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ABSTRACT 

	

Selenium (Se) is an essential trace element that undergoes maternal transfer to offspring 

where it has a high degree of teratogenic potential in egg-laying vertebrates because of the 

narrow range between nutritional benefit and toxicity. Studying this phenomenon of Se maternal 

transfer and subsequent toxicities in offspring is difficult in many fish species for logistical and 

biological reasons. For instance, Se contaminated sites are often located in remote locations 

which can make sampling efforts problematic, and certain fish species of concern commonly 

have long reproductive cycles and/or complex life histories which can be difficult to monitor. 

Thus, there is a need for improved methods to assess the toxicity of Se across diverse species of 

embryo-larval fish which could potentially aid site-specific risk assessment of Se contamination. 

Microinjection methodology is a potential surrogate for simulating the maternal transfer of Se 

and could be utilized to study this phenomena in non-model species which are unable to be 

spawned in the laboratory, or are difficult to sample from an Se contaminated site when 

spawning. Therefore, the overall objective of my research was to compare two potential in ovo 

Se exposure routes, maternal transfer and microinjection, in the fathead minnow Pimephales 

promelas to determine if early life stage toxicities are comparable between these different 

exposure routes in a freshwater fish. My thesis research fulfilled this objective by characterizing 

the effects of dietary Se exposure in P. promelas on fecundity and the maternal transfer of Se to 

embryos, the subsequent toxicities in embryo-larval offspring, and then used this information to 

inform a microinjection study with P. promelas embryos to allow for a comparison between the 

two different in ovo exposure routes.  

First, a 28-day short-term reproductive assay with P. promelas was performed to 

determine the dynamics of dietary selenomethionine (SeMet) exposure on maternal transfer and 

its effects on the F1 generation. Sexually mature P. promelas breeding groups (2 females:3 

males) were fed a diet of either control (unspiked) or SeMet-spiked food (Low: 3.88 µg Se/g 

food dry mass [dm]; Medium: 8.75 µg Se/g food dm; High: 29.6 µg Se/g food dm) and allowed 

to breed. Fecundity did not decrease in female fish exposed to elevated levels of dietary SeMet 

and the low treatment (3.88 µg Se/g food dm) produced on average the most embryos per 

female, suggesting a possible supra-nutritional benefit of SeMet on reproduction. Dietary 

exposure with SeMet-spiked food rapidly induced the maternal transfer of excess Se and embryo 
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concentrations increased daily until reaching steady-state after approximately 14 days of 

exposure. In ovo exposure to elevated Se did not affect hatchability of embryos or survival until 

swim-up in early life stage P. promelas. However, a dose-dependent increase in the frequency of 

larval fish with any type of morphological abnormality (e.g. edema, skeletal, finfold, 

craniofacial) present at swim-up was observed at embryo Se concentrations of 28.4 µg Se/g 

embryo dm.  

In the ancillary embryo microinjection study, embryos were injected with three doses of 

SeMet (Low: 9.73 µg Se/g embryo dm; Medium: 13.5 µg Se/g embryo dm; High: 18.9 µg Se/g 

embryo dm) to simulate maternal transfer and provide a point of comparison for the hatchability, 

survival and deformity endpoints measured in the preceding maternal transfer study. There were 

no effects of SeMet microinjection on hatchability up to a concentration of 18.9 µg Se/g embryo 

dm, however this same embryo Se concentration decreased survival until swim-up. Furthermore, 

this embryo Se concentration caused a greater increase in the frequency of deformed fathead 

minnow at swim-up in comparison to the highest embryo Se concentration in the maternal 

transfer study (28.4 µg Se/g embryo dm), suggesting a more toxic response when the dosage is 

primarily free SeMet rather than maternally transferred Se which is mainly SeMet incorporated 

into proteins. With this said, the frequency and type of deformities at embryo Se concentrations 

in the range of 9.73 – 13.5 µg Se/g embryo dm were similar between the two different exposure 

routes. The deformities observed in P. promelas as a response to SeMet exposure through both 

maternal transfer and microinjection followed a dose-dependent trend, and the most common 

deformities observed were spinal and finfold abnormalities, which were approximately two-fold 

more common than edema or craniofacial defects. Overall, this thesis research highlights the 

utility of embryo microinjection as a proxy for studying the maternal transfer of Se and provides 

an additional line of evidence for potentially extending this methodology to less commonly 

studied freshwater fish species of concern.  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Selenium ecotoxicity 

Selenium (Se) is a naturally occurring trace element that is found in the atmosphere, soils 

and water-bodies around the world (Johnson et al., 2010; Lemly, 2004; Simmons and 

Wallschläger, 2009). Vertebrate organisms such as humans and fish do not produce Se but this 

element is required for proper cellular function based on the role it plays in DNA synthesis, 

protein repair and defense against oxidative stress (Avery and Hoffman, 2018; Haratake et al., 

2015; Janz et al., 2010; Young et al., 2010). Despite the essential role of Se as a trace mineral for 

organisms, it displays a narrow range between essentiality and toxicity, and accumulation 

slightly above normal levels can be detrimental to the health of vertebrates (Brandt et al., 2017; 

Lemly, 2002). The central concern regarding the ecotoxicity of Se is its potential to persist and 

bioaccumulate in aquatic environments, and its potential deleterious population-level effects on 

egg-laying vertebrates that offload excess accumulated Se to their offspring via maternal transfer 

(Brandt et al., 2017; Janz et al., 2010; Lemly, 2004; Luoma and Presser, 2009). Understanding 

the ecotoxicity of Se in North American ecosystems has become a priority due to the ever-

expanding practice of natural resource exploitation and extraction within the country, which 

mobilizes and increases concentrations of Se in aquatic habitats (Chapman, 2007; Janz et al., 

2014). 

One of the earliest Se ecotoxicology studies occurred during the 1970s at Belews Lake, 

North Carolina, USA. Here, uncontaminated waters received wastewater discharge from a coal-

burning power plant with Se concentrations between 100 - 200 µg Se/L, which contributed to an 

overall increase of water Se concentrations and bioaccumulation in the aquatic food web (Lemly, 

1985; Lemly, 1997; Young et al., 2010). Benthos concentrations ranged from 4.8 - 15.2 µg Se/g 

tissue dry mass (dm) and resident fish species reported muscle Se concentrations greater than 40 

µg Se/g tissue dm (Lemly, 1985; Lemly 1997; Lemly, 2002). Over 20 fish species were 

extirpated in Belews Lake with Se contamination as the primary cause (Lemly, 1985; Young et 

al., 2010).  Interestingly, fathead minnow (Pimephales promelas) was a species that maintained a 

reproductive population in Belews Lake during and after the Se contaminated period (Lemly, 

1985). Since the incident at Belews Lake, awareness regarding the presence and persistent nature 
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of Se in aquatic systems has led to Se contamination being identified as an issue of global 

concern (Chapman, 2007; Janz et al., 2014; Lemly, 2004). 

1.1.1 Sources of selenium 

Selenium is found naturally within the earth’s crusts in average concentrations of 0.05 - 

0.09 µg Se/g sediment dm (Johnson et al., 2010). Phosphatic rocks and organic-rich deposits 

such as coal have greater concentrations of Se and often range from 1 - 20 µg Se/g sediment dm 

(Johnston et al., 2010). Concentrations of Se mobilized naturally (approximately 4500 tonnes per 

year), often through weathering of rock, heavy rainfall or volcanic eruptions, are approximately 

20-fold lower in comparison to concentrations released through anthropogenic sources (76000 - 

88000 tonnes per year) (Johnson et al., 2010; Maher et al., 2010).  The predominant sources 

responsible for introducing Se into aquatic environments are waste by-products from several 

economically significant industrial processes that occur across the North American landscape. 

These include metal mining, uranium milling, smelting of pyritic ores, oil and gas refining, 

combustion of coal and fossil fuels, coal extraction and leachate from waste rock, as well as 

agricultural irrigation (Brandt et al., 2017, Janz et al., 2014; Lemly, 2004; Muscatello et al., 

2008). 

1.1.2 Selenium speciation and environmental fate 

	 The diverse speciation of Se allows for its global distribution and influences its fate 

within various abiotic compartments including the atmosphere, earth’s crusts, soils, minerals and 

aquatic habitats (Johnson et al., 2010; Simmons and Wallschläger, 2004). There are over fifty 

known species of Se which undergo complex cycling of speciation via geochemical 

transformation, biochemical modifications and trophic transfer (LeBlanc and Wallschläger, 

2016, Luoma and Presser, 2009). It has been established that organic species (e.g. 

selenomethionine [SeMet] or selenocysteine [SeCys]) are more bioavailable than inorganic 

species (Janz et al., 2014; Young et al., 2010). The radioisotope, Selenium-79 (79Se), is listed by 

the Department of Energy as a concern for environmental sites, such as those located in Northern 

Saskatchewan, which store or process uranium (Thompson et al., 2005). 

 Within aquatic environments, Se speciation is dependent on the characteristics of the 

system of interest, and which include hydrology, pH, temperature, water chemistry, and 

microbial activity (Bezile et al., 2000; Maher et al., 2010). Inorganic Se species generally exist in 
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one of four oxidation states: elemental Se, Se(0); selenide, Se(-II); selenite, Se(+IV); and 

selenate, Se(+VI) (Luoma and Presser, 2009). The speciation of Se in aquatic systems is 

important because it can influence persistence and bioconcentration at the base of the food web 

in primary producers such as algae and microbes (Conley et al., 2013; Fan et al., 2002; Friesen et 

al., 2017).  

 Selenium is cycled in a unique manner within aquatic systems where it is either adsorbed 

to particles, detritus or sediment, taken up by microorganisms, or is dissolved in solution (Presser 

and Luoma, 2009; Simmons and Wallschläger, 2004). Under anaerobic conditions, the insoluble 

species Se(0) and Se(-II) are formed and can be found adsorbed to water column particles and 

sediment (Luoma and Presser, 2009). Oxidized systems favor the soluble oxyanions Se(+IV) and 

Se(+VI) (Janz et al., 2014; Luoma and Presser, 2009). The oxyanions of these two species are 

assimilated and biotransformed by primary producers such as algae into organoselenium 

compounds (e.g. SeMet, SeCys) (Gómez-Jacinto et al., 2015; Young et al., 2010). If these 

organisms are not consumed and eventually die, small concentrations of organoselenium and 

selenite are released, with no species being converted back to selenate (Luoma and Presser, 

2009). This process can create systems that lack selenate formation and are dominated by 

selenite and organoselenium species (Luoma and Presser, 2009; Simmons and Wallschläger, 

2004).  

1.1.3 Bioconcentration 

The bioconcentration of inorganic Se, which is then metabolized and biotransformed into 

SeMet at the base of the food web, is a crucial step in beginning the cascade of trophic transfer of 

organic Se from primary producers into the upper trophic levels (Friesen et al., 2017; Kuchapski 

and Rasmussen, 2015). A consortium of microorganisms (e.g. bacteria, algae, periphyton, and 

fungi) compose biofilm communities that uptake and assimilate inorganic forms of Se into 

organic Se, and the rate at which this occurs can be quantified using an enrichment factor (EF), 

which is simply the ratio of tissue Se concentration and water Se concentration (DeForest et al., 

2015; Friesen et al., 2017).  

 The biofilm community composition influences uptake of Se, which is further affected by 

water chemistry, flow rate, temperature, lighting and the presence of sulfate (Friesen et al., 2017; 

Simmons and Wallschläger, 2004). Therefore, EFs can vary by multiple orders of magnitude 

among different biofilm communities and this is an area of Se research that requires further 
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investigation (Conley et al., 2013; Friesen et al., 2017). Aquatic systems with predominately 

selenate as the soluble species have reported EFs between 100 and 500; whereas systems that 

contain mainly selenite have reported EFs ranging from 1000 to 10,000 (Luoma and Presser, 

2009). There are multiple lines of evidence that support selenite being more readily 

bioconcentrated by primary producers in comparison to selenate, but both species can be taken 

up efficiently and metabolized into organoselenium species depending on the consortia of 

primary producers that are present (Besser et al., 1993; Friesen et al., 2017; Janz et al., 2014; 

Kupchaski and Rasmussen, 2015; Simmons and Wallschläger, 2004). 

1.1.4 Bioaccumulation and trophic transfer 

 Selenium bioaccumulation and trophic transfer into aquatic food webs occurs as 

secondary and primary consumers feed on primary producers that have bioconcentrated SeMet 

(Hopkins et al., 2005; Luoma and Presser, 2009). Selenomethionine has been established as the 

major organoselenium species present in Se contaminated aquatic food webs, composing 60 - 

80% of total Se (Janz et al., 2014; Maher et al., 2010; Orr et al., 2006). A trophic transfer factor 

(TTF) can be derived to explain the relationship between Se concentrations in an organism and 

its dietary items (Luoma and Presser, 2009).  

 When Se concentrations at the base of the food web are determined, TTFs can be utilized 

to predict concentrations in species that reside in upper trophic levels, which is important for 

characterizing ecological risks of Se. Studies on fish have determined a median TTF of ~1 for 

uptake of Se from the diet to fish, meaning they accumulate the same tissue Se concentration as 

their prey, whereas TTFs are more variable for invertebrate species, ranging from 0.6 in 

amphipods and up to 23 in clams (Luoma and Presser, 2009). Species with greater TTFs have 

more propensity to bioaccumulate Se and therefore are a more hazardous source of excess Se to 

upper trophic level predators.  

1.2 Selenium in fish 

1.2.3 Essentiality and toxicity 

 Dietary Se requirements have been characterized in a suite of fish species, including 

rainbow trout (Oncorhynchus mykiss) (0.15 - 0.38 µg Se/g diet dm), Nile tilapia (Oreochromis 

niolticus) (1.06 - 2.06 µg Se/g diet dm), channel catfish (Ictalurus punctatus) (0.25 µg Se/g diet 

dm)	and gibel carp (Carassius auratus) (0.73 - 1.19 µg Se/g diet dm) (Gatlin and Wilson, 1984; 

Hilton et al., 1980; Lee et al., 2016; Zhu et al., 2017). However, these studies used inorganic Se 
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(sodium selenite) to supplement Se in the diet even though it is recognized that organic Se is a 

more bioavailable form for supplementing fish diets. In rainbow trout, an organic selenized yeast 

containing SeMet was used to supplement the diet at concentrations of 3.5 - 4.3 µg Se/g diet dm 

and benefits such as improved growth performance, antioxidant capacity, and nutrient utilization 

were reported (Hunt et al., 2011). Furthermore, consistent Se supplementation just slightly below 

5 µg Se/g diet dm has improved plant-based aquaculture diets and the health status of cultured 

atlantic salmon (Salmo salar), which concurs with the physiological benefits observed in 

rainbow trout when fed a similar dietary Se concentration. However, Se consumption >5µg Se/g 

diet dm in fish has been reported to increase the potential for physiological toxicities and an 

overall reduction of fitness (Berntssen et al., 2018; Hunt et al., 2011; Lemly, 1999).  

