
A Study of 2-Additive Splitting for Solving

Advection-Diffusion-Reaction Equations

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

by

Adam Preuss

c©Adam Preuss, December/2013. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

An initial-value problem consists of an ordinary differential equation subject to an initial

condition. The right-hand side of the differential equation can be interpreted as additively

split when it is comprised of the sum of two or more contributing factors. For instance,

the right-hand sides of initial-value problems derived from advection-diffusion-reaction equa-

tions are comprised of the sum of terms emanating from three distinct physical processes:

advection, diffusion, and reaction. In some cases, solutions to initial-value problems can be

calculated analytically, but when an analytic solution is unknown or nonexistent, methods of

numerical integration are used to calculate solutions. The runtime performance of numerical

methods is problem dependent; therefore, one must choose an appropriate numerical method

to achieve favourable performance, according to characteristics of the problem. Additive

methods of numerical integration apply distinct methods to the distinct contributing fac-

tors of an additively split problem. Treating the contributing factors with methods that are

known to perform well on them individually has the potential to yield an additive method

that outperforms single methods applied to the entire (unsplit) problem. Splittings of the

right-hand side can be physics-based, i.e., based on physical characteristics of the problem,

such as advection, diffusion, or reaction terms. Splittings can also be based on linearization,

called Jacobian splitting in this thesis, where the linearized part of the problem is treated

with one method and the rest of the problem is treated with another. A comparison of these

splitting techniques is performed by applying a set of additive methods to a test suite of

problems. Many common non-additive methods are also included to serve as a performance

baseline. To perform this numerical study, a problem-solving environment was developed to

evaluate permutations of problems, methods, and their associated parameters. The test suite

is comprised of several distinct advection-diffusion-reaction equations that have been chosen

to represent a wide range of common problem characteristics. When solving split problems

in the test suite, it is found that additive Runge–Kutta methods of orders three, four, and

five using Jacobian splitting generally outperform those same methods using physics-based

splitting. These results provide evidence that Jacobian splitting is an effective approach when

solving such initial-value problems in practice.

ii

Acknowledgements

Thanks to Professor Raymond Spiteri for his guidance, funding, all of our helpful conver-

sations and, in general, for his vision of this project. His research area offers an enjoyable

combination of math, computer science, and many other scientific disciplines. Thanks to all

the members of the Numerical Simulation Laboratory for their support, advice, and friendly

chit-chat. Thank you to the department of computer science for its funding and resources.

Thank you to my fiancée, Kaylee Bohaychuk, for her support and for putting up with me

being a workaholic for the past few months. Thank you to my parents, Lowell Preuss and

Shelagh Watson-Preuss, for encouraging my academic pursuits since before I can remember.

Special thanks to my uncle, Iain Watson, for first introducing me to computer programming

years ago. Finally, I offer thanks to my friends who are always in favour of a much-needed

beer after long hours of work and research.

iii

To Lowell, Shelagh, and Kaylee.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xii

1 Introduction 1
1.1 Some Quick Words on Notation . 7
1.2 Outline of the Thesis . 8

2 Theoretical Background 9
2.1 Autonomous Form . 10
2.2 Accuracy and Tolerances . 10
2.3 Runge–Kutta Methods . 12

2.3.1 Classes of Runge–Kutta Methods . 14
2.3.2 Error Estimation . 17
2.3.3 Step Control . 19
2.3.4 Stability and Stiffness . 21
2.3.5 Runge–Kutta–Chebyshev Methods 25
2.3.6 Rosenbrock Methods . 29
2.3.7 Exponential Runge–Kutta Methods 31

2.4 Methods for 2-Additively Split Problems . 32
2.4.1 Additive Runge–Kutta Methods . 33
2.4.2 Stability for 2-Additive Runge–Kutta Methods 35
2.4.3 The Partitioned Runge–Kutta–Chebyshev Method 36
2.4.4 The Implicit-Explicit Runge–Kutta–Chebyshev Method 38
2.4.5 Additive Exponential Runge–Kutta Methods 40

3 Methods and Software 43
3.1 Details of pythODE++ . 44

3.1.1 Classes of Methods . 46
3.1.2 Software Components . 47
3.1.3 Supporting Classes . 51

v

3.1.4 Sparsity . 53
3.1.5 Automatic Differentiation . 54
3.1.6 Solving Initial-Value Problems Simultaneously 55
3.1.7 Analysis . 57

3.2 Discretization of Partial Differential Equations 59
3.2.1 Finite Difference Methods . 59
3.2.2 Finite Volume Methods . 60

3.3 Advection-Diffusion-Reaction Equations . 61
3.4 Test Suite of Problems . 63

3.4.1 Advection-Diffusion Problems . 65
3.4.2 Diffusion-Reaction Problems . 67
3.4.3 Advection-Diffusion-Reaction Problems 70

4 Results of Numerical Experiments 76
4.1 Cluster Specifications . 76
4.2 Findings regarding Interprocess Communication 77
4.3 Sparse Jacobian Computation . 79
4.4 Verification, Validation, and Solution Plots 79

4.4.1 Methods . 80
4.4.2 Problem Suite . 81

4.5 Comparisons of Numerical Methods . 88
4.5.1 Advection-Diffusion Problems . 89
4.5.2 Reaction-Diffusion Problems . 92
4.5.3 Advection-Diffusion-Reaction Problems 95

5 Conclusions and Future Work 104
5.1 Summary of Results . 104
5.2 Contributions of this Thesis . 105
5.3 Future Work . 106

5.3.1 Extension to Three-Dimensional Models 106
5.3.2 Merging pythODE++ and pythODE . 107
5.3.3 Extension to 3-Additive Methods . 107
5.3.4 Additional Methods . 108
5.3.5 Parallelized Methods . 108

References 109

A Derivations of Order Conditions for Runge–Kutta Methods 113
A.1 Taylor Expansion of the True Solution . 113
A.2 Taylor Expansion of the Numerical Solution 114
A.3 Order Conditions . 115

B Derivations of Finite Difference Methods 116

C Derivation of Additive Exponential Runge–Kutta Methods 117

vi

D Order Conditions for Additive Exponential Runge–Kutta Methods 119
D.1 Derivatives of the Exact Solution . 119
D.2 Derivatives of the Numerical Solution . 120

D.2.1 First Derivatives . 120
D.2.2 Second Derivatives . 121

D.3 Order Conditions . 122

E Steps versus Accuracy Plots 123

F Eigenvalue Plots 131

vii

List of Tables

2.1 The Butcher tableau of an RK method. 14
2.2 Butcher tableau for RK4. 16
2.3 Butcher tableau for the implicit fourth-order Gauss method. 16
2.4 The Butcher tableaux for a 2-additive RK method. 34
2.5 Butcher tableaux for a third-order ARK method. 34

3.1 The methods used in this thesis. 47
3.2 Components to define an IVP in the pythODE++ PSE. 48
3.3 Components to define a 2-additively split IVP in the pythODE++ PSE. 49
3.4 Components to define a method in the pythODE++ PSE. 50
3.5 List of all numerical studies. These are all ADR equations that are spatially

discretized and solved in pythODE++. The last column gives the method that
was used to calculate reference solutions. 64

viii

List of Figures

2.1 Regions of absolute stability, calculated from the stability function, for Runge–
Kutta methods ranging from order two to five. 23

2.2 Regions of absolute stability, calculated from the stability function, for the
forward and backward Euler methods. 24

2.3 Region of absolute stability, calculated from the stability function, for the
RADAU5 method. 25

2.4 Regions of absolute stability, calculated from the stability function, for the
RKC1 method of stages two through seven. 28

2.5 Regions of absolute stability, calculated from the stability function, for the
RKC2 method of stages two through seven. 29

2.6 Region of absolute stability, calculated from the stability function, for the
RODAS method. 31

2.7 Regions of absolute stability, calculated from the stability function, for IMEX
methods ranging from orders three to five. 37

2.8 Regions of absolute stability, calculated from the stability function, for the
PRKC method of stages two through seven. 39

2.9 Regions of absolute stability, calculated from the stability function, for the
IRKC method of stages two through seven. 40

2.10 Butcher tableaux for the DIRK-CF1 and DIRK-CF2 methods. The classical
RK tableaux are given on the left and the ExpRK tableaux are given on the
right. 42

3.1 Software organization of the pythODE++ PSE 51

4.1 Solution plots for the linear advection-diffusion equation defined by (3.7), spa-
tially discretized using 500 points. 81

4.2 Solution plots for the heat transfer equation defined by (3.9), spatially dis-
cretized using 280x40 points. 82

4.3 Solution plot for the CUSP problem defined by (3.10), using 32 discretized grid
points. 83

4.4 Solution plots for the one-dimensional Brusselator equation defined by (3.11),
using 1000 discretized points. 83

4.5 Solution plot for the two-dimensional Brusselator equation defined by (3.11),
using 60x60 discretized points. The function u(x, y, t) is given by the red
meshes and the function v(x, y, t) is given by blue meshes. 84

4.6 Solution plots for the combustion equations defined by (3.12), using 1600 dis-
cretized points. 85

4.7 Solution plots for the tumour angiogenesis model defined by (3.13). The do-
main has been discretized using 1000 points. Plots are shown for times 0, 0.1,
0.3, 0.5, 0.7, moving from light to dark. 86

ix

4.8 Solution plots for the concrete-rewetting problem. The hydration front is
shown for 10 equally spaced times in [0,28], moving from light to dark. . . . 87

4.9 CPU time versus accuracy of IMEX and RKC methods applied to a series of
one-dimensional advection-diffusion problem. Tolerances range from 10−4 to
10−8. 91

4.10 CPU time versus accuracy of IMEX and RKC methods applied to the heat
transfer problem. Tolerances range from 10−4 to 10−8. 93

4.11 CPU time versus accuracy of IMEX and RKC methods applied to the CUSP

problem. Tolerances range from 10−4 to 10−8. 94

4.12 CPU time versus accuracy of IMEX and RKC methods applied to a one-
dimensional Brusselator problems. Tolerances range from 10−4 to 10−8. . . . 96

4.13 CPU time versus accuracy of IMEX and RKC methods applied to a two-
dimensional Brusselator problems. Tolerances range from 10−4 to 10−8. . . . 97

4.14 CPU time versus accuracy of IMEX and RKC methods applied to the set of
one-dimensional combustion problems. Tolerances range from 10−4 to 10−8. . 99

4.15 CPU time versus accuracy of IMEX and RKC methods applied to the tumour
angiogenesis model. Tolerances range from 10−5 to 10−11. 100

4.16 CPU time versus accuracy of IMEX and RKC methods applied to the concrete
rewetting problem for both insulated and sink boundaries. Tolerances range
from 10−4 to 10−9. 103

E.1 The number of steps versus accuracy of IMEX and RKC methods applied to a
series of one-dimensional advection-diffusion problem. Tolerances range from
10−4 to 10−8. 123

E.2 The number of steps versus accuracy of IMEX and RKC methods applied to
the heat transfer problem. Tolerances range from 10−4 to 10−8. 124

E.3 The number of steps versus accuracy of IMEX and RKC methods applied to
the CUSP problem. Tolerances range from 10−4 to 10−8. 125

E.4 The number of steps versus accuracy of IMEX and RKC methods applied to
a one-dimensional Brusselator problems. Tolerances range from 10−4 to 10−8. 126

E.5 The number of steps versus accuracy of IMEX and RKC methods applied to
a two-dimensional Brusselator problems. Tolerances range from 10−4 to 10−8. 127

E.6 The number of steps versus accuracy of IMEX and RKC methods applied to
the set of one-dimensional combustion problems. Tolerances range from 10−4

to 10−8. 128

E.7 The number of steps versus accuracy of IMEX and RKC methods applied to
the tumour angiogenesis model. Tolerances range from 10−5 to 10−11. 129

E.8 The number of steps versus accuracy of IMEX and RKC methods applied
to the concrete rewetting problem for both insulated and sink boundaries.
Tolerances range from 10−4 to 10−9. 130

F.1 Distribution of eigenvalues for the linear advection-diffusion (d = 1, a = 1/10
and 64 unknowns) and the heat transfer problem (70× 10 unknowns). 131

x

F.2 Distribution of eigenvalues for the one-dimensional Brusselator (α = 1/50
and 500 unknowns), the two-dimensional Brusselator (α = 1/50 and 2500
unknowns), and the CUSP model (σ = 1/144 and 500 unknowns). 132

F.3 Distribution of eigenvalues for the combustion model, for U0 = 0.99 and 40
unknowns. 133

F.4 Distribution of eigenvalues for the tumour angiogenesis problem for d = 1 and
with 200 unknowns. 134

F.5 Distribution of eigenvalues for the concrete-rewetting problem using a either
sink or insulated boundary condition, both with 100 unknowns. 135

xi

List of Abbreviations

AD Automatic differentiation

ARK Additive Runge–Kutta

ADR Advection-diffusion-reaction

BE Backward Euler

CFERK Commutator-free exponential Runge–Kutta

CRS Compressed row storage

C-S-H Calcium-silicate hydrate

DIRK Diagonally implicit Runge–Kutta

ERK Explicit Runge–Kutta

ExpRK Exponential Runge–Kutta

FE Forward Euler

FKPP Fisher–Kolmogorov–Petrovskii–Piskunov

IMEX Implicit-Explicit

IRK Implicit Runge–Kutta

IRKC Implicit Runge–Kutta–Chebyshev

IVP Initial-value problem

MPI Message-passing interface

ODE Ordinary differential equation

PRKC Partitioned Runge–Kutta–Chebyshev

PDE Partial differential equation

PSE Problem-solving environment

RHS Right-hand side

RK Runge–Kutta

RKC Runge–Kutta–Chebyshev

SDIRK Singly diagonally implicit Runge–Kutta

xii

Chapter 1

Introduction

Differential equations are used in many situations to mathematically model the evolution

of systems. They apply to a wide range of disciplines such as physics, chemistry, biology,

and economics. Specific examples of differential equations include modelling of physical

processes in the form of advection-diffusion-reaction equations [25]; fluid simulation using

the incompressible Navier–Stokes equations [11]; special effects in cinematography such as

the simulation of sand, smoke, fire, or water [5]; the electrophysiology of ion movement in

epithelial cells [24]; chemotaxis models of tumour growth in cellular biology [29]; rewetting

of hardened concrete [10]; and bone regrowth [19]. In each of these examples, a differential

equation is solved to give an explicit representation of the dynamic process that is being

modelled. The process of solving a differential equation is often informally called integration.

Initial-value problems (IVPs) consist of an ordinary differential equation that describes

how the system changes over time and an associated initial state, known as the initial con-

dition. The IVPs studied in this thesis are written as

dy

dt
(t) = f(t,y(t)), y(t0) = y0, (1.1)

where t ∈ R is the simulation time, y(t) ∈ Rm is the solution to the IVP at t, f : R×Rm 7→ Rm

is a function defining the differential equation that is often referred to as the right-hand side

(RHS), t0 is the initial time, and y0 is the initial condition (at time t0). The solution y(t) is

sought over a time interval [t0, tf], where tf is the final simulation time.

Existence and uniqueness of solutions are both important concepts in the study of IVPs [39].

It is possible for IVPs not to have solutions; in such cases, a solution is said not to exist. If

a solution exists, it might not be the only solution to the IVP, and therefore, the solution

1

is not unique. For the purpose of this thesis, all IVPs are assumed to have a RHS that

is continuous in t and Lipschitz continuous in y; i.e., ∀t ∈ R,y1 ∈ Rm,y2 ∈ Rm,∃L ∈ R

such that ||f(t,y1) − f(t,y2)|| ≤ L||y1 − y2|| [1]. Consequently, the IVPs have unique so-

lutions. Further, it is assumed that solutions to IVPs are not sensitive to small changes in

the model parameters, particularly the initial condition. Due to perturbations caused by

floating-point arithmetic, it would be impossible to numerically solve IVPs without making

these assumptions. Together, these assumptions define a well-posed problem [39].

Many IVPs have known solutions that are generally calculated by solving the differential

equations analytically. However, assuming that a solution exists, it is often infeasible to cal-

culate an analytic solution, either due to computational constraints or because the differential

equation does not lend itself to the application of known analytical solution techniques. In

practice, most differential equations do not have analytical solutions. Therefore, methods

of numerical integration are applied to find approximate solutions to IVPs. The accuracy

of a numerical solution is, thus, an important metric to the study of numerical methods for

differential equations. In the context of this thesis, accuracy is defined to be how well an

approximate numerical solution matches the exact solution at a specified point. In the real

world, approximate solutions to IVPs with appropriate accuracy are sufficient and are often

the only possible means of finding a solution to a problem. For the analysis of numerical

methods, exact solutions used as a reference for approximate solutions can be calculated

analytically, if they are known; otherwise, they can be calculated via different numerical

methods that have been shown to be reliable.

Methods that numerically solve IVPs are often called integrators because they integrate

the RHS of an IVP equation from the initial condition to find y(t) at some later time.

Numerically, this integration process is accomplished using a sequence of discrete temporal

steps, advancing until the specified final simulation time has been reached. For each step,

the solution is advanced from a known state yn−1 ≈ y(tn−1) to a new state yn ≈ y(tn). The

stepsize is defined as ∆tn = tn − tn−1. A numerical method is consistent if it produces a

solution that converges to the true solution as the stepsize approaches zero. For a consistent

numerical method, smaller stepsizes lead to more accurate solutions.

Many IVPs can be interpreted as additively split ; i.e., the RHS is defined by the sum of two

2

or more distinct terms. Physics-based splitting often arises naturally from an IVP, where each

additively split term represents a physically significant contributing factor to the RHS of the

IVP. Each additively split term of an IVP can have different numerical properties; therefore,

it may be advantageous to apply an additive method, which is a method that applies distinct

numerical methods to the contributing factors of the additively split problem. Treating the

contributing factors with methods that are known to perform well on them individually has

the potential to outperform single methods applied to the problem as a whole.

This thesis limits study to 2-additive splitting [2], i.e., IVPs with an RHS that is defined

as the sum of two contributing factors, written as

dy

dt
= fI(t,y(t)) + fE(t,y(t)), y(0) = y0, (1.2)

where t ∈ R, y ∈ Rm, fI : R×Rm 7→ Rm, and fE : R×Rm 7→ Rm. IVPs that are 2-additively

split can thus be solved with a 2-additive method. Subscripts I and E in (1.2) refer to terms

that are respectively treated with implicit and explicit methods; see Section 2.3. In this

thesis, IVPs with ostensibly more than two contributing factors must be consolidated into fI

or fE.

It is also possible to create a splitting of the form (1.2) that does not explicitly reflect the

physical characteristics of the IVP. Such a splitting might be useful to capture mathematically

significant characteristics of the problem that are not represented physically. This thesis

investigates Jacobian splitting as an alternative to physics-based splitting for IVPs where

one wishes to use an additive method. Jacobian splitting is accomplished by linearizing

an IVP so that linear and non-linear components can be treated with separate numerical

methods [44]. Jacobian splitting for the problem (1.1) is defined as

dy

dt
= Jfy(t) + [f(t,y(t))− Jfy(t)] , (1.3)

where f = fI + fE and Jf is the Jacobian of f that has been evaluated at some t and y(t).

Using the notation of (1.2), fI(t,y(t)) corresponds to Jfy(t) and fE(t,y(t)) corresponds to

f(t,y(t)) − Jfy(t). Numerical methods typically update Jf at the beginning of every step,

a process known as freezing the Jacobian. Therefore, Jf in (1.3) is a constant matrix for

3

a given step. Jacobian splitting uses a frozen Jacobian as opposed to the true Jacobian,

which is a function of t and y. Otherwise, Jfy(t) would generally not be linear. Linearity

is desirable because methods often involve Jf in systems of equations; it is generally less

expensive to solve linear systems of equations. Jacobian splitting has the added advantage

of being applicable to any IVP of the form (1.1), whereas a numerical method using physics-

based splitting requires that the RHS of the IVP be explicitly additive.

It is often difficult to predict which numerical method best suits a particular differential

equation. During the last century, many advancements have been made regarding numerical

integration methods [6]. Due to the complexity of modern methods and the size of modern

IVPs, one can only make general predictions based on problem characteristics regarding

which type of method is best suited for an IVP. Experimentation is thus a natural approach

to empirically discover those methods that are most efficient and practical for different types

of IVPs.

In this thesis, a suite of numerical methods is applied to several advection-diffusion-

reaction problems to investigate the benefits of Jacobian splitting versus physics-based split-

ting for additive methods. Jacobian splitting has not been extensively used as an alternative

to physics-based splitting. The suite of methods includes three 2-additive Runge–Kutta

methods [2, 30], as well as additive Runge–Kutta methods based on the Chebyshev poly-

nomials [46, 49, 40]. The suite includes six standard Runge–Kutta methods that serve as a

performance baseline for the more advanced additive methods [20, 21]. Additive exponen-

tial Runge–Kutta methods are also applied to investigate whether the benefits of Jacobian

splitting extend to these so-called structure-preserving methods [8].

The suite of methods is applied to several distinct advection-diffusion-reaction equations

over a number of problem-specific parameters. These equations have been chosen because

they represent a wide range of common characteristics that arise in the study of advection-

diffusion-reaction equations. This study aims to be rigorous, and therefore, does not simply

choose a few select problems that give favourable results. Numerical methods are applied to

the following list of problems:

• a one-dimensional advection-diffusion problem with both linear advection and linear

diffusion [25],

4

• a two-dimensional advection-diffusion problem that models heat transfer inside a fluid-

filled pipe with a known velocity profile [28],

• one- and two-dimensional Brusselator problems, which are theoretical models of auto-

catalytic reactions with linear diffusion and non-linear reaction [21],

• the CUSP problem, which is a one-dimensional diffusion-reaction equation that models a

combination of Zeeman’s “cusp catastrophe” and the Van der Pol oscillator with linear

diffusion and non-linear reaction [25],

• a one-dimensional theoretical model of a combustion front that consists of linear ad-

vection, linear diffusion, and non-linear reaction [4],

• a one-dimensional chemotaxis model of tumour angiogenesis that consists of non-linear

advection, linear diffusion, and non-linear reaction [25], and

• a one-dimensional mathematical model of concrete-rewetting that consists of non-linear

advection, non-linear diffusion, and non-linear reaction [10].

The suite of methods includes the RODAS and RADAU5 methods, which are used to

generate reference solutions for all of the IVPs considered in this work [21]. It is important

that reference solution methods be efficient because IVPs must be solved numerous times

with different tolerances to achieve a reliable reference solution. The choice between RODAS

and RADAU5 for a given problem is dependent on which method has superior performance

on that particular problem. Both of these methods are highly optimized and are known to

provide accurate solutions for a wide variety of problems. It is thus reasonable to use them to

generate the reference solutions. These reference solutions are used to evaluate the accuracy

of all other numerical methods in this study.

In this thesis, the overall runtime is used as the primary metric to compare numerical

methods. Results show that additive Runge–Kutta methods applied with Jacobian splitting

outperform those applied with physics-based splitting. On some of the problems, the (non-

additive) Runge–Kutta–Chebyshev methods outperform all other methods. Neither additive

Runge–Kutta–Chebyshev nor additive exponential methods perform as well as any of the

5

additive Runge–Kutta methods. The problems in this thesis are evaluated over a set of tol-

erances for timestepping and a range of spatial discretizations. These form a large parameter

set that depicts the benefits of Jacobian splitting versus physics-based splitting.

Evaluation of multiple numerical methods requires extensive computational power be-

cause each set of methods, IVPs, and other parameters forms an exponentially large pa-

rameter space. The analysis approach is to run tests across a coarse discretization of the

parameter space, after which further analysis can focus on specific areas of interest. Such

requirements motivate the use of a problem-solving environment (PSE), which is a platform

designed to allow the detailed study of specific types of scientific problems [36]. PSEs provide

infrastructure that is specialized to their intended problems to improve the efficiency with

which one can implement and compare problems and methods. A performance-focused PSE

for ordinary differential equations was developed in C++ to evaluate the suite of methods

on IVPs. The PSE is named pythODE++; it is heavily based on and is intended to be used in

conjunction with pythODE, a PSE written in Python, designed to perform extensive analysis

on numerical methods for IVPs [31].

The most important aspect of comparing numerical methods is to ensure that all methods

are implemented fairly in regard to code optimization. Otherwise, runtime measurements

are not meaningful to the comparison of methods. Hidden parallelism in external libraries or

compiled code embedded into a higher-level language can also be disastrous when trying to

maintain fairness among implementations of methods. The solvers in pythODE++ are written

entirely in C++ to avoid such problems and to take advantage of the speed of a compiled

language. The surrounding infrastructure was developed in Python. There is a performance

trade-off between robust infrastructure and optimized code. The developed PSE is written

in favour of a robust infrastructure, where all methods share the same supporting code, to

allow comparisons to be made as equally as possible.

When numerical experiments are performed over a large parameter set, analysis of the

experiments can be time consuming if not implemented efficiently. The pythODE++ PSE is

designed to efficiently perform extensive analysis of the numerical methods that have been

applied to the IVPs. Experimental runs are organized in a tree-like structure, so that search-

ing for the result of a particular run is efficient; an associative search is too computationally

6

expensive due to the large number of runs in a numerical experiment. Common usage of

the analysis component of the PSE is to generate figures comparing methods for a specific

IVP. The pythODE++ PSE extracts runs that match user-specified criteria. Therefore, a

straightforward approach is to develop scripts that generate figures of the experimental runs;

parameters for analysis are specified using a simple set of matching directives. Analysis can

also discard methods that take too long or become unstable, thus making the analysis phase

more efficient.

1.1 Some Quick Words on Notation

In this thesis, all scalars are written in lower-case and are italicized, e.g., time t. All vectors

are written in bold and lower-case, e.g., a position vector x, and matrices are written in

upper-case and bold, e.g., a linear system is written as Ax = b. Whenever a variable is

a function, it is written in terms of its independent variables, such as y(t), when it first

appears. Indices for vectors and matrices are written using subscripts starting from one, e.g.,

a vector is written y = (y1, y2, . . . , ym)T . In cases where more than one index is required,

some sections use tensor notation for clarity, using superscripts to denote indices. These

sections are specifically highlighted.

Throughout this thesis, many descriptions of numerical methods and problems use the

same variables. In general, m refers to the dimension of a system, n refers to the current

timestep, and s refers to the number of stages.

Derivatives are generally written in Leibniz notation; for instance, the time-derivative of

q is written dq
dt

. The gradient operator ∇ denotes
(

∂
∂y1
, ∂
∂y2
, . . . , ∂

∂ym

)T

for a system of size m.

Variables representing spatial or temporal discretization size are prefixed with a ∆ symbol;

e.g., a numerical method takes time steps of size ∆t. Jacobian matrices (i.e., the matrix of

7

all first partial derivatives) of a function f(t,y) are written

∂f

∂y
(t,y) = Jf (t,y) =



∂f1
∂y1

∂f1
∂y2

. . . ∂f1
∂ym

∂f2
∂y1

∂f2
∂y2

. . . ∂f2
∂ym

...
...

