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ABSTRACT 

Though often held in high regard as a pedagogical tool, the role of feedback within the 

learning process remains poorly understood (Shute, 2008). The prevailing feedback literature 

reveals a history of inconsistent if not contradictory findings (Kluger & DeNisi, 1996). This 

already complicated state is made worse by the recent introduction of learning analytic tools 

capable of providing students with ongoing personalized computer-generated feedback; the 

effectiveness of which remains unknown. The present study contributed to this new domain of 

knowledge by evaluating one such circumstance where a learning analytic feedback intervention 

was implemented in an introductory biology course at the University of Saskatchewan. The 

system provided personalized feedback to half of the enrolled students differentiated according 

their individual characteristics. The remaining students received generic feedback that was 

common to all students within the condition. The effectiveness of personalized feedback was 

evaluated with respect to academic achievement (i.e., final grade) and feedback satisfaction. 

Results of the treatment effect analyses showed no significant differences in student academic 

achievement but a small significant difference in feedback satisfaction. Follow-up analyses 

revealed that these significant differences in feedback satisfaction were not consistent from one 

iteration of the course to the next and that mean feedback satisfaction was in steady decline since 

the system’s implementation. It is suspected that the lack of improvement in academic 

achievement pertained to poor adherence of the system with the theoretical underpinnings of 

good feedback practice. Limitations of the study and future directions are discussed. 
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Chapter One: Introduction 

 Feedback over the past ten years has changed dramatically for many at institutions of 

higher education (Kane, Sandretto, & Heath, 2002). Historically, feedback was believed to have 

operated in terms of strong behaviorism – feedback thereby taking the role of a reinforcer of 

correct behavior (Bangert-Drowns, Kulik, Kulik, & Morgan, 1991; Kulhavy, 1977; Skinner, 

1968). Over time this position changed, and theories attempting at explaining feedback’s 

operation gradually incorporated additional facets, including task difficulty (Mason & Bruning, 

2001), locus of attention (Kluger & DeNisi, 1996), and retrieval strategies (Bangert-Drowns et 

al., 1991). Despite these modifications, feedback in its daily operation remained largely 

unchanged. Minor changes were observed as computer-based instruction increased in prevalence 

and many of these existing feedbacks became programmable, but these changes were neither 

exceptional nor extraordinary. In more recent years however, there has been an expansion of 

online and blended classrooms (Means, Toyama, Murphy, & Baki, 2013). Computer integration 

of the education system has continued to increase, carrying with it the instructional tool of 

feedback. 

In a traditional classroom, where there exists a reasonable instructor to student ratio, 

teaching continues to operate as it has in the past. The instructor can interact personally with 

individual students and cater their feedback to them based upon their personal characteristics. 

However, in a typical introductory university lecture-based course this is no longer the case. 

There simply is not the time of day for a handful of instructors to deliver person-to-person 

feedback when the instructor to student ratio can be 1 to 300 or more. In response to this recent 

development, learning analytics has burst onto the scene, now utilizing banks of student 

information to provide personalized feedback in these courses (Bodily & Verbert, 2017; Siemens 
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& Long, 2011). Whether these new systems are providing feedback as beneficial as that of an in-

person instructor has yet to be determined; more importantly though, whether these systems are 

creating a net gain in learning outcomes is yet unresolved (Gašević, Dawson, Rogers, & Gasevic, 

2016; Teasley, 2017; Viberg, Hatakka, Bälter, & Mavroudi, 2018). 

Purpose and Significance  

There are many studies looking at the effects of feedback on learning achievement given 

different task and question characteristics (see for example: Bangert-Drowns et al., 1991; 

Clariana, Wagner, & Murphy, 2000; Morrison, Ross, Gopalakrishnan, & Casey, 1995; Pridemore 

& Klein, 1991, 1995; Van-Dijk & Kluger, 2001). In recent years there have also been many 

studies looking at the effects of highly personalized computer-generated feedback in the context 

of learning analytics (Tempelaar, Rienties, & Giesbers, 2015). Despite this, there remains a great 

degree of uncertainty regarding the potential effectiveness of personalized computer-generated 

feedback. Select recent reviews cast a great deal of doubt on the real-world effectiveness of 

many of these systems in terms of their ability to improve student learning outcomes, and other 

notable scholars in the field have produced work questioning the direction in which the field is 

heading (Gašević et al., 2016; Gašević, Dawson, & Siemens, 2015; Macfadyen & Dawson, 

2012). With that said, there remains a rationale and certainly a potential that increasingly 

personalizing feedback for individual learners should improve both their receptiveness to the 

feedback and improve learning achievement outcomes as well.  

 The first major purpose for the study is to learn how to respond to the increasing 

pervasiveness of technology in education at both the classroom and curriculum level. The rate at 

which the education system is being technologically integrated is unprecedented, and the 

increased prevalence of fully electronic or blended classrooms will no doubt require a more 
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settled understanding about how to deliver personalized feedback. An increasing number of 

online courses are being offered (Jones & Blankenship, 2017). One of the key advantages of 

online classes are their ability to scale with increasing large class sizes. Despite this, the effects 

of large class sizes in online courses remain poorly understood (Bettinger, Doss, Loeb, Rogers, 

& Taylor, 2017). What is understood however, is the difficulty that would be faced by a single 

instructor that hoped to provide personalized feedback to every student within their course.  

 Second, this study hopes to add to the new and fast-developing field of learning analytics 

and its role in education. Learning analytics made its appearance in western education systems 

around 2010 and has since expanded rapidly (Siemens, 2013). In a modern context where 

decisions are routinely being made with the assistance of big data, it is no surprise that this 

movement can also be seen within institutions of higher education. Data-driven decisions have 

been shown to improve organizational productivity and output over traditional forms of decision 

making (Brynjolfsson, Hitt, & Kim, 2011) and this increasing prevalence of big data can be seen 

in numerous other institutions ranging from health (Lee & Yoon, 2017), to insurance (Corea, 

2017), to business (Banica & Hagiu, 2015). There has long been a call for reform in education 

with an emphasis towards increasing the quality of instruction (Slavin, 2017), though how best to 

manage such a reform or what foundational framework to utilize when navigating these “new 

waters” remains unknown. According to Siemens and Long (2011) the new means by which 

educational reform will take place has arrived, and that is learning and academic analytics 

utilizing data to inform and guide educational decision-making at all levels.  

 In addition to the proliferation of computing technology to society, the internet age has 

afforded us a near endless wealth of data to draw upon for learning related decision-making that 

would otherwise vanish (Ferguson, 2012). For example, emails, tweets, and activity data with 
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online courses can be recorded and mined for any number of purposes. Prior to the internet age 

conversations in the classroom or lectures were immediately lost shortly after their effects had 

faded from memory. When guided by theory and analyzed, these electronic data can provide 

valuable insight into the learning process and inform both educators and administrators of how to 

proceed with students (Siemens, 2012; Siemens & Baker, 2012). This integration of analytics has 

already changed the way learning and teaching take place in many higher education classrooms. 

Examples of in-house learning analytic tools that have been developed and implemented range 

from Purdue University to the University of Michigan, and even to the University of 

Saskatchewan (Arnold & Pistilli, 2012; Greer et al., 2015; Wright, McKay, Hershock, Miller, & 

Tritz, 2014). Among many other applications, learning analytics can be used to generate and 

deliver students’ personalized feedback based on a multitude of different student characteristics 

and in-course activities — many of which have already been accomplished (Kuo, Peng, & 

Chang, 2014; Ochoa et al., 2018; Tempelaar, Heck, Cuypers, van der Kooij, & van de Vrie, 

2013). Outcomes of the current study hope to provide additional clarity in the appropriate 

selection of student attributes, activities, and demographics for use in future feedback systems.  

 The third purpose of the present study is its desire to contribute to both the existing 

understanding of feedback as a construct and to computer-based instruction in higher education. 

As a construct, feedback remains relatively poorly understood; a cursory review of the literature 

will reveal decades of inconsistent findings with numerous attempts at developing a model 

capable of accurately predicting previously unobserved feedback effects (Shute, 2008). Reviews 

showing that some feedback interventions produce either no measurable increase in learning 

outcomes or have a detrimental effect can be found (Azevedo & Bernard, 1995; Kluger & 

DeNisi, 1996), leading some authors to suggest feedback is a “double-edged sword” and should 
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be used with caution (Kluger & DeNisi, 1998). Many of these earlier attempts focussed heavily 

on the task and type of feedback but acknowledged minimally the role that individual learner 

characteristics might play in the effectiveness of feedback (Bangert-Drowns et al., 1991; 

Kulhavy, 1977). Fortunately, more recent proposals have provided frameworks that incorporate 

these important learner qualities (Narciss & Huth, 2004; Winstone, Nash, Parker, & Rowntree, 

2017) offering a basis for their inclusion. It is the hope that the present study contributes in a 

meaningful way to the existing feedback literature, while simultaneously incorporating the newly 

developed techniques and approaches present within learning analytics.  

 In summary, this paper aims to address these two primary research questions: 

1) Will students receiving personalized feedback outperform those receiving generalized 

feedback with respect to their final grade? 

2) Will students receiving personalized feedback report higher levels of feedback 

satisfaction than those receiving generalized feedback? 

Parameters 

 This study is guided by the following parameters.  

 Assumptions 

The research methodology was fundamentally of quantitative design. Matching 

procedures permitting the estimation of a treatment effect of our experiment were utilized. It was 

assumed that the selection of analyses chosen would be best positioned to provide the most in-

depth understanding of the variables within the study because of their ability to control for 

potential bias in group assignment. The results of this study rest upon the following assumptions: 
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• Participation in the study was voluntary; students were adequately informed of the 

experiment prior to consenting. Students were also given the opportunity to 

withdraw their participation at any time.  

• Participants answered and engaged with the study’s survey honestly and gave the 

questions genuine effort in their completion. 

• It was assumed that no errors were made during the data collection, entry, and 

analysis. Data were largely collected through the university’s data warehouse or 

generated through student activity and recorded on Blackboard. Data was handled 

by professional university staff before it was given to the current researcher.  

• Measures chosen to assess desired variables are believed to have done so 

completely and accurately. Evidence of the measures’ reliability and validity will 

be provided. 

 Delimitations 

The first delimitation is the setting and context of the experiment. The study takes place 

exclusively at the University of Saskatchewan, and thus might limit the generalizability to 

similar western Canadian universities near this time in history. Though the student ages and 

backgrounds within the study ranged widely, the overwhelming majority of the students were 

western Canadians in their first year of university. This population was selected for its 

convenience in multiple areas. First, the personalized feedback system was not the product of the 

present paper’s author, but rather was already in operation at the University of Saskatchewan for 

the past several years. Secondly, though the sample is confined largely to western Canadian first 

year students, the results of the study are still expected to have some applicability in other 

traditionally western educational contexts that are highly similar.    
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The second delimitation pertains to the work on intelligent tutoring systems. Though 

these systems have been in existence for a long time and have demonstrated well their ability to 

deliver personalized computer-generated feedback, they will not be extensively reviewed within 

the project for the following reasons. First, feedback exists on a continuum ranging from the 

most minimal unit of information that an instructor can relay to a student to simply re-teaching a 

lesson. In large part, intelligent tutoring systems exist on the far end of that continuum and are 

more akin to teachers in their application than simply feedback systems. Second, one of the 

fundamental short comings in the research on learning analytic systems is the apparent lack of 

adherence to established educational theory (Gašević et al., 2015). An expanded discussion of 

intelligent tutoring systems would be an aside to this more central theme within the paper.  

The third delimitation is the decision to utilize quantitative methods exclusively within 

the data analysis. The analyses chosen for the proposed study have been selected on the basis of 

their ability to control for selection bias in group assignment. Further, the primary outcome of 

interest in the present study is academic achievement, a variable that is best operationalized 

numerically. Lastly, the proposed study intends on using substantial sample sizes. With these 

challenges in mind, it has been decided to exclusively pursue a quantitative means of analysis.   

 Limitations 

 A key limitation is the choice of methods of analysis. Various matching protocols have 

been chosen for data analysis. These procedures attempt to emulate the circumstances of a 

randomized controlled experiment when those conditions could not be fully realized. In the case 

of the present study, stipulations by the ethical review board meant that these ideal experimental 

conditions could not be achieved. Specifically, random assignment to treatment and control 

groups could not be ensured. These procedures, however, are not a perfect substitute for a 
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randomized experiment. They merely allow one to estimate the effect of a treatment. Therefore, 

establishing direct causal inference is not possible within this study.  

 Within the family of matching statistics is the limitation of a possible lack of data. 

Matching requires data from known pre-treatment covariates of the outcome variable to ensure 

that students can be matched appropriately. The proposed study intended on matching with 

known covariates for which data are available, it is not known whether these data will be 

contained within the provided datasets.  

 In addition to the limits on causal inference are the limitations of quantitative analysis 

more broadly. Teaching and learning can be a highly personal affair, one full of nuance and 

subtlety (Stronge, Ward, & Grant, 2011). The quantitative methods employed by this study 

depend upon standardized surveys with closed-ended questions. There is therefore a chance that 

some information will be unavailable by conducting the study from a purely quantitative 

perspective with concisely operationalized definitions.  

 Another limitation is the potential lack of relevant data. Entrance and exit surveys, and 

other data collection forms might have varied from one term or year to the next with respect to 

the present study. Though each year will have substantial overlap in terms of the questions 

asked, some variations will exist and may limit both the generalizability of the results and the 

analyses that may be performed.  

Definitions 

Feedback: the process where information is communicated to a learner with the intention of 

modifying the learner’s behavior to improve learning (Shute, 2008).  
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Personalized Feedback: the process where individualized information (for example: student 

demographic characteristics, past performance indices, and learning traits/characteristics), 

according to the person’s own characteristics or actions, is communicated to them with the 

intention of modifying their behavior for improving learning.   

 

Intelligent Tutoring Systems: computer programs that model learners’ psychological states to 

provide individualized instruction (Ma, Adesope, Nesbit, & Liu, 2014). 

 

Learning Analytics: the measurement, collection, analysis and reporting of data about learners 

and their contexts, for the purpose of understanding and optimising learning and the 

environments in which it occurs (First International Conference on Learning Analytics and 

Knowledge, 2011). 

  

Note: throughout the paper the terms personalized feedback, individualized feedback, and 

differentiated feedback may be used interchangeably. 

The Researcher 

 The principal researcher for the proposed study is a former high school teacher who 

completed a Bachelor of Arts degree in Psychology and Bachelor of Education degree from the 

University of Saskatchewan. The present thesis was conducted for the purposes of fulfilling the 

requirements of completing a master’s program in Educational Psychology, specializing in 

Measurement and Evaluation.  
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Chapter Two: Literature Review 

This chapter provides a conceptual framework for the study by identifying the relevant 

literature on feedback’s concepts, theories, and usage within the study’s context. The review will 

begin with a brief historical overview of instructional feedback and its interpretation throughout 

the earlier half of the 20th century. Following the historical context, an overview of formative 

theoretical frameworks for feedback’s operation will be discussed —demonstrating the gradual 

trend within such proposed frameworks to recognize the importance of individual learner 

characteristics and their role in the effectiveness of feedback. The chapter will then shift towards 

a discussion of the disseminated research comparing the effectiveness of “personalized” 

compared to “generic” feedback. Within this section the effectiveness of personalized feedback 

will be reviewed both before and after the advent of learning analytics. Finally, the chapter will 

finish with a summary of the presented work and identify the primary findings dictating the 

direction of the present paper.  

