
Computing Fast and Scalable Table Cartograms for

Large Tables

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Mohammad Rakib Hasan

©Mohammad Rakib Hasan, November 2021. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to

the author.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University

of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection.

I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis work or, in their absence,

by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood

that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed

without my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by

the University of Saskatchewan. The views and opinions of the author expressed herein do not state or

reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement

purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building, 110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9 Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

i

Abstract

Given an m × n table T of positive weights, and a rectangle R with an area equal to the sum of the

weights, a table cartogram computes a partition of R into m × n convex quadrilateral faces such that each

face has the same adjacencies as its corresponding cell in T , and has an area equal to the cell’s weight. In

this thesis, we explored different table cartogram algorithms for a large table with thousands of cells and

investigated the potential applications of large table cartograms. We implemented Evans et al.’s [40] table

cartogram algorithm that guarantees zero area error and adapted a diffusion-based cartographic transforma-

tion approach, FastFlow [52], to produce large table cartograms. We introduced a constraint optimization

based table cartogram generation technique, TCarto, leveraging the concept of force-directed layout. We

implemented TCarto with column-based and quadtree-based parallelization to compute table cartograms for

table with thousands of cells. We presented several potential applications of large table cartograms to create

the diagrammatic representations in various real-life scenarios, e.g., for analyzing spatial correlations between

geospatial variables, understanding clusters and densities in scatterplots, and creating visual effects in images

(i.e., expanding illumination, mosaic art effect). We presented an empirical comparison among these three

table cartogram techniques with two different real-life datasets: a meteorological weather dataset and a US

State-to-State migration flow dataset. FastFlow and TCarto both performed well on the weather data table.

However, for US State-to-State migration flow data, where the table contained many local optima with high

value differences among adjacent cells, FastFlow generated concave quadrilateral faces. We also investigated

some potential relationships among different measurement metrics such as cartographic error (accuracy), the

average aspect ratio (the readability of the visualization), computational speed, and the grid size of the table.

Furthermore, we augmented our proposed TCarto with angle constraint to enhance the readability of the vi-

sualization, conceding some cartographic error, and also inspected the potential relationship of the restricted

angles with the accuracy and the readability of the visualization. In the output of the angle constrained

TCarto algorithm on US State-to-State migration dataset, it was difficult to identify the rows and columns

for a cell upto 20◦ angle constraint, but appeared to be identifiable for more than 40◦ angle constraint.

ii

Acknowledgements

Firstly, I would like to thank my supervisors, Dr. Debajyoti Mondal and Dr. Kevin A. Schneider for their

valuable guidance. I am also grateful for the graduate funding support from the Department of Computer

Science at the University of Saskatchewan and the grant from the National Sciences and Engineering Research

Council of Canada (NSERC). It led me to conduct this wonderful research work.

I am very much thankful to my wife and my daughters for giving me the courage to finish what I started.

I am lucky to have some really good friends and lab mates who supported me all the way through.

Most importantly, I am eternally indebted to my parents, who taught me to accept failures, keep dreaming

of success and never give up on something just because it is difficult.

iii

Dedicated to my creator, my lovely wife (Zinat Ara), both of my precious daughters (Pariza Eleanor and

Irem Maryam), and my parents.

iv

Contents

Permission to Use . i

Abstract . ii

Acknowledgements . iii

Contents . v

List of Tables . vii

List of Figures . viii

List of Abbreviations . xi

1 Introduction . 1
1.1 Motivation . 3
1.2 Research Questions . 6
1.3 Contributions . 7
1.4 Methodology . 8
1.5 Chapter Organization . 10
1.6 Declaration . 11
1.7 Summary . 11

2 Background . 12
2.1 Cartogram . 12

2.1.1 Contiguous and Non-contiguous Cartogram . 13
2.1.2 Rectangular Cartogram . 14
2.1.3 Table Cartogram . 15

2.2 Image Transformation . 15
2.2.1 Affine Transformation . 16
2.2.2 Image Warping with Piecewise Affine Transformation 17

2.3 Quality Measurement metrics . 17
2.3.1 Statistical Accuracy metrics . 18
2.3.2 Comprehensiveness Measurement metrics . 19

2.4 Miscellaneous . 20
2.5 Summary . 20

3 Literature Review . 21
3.1 Related Works . 21

3.1.1 Cartograms . 21
3.1.2 Algorithmic Techniques . 24
3.1.3 Parallel Processing . 25

3.2 Summary . 26

4 Table Cartogram Algorithms . 27
4.1 TCarto: An Optimization Based Algorithm . 27
4.2 Baseline - Errorless Table Cartogram Algorithm . 33
4.3 FastFlow - Fast Flow-based Density-Equalizing Algorithm 35
4.4 Summary . 37

v

5 Applications of Table Cartograms . 38
5.1 Infographics to Reveal Spatial Relation . 38
5.2 Different visual effects in images . 41

5.2.1 Increasing Light Illumination . 41
5.2.2 Mosaic Effect . 42

5.3 Understanding Clusters in a Scatter-plot . 44
5.4 Tabular Data with Angle Constraint . 46
5.5 Summary . 47

6 Experimental Results & Analysis . 52
6.1 Experimental Setup . 52

6.1.1 Dataset Description . 52
6.1.2 Evaluation Metrics . 53

6.2 Results and Analysis . 54
6.2.1 Performance Comparison with Weather Dataset . 54
6.2.2 Performance Comparison with Migration Dataset . 55
6.2.3 Relationship between Accuracy and Readability of Visualization 57
6.2.4 Relationship of Grid Size with Accuracy and Processing Speed 58
6.2.5 Relationship of Threshold Angle with Accuracy and Readability of Visualization for