. . .
...

∂fm
∂y1

∂fm
∂y2

. . . ∂fm
∂ym


.

1.2 Outline of the Thesis

Chapter 2 introduces definitions for differential equations, the development of various classes

of Runge–Kutta methods to solve IVPs, and the application of 2-additive Runge–Kutta

methods to IVPs. Chapter 3 introduces the pythODE++ PSE, provides mathematical defini-

tions for advection-diffusion-reaction equations, and explains the discretization of differential

equations such that they can be solved by the numerical methods described in this thesis.

Chapter 4 discusses results, comparing how each tested numerical method behaves on vari-

ous differential equations. Chapter 5 provides a list of scientific contributions, a summary of

results, and some possible directions for future work.

8

Chapter 2

Theoretical Background

A differential equation defines a relationship between an unknown function and its deriva-

tives. Any function that satisfies a differential equation is called a solution to the differential

equation. For example, any function of the form y(t) = −2/(c+t2), where c ∈ R, is a solution

to the differential equation dy
dt

= ty2. In this thesis, all differential equations that are solved

numerically are restricted to using real numbers. Their solutions are also real.

An ordinary differential equation (ODE) is comprised of a function of a single independent

variable and derivatives of that function with respect to its independent variable. When the

function (and hence dependent variable) is vector-valued, the system of ODEs can be written

as

f

(
t, y(t),

dy

dt
(t)

)
= 0,

where the solution y(t) : R 7→ Rm is the dependent variable, t is the independent variable,

and f ∈ Rm is a function defining the relationship between variables in the ODE.

A partial differential equation (PDE) is comprised of a function of multiple independent

variables and derivatives of various orders with respect to any of the independent variables.

For example, the vector-valued PDE system in terms of one-dimensional position x and time

t can be written as

f

(
x, t, y(x, t),

∂y

∂x
(x, t),

∂y

∂t
(x, t),

∂2y

∂x2
(x, t),

∂2y

∂x∂t
(x, t),

∂2y

∂t2
(x, t), . . .

)
= 0,

where the solution y(x, t) : R×R 7→ Rm is the dependent variable, x and t are the independent

variables, and f ∈ Rm is a function defining the relationship between variables in the PDE.

9

2.1 Autonomous Form

Recall that this thesis is focused on methods for solving problems of the form (1.1). The

RHS of the differential equation in (1.1) is a function of both the independent variable t

and dependent variable y(t). To simplify analysis, IVPs can be written in an autonomous

form, where the RHS is only a function of the dependent variable. The transformation to

autonomous form is straightforward. Letting τ = t be an additional dependent variable, the

solution vector to the IVP becomes (y1, y2, . . . , ym, τ)T . Thus, (1.1) can be written as

d

dt



y1

y2

...

ym

τ


=



f1(τ, y1, y2, . . . , ym)

f2(τ, y1, y2, . . . , ym)

...

fm(τ, y1, y2, . . . , ym)

1


,



y1

y2

...

ym

τ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t=t0

=



y0,1

y0,2

...

y0,m

t0


, (2.1)

because the derivative of time with respect to itself is one. It is therefore sufficient to state

an IVP as

dy

dt
(t) = f(y(t)), y(t0) = y0, (2.2)

where f : Rm 7→ Rm without loss of generality. The development and analysis of numerical

methods for IVPs are often based on the form (2.2).

2.2 Accuracy and Tolerances

The accuracy of a numerical method can be assessed using the global error, which is a measure

of how close the calculated numerical solution is to the true solution. The global error at

10

each timestep n is defined as

en,global = y(tn)− yn.

The global error represents the accumulated error from all steps of a numerical method.

In practice, it is generally impossible to calculate because the exact solution to an IVP is

unknown. However, another useful quantity is the local error, which is a measure of how

much error is introduced from a single step of a numerical method. For each timestep n, the

local error is defined as

en,local = ỹ(tn)− yn,

where ỹ(tn) is the local solution to the IVP, i.e., ỹ(tn−1) = yn−1; see Section 2.3.2 for

approaches to estimating the local error. In summary, the global error refers to the overall

error of the numerical solution, whereas the local error refers to the error introduced by a

single step.

Numerical methods are often classified by their order of accuracy. The numerical solution

at each step is compared to the Taylor expansion of the local solution of (2.2), written as

y(tn) = y(tn−1) +

p∑
i=1

(∆tn)i

i!

diy

dti
(tn−1) +O

(
(∆tn)p+1

)
, (2.3)

where p ∈ Z+. A numerical method is said to be of order p if it matches the Taylor expansion

of the local solution up to the term of order p+ 1.

Error in a numerical solution can arise because a numerical method represents a trun-

cated Taylor expansion. Error can be also caused by internal components of a method that

might not be exact, such as the numerical solution of non-linear systems of equations; see

Section 2.3.1. Numerical methods are assigned tolerances that are used to govern the amount

of acceptable error when calculating a solution. As tolerances become more strict, they gen-

erally increase the accuracy of a numerical solution at the expense of overall computational

cost. However, it is important to note that a method subject to given tolerances is not

guaranteed to yield a solution accurate to those tolerances. In practice, the error at each

11

step is only an estimate; it is not exact. Tolerances are typically presented as a combination

of (i) absolute tolerances, which give a maximal value of allowable numerical error between

quantities, and (ii) relative tolerances, which give a maximal value of allowable error between

two quantities relative to their magnitude.

2.3 Runge–Kutta Methods

This section introduces the construction of numerical methods for IVPs. Using the funda-

mental theorem of calculus, each step of the solution to an IVP of the form (2.2) can be

written as

yn − yn−1 =

∫ tn

tn−1

f(y(t)) dt. (2.4)

This integral cannot be solved using methods of quadrature due to the presence of y(t) in

the integral. However, it can, for example, be approximated by ∆tnf(yn−1), which uses a

single evaluation of the RHS of the IVP. Each step of an IVP solution can thus be written as

yn = yn−1 + ∆tn f(yn−1), (2.5)

which is the forward Euler (FE) method. FE is the simplest method to solve an IVP. It is

first order with respect to a Taylor expansion of the local solution; thus, FE often requires

tiny stepsizes to be sufficiently accurate. An alternative approach is to approximate (2.4)

with ∆tnf(yn), yielding the backward Euler (BE) method (sometimes called implicit Euler).

The BE method is written as

yn = yn−1 + ∆tn f(yn), (2.6)

where the RHS evaluation is at tn, rather than tn−1. Note that the RHS of (2.6) contains

yn. Thus, when implementing BE, a system of equations must be solved at every step

of the method because yn is not defined explicitly. Typically, such systems are solved using

Newton’s method; see Section 2.3.1. The advantage of BE is that it allows for larger stepsizes

12

in comparison to FE for certain IVPs; see Section 2.3.4 for details. However, to be sufficiently

accurate, BE might still require small stepsizes to be accurate because it is a first-order

method.

A small stepsize can be computationally expensive because it requires a large number

of overall steps to solve an IVP over a desired time interval. Therefore, the concept of the

forward and backward Euler methods is extended to a larger class of methods known as

Runge–Kutta (RK) methods, which were first introduced circa 1900 [6]. These methods use

one or more evaluations of the RHS of the differential equation in the calculation of a single

step. Higher-order and potentially more accurate solutions are generated, increasing the

allowable stepsize while maintaining desired tolerances. RK methods are said to be single-

step methods because they use only solution information from the current timestep when

advancing the numerical solution.

RK methods use a number of intermediate states called stages, where each stage corre-

sponds to a function evaluation of the RHS. Each stage is associated with a specific simulation

time and a solution to the differential equation at that time. Each stage of the timestep is

generally calculated using other stages in that timestep.

The general form of an s-stage RK method applied to an IVP is written as

ki = ∆tnf(tn−1 + ci∆tn,yn−1 +
s∑
j=1

aijkj), i = 1, 2, . . . , s,

yn = yn−1 +
s∑
j=1

bjkj,

where the ki are the stages, the coefficients aij and bi determine weightings for the linear

combination of stages, and the coefficients ci determine the times at which the stages are

evaluated. The coefficients are stored in a convenient format known as a Butcher tableau,

shown in Table 2.1. For example, the respective Butcher tableaux for forward and backward

Euler methods, from (2.5) and (2.6), are

0 0

1

and
1 1

1

.

13

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a2,s

...
...

...
. . .

...

cs as,1 as,2 . . . as,s

b1 b2 . . . bs

Table 2.1: The Butcher tableau of an RK method.

Note that from (2.1) and the definition of an RK method, it follows that ci =
∑s

j=1 aij

because the last element of the RHS of (2.1) is one. The coefficients aij and bi are determined

from order conditions that are derived by matching the expanded RK method to terms of the

Taylor series, up to a specified order. When the order conditions are satisfied, the numerical

method is designated to be of that order. An overview of RK order conditions that form

the Butcher tableau is shown in Appendix A. Higher-order methods generally yield more

accurate solutions to IVPs for a given stepsize.

Linear multistep methods are an alternative class of methods that use information from

previous steps to gain a higher order of accuracy, rather than by the introduction of stages.

The focus of this work is to solve IVPs efficiently and accurately; therefore, higher-order

numerical methods are desired. Multistep methods are not considered in this thesis because

RK methods have better theoretical stability properties at higher order [2]; see Section 2.3.4,

which discusses stability. RK and multistep methods are both part of an even larger class of

numerical methods known as general linear methods (GLMs), which make use of past steps

and stages when calculating a new step [26]. The theory of GLMs is much less developed

compared to RK methods. GLMs are beyond the scope of this thesis.

2.3.1 Classes of Runge–Kutta Methods

If a given stage depends only on prior stages (i.e., a matrix of the Butcher tableau is a

strictly lower-triangular matrix), the method is an explicit Runge–Kutta (ERK) method.

It is relatively inexpensive to compute a step using an explicit method. Stages can be

14

calculated directly from the definition of an RK method because all stages depend only on

previous stages. An example of the Butcher tableau for an explicit RK method is shown in

Table 2.2. This RK method is a popular fourth-order RK method, RK4, commonly known

as the Runge–Kutta method to those outside the field of numerical analysis. The method is

algorithmically written

k1 = ∆tnf(tn−1,yn−1),

k2 = ∆tnf(tn−1 +
1

2
∆tn,yn−1 +

1

2
k1),

k3 = ∆tnf(tn−1 +
1

2
∆tn,yn−1 +

1

2
k2),

k4 = ∆tnf(tn−1 + ∆tn,yn−1 + k3),

yn = yn−1 +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4.

If stages of an RK method depend on current or future stages, the numerical method is

an implicit Runge–Kutta (IRK) method. In an implicit method, some of the stages must be

solved simultaneously as part of a larger system of algebraic equations, possibly of size s×m.

The stages are dependent on each other; therefore, they do not have explicit representations.

For example, the Gauss method of order 4 is an implicit method; its Butcher tableau is shown

in Table 2.3. The equations for each step of the Gauss method are written as

k1 = f

(
tn−1 +

[
1

2
−
√

3

6

]
∆tn,yn−1 + ∆tn

[
1

4
k1 +

(
1

4
−
√

3

6

)
k2

])
,

k2 = f

(
tn−1 +

[
1

2
+

√
3

6

]
∆tn,yn−1 + ∆tn

[(
1

4
+

√
3

6

)
k1 +

1

4
k2

])
,

yn = yn−1 + ∆tn

[
1

2
k1 +

1

2
k2

]
.

The steps of an implicit method are generally more expensive than the steps of an explicit

method because the implicit method involves solving systems of equations. However, implicit

methods are often are able to meet desired tolerances using greater stepsizes because implicit

methods generally have better stability properties [20, 21]. For example, BE often allows for

greater stepsizes than FE, as previously discussed in Section 2.3. In certain cases, implicit

15

methods mitigate the increased computation per step. For example, if the IVP is linear, the

implicit method is linearly implicit. The system of equations to be solved at each step or

stage is linear; therefore, it can be solved with a single Newton iteration.

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

Table 2.2: Butcher tableau for RK4.

1
2
−
√

3
6

1
4

1
4
−
√

3
6

1
2

+
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2

Table 2.3: Butcher tableau for the implicit fourth-order Gauss method.

Diagonally implicit Runge–Kutta (DIRK) methods are a special class of IRK methods

that can have non-zero values on the diagonal of their Butcher tableaux but have an upper

triangle that is comprised only of zeros. DIRK methods compute each stage separately,

solving a smaller system (in comparison to a fully implicit method) of m equations for each

stage. Solving s systems of size m is less computationally expensive than solving larger

systems required when calculating multiple stages simultaneously. DIRK methods mitigate

some of the performance issues of general IRK methods, while maintaining some of the

desirable properties. Therefore, DIRK methods can be more efficient than general IRK

methods.

Singly diagonally implicit Runge–Kutta (SDIRK) methods are a further optimization to

DIRK methods, whereby all diagonal elements in the Butcher tableau are identical. SDIRK

methods can then use the same Jacobian for all stages because the implicit function evalua-

tions are all multiplied by the same factor. Therefore, operations such as matrix factorization

need only be done once per step, resulting in an overall method that is more efficient.

16

When calculating stages, implicit methods must solve systems of equations that are non-

linear if the differential equation is non-linear. In this thesis, these systems are computed

using the modified Newton’s method, shown in Algorithm 1. This algorithm is iterative,

solving the stages to a desired tolerance. This algorithm differs from the standard New-

ton’s method such that Jacobian is evaluated only once, rather than at each iteration. This

modified approach using a frozen Jacobian might require more iterations; however, the com-

putational cost of additional iterations is low in comparison to the cost of re-evaluating the

Jacobian multiple times. Note that, if the system is linear, the solution converges after a

single iteration.

Algorithm 1 Modified Newton’s method used for implicit RK methods, designed to solve
a non-linear system of the form g(y) = 0. In the algorithm, τ is the absolute tolerance of
the method (note that when this algorithm applied to a general non-linear system, a relative
tolerance should also be used), τmax is upper limit for the norm if the iteration diverges, and
imax is the maximum number of iterations.

x← initial guess
J← ∂g

∂y
(x)

for i = 1→ imax do
r← g(x)
if ||r||∞ < τ then

return x
end if
if ||r||∞ > τmax then

break
end if
Solve Jz = −r for z
x← x + z

end for
return convergence failure

2.3.2 Error Estimation

The exact solution to an IVP is generally unknown; subsequently, the exact error of a nu-

merical solution is also unknown. A common way of predicting local error at each step n is

to solve the differential equation with two different methods at each step, producing solution

ỹn in addition to yn. The local error prediction is thus written en,local = ỹn − yn. A second

method that produces ỹn is commonly known as an auxiliary method. The goal of a step

17

controller is to ensure that each component yn,j (n is the step and j is the vector index) of the

solution satisfies |ỹn,j−yn,j| ≤ τabs + τrel max(yn,j, yn−1,j), where τabs is the absolute tolerance

and τrel is the relative tolerance. A prediction of error for a step can thus be calculated using

the root mean square [20]

εn =

√√√√ 1

m

m∑
j=1

(
ỹn,j − yn,j

τabs + τrel max(yn,j, yn−1,j)

)2

, (2.7)

where εn is a scalar that represents local error at every step n with respect to some desired

tolerances. Recall that m is the dimension of the system.

Solving the IVP with two methods is computationally expensive. Therefore, it is common

to use an embedded method for error prediction, where two RK methods of different order use

the same stages because stages are generally the most computationally expensive part of an

RK method. The two methods for embedded error control share the same aij coefficients from

the Butcher tableau but use different bi coefficients to obtain methods of different order; i.e.,

the main method is embedded into the tableau of the auxiliary method. The representation

of an embedded method includes an additional row of coefficients b̃i in the Butcher tableau

for the auxiliary method. The modified tableau for an s-stage embedded method can be

written as

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a2,s

...
...

...
. . .

...

cs as,1 as,2 . . . as,s

b1 b2 . . . bs

b̃1 b̃2 . . . b̃s

where b̃i are the quadrature weights for the embedded method.

Step-doubling is another common approach to the estimation of local error when a nu-

merical method does not have an associated auxiliary method [21]. The solution from taking

18

two steps of size ∆tn is compared to advancing the solution using a single step of size 2∆tn.

The difference between the two solutions can be used as a local error estimate.

2.3.3 Step Control

The goal of using numerical methods for solving IVPs is to obtain a solution to some desired

level of accuracy in a reasonable amount of time. When numerically solving differential

equations, there is a trade-off between the accuracy of a numerical solution and the time

required to calculate the solution. For a given numerical method, the stepsize plays an

important role in this trade-off because the time required to generate a numerical solution

relies heavily on the number of steps taken. If the stepsize is too large, the numerical method

introduces too much error. If the stepsize is too small, the numerical method performs

unnecessary computation (resulting in a solution that might be unnecessarily accurate) and

is inefficient; i.e., the IVP could have been solved to an acceptable accuracy with a larger

stepsize and, consequently, in less time.

It is often advantageous for numerical methods to use an adaptive stepsize rather than

a constant stepsize while timestepping through an IVP. If the stepsize is allowed to change,

the numerical method can use smaller stepsizes on “exciting” regions of the solution that

require smaller stepsizes to remain accurate, and the method can use larger stepsizes on the

less exciting regions of the solution that remain sufficiently accurate with larger stepsizes.

Adaptive step control can thus allow numerical methods to be much more efficient because

time is not wasted using small steps on sections of the problem that could easily allow for

larger steps; fewer overall steps are taken.

Step controllers automatically govern the change in stepsize, adjusting the step size based

on the calculated value for εn, given by (2.7). After each step, the step controller decides

whether or not to accept the step and proceed to computing subsequent steps, or to reject

the step, in which case the step controller decreases the stepsize and makes another attempt

at the step. A step is accepted when εn is less than one; otherwise, it is rejected. A step

can also be rejected for other reasons. For example, Newton’s method might fail to converge

or undefined values might arise while computing the numerical solution. It is desirable to

minimize the number of rejected steps because rejected steps are a computational cost that

19

does not advance the numerical solution.

Recall that εn is only an estimate of the local error, not the true value. Therefore, limits

are imposed so that the stepsize does not shrink or grow too quickly. If stepsize grows too

quickly, the IVP solver might reject the following step due an estimate of local error that

is not sufficiently accurate. A stepsize can also shrink too quickly due to an inaccurate

estimation of local error, resulting in poor performance because a larger stepsize would have

been sufficient. The change in stepsize is also multiplied by a safety factor to provide better

error prediction at the next step. Standard step control is thus managed by the following

formula [42]

∆tn+1 = ∆tn ·min

(
αmax,max

(
αmin, α

(
1

εn+1

)1/(p+1)
))

, (2.8)

where α is the safety factor, αmin is a minimum allowable factor, αmax is a maximum allowable

factor, and p is the order of the numerical method. In this thesis, the numerical experiments

set the value of α to 0.9, αmin to 0.2, and αmax to 5. These values are standard choices.

Additionally, the step controller places a hard minimum on the stepsize such that the stepsize

does not approach machine epsilon, resulting in inaccuracies or a solution that can no longer

be advanced because the stepsize is too small.

A common issue arises from the following situation: the IVP solver takes a step, accepts

the step with a small error estimate, increases the stepsize by the maximum amount, rejects

the subsequent step due to a large error estimate, and decreases the stepsize by the maximum

amount to approximately what it was at the beginning of the previously accepted step. The

standard step controller is prone to repeating this process, resulting in a numerical method

that is inefficient because it rejects approximately half of the overall steps. Often, this issue

can be mitigated by changing values for amin and amax, but for some IVPs, the problem

persists.

To address this, numerical methods (typically those that are implicit) often perform better

20

using a predictive step controller scheme [42], written as

∆tn+1 = ∆tn ·min

(
αmax,max

(
αmin, α

(
1

εn

)1/(p+1)
∆tn

∆tn−1

(
εn−1

εn

)1/(p+1)
))

. (2.9)

The predictive controller often provides a smoother change in stepsize compared to the stan-

dard controller, in part, because it relies on ∆tn−1 in addition to ∆tn.

2.3.4 Stability and Stiffness

Stability analysis is important to the study of numerical methods because it facilitates un-

derstanding and prediction of the types of methods best suited to different types of IVPs.

Different methods impart different errors to a numerical solution, affecting how the numer-

ical solution behaves over time. Each step of a numerical method introduces error into the

solution. Throughout the many steps required to calculate the solution to an IVP over a

desired time interval, error accumulates because error is introduced at every step. In the

context of numerical integration methods, the numerical solution is stable if its error remains

bounded. Instability is often apparent when the numerical solution rapidly diverges.

To analyze the stability an RK method, the test equation dy
dt

= λy is considered, where

λ ∈ C is known as an eigenvalue of the problem. The corresponding function exp(λt) is a

solution to the differential equation corresponding to eigenvalue λ. The stability behaviour

of integration methods applied to the test equation is known as linear stability analysis.

Analysis of the test equation can be meaningful for IVPs of the form (1.1) despite the fact

that IVPs are generally non-linear [20].

Application of an RK method to the test equation is written as

ki = λyn−1 + ∆tnλ
s∑
j=1

aijki, i = 1, 2, . . . , s,

yn = yn−1 + ∆tn

s∑
j=1

bjkj.

(2.10)

21

Using matrix notation to coalesce all stages, (2.10) can be rewritten as

k = λyn−11 + ∆tnλAk,

yn = yn−1 + ∆tnb
Tk,

(2.11)

where k = (k1, k2, . . . , ks)
T, 1 = (1, 1, . . . , 1)T ∈ Rs, and b = (b1, b2, . . . , bs)

T. By solving

for k, (2.11) can be rearranged to

yn = [1 + ∆tnλbT(I−∆tnλA)−11]yn−1,

where I ∈ Rs×s is the identity matrix. The IVP step can then be written yn = R
(
∆tnλ

)
yn−1

where R(z) = 1 + zbT(I− zA)−11 is the stability function.

For Re(λ) ≤ 0, a method is absolutely stable when |R(∆tnλ)| ≤ 1. Otherwise, exponential

accumulation of error can cause the numerical solution to rapidly become inaccurate.1 This

criterion for stability forms regions on the complex plane for which the method is absolutely

stable, based on both the timestep ∆tn and the (complex) eigenvalue λ. The shaded areas in

Figure 2.1 show the regions of stability for some explicit RK methods of orders two through

five, applied to the test equation, i.e., the regions for which ∆tnλ satisfies the stability

constraint |R(∆tnλ)| ≤ 1. Note that these plots hold for all RK methods of those orders,

respectively. When λ is large, the estimate of local error typically causes the step controller

to reduce ∆tn so that ∆tnλ is within the region of stability, and therefore, a stable numerical

solution is maintained.

With regard to IVPs of the form (1.1), each eigenvalue of the Jacobian of the RHS

should generally be contained within the stability region for a numerical method to perform

well. Therefore, these eigenvalues are indicative of how well a given method performs on

the associated IVP, based how the stability region adapts to contain the eigenvalues. Linear

stability analysis cannot generally be used a sole justification for the selection of numerical

methods; it is, nonetheless, a useful tool to provide insight into which methods might perform

well on a given IVP.

1Note that when Re(λ) > 0, it is actually desirable to have |R(∆tnλ)| ≥ 1; otherwise, the numerical
solution is damped when it should be increasing in magnitude.

22

4 2 0 2 4
Re(z)

4

2

0

2

4

Im
(z

)

RK2

4 2 0 2 4
Re(z)

4

2

0

2

4

Im
(z

)

RK3

4 2 0 2 4
Re(z)

4

2

0

2

4

Im
(z

)

RK4

4 2 0 2 4
Re(z)

4

2

0

2

4

Im
(z

)

DOPR54

Figure 2.1: Regions of absolute stability, calculated from the stability function, for
Runge–Kutta methods ranging from order two to five.

23

Directly related to stability is a property of IVPs known as stiffness, which can be thought

of as referring to how difficult it is for an explicit numerical method to solve a problem using

reasonably sized timesteps, i.e., timesteps that are not too small [21]. In order to maintain

a stable numerical solution on a stiff problem, the stepsize of an explicit method is limited

by the stiffness of the problem rather than by accuracy constraints. As an IVP becomes

more stiff, it becomes increasingly inefficient for the IVP to be solved using explicit methods.

Implicit methods generally perform much better on stiff problems, despite the trade-off of

having to solve a generally non-linear system at every step. Larger, more costly steps can be

taken with an implicit method, and the overall performance gain of fewer overall steps usually

outweighs the additional cost per step. For example, Figure 2.2 shows stability regions for

the FE and BE methods, comparing explicit and implicit methods. Notice that forward

Euler is explicit and thus has a bounded region of absolute stability. Backward Euler has

an unbounded region of absolute stability, demonstrating why implicit methods can perform

better on stiff problems. The RADAU5 method is also fully implicit and has an unbounded

region of stability, shown in Figure 2.3.

4 2 0 2 4
Re(z)

4

2

0

2

4

Im
(z

)

Forward Euler

4 2 0 2 4
Re(z)

4

2

0

2

4

Im
(z

)

Backward Euler

Figure 2.2: Regions of absolute stability, calculated from the stability function, for
the forward and backward Euler methods.

24

15 10 5 0 5 10 15
Re(z)

15

10

5

0

5

10

15

Im
(z

)

Figure 2.3: Region of absolute stability, calculated from the stability function, for the
RADAU5 method.

2.3.5 Runge–Kutta–Chebyshev Methods

Thus far, RK methods have been defined by a Butcher tableau, containing a set of precom-

puted coefficients that specifies the number of stages, the dependencies among stages, and

how to weight them when taking a step. Note that the number of stages in these methods

is fixed for all steps. Runge–Kutta–Chebyshev (RKC) methods are a special class of ERK

methods that aim to overcome the stability constraints of general ERK methods by using

an extended region of absolute stability. RKC methods have a variable number of stages,

which are used to control the stability region. RKC methods first allow a step controller to

choose an appropriate stepsize with respect to a prediction of local error (much like general

RK methods), and then they choose an appropriate number of stages to maintain a stable

solution (unlike general RK methods).

RKC methods are well suited for some problems that are moderately stiff. These methods

maintain the speed of general ERK methods because they do not have any implicit stages.

RKC methods are particularly applicable to parabolic PDEs that, when discretized, have

eigenvalues along the negative real axis. The region of absolute stability extends along the

negative real axis, growing quadratically with the number of stages.

All stages are defined recursively; thus, the storage requirements of RKC are minimal.

25

At each stage, the order conditions are satisfied explicitly using the Chebyshev polynomials.

An arbitrary number of stages can be computed on-the-fly without solving order condition

coefficients for each new number of desired stages. Each step of an RKC method can be

represented by a Butcher tableau because RKC methods form a subset of general RK meth-

ods; however, for the purposes of implementation, it is more efficient and convenient to use

a recursive definition for an RKC method.

Once an appropriate timestep ∆tn has been chosen by the step controller, the num-

ber of stages s of the RKC method is optimally chosen based on the spectral radius σ of

∂f
∂y

(tn−1,yn−1), i.e., the largest eigenvalue of the Jacobian of the RHS evaluated at the begin-

ning of the timestep. The calculation for the number of stages for each step is written [46]

s = 1 +

⌊√
1 +

∆tnσ

0.653

⌋
.