Theoretical Frameworks for the Operation of Feedback 

Kulhavy’s (1977) review marks the first major critique on the prevailing ideas around 

instructional feedback theory and practice. Drawing research from multiple lines of evidence, 

Kulhavy (1977) systematically deconstructed the popular belief that feedback operated as a 

“reinforcer”, acting to strengthen the learner’s behavior in a specific direction. Kulhavy’s review 

does not provide a single theoretical framework by which feedback operates; rather, the review 

serves as a paradigm shift in the understanding of feedback research. Just as the body of 

feedback literature is full of inconsistencies and contradictions in the present (Shute, 2008), it 

was so at the time of Kulhavy’s (1977) review. It was Kulhavy’s position that much of these 

inconsistencies stemmed from the false belief that feedback operated as the behaviorists 
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believed. At the time of Kulhavy’s review conventional belief on the topic of feedback was that 

it functioned as a form of operant conditioning, where student behavior was governed by either 

reinforcers or punishers. The basic idea can be illustrated thusly: If a student makes an error on 

an assignment or test and is immediately informed of its incorrectness, that feedback ‘punishes’ 

the student and thus reduces the likelihood that he/she will make the same mistake again. 

Likewise, a student that has correctly answered a question and is subsequently informed of its 

correctness will be ‘reinforced’ in that action and more likely to answer similar questions 

correctly. Despite being written nearly a decade following Kulhavy’s (1977) review, one can 

observe this attitude towards the reinforcement model of feedback in Shuell's (1986) overview of 

the cognitive conceptions of learning.   

Kulhavy’s (1977) review devotes a considerable portion to dispense with the notion that 

feedback acts as a reinforcing mechanism. The first limitation cited by Kulhavy is the 

dissimilarity between the motivations of students and animals, that contributed heavily to the 

development of conditioning theory. Kulhavy (1977) illustrated the difference with reference to a 

food deprived lab animal. As is the case with many operant conditioning experiments of the 

time, a pigeon or rat may be deprived of nourishment and then given access to an apparatus that 

when interacted with correctly results in the animal receiving a food pellet. Drawing on the 

animal’s innate desire to eat, behaviors that result in the animal receiving food will be both 

reinforced and will be more likely to be emitted under similar conditions. According to Kulhavy 

(1977) there was no reason to believe that this model will operate in the same way with respect 

to students engaging in a classroom. Students in these conditions are seldom if ever required to 

perform under such deprived states and the idea that students’ hunger for knowledge in the same 

way that pigeons’ hunger for food is comical if not absurd.  
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Sorting through the existing literature of the time Kulhavy (1977) also noted that the 

reinforcement model fails to explain a whole host of discrepancies. Should the reinforcement 

position be correct, one ought to observe that verifying a student’s answer as correct should 

reinforce that behavior in the student and result in greater learning than simply informing the 

student of their answer being incorrect. Citing his colleagues’ study (Anderson, Kulhavy, & 

Andre, 1971), Kulhavy (1977) demonstrated that this is not the case. In the study students were 

sorted into two feedback conditions: feedback for only correctly answered questions and 

feedback for only incorrectly answered questions. Students were then required to learn a 112-

frame computer-controlled lesson. Results showed that both groups made approximately the 

same number of errors during instruction and had similar post-test scores. The well-documented 

Delayed-Retention-Effect also challenges the reinforcement theory (Markowitz & Renner, 1966; 

Sturges, 1972). Reinforcement theory would suggest that retention is best when feedback is 

delivered immediately following the student’s input; however, many studies have shown that 

delaying the feedback can improve a student’s score on a test of retention under some 

circumstances (More, 1969; Schmidt, Young, Swinnen, & Shapiro, 1989; Schroth, 1992; 

Sturges, 1972). Lastly, the use of external rewards does not reliably produce increases in student 

performance (Sullivan, Baker, & Schutz, 1967), a finding that would not be predicted by 

reinforcement theory. To conclude, Kulhavy (1977) suggested that if one were to objectively 

assess the state of feedback research they would have to “accept the fact, that whatever feedback 

does, it rarely acts as a functional reinforcer with text-based materials” (p. 216). This key 

takeaway put forth by Kulhavy (1977) set the stage for the inevitable decline in the belief of 

feedback as a reinforcer, making way for new theoretical frameworks.  
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As it applies to the idea of personalized feedback for individual learners, Kulhavy’s 

(1977) paper is mostly lacking. Near the end of his review Kulhavy touches on the idea that 

some learner characteristics may be an important subject to study with respect to feedback, 

although he confines this to the idea of response confidence. The rationale was that varying 

levels of confidence in a student’s answers will produce varying levels of interest in the feedback 

that may follow. In an earlier study (Kulhavy, Yekovich, & Dyer, 1976) Kulhavy and his 

colleagues found evidence for their predictions related to response confidence. Specifically, they 

found that when students had a high degree of confidence in their response to a question, they 

were far more likely to recall that question if provided feedback. This suggests that at a 

minimum learner expectations and feedback require further study. Unfortunately, this and a 

request for future research to increasingly address learner characteristics in the field of 

instructional psychology is the final statement within the paper pertaining to differentiating 

feedback by learner characteristics.    

One of the more contemporary attempts to synthesize and develop a framework by which 

to understand the effectiveness of feedback comes from Bangert-Drowns et al. (1991). The 

authors reviewed 58 effect sizes from 40 reports comparing the effectiveness of feedback. Only 

studies where a group provided feedback on their coursework was compared in terms of 

academic achievement to a control group that received no feedback but whose instruction was 

otherwise identical were included. In keeping with Kulhavy’s (1977) finding, despite the 

commonplace belief that feedback is necessary and absolutely beneficial in instruction, 

approximately one third of the papers reviewed did not result in improved learning outcomes 

(Bangert-Drowns, et al., 1991).  
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In the process of their review the authors (Bangert-Drowns et al., 1991) emphasized a 

number of features regarding both learning theory and its relationship with feedback. The 

primary takeaway is that feedback is a process of mutual influence between learners and their 

environments. Learners cannot learn something new in complete isolation; feedback is the means 

by which the learner checks their current state of achievement with that of the established 

standard. In addition to their framework, the authors made the following broader conclusions: 

First, pre-search availability was negatively related to feedback effectiveness. That is, students 

that were able to access their corrective feedback before having to generate their own answer 

were less likely to learn from feedback. Second, feedback type was strongly related to learning 

outcomes. For example, verification feedback (simply indicating to the student whether their 

answer was incorrect or correct) produced weaker learning effects than correct response 

feedback (showing the student the correct response) (Bangert-Drowns et a., 1991). Differing 

forms of feedback were more appropriate depending on the task. Third, pretests significantly 

lowered the effect sizes of feedback studies. It is proposed that pretests shape learners’ 

expectations and review content such that feedback effects may be diminished. Lastly, different 

types of instruction warrant different types of feedback; varying levels of feedback effectiveness 

can be seen depending on the mode of instruction (e.g. computer-based vs. in-person).  

The authors (Bangert-Drowns et al., 1991) proposed the following five-stage framework 

for properly interpreting feedback in its operation:  

1. Initial state. The initial state refers to the learner’s individual characteristics (level of 

motivation, interest, self-efficacy, goals, etc.) and any relevant pre-existing 

knowledge that they may have.  
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2. Search and retrieval strategies. These refer to the processes the learner engages in 

upon encountering a question or problem. These processes may include mindful 

reflection of the task at hand, exploring one’s memory, or evaluating a proposition. 

This is a crucial stage in ensuring the effectiveness of feedback. The authors found 

that circumventing this step by permitting feedback before allowing students to 

thoughtfully respond resulted in minimal learning.  

3. Response. Given the situation and the available information, the student responds to 

the task.  

4. Evaluation. The student receives feedback for their response and must evaluate such 

feedback. Prior to the findings presented within Bangert-Drowns et al.’s (1991) study, 

response certitude was believed to have played a significant role here. It was 

proposed that when students were shown to be incorrect but were highly certain that 

their answers were correct, they would spend greater time reviewing the provided 

feedback. Though some support exists for this position, the association appears weak 

and other studies have failed to find such an effect.  

5. Adjustments. Having received feedback, students now make any number of meta-

cognitive adjustments to ensure improved subsequent performance. Some of these 

strategies may include increased time spent studying or working on new 

memorization strategies. Such adjustments may also include more sophisticated 

overhauls of fallacious beliefs held by the student that led to poor performance. The 

adjustment stage sets the stage for the student’s next initial state.  

Referring to the above framework one can observe how a learner cycles through the 

stages from the initial state to the final adjustment stage and then repeats that process. Each 
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sequence provides the learner with new information by which they can re-evaluate their 

performance and increase competence. Though the framework acknowledges individual learner 

characteristics within its initial state, the paper largely ignores the notion that feedback might be 

made more effective by differentiating it according to these characteristics or activities, opting 

instead to view feedback as a unitary construct applied equally across all learners.  

In another attempt to sort out contradictory findings, Kluger and DeNisi (1996) proposed 

a new theoretical framework for understanding the role of feedback interventions on 

performance. As previously mentioned, it was largely presupposed that feedback operated in 

accordance with the behavioristic law of effect put forth by early behaviorists (Thorndike, 1927; 

Watson, 1913), though as Kluger and DeNisi (1996) pointed out, this theory is woefully unable 

to explain the fact that nearly a third of feedback interventions either fail to produce an increase 

in learning, or worse, result in reduced learning. The way in which feedback correctly operates is 

almost certainly more complex and nuanced than the behaviorists of the past proposed (Kluger & 

DeNisis, 1996; Kulhavy, 1977). For their analysis, Kluger and DeNisi defined a feedback 

intervention as the action of an external agent to provide performance information to a learner. 

Operating under this definition, the authors systematically reviewed approximately 3000 papers 

removing those that did not possess a control group, did not measure feedback performance, or 

used samples smaller than 10 participants. The final review consisted of 131 papers with 607 

effect sizes. Their analyses identified a number of feedback moderators such as receiving written 

vs verbal feedback, praise, task complexity, timing, and task type (physical, knowledge, memory 

etc.).  

In their proposed Feedback Intervention Theory (FIT) (Kluger & DeNisi, 1996), learner 

attention is examined at three hierarchically arranged levels. The lowest and most basic of these 
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levels are the task-learning processes. These pertain to the essential qualities of any given task at 

hand and the practical elements of the feedback that may follow. On top of the hierarchy are the 

meta-task processes. Such processes link the task at hand with higher-order goals pertaining to 

the evaluation of self. The meta-task processes include processes that have considerable control 

over effects on performance such as attention to the self, framing effects, and affect. Situated in 

the middle of the theory are the task-motivation processes. These serve as an intermediary 

between the task-learning and meta-task processes linking the two through motivation. The basic 

idea behind the proposed theory is that all things being equal, feedback that focuses the learner’s 

attention towards the task-learning processes is most likely to result in increased learning. 

Feedback that shifts the attention of the learner up the hierarchy takes attention away from the 

task at hand and increasingly focuses it on the self, resulting in reduced learning (Kluger & 

DeNisi, 1996).  

 

 

Figure 2.1.  Hierarchy of Processing for Feedback Intervention Theory (Kluger & DeNisi, 1996). 

Self
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FIT is based upon the following five foundational consecutive arguments, each of which 

is interdependent and is built upon the preceding argument (Kluger & DeNisi, 1996).  

1. Behavior is regulated by comparisons of feedback to goals or standards. 

2. Goals or standards are organized hierarchically. 

3. Attention is limited and therefore only feedback-standard gaps (achievement gaps 

between a learner’s actual performance and that of the feedback) that receive 

attention actively participate in behavior regulation. 

4. Attention is normally directed to a moderate level of the hierarchy. 

5. FIs change the locus of attention and therefore affect behavior.  

Unlike previous theories that looked at feedback with reference to the law of effect, FIT 

explicitly examines the learner’s locus of attention as they are provided with feedback. In 

contrast to Bangert-Drowns et al. (1991), Kluger and DeNisi’s (1996) FIT deals exclusively with 

explaining the effectiveness of feedback and is less focused on the broader project of relating 

learning to feedback. Thus, FIT may be thought of as a supplemental theory to other theories that 

more fully incorporate other aspects of the learning process. 

Kluger and DeNisi’s (1996) FIT makes no mention of differentiating feedback according 

to learner characteristics. However, the theory serves as a powerful tool in explaining why 

certain forms of feedback may inadvertently move the locus of attention up the hierarchy and 

threaten the learner’s self concept. Among other feedback theories, FIT stands out in its ability to 

make sense of negative findings when evaluating feedback research, and will no doubt be useful 

in examining some of the research later discussed in this review. 
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Citing a dramatic increase in the use of computers for educational purposes and the 

potential for computer-based instruction to one day provide personalized instruction to all 

individuals within a classroom, Mason and Bruning (2001) noted that an appropriate theoretical 

framework for use in such scenarios was much needed. Surveying past feedback literature 

pertaining to student achievement, task level, feedback timing, prior student knowledge, and 

feedback type, Mason and Bruning developed a decision-making tree for the administration of 

feedback in computer-based instruction.  

 

 

To understand the decision tree and correctly prepare the appropriate feedback for a 

given learner one must first refer to the top of the tree and determine whether the student in 
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Figure 2.2. Framework for decision-making in computer-based instruction 

 (Mason & Bruning, 2001). 
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question is high or low achieving in the predetermined content area. High achieving students are 

those with a greater level of expertise in the chosen area while low achieving students likely 

possess a less accurate understanding of the given material. Following the classification of 

student achievement, one must determine the nature of the task and estimate its level of difficulty 

to time feedback accordingly. Unsurprisingly, task level is contingent upon the goal of 

instruction. Mason and Bruning (2001) suggested that simple concept acquisition or 

memorization of new words would constitute a lower level task, and most would likely benefit 

from immediate feedback to correct simple errors for both high and low achieving students. On 

the other hand, an assignment requiring abstract reasoning, or the application of theory would 

constitute a higher-level task and would warrant delayed feedback for high achieving students, 

but immediate feedback for low achievers. Finally, after determining the timing, one assesses the 

student’s prior level of knowledge on the subject in question. The level of knowledge is then 

used to identify an appropriate feedback type for use.  

This framework (Mason & Bruning, 2001) marks one of the earlier guides by which 

feedback in instruction is differentiated by student qualities. Though the process of 

differentiation is confined to the characteristics of student prior ability and level of knowledge in 

the subject, this is a considerable departure from the theories preceding it.  

 As has been made plain, the proposed theories for the use and operation of feedback have 

largely neglected the individual characteristics of the student. Mason and Bruning (2001) 

incorporated these in a softer sense (for example, considering student achievement and prior 

knowledge as important variables) but could have been more explicit in mentioning the 

individual differences between learners that might further influence how feedback takes effect. 

Narciss and Huth (2004) proposed a model for the creation of effective tutoring feedback. This 
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view of tutoring feedback emphasizes the importance of students becoming self regulated and 

utilizing feedback to navigate the learning process successfully. Compared to previous 

formulations of feedback frameworks, their multidimensional view of tutoring feedback 

explicitly recognizes the importance of catering feedback to individual students based on their 

characteristics. Unlike Mason and Bruning’s (2001) decision tree, Nariciss and Huth (2004) 

proposed a relationship model that relates instructional and individual factors towards the more 

central tenets of feedback. 

