification of brassinin (17) by Leptosphaeria maculans. 

The recognition, production, utilization, and detoxification of elicitors, 

phytotoxins, phytoanticipins and phytoalexins represent aspects of the chemical 

interactions between fungi and their host plants. The recent progress on the isolation, 

structure, and biosynthesis of elicitors, phytotoxins, phytoanticipins and phytoalexins as 

well as their roles in the chemical interactions of fungi and plants are presented. 

1.2.1 Metabolites produced by fungi 

The secondary metabolites produced by fungi have very diverse structures and 

different functions, many of which are still not clear. However, two types of metabolites 

produced by fungi are important and better understood in the plant-microbe interactions: 

elicitors and phytotoxins.  
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1.2.1.1 Elicitors  

Elicitors induce various plant defense responses. Detection of plant defense 

responses can be used as an elicitor activity bioassay. The most widely used bioassay 

method is detection of phytoalexins. This method actually gave the original definition of 

elicitors, i.e. metabolites capable of inducing the biosynthesis of phytoalexins are called 

elicitors (Keen, 1975). This definition was extended to include all compounds that can 

induce any plant defense responses (Montesano et al., 2003). Elicitor bioassay methods 

include detection of: glycosylhydrolases, reactive oxygen species, callose, 

hydroxyproline-rich glycoproteins, lignin, and measurement of pH of cell cultures 

(Hahn, 1996; Montesano et al., 2003). Elicitors display a wide range of chemical 

structures with no particular motifs, but based on the mode of elicitation, two types of 

elicitors can be considered: general elicitors and race specific elicitors (Ferreira et al., 

2006). General elicitors are able to trigger defenses both in host and non-host plants, 

whereas race specific elicitors induce defense responses only in specific hosts.  

General elicitors  

General elicitors are also called microbial associated molecular patterns 

(MAMPs), i.e. indispensable and unique constituents of microbes such as ergosterol, 

chitin, β-glucan and fungal-specific glycosylated proteins (Jones and Takemoto, 2004; 

Nurnberger et al., 2004). MAMPs are detected by plant transmembrane pattern 

recognition receptors and lead to non-host resistance (Jones and Dangl, 2006; Jones and 

Takemoto, 2004). The presence of MAMPs and their transmembrane pattern recognition 

receptors explain the observation that not all pathogens can infect all plant species. The 

attempt of infection from non-host pathogens is most of the time inhibited by plant 

defense mechanisms induced by MAMPs. For example, the β-glucan fragment 19, a 

classic exogenous general elicitor, from the rice blast disease fungus P. oryzae, elicits 

the biosynthesis of the phytoalexins momilactones A (15) in rice cell suspension cultures 

(Yamaguchi et al., 2000). Examples of endogenous general elicitors are plant-cell-wall-

derived oligogalacturonides, which are products of cell-wall-degrading enzymes 

produced by fungi. These oligogalacturonides are known to induce the biosynthesis of 
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the phytoalexin glycinol (20) in cotyledons of soybean (Nothnagel et al., 1983; Shibuya 

and Minami, 2001; Weinstein et al., 1981).  
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Unique to microbes, general elicitors are not produced by (potential) host plants, 

and appear to be indispensable for microbial fitness (Nurnberger et al., 2004). Although 

termed “general elicitors”, the detection and consequent induction of defense response of 

general elicitors is relative, since some of them are recognized by only a restricted 

number of plants (Ferreira et al., 2006). For example, soybean and rice cells responded 

selectively to the glucan oligosaccharide elicitors prepared from Phytophthora sojae and 

Magnaporthe grisea that carry different structural features (Shibuya and Minami, 2001). 

Pep-13, a peptide elicitor isolated from P. sojae, was not recognized by host soybean but 

triggered a defense response in non-host plants such as parsley and potato (Brunner et 

al., 2002; Jabs et al., 1997; Shibuya and Minami, 2001). 

 

(i). β-Glucan oligosaccharides 

Oligosaccharide elicitors are among the first characterized general elicitors 

derived from the β-glucans by partial acidic hydrolysis or heating cell walls of fungi. A 

doubly-branched hepta-β-glucoside (19) that was generated from P. sojae glucan was 

shown to be a very active elicitor for glyceollin II (24) biosynthesis in soybean 

cotyledon cells (Sharp et al., 1984a; Sharp et al., 1984b; Sharp et al., 1984c). Hepta-β-

glucoside elicitors of P. sojae showed elicitor activity not only on soybean but also on 

various plants of plant family Fabaceae (Cosio et al., 1996). To study structure-activity 

relationships more than 15 oligosaccharides were synthesized and tested for elicitor 

activity on soybean (Cheong et al., 1991). Synthetic (21-22) and naturally obtained (19) 
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oligosaccharides were found to have the highest elicitor activity. All three non-reducing 

terminal glucosyl residues and two β(1→3) branch linkages (compound 23) are the 

minimum structural requirement for elicitor activity on soybean cotyledons (Cheong et 

al., 1991).  
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Tetraglucosyl glucitols (25 - 27) purified from an enzymatic digest of the β-

glucan from the rice blast fungus induced phytoalexin biosynthesis in rice cell 

suspension cultures (Yamaguchi et al., 2000). The backbone of the elicitor-active 

glucopentaose has to be 1,3-linked residue and branched at the 6-position. Whileas in the 

hepta-β-glucoside elicitor from P. sojae, the backbone is a 1,6-linked β-

glucooligosaccharide with branches at the 3-position (Yamaguchi et al., 2000). 
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Moreover, linear β-1,3-linked glucooligosaccharides but not hepta-β-glucosides showed 

elicitor activity on tobacco cells. Among tested linear β-1,3-linked 

glucooligosaccharides, laminaripentaose (28) is the smallest polymer found to have 

elicitor activity (Klarzynski et al., 2000). From these results it seems that recognition of 

β-glucan oligosaccharide elicitors by different plants is selective, although not race-

specific. 
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(ii) Chitins 

Chitins, β-1,4-linked polymers of N-acetylglucosamine, are indispensible 

components of fungal cell walls and not present in plants. For example, in powdery 

mildews cell wall chitin and β-1,3 glucans are detectable at all stages of haustorial 

development (Mims et al., 2004; Ramonell et al., 2005) The fragments of chitins 

(monomer to hexamer) were tested for elicitor activity in induction of lignification in 

wheat (Barber et al., 1989). Tetramer, pentamer and hexamer all possessed significant 

elicitor activity, but not other smaller fragments. It was also found that a pre-wounding 

was necessary to detect elicitor activity of these fragments (Barber et al., 1989). The 
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fragments of chitins have been shown to have strong elicitor activity in several other 

plant systems, such as induction of ion flux and protein phosphorylation in cultured 

tomato cells (Felix et al., 1993), and chitinase activity in melon (Roby et al., 1987). In 

suspension-cultures of rice cells, chitin fragments were also able to induce the 

biosynthesis of diterpene phytoalexins (Ren and West, 1992; Yamada et al., 1993) and 

generated reactive oxygen species (Kuchitsu et al., 1995) and some other defense 

responses (Shibuya and Minami, 2001).  

 

(iii) Chitosan 

Chitosan, a collective term of deacetylated products of cell wall chitins, has also 

been shown to elicit the biosynthesis of phytoalexin momilactone A (15) and sakuranetin 

(16) (Agrawal et al., 2002). Chitosan or its fragments can induce plant defense responses 

including callose formation in soybean and parsley cells (Conrath et al., 1989), and 

phytoalexin biosynthesis in pea (Hadwiger and Beckman, 1980). However, the 

concentration required for these responses is usually much higher than those necessary 

for activity of chitin fragments. This may be related to the mode of action in which 

chitosan seemed to interact with negatively charged phospholipids rather than with 

receptor-like molecules (Kauss et al., 1989). 

 

(iv) Cerebrosides 

Cerebrosides, which belong to sphingolipids, are the essential components of 

fungal cell membranes (Dickson and Lester, 1999, 2002). A recent report indicated that 

conversion of sphingolipids to glycosphingolipids is essential for spore germination, 

hyphal growth and cell cycle in Aspergillus species (Levery et al., 2002). Cerebrosides A 

(29), B (30), C (14) and D (31) have been isolated as novel elicitors from Fusarium 

oxysporum, a common soilborne agent of wilt disease affecting a wide range of plant 

species. Later on, Cerebrosides A (29), B (30), C (14) and D (31) were found in a wide 

range of soilborne phytopathogens such as Pythium graminicola, Botrytis allii, 

Glomerella cingulata, and Sclerotium cepivorum (Koga et al., 1998; Umemura et al., 

2004). Cerebroside elicitors can induce the production of phytoalexins and pathogenesis-
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related proteins and also confer disease resistance in rice plants to the rice blast fungus in 

paddy fields (Umemura et al., 2004). 
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(v) Fungal proteins  

Fungal proteineous elicitors mainly include xylanases and Nep1-like proteins 

(NLPs). Xylanases are fungal endo-β-1,4-xylanases which aid the invasion of fungi by 

hydrolyzing plant cell wall cellulose, pectin, and xylan. However, these xylanases induce 

the plant defense response mechanisms. Application of xylanases on tobacco or tomato 

leaves induced biosynthesis of ethylene, phytoalexins and pathogenesis-related proteins 

as well as caused necrosis and hypersensitive cell death (Bailey et al., 1990; Fluhr et al., 

1991; Avni et al., 1994). Interestingly, the enzyme activity of xylanases is not essential 

for their elicitor activity (Enkerli et al., 1999).  

Nep1-like proteins (NLPs) were identified as protein elicitors from oomycetes, 

fungi and bacteria (Gijzen and Nurnberger, 2006). NLPs were able to elicit plant defense 

responses, but without clear function for pathogens except that maybe related with 

accelerating disease and pathogen growth in host plants (Gijzen and Nurnberger, 2006). 

Nep1 (necrosis-eliciting protein 1), a 24-KDa elicitor protein was first isolated from F. 

oxysporum as a necrosis and ethylene-inducing protein (Bailey, 1995). It caused the 

necrosis and ethylene production only on dicotyledonous plant species tested, but not in 

monocotyledons (Bailey, 1995). Later on, NPP1 (necrosis-inducing phytophthora 

protein 1) was characterized from cell walls of Phytophthora spp. and elicited the HP in 

parsley and Arabidopsis spp. (Fellbrich et al., 2002). The NPP1 domain was found to be 

present in all NLPs (Fellbrich et al., 2002). Recently, BcNEP1 and BcNEP2, two NPPs 
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from necrotrophic phytopathogenic fungus B. cinerea, were characterized and displayed 

elicitor activity only on dicotyledonous plant species tested (Schouten et al., 2008).  

 

(vi) Others 

Ergosterol (32) is another indispensible component in fungal cell walls. It 

triggers a defense reaction in tobacco and tomato cells such as production of reactive 

oxygen species (Granado et al., 1995), biosynthesis of the phytoalexin capsidiol in 

tobacco (Kasparovsky et al., 2003) and biosynthesis of the phytoalexin resveratrol (33) 

in grapevine (Laquitaine et al., 2006).  
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Tenuazonic acid (34), a toxin produced by rice blast fungus P. oryzae, can cause 

small brown necrotic spots on leaves of rice. This effect leads to local disease resistance 

by most likely inducing the generation of reactive oxygen species in rice leaves 

(Aver'yanov et al., 2007). Arachidonic acid (35) was isolated from the pathogenic fungus 

Phytophthora infestans (Bostock et al., 1981). It elicits phytoalexin production in potato 

(Bostock et al., 1981) and pepper (Bloch et al., 1984; Hoshino et al., 1994) but not in 

tobacco, although these three different species belong to the family Solanaceae (Garcia-

Pineda and Lozoya-Gloria, 1999).  
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Specific elicitors 

The majority of race-specific elicitors so far identified are proteins. The 

occurrence of specific elicitors is the result of the co-evolution between plants and 

microbes. It is assumed that individual phytopathogenic races or strains of a given 

pathogen species were able to overcome plant non-host resistance through the 

acquisition of virulence factors, which enable them to either evade or suppress plant 

immune systems (Nurnberger et al., 2004). Consequently, plants became hosts to these 

microbes. On the other hand, as a result of co-evolution, individual cultivars of a host 

plant species have evolved specific mechanisms to recognize virulence factors and 

initiate defense mechanisms. In such cases, virulence factors became specific signals of 

pathogens, i.e. race specific elicitors, which are encoded by avirulence (Avr) genes 

(Nurnberger et al., 2004).  

Race-specific elicitors selectively trigger defense response in host plants carrying 

specific receptors, a nucleotide binding and leucine rich repeat protein encoded by most 

resistance genes (Jones and Dangl, 2006). The outcome of interaction is determined by 

complementary pairs of pathogen-encoded avirulence genes and plant resistance genes. 

Lack of either gene will result in infection on host plants (Flor, 1955; Keen, 1975). 

Nucleotide binding and leucine rich repeat protein-mediated disease resistance is 

effective against biotrophic and hemibiotrophic pathogens, but not against necrotrophic 

pathogens (Glazebrook, 2005). 

36  n = 2 
37  n = 4

O
O

O
H

OH

OHH
O

n
 

Although almost all the specific elicitors identified so far are proteins or 

polypeptides, syringolides (36 and 37) are the only exceptions to date (Ji et al., 1998; 

Midland et al., 1993; Collmer and Gold, 2007). Syringolides (36 and 37) are a group of 

non-proteineous secondary metabolites isolated from bacterial Pseudomonas spp. 
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Syringolides (36 and 37) triggered defense responses, such as hypersensitive cell death 

and a hydrogen peroxide burst in cultivars of soybean carrying the Rpg4 disease-

resistance gene (Ji et al., 1998; Midland et al., 1993; Collmer and Gold, 2007). To date, 

syringolides A and B (36 and 37) are also the only nonproteinaceous specific elicitors of 

which the avirulence gene (avrD) and resistance gene (Rpg4) are identified (Ji et al., 

1998; Midland et al., 1993; Collmer and Gold, 2007). Syringolides (36 and 37) have not 

been isolated from fungi.  

1.2.1.2 Phytotoxins 

Phytotoxins are secondary metabolites produced by fungi that damage the plant 

tissues and contribute to fungal colonization of plants (Walton, 1996; Wheeler and Luke, 

1963). The phytotoxicity of metabolites is determined by phytotoxicity bioassays. The 

most frequently used bioassays include leaf puncture assays, electrolyte leakage assays, 

germination assays and root (radicle) growth assays (reviewed in Hoagland and 

Williams, 2004). By measuring sizes of necrotic or chlorotic lesions caused by test 

metabolites, the phytotoxicity can be directly compared with controls. This is the most 

employed method in determination of phytotoxicity of a metabolite. Electrolyte leakage 

assays measure the conductivity of cellular electrolytes which are caused by disruption 

of membranes by tested metabolites. Electrolyte leakage assays can be carried out using 

tissue slices, leaf disks or cell culture suspensions. Germination assays are more 

frequently used in allelopathy research. Test metabolites are dissolved in various 

concentrations and seeds are placed in solutions on supporters such as filter or 

germination blotter paper, or the test solution is solidified by mixing with PDA or other 

agents. Sometimes the seed germination is not sensitive to the effect of test metabolites. 

In this case, root (radicle) growth can be further used as a measurement to determine the 

phytotoxicity of test metabolites.  

The dividing line between phytotoxins and elicitors sometimes is not clear. 

Depending on the type of interaction, some compounds can act as elicitors or 
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phytotoxins. For example, fumonisin B1 (38), isolated from Fusarium verticillioides 

(Stone et al., 2000), can act as an elicitor inducing hypersensitive responses (HR) in the 

plant Arabidopsis thaliana. It also acts as a phytotoxin in the interaction of the 

necrotrophic pathogen F.  verticillioides with its host, maize (Desjardins et al., 2000). 

Coronatine (39) is a phytotoxin produced by certain races of the pathogen Pseudomonas 

syringae (Ichihara et al., 1977). It mimics jasmonic acid, acting as a plant hormone in A. 

thaliana (Feys et al., 1994; Kloek et al., 2001). Coronatine (39) also elicited the 

expression of defense genes in A. thaliana (Bohlmann et al., 1998), and biosynthesis of 

phytoalexins in rice leaves in the same manner as jasmonic acid (Tamogami and 

Kodama, 2000). Based on the spectrum of toxicity on different plants, phytotoxins are 

divided in host-selective phytotoxins and nonhost-selective phytotoxins. Host-selective 

phytotoxins induce the cell death only on host plants, whileas nonhost-selective 

phytotoxins causes damages or necrosis on both host and non-host plants (Markham and 

Hille, 2001; Pringle and Scheffer, 1964; Walton, 1996). Reviews about phytotoxins and 

their applications can be found in recent publications (Hoagland, 2001; Hoagland et al., 

2007; Kimura et al., 2001; Strange, 2007; Singh et al., 2003). 
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Host-selective phytotoxins 

HSTs producing fungi are virulent to the plants that are sensitive to HSTs (host 

plants), but not virulent to plants that are not sensitive to HSTs (non-host plants). 

Disruption of gene(s) encoding the production of HSTs removes the virulence of these 

mutants to host plants (Walton, 1996; Wolpert et al., 2002). Therefore, HSTs are 

necessary for fungi to be virulent on host plants. It seems that only necrotrophic fungi 

produce HSTs which cause the lysis of plants cells. The non-living plant cells provide 
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the desired conditions for the colonization of necrotrophic pathogens (Friesen et al., 

2008; Markham and Hille, 2001).  

A few proteinaceous HSTs were isolated and identified in recent years. For 

example SnTox1, the first identified HST produced by Stagonospora nodorum, was 

shown to be a 10–30 kDa proteinaceous HST (Friesen et al., 2008). However, the 

proteinaceous HSTs will not be covered in this introduction. Most HSTs are secondary 

metabolites from different biosynthetic pathways; for example, polyketides, terpenoids, 

cyclic peptides and mixed pathways. The isolation, structure, mode of action and role of 

virulence in the plant-microbe interaction of HSTs has been reviewed in several articles 

(Walton, 1996, 2006; Wolpert et al., 2002). The HSTs produced by genera Alternaria 

and Cochliobolus (Table 1.1) have been extensively studied and provide excellent 

examples of chemical diversity and host selective phytotoxicity.  
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Table 1.1. HSTs produced by genera Alternaria and Cochliobolus (Pedras et al., 2002; 

Walton, 1996, 2006; Wolpert et al., 2002).  

Species  Host plants HSTs Chemical types 

A. alternata spp. Japanese pear 

 

AK-toxin I (40) and II (41) Epoxy-

decatrienoic 

A. alternata spp. Strawberry AF-toxin I (42) Epoxy-

decatrienoic 

A. alternata spp. Tangerine ACT-toxin Ib (43) and Ic 

(44) 

Epoxy-

decatrienoic 

A. alternata spp. Apple AM-toxin I (45), II (46) 

and III (47) 

Cyclic tetrapeptide 

A. alternata spp. Tomato AAL-toxins (48 – 51)  Aminopentol 

A. alternata spp. Rough lemon ACR(L)-toxin (52-54) Terpenoid 

A. brassicae Brassica spp.  Destruxin B (61) Cyclodepsipeptide  

C. carbonum Corn  HC-toxin (55) Cyclic tetrapeptide 

C. heterostrophus Corn  T-toxins (56 – 59) Polyketides 

C. victoriae  Oats  Victorin C (60) Chlorinated 

depsipeptide  

OR1 OR2 OR3

O

OR4

O

52 R1=R2=R3=Ac, R4=Me
53 R1=R2=R3=H, R4=Me
54 R1=R2=R3=R4=H
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Each pathotype of A. alternata spp. produces HSTs that cause disease symptoms 

on its host plant species. Japanese pear pathotype produced epoxydecatrienoides AK-

toxins I (40) and II (41), which caused black spot on Japanese pear at very low 

concentration (10-8M). AF toxins for example AF-toxin I (42), produced by germinating 

spores of strawberry pathotype of A. alternata spp., caused black spot specifically on 

strawberry. The other epoxy decatrienoic acid type HSTs ACT-toxin Ib (43) and Ic (44) 

produced by tangerine pathotype of A. alternata spp displayed high toxicity (< 10-6M) 

and selectivity (same host range as producing fungal isolates), suggesting the essential 

role of ACT-toxin Ib (43) and Ic (44) in disease development in susceptible tangerines. 

AM-toxins I (45), II (46) and III (47) were isolated from Alternaria blotch of apple 

causing pathotype A. alternaria f. sp. mali and displayed potent toxicity (10-8M), causing 

electrolyte loss and necrosis in susceptible apple tissue. AM toxins possess a four-

membered cyclic depsipeptide consisting of a molecule of L-α-hydroxyisovaleric acid, 

L-alanine, α-amino acrylic acid and derivatives of L-α-amino-δ-phenylvaleric acid. 

AAL-toxins (48 – 51), produced by Alternaria stem canker causing pathotype A. 

alternaria f. sp.lycopesici, caused necrotic lesion on tomato leaves similar to that caused 

by fungal isolate. AAL-toxins, structurally related to fumonisin B1 (38), containing an 

aminopolyol backbone that is esterified to one (48 – 50) or two tricarboxylic acids (51). 

ACR(L)-toxins (52 – 54) caused serious damage on cultivars of rough lemon susceptible 

 18



to pathotype of A. alternaria f. sp.citri, the ACR(L) toxin producing pathogen (reviewed 

in Walton, 1996, 2006; Wolpert et al., 2002). 

Destruxin B (61), a cyclodepsipeptide produced by A. brassicae, caused necrotic 

and chlorotic symptoms in different plant species, of which Brassica species was the 

most sensitive (reviewed in Pedras et al., 2001). Further, the sensitivity to destruxin B 

(61) within the Brassica species decreased as the sensitivity of plant species to the 

fungus A. brassicae decreased, suggesting that destruxin B (61) is a HSTs. Destruxin B 

(61) was detected in infected B. napus and identified in germinating conidia of A. 

brassica at early stages of the infection process, suggesting the important role of 

destruxin B (61) in the plant-pathogen interaction. Further important evidence came 

from the detoxification of destruxin B (61) in susceptible plant B. napus and resistant 

plant B. juncea. Destruxin B (61) was detoxified through sequential hydroxylation and 

glucosylation in both susceptible and resistant plants. However, hydroxylation was the 

rate limiting step in susceptible plant species but not in resistant plant species. 

Hydroxydestruxin B (62) acted as an elicitor to induce the biosynthesis of phytoalexins 

in resistant plant species but not in the susceptible plant species (Pedras et al., 2001, 

2002).  
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Scheme 1.2. Detoxification of destruxin B (61) in Brassica napus and B. juncea i) 

hydroxylation, ii) glucosylation.  

HC-toxin (55), a tricyclic peptide, is produced by C. carbonum race 1, causal 

agent of Northern leaf spot of maize. It causes necrosis and inhibited growth of seedlings 
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of susceptible maize whereas it has no effect on maize resistant to C. carbonum race 1. 

Application of HC-toxin on C. carbonum race 1 susceptible maize resulted on 

colonization by C. carbonum which was unable to infect C. carbonum race 1 susceptible 

maize. These results suggested the host selectivity of this toxin and its determinant factor 

of host-selectivity and pathogenicity of C. carbonum race 1 (Pedras et al., 2002; Walton, 

1996, 2006; Wolpert et al., 2002). 

T-toxins (56 – 59) are a group of C39 and C41 polyketo-polyhydroxy metabolites 

produced by C. heterostrophus race T, the causal agent of Southern corn blight disease 

of maize. T-toxins (56 – 59) displayed high toxicity and selectivity toward Texas male 

sterile maize (Walton, 1996, 2006; Wolpert et al., 2002). 

Victorin C (60) is the major component of HSTs isolated from cultures of C. 

victoriae, the causal agent of Victoria blight of oats. The structure of victorin C (60) was 

established (Macko et al., 1985) more than 20 years after its isolation (Scheffer and 

Pringle, 1963). Victorin C (60) is a cyclic peptide consisting a glyoxylic acid and a 

cyclic combination of five unusual amino acids: 5,5-dichloroleucine, threo-β-

hydroxylysine, erythro-β-hydroxyleucine, α-amino-β-chloroacrylic acid, and 2-alanyl-

3,5-dihydroxycyclopentenone. Victorin C (60) inhibited the root growth of susceptible 

oat (0.1 ng/mL), suppressed dark CO2 fixation of oat leaf slices and application of 

victorin C (60) on susceptible oat leaf reproduced disease symptom. Further, mutants 

that did not produce victorin C (60) were not able to infect C. victoriae susceptible oat 

(Walton, 1996, 2006; Wolpert et al., 2002). 

Nonhost-selective phytotoxins 

This part covers the nonhost-selective phytotoxins identified from 2003-2008. 

The phytotoxins isolated from L. maculans will be discussed separately in section 1.3.2.  

 

(i) Polyketides  

The majority of new phytotoxins identified in this period were polyketides. Four 

phytotoxins, phyllostoxin (64), and phyllostictines A (65), B (66), and D (68) were 

isolated from Phyllosticta cirsii, a fungal pathogen of the perennial weed Cirsium 
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arvense (Evidente et al., 2008a; Evidente et al., 2008b). Phyllostoxin (64) and 

phyllostictine A (65) were highly phytotoxic to C. arvense, causing rapid necrosis on 

punctured leaves. The phytotoxicity decreased in phyllostictines B (66) and D (68). No 

phytotoxicity was detected in phyllostin (69) and phyllostictine C (67). Phyllostoxin (64) 

was elucidated as a new pentasubstituted bicyclo-octatrienyl acetic acid ester, whileas 

phyllostictines A-D were macrocyclic oxazatricycloalkenones. These metabolites could 

lead to the discovery of herbicides against C. arvense (Evidente et al., 2008a; Evidente et 

al., 2008b). 
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Stagonolide (70) was isolated from fungus Stagonospora cirsii, pathogenic to the 

weed C. arvense, and the structure was determined to be (8R,9R)-8-hydroxy-7-oxo-9-

propyl-5-nonen-9-olide, which is similar to herbarumins (Rivero-Cruz et al., 2003). 

Stagonolide (70) caused large necrotic lesions not only on host plant leaves of C. 

arvense but also on leaves of hollyhock, sunflower, lettuce, sow-thistle, radish, and 

peppermint. However, leaves of tomato and pepper (both Solanaceae) were less sensitive 

to stagonolide (70) at similar concentration (5 × 10-3 M). Stagonolide (70) also displayed 

selective inhibitory effect on root growth in seedlings of C. arvense and some other 

Asteraceae species but not on cucumber, and weak effect on wheat and radish (Yuzikhin 

et al., 2007).  
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From fungal culture of Malbranchea aurantiaca, 1-hydroxy-2-oxoeremophil-

1(10),7(11),8(9)-trien-12(8)-olide (71) was isolated together with penicillic acid (72). 

Both 71 (IC50 = 6.57 µM) and 72 (IC50 = 3.86 µM) displayed weaker inhibition of radicle 

growth of Amaranthus hypochondriacus than malbrancheamide (73) (Martinez-Luis et 

al., 2006). 
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8-O-Methylfusarubin (74) was isolated from Fusarium acutatum, the causal 

pathogen of chickpea plants. The purified 8-O-methylfusarubin (74) caused permanent 

wilting of chickpea cuttings and the LD50 value in a cell bioassay was 327 ng/ml 

(Gopalakrishnan et al., 2005). 

Two new phytotoxins 2-(2’’,3’’-dimethyl-but-1-enyl)-zinniol (75), 8-zinniol 

methyl ether (76) were isolated from Alternaria solani. These two toxins, structurally 

related to known phytotoxin zinniol (77), caused necrosis on potato leaves (Moreno-

Escobar et al., 2005) 
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From the combined extracts of the fermentation broth and mycelium of the 

fungus Phoma herbarum three nonenolide phytotoxins herbarumins I (78), II (79) and III 

(80) were isolated. These phytotoxins displayed potent inhibitory effect on radicle 

growth of seedlings of Amaranthus hypochondriacus (Rivero-Cruz et al., 2000). It 

seemed that the phytotoxicity decreased as the number of hydroxyl groups increased. 

Herbarumins III (80) (IC50 = 2 × 10-5 M) was ten fold more toxic than the positive 

control commercial herbicide 2,2-dichlorophenoxyacetic acid [2,4-D] (IC50 = 2 × 10-4 

M) (Rivero-Cruz et al., 2003). Herbarumin I (78) (IC50 = 5 × 10-5 M) was more toxic 

than II (79) (IC50 = 1 × 10-4 M). Metabolites 78 - 80 also displayed inhibitory effect on 

the calmodulin-dependent enzyme cAMP phosphodiesterase (Rivero-Cruz et al., 2003).  

 

(ii) Terpenoids  
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Two new ophiobolins, namely ophiobolin E (81) and 8-epi-ophiobolin J (82), 

were isolated from both liquid and solid cultures of Drechslera gigantea, a fungal 

pathogen of large crabgrass (Digitaria sanguinalis), together with five known 

metabolites, ophiobolin A (83) and B (84), 6-epi-ophiobolin A (85), 3-anhydro-6-epi-

ophiobolin A (86) as well as ophiobolin I (87) (Evidente et al., 2006a; Evidente et al., 

2006b). Among these metabolites, ophiobolin A (83) was more phytotoxic, which may 
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be due to the hydroxy group at C-3, the stereochemistry at C-6, and the aldehyde group 

at C-7. Dicotyledoneae appeared to be less sensitive than monocotyledoneae when these 

metabolites (81 to 87) were applied on punctured detached leaves (Evidente et al., 

2006a; Evidente et al., 2006b).  

 
(iii) Alkaloids  

A novel phytotoxic alkaloid malbrancheamide (73) was isolated from the fungus 

Malbranchea aurantiaca. Malbrancheamide (73) is a member of the brevianamide type 

of alkaloids (containing bicyclo [2.2.2] diazaoctane ring system). Malbrancheamide (73) 

caused moderate inhibition of radicle growth of A. hypochondriacus (IC50=0.37 µM) 

(Martinez-Luis et al., 2006).  
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1.2.2 Metabolites produced by plants 

Plants also produce a large variety of secondary metabolites with different 

biological activities. Phytoanticipins and phytoalexins are two important antifungal 

metabolites produced by both Monocotyledoneae and Dicotyledoneae and involved in 

the plant-microbe interaction (Bailey and Mansfield, 1982; Grayer and Harborne, 1994; 

Harborne, 1999; Kuc, 1992, 1995; Osbourn, 1996). Phytoanticipins are preformed 

antifungal secondary metabolites present in the healthy plants. For example, 

glucosinolates are stored in vacuoles. Upon the break down of plant cell wall by fungal 

hyphae, glucosinolates come into contact with a glycosidase, which is separated from 

glucosinolates in the intact cell. The products of hydrolysis of glucosinolates are toxic 

and antifungal (Grubb and Abel, 2006). Although these newly produced metabolites by 

hydrolysis are not detected in healthy plants and induced by the fungal attack, they are 

still considered as phytoanticipins, because the glycosidase is present in the healthy 

plants and stored in other compartments of the cells. Sometimes, an antifungal 
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metabolite may be a phytoanticipin in one organ but a phytoalexin in another organ 

within the same plant. For example, momilactone A (15) was induced in rice leaves, but 

detected as a constitutive metabolite in rice husks and rice stems. In another case, an 

antifungal metabolite may be a phytoalexin in one plant species but a phytoanticipin in 

another. For example, the flavanone sakuranetin (16) was isolated from ultraviolet 

irradiated rice leaves as a phytoalexin, but was released as a phytoanticipin on the 

surface of leaves of blackcurrant (Ribes nigra, Grossulariaceae) from the glands storing 

it early in the season (Atkinson and Blakeman, 1982).  

O

O

OH

O

OH 16  

Both phytoanticipins and phytoalexins are antifungal metabolites. The detection 

and determination of antifungal activity were carried out using several methods, such as 

bioautography on thin-layer plates, radial growth, disk diffusion and microdilution 

bioassays (Engelmeier and Hadacek, 2006). Bioautography on thin-layer plates (TLC) is 

useful in detection of antifungal metabolites from crude extracts. The crude extracts are 

separated by TLC and plates are sprayed with fungal spore suspensions followed by 

incubation; the bands with antifungal metabolites show no fungal growth. Radial growth 

is used to determine the antifungal activity after a metabolite is purified. The metabolite 

is mixed with agar to make a solid medium plate, and a fungal mycelia plug is placed on 

the surface of the agar medium. The mycelial growth will be inhibited if a metabolite has 

antifungal activity. Microdilution is a highly efficient method to screen the antifungal 

activity of pure metabolites or crude extracts. Media with the test metabolites prepared 

by serial dilution are added to microwells. A fixed amount of conidia suspension is 

added to the test solution and incubated. The morphological deformations such as 

curling caused by the antifungal activity of test metabolites can be observed using a 

microscope. Those antifungal bioassays were reviewed recently (Engelmeier and 

Hadacek, 2006).  
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1.2.2.1 Phytoanticipins 

Phytoanticipins (coined by Mansfield) are defined as “low molecular weight, 

antimicrobial compounds that are present in plants before challenge by microorganisms 

or are produced after infection solely from preexisting constituents” (Vanetten et al., 

1994). Phytoanticipins are commonly sequestered in vacuoles or organelles in healthy 

plants but some are concentrated in the outer cell layer of plant organs or secreted to the 

surface of leaves from trichomes (Grayer and Kokubun, 2001; Kelsey et al., 1984; 

Osbourn, 1996; Shepherd and Wagner, 2007).  

A large number of constitutive plant compounds have been reported to have 

antifungal activity. Well-known examples include phenols and phenolic glycosides, 

unsaturated lactones, sulphur compounds, saponins, cyanogenic glycosides, and 

glucosinolates (reviewed in Ingham, 1973; Schonbeck and Schlosser, 1976; Fry and 

Myers, 1981; Mansfield, 1983; Bennett and Wallsgrove, 1994; Osbourn, 1996; Grayer 

and Harborne, 1994; Grayer and Kokubun, 2001; Shepherd and Wagner 2007). The 

representative glucosinolate and saponin phytoanticipins are described below. 