 With regards to toxicity, SeMet is more relevant than inorganic Se species based on three 

reasons: (i) the inefficiency of fish to uptake inorganic species from the water column; (ii) SeMet 

being the most common dietary Se species due to its significant bioconcentration at the base of 

the food chain; and (iii) the biochemical processes that incorporate dietary SeMet into proteins 

(Hamilton, 2004, Janz et al., 2010; Janz et al., 2014; LeBlanc and Wallschläger, 2016).  

1.2.1 Mechanisms of toxicity and biochemistry 

	 Accumulation of excess Se above dietary requirements has been identified as a source of 

potential toxicity in vertebrate organisms (Hamilton, 2004). The main hypotheses regarding the 

mechanistic basis of Se toxicity are focused on altered protein function and oxidative stress. 

Altered protein function might occur because of SeMet being non-specifically inserted into a 

protein being synthesized rather than the intended amino acid, methionine (Brown and Arthur, 

2001). Methionyl-tRNA acylase, the enzyme involved in the incorporation of methionine into 

proteins, does not discriminate between methionine and SeMet because of similarities between 

Se and sulfur, which leads to the chemical structures of methionine and SeMet being nearly 

identical (Mangiapane et al., 2014; Schrauzer, 2000; Young et al., 2010). Therefore, 

incorporation of SeMet into tissues with high rates of protein synthesis can occur in a dose-

dependent manner (Janz et al., 2010). Studies investigating protein function after assumed SeMet 

insertion have reported both normal and impaired function, making it difficult to understand the 

relationship or effects of SeMet incorporation into proteins that would normally contain 

methionine (Brown and Arthur, 2001; Palace et al., 2004; Reddy and Massaro, 1983; Stadtman, 

1974).  
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 Selenium-induced oxidative stress is an accepted hypothesis that focuses on GPx 

enzymes, which under normal conditions act in conjunction with reduced glutathione as an 

intracellular antioxidant (Palace et al., 2004; Reddy and Massaro, 1983). In conditions where 

excess Se is present in tissues, glutathione peroxidase enzymes (GPx) are utilized for Se 

metabolism and can become depleted (Misra and Niyogi, 2009). If this occurs, there is 

insufficient GPx to work in tandem with glutathione as antioxidant, and an overall increase in 

reactive oxygen species has been reported in this scenario (Misra and Niyogi, 2009). In vitro 

studies investigating oxidative stress mechanisms have used an intermediate metabolite of 

SeMet, methylselenol, which reacts with glutathione to produce reactive oxygen species such as 

hydrogen peroxide and superoxide anions (Spallholz et al., 2004). It has been demonstrated that 

SeMet will generate superoxide in the presence of methioninase enzyme, and this is a proposed 

mechanism of action that could be responsible for Se induced oxidative stress in early life stage 

rainbow trout (Holm et al., 2005; Palace et al., 2004, Spallholz et al., 2004). 

1.2.2 Selenoproteome 

	 Fish have one of the largest selenoproteomes, containing over 41 selenoprotein 

subfamilies, in comparison to birds and mammals that have 25 and 28 subfamilies, respectively 

(Lobanov et al., 2009; Mariotti et al., 2012). Selenium is mainly integrated into selenoproteins 

for utilization in biochemical functions as SeCys, the 21st amino acid (Avery and Hoffman, 2018; 

Mariotti et al., 2012) The full suite of selenoprotein functions is undetermined but research has 

highlighted their involvement as deiodinases in thyroid regulation and growth, and as part of the 

GPx family of enzymes. (Avery and Hoffman, 2018; Brown and Arthur, 2001; Haratake et al., 

2015). For instance, the phospholipid hydroperoxide GPx contains Se and is the only antioxidant 

enzyme that reduces phospholipid hydroperoxides generated in biological membranes which 

plays a protective role in biological activity (Haratake et al., 2015; Weitzel et al., 1990). It has 

been demonstrated that selenoproteins are more effective catalysts than their L-cysteine 

homologs, which is likely why metabolic pathways evolved to become selenium-dependent 

(Haratake et al., 2015). Furthermore, selenoproteins do not always function as an enzyme such as 

in the case of selenoprotein P, which is involved in the transport of Se from plasma into tissues, 

and selenoprotein H, which has been reported to regulate gene expression of glutathione 

synthesis (Avery and Hoffman, 2018, Panee et al., 2007).  
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1.2.3 Maternal transfer and early life stage toxicities 

 Toxicity in the early life stages is possible because of maternal transfer and the similarity 

in chemical structure between SeMet and methionine (Janz et al., 2010). The teratogenic effects 

of Se exposure are often visible with the naked eye in embryo-larval or early life stage fish, and 

fish are more susceptible to Se toxicity during the early life stages of development. (Berntssen et 

al., 2018; Lemly et al., 1993; Lemly, 1996). Maternal transfer occurs because Se is incorporated 

into embryos during vitellogenesis, a process where yolk proteins and nutrients are deposited 

into immature oocytes, which eventually develop into eggs to be fertilized (Kroll and Doroshov, 

1991; Lubzens et al., 2017). Selenium has been shown to incorporate into certain components of 

yolk proteins, such as phosvitin, lipovitellin, immunoglobulin and vitellogenin (Kroll and 

Doroshov, 1991). From fertilization until complete adsorption of the yolk-sac, embryos rely on 

the yolk to provide the required nutrients for development (Finn and Fhyn, 2010; Lubzens et al., 

2017). 

 Initially, the yolk is absorbed at a slow but steadily increasing rate that accelerates right 

before hatch, and even more so post-hatch (Holm et al., 2005). Therefore, Se is predominantly 

mobilized and metabolized post-hatch, when platelet components of the yolk proteins are being 

consumed, and which occurs at a lesser rate during pre-hatch development (Holm et al., 2005). 

Fish embryos with elevated Se concentrations have been reported to display an increase in the 

proportion of developmental abnormalities, including spinal curvatures such as lordosis (concave 

curve of the lumbar region), kyphosis (convex curve of the thoracic region), and scoliosis (S-

shaped lateral curve), pericardial and yolk sac edemas, craniofacial deformities (missing or 

malformed jaw), and fin malformations (Covington et al., 2018; Holm et al., 2005; Muscatello et 

al., 2006; Lemly, 1997; Thomas and Janz, 2014).  

 Embryo Se concentrations as low as 6.0 µg Se/g embryo dm significantly reduce survival 

in 6-day post-fertilization (dpf) zebrafish; however, zebrafish are the most sensitive species of 

fish to Se exposure during early life stage development (Thomas and Janz, 2014). During an 

assessment of northern pike (Esox Lucius) from a site downstream of a uranium milling 

operation at McClean Lake, Saskatchewan, Canada, adult female muscle and embryos were 

sampled from fish inhabiting Se laden (11.9 – 38.9 µg/L) waters (Janz et al., 2014; Muscatello et 

al., 2006). Adult female northern pike reported muscle Se concentrations in the range of 16.6 - 

38.3 µg Se/g muscle dm, and embryo Se concentrations between 31.3 - 48.2 µg Se/g embryo dm 
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(Muscatello et al., 2006). Larvae reared from these embryos exhibited increased incidences of 

morphological abnormalities during early life stage development that followed a dose-dependent 

trend (Muscatello et al., 2006). In a study with rainbow trout and brook trout (Salvelinus 

fontinalis), spawning fish were collected from a reference site and a Se contaminated site, Luscar 

Creek near Jasper, Alberta, Canada, and embryos from these two species at Luscar Creek 

reported mean Se concentrations of 9.9 µg Se/g embryo dm and 7.8 µg Se/g embryo dm, 

respectively (Holm et al., 2005). These embryo concentrations were significantly elevated in 

comparison to embryos from the reference site, but there were no reportable effects of Se 

induced toxicity during early life stage development in either species (Holm et al., 2005). These 

embryo concentrations are below the US EPA’s recently updated Se criterion, which 

recommends that an embryo-ovary tissue concentration of 15.1 µg Se/g tissue dm is protective of 

egg-laying vertebrates (USEPA, 2016). Considering available Se toxicity data based on maternal 

transfer studies with ten embryo-larval coldwater fish species, a species sensitivity distribution 

(SSD) predicted a concentration of 20 µg Se/g egg or ovary dm to be protective of 95% of the 

fish species (DeForest et al., 2012). It should be noted that Se has an extremely steep dose-

response curve that is unique among essential trace elements, and this narrow range of toxicity is 

consistent in most fish species (Lemly, 1993; Lemly, 1999; Lemly, 2004).  

1.2.4 Toxicity in juvenile and adult fish 

	 Juvenile life stages of fish species, such as Sacramento splittail (Pogonichthys 

macrolepidotus) and the white sturgeon (Acipenser transmontanus), have been demonstrated to 

display Se induced toxicities after chronic dietary exposure to Se (Teh et al., 2004; Zee et al., 

2016). White sturgeon exposed to dietary SeMet concentrations of 22.4 and 104.4 µg Se/g food 

dm reported decreased hepatosomatic indices, and increased frequency and severity of edema, 

including ocular edema causing protruding eyes that in certain cases led to a loss of equilibrium 

(Zee et al., 2016). Sacramento splittail reported a greater incidence of deformities and mortalities 

after 3-months of exposure at dietary Se concentrations of 26.0 and 56.7 µg Se/g diet dm (Teh et 

al., 2004). The presence of ocular cataracts is a notable effect of chronic exposure to elevated 

dietary Se concentrations that has been reported in rainbow trout and largemouth bass 

(Micropterus salmoides) (Lemly, 2002; Pettem et al., 2018).  

 The sublethal effects of Se exposure can cause changes in triglyceride, glycogen and 

cortisol concentrations in fish sampled from contaminated field sites; however, the mechanisms 
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for these changes have not been determined and these effects could be a result of complex 

contaminant mixtures in these sampling locations rather than strictly Se toxicity (Bennett and 

Janz, 2007; Drieger et al., 2010; Kelly and Janz, 2008). Metabolic changes due to Se exposure 

have been hypothesized to negatively influence swim performance in fathead minnow 

consuming sublethal dietary Se concentrations of less than 26.5 µg Se/g diet dm (McPhee and 

Janz, 2014). A coldwater species, rainbow trout, were fed a SeMet-spiked diet of 47.8 µg Se/g 

diet dm for 60-days and displayed glucose intolerance, but also an adaptive increased cardiac 

function (Pettem et al., 2018). The enhanced cardiac function contradicts similar research 

conducted in adult zebrafish (Danio rerio), a small-bodied neotropical species, which suffered 

decreased cardiac output after exposure to dietary SeMet (Pettem et al., 2017). It has been argued 

that coldwater fish species are more tolerant to Se, or have evolved mechanisms to cope with 

elevated Se concentrations in their environment, compared to fish that inhabit warmer waters, 

however more research in this area is required (Chapman, 2007).   

1.3 Fathead minnow (Pimephales promelas) as model species in aquatic toxicology 

1.3.1 Biology 

	 Fathead minnows are small-bodied fish (6 - 7.4 cm adult body length) that live around 2 - 

3 years. A member of the Cyprinidae family, fathead minnows are fast developing omnivores 

that are present in nearly all aquatic habitats across North America (Andrews, 1970; Ankley et 

al., 2006). This species is tolerant to a wide range of water quality characteristics including 

dissolved oxygen, pH, turbidity, alkalinity, hardness, conductivity and temperature (Andrews, 

1970). Fathead minnows are a prey item of larger bodied fish and are a commonly used fish 

model for predator-prey relationships (Mathis and Smith, 1993). The species prefers habitat with 

cover and shallow water (less than 3m depth), and will inhabit both lentic and lotic habitats 

(Hood and Stocek, 2005).  They form shoals as juveniles but become territorial when breeding. 

Adult fathead minnow become sexually mature at around 5 months of age and in natural habitats 

their breeding season begins in early July as water temperatures increase (Andrews, 1970; 

Ankley et al., 2006). Sexual dimorphism is most prevalent during this time and males develop a 

gold banding pattern over the midsection of their dark bodies. In addition, males develop a dorsal 

pad and extended tubercles on their head which are used to arouse females, and to prepare the 

substrate where she will lay her eggs (Andrews, 1970). Fathead minnows are intermittent, 
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asynchronous breeders that can produce thousands of eggs over a breeding season (Andrews, 

1970; Scott and Crossman, 1998).  

 Husbandry of fathead minnow is simple and they are an established model species that 

can be continually cultured in a laboratory (Ankley et al., 2006). They are easily bred by placing 

males and females together in an aquarium, often in a 1:2 ratio, along with a breeding tile to act 

as a substrate during the breeding process. In laboratory settings, fathead minnows can be bred in 

any season allowing the testing of specific life stages to be planned and carried out year-round. 

Embryos are adhesively deposited on to the underside of the breeding tile and can be easily 

collected for use in a variety of toxicological tests or for rearing of culture fish for future 

research.  

1.3.2 History in toxicology 

Studies utilizing the fathead minnow as a model organism began in the 1950s. Since then, 

fathead minnows have become one of the most widely used fish models for regulatory 

ecotoxicology in North America (Ankley et al., 2006). This species has been identified as one in 

which toxicity data is predictive of chemical effects in other fish species, and the fathead 

minnow has a long history of use in acute and chronic studies (Besser et al., 2005; Miracle et al., 

2003; Sappington et al., 2001). The reproductive and developmental physiology of fathead 

minnows is well characterized and allows researchers and regulators to use this species in an 

array of standardized short and long-term bioassays. A 7-day larval survival and growth test with 

fathead minnow is part of the US EPA’s suite of tests in their whole-effluent monitoring 

program, and Environment and Climate Change Canada (ECCC) has an established protocol for 

the same bioassay (ECCC, 2011; USEPA, 2002).  

The OECD has established guidelines for a Fish Short Term Reproduction Assay (Test. 

No. 229) for use with the fathead minnow (OECD, 2012). The short-term reproductive test was 

developed to characterize the effects of chemical exposure on reproduction, and therefore I 

followed this guideline, with slight modifications such as extending the exposure period, to meet 

my specific purpose of investigating the maternal transfer of Se and subsequent effects in 

embryo-larval offspring of fathead minnow.  
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1.3.3 Early life stage development 

	 The development of fathead minnow embryos and larvae is rapid in comparison to 

salmonid species, with fathead minnows reaching swim-up stage at approximately 7 dpf whereas 

salmonid species often take multiple weeks, and in some cases months (USEPA, 1996). Fathead 

minnow embryos develop through 32 defined embryonic stages and hatch within 3 - 5 dpf 

(USEPA, 1996). The embryos have a clear and transparent chorion allowing for observation of 

embryonic development. After hatching, fathead minnow larvae are approximately 5mm in 

length, possess a functioning lateral line, an open mouth with movable jaws, and a streamlined 

yolk-sac (USEPA, 1996). Active larvae fully absorb their yolk sac around 48-hours post-hatch 

and feed on live food immediately. Fathead minnows develop through three larval stages 

(protolarval, mesolarval and metalarval) before entering the juvenile phase, which is defined by 

complete fin development, and which occurs at approximately 18 days post-hatch (USEPA, 

1996).  