 Narciss and Huth’s (2004) framework for tutoring feedback is centered around three 

primary factors: 

1) The nature and quality of feedback. Within the nature and quality of feedback are 

three separate facets.  

a. Functions of Feedback. These pertain to the functional aspects of the feedback 

related to instructional goals. For example, an instructor may intend that the 

provided feedback improve a student’s ability to recall definitions, or on the 

other hand, the feedback may be intended to improve a student’s ability to 

stay motivated and on-task.  

b. Presentation of Feedback. As discussed earlier by other theorists, these pertain 

to the technical qualities of the feedback (timing, type, level of elaboration, 

frequency, etc.)  

c. Contents of Feedback. This facet contains two subcomponents. The first is the 

evaluative component that shows the learner the gap between their 

performance and the ideal performance. The second is the information 
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component. This contains information relating the task-at-hand and should 

allow improved performance for the student in subsequent evaluations.  

2) The characteristics of the instructional context. Contained within this facet are the 

learning objectives, tasks, and obstacles inherent in the instructional context. 

Feedback can only be of value to the student if its qualities are carefully matched to 

the context for which it is to be used.  

3) The individual learner characteristics. A great many learner qualities could be 

included within this section. Narciss and Huth (2004) drew attention to learning 

objectives and strategies, student prior knowledge, as well as motivation and meta-

cognitive skills. It is further proposed that many of the inconsistent findings in 

feedback research may have been caused in part by the individual characteristics of 

learners in those studies. Thus, the authors stressed the importance of taking these 

qualities into account and considered them of equal importance to the other facets 

when fitting an appropriate feedback strategy for an individual.  
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Figure 2.3. Factors contributing to the informative value of feedback (Narciss & Huth, 2004). 

 Narciss and Huth’s (2004) model and guide for developing tutoring feedback is a major 

step in the direction of incorporating learner characteristics into the application of differing 

feedback strategies. Many past analyses had concluded that individual learner characteristics 

were significant factors in the inconsistent findings on feedback studies (Azevedo & Bernard, 

1995; Bangert-Drowns et al., 1991; Kulhavy, 1977; Mory, 1992). The paper also calls for the 

careful adaptation of function, content, and form of feedback for individual learners, in effect 

personalizing feedback to best maximize learning outcomes. Narciss and Huth (2004) claimed 

that matching feedback to these learner characteristics is of equal importance to matching the 

situational factors to the instructional context.  

Even though the focus of feedback literature has progressed in moving away from the 

behaviorist interpretation and the law of effect (Thorndike, 1933), it has still largely remained 
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focussed on the specific features of feedback itself rather than other outside factors (Shute, 

2008). Recently a movement towards understanding feedback from the perspective of the 

receivers and what factors affect successful reception and implementation of feedback has taken 

place. In a systematic review by Winstone, et al. (2017), the authors cited the long-observed 

phenomenon of inconsistent effect of feedback that others have observed. Contrary to other 

reviews however, they suggest that an understudied determinant of this trend is the effectiveness 

and degree of engagement learners have with their feedback. Asserting that for feedback to be 

effective the recipient must be properly engaged with the feedback is not a new idea (Hattie & 

Timperley, 2007; Nicol & MacFarlane-Dick, 2006). However, this branch of feedback literature 

has largely been disconnected and too far removed from the more mainstream lines of feedback 

research. Thus, the authors performed a meta analysis of available relevant works and proposed 

the following framework for the effective utilization of feedback.  

The first term that needs to be addressed is that of “proactive recipience.” Proactive 

recipience is the active engagement with the feedback process and is believed to be associated 

with a host of favourable outcomes pertaining to feedback utilization (Winstone et al., 2017). 

Passive recipience, by contrast, is the state where learners engage with feedback in a 

disinterested and compliant manner. The authors then propose the SAGE (Self appraisal, 

Assessment literacy, Goal-setting and self regulation, and Engagement and motivation) 

taxonomy, a set of distinct recipience processes that aim to increase proactive recipience in 

learners (Winstone et al., 2017). Self appraisal refers to the learner’s ability to make accurate and 

informative judgements about their own strengths, weaknesses, and reduce their reliance on 

outside assessment. Assessment literacy refers to the student’s ability to understand the scheme 

by which they will be graded. Understanding this system affords them a metric to evaluate their 
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own work and performance. Goal setting and self regulation refer to the learner’s ability to 

articulate well-defined goals (for example, achieve greater than 85% on next math assignment) 

and maintain focus in pursuit of these goals. Lastly, engagement and motivation refer to the 

learner having an orientation of motivation. To make use of and actively engage with feedback 

the learner must express a desire to understand and act upon their feedback. The other key aspect 

of the proposed framework is the role of interpersonal communication with regards to feedback. 

This component refers to the characteristics of the receiver, the sender, the message, and the 

learner context. The final formulation of the framework can be seen below: 
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Figure 2.4. Model of conceptual influences on feedback recipience (Winstone et al., 2017). 

As one can see from Figure 4, the relationship between the proactive recipience of the 

learner and the feedback intervention is moderated by both the SAGE recipience process and by 

interpersonal communication variables. Thus, according to the theory, for a feedback 

intervention to enjoy a greater degree of success, conditions within both the SAGE taxonomy 

and communication factors must be properly addressed (Winstone et al., 2017). In terms of 

addressing personalized feedback, this model provides an added layer of analysis for 

consideration, offering a deeper look at what underlying variables may need to be addressed 

when attempting to personalize instructive feedback. 

Research on Personalized Feedback 

 This section of the review focuses on personalized feedback research prior to the 

implementation of learning analytics. From the perspective of many within the field of 

education, feedback is often seen as one of the most powerful instructional tools available to 
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them and its efficacy appears to have no limit (Cohen, 1985; Planar & Moya, 2016). 

Personalized instructor feedback to students is one such instructional strategy that is not only 

touted as the highest form of feedback but is also generally preferred by students (Burr, Brodier, 

& Wilkinson, 2013; Cramp, 2011; Laryea, 2013; Lipnevich & Smith, 2009). Unfortunately, 

providing personalized instructor feedback is often impossible with many modern university 

courses where the professor to student ratio becomes increasingly small (i.e. 1/10 compared to 

1/300). Given this limitation it seems inevitable that if instructors in higher education want to 

administer personalized feedback to their students they will need to adapt technologically. In 

considering ways to deliver personalized feedback more easily and to a greater volume of 

students, a number of different methods have been proposed or investigated. For example, audio 

recordings have been shown to provide more complex and detailed feedback than text alone and 

afford the student the opportunity to infer greater meaning from the speaker’s tone and intonation 

(Gould & Day, 2013; Merry & Orsmond, 2008). Others have proposed the use of video 

feedback, where students are delivered a video of either their instructor or a teaching assistant 

marking their tests and assignments in real time and providing ongoing commentary of their 

marking (West & Turner, 2016). Despite the creativity with the aforementioned modes of 

delivery, prior success, and ability to reach large numbers of students electronically, they still 

suffer from a lack of scalability. In a course with over 300 students, no instructor can reasonably 

be expected to deliver individual feedback to their students whatever the medium. While these 

examples are no doubt interesting and likely to be of value for other more distantly related 

projects on personalized feedback, they are less relevant to the present study as personalized 

written feedback is most pertinent. 
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 Another major contributor to the personalized feedback literature comes from the broader 

work related to intelligent tutoring systems (ITS). ITS are computer programs that model 

numerous psychological states within a learner and use these to provide individualized 

instruction and feedback (Ma et al., 2014). According to Ma et al. (2014), ITS are those that are 

capable of performing tutoring functions (presenting new information for students, asking 

questions from students, providing feedback or hints to activities, answering student questions, 

or offering prompts to elicit a change in student cognition or meta cognition), can develop a 

model to represent the student’s psychological states (subject knowledge, learning strategies, 

motivation levels, emotions), and can adapt both these qualities should the need arise. The 

effectiveness of these systems in producing increases in learning outcomes can be readily 

demonstrated. Ma et al.’s (2014) meta analysis found that ITS instruction produced significantly 

greater achievement compared to large group teacher-led instruction, non-ITS computer-based 

tutoring, and workbook instruction. However, it was also found that in terms of academic 

achievement ITS were not significantly different from those of individualized human tutoring. 

Another meta analysis performed by Steenbergen-Hu and Cooper (2014) found similar results, 

the only difference being that individualized human tutors were slightly more effective than the 

ITS. Possessing their own well-defined place within the learning sciences, ITS are an extensive 

subject in and of themselves. Further, because their functions are not narrowly confined to the 

administration of personalized feedback, but rather instruction more broadly, they will only be 

mentioned briefly within this review.   

The following studies are the most applicable works that feature personalized written 

feedback and compare its effectiveness to generic feedback with reference to well defined 

learning outcomes.  
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The study conducted by Gallien and Oomen-Early (2008) correctly identified the trend of 

higher education increasingly moving towards online instruction and the challenges that this 

move may impose on teaching and learning. The authors drew attention to the importance of 

feedback in instruction and identified a number of challenges pertaining to the administration of 

feedback in exclusively online classrooms. To address this question, they had 84 students from 

two American universities across multiple classes randomly assigned to either a personalized or 

generic feedback condition. Those in the personalized condition were provided with one-on-one 

feedback delivered in written form from the instructor. Within the personalized messages the 

instructors provided three forms of feedback. 1) Corrective feedback – feedback that corrects the 

contents of the student’s answer to assignments 2) Informative feedback – feedback that 

addresses the content of a student’s answer and links it to course materials, and 3) Socratic 

feedback – feedback that aims to ask reflective questions about the student’s answers to an 

assignment. Students in the collective feedback condition were given access to a report that 

discussed different aspects of the assignment and provided examples of well-written answers 

Gallien and Oomen-Early (2008). The report was generated by the instructor after they had 

reviewed the performance of all the students throughout the course.  

To conclude their study, Gallien and Oomen-Early (2008) found that not only did those 

students receiving written personalized feedback outperform those in the collective feedback 

condition, they also reported higher levels of feedback satisfaction. It is important to note 

however that the personalized feedback generated in this study was done by human instructors, 

and unsurprisingly required a lot of time commitment. Compared with the collective condition, 

the personalized feedback took twice as long to generate (approximately 3.5 hours for 39 

students). The total number of students within each feedback condition was also relatively small 
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(compared to typical first year university courses) and providing personalized instructor 

feedback is likely impossible with larger courses, and thus presents the opportunity for learner 

analytic based feedback systems to address this challenge. 

 In a study by Parvez and Blank, (2008) a small group of 33 computer science students 

were required to partake in a multimedia lesson. The ITS classified students according to Felder-

Silverman Learning Style Model (Felder & Silverman, 1988), where each learner was classified 

along the four continuums of sensing-intuitive, visual-verbal, active, reflective, and sequential-

global. Students were given a problem description of a movie ticket vending machine and were 

required to generate a solution to the problem via a diagram. As students worked through the 

problem, they were provided real time personalized feedback from the ITS according to the 

learning style they had been classified as. For example, those classified as visual learners were 

provided visual feedback while those who were classified as verbal learners received written 

feedback. Overall, students regarded the ITS as being valuable, with 23 out of the 33 students 

stating they liked the pedagogical advice. In their second study Parvez and Bank (2008) had 

students placed in either the individualized feedback group using their ITS (personalizing 

feedback by learning style) or in the control group where they received generic feedback. 

Between the pre-test before the assignment and the post-test afterwards, it was found that those 

in the individualized group performed significantly greater, correctly answering 4.6 greater 

questions (on average) out of a possible 13 questions than those not using the system.  

The Advent of Learning Analytics 

 As touched on briefly in the introduction, learning analytics is a “big data” approach to 

making decisions about learning, where large volumes of institutional data are analyzed with 

respect to any number of specified outcomes. A more exact definition was provided at the first 
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International Conference on Learning Analytics and Knowledge, and reads “learning analytics is 

the measurement, collection, analysis and reporting of data about learners and their contexts, for 

purposes of understanding and optimising learning and the environments in which it occurs 

(Siemens & Long, 2011, p. 34). This definition is rather broad in its scope, and for good reason. 

The acquisition of data from various sources and their utilization in the learning sciences could 

take many forms. Among many other potential applications, Siemens and Long (2011) discussed 

the ability of learning analytics to help administrative decision-making and resource allocation, 

identify at-risk learners, and identify institution wide successes and short comings. They further 

discussed the potential of these systems to be both integrated at the course level to aid students in 

learning and at the institutional level to reveal statistical trends and habits over time. It must be 

noted however that learning analytics is a very young field, having only risen to prominence in 

the past decade (Khalil, Taraghi, & Ebner, 2016). With this youth come some risks and 

limitations. A number of more recent reviews of the field have found that learning analytics has 

talked of the potential of the technology far more than they have demonstrated its efficacy 

(Gašević et al., 2015; Jivet, Scheffel, Specht, & Drachsler, 2018; Viberg et al., 2018). This gap in 

research has led to a number of papers that have called for a correction within the field, hoping 

that future developments can be made in tandem with established learning science (Siemens, 

2012). These issues as well as an overview of relevant studies to the current paper will be 

discussed.  

Though the core message of the reviewed studies below should emphasize the importance 

and successes of delivering personalized feedback, other studies have been included to 

emphasize the importance of other qualities. Some of these will include studies that highlight the 

potential methodological advantages in research using analytics and large volumes of trace data, 
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while others will be examples of work that failed to achieve significant differences in learning 

outcomes regarding their personalized feedback interventions. 

Perhaps one of the most notable and successful implementations of learning analytics for 

the administration of feedback is that of Course Signals at Purdue University (Arnold & Pistilli, 

2012; Gašević et al., 2015). Course Signals was implemented at Purdue University in 2007 and 

has been actively providing personalized feedback to students ever since. Utilizing trace data 

from the university’s learning management system (Blackboard) and known student information, 

Course Signals generates risk levels for students with a patented algorithm. Students are 

provided personalized feedback throughout a course via a highly streamlined ‘traffic light 

system’ that presents students one of either a red, yellow, or green light to a student. If a student 

is provided a red light by the system, it has been determined by the student’s existing 

characteristics (high school GPA, standardized test scores, years of university, age, etc.) and 

course activities to date that there is a high likelihood of them failing the course and risking 

dropout. If a student is provided a yellow light the risk of them failing is still present, however 

much less than that of a red light. Alternatively, if a student is provided with a green light the 

system has predicted that their chances of success are relatively high. Though considered its key 

feature, Course Signals provides functionality beyond its traffic light system. Additional 

functionality permits instructors the ability to interact with students providing individual support 

for those who need it through messaging systems (Tanes, Arnold, King, & Remnet, 2011).  

According to Arnold and Pistilli (2012), the benefits of Course Signals have been 

numerous. The implementation of Course Signals has seen marked improvements in student 

academic achievement with a reduction in the number of Cs, Ds, and Fs awarded to students as 

well as an increase in As and Bs across courses utilizing the system. Similar results have also 
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been observed when comparing courses using Signals to past years before implementation. The 

data also suggest that Course Signals is effective with respect to student retention. The earlier 

students encounter Course Signals in their university career the greater the likelihood they will 

be retained by the institution (Arnold & Pistilli, 2012). Years of surveys assessing student 

opinion of Course Signals has also revealed its positive reception. Arnold and Pistilli (2012) 

reported that 89% of students polled said that Course Signals provided a positive experience for 

them. Additionally, 58% said that would like to have Course Signals operating in all their other 

courses. Lastly, Course Signals has received considerable support from university faculty and 

instructors for the benefits that it affords them. The benefit of providing instructors with useful 

analytic data and the means to identify and refer struggling students to support sources was held 

in high regard by some teaching staff (Arnold & Pistilli, 2012). However, there were a few 

commonly cited concerns by faculty using Course Signals. Prior to the system’s implementation 

there were concerns over the potential flood of students seeking instructor help if provided with 

disheartening feedback from the system. As well, there were concerns about the system 

becoming a dependency for newly arrived students, instead of focussing on the desired learning 

traits. Despite Course Signals’ successes (Arnold & Pistilli, 2012), the system has received 

outside criticism within the learning analytic sphere pertaining to Course Signals’ adherence to 

pedagogical theory and educational practice (Gašević et al., 2015), which will be discussed in 

greater detail later in this chapter.  