Glucosinolates 

Glucosinolates are produced mainly in cruciferous plants, although some 500 

other plant species produce one or a few glucosinolates (Grubb and Abel, 2006; Morant 

et al., 2008). Glucosinolates (also known as (Z)-(or cis)-N-hydroximinosulfate esters) are 

sulfur-containing glucosides with a sulfur-linked β-D-glucopyranose moiety and a side 

chain (R). Most glucosinolates are weakly toxic or non-toxic, however, they can be 

hydrolyzed to toxic metabolites by myrosinase, a hydrolyase stored in all compartments 

separated from glucosinolates. Once plant tissues are damaged by fungi, myrosinase is 

released from vacuoles and becomes in contact with glucosinolates, which are 

hydrolyzed to yield glucose and an unstable aglycone (Scheme 1.3). This aglycone, the 

thiohydroxamate-O-sulfonate, undergoes spontaneous rearrangement to give different 

products, of which, nitriles and isothiocyanates are toxic to fungi (Grubb and Abel, 

2006; Morant et al., 2008). 
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Scheme 1.3. Hydrolysis of glucosinolates (88).  

Glucosinolates are divided into three groups, i.e. aliphatic, indolyl and aryl amino 

acid glucosinolates, based on the different side chains (R) (Osbourn, 1996). One hundred 

and twenty glucosinolates were grouped by Fahey and co-workers into A-J groups, 

based on the similarity of the side chains (Fahey et al., 2001). Table 1.2 lists 

representative glucosinolates of each group.  
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Table 1.2. Examples of glucosinolates based on the types of side chains (Fahey et al., 

2001).  

Types of 

side chains 

Chemical name (-glucosinolate) Common name 

Sulfur-

containing 

7-Methylsulfinyl-3-oxoheptyl (88A)  

Straight 

aliphatic 

chain 

n-Pentyl (88B)  

Branched 

aliphatic 

chain 

4-Methylpentyl (88C)  

olefins 3-Methyl-3-butenyl (88D)  

Aliphatic 

alcohols 

1-Ethyl-2-hydroxylethyl (88E) Glucosisautricin  

Aliphatic 

ketones 

4-Oxopentyl or 3-(methylcaronyl)propyl 

(88F) 

 

aromatic 3,4-Dihysroxybenzyl (88G) Glucomatronalin 

ω-

hydroxyalkyl 

(Benzoates) 

4-(Benzoyloxy)butyl (88H)  

indoles 4-Hydroxyindol-3-ylmethyl (88I) 4-Hydroxyglucobrassicin 

Others 4-(4’-O-Acetyl-α-L-

rhamnopyranosyloxy)benzyl (88J) 

 

Saponins 

Saponins are glycosylated metabolites that include three major groups, 

triterpenoid, steroid and steroidal glycoalkaloids. Triterpenoid saponins and steroid 

saponins were found in both monocots and dicots, while steroidal glycoalkaloid saponins 
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are found primarily in members of the family Solanaceae (i.e. potato and tomato) and 

Liliaceae (Osbourn, 1996). 

The representative triterpenoid saponins are avenacins in which the sugar unit is 

a branched trisaccharide, and the aglycones are β-amyrin-derived pentacyclic 

triterpenoids esterified with either N-methylanthranilic acid (avenacin A-1 (1) and 

avenacin B-1(3)) or benzoic acid (avenacin A-2 (2) and avenacin B-2 (4)). The fungal 

soil pathogen G. graminis var. tritici causes the “take-all” disease on wheat and barley 

but not on oat seedlings. It has been demonstrated that avenacins are directly related to 

the disease resistance of oat seedlings (Crombie and Crombie, 1986). Avenacins appear 

to be found exclusively in oat roots (Trojanowska et al., 2000).  
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The representative steroidal saponins are avenacosides, which were also isolated 

from oats (Morant et al., 2008; Tschesch.R et al., 1969). Avenacoside B (94), which has 

an additional O-glucose attached to C-26 of their steroidal aglycones, is activated to 26-

desglucoavenacoside B (95) by a specific plant glucosyl hydrolase upon fungal attack 

(Scheme 1.3, reviewed in Morant et al., 2008; Osbourn, 1996).  
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Scheme 1.4. Activation of avenacoside B (94) to 26-desglucoavenacoside B (95) by a 

specific plant glucosyl hydrolyase. 

α-Tomatine (96) is a steroidal glycoalkaloid in which the C-3 of steroid aglycone 

is attached to two D-glucose residues and then branched at the second D-glucose unit (β-

1→4) which is bonded to D-galactose (β-1→2) and D-xylose (β-1→3). α-Tomatine is 

the active form and is present in particularly high levels in leaves, flowers and green 

fruits of tomato (Roddick, 1974; Osbourn, 1996). 
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1.2.2.2 Phytoalexins  

Phytoalexins, the plant defensive metabolites against the infection attempts from 

potential pathogens, are produced by plants de novo (Bailey and Mansfield, 1982; 

Grayer and Harborne, 1994). Phytoalexins are often detected a few hours after elicitation 

and reach a maximum within a certain period of time. The hypothesis that phytoalexins 

are induced metabolites produced as a plant self-defense mechanism was proposed by 

Műller and Boger (Műller and Boger, 1940). They demonstrated that application of an 

incompatible race of P. infestans on potato tuber tissue induced resistance of the tissue to 

a subsequent infection attempt of a compatible race of P. infestans. They hypothesized 

that potato tubers produced nonspecific metabolites (phytoalexins) under elicitation by 

the incompatible race of P. infestans. These metabolites inhibited the infection attempt 

by the compatible race of P. infestans. The first phytoalexin, pisatin (97), was isolated 

from Pisum sativum more than ten years after the proposal of the phytoalexin concept 

(Perrin and Bottomley, 1961; Hammerschmidt, 1999). Phytoalexins were originally 

defined as chemical compounds produced as a result of invasion of living cells by a 

parasite (Műller and Boger, 1940, Grayer and Kokubun, 2001). However, abiotic 

challenges such as UV and heavy metal ions can also induce the production of antifungal 

metabolites. Therefore, phytoalexins were defined in many ways. For example, 

“antibiotics formed in plants via a metabolic sequence induced either biotically or in 

response to chemical or environmental factors” was the definition of phytoalexins by 

Ingham (1973). After more than 60 years of phytoalexin research, these metabolites are 

an indisputable component of plant-microbe interactions (Bailey and Mansfield, 1982; 

Hammerschmidt, 1999). 
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The majority of the plant species studied showed ability to produce phytoalexins 

upon different elicitation treatments. A few plant families, such as Cucurbitaceae and 

Rosaceae, did not respond with sufficient production of phytoalexins upon elicitation, 

which may be due to the presence of high concentration of phytoanticipins or other 

defense mechanisms (Harborne, 1999). Table 1.3 lists the representative phytoalexins 

isolated from ten plant families including Gymnospermae and Angiospermae. 
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Phytoalexins have diverse structures which derive from the major secondary 

metabolite biosynthetic pathways, such as polyketides, terpenoids and alkaloids. Tables 

1.3 and 1.4 are adapted from reviews (Grayer and Harborne, 1994; Harborne, 1999) and 

list some representative phytoalexins isolated from ten plant families. The structures of 

phytoalexins isolated from the same plant family often share structural motifs. For 

example, isoflavonoids are major phytoalexins isolated from the family Leguminosae. 

The phytoalexins isolated from Cruciferae contain an indole or related moiety and one or 

two sulfur atoms. There are also overlaps of phytoalexins between taxonomically non-

related plant families. For example, the phytoalexin resveratrol (33) was found in the 

dicots peanut (Leguminosae) and vine (Vitaceae) as well as in gymnosperms in Pinus 

sapwoods (Harborne, 1999). The legume phytoalexin glyceollin II (24) was isolated 

from the dicot soyabean (Glycine max) and monocot Costus speciosus (Costaceae) 

(Harborne, 1999; Lyne et al., 1976).  
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Table 1.3. Selected phytoalexins produced by plants of Gymnospermae (Grayer and 

Harborne, 1994; Harborne, 1999).  

 Family  Chemical type Examples  

Pinaceae 

 

Stilbenes pinosylvin (Schultz et al., 1992) (98) 

and resveratrol (33) 

Gymnosperms 

Cupressaceae

 

Terpenoids 

 

cupressotropolone A (99) and B (100), 

(Madar et al., 1995) 
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Table 1.4. Selected phytoalexins produced by plants of Angiospermae (Grayer and 

Harborne, 1994; Harborne, 1999).  

 Family  Chemical type Examples  

Alliaceae Cyclic dione 5-alkyl-cyclopenta-1,3-diones 

(101) and B (102), (Tverskoy et 

al., 1991) 

Dioscoreaceae Bibenzyl Batatasin  IV (103) and 

Batatasin V (104), (Hashimoto 

and Tajima, 1978) 

Liliaceae Benzodioxin-2-

one 

Yurinelide (105), (Monde et al., 

1992)  

Angiospermae 

(Monocotyledons) 

Orchidaceae Phenanthrene Orchinol (106), (Fisch et al., 

1973) 

Compositae Acetylenic Safynol (107), (Allen and 

Thomas, 1971) 

Leguminosae Isoflavonoid Pisatin (97) (Perrin and 

Bottomley, 1961) 

Moraceae Stilbenes Oxyresveratrol (108) and 4’-

prenyloxyresveratrol (109), 

(Takasugi et al., 1978) 

Papaveraceae Alkaloid Sanguinarine (110), (Furuya et 

al., 1972) 

Rosaceae Biphenyl Aucuparin (111), Rhaphiolepsin 

(112) (Kokubun and Harborne, 

1995) 

Solanaceae Sesquiterpene Rishitin (113) and lubimin 

(114), (Brindle et al., 1988) 

Angiospermae 

(Dicotyledons) 

Umbelliferae Furanocoumarin Psoralen (115), Xanthotoxin 

(116) and demethylsuberosin 

(117), (Masuda et al., 1998) 
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So far indole-sulfur containing phytoalexins are exclusively found in 

Brassicaceae (Cruciferae). Over 40 cruciferous phytoalexins have been isolated from 

crucifers (Pedras et al., 2003; Pedras et al., 2007b), starting from brassinin (17), the first 

phytoalexin isolated from Chinese cabbage (B. campestris L. ssp. pekinensis) after 

infection with the bacterium P. cichorri (Takasugi et al., 1986). Table 1.5 lists 

phytoalexins produced by four representative cruciferous plant species and elicitation 

agents. 
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Table 1.5. Selected phytoalexins produced by cruciferous plants (adapted from Pedras et 

al., 2007b; Pedras et al., 2003).  

Species 

(common 

name)  

Elicitors Phytoalexins 

Brassica. 

juncea  

(brown 

mustard)  

CuCl2, 

AgNO3,  

L. maculans, 

A. brassicae 

Brassilexin (118), cyclobrassinin (119), cyclobrassinin 

sulfoxide (120), indole-3-acetonitrile (121), 

spirobrassinin (122) 

B. napus  

(rapeseed) 

CuCl2, L. 

maculans 

Brassilexin (118), cyclobrassinin (119), cyclobrassinin 

sulfoxide (120), 1-methoxybrassinin (123), 

spirobrassinin (122) 

B. napus ssp.  

rapifera 

(rutabaga) 

UV,  

R. solani 

Brassicanal A (124), brassicanate A (125), brassilexin 

(118), brassinin (17), isalexin (126), 1-methoxybrassinin 

(123), rutalexin(127), spirobrassinin (122) 

Sinapis. alba  

(white 

mustard) 

Destruxin B, 

CuCl2,  

A. brassicae, 

L. maculans 

Sinalbin A (128), sinalbin B (129), sinalexin (130)  

1.2.3 Diversity of secondary metabolites produced by one fungal species  

It is well known that very diverse secondary metabolites are produced by a wide 

range of organisms, notably microorganisms (Firn and Jones, 2003). However, the 

diversity of secondary metabolites produced by one fungal species did not receive 

sufficient attention until work published recently (Bode et al., 2002; Bode and Műller, 

2005; Van Lanen and Shen, 2006). Because of the rapid development of genomic 

projects, a large number of orphan pathways (discussed in section 1.2.3.1) have been 

discovered in fungal species, indicating that diverse and novel secondary metabolites can 

be produced by a single fungal species. Diverse secondary metabolites can be obtained 

from manipulation of known culturable microorganisms (Bode et al., 2002; Bode and 
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Műller, 2005; Gross, 2007; Van Lanen and Shen, 2006). This manipulation can be done 

genetically, which is beyond the scope of this thesis, or by variation of culture 

conditions, which will be discussed in section 1.2.3.2. 

1.2.3.1 Orphan pathways 

It has been hypothesized that most of the investigated microorganisms have a 

broader genetic capacity to produce natural products than those isolated from a particular 

strain or species (Gross, 2007). Many “new” gene clusters were accidentally found 

during research to characterize specific gene clusters encoding known metabolites. The 

function and the encoded products of these “new” gene clusters are not known. These 

gene clusters were described as “pathways for previously undetected metabolites”, “yet-

to-be isolated compounds” or “cryptic gene clusters encoding putative natural products” 

(Gross, 2007). However, to avoid confusion and the fact that a notation is necessary for 

communication, the term “orphan pathways” was proposed to refer to gene clusters 

(biosynthetic loci) for which the corresponding metabolites are unknown (Gross, 2007).  

According to the concept of orphan pathways, the potential to discover diverse 

bioactive natural products from microorganisms is much higher than previously 

expected. Recently, natural product research efforts in pharmaceutical areas are 

diminishing despite that more than 75% of all antibacterial and approximately 50% of all 

anticancer compounds currently in clinical use are either natural products themselves or 

derivatives thereof (Newman et al., 2003). Instead, synthetic chemicals have been 

emphasized because of certain advantages, for example, isolation and characterization of 

synthetic chemicals are easier, analogues can be chemically synthesized, and there is no 

limitation of source (Bode and Műller, 2005). However, as a result of the rapid progress 

of genome projects worldwide, a large number of gene clusters are identified as orphan 

pathways by bio-informatics. Recent progress suggests that the structures of new natural 

products can be predicted, many “unnatural” natural products can be produced from 

cultures of microorganisms, and the biological source will not be limited by genetic 

manipulation of culturable microorganisms (Gross, 2007). Overall there is still 

tremendous potential to discover natural-product diversity (Gross, 2007).  
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Identification of orphan pathways can be the first step to isolate novel natural 

products encoded by such pathways. The most important method is bio-informatic 

search for the orphan gene clusters, which is usually termed ‘genome mining’, ‘data 

mining’ or ‘metabolic pathway mining’. Identification of orphan pathways is closely 

related to molecular biology which is beyond the scope of this thesis (reviewed by 

Gross, 2007). 

1.2.3.2 Culture conditions  

After orphan pathways have been identified, several strategies can be used to 

characterize the metabolites encoded by the orphan pathways and elucidate the function 

of the unknown gene clusters. These strategies include, for example, bio-informatic 

guided screening, heterologous expression and gene inactivation (Gross, 2007). 

Variation of culture conditions may not be necessary when strategies such as 

heterologous expression and gene inactivation are employed. However, variation of 

culture conditions is crucial for the strategy of bio-informatic guided screening. This is 

done by varying cultural medium components or addition of inhibitors or stimulators 

(Gross, 2007; Strange, 2007). Recent examples are discussed to illustrate the success of 

obtaining diverse bioactive metabolites by variation of culture conditions:  

Variation of medium components 

Based on bio-informatic analysis of a type I PKS gene cluster in Streptomyces 

aizunensis, a polyketide of 1,257 Da with characteristic UV absorbance at around 300 

nm was predicted (McAlpine et al., 2005). After culture conditions were optimized 

(about 50 different medium components), metabolite ECO-02301 (131) was detected 

using LC-MS/DAD. The optimized medium contained soluble starch, glucose, 

Pharmamedia (Sigma), corn steep liquor (Sigma), and Proflo oil (pH of 7.2, Traders 

Protein). This metabolite showed anti-fungal activity (4 μg/ml MIC against Candida 

albicans) (McAlpine et al., 2005).  
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The strain F-24’707 of the fungal species Sphaeropsidales was described to 

produce mainly the antifungal spirobisnaphthalene cladospirone bisepoxide (132) in 

medium A (containing oat meal 2%, degreased soy meal 2%, and glucose 2%) 

(Thiergardt et al., 1995). However, using a combination of different media and 

cultivation vessels, eight new spirobisnaphthalenes (cladospirones B to I (134 to 141) 

and six known members of this class of compounds (palmarumycins C2 (142), C3 (143), 

and C12 (144), diepoxins σ (133), η (145), and δ (146) were isolated in yields of up to 2.6 

g/L (Bode et al., 2000b). The medium was thought to be closer to natural living 

conditions (Bode et al., 2002). 
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Addition of chickpea extract or a mixture of inorganic salts, amino acids and 

vitamins into Czapek-Dox medium induced the production of solanapyrone toxins 147, 

148, and 149 by A. rabiei. After systematic removal of each component of this mixture, 

divalent cations such as Zn2+, Mn2+, Cu2+ or Ca2+ were found to be essential for the 

production of solanapyrone toxins 147, 148, and 149 by A. rabiei (Chen and Strange, 

1991). 
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Mycotoxins and phytotoxins produced by isolates of the fungi Alternaria 

alternata and A. radicina on rice and carrot discs are different (Table 1.6). Most of the 

isolates of A. alternata produced tenuazonic acid (34), alternariol (150), alternariol 

methyl ether (151) and altertoxin-I (152) on rice, but only alternariol (150) and 

alternariol methyl ether (151) on carrot discs. A. radicina produced radicinin (153), epi-

radicinol (154) and radicinol (155) on carrot discs, but only radicinin and radicinol on 

rice. 
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Table 1.6. Production of phytotoxins by Alternaria alternata and A. radicina on rice and 

carrot discs.  

Fungi\Media Rice  Carrot discs 

A. alternata 34, 150, 151, 152 150, 151 

A. radicina 153, 155 153, 154, 155 
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Addition of inhibitors or stimulators 

The metabolites produced by the strain F-24’707 of Sphaeropsidales sp. in liquid 

culture medium were analyzed after addition of tricyclazole, a commercially available 

antifungal agrochemical that inhibits 1,3,8-trihydroxynaphthalene reductase. As 

expected, when tricyclazole was added, 1,3,8-trihydroxynaphthalene accumulated in 

culture due to inhibition of the breakdown of natural dihydroxynaphthalene melanin and 

spirobisnaphthalene biosynthesis cladospirone bisepoxide (132). In addition, two new 

bisnaphthalenes, named sphaerolone (156) and dihydrosphaerolone (157), 2-

hydroxyjuglone (158) were produced (Bode and Zeeck, 2000). More interesting 

mutolide (159) was produced in medium when tricyclazole was added. That is the 

addition of an inhibitor stopped the known dihydroxynaphthalene biosynthesis pathway, 

but induced a new polyketide biosynthetic pathway leading to the production of 

mutolide (159) (Bode et al., 2000a).  
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When cultures of the marine-derived fungus Phomopsis asparagi were 

challenged with the known F-actin inhibitor jasplakinolide (160), three new secondary 

metabolites, chaetoglobosin-510 (161), -540 (162), and -542 (163) were isolated. 

Chaetoglobosin-542 displayed antimicrofilament activity and was cytotoxic toward 

murine colon and leukemia cancer cell lines (Christian et al., 2005). 
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Co-incubation of the marine fungus Pestalotia sp. with an unidentified gram-

negative bacterium led to the isolation of pestalone (164), a new and potent 

benzophenone antibiotic (Cueto et al., 2001). Therefore, addition of another 

microorganism could induce the production of new biological active metabolites.  
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AB-toxin, a HST, is produced by germinating spores of Alternaria brassicicola 

only on host leaves. The specific production of AB-toxin was found to be the elicitation 

effect of an 1.3 kDa oligosaccharide derived from host plants (Oka et al., 2005). This 

report presented evidence that production of HSTs can be induced upon elicitation of 

host derived molecules (Oka et al., 2005). 

1.3 METABOLITES FROM LEPTOSPHAERIA MACULANS 

The fungal pathogen Leptosphaeria maculans (Desm.) Ces. et de Not., asexual 

stage Phoma lingam (Tode ex Fr.) Desm can cause blackleg disease of crucifers, which 

leads to large yield losses (Gugel and Petrie, 1992; Kutcher et al., 2007). L. maculans 

comprises pathotype groups and subgroups. Initially, those fungal isolates that caused 

blackleg disease on canola were called aggressive, highly virulent, or “A” group (McGee 

and Petrie, 1978, Williams and Fitt, 1999). The fungal isolates that did not cause disease 

symptoms on canola were called non-aggressive, weakly virulent, or “B” group (McGee 

and Petrie, 1978). Further study, based on the pathogenicity of isolates on cotyledons of 

B. napus cultivars Westar, Quinta and Glacier, regrouped isolates into four categories: 

PG1, PG2, PG3 and PG4. PG1 did not cause disease symptoms on cotyledons of B. 

napus cultivars Westar, Quinta and Glacier. PG2 was virulent on Westar, PG3 was 

virulent on Westar and Glacier and PG4 was virulent on all three cultivars tested (Koch 

et al., 1991; Mengistu et al., 1991). All these isolates were under the name L. maculans, 

until a reclassification into L. biglobosa was introduced to enclose the isolates 

traditionally known as avirulent, weakly virulent, “B” group or PG1 (Chen and 

Fernando, 2006; Howlett et al., 2001). However, reversed pathogenicity was observed in 

two isolates Laird 2 and Mayfair 2, which were not virulent on B. napus but virulent on 

B. juncea, a plant species resistant to the blackleg fungus (Pedras et al., 1999a). These 

two isolates were not considered in the reclassification of L. maculans. The metabolites 

produced by different isolates of L. maculans and L. biglobosa are unique to some 

groups and thus have taxonomic value. These metabolites are discussed according to 

their structural types in section 1.3.2. 
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1.3.1 Elicitors 

A gene-for-gene genetic model appears to explain the interactions between 

brassicas and L. maculans (Howlett, 2004). Nine avirulence genes (AvrLm1–9) and 

complementary resistance genes (Rlm1–9) from Brassica spp. and L. maculans, 

respectively, have been identified and mapped (Gout et al., 2006). Recently, a protein 

(sp1) secreted during fungal infection has been identified by sequencing random genes 

of L. maculans (Wilson et al., 2003). The protein fractions containing sp1 induced 

autofluorescent defense response in leaves of canola. However, when a mutant unable to 

secret this protein was applied to leaves of canola it caused lesions similar to those 

caused by the wildtype fungus, suggesting that this protein does not play a significant 

role in disease development (Wilson et al., 2003).  

To date, neither proteins/enzymes encoded by avirulence genes or corresponding 

metabolites , nor elicitors from L. maculans been reported. Therefore, studies to discover 

elicitors produced by L. maculans are necessary. 

1.3.2 Phytotoxins and other metabolites  

1.3.2.1 Dioxopiperazines 

Sirodesmins are epipolythiodioxopiperazines, which are derived from the 

condensation of two amino acids and contain a sulfur bridge (Curtis et al., 1977; Ferezou 

et al., 1980; Ferezou et al., 1977). Sirodesmin PL (165) and deacetylsirodesmin PL (166) 

are the first two non-selective phytotoxins isolated from L. maculans (Férézou et al., 

1977). Later on, sirodesmins with a various number of sulfur atoms, i.e. sirodesmin H 

(167) (Pedras et al., 1988), sirodesmin J and K (Pedras et al., 1990) were isolated from a 

chemically defined medium. Sirodesmin J and K are not stable, decomposing to 165, 

169 and 168 on standing in MeOH solution within 24 hours (Pedras et al., 1990). The 

toxicity of EPTs comes from its disulfur bridge, which may conjugate with cysteine 

residue in proteins or generate reactive oxygen species through redox cycling (Hurne et 

al., 2002; Hurne et al., 2000). Sirodesmins cause yellowish necrosis on leaves of both 
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resistant and susceptible plants. By investigating the toxicity of acetylated derivatives of 

sirodesmin PL (Pedras et al., 1990), it was suggested that the –OH group at C-14 may be 

involved in the mechanism of toxicity. 
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Phomalirazine (170), another non-selective phytotoxin, was isolated from 

minimal medium still culture incubated for 21 days (Pedras et al., 1989). It showed 

phytotoxicity (10-5 M) towards both resistant and susceptible plants (Pedras et al., 1989). 

Phomalirazine (170) possesses a disulfur bridge similar to sirodesmins but no methyl 

group attached to the nitrogen atom and no spiro-fused tetrahydrofuranone ring are 

present. These structural differences suggested that it is a possible intermediate in the 

biosynthesis of sirodesmins (discussed in section 1.4). 

Six dioxopiperazines polanrazines A (173), B (174), C (175), D (176), E (177) 

and F (178), derived from tryptophan and valine, were isolated from Polish isolates of L. 

maculans (Pedras et al., 1998; Pedras and Biesenthal, 2001). Polanrazines B (174) and C 

(175) were also isolated from Laird 2 isolate (Pedras et al., 2005a). Polanrazines A 

(173), C (175) and E (177) showed moderate toxicity to leaves of brown mustard but not 

to canola (Pedras et al., 1998; Pedras, 2001; Pedras and Biesenthal, 2001).  
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1.3.2.2 Depsipeptides  

Phomalide (179), the first host-selective phytotoxin isolated from virulent 

isolates of L. maculans, represents a rare cyclic peptide with three α-amino acids and 

two α-hydroxy acids (Pedras, 2001; Pedras et al., 1993b). Phomalide (179) caused 

disease symptoms (necrotic, chlorotic, and reddish lesions) on canola (susceptible to L. 

maculans) but not on brown mustard or white mustard (resistant to L. maculans) at 

concentrations ranging from 10-5 M to 10-4 M (Pedras et al., 1993b). The production of 

phomalide was detected in 30 to 60-hour-old cultures. Once the cultures started to 

produce sirodesmins, the production of phomalide stopped (Pedras and Biesenthal, 1998; 

Pedras et al., 1993a; Pedras et al., 1993b). Spores of virulent isolates co-incubated with 

sirodesmin PL (165) in MM did not produce phomalide (179). Therefore, the above 

results suggested that the production of phomalide (179) is inhibited by sirodesmins. 

Phomalide (179) was also detected in the infected leaves of canola, suggesting a 

biological role. The detection of phomalide (179) but not sirodesmin PL (165) in 

infected leaves of canola is consistent with the inhibition effect of sirodesmin PL (165) 

on the production of phomalide (179) in the culture media. However, traces of 

sirodesmin PL (165) were detected using LC-MS in the leaves of canola infected with L. 

maculans (Elliott et al., 2007).  

Phomalide (179) together with three analogues 180, 181 and 182 were 

synthesized and the phytotoxicity of these compounds was tested (Ward et al., 1999). 

The Z-isomer (180, 5 × 10 -4 M) did not have phytotoxicity while compounds 181 and 
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182 (5 × 10 -5 M) caused necrosis on brown mustard but not on canola or white mustard 

(Ward et al., 1999). 
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Depsilairdin (183), another host-selective phytotoxin produced by the isolate 

Laird 2, possesses a tripeptide coupled with a sesquiterpene moiety. The tripeptide 

moiety contains (2S,3S,4S)-3,4-dihydroxy-3-methylproline, a novel amino acid motif. 

Depsilairdin (183) causes the same diseases symptom as the pathogen and mimics the 

host selectivity. Plant leaves of brown mustard treated with depsilairdin (183) showed 

strong necrotic and chlorotic lesions but no such symptoms were observed in canola in a 

wide range from µM to mM (Pedras et al., 2004). The total synthesis of depsilairdin is 

underway, and the sesquiterpene moiety (lairdinol A (188)) was synthesized recently 

(Pardeshi and Ward, 2008).  
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1.3.2.3 Sesquiterpenes 

Ten sesquiterpenes have been isolated from extracts of cultures of L. maculans 

(Pedras et al., 1999; Pedras et al., 2005b). Phomalairdenones A (193), B (190) and C 

(191) were isolated from a fungal isolate IBCN 18 (the International Blackleg of 

Crucifers Network), which is virulent to canola. Phomalairdenones A (193) and D (192), 

phomalairdenols A (184), B (185), C (186) and D (187), lairdinol A (188) as well as 189 

and 194 were isolated from Laird 2 and Mayfair 2 which are virulent to brown mustard 

but not to canola. Among these, metabolites 189 and 194 were isolated before from 

Dugaldia hoopesii and Podocarus dacrydioides, respectively. The tricyclic ring system 

of phomalairdenone A (193), was assigned based on analysis of X-ray crystallographic 

data of a single crystal (Pedras et al., 1999).  
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Phomalairdenone A (193) (5 × 10 -4 M) causes necrotic, chlorotic, and reddish 

lesions on brown mustard but not on canola (Pedras et al., 1999). Phomalairdenones A 

(193) and D (192), phomalairdenol A (184) as well as lairdinol A (188) also caused 

lesions (3–4 mm diameter) on brown mustard but not on canola (Pedras et al., 2005b). 
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The selective phytotoxicity is consistent with the virulence range of isolates Laird 2 and 

Mayfair 2.  

Only phomalairdenol A (184) displayed phytotoxicity among all the tested 

phomalairdenols B (185), C (186) and D (187). Structure-activity analysis of all 

phomalairdenols suggested that the hydroxyl group at C-2 is important for the 

phytotoxicity in phomalairdenols. It is also interesting to note that lairdinol A (188), a 

eudesmene type sesquiterpene, is a structural moiety of selective-phytotoxin depsilairdin 

(183). Lairdinol A (188) also showed selective activity on brown mustard but less 

toxicity than depsilairdin (183) (Pedras et al., 2004). 

1.3.2.4 Polyketides 

Nine 2-pyrone type metabolites, phomapyrones A-C (195–197) and D-G (198–

201), as well as phomenin B (203) and infectopyrone (202) were isolated from cultures 

of isolates Laird 2 (Pedras et al., 1999; 2005a) and FAN10B5 (Pedras et al., 1994) 

incubated in MM. Phomenin B (203) and infectopyrone (202), were isolated from 

Phoma tracheiphila (Tringali et al., 1993) and from A. infectoria, respectively (Larsen et 

al., 2003). The biosyntheses of these phomapyrones were demonstrated to follow a 

polyketide pathway using 13C-labeled acetate and malonate as well as deuterated 

methionine as precursors. Because of the limited amount of phomapyrones isolated, only 

phomenin B (203), and phomapyrones A (195) and D (198) were tested for the 

phytotoxicity. None of these pyrones caused any necrosis even at high concentration (10-

3 M); however, 2-pyrones isolated from some pathogenic fungi have displayed 

phytotoxicity, cytotoxicity, or antibiotic activity (Dickinson, 1993).  

 49



O

MeO
O

O
1

864

2

7
O

MeO

O

O

MeO

O

O

O

10

11

9

1

4 6

1213

14

1

6

13

12
12

9
1014

O

O

MeO

1
2

4
10

5

6
7

9

11

12

13

14

198 199 200

201

8
O

MeO

O

10
1

4 6

1213

14

195

8

O

HO

O

10
1

4 6

12

14

196

O O

HO

O

197

O

MeO

O
1

64

2

7

11

9

202

COOH

O

MeO

O
1

64

2

7

11

9

203  

In work to find the yellow pigments produced by weakly virulent isolates of L. 

maculans three yellow metabolites, phomaligin A (204) and wasabidienones B (205) and 

E (206), were isolated (Pedras, 1996; Pedras et al., 1995). However, these three 

metabolites displayed the lowest toxicity among all the phytotoxins isolated from L. 

maculans and L. biglobosa. 
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Phomaligol A (207) and A1 (208), phomaligadiones A (209) and B (210) as well 

as wasabidienone B (206) and E (205) were isolated from a weakly virulent isolate of L. 

maculans. These metabolites have also been found in P. wasabi, suggesting a similarity 

between these two pathogens. 
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2-[2-(5-Hydroxybenzofuranyl)]-3-(4-hydroxyphenyl)-propanenitrile (211) was 

isolated from Laird 2 isolate of L. maculans grown in PDB. The structure of this 

metabolite was elucidated by analysis of spectroscopic data. However, the configuration 

of stereocenter C-8’ was not determined since racemization at C-8’ could happen as H-8’ 

is acidic (Pedras et al., 2007a).  
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2,4-dihydroxy-3,6-dimethylbenzaldehyde (212) was isolated from Canadian V 

isolates grown in PDB (Pedras, et al., 2005). It was reported to have root and hypocotyl 

growth inhibition effects on lettuce seedlings (Jiao et al., 1994). 

Flaviolin (213), 4-hydroxyscytalone (214) and 2-hydroxyjuglone (215) were 

isolated from a solid culture of L. maculans when tricyclazole, a systemic fungicide and 

a melanin synthesis inhibitor, was supplied in the PDA solid medium. These metabolites 

were suggested to be the shunt metabolites of melanin (Dahiya and Rimmer, 1988). 
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1.3.2.5 Sterols 

The composition of sterols in mycelia of L. maculans has been studied using GC-

MS spectrometry. Ergosterol (32) comprised 95% of the total sterols. The remaining 

sterols were 24-methylene dihydrolanosterol (216), 4,4-dimethyl fecosterol (217), 4-

methyl fecosterol (218), fecosterol (219), episterol (220), ergosta-7,22-dienol (221), 

ergosta-5,7,9(11),22-tetraenol (222) and epiergosterol (223) and obtusifoliol (224) 

(Griffiths et al., 2003).  
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The metabolites produced by both L. maculans and L. biglobosa are summarized 

in Table 1.7. 
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Table 1.7. Secondary metabolites produced by different isolates of Leptosphaeria 

maculans and L. biglobosa.(Pedras, 2001; Pedras et al., 2007a; Pedras et al., 2005a; 

Pedras et al., 2005b). 