The s-stage formula for an RKC method is written as [46]

k0 = yn−1,

k1 = k0 + κ1∆tnf0,

kj = (1− µj − νj)k0 + µjkj−1 + νjkj−2 + κj∆tnfj−1 − aj−1κj∆tnf0,

j = 2, 3, . . . , s,

yn = ks,

µj =
2bjω0

bj−1

, νj =
−bj
bj−2

, fj = f(tn−1 + cj∆tn,kj),

Tj(z) = 2zTj−1(z)− Tj−2(z), T1(z) = z, T0(z) = 1,

where Tj is the jth Chebyshev polynomial. The following coefficients for each stage j pertain

26

to a first-order RKC method; they are written as

κj = 0, aj = 0, bj = T−1
j (ω0), cj = ω1

T ′j(ω0)

Tj(ω0)
,

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′s(ω0)
,

and coefficients for a second-order RKC method for each stage j are written as

κ1 = b1ω1, κj =
2bjω1

bj−1

,

aj = 1− bjTj(ω0), bj =
T ′′j (ω0)(
T ′j(ω0)

)2 , b0 = b1 = b2,

cj = ω1

T ′′j (ω0)

T ′j(ω0)
, c1 =

c2

T ′2(ω0)
, c0 = 0,

ω0 = 1 +
η

s2
, ω1 =

T ′s(ω0)

T ′′s (ω0)
.

Derivatives of the Chebyshev polynomials required by each stage j are calculated as

T ′0(z) = 0 T ′1(z) = 1,

T ′j(z) = 2Tj−1(z) + 2zT ′j−1(z)− T ′j−2(z),

T ′′0 (z) = 0 T ′′1 (z) = 0,

T ′′j (z) = 2T ′j−1(z) + 2T ′j−1(z) + 2zT ′′j−1(z)− T ′′j−2(z).

RKC is intended for problems with Jacobian matrices that have all of their eigenvalues

near the negative real axis [43]. The stability polynomial for an s-stage RKC method is

written as [46]

R(z) = aj + bjTj(ω0 + ω1z),

where z = ∆tnλ. Recall that λ ∈ C. Stability regions of the RKC1 and RKC2 methods for

stages two through five are are shown in Figures 2.4 and 2.5, respectively.

All Chebyshev polynomials in the method can be calculated recursively; each stage of the

RKC method calculates the next required Chebyshev polynomial in the sequence. The only

27

exception to this recursive calculation is ω1, which depends on the last Chebyshev polynomial,

Ts(ω0). RKC methods use ω1 in all stages, but the last Chebyshev polynomial is not calcu-

lated until the final stage. Taking note that ω0 ≥ 1, the values of T ′s(ω0) and T ′′s (ω0), required

to compute ω1, are calculated using the trigonometric definition of Chebyshev polynomials:

Ts(x) = cosh(s arccosh(x))

RKC calculates error for the step controller differently from the previously discussed em-

bedded method. An estimate for error is calculated using an additional function evaluation.

An expression for the local error corresponding to ỹ−y and used to calculate εn in (2.7) can

be written for the RKC method as

1

15
[12(yn−1 − yn) + 6∆tn(f(tn−1,yn−1) + f(tn,yn))] .

After an error estimate has been calculated, the step controller functions according to (2.8).

10 8 6 4 2 0 2
Re(z)

8

6

4

2

0

2

4

6

8

Im
(z

)

m=2

25 20 15 10 5 0
Re(z)

8

6

4

2

0

2

4

6

8

Im
(z

)

m=3

40 30 20 10 0
Re(z)

8

6

4

2

0

2

4

6

8

Im
(z

)

m=4

60 50 40 30 20 10 0
Re(z)

8

6

4

2

0

2

4

6

8

Im
(z

)

m=5

80 70 60 50 40 30 20 10 0
Re(z)

8

6

4

2

0

2

4

6

8

Im
(z

)

m=6

100 80 60 40 20 0
Re(z)

8

6

4

2

0

2

4

6

8

Im
(z

)

m=7

Figure 2.4: Regions of absolute stability, calculated from the stability function, for
the RKC1 method of stages two through seven.

28

4 3 2 1 0 1 2
Re(z)

6

4

2

0

2

4

6

Im
(z

)

m=2

10 8 6 4 2 0 2
Re(z)

6

4

2

0

2

4

6

Im
(z

)

m=3

16 14 12 10 8 6 4 2 0 2
Re(z)

6

4

2

0

2

4

6

Im
(z

)

m=4

20 15 10 5 0
Re(z)

6

4

2

0

2

4

6

Im
(z

)

m=5

25 20 15 10 5 0
Re(z)

6

4

2

0

2

4

6

Im
(z

)

m=6

30 25 20 15 10 5 0
Re(z)

6

4

2

0

2

4

6

Im
(z

)

m=7

Figure 2.5: Regions of absolute stability, calculated from the stability function, for
the RKC2 method of stages two through seven.

2.3.6 Rosenbrock Methods

Steps for implicit methods can be expensive because they often require the solution of large

non-linear systems. DIRK methods can be more efficient but still require the solution of

a non-linear system at each stage. The class of Rosenbrock methods attempts to mitigate

the issue by linearly approximating RK stages of a DIRK method. Therefore, the DIRK

method can be transformed such that it only needs to solve linear systems. This approach

departs from the traditional class of RK methods because, due to the linear approximation,

it cannot be written as a single Butcher tableau. As an optimization, the Jacobian in the

linear approximation is evaluated at yn−1; thus, stages for Rosenbrock methods are derived

as

ki = ∆tnf

(
tn−1 + αi∆tn,yn−1 +

i−1∑
j=1

αijkj

)
(2.12)

+ (∆tn)2∂f

∂t
(tn−1,yn−1) + ∆tn

∂f

∂y
(tn−1,yn−1)

i∑
j=1

γijki,

29

where the coefficients αi, αij, and γij satisfy similar order conditions to those of an RK

method. In this formulation of a Rosenbrock method, yn is calculated identically to RK

method, using coefficients bi to weight stages.

Implementation of a Rosenbrock method can be much more efficient than directly using

the above definition. With the substitution ui =
∑i

j=1 γijkj, (2.12) can be rewritten as [21]

(
1

γii∆tn
I− J

)
ui = f

(
tn−1 + αi∆tn,yn−1 +

i−1∑
j=1

aijuj

)

+
i−1∑
j=1

(
cij

∆tn

)
uj + γi∆tn

∂f

∂t
(tn−1,yn−1),

yn = yn−1 +
s∑
j=1

mjuj,

where J = ∂f
∂y

(tn−1,yn−1), αi =
∑i−1

i=1 αij, γi =
∑i

i=1 γij, the matrix of aij coefficients is

defined as

a11 a12 . . . a1s

a21 a22 . . . a2s

...
...

. . .
...

as1 as2 . . . ass


=



α11 α12 . . . α1s

α21 α22 . . . α2s

...
...

. . .
...

αs1 αs2 . . . αss





γ11 γ12 . . . γ1s

γ21 γ22 . . . γ2s

...
...

. . .
...

γs1 γs2 . . . γss



−1

,

and the vector of mj coefficients is defined as

(
m1 m2 . . . ms

)
=

(
b1 b2 . . . bs

)


γ11 γ12 . . . γ1s

γ21 γ22 . . . γ2s

...
...

. . .
...

γs1 γs2 . . . γss



−1

.

30

Rosenbrock methods with strict tolerances are used as a way to generate reference solu-

tions for problems in this thesis. The RODAS method is a fourth-order Rosenbrock method

with coefficients chosen for computational and stability optimization. The stability function

for RODAS is shown in Figure 2.6.

20 10 0 10 20
Re(z)

20

10

0

10

20

Im
(z

)

Figure 2.6: Region of absolute stability, calculated from the stability function, for the
RODAS method.

2.3.7 Exponential Runge–Kutta Methods

A number of generalized methods exists for solving IVPs; the solution to the IVP is evolved

in Rm, where m is the size of the system. However, if the solution of the IVP is known to

evolve on a specific sub-manifold of Rm, perhaps better methods can be derived that use

information from this sub-manifold [22]. Methods that preserve structure are particularly

applicable to mechanical systems involving conservation of mass, energy, or momentum. For

example, consider a problem where the solution is constrained to a fixed, circular orbit. That

orbit is the manifold on which the solution evolves; thus, it is desirable for each step of an

IVP integrator to yield a result on that manifold. Another example is rigid-body dynamics,

where bodies move in SE(3) [22].

Exponential RK (ExpRK) methods are an example of these so-called structure-preserving

methods [35]. This thesis restricts analysis of ExpRK methods to those based on matrix

multiplications and exponentials. The IVPs studied are those of the form

dy

dt
(t) = A(t,y)y(t), y(t0) = y0, (2.13)

31

where y ∈ Rm and A : R × Rm 7→ Rm×m, because performing operations on matrices is

well understood and arises in many applications. Many IVPs exist that can be written in

this form. If A is constant, this problem has an exact solution of y(t) = exp (tA) y0. When

A is not constant, freezing A at the beginning of the timestep and taking a step using the

exact linearized solution yields an ExpRK method that is analogous to FE for classical RK

methods. The method, known as exponential Euler, is written as [8]:

yn = yn−1 + exp [∆tnA(tn−1,yn−1)] yn−1.

As with classical RK, the ExpRK methods can be extended to higher order, as first

introduced by Crouch and Grossman [12]. In 2005, Celledoni introduced the commutator-

free exponential Runge-Kutta (CFERK) method [7]. For an IVP of the form (2.13), the

s-stage CFERK method is written

ki =

[
1∏

k=J

exp

(
∆tn

s∑
j=1

a
[k]
ij A(kj)

)]
yn−1,

yn =

[
1∏

k=J

exp

(
∆tn

s∑
j=1

b
[k]
j A(kj)

)]
yn−1,

where i = 1, 2, . . . , s and there are J Butcher tableaux; a
[k]
ij refers to aij in tableau k and b

[k]
j

refers to bj in tableau k.

2.4 Methods for 2-Additively Split Problems

There exist many numerical methods for IVPs that are 2-additively split. In general, these

methods are equally applicable to all 2-additive IVPs, regardless of whether the IVP has

been split using physics-based splitting or Jacobian splitting. However, the performance of

methods might vary, depending on the manner in which the IVP was split.

Numerical methods for 2-additive IVPs are particularly useful for problems that are split

such that one split part is relatively stiff and the other is relatively non-stiff. Typically,

when considering an additive splitting of the form of (1.2), fI is assumed to be stiff and fE

32

is assumed to be non-stiff. Applying an implicit method to fI and an explicit method to fE

could result in a method that performs better than a non-additive method applied to the

entire, non-split IVP.

Physics-based splitting only uses an implicit method on the term that is more stiff. Ja-

cobian splitting is thought to be superior to physics-based splitting because it treats the

stiffness from both terms implicitly and the non-stiff remainder explicitly. It is based on

the premise that the Jacobian of the RHS captures the stiffness of an IVP and should be

treated implicitly. This may be reasonable because linear stability analysis is generally effec-

tive in predicting the suitability of a numerical method for a given IVP. The stability regions

of methods influence how well a method performs on a problem. Those methods with un-

bounded regions of absolute stability typically perform better on relatively stiff problems. It

is therefore reasonable that a 2-additive method should treat the (stiff) linearized part of the

RHS with an implicit method and the (nonstiff) remainder of the RHS explicitly.

2.4.1 Additive Runge–Kutta Methods

An additively split IVP can be solved by applying a distinct RK method to each of its

contributing factors. Such an approach forms a class of numerical methods known as additive

Runge–Kutta (ARK) methods. In practice, the most common form of ARK methods are 2-

additive. Assuming the IVP has already been split (using physical characteristics or using

Jacobian splitting) into two functions fI(t,y) and fE(t,y), as in (1.2), the general form of a

2-additive ARK method is written as

ki = fI

(
tn−1 + ci∆tn, yn−1 + ∆tn

s∑
j=1

[
aijkj + ãijk̃j

])
,

k̃i = fE

(
tn−1 + c̃i∆tn, yn−1 + ∆tn

s∑
j=1

[
aijkj + ãijk̃j

])
,

i = 1, 2, . . . , s

yn = yn−1 + ∆tn

s∑
i=1

[
biki + b̃ik̃i

]
.

The associated Butcher tableaux are given in Table 2.4.

33

c1 a1,1 . . . a1,s

...
...

. . .
...

cs as,1 . . . as,s

b1 . . . bs

c̃1 ã1,1 . . . ã1,s

...
...

. . .
...

c̃s ãs,1 . . . ãs,s

b̃1 . . . b̃s

Table 2.4: The Butcher tableaux for a 2-additive RK method.

Each RK method has its own Butcher tableau subject to standard order conditions; see

Appendix A. The coefficients are also subject to coupling conditions between the two RK

methods. The ARK method is able to achieve order p provided each method is independently

of at least order p and that the appropriate coupling conditions are satisfied. The Butcher

tableaux for a third-order ARK method is given in Table 2.5 [30].

DIRK Method

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

0 0

3
5

2746238789719
10658868560708

− 640167445237
6845629431997

1767732205903
4055673282236

0

1 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Main 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Aux. 2756255671327
12835298489170

−10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

ERK Method

0 0 0 0 0

1767732205903
2027836641118

1767732205903
2027836641118

0 0 0

3
5

5535828885825
10492691773637

788022342437
10882634858940

0 0

1 6485989280629
16251701735622

−4246266847089
9704473918619

10755448449292
10357097424841

0

Main 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

Aux. 2756255671327
12835298489170

−10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

Table 2.5: Butcher tableaux for a third-order ARK method.

IVPs often have stiff and non-stiff additively split contributing factors. The stiff and non-

stiff factors are usually treated with implicit and explicit methods, respectively. Methods

34

of this type form a class known as implicit-explicit (IMEX) Runge–Kutta methods. IMEX

methods are a subset of ARK methods; they can be defined using the same notation as a

general ARK method. Recall that the matrix representation of the Butcher tableau for an

ERK method is lower triangular. Many of the methods in this thesis are of the IMEX class;

for the stiff term of the IVP, they require the solution of a generally non-linear system.

When applying Jacobian splitting to ARK methods, the Jacobian is computed once at

the beginning of each step and then frozen for the duration of the step. The stiff term fI of

the split IVP is linear; therefore, it can be solved by implicit methods using a single Newton

iteration. Jacobian splitting might have additional performance gains over physics-based

splitting if fI from the physics-based splitting is non-linear.

Note that the computation of a Jacobian matrix is generally required at every step by

methods that are implicit or use Jacobian splitting. For physics-based splitting, the computa-

tion is of ∂fI
∂y

; for Jacobian splitting, the computation is of ∂f
∂y

. Even if no systems of equations

are solved, i.e., the numerical method is fully explicit, the Jacobian is still required at each

step to perform Jacobian splitting; however, using a fully explicit approach in conjunction

with Jacobian splitting is likely not practical. Computing Jacobian matrices can be computa-

tionally expensive, but it is necessary for all IMEX methods, regardless of whether Jacobian

splitting is used. Jacobian splitting is no more complex to implement than physics-based

splitting because both splittings involve computation of a Jacobian matrix and are otherwise

generally comparable in implementational difficulty. For the numerical experiments in this

thesis, the computation of Jacobian matrices is further discussed in Section 3.1.4.

2.4.2 Stability for 2-Additive Runge–Kutta Methods

Stability analysis for ARK methods is similar to that of RK methods. The test equation

dy
dt

= λy + iµy is used, where λ, µ ∈ R and i =
√
−1. It is assumed that the first split term

has real eigenvalues and the second has imaginary eigenvalues; therefore, stability plots can

still be represented on a two-dimensional plot. Application of an ARK method to the test

35

equation is written as

ki = λyn−1 + ∆tnλ
s∑
j=1

(aijki + ãij k̃i),

k̃i = iµyn−1 + ∆tniµ
s∑
j=1

(aijki + ãij k̃i),

yn = yn−1 + ∆tn

s∑
i=1

(biki + b̃ik̃i).

(2.14)

Using matrix notation, (2.14) can be rewritten as

k = λyn−11 + ∆tnλ(Ak + Ãk̃),

k̃ = iµyn−11 + ∆tniµ(Ak + Ãk̃),

yn = yn−1 + ∆tn(bTk + b̃Tk̃),

(2.15)

where k = (k1, k2, . . . , ks)
T, 1 = (1, 1, . . . , 1)T ∈ Rs, and b = (b1, b2, . . . , bs)

T. Solving for k

and k̃, (2.15) can be rearranged as

k = λyn−1(I−∆tnλA−∆tniµÃ)−11,

k̃ = iµyn−1(I−∆tnλA−∆tniµÃ)−11.

Substituting the stages into (2.15) yields

yn =
[
1 + ∆tn(λbT + iµb̃T)(I−∆tnλA−∆tniµÃ)−11

]
yn−1,

where I ∈ Rs×s is the identity matrix. The IVP step can now be written yn = R
(
∆tnλ,∆tnµ

)
yn−1.

Stability functions for IMEX methods ARK3, ARK4, and ARK5 are shown in Figure 2.7.

2.4.3 The Partitioned Runge–Kutta–Chebyshev Method

For additively split problems, there might be a dominating stiff component and a non-stiff

component. It might be possible to solve a split IVP accurately with fewer function evalua-

tions of the non-stiff component in comparison to those of the stiff component. One approach

36

40 30 20 10 0 10 20 30 40
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

ARK3

40 30 20 10 0 10 20 30 40
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

ARK4

40 30 20 10 0 10 20 30 40
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

ARK5

Figure 2.7: Regions of absolute stability, calculated from the stability function, for
IMEX methods ranging from orders three to five.

is to apply RKC to the stiff component of the IVP (possibly taking many function evalua-

tions) and have only four function evaluations of the non-stiff component [49]. This method is

known as the partitioned Runge–Kutta–Chebyshev (PRKC) method. Like RKC, it is aimed

at problems with eigenvalues that are near the negative real axis. The s-stage formula for

the second-order PRKC method is written as

k−1 = yn−1,

k0 = k−1 + α0∆tng−1,

k1 = k0 + κ1∆tnf0,

kj = (1− µj − νj)k0 + µjkj−1 + νjkj−2 + κj∆tnfj−1 − aj−1κj∆tnf0,

j = 1, 2, . . . , s

ks = (1− µs − νs)k0 + µsks−1 + νsks−2 + κs∆tnfs−1 − as−1κj∆tnf0

+ α1∆tng−1 + α2∆tng0 + α3∆tngs−1,

ks+1 = (1− µs − νs)k0 + µsks−1 + νsks−2 + κs∆tnfs−1 − as−1κs∆tnf0,

+ α4∆tng−1 + α5∆tng0 + α6∆tngs−1 + α7∆tngs,

yn = ks+1.

For j = 1, 2, . . . , s, the coefficients µj, νj, κj, aj, bj, cj, ω0, and ω1 are identical to the

37

second-order RKC method. The remaining coefficients are defined as follows:

fi = fI(tn−1 + ci∆tn,ki), g−1 = fI(tn−1,k−1),

g0 = fE(tn−1 + α0∆tn,k0), gs−1 = fE(tn−1 + α0∆tn,ks−1), gs = fE(tn−1 + ∆tn,ks),

α0 =
1

2
, α1 = −1

2
+ v(3− 4v), α2 = 2v(2v − 1)− α3, α4 =

1− 3v

6v
,

α5 =
1− 3v

6v
, α6 =

1 + 3v(1− 2v) + 4cm−1v(3v − 2)

6cm−1v(2v − 1)
, α7 =

1

6v(2v − 1)
,

where α3 and v are free parameters. Stability plots for PRKC are shown in Figure 2.8. The

stability polynomial for PRKC is written as [49]

R(∆tnλ,∆tnµ) =Rs(∆tnλ)
[
1 + (α0 + α7)∆tniµ+ α0α7(∆tniµ)2

]
+Rs−1(∆tnλ)

[
α6∆tniµ+ (α0α6 + α3α7)(∆tniµ)2 + α0α3α7(∆tniµ)3

]
+ (α4 + α5)∆tniµ+ (α0α5 + (α1 + α2)α7)(∆tniµ)2 + α0α2α7(∆tniµ)3.

2.4.4 The Implicit-Explicit Runge–Kutta–Chebyshev Method

The implicit-explicit Runge-Kutta-Chebyshev (IRKC) method is based on RKC methods.

IRKC is designed for 2-additively split IVPs whereby one contributing factor is treated with

RKC and the other contributing factor is treated with the BE method [40]. Conceptually,

a fundamental difference between PRKC and IRKC is that the PRKC method integrates

the second contributing factor explicitly, whereas the IRKC method integrates the second

contributing factor implicitly. IRKC is particularly applicable to IVPs in where the elements

of the term treated with BE are generally independent, i.e., dyi
dt

only depends on yi (and t)

for all i = 1, 2, . . . ,m. Therefore, at every step, m one-dimensional linear systems are solved,

making the method much more efficient in comparison to solving a single, larger m × m

system.

38

4 3 2 1 0 1 2
(∆t)λ

4

3

2

1

0

1

2

3

4

(∆
t)
µ

m=2

10 8 6 4 2 0 2
(∆t)λ

4

3

2

1

0

1

2

3

4

(∆
t)
µ

m=3

16 14 12 10 8 6 4 2 0 2
(∆t)λ

4

3

2

1

0

1

2

3

4

(∆
t)
µ

m=4

20 15 10 5 0
(∆t)λ

4

3

2

1

0

1

2

3

4

(∆
t)
µ

m=5

25 20 15 10 5 0
(∆t)λ

4

3

2

1

0

1

2

3

4

(∆
t)
µ

m=6

30 25 20 15 10 5 0
(∆t)λ

4

3

2

1

0

1

2

3

4

(∆
t)
µ

m=7

Figure 2.8: Regions of absolute stability, calculated from the stability function, for
the PRKC method of stages two through seven.

The algorithm for a step for the IRKC method is written as [40]

k0 = yn−1,

k1 = k0 + κ1∆tn(f0 + g1),

kj = (1− µj − νj)k0 + µjkj−1 + νjkj−2 + κj∆tnfj−1 − aj−1κj∆tnf0

− [aj−1κj + (1− µj − νj)κ1]∆tng0 − νjκ1∆tngj−2 + κ1∆tngj,

fj = f
(
tn−1 + cj∆tn,kj

)
, gj = g

(
tn−1 + cj∆tn,kj

)
,

j = 1, 2, . . . , s

yn = ks,

c0 = 0, c1 =
ω1

ω0

, cj = µjcj−1 + νjcj−2 + aj(1 + κj).

All of the coefficients of IRKC are identical to the RKC method described in Section 2.3.5

with the exception of b0 = 1
4ω2

0
and b1 = 1

ω0
. The stability polynomial for IRKC is written

39

as [40]

R(z) = 1− bsTs(w0) + bsTs

(
w0 + w1

z

1− w1

w0
Im(z)

)
, (2.16)

and is shown for stages two through seven in Figure 2.9.

4 3 2 1 0 1 2
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

m=2

10 8 6 4 2 0 2
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

m=3

16 14 12 10 8 6 4 2 0 2
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

m=4

20 15 10 5 0
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

m=5

25 20 15 10 5 0
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

m=6

30 25 20 15 10 5 0
(∆t)λ

20

15

10

5

0

5

10

15

20

(∆
t)
µ

m=7

Figure 2.9: Regions of absolute stability, calculated from the stability function, for
the IRKC method of stages two through seven.

2.4.5 Additive Exponential Runge–Kutta Methods

An ExpRK method can be used in conjunction with classical RK method to derive a 2-

additive method [8]. Many IVPs have a physics-based splitting of the form

dy

dt
= fI(t,y) + A(t,y)y, y(0) = y0, (2.17)

where y ∈ Rm, fI : R× Rm 7→ Rm, and A : R× Rm 7→ Rm×m. This form lends itself well to

the application of 2-additive ExpRK methods. One approach is to treat the first term fI with

a (generally implicit) classical RK method and the second term A(t,y)y with a (generally

40

explicit) CFERK method. It is of interest to determine whether an additive ExpRK method

has superior performance compared to classical ARK methods (using either physics-based or

Jacobian splitting).

The additive s-stage ExpRK method applied to (2.17) is written [8]

yi = Φiyn−1 + ∆tn

s∑
j=1

aijΦiΦ
−1
j f(yj), Φi =

1∏
k=J

exp

(
∆tn

s∑
j=1

α
[k]
ij C(yj)

)
,

yn = Φnyn−1 + ∆tn

s∑
j=1

bjΦnΦ
−1
j f(yj), Φn =

1∏
k=J

exp

(
∆tn

s∑
j=1

β
[k]
j C(yj)

)
,

(2.18)

where i = 1, 2, ..., s, the aij and bj are the coefficients of the classical RK method, and the

α
[k]
ij and β

[k]
j are the coefficients of the ExpRK method.

A common approach is to use a DIRK method as the classical RK method and an explicit

ExpRK method, forming a class of methods known as the DIRK-CF methods; otherwise, the

system of equations to solve the implicit stages involves a matrix exponential, which can

be computationally expensive. Specifics on the derivation of DIRK-CF methods is given in

Appendix C. The numerical stability of these methods is largely determined by the classical

RK method; the stability function is given as [8]

R(∆tnλ,∆tnµ) = exp(i∆tnµ)R(∆tnλ),

where R(∆tλ) is the stability function of the classical RK method.

This thesis considers two DIRK-CF methods of orders 1 and 2, which are named DIRK-

CF1 and DIRK-CF2. The Butcher tableaux for these methods are given in Figure 2.10.

Many IVPs are defined such that fI in (2.17) can be further split, either using physics-based

or Jacobian splitting. Such splittings transform (2.17) into a 3-additive problem, which is

discussed as part of potential future work, but is beyond the scope of this thesis.

41

DIRK-CF1

0 0

1

1 1

1

DIRK-CF2

0 0 0

1
2

1
2

0

1 0

0 0 0

1
2

0 1
2

0 1

Figure 2.10: Butcher tableaux for the DIRK-CF1 and DIRK-CF2 methods. The
classical RK tableaux are given on the left and the ExpRK tableaux are given on the
right.

42

Chapter 3

Methods and Software

Numerical methods are applied to additively split IVPs to determine which methods have

the best performance. The most important metric is a method’s runtime with respect to the

accuracy of the solution it produces. One can then choose an appropriate method when

solving other, similar IVPs. Other metrics include statistics gathered from method runs,

such as the number of steps, stages per step, or number of Newton iterations per step. These

additional statistics can be used to identify bottlenecks in PSE code and can guide future

work for improving the overall performance of a method. For instance, if a method takes

fewer but more expensive steps, optimizations to decrease its time per step can be expected

to improve its overall performance.