Angle Constraint Table Cartogram . 59
6.3 Summary . 60

7 Conclusion . 63
7.1 Summary . 63
7.2 Contribution . 64
7.3 Limitations . 65

7.3.1 Data Limitations . 65
7.3.2 User studies . 65
7.3.3 Evaluation metrics . 66
7.3.4 GPU Implementation . 66

7.4 Future Work . 66

References . 68

Appendix A Generated Results with Weather Dataset . 76

Appendix B Generated Results with US Migration Data for Angle-Constrained Table
Cartogram . 82

vi

List of Tables

6.1 Cartographic error (ẽi), mean quadratic error (IMQE), mean aspect ratio (AR) and average
concave count (α) for weather dataset [88]. 55

6.2 Results on US State-to-State Migration Flows from 2015 to 2019 published by the US Census
Bureau [22]. On each input, TCarto Parallel runs until 10 iterations and FastFlow until
15 iterations with our modification to tackle the convergence problem. 56

A.1 Error and processing time for different table cartograms with the Weather Research and Fore-
casting (WRF) dataset, (top) Baseline algorithm with 16× 16 grid, (bottom) TCarto Par-
allel algorithm with 16× 16 grid [88]. 76

A.2 Error and processing time for different table cartograms with the Weather Research and Fore-
casting (WRF) dataset, (top) TCarto DivCon algorithm with 16× 16 grid, (bottom) Fast-
Flow algorithm with 16× 16 grid [88]. 77

A.3 Error and processing time for different table cartograms with the Weather Research and Fore-
casting (WRF) dataset, (top) Baseline algorithm with 32× 32 grid, (bottom) TCarto Par-
allel algorithm with 32× 32 grid [88]. 78

A.4 Error and processing time for different table cartograms with the Weather Research and Fore-
casting (WRF) dataset, (top) TCarto DivCon algorithm with 32× 32 grid, (bottom) Fast-
Flow algorithm with 32× 32 grid [88]. 79

A.5 Error and processing time for different table cartograms with the Weather Research and Fore-
casting (WRF) dataset, (top) Baseline algorithm with 64× 64 grid, (bottom) TCarto Par-
allel algorithm with 64× 64 grid [88]. 80

A.6 Error and processing time for different table cartograms with the Weather Research and Fore-
casting (WRF) dataset, (top) TCarto DivCon algorithm with 64× 64 grid, (bottom) Fast-
Flow algorithm with 64× 64 grid [88]. 81

B.1 Different measurement metrics for angle (i.e., 0, 20, 40, 60, 80 degree) constraint with US
migration data [22]. 82

vii

List of Figures

1.1 (a) The 2016 US Electoral College vote represented using a contiguous cartogram [52], (b)
population of the United States in 1970 presented using non-contiguous cartogram [81]. . . . 1

1.2 (a) A table R with 2 × 2 grid, (b) a table cartogram of R using constraint optimization, (c)
Evans et al.’s [40] output for R (based on a theoretical proof), (d) a cartogram for a large
table (32× 32) based on constraint optimization. 2

1.3 Top row represents the 32 by 32 grid corresponding to their below images. Bottom row
shows, (a) a contour plot of the portion of solar energy reflected from the surface of the
earth (ALBEDO) over the western provinces of Canada, (b) TCarto output that transforms
the contour plot based on the table of soil moisture (SH20) values for 32 by 32 grid with
cartographic error (See Eq. 2.2) = 0.0961 and average aspect ratio (See Eq. 2.8) = 0.6130, (c)
Evans et al.’s[40] algorithm (Baseline) output with cartographic error = 0.0001 and average
aspect ratio = 0.1689 . 3

1.4 The table cartogram outputs for the US state-to-state migration data of year 2017, (a) top is
TCarto DivCon output, and bottom is TCarto DivCon with 40◦ angle constraint, where
blue region has the high weight and yellow has the low weight, (b) FastFlow outputs with
concave and overlapping cells at different iterations, where red cells are concave quadrilaterals. 4

1.5 Large table cartograms applied to different applications. 5

1.6 Piecewise affine transformation of (a) an image, (b) into a convex polygon, (c) into a concave
polygon. 6

1.7 Basic diagram of waterfall model . 9

1.8 Structure of the thesis. 10

2.1 1921 cartogram of the USA based on electrical energy sold for light and power in the Literary
Digest [1]. 13

2.2 The 2012 US electoral college vote of re-electing former President Barak Obama (a) standard
input image with red for the Republican Party and blue for the Democratic Party [28, 104], (b)
college vote using a contiguous cartogram [104], (c) same election results using non-contiguous
cartogram [89]. 14

2.3 Rectangular cartogram presenting the highway distances of different states at US [138]. . . . 14

2.4 (top) Different states of US in the original geographic map, (bottom-left) 6 x 8 grid map of
the states of US, (bottom-right) corresponding table cartogram output for the population of
the US states in 2010 [41]. 15

2.5 Affine image transformation. 17

2.6 (a) Input image with blue nodes (source position) as grid points, (b) output image after
applying a piecewise affine transformation with the destination point. 17

3.1 Cartogram-like representations from early ages [109, 1], (a) “Chart of the comparative magni-
tudes of countries” by Woodbridge in 1837, (b) figure from “New and Improved School Atlas”
by Olney in 1837, (c) figure from “Rand McNally World Atlas” of 1897. 22

3.2 1911 Apportionment map of the United States by William B. Bailey [1]. 22

3.3 Cartograms from the ‘Atlas of Canada and the World’ (1979) showing (left) population, (right)
oil production [108, 109]. 23

