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Abstract

Fluid motion turbulence is one of the most important transport phenomena oc-
curring in engineering applications. Although turbulent flow is governed by a set of
conservation equations for momentum, mass, and energy, a Direct Numerical Simula-
tion (DNS) of the flow by solving these equations to include the finest scale motions
is impossible due to the extremely large computer resources required. On the other
hand, the Reynolds Averaged Modelling (RAM) method has many limitations which
hinder its applications to turbulent flows of practical significance. Room airflow fea-
turing the co-existence of laminar and turbulence regimes is a typical example of a
flow which is difficult to handle with the RAM method. A promising way to avoid
the difficulty of the DNS method and the limitation of the RAM method is to use
the Large Eddy Simulation (LES) method.

In this thesis, the drawbacks of previously developed techniques for the LES
method, particularly those associated with the Subgrid Scale (SGS) modelling, are
identified. A new Volume Average Technique (VAT) for turbulent flow simulation is

then proposed. The main features of the VAT are as follows:

1) The volume averaging approach instead of the more common filtering approach
is employed to define solvable fields, so that coarse-graining in the LES and space

discretization of the numerical scheme are achieved in a single procedure.

2) All components of the SGS Reynolds stress and SGS turbulent heat flux are

modelled dynamically using the newly proposed Functional Scale Similarity (FSS)

i



SGS model. The model is superior to many previously developed SGS models in that
it can be applied to highly inhomogeneous and/or anisotropic, weak or multi-regime

turbulent flows using a relatively coarse grid.

3) The so-called SGS turbulent diffusion is identified and modelled as a separate
mechanism to that of the SGS turbulent flux represented by the SGS Reynolds stress
and SGS turbulent heat flux. The SGS turbulent diffusion is defined in the coarse-

graining procedure, and is responsible for most of the energy dissipation.

4) A new 3-D collocated scheme for the solution of viscous incompressible fluid

flow, based on the SIMPLE and fractional-step methods, is developed for the LES.

Benchmark tests of the VAT are performed based on 2-D and 3-D lid-driven and
3-D buoyancy-driven cavity flows to demonstrate the accuracy and performance of
both the numerical method and LES model. Finally, as an example of a practical
calculation. the VAT is applied to the LES of airflow in an enclosed air-conditioned

room with a wall-mounted cooling inlet and an outlet on the opposite wall.

Using the VAT. many problems associated with the conventional LES techniques
have been at least partially solved. With the development of the VAT and similar
approaches, it should soon be possible to use of the LES method to simulate a real

flow of engineering interest with the computer resources provided by a workstation.
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Chapter 1

Introduction

1.1 Turbulent Flow Simulation — The Challenge

Since O. Reynolds published his famous paper on the discovery of the existence of
two different regimes in a pipe flow in 1883, it has been broadly accepted by fluid dy-
namicists that fluid motion can be classified as either laminar or turbulent. Laminar
flows. featured as being strongly viscous. stable, and determinable, have been exten-
sively investigated since the last century. Today, laminar flows are well understood
and their theory is systematically developed. Numerical simulation of laminar flows

has become routine in modern CFD practice.

The situation is far different for turbulent flows which are characterised as being
unstable. chaotic, and indeterminable. Turbulence is the most complicated kind of
flow making even its precise definition difficult. Although it has been investigated

for more than a century. turbulence is still an “unsolved” problem in mechanics;



the nature of turbulence is not well understood and some turbulence phenomena
are still unexplained or have only inconsistent explanations among different schools
of fluid dynamicists. Lack of knowledge of turbulent flows hinders the development
of simulation techniques for them. On the other hand, since most flows occurring
in nature and in engineering applications are turbulent rather than purely laminar,

numerical simulations for turbulent flows are required.

It should be pointed out that, although the nature of turbulence is hard to un-
derstand, fluid dynamicists have reached a general agreement that the smallest eddy
in a turbulent flow is several orders larger than the fluid molecules so that, for most
industrial and environmental turbulent fluid motion, a continuum hypothesis is still
valid. In such a context, turbulence means a 3-D transient motion of fluid, in which
the randomly varying quantities are still governed by the conservation laws of mass.
momentum. and energy. It is believed that, if the governing equations could be solved
numerically with high enough temporal and spatial resolution to include the smallest
eddy motions. the results would be in excellent agreement with those from experimen-
tal measurement. However, this so called “Direct Numerical Simulation™ approach of
turbulent flows is impossible to realize at present and in the near future. According
to the energy theory of turbulence, the smallest scale of eddies at which dissipation
takes place is determined by the Reynolds number, a dimensionless parameter related
to the mean-flow kinetic energy in the flow domain and the molecular viscosity of the
fluid. In a flow at a Reynolds number at which the fluid turbulence can be main-
tained, the smallest scale of eddies would be several hundred times smaller than the
scale of the low domain. Therefore, a grid of at least hundreds of millions of cells
would be required to capture features of all the eddies in a turbulent flow. Such a
simulation is far beyond the capacity (both memory size and speed) of today’s largest

supercomputer.

Since, with today’s computers, even the simplest practical turbulent flow is impos-
sible to simulate directly and engineers are mainly interested in the mean values of

fields, one turns to Reynolds-Averaged Modelling (RAM) methods. The RAM meth-
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ods are based on the Reynolds-averaged equations which are obtained by decompesing
velocity, pressure. and temperature into mean and fluctuating parts in the govern-
ing equations, and then taking an ensemble mean. The Reynolds-averaged equations
themselves do not represent a closed system for the determination of the mean veloc-
ity. temperature, and pressure because of the “Reyvnolds-stress tensor™ which contains
six additional unknowns and the “turbulent heat flux vector” which contains another
three additional unknowns, both of which appear in the Reynolds-averaged equations
due to the process of ensemble averaging. Different versions of the Reynolds-average
closure models represent different methods of relating the Reynolds stress tensor and
the turbulent heat flux vector to the mean velocity, temperature, and pressure fields
in some physically consistent fashion. In this way. the Reynolds-averaged equations
are closed. With the RAM method, it is possible to simulate flows found in practice

with the capacity of today’s computers.

Over the last century, tremendous efforts have been made by some respected sci-
entists in the fields of physics and mathematics to rigorously derive the two-point
Reynolds-average closure models using elegant theories of statistics and nonlinear
dynamics for the Reynolds averaged equations in forms of both physical and wave
number space. This work was pioneered by G.I. Taylor (1935). A.N. Kolmogoroff’s
(1949) outstanding works in the theory of local homogeneous and isotropic turbu-
lent flow resulted in the “2/3 Kolmogoroff law”. Recent development of the work is
based on several new concepts, such as “renormalization perturbation” and “renor-
malization group” theory. However, all of the above elegant models developed so far
are too complicated for practical use and have been limited to homogeneous (usu-
ally isotropic) flows which do not really exist in practical applications. It seems that
the theoretical modelling of turbulence is so challenging that any research tool found
successful in remotely similar problems is soon brought to bear. On the other hand,
engineers have created a semi-empirical approach for the one-point Reynolds-average
closure models. The semi-empirical approach derives the required closure expressions
by employing some qualitative conclusions from the statistical theory of homoge-

neous and isotropic turbulence and the dimensional analysis technique. Any unclear



relationships among parameters are lumped into coefficients which can be further
determined by experiments. The semi-empirical closure models are not yet accurate

enough, but are the only choice in engineering application.

Simple semi-empirical closure models of the RAM method are the eddy diffusivity
models in which the Reynolds stress tensor and the turbulent heat flux vector are
modelled using an eddy diffusivity hypothesis based on an analogy between molecular
and turbulent motions. Thus, the Reynolds stress and the turbulent heat flux can be
related to the gradient of mean flow fields through, respectively, an eddy viscosity and
an eddy heat diffusivity. The eddy viscosity and eddy heat diffusivity are calculated
from turbulence length and time scales specified in the flow. Prandtl’s (see Hinze,
1975) mixing-length model was one of the first eddy-viscosity models proposed for
2-D boundary layers. In this model, a prescribed “mixing length” and the inverse of
the normal velocity gradient are employed as. respectively, the turbulence length and
time scales. Kolmogoroff (see Hinze, 1975) proposed that turbulent flow phenomena
should be closed by solviﬁg two equations. The first of these is for energy of the
turbulent motion and the second is for its “frequency”. The second equation is
normally regarded as an auxiliary one. Such models are the one equation turbulence
models, in which the turbulence length scale still needs to be prescribed. An obvious
way to provide more effective dependence of the turbulence length scale on the flow is
to derive a transport equation for it. Thus, two-equation models were developed. An
early two-equation model was that proposed by Harlow and Nakayawa (1968). This
model. after modification by Launder and Spalding (1974). has been widely applied. It
is often called the standard k — e model, where k represents turbulence kinetic energy.
and e is its dissipation rate. More complex semi-empirical closure models of the
RAM type are the second moment closure models which explicitly employ transport
equations for individual Reynolds stresses and turbulent heat fluxes. The unknown
high-order correlations appearing in the transport equations are expressed in terms
of the second-order correlations themselves. The second moment closure models do

not rely on the eddy diffusivity hypothesis, and therefore relax some unreasonable

assumptions.



Although the RAM methods, mainly the ones using the well developed k& — ¢ mod-
els. have enjoyed considerable success in prediction of simple turbulent flows, it has
not been successful in complex flows. particularly those with strong inhomogeneity,
anisotropy, or unsteadiness. Thus, it is important to consider carefully the suitability
of the RAM method to turbulent flow simulation. The main reason for the problem-
dependent performance of the RAM method is that the assumptions imposed on the
Revnolds average turbulence models are so many that not all of them can be valid
for flows of practical interest. These assumptions include: 1) high Reynolds number:
2) homogeneous turbulence; 3) gradient-type turbulent diffusion; and 4) similarity of
spatial distribution of turbulence quantities. The fact is that all of the Reynolds aver-
age turbulence models, ranging in complexity from enhanced coefficients of eddy dif-
fusivities to an additional system of partial differential equations, contain adjustable
coefficients that should be determined empirically. Although changing values of these
empirical coefficients may, to some extent, offset the deficiency of the RAM method
relating to invalid assumptions. such a change relies on experiments and has only a
limited range of adjustment. Therefore, the RAM method is not a reliable approach

for complex turbulent flows.

Wall-bounded flows represent the main type of flow encountered in engineering
application. but also the most difficult kind of flow to be handled by the RAM
method. The presence of a wall imposes constraints on the flow. The most obvi-
ous constraint is that the viscosity of the fluid enforces the no-slip condition, i.e. the
velocity of the fluid at the solid surface must be equal to the velocity of the surface.
Another constraint in near-wall turbulent flow is the preferential damping of the tur-
bulent velocity fluctuations normal to the wall as the surface is approached. This
constraint arises from facts other than viscosity, and makes the turbulence weaker
and more anisotropic. Therefore, the first two assumptions for the RAM method.
i.e. high Reynolds number and homogeneous turbulence, can not be satisfied for a
wall-bounded turbulent flow. Flows in the immediate vicinity of the wall are always
laminar. The patterns of the flow farther away from the wall in the near-wall region

and their effect on the outer flow depend strongly on the speed of the outer flow



relative to the wall surface. If the relative speed of the outer flow is high enough,
a so-call “burst-and-sweep” process will be triggered in the near-wall region. This
process functions as a source of turbulence production in the near-wall region. In
this case, the flow in the near-wall region behaves as a thin boundary layer which
has only a limited effect on the outer flow. Furthermore. if the direction of the outer
flow is almost parallel to the wall surface (e.g. in a pipe or channel flow). the log-law
velocity profile is usually valid in the near-wall region. With the log-law profile. one
can avoid simulating the near-wall region when the RAM method is applied. and
therefore alleviate the problem of invalid assumptions. However. the log-law profile
is no longer valid if the direction of the outer flow is changing. On the other hand. if
the relative speed of the outer flow is low, the only effect of the wall constraint is to
retard the fluid motion. When a wall is approached, the flow experiences a consistent
decrease in speed and turbulent fluctuation. In such a case. there is a continuous
change of the local Reynolds number from an extremely low value near the wall to a
relatively high value remote from the wall, and the flow is strongly inhomogeneous.

Such a flow is beyond the simulation capacity of any RAM method.

[t should be pointed out that over the past two decades. efforts have been made
to extend the RAM method to use at low Reynolds numbers and to describe the flow
close to a solid wall. The research has been carried out in two directions. One is to ex-
tend the two-equation closure models to low-Reynolds-number flows by incorporating
either a wall damping effect or a direct effect of molecular viscosity. or both, on the
empirical constants in the turbulent transport equations devised originally for high
Reynolds number. fully turbulent flows remote from the wall. Another is to extend
the second moment closure models to near-wall flows by modifying the high-Revnolds-
number versions of models of the correlations appearing in the transport equations for
the individual Reynolds stresses and turbulent heat fluxes. However. these so-called
low-Reynolds-number models have the same physical basis as their high-Reynolds-
number counterparts. Therefore, the low-Reynolds-number models share with their
counterparts many of the same deficiencies. Previous practice shows that the suc-

cess of the low-Reynolds-number version RAM method is still limited to some simple
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parallel wall-bounded flows.

Jets are another kind of flow frequently found in engineering application that may
cause problems when simulated using the RAM method. The problems are the low
local Reynolds numbers in regions near the boundaries of jets, and the co-existence
of the laminar and turbulent flow regimes. Furthermore, when a jet is confined by
solid walls, it is inclined to drift and attach randomly on one of the nearby walls
depending on its initial perturbation. This so called “multi-solution” phenomenon

cannot be accurately predicted by the RAM method.

In view of the above arguments. for simulation of most engineering turbulent flows.
the RAM method is not suitable, while the DNS method is at present only a dream.
A promising way to avoid the difficulty of the DNS method as well as to remove the
deficiency of the RAM method is to use the Large Eddy Simulation (LES) method. In
LES. large scale fields are computed directly, while the Sub-Grid Scales (SGS) of the
fields are modelled. The sub-grid scales of the fields are assumed to be more nearly
universal so that the statistics and their effect upon the large scale can be specified
by a small number of parameters. The method allows using a relatively simple SGS

turbulence model and a coarse grid mesh which can fit into existing computers.

1.2 LES of Turbulence and Some Problems

Since the pioneering work of Deardorff (1970), LES has developed as a method for
simulating wall-bounded turbulent flows of moderate complexity. A detailed review
of the present state of the LES method with a historical perspective will be given in
the next chapter. In this section. we point out in advance some issues of the LES
method. which should be studied and clarified before the method can be confidently

applied in engineering practice.

The first issue open to question is how to define the large scale component of the
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flow field which the method will attempt to calculate directly. There are generally two
ways of doing this: the filtering approach of Leonard (1973), and the volume-averaging
approach of Schumann (1974). These two approaches are equivalent, respectively, to
low-pass filtering the governing equations in Fourier space (whole domain smoothing)
and averaging the governing equations over a small region of physical space (local
smoothing). For historical reasons, it has been broadly accepted that the filtering
approach is superior to the volume-averaging approach in that it can lead to contin-
uously distributed filtered fields. Almost all of the previous applications of the LES
method were based on the filtering approach. One criticism to the volume averaging
approach is that it leads to two kinds of averages. i.e. volume averages and surface
averages. Both of averages appear in the volume averaged governing equations. and
are difficult to handle simultaneously. However, the author is strongly in favour of

using the volume averaging approach.

An apparent advantage of the volume averaging approach which had already been
identified by some previous researchers is that it can directly reach a discretized finite
difference scheme for the governing equations. In the volume averaging approach.,
the volume average procedure serves for both field smoothing and solution domain
discretization. However, to justify the filtering approach, one should presumably
assume that solution domain discretization has no effect on the filtered field quantities.
or view the filtering procedure as only a nominal guide for the SGS modelling, and
still use the volume averaging approach in numerical implementation. The former
assumption is apparently not accurate, while the latter approach (adopted by many
simulators) will actually lead to the volume averaging approach itself. For the filtering
approach, most kinds of filters, such as the ideal filter or Gaussian filter. are difficult
to realize in physical space. Thus, the simplest “top-hat” filter is broadly employed for
LES of flows with engineering significance. The “top-hat” filter looks (but actually is
not) identical to volume averaging at discretized points of the solution domain. This
may explain why some people are inclined to confuse these two smoothing approaches

in their LES practice.
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When applying a smoothing approach (filtering or volume averaging) to convective
transport equations of a field, the so called SGS-related terms will appear. In the
filtering approach, all of these terms including the Leonard term, the SGS flux term.
and two cross-correlation terms should be modelled to close the solution system. On
the other hand, using the volume averaging approach will lead to a simple expression
for the SGS-related terms in which both the Leonard term and the cross-correlation
terms vanish. Strict reasoning shows that a so called turbulent diffusion mechanism
which should be modelled in the LES is ignored by both the filtering and volume aver-
aging approaches. Physically, the turbulent diffusion represents a turbulent transport
enhancement mechanism distinct to that represented by the SGS flux term. Consid-
ering the turbulent diffusion is not essential if one tries to model all of the SGS-related
terms into a postulated eddy diffusivity with an adjustable coefficient. However, they
should be handled in the dynamic SGS models where each SGS-related term is mod-
elled in a self-consistent way without using adjustable coefficients. As to the handling
of the two kinds of averages in the finite difference scheme for the governing equations.
it is an old issue which has already been dealt with in the conventional finite-volume

method.

Another favourable feature of the volume averaging approach is the so called “su-
persedity” which means that if two volume-averaging processes are applied succes-
sively to a field. and if the averaging volume of the one is a subset of the other, then
the averaging process with the smaller averaging volume will have no effect on the
final averaged field and appears to be “superseded” by the one with the larger aver-
aging volume. The filtering approach does not have such a feature. except when the
filter employed is the “ideal filter”. However, use of the ideal filter is always avoided
due to its complexity in physical space. The dynamic SGS modelling method requires
that a test-grid level smoothed (filtered or averaged) field be obtainable numerically
from the corresponding sub-grid level smoothed field. This requirement is satisfied
due to supersedity when the volume averaging approach is applied. On the other
hand, no matter what kind of the filter is employed. the filtering approach cannot

satisfy this requirement.



Since a discretized numerical scheme will ultimately be used to solve the large
scale flow fields, whether or not the large scale flow fields are continuous, is not
significant. If the finite-volume method is applied as a numerical scheme for the large
scale motions of a flow, and if the control volume for the finite-volume method is
also defined as the SGS volume, the finite-volume discretization of the fields through
integration over each control volume is identical to the SGS volume averaging process

of the LES. Thus, an extra calculation for defining large scale motion can be avoided.

The second issue to be examined is the SGS model which is the key to the success
of the LES method. Commonly used SGS models are the eddy diffusivity models,
which lump the SGS turbulence effect into the so-called SGS eddy viscosity (in the
momentum equation) and SGS eddy heat diffusivity (in the energy equation). Al-
though efforts have been made to derive and solve a transport equation for the SGS
turbulence energy to provide the velocity scale for the SGS eddy viscosity. the ex-
pense involved in solving an additional equation does not seem to be justified by
improvements in accuracy (Piomelli, 1993). Thus far. the most popular SGS eddy
diffusivity model is still the Smagorinsky model which relates the eddy diffusivity
directly to the sub-grid length scale and the magnitude of the resolved strain rate
tensor. Recently, Germano et al. (1991) developed the so-called dynamic SGS model
which remarkably improves the Smagorinsky model by calculating the model coef-
ficients (the Smagorinsky coefficients) dynamically as functions of both space and
time. The key assumption on which this method is based is that the Smagorinsky
coefficients are independent of the characteristic width of the smoothing (filtering or
volume averaging) used. This assumptiom requires that the characteristic width of
the smoothing be encompassed by the inertial-range scale of the turbulence, so that
the small scales are in equilibrium, i.e. the energy production and dissipation are
in balance. In order to determine the Smagorinsky coefficients dynamically, another
smoothing process which is referred to as “test-grid smoothing” with a characteristic
width greater than that for the sub-grid smoothing is also applied to the flow fields. It
should be pointed out that “supersedity” is required to derive the equations relating

the Smagorinsky coefficients with the test-grid smoothed “sub-grid smoothed fields”.
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Thus. the dynamic SGS model of Germano et al. is only valid in the context of the
volume-averaging approach. Unfortunately, this fact appears to have been ignored by

most previous LES work.

It has been shown that the dynamic SGS model of Germano et al. has many
desirable features: it exhibits a better asymptotic behaviour near a solid wall and
in a laminar flow than the original eddy diffusivity SGS models, and is capable of
accounting for counter-gradient momentum or heat transfer (energy backscatter).
However, the Smagorinsky model is not a suitable model for strongly inhomogeneous
and anisotropic flows. The limitation is mainly due to the invalidity of the eddy diffu-
sivity hypothesis in these flows. and the problem is only partially remedied by using
dynamically determined Smagorinsky coefficients. It has been generally accepted
that. if the SGS Reynolds stress tensor and the SGS turbulent heat flux vector can
be modelled directly without using the eddy diffusivity hypothesis, the accuracy of
the SGS modelling would be greatly improved. A model of this nature is the scale
similarity model proposed bby Bardina et al. (1980) which is based on the assumption
that the main interaction between resolved and SGS eddies take place between the
smallest resolved eddies and the largest SGS ones. Since the interaction components
are very much alike, the SGS velocity is approximated by the difference between the

filtered and twice-filtered velocities. This gives a model of the form
Ti; =C(0,UJ—E;:E§) (11)

where 7;; denotes the SGS Reynolds stress, U; denotes velocity component in i-
direction. over-tilde represents the filtering operator. and the coefficient C was revised
from 1.l to unity by Speziale (1985) to ensure Galilean invariance. So far, the only
criticism to this model is that it does not dissipate energy, and can cause numerical
instability. To remedy this. the so-called mixed SGS model was proposed by intro-
ducing a Smagorinsky-like term into the scale similarity model to account for the

proper energy dissipation. Zang et al. (1992) improved the performance of the mixed
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SGS model by calculating the model coefficients appearing in the Smagorinsky-like
term dvnamically as functions of both space and time from smoothed fields at both
sub-grid and test-grid levels. This so-called dynamic mixed SGS model has shown
some advantages over the dynamic eddy diffusivity SGS model originally proposed

by Germano et al..

In spite of their remarkable success in predicting some benchmark flows, the accu-
racy of the theoretical basis behind the dynamic eddy diffusivity or dynamic mixed
SGS models is still open to question. First of all, allowing energy backscatter is a de-
sirable feature of both the dynamic eddy diffusivity and dynamic mixed SGS models,
but “over-backscatter”™ of the energy may occur which will result in an exponential
instability of the solution. In the simulations by Zang et al. (1992), this problem was
avoided by locally averaging the calculated Smagorinsky coefficients within a rectan-
gular volume using a stencil of three grid points in each direction and also setting the
total viscosity v+ v, to be zero whenever it became negative. The excessive backscat-
ter of energy is mostly due to the invalidity of the eddy-diffusivity hypothesis. Since
the eddy-diffusivity SGS model uses a diffusion transport to model SGS turbulent
transport in all directions. the real turbulent transport in each direction will be sig-
nificantly distorted in regions of inhomogeneous, anisotropic turbulence where the
“backscatter” is strong. Thus. a more general remedy to this problem is to totally
give up the eddy-diffusivity hypothesis and use an all-component Reynolds stress SGS
model instead. Furthermore, the expressions applied to dynamically determine the
Smagorinsky coefficients in both the dynamic eddy diffusivity and dynamic mixed
SGS models are tensor equations. For the scalar coefficients to be computed, the ex-
pressions are ~over-determined”. In other words, we can not find values of the scalar
coefficients which will satisfy the balance of all components in their tensor equations.
Any method designed to calculate scalar values of the Smagorinsky coefficients will

bring in additional errors to the SGS modelling.

It is true that being less dissipative is one of the reasons for the lack of success of

the original scale similarity model proposed by Bardina. The too small dissipation
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is mostly due to the fact that the turbulent diffusion, which represents most of the
positive energy dissipation was ignored in the model by Bardina. Another reason is
that it is difficult to justify equation (1.1) based on the assumption that the SGS
velocity can be approximated by the difference between the filtered and twice-filtered
velocities. From the author’s point of view, numerical instability should not be viewed
as a big problem in LES of turbulent flow. The fact is that both strong dissipation
and strong unsteadiness are typical features of turbulent flows where they coexist
and interact with each other. Therefore, it is not justified to avoid the numerical
instability by arbitrarily involving an extra diffusivity in the SGS model. Instead. we
expect a LES technique to be able to simulate occurrence of flow unsteadiness and

vet avoid numerical divergence at the same time.

Another problem associated with the theoretical basis behind the dynamic eddy
diffusivity or dvnamic mixed SGS models is that the derivation of the theory is only
valid for strictly homogeneous turbulent flows. The smoothing (filtering or volume-
averaging) procedure of the model lacks the ability to distinguish the real SGS tur-
bulent fluctuation from inhomogeneous mean flow fields. Although this drawback
can be alleviated by refining the grid at strongly inhomogeneous regions in a solution
domain, in practice this requires too much computer resource. This is especially the
case when the models are applied to simulate turbulent flows near a solid boundary.
Therefore, one must find a way to separate spatial inhomogeneity from real turbu-
lent fluctuations of a flow field in the SGS modelling. Otherwise, results of the LES
will be inaccurate or grid-dependent. and the situation is worse when turbulence in
the flow under consideration is not strong enough — a poor laminar-side asymptotic

behaviour of the SGS model.

Finally, a problem which looks to be insignificant but may affect the final results
of the LES of turbulent flows is how to determine A, the characteristic length scale

of the volume average or the length scale of the smallest solvable fluctuation. Most
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previous LES workers used the following expression:
A = (AzAyAz)s.
Some others used expressions such as
A= (Az? 4+ Ay? + Az?)?

or
_ Az +Ay+ Az

A
3

where Az etc. are the length scales of the averaging volume. However, if we ac-
knowledge that the SGS Reynolds stress or SGS turbulent heat flux appearing in the
discretized governing equations in finite difference form is a surface average rather
than a volume average. it is more reasonable to define the A based on surface areas
of the averaging volume. In this sense, A should have three values, one for each co-
ordinate directions. Furthermore, time-stepping of numerical schemes requires that
the governing equations be averaged over a small time step. By so doing, not only
the high wave number but also the high frequency components are eliminated. Only
a few people. such as Bedford et al. (1982) and Dakhoul (1983) have considered this
effect in their derivation of the so called space-time filtering approach. The spatial
wave number and temporal frequency of a fluctuation are related to each other. It is
reasonable to expect that after a spatial smoothing, high frequency components of a
fluctuation are also eliminated, and vice versa. Therefore, we can view the temporal
average of the governing equations over a single time step as an additional volume
average superimposed on the SGS volume average. If the characteristic length scale of
the time-step average is greater, the expression for A should be based on the time-step

rather than on the control volume geometry.

In summary of the above discussion. present techniques for the LES method need
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to be improved in the following respects:

1) The technique should be developed as a combination of both the field quantity
smoothing of the LES and the solution domain discretization of the numerical method.

In this sense. the advantages of the volume averaging approach should be explored.

2) The SGS turbulent fluctuation enhances transport in terms of the SGS flux
and SGS turbulent diffusion as well. The latter was ignored by the previous volume
averaging approach of the LES. Identification and modelling of this mechanism in the

LES is essential to the VAT.

3) Eddy diffusivity models are not appropriate for the LES of most Aows with
engineering and scientific significance. Dynamic models for the full-component SGS
Reynolds stress and turbulent heat flux, and those for the SGS turbulent diffusion,

should be developed.

4) Conventional dynamic SGS modelling methods are only strictly applicable to
homogeneous flows which are not the case in engineering and scientific practice. An
approach should be designed to remove inhomogeneity, a non-turbulence effect. from

the SGS models.

3) Instability should be acknowledged as an important feature of turbulence and
the LES technique should be able to simulate it by employing a special algorithm to

avoid divergence.