               Isolates  

Types 

L. maculans 

(virulent isolates)a

L. maculans 

(Mayfair 2/ Laird 

2)b

L. 

biglobosac

L. biglobosa 

(Polish 

isolates)d

Dioxopiperazines Sirodesmins 

(169 to 166) 

Phomalirazine (170) 

Polanrazines 

B (174), C (175) 

- Polanrazines 

A (173), 

B (174), 

C (175), 

D (176), 

E (177), 

F (178) 

Depsipeptides  Phomalide (179) Depsilairdin (183) - - 

Sesquiterpenes Phomalairdenones 

A (193), B (190),  

C (191) 

Phomalairdenones  

A (193), D (192); 

Phomalairdenols  

A (184), B (185),  

C (186), D (187); 

Lairdinol A (188);  

189 and 194 

- - 

Polyketides 212, 

213, 

214,  

215  

Phomapyrones  

A-C (195–197), D-

G (198–201);  

Phomenin B (203); 

Infectopyrone (202) 

204,  

205,  

206  

 

211 

Sterols  216 to 224 - - - 
aisolates virulent on canola; bisolates virulent on brown mustard; cisolates avirulent on 
canola; disolates avirulent on canola. 
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1.4 BIOSYNTHESES OF EPIPOLYTHIODIOXOPIPERAZINES  

A large number of epipolythiodioxopiperazines have been isolated from more 

than 20 fungal genera. These metabolites display diverse biological activities (Gardiner 

et al., 2005; Rezanka et al., 2006). For example, gliotoxin (225) has antibacterial and 

antiviral properties and selective toxicity to cells of the hematopoietic system (Rezanka 

et al., 2006), leptosins A (226), B (227), C (228) and M (229) displayed antitumor and 

cytotoxicity (Takahashi et al., 1994; Yamada et al., 2002), and chetomin (230) and 

chetoseminudin A (231) displayed immunonodulatory activity (Fujimoto et al., 2004). In 

recent years the study of genes responsible for the biosynthesis of EPTs has been carried 

out. For example, 18 genes have been cloned and identified in a sirodesmin biosynthetic 

gene cluster (Gardiner et al. 2004). The function of each of the 18 genes has been 

proposed and denoted with a prefix sir followed by a capital letter indicating the 

function, for example gene sirP corresponds to a non-ribosomal peptide synthetase, sirD 

(prenyl transferase) and sirT (thioredoxin reductase). Mutants with specific sirodesmin 

biosynthetic genes disrupted were also generated and tested for the ability to produce 

sirodesmin PL (165) (Gardiner et al. 2004). After the first gene of sirodesmin PL 

biosynthetic gene cluster from L. maculans was cloned, homologues of the gene in the 

cluster responsible for the biosynthesis of gliotoxin were identified in expressed 

sequence tags of the EPT producing fungus Chaetomium globosum (Gardiner et al. 

2004). A putative gliotoxin biosynthesis gene cluster has been indentified in Aspergillus 

fumigatus by a bioinformatic and expression analysis (Gardiner and Howlett 2005). The 

identification of a gene cluster responsible for the biosynthesis of EPTs may facilitate 

the discovery of new strategies to cope with EPT related diseases (reviewed in Fox and 

Howlett, 2008).  
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The biosynthesis of EPTs has been studied using isotopically labeled potential 

precursors. The biosynthesis of gliotoxin and sirodesmin PL has been extensively 

studied and the basic biosynthetic route has been established based on the incorporation 

of isotopically labeled potential precursors.  

1.4.1 Biosynthesis of gliotoxin (225) 

The first reported EPTs was gliotoxin (225), a toxin produced by Gliocladium 

fimbriatum. Gliotoxin was also isolated from Aspergillus spp. and Penicillium spp. 

(reviewed in Rezanka et al., 2006). Studies of the biosynthesis of gliotoxin started in 

1958 with isotopically labeled potential precursors (Suhadolnik and Chenoweth, 1958). 

DL-[7a-14C]tryptophan (234a), [2-14C]sodium acetate, DL-[methyl-14C]methionine 

(235a), DL-[1-14C]Phenylalanine (232a), DL-[2-14C]Phenylalanine (232b) were fed to 

cultures of Trichoderma viride (syn. Gliocladium viride) incubated in a chemically 

defined medium (Scheme 1.5). DL-[7a-14C]tryptophan was not incorporated into 

gliotoxin, instead, DL-[1-14C]Phenylalanine (232a) and DL-[2-14C]Phenylalanine (232b) 

were incorporated into gliotoxin (225) efficiently (4-12%). These results suggested that, 

although gliotoxin (225) has an indole related moiety, this moiety derived from 

phenylalanine not tryptophan (Suhadolnik and Chenoweth, 1958).  
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Scheme 1.5. Incorporation of potential isotopically labeled precursors into gliotoxin 

(225). (X denotes no incorporation of potential precursors into gliotoxin (225)).  

[1-14C]Serine (233a) was incorporated into C-3,3a or 4 of gliotoxin more 

efficiently than [3-14C]serine (233b) (Winstead and Suhadolnik, 1960). The result 

suggested that serine is another potential biosynthetic precursor to gliotoxin. The 

incorporation ratio of DL-[methyl-14C]methionine (235a), [3-14C]serine (233b) and [1-
14C]serine (233a) into the N-methyl group of gliotoxin were about 72, 25 and 0% in total 

radioactivity in gliotoxin obtained from each of the feeding experiments respectively 

(determined after hydrolysis of gliotoxin). It seemed methionine is the potential N-

methyl donor of the N-methyl group of gliotoxin and serine is also utilized as a methyl 

group donor (Suhadolnik and Chenoweth, 1958).   

Winstead and Suhadolnik (1960) also found that m-[2,3,3,5,7,8,9-3H7]tyrosine 

(236a) was incorporated into gliotoxin (225) in a higher ratio than that of 

[2,3,3,5,6,7,8,9-3H8]phenylalanine (232c), which strongly indicated that hydroxylation of 

the phenyl ring can happen before the coupling or cyclization of both amino acids. 

However, this was proved not to be the case. Ten years later, Bűlock and Ryles found 

that neither m-tyrosine nor o-tyrosine is the intermediate in the biosynthetic pathway of 

gliotoxin. Feeding of isotopically labeled m-tyrosine (236b, 236c and 236d), o-tyrosine 

(238a) and 2,3-dihydroxyl-tyrosine (237a) led to about zero incorporation (Scheme 1.6). 

More important evidence was the intact incorporation of [2,3,4,5,6-2H5]phenylalanine 

(232d) into gliotoxin, which eliminated the possibility of formation of m-tyrosine as an 

intermediate in the biosynthesis of gliotoxin (Bűlock and Ryles, 1970). An epoxide 
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pathway (Scheme 1.7) was proposed similar to the formation of aranotin (264) (see 

Section 1.4.3, scheme 1.17) (Neuss et al., 1968). In another independent experiment 

carried out by Johns and Kirby, [3-3H]phenylalanine (232e) was incorporated into 

gliotoxin (225) without losing or migration of 3H at the C-3 position of phenylalanine 

(Johns and Kirby, 1971). Only DL-[1-14C]phenylalanine (232e) was incorporated into 

gliotoxin (225) when a mixture of  DL-[2’,4’,6’-3H3]-m-tyrosine (236d) and DL-[1-
14C]phenylalanine (232e) were fed into the cultures of G. deliquescens (previously called 

T. viride). Again these results demonstrated that hydroxybenzene derivatives are not 

intermediates in the biosynthetic pathway of gliotoxin (Johns and Kirby, 1985).  
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Scheme 1.6. Incorporation of potential isotopically labeled precursors into gliotoxin 

(225). (X denotes no incorporation of potential precursors into gliotoxin (225)).  
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Scheme 1.7. Plausible intermediates 239a and 239b involved in the proposed epoxide 

pathway of formation of gliotoxin (225) (Bűlock and Ryles, 1970).  

When [15N]glycine was added into the culture of T. viride, both nitrogen atoms in 

gliotoxin were labeled although not to the same extent. Further, when a mixture of [1-
14C]phenylalanine and [15N]phenylalanine was fed to the culture of T. viride, the 

nitrogen atom  showed very large isotope dilution (11 times) compared with the carbon 

atom (4 times). These results indicated that an extensive deamination and reamination 

must occur when these labeled precursors were fed to the culture. Therefore, it is 

difficult to determine whether phenylalanine is incorporated intact into gliotoxin (Bose 

et al., 1968).  
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Scheme 1.8. Incorporation results of 232g, 232h and 232i into gliotoxin in culture of 

Trichoderma viride. (X denotes no incorporation of potential precursors into gliotoxin 

(225)).  

When DL-[3’,3’-2H2]phenylalanine (232g) was fed to the culture of T. viride, a 

monodeuterated gliotoxin (225a) was observed, in which 2H at the pro-S position in 
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phenylalanine was not incorporated into gliotoxin (225) (Bűlock et al., 1972). No 

incorporation of deuterated phenylalanine was observed when DL-3’S-[3’-2H] -

phenylalanine (232h) was fed to the culture of T. viride. Whileas L-3’R-[3’-2H]-

phenylalanine (232i) was determined to be incorporated into gliotoxin, efficiently 

(scheme 1.8). It seemed that when phenylalanine was fed to the culture of T. viride, a 

process independent of the biosynthesis of gliotoxin happened that caused the loss of HS 

at the C-3 position of phenylalanine. To further confirm this conclusion, DL-[1-14C-3-
3H2]-phenylalanine (232j) was fed to the culture of T. viride and harvested after a short 

incubation time (22 hours). Examination of the 14C: 3H ratio of DL-[1-14C-3-3H2]-

phenylalanine (232j) fed and recovered from the culture of T. viride indicated that up to 

a 35% loss of 3H happened in this short incubation time during which the biosynthesis of 

gliotoxin had not started yet. Therefore, a β methylene proton exchange happened when 

phenylalanine was fed to the culture of T. viride, which is independent of the 

biosynthesis of gliotoxin. The authors proposed that this β methylene proton exchange 

involved an intermediate of α-keto-acid (Bűlock et al., 1972). 
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* = 14C  

Although it is generally accepted that dioxopiperazines are the intermediates 

corresponding to their final EPTs, in early biosynthetic studies of gliotoxin, two groups 

had different results and explanations. MacDonald and Slater reported that cyclo-(L-phe-

L-ser) (240) did not incorporate into gliotoxin, and proposed that the true intermediate is 

enzyme-bound (Macdonald and Slater, 1975). However, Bűlock and Leigh (1975) 

reported an intact incorporation of cyclo-(L-phe-L-ser) into gliotoxin with a high 

incorporation (21±3%) in the culture of T. viride. Therefore, Bűlock and Leigh 

concluded that cyclo-(L-phe-L-ser) indeed was the precursor of gliotoxin and that no 

incorporation of cyclo-(L-phe-L-ser) into gliotoxin was due to two possible reasons 

(Bűlock and Leigh, 1975). The first one, which was less likely, was that a different 
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fungus (Penicillium terlikowsksi) was used by MacDonald and Slater. The second reason 

was that the excess amount of cyclo-(L-phe-L-ser) fed to the culture by MacDonald and 

Slater was liable to generate the misleading results. However, the results from Bűlock 

and co-workers also need some consideration due to the high dilution of 14C (×59±7) 

(Bűlock and Leigh, 1975). 
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Scheme 1.9. Incorporation results of 240a – 240d into gliotoxin (225) in cultures of 

Trichoderma viride. (X denotes no incorporation of potential precursors into gliotoxin 

(225)).  

Four stereoisomers of cyclo-([4’-3H]-phe-[3-14C]-ser) (240a – 240d) were fed to 

the culture of T. viride, only cyclo-([4’-3H]-L-phe-[3-14C]-L-ser) (240a) gave an efficient 

incorporation (48%) and constant 3H: 14C ratio between precursor (240) and gliotoxin 

(225), (Scheme 1.9, Kirby et al., 1978). The other three isomers had only trace amounts 

of incorporation. These results support the results obtained by Bűlock and Leigh (1975). 

Further, radioactive cyclo-(L-phe-L-ser) (1.3% radioactivity) was recovered from 

cultures of T. viride fed successively with non-radioactive cyclo-(L-phe-L-ser) (240) and 

L-[U-14C] phenylalanine. These results suggest that dioxopiperazine cyclo-(L-phe-L-ser) 

(240) is “either an intermediate, or is interconvertible with an intermediate, on the 

biosynthetic pathway from phenylalanine to gliotoxin” (Kirby et al., 1978).   
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No incorporation of compound 241 into gliotoxin suggested that N-methylation 

is not a step immediately after the formation of dioxopiperazine. Linear dipeptides 242 

and 243 were not incorporated into gliotoxin intact, but were incorporated into gliotoxin 

after they first were hydrolyzed to amino acids. Once again these results support the 

claim that cyclo-(L-Phe-L-Ser) (240) is resistant to enzymatic hydrolysis and is 

incorporated into gliotoxin intact (Boente et al., 1991).  
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Scheme 1.10. Biosynthesis and catabolism of gliotoxin (225). (Adapted from references: 

Bűlock and Leigh, 1975; Kirby et al., 1980; Boente et al., 1991; Johns and Kirby, 1985).  

A new metabolite related to gliotoxin, bisdethiobis-(methylthio)gliotoxin (246), 

was isolated and its biosynthetic pathway was studied (Kirby et al., 1980). 14C-gliotoxin 

was incorporated into 246 (8.6% incorporation), whileas 14C-246 was not converted into 
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gliotoxin by T. viride. Therefore, 246 was biosynthesized irreversibly from gliotoxin 

through reduction and methylation by T. viride (Kirby et al., 1980) (Scheme 1.10).  

Interestingly, cyclo-(L-phe-L-ala) (247), an unnatural precursor of gliotoxin, was 

converted to an analogue of gliotoxin (248) by T. viride (Scheme 1.11). The conversion 

was about 20% without appreciable dilution, despite a significant structural difference 

between serine and alanine, i.e. –OH to –H. Gliotoxin was not detected when cyclo-(L-

phe-L-ala) was fed to the culture. These results suggested that enzymes responsible for 

N-methylation and sulfur insertion in T. viride had broader ability to catalyze different 

substrates (Kirby and Robins, 1976).  
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Scheme 1.11. Incorporation of cyclo-(L-phe-L-ala) (247) into analogue of gliotoxin 

(248) by Trichoderma viride.  

While the majority of EPTs have 3R,6R-configurations, hyalodendrin (249) 

produced by Hyalodendron sp. represented a rare EPT of 3S,6S- configurations (Ahmed 

and Przybylska, 1977). 3S,6S-Didethiobis(methylthio)hyalodendrin (250), the co-

metabolite of hyalodendrin (249), was predominant under high incubation temperature 

and long incubation time. The biosynthesis of 250, which was easily purified by 

crystallization, was studied using isotopically labeled compounds. Only cyclo-(L-[U-
14C]-phe-L-ser), the same stereoisomer precursor of gliotoxin, was incorporated into 

3S,6S-didethiobis( methylthio) hyalodendrin (250) by Hyalodendron sp. (Boente et al., 

1991). The other three stereoisomers (240b, 240c and 240d) were not incorporated into 

250, which indicated that cyclo-(L-Phe-L-Ser) (240) is the common precursor for EPTs 

containing phenylalanine and serine moieties in the skeleton. Further, the result also 

indicated that the introduction of sulfur does not proceed with stereospecific retention of 
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configuration. The authors proposed an imino compound (245) as an intermediate which 

could be attacked from either side of the imino bond (Scheme 1.12, Boente et al., 1991).  
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Scheme 1. 12. Proposed biosynthesis of metabolites of 246 and 250.  

1.4.2 Biosynthesis of sirodesmin PL (165)  

The biosynthetic pathway of sirodesmin PL has been studied for more than two 

decades (Bűlock and Clough, 1992; Ferezou et al., 1980). [1-14C]-, [1-13C]-, and [1,2-
13C2]-acetates were incorporated into sirodesmin PL. Analysis of the 13C NMR 

incorporation pattern from [1,2-13C2]-acetate (253a) indicated that C-10, C-16, C-11 and 

C-18 were derived from the intact incorporation of [1,2-13C2]-acetate (253a) and C-17 

was derived from decarboxylated acetate moiety of mevalonic acid (Scheme 1.13). 

These results suggested a mevalonic origin of the tetrahydrofuranone ring of sirodesmin 

PL (Férézou et al., 1980b). L-[U-14C]Serine (233c), L-[U-14C]tyrosine (251), cyclo-(L-

[U-14C]-tyr-L-ser) (252) and cyclo-O-(3’,3’-dimethylally)-L-[U-14C]try-L-ser 
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([14C]phomamide) (171) were incorporated into sirodesmin PL (165). [14C]Phomamide 

(171) was incorporated into sirodesmin PL (165) with the highest ratio (25.5%), 

followed by cyclo-(L-[U-14C]-tyr-L-ser) (252) (12.5%). L-[U-14C]Serine (233c) and L-

[U-14C]tyrosine (251) were very slightly incorporated into sirodesmin PL, 0.29% and 

0.49% respectively. Based on these results a biosynthetic pathway (Scheme 1.13) was 

proposed (Férézou et al., 1980b).  
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Scheme 1.13. Proposed biosynthetic pathway of sirodesmin PL (165) (adapted from 

Férézou et al., 1980).  

Bűlock and co-workers also demonstrated incorporation of [1,2-13C2]-acetate 

(253a) into sirodesmin PL and proposed a more detailed steric rearrangement from the 
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dimethylallyl moiety to the tetrahydrofuranone ring (Bűlock and Clough, 1992). Doubly 

labeled L-[3,5-3H2, U-14C]tyrosine (251) was incorporated as expected with retention of 

one 3H and nine 14C atoms into sirodesmin A, an epimer of sirodesmin PL at C-8, 

suggesting that a precursor of sirodesmin PL is L-tyrosine (251) (Bűlock and Clough, 

1992).  
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In addition to phomamide (171), phomalirazine (170) was also isolated from 

cultures of L. maculans, and was proposed to be an intermediate in the biosynthetic 

pathway of sirodesmin PL (Pedras et al., 1989). The isolation of 3-

(methylthio)phomamide (172) also gave a hint of when sulfur is introduced into 

sirodesmin PL (165) (Pedras et al., 1990). The biosynthesis of sirodesmin PL was 

proposed to follow the scheme 1.14.  
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Scheme 1.14. Proposed biosynthetic pathway of sirodesmin PL (165) by Leptosphaeria 

maculans. (postulated intermediates in brackets) (Pedras et al., 1989; Gardiner et al., 

2004).  

1.4.3 Biosynthesis of other EPTs 

Biosynthesis of sporidesmin (258), produced by Pithomycas chartarum, was 

conducted with 3H and 14C doubly labeled tryptophan 234b-234g. When tryptophan with 

3R-tritium label, i.e. (3R)-[3-3H, 2-14C]tryptophan (234b) or (3R)-[3-3H, 3-
14C]tryptophan (234c), was fed to a culture, the tritium in the sporidesmin (258) obtained 

was almost lost (>10% retention compared with 14C). Whereas when tritium was labeled 

at the 3S or 2’ position of tryptophan, the tritium incorporated into sporidesmin had 

above 90% retention (Scheme 1.15). These results indicated that the configuration of C-

3 in tryptophan remained the same when it was incorporated into sporidesmin, which 

suggested that the hydroxylation reaction at C-3 in sporidesmin is stereospecific (Kirby 

and Varley, 1974).  
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Scheme 1.15. Biosynthesis of 258 from 234 by cultures of Pithomycas chartarum.  
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Scheme 1.16. Proposed biosynthetic pathway of 260. (Full line denoted the 

incorporation; dash line denoted the possible biotransformation).  

Neuss, Boente and their co-workers demonstrated that phenylalanine (Neuss et 

al., 1968), and cyclo-(L-phe-L-phe) were incorporated into 

bisdethiobis(methylthio)acetylaranotin (260) efficiently (Boente et al., 1981),  using 

radioactive labeled materials. But cyclo-(L-phe-D-phe) and cyclo-(D-phe-D-phe) did not 
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incorporate into bisdethiobis(methylthio)acetylaranotin (260) efficiently (Boente et al., 

1981). The intact incorporation of cyclo-(L-[l5N]phenyla1anyl-L-[1-13C]phenylalanyl) 

(259) suggested that cyclo-(L-phe-L-phe) is the possible intermediate in the biosynthesis 

of bisdethiobis(methylthio)acetylaranotin (260) (Scheme 1.16, Boente et al., 1981).  

Later on, metabolite 261 was isolated from cultures of A. terreus, suggesting the 

possibility to introduce sulfur into bisdethiobis(methy1thio)acetylaranotin (260) 

immediately after the formation of dioxopiperazine ring (Kirby et al., 1983). Further, the 

authors demonstrated that 262 (3H: 35S ratio, 4.86) was incorporated into 260 with low 

dilution of 3H, which suggested 262 was a biosynthetic precursor of 260. However, the 
3H: 35S ratio (3.82) was somewhat altered. Therefore, this conclusion has to be taken 

cautiously (Kirby et al., 1983).  
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Scheme 1. 17. Proposed biosynthetic pathway of aranotin (264).  

The biosynthesis of aranotin (264) was also studied by feeding radioactive 

phenylalanine to the culture of Avachniofus Aureus. No further incorporation 

experiments have been done yet. Scheme 1.17 was the proposed biosynthetic pathway of 

aranotin (264) (Nagaraja.R et al., 1968; Neuss et al., 1968). 
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1.5 SUMMARY  

The chemical interactions between fungi and plants are dynamic and involve 

metabolites such as phytotoxins and elicitors produced by fungi as well as 

phytoanticipins and phytoalexins produced by plants. Phytotoxins can damage plant 

tissues and help the colonization of fungi on plants. Elicitors, which are detrimental to 

the fungal colonization of plants, are evidence of the fungus-plant co-evolution. Some of 

the indisputable cell components or metabolites produced by fungi are signals that can 

be recognized by potential host plants through the selection of co-evolution. The 

recognition of elicitors will induce the plant defense responses which include for 

example, the production of phytoalexins and hypersensitive response. Induced 

phytoalexins and preformed phytoanticipins are two layers of a plant’s chemical 

defenses, which most of the time are important to inhibit further growth of fungi.  

More intriguing, another group of fungal pathogens are hemibiotrophic. They 

normally start biotrophic life style and become necrotrophic at a later stage of growth. 

Therefore, they possess the ability to produce HSTs and elicitor/virulence factors. The 

hemibiotrophic fungus L. maculans is an economically important phytopathogen from 

which HSTs phomalide (179) and depsilairdin (183) were isolated. But are these the 

only HSTs produced by L. maculans? Moreover, the elicitor/virulence factors produced 

by L. maculans are still unknown. A practical way to find elicitor/virulence factors and 

phytotoxins is to manipulate the medium components and incubation conditions 

(discussed in section 1.2.3.2). Therefore, elicitors and more of the potential phytotoxins 

produced by L. maculans will be discovered using a bioassay guided isolation from 

various cultures of L. maculans.  
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CHAPTER 2: RESULTS AND DISCUSSION 

2.1 POTENTIAL ELICITORS FROM LEPTOSPHAERIA MACULANS 

To search for elicitors and phytotoxins produced by L. maculans, metabolites 

produced in different culture conditions were analyzed by HPLC and isolated using an 

elicitor-toxin activity guided assay. Two basic media, minimal medium (MM) and potato 

dextrose broth (PDB) medium as well as several modified MM and PDB media were 

employed for the preparation of the cultures of L. maculans. The various culture 

conditions are summarized in Table 2.1. The elicitor-toxin activity assays were carried 

out employing B. juncea cv. Cutlass (brown mustard, resistant to L. maculans), B. napus 

cv. Westar (canola, susceptible to L. maculans) and Sinapis alba cv. Ochre (white 

mustard, resistant to L. maculans). Sixteen metabolites were isolated from L. maculans 

for the first time, among them, eleven metabolites are new. A detailed isolation 

procedure of these metabolites is described in the experimental section. In the following 

sections HPLC analysis of the metabolites produced under various culture conditions is 

described first, followed by a brief description of the isolation of the metabolites. Lastly, 

the structure determination of the new metabolites and the metabolites isolated for the 

first time from L. maculans is described and discussed.  
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Table 2.1. Culture conditions used to grow Leptosphaeria maculans.   

# Media Amendmentsa 

(concentration) 

Days of incubation before addition of 

amendments  

1 MM - - 

2 MM NaCl (0.17 M) - 

3 MM NaCl (0.17 M) 3 

4 MM NaCl (0.34 M) 3 

5 MM NaCl (0.34 M) 4 

6 MM NaCl (0.68 M) 3 

7 MM NaCl (0.68 M) 4 

8 MM NaCl (0.68 M) 5 

9 PDB - - 

10 PDB 25 °C - 

11 PDB 27 °C - 

12 PDB 29 °C - 

13 MM 29 °C - 

14 MM MgSO4·7H2O (2.0×10-4 M) - 

15 MM MgSO4·7H2O (1.0×10-3 M) - 

16 MM MgSO4·7H2O (4.0×10-3 M) - 

17 MM - thiamine  - 

18 MM - thiamine  

+ leaves of brown mustard 

- 

19 MM Spirobrassinin (1.0×10-4 

M) 

3 

20 MM Camalexin (1.0×10-4 M) 3 

21 PDB Spirobrassinin (1.0×10-4 

M) 

3 

22 PDB Camalexin (1.0×10-4 M) 3 

23 V8 Glucose (5.5×10-2 M) - 
aAll the cultures were incubated at room temperature (23°C) unless stated otherwise. 
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2.1.1 Metabolites produced in minimal media  

2.1.1.1 Standard conditions  

Minimal medium (MM) is a chemically defined medium. Similar to the previous 

observation (Férézou et al., 1977 and 1980a), when L. maculans was incubated in MM 

under standard conditions (Table 2.1, entry 1), sirodesmin PL (165), deacetylsirodesmin 

PL (166) and phomamide (171) were detected as the major metabolites in culture broth 

(Figure 2.1). However, these metabolites have not been tested for their elicitor activities. 

Also, most of the minor metabolites from the culture broth and metabolites from mycelia 

have not been isolated and tested for their elicitor and phytotoxin activities. Therefore, 

an elicitor-toxin activity assay guided isolation was carried out to find elicitors and 

potentially new phytotoxins produced by L. maculans in MM under standard conditions. 

 
Figure 2.1. HPLC chromatogram of EtOAc extract of broth of Leptosphaeria maculans 

incubated in minimal medium (MM).  

A total of 20 liters of the cultures of L. maculans IBCN 57 (BJ 125) was prepared 

in standard MM. After 7 days of incubation, mycelia were separated from the broth by 

vacuum filtration and the broth was extracted with EtOAc. The EtOAc layer was 

concentrated to give 7.2 g residue, the residue (EtOAc extract) was assayed, showing 
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elicitor-toxin activity. Therefore the EtOAc extract was fractioned using various 

chromatographic methods to give metabolites 267 to 270 and 272 to 275 as well as 288 

(Section 4.2.1.1). The aqueous layer did not show elicitor-toxin activity. Therefore it was 

autoclaved and discarded. The mycelia were then extracted with MeOH. The MeOH 

layer was concentrated and the residue was resuspended in MeOH/H2O (1:1 v/v) then 

extracted with hexane. The hexane layer was concentrated to give 3.4 g residue and the 

residue (hexane extract) showed elicitor activity. Therefore, the hexane extract was 

fractioned to give metabolites 14 and 31, as described in Section 4.2.1.1. The 

MeOH/H2O (1:1 v/v) layer was concentrated to give 12.6 g residue. This residue did not 

show elicitor activity, and D-mannitol (301) was isolated as the major component.  

Leptomaculin A (267) and leptomaculin B (268) 

The molecular formula of compound 267 (C19H27N3O6S) obtained by HRMS-EI 

indicated eight degrees of unsaturation. The 1H NMR (CDCl3) of compound 267 (Table 

2.2) displayed a pattern similar to that of sirodesmin PL (165), i.e. two singlets (δH 1.07, 

3H, and 1.00, 3H), a doublet (δH 1.26, 3H) and a quartet (δH 3.87, 1H) accounting for all 

protons of ring A, two doublets of doublets (δH 2.69, 1H, and 1.84 1H) coupled to 

another doublet of doublets (δH 4.59, 1H) accounting for H2-12 and H-13 of ring B. Two 

doublets (δH 2.93, 1H and δH 2.24, 1H) accounted for H2-5 in ring C. A singlet (δH 3.44, 

3H) accounting for the N-methyl group of ring D. After D2O exchange, a doublet (δH 

3.07, 1H) disappeared and another doublet (δH 3.91, 1H) became a singlet, accounting 

for coupling due to hydroxyl group at C-7 and H-7, respectively. Moreover a singlet at 

δH 4.20, 1H disappeared accounting for hydroxyl group at C-6. According to this 

analysis, compound 267 has the same skeleton in rings A, B and C as those of 

sirodesmin PL (165). A doublet (δH 2.84, 3H) became a singlet and a quartet (δH 6.55, 

1H) disappeared after D2O exchange, which indicated a secondary methyl amide. The 

methylene hydroxyl group corresponding to the OH group at C-14 in sirodesmin 

skeleton was not observed. A methylene AB spin system (δH 4.23, dd, 1H, and 3.87, dd, 

1H) indicated that the methylene hydroxyl group was not present. Therefore, the 

structure of compound 267 was different from that of sirodesmin PL (165) at ring D. 
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Four carbonyl carbons were displayed in the 13C NMR spectrum. The carbonyl carbons 

at δC 223.4 and 157.4 were assigned to be C-9 and C-1, respectively, as in sirodesmin PL 

(165). δC 171.3 was assigned to be the carbonyl C-15 of an amide moiety. The δC 185.1 

was assigned as a thio carbonyl. The position of the amide carbonyl was assigned based 

on HMBC 2D NMR correlations (Figure 2.2). C-15 (δC 171.3) showed correlations with 

H2-5 (δH 2.93 and 2.24), H2-3 (δH 4.23 and 3.87) and H3-16 (δH 2.84). The nitrogen 

methyl H3-14 (δH 3.44) showed correlations with C-3 (δC 59.5) and C-2 (δC 185.1), H2-3 

(δH 4.23 and 3.87) showed correlation with C-2 (δC 185.1). Therefore structure 267 was 

proposed. Crystallization of 267 yielded single crystals by slow evaporation of a solution 

of metabolite 267 in MeOH-CH2Cl2-hexane (1:5:4). The X-ray diffraction data (CCDC 

684017) confirmed the proposed structure of compound 267 (Figure 2.3). 
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Figure 2.2. Selected HMBC correlations of leptomaculin A (267). 

 
Figure 2.3. X-ray ORTEP diagram of leptomaculin A (267). 
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The 1H and 13C NMR (CDCl3) spectra of compound 268 (Table 2.2) were similar 

to those of compound 267. The characteristic resonances of ring A, B and C in the 

sirodesmin skeleton were observed, although three proton resonances were somehow 

overlapped at δH 3.84-3.91 which accounted for H-3b, H-7 and H-11. The 1H NMR 

(DMSO-d6) of compound 268 showed well separated spin systems, and the D2O 

exchange results were consistent with those of compound 267. The major difference 

between compound 268 and 267 was that the thiocarbonyl at δC 185.1 in compound 267 

was shifted upfield to δC 155.5 in compound 268. This change is in agreement with the 

molecular formula of compound 268 (C19H27N3O7, HRMS-EI), i.e., the thiocarbonyl was 

replaced by an oxygen carbonyl. The stereochemistry of compound 268 was assigned 

based on the NOESY 2D NMR (Figure 2.4). H-7 (δH 3.61) showed correlations with H-

12b (δH 1.71) and H-5a (δH 2.62). These two correlations were consistent with the 

stereochemistry of sirodesmin PL (165), which suggested that H-7 (δH 3.61) and H-5a 

(δH 2.62) were on the lower face of the B/C rings. Therefore, H-5b (δH 2.09) was on the 

upper face of the B/C rings. H-5b (δH 2.09) showed a correlation with H-3a (δH 2.84), 

indicating that H-3a (δH 2.84) and H-5b (δH 2.09) were close in space and both were on 

the upper face of the C/D rings. Based on the above analysis, carbonyl carbon C-15 of 

compound 268 was on the lower face of C/D rings, which was consistent with compound 

267 as shown in Figures 2.2 and 2.4. 
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Figure 2.4. Selected NOESY correlations of leptomaculin B (268). 
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Table 2.2. 1H NMR (500 MHz) and 13C NMR (125 MHz) chemical shifts (ppm) and 

multiplicities (J in Hz) of leptomaculins A (267) and B (268). 