As part of this research, the pythODE++ PSE was developed to perform the experiments in

this thesis, rather than using existing PSEs, such as MAPLE or MATLAB, to solve IVPs. Although

those PSEs are excellent tools for solving IVPs, they focus mainly on providing solutions to

problems using a set of well-tested solvers designed for different types of problems. They are

not designed to conveniently run extensive evaluations over a parameter set to evaluate how

well methods perform on different types of problems.

The infrastructure of the developed software for this thesis makes it possible to generate

data over large parameter sets and to make fair comparisons between numerical methods. In

this study, pythODE++ is used to generate reference solutions, run experiments, plot eigenval-

ues of the Jacobian of the RHS of IVPs, generate stability plots, and generate plots of CPU

time and the number of steps versus accuracy.

43

3.1 Details of pythODE++

Experiments are conducted using the pythODE++ PSE, which is designed to evaluate permu-

tations of numerical methods, tolerances, and IVPs. The pythODE++ PSE iterates over all

specified parameter combinations, and, after all runs are completed, it performs a thorough

analysis of experimental data. An analysis tool is customizable to generate statistics for all

aspects of the experiment.

The pythODE++ PSE is a sophisticated software suite that has been developed to support

the vast number of numerical experiments required to perform a rigorous study of physics-

based splitting versus Jacobian splitting. It is heavily based on pythODE, a PSE for ODEs

written entirely in Python [31] (rather than a combination of Python and C++). Many

parts of the code in pythODE++ are direct ports from pythODE. The pythODE PSE is designed

to be a general tool, giving a user fine-grained control over the entire solution process for

manipulating methods and gathering statistics. However, as a piece of software becomes more

robust and generalized, its infrastructure and supporting codebase dramatically increase

in size and complexity. A specialized piece of software requires less infrastructure and is

more suitable to specific tasks. General-purpose software often involves some sacrifice of

performance. The pythODE++ PSE used in this thesis is more specialized than pythODE and

has been designed to support a subset of the functionality that pythODE offers. It solves

IVPs much faster than pythODE due to the decreased overhead. It is meant to be used in

conjunction with pythODE for experiments that require greater runtime efficiency than what

pythODE can provide.

Choice of language is important to software development. In this thesis, high-level lan-

guages are assumed to be interpreted languages, whereas low-level languages run natively

and require code to be compiled. High-level languages offer more features and flexibility,

allowing code to be produced quickly. Additionally, they are generally much better suited to

portability across different operating systems. However, high-level languages achieve these

feats at the expense of runtime speed and efficiency. Typically, high-level languages have

a runtime overhead that is an order of magnitude larger than languages that are compiled.

Although many high-level languages contain vectorized operations that provide significant

44

performance increases, high-level languages still cannot compete with the speed of low-level,

compiled languages.

Different implementations of numerical methods can produce the same numerical result

but have drastically different runtimes due to the manner in which they are implemented.

For example, one implementation of an RK method might dynamically allocate memory at

every stage, whereas another might allocate an initial block of memory to be used by all

stages. Allocating an initial block of memory is clearly more efficient. It is important to

consider the fairness with which numerical methods are implemented, such that runtime

bias caused by implementation is mitigated. However, the most efficient implementations of

numerical methods are not required to perform meaningful comparisons. Such efficiency is

not achievable while maintaining the versatility of the PSE in this work, nor is it possible to

know whether an implementation is truly optimal.

The implementation of pythODE++ uses concepts from inheritance and polymorphism.

There are three important base classes of the PSE software from which all other classes are

derived. First, an IVP class defines the problem being solved. Second, a method class defines

the algorithms used for steps and for error prediction. Finally, a solver class serves as the

master controller that instructs the method class to step through the IVP with a specified

timestep. Polymorphism allows for a common interface in order to access functions and

attributes of all types of IVPs, methods, and solvers. For instance, a method can evaluate

the RHS of an IVP without knowledge of problem-specific details of the IVP. Solvers can

also instruct methods to take timesteps without knowledge of method-specific details.

In this thesis, the goal of pythODE++ is to strike a balance between versatility and effi-

ciency. All solvers, methods, and IVPs are developed entirely in C++ because it is a fast and

powerful language [38]. C++ interfaces directly with memory and low-level libraries; at the

same time, it allows the use of many complex data structures such as templates and polymor-

phic classes. The infrastructure of the PSE is heavily influenced by object-oriented software

engineering principles; all components are modularized to allow for maximum flexibility, yet

they all draw from a central set of parameters, thus permitting easy inter-module communi-

cation and coherence. The supporting infrastructure of the PSE, involving the specification

of parameters and post-run analysis, is written in Python. The runtime measurement for

45

pre- and post-processing of experiments is not important to the behaviour of the numerical

methods; those components do not need to be optimized using a low-level language.

3.1.1 Classes of Methods

When one is required to solve an IVP, a straightforward approach such as the FE method

or the RK4 method is commonly used; see Section 2.3. For many small or simple problems,

these approaches are sufficient because modern computers can solve problems so quickly

and accurately. In such cases, there is no reason to investigate better methods for solving

the problem. However, as simulations become larger and more complex, simple methods

become inefficient and cannot always provide solutions with acceptable accuracy in reasonable

amounts of time.

A complete list of the methods evaluated in this thesis is shown in Table 3.1. The table also

includes the orders of the methods as well as the orders of their associated auxiliary methods

used for error prediction; see Section 2.3.2. FE, BE, and RK4 are included to provide a

basis for comparison. If those three methods were to outperform newer, more complicated,

higher-order methods, there would no reason to investigate further. The Dormand–Prince,

Zonneveld, Merson, and Verner methods are all explicit RK methods with steps that are

controlled using standard step controllers. They are not expected to perform well once

numerical experiments become stiff but are evaluated for as a basis for comparison because

they represent simple higher-order methods. RKC1 and RKC2 are methods of the RKC

family. PRKC and IRKC are respectively the fully explicit (so-called partitioned) and IMEX

methods based on RKC methods. The ARK methods are IMEX methods used to study

which type of splitting is superior; these IMEX methods treat fI with an SDIRK method and

fE with an explicit method. The DIRK-CF1 and DIRK-CF2 methods are IMEX additive

ExpRK methods of orders one and two. RODAS and RADAU5 are chosen to be the methods

for generating reference solutions. Recall that RODAS is a six-stage, fourth-order Rosenbrock

method and RADAU5 is a three-stage, fifth-order IRK method. RODAS is a first choice for all

IVPs; it is less expensive per step in comparison to RADAU5 because RODAS only requires

the solution of a single linear system per step; see Section 2.3.6. However, for sufficiently

stiff IVPs, RADAU5 is more efficient. In Section 3.4, Table 3.5 shows the problems for which

46

RODAS is used and the problems for which RADAU5 is used to find reference solutions.

In principle, any consistent numerical method can be used to calculate reference solutions.

The RODAS and RADAU5 methods were chosen because they are known to perform well

on many different types of IVPs.

Method Name Order Auxiliary Order

Forward Euler 1 N/A

Backward Euler 1 N/A

Dormand–Prince [20] 5 4

Zonneveld [20] 4 3

Merson [20] 4 3

Verner [20] 6 5

RKC1 [46] 1 N/A

RKC2 [46] 2 N/A

PRKC [49] 2 N/A

IRKC [40] 2 N/A

ARK3 [2] 3 2

ARK4 [30] 4 3

ARK5 [30] 5 4

DIRK-CF1 [8] 1 N/A

DIRK-CF2 [8] 2 N/A

RODAS [21] 4 3

RADAU5 [21] 4 3

Table 3.1: The methods used in this thesis.

3.1.2 Software Components

Each IVP must define components identified by a base IVP class, such that the IVP can be

used by other entities in the PSE, e.g., numerical methods or solvers. The required compo-

47

nents are a class constructor, a definition of the RHS, and a unique name for the IVP; the

optional components are definitions for N -additive splittings, functions to evaluate analytic

Jacobian matrices, and functions to evaluated the analytic time derivatives. The components

are described in Table 3.2. All problems in this thesis that are used to compare Jacobian and

physics-based splittings have RHSs that are 2-additively split; for ease of implementation, a

class derived from the base IVP class has been developed to define an interface of components

specific to 2-additive splittings. These components include the RHSs of the two contributing

factors and, optionally, functions to evaluate their respective analytic Jacobian matrices and

analytic time derivatives. Each 2-additively split IVP should define the components listed in

Table 3.3, rather than those of Table 3.2.

Required Components

Constructor Responsible for allocating and setting an initial condi-
tion, the degree of additive splitting, initial and final
times, and any other problem variables.

Right-hand side A function that defines the RHS of an IVP, i.e., it is given
arguments t and y and it returns the derivative dy

dt
.

Unique name for the IVP A function that returns a human-readable identifier for
the IVP that should be unique to avoid confusion during
analysis.

Optional Components

Split components Definitions for physics-based split components of the
RHS, similar to the definition of the entire RHS.

Analytic Jacobian matrices Definitions that specify the analytic Jacobian of the RHS,
as well as the Jacobian for additively split components
of the RHS.

Analytic time derivatives Definitions that specific the analytic time derivatives of
the RHS, as well as the analytic time derivatives for ad-
ditively split components of the RHS.

Table 3.2: Components to define an IVP in the pythODE++ PSE.

Similar to IVPs, numerical methods their own sets of components, identified by a base

48

Required Components

Constructor Responsible for allocating and setting an initial condi-
tion, initial and final times, and any other problem vari-
ables.

Split component 1 A function that evaluates the first split component of the
RHS of a 2-additively split IVP. The function is of the
same form as the RHS for an IVP that is not split.

Split component 2 A function that evaluates the second split component of
the RHS of a 2-additively split IVP. The function is of
the same form as the RHS for an IVP that is not split.

Unique name for the IVP Human-readable identifier for the 2-additively split IVP
that should be unique to avoid confusion during analysis.

Optional Components

Analytic Jacobian 1 Function returning the Jacobian of the first term in a
physics-based splitting.

Analytic Jacobian 2 Function returning the Jacobian of the second term in a
physics-based splitting.

Analytic Time Derivative 1 Function returning the time-derivative of the RHS of the
first term in a physics-based splitting.

Analytic Time Derivative 2 Function returning the time-derivative of the RHS of the
second term in a physics-based splitting.

Table 3.3: Components to define a 2-additively split IVP in the pythODE++ PSE.

49

method class, that must be implemented. The mandatory components include a class con-

structor, a function returning the order of the method, a unique name for the method, and

the algorithm by which the method computes a step. The optional components include defi-

nitions for functions that are called post and prior to each step (useful for methods like RKC

where the number of stages is calculated before taking a step) and a function defining the

auxiliary order of the method. These components are described in Table 3.4.

Required Components

Constructor Responsible for allocating method-specific memory
buffers.

Order for the method A function that specifies the order of the method for use
in analysis and for step controllers.

Unique name for the method Human-readable identifier for the numerical method that
should be unique to avoid confusing during analysis.

Method step Defines how a method steps the solution yn−1 to yn, given
a timestep.

Optional Components

Pre-step Function to calculate memory, number of stages, adjust
timestep, etc., before the method is called.

Post-step Function to adjust solutions after the step has been
called.

Auxiliary Order A function that specifies the auxiliary order of the
method for use in analysis and for step controllers. This
function is required for methods that use embedded error
control.

Table 3.4: Components to define a method in the pythODE++ PSE.

Three solvers have been implemented. The first solves IVPs using a constant stepsize,

used primarily for verification of numerical methods. The second solver is an embedded

solver that adjusts step-size based on an error estimate given by the numerical method.

The third solver uses step-doubling, appropriate for methods such as FE or BE that do not

have embedded methods to compute an error estimate. These solvers are responsible for

50

conducting timings, which are measured using wall-clock time from when the solver begins

taking steps to after all steps have been completed. Having the solver responsible for timings,

rather than measuring the execution time of an entire process, removes the time required for

initializing solver processes and other startup costs that are not relevant to the numerical

study.

The object hierarchy of pythODE++ is shown in Figure 3.1. Square boxes represent derived

classes that are fully implemented. Boxes with rounded corners denote problems and methods

that are templates for use in implementing the methods and problems. Users can easily add

new methods or problems into the framework, merging them into the existing code base.

RKMethod

ERK

ARK

ARK3
ARK4
ARK5

DIRK

BackwardEulerForwardEuler
RK4

RKF45
DOPR54
Merson43

Zonneveld43
Verner65

Radau5

BaseSolver
Constant

StepControlSolverEmbedded

BaseIVP

TwoSplitting

ConcreteRewetting

...
AdvectionDiffusion1D

NonstiffA1

...
NonstiffA2

StiffA1

...
StiffA2

Numerical Simulation

RKCMethod

RKC1
RKC2
PRKC
IRKCBaseMethod

StepDoubling

RODAS

Figure 3.1: Software organization of the pythODE++ PSE

3.1.3 Supporting Classes

The software developed for this thesis is comprised of a significant amount of supporting

infrastructure, including classes and functions to represent vectors, matrices, hashes, and

heaps. All classes inherit from a common input/output class, which is used to output solu-

tions and is also useful for debugging. Output can be directed to disk or to the terminal.

A powerful infrastructure is one of the primary advantages to using a PSE, as opposed to

51

implementing a set of methods and problems independently for each numerical study. Signif-

icant development time is saved when constructs, such as vectors, are reusable across many

problem and method implementations.

The pythODE++ PSE codebase relies on relatively few external libraries, such that it can

be finely tuned to the specific needs of numerical methods, without unnecessary overhead

that could be incurred by irrelevant computation in external libraries. If implementation

is abstracted, it is difficult to see whether there are any application-specific optimizations

that can be performed. Writing implementations for the supporting infrastructure from

scratch facilitates gathering specific statistics by instrumenting them directly into the code.

Subsequently, it is much easier to identify potential bottlenecks in the code, e.g., unnecessary

matrix copies that consume a large amount of CPU time. The C++ standard template

library is used for sections of the code that are not performance sensitive, such as output and

post-run analysis. Note that when conducting timings, all disk input/output is disabled.

The vector class contains implementation for many common vector-vector and vector-

scalar arithmetic operations. Examples include addition, subtraction, scalar multiplication,

inner product, and norms. The vector class is templated; therefore, vectors can be created

for any recognized data type (both built-in and custom). Although the internal format is

stored as a flattened array, this class also supports two-dimensional indexing, which is useful

for many IVPs.

The matrix class contains implementation for the matrix-matrix, matrix-vector, and

matrix-scalar operations, such as multiplication operations. It also contains a direct solver

for dense linear systems that is based on LU factorization [45]. The reason behind this deci-

sion over the use of an external library is that direct linear solvers are notorious for having

hidden parallelism built into their code. Therefore, the use of external libraries for common

operations in such performance sensitive code can affect the fairness in which methods are

implemented.

An implicit method requires the solution of a generally non-linear system of equations

that is solved using modified Newton’s method; see Section 2.3.1. Newton’s method requires

the Jacobian of the non-linear system. The pythODE++ PSE supports three methods of

Jacobian computation: finite differences (centred and forward), automatic differentiation

52

(AD), and manual analytic implementation. The finite difference approach computes each

value of the Jacobian using a finite difference approximation; see Section 3.2.1. Note that

computing the Jacobian using central differences is relatively inefficient1 because it requires

on the order of twice as many function evaluations in comparison to a forward finite difference.

AD calculates the Jacobian matrix (more generally, any derivative) by applying the rules of

differential calculus to the source code of a function, either via code transformation or via

operator overloading. The AD and manual analytic approaches both provide true Jacobian

matrices.

3.1.4 Sparsity

At each iteration of Newton’s method (used by implicit methods), a system of linear equations

must be solved. The matrix of this linear system is the Jacobian of the non-linear equation

being solved; recall Algorithm 1 that shows the modified Newton’s method. The discussion

pertains to the Jacobian of the non-linear system, rather than the Jacobian of the RHS of an

IVP (although, the structure of the former is generally based on the latter). Jacobian matrices

of stages in an RK method are comprised mostly of zeros; i.e., they are sparse. Therefore,

it is desirable to exploit sparsity during the Newton iterations. In practice, large systems

should be solved using routines that exploit sparsity to increase the computational efficiency.

Additionally, Jacobian matrices of large systems of non-linear equations can quickly become

too large to be stored in a dense format.

A sparse matrix class was developed for pythODE++ to store elements of the matrix in the

compressed row storage (CRS) format [37]. This format represents the matrix using three

arrays: the first array contains all of the elements in row-major format, the second array

specifies the column of each corresponding element, and the third array contains a set of

offsets describing at what point in the value and column arrays each row starts. Such a format

significantly decreases the amount of memory required to store the matrix in comparison to

storing each of the zero entries.

1Computing Jacobian matrices using central differences is more costly but more accurate than using
forward differences. However, a cheap estimate to the Jacobian is usually sufficient. Although Newton’s
method may require more iterations when using a Jacobian that is less accurate, in practice, the additional
cost of these iterations is low in comparison to a Jacobian that is relatively inexpensive to compute.

53

This sparse matrix class supports the same set of operations as the dense matrix class;

therefore, it is easy to substitute sparsity at any location in the methods or solvers. Infras-

tructure has also been implemented in pythODE++ to seamlessly convert between the dense

and sparse formats. Note that when using the CRS format, operations such as direct element

access are slow; however, such direct-access operations are uncommon for the Jacobian of

RK stages. Direct-access operations are much more common for accessing the A matrix in

a Butcher tableau. Butcher tableaux are small and dense; therefore, it is not advantageous

to use sparsity for these matrices.

The pythODE++ PSE contains implementations for both dense and sparse linear solvers.

The dense solvers are included for purposes of verification. When performing timings for

method comparisons, all systems of equations are solved by taking advantage of sparsity.

The software uses UMFPACK [13], which is a library that contains routines for direct solutions

to sparse matrices. It has been verified that all internal operations of UMFPACK run in serial;

therefore, no interference occurs when solving multiple IVPs simultaneously.

3.1.5 Automatic Differentiation

All implicit methods and those that use Jacobian splitting require the computation of the

Jacobian at the beginning of each timestep. This computation is a significant part of the

overall time-cost per step. It is, therefore, crucial that computation of Jacobian matrices be

done efficiently; otherwise, the majority of the computation time per step is spent calculating

the Jacobian, and benefit due to Jacobian splitting might go unnoticed.

The pythODE++ PSE supports computation of (sparse and dense) Jacobian matrices using

ADOL-C [47], an operator-overloading approach to automatic differentiation (rather than an

approach that instruments the code during compilation). ADOL-C supports sparse matrices

via ColPack [18], a library designed to solve graph colouring problems, which lend themselves

well to the computation of sparsity patterns for sparse Jacobian matrices.

ADOL-C is easy to implement into pre-existing C++ code. All that is required is to

substitute floating-point variables in the code with the ADOL-C data type, adouble. Such

substitutions are made easy with C++ templates. The following example of an RHS shows

how, with templates, a single function can represent the RHS if it is called with a built-in

54

floating-point type (typically double) and the Jacobian if it is called with the adouble type.

Consider the following RHS:

y′1 = y3,

y′2 = y4,

y′3 = −y1(y2
1 + y2

2)−3/2,

y′4 = −y2(y2
1 + y2

2)−3/2.

This function describes the RHS of a two-dimensional orbital problem, which is part of a set

of IVPs used for method verification in the pythODE++ PSE. The corresponding code using

C++ templates might look something like:

template <typename T>

void RHS(const T t, const Vec <T>& y, Vec <T>& yp) {

T denom = pow(sqr(y[0]) + sqr(y[1]), -1.5);

yp[0] = y[2];

yp[1] = y[3];

yp[2] = -y[0]* denom;

yp[3] = -y[1]* denom;

}

This code seamlessly allows for both built-in floating-point types and ADOL-C data types

because the compiler generates separate code for the cases when T is of type adouble and T

is of type double. The functions pow and sqr are part of the C++ standard math library;

they are overloaded by ADOL-C to support the adouble type in addition to the supported

built-in types. The alternative to ADOL-C is to manually create sparse Jacobian matrices for

each IVP and each of the split components. Although this approach is error-prone, it can

often be more efficient compared to using ADOL-C.

3.1.6 Solving Initial-Value Problems Simultaneously

The numerical experiments in this thesis involve the solution of many independent IVPs.

Therefore, these experiments are well suited to parallelization; there is no need for process

synchronization because each IVP is independent. Processes distributed across several nodes

55

are dispatched instructions, which take the form of parameter lists. These parameters specify

which IVPs, methods, and solvers to use for a given run.

Suppose one wanted to run a numerical experiment for the concrete-rewetting IVP us-

ing the RODAS method with an embedded solver, a spatial domain discretized into 100

unknowns, a sink boundary condition, an isopropanol solution, a Jacobian calculated using

forward finite differences, absolute and relative tolerances of 10−5, and an initial time-step of

0.001. Section 3.2.1 describes the parameters specific to the concrete-rewetting problem, i.e.,

the number of unknowns, the boundary condition, and the choice of isopropanol solution.

The code given to pythODE++ specifying the experiment might look like:

{

’ivp’: ’ConcreteRewetting ’,

’method ’: ’RODAS’,

’solver ’: ’EmbeddedSolver ’,

’N’: 100,

’sink bc’: True ,

’isopropanol ’: True ,

’jacobian ’: Forward ,

’atol’: 1e-5,

’rtol’: 1e-5,

’dt’: 1e-3

}

This list of parameters instructs a process to solve the specified IVP using the ivp key.

It chooses the RODAS method based on the method key and an embedded solver using the

solver key. The keys N, sink bc, and isopropanol are IVP-specific parameters handled

explicitly by the IVP code. The method of calculating the Jacobian matrix is specified using

the jacobian key. Absolute tolerances, relative tolerances, and the timestep are specified by

the atol, rtol, and dt keys, respectively.

One master process manages the distribution of work to maintain a balanced load across

all processes. After the experimental runs are complete, there is an added expense of trans-

ferring data to the master process to be used for analysis. If all processes write to the same

file system, this last step is not required because it is implicitly part of the run; otherwise,

each process must transmit its solution data to the master process.

The solvers for pythODE++ mimic the design of pythODE. They are designed to evaluate

56

problems in a specified parameter space across multiple machines. A major advantage to

having solvers that are completely independent of each other is that they can be run across

heterogeneous, non-clustered machines. Support for heterogeneity is important during devel-

opment because scientists often do not have unrestricted access to large computing clusters

for extended periods of time. Algorithm 2 defines the work-flow of the master process. Each

worker process is comprised of two threads. The first awaits instruction from the master pro-

cess and reports the current status to the master process. The second computes the solution

to the IVP.

Once experimental runs are complete, pythODE++ performs statistical analysis, examin-

ing the CPU time, the number of steps, and the average number of stages per step. To

avoid biasing results when running timings, it is important that all machines have the same

hardware specifications and use scratch memory (memory on a local disc) to avoid network

latency incurred by transmitting data to the master node.

Algorithm 2 Logic for the manager process that dispatches runs to worker processes.

R← set of runs
H ← set of hosts
F ← ∅ . Initialize the set of free hosts as empty.
for r in R do . Loop over each set of run parameters.

while F = ∅ do . Loop until there are free hosts.
F ← GetFreeHosts(H)
if F = ∅ then

Sleep(500ms) . Sleep to avoid aggressive polling.
end if

end while
h←pop(H)
Dispatch r to h . Dispatch problem run.

end for
while F 6= H do . Loop until all hosts have completed.

Sleep(500ms) . Sleep to avoid aggressive polling.
F ← GetFreeHosts(H)

end while

3.1.7 Analysis

After all runs are complete, a separate program that is part of the PSE is responsible for

gathering run information and presenting plots according to specified parameters. Plots are

57

generated using gnuplot [48]. The data for plots are specified using sets of search criteria,

specifying the relevant experimental runs.

The distinct advantage to performing analysis with the PSE is that the storage and

analysis of data collected from runs are abstracted from the user. The user simply provides

selection criteria to determine which runs are relevant. The analyzer is implemented to select

all runs that match a set of selection parameters. For example, one can specify all tolerances

for a subset of all methods for one IVP. There is also a list of parameter combinations, known

as a discard list, which allows certain runs to be discarded after they have been matched based

on the selection parameters. For example, one might wish to discard tolerances that are more

lax than a specific threshold for a specific method because those tolerances were found to

produce oscillations in the solution. Sample analysis parameters are presented as follows:

{

’mode’: ’Accuracy ’,

’comparison ’: ’time’,

’reference run’: {’ivp’: ’ConcreteRewetting ’,

’N’: 100,

’sink bc’: True ,

’isopropanol ’: True ,

’method ’: ’RODAS’,

’atol’: 1e-12 },

’match’: {’ivp’: ’ConcreteRewetting ’,

’N’: 100,

’sink bc’: True ,

’isopropanol ’: True },

’group’: [’method ’,’solver ’,’jacobian splitting ’],

’discard ’: []

}

These parameters produce an accuracy plot with respect to time for the concrete-rewetting

problem. The RODAS method, with an absolute tolerance of 10−12, is used as a reference

solution. When finding a single match for the reference solution, it is not necessary to specify

the relative tolerance because, in this example, a single relative tolerance is used in association

with each absolute tolerance; therefore, only one run matches the specified absolute tolerance.

Likewise, it is not necessary in this example to specify the solver class that was used because

only the embedded solver was used. The resulting accuracy plot then consists of all concrete-

rewetting problems with parameters specified by match, grouping them such that all groups

58

contain the same value for method, solver, and Jacobian splitting, as specified by group. In

this example, no specific combinations of parameters are discarded.

The analysis software currently supports several types of plots. It supports plots of the

entire solution by a specified method, phase portraits of any two solution components, and

the plot of any attribute versus accuracy with respect to some other reference values or

reference solution method.

3.2 Discretization of Partial Differential Equations

Numerical methods for IVPs of the form (1.1) are not directly applicable to PDEs because

PDEs contain spatial derivatives. PDEs must be spatially discretized such that the spatial

domain is represented by a set of discrete values rather than continuously. This transforms

the PDEs to a (large) set of coupled ODEs for each point in the spatial discretization. Once

a PDE has been transformed into a system of ODEs, numerical methods for IVPs can be

applied.

The discretization technique is known as the method of lines, where each “line” refers

to the evolution of the state of the system in time at a given point in space. The PDE

must therefore hold for all discretized points. Each discrete point is a function of time and

it is advanced by the numerical method. Approximations to the spatial derivatives at the

discretized points can be computed using the value at that point and the values of nearby

points. This thesis considers two such approaches to the computation of spatial derivatives

on a discretized domain: finite differences and finite volume.

3.2.1 Finite Difference Methods

Finite difference methods are methods to numerically approximate derivatives of various

orders using linear combinations of the points on a discretized grid. Although extensible to

non-uniform grids, finite differences are often applied to a grid with uniform point spacing.