4.1 Initial m×n table T , where V , W and A are the vertices, weights and the areas of corresponding
cells, respectively. There are three types of vertices - red, orange and blue vertices. Red (fixed)
vertices are fixed, orange (boundary) vertices can move only towards boundary line and blue
(inner) vertices can move anywhere inside so that each cell remains convex. 29

viii

4.2 (a) Boundary node movement on vertical boundary line, (b) constraints for the movement of
the vertical boundary node, F so that ABCF and CDEF cells remain convex. F can only move
in between F1 and F2 along vertical boundary, (c) boundary node movement on horizontal
boundary line, (d) constraints for the movement of the horizontal boundary node, F so that
ABCF and CDEF cells remain convex. F can only move in between F1 and F2 along horizontal
boundary. 30

4.3 (a) Initial setup, (b) computation of the height, h
′

, (c) a feasible region for moving a point, t. 31

4.4 (a)–(b) Load distribution among different threads in two phases, (c)–(e) preprocessing for the
Div-Con approach. 32

4.5 (a) Demonstration of Input table, a partitioned tables, At and Ab where total row, n=4, and
splitting row, k =2 and splitting factor, λ = 0.886 and splitting row, (b) computation of zig-zag
path, Z, (c) the subdivision of triangles, where Z is red color, (d) the final cartogram output. 34

4.6 (a) Barycentric coordinates approach to subdivision the triangle, ∆z0z1z2. To make it readable
and easier to understand, we have distorted the regions by pushing p point towards the bottom,
(b) final output. 35

4.7 (a) Input table, (b) initial setup for FastFlow by putting particles into water-filled rectangular
areas such that the density of each region is proportional to its corresponding weight, (c) equal
density for all the regions, (d) the final output. 36

5.1 Applying table cartogram algorithm and image warping to reveal spatial relation between two
variables, A and B. Here, we used soil liquid water (SH2O) as variable A and ALBEDO (the
reflected solar energy by the surface) as variable B. 39

5.2 The first row shows the contour plots of different variables over western Canada (blue and
yellow are low and high values). Then we have TCarto and FastFlow outputs with both the
transformed images and the cartograms. 40

5.3 The output image for Baseline algorithm where ALBEDO is the contour and SH2O is the
weights. 41

5.4 Increasing light illumination using table cartogram algorithm, image masking and image filtering. 42

5.5 Table cartograms to expand light illumination using 64 × 64 grids, (left) input images, (mid-
dle) generated output using TCarto algorithm, (right) FastFlow algorithm. 43

5.6 Mosaic effect generation using table cartogram algorithm, image masking and image filtering. 44

5.7 (a) Input image, (b) artistic effect on the lines of the grid transformed by TCarto, (c) artistic
effect on the transformed image by TCarto using Cutout artistic effect in ‘Microsoft Power-
Point 365’. 45

5.8 Table cartograms to create mosaic effect using 64 × 64 grid, (left) input images on first row
‘Mona Lisa’ by Leonardo da Vinci (1503), on second row ‘Whistlejacket’ by George Stubbs
(1762), on third row ‘Girl with a Pearl Earring’ by Johannes Vermeer (1665), (middle) gener-
ated mosaic effect for TCarto algorithm, (right) FastFlow algorithm. 48

5.9 (a) Scatter plot (opacity =0.25), (b) density plot, (c) pixel-relaxed scatter plot using linear
sum assignment [118]. 49

5.10 Detecting clusters with their densities using table cartogram algorithm. 49

5.11 Table cartograms for interpreting clusters with their densities in a scatter plot while maintain-
ing the clusters’ position, (a) the input scatter plot, (b) marked the clusters with colored circle
to describe the number of sample points. Blue, orange, red and green circle has 500, 200, 120
and 120 sample points respectively. The density and sample number remains constant, but
the position is changed to generate partial overlapping(top row), no overlapping(middle row)
and all four overlapping (bottom row), (c) contour plot output using TCarto algorithm, (d)
FastFlow algorithm. 50

5.12 Finding new optimized position satisfying angle threshold, where t is the previous position
and t′ is the optimized position calculated by quadratic programming. θ1, θ2, θ3, and θ4 are
6 pt′q, 6 rt′p, 6 st′r, and 6 qt′s respectively. If all these angles are higher than threshold angle,
we consider it as the new position. Otherwise, we calculate t1 and check the angles again. . . 51

ix

5.13 (a-d) TCarto DivCon output for 2018 US migration data with 0, 25, 50 and 75 angle con-
straint with cartographic errors of 122.01, 174.65, 175.33 and 184.71, respectively, (e) Fast-
Flow output after 3rd iteration with 152 concave (red) cells (it got stuck in an infinite loop
afterwards). 51

6.1 (a) Workflow for Weather Research and Forecast (WRF) [88] data processing, (b) workflow
for the US State-to-State Migration Dataset [22]. 53

6.2 Relationship between cartographic error and mean aspect ratio for all table cartograms on
weather dataset with 64 × 64 grid, where each data point represents the performance mea-
surements of two weather variables (See Tables A.5 and A.6), and the straight lines represent
the linear regression for their corresponding color (green star is the best case and red circular
shape is worst scenario). 57

6.3 Relationship between cartographic error and the grid size for TCarto DivCon on weather
dataset, where each data point represents the accuracy of two weather variables (one is weight
and another is contour plot). Green star represents the best case and red circular shape shows
the worst case. 58

6.4 Relationship between processing time and the grid size for all table cartograms on weather
dataset, where each data point represents the processing time for the algorithm of two weather
variables (one is weight and another is contour plot). Green star represents the best case with
lower processing time. 59