 Leptomaculin A (267) (CD3OD) Leptomaculin B (268) ((CD3)2SO)

C /H # δC δH δC δH

1 158.2 --- 155.5 --- 

2 186.7 --- 157.4 --- 

3 60.4 4.03, 1H, d, (13.4) 

4.14, 1H, d, (13.4) 

56.1 3.75, 1H, d, (12.9) 

3.94, 1H, d, (12.9) 

4 69.8 --- 67.8 --- 

5 46.0 2.83, 1H, d, (14.3) 

2.25, 1H, d, (14.3) 

45.2 2.62, 1H, d, (14.1) 

2.09, 1H, d, (14.0) 

6 85.8 --- 83.2 --- 

7 80.4 3.80, 1H, s 78.4 3.61, 1H, d, (5.8) 

8 92.7 --- 91.3 --- 

9 223.1 --- 221.7 --- 

10 48.6 --- 46.9 --- 

11 80.9 3.87, 1H, q, (6.2) 79.2 3.83, 1H, q, (6.2) 

12 37.5 1.93, 1H, dd, (14.9, 5.7) 

2.57, 1H, dd, (14.9, 9.4) 

35.0 1.71, 1H, dd, (14.4, 7.1) 

2.44, 1H, dd, (14.4, 9.1) 

13 69.3 4.50, 1H, dd, (9.3, 5.6) 66.0 4.15, 1H, dd, (8.9, 7.1) 

14 43.9 3.41, 3H, s 34.3 2.82, 3H, s 

15 173.8 --- 171.5 --- 

16 27.3 2.76, 3H, s 26.5 2.65, 3H, d, (4.8) 

17 20.4 1.03, 3H, s 19.6 0.97, 3H, s 

18 17.3 0.98, 3H, s 16.3 0.87, 3H, s 

19 14.7 1.22, 3H, d, (6.3) 14.1 1.14, 3H, d, (6.3) 

Others    C-6 -OH, 4.60, s 

C-7 -OH, 5.57, d, (5.6) 

-NH, 8.32, q, (5.0) 
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Leptomaculin C (269) and deacetylleptomaculin C (270) 

The molecular formula of compound 269 (C20H27N2O8) obtained by HRMS-ESI 

indicated nine degrees of unsaturation. The absence of sulfur atoms indicated that 

compound 269 did not contain a sulfur bridge as that in sirodesmin PL. The 1H NMR 

(CDCl3) of compound 269 (Table 2.3) displayed a similar pattern as that of sirodesmin 

PL (165), i.e. two singlets (δH 1.06, 3H, and 1.01, 3H), a doublet (δH 1.26, 3H) and a 

quartet (δH 3.88, 1H) accounting for all protons of ring A. Two doublets of doublets (δH 

2.54, 1H, and 1.59 1H) coupled to another doublet of doublets (δH 4. 35, 1H) accounting 

for H2-12 and H-13 of ring B. Two doublets at δH 3.50 (1H) and δH 2.54 (1H) accounted 

for H2-5 in ring C. The hydroxyl group at C-6 was displayed at δH 3.27, but no signal for 

hydroxyl group at C-14 was observed. Upon acetylation of compound 269 with pyridine 

and Ac2O, only one acetyl group was introduced. In the 13C NMR of compound 269, two 

carbonyl carbons (δC 167.2 and 166.6) accounting for C-1 and C-3, and δC 169.6 and δC 

221.2 accounting for acetyl carbonyl C-19 and ketone carbonyl C-9, respectively. All 

four carbonyl groups as well as rings A, B, C and D accounted for eight degrees of 

unsaturation. Compound 269 had the same nine degrees of unsaturation as sirodesmin 

PL (165) (C20H26N2O8S2). One of the methylene protons at C-5 was substantially 

shielded (δH 3.50 and 2.54, H2-5), which is an ABq (δH 3.27, H2-5) in sirodesmin PL 

(165). Therefore, the methylene hydroxyl group was attached to C-4 to form an ether 

bridge. The configurations of C-2 and -4 were assigned to be 2S and 4S, i.e. the ether 

bridge was above the plane of rings C and D, as shown below. Assuming that compound 

269 has the same biosynthetic origin as sirodesmin PL (165), the absolute configurations 

at C-6, 7, 8, 10, 11 and 13 were assigned similar to sirodesmin PL (165) and compound 

269. Since H2-14 and H-13 of compound 269 showed correlation in NOE experiments, 

therefore, protons H2-14 were on the upper face of the C/D rings, i.e. cis relative to H-

13. From a more polar fraction, Compound 270, a deacetyl derivative of compound 269, 

was isolated and confirmed the structure assignment of compound 270.  
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Table 2.3. 1H NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3, 125 MHz) chemical 

shifts (ppm) and multiplicities (J in Hz) of leptomaculin C (269) and 1H NMR (CDCl3, 

500 MHz) of deacetylleptomaculin C (270) and deacetylleptomaculin C (271). 

 269  270 271 

C# δC δH δH δH

1 167.2 --- --- --- 

2 61.8 4.00, 1H, bs 4.00, 1H, d, (2.3) 4.01, 1H, bs 

3 166.6 --- --- --- 

4 95.3 --- --- --- 

5 42.9 3.50, 1H, d, (16.2) 

2.54, 1H, d, (16.3) 

3.46, 1H, d, (15.4) 

2.39, 1H, d, (15.4) 

3.92, 1H, d, (16.7) 

2.68, 1H, d, (16.7) 

6 84.6 --- --- --- 

7 80.4 4.95, 1H, s 3.99, 1H, bs 5.64, 1H, s 

8 89.4 --- --- --- 

9 221.2 --- --- --- 

10 47.6 --- --- --- 

11 80.3 3.88, 1H, q, (6.3) 3.85, 1H, q, (6.4) 3.70, 1H, q, (6.3) 

12 35.9 2.54, 1H, dd, (13.9, 

8.0) 

1.59, 1H, dd, (14.0, 

8.2) 

2.45, 1H, dd, (14.5, 

8.3) 

1.85, 1H, dd, (14.9, 

3.8) 

2.32, 1H, dd, (14.8, 

8.5) 

1.88, 1H, bd, (14.6) 

13 67.0 4.35, 1H, dd, (8.1, 8.1) 4.29, 1H, dd, (8.3, 3.7) 4.72, 1H, bd, (8.3) 

14 66.1 4.07, 1H, dd, (9.1, 2.4) 

4.01, 1H, bd, (8.4) 

4.05, 1H, dd, (8.9, 2.2) 

4.00, 1H, bd, (9.1) 

4.04, 1H, bd, (9.7) 

3.96, 1H, bd, (8.8) 

15 31.7 3.10, 3H, s 3.10, 3H, s 3.09, 3H, s 

16 20.5 1.06, 3H, s 1.04, 3H, s 1.02, 3H, s 

17 17.6 1.01, 3H, s 1.01, 3H, s 0.93, 3H, s 

18 14.4 1.25, 3H, d, (6.3) 1.24, 3H, d, (6.4) 1.24, 3H, d, (6.3) 

19 169.6 --- --- --- 

20 20.7 2.10, 3H, s --- 2.09, 3H, s 

22  --- --- 2.04, 3H, s 
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Leptomaculin D (272) and E (274) and deacetylleptomaculin D (273) and E (275) 

Metabolite 272 had structure moieties similar to sirodesmin PL (165) in rings A 

and B according to 1H NMR (CDCl3) (Table 2.4); two singlets (δH 1.11, 3H, and 1.03, 

3H), a doublet (δH 1.25, 3H) and a quartet (δH 3.95, 1H) accounting for all protons of 

ring A. Two doublets of doublets (δH 2.92, 1H, and 1.63 1H) coupled to another doublet 

of doublets (δH 4. 48, 1H) accounted for H2-12 and H-13 of ring B. As well, a much 

lower field singlet (H-7, δH 4. 86, 1H) typical of acetylated OH group at C-7 (singlet 

acetyl methyl group at δH 2.10, 3H). Two D2O exchangeable resonances at δH 3.56 and 

2.44 are OH groups at C-6 and -14 respectively. A singlet at δH 6.39 (1H) indicated the 

presence of a double bond in compound 272. Two sp2 carbons at δC 134.3 and 119.4 in 
13C NMR spectrum of compound 272 (Table 2.5) showed correlation with this low field 

singlet in HMQC and HMBC spectral data. The replacement of the ABq resonance as 

H2-5 in sirodesmin PL (165) with a singlet (δH 6.39, 1H) in the spectrum of compound 

272 indicated that the position of double bond was between C-4 and C-5. A broad 

doublet at δH 4.08 (1H) and a broad doublet of doublets at δH 4.00 (1H) coupled to a 

doublet of doublets at δH 4.03 (1H) were assigned to H2-14 and H-2, respectively. Based 

on the above analysis, the structure of metabolite 272 was proposed.  
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Table 2.4. 1H NMR (CDCl3, 500 MHz) chemical shifts (ppm) and multiplicities (J in 

Hz) of leptomaculins D (272) and E (274) and deacetylleptomaculins D (273) and E 

(275). 

H 

# 

Leptomaculin D 

(272) δH

Leptomaculin E 

(274) δH

Deacetylleptomacul

in D (273) δH

Deacetylleptomacul

in E (275) δH

2 4.03, 1H, 

dd, (3.1, 2.0) 

4.01, 1H, 

dd, (3.6, 1.7) 

4.02, 1H, s 4.00, 1H, s 

5 6.39, 1H, s 6.39, 1H, s 6.08, 1H, s 6.15, 1H, s 

7 4.86, 1H, s 4.85, 1H, s 3.94, 1H, s 3.93, 1H, s 

11 3.95, 1H, q, (6.4) 3.94, 1H, q, (6.3) 3.88, 1H, q, (6.3) 3.95, 1H, q, (6.3) 

12 1.63, 1H, 

dd, (14.0, 9.0) 

2.92, 1H, 

dd, (14.0, 8.5) 

1.55, 1H, 

dd, (13.9, 8.9) 

2.85, 1H, 

dd, (13.9, 8.7) 

1.60, 1H, 

dd, (14.3, 7.1) 

2.72, 1H, 

dd, (14.3, 8.5) 

1.72, 1H, 

dd, (14.1, 7.3) 

2.80, 1H, 

dd, (14.1, 8.7) 

13 4.48, 1H, 

dd, (8.8, 8.7) 

4.50, 1H, 

dd, (8.7, 8.7) 

4.55, 1H, 

dd, (8.3, 7.3) 

4.48, 1H, 

dd, (7.9, 7.9) 

14 4.00, 1H, 

dd, (11.2, 3.4) 

4.08, 1H, 

dd, (11.2, 2.0) 

3.99, 1H, 

dd, (11.2, 3.6) 

4.09, 1H, 

dd, (11.2, 3.6) 

4.05, 1H, 

dd, (11.9, 2.8) 

4.07, 1H, 

dd, (11.8, 3.1) 

4.01, 1H, 

dd, (11.8, 12.1) 

4.05, 1H, 

dd, (11.8, 11.6) 

15 3.07, 3H, s 3.08, 3H, s 3.09, 3H, s 3.08, 3H, s 

16 1.11, 3H, s 1.11, 3H, s 1.04, 3H, s 1.09, 3H, s 

17 1.03, 3H, s 1.03, 3H, s 1.00, 3H, s 1.01, 3H, s 

18 1.25, 3H, d, (6.4) 1.25, 3H, d, (6.3) 1.22, 3H, d, (6.3) 1.24, 3H, d, (6.3) 

20 2.10, 3H, s 2.09, 3H, s --- --- 

 

 

Compound 274, an epimer of compound 272, was isolated from the fraction 

containing compound 272 by PTLC using multiple developments. These two metabolites 

were very similar in all the aspects of 1H NMR and 13C NMR data (Tables 2.4 and 2.5). 

In order to confirm the skeleton and stereochemistry of compound 272 and 274, attempts 
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to obtain crystals or the Mosher ester derivative (282) of compound 272 (Scheme 2.1, 

Ward and Rhee, 1991) failed due to the limited amount of compound. Later, the 

structures of compounds 272 and 274 were confirmed by the preparation of the diacetyl 

derivatives of compounds 281a and 281b from sirodesmin PL (165) (Scheme 2.1). The 

disulfur bridge of sirodesmin PL was readily reduced using PPh3 and the resulting 

sirodesmin H (167) was derivatized (Ac2O) to give compound 276. After hydrolysis to 

remove the acetyl group from the primary hydroxyl at C-14 of compound 276, a pair of 

epimers, compounds 280a and 280b, were obtained after reaction of the hydrolysis 

product of compound 276 (Raney nickel in MeOH at room temperature for one hour). 

Compounds 280a and 280b were separated and acetylated to give compounds 281a and 

281b, respectively. Treatment of naturally occurring metabolites 272 and 274 with 

pyridine/acetic anhydride gave two products which are identical to compounds 281a and 

281b, respectively (Scheme 2.1). Therefore, the structures of compounds 272 and 274 

were confirmed. Another pair of epimers compounds 273 and 275 were isolated from a 

more polar fraction. Their structures were determined to be the deacetyl derivatives of 

compounds 272 and 274 from analysis of their spectroscopic data and preparation of 

their acetyl derivatives 281a and 281b.  
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Table 2.5. 13C NMR (CDCl3, 125 MHz) chemical shifts (ppm) of leptomaculins D (272) 

and E (274) and deacetylleptomaculins D (273) and E (275). 

C 

# 

Leptomaculin 

D (272) δC

Leptomaculin 

E (274) δC

Deacetylleptomaculin 

D (273) δC

Deacetylleptomaculin 

E (275) δC

1 161.6 162.2 162.3 161.5 

2 65.9 66.1 66.4 66.4 

3 157.1 157.3 157.9 157.7 

4 134.3 134.2 134.4 134.2 

5 119.4 119.4 118.2 118.6 

6 83.8 83.8 85.1 85.1 

7 79.0 78.9 79.2 79.1 

8 88.5 88.3 89.9 90.1 

9 222.4 222.3 222.4 222.6 

10 47.7 47.7 47.9 47.9 

11 80.6 80.6 80.4 80.8 

12 34.6 35.1 35.6 34.9 

13 67.0 66.4 66.8 66.9 

14 62.0 61.9 61.6 61.8 

15 32.3 32.4 32.5 32.4 

16 20.7 20.7 20.5 20.4 

17 17.6 17.7 17.2 17.2 

18 14.6 14.6 14.7 14.6 

19 169.7 169.6 --- --- 

20 20.7 20.7 --- --- 

 

 

However, the configuration of C-2 in compounds 272 to 275 could not be 

assigned directly from NOESY spectra, because of the overlap of signals of H-14 and H-

2 (ranging from δH 3.9 to 4.1) in all four epimers. Acetylated derivatives of sirodesmin 
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PL (165) have been reported (Pedras et al, 1990) and displayed well separated 

resonances of H-14, H-13 and H-2 in 1H NMR. Therefore diacetyl- (281b and 281a) and 

6-mono acetyl- (280b and 280a) derivatives of new compounds 272 to 275 were 

prepared (Scheme 2.1). Both derivative pairs gave the desired spectra in which H-14, H-

13 and H-2 were separated. Compound 280b showed clear signals in the NOESY 

spectrum, displaying a correlation between H-13 and H-14a (Figure 2.5). By contrast, 

280a did not show correlation between H-13 and H-14 (Figure 2.5). Assuming that 

compounds 272 to 275 have the same configurations in rings A, B, C and D as 

sirodesmin PL (165), e. g. H-13 of compounds 272 to 275 were on the upper face of C/D 

rings. Therefore H2-14 is on the upper face of C/D rings in compounds 274 and 275. 

Further support came from comparison of the NOESY data of compounds 280a, 280b 

and 276. X-ray diffraction data of compound 276, which crystallized readily from a 

solution of CH2Cl2-hexane (1: 9) to give a single crystal, indicated that compound 276 

kept the same configurations as sirodesmin PL (165). As shown in Figure 2.5, 

compounds 276 and 280b have the same correlation between H-13 and H-14a, but no 

correlation between H-13 and H-14a was observed in compound 280a. Therefore, the 

configuration of C-2 in compound 280b is S, the same as compound 276. Consequently, 

the configuration of C-2 in compounds 273 and 275 was determined to be S, and for the 

same reasons compounds 272 and 273 have R configuration at C-2 (Scheme 2.1). 
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Figure 2.5. Selected NOESY correlations of compounds 276, 280b and 280a. 
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Scheme 2.1. Chemical derivatization of sirodesmin PL (165) and leptomaculins D (272) 

and E (274). 

It is worth noting that when compound 276 reacted with Raney nickel (Scheme 

2.1), compound 279 with an exo-double bond was produced at room temperature 
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whereas compound 277 was obtained under reflux. Only after the acetyl group was 

removed by hydrolysis did addition of Raney nickel yield the pair of desired epimers 

280a and 280b. However, deacetyl intermediate compound 278 was not stable 

(concentration or FCC purification), as intermolecular acetyl-transfer was observed. 

Therefore the reaction mixture of methanolysis of compound 276 was immediately used 

for the next step without further purification. The structure of compound 278 was 

proposed based on the 1H NMR and LC-MS data of the methanolysis reaction mixture of 

compound 276.  

Cerebroside C (14) and D (31) 

The molecular formula of compound 14 [M+1]+ (C43H80NO9) obtained by 

HRMS-ESI, indicated four degrees of unsaturation. The 1H NMR spectrum of compound 

14 showed most of the signals as broad peaks with no coupling and overlapping. When 

the 1H NMR spectrum was recorded at 47 ºC the signals from a likely sugar moiety and 

double bond protons became sharper. Therefore 1D and 2D NMR spectra were recorded 

at 47 ºC in CDCl3. The 1H NMR spectrum characteristic of sphingolipids was observed 

and elucidated from COSY 2D NMR data. Two broad singlets at δH 4.01 and 3.87 (H2-1) 

coupled to the broad singlet at δH 4.09 (H-2), which in turn coupled with an 

exchangeable doublet at δH 7.35 (NH) indicated the amino alcohol part of the 

sphingosine moiety (Figure 2.6) and the amide moiety corresponding to the carbonyl at 

δC 174.6. A broad singlet at δH 4.58 (H’-2) coupled to a doublet of doublets at δH 5.53 

(H’-3) and a doublet of triplets at δH 5.86 (H’-4), which in turn coupled to a broad 

singlet at δH 2.07 (H’-5), accounted for the unsaturated moiety of the fatty acid residue. 

A broad doublet at δH 5.77 (H-5) coupled with a broad singlet at δH 2.07 (H-6) and a 

doublet of doublets at δH 5.47 (H-4), which in turn coupled with a broad singlet at δH 

2.07 (H-3), accounted for the unsaturated moiety of sphingosine. The sugar moiety 

signals were also observed in the range at δH 4.38 to 3.38, although the signals did not 

show a clear spin system. Therefore, compound 14 was proposed to be a sphingolipid.  
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Figure 2.6. Structure of cerebroside C (14). The cycled part is a sphingoid base moiety.  
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Scheme 2.2. Fragmentation pattern of cerebroside C (14) in ESI-MS/MS.  

The lengths of the fatty acid and sphingoid base were established by ESI-MS/MS 

analysis and chemical degradation. The ESI-MS/MS spectrum of compound 14 was 

obtained by using the [M + Na]+ pseudomolecular ion at m/z 776 as the parent ion. The 

fragmentation pattern is summarized in Scheme 2.2. The spectrum displayed two intense 

peaks at m/z 496 [M + Na – 280]+
, and 346 [M + Na – 430]+

, and several other peaks 

such as m/z 758 [M + Na – 18]+, 614 [M + Na – 162]+, 596 [M + Na – 180]+ and  334 

[M + Na – 442]+. The peak at m/z 496 originated from the loss of C18 2-hydroxyl fatty 

acid group (Scheme 2.2., a). The peak at m/z 346 originated from, first, the loss of the 

sugar moiety to give fragment m/z 596 (Scheme 2.2., c) followed by the loss of the C17 

chain of sphingoid base fragment (m/z 596) by breaking the C-2 –N bond (Scheme 2.2., 
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d, Costantino et al. 2007). The peak at m/z 614 was accounted for by loss of the sugar 

moiety (Scheme 2.2., b), which can also give the peak at m/z 346 (Scheme 2.2., e). The 

peak at m/z 334 can derive from either peaks of m/z 614 or m/z 496 (Scheme 2.2., f and 

g, respectively). Based on the information from the ESI-MS/MS fragmentation and 

molecular formula, it was concluded that this sphingolipid 14 contained three parts: a C-

18 fatty acid component, a C-19 sphingoid base and a glucopyranose residue. 
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Scheme 2.3. Methanolysis and acetylation of cerebroside C (14). 

The chemical degradation of compound 14 was carried out using methanol in 1N 

HCl (reflux, Scheme 2.3). After workup a methyl fatty acid ester 285 was isolated 

together with another minor saturated fatty acid ester 286. HRMS-EI suggested the 

molecular formula of 285 to be C19H36O3 and its optical rotation was [α]D= - 43 (c, 0.1) 

(lit. [α]D=-42, (c, 0.50, CHCl3), Takanami et al., 2005). Therefore the fatty acid chain 

was determined to be (2R,3E)-2-hydroxy-3-octadecenoic acyl moiety. Because of the 

limited amount of material, the sphingoid residue 284 was not recovered from the 

aqueous layer during the workup. However, the structural detail of sphingoid base was 

further determined from the analysis of the 1D and 2D NMR of compound 14 when the 

spectra were recorded in MeOD-d4 at 47 ºC. After searching the literature it was found 

that a mixture of CDCl3 and MeOD-d4 is the proper solvent for recording NMR spectra 

of glycosphingolipids (Sitrin et al., 1988). This is probably because of the formation of 

micelles in less polar solvent, i.e. CDCl3, the polar head of glucose is aggregated and 
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consequently the resolution of the NMR signals is decreased and the broadened signals 

overlap with the signals from the fatty chains (Sitrin et al., 1988). As a result the signals 

in the range δH 4.38 to 3.38 were much less informative. However, in the 1H NMR 

(MeOD-d4) of compound 14, a broad triplet (δH 5.53, H-8) couple with a broad singlet 

(δH 2.04, H-7) and a singlet (δH 1.60, H3-19) showed correlation with this sp2 carbon (δC 

125.0, C-8) indicating a methyl branched vinyl sphingoid chain. The position of the 

double bonds was located to be at C-4 and C-8 positions through HMBC and COSY 2D 

NMR spectroscopic data (Figure 2.7). The 13C NMR spectroscopic data (Table 2.6) of 

compound 14 matches the reported data of cerebroside C (14) (Koga et al., 1998). Based 

on all the data, the sphingolipid 14 was determined to be cerebroside C (14) and the 

minor component was cerebroside D (31). These two compounds, cerebroside C (14) 

and cerebroside D (31) were isolated before from the rice blast fungus (Magnaporthe 

grisea) and proven to be general elicitors (Koga et al., 1998).  
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Table 2.6. 1H NMR (MeOD-d4, 500 MHz, 47 ºC) and 13C NMR (MeOD-d4, 125 MHz, 

47 ºC) chemical shifts (ppm) and multiplicities (J in Hz) of cerebroside C (14). 

C#. Sugar Fatty acid Sphingoid base 

 13C 1H 13C 1H 13C 1H 

1 104.9 4.28, 1H, d, 

(7.7) 

175.6 - 69.8 4.09, 1H, m; 

3.75, 1H, dd, 

(10.4, 3.6) 

2 75.3 3.21, 1H, m 74.3 4.44, 1H, d, 

(6.0) 

55.0 3.99, 1H, m 

3 78.2 3.36, 1H, m 129.3 5.53, 1H, m 73.2 4.15, 1H, m 

4 71.9 3.29, 1H, m 135.0 5.84, 1H, m 131.2 5.49, 1H, m 

5 78.3 3.29, 1H, m 33.5 2.06, 2H, m 134.6 5.74, 1H, m 

6 63.0 3.87, 1H, m; 

3.68, 1H, m 

30.3-30.9 1.39, 2H, m 33.9 2.06, 2H, m 

7 - - 30.3-30.9 1.29, 2H, m 28.9 2.06, 2H, m 

8 - - 30.3-30.9 1.29, 2H, m 125.0 5.15, 1H, m 

9 - - 30.3-30.9 1.29, 2H, m 137.0 - 

10 - - 30.3-30.9 1.29, 2H, m 40.9 1.98, 2H, t, (7.2) 

11 - - 30.3-30.9 1.29, 2H, m 29.3 1.39, 2H, m 

12 - - 30.3-30.9 1.29, 2H, m 30.3-30.9 1.29, 2H, m 

13 - - 30.3-30.9 1.29, 2H, m 30.3-30.9 1.29, 2H, m 

14 - - 30.3-30.9 1.29, 2H, m 30.3-30.9 1.29, 2H, m 

15 - - 30.3-30.9 1.29, 2H, m 30.3-30.9 1.29, 2H, m 

16 - - 33.1 1.29, 2H, m 30.3-30.9 1.29, 2H, m 

17 - - 23.8 1.29, 2H, m 30.3-30.9 1.29, 2H, m 

18 - - 14.4 0.90, 3H, t, 

(6.5) 

33.1 1.29, 2H, m 

19 - - - - 23.8 1.29, 2H, m 

20 - - - - 14.4 0.90, 3H, t, (6.5) 

21 - - - - 16.3 1.60, 3H, s 
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Figure 2.7. Selected HMBC (one arrow curves) and COSY (double arrow curves, N-

H↔H-2) correlations of cerebroside C (14).  
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4-Prenyl-benzeneacetic acid (288) 

The molecular formula of compound 288 (C13H16O3) obtained by HRMS-EI 

indicated six degrees of unsaturation. A triplet (δH 5.49, 1H) coupled with a doublet (δH 

4.47, 2H) plus two singlets (δH 1.79, 3H and 1.73, 3H) accounted for an O-prenyl group. 

Two doublets (δH 7.15, 2H and 6.84, 2H) accounted for a 1,4-substituted benzene ring, 

and a broad singlet (δH 3.54, 2H) for the methylene protons. Compound 288 and its 

methyl ester 289 were prepared from 4-hydroxyl-benzeneacetic acid 287 to confirm the 

proposed structure (Scheme 2.4). Compound 288 was isolated before from a mutant of 

Aspergillus ochraceus (Awad et al., 2005).  

HO
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OH

O
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OMe
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1. NaH, THF

Br

CH2N2

2. Et2O

287 288 289  
Scheme 2.4. Preparation of methyl ester of compound 289 from 4-hydroxyl-

benzeneacetic acid (287) 
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Metabolite (290) 

The molecular formula of metabolite 290 (C18H24N2O5S) obtained from HRMS-

ESI indicated eight degrees of unsaturation and that it contained a sulfur atom. The 

structure of the metabolite was elucidated based on the 1H, 13C NMR, HMQC and 

HMBC spectra. A multiple (δH 5.38, 1H) coupled with a doublet (δH 4.40, 2H, J = 6.5 

Hz) plus two singlets (δH 1.72, 3H and 1.67, 3H) accounted for an O-prenyl group. A 

doublet (δH 6.98, 1H, J = 8.4 Hz) coupled with a doublet of doublets (δH 6.31, 1H, J = 

8.4, 2.4 Hz) which inturn coupled with a doublet (δH 6.34, 1H, J = 2.4 Hz) suggested a 

1,2,4-trisubstituted benzene ring. Two doublets of doublets (δH 3.69, 1H, J = 10.9, 5.8 

Hz, and δH 3.50, 1H, J = 10.8, 3.3 Hz) coupled to another doublet of doublets (δH 3.39, 

1H, J = 5.8, 3.3 Hz) accounted for H2-17 and H-2 of the dioxopiperazine ring. Two 

doublets of the methine protons (δH 3.27, 1H, J = 13.9 Hz and δH 2.97, 1H, J = 13.8 Hz) 

indicated C-4 of the dioxopiperazine ring was substitured. This substitution group was 

assigned to be a methylthio of which the methyl group was a singlet (δH 2.17, 3H) in 1H 

NMR spectrum and displayed correlation with C-4 in HMBC spectrum. Two D2O 

exchangible broad singlets (δH 8.28, 1H, 8.19, 1H) were assigned to the N-H of the 

dioxopiperazine ring. A D2O exchangible broad singlet (δH 9.37, 1H) was assingned to 

the phenol proton, which is the extra substitution group compared with the phomamide 

phenyl ring. Based on the above analysis the structure of metabolite 290 was proposed. 

No further data were collected due to the limited amount of sample, therefore, the 

structure of metabolite 290 needs to be further confirmed.  
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2.1.1.2 High NaCl  

High NaCl concentration (0.17 M to 0.68 M) was used to induce stress in L. 

maculans in culture. In a preliminary experiment (Table 2.1, entries 2 and 3), a new peak 

(metabolite 293) was observed at 2.4 min in the HPLC chromatogram of EtOAc extracts 

of broth and the production of sirodesmin PL was decreased about 30 % when NaCl 

(0.17 M) was added into the MM culture. When NaCl (0.17 M) was added into the 3-

day-old MM culture, the production of sirodesmin PL was similar to that of control 

cultures. Therefore, a series of experiments with different concentrations of NaCl and 

different ages of cultures was conducted to maximize the production of the metabolite 

293 and to inhibit the production of sirodesmin PL (Table 2.1, entries 4 to 8). The results 

are presented in Figures 2.8, 2.9 and 2.10. As the concentration of NaCl increased, the 

production of sirodesmin PL decreased (Figure 2.9). The earlier the NaCl was added, the 

lower was the production of sirodesmin PL (Figure 2.9). Therefore, the concentration of 

NaCl and the age of culture to which NaCl was added affected the production of 

sirodesmin PL. When NaCl (0.68 M) was added to 4-day-old cultures, the production of 

sirodesmin PL was inhibited completely (Figure 2.9), while the production of new 

metabolite 293 reached a maximum (Figure 2.10). Another interesting observation was 

that the mycelia turned green on the 7th day under these conditions (Table 2.1, entry 7) 

and became black, eventually, on the 9th day (Figure I. 1, page xxxii). A large scale 

culture (12 L) was prepared using these conditions (Table 2.1 entry 7) to isolate the new 

metabolite 293 from EtOAc extract of culture broth. The known blue pigment bulgarein 

(294) was isolated from mycelia extract (see experimental, section 4.2.1.2). 
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Figure 2.8. HPLC chromatograms of extracts of cultures of Leptosphaeria maculans 

incubated in MM for 7 days. A: Control; B: NaCl (0.68 M) added to 4-day-old cultures.  
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Figure 2.9. Production of sirodesmin PL (165) in MM containing high NaCl (0.34M and 

0.68M). NaCl added to cultures with different incubation times (day). (A control; B, 

0.34 M, 3 day; C, 0.34 M, 4 day; D, 0.68 M, 3 day; E, 0.68 M, 4 day ; F, 0.68 M, 5 day) 
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Figure 2.10. Production of metabolite 293 in MM containing high NaCl (0.34M and 

0.68M). NaCl added to cultures with different incubation times (day). (A, control (no 

metabolite 293 was detected); B, 0.34 M, 3 day; C, 0.34 M, 4 day; D, 0.68 M, 3 day; E, 

0.68 M, 4 day ; F, 0.68 M, 5 day)  

8-Hydroxynaphthalene-1-sulfate (293) 

HRMS-ESI ([M-1]¯) of metabolite 293 indicated the molecular formula 

C10H7O5S. 1H NMR spectra data (D2O) showed all signals at low field range ( δH 6.9 - 

7.8) indicating a substituted aromatic system, e.g. naphthalene moiety. The spin systems 

were elucidated from 1H COSY spectral data. Namely, two protons at  δH 6.99 (d, J = 7.6 

Hz, 1H) and  δH 7.51 (d, J = 8.3 Hz, 1H) together with a proton at  δH 7.42 (dd, J = 8.2, 

7.6 Hz, 1H) accounted for one spin system. The other spin system showed overlapping 

resonances for two protons at  δH 7.47 (d, J = 5.1 Hz, 2H) and another signal at  δH 7.79 

(dd, J = 4.9, 4.4 Hz, 1H), suggesting an unsymmetrical naphthyl nucleus. Altogether the 

spectroscopic data suggested that the new metabolite was 1,8-dihydroxylnaphthalene 

sulfate 293 , which was confirmed by synthesis using commercially available 1,8-

naphthosultone (291) (Scheme 2.5) (Burkhardt and Lapworth, 1926; Ragot et al., 1999). 

Commercially available 1,8-naphthosultone was heated with KOH  at 300 °C to yield 

compound 292 which was reacted with HSO3Cl to yield metabolite 293 (Experimental). 

 95



Although 293 appeared to slowly hydrolyze to 1,8-dihydroxynaphthalene 292 on 

standing in aqueous solution, only a very small amount of 292 was detected in the 

EtOAc broth extracts (ca. 5% of 292 determined by HPLC). 

OH OSO3HOH OH

293292

HSO3Cl

O S

DMA/Et2O

KOH

O
O

291  
Scheme 2.5. Synthesis of metabolite 293 

Bulgarein (294) 

HRMS-ESI ([M-1]¯) of metabolite 294 indicated a molecular formulae C20H9O5 

i.e., an unsaturation number of sixteen. The 1H NMR (DMSO-d6) spectrum displayed ten 

protons, three of which were exchangeable (δH 13.48, bs, 2H and 12.66, bs, 1H). Of the 

remaining seven signals, three broad singlets at δH 7.57, 7.38 and 6.67 changed 

multiplicity when the 1H NMR spectrum was recorded at ca. 58 °C; the broad singlets at 

δH 7.57 and 6.67 became broad doublets and the broad singlet at δH 7.38 became a broad 

triplet. The remaining signals at δH 8.27 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 

6.59 (d, J = 8.0 Hz, 1H), and 6.40 (d, J = 9.0 Hz, 1H) indicated the structure to be 

aromatic. Furthermore, the 13C NMR spectral data suggested that this aromatic system 

contained two carbonyls (δC 183.1, 2C), and three C-O bonds (δC 160.6, 3C). 

Treatment of this blue metabolite (294a/294b) with diazomethane (Scheme 2.6) 

gave a product that appeared to contain an oxymethylene, a methylene and three 

methoxyl groups, according to its 1H NMR spectrum (δ 8.37, d, J = 7.9 Hz; 8.11, d, J = 

8.1 Hz; 7.44, m; 7.03, m; 4.14, s; 4.11, s; 3.91, s; 3.49, bd J = 13.9 Hz; 3.44, bd J = 13.9 

Hz; 3.05, bd J = 6.6 Hz; 2.90, bd J = 6.8 Hz). The HRMS spectrum confirmed the 

presence of ten additional protons and five carbons (C25H20O5, i.e. unsaturation number 

of sixteen). Thus, it appeared that diazomethane treatment methylated three hydroxyl 

groups, and provided two additional methylenes. However, methylation with K2CO3 and 

dimethyl sulfate in acetone gave a reduced pentamethoxy derivative (C25H22O5, i.e. 
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unsaturation number of fifteen) (Scheme 2.6). These spectroscopic data and chemical 

transformations are consistent with the structure of bulgarein (294a/294b), a fungal 

metabolite produced by Bulgaria inquinans whose structure was elucidated by Edwards 

and Lockett in 1976 for which 1H and 13C NMR spectroscopic data were not provided 

(Edwards and Lockett, 1976; Fujii et al., 1993). 

A reaction similar to that observed between bulgarein (294a/294b) and 

diazomethane was reported for 9,10-phenanthrenedione (297), which also yielded a 

product resulting from double insertion of methylene (298, Scheme 2.7) (Eistert et al., 

1968). 
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Scheme 2.6. Preparation of the derivatives 295 and 296 from metabolite 294 
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Scheme 2.7. Preparation of the derivative 298 from compound 297 (Eistert et al., 1968). 
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2.1.2 Metabolites produced in potato dextrose media 

PDB medium is not a chemically defined medium, it contains substantial 

amounts of unidentified components. Therefore, only major new metabolites produced 

after incubating spores of L. maculans were isolated and identified. No sirodesmins 

(165-169) were isolated from PDB media culture of L. maculans incubated at room 

temperature (Table 2.1, entry 9). Known metabolite 212 was produced as the major 

component (Pedras et al, 2007). However, no obvious new peaks were identified in this 

culture medium (Table 2.1, entry 9). 