6) The characteristic length scale of the LES should be re-defined to account for
the surface averaging nature of the SGS Reynolds stress and turbulent heat flux. and

the time average procedure used for time integration.



1.3 Room Airflow Prediction and LES Technique

The quality of indoor air is increasingly being recognised as an essential factor for
the overall health and comfort of human beings since up to 90 percent of a typical
person’s time is spent indoors. Also, industry needs indoor air quality control for
manufacturing, product storage, and research and development processes. Air con-
ditioning has become more and more popular during the last two decades. Today.
almost all commercial buildings in industrial countries have been air conditioned.

and air conditioning has become one of the most significant factors in national energy

consumption.

A successful and cost-effective air conditioning system is one that can maintain
a healthy and comfortable indoor environment with adequate outdoor ventilation
air and acceptable indoor air quality with a low energy index. Design of improved
air conditioning systems has stimulated engineers’ interest in improving knowledge
about how ventilation air is distributed and how indoor contaminants are transported
within buildings. The indoor space in a building is generally divided by internal
walls into rooms of different size. A good knowledge of room airflow is a key point
in understanding the indoor air motions in buildings. Therefore, it is necessary to
provide the means to investigate air distribution in rooms. The nature and severity
of indoor air quality, thermal comfort, and air conditioning load problems can be
assessed by room air motion analysis. Effective prediction tools for room airflow may

help a designer choose the optimum design from a number of possible alternatives.

Investigation of room airflow is mostly conducted by two approaches: experimen-
tal measurement and numerical simulation. Although it seems more accurate and
reliable, the experimental measurement approach has many limitations. It requires
a large investment in instrumentation, equipment, models for buildings, wind tunnel
equipment. and personnel. The experimental measurement approach also takes a long
time (often many weeks) to complete a study starting from model installation to data

acquisition and post-processing. In contrast. an important advantage of the numeri-
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cal simulation approach is the minimal investment. since only computer resources are
required. Furthermore, the results of numerical simulation can be accessible within
a few of days. Given the potential advantages of the numerical simulation approach,
it is of critical importance that accurate numerical methods be developed which can

be expected to vield realistic predictions of room airflow.

Experimental observation shows that airflow in a room of typical size is not lam-
inar. Previous researchers tended to view such non-laminar flow as “fully developed
turbulence”, and simulated it with the RAM method. However, the fact is that most
room airflow is not simply fully developed turbulence or even turbulence at all. Re-
cent investigations tell us that most room airflow is actually a combination of the
following kinds of flow: 1) unsteady laminar; 2) transitional states between laminar
and turbulence: 3) local artificially induced turbulence; 4) exterior turbulence con-
vected into the domain; 5) fully developed turbulence. One evidence of the complexity
of room airflow is the existence of so called “multiple solutions” which means that.
under specific conditions. room airflow shows different patterns in different observa-
tions (measurements). The phenomenon is likely to be explained as follows. The flow
pattern in a room is determined by the eddy structure of the flow. Since room airflow
is a combination of unsteady laminar and turbulent flow, there must be regions in the
room where the flow is at the transition point. Whether or not. and to which regime
a transition happens, are determined by the instantaneous eddy structure of the flow
and local Reynolds number. Once a transition occurs, a new eddy structure and a
new distribution of local Reynolds number will be set up, which will determine the
next transition. and so on. It should be noted that the laminar-turbulence transition
is actually a nonlinear procedure. The critical Reynolds number corresponding to a
transition from laminar to turbulence is higher than that corresponding to a tran-
sition from turbulence to laminar, a fact probably due to the “energy back-scatter™
mechanism in the “energy cascade”. Thus, once a transition has happened. it is
impossible to resume the pre-transition status even if the new distribution of local
Revnolds number allows it. A small disturbance itself has limited effect on the scale

structure of the flow in a room. but can affect the local Reynolds number, and con-
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sequently reverse the transition direction, and ultimately change the eddy structure
of the flow. Thus, the phenomenon of “multiple solutions” is nothing but a typical

feature of flows of hybrid regime.

In the sense of the above discussion, room airflow is a typical kind of flow, the
numerical simulation of which is beyond the capacity of the RAM method. Therefore,
an important objective of the present study is to apply the developed volume average

technique of LES to room airflow prediction.

1.4 Scope of Study and Thesis Outline

Having identified some drawbacks of the present techniques for the LES, in this study
a so-called Volume Average Technique (VAT) for turbulent flow simulation is devel-
oped. The VAT couples tﬁe volume averaging approach of the LES with the solution
domain discretization approach of the finite volume method. All formulations are
re-derived in the context of the volume averaging approach and in framework of the
finite-volume method. Additionally, a new functional scale similarity SGS model
is proposed which is expressed in terms of the sub-grid and test-grid volume aver-
aged fields. Since it is dynamical in nature, no empirical coefficient is applied in the
functional scale similarity SGS model. The model gives up the eddy diffusivity hy-
pothesis. thus over-backscatter of energy can be avoided. Since time averaged fields
are involved. the functional scale similarity SGS model is still valid for flows with

strong inhomogeneity.

Realization of the LES of flows relies strongly on the efficiency of the numerical
scheme applied. In the present study, a new collocated finite-volume scheme for 3-
D incompressible viscous flow is developed based on the conventional SIMPLE and
fractional-step methods. The scheme is shown to be convenient and efficient when

applied with the VAT. After some benchmark tests, the VAT is finally applied to
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predict the flow in a room of generic geometrical and air-conditioning configuration.

The outline of the thesis is as follows:

In Chapter 2, the current state of the art in turbulent flow simulation is reviewed.
The scope of discussion is limited to the LES methods and emphasises the character-

istics of previously developed SGS modelling methods.

In Chapter 3, the formal theory of the VAT for turbulent flow simulation is devel-

oped. The main aspects covered are:

1) Derivation of finite difference form discretized governing equations with the SGS

related terms expressed in terms of control volume surface averages.

2) Development of the functional scale similarity models for both the SGS Reynolds

stress and SGS turbulent heat flux.

3) Derivation of the models for the SGS turbulent diffusion term through an anal-

ogy to molecular diffusion.

In Chapter 4. numerical methods associated with the VAT for turbulent flow sim-
ulation are developed. The most significant aspect covered in this chapter is the col-
located scheme for 3-D viscous incompressible flow. which combines the techniques
of the SIMPLE scheme, the fractional step method, the QUICK scheme, and the
ADLGS solver. Other aspects covered are the numerical approaches for handling
boundary conditions, and the numerical schemes for the test-grid volume average

and time average.

In Chapter 3, 2-D and 3-D lid-driven cavity flows at Re = 1000 and Re = 400. and
a 3-D buovancy-driven cavity flow at Ra = 10° are considered as model problems for
testing the numerical schemes developed. The flows are believed to be laminar, and

no SGS models are applied.

In Chapter 6. two benchmark flows, i.e a lid-driven cavity flow at Re = 10000

and a buoyancy-driven cavity flow at Ra = 10'°, both of which are in the regime of
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turbulence. are simulated using the VAT. The results are compared with those from

previous experimental and/or numerical investigations for the same flows.

In Chapter 7, as an application of the VAT for turbulent flow simulation, a case of
room airflow in an enclosed air-conditioned room with a wall-mounted cooling inlet
and an opposing outlet is predicted. Comparisons are made between the results of
the simulation and their counterparts from a published experimental investigation of

the same room airflow.

Finally, in Chapter 8, the conclusions of the study are presented. along with a

summary of its contributions as well as a set of recommendations for future research.

The ultimate objective of the present study is to enable the LES method to be
applied to the simulation of engineering turbulent flows with moderate complexity
using computer resources provided by a typical workstation or high performance

personal computer.



Chapter 2

Literature Review

2.1 Introduction — A Short History

As was pointed out in the previous chapter, LES is probably the only promising
method we can apply confidently to simulate complex turbulent flows found in engi-
neering application. Nevertheless, development of the LES method has been strongly
related to the sophistication of computers available. Compared with the RAM meth-
ods, the LES method needs still larger computer memory and longer CPU time due
to the 3-D and time-dependent nature of the computations. This can explain why the

LES method has so short a history of development (approximately three decades).

The first application of the LES method was made by meteorologists who tried to
simulate global weather patterns for a long time period. A typical 3-D simulation
of atmospheric circulation which can be viewed as a real LES of turbulent flow in

today’s sense is that of Smagorinsky (1963). This paper presented the Smagorinsky
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SGS model that has since been used extensively. The first computation of a flow
of engineering interest, and also the first use of the name “Large Eddy Simulation”,
was the simulation of a channel flow by Deardorff in 1970. In this pioneering work.

Deardorff laid down most of the foundations of the LES method.

Improvements in Deardorff’s method were made by Schumann (1973) and Leonard
(1974). They introduced, respectively, a strict theorv of the volume averaging ap-
proach and that of the filtering approach for the LES method. Since then, research
of the LES method has been divided into two categories. The volume averaging ap-
proach is represented early by Schumann (1973) and Grotzbach (1977,1978). The
latter and his group at Karlsruhe have subsequently extended the method to the
computation of annular flows, the inclusion of heat transfer, and the inclusion of the
effect of buoyancy. The other approach. i.e. the filtering approach is represented by
the Stanford group, e.g. Mansour et al. (1979), Moin et al. (1978). and Ferziger
(1977). The flows simulated in late 70’s and early 80’s by the Stanford group are
those with at least one homogeneous direction, such as mixing layers and channel
flows. Since then. the filtering approach has been broadly used by most LES research
groups all over the world. Unfortunately, people have not paid as much attention to

the volume averaging approach as it deserves.

The basic idea of LES can be explained more simply in wave number space. In
this context, the LES can be performed by simulating the Fourier transformed Navier-
Stokes equation with its wave number representation truncated (k < k.). Due to the
complexity of the equation, direct application of this so called spectral LES approach
is limited to homogeneous isotropic flows, which have little significance in engineering
practice. Nevertheless, the approach can be applied to the development of SGS models

by using the elegant two-point correlation theories of turbulence.

Almost from the beginning of the use of the LES method, it was realized that
developing better models for treating the small scales (SGS models) or at least un-

derstanding the models that are in use is of critical importance. The 1980’s and early

o
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1990’s saw the development of several different versions of SGS model, which almost
dominated the research in the field during that period. The most important achieve-
ments in the development of the SGS models, from the point of view of engineering
applications, are: 1) the scale similarity model proposed by Bardina et al. (1980) and
2) the dynamic eddy viscosity model proposed by Germano et al. (1991). However,
due to an intrinsic deficiency. the pure form of the scale similarity model (as opposed
to its mixed form) has not been broadly accepted since its publication. On the other
hand, the dynamic eddy viscosity model has been extended and extensively applied

in the LES community.

Despite the notable advancements made since 1963, at present the LES method
still cannot be considered an engineering tool. To date, very rarely has the LES
method been applied to actual engineering configurations, such as flows in complex
geometries and at high Reynolds or Rayleigh numbers. This chapter reviews the
developed techniques of the LES method in order to give an overview of the current
state. Some information comes from review papers by Ferziger (1983), Rogallo & Moin
(1984). Grotzbach (1986), Yoshizawa (1986), Aldama (1990), Ferziger (1993), Piomelli
(1993a), Lesieur et al. (1993), and Lesieur & Metais (1996). The discussion is limited
to the LES method for incompressible Newtonian flows governed by the Navier-Stokes
equations, since the effects of buoyancy, compressibility, density stratification. etc.
introduce new physical phenomena that increase the simulation difficulty in degree
rather than kind. Both positive and negative features of the present techniques of
the LES method. specifically the ones that have been pointed out in the previous
chapter, are described in detail and some comments on them are given. In this sense,

the present chapter can be viewed as an extension of section 1.2.
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2.2 Rationale of LES

All numerical simulation of turbulent flows including LES is based on the assumption
that instantaneous flow variables satisfy the Navier-Stokes equations. Justification
of describing turbulent flows by the Navier-Stokes equation stems from the fact that
the smallest scale of turbulence is still several orders larger than the molecular scale
of the fluid. which has been accepted as an axiom among fluid dynamicists. The

Navier-Stokes and continuity equations for a viscous incompressible fluid are written

as
. . 1
Ui + (UU5),; = —p—P,i-f-l/Ui-.jj (2.1)
0
and
Uii=0 (2.2)

where U; represents the instantaneous velocity component in the :th direction; P, the

instantaneous pressure; and pg, a constant reference density.

The rationale of the LES method relies on the fact that simulation of turbulent
flows by directly solving equations (2.1) and (2.2) is practically impossible. This fact
can be explained using the Kolmogoroff theory of turbulence (refer to Orszag 1977).
According to the Kolmogoroff theory of homogeneous turbulence, the Kolmogoroff

micro scale 7 is defined by

n = O[(V*/e)]* (2.3)

where € denotes the energy dissipation rate per unit mass and v is the kinematic vis-
cosity of the fluid. On the other hand, experiments show that ¢ is mostly determined
by the characteristic velocity V' and characteristic length L of the largest eddies in a

given turbulent flow, i.e.

e=0(V3/L). (2.4)



From equations (2.3) and (2.4), we have

L/n = O(Re®*)

where Re = VL/v is the Reynolds number of the flow. Thus N, the number of mesh

points required to directly simulate the turbulent flow, can be estimated as:

N = O[(L/n)*] = O(Re**). (2.5)

In engineering applications, the Reynolds number is usually very large. For a flow at
Re = 10°. approximately 10! grid points are needed, which is definitely beyond the
memory capacity of any existing computer. and those in the foreseeable future. Even
worse in this regard is that a more precise data type (e.g. four-word representation
of a real number) with smaller machine round-off error may be necessary to handle
the increased quantity of calculations associated with large numbers of grid cells.
Furthermore, from the point of view of numerical stability, the use of an extremely
fine grid should be matched with an extremely small step for time advancement (the
CFL condition), which will consequently lengthen simulation time to an intolerable

degree.

[n order to reduce the need for computer resources, in LES only the large scale
eddies in a flow are simulated directly. The justification for doing this is supported by
the following facts summarised by Ferziger (1983). Firstly, the large eddies interact
strongly with the mean flow and are responsible for most of the transport of mass.
momentum, and energy. The structure of large eddies is strongly dependent on the
geometry of the flow, so they are highly anisotropic. By contrast, the small scale
eddies are much more universal, nearly isotropic. The main effect of small eddies is
to dissipate fluctuations of field quantities, which affects the mean properties only
slightly. The small eddies seem to be created and destroyed much more quickly. The

conclusion is that the large eddies are more important and also more difficult to model
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in a flow than the small eddies, which provides the rationale of the LES. A qualitative
comparison between the LES and DNS methods may give us some insight: the DNS

is a simpler “brute force” method, while the LES is a more complex but “artful”

scheme.

2.3 Coarse-graining Procedure in LES

The coarse-graining or smoothing procedure in LES splits the instantaneous field
quantities of a flow into the directly resolved parts and the unsolved SGS parts. To
this end. two approaches, the filtering and the volume averaging approaches have

been proposed. In this section, the formalism of these two approaches is examined in

detail.

2.3.1 Filtering Approach

Leonard’s (1974) definition of space filtering is as follows:

&= / / /_ Z G(x — x')®(x')dx’ (2.6)

where G is a suitably defined spatial filter function. For convenience, the above

operation can be written in the contracted form

[ A]
-1
e

®(x) = G(x) * P(x). (2.



By taking the space Fourier transform of the above equation and using the convolution

theorem, we obtain the expression of the filtering in wave number space as
o(k) = g(k)p(k) (2.8)
where ¢ and g are. respectively. the space Fourier transforms of ® and G. e.g.

o(k) = ///!: and®(x) exp(—ik - x)d*x

where : = \/—1. We can represent any 3-D filter function in terms of a product of

1-D filter functions in each direction, so that

3
G(x) = [ Gi(z;)

=1

or in wave number space

3
g(k) = ng(kj)

where GG; and g; are, respectively. the 1-D, j-direction filter functions in physical and

wave number space.

Several researchers have investigated the properties of different 1-D filters in con-
nection with their applicability to the LES method (Leonard, 1974: Kwak et al.. 1975;
Clark et al., 1979; Babajimopoulos and Bedford, 1980; Bedford and Dakhoul. 1982).
The most commonly applied 1-D filters include: 1) the ideal filter: 2) the Gaussian
filter; and 3) the box filter (also known as the top-hat filter). Their mathematical
expressions in both physical and wave number space were given by Aldama (1990) as

discussed below.
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The 1-D ideal filter is originally defined in wave number space as

1 for |k;| <27/h

0 for |k;| >2n/h

which in physical space takes the form

G (zy) = S2BIH)
7

In the case of the 1-D box filter we have

1/h for |z;| < h/2
Gi(z) = (2.11)

0 for |z;| > h/2

or in wave number space

sin(hk;/2)

() = 212
g](kJ) th/2 (""1"')

Finally. for the Gaussian filter

r—exp[—6(z;/h)? o g
Gj(l‘j) = 6/77' [ A J/ ] (213)
and
h2k?

gi(k;) = exp[-—]- (2.14)
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In equations (2.9) through (2.14), h represents the characteristic filter width. Plots
of the dimensionless 1-D filters, hG(z;), and the corresponding Fourier transform.
g(k;), are shown in Figures 2.2 and 2.1 for the ideal filter, in Figures 2.3 and 2.4 for
the box filter. and in Figures 2.5 and 2.6 for the Gaussian filter. All of the above

filters have been applied in previous LES work.



It can be shown through “integration by parts® that the filter operator and spatial,
as well as temporal, derivative are commutable (Leonard, 1974). Thus. the filtered

Navier-Stokes equations are

: — 1 - -
([,'+[,7,'(./rj,j= ——P,; +I/U,',J']' (2.15)
Po
and
Ui =0. (2.16)

The difficulty comes from the nonlinear term, i.e. the second term on the LHS of

equation (2.15), which is handled by introducing the following velocity decomposition:

where u; represents the SGS components of the velocity field ;. Thus, the term can

be expressed as

T, = O0; + (G0, — 005 + (Uady + ul05) + i (2.17)
or briefly
Ul; = iU, — Li; — Cij — 7 (2:18)

where L;;. Ci;. and 7;; are, respectively. the Leonard term, the cross-correlation term.
and the SGS Revnolds stress term. Substituting the expression (2.18) into the filtered

Navier-Stokes equation (2.135), we have

- 1. .
Ui + (U; /_,'),J' = —-p—P,,' +(I/U,',j +Lg]’ + C,'J' + T,‘J')._,‘ . (2.19)
0

Theoretically, only the C;; and 7;; in equation (2.19) are related to the SGS motions of

the flow and should be modelled to close the solution system; the L;; is calculable from
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the resolved fields. However, since it is related to filtering of the product of two filtered
velocity components, the term is difficult to calculate numerically. Several different
approaches were taken toward this issue, which are listed below. The modelling
methods for the C;; and 7;; appearing in equation (2.19) will be discussed later in

this chapter.

2.5
[ hG(x)

05L
x./h
j

Figure 2.1: 1-D ideal filter in physical space

1) Some investigations suggest that the term is responsible for only a small amount
of energy transfer between the large and small scales and can be swamped by the
numerical errors inherent in the finite difference representation. Thus. the term can
be neglected or lumped with the SGS models for the C;; and 7;;. Then the numerical
schemes developed for solving the instantaneous fields of the flow can be directly
applied to solving the filtered fields. This approach has been widely adopted in the
LES of wall-bounded flows.

2) Leonard (1974) showed that the term L,; (named after him) removes significant

energy from the large scales and should probably not be lumped with the SGS models.
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Figure 2.2: 1-D ideal filter in wave number space
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Figure 2.3: 1-D box filter in physical space



Figure 2.4: 1-D box filter in wave number space
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Figure 2.5: 1-D Gaussian filter in physical space
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Figure 2.6: 1-D Gaussian filter in wave number space

He proposed to express it in terms of a Taylor series expansion as
L.f- ./'~ i oo
“Lij ~ ( T ‘)]) t] /// le|2G(x/)d3x/
-~ -_00

At low Reynolds number. Clark et al. (1979) found this approach to be quite accurate
when compared with values from a DNS. One drawback of the above approximation
of the Leonard term is that a second order derivative appears inside another derivative
in the filtered governing equation. so that a third order differential equation results.
This fact will cause problems at the boundaries, due to the lack of sufficient boundary
information. Applications of this approach were limited to the LES of turbulent flows

with homogeneous directions.

3) As an alternative to modelling the Leonard term. one could treat the filtered
large scale nonlinear advective term, U;UJ-, explicitly (in the time stepping sense).
In doing this. the term is first Fourier-transformed into a product of g, the filtering

function in wave number space. and f([fgﬁ'j), the Fourier transform of ff,-(;'j. After



calculating the product. the required value of the term can be obtained by inverting
the Fourier transform. This approach has been favoured in most of the early LES
research carried out at Stanford (Ferziger et al., 1977; Mansour et al., 1979; Bardina
et al., 1980; McMillan et al.. 1980). However, the computational procedure for this
approach is too complicated. and there has been no evidence that it is more accurate

than the previous approach.

Although some researchers (e.g. Rogallo and Moin, 1984) claim that when the
ideal filter is emploved. the Leonard term will vanish identically, i.e., C./‘f/, = [}'if’j,
the validity of this argument is questionable. Using the ideal filter. one can only
reach the equality E) = & rather than the required condition, @:Tf)g = ®,9,. The
appearance of the above contradictory positions is probably due to the fact that
people deal with the issue separately without regarding the effect of numerical errors.
Theoretically. no matter what kind of filter is applied, the Leonard term does exist
and represents a high wave number (or SGS) contribution in correlations between
large scale fields. It can be shown that the length scale of this high wave number
portion ranges from h/2 to h. In [if/j, the SGS portion has been removed, while in
[;U;. which is retained in the convection term on the LHS of equation (2.19). the
SGS portion is still included. Thus, the Leonard term is introduced to compensate
for the above discrepancy. However, from a numerical point of view. if we use a grid
cell with length scale similar to h. we actually are not able to capture the effect of
the above mentioned high wave number portion in the calculation of U;l’;. In other
words. with the coarse grid. we actually obtain the value of U,-Uj without the SGS
portion, which is equivalent to UTEJ Thus, in this case the Leonard term can be

neglected or. as was referred to before. be swamped by numerical errors.

Two apparent features of the filtering approach are: 1) that the governing equations
for the large scale fields are still differential equations which are valid continuously
over the entire solution domain, and 2) that the characteristic width of the filter
can be selected freelv. Both features are very attractive from a theoretical point

of view. However. they have less significance from a numerical point of view. To
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be solved numerically, the differential equations governing the filtered fields should
first be discretized. The discretization procedure may complicate the situation since
it is also a coarse-graining procedure. Dissociation of the filtering and numerical
coarse-graining procedures from each other can only occur when the length scale of
a grid cell is much smaller than the characteristic width of filtering. However, too
small a ratio of the characteristic width of filtering over the length scale of the grid
cell will complicate the integral calculation and deteriorate locative sensitivity of the
approach. In fact, the range of the characteristic width of the filter to be selected
is very limited. It must not be less than the length scale of the grid cells. because
numerical schemes lack the ability to capture effects of eddies smaller than the grid
cells. On the other hand. in order to capture strong inhomogeneity of the flow in
the near wall region. the characteristic width of the filter must not be greater than
twice the grid cell length scale near solid boundaries. In practice, using a filter with

the characteristic width equal or close to the grid length scale is probably the best

selection.

2.3.2 Volume Averaging Approach

Let us consider the other coarse-graining approach. i.e. volume averaging. This ap-
proach is based on the recognition that we shall be solving the equations numerically.
Thus. it makes sense to use an approach that arrives at the discretized equations as

quickly as possible.

In the volume averaging approach. one first divides the flow region into many
rectangular subregions, SR, each with side h; (i=1,2.3). Schumann (1974) defined

the volume average of a field quantity ¢ as

o= bl o g

o
[N
o
e
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where V' = hyhyh3 is the volume of the subregion. It is interesting to rewrite equation

(2.6) for the case of the box filter with characteristic width h = {hy, ho, h3}, as

é = ‘i / / /lx_xkh &(x')dx". (2.21)

Comparison of equation (2.20) and (2.21) shows that the volume average presents only
one value for each subregion. while the values obtained by box filtering are position-
dependent and distributed continuously throughout the subregion. However, the
volume average and the box filtering are related at the centre of the subregion where

the value of box filtering is identical to that of the volume average.

Application of the volume average (2.20) to the Navier-Stokes and continuity equa-

tions (2.1,2.2) provides the following finite difference equations:

J

: /-/J\ 1 /'\ ——
Ui+ 6;UU; = ——6; P +vé; Uy (2.22)
Po
~
6T =0 (2.23)

i
~~
where @ denotes an average of the field ® over the subregion surface normal to the
r;-direction. e.g.
1
~~ 1

d =
hahs

/ ‘Ddl‘gdl‘g,

P
and 6; @ is the centre difference of the surface average,

N

i i+l -

~~ 1/& ~~

6 @ =—( 0 - & ).
A.t,'
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Shumann (1974) introduced the velocity decomposition based on surface average, i.e.

N
Ui = U, +d! (2.24)

and expressed the surface averaged velocity component products appearing in equa-

tion (2.22) as

) . . j . )
L/,'Uj = U,' UJ‘ +uiuj = U,‘ ij +T,'J'. (225)

Only the second term on the RHS of (2.25), i.e. the SGS Reynolds stress, should be

modelled in the simulation. Thus, equation (2.22) was rewritten as

J J i J

: Y Tt 1 —~~

U; + 61'( U; UJ' ) = —-p—é.’ P +6j(Tij + VUx'ej)- (
0

S
(]
(=]
N

The volume averaging approach was employed after Schumann by several LES
researchers such as Antonopoulos (1981) and Leslie (1982). and some realistic results

were obtained.

A drawback of the above derivation of Schumann (1974) is the application of the
surface average based decomposition (2.24) to flow fields which are actually volume
averaged. A consequence of this inconsistency is that the turbulent effects due to flow
fluctuations across the averaging surfaces cannot be captured. However, the problem
is surmountable if a volume average based decomposition and the linear interpolation
method is applied instead. Since the characteristic length scale of the volume average
is similar to that of the grid cell in the volume averaging approach, the Leonard term
will vanish due as pointed out in section 2.3.1. A detailed description of the volume

average based decomposition procedure is given in Chapter 3.



2.4 SGS Modelling Methods

In this section, we focus our attention on the modelling methods for the SGS-related
terms, i.e. the SGS Reynolds stress ;; and the cross-correlation terms!. Unlike the
turbulence models of the RAM methods, the role of the SGS models in the LES is
not to provide the turbulent statistics of a flow. but to prevent the omission of the
small scales from spoiling the calculation of the large scales from which the large
scale turbulent statistics are taken. From the point of view of energy conservation.
the SGS models should provide the correct magnitude of the energy transfer between
the resolved and sub-grid scales. This transfer is usually from resolved to sub-grid
scales but may be reversed, e.g. near solid walls, where the small productive eddies

are not solved directly.

Although Clark et al. (1979) found that the measured cross-correlation terms drain
significant energy from the resolved scales, there are actually few methods for reaching
an isolated model for them. The cross-correlation terms are either lumped with the
Leonard terms using a Taylor series expansion (Clark et al. 1979) or lumped with
the SGS Reynolds stress using an eddy diffusivity model with adjustable coefficients.
Aldama (1990) has identified the inappropriateness of expanding the cross-correlation
terms with a Taylor series expansion. The reason is that the highly fluctuating nature
of u; prevents it from being represented by a Taylor series in the scale of the filter
width. Thus, an accurate modelling method for the cross-correlation terms is still not

available.

Justification for lumping the cross-correlation terms with the SGS Reynolds stress
or equivalently assuming them to be zero may be explained as follows. Physically
the cross-correlation terms represent correlations between large scale fields and SGS
fluctuations. It is believed that, in a turbulent flow, only the fluctuations with similar

length scales are correlated with each other via a procedure of “vortex stretching”.