6.5 The output of angle constraint with TCarto DivCon for US State-to-State migration data [22]
with 0, 20, 40, 60 and 80 degree angle constraints on the years from 2015 to 2019. The color
and area of each cell represent the similar variable, the number of population are migrating
from one state to another state. Blue and yellow color represent the highest and lowest values
respectively. So, blue regions are supposed to be larger, whereas the yellow regions are smaller.
Rows and columns of this visualization indicate the outgoing and incoming states. These states
are Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Florida, Georgia, Illinois,
Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota,
Missouri, Nevada, New Jersey, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsyl-
vania, Tennessee, Texas, Virginia, Washington and Wisconsin in the exact order from left to
right for the columns and top to bottom for the rows. 61

6.6 Relationship between cartographic error and the threshold angle for TCarto DivCon with
angle constraint table cartogram on US State-to-State migration flow dataset [22], where each
data point represents the cartographic error from Table B.1. 62

6.7 Relationship between aspect ratio and the threshold angle for TCarto DivCon with angle
constraint table cartogram on US State-to-State migration flow dataset [22], where each data
point represents the cartographic error from Table B.1 . 62

x

List of Abbreviations

LOF List of Figures

LOT List of Tables

Baseline An errorless table cartogram algorithm proven by Evans et al. [40]

FastFlow A fast flow and diffusion based cartographic transformation algorithm proposed by

Gastner et al. [52]

TCarto Our proposed scalable table cartogram algorithm. It usually refers to TCarto DivCon

approach

TCarto Parallel TCarto algorithm with the computation of column based parallelization

TCarto DivCon TCarto algorithm with the computation of quadtree based parallelization

MRAE Mean Relative Area Error

RMSE Root Mean Square Error

MQE Mean Quadratic Error

AR Aspect Ratio

α Number of Concave Cell

CPU Central Processing Unit

GPU Graphics Processing Unit

xi

1 Introduction

Information visualization is commonly used to analyze data and communicate information to the end

users. Information visualization refers to the study of visual representations of data for enhancing human’s

ability to perceive information [103, 91]. It also intensifies human perception by proper visual computations

with abstract information [24]. Simply, it is the process to visualize or present data in a meaningful way so

that a user can easily and correctly comprehend the underlying information [116]. The area of information

visualization has interacted with various fields such as interactive interface design, cartographic computation,

computer graphics, psychology, and business methods. Cartographic data representations or cartograms

[56, 135] combine the statistical and geographical information on a thematic map, where some statistics (e.g.,

population, area, income) control the areas of geographical regions (e.g., continents, countries, states) based

on some predefined scale.

Area cartogram is a type of cartogram where regions of the cartogram are proportional to the variables

they represent. There are various types of area based cartograms [109]. Some cartograms preserve shapes

of the regions with exact area accuracy (the difference between area and the value being represented) while

conceding the neighborhood adjacency. Some cartograms sacrifice area accuracy to keep the shapes of

the regions and their neighborhood adjacency. A cartogram is a contiguous cartogram if it preserves the

neighborhood adjacency. In Figure 1.1(a), the contiguous area cartogram preserves the shapes and the

neighborhood adjacency while compromising some area accuracy. In contrast, the non-contiguous cartogram

on Figure 1.1(b) holds the area accuracy and the exact shapes but does not maintain the neighborhood

adjacency.

Figure 1.1: (a) The 2016 US Electoral College vote represented using a contiguous cartogram [52],
(b) population of the United States in 1970 presented using non-contiguous cartogram [81].

1

Table cartogram, which has been proposed in 2013 [40], is an area contiguous cartogram that preserves

the neighbourhood adjacency while distorting the shapes of the regions. A table cartogram is a cartographic

representation for a two dimensional positive matrix or tabular data (See Figure 1.2). Given a positive

m × n matrix of weights, a table cartogram represents each cell as a distinct convex quadrilateral with

an area proportional to the corresponding cell’s weight such that the cell adjacencies are preserved, the

quadrilaterals form a partition of a rectangle R, and the sum of all weights is equal to the area of R rectangle

keeping the outside border fixed.

Figure 1.2: (a) A table R with 2× 2 grid, (b) a table cartogram of R using constraint optimization,
(c) Evans et al.’s [40] output for R (based on a theoretical proof), (d) a cartogram for a large table
(32× 32) based on constraint optimization.

Many researchers have conducted theoretical and application based research on cartograms. In 2018,

Gastner et al. [52] proposed a diffusion-based method for density equalizing cartogram. In this approach, the

population of each region is initiated with the density (= population/area) proportional to the weight of that

region. In each iteration, populations flow to the low density regions from the high density regions, and the

movements of the population deform the shape of each region. The areas of the high density regions increase,

and thus their density decrease with the movement of the initial population. The opposite happens to the

low density regions, and the iteration stops when all the regions have the same density. This fast approach is

auspicious for traditional cartograms; however, it remains unknown how a traditional cartographic algorithm

performs for a table cartogram.

In 2013, Evans et al. [40] showed that every m×n table admits a table cartogram. Their theoretical proof

is based on first partitioning the table into weighted triangles, then computing cartograms for the triangles

using the concept of barycentric coordinates, and finally, merging the triangles based on the necessity to

obtain the final table cartogram. Although the proof guarantees to produce a table cartogram with zero

cartographic error, the authors pointed out that the output may not be visually pleasing (See Figure 1.3(top-

right)) and good heuristics are needed to improve the aesthetics. Recently, Inoue and Li [71] showed an

optimization-based approach for the construction of table cartograms by changing the bearing angles on the

edges of the polygons.

Several attempts [95, 96, 39] have been made to compute aesthetic table cartograms. Researchers have

also looked at the scope for using table cartograms in practice, in particular, the data and types of tasks that

are well-suited for using a table cartogram [96]. However, all prior applications of table cartograms examined

2

only various forms of tabular data (e.g., periodic tables, temperature calendar, population demographics, line

charts, etc) with a few hundred cells. Thus, table cartograms for large tables with several thousands of cells

and their other applications, beyond tabular data visualization remained unexplored.