The idea is to use a stencil for each point indicating which other points are to be used in

calculation of the derivative. The points in the stencil are weighted such that the stencil

yields approximations to the derivative of a certain order of accuracy in comparison to a

59

Taylor expansion (recall (2.3), but substitute temporal variables with spatial variables). The

first few terms of the expansion are written as

u(x+ ∆x) = u(x) + (∆x)
∂u

∂x
(x) +

(∆x)2

2

∂2u

∂x2
(x) +O

(
(∆x)3

)
. (3.1)

The simplest form is a first-order forward finite difference method, which can be easily

derived by rearranging (3.1) to solve for ∂u
∂x

(x). The result is

∂u

∂x
(x) =

u(x+ ∆x)− u(x)

∆x
+O

(
(∆x)2

)
. (3.2)

An alternative first-order scheme is the backward difference method, derived with the

substitution ∆x→ −∆x into equation (3.2). The backward difference method is written

∂u

∂x
(x) =

u(x)− u(x−∆x)

∆x
+O

(
(∆x)2

)
.

A centred finite difference is derived by combining forward and backward differences. It

requires grid points on either side of x. It is written as

∂u

∂x
(x) =

u(x+ ∆x)− u(x−∆x)

2∆x
+O

(
(∆x)3

)
.

Notice that such a combination cancels the second-order terms in both Taylor series; there-

fore, the centred difference is second order (the terms of order three and higher still remain).

Higher-order finite difference methods can be derived by similarly combining lower-order

finite differences with different substitutions for ∆x, e.g., ∆x → 2∆x and ∆x → −2∆x to

include an additional two data points on either side of x. A general method for calculating

asymmetric finite differences in one dimension given in Appendix B.

3.2.2 Finite Volume Methods

Finite volume methods constitute another approach to numerically approximating derivatives

via discretization. Finite differences use a differential form, i.e., the Taylor series, whereas

finite volume methods compute derivatives using an integral form. For example, consider the

60

one-dimensional PDE

∂q

∂t
(x, t) =

∂q

∂x
(x, t), (3.3)

where x is defined on some continuous domain of length L. The domain can be uniformly

discretized into N cells, each of which has width ∆x = L/N . The centre of cell i is denoted

by xi and borders of cell i are denoted by xi± 1
2
. The average “volume” of q in each cell i can

be written

qi(t) =
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, t) dx.

Differentiating both sides of the equation with respect to time and using (3.3) yields

dqi
dt

(t) =
1

∆x

∫ x
i+1

2

x
i− 1

2

∂q

∂x
(x, t) dx.

Applying the fundamental theorem of calculus yields a discretization of (3.3):

∂qi
∂t

(t) =
qi+ 1

2
(t)− qi− 1

2
(t)

∆x
. (3.4)

Note that the form (3.4) does not yet contain any approximation. The values qi± 1
2

lie on the

borders between the cells; there are no solutions stored at those points because the solutions

are stored at cell centres. One approach is to compute those values at half-indices using

averages of the adjacent cells. This approach yields the same result as a second-order centred

finite difference. An advantage of the finite volume method over the finite difference method

is that the finite volume method can use a non-uniform discretization more easily than the

finite differences can; however, such unstructured meshes are beyond the scope of this thesis.

3.3 Advection-Diffusion-Reaction Equations

This thesis focuses on the study of methods for advection-diffusion-reaction (ADR) equa-

tions, which are a class of additively split problems where advection, diffusion, and reaction

61

terms form the contributing factors. ADR equations are PDEs and, thus, must be spatially

discretized as described in Section 3.2. In the following definitions, n refers to the spatial

dimension of the problem; i.e., generally one, two, or three dimensions, although, in princi-

ple, ADR equations are defined for arbitrary n ∈ Z+. The contributing factors of an ADR

equation are defined as follows.

Advection is the time-dependent transport of a quantity in a domain caused by the

bulk motion of the medium in which the quantity resides [25]. The velocity of the medium is

represented as a vector field of dimension n and is defined over the entire domain, determining

the direction in and magnitude by which the quantity is transported. Mathematically, for a

quantity q defined for all points in the domain, an advection equation is written

∂q

∂t
+∇ · [qu(t,x, q)] = 0, (3.5a)

where t ∈ R is time, x ∈ Rn represents a position in the domain, and u ∈ Rn is the velocity

field of the medium. The advection equation is linear when u is not a function of q and can

thus be written as u(t,x).

Diffusion is the time-dependent movement of a quantity in a domain along its concentra-

tion gradient [25]. The quantity in regions of higher concentration generally moves toward

regions with lower concentration, with the aim of equalizing the distribution of the quantity

over the entire domain. The diffusion quantity can be a continuous substance, such as heat,

or it can refer to discrete particles that move from regions of high particle density to low

particle density. In physical models, particle density is often treated continuously as a con-

centration defined over a domain. A quantification of how well particles or quantities diffuse

is known as diffusivity. A diffusion equation is written

∂q

∂t
= ∇ · [D(t,x, q)∇q], (3.5b)

where D(t,x, q) ∈ Rn×n is the diffusivity tensor. Similar to the advection equation, the

diffusion equation is linear when D is not a function of q and can thus be written as D(t,x).

Reaction is the physical transformation of one or more quantities in a domain [25]. Reac-

tion typically refers to some form of chemical reaction, but it also can be used to represent

62

source and sink terms of the quantity. A reaction equation is written

∂q

∂t
= r(t,x, q), (3.5c)

where r(t,x, q) is a function representing the reaction. A reaction is linear when r is linear

with respect to q.

Combining the contributions from (3.5) forms the complete ADR equation. It is written

∂q

∂t
+∇ · [qu(t,x, q)] = ∇ · [D(t,x, q)∇q] + r(t,x, q). (3.6)

In ADR equations, the quantity q is scalar because it corresponds only to the behaviour

of a single quantity. In order to model multiple quantities subject to ADR effects, a new

ADR equation is required for each additional quantity. For example, an ADR model for

q = (q1, q2) is written as

∂q1

∂t
+∇ · [q1u1(t,x,q)] = ∇ · [D1(t,x,q)∇q1] + r1(t,x,q),

∂q2

∂t
+∇ · [q2u2(t,x,q)] = ∇ · [D2(t,x,q)∇q2] + r2(t,x,q).

Notice how the functions u, r, and D from (3.6) have been extended to become functions of

both q1 and q2, allowing for interaction between those two quantities.

3.4 Test Suite of Problems

The methods described in Section 3.1.1 are evaluated on a number of test problems over

a range of tolerances, spatial discretization orders, and numbers of unknowns. These test

problems comprise a wide range of numerical models with contributing factors arising from

advection, diffusion, and reaction. This wide range of problems aims to show that Jacobian

splitting, in comparison to physics-based splitting, is a desirable technique that should be

seriously considered for practical computation. It is not simply an approach that is desirable

for a few select problems.

The full list of numerical studies is defined in Table 3.5, where L signifies that the com-

63

ponent is linear with respect to y, and NL signifies that the component is non-linear. The

reference solution method used for each problem is also listed. The problems are fully defined

in the following sections.

Numerical Study Advection Diffusion Reaction Reference
Solution Method

Linear advection-diffusion L L RODAS

2D Heat transfer L L RODAS

CUSP model L NL RODAS

1D Brusselator L NL RODAS

2D Brusselator L NL RADAU5

Combustion model L L NL RADAU5

Angiogenesis model NL L NL RADAU5

Concrete-Rewetting NL NL NL RADAU5

Table 3.5: List of all numerical studies. These are all ADR equations that are spatially
discretized and solved in pythODE++. The last column gives the method that was used
to calculate reference solutions.

All methods are verified on thirty problems from a test suite of non-stiff problems, thirty

problems from a test suite of stiff problems, as well as the HIRES, Beam, and van der Pol

problems from the Bari test set [15, 34]. During verification, the 2-additive methods apply

Jacobian splitting to the IVPs from the test sets because those IVPs do not have physics-

based splittings. All remaining problems can be defined using 2-additive splittings and are

thus solved using physics-based splitting and Jacobian splitting.

The following problems are all PDEs with initial and boundary conditions. Sample dis-

cretizations for each of the problems are shown. Note that the parameters and unknowns

for all IVPs are non-dimensionalized; in practice, it is common to solve IVPs using non-

dimensionalized quantities and, after the IVPs have been solved, transform their solutions

into quantities with physical units. Non-dimensionalized quantities are useful because they

can be used to represent any physical scale.

64

3.4.1 Advection-Diffusion Problems

One-Dimensional Advection-Diffusion

Many physical processes are based on effects that arise from advection and diffusion. The

first numerical study is a one-dimensional, constant-coefficient advection-diffusion equation,

which is one of the most basic models. Subsequent numerical studies increase in complexity.

Following the form (3.6), the advection-diffusion equation for a quantity q is written

∂q

∂t
+ a

∂q

∂x
= d

∂2q

∂x2
,

q(0, x) = sin(2πx),

q(t, 0) = q(t, 1),

(3.7)

where x ∈ [0, 1], and a ∈ R and d ∈ R are constant scalars representing the strength of

advection and diffusion, respectively.

The spatial domain is uniformly discretized into N points with spacing ∆x = 1/N ; a

second-order centred finite difference method yields a system of ODEs written as

dyi
dt

= d

(
yi+1 − 2yi + yi−1

(∆x)2

)
− a

(
yi+1 − yi−1

∆x

)
, (3.8)

where i = 1, 2, . . . , N . Boundary conditions are periodic, as given in the problem definition;

therefore, y0(t) = yN(t) and yN+1(t) = y1(t).

The one-dimensional, linear advection-diffusion IVP has been evaluated for varying levels

of diffusivity and strength of the advection term. The evaluated parameters are d = {10, 100}

and a = {10, 100}, using 500 unknowns. The final simulation time is 0.1.

Two-Dimensional Heat Transfer Model

A model of heat transfer in a long, fluid-filled, cylindrical pipe with a known velocity profile

is presented in [28]. This model is a two-dimensional linear advection-diffusion PDE. Such

heat transfer models are often have application to mechanical engineering. In this model,

heat is transferred down the pipe due to advection and diffusion processes. The interior of

65

the pipe is initially at a constant, relatively cool temperature. The input temperature to

the pipe is hot and the conductance of the walls is prescribed; the output temperature is an

unknown that is sought after some time interval.

The pipe is defined to be of length l and of height (diameter) h. It is aligned lengthwise

in the x-direction; thus, the domain is given as x ∈ [0, l] and y ∈ [0, h]. The PDE, boundary

conditions, and initial condition of the model for temperature T are written

∂T

∂t
= d∇2T − u · ∇T,

∂T

∂y
(t, x, 0) = −∂T

∂y
(t, x, h) = σ,

T (t, 0, y) = Tin, T (0, x, y) = T0,

(3.9)

where d represents the diffusivity of heat, u is the velocity field in the pipe, Tin is the input

temperature, T0 is the initial temperature of the pipe, and σ is the heat transfer across the

pipe wall. Note that there is no prescribed boundary condition at x = l; this boundary is

unknown and it is sought as part of the solution.

The fluid travels lengthwise down the pipe; therefore, velocity in the y-direction is zero

and velocity in the x-direction is dependent on the distance to the pipe wall. The fluid

velocity u is given based on average velocity uavg as

u =


3
2
uavg

[
1−

(
y
h/2

)2
]

0

 .

This PDE is uniformly discretized on a two-dimensional grid, where the unknown grid points

consist of Nx points in the x-direction and Ny points in the y-direction. These points are

located in the middle-right side of each cell. Applying second-order centred differences to

the second derivatives and first-order backward differences to the first derivatives yields a

66

discretized system that is written

dTij
dt

= d

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
− 3

2
uavg

[
1−

(
(i+ 1

2
)∆y

h/2

)2
]
Ti,j − Ti−1,j

∆x

where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, ∆x = l
Nx

, and ∆y = h
Ny

. The boundary values are,

therefore, written

T0,j(t) = Tin(t), Ti,0(t) = Ti,1(t)− (∆y)σ, Ti,N+1(t) = Ti,N(t)− (∆y)σ.

The heat transfer problem is evaluated with four sets of unknowns: 70×10, 140×20,

210×30, and 280×40. The problem parameters are chosen such that diffusivity d is 1.38 ×

10−7, average velocity uavg is 4.5× 10−6, the pipe height h is 0.1, the pipe length l is 0.7, the

initial temperature is 298.15, the inlet temperature is 303.15, the heat transfer through the

pipe walls σ is 0, and the final simulation time tf is 50.

3.4.2 Diffusion-Reaction Problems

The CUSP Problem

The CUSP problem is the combination of Zeeman’s cusp catastrophe model and the van der

Pol oscillator [25]. It is a diffusion-reaction equation that consists of three coupled PDEs.

The diffusion of each PDE is linear (and non-coupled) and the reaction terms are non-linear.

This particular system is of interest due to stiffness in the reaction term that is appropriately

captured when using Jacobian splitting but not by physics-based splitting. The CUSP problem

is defined over the domain x ∈ [0, 1] and is written

∂y

∂t
= σ

∂2y

∂x2
− 1

ε
(y3 + ay + b),

∂a

∂t
= σ

∂2a

∂x2
+ b+

0.07(y − 0.7)(y − 1.3)

(y − 0.7)(y − 1.3) + 0.1
,

∂b

∂t
= σ

∂2b

∂x2
+ (1− a2)b− a− 0.4y +

0.035(y − 0.7)(y − 1.3)

(y − 0.7)(y − 1.3) + 0.1
,

(3.10)

67

where σ represents the diffusivity and ε is a parameter controlling the stiffness of the reaction.

As ε approaches zero, the reaction in y becomes more stiff. These PDEs are uniformly

discretized into N grid points using second-order centred differences; they are written as

dyi
dt

= σ

(
yi−1 − 2yi + yi+1

(∆x)2

)
− 1

ε
(y3
i + aiyi + bi),

dai
dt

= σ

(
ai−1 − 2ai + ai+1

(∆x)2

)
+ bi +

0.07(yi − 0.7)(yi − 1.3)

(yi − 0.7)(yi − 1.3) + 0.1
,

dbi
dt

= σ

(
bi−1 − 2bi + bi+1

(∆x)2

)
+ (1− a2

i)bi − ai − 0.4yi +
0.035(yi − 0.7)(yi − 1.3)

(yi − 0.7)(yi − 1.3) + 0.1
,

where i = 1, 2, . . . , N and ∆x = 1/N2. The boundary conditions are given as periodic, and

are, therefore, written as

y0(t) = yN(t), a0(t) = aN(t), bN+1(t) = b1(t),

yN+1(t) = y1(t), aN+1(t) = a1(t), bN+1(t) = b1(t).

Initial conditions are given as

yi(0) = 0, ai(0) = −2 cos

(
2iπ

N

)
, bi(0) = 2 sin

(
2iπ

N

)
.

The CUSP problem has been run for 500 and 1000 unknown grid points, where σ is 1/144,

ε is 10−4, and the final simulation time tf is 1.1. Therefore, the systems of ODEs have 1500

and 3000 unknowns, respectively, because there are three ODEs (for y, a, and b) at each

point.

The Brusselator

The Brusselator is a theoretical model of an autocatalytic reaction consisting of two reacting

quantities [25]. The model consists of two coupled diffusion-reaction equations, with linear

68

diffusion and non-linear reaction. They are written as

∂u

∂t
= α∇2u+ A+ u2v − (B + 1)u,

∂v

∂t
= α∇2v +Bu− u2v,

(3.11)

where A and B are parameters governing the reaction terms and α is the diffusivity. In this

thesis, the Brusselator model is defined in both one and two dimensions. If B > 1 +A2, the

solution is oscillatory; otherwise, it approaches a steady state over time.

In the one-dimensional case, this thesis considers parameter selections where A = 1,

B = 3, α = {1/50, 1/500}, the spatial domain is given by x ∈ [0, 1] and ∇ simplifies to

∂
∂x

. These parameters introduce oscillatory behaviour in the solution. Prescribed initial and

Dirichlet boundary conditions are written as

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3,

u(x, 0) = 1 + sin(2πx), v(x, 0) = 3.

Using second-order centred differences, the uniform discretization of the one-dimensional

Brusselator equation using N unknown grid points is written

dui
dt

= α(N + 1)2(ui−1 − 2ui + ui+1) + A+ u2
i vi − (B + 1)ui,

dvi
dt

= α(N + 1)2(vi−1 − 2vi + vi+1) +Bui − u2
i vi,

where i = 1, 2, . . . , N , with initial conditions and boundary points written as

u0(t) = uN+1(t) = 1, v0(t) = vN+1(t) = 3,

ui(0) = 1 + sin

(
2πi

N + 1

)
, vi(0) = 3.

In this discretized form, the Brusselator model is now an IVP that can be solved using the

numerical methods described in this thesis. The IVP has 2N unknowns because the original

problem definition is comprised of two PDEs.

The two-dimensional form of the Brusselator is similar to the one-dimensional form, with

69

an additional forcing (reaction) term f that acts on u; otherwise, the diffusion quickly domi-

nates any of the interesting solution characteristics. This thesis considers parameter selections

for the two-dimensional Brusselator where A = 1, B = 3.4, α = {1/50, 1/500}, x ∈ [0, 1],

and y ∈ [0, 1]. Boundary conditions are taken to be periodic; the initial conditions are given

by:

u(x, y, 0) = 22y(1− y)3/2, v(x, y, 0) = 27x(1− x)3/2.

The uniformly discretized two-dimensional Brusselator model using second-order centred

differences and N ×N unknown grid points is written

dui,j
dt

= αN2(ui,j−1 + ui−1,i − 4ui,j + ui+1,j + ui,j+1) + fi,j(t) + A+ u2
i,jvi,j − (B + 1)ui,j,

dvi,j
dt

= αN2(vi,j−1 + vi−1,i − 4vi,j + vi+1,j + vi,j+1) +Bui,j − u2
i,jvi,j,

where i = 1, 2, . . . , N , j = 1, 2, . . . , N , and the forcing term fi,j(t) is written

fi,j(t) =


5 if (i∆x− 0.3)2 + (j∆y − 0.5)2 ≤ 0.12 and t ≥ 1.1,

0 otherwise.

Therefore, this ODE system is of size 2N2. The initial conditions on the discretized grid are

given by

ui,j(0) = 22yj(1− yj)3/2, vi,j(0) = 27xi(1− xi)3/2,

where xi = i∆x and yj = j∆y.

3.4.3 Advection-Diffusion-Reaction Problems

Combustion Models

ADR equations can be used to simulate combustion. Combustion simulations are generally

complex, involving many coupled PDEs that represent interactions among multiple react-

70

ing species. These PDEs typically describe conservation of energy, conservation of mass

(commonly known as continuity equations), and conservation of momentum [14].

A simplified combustion model is presented in [4], where a single PDE is used to represent

a combustion reaction. The flow in the domain is prescribed, rather than being influenced

by reactions that occur in the simulation. This simplified model is written

∂c

∂t
=
[
1 + U0 sin

(πx
L

)](γ
β

∂2c

∂x2
− ∂c

∂x

)
+ f(c), (3.12)

where x ∈ [10, 50], c is the mass fraction of the reacted products, U0 ∈ [0, 1] is a parameter

that controls density and velocity changes of the fluid domain, L is the length scale of the

domain, and the parameters γ and β are representative of the average diffusivity. Following

the numerical experiments of [4], the model has been evaluated for U0 = {0, 0.75, 0.99}.

Additionally, it has been evaluated for the Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP)

reaction type, the ignition reaction type, and the general mth order Fisher reaction type.

These three reaction models are written as

fFKPP(c) = α1c(1− c),

fIgnition(c) = α2(1− c)(c− cs)+,

fFisher(c) = α3c
m(1− c).

where α1, α2, and α3 represent rates of reaction, cs is a reaction threshold, (c − cs)
+ =

max(c − cs, 0), and m is the general Fisher non-linearity [4]. In this model, α1 is 0.1, cs is

0.6, and m is 10. Values α2 and α3 are calculated from the relation max(f(c)) = α1

4
given

by [4], such that all three reaction types are of approximately the same magnitude. The

calculations are as follows:

f ′Ignition(c) = 0 =⇒ c =
cs + 1

2
=⇒ α2 =

α1

(1− cs)2

f ′Fisher(c) = 0 =⇒ c =
m

m+ 1
=⇒ α3 =

α1

4(m
m+1

)m(1− m
m+1

)

71

Boundary conditions are periodic. The initial condition of the system is given as

c(x, t0) = exp

[
−(x− x0)2

σ0

]
.

This problem can be uniformly discretized using N unknown grid points, applying centred

differences to the spatial derivatives. Therefore, the combustion model is written

dci
dt

=

[
1 + U0 sin

(
iπ∆x

L

)][
γ

β(∆x)2
(ci−1 + ci + ci+1) +

1

2∆x
(ci+1 − ci−1)

]
+ f(ci),

where i = 1, 2, . . . , N and the boundary conditions are given as c0(t) = cN(t) and cN+1(t) =

c1(t).

Tumour Angiogenesis

Differential equation models are prevalent in mathematical biology because they are useful

in modelling the dynamics of biological processes. Such models can be used to verify that a

biological process is understood and subsequently can make useful predictions.

Mathematical biology contains many models that involve ADR equations. One example

is a model of tumour angiogenesis. This model tracks the growth of a tumour, simplified to

one spatial dimension. The underlying ADR equations are comprised of non-linear advection,

linear diffusion, and non-linear reaction terms. Two quantities are modelled in this domain:

(i) ρ is a measurement of blood vessel density and (ii) c is the concentration of the tumour

angiogenesis factor, which stimulates the growth of blood vessels. The model is scaled to the

domain x ∈ [0, 1] and is given as a system of two PDEs. They are written as

∂ρ

∂t
= ε

∂2ρ

∂x2
− ∂

∂x

(
κ
∂c

∂x
ρ

)
+ µρ(1− ρ)(c− c∗)+ − βρ, (3.13a)

∂c

∂t
= δ

∂2c

∂x2
− λc− αρc

γ + c
, (3.13b)

where the parameter values of the PDE are

ε = 10−3, δ = 1, α = 10, β = 4, γ = 1, κ = 0.75, λ = 1, µ = 100, c∗ = 0.2.

72

Initial and boundary conditions for ρ and c are given as

ρ(x, 0) =


0 if 0 ≤ x ≤ 1,

1 if x = 1,

c(x, 0) = cos

(
1

2
πx

)
,

ρ(0, t) = 0, ρ(1, t) = 1, c(0, t) = 1, c(1, t) = 0.

This PDE model can be transformed into an IVP by first applying the product rule to the

second term of the RHS of (3.13a) and second, discretizing the spatial derivatives of (3.13a)

and (3.13b) using centred finite differences. The spatial domain is comprised of N unknown

grid points; therefore, ∆x = 1
N+1

. This spatial discretization method is simple and is not

expected to provide an accurate solution to the PDE; however, it is sufficient to compare

ARK methods on the model.

The discretized form of (3.13) can now be written as

dρi
dt

= ε(N + 1)2(ρi−1 − 2ρi + ρi+1)− κ(N + 1)2(ci−1 − 2ci + ci+1)

− κ(N + 1)2

4
(ci+1 − ci−1)(ρi+1 − ρi−1),

dci
dt

= δ(N + 1)2(ci−1 − 2ci + ci+1)− λci −
αρici
γ + ci

,

where i = 1, 2, . . . , N . The discretized initial and boundary conditions are written

ρ0,i = 0 ρ0(t) = 0, ρN+1(t) = 1,

c0,i = cos

(
π

2(N + 1)

)
, c0(t) = 1, cN+1(t) = 0.

Concrete-Rewetting

Concrete is a popular construction material because it is strong, inexpensive, and easy to

use. It is created through a physicochemical transformation of cement, aggregate, and water.

These ingredients form a wet mix that dries into a solid, porous mass. Concrete is cured

several hours after the initial reaction has occurred; however, at this stage, the process is not

73

complete because a significant amount of cement remains unreacted. Thus, it is important

to study concrete after the curing stage [3].

A hydration front passing through dry concrete, perhaps as a result of rainfall or water

runoff, causes unreacted particles of cement to react [23]. This process is known as concrete-

rewetting. As reactions occur, concrete becomes stronger; the reacting components clog the

porous concrete causing the hydration front to move more slowly. Chapwanya et al. pro-

posed a mathematical model of concrete-rewetting, i.e., a model describing the physical and

chemical structure of dry concrete that has been exposed to a boundary of new moisture [10].

The model is a system of coupled PDEs, comprised of contributing factors from advection,

diffusion, and reaction. The PDEs have one spatial dimension: a simplification of a column

of concrete with an insulated or sink boundary on the top and a hydrated boundary on the

bottom. The model applies to the movement of (i) isopropanol, a non-reactive solution that

diffuses without altering the porosity of the concrete, and (ii) water, a solution that reacts

with cement. This thesis is a study of additive splitting; therefore, case (i) is not considered

because its reaction term is zero.

The equations for the rewetting model are written as:

∂θ

∂t
=

∂

∂x

[
D(θ, ε)

∂θ

∂x

]
− ν(θ − θr)+mwrcsh

ρwmcsh

, (3.14)

∂(θCα)

∂t
=

∂

∂x

(
θDα

∂Cα
∂x

)
− ∂(uCα)

∂x
− (θ − θr)+rα, (3.15)

∂(θCβ)

∂t
=

∂

∂x

(
θDβ

∂Cβ
∂x

)
− ∂(uCβ)

∂x
− (θ − θr)+rβ, (3.16)

∂(θCq)

∂t
=

∂

∂x

(
θDq

∂Cq
∂x

)
− ∂(uCq)

∂x
+ (θ − θr)+(rcsh − kprecCq + kdissCg), (3.17)

∂(θCg)

∂t
= (θ − θr)+(kprecCq − kdissCg), (3.18)

where (θ − θr)
+ = max(0, θ − θr); θ is the volumetric water content; Cα, Cβ, Cq, and Cg

are the respective constituent concentrations of C3S in concrete, C2S in concrete, calcium-

silicate hydrate (C-S-H) in liquid, and solid C-S-H gel; rα, rβ, and rcsh are functions that

govern the rates of reaction; D is the effective diffusivity; Dα, Dβ, and Dq are the respective

diffusivities of C3S in concrete, C2S in concrete, and C-S-H in liquid. The remaining variables

74

are substance-specific constants, which are defined in [10].

The domain is one-dimensional, of length L. It is discretized into N cells of equal width

∆x = L
N

using the centred finite volume approach, described in Section 3.2.2. The N cells

are indexed by i = 1, 2, . . . , N and are denoted using subscripts. The discretized form is

written as follows:

dθi
dt

=
1

(∆x)2

[
Di+ 1

2
(θi+1 − θi)−Di− 1

2
(θi − θi−1)

]
− ν(θi − θr)+mwrcsh

ρwmcsh

,

d(θiCα,i)

dt
=

Dα

(∆x)2

[
θi+ 1

2
(Cα,i+1 − Cα,i)− θi− 1

2
(Cα,i − Cα,i−1)

]
−
ui+ 1

2
Cα,i+ 1

2
− ui− 1

2
Cα,i− 1

2

∆x
− (θi − θr)+rα,

d(θiCβ,i)

dt
=

Dβ

(∆x)2

[
θi+ 1

2
(Cβ,i+1 − Cβ,i)− θi− 1

2
(Cβ,i − Cβ,i−1)

]
−
ui+ 1

2
Cβ,i+ 1

2
− ui− 1

2
Cβ,i− 1

2

∆x
− (θi − θr)+rβ,

d(θiCq,i)

dt
=

Dq

(∆x)2

[
θi+ 1

2
(Cq,i+1 − Cq,i)− θi− 1

2
(Cq,i − Cq,i−1)

]
−
ui+ 1

2
Cq,i+ 1

2
− ui− 1

2
Cq,i− 1

2

∆x
+ (θi − θr)+(rcsh − kprecCq,i + kdissCg,i),

d(θiCg,i)

dt
= (θi − θr)+(kprecCq,i − kdissCg,i),

where ui+ 1
2

= −Di+ 1
2
(θi+1 − θi)/∆x and Di = D(θi, εi).