't is implicitly assumed that the discussion of the cross-correlation terms is in the context of the
filtering approach in this section
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Only the high wave number modes in the solvable fields and the low wave number
modes in the SGS fluctuations are correlated with each other, and the correlations
represent a main contribution to the cross-correlation terms. Let’s assume that the
dominant length scale of the low wave number modes in the SGS fluctuations is A
which should be a bit lower than A (the characteristic width of the filter), while the
dominant length scale of the high wave number modes in the solvable fields is Ap
which should be a bit higher than A. Thus, it can be shown (see Appendix A.1)

that the product of these two dominant modes has modes of length scales A‘-%—i— and

Arag
Ar+4;°

absolutely in the SGS range and will vanish when filtered (with the characteristic

I[f A; and Ay are close to each other, the mode with length scale A—’f‘AL is

length scale A) again. Therefore. the correlation terms have only low wave number
modes with approximately a very large length scale A#‘\‘L‘_—"\;AL‘. These extremely large
modes have negligible effect on local or instantaneous features of the flows under

consideration.

The review thereafter in this section will focus on modelling methods for the SGS

Reynolds stress 7i;.

For historical reasons. development of the modelling method for the SGS Reynolds
stress follows the development of the Reynolds average models. First of all, like the
conventional Reynolds stress, it is not difficult to derive a set of equations describing
the dynamical behaviour of 7;; using equation (2.17). The following equation is from
Ferziger (1983):

——

i + (7506) e = =[(Lix + 7)ok + (Ljk + 75)Uiri)

—[ L Fu ) = (Ui 4050 )] — 20[ut etk — Ui Uik + D (2.27)

where the cross-correlation terms C;; have been lumped into 7;;, and the terms on the
RHS are. respectively, the production, the redistribution, and the dissipation. The

last term. D, represents many diffusion terms which are not written explicitly. All of
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the terms in equation (2.27) are analogous to terms in the Reynolds stress equations
of second-moment closure modelling. Equation (2.27) also serves as the theoretical

basis for most SGS models developed.

2.4.1 Eddy Diffusivity SGS Models

The idea of diffusivity models for LES is similar to those for the RAM method, i.e. to
lump the SGS turbulence effect, mainly that from the SGS Reynolds stress, into the
SGS eddy diffusivity, which is referred to as the eddy viscosity (v,) for the momentum

equation. A mathematical representation of the model is as follows:

~ 1 —_—
= 2145,']‘ - §5gju§cu§c. (228)

With equation (2.28), the Revnolds stress term in equation (2.19) can be absorbed
into the diffusion term by combining the eddy viscosity with the molecular kinematic

viscosity.

Like the conventional eddy diffusivity models for the RAM method. the eddy
diffusivity SGS models can be “derived” from equation (2.27) under the “production
equals dissipation™ argument and other conditions. The most important one of these
conditions is the scale separation between the resolved and SGS eddies. which can
only be satisfied at a very high local Reynolds number. Therefore, no matter how
accurate the method employed to calculate the eddy viscosity (v,), a fatal drawback
of the eddy diffusivity SGS models is that they are only valid for fully developed,

unbounded turbulent flows.

The eddy diffusivity SGS models build up a one-to-one correlation between the
SGS Reynolds stress tensor and the resolvable scale strain rate tensor. However, the

analysis of the data obtained from DNS fail to display such a correlation (Clark et

40



al., 1979 and McMillan & Ferziger. 1980). Recently, Lui et al. (1994) also showed
poor correlation between these two tensors by using experimental data taken in the

far field of a turbulent round jet at a much higher Reynolds number.

However, probably due to the lack of any other option, at present the eddy diffu-
sivity SGS models are still widely applied. A comment by Ferziger (1983) summarises

well the situation:

The results (of the LES) shows that eddy viscosity models are rather poor and, in
fact. they become poorer when there is mean strain and/or shear in the flow. However,
it is not easy to find more accurate models ..., so we may be forced to use eddy viscosity

models until something better is developed.

In the present section, the SGS eddy diffusivity models of Smagorinsky and Schumann

are reviewed.

2.4.1.1 Smagorinsky’s SGS Models

The first eddy diffusivity SGS model was proposed by Smagorinsky in 1963. To
parameterise the SGS Reynolds stress, he related the eddy viscosity directly to the

characteristic width of the filter A and the magnitude of the resolved stain rate tensor

as follows:
v O (2.29)
where - “
S| = (25;;5:;)Y% S = EJ)LUJ_‘

and C, is a constant coeflicient.

Generally, C, is problem-dependent and should be determined empirically by using
flow field data from either an experiment or a direct numerical simulation. In LES
of decaying isotropic turbulence. Shaanan et al. (1975). Ferziger et al. (1977). and

Antonopoulos-Domis (1981) obtained values of /C, ranging from 0.19 to 0.24 by
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matching the computed energy-decay rate to the experimental data of Comte-Bellot
& Corrsin (1971). For the same turbulence (lower Reynolds number), Clark et al.
(1979) and McMillan & Ferziger (1979) gave comparable values of \/C, using flow
field data generated by DNS.

[t has been observed (Kolmogoroff, 1941a,b) that, at very high Reynolds number, a
so called inertial subrange of wave numbers exists where the effect of viscous dissipa-
tion is negligibly small compared with the flux of energy transferred by inertial effects.
Thus in the inertial subrange, the 3-D energy spectrum of turbulence E(k) is solely
related to e. the dissipation rate of turbulent kinetic energy. By using dimensional

analysis. one can obtain the famous —5/3 Kolmogoroff spectral law as follows,
E(k) ~ Roe*3k383, (2.30)
If the characteristic width of the filter A lays within the inertial subrange, one can

take advantage of equation (2.30) to calculate the coefficient C, analytically. This

fact was first recognised by Lilly (1966) who estimated € as
T/A
€~ 21/,/ K2 E(k)dk. (2.31)
0
Furthermore, € can also be estimated as
e ;05 (2.32)
by assuming that it is nearly equal to the energy production rate due to the SGS
Revnolds stress and the resolvable scale shear. Combining equations (2.32) with

(2.28) we have

v~ (JC,A)M3 3, (2.33)



Finally, substituting equations (2.33) and (2.30) into (2.31) we have

3[\—0 -3/4
(5

Vo= ;

T

For a Kolmogoroff constant of A = 1.4, this yields /C, ~ 0.18.

The above value of +/C, does a good job for isotropic turbulence. However. for
inhomogeneous shear flows many researchers. e.g. Deadorff (1970, 1971), have found
that this value should be reduced by 50% or more. This is no surprise because the
theory is based on isotropic turbulence. A review of this problem is given by Herring

(1979).

Several alterations or modifications to Smagorinsky’s SGS model have been pro-
posed. For example. Leslie and Quarini (1979) replaced the magnitude of the velocity
strain rate tensor |S|, in equation (2.29) with its ensemble average IS_I Kwak et al.
(1973) proposed that it is better to use the magnitude of the vorticity ||, rather than
|S|. in equation (2.29). However. there is no evidence to show that these modifications

significantly improve the original Smagorinsky SGS model.

2.4.1.2 Schumann’s SGS Models

As an alternative to Smagorinsky's SGS model, Schumann (1973) proposed a SGS
model with two eddy viscosities. The idea behind Schumann’s SGS Model is as fol-
lows. Firstly. the resolvable scale component ¢ based on filtering or volume averaging
consists of the mean component d and a fluctuating part around it. The character-
istic length scale of the former is much larger than that of the latter. With this in
mind. Schumann inferred that it is not appropriate to model 7;; using a single SGS

eddy viscosity. So, he divided the strain rate tensor of the resolved velocity 5’.5 into
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mean and fluctuating parts, and wrote the model expression as
9, & & 9,, & 1 Y, ‘
= Zl/t (S,'j - S,‘j) -+ 211:5;]' - §6ijukuk (2.34)

where v and v, are the SGS eddy viscosities associated with, respectively, the fluc-

tuating and mean parts of S;;.

Schumann assumed that v; is more isotropic than v, in his LES of a channel flow

using the volume averaging approach. Therefore, the following model was applied:
v = C:(FR)'/?C’ (2.35)

where F’ is the characteristic size of the surface used in finding 7;;; A" is the SGS kinetic
energy contained within the area F'; C; is an adjustable factor corresponding to C,
in Smagorinsky’s model; and C’ is an additional coefficient introduced to account
for anisotropic effects. Since the SGS eddy viscosity v, is closely associated with the
mean flow. which in the channel flow is in the z; direction only, it was therefore

modelled by
v, = 12|6;07,) (2.36)

where [ is the so-called mixing length; §, represents the finite difference operator in
the r; direction. Schumann defined the mixing length as:

[ = min[C;F'/?, kz})
where C; is a numerical coefficient; ) is the distance to the nearest wall; x (= 0.4) is

the Von Karman constant.

In Schumann’s model. A" was solved from a transport equation. Thus. the model
is also referred to as one-equation SGS model. The SGS modelling approach of using

one additional transport equation was also adopted by Grotzbach (1979. 1986) and
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Horiuti & Yoshizawa (1985).

Moin and Kim (1982) applied and modified Schumann’s model in their LES of
plane channel flow. In the modelling of v;, they suggested the following expression:

v; = C;AYS; — Sl
where A is defined as (A;A;A3)2. The second eddy viscosity was modelled as
v = Cu[Asf(z2)I5]

where f(z,) is a wall damping function. In this version of the model. no SGS kinetic
energy was applied. The idea of choosing the span-wise grid length scale A3 as the
characteristic length scale was suggested by the streak structure of turbulent boundary

layers observed by Kline et al. (1967).

2.4.2 Scale Similarity and Mixed SGS Models

Bardina ef al. introduced the scale similarity SGS model in 1980. The model is
based on the assumption that the interaction between the SGS and resolved eddies is
similar in form to that between the filtered and twice filtered fields. By representing
the SGS velocity by the difference between the filtered and twice filtered fields, they
suggested a SGS model for the Reynolds stress tensor as shown in equation (1.1).
The analysis of both the DNS data (Bardina et al., 1980) and the experimental data
(Lui et al., 1994) have shown that the model exhibits a good correlation with the real

SGS Reynolds stress.

However, when implemented in LES calculations, a Smagorinsky-like term should

be added to the model shown in equation (1.1), because the pure scale similarity model
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dissipates no energy, which causes numerical instability in the simulation procedure.

Therefore, the so-called mixed SGS model was proposed, which takes the following

form

r; = ClO:0; = O.0,) — 650l = Uclr)] = 2055 (2.37)
[t is the mixed SGS model that was really employed by Bardina et al. (1980). Later,
the mixed SGS model was applied to the simulation of homogeneous turbulence in

rotating coordinates with sheared turbulence (Bardina et al., 1983).

Since Bardina. several new formulations have been proposed to correct for the lack
of dissipation of the pure scale similarity SGS model. Goutorbe et al. (1994) and Lui
et al. (1994) have proposed using a second filter or spatial average different from the
first one. The idea is somehow related to the concept of the dynamic SGS models

which will be reviewed in the next subsection.

The scale similarity SGS model breaks through the shackles of the eddy diffusivity
modelling approach. It is plausible and represents a promising direction for accurate
SGS modelling. The mixed SGS model can be deemed as a compromise between new
and old in order to avoid the difficulty associated with the new. This difficulty is

surmountable. as will be shown below.

2.4.3 Dynamic SGS Models

The adjective “dynamic” means that the coefficients appearing in the SGS models
are determined “dynamically” in accordance with the local instantaneous flow fields
under consideration. In other words, the dynamic SGS models have no coefficient
to be determined empirically before simulation. This feature is very attractive to
making LES a real predictive rather than a postdictive numerical method. Based
on the Smagorinsky SGS model, Germano et al. (1991) proposed that the model

coefficient. i.e. the Smagorinsky coefficient, be calculated by applying another so-
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called test-grid filtering to the flow fields. The characteristic width of the test-grid

filtering (A’) is larger than that of the sub-grid filtering (A).

A key assumption on which Germano dynamic SGS model is based is that the
Smagorinsky coefficient is independent of the characteristic width of the filtering. It
is also assumed that the Leonard and cross-correlation terms can be lumped together
with the SGS Reynolds stress, and modelled by the same relation. Thus, following
equation (2.28). we can write the eddy viscosity model expressions at both sub-grid

and test-grid levels as

~ 7 e d 1 —— ~ -
T = —(U;U; = UU;) = 20,555 — §6ij(£’kUL— — U Uy) (2.38)
and
— s A 1 = o
T, = —(U:U; = UiU;) = 20;S;5 — g‘sij(UkUk — UUy). (2.39)

Now. using Smagorinsky's model to express v, and v}, respectively, in equations (2.38)
and (2.39) with the same coefficient C,, then test-grid averaging equation (2.38), and
subtracting the resultant equation from equation (2.39), we can obtain the following

tensor identity:

1
Lij it g(sgijk = ?.CUI‘I{J' (2'40)
where
L = U0, = U, (2.41)
My = A?1818, — %[5, (2.42)

We will show here that some specific conditions should be satisfied to validate the

derivation by Germano et al. (1991). First of all. one should assume that

(=1}
[l
LSy

(2.43)

for any field ®. Apparently. equation (2.43) is valid only in the case of using the ideal
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filter. Furthermore, in order to calculate L;; and M;; from the resolvable or sub-grid

filtered fields, it must be possible to write equations (2.41) and (2.42) as
L= L:/i[:/j — [/Ti?fi (2.44)

and
My = A?)8|8;; — A%|5]5, (2.45)

where S represents the strain rate of velocity based on U/;. The above formulation is
only possible in the case when equation (2.43) is valid. Therefore. Germano's dynamic

SGS model is only applicable with the ideal filter.

We refer to the feature (of a coarse-graining approach in LES) expressed by equa-
tion (2.43) as “supercedity”. and will show in Chapter 3 that the volume averaging

approach retains this feature.

Let’s return to equation (2.40) where every term can be determined explicitly from
the large scale fields in LES. However. equation (2.40) represents five independent
equations for one unknown variable, C,. Germano et al. (1991) contracted it with

S, to obtain.

= g (2.46)
2./\/[,'1'5,']'

v

In tests using channel flow data from DNS, Germano et al. (1991) have shown that
expression (2.46) may lead to numerical instability because its denominator could
locally vanish or become extremely small. A remedy to this problem is to take
an appropriate average along a homogeneous direction. Lilly (1992) suggested an
alternative contraction that minimises the total error of the equations in the least-

squares sense, i.e.
C. = L,‘jl"[ij
v ?.."‘Iij .}\/[gj

The advantage of expression (2.47) is that its denominator is positive definite and

vanishes only when the numerator also vanishes. Thus. it is more popular than
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Germano’s original expression, and was employed by, for example, Piomelli (1993b)

and Sreedhar & Ragab (1994).

Germano’s dynamic SGS model is an eddy diffusivity SGS model in nature, so that
it can be used only if both A and A’ are in the inertial subrange of scales. Germano
et al. (1991) extrapolated it into the wall regions of turbulent flow. However, the
dynamic meaning of this model in the wall regions is rather unclear. The problem
associated with this extrapolation is that the C, calculated can be of either sign
or even zero, and fluctuates considerably in both time and space. Analysis of DNS
data (Lund et al., 1993) and of experimental data (Liu et al., 1994) shows that the
variance of C', may reach values more than 10 times its mean value! Although allowing
a negative value of C, is a positive feature of the model which represents a sort of
backscatter of the turbulent kinetic energy, too large of negative values are unphysical
and will destabilize the numerical solution procedure. In order to avoid this problem.
Germano et al. (1991) suggested that equation (2.40) be averaged over space and/or
time. Averaging over the direction of flow homogeneity has been a popular choice and
has produced good results. The trade-off of this additional averaging procedure is the
loss of some “dynamic” features of the model. Zhao & Voke (1996) suggested that
not equation (2.40) but the value of C, be averaged over the homogeneous direction.
The performance of the dvnamic SGS model was shown to be improved with this

modification.

Germano's idea of dynamic SGS modelling was successfully extended in the form
of a mixed SGS model by Zang et al. (1992), who showed some advantages of this so
called *dynamic mixed SGS model” over Germano’s dynamic SGS model. In Zang's
dynamic mixed SGS model, spatial averaging and “cut-off” are applied to avoid over-
backscatter of the energy. An alternative approach to the additional averaging has
been suggested by Meneveau et al. (1994). Instead of averaging over directions
of homogeneity, the error associated with Germano’s identity is minimised along
particle trajectories. The approach has been shown to be as effective as spatially

averaging. However. two additional transport equations need to be solved. which
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then increases the computational effort. Wu & Squires (1997) combined Meneveau's
particle trajectory approach with Zang's dynamic mixed SGS models. With this so-
called Lagrangian mixed dynamic model, they simulated an equilibrium 3-D turbulent

boundary layer. The results obtained match well with the DNS data.

2.4.4 Other SGS Modelling Methods

Three SGS modelling methods, i.e. the SGS modelling method with transport equa-
tions, the “built-in” SGS models, and the spectral SGS models, which are not repre-

sentable of the main stream of the LES research are reviewed briefly in this subsection.

2.4.4.1 SGS Modelling with Transport Equations

The idea of calculating all components of the SGS Reynolds stress tensor using trans-
port equations derived for them comes from an analogy to the second moment closure
model for the RAM methods of turbulence. Theoretically, there is no difficulty in de-
riving a set of transport equations for 7;; as shown in equation (2.27). However. there
are at least two major problems associated with the solution of the equations. Firstly.
the equations contain many SGS scale related terms which should be modelled. The
modelling for these SGS scale related terms is actually not easier than that for the
SGS Reynolds stress itself. Secondly, the solution of six additional partial differential

equations will more than double the computing cost.

The only use of this modelling method to date was by Deardorff (1973) in his
LES of meteorological flows. Since, in his simulation, a scalar quantity (i.e.. the
temperature) is also involved, the solution system of the simulation is closed by 10
additional partial differential equations. Deardorff reported a computer time increase
on the order of 2.5 compared with the case of using Smagorinsky’s model. Although

using the transport equation SGS model does lead to improved results, such a complex
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modelling method is less attractive than the previously reviewed scale similarity SGS
model or dynamic SGS model combined with the possibility of using a judiciously

distributed set of mesh points over solution domains.

2.4.2.2 Built-in SGS models

The essence of built-in or intrinsic SGS models is actually “no SGS model at all”.
The idea is based on the fact that numerical schemes always involve truncation errors
as well as numerical diffusion or damping. Under specific conditions, the effect of
these truncation errors is to mimic that of the SGS fluctuations, so that no SGS
model is necessary. We can call this LES without any SGS model as coarse-grid or
pseudo DNS. Some of the results obtained with this approach appear reasonable, e.g.
Kawamura & Kuwahara (1984), while others have displayed very poor agreement with
experiments (Silveira-Neto et al..1993). Boris et al. (1992) showed that the monotone
algorithms such as the piecewise parabolic method or flux-corrected transport method
have intrinsically the features of a SGS model coupled naturally to the resolved scales
in the computed flow. Nevertheless, it is still open to question how to ensure that a

numerical scheme exactly meets the requirements of SGS modelling.

More recently, Denaro (1996) suggested that the SGS effect be recovered by using
higher order approximation for the advective terms. In Denaro’s so called model-free
simulation, a numerical flux is defined from a weak integration formulation derived
from the Taylor expansion. However, it is still doubtful that the SGS effect on the
inter-control-volume transport can be retrieved from a filtered field through a purely

mathematical handling.

[t is worthwhile to note that the intrinsic SGS models at least remind us that
numerical schemes have an effect on the SGS models, and we should consider both

the numerical scheme and the SGS modelling procedure together in LES.
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2.4.2.3 Spectral SGS Models

Both Smagorinsky’s and Schumann’s SGS models have been constructed from di-
mensional analysis incorporated with physical considerations based on the inertial-
subrange concept for homogeneous turbulence. On the other hand, statistical theories
of homogeneous turbulence based on the two-point correlations have been elaborated.
Therefore. it is natural that efforts have been made to develop the SGS models or to
estimate numerical parameters appearing in the developed SGS models using these el-
egant theories. Using statistical theories, the SGS models are studied in wave number
space. Thus. these SGS models are referred to as spectral SGS models or two-point
closure SGS models. For detailed review of these models, see Lesieur et al. (1993).

Herring & Kerr (1993), and Lesieur & Metais (1996).

The two-point closure theory on which the spectral SGS models are based is only
valid for isotropic and/or homogeneous turbulence. To the author's knowledge, all
spectral SGS models are of the eddy diffusivity type, and the theories are only used
to obtain expressions for the SGS eddy diffusivity. Additionally, the spectral SGS
models are too complicated to be handled numerically in physical space, especially
when the geometry of the solution domain is complex. All of the above facts hinder
the application of these models to the turbulent flows encountered in engineering

practice.

2.5 Application of LES

In this section, previous LES applications will be reviewed based on the types of
turbulent flows considered. The scope of discussion here is limited to flows of engi-
neering interest. For a review of the LES applications in the area of geophysics. see

Wyngaard & Moeng (1993).
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The empbhasis of previous LES work can be classified as: 1) development of the
LES technique: 2) exploring physics of turbulence and constructing RAM’s; and 3)
application to real problems. Only rarely has the LES method been applied to explore
the physics of turbulence or to develop RAM’s; people have preferred to do that using
the DNS method on low Reynolds number turbulent flows, so that the uncertainty
brought in by the SGS modelling procedures can be avoided. Thus, in this section,

we focus our attention only on the LES work in categories 1) and 3).

The objectives of most LES work carried out to date pertain to category 1), i.e.
to test or verify the SGS models or other LES techniques. The vast majority of
problems tackled so far with the LES technique are so called “building-block™ flows,
problems that isolate one or two physical phenomena of engineering interest and are
handled in a simplified geometry. The reason is that, to date, the LES method is still
too expensive to handle an engineering flow of moderate complexity. We begin our
discussion with LES work on these building-block flows, and then switch to those on
real flows in engineering practice. Meanwhile, challenges associated with the LES of

some of the flows will be discussed as well.

2.5.1 Burgers’ Flow

The simplest flow to be considered for testing the SGS models is the 1-D flow governed
by the periodic Burgers’ equation. a 1-D analogy to the Navier-Stokes equation. Ad-
vantages of using Burgers’ equation to test SGS models is apparent. It retains some
important features of the Navier-Stokes equation, such as nonlinearity, advection and
diffusion processes. and it is relatively easy to solve analytically or numerically at high
Reynolds number. The approach has been adopted by Love & Leslie (1977), Love
(1980), Dakhoul & Bedford (1986), and Aldama (1990). Nevertheless, the feasibility
of the approach is open to question. Firstly, turbulence is actually a 3-D phenomenon;

it is not justified to represent a 3-D dynamical procedure with 1-D equation. Sec-
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ondly, the absence of the pressure term and the continuity constraint in the Burgers’
equation imply that the 1-D flow governed by the periodic Burgers’ equation may be

significantly different from real turbulence.

2.5.2 Homogeneous Flows

Homogeneous flows play an important role in the development of turbulence theory,
and so do they in the development of the SGS modelling for the LES. A homogeneous
flow is one in which the statistics of turbulence are the same at every point in space.
Therefore, a homogeneous flow exhibits no convection and diffusion transport, and

only the production. dissipation and redistribution need to be dealt with.

Homogeneous flows can be classified as: 1) isotropic homogeneous flows; 2) strained
homogeneous flows: and 3) sheared homogeneous flows. An isotropic homogeneous
flow is initiated by a divergence-free random perturbation with the desired energy
spectrum. Since the only turbulent effect in isotropic homogeneous flows is dissipa-
tion. the turbulence is decaying with time. Experimentally, isotropic homogeneous
flows can be approximated in a wind tunnel by using grids or a set of jets. A strained
homogeneous flow is produced by putting an initially isotropic flow through a wind
tunnel section in which fluid elements are stretched in one direction and compressed
in another direction. In strained homogeneous flow, the turbulence decays for a short
time and then increases with time due to the production caused by by irrotational
strain. Sheared homogeneous turbulence is produced in a flow which has uniform
shear. Sheared homogeneous turbulence behaves in a manner similar to strained ho-
mogeneous turbulence. i.e. after a period of decay, the turbulent energy begins to

increase.

Application of the LES to homogeneous flows has been broadly performed by sev-
eral LES researchers, including Shaanan et al. (1975), McMillan & Ferziger (1980).
Kaltenbach et al. (1994), Sukoriansky (1996), and Menon ef al. (1996). There
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are several advantages to using homogeneous flows for developing the SGS models.
Firstly, the flows have been investigated in depth experimentally and numerically; see
Ferziger (1980) for a review. Secondly, the governing equations for LES can be signif-
icantly simplified in a case when the flow considered has homogeneous directions, and
less computer resources are required. Third, the statistical theory of turbulence has
been elaborated for homogeneous flows, which can serve to guide the SGS modelling
development. However, no homogeneous flow really occurs in scientific and techno-
logical applications. Thus, a SGS model developed in a homogeneous flow may not

be appropriate for flows which occur in engineering practice.

2.5.3 Free Shear Flows

Free shear flows are one of the types of flow of major engineering interest. They can
be grouped into three categories: 1) a mixing layer — which occurs when two parallel
flows of different speed are brought together; 2) a jet — a stream of fluid issuing from
an opening; and 3) a wake — the velocity defect behind an impenetrable body. The
“free” here is equivalent to “no bounding walls”. It has been broadly accepted that
free shear flows are easier to simulate than wall-bounded flows. because free boundary

conditions are easier to handle numerically than solid ones.

The early LES work on free shear flows was limited to the mixing layer which has
been studied analytically, experimentally, and numerically for a long time. Much of
the recent work is concerned with the coherent vortex structures observed in a mixing
layer. LES of the mixing layer was first made at low resolution by Mansour et al.
(1978). Cain et al. (1981) obtained better results by scaling the grid to include the
fundamental instability wave and its sub-harmonic. The mixing layer is of continuing
interest to researchers in LES. Some recent LES of the mixing layer are those by

Milane & Nourazar (1995) and Lesieur (1996).

Systematic study of wakes and jets with the LES method began in the 1990’s.
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Wakes and jets are generally classified as 2-D and 3-D according to the configuration
of the obstructions or discharge outlets. Solution domains of wakes may cover regions
upstream of the obstacle body. Some recently reported LES work on wakes are as
follows: Sakamoto ef al. (1993), Joshi et al. (1994), Jordan (1994), Sun & Dalton
(1994,1995), Murakami & Mochida (1995). Those on jets are: Dai et al. (1994), Voke
et al. (1995). and Akselvoll & Moin (1996).

2.5.4 Wall-Bounded Flows

The significance of wall-bounded flows in technological application and the difficulties
associate with simulating them have been described in Chapter 1. where we distin-
guished between near-wall flows with and without turbulent production caused by the
“streaks”. It is believed that the most expensive application of LES to date has been
the calculation of near-wall flow with streaks, because extremely high resolution is
necessary to capture the turbulent production mechanism of the streaks. According
to Kline et al.’s experimental investigation (1967), at least five wall units span-wise
and 20 wall units stream-wise resolution are required. However. if high resolution
meshes should be employed near walls for a fully developed channel or duct flow. the

advantage of the LES method over the DNS method will be diminished.

The LES of fully-developed plane channel flow was first performed by Schumann
(1975). Kim & Moin (1979) reported the results of LES for a fully developed channel
flow using a higher resolution grid (64 x 64 x 64) and a near wall damped SGS eddy
viscosity model. This work was later repeated (Moin & Kim, 1982) using still greater
resolution (64 x 128 x 63), a modified SGS model, and improved numerical schemes.
The computed velocity and pressure fields were used to show the coherent struc-
tures of near-wall turbulence, and the result was in good agreement with laboratory
observations (see Kline et al.. 1967). This is probably one of the most remarkable

achievements in CFD of turbulence in this century.
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LES of wall-bounded flows in the 1990’s was not limited to fully developed plane
channel flows. The degree of complexity of the problems considerably increased to
become closer to real problems in engineering application. The main objective of the
LES of these flows was still to test the LES technique developed, but they also provide
experience for finally applying the LES method to flows of technological interest. We

will briefly review some of this work.