1.3.4 Toxicity of selenium to fathead minnow 

 Fathead minnow have been shown to accumulate Se from contaminated aquatic systems 

but there is less evidence of field-based Se toxicities occurring in this species at the population 

level (Lemly, 1985; Schultz and Hermanutz, 1990). For example, in Belews Lake in North 

Carolina, USA, fathead minnow was one of three species, out of twenty total, that were 

unaffected by increased Se concentrations in the water and food-chain of this lake, and fathead 

minnows maintained a large reproducing population throughout the contaminated period (Lemly, 

1985). Ogle and Knight (1989) fed adult fathead minnow a diet composed of 25% SeMet, 25% 

selenate and 50% selenite for 98 days Se at concentrations of 15 µg Se/g food dm and reported 

no impact of Se exposure on growth; however, the authors reported consumption of Se at 

concentrations of 20 µg Se/g food dm and 30 µg Se/g dm significantly inhibited growth. 

Furthermore, the maternal transfer of Se from adults fed this same Se laden diet containing up to 

30 µg Se/g food dm did not have any effect on embryo hatchability or larval survival until 14 

dpf, and there were no reported effects of dietary treatment on fecundity in the breeding adults 

(Ogle and Knight, 1989). At concentrations above 40 µg Se/g food dm, adult fathead minnow 

were reported to reduce feeding and reproduction, and consumption of Se at concentrations of 80 

and 160 µg Se/g food dm prompted the development of severe edema within 24 hours (Ogle and 

Knight 1989). The only study investigating embryo-larval fathead minnow exposed adults and 
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embryo-larval offspring in artificial streams containing 10 µg Se/L (Schultz and Hermanutz, 

1990). The results from this study did not report dietary Se exposure concentrations, were highly 

variable, and only determined deformities if they were present in the form of lordosis and/or 

edema (Schultz and Hermanutz, 1990). Therefore, it is difficult to make any conclusions 

regarding the effects of Se toxicity in early life stage fathead minnow from this study, and it also 

presents a knowledge gap in the sensitivity of embryo-larval fathead minnow to Se exposure via 

maternal transfer.  	

1.4 Methods to study maternal transfer 

1.4.1 Field based collection 

 Sexually ripe fish inhabiting aquatic systems with elevated Se concentrations can be 

captured and used to study maternal transfer using non-lethal artificial fertilization techniques. 

The milt and eggs of these fish can be collected in the field and then be transported to an aquatic 

facility, where the eggs can be fertilized, and the embryo-larvae reared until swim-up to mimic 

the natural maternal transfer and exposure to Se that would happen in the wild. The observation 

of embryos from fertilization until hatch and through yolk sac absorption can help researchers 

determine potential species-specific effects of elevated Se concentrations within embryos 

because of maternal transfer. Field based collection of fish is resource and labor intensive, and 

depending on the species under investigation, can be very difficult to carry out. For instance, Se 

contaminated sites are often located nearby remote mining operations that might not be 

accessible by road. Furthermore, sampling of contaminated field sites could exacerbate the 

already on-going effects in that system, which is more apparent for species of concern that are 

part of a threatened or endangered population, and one must consider the complex nature of 

aquatic food webs which will influence bioaccumulation and subsequent maternal transfer in 

these species. However, this is the only method of studying maternal transfer that provides a 

holistic in situ look at potential early life stage Se induced toxicities in a species and site-specific 

manner, which is valuable information for risk assessors, academics and industry. Also, 

regulatory compliance monitoring often requires in situ sampling for assessing Se contamination. 

1.4.2 Dietary exposure 

	 Reproductive assays using a dietary exposure performed in the laboratory allow for more 

control of the dose being administered, water quality and chemistry, and a more comprehensive 
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experimental design. In asynchronous spawning small-bodied fish such as the fathead minnow or 

zebrafish, reproductive assays are simple to perform and these assays can provide valuable 

information at multiple levels of biological organization. However, in many synchronous 

spawning species such as rainbow trout or white sturgeon, reproductive assays are not as 

logistically possible and are often unable to be performed without the aid of large scale aquatic 

facilities that can house the brood stock used in the study (Pilgrim, 2012). Simply put, the size, 

life history and reproductive strategy of fish can render them an ideal or unideal species to work 

with for laboratory reproductive assays, or for field-based sampling.  

1.4.3 Embryo microinjection 

	 Previous research has demonstrated that embryo microinjection is a useful technique for 

the uniform delivery of compounds to fish embryos as a representative method for maternal 

transfer that can be used to study teratogenesis (Hu et al., 2008; Schubert et al., 2014; Thomas 

and Janz., 2016; Walker et al., 1992; Walker et al., 1994; Walker et al., 1996). This technique 

has also been applied in a wide-variety of research within the realm of molecular and 

biotechnology (Zhang and Yu, 2008). Embryo microinjections have many advantages – they can 

be used to investigate toxicities of maternally transferred chemicals and their metabolites over a 

range of concentrations, and the relatively high throughput allows for an appropriate level of 

statistical power to be achieved (Walker et al., 1996). The most valuable aspect of microinjection 

is that consistent, uniform doses of a compound can be repeatedly delivered into embryos or 

oocytes, and this type of controlled dosing is not as easily achieved using field-based or 

reproductive assays interested in F1 generation toxicity.  

Embryo microinjections have been performed in Japanese medaka (Oryzias latipes) 

embryos to investigate maternal transfer of azaspiracid, a lipophilic phycotoxin and its effect on 

cardiac function in early life stage development (Colman et al., 2005). Triphenyltin, a 

contaminant of concern in the Yangtze River of China, has been injected into Chinese sturgeon 

(Acipenser sinensis) and Siberian sturgeon (Acipenser baerii) embryos to study potential effects 

on development of early life stages in two non-model species (Hu et al., 2008). There have also 

been injection studies in birds such as quail, frogs such as the African clawed frog (Xenopus 

laevis), and other model fish species such as rainbow trout or zebrafish (Franci et al., 2018; 

Maldifassi et al., 2016; Thomas and Janz, 2016; Walker et al., 1994). 
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Microinjection has been used to study the effects of SeMet exposure in embryo-larval 

zebrafish (Thomas and Janz, 2016). Embryos were injected with environmentally relevant 

concentrations of SeMet and a dose-dependent response in developmental toxicities was 

observed (Thomas and Janz, 2016). These results were comparable to a previous maternal 

transfer study in zebrafish and provided the first insight as to the utility of SeMet microinjections 

for studying maternal transfer in a Se ecotoxicology context (Thomas and Janz, 2014; Thomas 

and Janz, 2016). Fathead minnow embryos exhibit a similar physiology and rapid development 

as zebrafish allowing them to be used for microinjection studies in similar fashion. This could 

provide an interesting comparison of effects in early life stage fathead minnow and zebrafish 

after exposure to SeMet via embryo microinjection, as both species belong to the same family 

(Cyprinidae) of fish but inhabit different habitats and climates. More importantly, extending this 

method into fathead minnow could establish embryo microinjection of SeMet as an acceptable 

proxy for maternal transfer in a North American freshwater fish, and would provide an additional 

line of evidence for using this method to study the effects of maternal transfer in other species of 

early life stage fish that might be of greater ethical or regulatory concern within North America.  

1.5 Research rational, objectives and hypothesis 

1.5.1 Research goals 

	 The overall goal of this study was to compare the biological response of early life stage 

fathead minnow to in ovo Se exposure via two different exposure routes, dietary maternal 

transfer and embryo microinjection. There are knowledge gaps for North American freshwater 

fishes and their early life stage species-specific sensitivity to Se due to difficulty in performing 

maternal transfer studies in certain species. Embryo microinjection could be a valuable method 

for performing these studies, and could be used to study non-model species, or species where 

dietary maternal transfer studies are unreasonable to perform, and could provide novel 

information regarding species-specific differences in response to Se toxicity in these fishes. 

However, there is need to optimize and further validate egg injection methods in species native 

to North American freshwater systems before it can be utilized as a standardized approach for 

assessing Se toxicity across diverse species. This study utilized the model fish and ecologically 

relevant fathead minnow to determine the effects of in ovo exposure to SeMet through two routes 

of exposure, maternal transfer and embryo microinjection, to characterize how the response is 
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comparable or different at similar embryo Se concentrations. This research provides an 

additional line of evidence regarding the use of embryo microinjection to study the biological 

effects of in ovo SeMet exposure, and whether this methodology can be extended to non-model 

species that might otherwise be unfeasible to investigate because of their location, longevity or 

late sexual maturation.  

1.5.2 Objectives and hypotheses 

The central objective and hypothesis of my thesis is: 

To assess the effects of maternal transfer and microinjection in ovo exposure routes to 

determine if embryo microinjection is a useful proxy for studying Se maternal transfer in 

Pimephales promelas. 

 H0: The toxicities of Se exposure in early life stage P. promelas will not be significantly 

 different among treatment groups after in ovo exposure via maternal transfer and 

 microinjection. 

 

The general objectives of my research and associated hypotheses are: 

1) Characterize the effects of dietary SeMet exposure in adult Pimephales promelas on 

reproduction by calculating the cumulative mean embryo production per female and mean 

clutch size per female. 

H01: There are no significant differences in fecundity of P. promelas among treatment 

groups over the 28-day dietary exposure to graded SeMet concentrations. 

 

2) Determine if the maternal transfer of Se differs among control and dietary treatment 

groups in adult Pimephales promelas after exposure to dietary SeMet by quantifying total 

Se in embryos. 

H02: There are no significant differences in measured Se concentrations among embryos 

collected from breeding P. promelas after dietary exposure to graded SeMet 

concentrations.  

 

3) Determine the effects of in ovo SeMet exposure in embryo-larval Pimephales promelas 

via maternal transfer and microinjection using hatchability, survival and deformity 

analysis. 
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H03: There are no significant differences among treatment groups in embryo-larval 

toxicities exposed in ovo to graded SeMet concentrations via maternal transfer. 

 

H04: There are no significant differences among treatment groups in embryo-larval 

toxicities exposed in ovo to graded SeMet concentrations via embryo microinjection. 
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CHAPTER 2 

IN OVO EXPOSURE OF FATHEAD MINNOW (PIMEPHALES PROMELAS) TO 

SELENOMETHIONINE VIA MATERNAL TRANSFER AND EMBRYO 

MICROINJECTION: A COMPARITIVE STUDY 
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PREFACE 

 The objective of Chapter 2 was to compare the effects of maternal transfer and 

microinjected selenomethionine to provide additional insight for using this methodology to study 

the maternal transfer of selenium in egg-laying vertebrates. This objective was met by 

determining the effects of dietary selenomethionine exposure on reproduction and the subsequent 

effects in F1 generation fathead minnow until swim-up. This data was then used to inform a 

comparative study where microinjection of selenomethionine was the dosage route rather than 

natural maternal transfer, and similar endpoints in the F1 generation were assessed. This chapter 

was prepared as a manuscript for submission to Aquatic Toxicology and the title is as follows: In 

ovo exposure of fathead minnow to selenomethionine via maternal transfer and embryo 

microinjection: A comparative study. The manuscript was prepared under joint authorship with 

Derek Green, Kerstin Bluhm, Katherine Raes, David Janz, Karsten Liber and Markus Hecker. 

 

Author contributions: 

 

Taylor Lane (University of Saskatchewan) designed and helped perform the maternal transfer 

and microinjection experiments, conducted animal husbandry, prepared samples for ICP-MS 

analysis, helped prepare the exposure diet, helped with microinjection method development, 

analyzed data, prepared all figures, and drafted the manuscript.  

 

Derek Greek (University of Saskatchewan) helped perform the maternal transfer experiment, 

helped prepare the exposure diet, worked on microinjection method development, helped 

perform the microinjection experiment, and provided input on the manuscript. 

 

Kerstin Bluhm (University of Saskatchewan) helped design and perform microinjection 

experiments, worked on method development for the microinjection experiment, helped with 

animal husbandry, and provided input on the manuscript. 

 

Katherine Raes (University of Saskatchewan) helped design and perform the maternal transfer 

experiment, helped with animal husbandry, helped prepare the exposure diet, and prepared 

samples for ICP-MS analysis. 
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David Janz (University of Saskatchewan) provided scientific input regarding the experimental 

designs, data interpretation, provided resources for ICP-MS sample preparation, and commented 

on and edited the chapter. 

 

Karsten Liber (University of Saskatchewan) provided scientific input regarding the experimental 

designs, data interpretation, provided resources for the exposure, and commented on and edited 

the chapter. 

 

Markus Hecker (University of Saskatchewan) provided scientific input regarding the 

experimental designs, data interpretation, commented on and edited the chapter, supervised 

Taylor Lane, and obtained funding for the research.
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2.1 Abstract	

 Selenium (Se) is an essential trace element of concern that is known to contaminate 

aquatic ecosystems as a consequence of releases from anthropogenic activities. Selenium is of 

particular toxicological concern for egg-laying vertebrates as they bioaccumulate Se through the 

diet and deposit excess Se to embryo-offspring via maternal transfer, a process which has been 

shown to result in significant teratogenic effects that can potentially impact populations. The 

purpose of the present study was to determine and compare the in ovo effects of Se exposure on 

early development of a standard laboratory model fish species native to North American 

freshwater systems, the fathead minnow (Pimephales promelas), through two exposure routes, 

maternal transfer and microinjection. For maternal transfer studies, fathead minnow breeding 

groups (3 females: 2 males) were exposed to diets containing Se-background levels (1.18 µg 

Se/g food, dry mass [dm]) and environmentally relevant concentrations of selenomethionine 

(SeMet; 3.88, 8.75 and 29.6 µg Se/g food dm) for 28 days. Embryos were collected at different 

time points throughout the study to measure Se concentrations and to assess teratogenicity in 

embryos. While exposure to dietary Se did not negatively affect fecundity among treatment 

groups, the lowest treatment group (3.88 µg Se/g food dm) produced on average the most 

embryos per day, per female. Furthermore, the maternal transfer of excess Se occurred rapidly 

upon onset of exposure, reaching steady-state after approximately 14 days. Embryo Se 

concentrations increased in a dose-dependent manner and were significantly different among 

treatment groups. The greatest concentrations of maternally transferred Se significantly increased 

the total proportion of deformities in embryo-larval fathead minnows, but did not impact 

hatchability or survival. In a second study, fathead minnow embryos were injected with SeMet at 

concentrations of 0.00 (vehicle control), 9.73, 13.5 and 18.9 µg Se/g embryo dm. Microinjection 

of SeMet did not affect hatchability but significantly increased the proportion of deformed 

embryo-larval fish in a dose-dependent manner. There was a greater proportion of deformed 

fathead minnows at embryo Se concentrations of 18.9 µg Se/g embryo dm when exposed via 

microinjection versus maternal transfer, which illustrated a more pronounced effect in toxicity 

when exposed via microinjection; however, the findings suggest that both exposure routes 

induced similar developmental toxicities in early life stage fish at Se concentrations between 9.7 

and 13.5 µg Se/g embryo dm. Overall, this study demonstrated that microinjection has utility for 

studying the effects of Se in embryo-larval fish, and that microinjection of SeMet represents a 
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promising method for the study of early life stage Se exposure in long-lived or endangered 

species of ecological relevance which cannot be feasibly evaluated in maternal transfer studies.   