1.1 Motivation

The primary aim of this thesis is to explore table cartograms for large tables. The plan was to design a

fast and scalable algorithm for computing cartograms. Initially, the table cartogram generation technique

by Evans et al. [40] appeared promising because of the errorless output. Based on the theoretical proof by

Evans et al. [40], we implemented the table cartogram algorithm. It could run for large tables with minimal

error; however, it generated skinny triangles with a small ‘average aspect ratio’ (See Equation 2.8). The

outputs of this algorithm for the image-based applications also compromised the neighborhood adjacencies.

Figure 1.3(c)(top) shows the skinny triangles, and Figure 1.3(c)(bottom) shows that yellow-green(land) region

divided the blue(ocean) region into several blue-colored holes, but blue (ocean) region is always connected in

the original image. Thus, this algorithm became ineffective for image-based applications. For convenience,

we refer this errorless table cartogram technique as Baseline [40] for the rest of the paper.

Figure 1.3: Top row represents the 32 by 32 grid corresponding to their below images. Bottom
row shows, (a) a contour plot of the portion of solar energy reflected from the surface of the earth
(ALBEDO) over the western provinces of Canada, (b) TCarto output that transforms the contour
plot based on the table of soil moisture (SH20) values for 32 by 32 grid with cartographic error (See
Eq. 2.2) = 0.0961 and average aspect ratio (See Eq. 2.8) = 0.6130, (c) Evans et al.’s[40] algorithm
(Baseline) output with cartographic error = 0.0001 and average aspect ratio = 0.1689 .

Then, we decided to adapt the widely used physics-based cartogram algorithm. The diffusion-based

cartogram technique by Gastner et al. [52] was promising among the existing algorithms in the literature due

to its fast computation capability. Since this cartogram technique was not designed for table cartograms, we

3

amended this algorithm by fixing the outer boundary. The output was promising for the data with no high

spikes and many local optima; however, it generated concave and overlapping cells for the data distribution

consisting of sudden value changes and many local maxima (See Figure 1.4). We will describe the complexity

and challenges of concave cells for image-based applications shortly. Since these concave and overlapping cells

mislead the visual interpretation of the image-based applications, it became a necessity to design an algorithm

that can simulate large tables with thousands of cells without generating any concave and overlapping cells.

For convenience, we refer to this diffusion-based cartographic approach [52] as FastFlow for the rest of the

paper.

Figure 1.4: The table cartogram outputs for the US state-to-state migration data of year 2017, (a)
top is TCarto DivCon output, and bottom is TCarto DivCon with 40◦ angle constraint, where
blue region has the high weight and yellow has the low weight, (b) FastFlow outputs with concave
and overlapping cells at different iterations, where red cells are concave quadrilaterals.

Motivated by Tutte’s Embedding and the concept of force-directed layout [47, 50], we designed an algorithm

for the table cartogram, where each node had moved based on the position of its neighboring nodes and the

weights of neighboring regions. Quadratic programming [62, 43] aided in finding the optimal positions of the

nodes maintaining the convexity constraints, and all the nodes moved towards the globally optimized solution

on each iteration. Parallelization made it possible to run the algorithm for large tables with thousands of

cells, and this ability had opened up the possibility of applying the idea of table cartograms on images

and geographic contour plots, and thus allowed us to explore new application areas. We proposed two

approaches of this algorithm: column-based (TCarto Parallel) (See Algorithm 1) and quad-tree (TCarto

DivCon)(See Algorithm 2) based parallelization. We refer TCarto DivCon algorithm as TCarto for the

rest of the paper.

Table cartogram transforms the initial equal-area grid cells based on each cell’s weight, sustaining the

cell adjacencies and each quadrilateral cell’s convexity. Because of these characteristics, it can serve as

4

the underlying algorithm of many applications, e.g., revealing the spatial correlation between variables,

understanding of clusters with their densities in scatter plot, generating the visual effect of the illumination

increase of the light sources in an image. It may also assist in formulating population-density equalizing

cartograms [135, 51, 52] and generating a unique-identifier matrix barcode system [92, 145, 133].

Table cartogram distorts the input cell into convex quadrilateral only and restrict distorted cells to trans-

form a concave quadrilateral. However, traditional cartographic transformation do not follow this restriction.

So, when it comes to large tables, it is natural to ask whether it is important to keep the cells as convex poly-

gons, which makes table cartograms unique from cartographic map transformations. Figure 1.5 illustrates

some image-based applications that had been explored in this thesis.

Figure 1.5: Large table cartograms applied to different applications.

Challenges with concave cell: While transforming images, concave cells may pose more challenges than

the convex ones. Figure 1.6 illustrates a piecewise affine transformation [115] of a square-size image to fit

into a convex and a concave polygon. An ideal situation would be that all the colors in the image maintain

their pixel ratio even after the transformation, i.e., the area of the visual attributes will be scaled linearly

based on the area transformation. However, for concave areas, the transformation often appears to be more

distorted.

For example, Figure 1.6(a) illustrates an initial image, and Figure 1.6(b) and (c) illustrate piecewise linear

transformations into a convex polygon and a concave polygon, respectively. The transformation maps the two

triangles of the Delaunay triangulation of the original image to that of the destination image. The concave

corner enforces the circular shape in the image to appear more distorted compared to the convex corners,

e.g., the initial red circle appears to be a heart shape inside the concave polygon. Furthermore, we need to

5

Figure 1.6: Piecewise affine transformation of (a) an image, (b) into a convex polygon, (c) into a
concave polygon.

remove any glitch that may appear due to the extra triangles that appear in the Delaunay triangulation for

the concave case, e.g., see the triangle marked ‘glitch’.