Kajishima & Miyake (1992a) performed LES of channel flow at Re = 4900 with
fluid injection from one wall using a grid of 1.23 x 10° control volumes. Ciofalo
& Collins (1992) considered heat transfer in their LES of plane and rib-roughened
channels at Reynolds numbers from 10000 to 40000. Zhou et al. (1996) and Thomas
& Williams (1994) performed LES of open channels, with and without curvature.

which have significance in hydraulic engineering.

Duct flows are similar to plane channels in many aspects. The LES of flow in a
square duct was made by Kajishima et al. (1992b) at Reynolds numbers of 6200 and
67400 with a grid of 1.6 x 10° control volumes. Similar work was conducted by Su
& Friedrich (1994a) in Tsinghua University of China, and by Breuer & Rodi (1994).
The LES of duct flows with curvature was made by Su & Friedrich (1994b), Breuer
& Rodi(1994), and Boersma & Nieuwstadt (1996).

Unlike fully developed channel flows, Flows in boundary layers are of developing
in the stream-wise direction, which makes LES of free boundary layers a bit more
difficult. LES of both thermal and momentum boundary layers at Rey between 353
to 576 were made by Tsai & Leslie (1990). Recently, LES of a developing boundary
laver at Rey between 1470 to 1700 using the dynamic SGS model was reported by
Wu et al. (1997). The LES of a spatially developing boundary layer on a concave

surface was also carried out by Lund & Moin (1997) in Stanford University.

The LES has also been applied to cavity and back-facing-step flows. Strictly speak-
ing, these are not pure wall-bounded flows, e.g. a back-facing-step flow can be viewed

as a wall-bounded wake, while a shear-driven cavity flow is, in nature, a wall-bounded
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shear layer. Jordan & Ragab (1994) published their LES of 3-D shear-driven cavity
flow at Reynolds numbers of 5000 and 10000. The same simulation was performed
by Zang et al. (1992,1993) using the dynamic and dynamic mixed SGS models. A
LES of a back-facing step flow was made by Ortega et al. (1996).

2.5.5 Real Flows of Engineering Interest

Strictly speaking, only the LES work in category 3) can be viewed as genuine appli-
cations. Rarely have such applications been reported prior to 1990. To the author’s
knowledge, the earliest successful application of LES is that by Grotzbach (1979) who
used a very coarse grid (16 x 16 x 8) LES to investigate the effect of buoyancy on flow
mixing in the downcommer of a nuclear reactor — a problem related to nuclear reac-
tor safety. His LES results and conclusion were later confirmed by experiments. The
LES of wind tunnel airflow around a model of building was first performed by Mu-
rakami et al. (1986) and Murakami et al. (1987). In their simulation. the Reyvnolds
number based on the size of the model and approaching wind speed was 10°, and a
grid of 44 x 33 x 21 cells was employed. The correspondence between the simulation
and wind tunnel experiment results was found to be good. However, this work can

only be viewed as an indirect application of the LES method to real engineering flows.

The features of low Reynolds number (~ 10°) and simple geometrical configura-
tion make the airflow around a model building an ideal target for LES application.
In the 1990’s, a few such applications were performed. Among them are those by
Baetke et al. (1990), Yang et al. (1993), Mochida et al. (1993), Frank & Mauch
(1993), Murakami et al. (1995), Yu and Kareem (1996a, 1996b), and Murakami et al.
(1996). All of these showed good agreement between the LES and the corresponding
experimental results, and some of them, e.g., Murakami et al. (1996) also showed the
superiority of the LES method over the RAM methods. LES of the flow fields around
full size building were also reported by Mochida et al. (1993) and He & Song (1995).
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The results obtained corresponded well with the field measurements.

Application of the LES method to simulate flows in tube bundles has been active
since 1990 at Texas A & M University. Flows of this type are always encountered in
the designs of heat exchangers, so that the LES of them has engineering significance.
The main objective of LES work at Texas A & M University on tube bundles is to
investigate instantaneous flow patterns in tube bundles and/or to calculate turbulent
buffeting forces on them. For reference, see Pruitt et al. (1991), Hassan et al. (1991),
Hassan et al. (1993), Pruitt et al. (1993), Hassan et al. (1994), Barsamian et al.
(1994).

Another type of real flow for which simulations are being performed using the LES
method is channel flows in hydraulic engineering. These applications can be viewed as
a direct high Reynolds number extension of Shumman’s (1975) pioneering work on a
2-D channel flow. Thomas & Williams (1995) performed a LES of flow in a compound
open channel with one flood plain at Reynolds number 42000. If this simulation is
still not a typical engineering application due to its low Reynolds number. another
LES of a symmetric trapezoidal channel at Reynolds number 430,000 performed later

(Thomas & Williams 1996) definitely is.

In addition, the application of the LES method to air pollution problems was tried
by Meszaros et al. (1987) and McGrattan et al. (1996) to a flow in a baffled stirred

tank reactor by Eggels (1996).

Although a significant advance has been made in the 1990’s, the LES method is
still far from being a routine tool in engineering practice. The published applications
of a limited number of engineering applications appear to be successful. however the
unsuccessful examples are generally not published. Currently, the LES techniques,
especially the SGS modelling technique, are still deficient and need to be improved
to handle the wide range of real flows which occur in engineering applications. The
LES is still considerably more expensive than the RAM method. Due to the limited

computer resources available, one has to apply a very coarse grid. for which the LES
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method almost degenerates to the RAM method. As will be shown later, the devel-
opment of the VAT not only improves the LES techniques. but also partly alleviates

the problem of inadequate computer resources by allowing the use of coarser grids.

2.6 Summary

In this chapter, the current state of the art in the area of LES for turbulent flows has
been reviewed. Specifically, the main characteristics of the coarse-graining approaches
and the developed SGS modelling techniques have been described. It is concluded
that although notable achievements have been made since the 1970’s, the LES today
has limited use in the engineering research community. The main problem is still
inappropriate SGS modelling approaches, e.g. the eddy diffusivity SGS models have
faced some of the same problems as the Reynolds average models. The scale similarity
SGS model is superior in principle to the eddy diffusivity SGS models, but some
modifications and improvements are required. In the next chapter, we will present
such modifications and improvements in the formulation of the VAT for turbulent

flow simulation.
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Chapter 3

Mathematical Formulation

3.1 Introduction

In this chapter, the mathematical formulas on which the volume average technique
of the LES method is based are derived systematically in the same frame as the
control volume discretization. The derivation starts from the conservation laws of
mass. momentum. and energy for incompressible flows. Since the technique will
finally be applied to room airflow prediction. assumptions corresponding to a typical
room airflow are made. However. the method can easily be extended to any other

incompressible or slightly compressible flow.
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3.2 Basic Equations

Governing equations of a flow are mathematical representations of the physical laws
the flow obeys. Let’s consider a typical room airflow. Firstly, thermal comfort of
human beings requires that both temperature variation and air motion speed in a
room be relatively small compared to, respectively, the bulk temperature in Kelvin
and the speed of sound. Typically, the temperature variation in an air-conditioned
room is less than 10 A'. and the speed of air motion is less than 5 m/s. Therefore.
it is reasonable to assume that all physical properties of air are constant except for
the density difference in the body force term in the momentum equation. Using the
Boussinesq approximation and without considering kinetic energy dissipation in the

energy equation. the basic equations governing the airflow in a room are:

L/r""'= 0 (3-1)

Ui + (Uily) ;= —;l-Pu' —89:0 + vl j; (3.2)
0

© + (0U;),; = a®,; (3-3)

where U; represents the instantaneous velocity component in the /th direction: P.
the instantaneous pressure; pg, a constant reference density; g;. the component of the
gravity vector; O. the temperature deviation from a fixed reference value; v. the fluid
kinematic viscosity: a. the fluid thermal diffusivity; 3. the fluid volumatric expansion
rate; z;, the ith component of a Cartesian position vector; t, the time. In our notation.
(+)« and (:) denote, respectively, space and time derivatives. e.g.

_ 90, _ _9%() o 90)

()= E, ()ij = m, ()= —

_ at .
The summation convention is employed for repeated indices in each term.

Equation (3.1) through (3.3) are a set of time-dependent, three-dimensional. non-
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linear, partial differential equations which mathematically represent velocity and tem-
perature fields in a room. They are the starting point of all numerical simulation

approaches for room air flow.

3.3 Volume Average Approach

As in any other LES technique, the first step of the volume average technique of
turbulence is to define the large-scale fields the method can solve explicitly. For that
purpose. we divide the flow domain into control volumes in the same way as we do
in finite volume space discretization. The length scales of a control volume in each
direction are denoted as Az;. Then, the node value of a field in each control volume is
defined as a volume average of the field in the control volume which can be expressed

as
& = ﬁ// odV (3.4)

where AV represents the volume of the control volume under consideration,
AV = AI[AIQA.’E;;

and @ is a field to be averaged. By applying the volume average (3.4) to equation

(3.1) through (3.3), the following finite difference form equations can be obtained:

~~
6 Ui =0 (3.5)

J

J i
f’:-&-&i U:U; = —pi'ts,' P —ﬁg;(:)-{—uéj Ui,j (3.6)
0
J J
~ —— L~
0 +6,0U; =aé; O, (3.7)



i
—~—
where @ denotes an average of field ® over a control volume surface normal to

z;-direction,

_~ 1 ) .
e =x /<I>a’b (3.8)

where AS; represents the area of control volume surface perpendicular to the z;
direction,e.g.
AS[ = A$2A13

—~~
and é§; @ is the centre difference of the surface average,

~~
d

o

—~
50 =

o)z

( )-

L1
Al‘,‘

[t should be pointed out here that two kinds of averages appear in the above formu-
lation. i.e. the volume averages defined in equation (3.4) and surface averages defined
in equation (3.8). Since the surface averages are not calculable in the simulation, fol-
lowing the same approach as in the conventional finite volume method, the surface
averages of quantities will all be expressed in terms of the node values of the cor-
responding quantities. which themselves are volume averages, through homogeneous

interpolation.

Then, the following decompositions are introduced,

Uy = U; +
O=0+94
P=1~7+p

where u;, 6, and p are, respectively, the SGS portions of the velocity, temperature,

and pressure fields. When substituting the above decompositions into equations (3.5)
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through (3.7), we face the task of dealing with both linear and nonlinear terms in-
volving surface averages. The SGS portions of fields vanish in the linear terms, since
surface averages in these terms can be expressed in terms of homogeneous interpola-
tions of the volume averages, and volume averages of SGS portions are zero in control
volumes. On the other hand, the SGS portions of fields will play important roles in

the nonlinear terms of the equations, from which the SGS turbulent transport comes.

Let’s expand the nonlinear terms on the LHS of equations (3.6) and (3.7) as follows:

—— D ~ P S S S S
- > - 7
61' L/,'Uj = 51( v+ u;)(Uj + uj) = 61'(U;'Uj +u;u; + Ui’uj + UiUJ) (3.9)
j J J j J J
I~ = = N T . T TS
5,80, = 6, (0 + 6)(T, + u;) = 80T, + u, + Ou, + 67,). (3.10)

The first terms in the parentheses on the RHS's of equations (3.9) and (3.10) have
nothing to do with the SGS portions of fields. These terms actually represent, re-
spectively, the momentum and heat energy fluxes caused by convection of large scale
motions through control volume surfaces, and can be handled in the same way as in
the conventional finite volume method. In both terms, the surface averages do not
make any sense for the same reason pointed out in subsection 2.3.1, i.e. the finite
volume scheme can not sense any fluctuations of U';U; or ©OU; on a control volume sur-
face with length scales larger than the surface size. Thus, numerically, these surface

averages can be ignored.

The second terms in the parentheses on the RHS’ of equations (3.9) and (3.10)
represent. respectively, momentum and heat energy fluxes through control volume
surfaces due to correlation among components of SGS velocity and temperature fluc-
tuations. These terms are referred to as the SGS Reynolds stress and the SGS turbu-

lent heat flux respectively, and should be modelled in the technique. It is convenient



to adopt a formulation with minus signs, so that they are denoted as

T = — U Uy (311)
and }
o~
o; =—0u;. (3.12)

The last two terms in the parentheses of the RHS’ of equation (3.9) and (3.10) are
the so called cross-correlation terms which represent, respectively, momentum and
heat energy fluxes caused by correlation between SGS velocity fluctuations and large
scale motions. As was mentioned in chapter 1, the cross-correlation terms vanish
in the context of the volume average approach, because in that case we assume a
uniform distribution of averaged fields on surfaces of each control volume, which
have no correlation with the SGS fluctuations. However, these are the so-called SGS
turbulent diffusion terms representing a transport enhancement mechanism analogous
to molecular diffusion, which should be modelled. We denote them in the momentum

and energy equations as, respectively, &i; and ;.

Using the above notations and noting that although volume averages of quantities
are not defined at control volume surfaces, we still can use them instead of the surface
averages of quantities at control volume surfaces appearing in equation (3.5) through
(3.7) by implicitly acknowledging that the volume averages of quantities at control
volume surfaces are obtained through homogeneous interpolations, then the final form

of the governing equations are as follows:

s(U:) =0 (3.13)

Ui +6,(00;) = —pia.-u“ﬁ) =890 + v8;(Uis) + 85(ms + &) (3.14)
0

6 +6,(87) = a8;(B.,) + b;(a; + v;). (3.15)
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3.4 Models for SGS Reynolds Stress and SGS
Turbulent Heat Flux

The purpose of the SGS modelling is to express the SGS Reynolds stress 7;, SGS
turbulent heat flux o;, and SGS turbulent diffusion terms §;; and ¥ in terms of
only the solvable large scale fields, i.e. the volume averaged field quantities defined
at the node of each control volume, in a physically consistent manner, so that the
equation system can be closed. The SGS modelling is the most challenging task in,
and the key to the success of. the VAT of turbulent flow simulation. In this section,
the functional dynamic scale similarity models for the SGS Reynolds stress and SGS
turbulent heat flux are discussed in detail. Models for the SGS turbulent diffusion

terms are discussed in the next section.

According to equation (3.11) and (3.12), the SGS Reynolds stress and SGS tur-
bulent heat flux are surface averages of products of SGS fluctuations. However, it is
difficult to obtain the surface averages numerically, because field quantities are de-
fined at node points. What we can do is model the SGS Reynolds stress and SGS
turbulent heat flux at the node of each control volume based on volume averaging,
and then interpolate them to control volume surfaces. With this in mind, we use the

following expressions instead of equation (3.11) and (3.12):
T = —uTl_[j (316)

o; = —bu,. (3.17)

We assume that the error brought in due to this substitution is negligible.
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3.4.1 Test-grid Volume Average

In order to model the SGS Reynolds stress and SGS turbulent heat flux expressed
in equations (3.16) and (3.17) dynamically, consider the following expressions for the

volume averages of products of decomposed fields for a control volume:

U, = (U + u)(T; + v;) = U0, + g, (3.18)
OU; = (6 + 6)(T; + u;) = 6T + bu;. (3.19)

Note that no cross-correlation terms appear in equations (3.18) and (3.19) due to the

features of the volume average.

Then, at the same control volume. consider another so called test-grid volume
average with a larger characteristic width A’. Generally, A’ = 2A, where A is the
characteristic width of the previously described control volume average (referred to

as the sub-grid volume average). Thus, we have

and
l
J

OU; = (6 +0)(T, +u,) =0T, +

;= —uw; = U0, + U.U; (3.22)

o; = —fu; = —OU; + O] (3.23)
and

ol = i, = ~U0; + U0, (3.24)
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ol = -G = —6U; + 6T, (3.25)

J

where 7/, and o] are, respectively, the SGS Reynolds stress and the SGS turbulent
heat flux at the test-grid level. By test-grid averaging equations (3.22) and (3.23)
and subtracting them. respectively. from equations (3.24) and (3.25). the following

equations are obtained:

, . =
§; =0, —0; =0U;

where an important feature of the volume average approach. i.e. the supersedity

—
~ e~

which implies (-) = (-), has been applied. The LHS of equation (3.26), denoted as T;;.
represents the difference of the SGS Reynolds stresses between test-grid and sub-grid
levels. The LHS of equation(3.27). denoted as S;, represents the difference of the SGS
turbulent heat flux between test-grid and sub-grid levels. These inter-grid Reynolds
stress and inter-grid turbulent heat flux are only related to large scale fields. and are

calculable numerically by test-grid averaging the sub-grid averaged fields.

It is worthwhile to note that equations (3.26) and (3.27) are only valid for flows
where space unevenness of the sub-grid averaged fields is caused purely by turbulent
fluctuation rather than by a combination of turbulent fluctuation and field inhomo-
geneity in space. In order to validate them in the case of inhomogeneous flows. the

sub-grid averaged fields are further decomposed as follows.

|

0
~

U = U; + i

+6

o]

6=

where U; and © are. respectively. the ensemble means of sub-grid volume averaged

velocity and temperature fields, while 4; and 6 are homogeneous fluctuations about
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them. For a stationary turbulent flow, the ensemble mean fields are time-independent
and can be replaced by the time averaged fields and viewed as portions of the mean
fields associated with flow inhomogeneity. We don’t want the test-grid averages in
equation (3.26) and (3.27) to be affected by the ensemble mean fields. In other
words, the test-grid averages there should have a special feature that can distinguish
homogeneous turbulence from inhomogeneous ensemble mean fields, and treat them

separately. A mathematical interpretation of this feature is as follows:

P=0+b=0+o=0+0—

Thus, equations (3.26) and (3.27) can be rewritten as follows:

— —— —
_— =

Ty = (0 = O)NT; - T;) = (T: = U)(T, - ) (3.28)

3.4.2 Coefficient Modelling

The derivation thereafter attempts to relate the SGS Reynolds stress 7;; and SGS
turbulent heat flux o; at the sub-grid level with those at the inter-grid level, i.e. T,

and S;. We first assume that their relationship can simply be expressed as
Ti; = [\’f.,Tij (330)

and
g; = [\’0)51' (331)



where A, and A, are coefficients to be determined dynamically by the model.
For that purpose, we assume further that the magnitudes of each component of the
Reynolds stress or turbulent heat flux obey a similar distribution upon the length

scales of “eddies™ which is expressed as

dF(z) A(£)2e7%8) ifz>0

0 otherwise

Figure 3.1 schematically shows the distribution function where B is the dominant
length scale of the distribution.i.e. the length scale corresponding to the peak value
A of the distribution function. We introduce two additional length scales on Figure
3.1. The symbol 7 represents the length scale of the smallest calculable turbulent

fluctuation which can be estimated as

n = VU.T:At

where At is the step used for time marching in the numerical scheme applied. The
symbol v represents the characteristic length scale of the time averaging applied for
calculating the ensemble mean fields — assuming the turbulent flow under considera-
tion is stationary — appearing in equations (3.28) and (3.29), which can be calculated
as

v=Ng

where NV is the number of instantaneous fields to be time-averaged for calculating the
ensemble mean fields. The reasons for selecting (3.32) as the distribution function are:
1) it is a one-peak non-negative function in the region [0, 0o]; 2) it has zero derivatives
at each end of the function’s domain. These features match well with typical wave

number spectra of turbulent flows.

We refer to the range between n and v as the dynamic length scale range of the



dF(x)/dx

na & Y
Length Scale (x)

Figure 3.1: Dependence of Reynolds stress or turbulent heat flux upon length scale
of “eddies”

LES technique. A perfect LES should be of n < A; and v > L, where A; is the
characteristic length scale of the control volume and L is the characteristic length
scale of the solution domain. In the derivation thereafter, we assume n < A} and
4 > Al, where A is the characteristic length scale of the test-grid average. This is
the minimal requirement of the LES technique; otherwise, no SGS contribution can
be captured. However, even this minimal requirement can not be satisfied at some

specific locations where the flow speeds are too low.

[t is also assumed that the corresponding components of the Reynolds stress or the
turbulent heat flux at test-grid and sub-grid levels are the same in sign. Since values
of self-correlations of SGS field fluctuations, including three for velocity components
and one for temperature, are always positive, they can be used to determine the
coefficients relating 7;; to T;; and o; to S;. A detailed description of the procedure

follows.

First of all, the self-correlation of any field fluctuation can be divided into por-

tions according to its length scale distribution, which are the sub-grid portion, the
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portion between sub-grid and test-grid. and the solvable portion. On the other hand,
these portions can also be expressed in terms of definite integrations of the distribu-
tion function f(z). Thus, for diagonal components of the SGS Reynolds stress. the

following expressions hold:

—r= [0 fle)de = == = TER(F) + A F) + e D) (3.33)
o= [7 fepdz = 2R 4 (D) + 1]exB)

- AJ‘—B .‘z(%)2 + 2(%) + e (3-34)
—ti; = /ﬂ:f(.r)da: = /44—3[‘)(%)2 +2(=) + 1]e”%5)

- %[2(—;—)2 +2(5) + e (3.35)

where

m = max(4,n)
and no summation convention is employed.

In the above derivation. A, the characteristic length scale of averaging, has been
mentioned twice. However, they should be specified in terms of Az; in the simu-
lation. It should be pointed out that although the volume average version of T; is
calculated at the nodes of each control volume, they will finally be interpolated to
control volume surfaces to represent the surface average value of the SGS Reynolds
stresses there. In this sense. the length scales for each 7;; should be calculated based
on the corresponding surfaces used for averaging. Thus, three characteristic length
scales corresponding to three Cartesian directions are used in the present simulation
ie.

A=A = /AyA:=,
A=A, =VAzA-,
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and

A=Az =/AzAy.

It is noted that T}; is directly available in the simulation procedure, and ¢; can be

approximated as

ti; = —([7:' - 71’)2-

So, for each characteristic length scale A;, B; = A% can be solved from the following

equation obtained from equations (3.34) and (3.35):

205 +2(5) + Uexp[2(B5)] - AF) +2F) + 1] ¢ - T (3.36)
2051)2 +2F) + HexpR(¥5)] - AF)? +2(F) +1] ta '
where
mo=
J = AJ
and
_ =l
7 AJ

Finally, the coefficient C;; which represents the ratio of 7;; over T}; along the j-direction

can be obtained from equations (3.33) through (3.35). Thus,

e = (L exp[2(3)] — [2(5)* +2(5) + 1] .
T TR+ AR + U - AFP +2AF) + exp[-2A )] )

The terms C,; thus obtained are applied to calculate A, as
[\’ru = \/C,’jij. (3.38)

Following the same procedure, another coefficient Cy; can be calculated based on

the length scale distribution of the auto correlation of the SGS temperature fluctua-



tion. Thus, A, can be expressed as

K,, = /Co;C;;. (3.39)

3.5 Models for SGS Turbulent Diffusion

In this section, the models for the SGS turbulent diffusion are discussed in detail,
beginning with the concept itself. The idea is related to the understanding of the
turbulent transport enhancement mechanism of not only the LES but also the RAM

method.

Let’s first consider the RAM method of turbulent flows. It is well known that
turbulence in a flow can greatly enhance the transport of any scalar or vector quanti-
ties. According to the Reynolds averaged equation (Reynolds. 1893) for a transported
quantity ®. the turbulent transport enhancement comes uniquely from the correla-
tion between the turbulent fluctuation of the transported quantity, ¢, and that of
the velocity. u;, which can be expressed as ou;. Both of the cross-correlation terms,
i.e. ol; and ®u; vanish because there is no correlation between mean values and
turbulent fluctuations. This form of the Reynolds averaged equation has been used
for a century without doubting its validity. However, a comparison with molecu-
lar transport (diffusion) suggests that the correlation ou; does not represent all of
the turbulent transport enhancement mechanism. Let’s take a look at how random
molecular motion enhances the transport (diffusion). A molecular motion is definitely
not correlated with any fluctuation of transported quantities, but it does enhance the
transport (diffusion). The same principle should also be valid for a turbulent mo-
tion. In the case that the turbulent velocity fluctuations are not correiated with
the fluctuation of the transported quantity, i.e. ou; = 0, transport should still be

enhanced by the turbulent motion in the same way as by a molecular motion. A

~1
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typical example of the case is what happens when ink drops into a highly disturbed
body of water. Initially, the concentration field of the ink in the water is apparently
not correlated with the fluctuation of velocity, but a high rate of diffusion can be
observed, which is definitely due to the turbulent fluctuations in the water. It can be
concluded that turbulent fluctuations enhance transport via two mechanisms, which
will be referred to as the turbulent diffusion and the turbulent flux. The former is
analogous to molecular diffusion and is an example of gradient transport, while the
latter is the one already involved in the Reynolds averaged equation which is correla-
tion associated. Nevertheless, it should be noted that almost all of the RAM methods
interpret the effect of the turbulent flux ¢u; as diffusion transport and model it in
terms of an eddy diffusivity with empirically determined coefficients. This makes the
two transport enhancement mechanisms the same in form so that no problems occur
when they are combined. In this sense, the identification of the turbulent diffusion

as distinct has only academic rather than practical significance in the RAM theory.

The counterpart of the turbulent diffusion in the LES method is the so called SGS
turbulent diffusion which represents a SGS transport enhancement mechanism other
than that represented by 7;; or o;. It is apparent that if one tries to model 7;; or o in
terms of eddy diffusivity SGS models with adjustable coefficients, the identification
of the SGS turbulent diffusion is of no practical significance. However. in the present
study, all components of both 7;; and o, are modelled dynamically without using
any empirical coefficient. Therefore, in order to model all the transport enhancement
mechanism, it is necessary to identify and model the SGS turbulent diffusion in the

VAT for the turbulent flow simulation.

[t is noted that only the SGS velocity fluctuations normal to the surface of a control
volume are responsible for the SGS turbulent diffusion across that surface. In order
to model the SGS turbulent diffusion, let’s consider a near-surface region between

two neighbouring control volumes shown in Figure 3.2.

On the area of the control volume surface, u;, could be positive or negative. We
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Figure 3.2: Near-surface Region of Two Neighbouring Control Volumes

assume that u; is positive on half of the area, and is negative on the other half. We
also assume that positive and negative u; have the same mean magnitude denoted as
ii;. Therefore, in analogy to molecular diffusion, the pure flux of ® across the control

volume surface j due to the SGS fluctuation u; can be expressed as

[DR - éL—

Az, Aj (3.40)

1.

7

where \; is the mean length scale of the SGS fluctuation u;; Az;. the distance

between the nodes of two neighbouring control volumes. It is convenient to introduce
the SGS eddy diffusivity a; as

a; = %ﬁjAJ‘. (3.41)

At a control volume node, A; can be estimated as the length scale corresponding to
the geometric center of the area under the functional plot f(r) within the SGS range

[0.m;] (refer to Figure 3.1). So that,

~ _ fomJ z f(z)dz —
2= T (o)

-3
-1



[3Bj]{exp[2(%j)] ~BEP +2AF) +2AF) +1] (3.42)
2 exp[2(F*)] - [2(3:)? +2(F) + 1] o
ii; can be modelled as
ﬁj = ‘/—TJ‘]'.
Thus, the SGS turbulent diffusion across the surface can be modelled as
ép— o,
a;j AX, (3.43)

Finally, we obtain the following models for the SGS turbulent diffusion terms in

equations (3.14) and (3.15):

L1 .1
Zj;_1+5 _pie
"t &)

&ij = q; AX, (3.44)
Qi+t — 9i-3% L
l,/)j = QJ’T. (340)

Numerically, it is convenient to include the SGS turbulent diffusion by combining
the eddy diffusivity a; (i = 1,2, 3) with the molecular viscosity v or molecular thermal
diffusivity a. Attention must be paid to the fact that the eddy diffusivity components

a; (1 =1,2,3) are anisotropic.