2.2 Introduction 

	 Certain aquatic systems are prone to increased loading of the essential trace element 

selenium (Se) which can originate from natural sources and anthropogenic activities (Janz et al., 

2014; Luoma and Presser, 2009). In particular, activities such as coal combustion, uranium 

mining and milling, and agricultural irrigation are known to introduce inorganic species of Se 

into aquatic environments through effluents or agricultural drainage (Brandt et al., 2017; Lemly, 

1999; Muscatello et al., 2006). While all animal classes require Se for proper cellular function, 

many organisms are susceptible to the toxicological effects of this element due to its narrow 

range between essentiality and toxicity (Avery and Hoffman, 2018; Haratake et al., 2015; 

Mangiapane et al., 2014). In Se contaminated aquatic systems, Se has been shown to 

bioaccumulate within food webs, and prey items of fish have been reported to have Se 

concentrations that can exceed 70 µg Se/g food dry mass (dm), whereas background 

concentrations are often in the range of 1 - 2 µg Se/g food dm (Hamilton, 2004). Selenium can 

occur in different forms in aquatic ecosystems, with selenite and selenate being the predominant 

inorganic Se species found in the water column as soluble oxyanions (Friesen et al., 2017; 

Simmons and Wallschläger, 2005). Once inorganic Se enters surface waters, it is bioconcentrated 

by a consortium of primary producers (e.g. phytoplankton, periphyton) and microorganisms (e.g. 

bacteria, fungi), and is biotransformed into various organic species (Conley et al., 2013; LeBlanc 

and Wallschläger, 2016). Of these organic species, selenomethionine (SeMet) has been reported 

to constitute 60 - 80% of the dietary Se species present in aquatic food webs and is the primary 

species of concern in Se bioaccumulation and toxicity (Friesen et al., 2017; Janz et al., 2014). 

 Consuming elevated dietary SeMet is of specific concern for oviparous (egg-laying) 

vertebrates such as fish, birds, reptiles and amphibians that offload excess amounts of Se via 

maternal transfer into the egg yolk, and which has been shown to result in teratogenic effects in 

the offspring (Covington et al., 2018; Holm et al., 2005; Kuchapski and Rasmussen, 2015; 

Lemly, 1993; Masse et al., 2015; Ohlendorf, 2002; Van Dyke et al., 2014). Oviparous 

vertebrates, such as fish native to North American freshwater aquatic systems, can be 

particularly at risk from exposure to SeMet because of the intensive activities associated with the 

resource extraction of metals (e.g. uranium) and fossil fuels (e.g. coal) in these regions (Janz et 
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al., 2014). It is therefore important to establish the sensitivity to SeMet exposure of fish species 

native to these, where the degree of hazard is often site-specific, and which can be difficult to 

assess because of logistical, biological and ethical reasons (Janz et al., 2010; Lemly, 1985; 

Lemly, 1995).  

 In fish, the maternal transfer of Se to eggs occurs during vitellogenesis, when SeMet is 

incorporated into yolk sac proteins indiscriminately in place of the amino acid, methionine (Kroll 

and Doroshov, 1991; Mangiapane et al., 2014). Offspring are exposed to SeMet as they utilize 

yolk sac proteins for growth and development from fertilization until swim-up, which are the 

most sensitive stages in the life of a fish. Larvae exposed to excess SeMet concentrations during 

this period are known to display a suite of spinal, fin, and craniofacial abnormalities, as well as 

an increase in the occurrence of edema being observed in several field and lab studies (DeForest 

et al., 2011; Holm et al., 2005; Janz et al., 2014; Lemly, 2018; Thomas and Janz., 2016). While it 

is generally accepted that maternal transfer is the most relevant route of SeMet exposure in fish 

and other oviparous animals, studying the effects of maternal transfer of Se is difficult in 

situations where a specific species cannot be collected from a contaminated site, or when the 

longevity and reproductive cycle of a species makes conducting controlled maternal transfer 

studies not feasible. This is particularly of concern in long-lived fishes such as some sturgeon 

species that often have threatened, vulnerable, or endangered populations. For example, several 

sturgeon species such as green sturgeon (Acipenser medirostris), Atlantic (Gulf) sturgeon 

(Acipenser oxyrhynchus deostoi) and the endangered white sturgeon (Acipenser transmontanus) 

are known to accumulate elevated concentrations of Se from their natural environments, and are 

species for which no maternal transfer experiments can be conducted under controlled conditions 

because of ethical reasons and the fact that they do not become reproductively active until about 

25 years of age (De Riu et al., 2014; Gundersen et al., 2017; Linares-Casenave et al., 2015). 

 One method that has shown promise to bridge this gap and enable researchers to study 

early life stage toxicity of SeMet in species that otherwise might go unstudied is embryo 

microinjection. Previous research has demonstrated that embryo microinjection is a useful 

technique for the delivery of teratogenic compounds to fish embryos, and that effects can be 

representative of normal maternal transfer (Hu et al., 2008; Schubert et al., 2014; Thomas and 

Janz, 2016; Walker et., 1992; Walker et al., 1994; Walker et al., 1996). However, to date, only 

one microinjection study with zebrafish (Danio rerio), a common laboratory fish model, has 
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investigated the toxicity of in ovo SeMet exposure using both microinjection and maternal 

transfer as routes of exposure (Thomas and Janz, 2016). Zebrafish share similarities with the 

fathead minnow (Pimephales promelas) in that both species belong to the Cyprinidae family of 

fishes, they are established toxicology model organisms that spawn asynchronously and produce 

translucent embryos, and their development from embryo to swim-up larvae occurs rapidly 

(Ankley et al., 2006; Hill et al., 2005). Nevertheless, the two species differ in the ecosystems and 

climates they are found in, with zebrafish naturally inhabiting warm-water, neotropical areas and 

the fathead minnow being widely distributed throughout North American freshwater systems 

including northern ecosystems that have been shown to have elevated Se concentrations (Hill et 

al., 2005; Hood and Stocek, 2005). Because of this, the fathead minnow has greater ecological 

relevance in comparison to the zebrafish for studying the effects of Se exposure in fish species 

that inhabit North American freshwater ecosystems. To our knowledge, no embryo injection 

studies investigating the effects of in ovo Se exposure have been carried out in a species native to 

northern freshwater systems. Fathead minnows also represent an important link between lower 

and higher trophic levels in aquatic food webs (Potthoff et al., 2008). Furthermore, the 

similarities in embryo physiology and development between zebrafish and fathead minnow 

render the fathead minnow as a useful model organism for embryo microinjection studies in a 

fish species that is representative of North American ecosystems.   

 The main objective of this study was to provide additional insight on the use of 

microinjection to simulate and study SeMet maternal transfer in a fish species native to North 

American freshwater systems, the fathead minnow. This was done by comparing the effects of 

Se exposure through two different exposure routes, maternal transfer and embryo microinjection, 

in early life stage fathead minnow. The study design also provided the opportunity to investigate 

the effects of dietary Se exposure in adult female fathead minnows with regards to reproduction 

and maternal deposition of Se to embryos.  

2.3 Methods 

2.3.1 Test species 

 All experimental and fish culture procedures performed in this study were approved by 

the Animal Research Ethics Board at the University of Saskatchewan (Protocol #20130142) and 

adhered to the Canadian Council on Animal Care guidelines for humane animal use. Fish were 
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from an in-house stock population of fathead minnows cultured at the Aquatic Toxicology 

Research Facility (ATRF), at the Toxicology Centre, which originated from a commercial 

supplier (Aquatic Research Organisms Inc., Hampton, USA). Sexually mature (>6 months old) 

fathead minnows were randomly selected and sorted by sex to establish breeding groups 

consisting of 2 males and 3 females in each 21 L aquaria. Two halves of PVC pipe were placed 

in each aquarium to act as a breeding substrate from which embryos were collected. The 

temperature (°C), pH, dissolved oxygen (%) and conductivity (µS/cm) were measured 

throughout the study using a YSI Professional Plus probe (YSI Incorporated., Yellow Springs, 

OH, USA). Additionally, total ammonia, hardness (mg CaCO3/L) and alkalinity (mg CaCO3/L) 

were measured using commercial test kits (Mars Fishcare, Chalfont, PA, USA; LaMotte 

Company, Chestertown, MD, USA). Tanks were kept at a temperature of 25°C ± 1°C, a pH of 

8.0 ± 0.5 and were illuminated at 800 - 1000 lux in a 16h:8h light/dark cycle as per OECD Test 

Guideline 229 (OECD, 2012). Water renewals of >60% occurred daily to help maintain water 

quality using carbon-filtered, bio-filtered City of Saskatoon municipal tap water. Measured water 

quality parameters are presented in the supplementary materials (Table A.1) and were within the 

acceptable range for fathead minnow toxicity testing.  Fish were fed twice daily with 

bloodworms (Bio-Pure Blood Worms, Hikari Sales Inc., Haywards, CA, USA) until satiation. 

Any excess food present in aquaria after feeding was siphoned out.  

2.3.2 Adult reproductive assay 

 A dietary exposure study was performed with 55 fathead minnow breeding groups in 

order to investigate the effects of dietary SeMet exposure on reproduction, maternal transfer, and 

development of the F1 generation. 

 Frozen bloodworms were freeze dried (Dura-Dry™ MP, FTS Systems, Stone Ridge, NY, 

USA), homogenized, and spiked with one of three nominal concentrations of Se (3, 9 and 27 µg 

Se/g food dm), 100% in the form of SeMet (Seleno-L-methionine (>98% purity), Sigma-Aldrich, 

Oakville, ON, Canada) dissolved in deionized water. Diet preparation followed previously 

established methods for spiking freeze-dried bloodworms for feeding to fathead minnow 

(McPhee and Janz, 2014). The control diet was not spiked and only contained natural 

background Se concentrations. Representative dietary samples (n=3 - 5) for each respective 

treatment were collected for total Se analysis. The prepared diet had measured total Se 

concentrations for the four respective treatments as follows: Control, 1.18 ± 0.18; Low, 3.88 ± 
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0.34; Medium, 8.75 ± 0.80; High, 29.6 ± 4.46 µg Se/g food dm as determined by inductively 

coupled plasma-mass spectrometry (ICP-MS) as described below.  

 To establish baseline egg production, fish were subjected to a 9-day pre-exposure phase 

during which reproductive output (average number of eggs per female per day) was recorded 

daily. At the end of the pre-exposure phase, tanks were ranked from best to worst reproductive 

output. The four best egg-producing aquaria were randomly assigned to one of each of the four 

treatment groups; followed by assignment of one of each treatment groups to the next best four 

egg-producing aquaria, and so on until all tanks were assigned a treatment group. The goal of 

this assignment method was to achieve equal baseline fecundity across each Se treatment before 

the exposure phase began. Each exposure treatment (3.88, 8.75 and 29.6 µg Se/g food dm) was 

assigned to 13 breeding groups (n=13) and the control treatment (1.18 µg Se/g food dm) was 

assigned to 16 breeding groups (n=16).  

 Breeding groups were fed twice daily (5% body weight/daily ration) with either unspiked 

(control) or SeMet-spiked frozen bloodworms and bred for 28 days. The exposure period was 

extended beyond the guidelines of OECD Test No. 229 to allow more time for maternal transfer 

of Se to embryos to occur. Breeding tiles were checked for embryo production before each 

feeding and at the end of each day, and embryos were collected upon notice of deposition. After 

quantification of egg numbers, if a clutch size was large enough, a random subsample of 

embryos (n=25 - 75) were collected and stored at -80ºC for total Se analysis. Furthermore, 

random subsamples of embryos (n=10 - 40) were collected from producing tanks for three 

consecutive days beginning on days 14, 21 and 26 for evaluation of hatchability, survival until 

swim-up, and deformity analysis. 

2.3.3 Microinjection experimental design 

 Fathead minnow breeding and husbandry was performed as described above. Viable 

embryos were collected and distributed equally across each injection treatment group to control 

for clutch-to-clutch variation across breeding groups (Marentette et al., 2013). Prior to injection, 

SeMet was weighed and dissolved in nanopure water containing 5mM HEPES buffer (pH 7.2) to 

generate SeMet injection solutions for nominal embryo Se treatment concentrations of 10, 15, 

and 20 µg Se/g embryo dm after injection, as determined through a preliminary dose-range-

finding study (Fig. B.1). The microinjection equipment used in this study were the Eppendorf 

Femtojet express (Eppendorf, Hamburg, Germany) and the Drummond Nanoject III (#3-000-
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207, Drummond Scientific Company, Broomall, PA, United States of America). Both 

microinjectors followed a similar calibration method to deliver the desired volume. Each embryo 

was injected with approximately 3.0 nL of solution into the yolk prior to early gastrulation (6 

hours post-fertilization [hpf]). Two control groups were included in this study: 1) A negative 

control group, which were embryos that did not go through the microinjection process and were 

unexposed to SeMet; and 2) a vehicle control, in which embryos were injected with the same 

volume of exposure solution (3.0 nL) that did not contain SeMet. For each treatment and control 

group, eight replicates of 10 embryos were injected and assessed for hatchability, survival and 

deformities. Also, for each treatment group, eight replicates of 20 embryos were injected and 

stored at -80ºC for total Se analysis. After injecting an entire treatment, embryos were randomly 

distributed to a vial for ICP-MS analysis or a Petri dish for evaluation of hatchability, survival 

until swim-up, and deformities. 

2.3.4 Embryo-larval rearing and assessment 

 Embryos from both maternal transfer and microinjection experiments were reared in 

plastic Petri dishes at 24 ± 1°C containing 100 mL of carbon-filtered, bio-filtered, City of 

Saskatoon municipal tap water, of which 50 mL was renewed daily. Embryos were incubated 

through hatch and until complete yolk sac absorption (swim-up stage) to determine hatchability, 

survivability and the frequency of deformities. The swim-up stage is when Se exposure from 

yolk sac proteins should be complete, so maximum exposure and associated effects were 

anticipated to have occurred at that time. At this time, larvae were euthanized in buffered tricaine 

methanesulfonate (MS-222; 250 mg/L, pH 7.4), preserved in 10% buffered formalin for 16 

hours, and transferred to 70% ethanol for storage until deformity analysis. Daily observations of 

embryos and larvae, and the preservation of larvae at swim-up were performed as described 

previously (Thomas and Janz, 2014). 