The temperature is an important factor that influences the production of 

metabolites by fungi. Time course experiments with variation of temperature were 

planned before the start of this research work. However, an accidental power failure 

resulting in temperature increase of the incubation room (ca. 27 ºC), led to the 

observation of several new peaks (maculansins) in the HPLC chromatograms of cultural 

extracts (Figure 2.11). The crude extracts of culture broths showed high toxicity to both 

brown mustard and canola. Therefore time course experiments with higher temperatures 

(Table 2.1, entries 10 to 12) were carried out to optimize the production of these new 

peaks. When PDB medium was incubated at higher temperature (27 ºC) for 4 days, 

maculansin A (299) was produced at higher concentration (Table 2.1, entry 11; Figure 

2.12), while metabolite 212 was produced at maximum concentration seven days after 

incubation at 25 ºC (Table 2.1, entry 10; Figure 2.13). Therefore, five liter cultures of L. 

maculans were prepared by incubation of spores of L. maculans in PDB (27 ºC for 4 

days; Table 2.1, entry 11). The broth was separated from mycelia by vacuum filtration 

and extracted with EtOAc. The EtOAc extract was submitted to various 

chromatographic methods to give maculansin A (299), B (300) and a mixture of 

analogues of maculansin A (299) (Section 4.2.2.).  
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Figure 2.11. HPLC chromatograms of extracts of cultures of Leptosphaeria maculans 

grown in potato dextrose medium (PDB); A: EtOAc extract of culture incubated at 23 °C 

for four days; B: EtOAc extract of culture incubated at 27 °C for four days; numbered 

peaks identified as: 2,4-dihydroxy-3,6-dimethylbenzaldehyde (212), maculansin A 

(299), maculansin B (300), peak at 14.7 min identified as mixture of metabolites related 

to 299. Inserts: UV/Vis spectra of metabolites 212 and 299. 
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Figure 2.12. Production of maculansin A (299) at different temperatures.  
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Figure 2.13. Production of metabolite 212 at different temperatures. 

Maculansin A (299)  

HRMS-EI of metabolite 299 suggested C22H28N2O10 (m/z 380.1749) as the 

molecular formula. In the 1H NMR of metabolite 299 (Table 2.7) a methylene moiety 

(H-1) at δH 4.64 and 4.42 was attached to an acetyl group and coupled to a methine 

proton (H-2) at δH 5.13 (1H COSY). A methine proton (H-3) at δH 3.89 (t, J = 8.2 Hz) 

was coupled to H-2 (δH 5.13, m) and an exchangeable proton (δH 3.00, d, J = 7.7 Hz) 

(COSY and D2O exchange experiments). Three methyl groups at δH 2.11, 2.18 and 2.31 

were attached to sp2 carbons. These signals accounted for all 14 proton resonances in 1H 

NMR. A total of 11 carbon signals were displayed in the 13C NMR. Considering the 

molecular formula of this metabolite (C22H28N2O10, HRMS-EI), this data suggested that 
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299 possessed a symmetry element. The backbone of metabolite 299 was determined to 

be D-mannitol after hydrolysis and by comparison of the spectral data and [α]D of an 

authentic sample with acetylation product 302 (Scheme 2.8). Two types of substituents 

were attached to the D-mannitol backbone. An acetyl group was assigned to -O-C-1 

from an HMBC correlation between the carbonyl carbon at δC 171.6 and H2-1 and the 

methyl group at δH 2.11. The second substituent was elucidated as follows. Both methyl 

groups at δH 2.31 and 2.18 showed similar correlation with an sp2 carbon at δC 158.7 and 

115.0 which were assigned to dimethyl allyl moiety. H-3 showed a correlation with one 

sp2 carbon at δC 160.5. This carbon was assigned to the conjugated carbonyl carbon. The 

IR spectrum contained a characteristic absorption at 2116 cm-1, which indicated the 

presence of isonitrile functional group. The isonitrile carbon which has no correlation 

with any protons was assigned to the peak at δC 168.0 (Karuso et al., 1989). Therefore a 

2-isonitriledehydrovaline moiety was attached at position 3 of the D-mannitol 301 

backbone. Therefore, the structure of new phytotoxin 299 was elucidated as 1,6-diacetyl-

2,5-bis(2-isocyano-3-methyl-2-butenoate)-D-mannitol. Compound 303 was isolated 

from the basic hydrolysis (1H NMR), however, it seemed to polymerize to yield a 

complex mixture.  
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Scheme 2.8. Hydrolysis and preparation of acetylated derivative of the sugar backbone 

of metabolite 299.  
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Table 2.7. 13C NMR (125 MHz) and 1H NMR (500 MHz) chemical shifts (ppm) and 

multiplicities (J in Hz) of maculansin A (299) (in CDCl3). 

 Maculansin A (299) 

C/H # δC δH

1, 6 62.3 4.64, 2H, dd, (12.5, 2.5) 

4.41, 2H, dd, (12.5, 4.2)

2, 5 72.8 5.13, 2H, m 

3, 4 67.4 3.89, 2H, t, (8.2) 

1′ 160.5 --- 

2′ 115.0 --- 

3′ 158.3 --- 

4′/5′ 21.4 2.31, 6H, s 

5′/4′ 25.1 2.18, 6H, s 

6′ 168.0 --- 

1′′ 171.6 --- 

2′′ 21.1 2.11, 6H, s  

(O)H --- 3.00, 2H, d, (7.7) 

Maculansin B (300) and related metabolites 

From a less polar fraction, a mixture of several compounds having structural 

characteristics similar to those of 299 was obtained and further separated by preparative 

TLC, as described in the experimental, to afford components with Rt = 18.3 min (300) 
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and 14.7 min (Figure 2.11). Although HPLC analysis suggested a chromatographically 

homogeneous material, preliminary inspection of the 1H NMR spectral data of the 

component with Rt = 18.3 min (300) indicated that this sample contained a mixture of at 

least two compounds (complex spectrum showing a polyol backbone with two sets of 

signals for some protons). In addition, comparison of this spectrum with that of 299 

indicated that  two doublets at δH 1.14 and 1.04 coupled to a methine proton at δH 2.38 in 

addition to the two methyl groups at δH 2.3 and 2.2 observed in 299. That is, one of the 

2-isocyano-3-methyl-2-butenoyl fragments attached to the polyol was replaced with a 2-

isocyano-3-methylbutanoyl moiety, whereas the acetyl groups and the backbone 

remained intact. This conclusion was consistent with the [M+1]+ m/z 483 obtained for 

this sample (LC-MS-ESI). As well, the polyol backbone of 300 was determined to be D-

mannitol after hydrolysis and acetylation of a mixture of 299 and 300, as reported for 

maculansin A (299). Therefore, the inseparable mixture 300 contained two epimers due 

to the acidity of H-2’ and is proposed to be 1,6-diacetyl-2-(2-isocyano-3-methyl-2-

butenoyl)-5-(2-isocyano-3-methylbutanoyl)-D-mannitol and named maculansin B (300). 

305

O

HN
HO

H
O  

From the same fraction containing maculansin A (299), an inseparable mixture 

was isolated from a more polar fraction. The presence of doublet methyl groups at δH 1.1 

and 1.0, a multiplet at δH 2.4 (1H), and absence of two methyl groups at δH 2.3 and 2.2 

as in maculansin A (299) indicated that the two 2-isocyano-3-methyl-2-butenoyl 

moieties of maculansin A (299) were reduced to 2-isocyano-3-methylbutanoyl moieties. 

Upon basic hydrolysis of this mixture, N-formylvaline (305) was obtained from organic 

extracts, and D-mannitol hexaacetate (302) was obtained by acetylation of the residue of 

the aqueous layer of basic hydrolysis. Compound 305, which was obtained from basic 

hydrolysis of this mixture of analogues of maculansin A (299), was stable enough to be 

isolated and identified from spectroscopic data. (Gloer et al., 1988). Due to the acidic 
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nature of the proton at the β position of the 2-isocyano-3-methylbutanoyl moiety, four 

diastereomers are possible and inseparable, which results in a complex 1H NMR 

spectrum (Gloer et al., 1988). Therefore, this sample contained a mixture of structural 

isomers likely due to the presence of two 2-isocyano-3-methylbutanoyl substituents and 

absence of an acetyl substituent. Because of the complex 1H NMR spectrum, the position 

of these moieties could not be assigned, therefore structures are not proposed.  

2.1.3 Production of metabolites under other stress conditions 

Additional stress conditions were used to test the production of new metabolites 

that may be potential elicitors or phytotoxins. First, a preliminary experiment in using 

culture incubation at higher temperature was conducted at 29°C (Table 2.1, entry 13). 

Under this condition the production of sirodesmin PL (165) reached a maximum at 

around the fourth day, three days earlier than standard conditions, and became barely 

detectable after seven days. However, no new peaks were detected. Therefore, no further 

experiments were carried out by varying incubation temperatures when L. maculans was 

grown in MM.  

Second, the amount of MgSO4·7H2O was adjusted to 1/10 (2.0 × 10-4 M), half 

(1.0 × 10-3 M) and two times (4.0 × 10-3 M) that in standard MM (Table 2.1, entries 14, 

15 and 16 respectively). As shown in Figure 2.14, the maximum production of 

sirodesmin PL (165) is related to the amount of sulfur. When MgSO4·7H2O was 1/10 

and 1/2 of the standard amount the production of sirodesmin PL (165) decreased close to 

29 fold and two fold, respectively, compared to the control; about 1.4 fold increase of 

the production of sirodesmin PL was observed when twice the amount of MgSO4·7H2O 

was supplied to the MM culture. However, no new peaks were detected.  
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Figure 2.14. Production of sirodesmin PL (165) in different MM. A, control; B, removal 

of thiamine but with adding leaves of brown mustard; C, MgSO4·7H2O (2.0 × 10-4 M); 

D, MgSO4·7H2O (1.0 × 10-3 M); E, MgSO4·7H2O (4.0 × 10-3 M). 

Third, the role of thiamine in the production of sirodesmin PL by L. maculans in 

MM was tested. When thiamine was removed from the medium, no sirodesmin PL was 

detected (Table 2.1, entry 17). When thiamine was removed from the medium but with 

adding leaves of brown mustard (Table 2.1, entry 18), the production of sirodesmin PL 

(165) was close to that in control samples (Figure 2.14). This is most likely because the 

leaves contained thiamine. Metabolite 212, which cannot be detected in MM in standard 

culture conditions, was detected at the 5th, 6th and 7th day of incubation when leaves were 

added into the MM culture. This may indicate that some components from leaves can 

induce the production of compound 212 by L. maculans.  

Fourth, phytoalexins were added into the culture of L. maculans in MM to mimic 

the stress conditions caused by plants. Spirobrassinin (122) or camalexin (306) (5 × 10-4 

M) were added to three-day-old MM cultures (Table 2.1, entries 19 and 20). A slight 

decrease in the production of sirodesmin PL (165) was observed (Figure 2.15), but no 

new peaks were detected by HPLC. Based on previous results no higher concentrations 

of phytoalexins were used because the growth of the fungus was inhibited at higher 

concentration of phytoalexins (Pedras and Taylor, 1993).  
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Figure 2.15. Production of sirodesmin PL (165) in MM in presence of the phytoalexins 

camalexin (306) and spirobrassinin (122). 

Fifth, phytoalexins were also added into the culture of L. maculans in PDB media 

(Table 2.1, entries 21 and 22). The production of metabolite 212 was slightly increased 

when spirobrassinin (122) was present, while in the presence of camalexin (306) the 

production of metabolite 212 was increased about two-fold after seven days of 

incubation (Figure 2. 16). However, no new peaks were detected. 
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Figure 2.16. Production of metabolite 212 in PDB media in presence of phytoalexins 

camalexin (306) and spirobrassinin (122). 
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At last, V8 juice was modified and used as a medium to culture L. maculans 

(Table 2.1, entry 23; experimental 4.2.3). Trace amount of sirodesmin PL was detected. 

A peak at 10.8 minutes was detected to be 6,8-dihydroxy-3-methylisocoumarin (307) 

based on UV and retention time of HPLC-DAD data. The production of total metabolites 

by L. maculans in this medium was very low (ca. 30 mg/ L). Therefore, no further study 

was conducted with this stress condition.  

2.2 BIOLOGICAL ACTIVITY  

2.2.1 Elicitor activity  

One of the standard methods to determine the elicitor activity of a metabolite is 

to test if the metabolite is able to induce the production of phytoalexins in plants (Hahn, 

1996; Keen, 1975; Montesano et al., 2003). Specific elicitors produced by L. maculans 

are expected to induce the production of phytoalexins in brown mustard (B. juncea cv. 

Cutlass, resistant to L. maculans) but not in canola (B. napus cv. Westar, susceptible to 

L. maculans). General elicitors produced by L. maculans are expected to induce the 

production of phytoalexins in both resistant and susceptible plants. Elicitor activity 

assays were carried out as described in the experimental section. Leaves of whole plants 

were treated with a fraction or a purified metabolite in a solution of MeOH/H2O (1:1 

v/v). After incubating plants for two days, the leaves were excised, extracted and the 

less-polar fractions of the extracts were analyzed by HPLC-DAD. The results are 

summarized in Table 2.8. Sirodesmin PL (165) and deacetylsirodesmin PL (166) (at 

concentrations of 1.0 or 0.5 mM) induced the production of phytoalexins such as 

brassilexin (118), cyclobrassinin (119), rutalexin (127) and spirobrassinin (122) in 
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brown mustard and spirobrassinin (122) in canola (Figures 2.17 and 2.18). Therefore, 

sirodesmin PL (165) and deacetylsirodesmin PL (166) are general elicitors. A mixture of 

cerebrosides C (14) and D (31) (at concentrations of 1.0 or 0.8 mM) induced the 

production of the phytoalexin rutalexin (127) only in brown mustard but not in canola 

(Figure 2.19). Therefore cerebrosides C (14) and D (31) displayed selective elicitor 

activity. 
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Table 2.8. Bioassay results of metabolites isolated from cultures of Leptosphaeria 

maculans  

Phytotoxin activity (damage index) Elicitor activityaCompounds 

(mM) Brown 
mustard 

White 
mustard 

Canola Brown mustard Canola 

299 (1.0) 4.8±0.5 4.3±1.5 4.6±1.1 N. E.c N. E. 

299 (0.2) 2.8±0.8 1.2±0.6 0.3±0.4 N. E. N. E. 

299 (0.1) 2.4±0.7 0 0 N. E. N. E. 

299 (0.02) 1.0±0.5 - 0 N. E. N. E. 

300 (1.0) Necrosis - Necrosis N. E. N. E. 

14/31 (1.0) 0 - 0 127 N. E. 

165 (1.0) 4.7±0.5 3.7±0.8 2.1±0.6 127, 122 122 

165 (0.4) Necrosis - - 118, 119, 127, 

122 

- 

165 (0.2) 4.1±0.3b 4.3±0.7b 2.2±0.5b 122 122 

166 (0.1) Necrosis - Necrosis 122 122 

166 (0.01) 0 - 0 N. E. N. E. 

167 (0.5) Necrosis - Necrosis N. E. N. E. 

4 & 169 (1.0) Necrosis - Necrosis N. E. N. E. 

171(1.1) 0 - 0 N. E. N. E. 

171(0.9) 0 - - 10.2 min - 

272 (1.0) 0 - 0 N. E. 11.0 min 

274 (1.0) 0 - 0 N. E. N/E 

268 (1.0) 0 - 0 N. E. 11.0 min 

267 (1.1) 0 - 0 N. E. N. E. 

293 (0.1) 0 - 0 N. E. N. E. 

294 (0.6) 0 - 0 N. E. N. E. 

212 (6.0) 0 0 0 - - 

212 (0.1) 0 - 0 N. E. N. E. 

288 (0.6) 0 0 0 - - 
aElicitor activity was determined by induction of the production of phytoalexins. bData 
were collected when plants were incubated for two days. c N. E. = no effect. 
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Cerebrosides C (14) and D (31) were found previously to be produced by a wide 

range of phytopathogens and appeared to induce the production of phytoalexins in rice 

plants as well as disease resistance to the rice blast fungus (Umemura et al., 2004). The 

only phytoalexin induced by cerebrosides C (14) and D (31) was rutalexin (127) (Figure 

2.17). The phytoalexin induced by sirodesmin PL and deacetylsirodesmin PL at all the 

concentrations and replicates is spirobrassinin (122) (Figures 2.18 and 2.19) although a 

few other phytoalexins were detected occasionally when plants were treated with 

sirodesmin PL or deacetylsirodesmin PL.  

Metabolites 169, 168, 167, 267, 268, 272, 274, 293, 294, 212, 299, 300, and 171 

did not show elicitor activity at the concentrations tested (Table 2.8). 

N

CN

308
O

N

OH

 309
O

 

 
Figure 2.17. HPLC chromatograms of extracts of leaves of brown mustard (B. juncea cv. 

Cutlass resistant to L. maculans) treated with toxins. A, maculansin A (299) and B, 

sirodesmin PL (165). Numbered peaks identified as: indole-3-acetonitrile (122), 1-

methoxy-indole-3-acetonitrile (308), 1-methoxy-indole-3-methanol (309), spirobrassinin 

(122), and cyclobrassinin (119). 
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Figure 2.18. HPLC chromatograms of extracts of leaves of canola (B. napus cv. Westar, 

susceptible to L. maculans) treated with toxins. A, maculansin A (299); B, sirodesmin 

PL (165). Numbered peaks identified as: indole-3-acetonitrile (121), 1-methoxy-indole-

3-acetonitrile (308), 1-methoxy-indole-3-methanol (309), and spirobrassinin (122). 

 
Figure 2.19. HPLC chromatograms of extracts of leaves of brown mustard (B. juncea cv. 

Cutlass, resistant to Leptosphaeria maculans) treated with a mixture of cerebrosides C 

(14) and D (31). A control; B, treated with a mixture of cerebroside C (14) and D (31). 

Numbered peaks identified as: indole-3-acetonitrile (121), 1-methoxy-indole-3-

acetonitrile (308), and rutalexin (127). 
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2.2.2 Phytotoxicity and growth inhibition  

Phytotoxicity assays were carried out on resistant (B. juncea cv. Cutlass and S. 

alba cv. Ochre) and susceptible (B. napus cv. Westar) plants. The phytotoxicity of 

metabolites isolated from L. maculans to each plant species is summarized in Table 2.8. 

Sirodesmins (165 to 169) caused necrosis and chlorosis on leaves of both resistant (B. 

juncea cv. Cutlass and S. alba cv. Ochre) and susceptible (B. napus cv. Westar) plants, 

as previously reported (Pedras et al., 1990). 
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Figure 2.20. Phytotoxicity of maculansin A (299) to brown mustard (B. juncea cv. 

Cutlass), canola (B. napus cv. Westar) and white mustard (S. alba cv. Ochre). 

The damage on the leaves was rated using a damage index number (the number 

is proportional to the size of the lesion, see experimental section). Although maculansin 

A (299) did not elicit the production of phytoalexins in B. juncea cv. Cutlass or B. napus 

cv. Westar, it causes leaf damage even at 2 × 10-5 M concentration on B. juncea cv. 

Cutlass (damage index 1, Figures I.2, I.3, and I.4, page xxxii and xxxiii). At high 

concentration (1 × 10-3 M) maculansin A (299) caused similar damage to B. juncea cv. 

Cutlass (resistant to L. maculans) and B. napus cv. Westar (susceptible to L. maculans) 

and S. alba cv. Ochre (resistant to L. maculans), about 4.5 damage index (Figure 2.20). 

At lower concentration maculansin A (299) (2 × 10-4 M) caused smaller lesions on B. 

napus cv. Westar than on B. juncea cv. Cutlass (damage index close to 3). At a 

concentration of 1 × 10-4 M, maculansin A (299) still caused lesions (damage index 2.2) 
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on B. juncea cv. Cutlass but no lesions on B. napus cv. Westar or S. alba cv. Ochre 

(Figure 2.20). That is, maculansin A (299) is more toxic to resistant plants, the reverse of 

the effect caused by L. maculans.  

The lesions caused by maculansin A (299) and sirodesmin PL (165) on B. juncea 

cv. Cutlass and S. alba cv. Ochre were similar at 1 × 10-3 M, but the lesions caused by 

sirodesmin PL (165) on B. napus cv. Westar was about half the size of those caused by 

maculansin A (299) at the same concentration (Figure 2.21). Maculansin A (299) causes 

larger lesions on the susceptible plants than sirodesmin PL (165). Moreover, the 

irregular lesions caused by maculansin A (299) are similar to those caused by the 

pathogen and the toxin depsilairdin (183) (Pedras et al., 2004), suggesting that it is able 

to diffuse in the leaf tissue. On the other hand, the lesion caused by sirodesmin PL (165) 

is a circle, the size of each drop indicating immediate lysis of leaf cells.  
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Figure 2.21. Damage caused by phytotoxins maculansin A (299) and sirodesmin PL 

(165) (1.0 mM) on brown mustard (B. juncea cv. Cutlass), canola (B. napus cv. Westar) 

and white mustard (S. alba cv. Ochre).  

Metabolite 212 has been isolated from Valsa ambiens and several other fungi 

(Ayer et al., 1993; Mitova et al., 2006) and showed root and hypocotyl growth inhibition 

effect on lettuce (Jiao et al., 1995). Therefore, the root growth inhibition effect of 

metabolite 212 was tested on host plants. The seeds of B. juncea cv. Cutlass and B. 

napus cv. Westar were incubated in PDB media in the presence of metabolite 212 (5 × 

10-4 M). The inhibition effect is shown in Figure 2.22. The root length of canola treated 
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with metabolite 212 measured 0.3 ± 0.1 cm, while control roots measured 1.9 ± 0.7 cm. 

Similarly, the root length of brown mustard treated with metabolite 212 measured 0.2 ± 

0.1 cm and 4.9 ± 1.2 cm in control plants. Metabolite 212 showed about 6 fold and 25 

fold inhibition effects on canola and brown mustard roots, respectively. This is the first 

time that the root growth inhibition effect of a metabolite (212) of L. maculans has been 

reported. Metabolite 212 was not detected in the infected plants in vivo; however, 

metabolite 212 was produced as the major component in PDB media and in lower 

amounts in MM.  

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Canola Brown mustard 

Ro
ot

 le
ng

th
 (c

m
)

Control
Treated

 
Figure 2.22. Root length of seedlings of canola and brown mustard treated with 

metabolite 212 (5 × 10-4 M). 

2.3 BIOSYNTHESIS OF SIRODESMIN PL (165)  

As mentioned in the Introduction, phomamide was the only intermediate 

identified in the biosynthetic pathway of sirodesmins (165) (Férézou et al., 1980b), while 

phomalirazine was a proposed intermediate (Pedras et al., 1989). The isolation of 

leptomaculins (272 and 274) triggered an interest to find out if they were substrates used 

by L. maculans enzymes for the introduction of sulfur to give sirodesmin PL (165). If the 

dideuterated precursor 251a was incorporated intact into sirodesmin PL (165), then 

leptomaculins (272 and 274) could not be the intermediates used for the introduction of 
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sulfur into sirodesmin PL (165). Therefore, [3,3-2H2]-(L)-tyrosine and [5,5-
2H2]phomamide were chosen as useful substrates to clarify this question. Another 

question to answer is at what stage does the prenylation happen, after or before the 

formation of the dioxopiperazine 252. If (E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine was 

incorporated into sirodesmin PL (165) intact, prenylation happens before the formation 

of the dioxopiperazine. Alternatively, both could be alternative biosynthetic pathways.  

Therefore, the study of sirodesmin PL (165) biosynthesis was carried out by 

incubation of deuterated potential precursors with a wild type isolate (BJ125) of L. 

maculans. The potential precursors included commercially available amino acids [3,3-
2H2]-(L)-tyrosine and [2,3,3-2H3]-(L)-serine as well as [3,3-2H2]O-prenyl-(L)-tyrosine, 

(E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine, [5,5-2H2]cyclo-(L)-tyr-(L)-ser, and [5,5-
2H2]phomamide, which were synthesized as described below (also see experimental 

section). The incorporation or nonincorporation of deuterium was detected by using 1H 

NMR, 13C NMR, LC-HRMS-ESI and HRMS-EI. 

2.3.1 Synthesis of potential biosynthetic precursors 

Deuterium labeled potential precursors [3,3-2H2]O-prenyl-(L)-tyrosine (312a), 

(E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine (312b), [5,5-2H2]cyclo-(L)-tyr-(L)-ser (319) 

and [5,5-2H2]phomamide (171a) were synthesized using modifications of reported 

methods.  
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Scheme 2.9. Synthesis of [3,3-2H2]O-prenyl-(L)-tyrosine (312a). Reagents and 

conditions: (i) t-Boc-anhydride/NaOH, dioxane, quantitative; (ii) a) NaH/THF, b) 318, 

rt, 70%; (iii) 155 ºC, 60%. 
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Compound 311a was prepared by prenylation of t-Boc protected tyrosine 310a 

with prenyl bromide (Fraile et al., 1996); 311a was heated at 155 ºC for one hour to give 

312a 42% total yield (Scheme 2.9).  

Compound 318a was not commercially available, therefore its preparation 

followed reported methods with minor modification (Scheme 2.10, Thulasiram et al., 

2006). Benzenethiol was treated with NaOH in EtOH followed by addition of ethyl 2-

butynoate to give a mixture of E/Z isomers 314 (68%) and 315 (17%). The E isomer 314 

was readily separated from Z isomer by FCC. 314 was treated with CuI in THF first, 

then deuterated methyl Grignard reagent was added to the cuprate of 314 at -15 ºC to 

afford 316 in 80% yield (Christie et al., 1981). Although both reported methods gave 

similar yield, the method used in this study (Christie et al., 1981) had two advantages: 

first, the deuterated Grignard reagent was used in lower amount than the method 

reported by Thulasiram et al. (2006) and second, the reaction temperature was carried 

out at -15 ºC instead of -70 ºC. After reduction of 316 with LAH, then bromination with 

PBr3, (E)-[4,4,4-2H3]3-methyl-2-butenyl bromide (318) was yielded as an oil (yield 35 % 

in four steps, Scheme 2.10). 
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Scheme 2.10. Synthesis of (E)-[4,4,4-2H3]-prenylbromide (318a). Reagents and 

conditions: (i) PhSH/NaOH, EtOH, rt, 314, 68%; 315, 17%; (ii) CuI/THF, 

CD3MgI/Et2O, -15 ºC, 80%; (iii) LAH, Et2O, 80%; (iv) PBr3, Et2O, 80%. 

Compound 312b was prepared similarly to 312a by coupling of (E)-[4,4,4-2H3]3-

methyl-2-butenol (318a) with [3,3-2H2]-(L)-tyrosine (310a) (Scheme 2.11). 
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Scheme 2.11. Synthesis of (E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine (312b). Reagents 

and conditions: (i) t-Boc-anhydride/NaOH, dioxane, quantitative; (ii) a) NaH/THF b) 

318a, rt, 70%; (iii) 155 ºC, 60%. 
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Scheme 2.12. Synthesis of [5,5-2H2]cyclo-(L)-tyr-(L)-ser (252a) and [5,5-
2H2]phomamide (171a). Reagents and conditions: (i) SOCl2, MeOH, reflux, quantitative; 

(ii) t-Boc-anhydride/NaOH, dioxane, rt, quantitative; (iii) TEA / EDCI / CH2Cl2 -15°C, 

96%; (iv) a) formic acid, rt. 60 min, b) sec-butyl-alcohol / toluene, 65°C, 90%; (v) a ) 

NaOH, b) prenyl bromide, 67%.  

Compounds 252a and 171a were prepared following a reported procedure 

(Scheme 2.12, Férézou et al., 1980a). Compound 321a was obtained in 96% yield by 

coupling t-Boc-(L)-serine with methyl ester tyrosine using EDCI. Compound 321a 

readily cyclized under heating in sec-butyl-alcohol/toluene after removal of the 

protecting group using formic acid to yield a white precipitate (252a). After 

lyophilization of NaOH treated 252a, the residue was prenylated to afford 171a in 67% 
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yield. Racemization during the synthesis was ruled out by comparison of the specific 

optical rotations of the synthetic and naturally occurring phomamide (Férézou et al., 

1980a). 

2.3.2 Incorporation of potential precursors  

Deuterium labeled potential precursors were added to three-day-old cultures of L. 

maculans and cultures were further incubated for two days. Experiments were carried 

out in triplicates, control experiments were carried out using the corresponding natural 

abundance (non-deuterium containing) potential precursors. The broth was filtered off 

and extracted with EtOAc. The EtOAc extracts were separated by PTLC to give 

sirodesmin PL (165) and phomamide (171). Incorporation of deuterium into sirodesmin 

PL (165) and phomamide (171) was detected using 1H NMR, 13C NMR, HRMS-EI and 

LC-HRMS-ESI. Results are summarized in Table 2.9.  
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Table 2.9. Incorporationa,b,c of deuterated compounds into phomamide (171) and 

sirodesmin PL (165) in cultures of Leptosphaeria maculans. 

Entry Deuterated 

compound 

Phomamide (171)  

% of 2H (analytical method) 

Sirodesmin PL (165) 

% of 2H (analytical method) 

1 251a 32±3 (HRMS-EI: 

monodeuterated = 20; 

dideuterated = 12)a

30±5 (1H NMR: 

monodeuterated = 19; 

dideuterated = 11, H2-5a,5b)

32±2 (HRMS-EI 

monodeuterated = 19; 

dideuterated = 13) a

30±2 (1H NMR, H-7)b

 

2 312a 41±7 (HRMS-EI: 

monodeuterated = 24; 

dideuterated = 17) a

39±1 (1H NMR: 

monodeuterated = 21; 

dideuterated = 18, H2-5a,5b)

35±7 (HRMS-EI 

monodeuterated = 21; 

dideuterated = 15) a

32±3 (1H NMR, H-7)b

  

3 233d 3±1 (HRMS-EI)a 4±2 (HRMS-EI) a

4 171a - 30±10 (HRMS-EI 

monodeuterated = 4; 

dideuterated = 26) a

27 (1H NMR, H-7)b

5 251a 3±1 (HRMS-EI: 

monodeuterated = 1; 

dideuterated = 2) a

2±0 (HRMS-EI: 

monodeuterated = 0; 

dideuterated = 2) a

6 312b 23 (HRMS-ESI: 

tetradeuterated = 16; 

pentadeuterated = 7) c

26 (1H NMR, 2H-5 = 19; 2H2-

5 = 7) 

13 (HRMS-ESI 

tetradeuterated = 9; 

pentadeuterated = 4) c

23 (1H NMR, H-7)b

a. The percentage of incorporation (I) was determined by HRMS-EI and was calculated 

using the formula: I = {([M+n]+- [M+n]+
Ctl) / ([M]+ + [M+1]++[M+2]+)}×100, (n = 1, 2); 
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[M+n]+ = intensity of deuterated molecular ion; [M+n]+
Ctl = intensity of molecular ion of 

control samples (natural abundance). 
b. Resolution of signals was enhanced through a Lorentz-Gaussian line-shape 

transformation (gb = 0.3, lb = -1). 
c. The percentage of incorporation (I) was determined by HRMS-ESI (positive mode) 

and was calculated using the formula: I = {([M+1+n]+- [M+1+n]+
Ctl) / 

([M+1]++[M+2]++[M+5]++[M+6]+)}×100, (n = 4, 5); [M+n]+ = intensity of deuterated 

molecular ion; [M+n]+
Ctl = intensity of molecular ion of control samples (natural 

abundance). 

 

 

Initial analysis of HRMS-EI data established that (i) [3,3-2H2]-(L)-tyrosine 

(251a), [3,3-2H2]O-prenyl-(L)-tyrosine (312a), (E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-

tyrosine (312b), and [5,5-2H2]phomamide (171a) were incorporated efficiently (> 10%) 

into sirodesmin PL (165); (ii) [3,3-2H2]-(L)-tyrosine (251a), [3,3-2H2]O-prenyl-(L)-

tyrosine (312a), and (E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine (312b) were 

incorporated efficiently (>20%) into phomamide (171); (iii) [2,3,3-2H3]-(L)-serine 

(233d) and [5,5-2H2]cyclo-(L)-tyr-(L)-ser (252a) were incorporated poorly (<5%) into 

phomamide (171) and sirodesmin PL (165).  
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Figure 2.23. Sections of the 1H NMR spectrum of phomamide (171). A, control, B, fed 

with [3,3-2H2]-(L)-tyrosine (251a). 