3.6 Discussion

In the formulation of the VAT for turbulent flow simulation, the main contribution is
a new SGS model. Since both the coefficients K;,, and K,, appearing in the model are

calculated by postulating a functional distribution of the Reynolds stress or turbulent



heat flux over the length scale of eddies, and the model is similar in form to Bardina’s
scale similarity SGS model. it is referred to as the functional scale similarity SGS
model in the present study. In this section, some comments regarding features of
the newly developed LES technique are provided. Whenever it is helpful, comparison

between this technique and the ones previously developed are made.

First of all, the reason for avoiding the attributive “large-eddy” in the title of this
thesis is given. The attributive “large-eddy” may be misleading because in some cases
the important flow structures to be resolved are extremely small, such as those near
solid walls. and are at the dissipation scale. Thus, there is no clearly defined length
scale gap between large and small eddies. Secondly, as was pointed out in section 3.3,
there is actually no means for one to select the characteristic length scale A; when
the volume averaging approach is employed; it is uniquely determined by the length
scales of each finite control volume for space discretization. It seems that the volume
average — a procedure for the finite volume space discretization — determines every
thing. In this context, the LES is better referred to as “larger-than-grid-size eddy
simulation™ or simply “volume average simulation™. Thus, the technique developed

for it can be referred to as the volume average technique or VAT in short.

It should be noted that like other dynamic SGS models. the sub-grid effect rep-
resented by the functional scale similarity SGS model comes from the inter-grid tur-
bulent fluctuations, i.e. the turbulent fluctuations with length scales from A; to Al
In order to calculate it, the solvable sub-grid averaged fields are treated by using the
test-grid averaging procedure. The original purpose of this procedure is to separate
the inter-grid turbulent fluctuations from the solvable sub-grid averaged fields. A
solvable sub-grid averaged field involves not only turbulent fluctuations with length
scales larger than A;, but also the corresponding mean field. In the case of inho-
mogeneous turbulent flow, the mean field itself is spatially changing but this is not
turbulent fluctuation by nature. However, the previous dynamic SGS models or dy-
namic mixed models treat it as a turbulent fluctuation since they treat the solvable

sub-grid averaged field as a whole. A consequence of this approach is apparent; the
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simulation result is strongly grid-dependent and has poor asymptotic behaviour on
the laminar side. The situation becomes worse when a coarser grid is applied. In
the functional scale similarity SGS model, mean fields are first removed from the
corresponding solvable sub-grid averaged fields. Then, the residual fields are treated.
The residual fields represent only the turbulent fluctuations with length scales larger
than A, from which the effect of pure inter-grid turbulent fluctuations can be picked
up. This treatment can be viewed as an important advantages of the functional scale

similarity SGS model.

The identification and modelling of the SGS turbulent diffusion is an important
feature of the VAT. The SGS eddy diffusivity derived on the basis of this newly
developed concept is distinct in nature to that proposed before, because in the present
study, the SGS eddy diffusivity «; represents the SGS turbulent diffusion rather than
a substitute for the turbulent flux. Additionally, instead of being related to the
magnitude of the resolved strain rate, the ¢; in the present study is associated with
the SGS velocity fluctuations u; which vanish in the case of laminar flow. Thus, good
asymptotic behaviour of the technique can be expected. Furthermore, since the SGS
eddy diffusivity a; is always positive, it introduces the high energy dissipation rate
which is required for the LES and which was not brought in by Bardina's original

scale similarity SGS model.

Anisotropy is another important feature of the functional scale similarity SGS
model of the VAT, which is essential in LES of wall-bounded flows. The anisotropy
comes from: 1) the full-component modelling of 7;; and o; and, 2) the surface-based
definition of the characteristic length scales A, in each control volume. As was pointed
out in chapter 2, the full-component modelling of 7;; and o; is logically more accurate
than most other SGS models previously developed. On the other hand, the surface-
based definition of the characteristic length scales can handle different cut-off length
scales of the volume average in different coordinate directions, therefore allowing one
to use highly non-uniform grids and/or control volumes with high aspect ratio in the

LES. which are frequently adopted in near-wall regions.
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Dyvnamically determining the ratios between the Reynolds stress or turbulent heat
flux of the sub-grid level and those of the inter-grid level is a key procedure in the
functional scale similarity SGS model of the VAT. It is interesting to note that if
both K, and K, were fixed to be %, a limiting case when A; < B; and 7 =0 (and
Al =2A,;). it would imply that the SGS Reynolds stress or SGS turbulent heat flux at
both sub-grid and test-grid levels are proportional to the squares of the characteristic
length scales of averaging. This fact is also deducible from the dynamic SGS model
proposed by Germano et al.. In this sence, the functional scale similarity SGS model
can be viewed as an extension of Germano’s dynamic SGS model; the latter is only
valid when the characteristic length scales of the volume averaging are extremely
small compared to the dominant length scale of the turbulent eddies (see Appendix
A.2). In this sense. using the functional scale similarity SGS model can alleviate
the problem of computer resource shortage, because it allows using relatively large
characteristic length scales of the volume averaging (even larger than the dominant

length scale of turbulent eddies) in the LES.

Finally. let’s focus our attention on the negative side of the VAT, mainly the
modelling errors involved in the technique. As was mentioned in subsection 3.4.2,
the so-called dynamic length scale range of the VAT is [5,v]. Any fluctuation out of
this range will be lost in the simulation. Thus, if the inter-grid length scale range is
completely outside the dynamic length scale range, no SGS effect can be captured.
This deficiency is not unique in the VAT, but a general problem for all dynamic

modelling techniques of the LES.

The distribution function shown in figure 3.1 is essentially transformed from the

one in wave number space by assuming that
27
X == 3.46
; (3.46)

The characteristic length sales i.e. 7, A;, Al, and v are all defined in physical space.

Figures 2.2 and 2.1 show that equation (3.46) only holds approximately. which will
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introduce errors to the dynamically determined coeflicients K., and A,,.

In the case where almost all turbulent fluctuations have length scales smaller than
the characteristic length scale of the volume average, i.e. B « A, the Reynolds
stress or turbulent heat flux at the inter-grid length scale level will be extremely small
compared to those at the sub-grid length scale level. But we actually model the latter
from the former in the functional scale similarity SGS model, which is tantamount to
conjecturing the whole iceberg from its above surface portion. An extreme situation
occurs when the flow is laminar, but due to some numerical errors, the resolvable
fields are still fluctuating in simulation. These random numerical fluctuations may
be interpreted as turbulent fluctuations by the functional scale similarity SGS model.
Even worse is that the random numerical fluctuations may lead to almost zero value
of (—ti; + Ti;) which will lead to extremely large values of the coefficients K, or
R,,, and consequently to unreasonably high values of the SGS Reynolds stress or
SGS_turbulent heat flux. The phenomenon is referred to as numerical noise in the
functional scale similarity SGS model in the present study. In order to avoid LES
being contaminated by the numerical noise. we have to set both K., and K, to zero
whenever the obtained value of (—t;; + T};) is too small compared with —¢;;. By doing

this, an additional error is introduced.

3.7 Summary

The formulation for the VAT has been derived rigorously in this chapter. In particu-
lar. the functional scale similarity SGS model for the SGS Reynolds stress and SGS
turbulent heat flux has been presented. In addition, the SGS turbulent diffusion, a
transport enhancement mechanism analogous to molecular diffusion introduced by
the coarse-graining procedure. is identified and modelled in terms of the sub-grid
length scales and the RMS of the SGS turbulent fluctuation. The features of this

newly developed technique are discussed in detail. The technique for numerical im-
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plementation of the VAT in the LES is developed in the following chapter.
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Chapter 4

Numerical Implementation

4.1 Introduction

In the previous chapter, in order to define large scale fields, the governing equations
of fluid flow are volume averaged over control volumes. Meanwhile, the governing
equations are discretized in space by the same volume average into a finite-difference
form shown in equations (3.3) through (3.7). In this chapter, numerical schemes for
the solution of these governing equations are discussed in detail. Firstly. starting
from equations (3.5) through (3.7), a collocated scheme for 3-D incompressible flow
is developed based on the fractional step and the SIMPLE methods.In the collocated
scheme development, all SGS modelling terms, such as 7;; etc., are assumed to be
known. Although the scheme is specifically designed to facilitate the LES procedure
in the frame of the finite volume method, it can also be applied. without any change,

to laminar flow simulations or the DNS of turbulence, and can be applied, with a
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turbulence model, to the RAM simulation of turbulence. Secondly, some specifically
designed schemes associated with SGS modelling procedure are described. Thirdly,
approaches for boundary condition specification in the present study are given. Fi-

nally. the code designed to realize the volume average technique is discussed.

4.2 Collocated Scheme for Incompressible Flows

4.2.1 Background

An efficient and accurate numerical scheme for solving the governing equations of fluid
flow is the key to the success of the LES method. Such a scheme should be three-
dimensional, time-accurate, and save computer memory and CPU time. Numerical
schemes for the approximate solution of the incompressible Navier-Stokes equations
have been investigated rather extensively in the last two decades. These numerical
schemes can be classified, according to the discretization techniques employed, as
the finite-difference (including finite-volume), finite-element. and spectral methods.
or according to the forms of the governing equations on which the numerical scheme
is based. as the primitive-variable or non-primitive-variable methods. The finite-
difference scheme based on the primitive-variable Navier-Stokes equations has been

the most popular numerical method for computation of 3-D incompressible flows.

Although several different approaches for solving the primitive-variable incompress-
ible Navier-Stokes equations have been developed. according to Quartapelle (1993),
the most elegémt and powerful one, and perhaps the only one to be recommended
without any reservation and to enable a cost-effective solution is the fractional-step
method. The fractional-step method was proposed independently by Chorin (1968)
and by Teman (1969). Basic to the derivation of the fractional-step method is a the-

orem of orthogonal decomposition due to Ladyzhenskaya (1969). The typical form
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of the time-discretized equations of this method consists of two distinct steps. First,
a provisional velocity field, not satisfying the condition of incompressibility, is calcu-
lated as a solution of the discretized version of the momentum equation without a
pressure gradient. Then, the provisional velocity field is decomposed into the sum of
a solenoidal (divergence-free) velocity and the gradient of a scalar function propor-
tional to the unknown pressure which can be solved from a derived Poisson equation
for pressure. In the sense of time-stepping, the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equation) method of Patankar and Spalding (1972) for the solution
of incompressible flows is actually a special version of the fractional-step method. In
SIMPLE. the real pressure is decomposed into an old value (given by the previous
estimate) and its correction. The estimated pressure is included in the momentum
equation. while only the pressure correction is involved in the second step. Thus.
the provisional velocity obtained is decomposed into the sum of a solenoidal velocity
field and the gradient of a scalar function proportional to the unknown pressure cor-
rection. Since the pressure correction field is much smaller than the pressure field.
this fractional-step version has the following advantages: the tangential components
of the velocity boundarv condition can be exactly satisfied; and the Poisson equation

can be solved more accurately with the same solver.

The nature of the volume average technique for turbulent flow simulation requires
that a finite-volume scheme based on the primitive-variable Navier-Stokes equations
be applied in the present study. The SIMPLE algorithm turns out to be a finite-
volume scheme and, as was mentioned above, is a version of the powerful fractional-
step methods for solving the primitive-variable Navier-Stokes equations. However,
an unwanted feature of the SIMPLE method is the use of a staggered grid arrange-
ment to avoid the spurious pressure mode caused by uncoupled networks of pressure
points. which is inconvenient for programming. This is especially the case when the
flow under consideration is 3-D, which requires a four-control-volume staggered grid
configuration, and a non-uniform or adaptive grid is employed. It is apparent that
the staggered grid arrangement is not suitable for the dynamic SGS modelling proce-

dures of the LES method in which two grid systems, i.e. a subgrid system and a test
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grid system, are dealt with simultaneously. Therefore, a collocated or non-staggered
finite-volume scheme, in which all field quantities are located at the same node point,

is needed for the LES of turbulent flows.

There have been several collocated numerical schemes reported in the literature.
Only two types of these schemes can be implemented in a way which mimics the
SIMPLE scheme. One was originally proposed by Rhie and Chow (1983) and subse-
quently modified by Peric et al. (1988), Majumdar (1988), Miller et al. (1988), and
Armfield (1991). To ensure velocity-pressure coupling, all of these methods apply a
so called Pressure-Weighted Interpolation (PWI) scheme to obtain the flux velocity
at each surface of a control volume by adding a sparse 2A gradient and subtracting
a compact 1A gradient of the pressure to the corresponding linear interpolation of
the node velocities. The flux velocity thus obtained is used in the continuity equa-
tion and this prevents the occurrence of “checkerboard” pressure modes. The other
so called Consistent Physical Interpolation (CPI) scheme was originally proposed by
Schneider and Raw (1987) in their development of a finite-element-oriented scheme
for non-staggered control volumes. The name CPI, however, was given by Deng et al.
(1994) who extended the scheme to a finite-difference formulation. A key point of the
CPI scheme is viewing the reconstruction of the flux velocity at the control-volume
cell face as a closure problem; additional equations are employed to “close” the alge-
braic representation of the conservation equations. The closure equations used should
include all of the relevant physical influences that can affect the control-volume cell
face flux velocities. It should be pointed out that the closure equations applied for
the CPI schemes have no transient terms, thus the CPI scheme is not time accurate

and is only valid for steady-state problems.

The present study uses the SIMPLE scheme as the starting point for the develop-
ment of the numerical scheme. Three changes have been made to the conventional
SIMPLE scheme. Firstly, the scheme is collocated, so that all field quantities are de-
fined at cell-centred nodes. In order to ensure velocity-pressure coupling, a provisional

velocity field is calculated at nodes from the momentum equations with the pressure
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terms eliminated. Then. the flux velocities on the surfaces of each control volume
are obtained by subtracting the 1A gradient of the pressure from the interpolated
provisional velocities at the control volume surfaces. The flux velocities are applied
at the RHS of the Poisson equations for the pressure correction, and the 2A gradient
of the corrected pressure field is subtracted from the node-located provisional veloc-
ity to obtain the new velocity field. Secondly, a 1-D QUICK (Quadratic Upstream
Interpolation for Convective Kinematic) scheme is employed for the transported vari-
ables at the surfaces of each control volume. The QUICK scheme is believed to be
able to reduce the false diffusion which may contaminate the accuracy of the SGS
modelling. Thirdly. the efficiency of the method is enhanced by using the PRIME
(update PRessure Implicit, Momentum Explicit) algorithm, so that the solver of the
linear system is only employed for the Poisson equation and the energy equations. A

detailed description of the scheme is given below.

4.2.2 Finite Volume Discretization

In our numerical simulation. the original form of the basic equations was considered
as opposed to its dimensionless form. The general form of the governing equations

shown in equations (3.3) through (3.7) can be expressed as:

@+ 6;(U;® —Td,;) =S,. (4.1)
For ® =1 and [ = 0, one obtains the continuity equation; for ® = U; and I = v. one
obtains the momentum equation; while for ® = O, ' = a, and S, = 0. one obtains

the energy equation. It should be mentioned that in this chapter we handle only the

volume averaged quantities. However, the symbols “~" are all dropped for brevity.
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Applying the following time average over a time increment At,

1 t+ At ®d
—_— t
xi )

to equation (4.1), we have

(0! - 9°)

T +6(U;® —T2;) =5, (4.2)

where the superscripts “0” and “1” denote the values of fields at time “t” and “t+At",
respectively, and the symbols without superscript refer to time averaged quantities
between time ¢ and t + At. Multiplying both sides of equation (4.2) with AV, the
volume of the control volume, gives
1 oy AV

(¢ - @ )(-A_t) +JedAe — JuAw + JnAn — A+ LA — LAy = Se AV (4.3)
where J; denotes the total flux of ®, i.e. convection and diffusion. through control
volume surfaces. and the areas of the six control-volume surfaces are denoted by A.

elc..

In the present study. only the flows in a regular cuboid room are considered.
Therefore. the flow domain is discretized using Cartesian coordinates, and the control

volumes obtained are all cuboid.
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Figure 4.1: Grid configuration in X-direction
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Figure 4.1 illustrates the grid configuration in the x-direction. Generally, finer
grids are used in near-wall regions. All the unknown values including velocities,
temperatures. pressures, the SGS Reynolds stress, etc. are calculated at nodal points
marked with a *07. The points marked with a “o™ are located on the surfaces of the
control volumes. Node P is the central grid point on which one focuses attention.
Nodes EE, E,W.WW denote the east and west neighbours of P. Each face is located

midway between the two corresponding nodes.

In finite-volume discretization. the total fluxes J; should be expressed in terms of
the values of ¢ at nodes. For illustration, we consider the x-direction fluxes which

can be expressed in terms of convection and diffusion terms as follows:

JeA. = (U:e(be - re‘pvs: )Ac (44)

JuAw = (Uy®y — [W®.2) Ay (4.5)

where U, and U, represent, respectively, the flux velocities at east and west surfaces

of the control volume. The diffusion terms can be directly discretized as

op — &p

Fe®,2 = Tef AT

) (1.6)

and
&p — O

[Ww®.y = [y o

). (4.7)

However. the convection terms are related to the flux velocities C-"; and C;:L and
transported quantity ® at control volume surfaces, which themselves are not directly

available.
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4.2.3 1-D QUICK Scheme

The 1-D QUICK scheme is applied to the convective terms in the momentum and
energy equations to express ® at control volume surfaces in terms of its values at the

neighbouring nodes. Thus, for U:_. > 0, we have

1 1 Az, 1 Az,? 1 Az, 1
P, = |-+ - bp — [— by - |- —— =
[2 1 Aa:w] P [4 Az,(Az, + ./_\.:rw)] W [4 Az, + Awa e+ 5%
Source
(4.8)
and
1 1 Azr 1 1 1 Az 1 Ar,?
oom oo b e [
2 1Az, + Arwa PH3 1Rz, [4 AT (AL, + Azww)} ww
St;t:ce
(4.9)
while for U', < 0, we have
1 1 Az 1 1Az 1 Az’
L L P
2 4Ar.+ Az, ®p+ 2 + 4 Ar,. ®s 4 Azr..(Az. + Az,.) ee
So::cc
(4.10)
and
1 1l Az 1 Az’ 1 Az 1
<I>w=[— - "’]@—— hd Lii] —[——w—] -+ = .
2 + 4 Az, d [4 Az.(Az, + Azw)} E 4 Ar. + Az, Pw +£ﬁ
Source
(4.11)

The use of source terms in equations (4.8) through (4.11) is from Perng & Street
(1989). These terms automatically adjust themselves to differently stretched grids
and still ensure satisfaction of the “all-positive coefficients™ rule. For brevity. equa-

tions (4.8) through (4.11) are represented by

®. = fpPp + fiy®w + fEPE + S (4.12)
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and

¢, = fpPp + fir®w + fEPE + Su

(4.13)

where fp etc. are referred to as the geometric factors, and S., etc.. are the source

terms.

Substituting equation (4.8) through (4.13), as well as the corresponding expressions

in the y and z directions, into equation (4.3), we obtain

AV AV

—+-¢>}a +apdPp = ZaNp‘DNP + SeAV + —‘D% + b
At 7 At
where
ap = Uefphe = UufpAu + Vo fpAn — Vifp As + Wi fb A, — Wafb A,
(TA).  (TA)y,  (TA),  (TA), (TA) (TA),
+ Nz, t Az, + Ayn + Ay, + Az, + Az
and

b= —U.S.Ae + UySpAy — VoS A, + V.S, A, — W,S,A, + W, S, As

(4.14)

(4.16)

where the subscript VP denotes the neighbouring nodes E, W. N, S, T, B of the node

P. The specific forms of the neighbour coefficients are given below:

4 FA e v rw
ap = —U.fpA. + % + Uufg A

- A, -
aw = U fu Ay + S0 _ (7 pe 4.

Az,
- lA), -
an = Vo2 A, + _«.y) +V.fuA,



(FA)S 7

as = ‘ng-A, + .;\y - ‘/nngn

. TA -
ar = W fpact S L By
A

(TA),

ap = W, f5As + Az, W.f5 As.

For time stepping, assume:
®p = &} (implicit)

and
Oyp = (I)(I)VP (explicit).

Therefore, the following semi-implicit scheme is obtained:

o, — (T anp®p + b+ S, AV)O + £X69,
(&Y +ap)@

(4.17)

where the superscript “(0)” denotes that coefficients in parenthesis are calculated
using the field quantity values at time step “t”. Equation (4.17) is applied for the

solution of both momentum and energy equations.

4.2.4 Pressure Correction Scheme

The continuity equation (3.5) can be rewritten as:

U.A, — UpAw + VoA, — VA, + WoA, — Wy, =0 (4.18)
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where only six flux velocities appear. The flux velocities play an important role in
coupling the continuity equation with the momentum equation. In the collocated
scheme. we actually relate the flux velocities to the nodal velocities which are solved
from the momentum equation, while information from the continuity equation is sent

back to the nodal velocities via the flux velocities.

The information from the continuity equation is represented by a pressure correc-
tion field P’ superimposed on the pressure field P. Each corrected flux velocity can be
expressed as a sum of the corresponding pre-corrected flux velocity and the pressure

correction term.e.g.
1 APy — P
le = ——37 -
(aP + %)e

By substituting the above and other velocity correction relations written at six
surface points into the discretized form of the continuity equation. we obtain
PL—Ps ., Po—P

P P W1
(ap+ 307 (ap + 30)"

r_ p! P. — P!
N P 2 P S 2
— P A - —F 2 4%
(ap+%)" (aP+%)s
Ph—Ph o Po=Ph
ar + 20N T G )
- L?ell‘le - [j‘w,f{w + ‘Zl,An - ‘7;,‘43 + I/f:'t,At - l/{-}blf/lb (4'19)

where the 1/py has been absorbed into the Pp, etc. for brevity. Finally, we rewrite

equation (4.19) in the following form:
@ Ph = dly Py + g Pl + s Py +aly Py +ag Py +as P+ = 3 alp Plrp + 8 (4.20)

where



2 A2 , A2

’ ‘'n [
Arw == ———————— a - ——- a = ———
N AV ! B ’ T AV
(ap+ 37)" (ap + 37 (ap+ 57)
ap = ay +ap +ds+ay +ap+ar

V= —U A +U, Ay — V. A, + V. A, — W, A, + W, 4,

The coefficients (ap)., etc.. appearing in (4.19) are obtained through a linear

interpolation between the corresponding neighbouring nodes, e.g.

AV 1 AV AV
At

)]. (4.21)

4.2.5 Fractional Step Method

Having described the discrete equations above, we begin to discuss in detail the
solution procedure of the collocated scheme. For each control volume, we store three
components of velocity U;, temperature ©, and pressure P at the node, and six flux
velocities U,. efc. at the control volume surfaces. A single discrete time step is split

into three sub-steps.

Firstly. a provisional velocity U is calculated at each node using the scheme ex-

pressed in (4.17) for the momentum equations without any pressure terms. i.e.

v (Zanp(Us)wp + b+ (Sp)AV)@ + A¥(1))
( )P - ({i\‘: T ap )(0)

where (Sp)’ denotes source terms without considering the pressure gradient.

Secondly. the flux velocities at the control volume surfaces are computed and up-

dated by adding the corresponding pressure gradient terms to the linearly interpolated
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provisional velocities at the surfaces, e.g.

A Pg — Pp)

Ue = =[(h)p + (Lh)E] - Tar+20),

(4.23)

oo

where (ap + QSLZ') is obtained from equation (4.21). By substituting the updated flux
velocities into the pressure correction equation (4.20) and solving it implicitly for the
pressure correction field P’. the new pressure field P! at control volume nodes can be

obtained as:

P'=P+ (P - P)

where P! is the calculated pressure correction at a reference point in the domain

where the pressure is assumed to be unchanged.

Thirdly, the new velocity fields at control volume nodes can be obtained as

. . AV (Pg — Pw)
Up=Up— , 4.24
d d (ap+‘i—‘t/)PA:re+Axw ( )
AV (Pn — Ps)
Ve =Vp — \ 4.25
d P (ap+‘3—‘:>PAzn+A1', (425)
and
. (_AV_\ (Pr—P)
Wp =Wz~ - . 4.26
PR (ap+%),,Az,+Azb (4:26)
And the flux velocities on control volume surfaces are updated again. e.g.
U'el =0, — A_‘E(_PE__@. (4.27)

(aP + %)e

Finally, the energy equation can be solved implicitly or explicitly with the above

updated flux velocities based on the equation (4.14).

In the collocated scheme, the momentum equation (4.22) can be solved explicitly,
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because its RHS is only related to the fields at the old time step “0”. This so
called PRIME feature significantly enhances the solution efficiency of the scheme.
Additionally. the collocated scheme has second-order accuracy in both space and time,
because in the scheme, the flux velocities on control volume surfaces are updated twice

in one time step and the QUICK is employed for surface transported quantities.

4.2.6 ADLGS Solver and Residuals

In the present study. The ADLGS (Alternate Direction Line Gauss-Seidel) solver 1s
applied for solving the pressure correction Poisson equations. One advantage of this
solver is that almost no memory space in addition to that for eight finite-difference
coefficients for each control volume is required. A factor of 1.6 is used in the solver to

over-relax the field values at the neighbouring nodes located on the down-sweeping

side.

In the solution procedure, two residuals, i.e. the mass residual R,, and the residual
for the pressure correction Poisson equation R, are calculated at each time step. The

definitions of the residuals are as follows:

R _L‘z\r:iall’P;’—zaﬁ\PP’VPl
PN aPh

where N is the total number of control volumes in the domain.
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4.3 Numerical Schemes for SGS Modelling

4.3.1 Test-grid Volume Average

The configuration of the test-grid control volume is depicted in Figure 4.2. Note that
for brevity, the figure only shows a two-dimensional grid. The upper case letters rep-
resent the nodes in and around the sub-grid control volume under consideration, while
the low case letters represent its surface points. The surfaces of the corresponding
test-grid control volume coincide with the neighbouring nodes of the node P, so that
the test-grid control volume doubles the size of the corresponding sub-grid control

volume in each coordinate direction.
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Figure 4.2: Grid configuration for dynamic SGS modelling

In order to calculate the SGS Reynolds stress and turbulent heat flux, the sub-grid
volume averaged fields which are obtained directly by solving the sub-grid volume

averaged governing equations should be averaged over the test-grid control volume
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where the values of the sub-grid averaged fields at 27 nodes are involved, i.e.

2)
I
(]
gl
e

(4.28)

where the subscript “n” denotes the 27 nodes involved in the test-grid control volume,

and K, represents the volumetric weighting factors for each nodes which are listed

below:
5 1) 73
Ke=—Rg; Kw=—Rw; Kn=—Rn;
EZ 5 ™E MW T st AN T SN
75 75 5
Ks=—Rs; Kr=—R1; Kg=—Rp5;
ST 5127 M Tt MBT 5B
45 . 45 45
Kyg = ERN’R—E) Knw = mRNRw, Kre = 512727‘725,
- 45 45 45
Krw = —=R1Rw; Ksg = —=RsRg; Ksw = —=RsRw;
512 512 512
45 45 . 45
Kee = =——=RBREe; Ksw = —=ReRw;: Kst = —=RsRr;
512 512 512
45 45 45
Ksp = ERSR& Kpn = 51—2733731\/, Kps = 5'1—2'733725,
. 27 27 27
Knver = =—=R~NReR71: Knep = =—=RnReRB; Kser = —=RsReRr;
512 512 3512
. 27 27 27
Ksep = —=RsReRp; Knwr = ==RNRwRTt; Knws = —=-RyRwRsz;
512 512 512
27 27
Kswr = ——=RsRwRT; Kswp = —=RsRwRas;
512 512
125
Kp=-2
P~ 512
where
AIC Axw Ayﬂ.
R g ; R y = N - y
E Az W Az Ay
Ays Az, Az
= Rr=—- Re=—_T;
Rs Aly T Alz B Az
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Alr = Az, + Azy; Ay =Ayn + Ays: Az = Azi + Az,

4.3.2 Time Average

Time averages are employed instead of the ensemble average of the field quantities
in equations (3.28) and (3.29) by assuming that the flow under consideration is sta-
tionary. In the solution procedure. we save both instantaneous fields, U; and ©, and
their time averaged counter-parts, [; and ©. At each time step. the time averaged

quantities are updated by the following schemes:

T = f,0°+ (1 = fu)U}

9 = f,0 +(1 - f,)0!

where f, is a weighting factor less than unity. The characteristic time scale of the

time average is defined as:

At
_l—fw

4.3.3 Solution Method for B;

Equation (3.36) is solved for B, using the following iteration scheme:

3 (F)+2F)+1
(n)__ _ {0) % 1
B =(1-rB" +2 /1n{L, ) 2+2(%]*)+1](Rg)}

Lot T AR AR

T HK)[‘z(-';-‘L)u-z(';#) [ expl=2=5 ]
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where the superscripts “(o)” and “(n)” denote, respectively, the old and new values,
and r is the relaxation factor. Note that if t;; = 0 or ¢t;; — T;; = 0. no value of B,- can

be obtained.