 At the University of Maastricht in the Netherlands, Tempelaar et al. (2013) implemented 

a learning analytic system that offered students in a statistics class the opportunity to practice 

their skills with an online testing platform. The system was designed to effectively combine data 

on learner dispositions with that of formative assessment data. Formative assessment data came 
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largely through course activities courtesy of an online system that allowed students throughout 

the course access to practice tests (Tempelaar et al., 2013). Results from these tests provided the 

students personalized feedback regarding their levels of mastery with the course concepts. 

Learner dispositions were broken down into differences in learning styles and (mal)adaptive 

thoughts and behaviors. Though different learning styles were found to have benefitted more 

from having access to the practice tests and the system overall, the authors noted that students in 

general found benefit from being informed of their learning style and being given access to test-

directed learning (Tempelaar et al., 2013).  

 Perhaps most pertinent to the present study is the case of E2Coach at the University of 

Michigan. Much like Course Signals, E2Coach is a learning analytic support system that provides 

students who opt into its services personalized feedback throughout a course (Wright et al., 

2014). Unlike Course Signal’s traffic light, E2Coach delivers written feedback to students. 

E2Coach has been operating at the University of Michigan’s introductory physics class since 

January 2012. To determine whether the system was successful Wright et al. (2014) evaluated 

students’ actual final grades relative to their predicted grades. In such a case the learning system 

predicts an individual student’s grade based on their individual characteristics and past 

performances and should the student’s final performance in the course exceed that of their 

predicted grade it would be considered a success. For example, should a student with a predicted 

grade of 60 achieve a final grade of 80 in such a course they would have achieved better than 

expected. Likewise, if a student was predicted to achieve a 90 in a course but only managed a 

final grade of 75 they would be classified as worse than expected.  

 According to Wright et al. (2014) students are delivered their first tailored message the 

first week after they have opted into the system. Their first message is personalized to address 
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their approach to the course based upon their previous academic history and entrance survey 

responses. Subsequent messages are generated every few weeks and can include personalized 

advice about how to prepare for exams, how to best utilize the system (testimonials from past 

successful students), motivational aids, and provide detailed feedback about the student’s current 

course performance. The system also provides normative feedback — allowing the student to see 

what students who achieved their desired grade in the past did and how well they will need to 

perform on future test and assignments to achieve theirs. It should be acknowledged that the 

messages are originally written by a person before they are selected by student trait and delivered 

to the learner. Huberth, Chen, Tritz, and McKay, (2015) reported that message authors for 

E2Coach have historically been recent physics graduates from both undergraduate and graduate 

programs working in consultation with course instructors.  

 The effects of this personalized feedback in terms of academic achievement have been 

well documented (Wright et al., 2014). Though moderated by usage, E2Coach appears to be 

increasing student final grades compared to their predicted grade (Wright et al., 2014). Moderate 

and high usage users were observed to have an average of 0.11 and 0.18 grade points higher final 

grade while non-users showed no difference in their final grade compared to their predicted 

grade. Authors also noted that an achievement gap between genders had long been observed in 

introductory physics at the University of Michigan, and it was initially hoped that E2Coach might 

be able to attenuate or fully close this gap. Unfortunately for all, the gap persisted; however, 

there was no differential improvement in academic achievement between the genders when 

provided with E2Coach, suggesting that the system equally benefitted both males and females 

(Wright et al., 2014). An unfortunate though major drawback to the work done on E2Coach is 

that opting in to use the system has been voluntary (Huberth et al., 2015). This limitation calls 
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into question some of the results of the work conducted on E2Coach as bias in group assignment 

may be present.  

In a study conducted by Kim, Jo, and Park, (2016) the effects of a learning analytics 

dashboard providing personalized feedback for a management statistics course at a private 

university in Korea was examined. The authors were primarily interested in how student 

satisfaction with the dashboard’s feedback related to their frequency of use, and how the 

presence of the dashboard would influence student learning achievement. All graphs presented 

on the dashboard relayed normative information to the student – showing them their performance 

in a number of domains (for example: total online activity, writing and reading frequency, as 

well as activity trends over time) with reference to the class average. Students in the course were 

going to be graded on a relative scale, and so the authors believed that a dashboard providing 

norm-referenced personalized feedback would be most helpful in improving student participation 

and activity with the learning materials. Regarding the success of the feedback system, it was 

observed that students offered access to the dashboard outperformed those not permitted access 

(Kim et al., 2016). However, the effects of the dashboard on feedback satisfaction were not so 

straightforward. A negative correlation was observed between student satisfaction and dashboard 

usage, suggesting that as students increasingly used the dashboard, they became less satisfied 

with the feedback that it provided. It was also observed that amongst the students who used the 

dashboard most frequently, high academic achievers reported lower levels of satisfaction with 

the feedback. The authors suggested that this relationship may be explained in terms of the high 

achieving learner’s motivational state. They proposed that high achieving learners are already 

highly motivated and thus do not benefit from exposure to a norm-referenced dashboard. They 
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conceded that future work should include additional student information such as motivational 

state, and achievement when providing dashboard feedback (Kim et al., 2016).  

Khan and Pardo (2016) documented the effects of a learning analytics system providing 

feedback to students in a first-year engineering course using a flipped classroom strategy. 

Students in the study were provided access to a feedback dashboard that would feature several 

different displays comparing the student’s course performance with that of the class average. For 

example, a student may observe a collection of dials (analogous to a speedometer) showing their 

level of completion of the course’s practice questions in a specific chapter to those of the class. 

The rationale was that if students can observe their progress and compare it with their 

classmates, they would be more likely to utilize the information to improve upon their situation. 

Unlike the previously discussed examples, the analytic system documented by Khan and Pardo 

(2016) did not utilize any student demographic data in its predictive models. Only data generated 

by student activities with the course were used; these included interactions with video clips, 

answers to online formative and summative assessment questions, access to course resources, 

and access to the dashboard.  

A key component of the study was to assess the frequency of use of the dashboard and 

observe changes with frequency patterns over time (Khan & Pardo, 2016). Additionally, the 

authors looked at whether access and frequency of use with the dashboard were at all predictive 

of student academic achievement for the midterm exam. With regards to frequency of use, it was 

found that students utilized the dashboard with great frequency at the outset of the course and 

through the first several weeks. Shortly thereafter, use tapered off dramatically, and the 

dashboard remained largely unused by most participants by the end of the course. It was also 

discovered that there was no relationship to use of the dashboard and grade achieved on the 
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midterm. This result suggests that the personalized feedback provided by the dashboard was not 

providing any benefit in terms of academic achievement (Khan & Pardo, 2016).  

Of particular interest to the present paper is the work provided by Guarcello et al. (2017) 

aimed at assessing supplemental instruction with coarsened exact matching. The intervention 

they provided was not an example of feedback per se, but rather a workshop designed to provide 

students additional instruction above and beyond the course lectures. The means by which the 

data were analyzed is key with reference to the current study. Because the intervention had to be 

voluntary, covariates related to student achievement were tracked and controlled for in 

subsequent analyses with Coarsened Exact Matching (CEM). This process seeks to overcome the 

potential selection bias in non-random group assignment by matching students on covariates 

related to the outcome variable of interest. Using this method one can be more confident that the 

differences observed between the groups after matching are due to the intervention and not to 

selection bias, assuming no significant covariates have been overlooked. In the case of Guarcello 

et al. (2017) controlling for these covariates revealed a net positive effect of their supplemental 

instruction intervention. Students who received supplemental instruction had a significantly 

higher final grade in the course and the odds of them passing the class were 2.2 times higher than 

those who did not receive any supplemental instruction (Guarcello et al., 2017).  

Recently Ochoa et al. (2018) presented a study featuring a multimodal learning analytic 

system called RAP (Spanish acronym for “Automatic Presentation Feedback”) capable of 

providing highly personalized feedback to students regarding presentation skills. Contrary to 

many of the previously discussed works, this system incorporated data from a variety of sources 

pertaining to presentation ability. RAP recorded, analyzed, and evaluated student posture, gaze, 

volume, filled pauses, and student presentation slides. With regards to feedback, the goals of the 
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developers were to provide objective and readily understood feedback to students delivering 

presentations. To ensure unambiguous feedback, student reports were also paired with recorded 

examples of each student’s presentation to show both desirable and undesirable behavior (Ochoa 

et al., 2018). Within the study, students were required to present to an empty room filled with the 

requisite cameras, microphones and other equipment needed by RAP. Upon completion of their 

presentation, students were supplied with an email link to a website that featured a computer-

generated personalized feedback report. The report relayed back to students their score in each of 

the previously identified domains on a 5-point scale ranging from “very good” to “very bad”. 

Students were also given a total score averaged across all domains. To assess the system’s 

feedback accuracy, feedback was compared with those of expert human reviewers. Human 

reviewers and RAP agreed 65% of time with regards to posture, 78% for gaze, 75% for filled 

pauses, and 71% for volume. Agreement was much lower (ranging from 44% to 59%) for 

domains related to evaluations of the presentation slides, but the authors believe this was due to 

the system being unable to properly evaluate pictures contained within a student’s presentation 

slides. Regarding student perceptions, a post study questionnaire found substantial support for 

RAP, with 65% and 58% of students reporting that the “usefulness” of the system and “learning 

from feedback” as excellent (Ochoa et al., 2018).  

Another multimodal learning analytic system providing feedback to student learners can 

be seen in Mangaroska, Sharma, Giannakos, Trætteberg, and Dillenbourg's (2018) study. A 

group of computer science students were given access to a mirroring tool designed to report back 

to them a summary of their performance and task activities in a test of debugging. The mirroring 

tool collected and relayed data on number of lines of code, errors, code warnings, debugging 

events, execution of commands, and unit test results. Feedback was personalized to individual 
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students in terms of their inputs and was aimed at providing the student support in working 

towards the exercise’s goals. Gaze monitoring technology – where eye-tracking software was 

used to monitor student gaze – was also utilized within the study to assess how expert and novice 

debuggers made use of the mirroring tool. Results showed students who processed the 

information within the mirroring tool improved their performance in the debugging task, though 

the relationship between the tool and student success was not straightforward (Mangaroska et al., 

2018). Expert debuggers benefitted from the tool to a greater extent than novice debuggers and 

there was a negative correlation between time spent viewing the mirroring tool’s interface and 

performance. The authors claimed this result indicates that the time spent viewing the tool is not 

important for success, rather it is the time spent processing the information and acting upon it 

productively (Mangaroska et al., 2018).  

While the reviews earlier suggest that learning analytics and data driven education are 

delivering precious and irrefutably valuable tools to the study of education, the bigger picture 

may not be so clear. Despite the increasing prevalence of learning analytic systems and software 

implementations across many institutions of higher education, there appears to be a shortfall of 

evidence suggesting that such implementations are making a positive difference (Viberg et al., 

2018).  

With regards to feedback Gašević et al. (2015) pointed out that many learning analytic 

tools are generally not developed from established educational theories. For example, many 

learning analytics dashboards provide personalized feedback that is norm-referenced with respect 

to many student activities and grades within a course. While the thought of, and rationale for, a 

norm-referenced dashboard might make sense to a developer or an outside observer, the existing 

research on norm-referenced feedback is quite clear: as a part of Kluger and DeNisi’s (1996) 
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review they systematically surveyed the existing literature on norm-referenced feedback and 

found it to be more detrimental than beneficial. They even provided a theoretical framework that 

can account for why norm-referenced feedback is unlikely to result in increased learning and 

why other forms of feedback may be superior. Concerning FIT (Kluger & DeNisi, 1996), one 

can see that norm-referenced feedback moves the student’s locus of attention up the hierarchy of 

processing towards evaluations of the self. This movement distracts the student from what is 

most pertinent to closing the gap between their current performance and desire performance – the 

specifics of the task. Despite this finding, numerous learning analytic systems continue to 

develop feedback systems providing students norm-referenced feedback. Though one can find 

some successes of norm-referenced feedback (Delaval, Michinov, Le Bohec, & Le Hénaff, 

2017), one will likely find more examples of ineffective systems or students expressing their 

disinterest in norm-referenced feedback (Khan & Pardo, 2016; Tan, Yang, Koh, & Jonathan, 

2016; Wise, Zhao, & Hausknecht, 2014). It may seem then to someone familiar with the 

established feedback science that these developers may in fact be designing these systems in near 

isolation of established feedback theory.  

In Gasevic, et al.’s (2015) critique of learning analytic practice more broadly, they also 

went on to criticize the content of Course Signals’ messages (Tanes et al., 2011) and its 

implementation at Purdue University specifically (Arnold & Pistilli, 2012). With reference to the 

messages, it was found that concise instructional messages provided at the level of the task were 

rarely observed, despite the large volume of research showing that this is where feedback is most 

effective in increasing learning (Kluger & DeNisi, 1996; Hattie & Timperley, 2007; Shute, 

2008). Criticism levelled at Course Signals at Purdue (Arnold & Pistilli, 2012) was centered 

around the lack of alignment between Course Signals and established research on instructional 
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practices. Course Signals was originally designed as an early alert system for identifying students 

at risk, and thus lacks a design more conducive to identifying gaps in student knowledge and 

aiding instructors (Gasevic, et al., 2015). 

A more recent review by Jivet et al. (2018) suggest that little has changed in terms of 

aligning learning analytic tools and educational theory. Looking more specifically at learning 

analytic dashboards, the authors wanted to see how individual papers were evaluating their 

creations. Perhaps unsurprisingly, less than a third of the papers they reviewed explicitly targeted 

the cognitive competence of students using the dashboard. Additionally, dashboards were often 

evaluated in terms of their usability and whether students were satisfied with their operation, 

instead of whether or not they provide a measurable benefit to the learners. In line with Gasevic, 

et al. (2015) it was also observed that these dashboards frequently utilized norm-referenced 

comparisons with other students in the course. Lastly, a mere seven papers within their review 

drew upon educational concepts for use in dashboard evaluation, perhaps indicating that many of 

these systems are in need of a return to the learning sciences.  

Though that criticism might seem harsh or unwarranted, an equally recent review by 

Viberg et al. (2018) suggests otherwise. Their paper points to the lack of evidence that learning 

analytic systems are both increasing student achievement indices and supporting teaching. In 

their meta-analysis of 252 publications pertaining to learning analytics in higher education from 

2012 to 2017, a mere 23 papers (9%) demonstrated evidence of learning analytics improving 

student learning outcomes, prompting the authors to say that the potential for learning analytics 

still far outweighs the actual evidence. An additional 16% of papers within their review 

explicitly spoke of this potential for learning analytics to improve learning outcomes but did not 

present any evidence of this (Viberg et al., 2018).  



43 
 

Viberg et al., (2018) cited earlier in their paper that as a new and emerging field, 

publications within learning analytics have increased since 2012. As a young academic field, a 

review of this nature is important in surveying the landscape and assessing the larger directions 

and intentions of the field. Learning analytics has already succeeded in becoming an integral part 

of higher education and as both Gaesevic, et al. (2015) and Viberg et al. (2018) have shown, the 

field in its current state requires both greater adherence to the established learning theory it 

purports to contribute to, as well as a focus on providing greater evidence of its efficacy instead 

of touting its potential.  