1.2 Research Questions

The main focus of this thesis is to investigate table cartogram techniques for large tables with thousands of

cells. Researchers have already investigated different applications [95, 96] with tabular data visualization of

table cartogram for small table. Our plan is to advance the existing research by adapting or implementing

table cartogram for large table and by exploring applications even beyond tabular data visualization. For

this, we consider these two research questions.

A. Potential Applications of Large Table Cartograms

• RQA1: What are the potential applications of large table cartograms beyond visualizing tabular data?

• RQA2: How crucial is it to maintain the convexity of the cells in such applications?

Since existing approaches have already applied constraint based techniques for smaller tables, we were

motivated to examine whether it can be applied to large tables. We also considered to investigate the feasi-

bility of adapting cartographic transformation algorithms to generate table cartograms.

B. Algorithms for Computing Large Table Cartograms

• RQB1: Can constraint optimization based approach be used to compute table cartograms for large

tables with small cartographic error?

• RQB2: How constraint optimization based table cartogram compares to the cartographic map trans-

formation algorithms in various quality metrics (e.g., number of convex cells, aspect ratio, etc.)?

6

• RQB3: How table cartogram algorithms perform with respect to different quality metrics for different

types of data distribution?

There are several major criteria such as accuracy, readability of the visualization, and processing time.

Some algorithms may have better accuracy, but may generate visualizations with lower readability of the

visualization. Some may be faster, but may provide lower accuracy and readability of the visualization. The

appropriate algorithms are chosen based on the needs or requirements.

C. Impact of Angle Constraint

• RQB4: What are some potential trade-offs or relationships (if any) among the accuracy, processing

time and other quality metrics?

Researchers have applied angle constraint on small table to generate table cartograms with better read-

ability of the visualization [71]. Our next goal is to inspect the viability of angle constraint for large tables

and also to investigate how accuracy and readability of the visualization behave with this angle constraint.

• RQC : Can an angle constraint based algorithm generate cartograms for large table with at least the

readability to identify the columns and rows for a cell? How accuracy and this readability of the

visualization relate with the threshold angle?

The above research questions and various prospects of table cartogram motivated us to design and im-

plement the necessary algorithms, produce and analyze the results, and explore more in depth.

1.3 Contributions

We explored the existing table cartogram algorithms for a large table with thousand of cells.We implemented

the Baseline table cartogram technique which was theoretically proven to ensure zero area error by Evans

et al. [40]. But, for a large table this algorithm generated skinny triangles (See Figure 1.3). We adapted the

existing FastFlow cartographic transformation technique by Gastner et al. [52] to generate table cartograms,

which may produce cartograms with concave and overlapping cells (See Figure 1.4(b) and 1.6) for tables with

high spikes in values and with many local maxima.

In this thesis, we proposed a new table cartogram generation technique that leverages force directed

layout and overcomes the shortcomings of these existing algorithms. Force-directed layout [47, 50] generates

an aesthetically pleasing visualizations for graphs by attracting the adjacent nodes and repelling the others.

These characteristics of the force-directed layout motivated us to propose a new table cartogram construction

technique.

Our proposed table cartogram technique, TCarto, is a constraint-based optimization approach, where

each node is moved based on the position of its neighboring nodes and the weights of neighboring regions

7

maintaining a minimum distance from its neighbors. TCarto leverages parallel computing to deform a table

via local optimization using quadratic programming [62, 43]. For parallelization, we considered column-based

approaches and quadtree-based approaches. The quadtree-based approach dispersed the weights faster than

the column-based approach; thus, quadtree-based approach performed faster. TCarto can handle tables

over hundred thousands of cells and maintains the convexity of each cell.

We presented several real-life applications (RQA1) of table cartograms, e.g., for analyzing correlations

between geospatial variables, understanding clusters in scatterplots, and creating visual effects in images.

Though Baseline was errorless, it generated skinny triangles with a higher aspect ratio that distorted

the output images so much that this approach became impractical for the image-based applications (See

Figure 1.3). We showed that both TCarto and FastFlow (and thus large table cartograms) could potentially

be useful in these real-life scenarios. We also demonstrated how crucial it is to maintain the cells’ convexity

on these applications (RQA2).

We compared the performances of Baseline, TCarto, and FastFlow empirically with two different real-

life datasets: a meteorological weather dataset and a US State-to-State migration flow dataset. In particular,

we examined well-known metrics for measuring cartographic errors, the number of concave cells, and the

average aspect ratio of the cells for RQB1, RQB2, and RQB3. Baseline generated outputs with minimal

errors but with a lower average aspect ratio that reduced the readability of the output visualizations highly

for both datasets. For the meteorological dataset, where the data distribution had no high spikes and many

local optima, both TCarto and FastFlow performed well, and FastFlow produced only a few concave cells.

For the migration dataset with many sharp local optima, both TCarto and FastFlow produced low-quality

output, whereas for FastFlow we observed hundreds of concave cells.

We also described the potential relationships between the accuracy and the readability of the visualization

for all table cartogram algorithms (RQB4). FastFlow and TCarto DivCon both performed well, but

FastFlow is preferable when cells’ convexity is not important. When this cells’ convexity is crucial, TCarto

is recommended (RQB4). We also demonstrated the relationship of the grid size with accuracy and processing

speed for a constraint based table cartogram. Accuracy does not change linearly and processing speed

increases exponentially by the increment of the grid size. We also showed how enforcing additional angle

constraints can help enhancing the readability of the visualization and demonstrated the relationship of

threshold angle with cartographic error and mean aspect ratio (RQC). The augmented TCarto DivCon

with 40◦ angle constraint, produced table cartogram, where row and column could be easily identified for a

cell.