Points at half-indices are calculated as the average between cells, e.g., θi+ 1
2

= (θi+θi+1)/2.

The concrete-rewetting problem is thus converted to the form (1.1) and solved over the time

interval [0, 28].

75

Chapter 4

Results of Numerical Experiments

Numerical experiments are performed on the ADR models described in Section 3.4 using

the test set of methods described in Section 3.1.1. Each experiment is run ten times; the

minimum time measurement of the ten runs is used for statistical analysis because a minimum

time is indicative of how well a given method performs under ideal conditions. Running

experiments multiple times mitigates experimental error introduced by processing artifacts

such as caching effects or task-switching to background processes. Although it is assumed

that the IVP solver is the only process that significantly contributes to CPU load, there are

always background processes that occasionally require minimal CPU and memory resources.

In general, there are no significant differences observed in the CPU times, i.e., less than 1%

difference; however, the occasional outlying measurement can be up to 20% longer than the

minimum. The presence of these outlying measurements is precisely the reason for using

minimum rather than average runtimes.

4.1 Cluster Specifications

All experiments are conducted on a 4-node cluster. Each node has the following specifications:

• 2x Xeon E5-2620 (6C 2.0GHz 15MB 1333MHz 95W),

• 4x 8GB RAM (16GB per processor),

• 500GB local disc space,

• Gigabit Ethernet, and

• Ubuntu 12.04.2 LTS.

76

The cluster does not use a batch scheduler because a scheduler might negatively impact

performance. The processors on the machine are hyper-threaded and therefore allow the

execution of two simultaneous threads per processor. Each machine is capable of executing

24 simultaneous threads (2 processors per machine × 6 cores per processor × 2 threads

per core). It is theoretically possible to solve 96 IVPs simultaneously on the entire cluster

(4 machines × 24 threads per machine). However, one must be mindful of hardware when

running numerical experiments that involve timing. Hyper-threading shares cache at all levels

but presents the threads to the operating system as independent, virtual processors [33]. If

all threads on a machine are at full capacity, runtimes of numerical experiments might be

significantly affected because IVP solvers would be competing for cache space. Therefore,

the number of simultaneous IVPs is restricted to 12 per machine (48 total).

4.2 Findings regarding Interprocess Communication

The message passing interface (MPI) consists of a protocol and external libraries designed

to ease the development of parallel applications for scientific computing [41]. In this thesis,

pythODE++ launches processes on multiple machines using the MPI implementation Open-

MPI [17]. MPI launches multiple processes on multiple nodes. In principle, pythODE++ is

scalable to arbitrarily large clusters such that many IVPs can be solved simultaneously. How-

ever, load distribution of IVP runs is not trivial. Once processes have been established on

all machines in the cluster, it is inefficient to distribute experimental runs evenly across all

processes. Unlike many MPI applications where each processor is solving its own section of a

common problem, each process in the pythODE++ PSE could be solving a completely different

problem that requires a significantly different amount of time to complete. Therefore, one

process is designated to be the master process, which is responsible for load balancing. It

dispatches tasks to all other worker processes.

As introduced in Section 3.1.6, each worker process is comprised of two components: a

communication thread and a worker thread. The communication thread is responsible for

responding to requests from the master node, for example, queries for runtime statistics or

queries regarding whether the process is free to accept another IVP to solve. This thread uses

77

few computational resources and is generally in a sleep state while it is awaiting instruction

from the master node. The worker thread is responsible for running the IVP solver; therefore,

it uses essentially 100% of its CPU while it is solving a problem.

Although processes for pythODE++ are initialized using MPI, once solvers have begun

to solve problems, interprocess communication is done solely using sockets. The reason for

this seemingly peculiar choice is as follows. When using a cluster, MPI is an extremely

easy way with which to initialize processes across multiple nodes. It is also incredibly easy

to use MPI functions for interprocess communication because MPI allows for the reliable

transmission of messages of an arbitrary size. In this work, an initial implementation of the

pythODE++ PSE used such an approach. However, MPI interprocess communication inflicts

severe performance penalties on the PSE. MPI polls extremely aggressively while it is waiting

for incoming messages; in extreme cases, it uses effectively 100% of CPU resources for a single

thread. Generally, aggressive polling is desired because applications aim to minimize the time

delay due to interprocess communication. Valuable time is wasted if a message arrives and

the receiving process does not immediately begin processing the message. However, such

usage is neither ideal for the efficient use of resources when running independent problems,

nor for maintaining accurate timing operations during simultaneous timings performed by

the PSE.

In this work, interprocess communication is implemented using TCP sockets [9]. TCP

sockets ensure reliable communication; i.e., they ensure that all data sent to the receiving

process are actually received and that the data are received in the order in which they are

sent. At the application level, TCP sockets transmit data using a continuous stream of

data (to allow reliable communication or load balancing, for instance), rather than abstract-

ing transmission of arbitrarily sized messages corresponding to the model of MPI. Stream

communication is more difficult in comparison to the MPI implementation because message

alignment might not coincide with packet alignment. Therefore, implementation of an “end

of message” marker is necessary in all messages transmitted between master and worker

nodes.

78

4.3 Sparse Jacobian Computation

Initially, Jacobians were computed using forward finite differences. Such an approach re-

quires O
(
m
)

function evaluations each time a Jacobian matrix is calculated. Forward finite

differences are sufficient so long as the problem size is small. However, once the number of

unknowns grows sufficiently large, it is no longer feasible to compute finite difference Jaco-

bian matrices. The time required for the necessary function evaluations quickly becomes the

majority of the time per step of the numerical method and, more importantly, machines do

not have enough memory to store a dense Jacobian. For example, even a two-dimensional

problem of 500 × 500 unknowns requires 2004 values to form the finite-difference Jacobian.

When using double-precision values, this equals approximately 500GB, which is impractical

with current resources.

When calculating Jacobians with sparsity, such problems disappear, and the majority of

time per step is no longer spent calculating Jacobian matrices. Therefore, benchmarks of

Jacobian splitting versus physics-based splitting are now meaningful. However, the sparse

library ADOL-C still has significant overhead that can be avoided by coding sparse analytic

Jacobian matrices for each IVP. The downside of manually coding Jacobian matrices is that

it is tedious and error-prone. Therefore, ADOL-C was used to verify the implementation of

analytic Jacobians, so the pythODE++ PSE could take advantage of the speed of manually

implemented sparse Jacobian with the assurance that the implementation was correct.

4.4 Verification, Validation, and Solution Plots

This section discusses the verification and validation of numerical methods and differential

equations. As part of the verification, solution plots for each of the numerical experiments

are presented, showing that the models behave as expected and produce physically plausible

results.

79

4.4.1 Methods

The numerical methods must be verified to ensure that they are solving IVPs correctly;

otherwise, the runtime required for a method to step through an IVP is meaningless. All

methods in this work are verified against their implementations in pythODE and are validated

on a series of test problems consisting of thirty stiff and thirty non-stiff IVPs having known

exact solutions; see [15] for a complete list of the test problems. These test problems range

from linear, autonomous problems, to those that are non-linear, time-dependent, and contain

discontinuities; therefore, they are well suited for ensuring the numerical methods perform

correctly.

Numerical methods designed for 2-additively split problems have applied Jacobian split-

ting to the stiff and non-stiff IVPs because those IVPs do not have natural physics-based

splittings. Two further verifications have been implemented: the verification of order and

the convergence of reference solutions. These verifications are now described.

Numerical methods for IVPs have a certain order of accuracy with respect to a Taylor

series; see Section 2.2. It must be verified that each method converges to the true solution

at the correct rate. This verification is extremely important because small mistakes in a

method’s coefficients might still provide a convergent solution to an IVP. A numerical method

of order p exhibits an approximate decrease in error by a factor of 2p when its stepsize is

halved. To perform the verification of order, one can solve an IVP with a given stepsize and

continue halving it to show that error decreases at the appropriate rate. Such verification

demonstrates that error incurred by the method is due to order, i.e., the matching of terms in

the Taylor series, rather than an implementation error or round-off error incurred by floating-

point operations in the method. The expected order of convergence has been verified for all

methods in this thesis.

Numerical reference solutions must be generated for IVPs that do not have analytic so-

lutions with which to compare the accuracy of methods. However, a single solution of a

problem using a strict tolerance does not give rigorous evidence that the solution is accu-

rate. Verification of convergence for reference solutions demonstrates that reference solution

methods converge to a common solution as tolerances are decreased. Therefore, IVPs must

80

be solved many times to generate a reference solution. In this thesis, the RODAS method

and the RADAU5 method have been used to generate reference solutions for all problems

that do not have analytical solutions. The process for verification involves solving an IVP

with a given tolerance, then gradually decreasing the tolerance until the numerical solution

has sufficiently converged. If numerical solutions do not converge as tolerances are decreased,

there might be an error in the numerical method or the IVP might not be well-posed.

4.4.2 Problem Suite

Implementations for each of the ADR problems have been verified by comparing graphs of

reference solutions to an expected result or to external implementations. Each ADR problem

is shown to produce reasonable results.

The two advection-diffusion equations are both problems that have been designed specifi-

cally for this thesis. Figure 4.1 shows a solution plot for the one-dimensional advection prob-

lem defined by (3.7). Note from the problem definition that the initial condition is chosen

to be a harmonic wave. Notice how the advection process moves the wave and the diffusion

process makes it more smooth. Figure 4.2 shows solution plots for the two-dimensional heat

transfer problem defined by (3.9). Heat travels down the pipe in the shape of the velocity

profile as expected.

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

q

x

time = 0.0
time = 0.002
time = 0.004
time = 0.006
time = 0.008

time = 0.01

Figure 4.1: Solution plots for the linear advection-diffusion equation defined by (3.7),
spatially discretized using 500 points.

Figure 4.3 shows a solution plot for the CUSP problem defined by (3.10). This plot matches

81

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y

x

t=0

 294
 296
 298
 300
 302
 304

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y

x

t=10

 294
 296
 298
 300
 302
 304

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y

x

t=20

 294
 296
 298
 300
 302
 304

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y

x

t=30

 294
 296
 298
 300
 302
 304

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y

x

t=40

 294
 296
 298
 300
 302
 304

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

y

x

t=50

 294
 296
 298
 300
 302
 304

Figure 4.2: Solution plots for the heat transfer equation defined by (3.9), spatially
discretized using 280x40 points.

82

results that are shown in [21]. Figures 4.4 and 4.5 show solution plots of the two reactants

present in the one and two-dimensional Brusselator problems, both of which are defined

by (3.11). The one-dimensional version matches results that are shown in [21]; the two-

dimensional version is verified against the BRUSS-2D Fortran code from [21].

y

b

a

y

Figure 4.3: Solution plot for the CUSP problem defined by (3.10), using 32 discretized
grid points.

 0

 0.5

 1x
 0

 2

 4

 6

 8

 10

t
 0

 0.5

 1

 1.5

 2

 2.5

u(x,t)

 0

 0.5

 1x
 0

 2

 4

 6

 8

 10

t
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

v(x,t)

Figure 4.4: Solution plots for the one-dimensional Brusselator equation defined
by (3.11), using 1000 discretized points.

Figure 4.6 shows solution plots for each permutation of parameters for the combustion

problem defined by (3.12); these graphs match the results of the numerical experiment in [4].

Figure 4.7 shows solution plots for the tumour angiogenesis model defined by (3.13) for two

different diffusivity values; these plots match those given in [25]. Figure 4.8 shows solu-

tion plots of four sets of parameters for the concrete-rewetting problem defined by (3.14)–

83

t=0

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=1

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=2

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=3

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=4

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=5

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=6

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=7

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=8

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=9

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=10

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

t=11

 0 0.25 0.5 0.75 1

x
 0

 0.25
 0.5

 0.75
 1

y

 0

 2

 4

 6

Figure 4.5: Solution plot for the two-dimensional Brusselator equation defined
by (3.11), using 60x60 discretized points. The function u(x, y, t) is given by the red
meshes and the function v(x, y, t) is given by blue meshes.

84

(3.18). These sets involve using either water or isopropanol, and either a sink boundary or

a free boundary. Although this study is only concerned with using water (not isopropanol)

when preforming experiments related to splitting, all four sets of parameters are used dur-

ing verification to ensure that the model behaves appropriately. The solution plots of the

concrete-rewetting problem generated for this work agree with plots from [10]. Notice how

isopropanol travels much more quickly through the concrete pores in comparison to water

because isopropanol does not react with cement.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.00, FKPP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.75, FKPP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)
x

U0=0.99, FKPP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.00, Ignition

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.75, Ignition

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.99, Ignition

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.00, Fisher

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.75, Fisher

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

c(
x
,t

)

x

U0=0.99, Fisher

time = 0.0 time = 15.0

Figure 4.6: Solution plots for the combustion equations defined by (3.12), using 1600
discretized points.

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a
lu

e

N

TAF Concentration, δ=0.001, 1000 Unknowns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a
lu

e

N

Network Density, δ=0.001, 1000 Unknowns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a
lu

e

N

TAF Concentration, δ=1, 1000 Unknowns

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
a
lu

e

N

Network Density, δ=1, 1000 Unknowns

Figure 4.7: Solution plots for the tumour angiogenesis model defined by (3.13). The
domain has been discretized using 1000 points. Plots are shown for times 0, 0.1, 0.3,
0.5, 0.7, moving from light to dark.

86

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 1 2 3 4 5 6 7

W
a
te

r
C

o
n
te

n
t

(θ
)

Height (cm)

Insulated Boundary - Water Solution

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 1 2 3 4 5 6 7

W
a
te

r
C

o
n
te

n
t

(θ
)

Height (cm)

Insulated Boundary - Isopropanol Solution

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 1 2 3 4 5 6 7

W
a
te

r
C

o
n
te

n
t

(θ
)

Height (cm)

Sink Boundary - Water Solution

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0 1 2 3 4 5 6 7

W
a
te

r
C

o
n
te

n
t

(θ
)

Height (cm)

Sink Boundary - Isopropanol Solution

Figure 4.8: Solution plots for the concrete-rewetting problem. The hydration front is
shown for 10 equally spaced times in [0,28], moving from light to dark.

87

4.5 Comparisons of Numerical Methods

This section describes results of the comparison between physics-based splitting and Jacobian

splitting used by IMEX methods. Work-precision plots are used to compare the performance

of numerical methods, where the accuracy of the numerical methods are given by the x-axis

and the total CPU time is given by the y-axis. These plots consist of data points, that

show the accuracy and CPU time of each numerical experiment. The legends in the graph

provide the method name, the splitting type (where applicable), and the associated range of

tolerances that were evaluated. In all experiments, absolute and relative tolerances are taken

to be equal. Jacobian splitting is shown to outperform physics-based splitting on a test suite

of IVPs. Each of the IVPs is various evaluated on sets of parameters.

In the following sections, work-precision plots are shown comparing the ARK3, ARK4,

and ARK5 using both physics-based splitting and Jacobian splitting. The PRKC, IRKC,

and DIRK-CF methods are not competitive with any of the IMEX methods and are not

shown in the following graphs so as not to complicate the results. However, on some of the

IVPs, the (non-additive) RKC1 and RKC2 methods are shown to be competitive with the

IMEX methods and, for the heat transfer, CUSP, two-dimensional Brusselator, and concrete-

rewetting problems, RKC2 in fact outperforms the IMEX methods. The RKC methods are

included in graphs for which results of the RKC experiments are of interest. In these cases,

the IMEX methods generally take fewer steps than the RKC methods; however, the RKC

methods have faster runtimes because their steps are relatively inexpensive. Were it possible

to compute steps of the IMEX methods more quickly, the IMEX methods might experience

shorter run times than those of RKC. Appendix F shows the eigenvalue plots for each of the

IVPs. As expected, the RKC methods perform well on those IVPs with eigenvalues near the

negative real axis. Associated plots for each of the numerical experiments of the number of

steps versus accuracy are given in Appendix E.

IVPs solved using Jacobian splitting have theoretically more expensive function evalu-

ations than problems that have been split based on physical characteristics. Although the

numerical method remains the same when comparing physics-based splitting to Jacobian

splitting, calls to the RHS are more expensive for Jacobian splitting because of the addi-

88

tional matrix multiplications (of the Jacobian); i.e., each evaluation of the RHS requires two

additional computations of Jfy. However, results show the increase in time for evaluation

of the RHS is more than offset because methods using Jacobian splitting can take signifi-

cantly larger step sizes. For problems where fI is non-linear, Jacobian splitting theoretically

has a further advantage over a step using physics-based splitting because Jacobian splitting

requires only a single Newton iteration, whereas physics-based splitting might require several.

The range of specified tolerances is given for each of the work-precision plots. The plot

lines begin with the most lax tolerances and progress to more strict tolerances, up to the

specified tolerance limit. In general, it is desirable for data points to fall in the bottom-left

of the plots, signifying that the numerical method has solved the IVP with relatively high

accuracy, while requiring a relatively low amount of time or relatively low number of steps.

4.5.1 Advection-Diffusion Problems

One-Dimensional Advection-Diffusion Model

The IMEX methods are evaluated on the one-dimensional, linear advection-diffusion equa-

tion, defined by (3.7). To apply physics-based splitting, the diffusion term is assumed to be

relatively stiff and is treated implicitly; the advection term is assumed to be relatively non-

stiff and is treated explicitly. Therefore, using the notation of (1.2), physics-based splitting

treats the advection-diffusion IVP from (3.8) as

fI = Dy, fE = −Ay,

where D is a constant matrix representing the discretization of the diffusion term and A

is a matrix representing the discretization of the advection term. Note that D and A are

tridiagonal when the problem is discretized using second-order central differences because

the problem is one-dimensional. This advection-diffusion IVP is simple because it is linear.

It is used only as a proof of concept for Jacobian splitting. Jacobian splitting applied to the

89

IVP yields

fI = (D−A)y, fE = 0.

On this IVP, the application of Jacobian splitting causes IMEX methods to reduce to DIRK

methods because the term that would be treated explicitly is zero. This simple case, nonethe-

less, demonstrates how Jacobian splitting captures the stiffness of the IVP. In this example,

physics-based splitting does not treat any part of the advection term implicitly and thus

performs poorly.

The models are evaluated using second-, fourth-, and sixth-order finite difference methods.

Only minute differences are observed in the results; the results for a second-order discretiza-

tion are presented. The work-precision plots are shown in Figure 4.9, demonstrating that

Jacobian splitting also has a shorter runtime. Notice that as the advection term becomes less

significant in comparison to diffusion, physics-based splitting begins to approach the runtime

performance of Jacobian splitting. In all instances, the methods using Jacobian splitting

are superior in comparison to those same methods using physics-based splitting. The RKC

methods are significantly outperformed.

Two-Dimensional Heat Transfer Model

The heat transfer model defined by (3.9) uses physics-based splitting in the same way as for

the one-dimensional advection-diffusion problem. The diffusion term is treated implicitly,

and the advection term is treated explicitly. The primary difference between this model

and the one-dimensional advection-diffusion problem is that the Jacobian of the RHS of the

heat transfer problem contains two additional bands because the PDE is two-dimensional.

Numerical experiments were conducted using second- and fourth-order central differences to

approximate the second derivatives in the diffusion term, and first-, second-, and third-order

backward differences for the advection term. Near the boundaries, asymmetric differences

were used when the higher-order finite difference stencils would otherwise extend past the

boundary. There was no observed difference between the relative performance of the methods

when using higher-order spatial discretization; therefore, results are shown using first-order

90

1D Advection-Diffusion - CPU Time versus Accuracy

 10

 100

 1000

 10000

1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns, d=10, a=10

 10

 100

 1000

 10000

 100000

 1e+06

1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns, d=100, a=10

 10

 100

 1000

 10000

 100000

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns, d=10, a=100

 10

 100

 1000

 10000

 100000

 1e+06

1e-14 1e-12 1e-10 1e-8 1e-6 1e-4 1e-2

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns, d=100, a=100

ARK 3(2) (Jacobian Splitting)
ARK 3(2) (Physics-Based Splitting)

ARK 4(3) (Jacobian Splitting)
ARK 4(3) (Physics-Based Splitting)

ARK 5(4) (Jacobian Splitting)
ARK 5(4) (Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.9: CPU time versus accuracy of IMEX and RKC methods applied to a series
of one-dimensional advection-diffusion problem. Tolerances range from 10−4 to 10−8.

91

backward differences and second-order central differences for the first and second derivatives,

respectively.

The work-precision plots for each of the four tested cases shows Jacobian splitting to

have superior performance compared to physics-based splitting. CPU times are shown in

Figure 4.10. Unlike the one-dimensional case, the RKC1 and RKC2 methods are competitive

with the IMEX methods. RKC2 solves the problems more quickly but it is not able to attain

the same level of accuracy as the IMEX methods; this is not a surprising result because it is

a lower-order method compared to the tested IMEX methods.

4.5.2 Reaction-Diffusion Problems

The CUSP Problem

The CUSP model defined by (3.10) is a more complicated example than the previous advection-

diffusion problems. Much like the advection-diffusion IVP, the diffusion term is linear; how-

ever, the reaction term is now non-linear. In reference to the variables of (1.2), a physics-based

splitting for the CUSP problem is defined by treating diffusion as fI because it is relatively

stiff. The remaining reaction terms are placed into fE because they are relatively non-stiff.

Work-precision plots are shown in Figure 4.11. The IMEX methods using Jacobian split-

ting perform better than virtually all IMEX methods using physics-based splitting by up to

an order of magnitude. RKC2 significantly outperforms the IMEX method on three of the

four tests by at least an order of magnitude; however, the solution produced by RKC2 is not

able to achieve the same levels of accuracy.

The Brusselator

The Brusselator problems in one and two dimensions are solved using 2-additive methods by

applying physics-based splitting similarly to the CUSP problem. Diffusion is treated implicitly

and reaction is treated explicitly. Both one- and two-dimensional PDEs were discretized using

second-, fourth-, and sixth-order finite difference methods. Results are shown for the second-

order discretization scheme because there was no noticeable difference between these three

schemes.

92

2D Heat Transfer - CPU Time versus Accuracy

 10

 100

 1000

 10000

 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

70x10 Unknowns

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

140x20 Unknowns

 100

 1000

 10000

 100000

 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

210x30 Unknowns

 100

 1000

 10000

 100000

 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

280x40 Unknowns

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.10: CPU time versus accuracy of IMEX and RKC methods applied to the
heat transfer problem. Tolerances range from 10−4 to 10−8.

93

CUSP Model - CPU Time versus Accuracy

 100

 1000

 10000

 100000

 1e+06

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

C
P
U

 T
im

e
 (

m
s)

Accuracy

200 Unknowns

 1000

 10000

 100000

 1e+06

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns

 1000

 10000

 100000

 1e+06

 1e+07

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

C
P
U

 T
im

e
 (

m
s)

Accuracy

1000 Unknowns

 10000

 100000

 1e+06

 1e+07

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

2000 Unknowns

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.11: CPU time versus accuracy of IMEX and RKC methods applied to the
CUSP problem. Tolerances range from 10−4 to 10−8.

94

Results for the one-dimensional Brusselator problem show that the better type of splitting

is highly dependent on the order of the IMEX method. For the ARK5 method, Jacobian

splitting generally takes fewer steps and less CPU time than physics-based splitting; i.e.,

use of Jacobian splitting results in a more efficient method. Conversely, when α = 0.002,

the ARK3 method using Jacobian splitting is outperformed by the ARK3 method using

physics-based splitting. In the other cases, there is no discernible difference between the

performance of Jacobian splitting and physics-based splitting. In all cases, the RKC methods

are underperformed. The work-precision plots for the one-dimensional Brusselator problem

are shown in Figure 4.12.

When the Brusselator problem is extended into two dimensions, the results are similar.

In all cases, the ARK4 and ARK5 methods using Jacobian splitting outperform those same

methods using physics-based splitting. The ARK3 method using Jacobian splitting is out-

performed by the ARK3 method using physics-based splitting; however, the difference in

two dimensions is not nearly as severe. The work-precision plots for the two-dimensional

Brusselator problem are shown in Figure 4.13. These results demonstrate how, even though

the reaction term of the Brusselator problem is relatively non-stiff, it is still beneficial to

use Jacobian splitting. Unlike the one-dimensional case, the RKC2 method now outperforms

all of the IMEX methods; however, it cannot achieve the highest levels of accuracy. RKC1

underperforms relative to the IMEX methods.

4.5.3 Advection-Diffusion-Reaction Problems

Combustion Models

The combustion model defined by (3.12) involves contributing factors from advection, diffu-

sion, and reaction. The diffusion term is treated implicitly and its discretization corresponds

to fI ; the advection and reaction terms are treated explicitly, and their discretizations are

grouped together as part of fE. In every case, IMEX methods of orders four and five using Ja-

cobian splitting outperform the same methods using physics-based splitting. As U0 increases,

the relative performance of Jacobian splitting also appears to increase, to the point that all

methods using Jacobian splitting outperform those that do not. When the combustion model

95

1D Brusselator - CPU Time versus Accuracy

 100

 1000

 10000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns, Alpha=0.02

 100

 1000

 10000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

500 Unknowns, Alpha=0.002

 100

 1000

 10000

 100000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

1000 Unknowns, Alpha=0.02

 100

 1000

 10000

 100000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

1000 Unknowns, Alpha=0.002

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.12: CPU time versus accuracy of IMEX and RKC methods applied to a
one-dimensional Brusselator problems. Tolerances range from 10−4 to 10−8.

96

2D Brusselator - CPU Time versus Accuracy

 100

 1000

 10000

 100000

 1e+06

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

40x40 Unknowns, Alpha=0.02

 100

 1000

 10000

 100000

 1e+06

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

40x40 Unknowns, Alpha=0.002

 100

 1000

 10000

 100000

 1e+06

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

60x60 Unknowns, Alpha=0.02

 1000

 10000

 100000

 1e+06

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
P
U

 T
im

e
 (

m
s)

Accuracy

60x60 Unknowns, Alpha=0.002

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.13: CPU time versus accuracy of IMEX and RKC methods applied to a
two-dimensional Brusselator problems. Tolerances range from 10−4 to 10−8.

97

involves FKPP and Fisher reactions, the relative performance of Jacobian splitting is also

more significant than for the ignition reaction. The ignition problem nonetheless demon-

strates the superior performance of Jacobian splitting. In all cases, the RKC methods of

orders one and two are outperformed by the IMEX methods.