Summary  

 In this chapter the existing relevant studies on personalized feedback have been reviewed, 

as well as a number of formative theories regarding the operation of feedback from a 

psychological and educational perspective historically to the present day. Although there are 

many studies that utilize learning analytics to deliver personalized feedback for individual 

students, few have used feedback in a similar manner to that of the present study. Even fewer 

have demonstrated measurable increases in learning outcomes as a result of that feedback. 

Research prior to the advent of learning analytic systems has shown that students by and large 

prefer personalized feedback over generic feedback. These results often reveal higher levels of 

satisfaction with feedback as well. In the case of ITSs the benefits to academic achievement 

appear to be robust, though these systems are not necessarily feedback specific, and routinely 

provide much more to a student by ways of instruction.  

The review of the relevant research on learning analytics-based feedback has shown that 

feedback can come in many different forms while still falling under the definition of 

personalized feedback. Learning analytic systems have been used to identify students at risk of 
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dropping out, aid in developing basic task-related skills, deliver advice feedback specifically, and 

many other applications. In research where learning analytics are used to deliver personalized 

feedback, it is most often done according to student activities within the course. These can range 

from task specific actions such as the outcome of a practice assignment or commentary on a 

student’s presentation skills to feedback based upon a student’s summative course performance 

over months of work. Student feedback is also often personalized according to demographic 

information routinely sourced from individual university’s data warehouses or entrance surveys. 

This information can be used to provide meaningful feedback to students based upon their status 

within different demographics, for example: students coming from a rural background may 

receive additional support compared to those who grew up in urban environment. 

 This chapter also revealed some of the limitations or short-comings of the learning 

analytics movement. It was shown that learning analytics sometimes seem to develop in isolation 

of the existing learning sciences, creating products that sometimes ignore existing pedagogical 

principles. This shortcoming is especially the case with feedback, as many learning analytic 

dashboards relay norm-referenced feedback to students, a practice that has historically been 

shown to be largely ineffective or detrimental. Bearing that in mind, it is no surprise that many 

learning analytic systems over the past decade have not been able to demonstrate their 

effectiveness in improving student learning outcomes. This observation does not suggest that the 

greater project is in jeopardy, only that there needs to be a more committed effort to designing 

systems that harmonize well with the existing learning sciences. This study aims to evaluate the 

effectiveness of a learning analytic system that delivers computer generated personalized 

feedback to students based upon their course performance and activities, and demographics with 

reference to the established literature on feedback.   
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Chapter Three: Methodology 

Introduction 

 This chapter sets out the analytic methods used in examining the effectiveness of the 

personalized feedback intervention on indices of academic achievement and feedback 

satisfaction. The first section describes the sample and provides a collection of demographic 

information. The second section discusses data collection and provides an overview of the 

Student Advice Recommender Agent (SARA)(Greer et al., 2015). How SARA differentiates 

feedback, how this feedback is delivered to students, and a number of supportive examples will 

be presented. The third section will discuss the measures used and provide an overview of their 

psychometric properties. Lastly, a conceptual introduction to the statistical technique of 

matching will be provided with an overview of the matching methods and protocols.  

Data  

 Participants were undergraduate students from the University of Saskatchewan enrolled 

in multiple sections of an introductory 100-level biology course over the span of two years. The 

sample was composed of courses held in September 2016 (S16), January 2017 (J17), September 

2017 (S17), and January 2018 (J18). A summary of demographic information can be seen below 

in Table 1. 
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Table 3.1. 

Age and Gender Demographics of Classes September 2016 through January 2018 

 S16 J17 S17 J18 Total 

N 974 558 906 632 3070 

 n % n % n % n % n % 
Gender           

Males 327 33.57 223 40 266 29.36 235 37.18 1051 34.23 

Females 647 66.43 335 60 640 70.64 397 62.82 2019 65.77 

 

High School  

          

Saskatchewan 769 78.95 405 72.58 722 79.70 458 72.47 2354 76.68 

           

Student Type           

New Students 762 78.23 280 50.18 734 81.01 339 53.64 2115 68.89 

           

           

Aboriginal 

Ancestry 

64 6.57 62 11.11 73 8.10 71 11.2 270 8.79 

 

 m SD m SD m SD m SD m SD 

           
Age (years) 21.66 2.26 21.66 4.34 18.89 2.02 21.26 3.82 19.93 3.28 

           
m: mean 

SD: standard deviation 
 

 Data used for the differentiation/personalization of feedback was collected from several 

different sources. Demographic data was attained from the university’s data warehouse — which 

included student status, year of study, high school graduation, age etc. Student activity data 

within Blackboard (the University of Saskatchewan’s learning management system) was also 

recorded and logged for use in personalizing feedback, some of which include hovers, clicks, and 

number of links followed. Finally, two surveys were administered to the students during the 

experiment. At the start of the course, students were required to fill out an entrance survey that 

included a set of items pertaining to their thoughts about the course, their anticipated 

performance, and their threshold of disappointment. Students were also requested to complete an 

exit survey following the completion of the course. Items in the exit survey pertained to students’ 

level of engagement with the feedback system, feedback satisfaction, and a number of other 
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course-related measures (e.g., participation with structured study sessions, mock exams, and 

weekly quizzes). Following the end of each course, data was collected and compiled at the 

Gwenna Moss Centre for Teaching and Learning and made available for the proposed study. 

Datasets from each year were then combined for analysis. All information potentially linking 

data to identifiable students was removed during this process. Once data from multiple years was 

merged, it was screened for outliers, missing entries, and data errors. 

 The learning analytic system responsible for differentiating and distributing feedback is 

known as SARA (see Greer et al., (2015) for additional information). SARA takes into account 

approximately 40 distinct student attributes from the above-mentioned data sources and uses 

those to deliver personalized feedback messages to students. As with analogous learning analytic 

systems like E2Coach at the University of Michigan (Wright et al., 2014), feedback messages 

were originally written by human authors in conjunction with instructor support.  

 At the outset of each iteration of the course, students were randomly assigned into either 

the personalized or the generic (control) condition. Students in the generic feedback condition 

were administered a weekly feedback message through Blackboard that was common across all 

members within the group. Hence, there was no differentiation by student characteristics with 

respect to any of the specific components of the feedback message. By contrast, the personalized 

feedback group received a weekly feedback report that catered to their individual characteristics 

and course performance indices to date. For example, following the midterm exam a student may 

receive feedback based on both their performance on the midterm exam and their status as a 

student coming from a rural high school. Such a feedback message may let them know how their 

performance on the midterm compares with the class average and may also reassure them that 

adjusting to life at a university in a city may be difficult. SARA may then refer them to any 
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number of on-campus supports to help with the adjustment. Though the feedback types may 

differ drastically, it must be stated that both generic and personalized feedback reports contained 

all essential course information and reminders of course responsibilities. Hence, no group should 

have been privileged in terms of access to vital course information. See below (Figure 5) as an 

example of a student feedback message being personalized three ways according to performance 

on the first lab exam. 
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BIO 120 Lab Exam 1 Mark <50% Unfortunately, it seems you did not do so well on the 

lab exam. Failing the first lab exam is going to hurt 

your mark, but it isn't the end of the world. 

The labs change (a lot) in the next few weeks. There 

will be much less microscope work and almost no 

organisms to memorize. Instead, you will be focussing 

on the foundations of genetics: terminology, theory, 

and math. Please remember that you have a quiz at the 

beginning of Lab 5. The contents of this quiz include 

questions on lab 4 and pre-lab questions on lab 5. Be 

familiar with the manual! After this there will be a 

genetics quiz, and the last lab exam. Make sure that 

you put the time in to do well! 

 

BIO 120 Lab Exam 1 Mark 50% > 70% You passed the lab exam but couldn't quite beat the 

class average. You are going to have to put some effort 

in if you want to pull your mark up. 

You may be happy to hear that the labs change for the 

second half of the course- no more microscope work, 

more worksheets and genetics problems. If you like 

math, this will be your chance to shine! 

Please remember that you have a quiz at the beginning 

of lab 5. The contents of this quiz include questions on 

lab 4 and pre-lab questions on lab 5. Be familiar with 

the manual! After this there will be a genetics quiz, and 

the last lab exam. You're all done with microscopes 

now- the labs from here on out will be focussing on 

the foundations of genetics: terminology, theory, and 

math. Keep working hard to maintain a good average, 

every mark counts! 

 

BIO 120 Lab Exam 1 Mark 70% > 90% Congratulations! You did quite well on the exam, in 

fact, you beat the class average!  

It doesn't hurt to celebrate your accomplishments, but 

don't let this early success make you 

complacent. Please remember that you have a quiz at 

the beginning of lab 5. The contents of this quiz 

include questions on lab 4 and pre-lab questions on lab 

5. Be familiar with the manual! After this there will 

be a genetics quiz, and the last lab exam. You're all 

done with microscopes now- the labs from here on 

out will be focussing on the foundations of genetics: 

terminology, theory, and math. Keep working hard to 

maintain a good average, every mark counts! 

 

Figure 3.1. Personalized feedback message according to lab exam grade. 

Measures 

 Student final grade was composed of a series of assignments throughout the course in 

addition to a midterm and final exam. Though the determination of final grade varied slightly 

from year to year (dependent upon the addition or removal of assignments), grading criterion 
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remained highly consistent. Final grades were absolute measures of course performance and 

were not graded on a curve.  

Feedback satisfaction was assessed via a short single factor five-item survey included 

within the larger course exit survey and was featured in a related study (Schmidt, Mousavi, 

Squires, & Wilson, 2018). For the first three installments of the survey, the first two items used 

dichotomous response scales (yes/no) while the next three items used a five-point Likert-style 

polytomous response scale with options ranging from “Strongly Disagree” to “Strongly Agree”. 

For the most recent iteration of the course in January 2018, the scale had been updated. The first 

two questions were reworded slightly and featured the same Likert-type response scales as the 

other items. 

To ensure that data could be aggregated across years of the course, the first two questions 

of the satisfaction scale were dichotomized for the January 2018 installment. Responses to those 

first two items were then considered to either endorse the item or not endorse the item. More 

specifically, the responses “Agree” and “Strongly Agree” were coded as endorsed, while the 

responses “Disagree” and “Strongly Disagree” were coded as not endorsed. Hanisch's (1992) 

work on the Job Descriptive Index discovered that neutral responses to positively keyed items 

behaved much like negative responses. Thus, neutral responses within the feedback satisfaction 

survey were also treated as not endorsed. Despite the potential loss of information in the 

dichotomization of the response scales, the satisfaction scale reported adequate reliability with a 

Cronbach’s alpha estimate of α = .85 (DeVellis, 2016).  

All five items on the feedback satisfaction survey are positively keyed, and calculating an 

overall score requires the researcher to sum a participant’s responses. Higher sums imply greater 

levels of feedback satisfaction than lower sums. The maximum achievable value is seventeen 



51 
 

while the lowest possible value is 5. See below (Figure 6) an example of both a dichotomous and 

polytomous item from the feedback satisfaction scale (For full scale see Appendix A):  

  

Did you appreciate 

receiving your 

weekly note from 

SARA? 

Yes No N/A 

o  o  o  

 

To what extent do you agree or disagree with the following statements: 

 

My weekly note was a good 

reminder of my performance in 

Biology 120. 

Strongly 

Agree 

Agree Neutral Disagree Strongly 

Agree 

N/A 

o  o  o  o  o  o  

Figure 3.2. Sample questions from the feedback satisfaction survey. 

 

Statistical Analysis 

 Statistical analyses for the study were conducted using both the program R (R Core 

Team, 2018) and Stata version 15 (StataCorp, 2017). Basic descriptive statistics (e.g., 

frequencies, means, standard deviations, correlations) were used to describe the characteristics 

(e.g., age, gender, nationality, background, aboriginal ancestry) of the sample as well as search 

for relevant covariates for use in matching using tests of correlation. Identified covariates were 

then used to build progressively complex linear models seeking to explain as much of the 

observed variance as possible. Successive models were compared using an ANOVA to 

determine whether a model is of superior fit. The final selection of covariates for matching were 

extracted from the most parsimonious linear model, or more specifically, the model that can 

account for as much variance as possible using the fewest number of covariates.  

The study was of post-test only quasi-experimental design. Students were randomly 

assigned to either feedback condition at the outset of the course. However, because students in 



52 
 

the study were working for real grades, ethical approval required the ability of students to self 

select a different feedback condition if they preferred. Because of the lack of true random 

assignment, matching is being proposed as a means of better approximating an ideal data set and 

allowing greater statistical inference from findings. Because the existing dataset already 

approximates a fully randomized experiment (i.e., neither group demonstrates any significant 

differences in known covariates of final grade), Mahalanobis distance matching using nearest 

neighbor without replacement protocol was chosen as the main method of analysis to address the 

primary research question.  

Among the many matching distances available, Mahalanobis matching has been chosen 

because it possesses both a number of theoretical advantages over other alternatives and for its 

suitability to the specific data of the proposed study (Gu & Rosenbaum, 1993). Compared to the 

most popular form of matching, propensity score matching (PSM), Mahalanobis matching results 

in the approximation of a fully-blocked design as opposed to a randomized design. Further, as an 

observational dataset approaches randomization through matching, it has been demonstrated that 

PSM begins to remove observations at random, resulting in an eventual increase in model 

dependence and bias (King & Nielsen, 2016). Because the present dataset already approximates 

a fully randomized design it was suspected that PSM would only result in increasing bias. 

Regarding the specific suitability of the present dataset, Mahalanobis matching appeared more 

appropriate for analysis than Coarsened-Exact-Matching (CEM). Within CEM, one or more 

continuous variables are temporarily coarsened such that exact matching can be more easily 

accomplished (Blackwell, Iacus, King, & Porro, 2009). Following matching, both treated and 

controlled observations without matches are removed and the remaining data are assigned 

weights to account for differences in frequency (Iacus, King, & Porro, 2012). For example, total 



53 
 

years of education may be coarsened to two-year diploma, four-year degree, master’s degree etc. 

to make exact matching on education easier. This approach was deemed inappropriate for the 

present study as there was no shortage of data or difficulties in finding matches. 

Conceptually speaking, the goal of matching is to improve a given dataset by balancing 

both known and unknown covariates of the outcome variable of interest within both the 

treatment and control groups. Doing so should result in a new balanced dataset that approximates 

either a randomized (where known and unknown covariates are balanced on average) or a fully 

blocked design (where known covariates are balanced exactly, and unknown covariates are 

balanced on average) (King & Nielsen, 2016).  

𝑇𝐸𝑖 =  𝑌𝑖(1) − 𝑌𝑖(0) 

The above equation describes how matching allows one to calculate the treatment effect 

(TEi) of the ith subject. This task is accomplished by taking the value of Y as if it were treated 

Yi(1) and subtracting the value of Y as if it weren’t treated Yi(0). The inherent difficulty here is 

that the first term is observed, while the second term is unobserved and must be estimated. 