1.4 Methodology

There are several development methodologies, e.g. waterfall model [26, 12, 112], agile methodology [12, 70],

SCRUM development process [125], feature-driven development [110], and different hybrid models that we can

8

follow as our research methodology. Each of these methodologies has its own advantages and disadvantages

over others. The waterfall model and agile methodology both were suitable for our research project based

on our objectives, requirements, development plan, and different risk factors. We followed the waterfall

model [112] for this research project since it is suitable for projects with fixed, transparent and well-defined

requirements. It is also straightforward to comprehend and use. Since this research project contains well-

established requirements and few contributors, the waterfall model was chosen to carry out the research.

Figure 1.7: Basic diagram of waterfall model

At the beginning, we figured out all the requirements and steps to tackle the research questions. We

went through the previous related works and planned the possible directions, measurements, and tasks. We

also analyzed and identified the potential challenges and obstacles. In the project design phase, we planned

how to implement and adapt the existing algorithms, and designed our proposed table cartogram algorithm.

We also figured out various possible applications of table cartograms, and their different metrics for the

evaluation. We explored several technologies and their corresponding libraries for the implementation and

development of the algorithms. We selected python as a programming language because of its rich libraries

and documentations. At the implementation stage, we implemented a couple of existing algorithms and

our proposed algorithm as well as the possible applications for the large table cartogram. In the evaluation

stage, we calculated and compared the measurement metrics for the three table cartogram algorithms and

analyzed the resultant data to answer all the research questions. For this thesis project, we did not use the

maintenance stage in particular; however, we always used github (https://github.com/rakib045/TCarto)

for code versioning, documentation and project management. At the end, we prepared some tutorials for the

end users.

9

 https://github.com/rakib045/TCarto

1.5 Chapter Organization

We organized this thesis document with seven chapters. We described how we approached to the research

questions by completing development tasks and analyzing the resultant outcomes in these chapters (See

Figure 1.8).

Figure 1.8: Structure of the thesis.

Chapter 1 explains the research topic, the motivations, the research questions, our approach towards them

and finally a summary of the contributions.

Chapter 2 covers the background information, methods, materials and resources that anyone needs to

know to comprehend the rest of this research document.

Chapter 3 provides an illustrated overview of the previous related works of different cartograms and table

cartograms. It also describes the recent works of the table cartograms, different algorithmic techniques and

parallel computation.

Chapter 4 illustrates the design and implementation of our proposed table cartogram algorithm (TCarto)

with parallalization. It also includes a discussion of two of the existing algorithms that we have implemented

and augmented to compute large table cartograms.

Chapter 5 demonstrates several prospective applications of large table cartograms. It also explains the

importance of cells’ convexity for each application.

10

Chapter 6 describes couple of datasets with their sources and data pre-processing workflows. It also

presents the results and analysis with those datasets for different algorithms based on various performance

metrics. It devises the answers and recommendations for the research questions after analyzing and visualizing

the resultant data.

Finally, Chapter 7 holds the concluding remarks of this research. It describes the contributions and

contains the discussions on the limitations of the research. It finishes with the possible directions of the

future research.

1.6 Declaration

Throughout this research document, the term ‘we’ refers to the author and the reader following the computer

science norm for scientific writing.

I confirm that I had conducted this research and written this document under the supervision of my

advisors, Dr. Debajyoti Mondal and Dr. Kevin A. Schneider. Part of the results had been accepted to be

published at the 16th International Symposium on Visual Computing (ISVC 2021) [59].

1.7 Summary

Here, we narrowed down our research scope followed by a summarized description on cartogram. We discussed

our motivations, defined the research questions, mentioned our contributions on this thesis and described the

methodology for this thesis. At the end, we discussed the organization of this thesis document as well as

necessary declarations for this thesis.

11

2 Background

In this chapter, we describe several topics that will be helpful to understand the following chapters of this

thesis document. Table cartogram is the prime topic of this whole research work. In the first section, we

define cartograms, demonstrate different types of cartograms and the table cartogram. Next, we demonstrate

an image transformation techniques, piecewise affine transformation and image warping associated with that

technique. Then, we describe all the quality measurement metrics that we have used in our ‘Results and

Analysis’ chapter. At the end of this chapter, we describe different types of quadrilateral based on convexity

in the miscellaneous section.

2.1 Cartogram

Cartograms refer to the thematic maps that present the visualization with the integration of statistical

and geographical information to deliver better perceptions into the pattern, trends, and outliers in the real

world [109]. In cartograms, the areas of geographical regions are distorted by scaling in proportion to some

statistical variables. These geographical regions could be continent, country, state, or even specific portion,

whereas the statistical variables could be a single statistical variable (e.g., population, income, area), or some

arithmetic computation of single or multiple variables (average income, income per person). Cartograms

have been studied and used since 1870 by geographers, cartographers, economists, social scientists, data

analysis and visualization researchers, and many others. Researchers demonstrated and implemented different

types of cartograms for achieving or improving the accuracy on statistical (cartographic error), geographical

(preserving the outlines of geographic regions), and topological (keeping the correctness on neighborhood

adjacencies of the geographic regions) aspects. Even newspapers in the United States used cartograms to

emphasize their stories as early as in 1921 to present energy consumption in different US states [1] (See

Figure 2.1).

Several systematic ways can be followed to categorize this large number of different types of cartograms.

Based on the design dimensions, cartograms can be categorized into four major types: contiguous, non-

contiguous, Dorling, and rectangular cartogram. We will use the notion of contiguous, non-contiguous, and

rectangular cartogram in this document.