2.3.5 Deformity analysis 

 Preserved larval fathead minnow were used for the deformity analysis at swim-up, which 

occurred 7 dpf. All preserved larvae were assessed for malformations in a blinded fashion, where 

the treatment group was unknown throughout each assessment, using a Zeiss Stemi 508 

microscope (Carl Zeiss Canada, Toronto, ON, Canada). Images were captured using Zeiss 

Axiocam 105 (Carl Zeiss Canada, Toronto, ON, Canada) with ZEN lite imaging software (Carl 

Zeiss Microscopy GmbH, Jena, Germany). Each larval fish was examined for morphological 
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deformities in four categories: craniofacial, spinal curvatures, finfold and edema using 

previously established methodology (Holm et al., 2005; Lemly, 1997; McDonald et al., 2010; 

Thomas and Janz, 2014). Furthermore, the severity of each deformity was determined using a 

numerical value of 0 - 3, with 0=no deformity, 1=mild deformity, 2=moderate deformity, and 

3=severe deformity. The scale used for assessing the severity of deformities was a Graduated 

Severity Index (GSI) and was based on previously established guidelines (Janz et al., 2010; 

McDonald et al., 2010). Total percentage of deformities for any specific category was calculated 

by dividing the number of larval fish with that specific deformity present by the total number of 

larval fish assessed within a respective replicate. Further details regarding the criteria for 

deformity analysis can be found in Appendix E.  

2.3.6 Selenium quantification and digestion 

 All total Se measurements in dietary and pooled embryo samples were conducted using 

ICP-MS (8800 ICP-MS Triple Quad, Agilent Technologies, Santa Clara, CA, USA) operated in 

collision cell mode at the Toxicology Centre, University of Saskatchewan, following previously 

established methods. All tissue Se measurements occurred in solution after digestion procedures 

were complete. Prior to digestion, experimental diet samples (n=3 - 5 per dietary treatment) and 

pooled embryo samples (10 - 75 embryos per sample) were freeze dried, homogenized, weighed, 

and transferred into individual polytetrafluoroethylene (PTFE) vials for digestion. Samples were 

digested with high purity, 69% nitric acid (1 mL) and high purity, 30% hydrogen peroxide (0.66 

mL) (Sigma-Aldrich, St. Louis, MO, USA) using a MARS-5 microwave digestions system 

(CEM Corporation, Matthews, NC, USA) following previously established methods (Markwart 

et al., 2019). Digested samples were filtered (0.45 µm pore size, polyethersulfone membrane), 

diluted to approximately 2% HNO3, and stored at 4°C until ICP-MS analysis was performed. 

 The instrumental certified reference material for Se analysis was “1640a – Trace 

Elements in Natural Water” (National Institute of Standards and Technology, Gaithersburg, MD, 

USA). The mean (±SD) for Se analysis was 101 ± 0.96% of the certified reference value. TORT-

2 (lobster hepatopancreas) from NRC Canada (Institute for Environmental Chemistry, Ottawa, 

Canada) was used as the certified standard reference material for tissue and measured 106 ± 

3.5% (mean ± SD). 
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2.3.7 Statistical analysis 

 All data analyses were performed using R v3.5.1 (R Core Team, 2018). Data were tested 

for normality via the Shapiro-Wilk test. Homogenity of variance was tested using Levene’s test. 

Data that were not normally distributed were transformed via Box-Cox transformation (Box and 

Cox, 1964) for normalization. All figures contain non-transformed data. Likelihood ratio tests 

(LRT) were used for all tests of statistical significance differences in total Se concentrations in 

embryos, embryo hatchability, mortality and deformities of early life stage fathead minnow 

among the control and treatment groups, within both respective exposure routes. The LRT 

assesses whether the removal of a variable causes a significant decrease in model fit. P values 

(a=0.05) denote a significant increase in deviance when a respective variable was removed. For 

the graduated severity index (GSI) data, data that met the assumptions for parametric analysis 

was tested using one-way ANOVA followed by Tukey’s post hoc test; whereas data that could 

not be transformed to meet the assumptions were analyzed using the Kruskal-Wallis one-way 

ANOVA by ranks test was used followed by Dunn’s multiple comparisons post hoc test. Test 

probabilities are two-tailed throughout. A linear model was used to determine whether Se 

accumulated in embryos over time via maternal transfer.  Here, we analyzed if the mean embryo 

Se concentration from a clutch of embryos was affected by the dietary treatment the parental fish 

received, represented by ‘treatment’, and the independent variable, ‘day’, which describes the 

number of days of dietary exposure to Se (interaction ‘treatment’ � ‘day’). To assess potential 

differences in fecundity among treatment groups, we used a linear model to analyze if the 

dependent variable, ‘fecundity’ (cumulative average number of eggs/female/day), was influenced 

by the dietary treatment the parental fish received (‘treatment’) and the number of days of dietary 

exposure, represented as ‘day’ (interaction ‘fecundity’ � ‘day’). The analysis of deformity 

proportions was based on binomial data (deformed or not deformed); therefore, we used a 

generalized linear model (GLM) that fit the model using iteratively reweighted least squares. As 

data displayed overdispersion, a quasibinomial distribution was assumed. The GLM analyzed 

whether the proportion of deformed fathead minnow larvae (‘proportion’, response variable) was 

affected by the relationship between embryo Se concentration (‘dose’, explanatory variable) and 

the route of exposure (‘route’, covariate), and the specific interaction ‘dose’ � ‘route’ was 

analyzed to compare effects of maternal transfer and microinjection exposure routes. Slopes 



 29 

generated in respective linear and generalized linear models were compared using one-way 

ANOVA.  

2.4 Results 

2.4.1 Selenium concentrations and maternal transfer 

 Water quality conditions were consistently acceptable throughout the experiments and the 

full suite of measured parameters is summarized in the supplemental materials (Table A.1). The 

mean total Se concentrations of the fish diet for the four respective treatments were as follows: 

Control, 1.18 ± 0.18; Low, 3.88 ± 0.34; Medium, 8.75 ± 0.80; High, 29.6 ± 4.46 µg Se/g food 

dm. The corresponding mean total Se concentrations in embryos sampled from the maternal 

transfer study were very similar to the dietary treatment received, at nearly an approximate 

trophic transfer factor of 1 from diet to embryo (Table 2.1); and Se concentrations in embryos 

from the microinjection study were in reasonable agreement, although slightly higher at the low 

and medium Se treatments and lower at the high Se treatment. Both were in good agreement with 

their respective nominal concentrations (Table 2.1). In embryos that received Se via 

microinjection of SeMet, there was a significant difference in embryo Se concentration among 

microinjection treatment groups, except between the negative and vehicle controls (LRT, df=4, 

χ2=-36.464, p<0.001, Table 2.1). The period of dietary Se exposure from days 0 - 13 shared a 

significant and positive relationship between the number of days of exposure and Se 

accumulation in embryos (LRT, df=1, χ2=-9.230, p<0.001). For the rest of the exposure (days 14 

- 28) there was a nonsignificant relationship between the number of days of exposure and Se 

accumulation in embryos, suggesting steady-state accumulation was reached for this time period 

(LRT, df=1, χ2=-0.018, p=0.274, Fig. 2.1). However, mean embryo Se concentrations during 

days 14 - 28 of the exposure period were significantly different among treatment groups, 

suggesting that embryos accumulated different amounts of Se as a function of the dietary 

treatment the maternal fish received (LRT, df=3, χ2=-4620.8, p<0.001, Fig. 2.1).
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Table 2.1. Embryo Se concentrations determined from the maternal transfer and microinjection studies. Maternal transfer embryo Se 

concentrations were from embryo samples collected between days 14 - 28 of exposure. Different letters represent a significant 

difference (a=0.05) in Se concentration among treatment groups within either respective exposure route. Lower case letters represent 

the maternal transfer treatment groups; Uppercase represent the microinjection treatment groups. Data are presented as mean ± SEM. 

 Maternal Transfer Microinjection 

 
Embryo Selenium Concentration  

(µg Se/g embryo dry mass[dm]) 

Treatment Nominal Actual Nominal Actual 

Negative Control 0 1.96 ± 0.20a 0 1.95 ± 0.11A 

Vehicle Control -- -- 0 2.09 ± 0.06A 

Low  3 4.97 ± 0.21a 10 9.73 ± 0.41B 

Medium 9 10.93 ± 0.56b 15 13.49 ± 0.73C 

High  27 28.39 ± 1.60c 20 18.90 ± 0.86D 

30 
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Figure 2.1. Concentrations of total Se in embryos collected from adult P. promelas after 

exposure to one of four Se dietary treatments over the course of 28 days. The four treatment 

groups were Control (1.18 µg Se/g food dm), Low (3.88 µg Se/g food dm), Medium (8.75 µg 

Se/g food dm), and High (29.58 µg Se/g food dm). Each plotted point represents a mean Se 

concentration measured from an individual clutch within a respective treatment. The line for 

each treatment was fit using a third order polynomial (Y=B0 + B1*X + B2*X2 + B3*X3). 
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2.4.2 Reproductive output 

 Exposure to dietary Se did not have an impact on reproductive output of any of the adult 

fish in the maternal transfer study as demonstrated by the lack of significant difference in mean 

clutch size among treatments during the 28-day exposure period (LRT, df=3, χ2 = -1.400, 

p=0.299; Fig. C.1). There was a significant relationship between number of dietary exposure 

days and the average cumulative number of embryos produced per female per day (LRT, df=1, 

χ2= -4.268, p < 0.001, Fig. C.2) and dietary exposure to SeMet among treatment groups did not 

affect the slope (LRT, df=3, χ2= -0.982, p=0.334) nor the intercept (LRT, df=3, χ2= -1.127, 

p=0.273) of this relationship. 

2.4.3 Early life stage assessment 

 Exposure of embryos through maternal transfer of Se did not have a significant impact on 

hatchability (LRT, df=3 χ2=-9.875, p=0.303, Fig. D.1B) and over 89% of embryos successfully 

hatched within any respective treatment group.  Survival of fathead minnow larvae from 

fertilization until swim-up was also not significantly impacted by the maternal transfer of Se 

(LRT, df=3, χ2=-11.374, p=0.529, Fig. D.1A) and over 86% of larvae survived within any given 

treatment group. In contrast, microinjection of SeMet did have a significant effect on the survival 

of fathead minnow larvae until swim-up in the high treatment (LRT, df=4, χ2=-20.009, p<0.001, 

Fig. D.1A), but likewise, did not cause a significant effect on hatchability among treatment 

groups (LRT, df=4, χ2=-3.229, p=0.520, Fig. D.1B). 

 Representative images of selected morphological abnormalities are shown in Fig. 2.2 

(spinal and edema) and Fig. 2.3 (craniofacial and finfold). The assessment of morphological 

abnormalities revealed a significant difference among treatment groups in the proportion of total 

deformities (any deformity, any severity) in larval fathead minnow exposed via maternal transfer 

(LRT, df=3, F=7.034, p<0.001, Fig. 2.4) and via embryo microinjection (LRT, df=4, F=11.228, 

p<0.001, Fig. 2.4). In larval samples from the microinjection study, we observed significant 

differences in the proportion of each type of deformity among treatment groups within all 

respective deformity categories, which included: finfold (LRT, df=4, F=7.230, p<0.001, Fig. 

2.5A); spinal (LRT, df=4, F=8.886, p<0.001, Fig. 2.5B); craniofacial (LRT, df=4, F=7.029 

p<0.001, Fig. 2.5C); and, edema (LRT, df=4, F=3.881 p=0.010, Fig. 2.5D).  

 For the microinjection exposure route, regression analysis revealed a significant positive 

relationship between embryo Se concentration and the percentage of deformities present (LRT, 
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df=1, F=34.499, p<0.001, Fig. 2.6). Likewise, the maternal transfer exposure route also had a 

concentration dependent effect on the proportion of deformities present (LRT, df=1, F=10.901, 

p=0.005, Fig. 2.6). Notably, we observed that microinjection of SeMet increased the frequency 

of deformities (y = 2.307x + 0.112) more so than did maternal transfer (y = 1.910x + 0.034) at 

similar Se concentrations, and the slopes were significantly different between regression lines of 

the exposure routes (ANOVA, p<0.001, Fig. 2.6). Morphological abnormalities within each 

respective category of deformities were also evaluated using a GSI and is summarized in Fig 

D.2. There were no significant differences in the severity of deformities among treatment groups 

within either exposure route for finfold abnormalities (maternal transfer: KW, df=3, c2=1.195, 

p=0.754; microinjection: KW, df=4, c2=9.136, p=0.058, Fig. D.2A) and edema (maternal 

transfer: KW, df=3, c2=1.870, p=0.600; microinjection: KW, df=4, c2=5.922, p=0.205, Fig. 

D.2D). For craniofacial abnormalities, there was only a significant difference in the severity 

among treatment groups within microinjection exposed fish (KW, df=3, c2=11.89, p=0.008, Fig. 

D.2C). Moreover, there was a significant difference in the severity of spinal deformities among 

treatment groups exposed via maternal transfer (ANOVA, df=3, F3,15=5.831, p=0.008, Fig. 

D.2B) and microinjection (KW, df=4, c2=14.04, p=0.007, Fig. D.2B).	 	
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Figure 2.2. Representative whole body images of normal (A and B) and 

morphologically abnormal (C, D, E, and F) P. promelas photographed at swim-up 

stage during deformity analysis. Images A and B depict normal fish from lateral 

and dorsal viewpoints, respectively. Image C is a deformed fish with scoliosis and 

finfold abnormalities. Image D displays pericardial and yolk sac edema, and the 

spinal abnormality, lordosis. Image E depicts a fish with edema and deformed 

craniofacial structure. Image F is a fish with kyphosis and pericardial edema.  
	

F 
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Figure 2.3. (A) Representative features of craniofacial development which depict normal 

development (i), absent jaw (ii), and deformed jaw and craniofacial structure (iii) in P. 

promelas at swim-up. (B) Representative images of normal finfold development (i), abnormal 

finfold curvature (ii), and misaligned finfold development (iii & iv) in P. promelas at swim-up. 
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Figure 2.4. Percentage of P. promelas with any morphological deformity 

present at swim-up. Different letters represent a significant difference (a=0.05) 

in the proportion of deformities among treatment groups, within each exposure 

route. Uppercase letters represent significant differences within the 

microinjection exposure treatment groups. Lowercase letters represent 

significant differences within the maternal transfer exposure treatment groups. 

Data are presented as mean ± SEM. 
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Figure 2.5. Percentage of P. promelas at swim-up with (A) finfold abnormality, (B) spinal 

abnormality, (C) craniofacial deformity, and (D) edema present. Different letters represent a 

significant difference (a=0.05) in the proportion of deformities among treatment groups, within 

each exposure route. Uppercase letters represent significant differences within the 
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there were no significant differences among treatment groups. Data are presented as mean ± 
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Figure 2.6. Regression analysis depicting the relationship between embryo selenium concentration and the 

proportion of P. promelas with a morphological abnormality (any deformity) at swim-up. Each plotted point 
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total Se concentration and for deformity analysis. The fitted lines are least squares regression lines and were 

significantly differently between the exposure routes (ANOVA, p<0.001). 
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2.5 Discussion 

 This study revealed significant differences in the sensitivity of fathead minnows to SeMet 

exposure as a function of embryo-larval life stage and route of delivery. It was demonstrated that 

dietary exposure to SeMet at environmentally relevant concentrations did not affect fecundity in 

adult fathead minnows, nor caused any reductions in hatchability or survival until swim-up in 

offspring. However, increases in teratogenic malformations were observed in embryos exposed 

through both maternal transfer or microinjection, and microinjection decreased survival until 

swim-up at the highest embryo Se concentration. Most notably, at Se concentrations of 18.9 µg 

Se/g embryo dm, microinjection of SeMet increased the frequency of deformities in early life 

stage fathead minnow to a greater extent than in fish exposed through maternal transfer, 

suggesting that embryos were slightly more sensitive when injected at this concentration 

compared to those exposed via maternal transfer at concentrations of 28.4 µg Se/g embryo dm. 