In the 1H NMR spectrum of phomamide (Table 2.10) two methylene protons (H2-

5) were well separated at δH 3.30 (H-5a, dd, J = 14.0, 3.5 Hz) and δH 3.00 (H-5b, dd, J = 

14.0, 8.9 Hz ), so the integration of H-5a and H-5b could be obtained. The resonances of 

H-5a and H-5b of phomamide were integrated as ca. 0.7 and 0.9, respectively, when 

[3,3-2H2]-(L)-tyrosine (251a) was used as the feeding material, whereas control samples 

showed the integration of ca. 1 as expected (Figure 2.23). Therefore, there was 

incorporation of deuterium and a higher deuterium percentage at H-5a (30%) than at H-

5b (10%). The observation of unequal distribution of deuterium indicated the partial 

exchange of deuterium during the incorporation of [3,3-2H2]-(L)-tyrosine (251a) into 

phomamide. This result was consistent with the result obtained from the HRMS-EI data 

of phomamide isolated from cultures fed with [3,3-2H2]-(L)-tyrosine (251a). The [M+1]+ 

and [M+2]+ ions were ca 20% and 12% higher than those of control samples, 

respectively, indicating that ca 20% of phomamide was monodeuterated and ca 12% was 

dideuterated (calculation see note in Table 2.9). That is the result calculated from 

HRMS-EI suggested that 32% of phomamide was biosynthesized from incorporation of 

[3,3-2H2]-(L)-tyrosine (251a), which was very close to the result calculated from 1H 
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NMR using deuterium enrichment at H-5a (30%). Therefore, the deuterium enrichment 

at H-5a represents both mono- and di- deuterated phomamide. Furthermore, the 

percentage of deuterium enrichment at H-5b (10%) was almost equal to the percentage 

of dideuterated phomamide calculated from the HRMS-EI (12%), which indicates that 

the deuterium enrichment at H-5b represents the dideuterated phomamide. Since both 

HRMS-EI and 1H NMR gave consistent results, it is clear that the partial deuterium 

exchange happened selectively at H-5b position. Similar results were obtained in the 

experiments when [3,3-2H2]O-prenyl-(L)-tyrosine (312a) was fed to the cultures of L. 

maculans (Table 2.9). 
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Table 2.10. 13C NMR (CDCl3, 125MHz) and 1H NMR (CDCl3, 500MHz) spectral data of 

phomamide (171). Chemical shifts (ppm) and multiplicities (J in Hz) 

H # 13C NMR  1H NMR  

1 166.3  

2 56.3 4.06, 1H, m 

3 167.5  

4 56.3 4.22, 1H, m 

5 39.5 a. 3.30, 1H, dd, (14.0, 3.5) 

b. 2.99, 1H, dd, (14.0, 8.9) 

6 127.0  

7 130.9 (2C) 7.13, 2H, d, (8.4) 

8 115.5 (2C) 6.90, 2H, d, (8.4) 

9 158.6  

10 65.1 4.51, 2H, d, (6.6) 

11 119.7 5.49, 1H, t, (6.6) 

12 138.7  

13 18.5 1.76, 3H, s 

14 26.1 1.81, 3H, s 

15 64.1 a. 3.72, 1H, m  

b. 3.48, 1H, m 

NH  6.14, 1H, s; 5.83, 1H, s 

OH  2.30, 1H, bs 
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Table 2.11. 13C NMR (CDCl3, 125MHz) and 1H NMR (CDCl3, 500MHz) spectral data of 

sirodesmin PL (165). Chemical shifts (ppm) and multiplicities (J in Hz) 

H # 13C NMR  1H NMR  

1 163.1  

2 77.3  

3 165.3  

4 75.5  

5 43.8 3.27, 2H, brABq (17.1) 

6 82.4  

7 79.2 5.56, 1H, s 

8 89.7  

9 223.5  

10 47.8  

11 80.3 3.95, 1H, q, (6.2) 

12 33.9 1.75, 1H, dd, (14.2, 8.2) 

2.77, 1H, dd, (14.2, 8.8) 

13 67.3 4.34, 1H, m,  

14 61.1 4.35, 1H, m, 

4.31, 1H, m, 

15 27.6 3.16, 3H, s 

16 20.6 1.04, 3H, s 

17 17.5 1.12, 3H, s 

18 14.4 1.27, 3H, d, (6.2) 

19 170.1  

20 20.7 2.11, 3H, s 

OH-6  4.20, 1H, s 

OH-14  3.39, 1H, dd, (9.0, 6.4) 
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The deuterium enrichment in sirodesmin PL (165) from feeding experiments was 

also analyzed using HRMS-EI, 1H NMR and 13C NMR spectral data. In the 1H NMR 

spectrum (Table 2.11) of sirodesmin PL (165) the resonance at δH 3.27 is H2-5, where 

the deuterium is expected to be incorporated. This resonance integrated for ca. 2 in the 

natural abundance samples of sirodesmin PL (165) and for < 2 (1.4-1.6) in samples 

resulting from incorporation of [3,3-2H2]-(L)-tyrosine. However, the quantification of 

mono and di deuterated sirodesmin PL cannot be obtained from the integration of H2-5 

because these two methylene protons appeared as a broad AB quartet. Unexpectedly, a 

shoulder peak of proton H-7 (δH 5.56), that was not present in control samples (Figure 

2.24), was displayed in the samples of purified sirodesmin PL (165) from feeding 

experiments using [3,3-2H2]-(L)-tyrosine (312a). Integration of these two signals using 

resolution enhancement (Lorentz-Gaussian line-shape transformations and baseline 

corrections) resulted in two well separated singlets at δH 5.556 and δH 5.550 in a 2:1 

ratio (Figure 2.24B). The upfielded singlet (H-7, δH 5.560) was caused by the 

replacement of protons H-5 with deuterium (this statement is discussed in next 

paragraph). Therefore, about 33% of sirodesmin PL (165) had deuterium at C-5 position, 

which was consistent with the HRMS-EI results of sirodesmin PL purified from 

incorporation of [3,3-2H2]-(L)-tyrosine (251a). The intensity of [M]+ of sirodesmin PL 

was very weak, so the base peak [M-S2]+ was used to calculate the percentage of 

deuterium incorporation. The intensity of the [M-S2+1]+ and [M-S2+2] + ions were about 

19% and 13% higher than those of control samples respectively, suggesting both 

monodeuterated (19%) and dideuterated (13%) sirodesmin PL were present in the 

sirodesmin PL isolated from the cultures incubated with [3,3-2H2]-(L)-tyrosine (251a). 

Therefore, the total amount of deuterated sirodesmin PL was about 32% calculated from 

HRMS-EI.  
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Figure 2.24. Sections of the 1H NMR spectrum of sirodesmin PL (165). A, H-7 signal of 

natural abundance; B, 1H NMR, H-7 signal (peaks 1 at δ 5.556 and 2 at δ 5.550) of 165 

due to partial deuteration at C-5. 
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Figure 2.25. Sections of the 13C NMR spectrum of sirodesmin PL (165). A, control, peak 

1: C-6 signal of natural abundance; B, peak 2: C-6 signal of 165b, and peak 3: C-6 signal 

of 165b due to partial deuteration at C-5. 

When considering the isotope effect of 2H-5 on H-7, one would doubt that it is 

possible to observe the isotope effect when two nuclei are four bonds away in a 

nonconjugated system. But it is still possible to observe the isotope effect where two 

nuclei are five bonds away but close enough in space, termed “intrinsic steric isotope 
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effect (ISIE)” (Anet and Dekmezian, 1979). When the proton decoupled 13C NMR of 

sirodesmin PL isolated from feeding [3,3-2H2]-(L)-tyrosine was inspected, the isotope 

effect of two nuclei through two bonds (β-isotope effect) was observed in both C-4 (δC 

75.46, 75.40, 75.32) and C-6 (δC 82.44, 82.38, 82.34, Figure 2.25), which again 

indicated two types of deuterium containing sirodesmin PL (mono- and di- deuterated) 

were present in the sirodesmin PL samples because of the presence of the additional two 

upfield peaks (δC 75.40, 75.32 of C-4 and δC 82.38, 82.34 of C-6). The α-isotope effect 

(two nuclei through one bond) was not observed at C-5 because the splitting of C-5 is 

expected due to spin-spin coupling between 13C-5 and 2H-5, i.e. 13C(2HH): triplet, 1:1:1 

intensity, and 13C(2H2) quintet, 1:2:3:2:1 intensity. This splitting reduced the intensity of 

each peak and consequently the peaks were buried in the background noise. No isotope 

effect on C-7 was observed from 2H-5, because the isotope effect decreases as the 

number of bonds increases. The above results and analysis fit in the theory of isotope 

effect through bonds (Schneider, 2007). Now considering the isotope effect through 

space, the direct distance between deuterium 2H2-5 to H-7 was calculated to be 2.47 Å 

(H-5a - H-7) and 3.59 Å (H-5b - H-7) based on Molecular Mechanics Calculations 

(Spartan 06 software package, method MMFF94). It would be expected that only the 

deuterated molecules having the deuterium close enough (< 3 Å) can show intrinsic 

steric deuterium isotope effects (Anet and Dekmezian, 1979). Therefore the peak at δH 

5.550 was the result of the deuterium isotope effect caused by the deuterium located at 

the H-5a position (pro S hydrogen) through space but not H-5b (pro R hydrogen) 

(Figure 2.26). This conclusion gives a basis to analyze the deuterium incorporation 

pattern from [3,3-2H2]-(L)-tyrosine (251a) into sirodesmin PL (165).  
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Figure 2.26. Intrinsic steric deuterium isotope (ISDI) effect detected in sirodesmin PL 

(165). ISDI of 2HS-5 on the 1H NMR chemical shift of H-7 detected in 165a and 165b 

was ca. 3 Hz. (No ISDI was detected in 165c).  

It was concluded from HRMS-EI results of sirodesmin PL resulting from 

incorporation of [3,3-2H2]-(L)-tyrosine (251a) that 13% was dideuterated and 19% was 

monodeuterated. However, it is impossible to distinguish where the deuterium is located 

in the monodeuterated sirodesmin PL, i.e., only at pro R, only at pro S or randomly 

distributed at both positions from HRMS-EI data. The total enrichment of deuterium is 

about the same whether calculated from the HRMS-EI data (ca. 32%) or calculated from 

the isotope effect at H-7 shown in the 1H NMR spectrum (ca. 33%.). Dideuterated 

sirodesmin PL contributed only 13% to the isotope effect seen on H-7. Therefore, the 

remaining 20% (33%-13%) isotope effect on H-7 has to come from the deuterium 

located at the pro S position. This number is about the same as monodeuterated 

sirodesmin PL determined from HRMS-EI (19%), which means all the monodeuterated 

sirodesmin PL has the deuterium located at pro S position. Therefore, a stereo-specific 

β-deuterium exchange happened during the incorporation of [3,3-2H2]-(L)-tyrosine 

(251a) into sirodesmin PL (165, Scheme 2.13). The pro R deuterium was preferentially 

exchanged. Similar results were obtained from feeding experiments with [3,3-2H2]O-

prenyl-(L)-tyrosine (312a, Table 2.9). Actually, as discussed before for the incorporation 

of [3,3-2H2]-(L)-tyrosine (251a) or [3,3-2H2]O-prenyl-(L)-tyrosine (312a) into 

phomamide (171), the different deuterium enrichment at H-5a and H-5b was also 

noticed, which indicated selective exchange of the β-deuterium. But the resonances of 

the pro S and pro R protons cannot be assigned in the 1H NMR spectrum of phomamide 

(171) due to rotation of the bond between C-4 and C-5. 
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Scheme 2.13. Incorporation of [3,3-2H2]L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine 

(312a) and [5,5-2H2]phomamide (171a) into sirodesmin PL(165). Dideuterated (165a) 

and monodeuterated (165b) sirodesmin PL were formed when 251a or 312a was fed to 

the cultures of Leptoshphaeria maculans but 165b is not formed; only 165a not 165b 

and 165c formed from intact incorporation of [5,5-2H2]phomamide (171a) by L. 

maculans.  

Further analysis of the feeding experiment results from incorporation of [5,5-
2H2]phomamide into sirodesmin PL indicated that this β-deuterium exchange did not 

happen after the formation of phomamide (171, Scheme 2.13). When dideuterated [5,5-
2H2]phomamide was fed to the culture, about 26% sirodesmin PL was dideuterated, only 

a small amount, 4%, of sirodesmin PL was monodeuterated. Considering the likely re-

incorporation of hydrolyzed fragment of [5,5-2H2]phomamide, the detection of 4% 

monodeuterated sirodesmin PL is not surprising. Therefore, the stereospecific deuterium 

exchange happened before the formation of phomamide (after formation of phomamide 

no β-deuterium exchange happened). Consequently, the proposed intermediates 

leptomaculins (272 and 274) and deacetylleptomaculins (273 and 275) were ruled out as 

intermediates in the biosynthesis of sirodesmin PL for introduction of the sulfur bridge. 
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If the double bond precursor (272 or 274) was formed to introduce sulfur, when 

dideuterated phomamide was fed to the culture, only monodeuterated sirodesmin PL 

would be detected. Similar β-deuterium exchange had been noticed in the study of the 

biosynthesis of gliotoxin (Bűlock et al., 1972). In that study the pro S proton was 

selectively exchanged.  
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Scheme 2.14. Incorporation of [3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b) into 

sirodesmin PL (165). Pentadeuterated (165d) and tetradeuterated (165e) as well as 

dideuterated (165a) and monodeuterated (165b) sirodesmin PL were formed.  

Another question to be answered in this study was at what stage does prenylation 

happen in the biosynthetic pathway of sirodesmin PL (165). The deuterium enrichment 

obtained from incubation of [5,5-2H2]cyclo-(L)-tyr-(L)-ser (251a) was very low, i.e., 3% 

and 2% into phomamide and sirodesmin PL, respectively (Table 2.9). On the other hand, 

[5,5-2H2]phomamide gave 30% deuterium enrichment. It seems that the dioxopiperazine 

(252) is not the likely intermediate in the biosynthesis of sirodesmin PL. Considering the 

high incorporation of [3,3-2H2]O-prenyl-(L)-tyrosine (312a) into phomamide (171) and 

sirodesmin PL (165), it is more likely that prenylated tyrosine will first couple to serine 

to form phomamide (171) instead of coupling of tyrosine and serine, then prenylation to 

form phomamide (171). Doubly labeled pentadeuterated (E)-[3,3,5’,5’,5’-2H5]O-prenyl-
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(L)-tyrosine (312b) were synthesized and incubated with cultures. Both pentadeuterated 

and tetradeuterated phomamide (7% and 16%) and sirodesmin PL (4% and 9%) were 

detected using LC-MS-ESI from samples produced in cultures of L. maculans, which 

indicated the intact incorporation of prenylated tyrosine (Scheme 2.14). The results 

obtained from the incubation of pentadeuterated (E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-

tyrosine (312b) strongly supported the proposal that prenylation happens before the 

coupling of two amino acids in the biosynthetic pathway of sirodesmin PL (165). In 

addition, 1H NMR spectrum of sirodesmin PL from the incorporation of (E)-

[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine (312b) clearly showed that CH3-17 of sirodesmin 

PL was derived from C2H3-5’of (E)-[3,3,5’,5’,5’-2H5]O-prenyl-(L)-tyrosine (312b), 

which agrees with previous data (Férézou et al., 1980a).  

The deuterium incorporation into phomamide (171) and sirodesmin PL (165) 

obtained from the incubation with [2,3,3-2H3]-(L)-serine (233d) was very low, i.e., 3%  

and 4% respectively (Table 2.9). The substantially lower incorporation of serine than 

tyrosine could be due to the faster incorporation of serine into other primary pathways 

such as the synthesis of proteins and tryptophan and/or degradation to pyruvate and 

glycine. A rather low incorporation of both amino acids tyrosine and serine into 

phomamide and sirodesmin PL was reported previously (Férézou et al., 1980b).  

Scheme 2.15 is proposed to summarize the results obtained from both feeding 

experiments with deuterated potential precursors (this section, section 2.3.2) and 

isolation of new metabolites from cultures of L. maculans in MM under standard 

conditions (section 2.1.1.1). Considering the β proton exchange when tyrosine or prenyl 

tyrosine was fed to cultures of L. maculans and the isolation of metabolite 288, although 

alternative biosynthetic pathways are possible, it is proposed that tyrosine maybe 

conjugated with pyridoxal phosphate through a reversible α,β-elimination process 

(Vederas and Floss, 1980) to form an intermediate 322 which is prenylated to 

intermediate 323. Hydrolysis of intermediate 323 to remove pyridoxal phosphate yields 

either compound 312 or α-keto-acid 324 and vise versa. α-Keto-acid 324 then is 

converted to compound 288 by decarboxylation and oxidation. Because of the reversible 

α,β-elimination process in the formation of intermediates 322 and 323, one of the β 

deuterium is exchanged with medium proton when tyrosine or prenyl tyrosine is 
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incorporated into phomamide (171) and sirodesmin PL (165). However, if tyrosine or 

prenyl tyrosine is directly incorporated into phomamide and sirodesmin, then no β 

deuterium exchange happens, which yields the intact incorporation of tyrosine and 

prenyl tyrosine into phomamide and sirodesmin PL. Because both of these two 

biosynthetic pathways are present, mono- and di-deuterated phomamide and sirodesmin 

PL are detected in the feeding experiments. After the formation of phomamide, no 

proton exchange was observed suggesting that new metabolites leptomaculins 272 to 

275 were, possibly, the further metabolites of sirodesmin PL, as proposed in Scheme 

2.15. The formation of the double bond at C-5,6 position of sirodesmin PL is likely due 

to the break of the sulfur bridge, which gives intermediate 325. Completely removal of 

sulfur atoms from intermediate 325 yields leptomaculins 272 to 275, which in turn leads 

to the formation of leptomaculins 269 and 270. Retention of the sulfur atom and removal 

of the hydroxyl methylene group of intermediate 325 leads to the formation of 

leptomaculins A (267) and B (268) through plausible intermediate 326, 327 and 328.  
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Scheme 2.15. Proposed biosynthesis and catabolism of sirodesmin PL (165). (postulated 

intermediates in brackets, adapted from Pedras and Yu, 2008).  
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2.4 MACROMOLECULAR ELICITORS AND PHYTOTOXINS PRODUCED BY 

LEPTOSPHAERIA MACULANS 

An increasing number of elicitors and phytotoxins identified, recently, are 

macromolecules. For example, Nep1-like proteins (NLPs) are protein elicitors isolated 

from oomycetes, fungi and bacteria (Gijzen and Nurnberger, 2006). The protein Avr1, 

which was identified as a race specific elicitor from race 1 of fungus F. oxysporum, 

elicited the defense response of tomato carrying resistance gene I-1 and resulted in the 

incompatible interaction between race 1 and tomato carrying resistance gene I-1 

(Houterman et al., 2008). Only a few HSTs were isolated and identified in recent years, 

for example ABR-toxin, a 27.5 kDa protein, was purified from germinating spores of 

Alternaria brassicae on leaves of cabbage, the host plant species (Parada et al., 2008). 

Therefore, isolation and identification of potential macromolecular elicitors and 

phytotoxins produced by L. maculans is important. The production of elicitor and/or 

phytotoxin active metabolites by fungi can be very sensitive to fungal growth conditions 

(Discussed in section 1.2.3.2). For example, the host-selective AB-toxin is produced by 

germinating spores of Alternaria brassicicola only on leaves of host plant species, but 

not on nonhost plant species or in culture media (Otani et al., 1998). The specific 

production of AB-toxin was found to be elicited by an oligosaccharide derived from host 

plants species (Oka et al., 2005). Therefore, fungal spore germination fluids produced by 

L. maculans inoculated on leaves of canola are also likely to produce potential elicitors 

and/or phytotoxins.  

Preliminary experiments were carried out to find and optimize conditions from 

which potential elicitors and/or phytotoxins can be isolated and identified. The age of the 

plants, the concentration of fungal spores used for inoculation and the time of incubation 

on excised leaves were studied. The first two leaves of three-week-old plants of B. napus 

cv. Westar were excised and incubated in a Petri dish. Spore suspensions at a 

concentration of 2.5×107/mL had higher germination rate, while almost no spore 

germination was observed at ten times higher concentration (2.5×108/mL). After two 

days of incubation about 70% spores germinated while in another independent 

experiment 90% spores germinated. Although the time required to observe spore 

germination varies, two days was adequate as determined by inspection of the spore 
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suspension droplets on leaves under the microscope (40 µL spore suspension droplets 

were used for each inoculation site). The spores were removed from suspensions to yield 

SGF by centrifugation (3500 rpm, for 15 minutes, twice). Control leaves were treated 

similarly with sterile water. From the above optimized conditions SGF (ca. 1.5 mg/mL, 

18 leaves) and control (ca. 1.0 mg/ mL, 15 leaves) were collected and analyzed by 

HPLC and 1H NMR.  

The HPLC chromatograms showed that both SGF and control solution had a 

peak at Rt = 4 min. SGF contained more peaks around Rt 2.1 to 3.5 min. Less polar 

materials were not detected maybe because the concentration was too low. 1H NMR of 

SGF showed some typical amino acid signals, such as the multiple resonances at δH 2.0-

3.0 also several doublets at δH 1.5-0.9 could be isopropyl moieties. A few signals were 

also displayed within the aromatic proton range (δH 6.6-7.5). The resonances of 1H NMR 

of control showed polyol protons at δH 3.5-4.5 range similar to those observed in spectra 

of SGF but other resonances were too broad to be assigned. The elicitor-toxin bioassays 

of SGF were conducted using both brown mustard and canola. The phytoalexin 

erucalexin (329) was detected in the extracts of brown mustard leaves treated with SGF 

but not in the control. No phytoalexins were detected in the extracts of leaves of canola 

treated with SGF or controls. The leaves treated with SGF showed yellowing and 

necrosis on both brown mustard (Figure I.5, page xxxiv) and canola. The cotyledons of 

brown mustard also showed large yellowish areas when treated with SGF. No damage 

was observed in the controls, therefore, SGF appeared to contain elicitors and/or 

phytotoxins. 
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N

S
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CHAPTER 3: CONCLUSION AND FUTURE WORK 

The elicitor-toxin activity bioassay guided isolation of elicitors and phytotoxins 

produced by L. maculans lead to the isolation of general elicitors, sirodesmin PL (165) 

and deacetylsirodesmin PL (166) and specific elicitors, cerebrosides C (14) and D (31) 

from MM culture under standard conditions (Table 2.1, entry 1). As well, root growth 

inhibitor 212 and phytotoxins maculansins A (299) and B (300) were isolated from PDB 

cultures (Table 2.1, entry 11).  

In this work, brown mustard (resistant to L. maculans) produced the phytoalexin 

rutalexin (127) in response to a mixture of cerebrosides C (14) and D (31); canola 

(susceptible to L. maculans) did not appear to respond to the mixture of cerebrosides C 

(14) and D (31), as no phytoalexins were detected. Cerebroside C (14) was shown to be 

a sphingolipid elicitor in several plant species (Umemura et al., 2004). Sphingolipids are 

fungal cell wall components. It was reported that conversion of sphingolipids to 

glycosphingolipids by glucosyltransferase is essential for spore germination, hyphal 

growth and cell cycle in Aspergillus species (Levery et al., 2002). Therefore, 

sphingolipids act as general elicitor/microbe associated molecular patterns (MAMPs) in 

the interaction of pathogens and host plants. However, brown mustard and canola 

responded to cerebrosides C (14) and D (31) differently, which is consistent with the 

susceptibility of canola to the pathogen L. maculans. Therefore, cerebrosides could be 

used as potential biologically derived control agents for the screening and selection of 

disease-resistant plants (Bautista-Banos et al., 2006; Graniti, 1991). 

Maculansins A (299) and B (300) caused significant damage on leaves of both 

susceptible and resistant plants but did not elicit the production of phytoalexins. 

Compared to cerebrosides and maculansins, sirodesmins seemed to act as dual agents. 

They damaged plant leaves and elicited the production of phytoalexins in both resistant 

and susceptible plants. Which, if any, do these bioactive metabolites play a role in the 

interaction between L. maculans and its host plants? The attempt to identify these 
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metabolites in leaves of B. napus (Westar) infected by L. maculans gave results that 

were not consistent and convincing. Only recently, sirodesmin PL was detected in leaves 

of canola infected by L. maculans (Elliott et al., 2007). Nonetheless, further work related 

with these bioactive metabolites needs to be carried out to understand their role in the 

interaction between L. maculans and its host plants.  

Although eight new metabolites, leptomaculins A–E (267–270 and 272–274), 

were isolated from elicitor active fractions, purified individual metabolites did not show 

elicitor or toxin activities when tested on brown mustard (B. juncea cv. Cutlass, 

resistant) and canola (B. napus cv. Westar, susceptible). This was likely caused by the 

presence of sirodesmins, which are present in most fractions due to their large range of 

polarity and interconversion (Pedras et al., 1990). Nonetheless, the biosynthesis of these 

new metabolites is intriguing. Leptomaculins D (272) and E (274) as well as acetyl 

leptomaculins D (273) and E (275) were ruled out as intermediates involving the 

introduction of sulfur into sirodesmins because of the intact incorporation of [5,5-
2H2]phomamide (171a) into sirodesmin PL (165). Instead, they are likely the further 

catabolism products of sirodesmin PL (165), as proposed in Scheme 2.15. Similarly, 

leptomaculin C (269) and acetylleptomaculin C (270) were also proposed as the 

catabolic products of sirodesmin PL (165) (Scheme 2.15). However, leptomaculin A 

(267) and leptomaculin B (268), the first naturally occurring examples of a 2,3-

oxopiperazinethione/dioxopiperazine, were biosynthesized through multiple steps with 

significant structural modification (Scheme 2.15), suggesting a special role of these two 

metabolites in the metabolism of L. maculans (Pedras and Yu, 2008). 

Recently, a large number of orphan pathways were detected in microorganisms, 

which suggested that it is possible to discover a large number of secondary metabolites 

from one microorganism species (Gross, 2007). The isolation of bulgarein (294) and 8-

hydroxynaphthalene-1-sulfate (293) from high NaCl MM media conditions and 

maculans A (299) and B (300) from PDB media demonstrated that diverse secondary 

metabolites can be obtained from one fungal species by varying culture conditions (Bode 

et al., 2002). The composition of culture media and amendments are literally unlimited. 

Therefore, there is a great potential to discover additional biologically active metabolites 

from L. maculans, which needs to be further explored. 
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Suggested future work 

1. Isolation of macromolecular elicitors produced by L. maculans from SGF.  

2. Identification of intermediates in the biosynthetic pathway of sirodesmin PL 

using genomics-guided strategies. 

3. Study of melanin biosynthetic pathway using high concentrations of NaCl 

(Table 2.1, entry 7).  
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CHAPTER 4: EXPERIMENTAL 

4.1 GENERAL METHODS 

All chemicals were purchased from Sigma-Aldrich Canada Ltd., Oakville, ON; 

solvents were HPLC grade and used as such. Organic extracts were dried with Na2SO4 

and solvents removed under reduced pressure in a rotary evaporator. Flash column 

chromatography (FCC) was carried out using silica gel grade 60, mesh size 230 – 400 Å. 

Preparative thin layer chromatography (prep TLC) was carried out on silica gel plates, 

Kieselgel 60 F254 (20 × 20 cm × 0.25 mm), compounds were visualized under UV light. 

Specific rotations [α]D were determined at ambient temperature on a polarimeter using a 

1 mL, 10 cm path length cell; the units are 10-1 deg cm2 g-1 and the concentrations are 

reported in g/100 mL. 

Nuclear magnetic resonance (NMR) spectra (1H, 13C, HMQC – heteronuclear 

multiple quantum coherence, HMBC – heteronuclear multiple bond coherence) were 

recorded on Bruker Avance 500 spectrometers. High resolution (HR) electron impact 

(EI) mass spectra (MS), were obtained on a VG 70 SE mass spectrometer, employing a 

solids probe. 

HPLC analysis was carried out with Agilent high performance liquid 

chromatographs equipped with quaternary pump, automatic injector, and diode array 

detector (DAD, wavelength range 190 - 600 nm), degasser, and a Hypersil ODS column 

(5 μm particle size silica, 4.6 i.d. ×  200 mm), having an in-line filter. Mobile phase: 

75% H2O - 25% CH3CN to 100% CH3CN, for 35 min, linear gradient, and at a flow rate 

1.0 mL/min.  

Minimal medium (MM) contains the following chemicals:  

Solution 1: KNO3 (3.12 g/L, 30.8 mM), K2HPO4 (0.75 g/L, 4.31 mM), KH2PO4 (0.75 

g/L, 5.51 mM), NaCl (0.10 g/L, 1.71 mM), asparagine (0.28 g/L, 2.12 mM);  
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Solution 2: CaCl2·2H2O (0.10 g/L, 0.68 mM), MgSO4·7H2O (0.50 g/L, 2.03 mM);  

Solution 3: ZnSO4·7H2O (0.395 mg/L, 1.37 µM), CuSO4·5H2O (0.079 mg/L, 0.32 µM), 

MnSO4·4H2O (0.0405 mg/L, 0.18 µM), MoO3 (85%, 0.0175 mg/L, 0.12 µM), ferric 

citrate (0.535 mg/L, 2.16 µM), Na2BB4O7·10H2O (0.0375 mg/L, 0.10 µM);  

Solution 4: thiamine (0.1 mg/L, 0.38 µM);  

Glucose: (15 g/L, 83.3 mM). 

Solutions 1 and 3 and glucose were mixed and the pH of the mixed solution was 

adjusted to 6.55 and autoclaved. The autoclaved solution was combined with solutions 2 

and 4 (solutions 2 and 4 are sterilized, separately). Canadian virulent isolate of L. 

maculans IBCN 57 (BJ 125) was grown in Erlenmeyer flasks (250 mL) containing MM 

(100 mL) inoculated with fungal spores (108) and incubated on a shaker at 120 rpm, at 

23 ± 2 °C for 7 days. Cultures were grown in triplicates. 

4.2 POTENTIAL ELICITORS FROM LEPTOSPHAERIA MACULANS 

4.2.1 Metabolites produced in minimal media  

4.2.1.1 Standard condition  

A total of 20 liters of cultures of L. maculans IBCN 57 (BJ 125) was prepared in 

standard MM (Table 2.1 entry 1, see 4.1 General Methods). Mycelia were separated 

from broth by vacuum filtration; the broth was extracted with EtOAc. The aqueous layer 

did not show elicitor activity (direct application of aliquot of aqueous layer on plant 

leaves), therefore it was autoclaved and discarded. The EtOAc layer was concentrated to 

yield 7.2 g of residue, which showed elicitor activity. Therefore the EtOAc extracts were 

fractioned as described in the following section. Mycelia were extracted with MeOH, the 

MeOH layer was concentrated, and the residue was resuspended in a solution of 

MeOH/H2O (1:1 v/v) and then extracted with hexane. The MeOH/H2O (1:1 v/v) layer 

was concentrated to give 12.6 g of residue. This residue did not show elicitor activity, 

and D-mannitol (301) was isolated as the major component. The hexane layer was 
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concentrated to give 3.4 g of residue and the residue (hexane extract) showed elicitor 

activity. Therefore, the hexane extracts were fractioned as described in experimental. 

The EtOAc extract (7.2 g) was subjected to FCC on silica gel and eluted with a 

gradient of CH2Cl2–MeOH to yield 36 fractions (each 50 mL). Fractions F1-6 and F31-36 

did not show elicitor activity, and F9-11 contained mainly sirodesmins (165-169), whereas 

F24/25 contained mainly phomamide (171). Therefore, these fractions were not 

fractionated further. The remaining fractions showed either elicitor activity or contained 

new metabolites and were further fractionated as summarized in Schemes 4.1 to 4.3.  

F7/8 was subjected to prep. TLC (CH2Cl2–MeOH, 95:5) to give phomalairdenone 

A 193 (0.9 mg). F9-11 was applied to reversed phase chromatography, CH3CN–H2O, 

(40:60) to give benzoaldehyde 212 (5.8 mg). F12-14 was applied to reversed phase 

chromatography, CH3CN–H2O, (25:75). Leptomaculin A (267, 1.5 mg) was obtained by 

prep. TLC (toluene–EtOAc–HOAc, 50:40:10, multiple developments) of fraction 2. 

Leptomaculin A (269, 1.5 mg) and deacetylleptomaculin C (270, 0.3 mg) were obtained 

by reverse phase column (CH3CN–H2O, 15:85) from a nonhomogenous PTLC fraction 

(toluene–EtOAc–HOAc, 50:40:10, multiple developments) of fraction seven.  

F15/16 was applied to reversed phase chromatography, CH3CN–H2O, (10:90) 28 

fractions were collected. Fractions 11 to 16 were combined and further subjected to prep. 

TLC (toluene–EtOAc–HOAc, 50:40:10, multiple developments) to yield leptomaculin D 

(272, 4.3 mg) and leptomaculin E (274, 4.0 mg). F17/18 was applied to reversed phase 

chromatography, CH3CN–H2O, (25:75) to give 172 (6.0 mg). F19 to F22 were combined 

and applied to reversed phase chromatography, CH3CN–H2O, (20:80) and metabolite 

290 was obtained by prep. TLC (MeOH–EtOAc, 10:90, multiple developments) of 

fraction nine. 

F23/24 was applied to reversed phase chromatography, CH3CN–H2O, (10:90). 

Deacetylleptomaculins D (273, 3.7 mg) and E (275, 2.5 mg) were obtained from prep. 

TLC (toluene–EtOAc–HOAc, 50:40:10, multiple developments) of fraction three. F25/26 

was applied to reversed phase chromatography, CH3CN–H2O, (10:90). Leptomaculin B 

(268, 4.1 mg) was obtained from prep. TLC (CH2Cl2–MeOH, 70:30) of fraction five. 

F27-30 was applied to prep. TLC (CH2Cl2–MeOH–AcOH, 80:20:1) and followed by prep. 

TLC (toluene–EtOAc–HOAc, 80:10:10) to give 288 (3.6 mg). 
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The hexane extract (3.4 g) was subjected to FCC on silica gel and eluted with a 

gradient of CH2Cl2–MeOH to yield 20 fractions (each 50 mL). Fractions F13 to F16 

showed elicitor activity. Therefore, F13 to F16 were combined and subjected to prep. TLC 

(CHCl3–MeOH, 70:30) to give 12.9 mg inseparable mixture of cerebroside C (14) and D 

(31). 

Hexane extracts
(3.4 g)

FCC
CH2Cl2-MeOH
(gradient elution)

Broth

MM culture of BJ 125
(20 L)

Vacuum filtration

Mycelia

MeOH

ResidueMeOH

Concentration

Residue

H2O /MeOH / hexane

H2O /MeOH

Hexane

Concentration

Residue
(1.8 g)

Autoclaved

EtOAc

AqueousEtOAc

AutoclavedResidue
(7.2 g)

Concentration

Concentration

cerebrosiedes C (14) and D (31)
12.9 mg

PTLC
CHCl3-MeOH
70 : 30

F12-14

FCC
CH2Cl2-MeOH (gradient elution)

F7/8F1-6
RP-FCC
CH3CN-H2O
(40:60)

212, 5.8 mg

F9-11

phomalairdenone A
(193, 0.9 mg)

PTLC
CH2Cl2-MeOH
(95:5)

RP-FCC
CH3CN-H2O
(5:95)

F12-36

Scheme 4.2 and 4.3

301, 1.4 g

 
Scheme 4.1. Flow chart for separation of metabolites from standard MM culture of 

BJ125. 
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EtOAc extracts (7.2 g)

FCC
CH Cl -MeOH (gradient elution)2 2

F12-14 F15/16

RP-FCC
CH3CN-H2O
(25:75)

F2 F7
PTLC
Toluene-EtOAc-AcOH
(50:40:10)

PTLC
Toluene-EtOAc-AcOH
(50:40:10)

PTLC 1

RP-FCC
CH3CN-H2O
(15:85)

RP-FCC
CH3CN-H2O
(10:90)

F3
PTLC
Toluene-EtOAc-AcOH
(50:40:10)

RP-FCC
CH3CN-H2O
(25:75)

172 
(6.0 mg)

F17/18

leptomaculin A
 (267, 1.5 mg)

deacetylleptomaculin C
 (270, 0.3 mg)

leptomaculin C 
(269, 1.5 mg)

leptomaculin D 
(272, 4.3 mg)

leptomaculin E
(274, 4.0 mg)  

Scheme 4.2. Flow chart for separation of metabolites from standard MM culture of 

BJ125. 
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F23/24 F25/26

RP-FCC
CH3CN-H2O
(10:90)

F3

PTLC
Toluene-EtOAc-AcOH
(50:40:10)

RP-FCC
CH3CN-H2O
(10:90)

F5

PTLC
CH2Cl2-MeOH
(70:30)

290
(1.0 mg)

PTLC
MeOH-EtOAc
(10:90)

RP-FCC
CH3CN-H2O
(20:80)

F19-22

F9

2 2

EtOAc extracts (7.2 g)

FCC
CH Cl -MeOH (gradient elution)

PTLC-4

PTLC
Toluene-EtOAc-AcOH
(80:10:10)

288
(3.6 mg)

PTLC
CH2Cl2-MeOH-AcOH
(80:20:1)

F27-30 F31-36

deacetylleptomaculin D
 (273, 3.7 mg)

deacetylleptomaculin E
 (275, 2.5 mg)

leptomaculin B 
(268, 4.1 mg)

 
Scheme 4.3. Flow chart for separation of metabolites from standard MM cultures of 

BJ125. 