Figure 4.14 shows the work-precision plots for each of the parameter combinations. These

results are for the FKPP, ignition, and Fisher combustion models, where each problem dis-

cretized the spatial domain with 1600 unknowns. Higher-order spatial discretizations were

evaluated on the combustion models but did not show any significant difference in the relative

performance of the results.

Tumour Angiogenesis

A physics-based splitting of the tumour angiogenesis model defined by (3.13) treats the

diffusion term implicitly and the remaining terms explicitly. Figure 4.15 shows the work-

precision plots of the numerical experiments associated with tumour angiogenesis model.

In general, methods using Jacobian splitting perform better than physics-based splitting on

these models. However, the tumour angiogenesis model yields a much more significant result.

At strict tolerances, IMEX methods using physics-based splitting are incapable of solv-

ing the tumour angiogenesis problems. The recorded errors for methods using physics-based

splitting either show that a minimum stepsize of 10−12 was reached or that a maximum num-

ber of steps (1,000,000) was reached. The methods using Jacobian splitting successfully solve

the problem at all requested tolerances. These results suggest that physics-based splitting

does not appropriately capture the stiffness of this problem, whereas Jacobian splitting does.

The Concrete-Rewetting Problem

The concrete-rewetting problem in (3.14)–(3.18) is comprised of advection, diffusion, and

reaction terms that are all non-linear. To perform physics-based splitting, the discretized

98

ARD Combustion - CPU Time versus Accuracy

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

FKPP, N=1600, U0=0.00

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

FKPP, N=1600, U0=0.75

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

FKPP, N=1600, U0=0.99

1e2

1e3

1e4

1e5

1e6

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

Ignition, N=1600, U0=0.00

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

Ignition, N=1600, U0=0.75

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

Ignition, N=1600, U0=0.99

1e2

1e3

1e4

1e5

1e6

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

Fisher, N=1600, U0=0.00

1e2

1e3

1e4

1e5

1e6

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

Fisher, N=1600, U0=0.75

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

Fisher, N=1600, U0=0.99

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.14: CPU time versus accuracy of IMEX and RKC methods applied to the
set of one-dimensional combustion problems. Tolerances range from 10−4 to 10−8.

99

1D Angiogenesis - CPU Time versus Accuracy

 100

 1000

 10000

 100000

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

N=500, d=1

 1000

 10000

 100000

 1e+06

1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3

C
P
U

 T
im

e
 (

m
s)

Accuracy

N=500, d=0.001

 1000

 10000

 100000

 1e+06

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

N=1000, d=1

 1000

 10000

 100000

 1e+06

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

C
P
U

 T
im

e
 (

m
s)

Accuracy

N=1000, d=0.001

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Figure 4.15: CPU time versus accuracy of IMEX and RKC methods applied to the
tumour angiogenesis model. Tolerances range from 10−5 to 10−11.

100

diffusion terms that are grouped as part of fI are written as

dθj
dt

=
1

(∆x)2

[
Dj+ 1

2
(θj+1 − θj)−Dj− 1

2
(θj − θj−1)

]
,

d(θjCα,j)

dt
=

Dα

(∆x)2

[
θj+ 1

2
(Cα,j+1 − Cα,j)− θj− 1

2
(Cα,j − Cα,j−1)

]
,

d(θjCβ,j)

dt
=

Dβ

(∆x)2

[
θj+ 1

2
(Cβ,j+1 − Cβ,j)− θj− 1

2
(Cβ,j − Cβ,j−1)

]
,

d(θjCq,j)

dt
=

Dq

(∆x)2

[
θj+ 1

2
(Cq,j+1 − Cq,j)− θj− 1

2
(Cq,j − Cq,j−1)

]
,

d(θjCg,j)

dt
= 0,

and the discretized reaction terms that are grouped as part of fE are written as

dθj
dt

= −ν(θj − θr)+mwrcsh

ρwmcsh

,

d(θjCα,j)

dt
= −

uj+ 1
2
Cα,j+ 1

2
− uj− 1

2
Cα,j− 1

2

∆x
− (θj − θr)+rα,

d(θjCβ,j)

dt
= −

uj+ 1
2
Cβ,j+ 1

2
− uj− 1

2
Cβ,j− 1

2

∆x
− (θj − θr)+rβ,

d(θjCq,j)

dt
= −

uj+ 1
2
Cq,j+ 1

2
− uj− 1

2
Cq,j− 1

2

∆x
+ (θj − θr)+(rcsh − kprecCq,j + kdissCg,j),

d(θjCg,j)

dt
= (θj − θr)+(kprecCq,j − kdissCg,j),

where the subscript j = 1, 2, . . . , N refers to each discretized point.

The RKC1 and RKC2 methods perform orders of magnitude than any of the IMEX

methods, regardless of whether Jacobian splitting or physics-based splitting is used. The

eigenvalues for the sink and insulated boundaries are shown in Appendix F. Notice that the

eigenvalues are almost exclusively located near the negative real axis. It is easy to see that

the stability region of RKC methods, discussed in Section 2.3.5, encompasses the eigenvalues

when it is appropriately scaled by the timestep, perhaps explaining why the RKC method

performs so well.

Numerical experiments are conducted for both sets of boundary conditions: a sink bound-

ary and an insulated boundary. Results are shown for discretized problems with 100 un-

knowns and with 200 unknowns, including the runtimes for RKC methods of orders 1 and 2.

101

Work-precision plots for both sets of problem size are shown in Figure 4.16.

Jacobian splitting outperforms physics-based splitting on the concrete-rewetting problem

for most tolerances with both types of boundary conditions. The sink boundary shows

significant performance gains when using Jacobian splitting. The IMEX methods of orders

three and four generally require fewer steps when using Jacobian splitting in comparison

to physics-based splitting. They subsequently have shorter runtimes as well. The ARK5

methods perform poorly with respect to the other IMEX methods.

102

Concrete Rewetting Model - CPU Time versus Accuracy

 100

 1000

 10000

 100000

 1e+06

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

C
P
U

 T
im

e
 (

m
s)

Accuracy

100 unknowns, Insulated boundary, Water

 100

 1000

 10000

 100000

 1e+06

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

C
P
U

 T
im

e
 (

m
s)

Accuracy

100 unknowns, Sink boundary, Water

 1000

 10000

 100000

 1e+06

 1e+07

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

C
P
U

 T
im

e
 (

m
s)

Accuracy

200 unknowns, Insulated boundary, Water

 1000

 10000

 100000

 1e+06

 1e+07

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

C
P
U

 T
im

e
 (

m
s)

Accuracy

200 unknowns, Sink boundary, Water

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure 4.16: CPU time versus accuracy of IMEX and RKC methods applied to the
concrete rewetting problem for both insulated and sink boundaries. Tolerances range
from 10−4 to 10−9.

103

Chapter 5

Conclusions and Future Work

This thesis conducts a study of 2-additive numerical methods on IVPs that represent

the discretization of ADR equations. These methods have been applied to a test set of

ADR equations to compare the performance of IMEX methods using Jacobian splitting to

a variety of methods (including those IMEX methods) using physics-based splitting. The

ARK3, ARK4, and ARK5 methods were evaluated using Jacobian splitting. Those three

methods, in addition to PRKC, IRKC, DIRK-CF1, and DIRK-CF2, were evaluated using

physics-based splitting. Several other standard non-additive methods were evaluated as well,

the most notable of which are the RKC1 and RKC2 methods. Several standard RK methods

were used as a baseline for comparisons. In general, the ARK methods outperformed the

standard RK methods.

5.1 Summary of Results

The primary metric to gauge the performance of a numerical is the CPU time as a function

of accuracy of the solution. Other metrics include the number of steps required, versus the

accuracy of the solution. Eigenvalue plots are used to help understand why some methods

perform particularly well on problems whereas others do not. Accuracy calculations are

performed with respect to reference solutions that have been generated using the RODAS

and RADAU5 methods, depending on which method is more efficient on a given problem.

The test set of ADR problems consists of two advection-diffusion models, three diffusion-

reaction models, and three models with contributing factors from advection, diffusion, and

reaction. These problems all arise from PDEs that are spatially discretized such that the

above numerical methods for IVPs can be applied to them. Discretization schemes include

104

centred, forward, and backward finite difference methods and a second-order centred finite

volume method.

The IMEX methods that use Jacobian splitting are shown to outperform those that use

physics-based splitting on the suite of test problems. Further, the IMEX methods outperform

PRKC, IRKC, and the DIRK-CF methods, regardless of which type of splitting is used. It is

also found that different spatial discretization orders of the PDEs do not impact the relative

performance of Jacobian splitting versus physics-based splitting. On many of the IVPs,

RKC1 and RKC2 are competitive with the IMEX methods. In some cases, RKC2 is faster

the IMEX methods; however, it is not able to attain the same level of accuracy.

The pythODE++ PSE has been developed to evaluate numerical methods on IVPs. It

is based on pythODE, which is a PSE written entirely in Python. The pythODE++ PSE is

designed to run experiments over many sets of parameters, such as a range of tolerances or

problem sizes. It measures the runtimes of a numerical method as well as other statistics,

such as the number of steps or the average number of Newton iterations per step. The PSE

is written in favour of performance rather than in favour of a robust codebase; however, its

numerical methods all share the same support code (e.g., vectors, matrices, etc.) to mitigate

implementation-dependent runtime bias. The infrastructure of pythODE++ is designed to

use parallel computing to solve many IVPs simultaneously on a cluster of machines, vastly

increasing the size of the parameter space that can be evaluated in a reasonable amount

of time. Methods and IVPs in the PSE are written exclusively in C++ because C++ is a

relatively low-level language. Supporting code, used for analysis of problem runs and the

distribution of problem runs across a cluster, is written in Python for ease of development.

The analysis and distribution code does not affect runtime measurements because these

measurements are conducted internally by the IVP solvers.

5.2 Contributions of this Thesis

This thesis makes two distinct contributions to the fields of numerical analysis and scientific

computing.

First, this thesis provides a rigorous study that compares physics-based splitting to Ja-

105

cobian splitting on a wide variety of ADR problems. Both of these splitting techniques are

known; however, there does not presently exist a systematic and comprehensive study that

compares the two splitting approaches. Knowledge of which splitting type to use can be use-

ful when one is solving a problem and wishes to use some form of splitting. Jacobian splitting

is shown to be a superior approach in terms of overall runtime with respect to the accuracy

of the solution. Further, the implementation difficulty of a method using Jacobian splitting

is comparable to physics-based splitting, an equally important fact. Although an approach

may be shown to be superior, in practice, it might not be used if the implementation is too

complicated. Jacobian splitting is also useful because it is an approach for splitting the RHS

of an IVP that is not amenable to a physics-based splitting; e.g., see [44].

Second, this thesis develops a PSE, pythODE++, that is used to perform the comparisons

between splitting approaches. It would be tedious and incredibly time consuming to perform

a study of this magnitude without the supporting infrastructure of a PSE. This software is

important because it is capable of performing analysis on IVPs that are relatively large over

a large parameter space. It is also specifically designed for the analysis of numerical methods

for IVPs; therefore, it is able to make optimizations that more generalized PSEs are unable

to provide. Although there are numerous existing PSEs, it is difficult to find a suitable one

that provides all of these capabilities, giving motivation for the development of pythODE++.

5.3 Future Work

This section outlines future work that might extend the current study.

5.3.1 Extension to Three-Dimensional Models

The models in this thesis consist of problems in one and two spatial dimensions. Future

work involves extending the set of IVPs to include one or more problems involving advec-

tion, diffusion, and reaction in three spatial dimensions. Many physical models are three

dimensional; therefore, it is desirable to evaluate numerical methods on the underlying IVPs

of three-dimensional PDE models. It is likely that the benefits of Jacobian splitting ex-

tend to three dimensions, but this hypothesis should be verified directly. An example of a

106

three-dimensional ADR problem is a combustion simulation with compressible flow and more

than one reacting species. Such a system is incredibly complex, consisting of many coupled

PDEs including momentum equations for each spatial dimension, an energy equation, and

continuity equations for each quantity present in the simulation [14].

For these problems, it might be advantageous to support alternative methods of spatial

discretization than finite differences, such as finite element methods [16]. Three-dimensional

models become complex due to the large number of unknowns required by a fixed grid.

Therefore, a non-uniform, adaptive discretization might be desirable.

5.3.2 Merging pythODE++ and pythODE

Although much of the code and surrounding infrastructure of pythODE++ is based on pythODE,

pythODE++ functions independently. It would be advantageous for both PDEs to be merged.

They both have the same goal of running numerical experiments to compare sets of numerical

methods and IVPs. The pythODE PSE allows for more complex and customizable numerical

studies, whereas pythODE++ is more specialized and more optimized. Future work involves

developing pythODE and pythODE++ to share a common Python front-end that is responsible

for distributing numerical experiments to many processes on many different hosts. The

back-ends of the two PSEs would remain completely separate, but they would implement a

common protocol. Further, a code transformation tool would be written such that one could

implement an IVP or method in either C++ or Python (using some subset of the languages),

thereby allowing one to seamlessly solve IVPs using either the Python back-end or the C++

back-end.

5.3.3 Extension to 3-Additive Methods

This thesis only considers 2-additive methods. For an ADR equation, methods that treat

advection, diffusion, and reaction each with a separate methods, i.e., 3-additive methods,

might outperform the 2-additive methods introduced in this work. Specifically, one approach

is to treat the discretized advection terms with an (explicit) ExpRK method, the discretized

reaction terms with an ERK method, and the discretized diffusion terms with an IRK method.

107

Such an approach might also be a candidate for Jacobian splitting, where advection would be

treated with the same ExpRK method, but the remaining terms would be 2-additively split

using Jacobian splitting, thereby treating the linear term implicitly and the non-linear term

explicitly. Future work involves deriving order conditions and developing implementations

for these 3-additive methods. These methods can be incorporated into the current suite of

methods and evaluated.

5.3.4 Additional Methods

The coefficients of the ARK3, ARK4, and ARK5 methods represent only single solutions to

their respective order conditions. There are many degrees of freedom in the order condi-

tions; investigating these degrees of freedom might produce methods that are better than the

presently chosen coefficients for ARK3, ARK4, ARK5. Unfortunately, calculating these coef-

ficients is not trivial; as order increases, the number of order conditions increases dramatically,

resulting in a large non-linear algebraic system with possibly hundreds of unknowns [30]. Ad-

ditionally, the DIRK-CF1 and DIRK-CF2 methods do not show many signs of improvement

over their classical RK equivalents. Coefficients should be derived for higher-order ExpARK

methods, so that these methods can be compared fairly to ARK3, ARK4, and ARK5.

5.3.5 Parallelized Methods

The pythODE++ PSE is presently capable of solving many permutations of parameters such

as the IVP, method, solver, and tolerances in parallel. Conceptually, it is relatively simple

to parallelize this component of the PSE because each problem run is inherently parallel.

However, all numerical methods in this study are serial. It might be possible to take advantage

of a finer-grained parallelism by using parallelized numerical methods. An overview of basic

strategies for parallelizing RK methods is presented in [27].

108

References

[1] U. M. Ascher and L. R. Petzold. Computer methods for ordinary differential equations
and differential-algebraic equations. SIAM: Society for Industrial and Applied Mathe-
matics, 1998.

[2] U. M. Ascher, S. Ruuth, and R. J. Spiteri. Implicit-explicit Runge–Kutta methods for
time-dependent partial differential equations. Applied Numerical Mathematics, 25:151–
167, 1997.

[3] A. Bentur. Cementitious materials - nine millennia and a new century: past, present,
and future. J Mater Civ Eng, 14:2–22, 2002.

[4] F. Bianco, S. Chibbaro, and R. Prud’homme. Étude d’une équation de convection-
réaction-diffusion en écoulement compressible. Presented at: Rencontre du non linéaire,
March 2011.

[5] R. Bridson. Fluid simulation for computer graphics. A K Peters, Wellesley, 2007.

[6] J. C. Butcher. A history of Runge–Kutta methods. Appl. Numer. Math., 20(3):247–260,
March 1996.

[7] E. Celledoni. Eulerian and semi-Lagrangian schemes based on commutator-free expo-
nential integrators. In Group theory and numerical analysis, volume 39 of CRM Proc &
Lect Note, pages 77–90. Amer Math Soc, Providence, RI, 2005.

[8] E. Celledoni and B. K. Kometa. Semi-lagrangian Runge-Kutta Exponential integrators
for convection dominated problems. Journal of Scientific Computing, 41(1):139–164,
2009.

[9] V. Cerf and R. Kahn. A protocol for packet network intercommunication. Communica-
tions, IEEE Transactions on, 22(5):637–648, 1974.

[10] M. Chapwanya, W. Liu, and J. M. Stockie. A model for reactive porous transport during
re-wetting of hardened concrete. J Eng Math, 65:53–73, January 2009.

[11] A. J. Chorin. Numerical solution of the Navier–Stokes equations. Math Comp, 22:745–
762, 1968.

[12] P. E. Crouch and R. Grossman. Numerical integration of ordinary differential equations
on manifolds. J Nonlinear Sci, 3:1–33, 1993.

109

[13] T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):196–199, June 2004.

[14] T. Echekki and E. Mastorakos. Turbulent Combustion Modeling, volume 95 of Fluid
Mechanics and Its Applications. Springer Netherlands, 2011.

[15] W. H. Enright and J. D. Pryce. Two FORTRAN packages for assessing initial value
methods. ACM Trans. Math. Softw., 13(1):1–27, March 1987.

[16] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equa-
tions. Studentlitteratur, 1996.

[17] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[18] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. Colpack: Software
for graph coloring and related problems in scientific computing. ACM Trans. Math.
Softw., 40(1):1:1–1:31, Oct. 2013.

[19] I. Goda, M. Assidi, S. Belouettar, and J. Ganghoffer. A micropolar anisotropic constitu-
tive model of cancellous bone from discrete homogenization. Journal of the Mechanical
Behavior of Biomedical Materials, 16(0):87–108, 2012.

[20] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations I:
Nonstiff problems, volume 8 of Springer series in computational mathematics. Springer-
Verlag, Berlin, 1993.

[21] E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and differential-
algebraic problems, volume 14 of Springer series in computational mathematics. Springer-
Verlag, Berlin, 1996.

[22] E. Hairier, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of
Springer series in computational mathematics. Springer-Verlag, Berlin, 2002.

[23] C. Hall. Anomalous diffusion in unsaturated flow: fact or fiction? Cement and Concrete
Research, 37(3):378–385, 2007.

[24] T. Hartmann and A. S. Verkman. Model of ion transport regulation in chloride-secreting
airway epithelial cells. Biophys J, 58(2):391–401, August 1990.

[25] W. Hundsdorfer and J. G. Verwer. Numerical Solution of time-dependent advection-
diffusion-reaction equations, volume 33 of Springer series in computational mathematics.
Springer-Verlag, Berlin, 2003.

[26] Z. Jackiewicz. General linear methods for ordinary differential equations. John Wiley &
Sons, Inc, Hoboken, New Jersey, 2009.

110

[27] K. R. Jackson. A survey of parallel numerical methods for initial value problems for
ordinary differential equations. IEEE Trans. on Magnetics, 27:3792–3797, 1991.

[28] L. M. Jiji. Heat Convection. Springer Berlin Heidelberg, 2nd edition, 2009.

[29] D. S. Jones, M. Plank, and B. D. Sleeman. Differential Equations and Mathematical
Biology. Chapman & Hall/CRC, Taylor & Francis Group, second edition, 2010.

[30] C. A. Kennedy and M. H. Carpenter. Additive Runge–Kutta schemes for convection-
diffusion-reaction equations. Technical report, 2001.

[31] A. Kroshko. Integrating-factor-based 2-additive Runge–Kutta methods for advection-
reaction-diffusion equations. Master’s thesis, Department of Computer Science, Univer-
sity of Saskatchewan, May 2011.

[32] Y. Maday, A. T. Patera, and E. M. Rønquist. An operator-integration-factor splitting
method for time-dependent problems: Application to incompressible fluid flow. Journal
of Scientific Computing, 5(4):263–292, 1990.

[33] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, A. J. Miller, and M. Up-
ton. Hyper-threading technology architecture and microarchitecture. Intel Technology
Journal, 6(1):4–15, February 2002.

[34] F. Mazzia and C. Magherini. Test set for initial value problem solvers, release 2.4.
Technical Report 4, Department of Mathematics, University of Bari, Italy, 2008.

[35] B. V. Minchev and W. Wright. A review of exponential integrators for first order semi-
linear problems. Preprint Numerics, 2, 2005.

[36] J. Rice and R. F. Boisvert. From scientific software libraries to problem solving envi-
ronments. IEEE Computational Science and Engineering, 3:44–53, 1996.

[37] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations - version 2, 1994.

[38] G. Satir and D. Brown. C++ - the core language: a foundation for C programmers.
O’Reilly, 1995.

[39] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB. Cam-
bridge University Press, 2003.

[40] L. F. Shampine, B. P. Sommeijer, and J. G. Verwer. IRKC: An IMEX solver for
stiff diffusion-reaction PDEs. Journal of Computational and Applied Mathematics,
196(2):485–497, 2006.

[41] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete
Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised)
edition, 1998.

[42] G. Söderlind. Automatic control and adaptive time-stepping. Numerical Algorithms,
31(1-4):281–310, 2002.

111

[43] B. P. Sommeijer, L. F. Shampine, and J. G. Verwer. RKC: an explicit solver for parabolic
PDEs. J Comput Appl math, 88(2):315–326, January 1997.

[44] R. J. Spiteri and R. C. Dean. On the performance of implicit-explicit Runge–Kutta
methods in models of cardiac electrical activity. IEEE Transactions on Biomedical
Engineering, 55(5):1488–1495, May 2008.

[45] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM: Society for Industrial
and Applied Mathematics, 1997.

[46] J. G. Verwer, W. Hundsdorfer, and B. P. Sommeijer. Convergence properties of the
Runge–Kutta–Chebyshev method. Numerische Mathematik, 57(1):157–178, 1990.

[47] A. Walther and A. Griewank. Getting started with adol-c. In U. Naumann and
O. Schenk, editors, Combinatorial Scientific Computing, chapter 7, pages 181–202.
Chapman-Hall CRC Computational Science, 2012.

[48] T. Williams, C. Kelly, et al. gnuplot. http://www.gnuplot.info.

[49] C. J. Zbinden. Partitioned Runge–Kutta–Chebyshev methods for diffusion-advection-
reaction problems. SIAM J Sci Comput, 33(4):1707–1725, July 2011.

112

http://www.gnuplot.info

Appendix A

Derivations of Order Conditions for Runge–

Kutta Methods

This material is largely based on derivations for order conditions in [20]. Order conditions
for a method of order p are calculated by matching the Taylor expansion of the numerical
solution to the Taylor expansion of the local solution up to the term of order p. Both
expansions are taken at ∆t = 0; therefore, it is sufficient to derive order conditions by
matching derivatives of the numerical and local solutions. Derivations are shown for RK
methods up to third order. Higher-order methods can be derived by continuing the process
of calculating higher derivatives. In this section, tensor notation is used to represent the
components of vectors; i.e., fJ corresponds to the Jth component of f . Additionally, note
that fJ = fJ(yn−1) unless specific function arguments are given.

A.1 Taylor Expansion of the True Solution

The Taylor expansion an IVP of the form (2.2) is written as

yJn = yJn−1 +

p∑
i=1

(∆t)i

i!

diyJn−1

dti
+O

(
(∆t)p+1

)
, (A.1)

where J = 1, . . . ,m. By definition of the IVP, the first derivative is written

dyJn−1

dt
= fJ .

Recall the chain rule for vector-valued functions:

dfJ

dt
=
∂fJ

∂y1

dy1

dt
+ · · ·+ ∂fJ

∂ym
dym

dt
.

By applying the chain rule to the time derivatives, the subsequent derivatives required by A.1
can be calculated as

d2yJn−1

dt2
=

m∑
K=1

∂fJ

∂yK
fK ,

d3yJn−1

dt3
=

m∑
K=1

m∑
L=1

(
∂2fJ

∂yK∂yL
fKfL +

∂fJ

∂yK
∂fK

∂yL
fL
)
.

113

A.2 Taylor Expansion of the Numerical Solution

One step of an s-stage RK method (see Section 2.3) is written as

kJi = fJ

(
yn−1 + ∆t

s∑
j=1

aijkj

)
,

yJn = yJn−1 + ∆t
s∑
j=1

bjk
J
j ,

where i = 1, . . . , s. It is convenient for analysis to use the transformation Y J
i , such that

kJi = fJ(Y 1
i , . . . , Y

m
i). Therefore, the RK method can be rewritten as

Y J
i = yJn−1 + ∆t

s∑
j=1

aijf
J(Y 1

j , . . . , Y
m
j),

yJn = yJn−1 + ∆t
s∑
j=1

bjf
J(Y 1

j , . . . , Y
m
j).

Due to the similarity of the formula for Y J
i and yJn , it is sufficient to treat yJn as an additional

stage. The RK method is now written as

Y J
i = yJn−1 + ∆t

s∑
j=1

aijf
J(Y 1

j , . . . , Y
m
j),

where i = 1, 2, . . . , s + 1, as+1,j = bj, and yJn = Y J
s+1. The general Leibniz rule is now useful

to compute derivatives of Y J
i because applying the chain rule would result in an infinite

recursion. A simplified version of the rule that are useful to the following calculations is
written

dα[tβ(t)]

dtα
= α

dα−1β(t)

dtα−1
.

A new substitution ξJj = fJ(Y 1
j , . . . , Y

m
j) is introduced to simplify notation. Note that

ξJj |∆t=0 = fJ . Derivatives of Y J
i are thus calculated as

dY J
i

dt

∣∣∣∣
∆t=0

=
s∑
j=1

aijξ
J
j

∣∣∣∣∣
∆t=0

=
s∑
j=1

aijf
J ,

d2Y J
i

dt2

∣∣∣∣
∆t=0

= 2
s∑
j=1

aij

m∑
K=1

∂ξJj
∂yK

dY K
j

dt

∣∣∣∣∣
∆t=0

= 2
s∑
j=1

s∑
k=1

aijajk

m∑
K=1

∂fJ

∂yK
fK ,

114

d3Y J
i

dt3

∣∣∣∣
∆t=0

= 3
s∑
j=1

aij
d

dt

(
m∑
K=1

∂ξJj
∂yK

dY K
j

dt

)∣∣∣∣∣
∆t=0

= 3
s∑
j=1

aij

m∑
K=1

(
d

dt

(
∂ξJj
∂yK

)
dY K

j

dt
+
∂ξJj
∂yK

d2Y K
j

dt2

)∣∣∣∣∣
∆t=0

= 3
s∑
j=1

aij

m∑
K=1

(
s∑

L=1

∂2ξJj
∂yK∂yL

dY K
j

dt

dY L
j

dt
+
∂ξJj
∂yK

d2Y K
j

dt2

)∣∣∣∣∣
∆t=0

= 3
s∑
j=1

s∑
k=1

s∑
l=1

aijajkajl

m∑
K=1

m∑
L=1

∂2fJ

∂yK∂yL
fKfL

+ 3 · 2
s∑
j=1

s∑
k=1

s∑
l=1

aijajkakl

m∑
K=1

m∑
L=1

∂fJ

∂yK
∂fK

∂yL
fL.