The response to embryo Se exposure in the form of total deformities (any deformity, any 

severity) and individual categorical deformities (spinal, craniofacial, finfold and edema) were 

similar at concentrations of 9.7 to 13.5 µg Se/g embryo dm regardless of exposure route.  

2.5.1 Reproduction and dietary selenium exposure 

 Fecundity of adult female fathead minnows was not affected by elevated concentrations 

of dietary Se and appeared to follow a supra-nutritional trend with the lowest exposure dose 

(3.88 ± 0.34 µg Se/g food dm) showing the greatest embryo production. A similar trend, where 

supra-nutritional Se supplementation has been shown to be beneficial to the organism, has been 

described before in several aquaculture studies (Berntssen et al., 2018; Lee et al., 2016). It is 

generally accepted that exposure to elevated levels of dietary Se does not impact fecundity, nor 

does the maternal transfer of Se reduce fertility or hatchability rates in the F1 generation of 

exposed parents, as shown in several fish species including brown trout (Salmo trutta), zebrafish, 

cutthroat trout (Oncorhynchus clarkii), northern pike (Esox lucius), white sucker (Catostomus 

commersoni), rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis) and 

Dolly Varden char (Salvelinus malma) (Covington et al., 2018; Holm et al., 2005; Kennedy et 

al., 2000; McDonald et al., 2010; Muscatello and Janz, 2009; Thomas and Janz, 2014).  

 Ogle and Knight (1989) observed no significant effect on fecundity when exposing 

fathead minnows to a diet composed of 25% SeMet, 25% selenate, and 50% selenite at total Se 

concentrations as high as 29.5 µg Se/g food dm. Our study, which utilized a similar dietary Se 
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concentration (29.6 ± 4.46 µg Se/g food dm), administered 100% in the form of SeMet, is in 

agreement with the observations by Ogle and Knight (1989) on hatchability and survival in 

embryo-larval fathead minnow. We recognize the fact that in a natural aquatic system, fish 

consume a diet that contains a variety of Se species, but previous research has shown that SeMet 

species are an important form of Se that can compose greater than 60% of the Se speciation 

within an aquatic food-web where Se contamination is present, and this SeMet is highly 

bioavailable and trophically transferred among aquatic organisms (Janz et al., 2014). Ingested 

SeMet is less prone to biotransformation than inorganic Se species and can be directly 

assimilated into methionine-containing proteins in a dose-dependent fashion (Behne et al., 1991). 

The diet adult fathead minnows were exposed to in this study would presumably have greater 

bioavailability of SeMet than a diet containing a mixture of organic and inorganic Se species, 

thereby rendering it an effective and useful approach for investigating Se maternal transfer in 

fathead minnow. Furthermore, the concentration of Se that undergoes maternal transfer is altered 

by the amount of SeMet that is available to be incorporated into methionine-containing proteins, 

and therefore using a diet that is spiked strictly with SeMet provides an optimal exposure 

scenario for inducing maternal transfer. 

 The dietary Se concentrations used in this study were selected based on environmentally 

relevant concentrations and were consistent with previous field and laboratory studies which 

reported sublethal Se toxicities at concentrations comparable to the prepared diets used in this 

work (Covington et al., 2018; Hamilton, 2004; Lemly, 1993; Lemly, 2018; McPhee and Janz, 

2014). A dietary Se concentration of 40 µg Se/g food dm, which is greater than those tested here, 

has been reported to impair growth, feeding and spawning in fathead minnows (Ogle and Knight, 

1989). In this context, the range of nominal dietary Se concentrations and Se composition (e.g. 

100% SeMet) selected for the current study were considered suitable for examining the maternal 

transfer of Se in fathead minnow without introducing lethality in the spawning adult fish.  

2.5.2 Maternal transfer of selenium 

 Reproductively active female fathead minnow efficiently and rapidly transferred Se to 

eggs during oogenesis in a dose-dependent fashion. Selenium concentrations of fathead minnow 

embryos were significantly and positively correlated with the dietary treatment the maternal fish 

received, and embryo Se concentrations reached a steady-state of approximately a 1:1 ratio to the 

dietary Se concentration received. Selenium has been demonstrated to be incorporated into 
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ovarian follicles during vitellogenesis (Kroll and Doroshov, 1991). Vitellogenesis is a key event 

in oocyte development regarding maternal transfer of Se to the embryo, because this is when 

reserves of yolk proteins, derived from the precursor vitellogenin, are deposited into oocytes 

(Sullivan and Yilmaz, 2018; Tyler and Sumpter, 1996). Vitellogenin is a precursor to yolk 

proteins and is critical as a carrier off carbohydrates, lipids, minerals, fat-soluble vitamins and 

hormones required for normal embryo-larval development, and is also the primary source of 

amino acids (Lubzens et al., 2017; Sullivan and Yilmaz, 2018). It is hypothesized that female 

fathead minnow exposed to elevated levels of dietary Se efficiently shuttle this compound via 

sulfur containing proteins in vitellogenin to developing ovarian follicles (Janz et al., 2010; Kroll 

and Doroshov, 1991). Biochemically, the enzyme methionyl-tRNA acylase does not discriminate 

between methionine and SeMet, as both compounds have a similar molecular structure with the 

only difference being the sulfur atom in methionine being replaced with a Se atom in SeMet 

(Janz et al., 2010; Schrauzer, 2000). This structural similarity results in the integration of SeMet 

into methionine-containing proteins, in a dose-dependent fashion, and our results suggest this 

occurs rapidly in the ovaries of fathead minnows upon dietary exposure to elevated 

concentrations of SeMet, prompting maternal transfer of SeMet to embryos.    

2.5.3 Comparison of maternal transfer and microinjection exposure routes 

 The main goal of this study was to compare the effects of Se exposure in early life stage 

fathead minnow between two different exposure routes, maternal transfer and microinjection, to 

provide additional insight regarding the use of microinjection as a proxy for maternal transfer of 

Se. Teratogenic effects often do not begin to manifest until after hatch when fishes begin 

increasing use of yolk sac components for growth and development (Holm et al., 2005). This 

study concurs with that observation, as neither maternally transferred nor microinjected SeMet 

impacted hatchability of fathead minnow embryos at Se concentrations of up to 28.4 ± 6.50 µg 

Se/g embryo dm (maternal transfer) and 18.9 ± 2.44 µg Se/g embryo dm (injection), while 

significant increases in developmental malformations had manifested in larvae sampled at swim-

up. Furthermore, the embryo microinjection of SeMet at concentrations of 18.9 ± 2.44 µg Se/g 

embryo dm decreased survival of fathead minnow until swim-up. To our knowledge, there is 

only one other SeMet microinjection study that has been performed in fish embryos, and 

therefore, Thomas and Janz (2016) offers an important point of comparison because of 

similarities in embryo Se concentrations to the current study. Contrary to our observations on 
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fathead minnow hatchability, however, Thomas and Janz (2016) reported that microinjection of 

SeMet into zebrafish embryos at Se concentrations of 18.7 ± 1.0 µg Se/g embryo dm 

significantly reduced hatchability. This could be due to species-specific differences in their 

susceptibility to Se toxicity based on the rate of pre-hatch development and amino acid usage 

(Finn and Fhyn, 2010). For instance, zebrafish hatch between 48 - 72 hours (at 28°C) and fathead 

minnow embryos hatch after approximately 96 – 120 hours (at 25°C) (Hill et al., 2005). The 

quicker pre-hatch development in zebrafish could make this species more prone to Se toxicity, 

especially to freely available SeMet, because the more rapid development would allow less time 

to cope with Se exposure. Selenomethionine is known to generate superoxide radicals when 

broken down because of redox cycling of its two main metabolites, methylselenol and selenide 

anion (Palace et al., 2005; Spallholz et al., 2004). Faster rates of pre- and/or post-hatch 

development could metabolize greater concentrations of SeMet during protein catabolism, and 

thereby intensify the production of reactive oxygen species over a shorter period of time, 

rendering these organisms more vulnerable to oxidative stress.  

Palace et al. (2004) indicated that a susceptible stage of embryonic development to Se 

toxicity is before production of the enzyme superoxide dismutase (SOD) in the liver of fish. 

Presumably, this could be a period of development where coping with oxidative stress in the 

form of superoxide radicals is minimal or non-existent. Zebrafish develop a visible liver within 

24 hpf, which undergoes rapid growth until fully developed, and SOD activity has been 

demonstrated in zebrafish larvae sampled at 96 hpf (Shi et al., 2011; Wilkins and Pack, 2013). In 

fathead minnow, the liver is first observed approximately 36 hpf, around the onset of blood 

circulation, where it extends into the yolk sac throughout development and does not approach 

complete development until approximately 120 hpf (USEPA, 1996). While slight, these 

differences in liver and overall early life stage development are potential reasons for the 

observed disparities in pre-hatch tolerance to elevated Se concentrations observed between 

zebrafish and fathead minnow.  

 Survival until swim-up in microinjected zebrafish was reported by Thomas and Janz 

(2016) to significantly decrease at in ovo concentrations of 11.0 µg Se/g embryo dm. The current 

study also detected a significant decrease in survival until swim-up after microinjection, but at 

slightly higher concentrations of 18.9 ± 2.44 µg Se/g embryo dm, and with a lower cumulative 

mortality rate at similar Se concentrations compared to the Thomas and Janz (2016) zebrafish 
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study. While fathead minnows appear to be slightly less sensitive to microinjection than 

zebrafish, it should be noted that the toxicity threshold for most North American fish species is 

approximately 20 µg Se/g embryo dm and there are species-specific differences with regards to 

Se toxicity in early life stage fish (DeForest et al., 2011). The underlying mechanisms of these 

species-specific differences are unclear, but they might be a function of embryo composition 

(e.g. lipid, protein, free amino acid, ion and glycogen content), in additional to differences in 

developmental rates (Finn and Fhyn, 2010; McDonald et al., 2010; Singleman and Holtzman, 

2014).  

  Deformity analysis of fathead minnow larvae at swim-up revealed that maternal transfer 

and microinjection both increased the frequency of deformed larvae in a dose-dependent fashion, 

and which agrees with earlier studies that found an increased proportion of deformed larvae 

hatched from embryos with elevated Se concentrations (Covington et al., 2018; Holm et al., 

2005; Muscatello et al., 2006; Thomas and Janz, 2016). Maternal transfer of Se to embryos at 

concentrations of 3.9 ± 1.87 µg Se/g embryo wet weight (ww) (~10.6µg Se/g embryo dm) were 

reported by Schultz and Hermanutz (1990) to have significantly increased the percentage of 

fathead minnow larvae that developed edema (24.6 ± 36.1%) or the spinal abnormality, lordosis 

(23.4 ± 20.8%), but the degree of variability and lack of a described procedure for conducting 

deformity analysis make their study less interpretable, and the authors did not report the total 

percentage of deformed fish. Our study found that the most common type of morphological 

malformations were finfold and spinal, which in most cases were approximately two-fold more 

common than craniofacial abnormalities or edema, regardless of Se concentration or exposure 

route. Although quantifying the frequencies of individual types of deformities is useful to 

compare exposed fish to natural background rates of specific types of deformities in control 

groups, quantifying of the total proportion of deformed fish provides a more ecologically 

realistic perspective on the potential for population level effects related to Se toxicity. Following 

an index developed by Lemly (1997) for Se induced teratogenesis to assess population level 

effects, our data suggests that at the highest maternal transfer embryo Se concentration (28.4 ± 

6.50 µg Se/g embryo dm) greater than 20% of the larval fathead minnow population would likely 

succumb to mortality because of developmental abnormalities, and a substantial impact on the 

larval population could be anticipated. Under natural conditions, fish endure a multitude of 

stressors, such as predation, disease, and changes in environmental conditions, many of which 
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can lead to mortalities or reduced recruitment of healthy juveniles into the adult population. 

Therefore, the effects of Se exposure in conjunction with these natural stressors are indicative of 

increased potential for adverse population level effects to occur (Brandt et al., 2017; Lemly, 

1999).  

 An important finding of the present study was that microinjection of SeMet resulted in a 

greater proportion of deformed fish at swim-up, at lower embryo Se concentrations, in 

comparison to fish exposed through maternal transfer. This difference in potency between the 

two exposure routes is likely a function of bioavailability of Se within the yolk sac (e.g. protein-

bound vs. free amino acid) (Finn and Fhyn, 2010; McDonald et al., 2010; Thomas and Janz, 

2016). When SeMet is microinjected into an embryo it is not protein-bound, but is available in 

free form which can be used in protein synthesis or undergo metabolic alterations without protein 

catabolism being required (Finn and Fhyn, 2010). This differs from maternal transfer where Se 

deposition in the embryo will occur primarily as protein-bound SeMet, and studies have shown 

that protein-bound amino acids are predominantly used post-hatch; however, there still will be 

other forms of Se present, such as selenocysteine (protein-bound), inorganic Se (mainly selenite) 

and free SeMet, although in considerably lower amounts than protein-bound SeMet (Finn and 

Fhyn, 2010; Rigby et al., 2014).  

 Interestingly, while the frequency of deformed fathead minnows increased in a dose-

dependent fashion, there was little evidence of deformities becoming more severe at increasing 

Se concentrations. The severity of deformities present in fathead minnows exposed via maternal 

transfer was variable across all treatment groups and within all categories of deformities. In 

contrast, there appeared to be a trend towards greater severity of deformities at the highest 

concentration of microinjected SeMet (18.9 ± 2.44 µg Se/g embryo dm), which could be in part 

due to the combination of increased SeMet bioavailability and metabolism of SeMet. This is an 

issue for injected SeMet because it is freely available, but not for maternal transfer because it is 

predominantly protein-bound, and this disparity could be reason for a more noticeable dose-

dependent trend in the severity of deformities (Rigby et al, 2014; Thomas and Janz, 2016).  