Leptomaculin A (267)  

HPLC: Rt= 4.7 min.  
1H NMR and 13C NMR see Table 2.2. 

m.p. 252-256 °C decomposed.  

HRMS-EI: m/z 425.1614, C19H27N3O6S, calcd. 425.1621. MS-EI m/z 425 (61%), 367 

(100%).  

FTIR (KBr): 3325, 3090, 2970, 2929, 2871, 1738, 1683, 1652 cm-1.  

UV (MeOH): λmax (log ε) 202 (4.07), 274 (3.70), 312 (3.86) nm.  

[α]D = + 56 (c 0.10, MeOH).  
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Leptomaculin B (268) 

HPLC: Rt = 3.3 min.  
1H NMR and 13C NMR see Table 2.2.  

HRMS-EI: m/z 409.1852, C19H27N3O7, calcd. 409.1849. MS-EI: m/z 409 (5%), 

351(100%).  

FTIR (KBr): 3438, 3290, 2927, 2856, 1740, 1674 cm-1.  

UV (MeOH): λmax (log ε) 224 (3.81) nm. 

[α]D = - 45 (c 0.10, MeOH). 

Leptomaculin C (269) 

HPLC: Rt = 7.4 min. 
1H NMR and 13C NMR see Table 2.3. 

HRMS-EI: m/z 423.1767, C20H27N2O8, calcd. 423.1767. MS-EI: m/z 423(10%), 

422(8%), 365(100%), 323(57%).  

FTIR (KBr): 3379, 2974, 1751, 1710, 1395, 1236 cm-1. 

Deacetylleptomaculin C (270) 

HPLC: Rt = 4.7 min.  
1H NMR see Table 2.3. 

HRMS-ESI: m/z [M+1]+ 381.1660, C18H25N2O7, calcd. 381.1656.  

FTIR (KBr): 3368, 2927, 2841, 1743, 1674, 1017 cm-1. 

Leptomaculin D (272) 

HPLC: Rt = 4.8 min. 
1H NMR and 13C NMR see Tables 2.4 and 2.5, respectively. 

HRMS-EI: m/z 422.1678, C20H26N2O8, calcd. 422.1676. MS-EI: m/z 422 (4%), 380 

(10%), 344 (18%), 223 (74%), 200 (86%), 140 (100%).  

FTIR (KBr): 3425, 2972, 2934, 2872, 1751, 1677, 1644, 1446, 1231, 1081, 738 cm-1.  
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UV (MeOH): λmax (log ε) 220 (3.92), 254 (3.87) nm.  

[α]D = - 47 (c 0.22, CHCl3). 

Deacetylleptomaculin D (273).  

HPLC: Rt = 3.8 min.  
1H NMR and 13C NMR see Tables 2.4 and 2.5, respectively. 

HRMS-EI: m/z 380.1591, C18H24N2O7, calcd. 380.1584. MS-EI: m/z 380(66%), 

344(22%), 223(90%), 211(73%), 180(100%), 158(84%), 70 (46%).  

FTIR (KBr): 3375, 2927, 1750, 1675, 1640, 1464, 1405, 1085 cm-1.  

UV (MeOH): λmax (log ε) 221 (3.96), 255 (3.94) nm.  

[α]D = - 82 (c 0.14, CHCl3). 

Leptomaculin E (274).  

HPLC: Rt = 6.2 min.  
1H NMR and 13C NMR see Tables 2.4 and 2.5, respectively. 

HRMS-EI: m/z 422.1675, C20H26N2O8, calcd. 422.1689. MS-EI: m/z 422 (21%), 223 

(57%), 200 (67%), 140 (100%).  

FTIR (KBr): 3416, 2974, 2935, 1752, 1681, 1645 cm-1.  

UV (MeOH): λmax (log ε) 219 (4.01), 254 (3.97) nm.  

[α]D = - 66 (c 0.21, CHCl3). 

Deacetylleptomaculin E (275).  

HPLC: Rt = 3.1 min.  
1H NMR and 13C NMR see Tables 2.4 and 2.5, respectively. 

HRMS-EI: m/z 380.1585, C18H24N2O7, calcd. 380.1584. MS-EI: m/z 380 (10%), 362 

(12%), 223 (50%), 180 (43%), 158 (100%), 140 (43%), 70 (21%).  

FTIR (KBr): 3414, 2968, 2930, 1750, 1676, 1641, 1466, 1083 cm-1.  

UV (MeOH): λmax (log ε) 221 (4.04), 256 (3.99) nm.  
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[α]D = - 93 (c 0.13, CHCl3). 

Cerebroside C (14)  

1H NMR and 13C NMR see Table 2.6. 

HRMS-ESI: [M+1]+ m/z 754.5827, C43H80NO9, calcd. 754.5827;  

HRMS-ESI-MS2: [M+Na]+ m/z 776.5686, m/z 758, 614, 596, 496, 346, 334. 

Metabolite (290)  

HPLC: GRADSCR Rt= 9.2 min.  
1H NMR (500 MHz, DMSO-d6): δ 9.37 (bs, 1H), 8.28(bs, 1H), 8.19 (s, 1H), 6.98 (d, 

J = 8.4 Hz, 1H), 6.34 (d, J = 2.4 Hz, 1H), 6.31 (d, J = 8.4, 2.4 Hz, 1H,), 5.38 (m, 

1H), 5.02 (t, J = 5.7 Hz, 1H), 4.40 (d, J = 6.5 Hz, 2H), 3.69 (dd, J = 10.9, 5.8 Hz, 

1H), 3.50 (dd, J = 10.8, 3.3 Hz, 1H), 3.39 (dd, J = 5.8, 3.3 Hz, 1H), 3.27 (d, J = 

13.9 Hz, 1H), 2.97 (d, J = 13.8 Hz, 1H), 2.17 (s, 3H), 1.72 (s, 3H), 1.67 (s, 3H). 
13C NMR (125 MHz, DMSO-d6): δ 165.6 (2C), 158.6, 156.3, 136.8, 132.1, 120.0, 

113.8, 105.5, 102.0, 67.0, 64.1, 62.0, 57.2, 39.0, 25.4, 18.0, 12.9. 

HRMS-ESI m/z [M+Na]+ 403.1298, C18H24N2O5NaS, calcd. 403.1298;  

4.2.1.2 High NaCl  

Canadian virulent isolate of L. maculans IBCN 57 (BJ 125) was grown in 250 

mL Erlenmeyer flasks (100 mL minimal medium) inoculated with fungal spores (1×108). 

The cultures were incubated on a shaker at 120 rpm and 23 ± 2 °C. Different amounts of 

NaCl (1.0 g / 100 mL, 2.0 g / 100 mL or 4.0 g / 100 mL) were added at different 

incubation times (0, 3, 4, or 5 day) (Table 2.1, entries 2 to 8). Cultures (10 mL) were 

collected on the 4th, 5th, 6th, 7th, 9th and 11th days, extracted with EtOAc (20 mL × 3) and 

extracts were analyzed by HPLC (triplicate cultures).  

Isolation of metabolites (Table 2.1, entry 7): Isolate BJ 125 culture was grown in 

250 mL Erlenmeyer flasks (100 mL minimal medium) inoculated with BJ 125 spores 
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(1×108). The cultures were incubated on a shaker (150 rpm) at 23 ± 2 °C for 4 days, and 

then NaCl (4 g / 100 mL) was added. On the 7th day the cultures were harvested. The 

broth was separated from mycelia by vacuum filtration. A total of 12 liters of broth was 

collected and extracted with EtOAc. The EtOAc extracts (1.4 g) was applied to Rp-18 

reverse phase FCC (CH3CN-H2O, gradient elution). F4 - 7 (66 mg) was further purified 

with Rp-18 reverse phase FCC (CH3CN-H2O, 5:95) to give 35.2 mg of compound 293 

(Scheme 4.4). Mycelia were washed with distilled water twice and extracted with MeOH 

(200 mL× 3). The MeOH extract was concentrated to 50 mL and filtered. The filtrate 

was concentrated to dryness to give 2.5g residue. The residue was subjected to FCC and 

eluted with MeOH-CH2Cl2 (5 % MeOH to 25 % MeOH gradient). The elute from 20 % 

MeOH/CH2Cl2 (50 mg) was subjected to Rp-18 reverse phase chromatography, 10% 

MeOH-H2O to 50% MeOH-H2O gradient elution, F12 to F18 gave 4.7 mg of blue color 

pigment bulgarein 294 (Scheme 4.4).  
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Scheme 4.4. Flow chart for separation of metabolites from high NaCl MM cultures of 

BJ125. 
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8-hydroxyl-naphthalenylsulfate (293) 

m. p. 223-225 °C decomposed.  

HPLC: GRADSCR Rt= 2.3 min.  
1H NMR (500 MHz, D2O): δ 7.79 (dd, J = 4.9, 4.4 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 

7.47 (bd, J = 5.1 Hz, 2H), 7.42 (dd, J = 8.0, 7.8 Hz, 1H); 6.99 (d, J = 7.7 Hz, 

1H);  
13C NMR (125 MHz, D2O): δ 151.3, 146.7, 136.8, 127.4, 126.5, 126.0, 120.3, 118.0, 

117.4, 111.5.  

HRMS-ESI: m/z [M-1]¯ 239.0024, C10H7O5S, Calcd. 239.0019; MS-EI: m/z 160 

(100%);  

FTIR (KBr): 3329, 1628, 1602, 1583, 1235 cm-1;  

UV (MeOH): λmax (log ε): 225 (4.55), 302 (3.77), 316 (3.69), 330 (3.61) nm. 

Bulgarein (294) 

HPLC: GRADSCR Rt= 4.1 (broad) min.  
1H NMR (500 MHz, DMSO-d6): δ 13.48 (bs, 2H), 12.66 (bs, 1H), 8.27 (d, J = 9.0 

Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.57 (bs, 1H), 7.38 (bs, 1H), 6.67 (bs, 1H), 

6.59 (d, J = 8.0 Hz, 1H), 6.40 (d, J = 9.0 Hz, 1H);  
13C NMR (125 MHz, DMSO-d6): δ 183.1 (2C), 160.6 (3C), 137.2 (C-6), 137.1, 

134.5 (C-12), 134.1, 127.9 (C-18), 123.6, 122.3, 119.9, 119.7, 116.7 (C-7), 

115.4, 114.7, 112.3, 109.3, 109.1; 

HRMS-ESI m/z [M-1]¯ 329.0441, C20H9O5, calcd. 329.0455;  

FTIR (KBr): 3397, 2938, 1619, 1585, 1465, 1213 cm-1;  

UV (MeOH): λmax (log ε) 631 (4.04), 376 (3.79), 252 (4.32) nm.  

4.2.2 Metabolites produced in potato dextrose medium 

HPLC analysis of metabolites in PDB cultures (Table 2.1, entries 9 to 12): 

Canadian virulent isolate of L. maculans IBCN 57 (BJ 125) was grown in 250 mL 

Erlenmeyer flasks containing PDB medium (100 mL) inoculated with fungal spores 
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(108) and incubated on a shaker at 120 rpm, at 23, 25, 27, and 29 °C. Cultures (20 mL), 

4-day-old or 7-day-old, were filtered to separate the broth from mycelia. The broth was 

extracted with EtOAc (20 mL × 3) and the EtOAc layer was dried with Na2SO4, and then 

concentrated. The residue was dissolved in CH3CN (1 mL) and analyzed by HPLC.  

Isolation of metabolites (Table 2.1, entry 11): A total of 5 L PDB media culture 

of L. maculans was prepared as reported above. After 4 days the culture was filtered, and 

the broth was extracted with EtOAc. The EtOAc extract was concentrated to give 360 

mg of residue. The residue was separated by FCC (RP-18, CH3CN–H2O, 10:90 to 40:60, 

gradient elution) to yield 30 fractions (15 ml per fraction). F8-10 was further purified by 

FCC (MeOH-CH2Cl2 0:100 to 5:95, gradient elution) to give compound 212 (10.5 mg). 

F15-18 (45.1 mg) was  further purified by prep TLC (MeOH-CH2Cl2, 5:95) to yield 

maculansin A (299, 9.7 mg) and an inseparable mixture (21 mg) with Rt = 14.7 min. F22-

25 contained a mixture of maculansin type metabolites that were further separated by 

prep TLC to yield an epimeric mixture of maculansin B (300, 1.6 mg) (Scheme 4.5). 

 

F22-25F15-18

PTLC
CH2Cl2-MeOH
(95:5)

RP-FCC
CH3CN-H2O
(gradient elution)

EtOAc extracts (350 mg)

PTLC
CH2Cl2-MeOH
(95:5)

FCC
CH2Cl2-MeOH
(99:1)

F8-10

212
(12 mg) Rt=14.7 min

(21 mg)

maculansin B
 (300, 1.6 mg)

maculansin A
 (299, 9.7 mg)  

Scheme 4.5. Flow chart for separation of metabolites from PDB cultures of BJ125. 
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Maculansin A (299)  

HPLC: Rt  = 16.4 min.  
1H NMR (500 MHz, CDCl3): δ 5.13 (m, 2H), 4.64 (dd, J = 12.5, 2.5 Hz, 2H), 4.41 

(dd, J = 12.5, 4.2 Hz, 2H), 3.89 (t, J = 8.2 Hz, 2H), 3.00 (d, J = 7.7 Hz, 2H, D2O 

exchangeable), 2.31 (s, 6H), 2.18 (s, 6H), 2.11 (s, 6H).  

13C NMR (125 MHz, CDCl3): δ 171.6, 168.0, 160.5, 158.3, 115.0, 72.8, 67.4, 62.3, 

25.1, 21.5, 21.1.  

HRMS-EI: m/z 480.1749, C22H28N2O10, calcd. 480.1744. MS-EI: m/z 480 (3%), 465 

(22%), 115 (100%).  

FTIR (KBr): 3460, 2960, 2923, 2116, 1740, 1732, 1222 cm-1.  

UV (MeOH): λmax (log ε) 231 (4.2) nm;  

[α]D = - 71 (c 0.10, CHCl3)  

Maculansin B (300)  

HPLC Rt  = 18.3 min.  
1H NMR (500 MHz, CDCl3): δ 5.2 (m, 1H), 5.1 (m, 1H), 4.6 (m, 2H), 4.4 (m, 2H), 

4.28 (d, J = 4.2 Hz, 1H) , 3.8 (m, 2H), 3.07 (d, J = 7.4 Hz, 1H, OH), 2.93 (d, J = 

8.3 Hz, 1H, OH), 2.4 (m, 1H), 2.32 (s, 3H), 2.19 (s, 3H), 2.10 (s, 3H), 2.09 (s, 

3H), 1.14 (d, J = 6.8 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H).  
13C NMR (125 MHz, CDCl3): δ 171.5 (2C), 158.8, 116.6, 115.0, 74.0, 72.5, 67.6 

(2C), 62.8, 61.9 (2C), 24.8, 21.3 (2C), 20.8 (2C), 19.5, 16.6, (C-1′, -6′, and -1′′ 

were not detected). 13C NMR spectral data were obtained from analysis of 

HMQC and HMBC correlations.  

HRMS-ESI: [M+Na]+ m/z 505.1807, C22H28N2O10Na, calcd. 505.1792.  

HRMS-ESI-MS/MS: m/z 505 (100%), 380 (40%), 378 (70%), 253 (27%).  
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4.2.3 Production of metabolites in other stress conditions  

Minimal medium cultures incubated at 29°C (Table 2.1, entry 13) 

The minimal medium culture was prepared the same as in the general method 

(Table 2.1, entry 1), except the incubation temperature was at 29°C. Culture broth (10 

mL) was extracted with EtOAc (25 mL × 2) on the 4th and 7th days after inoculation of 

spores and the extracts were analyzed by HPLC (triplicates). 

Minimal medium cultures amended with different amount of MgSO4·7H2O (Table 2.1, 

entries 14, 15 and 16) 

The condition in Table 2.1 entry 14 was prepared as follows: MgSO4·7H2O (15.0 

mg, 0.060 mmol) and CaCl2·2H2O (30.0 mg, 0.20 mmol) were added to distilled water 

(30 mL) and the solution was autoclaved. Ten mL of the latter solution was added to an 

autoclaved solution (90 mL) of a mixture of solution 1 (10 mL), solution 3 (0.1 mL), 

distilled water (80 mL) and glucose (1.5 g). The spores (108) of Canadian virulent isolate 

of L. maculans IBCN 57 (BJ 125) was grown in 250 mL Erlenmeyer flasks containing 

this prepared minimal medium (100 mL). The remaining conditions were the same as 

that in the general method (triplicates). The conditions in Table 2.1 entries 15 and 16 

were prepared similarly with MgSO4·7H2O at 75.0 mg (0.30 mmol) and 300.0 mg (1.20 

mmol), respectively. Culture broth (10 mL) was collected on the 4th, 5th, 6th, 7th, 8th and 

10th days, extracted with EtOAc (20 mL × 3) and the extracts were analyzed by HPLC. 

Minimal medium cultures amended without thiamine (Table 2.1, entry 17) 

Canadian virulent isolate of L. maculans IBCN 57 (BJ 125) was grown in 250 

mL Erlenmeyer flasks containing MM (100 mL) without addition of thiamine, 

inoculated with fungal spores (108). The cultures were incubated on a shaker at 120 rpm, 

23 ± 2 °C. Culture broth (10 mL) was collected on the 4th, 5th, 6th, and 7th days, extracted 

with EtOAc (20 mL × 3) and the extracts were analyzed by HPLC (duplicates). 
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Minimal medium cultures amended with leaves of brown mustard without thiamine 

(Table 2.1, entry 18) 

Fresh leaves (four leaves, ca 0.40 g wt) of brown mustard were added into a 250 

mL Erlenmeyer flask containing minimal medium (100 mL) without addition of 

thiamine. Then spores (108) of Canadian virulent isolate of L. maculans IBCN 57 (BJ 

125) was inoculated in thus made media. Cultures were incubated on a shaker at 120 

rpm, 23 ± 2 °C. Culture broth (10 mL) was collected on the 4th, 5th, 6th, and 7th days, 

extracted with EtOAc (20 mL × 3) and the extracts were analyzed by HPLC (triplicates).  

Minimal medium cultures amended with phytoalexins (Table 2.1, entries 19and 20) 

Canadian virulent isolate of L. maculans IBCN 57 (BJ 125) was grown in 250 

mL Erlenmeyer flasks containing minimal medium (100 mL) inoculated with fungal 

spores (1×108). Cultures were incubated on a shaker at 120 rpm, at 23 ± 2 °C for 3 days 

and solutions of camalexin (final concentration 1×10-4 M in MM) or spirobrassinin (final 

concentration 1×10-4 M in MM) was added to separate cultures. Cultures (10 mL) were 

collected on the 4th, 5th, 6th, 7th and 9th days, extracted with EtOAc (20 mL × 3) and the 

extracts were analyzed by HPLC. Controls (0.2 mL DMSO) were treated similarly.  

PDB medium cultures amended with phytoalexins (Table 2.1, entry 21 and 22)  

Isolate BJ 125 was grown in 250 mL Erlenmeyer flasks containing PDB media 

(100 mL) inoculated with fungal spores (1×108). The cultures were incubated on a 

shaker at 120 rpm, at 23 ± 2 °C for 3 days and the 0.2 mL DMSO solution of camalexin 

(1×10-4 M) or spirobrassinin (1×10-4 M) were added into the cultures. From the 4th to 7th 

day, cultures (10 ml) were extracted with EtOAc (20 mL × 3) every 24 hours and the 

extracts were analyzed by HPLC. Controls with 0.2 mL DMSO were treated similarly. 
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V8 juice medium culture (Table 2.1, entry 23)  

Glucose (6.0 g) was added into a mixture of V8 juice (60 mL) diluted with H2O 

(540 mL). The mixture was stirred for 5 minutes, transferred into falcon tubes (40 mL/ 

tube) and centrifuged for 10 minutes at 3500 rpm. The supernatant was filtered through a 

nylon cloth. The filtrate was collected and autoclaved. After cooling to room 

temperature, the medium was transferred to Erlenmeyer flasks (100 mL / flask). The 

spores (108) of Canadian virulent isolate of L. maculans IBCN 57 (BJ 125) were 

inoculated into the above prepared medium and incubated on a shaker at 120 rpm. 

Culture broth (10 mL) was collected on the 4th, 5th, 6th, 7th and 9th days, extracted with 

EtOAc (20 mL × 3) and the extracts were analyzed by HPLC (triplicates). 

4.2.4 Synthesis and chemical derivatization of metabolites  

Acetylleptomaculin C (271) 

Pyridine (0.1 mL) and acetic anhydride (0.1 mL) were added to compound 10 

(1.0 mg) at room temperature and stirred overnight. The solvents were removed to yield 

compound 12 (1.1 mg). HPLC: Rt = 12.4 min. 1H NMR see Table 2.3. HRMS-EI: m/z 

464.1799, C22H28N2O9, calcd. 464.1795. MS-EI: m/z 464 (22%), 407 (100%), 365 

(54%).  FTIR (KBr): 3401, 2959, 1755, 1712, 1232 cm-1. 

Compound 276  

Acetic anhydride (5 mL) was added to sirodesmin H (169, 589 mg, 1.30 mmol) 

and the reaction solution was heated at 110 °C, overnight. The reaction mixture was 

concentrated and the residue was fractionated using FCC, EtOAc-CH2Cl2 (1:4) to give 

compound 276 (581 mg, yield 77%). HPLC: tR = 20.1 min. 1H NMR (500 MHz, CDCl3): 

δ 6.49 (s, 1H), 5.40 (s, 1H), 5.03 (dd, J = 8.9, 4.9 Hz, 1H ), 4.61 (d, J = 11.2 Hz, 1H), 

4.37 (d, J = 11.2 Hz, 1H), 3.74 (q, J = 6.3 Hz, 1H), 3.07 (s, 3H), 2.54 (dd, J = 14.5, 8.9 

Hz, 1H), 2.31 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H), 1.94 (dd, J = 14.5, 4.8 Hz, 
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1H), 1.21 (d, J = 6.3 Hz, 3H), 1.00 (s, 3H), 0.97 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 

218.0, 191.8, 169.9, 169.3, 168.8, 159.3, 156.6, 135.6, 115.9, 90.8, 86.9, 79.9, 79.6, 

77.0, 65.9, 63.4, 47.5, 34.8, 31.0, 30.1, 21.2, 20.7, 20.5, 20.1, 17.5, 14.2. HRMS-EI: m/z 

580.1717, C26H32N2O11S, calcd. 580.1727. MS-EI: m/z 580 (6%), 505 (24%), 385 

(49%), 287 (60%), 245 (100%), 205 (67%); FTIR (KBr): 2971, 2928, 1752, 1691, 1443, 

1363, 1236, 1044 cm-1; UV (MeOH): λmax (log ε) 223 (4.09), 267 (4.15) nm; [α]D= + 43 

(c 0.11, MeOH), [α]D= +26 (c 0.20, CHCl3). 

Compounds 280a and 280b 

Compound 276 (12.8 mg, 0.022 mmol) was dissolved in 1% HCl in MeOH (10 

mL) at room temperature and kept overnight. After concentration, Raney nickel (1.5 mL) 

in MeOH (5 mL) was added to the residue and the reaction mixture was stirred at room 

temperature for 1 h. The reaction mixture was filtered and the solids washed with MeOH 

(5 mL × 4), the combined methanolic phase was filtered through a celite pad, and the 

filtrate was concentrated and applied to a RP-C18 FCC, CH3CN-H2O (20:80). Further 

chromatography of polar fraction (prep TLC, MeOH-CH2Cl2, 5:95) yielded compound 

280b (0.9 mg, 9% yield). HPLC: tR = 8.9 min. 1H NMR (500 MHz, CDCl3): δ 6.48 (s, 

1H), 5.49 (d, J = 1.0 Hz, 1H), 4.92 (dd, J = 8.0, 1.0 Hz, 1H ), 4.08 (brd, J = 11.5 Hz, 

1H), 4.02 (dd, J = 3.0, 1.5 Hz, 1H), 3.94 (dd, J = 11.5, 3.0 Hz, 1H), 3.77 (q, J = 6.0 Hz, 

1H), 3.08 (s, 3H), 2.47 (dd, J = 15.0, 8.0 Hz, 1H), 2.35 (bs, 1H, OH), 2.24 (bd, J = 15.0 

Hz, 1H), 2.05 (bs, 6H), 1.20 (d, J = 6.0 Hz, 3H), 0.98 (s, 3H), 0.97 (s, 3H). 13C NMR 

(125 MHz, CDCl3): δ 216.9, 169.2, 168.8, 161.6, 156.7, 137.0, 114.6, 93.3, 87.5, 80.9, 

79.8, 67.1, 66.2, 62.3, 47.5, 35.6, 32.3, 21.3, 20.8 (2C), 17.8, 15.3. HRMS-EI: m/z 

464.1785, C22H28N2O9, calcd. 464.1795. MS-EI: m/z 464 (8%), 422 (38%), 404 (44%), 

380 (54%), 362 (100%), 314 (52%), 223 (78%); FTIR (KBr): 3471, 2971, 2939, 1755, 

1674, 1642, 1448, 1378, 1233, 1034 cm-1. UV (MeOH): λmax (log ε) 220 (4.05), 259 

(4.06) nm; [α]D = + 77 (c 0.10, MeOH). Further chromatography of less polar fraction 

(prep TLC MeOH-CH2Cl2, 5:95) yielded compound 280a (2.9 mg, 28% yield). HPLC: 

tR = 9.5 min. 1H NMR (500 MHz, CDCl3): δ 6.29 (s, 1H), 5.18 (s, 1H), 5.00 (dd, J = 8.5, 

6.5 Hz, 1H ), 4.14 (brd, J = 12.0 Hz, 1H), 4.03 (brd, J = 3.5 Hz, 1H), 3.93 (dd, J = 12.0, 
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4.0 Hz, 1H), 3.80 (q, J = 6.0 Hz, 1H), 3.07 (s, 3H), 2.76 (bs, 1H, D2O exchangeable), 

2.62 (dd, J = 14.0, 8.5 Hz, 1H), 2.09 (s, 3H), 2.03 (s, 3H), 1.74 (dd, J = 14.0, 6.0 Hz, 

1H), 1.22 (d, J = 6.0 Hz, 3H), 1.02 (s, 3H), 1.01 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 

217.6, 169.9, 169.5, 162.9, 157.5, 137.4, 114.2, 90.5, 86.7, 80.4, 79.6, 66.4, 63.8, 61.9, 

47.5, 36.1, 32.2, 21.5, 20.6 (2C), 17.4, 14.8. HRMS-EI: m/z 464.1807, C22H28N2O9, 

calcd. 464.1795. MS-EI: m/z 464 (5%), 422 (26%), 380 (29%), 362 (42%), 314 (100%), 

223 (58%); FTIR (KBr): 3428, 2971, 2928, 1752, 1682, 1647, 1438, 1373, 1233, 1039 

cm-1; UV (MeOH): λmax (log ε) 221 (3.91), 257 (3.94) nm; [α]D = + 4.6 (c 0.10, MeOH). 

Compound 281b 

Pyridine (100 mL) and acetic anhydride (200 mL) were added to compound 280b 

(2.1 mg, 0.005 mmol) at room temperature. After standing overnight, the solution was 

concentrated to yield compound 281b (2.3 mg, quantitative). HPLC: Rt = 14.6 min. 1H 

NMR (500 MHz, CDCl3): δ 6.48 (s, 1H), 5.46 (s, 1H), 4.97 (dd, J = 9.0, 3.5 Hz, 1H ), 

4.73 (dd, J = 11.5, 3.5 Hz, 1H), 4.33 (dd, J = 11.5, 3.0 Hz, 1H), 4.20 (dd, J = 3.5, 3.0 Hz, 

1H), 3.79 (q, J = 6.4 Hz, 1H), 3.07 (s, 3H), 2.64 (dd, J = 14.9, 9.0 Hz, 1H), 2.06 (s, 3H), 

2.05 (s, 3H), 2.03 (s, 3H), 1.92 (dd, J = 14.9, 3.4 Hz, 1H), 1.23 (d, J = 6.4 Hz, 3H), 1.01 

(s, 3H), 1.00 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 217.3, 170.1, 169.1 (2C), 160.1, 

156.1, 136.1, 115.3, 92.2, 87.2, 80.8, 79.6, 66.2, 63.3, 62.7, 47.5, 36.7, 32.7, 21.5, 21.1, 

20.7 (2C), 17.7, 15.6. HRMS-EI: m/z 506.1882, C24H30N2O10, calcd. 506.1900. MS-EI: 

m/z 506 (2%), 464 (10%), 422 (21%), 404 (100%), 344 (38%), 205 (45%); FTIR (KBr): 

2970, 2928, 2874, 1750, 1688, 1647, 1375, 1236, 1044 cm-1; UV (MeOH): λmax (log ε) 

220 (3.99), 260 (4.00) nm; [α]D = + 104 (c 0.10, MeOH); [α]D = + 136 (c 0.19, CHCl3). 

Compound 281a  

Compound 281a was obtained similarly to compound 281b from acetylation of 

compound 280a.  HPLC: Rt = 14.2 min. 1H NMR (500 MHz, CDCl3): δ 6.44 (s, 1H), 

5.44 (s, 1H), 4.95 (dd, J = 9.0, 2.5 Hz, 1H ), 4.69 (dd, J = 11.5, 3.0 Hz, 1H), 4.37 (dd, J 

= 11.5, 2.0 Hz, 1H), 4.18 (dd, J = 3.0, 2.0 Hz, 1H), 3.75 (q, J = 6.5 Hz, 1H), 3.06 (s, 3H), 
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2.57 (dd, J = 14.5, 9.0 Hz, 1H), 2.07 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.92 (dd, J = 

14.5, 2.5 Hz, 1H), 1.20 (d, J = 6.5 Hz, 3H), 1.00 (s, 3H), 0.98 (s, 3H). 13C NMR (125 

MHz, CDCl3): δ 217.3, 170.2, 169.0, 168.9, 161.0, 156.6, 136.4, 115.0, 92.2, 87.1, 80.3, 

79.6, 65.7, 63.7, 62.0, 47.5, 36.7, 32.4, 21.0, 20.8, 20.7, 20.6, 17.7, 15.0. HRMS-EI: m/z 

506.1899, C24H30N2O10, calcd. 506.1900. MS-EI: m/z 506 (13%), 464 (70%), 422 (43%), 

404 (100%), 344 (39%), 265 (47%); FTIR (KBr): 2960, 2925, 2854, 1746, 1690, 1649, 

1377, 1242, 1048 cm-1; UV (MeOH): λmax (log ε) 221 (4.02), 257 (4.04) nm; [α]D = + 10 

(c 0.10, MeOH); [α]D = + 25 (c 0.15, CHCl3). 

Compound 277 

Raney nickel (2 mL) in MeOH (5 mL) was added to compound 276 (34.2 mg, 

0.059 mmol) in MeOH (5 mL) and heated at 55 °C for 6 h. After cooling to room 

temperature, the reaction mixture was filtered and the solids washed with MeOH (5 mL 

× 4), the combined methanolic phase was filtered through a celite pad, the filtrate was 

concentrated and the residue was separated using prep TLC (EtOAc-CH2Cl2, 2:3) to 

yield 277 (10.5 mg, 40% yield). HPLC: Rt = 13.7 min. 1H NMR (500 MHz, CDCl3): δ 

6.46 (s, 1H), 5.52 (d, J = 1.0 Hz, 1H), 4.90 (d, J = 7.0 Hz, 1H), 4.02 (q, J = 7.0 Hz, 1H ), 

3.67 (q, J = 6.5 Hz, 1H), 3.05 (s, 3H), 2.40 (dd, J = 15.0, 8.0 Hz, 1H), 2.18 (brd, J = 

15.0, 1H), 2.05 (brs, 6H), 1.53 (d, J = 7.0 Hz, 3H), 1.17 (d, J = 6.5 Hz, 3H), 0.97 (s, 3H), 

0.95 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 217.3, 169.2, 168.9, 154.0 (2C), 137.8, 

136.2, 116.2, 103.7, 92.6, 87.2, 80.3, 79.6, 66.7, 47.5, 36.3, 30.0, 21.0, 20.7 (2C), 17.7, 

15.0. HRMS-EI: m/z 448.1848, C22H28N2O8, calcd. 448.1846. MS-EI: m/z 448 (21%), 

404 (64%), 344 (76%), 205 (100); FTIR (KBr): 2978, 1757, 1687, 1648, 1454, 1431, 

1372, 1237 cm-1; UV (MeOH): λmax (log ε) 258 (3.97), 220 (4.00) nm; [α]D = + 57 (c 

0.11, MeOH). 