4.3.4 Flow Unsteadiness and Numerical Instability

As was pointed out in section 1.2, flow unsteadiness is an important feature of turbu-
lence, therefore its large scale portion should be captured in the LES. On the other
hand, flow unsteadiness often causes numerical instability and consequently disrupts
the simulation procedure. We are facing a challenge of simulating a physical pro-
cedure which may be locally unstable with a numerical method which is absolutely
intolerable to instability. A careful comparison between a physical and a numerical
realization of fluid motion shows that the latter has a significantly longer response
time to a sudden local change of flow fields; it needs at least several time-steps (it-
erations) to adjust the flow fields to follow the change which has happened. If other
sudden local changes occur during the above “adjustment” time period, the numerical

method may fail to handle them and leads to numerical divergence.

Many previous researchers of the LES method use the positive SGS eddy diffusivity
to alleviate the problem of numerical instability described above (see section 1.2).
The positive SGS eddy diffusivity smears out acute local changes of the flow fields
and thus stablizes the simulation procedure. However, this approach is not favoured
by the author. because it may considerably distort the unsteadiness feature of the
flow under consideration. In the present study, a special “clipping” algorithm was
designed to prevent the magnitude of the sum of a resolvable field and the RMS of
its corresponding SGS fluctuation from exceeding a specifically pre-determined value.

We describe in detail this special “clipping” algorithm in the following paragraph.

First of all, the “clipping” acts on the SGS Reynolds stress 7;; and the SGS turbu-

lent heat flux o; only. After the values of 7;; and o, are calculated (denoted by “*”),
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they are revised by multiplying them by the coefficients R, and R,’ as follows:

Ty = RUT'-}

og; = R,j\/—R_ua';

where R, and R,’ are calculated by

(

2 -2
0 Vma:z: - Vtotal S 0
— V3az=Via - :
Rv - v, vsms > Vn21a.t - Vtgtal >0 (429)
1 otherwise
\
and
r - -
0 @maz: S e or @min Z @
R!J _ J min(emazo:i)’.@—@mm! @mar > é > eml‘n’ Hrms > min(@maz - (:), (:) - emtn)
1 otherwise

(4.30)
In equations 4.29 and 4.30. V;,.a is the magnitude of the resolvable velocity; v,m, Is

the RMS of the SGS velocity fluctuation, :.e.

rms — —Ti11 — T22 — T33,

and 0., is the RMS of the SGS temperature fluctuation. All of these values are
calculable in the simulation. On the other hand, V;,,;, the magnitude of the maxi-
mum possible instantaneous velocity, On,, , the magnitude of the maximum possible
temperature, and O, , the magnitude of the minimum possible temperature should

be specified based on flow configurations. For example, in LDC flows, V... = Up
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(the driving velocity), while in BDC flows V5. = Us/2 (half of the buoyant velocity
scale), Onar = Ony (the hot wall temperature), and O, = GO0 (the cold wall

temperature).

4.4 Boundary Conditions

In the grid configuration for the present study, the boundaries of the flow domain
are all coincident with the surfaces of control volumes, and no node points are placed
on the boundaries. Thus. boundary conditions are specified by setting values of field
quantities at two fictitious nodes located outside of the domain near boundaries (see
Figure 4.3). Note that using two fictitious nodes is a requirement of the QUICK
scheme. In the present study, the locations of the two fictitious nodes are selected so
that: 1) the boundary is located midway between the first fictitious node and the first
interior node; 2) the first fictitious node is located midway between the the second
fictitious node and the first interior node. In LES practice, there are generally three
kinds of boundaries, i.e. solid walls, inflow boundaries, and outflow boundaries. The
so called homogeneous (or zero-gradient) boundary condition is also applied when one
simulates flows with symmetry or two-dimensional flows. Numerical implementation

of the boundary conditions of different kinds are discussed below.

4.4.1 Solid Walls

On solid walls. the no penetration and no-slip condition is always assumed. so that
no convective transport exists through solid wall boundaries. Thus, field values for
the second fictitious nodes are not used. Velocities at the first fictitious nodes are
simply set as

L/i(—l) — 2L/vi(b) _ bri(l)
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Figure 4.3: Fictitious nodes for boundary condition specification

Temperature boundary conditions for solid walls can be classified as: 1) fixed wall
temperature; or 2) fixed normal wall heat flux. The corresponding setting of the

temperatures at the first fictitious nodes are, respectively.
(-1 =90 _ gt

and
A Igb) q/(b)

1) — @)
0 oY + k

where ©() and ¢'(® are, respectively, the temperature and in-flow heat flux on the
solid wall; k£ is the thermal conductivity of the fluid; A:cfb) is the distance between

the first fictitious node and its interior neighbour.

When the collocated scheme is employed, no boundary condition is required for
pressure on solid walls, because flux velocities on the wall are exactly zero. Since

values of 7;;, 0;, a;, on solid wall boundaries are all zero (no turbulence). we can set
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their values at the first fictitious nodes as

T N N

1] 17 0

4.4.2 Homogeneous Boundaries

A homogeneous boundary is not a real boundary of a flow domain, but an imaginary
bounding plane representing the plane of symmetry for a symmetrical flow, or the
transverse boundary for a 2-D flow. The equations for the field values at the fictitious

nodes for the homogeneous boundaries are
et = (-2 = (1) (4.31)

where ¢ represents any field quantity.

We allow non-zero fluxes across homogeneous boundaries which can be applied in
the Poisson equation for the pressure correction fields. Of course, the pressure field
values and coefficients ap at the first fictitious nodes are set as

p=t = ptt) (4.32)

ap™V = apV). (4.33)

When a homogeneous boundary condition is applied to a field quantity ® on a
boundary, we say that ¢ is open on the boundary. Otherwise, when a specific value

is set for ® on a boundary, we say that ® is closed.
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4.4.3 Inflow and Outflow Boundaries

In dealing with inflow and outflow boundaries, one should avoid over-specifying the
boundary conditions. For example, if pressure values on inflow or outflow boundaries
are closed, velocity boundary conditions there should be opened, because velocity
values on inflow and outflow boundaries are solely determined by the pressure values
there, and vice versa. Since pressure values on inflow and outflow boundaries are
difficult to measure experimentally, most people prefer using closed velocity boundary
conditions, but open pressure boundary conditions on inflow or out flow boundaries.
Furthermore, if all pressure boundary conditions on inflow and outflow boundaries
are opened, we still can not use closed velocity boundary conditions over the entire
boundary, because we have the problem of over-specifying the problem. To avoid
over-specifying, one can arbitrarily select at least one point on the inflow or outflow
boundaries, and open the velocity boundary condition there. In practice, we can use
open velocity boundary conditions at more than one point on the inflow and out flow
boundaries in the case that closed boundary conditions are not available. However,
generally the more numerous the open velocity boundary conditions applied, the

poorer the accuracy of the final simulation result.

In the present study, we avoid using closed pressure boundary conditions on inflow
and outflow boundaries, because pressure fields are far more difficult to measure than
velocity fields in practice. If the velocity boundary conditions on inflow and outflow
boundaries are opened, equation (4.31) is used to specify field quantity values at

fictitious nodes. Otherwise, the following expression is applied:

-1 = p(-2) = p® (4.34)

Note that we actually set boundary values at the ficticious nodes instead of exactly on
the inlet or outlet boundaries. The homogeneous pressure boundary condition setting

expressed in equations (4.32) and (4.33) is still employed. Most people prefer to close
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inflow boundary conditions, but to open outflow boundary conditions, which assumes
that the flow in the domain is mainly affected by inflow boundaries. However, we try
to treat inflow and outflow boundaries equally in problems of low speed flow, because

in some cases the effect of outflow boundaries may be dominant.

In the case of turbulent inflow or outflow, ®®) are time-dependent quantities, so
that inflow or outflow boundary conditions are always changing during the simulation

procedure. Thus, ) should be updated in each time step. We approximate &) by

the following function,
0 = ®®) + ¢ sin(dg + 27 fAL)

where ®0) is the time mean of ®®); 4 is the amplitude of the turbulent fluctuation
of ®®); ¥, is the initial phase for a sine function; f is the dominant frequency of the
turbulent fluctuation. The initial phase ¥ is produced randomly prior to simulation,
updated in each time step using the following formula, and saved for calculation of

®®) in the next time step.

I = mod[9l" + 27 fAL, 2x].

4.5 LES-3DROOM Code

Using the numerical techniques described above, the VAT for turbulent flow simula-
tion was coded using FORTRAN 77 under the title “LES-3DROOM™. LES-3DROOM
consists of three codes which are, respectively, LES-PREPR, LES-MAIN, and LES-
POSTPR. The functions of these codes are shown in Table 4.1.

The mainline, LES-MAIN, calls directly five subroutines i.e.. LES-SGS, LES-
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FALSE, LES-SOLVER, LES-CPR, and LES-LOCAL. The objectives of these subrou-
tines are shown in Table 4.2. A flow chart to show main procedures in the LES-MAIN

is given in Figure 4.4. A flow chater for each subroutine is shown in Appendix B.

Table 4.1: Functions of three codes in LES-3DROOM

| Code ] Functions |

LES-PREPR | Pre-processing :i.e. specifying solution
domain, grid and initial condition

LES-MAIN Main body of LES-3DROOM

LES-POSTPR | Post-processing i.e. output fields for
the software package FIELDVIEW

Table 4.2: Objectives of five subroutines called by LES-MAIN

| Subroutine | Objectives |

LES-LOCAL | Solving the momentum equation, update pressure
and velocity fields at each each node point

LES-SGS Calculating the SGS Reynolds stress, turbulent
heat flux, and eddy diffusivities at each node point

LES-FALSE Setting field values at each fictitious node

LES-CPR Calculating surface flux velocities for each control
volume and coefficients for the pressure correction
equation

LES-SOLVER | Solving the 3-D linear equations for the pressure
correction field and the temperature fields
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Mainline: LESMAIN

l Read in field data from: ins.dat; ave.dat; flu.dat; tao.dat; bou.dat
Y

I Input fluid physical properties p; B; u; Pr; g

l Input boundary conditions and iteration specifications l

v

Y

Do loop for time advance
'

|Updatc initial fields and boundary conditions at turbulent in- or oudctl

K]

( Call LESSGS )
( Call LESFALSE )
-~ Do loops for CV sweeping

( Call LESLOCAL for solving provisional velocity components )

( Call LESCPR )

(Call LESSOLVER for press. correction)

I Correct velocity and pressure fields ‘

C Call LESFALSE )
( Call LESCPR )
v

(Call LESLOCAL for soving tempcrature)

(' Call LESSOLVER for temperature )

I Update initial fields for next time step |
—_—

r

Write out field data to: ins.dat; ave.dat; flu.dat; tao.dat; bou.dat
Y

Figure 4.4: Flow chart for the code LES-MAIN
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4.6 Summary

In this chapter, we discussed the numerical method developed for the VAT. In addi-
tion. the computer code designed for realization of the technique was briefly described.
Although the fractional-step scheme, SIMPLE, QUICK, and PRIME schemes on
which the numerical method in the present study is based are well known in the CFD
community, the combination of these schemes with collocated storage of the resolved
fields represents a novel solution strategy. Furthermore, the numerical method is im-
plemented in a code specifically designed for (but not limited to) the LES using the
FSS SGS model.

In the next chapter, we present the benchmark test results of this newly developed
numerical method in the context of high Reynolds and Rayleigh number laminar

flows.
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Chapter 5

Benchmark Tests for Numerical

Schemes

5.1 Introduction

In this chapter. we show the performance of the proposed numerical schemes. espe-
cially the collocated scheme, by applying them to simulations of laminar flows without
using the SGS model. These laminar flows have been extensively investigated exper-
imentally or numerically, and broadly accepted benchmark results for the flows are
available. Comparison of the present simulation results to the corresponding bench-

mark ones provide us information for estimating the validity of the schemes applied.

The laminar flows to be simulated are: 1) 2-D lid-driven cavity flow; 2) 3-D lid-

driven cavity flow: 2) 3-D buoyancy-driven cavity flow. From a numerical viewpoint.
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2- and 3-D flows in cavities serve as ideal prototype problems for testing numeri-
cal schemes. Geometric simplicity and well defined flow structures make these flows
especially attractive as benchmarks for new numerical techniques, including new dif-
ferencing schemes and problem formulations. In addition, they represent typical flow

patterns in an air-conditioned room.

Since the high Reynolds number performance of the schemes is critical for turbulent
flow simulation. the Reynolds number for the 2-D lid-driven cavity flow is selected
to be relatively high (Re = 1000). The Reynolds or Rayleigh numbers selected for
the 3-D simulations are lower (Re = 400, Ra = 10°%) to limit the computational
effort required. Of course, in order to remove the effect of the SGS modelling, the
Reynolds and Rayleigh numbers of the flows are selected to ensure that the simulated
flows are absolutely in the laminar regime. The simulations were all performed on
a SUN SPARCstation 5 of the CFD group at the University of Saskatchewan. The
normalized mass and pressure correction equation residuals and related CPU times

for all the simulations are presented in Table 5.1.

Table 5.1: Residuals and CPU times of each simulation

[ Flow | Computer(Dou. Pre.) | CPU (hr.) | R J R, 1
2-D LDC Re = 1000 SUN SPARC-5 30 6.9 x 10~ [ 9.4 x 10~
3-D LDC Re =400 SUN SPARC-5 25 5.3 x 10~ | 6.7 x 1071
3-D BDC Re = 10° SUN SPARC-5 40 3.0 x1071% | 8.1 x 107

5.2 2-D Lid-Driven Cavity Flows, Re = 1000

The 2-D lid-driven cavity flow and coordinate system on which the flow domain is
defined are shown schematically in Figure 5.1. The solution domain is a square cavity
with a top lid moving at a velocity Uy. L denotes the length scale of the cavity. No-

slip and impermeable boundary conditions are applied to all solid walls. The flow is

112



characterised by the Reynolds number defined as Re = Qgé which was selected in the

simulation to be 1000.

The 2-D flow was simulated using our 3-D code “LES-3DROOM” with a 61 x 3 x
61 grid. Note that in order to achieve a 2-D configuration with a 3-D code, only
three control volumes are applied along the diminished y-direction, and homogeneous

boundary conditions applied on the two side walls.

The final results of the simulation are shown in Figure 5.2 for streamlines, and in
Figures 5.3 and 5.4 for centerline velocity profiles. The peak values in the centerline
velocity profiles obtained in the present simulation are compared with those from the
previous simulations of the same flow in Table 5.2. Although less than a quarter of
the total number of grid points were applied, the results of the present simulation
are more accurate than those obtained by Chen et al. (1984), Bruneau et al. (1990),
Ghia et al. (1982), and Deng et al. (1994). Therefore, the advantage of the present

code is apparent.

Figure 5.1: Grid and configuration for 2-D lid-driven flow in a square cavity
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Figure 5.2: Streamlines of 2-D LDC flow at Re = 1000
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Figure 5.3: U-velocity profile of 2-D LDC flow at Re = 1000 along X/L = 0.5
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Figure 5.4: W-velocity profile of 2-D LDC flow at Re = 1000 along Z/L = 0.5

Table 5.2: Characteristic values for 2-D LDC flow at Re = 1000

| Method | Grid | Unin | Wmin | Wi |
Present 61x61 |-0.3854 |-0.5256 | 0.3753
Deng et al. (1994) 128x 128 | -0.38511 | -0.52280 | 0.37369
Ghia et al. (1982) 129%x 129 | -0.38289 | -0.51550 | 0.37095
Bruneau et al. (1990) 256x256 | -0.3764 | -0.5208 | 0.3665
Chen et al. (1984) 128x 128 | -0.3689 | -0.5037 | 0.3553
Estimate exact (by Deng et al.) - -0.38867 | -0.52724 | 0.37702
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5.3 3-D Lid-Driven Cavity Flow, Re = 400
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Ku et al.’s (1987) results have been generally viewed as the benchmark, because the
pseudo-spectral method has the reputation of being more accurate than the finite
difference schemes. The simulations by Ku et al. (1987) and by Babu & Korpela
(1994) were carried out in half of the flow domain using, respectively, 25 x 13 x 23
modes and a grid of 63 x 33 x 63 control volumes, while Deng et al.’s (1994) simulation
was performed in whole flow domain using a grid of 64 x 64 x 64 control volumes.
Therefore, the present simulation employed a significantly coarser grid which has less
than one eighth of the control volumes employed by Deng et al. (1994) or of those

employed by Babu & Korpela (1994).

Figure 5.6: Configuration for 3-D lid-driven flow in a cubic cavity

The final results of the present simulation are exhibited as follows. Primary and
secondary patterns of the flow are shown in terms of vector plots in Figures 5.7
through 5.9. Note that in order to show fine strucure of the secondary flow patterns.
vector length in Figures 5.8 and 5.9 are enlarged by a ratio of 2. All the vector
plots are similar to those predicted by Ku et al. (1987) and Babu & Korpela (1994).

The locations of the primary and secondary vortices closely match those of Ku et al.

117



(1987). The longitudinal and vertical velocity component profiles along the vertical
and horizontal centerlines are shown in Figures 5.10 and 5.11. The characteristic
velocities (peak values) in the profiles are compared with those from the previous
simulations of the same flow in Table 5.3. If Ku et al.’s (1987) results are viewed as
the benchmark, Table 5.3 shows that the present results are as good as Deng et al.’s

(1994) and far better than Babu & Korpela’s (1994) results.
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Figure 5.7: Vector plot (U,W) for 3-D LDC flow at Y/L = 0.5

Table 5.3: Characteristic values for 3-D LDC flow at Re = 400

| Method | Grid/Modes | Umin | Wmin | Wemar |
Present 31x31x31 -0.2321 | -0.3798 | 0.2048
Deng et al. (1994) | 64 x64x64 -0.2330 | -0.3765 | 0.2046
Babu et al. (1994) | 63x33x63 -0.2083 | -0.3087 { 0.1773
Ku et al. (1987) 25x%13x25 Modes | -0.2378 | -0.3791 | 0.2053
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Figure 5.8: Vector plot (U,V) for 3-D LDC flow at Z/L = 0.5
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Figure 5.9: Vector plot (V.W) for 3-D LDC flow at X/L =0.5
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Figure 5.10: Profile of U/Uy of 3-D LDC flow along vertical mid-line

Figure 5.11:



5.4 3-D Buoyancy-Driven Cavity Flow, Ra = 10°

The configuration of the 3-D buoyancy-driven cavity flow is shown in Figure 3.12.
The solution domain is identical to that of the 3-D lid-driven cavity flow, while the
flow is driven by the buovancy force initiated by the temperature difference A®
between two opposite walls at £ = 0 and z = L. The flow is characterised by the

Rayleigh number defined as
_ gL’BA®

va

Ra (5.1)

which was selected to be 10° in the simulation.

Heated

Cooled

Figure 5.12: Configuration for 3-D buoyancy-driven flow in a cubic cavity

Previous investigations of the 3-D buoyancy-driven cubic cavity flow have been
performed numerically by Lankhorst & Hoogendoorn (1988) using a grid of 45 x
20 x 45 control volumes (half of flow domain) and by Fusegi et al. (1991) using a
grid of 62 x 62 x 62 control volumes. Previous experimental investigations have only

focused on high aspect ratio (> 3) cavities to justify the 2-D approximation, such as
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that performed by Bilski et al. (1986) who acquired both velocity and temperature
distributions along horizontal and vertical centerlines of a cavity of aspect ratio 5
at Ra = 1.03 x 10%® and Ra = 1.13 x 10%. The benchmarks selected for the present
simulation are the numerical results of Fusegi et al. (1991) and the experimental

results by Bilski et al. (1986).

Firstly, primary and secondary patterns of the flow are shown in terms of vector
plots in Figures 5.13 through 5.15. In order to show the fine strucure of the secondary
flow patterns, vector length in Figures 5.14 and 5.15 are enlarged by a ratio of 3. The
temperature field of the flow is shown in terms of isothermal lines and surfaces in
Figures 5.16 and 5.17. respectively. It is noted that the 3-D buoyancy-driven cubic
cavity flow at Ra = 10° is more two-dimensional than the 3-D lid-driven cubic cavity
flow at Re = 400 it has weaker secondary flows (see Figures 5.15 and 5.14) and an
almost uniform distribution of temperature along transverse y-direction (see Figure
5.17). This feature of the flow was also exhibited by the simulation results of Fusegi

et al. (1991).

The quantitative results of the simulation are shown in Figures 5.18 through 5.21.
The obtained profiles of U and W velocity components along, respectively, vertical
and horizontal centerlines of the cavity are compared with their counterparts from
the simulation of Fusegi et al. (1991) and from the experiment of Bilski ef al. (1986).
It is again noted that, although a coarser grid is employed, the present simulation
results are as good as Fusegi et al.’s (1991) results. The significant difference in the
profiles of the U velocity component along the vertical centerlines between the results
of both simulations and the experiment is probably due to the effect of side walls
(see Figure 5.18). The experimental data were from a cavity with aspect ratio of 5.

whereas the aspect ratio of the cavities for both simulations is 1.



TEw ST Tt . . . ©
2 == > 2 3 T I 2 =
s e~ > T 2T I 2= =
e
. —— = = = = e e -
e N NN~ e -~ - -
A N NN N~~~ - -
U

t1 1
111
1110

wt?tt !,
wtllr ..

il
il
it
al
ot
ot

Figure 5.13: Vector plot (U,W) for 3-D BDC flow at ¥Y/L =0.5
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Figure 5.14: Vector plot (U,V) for 3-D BDC flow at Z/L = 0.5
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Figure 5.17: Isothermal surfaces of 3-D BDC flow
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Figure 5.18: Profile of U/U, of 3-D BDC flow along vertical mid-line
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Figure 5.21: Profile of ©/AO of 3-D BDC flow along horizontal mid-line

5.5 Summary

Benchmark tests of the numerical schemes, particularly the collocated scheme, devel-
oped in Chapter 4 have been performed on three specifically selected laminar flows.
All of the results obtained show that the scheme performs well for highly convective
and 3-D flow simulation. Additionally, compared with some other schemes developed
for solving viscous incompressible fluid motion, the collocated scheme can obtain at
least the same level of simulation accuracy using approximately only one-half of the

regular number of cells per dimension.

The results of benchmark tests of the SGS model in the VAT are presented in the
next chapter. Since the flows considered there are turbulent. they are definitely more
convection-dominant than the flows considered in the present chapter. Success in the
simulation of turbulent flow will not only validate the SGS model applied, but also

confirm the performance of the numerical schemes identified above.



Chapter 6

Benchmark Tests for SGS Model

6.1 Introduction

In this chapter. we discuss the benchmark test results to demonstrate the performance
of the VAT for turbulent flow simulation. To this end, we choose two different turbu-
lent flows as benchmarks: 1) a lid-driven turbulent flow in a 3-D cavity at Re = 10%;
2) a buoyancy-driven turbulent flow in a 3-D cavity at Ra = 10'°. The reason for this
choice is two-fold. Firstly, both flows have been studied using experimental and/or
numerical techniques and limited results for them are available. Secondly, the flows
can be viewed as building blocks of room airflow which are considered in Chapter
7. These flows were simulated with the VAT, and the results obtained are compared

with the corresponding benchmark data.

In order to capture turbulent fluctuations, fine non-uniform grids were employed in

simulations of both the lid-driven and buoyancy-driven turbulent flows. The physical
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properties of the fluid in both simulations are selected as: dynamic viscosity u =
1.983 x 1076 (kg/ms); density p = 1.1774 (kg/m?); coefficient of volumetric thermal
expansion 3 = 0.00333 (A ~!); and Prandtl number Pr = 0.76.

In order to save CPU time, both simulations started from zero 2-D initial fields.
and were first simulated two dimensionally using a time step increment of At (At =
0.1 (sec) for the LDC flow and At = 0.01 (sec) for the BDC flow) until steady states
had been reached. This procedure took approximately 8,000 time steps. Then. the
2-D data fields obtained were applied as the initial conditions for 3-D simulations,
which were pushed forward three dimensionally for another 2,000 time steps (using
At = 0.05 (sec) for the LDC flow and At = 0.005 (sec) for the BDC flow ). The
weighting factor f,, for time averaging was selected to be 0.5 at the beginning of the
2-D simulations. and then was increased in three steps to 0.9995 when steady states
had been reached. After switching to 3-D simulations, f,, was reduced to 0.5 for
the first 200 time steps (the dvnamic length scale range is still calculated based on
fo = 0.9995) and then increased to 0.9995. The 3-D simulation took approximately
300 CPU hours for the LDC flow and 450 CPU hours for the buoyancy-driven cavity
flow on the SUN SPARCstation 5. In the following two sections. the results of the

two simulations are presented and discussed in detail.

6.2 3-D Lid-Driven Cavity Flow, Re = 10*

6.2.1 Flow Configuration

The solution domain of the 3-D lid-driven turbulent cavity flow is a cuboid box of
size L, x L, x L., as shown in Figure 6.1. We chose L = L. =1m and L, =0.5m
in the simulation. All boundaries of the domain are solid walls at rest except the top

lid which moves horizontally at a speed Up. We selected Uy = 0.01684 m/s to ensure
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the Revnolds number based on the driving speed Uy and the length scale L, or L: to
be 10*.

Figure 6.1: Solution domain of 3-D lid-driven turbulent cavity flow

The grid applied for the 3-D lid-driven turbulent cavity flow simulation involves
51 x 21 x 51 control volumes, which is shown in Figure 6.2. The grid is refined near
the walls. The maximum aspect ratio of the control volumes is 18:1 which occurs

close to the centres of the top, bottom, upstream, and downstream walls.

Some previous investigations of turbulent 3-D lid-drive cavity flows, both numerical
and experimental. have been reported. For example, numerical investigations of the
flow were performed using the LES method with the Smagorinsky SGS model by
Jordan & Ragab (1994), which showed that the transition of the flow from laminar
to turbulence occurs at Re ~ 35000, and it is definitely turbulent at Re = 10%.
Flows of different aspect ratio and Reynolds number (up to 10%) were investigated
experimentally by Prasad & Koseff (1989), and numerically using the LES method
with the dynamic and mixed SGS models by Zang et al. (1993a) and Zang et al.
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Figure 6.2: Grid for solution of 3-D turbulent LDC flow

(1993b) at Stanford University. The experimental results of Prasad & Koseff (1989)

are considered as a benchmark for the present simulation.