2.5.4 Conclusions 

 In summary, dietary exposure to elevated levels (3.88 - 29.6 µg Se/g food dm) of SeMet 

in reproductively active fathead minnows did not affect negatively affect fecundity, and the 

lowest dose (3.88 ± 0.34 µg Se/g food dm) produced the greatest number of eggs per female, 
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suggesting a potential supra-nutritional benefit of dietary SeMet supplementation. The maternal 

transfer of Se did not induce changes in hatchability or survival until swim-up, but there were 

increased frequencies of deformities present in the offspring of fathead minnow from parents fed 

a diet containing 29.6 ± 4.46 µg Se/g food dm. This increased the proportion of deformed F1 

generation fathead minnows, and which could have implications at the population level as there 

would likely be less survival and thereby decreased recruitment of fish into the population. When 

SeMet was microinjected into fathead minnow embryos at concentrations of 18.9 ± 2.44 µg Se/g 

embryo dm, there was a greater increase in the proportion of deformities at Se concentrations 

lower than those of embryos exposed through maternal transfer (28.4 ± 1.60 µg Se/g embryo 

dm). With this said, microinjection provides a similar estimate of the toxicity of maternally 

transferred Se in embryos and larvae at concentrations in the range of 9.73 ± 0.41 µg Se/g 

embryo dm to 13.49 ± 0.73 µg Se/g embryo dm. Thus, our study provides an additional line of 

evidence which suggests that microinjection of SeMet is a useful technique for studying maternal 

transfer of Se, but the increased bioavailability and potency of injected SeMet must be 

considered at concentrations nearing 20 µg Se/g embryo. It is hypothesized that differences 

between exposure routes are due to microinjection of SeMet not being protein-bound within the 

yolk sac, and that microinjection could represent a ‘worst-case scenario’ where a developing fish 

must cope with the most bioavailable and toxic form of Se (e.g. free form SeMet) during its most 

sensitive period of development in the early life stages. Considering the toxicokinetic 

mechanisms that dictate Se maternal transfer, microinjection is a viable route of exposure as it 

can efficiently deliver SeMet into the yolk sac region and is a useful dosing method to 

investigate the toxicity of Se in fish embryos as a surrogate for maternal transfer. This technique 

could enable the study of Se toxicities in non-model fish species that might otherwise go 

unstudied because of logistics or ethical reasons, such as long-lived, rare or endangered species, 

and has the potential to be a useful tool for cross-species assessments of such toxicities. 
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CHAPTER 3 

3.0 GENERAL DISCUSSION 

	

3.1 Thesis rationale and overview 

 There is growing concern surrounding the essential trace element selenium (Se) because 

of its potential to contaminate aquatic ecosystems (Janz et al., 2014; Lemly, 2004; Young et al., 

2010). Selenium is introduced to the environment through anthropogenic and natural sources 

where it can bioconcentrate at the base of aquatic food webs and bioaccumulate through dietary 

means within aquatic organisms at higher trophic levels (Presser and Luoma, 2009). All animal 

classes are susceptible to the toxic effects of increased Se accumulation because of the narrow 

margin between essentiality and toxicity (Haratake et al., 2015; Mangiapane et al., 2014). 

Furthermore, egg-laying vertebrates are at notable risk because of the maternal transfer of Se 

during vitellogenesis (Janz et al., 2010). This process leads to increased levels of Se exposure in 

embryo-larval offspring as they absorb their yolk sac during early life stage development (Holm 

et al., 2005; Janz et al., 20120). Exposure to Se during early life stage development is known to 

increase the proportion of deformities of early life stage fish and can impact the overall fitness or 

survival of larval populations (Lemly, 1999; Lemly, 1997). The adverse effects associated with 

Se contamination have been extensively described in field studies dating back to the 1980s, and 

as recently as 2018 (Lemly, 1985; Lemly, 2018; Ohlendorf, 2002).  

 While field-based research provides evidence for Se induced toxicities across multiple 

case-studies, laboratory studies exposing juvenile or adult fish to dietary Se in the form of 

selenomethionine (SeMet) have established a variety of toxic effects such as altered oxidative 

stress response, impacts on the cardiovascular system, changes in behaviour, and influences on 

physiological swimming performance (McPhee and Janz, 2014; Naderi et al., 2018; Pettem et al., 

2018; Zee et al., 2016). Nevertheless, the most detrimental effects of Se toxicity are a result of 

maternal transfer, which is difficult to study because it is resource, time and logistically 

intensive. Furthermore, laboratory exposures require fish to be exposed through the diet until 

they can be spawned in-culture, which is logistically, and to some degree, ethically problematic 

in species that have long reproductive cycles. Hence, the primary goal of this thesis research was 

to establish and validate an embryo injection model to simulate the maternal transfer of Se in a 
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fish species native to North American freshwater ecosystems, the fathead minnow (Pimephales 

promelas). This methodology could support future maternal transfer studies in non-model fish 

species, but could also be extended into other egg-laying vertebrates that might be at risk of over 

accumulating and offloading Se into embryonic offspring. To meet this goal, the effects of in ovo 

Se exposure in early life stage fathead minnow were compared through two different exposure 

routes: i) dietary SeMet exposure leading to maternal transfer; and, ii) embryo injection of SeMet 

as a proxy for maternal transfer.  

 My thesis research determined that embryo microinjection of SeMet can induce 

developmental effects in early life stage fathead minnow that are comparable to effects from 

exposure through maternal transfer at concentrations in the range of 9.73 ± 0.41 µg Se/g embryo 

dry mass (dm) to 13.49 ± 0.73 µg Se/g embryo dm. In both routes of exposure an increase in the 

proportion of deformed fathead minnow was observed in a dose-dependent fashion. However, it 

is important to note that fish exposed via microinjection responded to SeMet exposure with more 

frequent deformities and greater mortalities at concentrations of 18.9 ± 0.86 µg Se/g embryo dm 

in comparison to the highest embryo concentrations via maternal transfer (28.39 ± 1.60 µg Se/g 

embryo dm), likely as a function of bioavailability differences within the yolk sac leading to 

comparable but not analogous toxicities. Dietary SeMet exposure did not negatively impact 

fecundity of breeding adult fathead minnow, and maternal transfer began efficiently upon 

exposure with embryo Se concentrations reaching steady-state after approximately 14-days of 

exposure. The research presented here addresses knowledge gaps regarding maternal transfer in 

fathead minnow and provides an additional line of evidence for using microinjection as a proxy 

for maternal transfer in fish species native to North American freshwater systems.  

3.2 Studying the maternal transfer of selenium 

 Maternal transfer studies are challenging to perform in many fish species because of 

varying reproductive strategies in fish, logistical reasons and ethical concerns. For instance, 

performing a maternal transfer study in rainbow trout (Oncorhynchus mykiss), which is a species 

used in multiple regulatory tests and an accepted model organism, is extremely time and resource 

intensive (Pilgrim, 2012). Rainbow trout spawn after approximately 2 - 3 years of development 

and it is simply not feasible to expose and maintain fish for this long of a time-period in a 

laboratory setting, and therefore one must utilize the support of a fishery or hatchery with the 

appropriate aquaculture conditions to conduct such studies (Pilgrim, 2012). Even with these 
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difficulties, researchers have been able to generate information about the maternal transfer of Se 

in rainbow trout, and in other species where laboratory studies are difficult such as brook trout 

(Salvelinus fontinalis), brown trout (Salmo trutta), northern pike (Esox lucius) and white sucker 

(Catostomus commersonii) by performing artificial fertilization using gametes of male and 

female fish from field sites known to have elevated concentrations of Se in the water and food-

chain (Covington et al., 2018; Holm et al., 2005; Muscatello et al., 2006). This is valuable 

information as it provides direct site- and species-specific insight into the potential health status 

of adult fish, and of larval populations that would be the offspring for that year. However, Se is 

likely not the only stressor in the environment which these fish inhabit and therefore other 

compounds (e.g. PAHs and/or metals), which are often part of the complex mixtures that include 

Se and contaminate aquatic habitats, and this could contribute to the overall observed effects in 

embryo-larval offspring sampled within these locations.  

 Performing maternal transfer studies in the laboratory offers researchers the opportunity 

to look directly at the effects of Se maternal transfer in the offspring by exposing parental fish to 

strictly Se through the diet. Researchers have questioned the environmental relevance of spiking 

a diet with SeMet because in a natural environment fish would consume a diet composed of 

multiple Se species including other forms of organic (e.g. selenocysteine) and trace amounts of 

inorganic selenium (e.g. selenite and/or selenate) (Rigby et al., 2014). While this is true, the 

biochemistry of Se maternal transfer suggests that a diet spiked with only SeMet could be an 

effective method for inducing the overall maternal transfer of Se in egg-laying vertebrates. 

Furthermore, multiple studies have used a SeMet-spiked diet to expose fish and have generated 

data which suggests that this type of spiked-diet exposure prompts a dose-dependent response 

across multiple levels of biological organization (McPhee and Janz, 2014; Thomas and Janz, 

2014; Pettem et al., 2017; Pettem et al., 2018). With this said, future research focusing on dietary 

Se exposure could utilize a diet that has naturally accumulated Se from lower trophic levels, to 

simulate a simple food chain, and examine if the effects of maternal transfer differ when parental 

fish are exposed to a naturally elevated Se diet rather than an SeMet-spiked diet.  

 The fathead minnow proved to be a useful fish species for studying the maternal transfer 

of Se. The asynchronous breeding pattern of sexually mature fathead minnow allowed for the 

quantification of fecundity rates and total embryo Se concentrations throughout the entirety of 

the study. This would not be possible in a synchronous spawning fish, as all ovarian follicles 
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develop at the same rate, and they do not produce multiple small clutches. A previous study 

investigating the maternal transfer of methylmercury in fathead minnow avoided sampling 

embryos during the first 5-days of exposure to ensure that any embryos collected and observed 

were exposed throughout all stages of oogenesis (Bridges et al., 2015).  I did not perform 

observations on hatchability, survival or morphological abnormalities of fathead minnows 

collected during the first 5 days of exposure, but rather collected embryos during this time to 

quantify embryo Se concentrations. I observed that the maternal transfer of excess Se occurs 

rapidly when reproductively active female fathead minnow are exposed to elevated 

concentrations of dietary Se. There was a noticeable increase in Se deposition that was measured 

in embryos from SeMet treatment groups the day after the exposure was initiated, and this 

continued for approximately 14 days of the exposure until embryo Se concentrations appeared to 

plateau in a 1:1 ratio within each respective dietary treatment. To my knowledge, this is the first 

study to examine this process in embryos and provides valuable insight regarding the proficiency 

of Se maternal transfer in asynchronous spawning fish. From this time point on, there were no 

significant changes in embryo Se concentration within treatment groups, however embryo Se 

concentrations were significantly different in dose-dependent fashion among treatment groups. 

Therefore, it was during this period that embryos were collected for assessing the effects of Se 

exposure on early life stage development.  

 When sexually mature and reproductively active, female fathead minnow have ovarian 

follicles at all developmental stages (Leino et al., 2005). It is only during the vitellogenesis stage 

of ovarian follicle development that the maternal transfer of Se occurs (Kroll and Doroshov, 

1997; Lubzens et al., 2017). Yet, fish species have a variety of reproductive strategies where 

ultimately the duration of vitellogenesis is variable and could influence the potential for Se 

incorporation (Janz et al., 2010). For instance, in synchronous spawning species, the dietary 

intake of Se immediately prior to spawning might have less impact on embryo Se concentrations 

as long as vitellogenesis has completed. Bull trout (Salvelinus confluentus) are a species that 

inhabit large, clean rivers but migrate into small tributaries, some of which are known to contain 

elevated levels of aqueous and dietary Se, to spawn. This might not directly affect the 

reproducing adult bull trout, nor the F1 generation as a result of maternal transfer, but potential 

effects might manifest in the swim-up larvae which would consume dietary prey items from 

within the Se contaminated tributary. This could induce the bioaccumulation of Se in bull trout 
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during after swim-up and could potentially disrupt normal development into the juvenile life 

stage. Dietary intake leading up to vitellogenesis in adult fish could impact embryo Se 

concentrations, as would Se accumulation in the liver and muscle could be mobilized and 

subsequently transported into yolk sac proteins as a depuration strategy, or simply as an 

indiscriminate biochemical process. A specific focus on species-specific duration of 

vitellogenesis, and the amount of mobilized tissue Se during vitellogenesis, could provide further 

insights regarding species differences in rates of embryo Se deposition for fish.  

3.3 Maternal transfer vs. embryo microinjection exposure routes 

3.3.1 Embryo selenium concentrations 

	 Measured Se concentrations from both experiments in Chapter 2 were significantly 

greater in treatment groups compared to control groups, and in both exposure routes, a dose-

dependent response was evident in the form of morphological abnormalities. In the maternal 

transfer study, fathead minnow fed a diet spiked with SeMet displayed embryo Se concentrations 

that reached an approximate 1:1 ratio with the dietary treatment the fish received. This agrees 

with previous Se research that suggests the incorporation of Se into tissues is dose-dependent and 

is more prevalent in tissues undergoing higher rates of protein synthesis (Covington et al., 2018; 

Holm et al., 2005; Janz et al., 2010; Kupchaski and Rasmussen, 2015).  

 Embryo microinjection of SeMet into the yolk region of fathead minnow proved to be an 

effective exposure route. In preliminary injection work, it was observed that embryos dosed at 

24.7 ± 1.73 µg Se/g embryo dm were prone to morality rates of 65.8% (Fig. B.1); therefore, it 

was decided that the highest nominal treatment group would be 20 µg Se/g embryo dm to avoid 

mass mortality within this treatment group. The medium treatment group in the microinjection 

study was targeted at 15 µg Se/g embryo dm. This injection concentration was selected for a 

direct comparison to the US EPA 2016 Freshwater Selenium Criterion for the Protection of 

Aquatic Life value for egg/ovary fish tissue of 15.1 mg Se/ kg tissue dm. The low (9.73 µg Se/g 

embryo dm) and medium (13.49 µg Se/g embryo dm) treatment groups in the microinjection 

study had an embryo Se concentration that bracketed the medium (10.9 µg Se/g embryo dm) 

treatment group in the maternal transfer study, and which are comparable concentrations slightly 

below the US EPA’s 2016 Selenium Criterion egg/ovary tissue guideline. The Se concentrations 

used for dosing embryos via microinjection study were selected to cover a range of 

environmental and regulatory relevant concentrations while also being comparable to the embryo 
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Se concentrations measured in the maternal transfer study. One limitation of the microinjection 

study was that embryo concentrations greater than 20 µg Se/g embryo dm caused mass mortality 

before swim-up and did not allow for a direct comparison of deformities in swim-up larvae at 

concentrations that matched the maternal transfer study. Overall, the selection of embryo Se 

concentrations for microinjection exposure were below the threshold for embryo mortality 

according to preliminary microinjection work.   

3.3.2 Embryo-larval effects 

 In Chapter 2, I observed that the maternal transfer of elevated concentrations of Se did 

not cause any reductions in hatchability or survival of fathead minnow larvae from fertilization 

until swim-up. However, in fish sampled at swim-up and analyzed for deformities, there was a 

clear increase in the frequency of deformed fish that followed a dose-dependent trend. This 

observation concurs with previous studies investigating the effects of Se maternal transfer after 

exposure in embryo-larval offspring across a range of fish species, and is indicative of Se 

exposure (Covington et al., 2018; DeForest et al., 2011; Holm et al., 2005; Kennedy et al., 2000; 

Muscatello et al., 2006; Ogle and Knight, 1989; Thomas and Janz, 2014).  