Matching attempts to solve this problem by finding an analogous unit from the control group that 

is highly similar to the treated unit in known pre-treatment control covariates. Given the quasi-

experimental design of the proposed study, this conceptual approach appears most appropriate 

for determining whether students within the personalized feedback condition are in fact out 

performing those within the control condition. Referring to the below equation, an average 

treatment effect on the treated (ATET) is calculated by summing the treatment effects of all 

subjects within the treatment group. The significance of the ATET will serve as the test of 

whether the personalized feedback condition is improving final grades over the control group.  
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𝑆𝑎𝑚𝑝𝑙𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑎𝑚𝑒𝑛𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 =
𝑀𝑒𝑎𝑛

𝑖 ∈ {𝑇𝑖 = 1}
(𝑇𝐸𝑖) 

The below equation describes the Mahalanobis distance between a control unit XC and a 

treated unit XT. (XC – XT) is a matrix of distances between controlled and treated units, with the 

term (XC – XT)T representing the transpose of that same matrix (Mahalanobis, 1936). If 

attempting to calculate the ATET, S-1 refers to the inverse variance covariance matrix of X in the 

entire control group. When using nearest neighbor matching, each treated participant is matched 

with the closest control unit (in terms of the Mahalanobis distance) that possesses the same 

specified covariates.  

𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝐶 , 𝑋𝑇) =  √(𝑋𝐶 − 𝑋𝑇)ᵀ𝑆−1(𝑋𝐶 − 𝑋𝑇) 

 The same procedure was used for evaluating the success of the personalized feedback 

system as it relates to feedback satisfaction. An ATET was calculated following the creation of a 

matched dataset using Mahalanobis distance matching, with the intention of balancing all known 

and unknown covariates relating to feedback satisfaction.  

 In summary, the proposed methodology entails searching the dataset for pre-treatment 

covariates of both final grade and student feedback satisfaction. Linear models using the 

collection of covariates for both final grade and feedback satisfaction will then be created. 

Models will be compared to determine which is the most parsimonious collection of covariates. 

The covariates present within the best-fit models will then be used for creating the matched 

datasets from which treatment estimates (both the ATET and the ATE) will be generated. 
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Chapter 4 Results 

Overview  

This chapter will present the results of the study with respect to the research questions 

outlined in the previous chapters. First, will students receiving personalized feedback exhibit 

higher mean final grades compared to those receiving generalized feedback? Second, will 

students receiving personalized feedback exhibit higher levels of feedback satisfaction compared 

to those receiving generalized feedback? 

Data Cleaning Procedures 

At varying levels of analysis, data loss was substantial. Regarding the first research 

question, far more data could be retained. A very small number of cases with incomplete data 

were removed. Analyses relating to gender also warranted the removal of students that self-

identified as neither “male” or “female” on the entrance survey, as they represented fewer than 

.01% of the total sample. In total, this left a sample of 3053 students for the evaluation of the first 

research question. With respect to the second research question assessing feedback satisfaction, 

there was substantial data loss, with only 920 students completing the entire feedback 

satisfaction survey.  

SARA’s system collects data on approximately 110 variables (the total number varies by 

year according to research interest). As such there exist many variables outside of those 

presented or discussed in the preceding chapters that were explored with reference to both 

research questions. The variables presented within this chapter represent those found to have 

relevance to evaluating the proposed research questions.  
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Research Question 1 

Will students receiving personalized feedback outperform those receiving generalized 

feedback with respect to their final grade? 

 Based on the previous research, it was hypothesized that students receiving personalized 

feedback would outperform those only receiving generalized feedback. To begin evaluating this 

question, SARA’s dataset was explored for pre-treatment variables with significant correlations 

with student final grade appropriate for matching. Table 2 displays the means, standard 

deviations, and correlations with final grade. Two such appropriate variables were found and can 

be seen in Table 2: (1) Student predicted grade (according to SARA’s algorithm) r = .66, p 

<.001, and (2) Student term GPA r = .91, p < .001.  

 

 

 

 

 

 

 

Table 3 displays basic descriptive statistics across feedback conditions (means and 

standard deviations). It should be noted that term GPA includes the final grade of biology within 

its calculation, and thus is artificially inflated. Despite this potential limitation, no greater 

alternative approximating student ability within a postsecondary context could be found.  

Table 4.1. 

Means, standard deviations, and correlations with confidence intervals for 

final grade  

Variable M SD 1 2 

1. Final 

Grade 

65.66 15.10   

2. Predicted 

Grade 

 

66.63 11.19 0.66** 

[0.63, 0.68] 

 

3. Term 

GPA 

 

68.43 13.38 0.91** 

[0.90, 0.91] 

0.64** 

[0.62, 0.66] 

     
Note: M and SD are used to represent mean and standard deviation. Values within the square 

brackets indicate the 95% confidence interval for each correlation. **indicates p < .01 
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 With respect to SARA’s algorithm for student predicted grade, the exact nature of the 

algorithm is not known. However, the variables used for predicting final grade by the algorithm 

are: student self efficacy (determined on the entrance survey), postal district, whether the student 

attended an urban or rural high school, student high school GPA, and their grade in Biology 30. 

Though these variables possess a relationship to final grade, they were not used by themselves 

for matching, as they have already been accounted for with SARA’s prediction.  

Note: M and SD are used to represent mean and standard deviation 

To determine the most appropriate selection of variables for matching, two regression 

models were created to determine which combination of variables resulted in the most 

parsimonious prediction of student final grade. The results of the regression models can be seen 

below in Table 4. The first model utilized predicted grade as the single predictor, while the 

second model utilized both predicted grade and term GPA. Results showed that the combination 

of both predicted grade and term GPA provided the best fit to the data, and thus both variables 

were selected for matching.  

 

 

 

 

Table 4.2. 

Means and standard deviations for feedback conditions  

 Personalized  Generalized 

Variable M SD  M SD 

Final Grade 65.18 15.81  65.49 15.68 

Term GPA 68.31 13.39  68.53 13.38 

Predicted Grade 66.32 11.42  66.75 11.17 

      



58 
 

Table 4.3. 

Regression results for student final grade  

Predictor b b 

95% CI 

[LL, UL] 

beta beta 

95% CI 

[LL, UL] 

sr2 sr2 

95% CI 

[LL, UL] 

r Fit Difference 

(Intercept) 6.76** [4.31, 9.20]        

Predicted 

Grade 

0.88** [0.85, 0.92] 0.66 [0.63, 0.69] .43 [NA, NA] .66**   

        R2 = .439**  

          

          

(Intercept) -9.38** [-10.76, -8.00]        

Predicted 

Grade 

0.17** [0.14, 0.19] 0.12 [0.11, 0.14] .01 [.01, .01] .66**   

Term GPA .093** [0.91, 0.95] 0.83 [0.81, 0.85] .40 [.38, .43] .91**   

        R2 = .832** ΔR2 = 

.403** 

         95% CI 

[.38, .43] 

          

Note: A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. 

b represents unstandardized regression weights. beta indicates the standardized regression weights.  

sr2 represents the semi-partial correlation squared. r represents the zero-order correlation. 

Square brackets are used to enclose the lower and upper limits of a confidence interval. 

* indicates p < .05. ** indicates p < .01. 
 

With matching variables identified, treatment effect estimates were made for all years 

combined as well as for each course year separately (See Table 5). It was found that treatment 

effect estimates for both ATEs (average treatment effect) and ATETs (average treatment effect 

on the treated) hovered around zero, and no estimates reached statistical significance, suggesting 

that the personalized feedback treatment was not providing a benefit to students in terms of 

academic achievement.  

 

 

 

 

 



59 
 

Table 4.4. 

Treatment effect estimates for final grade 

 

Final Grade  Coef. SE z p 95% CI 

All years combined ATE .03 .25 0.12 0.90 [-.467, .529] 

 ATET .22 .28 0.80 0.42 [-.321, .764] 

       

September 2016 ATE .50 .42 1.2 0.23 [-.321, 1.329] 

 ATET .28 .47 0.60 0.55 [-.642, 1.213] 

       

January 2017 ATE -.71 .67 -1.06 0.29 [-2.017, .605] 

 ATET -.86 .76 -1.14 0.26 [-2.339, .622] 

       

September 2017 ATE .19 .41 .47 0.64 [-.609, .992] 

 ATET .37 .45 0.82 0.41 [-.513, 1.249] 

       

January 2018 ATE -.70 .59 -1.19 0.24 [-1.852, .455] 

 ATET -.96 .62 -1.55 0.12 [-2.164, .251] 

       

        
Note: ATE refers to the average treatment effect in the population. ATET refers to the average treatment effect on 

the treated. Coef. is the specified treatment effect and SE is the standard error. * indicates p < .05. ** indicates p 

< .01. 

 

Table 6 shows the mean final grades for the total sample, as well as by individual year. 

Looking at the total sample one can see that the final grades are essentially identical, differing by 

less than half a percentage point. Differences are slightly more pronounced looking at each 

course iteration individually, but again are essentially the same. The only notable difference 

across years is that January course offerings generally report lower grades than September 

offerings. However, this seems to affect each feedback condition equally. 
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Table 4.5. 

Means and standard deviations for feedback conditions  

 Personalized  Generalized 

Final Grade M SD  M SD 

Total 65.18 15.81  65.49 15.68 

September 2016 67.97 14.08  68.05 13.64 

January 2017 63.53 17.56  64.75 18.14 

September 2017 67.29 14.25  66.11 14.72 

January 2018 59.64 17.07  61.08 16.76 

      
Note: M and SD are used to represent mean and standard deviation. 

 

Research Question 2 

Will students receiving personalized feedback report higher levels of feedback 

satisfaction than those receiving generalized feedback? 

Based on the previous research, it was hypothesized that students receiving personalized 

feedback would report higher levels of feedback satisfaction than those only receiving 

generalized feedback. To address this question, SARA’s dataset was explored for pre-treatment 

variables with significant correlations with feedback satisfaction for matching. Table 7 (below) 

shows the pre-treatment variables found within SARA’s dataset used to test for correlations with 

feedback satisfaction. Gender was found to be the only pre-treatment variable with a significant 

correlation to feedback satisfaction. Though the relationship was weak, it was found that being 

female was significantly correlated with feedback satisfaction r = .09, p < .01. 
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Table 4.6. 

Means, standard deviations, and correlations with confidence intervals for 

feedback satisfaction  

 

Variable M SD 1 2 3 4 5 
1. Satisfaction 

Total 

11.38 3.11      

2. Female 

 

0.66 0.47 .09** 

[.03, .15] 

    

3. Aboriginal 

Ancestry 

0.09 0.28 -.01 

[-.07, .06] 

.03 

[-.00, .07] 

   

4. Age 19.92 3.28 .01 

[-.05, .08] 

-.09** 

[-.13, -.06] 

.12** 

[.09, .16] 

  

5. Urban High 

School 

.71 0.45 -.05 

[-.13, .02] 

.01 

[-.03, .05] 

.01 

[-.03, .05] 

.02 

[-.02, .06] 

 

6. Term GPA 68.43 13.38 -.03 

[-.09, .04] 

-.01 

[-.04, .03] 

-.15** 

[-.18, -.11] 

-.11** 

[-.14, -.07] 

.07** 

[.03, .11] 

        

Note: M and SD are used to represent mean and standard deviation. 

Values within the square brackets indicate the 95% confidence interval 

for each correlation. **indicates p < .01 

   

 

Given that gender was the only pre-treatment variable found to be significantly predictive 

of feedback satisfaction, it was deemed not necessary to build a succession of regression models 

to determine which collection of variables would be most appropriate for matching.  Subjects 

were matched by gender alone before treatment effects were calculated. 
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Treatment effect estimates were made for all years combined as well as for each course 

year separately and can be seen in Table 8 (above). Significant treatment effects were found for 

all years combined, as well as the first two implementations of SARA (September 2016 & 

January 2017). With respect to the entire dataset both treatment effects showed a benefit of .56 

points increase on the feedback satisfaction scale when participants were in the personalized 

feedback condition. However, this is only half of the story. For the September 2016 installation, 

a significant ATET was estimated at .67, and an even greater estimate was found for the January 

2017 installation of 1.52. However, from that point forward, there appears to be no significant 

differences in feedback satisfaction between the personalized and generalized groups, with 

notably smaller and non-significant treatment effect estimates for September 2017 and January 

Table 4.7. 

Treatment effect estimates for feedback satisfaction 

Satisfaction       Coef. SE z p 95% CI 

All years combined ATE .56** .20 2.78 0.005 [.166, .960] 

      ATET .56** .20 2.78 0.005 [.166, .960] 

            

September 2016 ATE .69* .34 2.02 0.043 [.022, 1.360] 

      ATET .67* .34 1.96 0.050 [.000, 1.345] 

            

January 2017 ATE 1.56* .76 2.06 0.039 [.079, 3.040] 

      ATET 1.52* .75 2.05 0.041 [.064, 2.985] 

            

September 2017 ATE .35 .34 1.02 0.308 [-.323, 1.022] 

      ATET .38 .35 1.06 0.289 [-.312, 1.046] 

            

January 2018 ATE .25 .41 0.60 0.546 [-.551, 1.042] 

      ATET .22 .41 0.53 0.595 [-.579, 1.011] 

             
Note: ATE refers to the average treatment effect in the population. ATET refers to the average treatment effect on 

the treated. Coef. is the specified treatment effect and SE is the standard error. * indicates p < .05. ** indicates p 

< .01. 
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2018. Table 9 shows the means and standard deviations in feedback satisfaction between 

treatment groups across years.  

Figure 7 plots the means of feedback satisfaction overall across years revealing an overall 

steady decrease in satisfaction with SARA.  

 

 

 

 

 

 

 

Table 4.8. 

Feedback satisfaction means and standard deviations for feedback conditions  

 Personalized  Generalized 

Satisfaction M SD  M SD 

Total 11.67 2.87  11.11 3.30 

September 2016 12.07 2.71  11.39 3.13 

January 2017 12.23 3.36  10.74 3.92 

September 2017 11.51 3.25  11.22 3.25 

January 2018 11.13 2.70  10.75 3.32 

      
Note: M and SD are used to represent mean and standard deviation. 
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Figure 4.1.  Plot of satisfaction means by course year. 

 

To investigate this finding further and determine if overall mean satisfaction was 

significantly different from earlier years onward, a one-way ANOVA was conducted – results 

can be seen in Table 10 and 11, and reveal a significant difference in means across years.  

Table 4.9. 

Descriptive statistics for feedback satisfaction as a function of course offering  

Year M SD 

September 2016 11.73 2.94 

January 2017 11.46 3.71 

September 2017 11.36 3.10 

January 2018 10.94 3.04 
Note: M and SD are used to represent mean and standard deviation. 
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Table 4.10. 

ANOVA results using feedback satisfaction as the dependent variable 

Predictor Sum of 

Squares 

df Mean 

Square 

F p partial η2 90% CI 

partial η2 

[LL, UL] 

(Intercept) 39741.60 1 39741.60 4131.48 .000   

Year 78.34 3 26.11 2.71 .044 .01 [.00, .02] 

Error 8811.21 916 9.62     
Note: LL and UL represent the lower-limit and upper-limit of the partial η2 confidence interval. 

 

Table 12 shows the follow-up results of Tukey’s HSD; the only significant difference in 

mean feedback satisfaction was observed between September 2016 and January 2018, at which 

point the difference is approximately one quarter of a standard deviation of the pooled variance 

between course offerings (Cohen’s d = 0.27). 

Table 4.11. 

Tukey multiple comparisons following one-way ANOVA of course offering  

Comparison  Diff 95% CI p 

    

September 2016 – January 2017 -0.27 [-1.234, 0.702] 0.89 

September 2016 – September 2017 -0.37 [-1.015, 0.276] 0.45 

September 2016 – January 2018 -0.79 [-1.510, -0.074]   0.02* 

January 2017 – September 2017 -0.10 [-1.059, 0.851] 0.99 

January 2017 – January 2018 -0.53 [-1.530, 0.480] 0.53 

September 2017 – January 2018 -0.42 [-1.121, 0.278] 0.41 

      
Note:Diff refers to the difference in means. * indicates p < .05. 