6.2.2 Results and Discussion

First of all, the patterns of the time-averaged resolvable flow fields are displayed in
terms of vector plots in Figures 6.3 through 6.5. Since no such vector plots pertaining
to previous experimental or numerical investigation of this turbulent LDC flow are
found in the literature. no benchmark comparison can be made. However. we still
can give some general comments on them. Figure 6.3 shows the primary circulation
pattern of the flow and two corner vortices near the bottom of the cavity. Compared
with those in laminar LDC flows, the bottom corner vortices in the turbulent LDC flow

are much stronger. A significant distortion (flattening) of the main circulation flow
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field appears at the location where the right hand side bottom corner vortex and the
main circulation flow contact. Figures 6.4 and 6.5 show the secondary flow pattern
of the flow on vertical mid-planes normal to, respectively, the x- and y-directions.
A slight asymmetry of the flow pattern is displayed, which is probably due to the
limited averaging time in the simulation. Only an extremely weak corner vortex and
the accompanying TGL vortex can be identified in the vicinity of the left portion of
the bottom (see Figure 6.4), which implies that the low aspect ratio of the LDC flow
may strengthen the inter-action between clockwise and anti-clockwise corner or TGL

vortices, and therefore significantly weaken all of them.
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Figure 6.3: Velocity vector (5, W) of 3-D turbulent LDC flow at y/L, = 0.5

The pressure field of the flow is shown in Figure 6.6. As was expected, the max-
imum pressure occurs at the downstream end of the lid, which is the main driving
mechanism of the clockwise recirculation of the flow. The second highest pressure
occurs at the location where the downward flow contacts the bottom of the cavity,

which drives a portion of the flow backward forming the strong right corner vortex.

The instantaneous values of the SGS Reynolds stress tensor 7;; and the SGS eddy

diffusivities a; represent a total of 12 field parameters in the present simulation. We
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Figure 6.6: Pressure (P) of 3-D turbulent LDC flow at y/Ly, =0.5

list in Table 6.1 the ranges of the values of each of these parameters taken at the last
time step of the simulation. Note that all values shown are normalised by the velocity
Ug. It is found that the SGS turbulent fluctuation level of the present turbulent LDC
flow simulation is approximately ten times lower than that of the turbulent BDC
flow simulation described in the next section. Additionally, in Figures 6.7 and 6.8.
the contours of the two selected parameters, 713 and @i, at the mid-plane normal to
the y-direction are displayed. In general, the SGS turbulence of the flow is stronger
after the separation point of the downward boundary layer on the end wall of the
cavity, but weaker near the top lid. The former behaviour is reasonable. but the
latter contradicts the experimental results of Prasad & Koseff (1989), in which the
peak value of < u >, the auto-correlation of the turbulent fluctuation. appears
close to the top lid (see Figure 6 of Prasad & Koseff (1989)). The reason for this
contradiction could be that the clipping algorithm applied in the present simulation

to avoid numerical divergence is too ‘strong’ in regions close to the top lid.

The profile of W across the horizontal centreline and that of U across the vertical

centre-line are plotted, respectively, in Figures 6.9 and 6.10. The corresponding results
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Table 6.1: Ranges of normalised values of SGS-related parameters (3-D turbulent

LDC flow)

[ Para.meter] Minimum [ Maximum |

T11 -5.506 x 10—3 0.x 100
T12 -2.675x1073 | 8.512x10~*
T3 -4.344x107% | 3.336 x10°3
T21 -2.675x1073 | 8.512x10~*
T29 -5.449%x10°3 0.x10°
T23 -1.894x10-3 | 1.739x 103
Ta1 -4.344x107* | 3.336x1073
Ta2 -1.894x10-2 | 1.739%x 103
Ta3 -2.691x102 0.x10°
an 0.x10° 6.384x10°
%) 0.x10° 4.398x10°
Qs 0.x10° | 7.190x10°
P A

Figure 6.7: 73 of 3-D turbulent LDC flow at y/L, =0.5
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Figure 6.8: a; of 3-D turbulent LDC flow at y/L, = 0.5

from the experiment of Prasad & Koseff (1989) are also plotted for comparison. It
is found that the present simulation matches reasonably well with the experiment in
both plots. Comparison of the above profiles with the corresponding profiles obtained
from the LES of Zhang et al. (1993) (see Figure 5 of the publication) shows that both
obtained good predictions of the velocity profile near the lid and downward boundary
layer. The present simulation predicts a better profile in the left side upward boundary
layer, while Zhang et al. (1993) obtained a better profile in the bottom leftward

boundary layer.

The time histories of the four resolvable fields, i.e. [7, Vv, W, Pata point 0.06 m
from the bottom of the cavity during the last 800 time steps are plotted in Figure 6.11.
Although the time period of “recording” is not long enough, the temporal fluctuation
of the resolvable fields are captured. It is found that the time history plots for the
resolvable velocity field is smoother than that for the resolvable pressure, indicating

that pressure plays an important role in turbulence production.
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Figure 6.10: Profile of W of 3-D turbulent LDC flow along horizontal mid-line
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Figure 6.11: Time history of the fields U, V', W, P at node (26.11,10)

6.3 3-D Buoyancy-Driven Cavity Flow, Ra = 10!

6.3.1 Flow Configuration

The solution domain of the 3-D buoyancy-driven turbulent cavity flow is also a cuboid

of size L; x L, x L., as shown in Figure 6.12.

We selected L = L. =1 m, and L, = 0.8 m which is slightly larger than that for
the lid-driven case. All boundaries of the domain are solid walls without motion. at
which the no-slip condition is applied. Both the hot wall ( at z = 0) and cold wall (at
r = L) are isothermal and the temperature difference between them is A@. All other
walls are assumed to be adiabatic. The Rayleigh number of the flow has been defined
in equation (5.1), while the characteristic length here is defined as L = L, = L.. In
order to obtain significant turbulent flow, we chose Ra = 10'° which corresponds to
AO = 1.143 K. The flow is believed to show some features of turbulence when the

Rayleigh number exceeds 108.
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Figure 6.12: Solution-domain of 3-D buoyancy-driven turbulent cavity flow

One challenge in simulating high Rayleigh number buoyancy-driven cavity flow is
that. due to low values of the molecular diffusivities, boundary layers on both hot and
cold vertical walls are extremely thin. The horizontal profile of the vertical velocity
component has two polar points which are very close to, respectively, the hot and
cold walls. This requires a high near-wall-resolution in the grid to place a sufficient
number of cells between the wall and the polar points. Therefore, we employed a
relatively fine grid with 61 x 41 x 61 control volumes as shown in Figure 6.13. It is
noted that the grid is highly refined near the cavity walls, which causes high aspect
ratios ( with a maximum 180:1) for control volumes there. Application of the grid
requires 78 M B memory (double precision) in a SUN SPARCstation 5 (with maximum

virtual memory of 216 MB) of the CFD group at the University of Saskatchewan.

The turbulent BDC flow and its 2-D counterpart has been investigated numerically
using methods other than the LES. First of all, the DNS method was employed by

several researchers. Among them are: Paolucci (1990) who simulated the 2-D flow
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Figure 6.13: Grid for solution of 3-D turbulent BDC flow

with a grid of 121 x 121 control volumes; Fusegi et al. (1991) who simulated the 3-D
flow with a relatively coarse grid (121 x 62 x 62 resolution) for Rayleigh numbers from
Ra =10 up to Re = 10'%; Xin & Le Quere (1994) who simulated the 2-D flow on a
very fine grid of 256 x 321 control volumes; and Xin & Le Quere (1995) who simulated
the 2-D flow with an aspect ratio 1/4 at a Rayleigh number based on the cavity
height of Ra, = 10'°. It should be pointed out that turbulence in the 2-D BDC flow
is still a 3-D phenomenon which should be simulated three-dimensionally. However,
in order to save computer resources, all of the above simulations of the 2-D BDC
flow were performed with 2-D numerical schemes. This simplification may result in
considerable errors in the final results of the simulation. Secondly, the RAM method
was also employed to simulate the turbulent BDC flow. Hanjalic and Vasic (1993)
simulated the 2-D flow up to Ra = 10'? using the RAM method with an algebraic
closure model. Barakos & Mitsoulis (1993) simulated the 2-D flow up to Ra = 10*°
using both the DNS method (implicit time stepping) and the RAM method (the

k — € models with and without wall-function). On the other hand, due to difficulties
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associated with experimental realization of the thermal boundary conditions, only
a limited number of experimental investigations on this or similar flows have been
reported. Cheesewright et al. (1986) studied experimentally the buoyancy driven
flow in a 2-D cavity with an aspect ratio of 1/5 at Ra, = 7.1 x 10'°. More recently,
Hoogendoorn et al. (1996) provided experimental measurement results for the 3-D

flow in an almost cubic cavity at Ra = 4.9 x 10'°,

6.3.2 Results and Discussion

Firstly. some qualitative results of the simulation are shown in the form of contour
and vector plots. Figures 6.14 through 6.17 show the time averaged resolvable fields
at specific cross sections in the solution domain. The benchmarks. with which these
qualitative results of the simulation can be compared are the simulation results of
Paolucci (1990), Fusegi et al. (1991), and Barakos ef al. (1994). The pattern of the
primary velocity field obtained by the present simulation (Figure 6.14) is extraor-
dinarily similar to that of Paolucci (1990). Both show strong vortices near the top
and bottom walls of the cavity and the locations of these vortices match well with
each other. Secondly. the primary temperature fields obtained ( see Figure 6.15) also
closely resemble Paolucci’s (1990) prediction. However, the tiny “hook” flow pattern
caused by sinusoidal disturbances of small amplitudes near vertical surfaces shown in
Paolucci’s (1990) temperature contours does not appear in the temperature contour
of the present simulation. This is probably due to the lower grid resolution applied
in the present simulation. On the other hand, the primary flow pattern and temper-
ature contour of the present simulation do not match those of Fusegi et al. (1991)
and Barakos et al. (1994). Their temperature contours show thinner boundary layers
near hot and cold walls, and are strongly stratified along the vertical direction (refer
to Plate 3 in Fusegi et al. (1991) and Figure 6 in Barakos et al. (1994)). No top or
bottom vortex appears in the velocity vector plot of Barakos et al. (1994). These

laminar-like features of the flow fields suggest that, without using the SGS model, the
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80 x 80 grid employed by Barakos et al. (1994) or the 121 x 61 x 61 grid employed
by Fusegi et al. (1991) are still too coarse to fully capture the turbulent effect of this
flow in simulation, even though the grids are already finer than what was employed
by the present simulation. Three-dimensionality of the obtained flow fields is weak;
it is apparent only in regions close to the corners of the cavity. Three-dimensionality

of the temperature field is exhibited in Figures 6.16 and 6.17.

Figure 6.14: Velocity (U;) vector of 3-D turbulent BDC flow at y/L, = 0.5

The contour of the pressure field (normalised by the buoyancy velocity Uy) is
exhibited in Figure 6.18 which shows high pressure regions near the top corner of the
hot wall and bottom corner of the cold wall indicating that horizontal motion of the

flow is driven mainly by the pressure gradients built up there.

The instantaneous fields of the SGS Reynolds stress tensor 7;;, the SGS turbulent
heat flux o}, and the eddy diffusivities a; are unique to the present simulation. We
list in Table 6.2 the ranges of the values of each of these parameters taken at the
last time step of the simulation (normalised by the buoyancy velocity U, and/or the
temperatur difference A®). It is noted that the magnitudes of even the normalised

SGS turbulence parameters for the BDC turbulent flow are more than 10 times larger
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Figure 6.15: Isothermal () of 3-D turbulent BDC flow at y/L, = 0.5

Figure 6.16: Isothermal (©) of 3-D turbulent BDC flow at /L, = 0.0042
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Figure 6.17: Isothermal (©) of 3-D turbulent BDC flow at z/L. = 0.0042

BN —r ~
R R 2
R s

Figure 6.18: Pressure (P. normalised by poUs?) of 3-D turbulent BDC flow at y/L, =
0.5

144



than those for the LDC turbulent flow discussed above (the velocity scale for normal-
ization in the BDC flow is approximately 12 times that of the LDC flow), indicating
that turbulence is a strong nonlinear process. Additionally, in Figures 6.19 through
6.21, the contours of the three selected parameters at the mid-plane normal to the
y-direction are displayed. It is found that magnitudes of the SGS turbulence param-
eters are high near the top and bottom wall, low near the hot and cold walls, and

almost zero in the centre region of the cavity.

Table 6.2: Ranges of normalised values of SGS-related parameters (3-D turbulent

BDC flow)

[ Parameterl Minimum J Maximum I

T11 -2.175X10—1 O.xlOo
T12 -7.603x1072 | 7.110x 102
T13 -6.745x1072% | 5.960x 1072
a1 -7.603x1072 | 7.110x102
22 -2.005x10"! 0.x10°
To3 -4.355x1072 | 6.504x 102
a1 -6.745x10~% | 5.960x 102
T30 -4.355x1072 | 6.504 %102
T33 -1.898)(10—1 0.)(].00
o -8.866x10-2% | 6.081x10~2
o2 -6.144x10-2 | 3.549x10?
o3 -3.534x10"2% | 4.615x10?
ay 0.x10° | 2.876x10?
as 0.x10° | 1.734x102
a3 0.x10° | 2.625x10?

The quantitative results are shown in terms of the averaged temperature and ver-
tical velocity component profiles across the horizontal centre-line from the hot to cold
walls (Figures 6.22 and 6.23). In order to show their near wall detail, *blown up” pro-
files near the hot wall are shown in Figures 6.24 and 6.25. The corresponding results
from Paolucci (1990), Xin & Le Quere (1994) (2-D simulations). and Hoogendoorn
(1996) (3-D experiment) are also plotted for comparison. The present vertical veloc-
ity component profile matches quite well with that from Paolucci’s (1990) simulation.

but is different from that of Xin & Le Quere (1994). It seems that the flow field ex-
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Figure 6.19: 13 of 3-D turbulent BDC flow at y/L, = 0.5

Figure 6.20: o3 of 3-D turbulent BDC flow at y/L, = 0.5
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Figure 6.21: a; of 3-D turbulent BDC flow at y/L, = 0.5

hibited by Xin & Le Quere (1994) is not yet fully developed, since the most turbulent
regions in their last predicted flow fields are still next to the vertical surfaces rather
than near the top and bottom walls (see Figure 6 in Xin & Le Quere (1994)). The
author of thesis also observed such an intermediate field in his simulation procedure.
It is noted that Xin & Le Quere (1994) employed a grid of extremely fine resolution
to satisfy the requirement of the DNS method. However, the trade-off in doing this is
a significant increase in computing burden and systematic (machine round-off) error

involved. This drawback of the DNS method was mentioned in section 2.2.

Finally, all resolvable fields at a specific node approximately 0.03 m below the top
wall of the cavity versus time are plotted in Figure 6.26 for the last 1000 simulation
time steps to show the temporal fluctuations. It is found that the fluctuation of the
resolvable fields is not as violent as those of the instantaneous fields obtained from
the DNS of Paolucci (1990) and Xin & Le Quere (1994). This is appearently due
to the effect of the volume average approach. Again, it is found that the resolvable

pressure fields fluctuate more than the other resolvable fields.
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Figure 6.23: Profile of 0 of 3-D turbulent BDC flow along horizontal mid-line
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Figure 6.26: Time history of the fields 7, V, W, ©, P at node (31.21.54)

6.4 Summary

Preliminary benchmark tests for the VAT have been carried out by applying it to the
LES of LDC and BDC turbulent flows. Although relatively coarse grids were employed
(in the sense of the conventional LES), both of the simulations obtained reasonable
predictions for the resolved fields (time averaged) and their temporal fluctuations.
The predicted magnitudes and distributions of the SGS turbulence parameters for

both simulations are exhibited and discussed.

An application of the VAT to room airflow prediction is discussed in the next
chapter. Although we call it “application”, the main purpose of that simulation is
still to test the VAT developed. An added feature of the room airflow is that it is

more three-dimentional and convective.
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Chapter 7

Room Airflow Prediction

7.1 Introduction

As was pointed out in Section 1.3, airflow in air-conditioned rooms is a kind of fluid
motion. possibly with multiple regimes. which is difficult to simulate accurately using
the RAM method due to its inherent limitations. The LES method is free from these
limitations. and therefore potentially a promising numerical tool for room airflow

predictions.

In this chapter, we present the results of an application of the VAT, a newly devel-
oped technique of the LES method, to room airflow simulation. First of all. previous
work pertaining to room airflow predictions, both numerical and experimental. is
briefly reviewed. The room airflow considered in the present chapter is one which
has been experimentally investigated. so that our simulation results can be compared

against the corresponding experimental data, even though they are limited.
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7.2 Brief Review of Previous Work

7.2.1 Numerical Predictions

The prediction of airflow in rooms started in the 1970’s. Most of the earlier simu-
lation work pertaining to airflow in a room was carried out using the £ — ¢ models
or low-Reyvnolds-number k& — ¢ models, as reviewed by Rhodes (1989) and Chen &
Jiang (1992). The technique has been applied to study velocity, temperature, turbu-

lence intensity, humidity, and contaminant concentration fields in rooms of various

configurations.

In the late 1970’s, Nielsen et al. (1978) proposed to develop a standard benchmark
to validate and compare different simulation models for room airflow prediction. An
isothermal airflow in a quasi 2-D room, shown in Figure 7.1, was selected and used by
the IEA (International Research Team). Detailed experimental investigation on the
flow was carried out using LDA (Laser Doppler Anemometry), and the experimental
data obtained served as the benchmark for validation of simulation models. However,
this flow is in fact far removed from a real room airflow. It is actually a 2-D wall jet in
a wall-bounded enclosure and exhibits flow patterns similar to those of 2-D lid-driven
cavity flow or back-step flow. Although most reported & — ¢ model simulations of this
standard 2-D room case achieved encouraging results (see Chen & Jiang, 1992), the
semi-empirical nature of the & — ¢ model makes it unsuitable for simulations of other
more complicated room airflow, e.g. 3-D or non-isothermal flows. This fact has been
confirmed by some more recent k— e model simulations of room airflow with increased
complexity. Among them are the simulations of William et al. (1992), Weather et al.
(1993)), Said et al. (1995), Murakami et al. (1991), Haghighat et al. (1991), and Gan
(1995). It seems that the k — ¢ models may perform well for specific flow conditions
and lead to simulation results that agree well with the corresponding experimental

data. However, this is not always the case. When flow conditions change, the k — ¢
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models may lead to a poor agreement between simulation results and the experimental

counterparts.

+ h

Inlet
r WH=0.056 [/H=3.0 vH=0.16 W/H=1.0
Inlet Condition: Re=5000; [=4%
W=widthof room; I=turbulence intensity

Qutlet ]

Figure 7.1: Sketch of quasi 2-D case used by IEA

Application of the SMC (Second Moment Closure) model to room airflow predic-
tion started in the 1990’s. The model was first used by Murakami et al. (1990) and
Renz & Terhaag (1990) to simulate airflow in a room with jets. More recent work
was reported by Murakami et al. (1992), Kato ef al. (1993), and Chen et al. (1996).
Comparisons with the & — ¢ model made in the above SMC model simulations were
generally favourable to the SMC model, which shows the advantage of the SMC model
over the £ — ¢ model in simulations of room airflow with a simple recirculating flow
pattern. However, the SMC model shares with the & — ¢ model the problems of inap-
propriate assumptions and empirically determined coeflicients, and more computing
effort is required by the SMC model. Therefore, it is difficult to conclude that the
SMC model is more reliable than the & — € model for prediction of real-world complex

room airflow.

To the author’s knowledge, application of the LES method to room airflow predic-
tion is just beginning. The only published work is that by Davidson (1997) who used
a dvnamic one-equation SGS eddy viscosity model to simulate an isothermal wall-jet-
driven recirculating flow in a 9 m x 3 m x 3 m room with 96 x 64 x 64 grid. Some
encouraging results were obtained. However, since the flow configuration considered

is simple. the advantage of the LES method were not apparent in this study.



7.2.2 Experimental Measurements

Let's turn to experimental measurements of room air flow in this subsection. Only
experimental investigations of room airflow which provide benchmark data for veri-
fving numerical models are discussed. The experimental measurements of the quasi
2-D case shown in Figures 7.1 is one of the earliest investigations. As was pointed out
above. the experimental results of this flow have been broadly employed as a bench-
mark to test simulation models, and they are still in use (Davidson, 1997 and Chen,
1996). Since experimental measurements with high resolution of the temperature,
pressure. and velocity fields in a full size air conditioned room requires a tremendous
investment in equipment and installation, only a few full size experiments have been
reported. Some of these are described below. (Describing these studies will retain
the use of the British unit system where it was originally employed, even though the

SI unit system is applied throughout this thesis.)

Similar experiments on a slightly different room airflow configuration than that
of Nielsen et al. (1978) were performed by Zhang et al. (1992) and Hawkins et
al. (1995). Figure 7.2 is a sketch of the room airflow experiment by Zhang et al.
(1992). The Q represents a heat source (cooling load) on the room floor, so that
the flow is closer to real ventilation than Nielsen et al.’s (1978) quasi 2-D case. The
experimental results were employed by Nady et al. (1995) and Zhang et al. (1993) to
check the validity of their simulation results. Figure 7.3 shows another strongly 2-D

room airflow configuration studied experimentally by Hawkins et al. (1993).

An experiment on a full size 3-D room airflow configuration was performed by
Weather & Spitler (1993). Measurements were made in a 15’ x 9’ x 9’ room with a
sidewall inlet (see Figure 7.4). The flow rate in the room was varied between 15 and
100 ACH (Air Changes per Hour). The inlet flow temperature was kept at 21°C,
which is lower than or equal to the side wall temperature. The measured results

were emploved to test the numerical model of Weather & Spitler (1993), and that of

Williams et al. (1994).



-

)
x=1"
Inlet y=3'
iy
h=0.167 Outlet 1=0.67"

—T H=8"

Q
f 4t 44ttt a sttt v

L=18"

Figure 7.2: Quasi 2-D room airflow measured by Zhang et al. (1992)
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Figure 7.3: Quasi 2-D room airflow measured by Hawkins et al. (1995)
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Figure 7.4: 3-D room airflow measured by Weather & Spitler (1993)

[sothermal air flow in a full size room with ceiling mounted supply and return dif-
fusers was experimentally investigated by Jouini et al. (1994), whose configuration is
shown schematically in Figure 7.5. In this experimental study, only the velocity, tur-
bulent fluctuation and turbulence intensity on the measurement plane were obtained.

Thus. the data obtained in this experiment are effectively 2-D rather than 3-D.

wl

L=4.75 m, H=2.87 m. W=4.87 m. w=1.016 m, h=0.0127 m. yl=2.141 m. y2=0.806 m, w1=2.335 m

Figure 7.53: 3-D room airflow measured by Jouini et al. (1994)

In summary, only the room airflow experiment performed by Weather & Spitler
(1993) can be viewed as a real 3-D experiment. Numerical simulations of this flow
has been reported by at least two groups of researchers, namely William et al. (1994)

and Weather & Spitler (1993). Therefore, it is the most suitable candidate for us to
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simulate using the VAT developed in the present study. In the following sections, the

VAT simulation of the flow is discussed in detail.

7.3 Room Airflow Configuration

Although in Weather & Spitler’s experiment a wide range of discharge flow rates
(from 15 to 100 ACH) and wall temperatures were tested, only one of the cases was
selected for the present simulation. This case was also selected for the simulation of
Williams et al. (1994). The inlet conditions for the simulation are given in Table 7.1.
The mean inlet velocities have only x-direction components and are assumed to be
uniformly distributed over the inlet area. Since no turbulence fluctuation data are
available from the experiment, the frequencies of the dominant turbulent fluctuation
are assumed to be determined by the inlet mean velocity V;,, and the length scale of the
inlet grille grid (L,) which is set to be 0.05m in the simulation. The inlet turbulence
intensity I, are estimated based on equation (3.41) by assuming that the magnitude
of turbulent diffusion is 29 times that of the molecular diffusion (see Appendix A.3).

This assumption was also adopted in the simulation of Williams et al. (1994).

Table 7.1: Inlet conditions of simulation

[Qin(ACH) [ Via(m/s) [0:CR) [ I, | fu(H=)]
f 30 ﬁ 08 [ -5.36 12.44%| Yo

The outlet mean velocities are specified except at the corner of the room where
the velocity boundary condition is opened to avoid over-specification. The specified
outlet mean velocities also have only x-direction components and are assumed to be

uniformly distributed over the outlet area. The value of the outlet mean velocity V.,
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is calculated according to global continuity requirement of the ow as

Ain
Aout

Vour = Vi = 1.013645224V,,
where 1.013645224 is the exact ratio of the areas of the inlet and outlet of the room.
No turbulent fluctuation is specified and the zero-normal-gradient boundary condition

is applied for temperature on the outlet. The temperatures of all the walls are set to

be ©®, =0K.

A non-uniform 31 x61 x 61 grid is employed for the present room airflow simulation
as illustrated in Figure 7.6. Also shown in the figure are the RHS inlet, LHS outlet,
and the Cartesian coordinate system. Our grid for the LES of the flow has a total cell
number which is approximately 5.7 times that of Williams et al.’s (1994) simulation

(21x31 x31) and 2.8 times that of Weather & Spitler’s (1993) simulation (46 <30 x 30).

Figure 7.6: Grid configuration for room airflow simulation
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7.4 Results and Discussion

The simulation was performed on a SUN-ULTRA workstation of the CFD group at
the University of Saskatchewan. which is approximately 1.5 times faster than a SUN-
SPARCstation 5. Starting from zero initial fields, the room airflow was first solved
three-dimensionally without using the SGS model for 1000 time steps (At = 0.01 sec).
Then, the SGS model was switched on and the flow was further simulated for another
2800 time steps (At = 0.002 sec). As we have done in the turbulent cavity flow
simulations described in Chapter 6, different values of the weighting factors f,, for
time averaging were applied in the simulation procedure of the present room airflow
simulation. The f,. was selected to be 0.5 for the first 1000 time steps. 0.995 for the
next 1000 time steps. and increased to 0.9995 for the final 1800 time steps. The entire

simulation took approximately 250 CPU hours.

It is noted that airflow in an air-conditioned room is generally unsteady due to
switching on and off the heating/cooling devices according to heating/cooling loads.
motions of occupants inside the room, or the phenomenon of multiple solutions. Ad-
ditionally, engineers in the HVAC community are interested in not only the ensemble
averages but also the large scale fluctuations of turbulent fields in room airflow. since
the latter also have significant effects on the thermal comfort (see Wang (1993) for
definition). Therefore, the resolvable fields of the present LES room airflow sim-
ulation are practically as significant as their time averaged counterparts. To take
advantage of the LES method, the final results of the present room airflow simulation

are exhibited mostly based on the resolvable fields in this section.

Firstly, the complexity of the room airflow patterns are shown in terms of vector
plots on vertical and horizontal centre planes of the inlet and outlet (see Figures 7.7
through 7.10). From Figure 7.7, the inlet jet appears to hit the floor approximately
two thirds of the way across the room. Thereafter, the jet moves mainly forward
along the floor to hit the opposite wall. The strong upward flow near the opposite

wall is caused by residual momentum of the inlet jet and buoyancy force due to the
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temperature gradient near the wall. The upward flow produces a clockwise vortex.near
the opposite wall. The inlet jet has no significant expansion. This feature is clearly
shown in Figure 7.8 where the inlet flow velocity vectors retain their initial direction
for at least one third of the way across the room. In contrast, the flow pattern near
the outlet is more complex (see Figures 7.9 and 7.10). The flow “scatter” after the

inlet jet contacts the floor is clearly shown in Figure 7.10.

Figure 7.7: Vector plot of (U,W) velocity on vertical centre plane of inlet

The strong three-dimensionality of the final resolvable fields is exhibited in Figures
7.11 and 7.12 for airflow speed, in Figures 7.13 and 7.14 for temperature, and in
Figures 7.15 through 7.17 for pressure. The airflow speed and pressure are nomalized
by the inlet average speed, while the airflow temperature is nomalized by the difference
between inlet flow temperature and the wall temperature. (For legends of the speed,
temperature, and pressure contours see, respectively, Figures 7.11, 7.13, and 7.15.)

The following features of the flow can be identified from these contours:
1) It is shown in Figures 7.11 and 7.12 that the inlet flow jet has no significant
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Figure 7.8: Vector plot of (U,V) velocity on horizontal centre plane of inlet

e T T T T

r e 0 22 e e . .

I: l;'..

: Fizis

» .

3 ? o w 2 .
tew £03 1
2727 2 2 ¢
dadiiiii:..