 In the comparative study using microinjection as the dosage route, there was no effect of 

the injection process or Se exposure on hatchability at concentrations of 18.9 µg Se/g embryo dm 

or less. In congruence to the maternal transfer study, there was a clear dose-dependent response 

in the frequency of deformed fish at swim-up. Using regression analysis, it was also observed 

that deformed fish exposed via microinjection occurred more frequently, but at slightly lower 

doses of Se compared to the maternal transfer study as per the significant difference in the slopes 

of the exposure route regression lines. This difference in response could occur because of a key 

difference in potential bioavailability that exists between the injection and maternal transfer 

exposure routes, and this might have led to slightly different toxicities observed in embryo-larval 

fathead minnow, and it occurred more prominently in embryo Se concentrations of 18.9 µg Se/g 

embryo dm or greater. In a normal, healthy fish embryo there are multiple species of protein-

bound and free form Se present, and although free form amino acids are still available in trace 

amounts (e.g. <1%) it is the protein-bound forms that compose greater than 58% of proteins 

(Rigby et al., 2014). When using microinjection, the introduction of free form SeMet would 

increase the amount of free form amino acid within the yolk sac in comparison to the natural 
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composition, and this free form SeMet could be more readily metabolized, thereby increasing 

potential for oxidative stress within the organism.  

 I observed that microinjection of SeMet resulted in a greater proportion of deformed fish 

at slightly lower Se concentrations than in fish from the maternal transfer study. However, the 

type of deformities (e.g. finfold, spinal, craniofacial or edema abnormality) that were present in 

fathead minnow followed a similar pattern regardless of exposure route.  Finfold and spinal 

deformities were approximately 2-fold more common than the prevalence of craniofacial and 

edema malformations, and in all cases, there appeared to be a dose-dependent trend regarding the 

frequency of deformities within each respective category that was evaluated. When a deformity 

was present I also assessed how severe the deformity was to investigate if the severity of 

deformities followed a dose-dependent trend. However, this was not evident and the severity of 

deformities within each individual category was quite variable across treatment groups, 

regardless of exposure route, and there was no clear trend in the severity response.  

3.4 Future considerations for selenium maternal transfer research 

 The discoveries from this thesis contribute an additional line of evidence into the use of 

embryo microinjections as a proxy for studying the maternal transfer of Se in fish native to North 

American freshwater habitats. Microinjection is emerging as a useful method for inducing a 

response in embryo-larval organisms to Se exposure, but the difference in bioavailability 

between free form amino acids and protein-bound amino acids will remain a key dynamic that 

differentiates SeMet exposure via embryo microinjection and maternal transfer. When using 

microinjection of SeMet, one must consider that this will be a dosage of free form amino acids 

that are likely more bioavailable, thereby increasing the potential of this compound to be 

metabolized. Furthermore, as outlined in Chapter 2, a key time-period in embryo-larval 

development with regards to Se induced oxidative stress is after the onset of liver development 

but before activity of the enzyme superoxide dismutase (SOD) begins (Palace et al., 2004). This 

makes sense as the metabolism of SeMet can generate superoxide radicals and organisms will 

cope with this form of oxidative stress through SOD enzymes which scavenge the superoxide 

radicals and act as antioxidants (Palace et al., 2004). It could prove useful for researchers to 

investigate how early in embryonic development SOD enzymes are active across multiple 

species, how this activity changes in pre-hatch and post-hatch development, and whether Se 

exposure alters the overall oxidative response. Fish species have different developmental rates 
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from fertilization until swim-up, and studying how these differences influence the response to Se 

exposure during pre- and post-hatch development is a current knowledge gap that could 

potentially be fulfilled using microinjection.  

 Future studies could also use microinjection to investigate specific aspects (e.g. oxidative 

stress response or morphogenesis) of the organismal response across multiple levels of biological 

organization in embryo-larval fish species that are of concern in Se contaminated environments. 

Using molecular techniques such as transcriptomics and targeted gene expression, researchers 

could characterize toxicity pathways in early life stage teleosts that are phylogenetically distant 

to determine if these pathways are conserved or have evolved differently amongst fishes. These 

are species such as northern pike, rainbow trout, and white sturgeon (Acipenser transmontanus) 

which have greater ecological and cultural relevance in comparison to standardized model 

organisms such as zebrafish (Danio rerio) or fathead minnow, and reside in upper trophic levels 

which makes them more prone to Se accumulation. In the case of white sturgeon, this is a long-

lived and endangered species, and microinjection is a potential exposure method that can be used 

to generate data concerning the response of this species to SeMet exposure during early life stage 

development, which otherwise would be implausible to study in a maternal transfer context. 

Future use of microinjection could prove to be a useful tool for cross-species comparisons of 

early life stage Se toxicity and an effective method for the generation of mechanistic data in 

potentially any egg-laying vertebrate species of concern.  

 A current limitation of Se based research, including maternal transfer research, is the lack 

of readily available and valid analytical techniques to accurately characterize and quantify Se 

speciation in tissue. The complex speciation of Se is known to compose more than 50 species, 

however, identifying which species are present within fish tissue and to what degree is difficult. 

As analytical methods for determining Se speciation within tissues improve, researchers will 

have more opportunity to gain understanding of where certain Se species compartmentalize 

within fish tissues and how this might influence toxicity. While potentially resource intensive, 

understanding the compartmentalization, mobilization and transport of Se within an embryo-

larval fish from fertilization until swim-up could provide information regarding the onset of 

certain developmental abnormalities. Research has shown that Se will accumulate in the eye lens 

of zebrafish, and which has been demonstrated to produce cataracts in juvenile rainbow trout 

after dietary Se exposure (Choudhury et al., 2015; Pettem et al., 2018). I did not observe any 
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cataract like effects of dietary SeMet exposure in adult fathead minnow, nor did I observe any 

cataract like effects in swim-up fathead minnow during the deformity analysis. However, there 

could be potential defects in eye development during the early life stages which might be more 

evident in behavioural assessments once the fish have developed into juvenile or adults, such as 

during shoaling or predator response events.  

3.5 Conclusion  

 My thesis research was part of a larger overall project called the Ecological Risk 

Assessment of Selenium (ERASe), which focused on characterizing the potential effects of Se 

throughout various trophic levels of aquatic food webs using field and lab-based studies. For 

example, the ERASe project included research on the bioconcentration of two important 

inorganic Se species, selenite and selenate, in diverse periphyton communities; laboratory based 

simple aquatic food web exposures investigating the trophic transfer of Se from primary 

producers(algae)-primary consumers(invertebrate)-secondary consumers(fish); and mesocosm 

based studies performed at the IISD Experimental Lakes Area which investigated the effects of 

increased aqueous inorganic Se concentrations and aquatic food web trophic transfer of Se under 

realistic ecological conditions. It has been accepted that the most sensitive aspect of Se toxicity 

are the effects of Se maternal transfer in embryo-larval offspring. Therefore, my thesis research, 

as part of the ERASe project, focused on developing and validating an embryo injection method 

as a proxy for Se maternal transfer to support future studies in non-model fish species.  

 My thesis research was two-fold and studied the effects of SeMet exposure on 

reproduction and maternal transfer in fathead minnow. First, I investigated the potential effects 

of increased concentrations of dietary Se exposure on reproduction, maternal transfer and the F1 

generation. Secondly, I explored the use of embryo microinjections as a proxy for the maternal 

transfer of Se by comparing the response of embryo-larval fathead minnow in both exposure 

routes. The results suggest that exposure to elevated concentrations of dietary Se did not have a 

negative effect on fecundity and that a supra-nutritional dosage might be beneficial to 

reproduction. Dietary exposure to elevated Se induced rapid maternal transfer of excess Se to 

embryos, and which reached an approximate steady-state after 14 days of exposure. Embryo-

larval fathead minnow exposed to elevated concentrations of Se through maternal transfer did 

not show reductions in hatchability or survival, but there was a clear response in the form of 

larval morphological abnormalities at swim-up that followed a dose-dependent trend. In the 
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comparative study, embryo-larval fathead minnow exposed to SeMet via microinjection did not 

show reductions in hatchability. However, fish exposed through this exposure route 

demonstrated slightly lower survival rates and I observed a similar trend in the proportion of 

deformed fish to the maternal transfer study at concentrations in the range of 9.73 – 13.5 µg Se/g 

embryo dm. Notably, fathead minnow larvae displayed a greater proportion of deformities at 

embryo Se concentrations of 18.9 µg Se/g embryo dm when exposed via microinjection versus 

embryo Se concentrations of 28.4 when exposed via maternal transfer, likely as a function of Se 

bioavailability resulting in slightly greater toxicities.  

 Using this information, it could be useful to establish a correction factor for the 

difference in toxicity between maternal transfer and microinjection in fathead minnow. Then, as 

future research using microinjection as a proxy for maternal transfer is completed in species for 

which the early life stage sensitivity to Se has been established in field- or lab-based maternal 

transfer studies (e.g. rainbow trout or white sturgeon), correction factors could be determined in 

these species which differ in phylogeny and life history. This could provide further insight 

regarding sensitivity differences between the microinjection and maternal transfer exposure 

routes across diverse fish species. Ultimately, the goal of this research was to investigate embryo 

microinjection as a method which could provide risk assessors and regulators with a more 

accurate technique than simply applying a safety factor which can be used to set specific and 

protective guidelines for species of concern. Embryo microinjection is a promising tool in this 

context and its use in non-model species will be vital to fully determine its application. To 

conclude, my thesis research provides an additional line of evidence into the use of embryo 

microinjections as a surrogate for maternal transfer when studying Se related toxicities in early 

life stage fish native to North American freshwater systems.  
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 APPENDICES 

Appendix A: Water quality data. 

Table A.1. Water quality parameters measured throughout the maternal transfer study. Data represent the mean ± SD of water samples 

taken throughout the study. 

Treatment 
Temperature 

(ºC) 
pH 

Dissolved 

Oxygen (%) 

Ammonia 

(mg/L) 

Hardness 

(mg/L) 

Alkalinity 

(mg/L) 

Conductivity 

(µS/cm) 

Control (1.18 µg 

Se/g food dm) 
25.0 ± 0.3 8.14 ± 0.1 86.9 ± 12.5 0.4 ± 0.4 162.3 ± 18.9 141.9 ± 10.2 516.2 ± 10.8 

Low (3.88 µg Se/g 

food dm) 
25.0 ± 0.3 8.07 ± 0.1 89.9 ± 9.6 0.4 ± 0.2 147.6 ± 10.0 142.1 ± 8.7 519.9 ± 6.3 

Medium (8.75 µg 

Se/g food dm) 
24.9 ± 0.3 8.00 ± 0.1 79.9 ± 13.4 0.4 ± 0.2 145.9 ± 9.0 142.0 ± 5.7 513.4 ± 25.1 

High (29.58 µg 

Se/g food dm) 
25.0 ± 0.4 8.05 ± 0.1 90.0 ± 9.4 0.4 ±0.2 151.2 ± 19.8 143.5 ± 9.8 515.2 ± 11.3 
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Appendix B: Preliminary SeMet microinjection dose-range-finding trial. 
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Figure B.1. Mean survival of P. promelas until 4 dpf after embryo 

microinjection of SeMet during preliminary dose-range-finding study. 

Data represent the mean ± SEM of replicate (n=4) samples of 30 

injected embryos. 
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Appendix C: Fecundity of female P. promelas during 28 days of dietary exposure to SeMet. 
	 
 
 
 

1.18 3.88 8.75 29.58
0

5

10

15

20

Dietary selenium concentration (µg Se/g food dm)

M
ea

n 
em

br
yo

 c
lu

tc
h 

si
ze

 
(p

er
 fe

m
al

e 
pe

r d
ay

)

Figure C.1.	Mean clutch size of embryos produced daily per female P. 

promelas during 28 days of dietary exposure to SeMet. Data represent the 

mean ± SEM. 
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Appendix C: Fecundity of female P. promelas during 28 days of dietary exposure to SeMet. 

	
Figure C.2.	Cumulative number of mean embryos produced by P. promelas breeding groups 

during 28 days of dietary exposure to SeMet.  The four treatment groups were Control (1.18 µg 

Se/g food dm), Low (3.88 µg Se/g food dm), Medium (8.75 µg Se/g food dm), and High (29.6 

µg Se/g food dm). Each plotted point represents the mean number of embryos produced per 

female, per day, within a respective treatment.	
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Appendix D: Embryo-larval developmental endpoints. 
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Figure D.1. (A) Percentage of P. promelas alive at swim-up 

after in ovo exposure to SeMet. (B) Percentage of P. promelas 

that successfully hatched after in ovo exposure to SeMet. 

Different letters represent a significant difference (a=0.05) in 

the proportion of surviving fish among treatment groups. In 

panels where no letters are present there were no significant 

differences among treatment groups.  Data are presented as 

mean ± SEM. 
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Appendix D: Embryo-larval development endpoints. 
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Figure D.2. Graduated severity index (GSI) values determined for each category of deformity in 

larval P. promelas after in ovo exposure to SeMet. (A) finfold deformities; (B) spinal 

deformities; (C) craniofacial deformities; (D) edema. Different letters represent a significant 

difference (a=0.05) in mean GSI scores among treatment groups, within of each exposure route. 

Uppercase letters represent significant differences within the microinjection exposure treatment 

groups. Lowercase letters represent significant differences within the maternal transfer exposure 

treatment groups. In panels were no letters are present there were no significant differences 

among treatment groups. Data are presented as mean ± SEM. 
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Appendix E: Criteria for deformity analysis 

 The evaluation of deformed swim-up P. promelas was performed in a blinded fashion by 

covering identification labels on vials containing preserved fish. Therefore, during deformity 

analysis the treatment the larvae had received was unknown. Each vial containing preserved 

swim-up P. promelas were analyzed one at a time, and each individual larva from within a vial 

were analyzed one at a time. Larvae were always kept in 70% ethanol solution and were 

transported using a 5 mL transfer pipette which never physically touched the larvae to ensure 

that larvae were not physically damaged during the transfer process. Larvae were inspected from 

lateral, dorsal and ventral views at various magnifications to ensure appropriate observations of 

each specimen. Each swim-up larva was investigated individually for deformities within each of 

the four following categories: i) spinal curvatures were assessed for kyphosis, a convex curvature 

in the thoracic region of the spine; lordosis, a concave curve of the lumbar region of the spine; 

scoliosis, a lateral or S-shaped curve of the spine; and stunted trunk and/or tail development; ii) 

edema of the yolk sac and pericardium; iii) craniofacial abnormalities including absence of or 

malformed jaw, and ocular microphthalmia (reduced eye size); and iv) finfold thickness, 

curvature and orientation. Deformities were assessed for frequency (presence or absence) and for 

severity using a graduated severity index (GSI) as per recommendations by Janz et al. (2010) and 

McDonald et al. (2010). The GSI used scores of 0 – 3 to assess the severity of individual 

deformities. A score of 0 was given to fish displaying normal development. A score of 1 was 

given to slight deformities within a respective category that were deemed to unlikely impair fish 

movement or feeding. A score of 2 was given to moderate deformities that were likely to impair 

fish movement or feeding. A score of 3 described a severe deformity that was likely to greatly 

impair fish movement or feeding.  

 
 
 