 

Summary 

 With regards to the first research question, it was determined that students receiving 

personalized feedback did not achieve beyond those receiving generalized feedback in terms of 

final grade when matched on both their predicted grade and their term GPA. It was observed that 

all calculated treatment effects were near zero, and none reached statistical significance. This 
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finding suggests that the personalized computer-generated feedback provided by SARA was not 

providing a benefit to these students in terms of their achievement in biology.  

 In regard to the second research question, it was found that students receiving 

personalized feedback reported higher levels of feedback satisfaction than those receiving 

generalized feedback. Students were matched by gender alone, as it was discovered that gender 

was the only significant pre-treatment variable associated with feedback satisfaction. Looking at 

all years in total, the average treatment effect on the treated was calculated at .56 points on the 

feedback satisfaction scale. Unfortunately, this is only half of the story. The first two 

installments of the present feedback intervention resulted in significant positive treatment effects 

(ATETs), calculated at .67 points increase for September 2016, and 1.52 points increase for 

January 2017. Subsequent years saw far reduced treatment effect estimates that did not achieve 

statistical significance. It was also observed that mean feedback satisfaction had been in steady 

decline since the first implementation of SARA.  

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

Chapter 5 Discussion 

Overview 

 

 This chapter will begin with a discussion of the results of each research question with 

reference to the literature discussed in Chapter Two. The implications of the findings of each of 

the research questions will then be discussed. Following that, the chapter will conclude with an 

overview of the limitations of the research and future directions. It is hoped that future research 

regarding the implementation and evaluation of analogous learning analytic (LA) systems will be 

informed by the present paper.   

 Learning analytics systems are an inevitable part of the future of postsecondary education 

(Dawson, Gašević, Siemens, & Joksimovic, 2014; Siemens, 2012). Therefore, there is a need to 

establish the parameters under which these systems operate to their greatest utility. The present 

paper identified a situation where a LA system (SARA) administered computer-generated 

feedback to students in an introductory biology course at the University of Saskatchewan. One 

group received personalized feedback, where feedback was tailored to their individual 

characteristics, while the other received generalized feedback that was common to all members 

of the group. Data collection for this study begin in September 2016 and continued until January 

2018 for a total of four course offerings. The current study was designed to assess the 

effectiveness of personalizing computer-generated feedback — in terms of both academic 

achievement and satisfaction with feedback — compared to generalized feedback. Despite the 

precedent set by the literature, it was found that personalized feedback did not improve students’ 

academic achievement. However, it was observed that those receiving personalized feedback 

reported significantly higher levels of feedback satisfaction.  
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Research Question 1 

 Will students receiving personalized feedback outperform those receiving generalized 

feedback with respect to their final grade? 

 It was discovered that the personalized feedback condition failed to improve the 

academic achievement over those receiving generalized feedback. One of the potential reasons 

for this lack of improvement in academic performance is the breadth of the definition regarding 

personalized feedback. The current study considered personalized feedback as individualized 

information (differentiated according to the learner’s own characteristics or actions) 

communicated to a learner for the intended purpose of improving learning. This definition is 

obviously wide-ranging and without careful consideration opens one to inappropriate 

comparisons within the greater body of research. As instances of LA-based feedback systems are 

numerous, it was the intention of this paper to compare SARA with highly analogous LA-based 

systems that administered their feedback in a similar manner. 

One of the most commonly cited examples within the LA field is Course Signals at 

Purdue (Arnold & Pistilli, 2012). Course Signals has demonstrated its ability improve academic 

achievement through the delivery of highly streamlined personalized feedback in the form of a 

‘traffic light’ dashboard. This form of feedback, while similar in principle, may operate in a 

dissimilar way to that of the present study, calling into question its suitability as a direct 

comparison. Additionally, Arnold and Pistilli (2012) determined the success of Course Signals 

by comparing their current year to a cohort of students from the previous year. The present study 

opted to approximate an experimental design with treatment and control groups running 

simultaneously. When compared to Arnold and Pistilli (2012), the difference in methodologies 

lessens the confidence one can have in both their results and their applicability as a comparison.  
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Unfortunately, highly analogous systems to SARA are in short supply. Only Wright et 

al.’s (2014) investigation of the effectiveness of E2Coach at the University of Michigan delivered 

personalized written feedback in a similar way. Unique to their study, however, was they way in 

which they defined success. Students were considered a success if their achieved grade exceeded 

their predicted grade (as determined by the E2Coach algorithm). Within the present paper, 

success of the personalized feedback was determined by whether students were able to achieve, 

on average, higher final grades compared to the generic group in an absolute sense. This subtle 

distinction may have partially contributed to the negative finding in the present paper. Although 

not an example of an LA system, Gallien and Oomen-Early (2008) also assessed personalized 

text-based feedback. Their results showed a substantial benefit for those students who received 

personalized feedback compared to generalized feedback. However, a few key distinctions 

suggest why the situation in the present paper is different. First, within Gallien and Oomen-

Early’s (2008) study, messages were personalized exclusively with reference to student 

performance on tests and assignments. The instructor did not differentiate feedback according to 

any survey, percentile rank, or demographic membership data. Further, all feedback was task-

focused, the importance of which will be discussed at length later. Second, though the feedback 

medium was the same between studies, feedback in Gallien and Oomen-Early’s (2008) study 

was confined to corrective, informative, and Socratic forms. By contrast, SARA delivers a much 

greater range of feedback types, such as advice on time management, how to use course 

resources, and study tips. SARA also uses some feedback types that have less support within the 

literature, such as norm-referenced feedback and praise. Lastly, in their study the observed 

difference for the personalized feedback group was over three standard deviations above those in 

the generalized condition. The benefits of computer administered feedback interventions are 
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generally much more modest (Azevedo & Bernard, 1995), suggesting that Gallian and Oomen-

Early’s (2008) study may not be an appropriate case with which to compare.  

Concerns relating to the ethical compromises in SARA’s development may also be 

somewhat responsible for the negative findings. SARA’s operation was a real-world 

phenomenon that existed outside of ideal laboratory conditions. Thus, the students subjected to 

SARA’s treatments were working for real grades. To help ensure that students in the 

personalized group were not being given an unreasonable advantage, ethical review required that 

the experimental conditions remain highly similar. It should be readily apparent to the reader that 

one group could easily be provided with information that could drastically improve their 

performance within the course over the other group. For example, the personalized group could 

have been provided with information with direct relevance to assessments within the course not 

afforded to the generalized group. Consider such a situation where students with a specific set of 

characteristics in the personalized group are likely to benefit substantially from some feedback 

intervention to the exclusion of those within the control group. To provide one group with such 

an advantage in a situation where students are working for real grades would be considered 

unethical. Hence, this risk of over-privileging one group had to be kept in mind during 

development. This cautionary approach might have resulted in groups that were too similar to 

create a meaningful difference, especially as it pertains to key task-related information. This 

suggestion is of course speculation, but considering the ethical compromises made in the 

execution of this experiment, must be mentioned.  

 Another potential reason for the absence of a positive effect of achievement pertains to 

SARA’s feedback practices and its lack of adherence to a strong theoretical background. 



71 
 

Specifically, there are shortcomings that need to be discussed regarding feedback 

personalization, as well as feedback theory more generally.  

 SARA’s ability to personalize feedback could be argued to be superficial, when it 

pertains to improving learning. In many of the differentiated reports provided by SARA, the 

majority of the text within messages is the same across groups. Further, in many cases the 

students in the generalized feedback group receive one of the notes that was otherwise seen by 

one of the subgroups within the personalized group. For example, prior to the February break 

students in the generalized group received a copy of one of the messages that the personalized 

group received – which was differentiated according to the amount of study time students said 

they allocated to the course (See Appendix C for example). While other messages are more 

highly differentiated and not guilty of this practice (See Appendix D for example), it is perhaps 

unsurprising that no differences in academic achievement were observed given the similarity of 

the personalized feedback emails.   

 Perhaps the greatest reason SARA’s personalization failed to improve academic 

achievement outcomes lies in a lack of adherence to good feedback practices. Numerous authors 

have provided theoretical frameworks for the proper operation and administration of feedback, 

many of which were discussed in the earlier portion of Chapter Two. The main areas in which 

SARA deviates from good feedback practice are: lack of task specific feedback, use of praise, 

and the improper use of norm-referenced feedback, all of which will be addressed in greater 

length.  

As touched on briefly, one of the most salient criteria for ensuring the success of 

feedback in improving learning is the task specificity of the feedback (Kluger & DeNisi, 1996). 

A common feature in virtually all theoretical attempts in explaining successful feedback has been 
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the central importance of keeping feedback task-focused. This directive means that the 

information conveyed to the learner should pertain specifically to closing the gap between their 

current level of performance, and that of ideal performance. For example, consider a situation 

where a young student is learning how to add numbers of increasing digit span, and is struggling 

with the concept of ‘carrying over’ numbers. In this case, task-specific feedback could range 

from re-teaching the concept of place value, practicing through questions with an instructor, or 

perhaps having the student talk aloud their thinking as they complete a question and correct 

misunderstanding when it arises. What would not constitute task-specific feedback, however, 

would be to deliver the student a message instructing them to allocate more mental energy to the 

task in the future, a strategy that SARA sometimes employs.  

Tying into the argument concerning SARA’s lack of task specificity is Mason and 

Bruning’s (2001) feedback decision-making model for computer-based instruction. SARA’s 

approach shares some aspects of Mason and Bruning’s model. For instance, SARA differentiates 

feedback according to student ability and achievement quite regularly and does so using a variety 

of important performance indices. However, Mason and Bruning’s model is built around task 

specificity, and this marks the departure between these two approaches. A task, from the 

perspective of Mason and Bruning’s model, is a singular exercise of learning that ranges in 

complexity. In the case of SARA, it is difficult to identify a task in a similar way. In a more 

abstract sense, one could consider the course, as whole, to be the task in which SARA is aiding 

students. But this approach breaks down almost immediately when applied to Mason and 

Bruning’s model, as SARA’s highly regimented application of feedback does not bear any 

resemblance to the protocols in the model.    
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Yet another potential reason for the lack of improvement in academic achievement lies in 

SARA’s modest use of social comparison feedback. For example, SARA routinely informs 

students of their performance within the course relative to the class average. As has been 

mentioned at length, social comparison feedback is largely scorned within the broader feedback 

literature (Shute, 2008). Granted, there are situations where social comparison feedback has 

resulted in improved academic achievement; Kim, et al.’s (2016) study provided students with 

access to a dashboard that featured a series of norm-referenced graphs reporting course 

performance. Students given access to the dashboard were found to have performed greater than 

those not given access. However, students in the Kim, et al.’s (2016) study were informed that 

they would be receiving norm-referenced final grades, which may have motivated participating 

students to maximize their use of the dashboard beyond what would otherwise have been 

observed. There was no such motivating factor within the present study; final marks within the 

course were absolute measures of performance. In another instance, Delaval et al., (2015) found 

that students given access to personalized norm-referenced feedback outperformed the control 

group in terms of academic achievement. However, this was only found to be the case when 

academic procrastination was taken into account, suggesting that this type of feedback only 

benefitted highly motivated students with low levels of academic procrastination.  

Despite these examples, the totality of the feedback literature recommends against the use 

of norm-referenced feedback (Shute, 2008). Kluger and DeNisi’s (1996) feedback intervention 

theory states that feedback should be as task-oriented as possible in addressing student 

misconceptions. This demand for task-oriented feedback is done to ensure that the pupil’s 

attention remains fixed on the exercise. Under this theory, norm-referenced feedback takes 

student attention away from the task and focuses it up the hierarchy of processing towards the 
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self. This movement pulls valuable cognitive resources away from where learning takes place 

and is likely to result in reduced performance.  

 Kluger and DeNisi’s (1996) feedback intervention theory also provides some insight into 

SARA’s use of praise within personalized feedback messages. Praise, as defined by Baumeister, 

Hutton, and Cairns (1990), is favourable interpersonal feedback expressing approval. This type 

of feedback is relatively common within SARA messages. For example, SARA messages not 

only inform students of their relative standing in the class, they congratulate students on these 

successes. While praise might seem like an appealing method of feedback, the research is fairly 

clear regarding its efficacy: as it pertains to feedback intervention theory (Kluger & DeNisi, 

1996), praise functions in a similar way as norm-referencing, moving the student’s locus of 

attention up the hierarchy to deal with evaluations of the self. This movement again, takes 

cognitive resources away from the task at hand and focuses on evaluating the self. Baumeister, et 

al. (1990) acknowledged that almost everyone enjoys receiving praise, but their experiments 

showed conclusively that praise leads to reduced effort, introduces unnecessary pressure for 

continued good performance, and draws attention away from the task at hand. All things 

considered, SARA’s use of praise is not extensive in its application. However, from the 

perspective of the aforementioned theorists, it is likely used too liberally and may account for 

why the personalized feedback condition failed to improve learning.  

Research Question 2 

Will students receiving personalized feedback report higher levels of feedback 

satisfaction than those receiving generalized feedback? 
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Unlike the case of academic achievement, SARA was able to make a meaningful positive 

difference with regard to feedback satisfaction. Important to note however, this positive effect 

was observed to be decreasing over time.  

Regarding satisfaction more generally, the opinion within the feedback literature appears 

to be that personalized feedback is so self-evidently more satisfactory than generic feedback that 

the question is seldom addressed (Burr et al., 2013; Cramp, 2011; Laryea, 2013; Lipnevich & 

Smith, 2009). However, this notion comes out of the educational literature that precedes the 

advent of LA and is likely not representative of situations dealing with computer-generated 

personalized feedback. It is suspected that what constitutes personalized feedback within the LA 

sphere may only be ostensibly so in the eyes of the typical in-person instructor.  

Unfortunately, little research examining feedback satisfaction with LA-based systems 

exists. Jivet et al.’s (2018) review cites three studies that featured satisfaction as a primary 

variable by which an LA tool was evaluated. Loboda, Guerra, Hosseini, and Brusilovsky (2014) 

examined students’ satisfaction of use with a social progress visualization tool, that delivered 

personalized feedback to students based upon both their own and their peers’ performance in a 

learning task. Results showed that students were generally highly satisfied with the system and 

responded favourably to many of its features permitting comparisons between oneself and past 

performances and with one’s peers. In Kim, et al.’s (2016) study on a LA dashboard, it was 

discovered that a slight positive correlation between dashboard usage and learning achievement 

existed. Further, they found that learners who used the dashboard more often reported lower 

levels of satisfaction with its use. Ruiz-Calleja, Dennerlein, Ley, and Lex (2016) also found that 

their participants were generally satisfied with the feedback provided by their highly visual LA 

dashboard.  
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In the above mentioned studies, participants were given access to a selection of graphs 

displaying normative information on course performance indices. By contrast, students in the 

present study were delivered written messages personalized according to a selection of 

characteristics. Despite this difference in feedback mediums, students within the present study 

and those previously mentioned, all appeared to have been satisfied with the personalized 

feedback provided by their respective systems. Unfortunately for the present study, the most 

highly analogous LA-based system to SARA — E2Coach at the University of Michigan — was 

not evaluated with regards to feedback satisfaction (Wright et al., 2014).  