Figure 7.9: Vector plot of (U,W) velocity on vertical centre plane of outlet
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Figure 7.10: Vector plot of (U.V) velocity on horizontal centre plane of outlet

expansion in the transverse direction. This is mainly due to weak turbulent transport
and a weak adverse pressure gradient inside the room. The latter is caused by the use
of a closed outlet velocity boundary condition, which avoids building up high pressure
near the outlet to drive the airflow out. Buoyancy drives the inlet jet significantly
downward. The throw of the jet first hits the floor rather than the opposite wall.
After hitting the floor, the jet slides forward to meet the opposite wall and creates a

strong upward and a relatively weak sideward secondary flow.

2) Flow speed inside the room can be higher than the inlet flow speed in regions
near the floor and opposite wall (maximum is 1.62). This is due to the driving

mechanism of the buoyancy force.

3) The momentum and energy transfers in the flow are definitely convection dom-
inant. This can be confirmed by the fact that the low temperature region is nearly

coincident with the high speed region inside the room.
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4) The highest pressure occurs near the corner (X =0m,Y =2.Tm,Z =0 m) of
the room, while the next highest pressure peak is at the contact point of the inlet jet

with the floor (see Figures Figures 7.15 through 7.17).

Figure 7.11: Contours of airflow speed on planes normal to x-direction

From the point of view of HVAC engineering, this room airflow configuration is
a very poor “design” for cooling a room. This is not surprising, because the flow
configuration was originally designed to simplify both experiments and simulations.
rather than for human comfort inside the room. The poor cooling performance of the
flow configuration is clearly identified by iso-surfaces exhibited in Figures 7.18 and
7.19. Both figures show that a large portion (almost a half) of the room space close
to the ceiling and one corner (X = 4.6 m,Y = Z = 0 m) is virtually untouched by
the inlet jet (a dead region). It appears that mounting vanes on the inlet to throw a
portion of the inlet airflow transversely to the corner (X =4.6 m,Y = Z =0 m) will

considerably improve the airflow and temperature distribution in the room.

The poor ventilation performance of the airflow configuration is exhibited in terms
of streak lines in Figures 7.20 and 7.21. Figure 7.20 shows three streak lines for three

seed particales situated near the outlet. All of these three streak lines trail back to

163



Figure 7.12: Contours of airflow speed on planes normal to y-direction

Figure 7.13: Contours of airflow temperature on planes normal to x-direction
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Figure 7.14: Contours of airflow temperature on planes normal to y-direction

Figure 7.15: Contours of pressure on planes normal to x-direction
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Figure 7.16: Contours of pressure on planes normal to y-direction

Figure 7.17: Contours of pressure on planes normal to z-direction
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Figure 7.18: Iso-surface of airflow speed 0.1 (normalised)

Figure 7.19: Iso-surface of airflow temperature —0.1 (normalised)
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the inlet, which means that the inlet airflow does not mix effectively with the air
inside the room. Figure 7.21 shows a streak line starting from a seed situated in
the “dead region” of the room. After many circulation ‘cycles’, the streak line still
can not reach the outlet. Streak lines approximate path lines of fluid particles for a
quasi-steady flow. Thus. Figure 7.21 tells us that the room airflow configuration is

inefficient at removing contaminants from the “dead region™.

Figure 7.20: Streak lines ending at 3 seeds situated near outlet

The ranges of the values of each of the instantaneous fields of the SGS Reynolds
stress tensor 7;;, the SGS turbulent heat flux ¢, and the eddy diffusivities a; taken at
the last time step of the simulation are presented in Table 7.2. In order to illustrate
their distributions in the room, contours for two of these parameters, i.e. 713 and ay,
are presented in Figures 7.22 through 7.27. It seems that the SGS scale turbulence is
strong in regians close to the floor and opposite wall (the maximum value of o, occurs
near the lower portion of the opposite wall), but relatively weak near the inlet and
in the low-flow-speed regions. This may explain why the inlet jet has no significant

expansion before hitting the floor.

Finally, let’s compare the results of the present room airflow simulation with their
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Figure 7.21: Streak lines starting from a seed situated in “dead region”

Table 7.2: Ranges of normalised values of SGS-related parameters (room airflow)

[Parameter[ Minimum | Maxirnum—l

-8.312x 10!

0.x10°

11

T12 -2.545x107! | 1.351x 10!
T13 -2.644x107! | 1.567x 107!
T21 -2.545x107! | 1.351x 10!
T22 -6.896x 101 0.x10°
Ta3 -1.027x 107! | 6.786x 102
T31 -2.644x107! | 1.567x 107!
T32 -1.027x107! | 6.786x 1072
T33 '4.555)(10-1 0.)(100
o1 -1.399x 107! | 1.542x 107"
o2 -1.388x10~! | 9.927x 1072
o3 -1.296x 107! | 8.122x 1072
o 0.x10° | 5.692x102
(%) 0.x10° | 4.825x102
a3 0.x10° | 5.722x10°2
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Figure 7.22: Contours of ;3 on planes normal to x-direction

Figure 7.23: Contours of 713 on planes normal to y-direction
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Figure 7.24: Contours of 713 on planes normal to z-direction

Figure 7.25: Contours of a; on planes normal to x-direction
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counterparts from the experimental investigation of Weather & Spitler (1993). A
gray-scale graph illustrating the distribution of the room airflow speed in the vertical
inlet center plane is shown in Figure 7.28, which can be compared with a similar plot
obtained from measurements shown in Figure 2-b of Weather & Spitler (1993). This
figure has poor resolution, and is replotted in Figure 7.29. It is found that the present
result closely matches that of the measurements. The maximum speed obtained from
the measurements is 1.27 m/s (250 fpm) (Weather & Spitler, 1993) which is close to
the maximum speed 1.32 m/s in the present simulation. The throw distance of the
inlet jet (the horizontal distance from the inlet to the contact point with the floor)
estimated from Figure 7.28 and that from Figure 7.29 are almost the same. The
only identifiable difference between the two figures is that the present LES simulation
predicted a high airflow speed region near the opposite wall, which the measurements
do not confirm. One possible reason for this discrepency is that the vertically extended
roller chain used to mount the spherical, heated thermistor air velocity transducers in
Weather & Spitler’s (1993) experiment hinder the accurate measurement of vertical
air velocity near the opposite wall (see Spitler & Pederson, 1991). It is neccesary
to remind us here that the “multiple solution™ feature of room airflow may bring in
some differences among results from different simulation/experiments. or even from
different sampling times of a single simulation/experiment. Therefore. a part of the

above presented discrepency might come from the “multiple solutions™.

A similar comparison might be made between Figure 7.28 and its counterpart
obtained from the simulation of Weather & Spitler (1993). However. Weather &
Spitler’s (1993) simulation results for the 30 ACH case are not realistic; as the authors
themselves put it, comparison of their results with the measurements indicated neither
qualitative nor quantitative agreement. The low temperature inlet jet in Weather &
Spitler’s (1993) simulation is rising rather than sinking in the room, which seems

contrary to common sense.
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Figure 7.29: Figure 2-b in Weather & Spitler (1993)
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7.5 Summary

Using a grid of 31 x 61 x 61 cells, the VAT for turbulent flow simulation has been suc-
cesfully applied to predict the velocity and temperature fields in a 4.6 m x2.7 mx2.Tm
room with a cooling inlet and wall-mounted cooling load. The final simulation results
were presented using high-quality field display graphic software. Three-dimensionality
of the resolvable fields and the SGS fluctuations of the flow were captured by the VAT,
and displayed in terms of contour and vector plots. A comparison of one of the sim-
ulation results with its counterpart from Weather & Spitler’s experiment shows good

agreement.



Chapter 8

Conclusions

8.1 Summary

8.1.1 Historical Remarks

The original objective of the present research, which was set up five vears ago by the
supervisory committee of the author’s Ph.D. program, was to apply the conventional
LES method to room airflow predictions. Therefore. at the beginning of the research.
the author assumed that the LES technique had been well developed, and focused
most of the attention on the engineering application of this technique. However.
during the process of the literature search and computer program development, many

unexpected problems appeared.
Firstly, it was found that most existing numerical schemes were not suitable for
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the LES technique. Therefore, it took about two vears to develop a 3-D collocated
scheme for the LES method. Rhie & Chow's (1983) scheme was first combined with
the SIMPLE scheme. This hybrid scheme failed to obtain accurate results in the
simulation of a 3-D laminar LDC flow. Then, the idea of the CPI method was pro-
posed and implemented in a SIMPLE-like scheme in the simulation of a 3-D laminar
LDC flow. The results were encouraging because they were much better than those
obtained by Babu et al. (1993) with a finer grid, even though it was found later that
the idea of the CPI scheme in the context of finite difference scheme had already been
published by Deng et al. (1994). Further investigation of the collocated scheme based
on the CPI scheme and SIMPLE showed that it did not work well in simulation of
time-dependent flows. which means that it can not be applied in the LES. Therefore.
a collocated scheme combining FSM and SIMPLE was proposed. and applied as a

standard numerical tool for the VAT in the present study.

It took another two years to develop the VAT. At the beginning of the research.
we planned to use Germano et al’s (1991) dynamic SGS model to simulate room
airflow. However. preliminary runs of the computer program showed no evidence of
any fluctuation of the resolvable fields, which was, from the author’s point of view.
probably due to the coarse grid applied. To solve this problem. we tried to use the
supercomputer resources accessible for us in Canada and USA. We were fortunate to
be awarded 120 CPU hours in total on a Fujistu VPX-240 vector supercomputer by
the HPCC in Calgary. However, resources of this supercomputer were still insufficient
for a computer program in its developing stage. Large amounts of CPU time were
required to test, debug. and revise the code. Additionally, it was found during the
period of developing the computer program on the VPX-240 that vectorisation was
the key to achieve high efficiency of computation. but to vectorise the code would take
a large amount of time and effort. In the end, for practical reason, the LES model
and code was extensively tested using our own workstations, which limited the size of
problem which could be handled. Therefore, the focal point of the research switched

from primarily application to a theoretical development with limited application.



8.1.2 Summary of Present Study

The finalised objective of the present study can be summarised as follows: to develop a
new LES technique and apply it to the simulation of room airflow with the computer
resources provided by a high performance workstation. The achievements of the

present study are as follows.

Some deficiencies in previously developed techniques for the LES method, par-
ticularly those associated with the SGS modelling, have been identified. Prominent
among these are: 1) the eddy diffusivity representation for the SGS effect of turbu-
lence in most SGS models, which is not universally valid; 2) in conventional dynamic
SGS modelling methods, often the method used to obtain the volume averaged fields
on the TGS level from those on the SGS level does not discriminate real turbulent
spatial fluctuation from non-fluctuating spatial inhomogeneity of the flow: and 3)
Bardina’s scale similarity SGS model dissipates little or no energy and is too crude

in its derivation to justify the use of a constant coefficient.

In order to overcome these drawbacks. a new so called Volume Average Technique
(VAT) for turbulent flow simulation has been proposed. The main features of the

VAT can be summarised as follows:

1) The volume averaging approach instead of the more common filtering approach
is employved to define solvable scale fields, so that coarse-graining in the LES and

space discretization of the numerical scheme are achieved in a single procedure.

2) All components of the SGS Reynolds stress and SGS turbulent heat flux are
modelled dynamically using the newly proposed Functional Scale Similarity (FSS)
SGS model. The modelling coefficients of the FSS SGS model are determined dynam-
ically, and non-fluctuating spatial inhomogeneity of the flow is removed by involving
the time averaged fields in the modelling procedure. Therefore, the SGS model should
be applicable to highly inhomogeneous and/or anisotropic turbulence as well as weak

or multi-regime turbulent flows using a relatively coarse grid.
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3) The so-called SGS turbulent diffusion is identified and modelled as a separate
mechanism to that of the SGS turbulent flux represented by the SGS Reynolds stress
and SGS turbulent heat flux. The SGS turbulent diffusion is defined in the coarse-

graining procedure. and is responsible for most of the energy dissipation.

4) A new 3-D collocated scheme for the solution of viscous incompressible fluid

flow. based on the SIMPLE and fractional-step method. is developed for the LES.

FORTRAN 77 codes (over 3000 lines) to realize numerically the VAT have been
developed on two platforms, VMS-VAX mainframe and SUN workstation, at the
University of Saskatchewan. The codes include a preprocessor called LES-PREPR.
a mainline called LES-MAIN. a post-processor called LES-POSTPR. and various
subroutines (LESLOCAL, LESSGS, LESFALSE, LESCPR, LESSOLVER) used by

the mainline.

Benchmark tests of the VAT have been performed based on lid-driven and buoyancy-
driven cavity flows. Firstly, 2-D and 3-D lid-driven cavity flows at Re = 1000 and
Re = 400. and a 3-D buoyancy-driven cavity flow at Ra = 10°%, were simulated
without using the SGS model. Since all of these flows are in the laminar regime.
the objective of this simulation was to test the numerical schemes developed in the
present study. Next. 3-D lid-driven and 3-D buoyancy-driven cavity turbulent flows
at Re = 10 and Ra = 10'° were simulated with the SGS model turned on. All
results of the benchmark test simulations have been compared to their numerical or

experimental counterparts found in the literature.

Finally. as an example of a practical calculation, the VAT has been applied to the
LES of airflow in an enclosed air-conditioned room of size 4.6 m x 2.7 m x 2.7 m with
a wall-mounted cooling inlet and an opposing outlet. The results obtained have been
compared with their counterparts from an experimental investigation of the same

airflow reported by Weather & Spitler (1993).
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8.2 Conclusions

In this section we present conclusions based on the LES technique development and
simulation results obtained in the research. In order to be consistent with the content
of the thesis. the presentation is subdivided into two parts, i.e. conclusions pertaining

to the theory of the LES method and those pertaining to its application.

8.2.1 LES Theory

Based on the theoretical development of the present study, the following two conclu-

sions are drawn:

1) Most of the problems associated with the conventional LES techniques have
been either solved or partially solved in the VAT proposed by the present study.

They are:

o The coarse-graining of instantaneous fields in the LES and the solution domain
discretization of the F'V scheme are combined as a single procedure in the VAT,
so that some inconsistencies of LES methods based on the filtering approach

are avoided.

e The SGS flux and SGS diffusion are distinguished and modelled separately in
the VAT. The latter represents most of energy dissipation that Bardina et al.’s

(1980) scale similarity SGS model failed to capture.

e The VAT totally gives up the eddy viscosity hypothesis. It dynamically models
the full-component SGS Reynolds stress and turbulent heat flux. and the SGS
turbulent diffusion as well. Therefore. it is appropriate for many cornplex flows

of engineering and scientific significance.

e The problem of confusing turbulent fluctuation with spatial inhomogeneity of
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fields in the conventional dynamic SGS modelling methods has been solved in
the VAT. It has been shown that the VAT allows using a relatively coarse grid.

and therefore alleviates the problem of memory shortage in simulation.

e The contradiction between physical instability of a turbulent flow and numerical
instability is partially solved (but needs further research) by using a special

“clipping” algorithm in the VAT.

o The characteristic length scales of the LES are calculated based on the length
scales of control volume surfaces in the VAT to account for the anisotropic

features of volume averages.

Preliminary benchmark tests of the VAT show that it performs well in capturing large

scale time fluctuations of resolvable fields and predicting their time-averaged values.

2) The collocated scheme developed in the present study plays an important role in
the VAT. The accuracy and efficiency of this 3-D incompressible scheme has been con-
clusively demonstrated. This scheme can be applied to a wide range of incompressible

or slightly compressible flows occurring in natural science and engineering.

8.2.2 Applications

Another three conclusions can be drawn based on benchmark simulations and a real

room airflow simulation carried out in the present study. They are:

1) From the point of view of application. the most important advantage of the
VAT is that it can be applied to perform a real LES with a relatively coarse grid.
A direct consequence of this. of course, is considerable saving of computer memory

for the LES, which greatly increases the feasibility of extending the LES method to

commercial applications.



2) Compared with most conventional LES techniques, the VAT requires more time
steps (iterations) to complete a simulation. This is due to the use of time averages
of the resolvable flow fields in the FSS SGS model, which are accurate only when the
flow under consideration is fully developed. However, this does not necessarily mean
that the use of the VAT needs more CPU time to complete a simulation, because
the VAT's feature of being applicable with a relatively coarser grid can save a large

amount of CPU time in simulation.

3) With the VAT developed, it will soon (perhaps in five years) be possible to use
the LES method to simulate a real flow of engineering interest with the computer
resource provided by a workstation. It can be estimated based on the room airflow
simulation carried out in the present study that a grid of 100 x 100 x 100 cells, which is
approximately 8 times finer than that employed for the room airflow simulation, can
satisfy the grid requirement of the LES of many engineering related flows of moderate
complexity. The memory requirement corresponding to this grid is approximately 400
MB; a SUN-ULTRA workstation can handle a maximum of 662 MB (virtual) memory.
The only worry about the LES of a flow in a workstation is the low CPU speed, which
means that a simulation may take weeks to complete. However, the author believe
that the CPU speed of workstations will quickly increase in the near future. Thus,
the running time required for a complete LES will soon decrease to something on the

order of one week, which is acceptable for many engineering applications.

Finally, based on the author’s experience accumulated during the numerical simu-

lations carried out in the present study, the following two conclusions can be drawn:

1) Since turbulent flows are strongly convection dominant, their simulation results
are very sensitive to the initial Aow conditions applied. Different initial flow condi-
tions may lead to different final results. This is especially the case for flows with
“dead regions” in the solution domain. where the flow quantities have no significant
transport with the outer boundaries, and the flow pattern inside is strongly affected

by the initial condition. This is actually one manifestation of the multiple solution



phenomenon described in section 1.3.

2) If the number of control volumes involved in a grid system for LES is doubled,
the computing effort required to finish the LES is far more than doubled. A further
doubling of the effort is necessary to account for a half time step decrease for satisfying
the CFL condition. and another doubling of the effort is necessary to account for the
additional iterations required in the ADLGS solver. Thus, increasing the number of
control volumes by a factor of two can lead to an increase of computing effort by a
factor of eight. Therefore, unnecessary grid refinement should be avoided in the LES

practice.

8.3 Contributions

The contributions of the present study broadly relate to the technique and its appli-
cation. It should be noted that the assessment of the contributions of the present
study in this section are based on the author’s knowledge of previous work in the area

of the LES. which may be incomplete.

Let’s first consider the contributions related to the VAT. One of the most impor-
tant contributions in this regard is the development of the FSS SGS model. The
author considers what follows to be unique features of the model: 1) removing flow
inhomogeneity by subtracting from the solvable fields their time averaged values; 2)
dynamic determination of the modelling coefficients using a postulated functional
distribution of the auto-correlation components of the SGS Reynolds stress or that of
the SGS temperature fluctuation; 3) anisotropic definition of the characteristic width
of the volume average based on the surface length scales of the control volume: and
1) consideration in the model of the effect of the time step and that of time averaging

the solvable fields via the concept of the dynamic length scale range of the model.

Another important contribution associated with the VAT is the identification of
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the SGS turbulent diffusion as a different transport enhancement mechanism than the
SGS turbulent flux. The idea is innovative, and the SGS turbulent diffusion model
developed in the present study is far different from any previously developed eddy

diffusivity SGS models.

The 3-D collocated scheme developed for the VAT in the present study has some
unique features. For laminar flows, the scheme achieves surprisingly accurate results
compared to those from other numerical simulations. The fractional-step handling of
the velocity field components in the context of a SIMPLE-like solution strategy on a

non-staggered gird system is a contribution of the present study.

As to the contributions related to applications. the successful LES of a 3-D buoyancy-
drive cavity flow at Rayleigh number of Ra = 10'° achieved in the present study is
significant; no such simulation has been reported thus far. The LES of the 3-D non-
isothermal room airflow using the computer resource provided by a workstation in

the present study is also unprecedented.

8.4 Future Work

As a turbulent flow simulation technique. the VAT was first proposed in the present
study. Due to time limitation of the Ph.D. program, only some preliminary bench-
mark tests on this technique have been performed thus far. Therefore. immediate
future work should consider testing the technique by simulating benchmark flows
other than cavity turbulence. The most suitable flows for such benchmark tests are
channel and duct flows. both of which have been investigated thoroughly using both
experimental and numerical methods for more than half a century. Some features
of the flows have been well understood, e.g. the log-law velocity profile in near-wall
regions which is an ideal benchmark to test the performance of the VAT in simulating

wall damping of the flow. A unique feature of channel or duct flows is that almost
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all the turbulence is wall-generated. thus the length scales of the turbulence near the
walls of channel or duct flows are extremely small. A related challenge is that one
should use a very fine grid in order to capture features of the near wall turbulence.
It is therefore of great significance to determine if the problem associated with the
fine grid requirement can be even partially alleviated by using the VAT in the LES

of channel or duct flows.

An assumption on which the VAT is based is that the turbulent flow under consid-
eration is statistically stationary, so that the ensemble averages of the instantaneous
flow fields can be substituted by their time averaged counterparts in the simulation.
This assumption will cause no problem if the frequency of temporal change of the
flow fields is several orders of magnitude lower than frequencies of the turbulent fluc-
tuations. Otherwise. a specific algorithm should be designed to eliminate the effect of
the flow unsteadiness from the time averages of the fields, possibly in a similar way to
what we have done in the present study in eliminating the effect of flow inhomogeneity

from volume averages of the flow fields.

Viewing the turbulent diffusion or the SGS turbulent diffusion as a different trans-
port enhancement mechanism than the SGS turbulent flux is a new approach proposed
in the present study. Although the fact that 1) the rationale is based on an analogy to
molecular diffusion and 2) reasonable simulation results were obtained both support
the concept, further studies. both numerical and experimental, on this new concept
are recommended. Additionally, the author is personally not very satisfied with the
“clipping” algorithm designed in the VAT to avoid numerical divergence during simu-
lation. Further studies may be carried out to improve it or to design a new one which

is more “reasonable”.

Extension of the VAT to orthogonal coordinate systems other than the Cartesian
system. and to curvilinear coordinate systems is another project for future work.
Doing this will significantly broaden the application area of the VAT, because more

complex solution domains can be handled by general orthogonal coordinate systems



or curvilinear coordinate systems. Most of the tasks in this regard are routine, but
will nevertheless complicate the solution procedures. However, the extension of the

VAT to the cylindrical system is relatively simple and can be tried first.

As a long term future work. one may consider the extension of the VAT to com-
pressible flows and furthermore to flows with combustion or chemical reactions. The
author is personally interested in the LES of flows in the combustion chamber of a
power plant boiler furnace. The success of such a simulation can provide guidance of

how to locate burners correctly around the combustion chamber.
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Appendix A

Derivations of Formule

This appendix provides derivations of formule supporting the claims appearing in the

text of the thesis.

A.1 Product of Two Modes of Fluctuation of Dif-
ferent Length Scales
In this section. we will determine the modes involved in the product of two spatially

fluctuating modes. @, and @,. of different length scales which are. respectively. A,

and A,. It is assumed without losing generality that both ¢, and @, are 1-D spatially



fluctuating modes and have zero initial phases, so that they can be expressed as

()
¢1 = Al Sln(-?n.ll:)

D)
62 = A, sin<§3)
2

where A, and A, are the amplitudes of ¢; and @&,. Thus

Arz Irz
0, = Ay Agsin{ —) sin(—
0101 1 A2 sin( A )5111( Az)

1 2xr  2rnz 2rz 27z
= —A,Az[cos(——— — —) — cos(— + —
5 A1 Az (AI 3, (L\1 A2)]
1 2rzx 2rzx
= 5 Ay Agfcos( ) — cos( )]
= Ar1-42 Ar+4,
which shows that the resultant expression involves modes of length scale A—All_'—AAL? and
218,
Ay+4z°

A.2 Coefficient K, in Germano et al’s Dynamic

SGS Model

In the case that the characteristic length scale of the volume average A, is extremely
small compared with the dominant length scale of the fluctuation B;, and the step of

time advancing is extremely small, i.e. 7 = 0, the distribution function (3.32) can be

approximated by the linear relation shown in Figure A.l.



dF(XydX

X (length scale)

Figure A.l: Linear approximation of the distribution function F(X)

If A"=2A, then it is apparent from Figure A.l that

K, = %

based on the following reasoning: In Germano et al’s (1991) SGS model. it is assumed
that the SGS eddy viscosity v, is identical in the sub-grid and test-grid levels. On
the other hand. the difference between the resolvable strain rate tensors in sub-grid
and test-grid levels is negligible when an extremely fine grid is applied. Thus, the
auto-correlation components of the SGS Reynolds stress tensors in both the sub-grid
and test-grid levels are proportional to the squares of the characteristic length scale

of averaging. Therefore.

K. = TiiTj; _ A,’zAjz _ l
YOVTET; N (AP - AN - A0 3

o
o
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A.3 Turbulence Intensity at Inlet of Room

A direction independent turbulent diffusion a; can be defined from equation (3.41)

as:

1,
Qp = SutLg (A.l)

where i, is the RMS of the inlet turbulence, and L, = 0.05 m is the length scale of
the grille of the inlet. If the ratio of the turbulent diffusion «, over the kinematic

viscosity v is 29. then
i = (2)(29)(v)/(0.05 m) = (2)(29)(1.6834 x 10~° m?/s)/(0.05 m) = 0.01953 m/s

Thus. the inlet turbulence intensity I, for the case of 30 ACH is

i,  0.01953 m/s

Vin 0.8m/s %

Iy



Appendix B

Flow Charts for Subroutines

The flow charts for all five subroutines ( LES-LOCAL, LES-SGS. LES-FALSE, LES-
CPR. LES-SOLVER) which are called directly by the mainline LES-MAIN are given

I Calculate geometric factors, sources for QUICK
Y

l Calculate surface molecular and turbulent diffusivity and turbulent flux

K]

calculate coefficients for finite volume equation

Y

Predict to obtain provisional velocity components or temperature

Figure B.1: Flow chart for the code LES-LOCAL

below.




ST

Do loops for CV sweeping

No

Need SGS model?
Yes
[Calculate inhomogeneous portion of velocityl

[ Calculate volumetric weighting factor for VA approach J

( CallCAP1andCAP2for VA's )

[ Calculate dynamic range of FSS model I

(_ cCallCOEFlwobainCi )
v

[ Calculate SGS Reynolds stress and turbulent heat flux J

1

I Algorithm for solution procedure stability |

[]

l Calculate turbulent diffusion l
i

Y

l Set all SGS related parameters zero l

Figure B.2: Flow chart for the code LES-SGS

> Do loops for CV sweeping

1

[ Set values at factitious nodes near west and east walls J

K]

l Set values at factitious nodes near south and north wallsJ

!

| Set values at factitious nodes near bottom and top walls I
_]

Figure B.3: Flow chart for the code LES-FALSE
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g Do loops for CV sweeping

r Calculate coefficients for pressure correction equation ]

'

[ Calculate flux velocity at surface of control volume I

l Calculate mass and pressure correction residuals ]
}

Figure B.4: Flow chart for the code LES-CPR

Do loop for number of sweeping

’ Line by line along x-direction; y-forward and z-forward sweeping I

]

[ Line by line along y-direction; z-forward and x-forward sweeping l
v

[ Line by line along z-direction: x-forward and y-forward sweeping j

1

L Line by line along x-direction; y-forward and z-backward sweeping I

1

l Line by line along y-direction: z-forward and x-backward sweeping I

Y

l Line by line along z-direction: x-forward and y-backward sweeping I

7

L Line by line along x-direction; y-backward and z-backward sweeping J

-

l Line by line along y-direction; z-backward and x-backward sweeping J

v

L Line by line along z-direction; x-backward and y-backward sweeping |
|

L Line by line along x-direction; y-backward and z-forward sweeping I

1

[ Line bu line along y-direction; z-backward and x-forward sweeping J
v

L Linc by line along z-direction; x-backward and y-forward sweeping I
I

Figure B.5: Flow chart for the code LES-SOLVER
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