Compound 279 

Raney nickel (1 mL) in MeOH (5 mL) was added to compound 276 (28 mg, 

0.048 mmol) in MeOH (5 mL) at room temperature and stirred for 1 h. The reaction 
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mixture was filtered and the solids washed with MeOH (5 mL × 4), the combined 

methanolic layer was filtered through a celite pad, the filtrate was concentrated and 

separated using prep TLC (EtOAc-CH2Cl2, 2:3) to yield 279 (12 mg, 56% yield): HPLC: 

Rt = 17.5 min. 1H NMR (500 MHz, CDCl3): δ 6.54 (s, 1H), 5.88 (d, J = 1.5 Hz, 1H), 

5.53 (d, J = 1.0 Hz, 1H ), 5.02 (d, J = 1.5 Hz, 1H), 5.00 (dd, J = 9.0, 2.5 Hz, 1H), 3.72 

(q, J = 6.5 Hz, 1H), 3.30 (s, 3H), 2.55 (dd, J = 15.0, 9.0 Hz, 1H), 2.08 (dd, J = 15.0, 2.5 

Hz, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 1.17 (d, J = 6.5 Hz, 3H), 0.99 (s, 3H), 0.96 (s, 3H). 
13C NMR (125 MHz, CDCl3): δ 217.3, 169.4, 168.9, 163.5, 155.7, 137.0, 114.5, 93.6, 

87.8, 80.3, 80.0, 67.3, 60.3, 47.7, 35.3, 32.4, 21.1, 20.9, 20.5, 19.9, 17.9, 15.1. HRMS-

EI: m/z 446.1694, C22H26N2O8, calcd. 446.1689. MS-EI: m/z 446 (21%), 404 (64%), 344 

(76%), 205 (100); FTIR (KBr): 2970, 2928, 1755, 1689, 1609, 1432, 1233 cm-1; UV 

(MeOH): λmax (log ε) 286 (4.27) nm; [α]D= + 48 (c 0.11, MeOH). 

Methanolysis of sphingolipids (14 and 31) 

Sphingolipids (14 and 31, 5.0 mg) were refluxed with a solution of MeOH (2 

mL) and HCl (1N, 0.5 mL) for overnight. The reaction mixture was cooled and extracted 

with hexane (4 mL × 3). The hexane layer was concentrated and the residue was applied 

to a pipet column FCC (CH2Cl2 / MeOH, 98: 2) to give a mixture of fatty acid methyl 

esters 285 (77%) and 286 (23%). Compound 285: HRMS-EI: m/z 312.2664, C19H36NO3, 

calcd. 312.2664. MS-EI: m/z 312 (1.2%), 253 (100%), 149 (16%), 109 (27%), 95 (45%), 

81 (35%). 1H NMR (500MHz, CDCl3): δ 5.89(dt, J = 15.3, 6.9 Hz, 1H), 5.50(dd, J = 

15.3, 6.2 Hz, 1H), 4.62 (bs, 1H), 3.81 (s, 3H), 2.84 (d, J = 5.3, Hz, 1H, D2O 

exchangeable), 2.06 (dt, J = 7.2, 7.1 Hz, 2H) 1.39 (m, 2H), 1.27 (bs, 24H), 0.89 (t, J = 

6.8 Hz, 3H). Compound 286: HRMS-EI: m/z 314.2815, C19H38NO3, calcd. 314.2821. 

MS-EI: m/z 314 (17%), 253 (100%), 111 (17%), 97 (36%), 83 (50%).1H NMR 

(500MHz, CDCl3): δ 4.19 (m, 1H), 3.80 (s, 3H), 2.67 (d, J = 4.9, Hz, 1H, D2O 

exchangeable), 1.78 (m, 1H), 1.63 (m, 1H), 1.26 (bs, 28H), 0.89 (t, J = 6.8 Hz, 3H) . 
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4-Prenyl-benzeneacetic acid (288) 

NaH (60% in mineral oil, 28 mg, 0.39 mmol) was washed with hexane (2 mL × 

2) then added 4-hydroxyphenylacetic acid (287) (20 mg, 0.13 mmol) in anhydrous THF 

(2 mL) at 30 °C. After 60 minutes dimethylallyl bromide (33 µL, 0.39 mmol) was added 

and stirred for 36 hours. The reaction mixture was concentrated, diluted with aq NaOH 

(0.1 M, 10 mL) and extracted with diethyl ether (15 mL × 2). The aqueous solution was 

then acidified to pH 2 and re-extracted with EtOAc (20 mL × 3), the EtOAc layer was 

dried over Na2SO4 and concentrated to yield the product 288 (27 mg, 94% yield) HPLC: 

tR = 7.0 min. 1H NMR (500 MHz, CDCl3): δ 7.15 (d, J = 7.7 Hz, 1H), 6.84 (d, J = 7.7 

Hz, 1H), 5.49 (bt, J = 6.8 Hz, 1H), 4.47 (d, J = 6.7 Hz, 2H), 3.54 (bs, 2H), 1.79 (s, 3H), 

1.73 (s, 3H). 13C NMR (125 MHz, CDCl3): δ 158.3, 138.3, 130.6, 126.0, 119.9, 115.0, 

65.0, 26.0, 18.4. 

Methyl-4-Prenyl-benzeneacetate (289) 

Excess CH2N2 in Et2O was added to an Et2O (15 mL) solution of 288 (13 mg, 

0.059 mmol), after 30 minutes 0.1M acetic acid was added until the solution became 

colorless. The reaction solution was concentrated to give 289 (13.7 mg, 99% yield) 

HPLC: tR = 26.0 min. 1H NMR (500 MHz, CDCl3): δ 7.19 (d, J = 7.7 Hz, 1H), 6.87 (d, J 

= 7.7 Hz, 1H), 5.50 (m, 1H), 4.50 (d, J = 6.7 Hz, 2H), 3.69 (s, 3H), 3.57 (bs, 2H), 1.80 

(s, 3H), 1.74 (s, 3H). FTIR (KBr): 2923, 1738, 1511, 1236 cm-1. 

1,8-Dihydroxynaphthalene (292) 

1,8-Naphthosultone (291, 240.0 mg, 1.20 mmol) and KOH (1.2 g, 21.4 mmol) 

were heated together in a reaction vial at 300 °C in a sand bath for about 20 minutes 

until the mixture became a homogeneous black liquid. The reaction mixture was cooled 

to room temperature and hydrochloric acid (concentrated HCl-H2O, 1:2) was added with 

stirring until neutral pH was obtained. H2O (10 mL) was added into the mixture and the 

mixture was extracted with EtOAc (25 mL×3). EtOAc layers were dried with Na2SO4 

and concentrated. The concentrated residue was applied to FCC (EtOAc/hexane, 20: 80) 
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to give compound 292 as a white solid (120 mg, yield 63%). All spectroscopic data are 

identical to the reported data (Ragot et al., 1999).  

8-hydroxyl-naphthalenylsulfate (293) 

HSO3Cl (25µL, 0.38 mmol) was added slowly into a solution of diethyl ether 

(156 µL) and N,N-dimethylaniline (156 µL, 1.25 mmol) at -10 °C. After 1,8-

dihydroxynaphthalene 292 (20.0 mg, 0.125 mmol) was added, the reaction mixture was 

warmed to 0 °C and stirred for 1 hour. 60% NaOH (1 mL) was added into the reaction 

mixture with vigorous stirring then the reaction mixture was adjusted to pH = 8 with 1 M 

H2SO4 and extracted with EtOAc (20 mL × 4). EtOAc layer was concentrated to gave a 

white residue, which was purified by reverse phase FCC (CH3CN/H2O, 10 : 90) to give 

compound 293 as a gray solid (14.1 mg, yield 47%). 

D-mannitol-hexaacetate (302)  

Maculansin A (299, 8.0 mg, 0.017 mmol) was dissolved in MeOH (4.0 mL) then 

excess Na2CO3 (10.0 mg) was added. The reaction mixture was stirred for 4 hours at 

room temperature and concentrated. The residue was dissolved in 5 mL water. The pH 

of the solution was adjusted to 2 and extracted with CH2Cl2 (10 mL×3). The aqueous 

layer was concentrated to dryness. Pyridine (500 µL) and acetic anhydride (500 µL) 

were added to the residue and stirred for 5 hours at room temperature. After removal of 

reagents the residue was applied to PTLC (MeOH-CH2Cl2, 4:96) to give compound 302 

(6.7 mg, 93 %). The 1H NMR spectrum of compound 302 was identical to that of 

authentic D-mannitol hexaacetate, and optical rotation ([α]D = 13 (c 0.51, CHCl3)) was 

close to authentic D-mannitol hexaacetate ([α]D = 12 (c 0.26, CHCl3)). CH2Cl2 layer was 

concentrated to give a mixture of components which could not be identified. 

The mixture of metabolites with Rt = 14.7 min (9.5 mg) was dissolved in MeOH 

(5 mL) then Na2CO3 (2 mg) was added. The reaction mixture was stirred overnight then 

concentrated. The residue was dissolved in 10 mL water. The pH of the solution was 

adjusted to 2 with 1.0 M HCl and extracted with EtOAc. The EtOAc layer was 
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concentrated to give 2.4 mg N-formylvaline (305). 1H NMR (500 MHz, CDCl3) 8.30 (s, 

1H), 6.14 (bd, J = 8.0 Hz, 1H), 4.71 (dd, J= 8.7, 4.5 Hz, 1H), 2.31 (m, 1H), 1.02 (d, J = 

6.9 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H). HRMS-ESI: m/z [M-1]- 144.0650, C6H10NO3, , 

calcd. 144.0655. MS-EI: m/z 128 (6%), 100 (100%), 85 (87%), 72 (25%). The aqueous 

layer was concentrated to dryness then pyridine (1 mL) and acetic anhydride (2 mL) 

were added to the residue and stirred overnight. After removal of reagents the residue 

was applied to PTLC (MeOH-CH2Cl2 4: 96) to give compound 302 (4.4 mg). The 1H 

NMR spectra and optical rotation data ([α]D = 5 (c 0.2, CHCl3)) of compound 302 were 

similar to commercial D-mannitol hexaacetate.  

Compound 295 

An excess amount of diazomethane was added to a suspension of methanol 

containing 4.6 mg compound 294, and kept overnight. After concentration, the residue 

was applied to PTLC (EtOAc/hexane 1:1, two developments) to give 1.3 mg of 

compound 295. 1H NMR (500 MHz, CDCl3): δ 8.37 (d, J = 7.9 Hz, 1H), 8.11 (d, J = 8.1 

Hz, 1H), 7.44 (m, 2H), 7.03 (m, 3H), 4.14, (s, 3H), 4.11 (s, 3H), 3.91 (s, 3H), 3.49 (bd J 

= 13.9 Hz, 1H), 3.44 (bd J = 13.9 Hz, 1H), 3.05 (bd J = 6.6 Hz, 1H), 2.90 (bd J = 6.8 Hz, 

1H), HRMS-EI: m/z 400.1312, C25H20O5, calcd. 400.1311. MS-EI: m/z 400 (100%), 371 

(72%). 

Compound 296  

K2CO3 (482 mg, 3.50 mmol) and dimethyl sulfate (120 µL, 0.88 mmol) were 

added into a mixture of acetone (10 mL) and bulgarein 294 (40 mg of a fraction 

containing bulgarein 294). The reaction mixture was refluxed for 3 hours and the 

solution was concentrated to give an oily residue. The residue was applied to PTLC 

(EtOAc/hexane, 1:1) to yield compound 296 (3.8 mg), Rf = 0.4; HPLC: GRADSCR M. 

Rt = 34.7 min; 1H NMR (500 MHz, CDCl3): δ 8.36 (d, J = 8.0 Hz, 1H), 8.26 (bd, J = 8.0 

Hz, 2H), 7.44 (t, J = 8.0, 8.0 Hz, 1H), 7.00 (bd, J = 8.0 Hz, 1H), 6.99 (bd, J = 8.0 Hz, 

1H), 6.86 (d, J = 8.0 Hz, 1H), 4.20 (s, 3H), 4.11 (s, 6H), 4.07 (s, 3H), 4.01 (s, 3H); 13C 
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NMR (500 MHz, CDCl3): δ 158.7, 157.8, 157.1, 148.0, 147.8, 135.5, 131.8, 130.4, 

130.1, 130.0, 127.7, 126.3, 126.0, 125.6, 120.7, 117.1, 114.4, 107.2, 106.9, 105.2, 62.3, 

60.9, 56.7 (2C), 56.3. HRMS-EI: m/z 402.1464, C25H22O5, calcd. 402.1467. MS-EI: m/z 

402(100%), 388(20%), 387(71%); FTIR (KBr): 2958, 2927, 2854, 1602, 1576, 1459, 

1425, 1263 cm-1; UV (MeOH): λmax (log ε) 406 (4.34), 345 (4.63), 331 (4.52), 251 

(4.84), 226 (4.66) nm.  

4.3 BIOASSAY OF METABOLITES FROM LEPTOSPHAERIA MACULANS 

4.3.1 Elicitor activity bioassay  

Plants (B. napus cv. Westar and B. juncea cv. Cutlass) were grown in a growth 

chamber with 16 h illumination (fluorescent and incandescent, 450-530 µmol s-1 m-2)/8 h 

dark, at 24 ±2° C. After two weeks, purified compounds or factions of extracts dissolved 

in MeOH-H2O (1:1 v/v) solutions were sprayed to the leaves. After two days, the leaf 

tissues were frozen in liquid N2, crushed with a glass rod and extracted with EtOAc (50 

mL). EtOAc extract was dried over Na2SO4 and concentrated in a rotary evaporator. The 

residue was dissolved in 1% MeOH/CH2Cl2, applied to a mini silica gel column (Pasteur 

pipet) and eluted with 1% MeOH/CH2Cl2 (5 mL), this 5 ml solution was concentrated, 

the residue was dissolved in CH3CN (80 µL) and analyzed by HPLC (20 µL injection 

volume). Control leaves were treated similarly employing a MeOH-H2O 1:1 solution. 

4.3.2 Phytotoxicity bioassay  

Plants were grown in the same conditions as described above. After the third leaf 

was half developed (about two weeks), purified compounds or factions of extracts 

dissolved in MeOH-H2O (1:1, v/v) solution were applied to leaves by pipetting droplets 

(5 μL) to puncture sites of leaves (6 sites each leaf). After two days, the damaged areas 

were measured using a stencil having cut out circles with different diameters, and the 
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measured diameters were converted to the damage index as Table 4.1. All bioassays 

were carried out in triplicates.  

 

 

Table 4.1. Scale for conversion of damaged area to damage index.  

Lesion diameter 

(mm) 

<1.5 1.6-2.3 2.4-3.1 3.2-3.9 4.0-4.7 4.8-5.5 5.6-6.3 6.4-7.0

Damage index 0 1 2 3 4 5 6 7 

 

 

4.3.3 Growth inhibition bioassay  

Seeds of brown mustard (20) and canola (20) were sterilized by soaking in Javex 

(10 %/ v/v) for 10 minutes, washed with water, air dried and incubated in PDB medium 

(0.9 g in 100 ml) amended with compound 212 (0.5 mM). The dishes were sealed with 

Parafilm and kept in darkness at room temperature. After 7 days the root length of 

seedlings was measured with a ruler.  

4.4 BIOSYNTHESIS OF SIRODESMIN PL (165) 

4.4.1 Synthesis of potential biosynthetic precursors 

4.4.1.1 Synthesis of O-prenyl-L-tyrosine (312) 

t-Boc-O-prenyl-L-tyrosine (311) 

NaH (60% in mineral oil, 69.6 mg, 2.90 mmol) was washed with hexane (2 mL × 

2) and added to a stirred solution of t-Boc-L-tyrosine (310) (281 mg, 1.00 mmol) in dry 
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THF (8 mL) at room temperature. After 10 minutes dimethylallyl bromide (162 µL, 1.20 

mmol) was added and the reaction mixture was stirred overnight. The reaction mixture 

was then concentrated, diluted with aq NaOH (0.5 M, 15 mL) and extracted with diethyl 

ether (15 mL × 2). The remaining aqueous solution was acidified to pH 2 and was 

extracted with EtOAc (20 mL × 4). The combined EtOAc extract was dried over Na2SO4 

and concentrated to yield the product 311 (285 mg, 82% yield). 1H NMR (500 MHz, 

CDCl3) δ: 7.09 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 5.49 (t, J = 7.0 Hz, 1H), 

4.91 (d, J = 7.0 Hz, 1H), 4.55 (m, 1H), 4.49 (d, J = 7.0 Hz, 2H) 3.13 (dd, J = 5.0, 14.0 

Hz, 1H) 3.05 (dd, J = 5.5, 14 Hz, 1H), 1.80 (s, 3H), 1.74 (s, 3H), 1.43 (bs, 9H). 13C 

NMR (125 MHz, CDCl3) δ: 176.7, 158.1, 156.0, 138.3, 130.5 (2C), 128.4, 119.9, 114.9 

(2C), 80.4, 64.9, 55.4, 37.1, 28.5, 26.0, 18.4. HRMS-EI: m/z 349.1895, C19H27NO5, 

calcd. 349.1889. MS-EI: m/z 349 (1%), 225 (19%), 207 (15%), 164 (31%), 107 (100%).  

O-prenyl-L-tyrosine (312) 

t-Boc-O-prenyl-L-tyrosine (311) (52 mg, 0.15 mmol) was heated at 155 ± 2°C 

under atmosphere of argon for 60 min, and the resulting yellowish solid was washed 

with MeOH to yield O-prenyl-L-tyrosine (312) as a white solid (20 mg, 54% yield). 

HPLC tR 7.2 min. M.p. 204-206 °C. 1H NMR (500 MHz, D2O, very low solubility) δ: 

7.28 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H ), 5.54 (t, J = 7.0 Hz, 1H), 4.64 (d, J = 

7.0 Hz, 2H), 3.97 (bt, J = 7 Hz, 1H) 3.24 (dd, J = 5.0, 14.5 Hz, 1H), 3.09 (dd, J = 8.0, 

14.5 Hz, 1H), 1.82 (s, 3H), 1.78 (s, 3H). 1H NMR (500 MHz, 0.5% NaOH in D2O, good 

solubility) δ: 7.22 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 5.52 (t, J = 7.0 Hz, 1H), 

4.61 (d, J = 7.0 Hz, 2H), 3.47 (bt, J = 6.0 Hz, 1H), 2.94 (dd, J = 13.5, 5.5, 1H), 2.81 (dd, 

J = 13.5, 7.0 Hz, 1H), 1.80 (s, 3H), 1.76 (s, 3H). 13C NMR (125 MHz, 0.5% NaOH D2O) 

δ: 183.2, 157.1, 142.0, 131.7, 131.2 (2C), 118.9, 115.7 (2C), 65.8, 58.1, 40.5, 25.6, 17.9. 

HRMS-EI: m/z 249.1367, C14H19NO3, calcd. 249.1366. MS-EI: m/z 249 (4%), 175 

(24%), 107 (100%). 

FTIR (KBr): 2958, 2928, 2868, 1611, 1561, 1512, 1246, 1016 cm-1
.  
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4.4.1.2 Synthesis of [3,3-2H2]O-prenyl-L-tyrosine (312a) 

[3,3-2H2]-t-Boc-O-preny-L-tyrosine (311a) (170 mg, 0.48 mmol) was heated as 

reported above for 311 and the product obtained was crystallized from MeOH-H2O to 

yield 312a (58.2 mg, 48% yield) as white crystals. 1H NMR (500 MHz, D2O) δ: 7.28 (d, 

J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H ), 5.54 (t, J = 7.0 Hz, 1H), 4.64 (d, J = 7.0 Hz, 

2H), 3.94 (s, 1H), 1.82 (s, 3H), 1.78 (s, 3H). HRMS-EI: m/z 251.1492, C14H17D2NO3, 

calcd. 251.1490. MS-EI: m/z 251 (2%), 183 (10%), 177 (10%), 109 (100%). FTIR 

(KBr): 2960, 2928, 2868, 1614, 1560, 1512, 1248, 1012 cm-1. 

4.4.1.3 Synthesis of E-[4,4,4-2H3]-3-methyl-2-butenyl bromide (318a) 

(E)-ethyl-3-phenylsulfanyl-2-butenoate (314) and (Z) isomer (315):  

NaOH (189 mg, 4.7 mmol) was added to a stirred solution of phenylthiol (436 

µL, 4.3 mmol) in EtOH (3.6 mL). After stirring for 30 min at room temperature, a 

solution of ethyl 2-butynoate (313) (500 µL, 4.3 mmol) was added. After 2 h the reaction 

mixture was quenched with aq. acetic acid (295 µL in 20.0 mL of water), the mixture 

was extracted with ethyl ether, the combined organic extract was washed with 4% aq. 

NaOH and water, dried over MgSO4, filtered, and concentrated on a rotary evaporator. 

The residue was chromatographed over silica gel (10% ether/hexane) to give E isomer 

(314) (649 mg, 68% yield) and Z isomer (315) (162 mg, 17% yield). The spectroscopic 

data were identical to that reported in literature (Thulasiram et al., 2006). 

Ethyl-[5,5,5-2H3]-3-methyl-2-butenoate (316) 

C2H3I (836 µL, 13.1 mmol) was added to Mg (319 mg, 13.1 mmol) in dry diethyl 

ether (10 mL) at room temperature under argon and the reaction mixture was stirred for 

40 min (most Mg dissolved). CuI (1.37 g, 7.21 mmol) was added to a solution of E-

ethyl-3-phenylsulfanyl-2-butenoate (314) (1.46 g, 6.56 mmol) in dry THF (10 mL) at -

15°C and stirred for 10 minutes. C2H3MgI in Et2O was cooled to 0 °C and added drop-

wise to the cuprate mixture over 30 min. The mixture was stirred for 2 h after which 
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saturated NH4Cl (20 mL) was poured into the reaction mixture, the resulting mixture 

was stirred at rt for 60 min and extracted with diethyl ether (20 mL × 4). The organic 

layer was dried over MgSO4 and concentrated to yield ethyl [4,4,4-2H3]3-methyl-2-

butenoate (316) as an oil (805 mg, crude yield 94%), which was used in the next step 

without further purification. The spectral data were identical to that reported for this 

compound (Thulasiram et al., 2006). 

E-[5,5,5-2H3]-3-methyl-2-butenol (317) 

LAH (358 mg, 9.43 mmol) was added to a solution of ethyl [4,4,4-2H3]3-methyl-

2-butenoate (316) (805 mg, 6.15 mmol) in diethyl ether (20 mL) at -5 °C under argon. 

The reaction mixture was stirred at 0 °C for 30 min, was cooled to -5 °C and 15% aq. 

NaOH (0.96 mL) and H2O (1 mL) were added sequentially. After excess MgSO4 was 

added to the mixture the white slurry was stirred at 0 °C for 1 hour, filtered, and washed 

with diethyl ether. The combined organic extract was concentrated to yield E-[4,4,4-
2H3]3-methyl-2-butenol (317) as an oil (521 mg, crude yield 95%), which was used in 

the next step without further purification.  

E-[4,4,4-2H3]-3-methyl-2-butenyl bromide (318a) 

PBr3 (278 µL, 2.93 mmol) was added to a solution of (E)-[4,4,4-2H3]3-methyl-2-

butenol (317) (521 mg, 5.85 mmol) in dry diethyl ether (20 mL) at -5 °C under argon. 

After allowing the reaction mixture to stir for 30 minutes, H2O (1 mL) and 10% 

NaHCO3 (10 mL) were added to quench the reaction and the organic layer was 

separated. The organic layer was washed with 10% NaHCO3, dried over MgSO4, and 

concentrated to 2 mL (if concentrated long enough, it gave 706 mg oily residue with 

crude yield of 80%). The crude product (2 mL) was passed through a basic Al2O3 mini-

column. After concentration of the fraction, E-[4,4,4-2H3]3-methyl-2-butenyl bromide 

(318a) was obtained as an oil (406 mg, yield 46%), which was used in the preparation of 

[3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b) without further purification. 
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4.4.1.4 Synthesis of Z-[3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b) 

[3,3,5’,5’,5’-2H5]-t-Boc-O-prenyl-L-tyrosine (311b) 

[3,3,5’,5’,5’-2H5]-t-Boc-O-prenyl-L-tyrosine (311b) was prepared as reported above for 

t-Boc-O-prenyl-L-tyrosine (311a). 1H NMR (500 MHz, CDCl3): δ7.09 (d, J = 8.5 Hz, 

2H), 6.86 (d, J = 8.5 Hz, 2H ), 5.49 (t, J = 7.0 Hz, 1H), 4.92 (d, J = 7.0 Hz, 1H), 4.55 (d, 

J = 7.0 Hz, 1H), 4.49 (d, J = 7.0 Hz, 2H), 1.74 (s, 3H), 1.43 (bs, 9H). 13C NMR (125 

MHz, CDCl3): δ 175.9, 158.3, 155.8, 138.4, 130.5 (2C), 127.7, 119.8, 115.0 (2C), 80.6, 

64.9, 54.5, 28.5, 18.4; HRMS-EI: m/z 354.2199, C19H22D5NO5, calcd.354.2203. MS-EI: 

m/z 354 (1%), 227 (7%), 209 (9%), 109 (100%).72 (76%).  

[3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b) 

The preparation of [3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b) is similar to that 

of O-prenyl-L-tyrosine (312a). 1H NMR (500 MHz, D2O) δ: 7.28 (d, J = 8.5 Hz, 2H), 

7.04 (d, J = 8.5 Hz, 2H), 5.54 (t, J = 7.0 Hz, 1H), 4.64 (d, J = 7.0 Hz, 2H), 3.97 (s, 1H), 

1.78 (s, 3H). 1H NMR (500 MHz, CD3OD) δ: 7.20 (d, J = 7.0 Hz, 2H), 6.88 (d, J = 7.0 

Hz, 2H), 5.44 (t, J = 5.5 Hz, 1H), 4.52 (d, J = 5.5 Hz, 1H), 3.70 (s, 1H), 1.74 (s, 3H). 13C 

NMR (125 MHz, CD3OD) δ: 174.2 (from HMBC), 159.8, 138.6, 131.6 (2C), 129.1 

(from HMBC), 121.4, 116.3 (2C), 65.9, 57.7, 36.9 (from HMBC), 25.0 (from HMBC, 

HMQC), 18.3. HRMS-EI: m/z 254.1674, C14H14D5NO3, calcd. 254.1679. MS-EI: m/z 

254 (2%), 110 (57%), 109 (100%), 72 (32%). 

4.4.1.5 Synthesis of methyl-L-Tyr-t-Boc-L-Ser (321) and methyl [5,5-2H2]-L-Tyr-
t-Boc-L-Ser (321a) 

L-Tyrosine methyl ester (319) (117 mg, 0.45 mmol) was added to a solution of t-

Boc-L-serine (320) (93 mg, 0.45 mmol) in CH2Cl2 (1.5 ml). The reaction mixture was 

cooled to -15 °C and triethylamine (69μl, 0.5 mmol) and EDCI (87 mg, 0.45 mmol) were 

added -15°C. After 20 hours the reaction mixture was transferred into a separatory 

funnel with ethyl acetate (10 mL) and NaHCO3 (1M, 10 mL). After removal of the ethyl 
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acetate layer the aqueous layer was adjusted to pH 4 with 1M H2SO4, and was extracted 

with ethyl acetate (10 mL × 5). The combined ethyl acetate extract was dried over 

Na2SO4 and was concentrated with a rotary evaporator to give compound 321 (159 mg, 

yield 92%). 1H NMR (500MHz, CDCl3): δ 7.07 (d, J = 6.1 Hz, 1H), 6.96 (d, J = 8.3 Hz, 

2H), 6.73 (d, J = 8.3 Hz, 2H), 6.56 (bs, 1H), 5.59 (m, 1H), 4.83 (m, 1H), 4.16 (s, 1H), 

3.95 (m, 1H), 3.77 (s, 3H), 3.60 (s, 1H), 3.24 (s, 1H), 3.13 (dd, J = 4.9 Hz, 4.1 Hz, 1H), 

2.99 (dd, J = 14.1 Hz, 6.6 Hz, 1H), 1.46 (s, 9H). Methyl [5,5-2H2]t-Boc-L-Tyr-L-Ser 

(321a) was synthesized similarly.  

4.4.1.6 Synthesis of [5,5-2H2]cyclo-L-tyr-L-ser (251a) 

Methyl [5,5-2H2]t-Boc-L-Tyr-L-Ser (321a) (53 mg, 0.14 mmol) in formic acid (5 

mL) was allowed to stand at room temperature for 60 min, the solvent was removed 

under vacuum (water bath temp. < 30 °C) and sec-butyl-alcohol (5 mL) in toluene (1.4 

mL) was added. After heating at 65 °C for 6 h, the solvent was evaporated under vacuum 

to give a white solid 251a (32 mg, 90% yield). HPLC Rt = 2.7 min. 1H NMR (500 MHz, 

D2O): δ 7.13 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 4.40 (s, 1H), 4.01 (dd, J = 3.5, 

6.5, 1H), 3.42 (dd, J = 3.5, 11.5 Hz, 1H), 2.65 (dd, J = 6.5, 11.5 Hz, 1H).  HRMS-EI: 

m/z 252.1074, C12H12D2N2O4, calcd. 252.1079. MS-EI: m/z 252 (5%), 234 (9%), 109 

(100%); FTIR (KBr): 3188, 3047, 2920, 1685, 1664, 1519, 1462 cm-1.  

4.4.1.7 Synthesis of [5,5-2H2]phomamide (171a) 

[5,5-2H2]Cyclo-L-Tyr-L-Ser (251a, 20 mg, 0.079 mmol) in aqueous KOH (8 × 

10-3 M, 15 mL) at 0 °C, was allowed to stir for 2 h and then freeze-dried. Dry DMF (1 

mL) was added to the freeze-dried residue followed by addition of prenyl bromide 

(318a) (30 μL, 0.24 mmol) and stirring at 35 °C. After 6 h the solvent was removed 

under vacuum (water-bath temperature was < 40 °C), the residue was diluted with 

distilled water (15 mL) and was sequentially extracted with hexane (5 mL × 2) and ethyl 

acetate (20 mL × 3); the ethyl acetate extract was dried over Na2SO4 and concentrated 

under vacuum to yield [5,5-2H2]phomamide (171a, 17 mg, 67% yield). HPLC Rt = 8.2 
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min. 1H NMR (500 MHz, CDCl3): δ 7.13 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 

6.16 (s, 1H, NH), 5.84 (s, 1H, NH), 5.49 (t, J = 6.5 Hz, 1H), 4.51 (d, J = 6.5 Hz, 2H), 

4.21 (s, 1H), 4.06 (t, J = 5.0 Hz, 1H), 3.72 (m, 1H), 3.49 (m, 1H), 2.33 (bs, 1H, OH), 

1.81 (s, 3H), 1.76 (s, 3H).  

HRMS-EI: m/z 320.1708, C17H20D2N2O4, calcd. 320.1705. MS-EI: m/z 320 (3%), 252 

(31%), 144 (72%), 109 (100%), 69 (44%); FTIR (KBr): 3196, 3038, 2962, 1674, 1666, 

1511, 1463 cm-1. [α]D = - 137 (c 0.11, MeOH). 

4.4.2 Incorporation of potential precursors 

Minimal medium (MM) was prepared as described in the experimental section 

(General methods). Canadian virulent isolate of L. maculans IBCN 57 (BJ 125) was 

grown in 250 mL Erlenmeyer flasks containing MM (100 mL) inoculated with fungal 

spores (109) and incubated on a shaker at 130 rpm, at 23 ± 2 °C for 3 days. Deuterium 

labeled compounds [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), 

(Z)-[3,3,5’,5’,5’-2H5]O-prenyl-L-tyrosine (312b), [5,5-2H2]cyclo-L-tyr-L-ser (251a), 

[5,5-2H2]phomamide (171a) or [2,3,3-2H3]-L-serine (233d) were dissolved in sterile 

distilled water and added to the cultures of L. maculans in three flasks (0.50 mmoles/ 

100 mL). Non-labeled compounds were added to the culture in another three flasks and 

the cultures thus prepared were used as controls. On the 5th day the broth of each flask 

was extracted with EtOAc (100 mL × 3) and combined extracts were concentrated to 

dryness. The residue was separated by prep. TLC (MeOH-CH2Cl2, 10: 90) to give 

sirodesmin PL (165) (Rf = 0.75, ca. 90 mg/L) and phomamide (171) (Rf = 0.25, ca. 10 

mg/L). 

 

 170



4.5 MACROMOLECULAR ELICITORS PRODUCED BY LEPTOSPHAERIA 

MACULANS 

4.5.1 Preparation of spore germination fluids (SGF) 

A total of 20 leaves (the first two leaves) of 21-day-old B. napus cv. Westar were 

cut from the base of petioles. The lower (or back) sides of leaves were scratched with a 

surgical blade (about 20 sites) and spore suspension (30 µL, 2.5 × 107 spores / mL) was 

applied on each scratched site. The leaves were kept upside down in moisturized Petri 

dishes. The Petri dishes were sealed by using Parafilm and kept in darkness at 23 ± 1 

ºC for two days. The control was treated similarly using sterile distilled water (15 mL). 

After two days about 67% spores germinated (from the inspection of the germinating 

spore suspension under the microscope). The spore germination suspension droplets 

from treated sites were collected into a falcon tube and centrifuged at 3500 rpm for 15 

minutes. The supernatant was decanted into a falcon tube and centrifuged at 3500 rpm 

for 15 minutes. The supernatant was inspected under a microscope to ensure that no 

spores remained (normally centrifuged two times to remove all the spores and 

germinating spores). The total supernatant (SGF) was 10 mL. The control solution was 

8 mL. The SGF and control solution were kept at 4 ºC.  

4.5.2 Bioassay of spore germination fluids (SGF) 

The upper side of leaves of two-week-old B. napus cv. Westar and B. juncea cv. 

Cutlass were scratched with a surgical blade (about 15 sites). SGF (40 µL) was applied 

on each scratched site. After two days the leaves were collected and HPLC samples of 

leaf extracts were prepared similarly as described in Section 4.3.1. The control was 

treated similarly to the solution obtained from control leaves during the preparation of 

SGF. 

The cotyledons and leaves of two-week-old B. napus cv. Westar and B. juncea 

cv. Cutlass were cut from the base of petioles. The upper side of cotyledons and lower 

(or back) sides of leaves were scratched with a surgical blade, 2 and 6 sites, 
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respectively. SGF (40 µL) was applied on each scratched site. The cotyledons and 

leaves were kept in moisturized Petri dishes. The Petri dishes were sealed with 

Parafilm and kept at 23 ± 1 ºC for two days under constant light. Toxicity was 

compared with the control by visual inspection of damage on the leaves. 
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