The aforementioned criticism that SARA’s feedback was only superficially personalized 

appears to conflict with the findings on feedback satisfaction. One might expect that if SARA’s 

personalized feedback was only superficial, it likely would not register a difference in feedback 

satisfaction. However, because the personalized feedback was received more favourably than the 

generalized feedback, one must conclude that the feedback is indeed making a positive 

difference, at least with respect to some aspect of its functioning. One possible reason for this 

positive finding, considering the negative finding on academic achievement, is that the threshold 

level of personalization required to be considered more favourable in the eyes of the recipient is 

far lower than that required to produce measurable improvements in learning. This complication 

is perhaps compounded by the ethical compromises made to ensure the experimental groups 

remained highly similar. Ultimately, this compromised state might have resulted in a situation 

where SARA’s personalized feedback was better able to communicate its message to its intended 

audience, but courtesy of the imposed ethical limitations, was unable to deliver the learning 

specific information needed to improve achievement. The result is a system that has succeeded in 
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its ability to appeal to the listener but does not know what to say in terms of improving learning 

performance.  

Yet another possibility is that the personalized component of SARA’s feedback has 

managed to improve Winstone et al.’s (2017) term of proactive recipience or the desire to 

actively engage in feedback. By addressing specific student characteristics, SARA may be 

improving outcomes related to Winestone’s (2017) SAGE model. With respect to their model, 

SARA’s personalized feedback may be assisting students in their ability to self appraise, 

regulate, and goal-set. These effects may be small enough that they failed to produce any 

improvements in academic achievement, though their appreciation and satisfaction was recorded 

within the satisfaction survey.  

From the perspective of Narciss and Huth’s (2004) feedback framework for tutoring 

feedback, SARA is in fact successfully addressing some important dimensions. SARA feedback 

is highly aware of the instructional context, actively linking feedback messages to important 

course activities and outcomes. For example, students are kept well aware and are encouraged to 

take full advantage of additional learning opportunities directly related to major course 

assessments, including mock exams and structured study sessions. Further, SARA works very 

well to measure individual learner characteristics and use this information to inform its feedback. 

Among these traits include student self-efficacy and prior academic performance, both of which 

provide great utility in personalizing feedback (Shute, 2008). Where SARA’s shortfall lies is 

primarily in Narciss and Huth’s (2004) feedback quality. Specifically, these short-comings lie 

within the contents of feedback. This aspect of the theory is concerned with both evaluation and 

information. Evaluation includes that which shows the learner their gap between current and 
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ideal performance, and information includes the task-specific advice that will bridge the gap in 

performance. 

Limitations and Future Research Directions 

Though the present study did not suffer a limitation regarding sample size, attention 

should be drawn to the issue relating to data loss. Participation rates with SARA’s entry and exit 

surveys were very low. As was observed in Chapter 4, less than a third of participants completed 

the feedback satisfaction survey. It may be the case that these select students were distinct in 

some way and not fully representative of the greater population. In any case, future research 

should work to find ways of encouraging higher participation rates.  

The present study was done on an existing dataset. As such, there was no opportunity to 

introduce additional measures to the entrance or exit surveys that would span the length of the 

experiment. There was a shortage of pre-treatment variables associated with both the outcome 

variables of interest. Certain commonly measured constructs have been known to be associated 

with academic achievement. For example, conscientiousness, openness to experience, and 

agreeableness have all been found to possess a significant relationship to achievement in 

education (Carthy, Gray, McGuinness, & Owende, 2014). These and perhaps more variables 

would have been helpful in creating higher quality matches for analysis.  

Within the LA sphere there is a great breadth of feedback forms on offer, many of which 

do not resemble the feedback within the present study. This discrepancy limited the extent to 

which one was able to predict the effect of the feedback intervention within the present study. 

For example, though both are the same in principle (i.e. they are offering feedback differentiated 

by student demographics and activity), how similar can the ‘traffic light’ function of Course 

Signals (Arnold & Pistilli, 2012) be to that of the text-based messages provided by E2Coach 
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(Wright et al., 2014)? In light of the results of the present study, it is suspected that these varying 

forms of feedback may have little in common. This mismatch between the available literature 

and the operation of the LA feedback system may have led to the over confidence of the present 

paper’s primary hypothesis. It is the hope that future research endeavours take greater care in 

selecting appropriate LA systems for comparison during evaluation.  

In a similar vein, SARA combined multiple types of feedback interventions ranging from 

praise to norm referencing. It was difficult to predict how the unique combination of these 

varying forms of feedback would work together, and especially so in combination with 

examining the effectiveness of personalizing feedback. Because of this, the current paper 

functions more as an evaluation of SARA, rather than a serving as a major contribution to 

feedback theory and practice. That is not to say that this is a closed case, however. SARA was 

found to be succeeding with regards to some of its functionality, at least with respect to feedback 

satisfaction. In light of this, the primary takeaways from the present study should be the 

following: 1) Personalized computer-generated feedback can improve feedback satisfaction over 

generic feedback 2) Personalized computer-generated feedback will not necessarily result in 

improvements in learning achievement, and 3) To ensure a proper evaluation of feedback, 

adherence to the theoretical underpinnings of feedback must be maintained.   

 Gasevic, et al.’s (2015) article, made the insightful point that the LA world appears to 

have been working in near isolation of good pedagogical practice. They went on to caution future 

developers to mesh good learning principles with these data driven enterprises. This same 

sentiment is expressed here. Though SARA was able to influence participants in terms of their 

feedback satisfaction, the lack of improvement in learning achievement is believed to be 

attributed to the mismatch between SARA’s practices and the feedback literature. Future 
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research should bear this in mind in the development of other personalized text-based feedback 

systems.  

 Regarding the significant effect of feedback satisfaction, it is encouraging to see that 

SARA is succeeding in providing personalized feedback that is more satisfactory than its generic 

feedback. However, the direct cause of this is unknown, as SARA combines multiple distinct 

forms of feedback in its operation. Future research should investigate which specific features of 

personalization are responsible for the observed differences in feedback satisfaction. Further, one 

must bear in mind that the gap between personalized and generic feedback was closing over 

time. Future research with SARA specifically, should investigate this phenomenon and ‘course 

correct’ the problem, as properly addressing this issue may shed new light on how future LA-

based systems can improve their own user experience and feedback satisfaction. 

Conclusion 

 The history of feedback research is one of mixed results and seemingly contradictory 

findings (Shute, 2008). Less controversial, is the role of personalized feedback, which is often 

seen as superior to generic feedback both in terms of theory and in practice. However, it has been 

made plain in the present paper that LA-based feedback systems appear to be an exception. 

Results of the present study failed to support the proposed hypotheses based on the current 

literature; they have however contributed meaningfully to the growing body of research in LA. 

The findings drawn from this study suggest that personalizing feedback will not by itself produce 

positive effects on academic achievement. To produce increases in learning, feedback (whether 

personalized or not) must be well aligned with well-established pedagogical theory. In the 

present paper, it is suspected that the negative findings on personalized feedback are due to such 

a misalignment.  
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It is important to note that despite the lack of improvement in academic achievement, 

student perceptions of the personalized feedback were positive. Results showed that students 

consistently reported greater levels of mean feedback satisfaction when receiving personalized 

feedback. This finding suggests that the system is at least partially aligned with important aspects 

of feedback theory pertaining to the instructional context and adapting to individual student 

characteristics.  

Recent commentary in LA research suggested that the discipline was too boastful of its 

potential benefits, relied too heavily on user perceptions for evaluations, and was poorly aligned 

with proper pedagogical theory (Gasevic, et al., 2015; Viberg et al., 2018). The system within the 

present paper may be such an example.   
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Appendix A: Feedback Satisfaction Survey 
 

Feedback Satisfaction Survey for September 2016, January 2017, and September 2017 course offerings. 

Your NSID and survey feedback will remain confidential. Your instructors will never see individual data. 

      Yes No N/A 

1. Did you appreciate receiving your weekly note from SARA? o  o  o  
2. Did you find that your weekly note from SARA was 

personalized to your academic situation? 

 

o  o  o  

To what extend do you agree or disagree with the following statements: 

   Strongly 

Agree 

Agree Neutral Disagree Strongly 

Disagree 

N/A 

3. My weekly note 

increased my sense of 

belonging in the 

University community. 

o  o  o  o  o  o  

4. My weekly note was 

encouraging with respect 

to my academic situation. 

o  o  o  o  o  o  

5. My weekly note was a 

good reminder of my 

performance in Biology 

120. 

o  o  o  o  o  o  

Note: Survey was administered electronically following completion of the course and was nested within the larger 

Biology 120 Student Resource Exit Survey. 
 

Feedback Satisfaction Survey for January 2018 course offering. 

Your NSID and survey feedback will remain confidential. Your instructors will never see individual data. 

To what extend do you agree or disagree with the following statements: 
   Strongly 

Agree 

Agree Neutral Disagree Strongly 

Disagree 

N/A 

1. I appreciated receiving 

my weekly note from 

SARA. 

o  o  o  o  o  o  

2. My weekly note was 

personalized to my own 

academic situation. 

o  o  o  o  o  o  

3. My weekly note 

increased my sense of 

belonging in the 

University community. 

o  o  o  o  o  o  

4. My weekly note was 

encouraging with respect 

to my academic situation. 

o  o  o  o  o  o  

5. My weekly note was a 

good reminder of my 

performance in Biology 

120. 

o  o  o  o  o  o  

Note: Survey was administered electronically following completion of the course and was nested within the larger 

Biology 120 Student Resource Exit Survey 
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Appendix B: Estimating Treatment Effects 
To estimate treatment effects in Stata 15.1 

#In both cases the Mahalanobis distance is selected as the 

default distance metric and need not be specified. 

#The average treatment effect can be obtained using the 

following code: 

 

. teffects nnmatch (outcome.variable covariate.one covariate.two 

covariate.three) (grouping.variable) 

 

#The outcome.variable refers to your continuous outcome variable 

of interest. Covariates covariate.one, covariate.two etc. may be 

a dichotomous or continuous pre-treatment variables. Lastly, 

grouping.variable must be a dichotomous variable specifying 

whether each unit belongs to either the treatment or control 

group. 

#The average treatment effect on the treated can be obtained 

using the following code: 

 

. teffects nnmatch (outcome.variable covariate.one covariate.two 

covariate.three) (grouping.variable), (atet) 

 

#The only difference between the calculation of the ATE and the 

ATET is the inclusion of (atet) following the existing code. For 
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additional information see (Abadie, Herr, Imbens, & Drukker, 

2004). 

 

Creating the matched dataset in R(R Core Team, 2018) and 

estimating treatment effects: 

#Load R, then install and load the MatchIt package. For 

additional information see King, Ho, Stuart, and Imai (2011). 

 

> library(MatchIt) 

 

#Ensure that all variables to be matched on are complete cases 

with no missing data. MatchIt cannot create matched datasets 

with incomplete or missing data. 

#Use the matchit() function to create a MatchIt object. In the 

below example it is named “matched.object”. 

#For treatment.variable fill in your dichotomous treatment 

variable. var1, var2, and var3 represent the pre-treatment 

covariates you intend on matching on. Ensure your dataset is 

selected and specify the distance measure as “mahalanobis”. 

 

> matched.object <- matchit(treatment.variable ~ var1 + var2 + 

var3…, data = your.data, method = “mahalanobis” 

 



98 
 

#To check the balance of your newly matched dataset use the 

summary() function on your MatchIt object. 

 

> summary(matched.object) 

 

#Balance may also be assessed by looking at the diagnostic plots 

produced from the plot() function. 

 

> plot(matched.object) 

#To generate the average treatment effect on the treated (ATET) 

the MatchIt object must be converted back into data using the 

match.data() function. 

 

> matched.data <- match.data(matched.object) 

 

#The package Zelig is then loaded to generate treatment effects 

(Imai, King, & Lau, 2009). 

 

> library(Zelig) 

 

#The Zelig object – zelig.object – is created using the zelig() 

function. Outcome.variable refers to the outcome variable of 

interest. For model, specify “ls” for least squares regression 

for continuous dependent variables. Specifying “control” within 
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the matched.data function extracts only the matched control 

units. 

 

> zelig.object <- zelig(outcome.variable ~ treatment.variable + 

var1 + var2 + var3…, model = “ls”, data = 

matched.data(matched.object, “control”)) 

 

#Now we use the control group’s estimated coefficients and 

combine them with the covariate values set to the treated units. 

#This is first done using the setx() function. Be sure to 

specify “treat” within the data argument.  

 

> explanatory.object <- setx(zelig.object, data = 

match.data(matched.object, “treat”), cond = TRUE) 

 

#The sim() function does the imputation. For the x argument, set 

x = to the explanatory.object from earlier.  

 

> simulate.object <- sim(zelig.object, x = explanatory.object) 

 

#Use the summary function to observe the results. 

 

> summary(simulate.object) 
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#To estimate the average treatment effect overall (ATE)refer 

back to the previous example but fit the linear model to the 

treatment group instead.  

 

> zelig.object.2 <- zelig(outcome.variable ~ treatment.variable 

+ var1 + var2 + var3…, model = “ls”, data = 

matched.data(matched.object, “treat”)) 

 

#The same procedure is then repeated. 

> explanatory.object.2 <- setx(zelig.object.2, data = 

match.data(matched.object, “control”), cond = TRUE) 

 

> simulate.object.2 <- sim(zelig.object.2, x = 

explanatory.object.2) 

 

> ate.all <- c(simulate.object$qi$att.ev, -

simulate.object.2$qi$att.ev) 

 

#The following codes then provide the point estimate of the ATE, 

its standard error, and its 95% confidence interval. 

 

> mean(ate.all) 

> sd(ate.all) 

> quantile(ate.all, c(0.025, 0.975)) 
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Appendix C: Sample Differentiated Feedback Message 1 
February Break Message Differentiated by Study Time: 

Below Average Study Time: Enjoy a week without lab! 

Your TAs are hard at work marking your 

exams, so you get a week off of labs (not to 

mention a short week overall). But before you 

set up for a Netflix binge, think about using 

that extra free time to catch up on some 

studying – keeping on top of it now will be a 

big help in the long run! 

Average Study Time: Enjoy a week without lab! 

Your TAs are hard at work marking your 

exams, so you get a week off of labs (not to 

mention a short week overall). But before you 

completely check out, remember that it’s 

midterm season right away. A little extra 

study time now would be perfect for going 

over your notes, or making sure you’re ready 

for your other classes! 

Above Average Study Time: Enjoy a week without lab! 

Your TAs are hard at work marking your 

exams, so you get a week off of labs (not to 

mention a short week overall). You could use 

the extra free time to keep up with your 

studying, but remember that sometimes taking 

a break can help reduce stress and retain 

information! Why not splurge on an afternoon 

nap when your lab would usually be? 

Generic Feedback Message: Enjoy a week without lab! 

Your TAs are hard at work marking your 

exams, so you get a week off of labs (not to 

mention a short week overall). But before you 

set up for a Netflix binge, think about using 

that extra free time to catch up on some 

studying – keeping on top of it now will be a 

big help in the long run! 

Note: Blue highlighted text is common to all messages.  
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Appendix D: Sample Differentiated Feedback Message 2 
Structured Study Sessions Message Differentiated by Predicted GPA: 

Predicted GPA > 80%: Structured Study Sessions are a great 

opportunity to share your Biology knowledge 

with your peers, and strengthen your own 

understanding in the process! 

Predicted GPA 80% > 60%: Structured Study Sessions are a great way to 

help someone else with the topics you know, 

and get help for the topics you don’t! 

Predicted GPA < 60%: Structured Study Sessions are a great way to 

study and learn with and from your peers in a 

friendly, low-pressure environment. 

Generic Feedback Message: No generic message. 

 

 

 

Note: Blue highlighted text is common to all messages.  

 