A.3 Order Conditions

Matching the above derivatives between the numerical and local expansions yields the order
conditions for a third-order RK method. One condition comes from matching the first deriva-
tive, one comes from matching the second derivative, and two more come from matching the
third derivative. The goal is to match expansions of yJn, which corresponds to Y J

s+1 in the
numerical solution. The coefficients aij = as+1,j can be replaced with bj to follow notation of
the coefficients in the Butcher tableau. The four order conditions are therefore written

s∑
j=1

bj = 1,
s∑
j=1

s∑
k=1

bjajk =
1

2
,

s∑
j=1

s∑
k=1

s∑
l=1

bjajkajl =
1

3
,

s∑
j=1

s∑
k=1

s∑
l=1

bjajkakl =
1

6
.

115

Appendix B

Derivations of Finite Difference Methods

Numerical approximation to derivatives of varying order can be calculated using an ap-
proach known as the method of finite differences. This method is applied to a function u(x)
that has been discretized on a generally uniform grid. The derivative of order q of u(x) can
be approximated by combining weighted values of points near to x on the grid. The finite
difference method uses a stencil, which identifies which nearby points to use and the amount
by which to weight them. The goal of finite differences is to choose points such that the
approximation to the derivative matches the Taylor expansion of the exact solution up to a
desired order of accuracy.

First, recall the Taylor expansion up to order p:

u(x+ ∆x) = u(x) +

p∑
i=1

(∆x)i

i!

∂iu

∂xi

∣∣∣∣
x

+O
(
(∆x)p+1

)
.

When applied to a discretized grid and letting un = u(x + n∆x) and writing derivatives
in Lagrange notation, the expansion is written as:

un = u0 +

p∑
i=1

ni(∆x)iu
(i)
0

i!
+O

(
(∆x)p+1

)
. (B.1)

Combining many equations of the form (B.1) with varying n ∈ Z can be used to eliminate
all derivatives up to a desired order and solve for whichever derivative is sought. Varying n
has the effect of including many points due to the un and u0 terms from (B.1). The general
problem for an arbitrary number of points and an arbitrary derivative of order q can be
described as a linear system as follows:

n1

1!
n2

1!
. . . nm

1!

n2
1

2!

n2
2

2!
. . . n2

m

2!
...

...
. . .

...

nm
1

m!

nm
2

m!
. . . nm

m

m!




w1

w2

...

wm

 =


δ1,q

δ2,q

...

δm,q

 , w0 =
m∑
i=1

wi, δi,q =

 0 when i 6= q

1 when i = q

where m is the number of points in the stencil (not including the point at u0) and wi corre-
sponds to the weighted value for each stencil point. The derivative of order qth can then be
calculated as

dqu

dxq
=

∑m
i=0wiui
(∆x)q

116

Appendix C

Derivation of Additive Exponential Runge–

Kutta Methods

The following calculations describe how to derive a 2-additive ExpRK methods by using
operator integrating factor splitting [8, 32]. Many IVPs can be written as

dy

dt
(t,y(t)) = f

(
t,y(t)

)
+ C

(
t,y(t)

)
y(t), (C.1)

where f(t,y(t)) contains what is treated with an classical RK method and C(t,y(t)) : R ×
Rm 7→ Rm is a matrix representing what is treated with an ExpRK method.

Physics-based splitting allows a CFERK to be applied to the C
(
t,y(t)

)
y(t) term and a

classical RK method to be applied to the f
(
t,y(t)

)
term. The first step is to consider the

substitution

y(t) = Φ(t)z(t), (C.2)

dΦ

dt
(t) = C

(
t,Φ(t)z(t)

)
Φ(t), (C.3)

Φ(tn−1) = I,

where Φ(t) ∈ Rm×m is an unknown matrix, z(t) ∈ Rm is an unknown vector, and I ∈ Rm×m

is the identity matrix. Differentiating (C.2) and substituting it into (C.1) yields

d

dt
[Φ(t)] z(t) + Φ(t)

d

dt
[z(t)] = C

(
t,Φ(t)z(t)

)
Φ(t)z(t) + f

(
t,Φ(t)z(t)

)
.

On substitution of (C.3), the above now becomes

Φ(t)
d

dt
[z(t)] = f

(
t,Φ(t)z(t)

)
.

Therefore, (C.1) can be split into two coupled equations:

d

dt
Φ(t) = C(t,y(t))Φ(t), Φ(tn−1) = I,

d

dt
z(t) = Φ−1(t)f

(
t,Φ(t)z(t)

)
, z(tn−1) = yn−1,

The initial condition for z(t) comes from the fact that z(t) = Φ−1(t)y(t). Applying an s-stage

117

CFERK to the first equation for Φ(t) for a timestep from tn−1 to tn is written

Φi =
1∏

k=J

exp

(
∆tn

s∑
j=1

α
[k]
ij C(yj)

)
, Φn =

1∏
k=J

exp

(
∆tn

s∑
j=1

β
[k]
j C(yj)

)
,

where i = 1, 2, ..., s and the coefficients α
[k]
ij and β

[k]
j correspond to a

[k]
ij and b

[k]
j in the Butcher

tableau of the CFERK method. Applying an s-stage classical RK method to the second
equation for z(t) is written

zi = zn−1 + ∆tn

s∑
j=1

aijΦ
−1
j fj,

zn = zn−1 + ∆tn

s∑
j=1

bjΦ
−1
j fj.

Therefore, by substituting into (C.2), the additive method becomes

yi = Φizn−1 + ∆tn

s∑
j=1

aijΦiΦ
−1
j fj,

yn = Φiyn−1 + ∆tn

s∑
j=1

bjΦiΦ
−1
j fj,

which is equivalent to the form (2.17).

118

Appendix D

Order Conditions for Additive Exponential

Runge–Kutta Methods

The derivation of order conditions for additive exponential RK methods is significantly
more complicated than for classical RK methods. However, the principle of matching the
Taylor expansion of the numerical solution to that of the true solution is the same. Derivations
are shown up to order two. Higher-order derivations are significantly more complicated and
are not covered in this thesis. Consider an IVP of the form

dy

dt
= C(y)y + f(y),

where y ∈ Rm, C ∈ Rm×m, f ∈ Rm. In tensor notation, the IVP can be equivalently written

dyJ

dt
=

m∑
K=1

cJKyK + fJ , (D.1)

where cJK = cJK(y1, . . . , ym), fJ = fJ(y1, . . . , ym), and J = 1, 2, . . . ,m.

D.1 Derivatives of the Exact Solution

The first derivative is given by the problem definition in (D.1). Derivatives of cJK and fJ

are useful in further computations. They are written

dcJK

dt
=

m∑
L=1

∂cJK

∂yL

(
m∑

M=1

cLMyM + fL

)
, (D.2)

dfJ

dt
=

m∑
K=1

∂fJ

∂yK

(
m∑
L=1

cKLyL + fK

)
. (D.3)

The second derivative now follows from the first derivative:

d2yJ

dt2
=

m∑
K=1

(
dcJK

dt
yK + cJK

dyK

dt

)
+

dfJ

dt
.

119

The terms from (D.1), (D.2), and (D.3) can be substituted as follows:

d2yJ

dt2
=

m∑
K=1

[
m∑
L=1

∂cJK

∂yL

(
m∑

M=1

cLMyM + fL

)
yK + cJK

(
m∑
L=1

cKLyL + fK

)]

+
m∑
K=1

∂fJ

∂yK

(
m∑
L=1

cKLyL + fK

)

=
∑
K,L,M

∂cJK

∂yL
cLMyMyK +

∑
K,L

∂cJK

∂yL
fLyK +

∑
K,L

cJKcKLyL +
∑
K

cJKfK

+
∑
K,L

∂fJ

∂yK
cKLyL +

∑
K

∂fJ

∂yK
fK .

(D.4)

D.2 Derivatives of the Numerical Solution

The additive exponential RK method is written

yi = Φiyn + ∆t
s∑
j=1

aijΦiΨjf(yj),

Φi = exp

(
∆t

s∑
k=1

αikC(yk)

)
,

Ψi = exp

(
−∆t

s∑
k=1

αikC(yk)

)
.

Using tensor notation, the method is written

yJi =
m∑
K=1

ϕJKi yKn + ∆t
s∑
j=1

aij

m∑
K=1

m∑
L=1

ϕJKi ψKLj ξLj .

using the substitution ξLj = fL(y1
j , . . . , y

m
j).

D.2.1 First Derivatives

The first step is to calculate first derivatives. Future computations require derivatives of Φi

and Ψi evaluated at ∆t = 0. Their first derivatives are written as

dΦi

d∆t

∣∣∣∣
∆t=0

= Φi

s∑
k=1

αikC(yk)

∣∣∣∣∣
∆t=0

,
dΨi

d∆t

∣∣∣∣
∆t=0

= −Ψi

s∑
k=1

αikC(yk)

∣∣∣∣∣
∆t=0

,

120

or equivalently in tensor notation as

dϕJKi
d∆t

∣∣∣∣
∆t=0

=
s∑

k=1

αik

m∑
L=1

ϕJLi ωLKk ,

dψJKi
d∆t

∣∣∣∣
∆t=0

= −
s∑

k=1

αik

m∑
L=1

ψJLi ωLKk ,

using the substitution ωLKk = CLK(y1
k, . . . , y

m
k). Using this information, the first derivative

of yJi is now calculated

dyJi
d∆t

∣∣∣∣
∆t=0

=
m∑
K=1

dϕJKi
d∆t

yKn

∣∣∣∣∣
∆t=0

+
s∑
j=1

aijf
J =

s∑
j=1

αij

m∑
K=1

cJKyKn +
s∑
j=1

aijf
J . (D.5)

D.2.2 Second Derivatives

Calculations require the second derivative of Φ, which is written

d2Φi

d∆t2

∣∣∣∣
∆t=0

= Φi

(∑
j

αijC(yj)

)2
∣∣∣∣∣∣
∆t=0

+ 2Φi
d

d∆t

(
s∑
j

αijC(yj)

)∣∣∣∣∣
∆t=0

.

It can now be expanded in tensor notation as

d2ϕJKi
d∆t2

∣∣∣∣
∆t=0

=

(∑
j

αij

)2∑
L

cJLcLK + 2
∑
j

αij
∑
L

∂cJK

∂yL

(∑
k

αjk
∑
M

cLMyMn +
∑
k

ajkf
L

)

=

(∑
k

αik

)2∑
L

cJLcLK + 2
∑
j,k

αijαjk
∑
L,M

∂cJK

∂yL
cLMyMn

+ 2
∑
j,k

αijajk
∑
K,L

∂cJK

∂yL
fL.

121

Therefore, the second derivative of yJi is now calculated

d2yJi
d∆t2

∣∣∣∣
∆t=0

=
∑
K

d2ϕJKi
d∆t2

yKn

∣∣∣∣∣
∆t=0

+ 2
d

d∆t

(∑
j

aij
∑
K,L

ϕJKi ψKLj ξLj

)∣∣∣∣∣
∆t=0

= · · ·+ 2
∑
j

aij
∑
K,L

(
dϕJKi
d∆t

ψKLj ξLj + ϕJKi
dψKLj
d∆t

ξLj + ϕJKi ψKLj
dξLj
d∆t

)∣∣∣∣∣
∆t=0

= · · ·+ 2
∑
j

aij

(∑
K

dϕJKi
d∆t

∣∣∣∣
∆t=0

fK +
∑
K

dψJKj
d∆t

∣∣∣∣∣
∆t=0

fK +
dξJj
d∆t

∣∣∣∣∣
∆t=0

)

=

(∑
k

αik

)2∑
K,L

cJLcLKyK + 2
∑
j,k

αijαjk
∑
K,L,M

∂cJK

∂yL
cLMyMn y

K

+ 2
∑
j,k

αijajk
∑
K,L

∂cJK

∂yL
fLyKn + 2

∑
j,k

aijαik
∑
K

cJKfK

− 2
∑
j,k

aijajk
∑
K

cJKfK + 2
∑
j,k

aijαjk
∑
K,L

∂fJ

∂yK
cKLyLn

+ 2
∑
j,k

aijajk
∑
K

∂fJ

∂yK
fK .

(D.6)

D.3 Order Conditions

For first derivatives, there are two terms to match in (D.1) and (D.5). Taking bj = ai+1,j and
βj = αi+1,j, there are two order conditions for order one, which are written as∑

k

βj = 1,
∑
k

bj = 1.

For second derivatives, there are seven terms to match in (D.4) and (D.6). There are du-
plicates with the first order conditions, leaving four conditions for second order. which are
written ∑

j,k

βjαjk =
1

2
,

∑
j,k

bjαjk =
1

2
,

∑
j,k

βjajk =
1

2
,

∑
j,k

bjajk =
1

2
.

122

Appendix E

Steps versus Accuracy Plots

1D Advection-Diffusion - Steps versus Accuracy

 1

 10

 100

 1000

 10000

1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4

S
te

p
s

Accuracy

500 Unknowns, a=10, d=10

 10

 100

 1000

 10000

 100000

1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6

S
te

p
s

Accuracy

500 Unknowns, d=100, a=10

 10

 100

 1000

 10000

 100000

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

S
te

p
s

Accuracy

500 Unknowns, d=10, a=100

 10

 100

 1000

 10000

 100000

1e-14 1e-12 1e-10 1e-8 1e-6 1e-4 1e-2

S
te

p
s

Accuracy

500 Unknowns, d=100, a=100

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.1: The number of steps versus accuracy of IMEX and RKC methods applied
to a series of one-dimensional advection-diffusion problem. Tolerances range from 10−4

to 10−8.

123

2D Heat Transfer - Steps versus Accuracy

 1

 10

 100

 1000

 10000

 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

70x10 Unknowns

 1

 10

 100

 1000

 10000

 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

140x20 Unknowns

 1

 10

 100

 1000

 10000

 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

210x30 Unknowns

 1

 10

 100

 1000

 10000

 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

280x40 Unknowns

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.2: The number of steps versus accuracy of IMEX and RKC methods applied
to the heat transfer problem. Tolerances range from 10−4 to 10−8.

124

CUSP Model - Steps versus Accuracy

 100

 1000

 10000

 100000

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
te

p
s

Accuracy

200 Unknowns

 1000

 10000

 100000

 1e+06

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
te

p
s

Accuracy

500 Unknowns

 1000

 10000

 100000

 1e+06

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
te

p
s

Accuracy

1000 Unknowns

 1000

 10000

 100000

 1e+06

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

S
te

p
s

Accuracy

2000 Unknowns

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.3: The number of steps versus accuracy of IMEX and RKC methods applied
to the CUSP problem. Tolerances range from 10−4 to 10−8.

125

1D Brusselator - Steps versus Accuracy

 10

 100

 1000

 10000

 100000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

500 Unknowns, Alpha=0.02

 10

 100

 1000

 10000

 100000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

500 Unknowns, Alpha=0.002

 10

 100

 1000

 10000

 100000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

1000 Unknowns, Alpha=0.02

 10

 100

 1000

 10000

 100000

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

1000 Unknowns, Alpha=0.002

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.4: The number of steps versus accuracy of IMEX and RKC methods applied
to a one-dimensional Brusselator problems. Tolerances range from 10−4 to 10−8.

126

2D Brusselator - Steps versus Accuracy

 10

 100

 1000

 10000

 100000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

40x40 Unknowns, Alpha=0.02

 10

 100

 1000

 10000

 100000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

40x40 Unknowns, Alpha=0.002

 10

 100

 1000

 10000

 100000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

60x60 Unknowns, Alpha=0.02

 10

 100

 1000

 10000

 100000

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
te

p
s

Accuracy

60x60 Unknowns, Alpha=0.002

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.5: The number of steps versus accuracy of IMEX and RKC methods applied
to a two-dimensional Brusselator problems. Tolerances range from 10−4 to 10−8.

127

ARD Combustion - Steps versus Accuracy

1e1

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

FKPP, N=1600, U0=0.00

1e1

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

FKPP, N=1600, U0=0.75

1e1

1e2

1e3

1e4

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

FKPP, N=1600, U0=0.99

1e1

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

Ignition, N=1600, U0=0.00

1e1

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

Ignition, N=1600, U0=0.75

1e1

1e2

1e3

1e4

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

Ignition, N=1600, U0=0.99

1e1

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

Fisher, N=1600, U0=0.00

1e1

1e2

1e3

1e4

1e5

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

Fisher, N=1600, U0=0.75

1e1

1e2

1e3

1e4

1e-8 1e-6 1e-4 1e-2 1e0

S
te

p
s

Accuracy

Fisher, N=1600, U0=0.99

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.6: The number of steps versus accuracy of IMEX and RKC methods applied
to the set of one-dimensional combustion problems. Tolerances range from 10−4 to 10−8.

128

1D Angiogenesis - Steps versus Accuracy

 10

 100

 1000

 10000

 100000

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

S
te

p
s

Accuracy

N=500, d=1

 100

 1000

 10000

 100000

1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3

S
te

p
s

Accuracy

N=500, d=0.001

 10

 100

 1000

 10000

 100000

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

S
te

p
s

Accuracy

N=1000, d=1

 100

 1000

 10000

 100000

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

S
te

p
s

Accuracy

N=1000, d=0.001

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Figure E.7: The number of steps versus accuracy of IMEX and RKC methods applied
to the tumour angiogenesis model. Tolerances range from 10−5 to 10−11.

129

Concrete-Rewetting Model - Steps versus Accuracy

 10

 100

 1000

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
te

p
s

Accuracy

100 unknowns, Insulated boundary, Water

 10

 100

 1000

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
te

p
s

Accuracy

100 unknowns, Sink boundary, Water

 10

 100

 1000

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
te

p
s

Accuracy

200 unknowns, Insulated boundary, Water

 10

 100

 1000

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

S
te

p
s

Accuracy

200 unknowns, Sink boundary, Water

ARK 3(2)(Jacobian Splitting)
ARK 3(2)(Physics-Based Splitting)

ARK 4(3)(Jacobian Splitting)
ARK 4(3)(Physics-Based Splitting)

ARK 5(4)(Jacobian Splitting)
ARK 5(4)(Physics-Based Splitting)

Runge-Kutta-Chebyshev (1)
Runge-Kutta-Chebyshev (2)

Figure E.8: The number of steps versus accuracy of IMEX and RKC methods applied
to the concrete rewetting problem for both insulated and sink boundaries. Tolerances
range from 10−4 to 10−9.

130

Appendix F

Eigenvalue Plots

The following plots show the eigenvalues of the Jacobian for the RHSs of the IVPs studied
in this thesis. Plots are shown for the Jacobian of the entire RHS and for the Jacobian of
the implicit part of the physics-based splitting. These eigenvalues are evaluated at five
subintervals of the solution. The distribution of the eigenvalues of the Jacobian can be useful
in explaining why certain methods perform better on certain IVPs; see Section 2.3.4 for a
discussion of linear stability analysis.

-8

-6

-4

-2

 0

 2

 4

 6

 8

-20000 -16000 -12000 -8000 -4000 0 4000

Im
a
g

in
a
ry

 A
x
is

Real Axis

Linear Advection-Diffusion -- Jacobian splitting

-1

-0.5

 0

 0.5

 1

-30 -25 -20 -15 -10 -5 0

Im
a
g

in
a
ry

 A
x
is

Real Axis

Heat Transfer -- Jacobian Splitting

-1

-0.5

 0

 0.5

 1

-20000 -16000 -12000 -8000 -4000 0 4000

Im
a
g

in
a
ry

 A
x
is

Real Axis

Linear Advection-Diffusion -- Physics-Based Splitting

-1

-0.5

 0

 0.5

 1

-30 -25 -20 -15 -10 -5 0

Im
a
g

in
a
ry

 A
x
is

Real Axis

Heat Transfer -- Physics-Based Splitting

Figure F.1: Distribution of eigenvalues for the linear advection-diffusion (d = 1,
a = 1/10 and 64 unknowns) and the heat transfer problem (70× 10 unknowns).

131

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1000 -800 -600 -400 -200 0 200

Im
a
g

in
a
ry

 A
x
is

Real Axis

1D Brusselator (Jacobian Splitting)

-1

-0.5

 0

 0.5

 1

-200 -160 -120 -80 -40 0 40

Im
a
g

in
a
ry

 A
x
is

Real Axis

2D Brusselator (Jacobian Splitting)

-1

-0.5

 0

 0.5

 1

-80000 -40000 0 40000

Im
a
g

in
a
ry

 A
x
is

Real Axis

CUSP Model (Jacobian Splitting)

-1

-0.5

 0

 0.5

 1

-1000 -800 -600 -400 -200 0

Im
a
g

in
a
ry

 A
x
is

Real Axis

1D Brusselator (Physics-Based Splitting)

-1

-0.5

 0

 0.5

 1

-200 0 200

Im
a
g

in
a
ry

 A
x
is

Real Axis

2D Brusselator (Physics-Based Splitting)

-1

-0.5

 0

 0.5

 1

-30 -25 -20 -15 -10 -5 0 5

Im
a
g

in
a
ry

 A
x
is

Real Axis

CUSP Model (Physics-Based Splitting)

Figure F.2: Distribution of eigenvalues for the one-dimensional Brusselator (α = 1/50
and 500 unknowns), the two-dimensional Brusselator (α = 1/50 and 2500 unknowns),
and the CUSP model (σ = 1/144 and 500 unknowns).

132

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.3 -0.2 -0.1 0 0.1

Im
a
g
in

a
ry

 A
x
is

Real Axis

FKPP (Jacobian Splitting)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

Ignition (Jacobian Splitting)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

Fisher (Jacobian Splitting)

-1

-0.5

 0

 0.5

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Im
a
g
in

a
ry

 A
x
is

Real Axis

FKPP (Physics-Based Splitting)

-1

-0.5

 0

 0.5

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Im
a
g
in

a
ry

 A
x
is

Real Axis

Ignition (Physics-Based Splitting)

-1

-0.5

 0

 0.5

 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Im
a
g
in

a
ry

 A
x
is

Real Axis

Fisher (Physics-Based Splitting)

Figure F.3: Distribution of eigenvalues for the combustion model, for U0 = 0.99 and
40 unknowns.

133

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

-200000 -100000 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

d=1 (Jacobian Splitting)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-300 -200 -100 0 100

Im
a
g
in

a
ry

 A
x
is

Real Axis

d=0.001 (Jacobian Splitting)

-1

-0.5

 0

 0.5

 1

-200000 -100000 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

d=1 (Physics-Based Splitting)

-1

-0.5

 0

 0.5

 1

-200 -150 -100 -50 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

d=0.001 (Physics-Based Splitting)

Figure F.4: Distribution of eigenvalues for the tumour angiogenesis problem for d = 1
and with 200 unknowns.

134

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-1200-1000 -800 -600 -400 -200 0 200

Im
a
g
in

a
ry

 A
x
is

Real Axis

Insulated Boundary (Jacobian Splitting)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-1000 -800 -600 -400 -200 0 200

Im
a
g
in

a
ry

 A
x
is

Real Axis

Sink Boundary (Jacobian Splitting)

-1

-0.5

 0

 0.5

 1

-1200 -1000 -800 -600 -400 -200 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

Insulated Boundary (Physics-Based Splitting)

-1

-0.5

 0

 0.5

 1

-1000 -800 -600 -400 -200 0

Im
a
g
in

a
ry

 A
x
is

Real Axis

Sink Boundary (Physics-Based Splitting)

Figure F.5: Distribution of eigenvalues for the concrete-rewetting problem using a
either sink or insulated boundary condition, both with 100 unknowns.

135

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Some Quick Words on Notation
	1.2 Outline of the Thesis

	2 Theoretical Background
	2.1 Autonomous Form
	2.2 Accuracy and Tolerances
	2.3 Runge–Kutta Methods
	2.3.1 Classes of Runge–Kutta Methods
	2.3.2 Error Estimation
	2.3.3 Step Control
	2.3.4 Stability and Stiffness
	2.3.5 Runge–Kutta–Chebyshev Methods
	2.3.6 Rosenbrock Methods
	2.3.7 Exponential Runge–Kutta Methods

	2.4 Methods for 2-Additively Split Problems
	2.4.1 Additive Runge–Kutta Methods
	2.4.2 Stability for 2-Additive Runge–Kutta Methods
	2.4.3 The Partitioned Runge–Kutta–Chebyshev Method
	2.4.4 The Implicit-Explicit Runge–Kutta–Chebyshev Method
	2.4.5 Additive Exponential Runge–Kutta Methods

	3 Methods and Software
	3.1 Details of pythODE++
	3.1.1 Classes of Methods
	3.1.2 Software Components
	3.1.3 Supporting Classes
	3.1.4 Sparsity
	3.1.5 Automatic Differentiation
	3.1.6 Solving Initial-Value Problems Simultaneously
	3.1.7 Analysis

	3.2 Discretization of Partial Differential Equations
	3.2.1 Finite Difference Methods
	3.2.2 Finite Volume Methods

	3.3 Advection-Diffusion-Reaction Equations
	3.4 Test Suite of Problems
	3.4.1 Advection-Diffusion Problems
	3.4.2 Diffusion-Reaction Problems
	3.4.3 Advection-Diffusion-Reaction Problems

	4 Results of Numerical Experiments
	4.1 Cluster Specifications
	4.2 Findings regarding Interprocess Communication
	4.3 Sparse Jacobian Computation
	4.4 Verification, Validation, and Solution Plots
	4.4.1 Methods
	4.4.2 Problem Suite

	4.5 Comparisons of Numerical Methods
	4.5.1 Advection-Diffusion Problems
	4.5.2 Reaction-Diffusion Problems
	4.5.3 Advection-Diffusion-Reaction Problems

	5 Conclusions and Future Work
	5.1 Summary of Results
	5.2 Contributions of this Thesis
	5.3 Future Work
	5.3.1 Extension to Three-Dimensional Models
	5.3.2 Merging pythODE++ and pythODE
	5.3.3 Extension to 3-Additive Methods
	5.3.4 Additional Methods
	5.3.5 Parallelized Methods

	References
	A Derivations of Order Conditions for Runge–Kutta Methods
	A.1 Taylor Expansion of the True Solution
	A.2 Taylor Expansion of the Numerical Solution
	A.3 Order Conditions

	B Derivations of Finite Difference Methods
	C Derivation of Additive Exponential Runge–Kutta Methods
	D Order Conditions for Additive Exponential Runge–Kutta Methods
	D.1 Derivatives of the Exact Solution
	D.2 Derivatives of the Numerical Solution
	D.2.1 First Derivatives
	D.2.2 Second Derivatives

	D.3 Order Conditions

	E Steps versus Accuracy Plots
	F Eigenvalue Plots