12

Figure 2.1: 1921 cartogram of the USA based on electrical energy sold for light and power in the
Literary Digest [1].

2.1.1 Contiguous and Non-contiguous Cartogram

Contiguous cartograms are those that deform the geographic regions of a map based on statistics in such a

way that the geographic region outlines and the neighborhood adjacencies among those regions are main-

tained. They are also called deformation cartograms [5, 52]. In these types of cartograms, the original

geographic regions on the map are usually altered by zooming, pulling outside, pushing inside, or stretching

the boundaries of the regions. It helps to preserve the shapes and neighborhood adjacencies of the regions

(See Figure 2.2(b)). For consistency, we will mention this type of cartogram as contiguous cartogram in the

rest of this research document. These cartograms contain higher topological accuracy, whereas a trade-off

exists between statistical and geographical accuracy.

Non-contiguous cartograms transform the geographic regions based on the statistical information focusing

only on preserving the original shapes of the geographic regions while ignoring the adjacencies of the regions

completely. In these cartograms, the geographic regions become undistorted and only scaled up or down

based on the statistical information. It makes these cartograms perfect statistical accuracy and perfect shape

preservation. However, these cartograms fail to preserve the topology of the original map (See Figure 2.2(c)).

This cartogram’s topology is difficult to understand since the geographic regions either touch erroneously or

do not contact each other at all. Sometimes, the regions may become very small, and it is very tough to

comprehend without proper topological information.

13

Figure 2.2: The 2012 US electoral college vote of re-electing former President Barak Obama (a)
standard input image with red for the Republican Party and blue for the Democratic Party [28, 104],
(b) college vote using a contiguous cartogram [104], (c) same election results using non-contiguous
cartogram [89].

2.1.2 Rectangular Cartogram

In these cartograms, all the geographic regions are represented as rectangles. The size or area of each of

those rectangles is proportional to their corresponding statistical information. The rectangular cartogram

disregards the original shapes of the geographic regions. This cartogram has higher topological accuracy but

can not guarantee perfect accuracy.

Firstly, an initial boundary rectangular layout is calculated from the topology of the map. Then, the

appropriate coordinates of the rectangles are computed with a segment moving heuristic. The vertical and

horizontal segments of that rectangular layout have been moved iteratively to increase the statistical accuracy.

After that, the topology can be preserved at the cost of error, or the topology might be compromised to achieve

perfect statistical accuracy. A rectangular cartogram [138] depicts the highway distances in kilometers of

different states of US (See Figure 2.3).

Figure 2.3: Rectangular cartogram presenting the highway distances of different states at US [138].

14

2.1.3 Table Cartogram

Table cartogram is an area-based contiguous cartogram with several specific rules. Table cartograms also

transform the regions based on the statistical information. Table cartograms maintain the neighborhood

adjacency but do not preserve the shapes of the regions. Some table cartograms guarantees no area error [41],

and some sacrifice statistical accuracy [71, 96, 59] for the aesthetically pleasing visualization or maintaining

the readability of the visual representations.

A table cartogram is a two-dimensional grid-like rectangular table. Initially, all the cells are equal-area

rectangles, and statistical values or positive weights are assigned to each cell as input such that the total

area equals the sum of all weights (See Figure 2.4(bottom-left)). This cartogram transforms the grid cells

into convex quadrilaterals where the area of each cell is proportional to its corresponding weights. This

table cartographic transformation also maintains the neighborhood adjacencies of the regions while keeping

the outside boundary fixed. In Figure 2.4(bottom-right), the neighborhood adjacencies are maintained with

precise statistical accuracy, but the shapes are compromised.

Figure 2.4: (top) Different states of US in the original geographic map, (bottom-left) 6 x 8 grid map
of the states of US, (bottom-right) corresponding table cartogram output for the population of the US
states in 2010 [41].

2.2 Image Transformation

Image transformation plays an important role in the image-based applications of table cartograms. First, we

consider the input image into m×n grid cells, split the input image into smaller rectangular pieces, and then

simulate the table cartogram for those grid cells to deform into convex quadrilaterals. After that, we use image

transformation to transform all rectangle image pieces to the convex quadrilateral faces based on the output

15

of the table cartogram algorithm and then merge all smaller image pieces with convex quadrilateral faces

together into the output image. Image warping performs this image transformation and merging sequentially.

Image transformation is one of the common tasks in image processing. Transformation is a function that

takes an input image and converts it to a different output image [3]. Let f(x, y) and G(x, y) are input and

output image respectively, where image represents a 2D matrix with x and y are the co-ordinates. If the

transformation function is T , we can consider the below equation,

G(x, y) = T {f(x, y)} (2.1)

Linear transformations include geometrical raster transformations such as rotation, scaling, skewing, and

perspective distortion. Linear transformation preserves vector addition and scalar manipulation. Matrix

is usually used to implement image transformation. Affine transformations helps to achieve perspective

distortion of an image.

2.2.1 Affine Transformation

Affine transformations assist to achieve scaling, rotation, and skewing [2]. We can accomplish perspective

distortion using projection matrix. The below matrix can represent affine transformation:
a1 a2 b1

a3 a4 b2

c1 c2 1


Scaling and rotation can be performed by modifying the values of a1, a2, a3 and a4. It is called rotation

matrix. So, the rotation matrix is, a1 a2

a3 a4


b1 and b2 contributes towards the translation of the image. It is called translation matrix.b1

b2


Rotation and translation can be achieved by modifying the rotation and translation values in the same matrix.[
c1 c2

]
is called projection matrix and we can get perspective distortion with this matrix. Let x and y be

the co-ordinate values of a pixel, p of an input image. Let x′ and y′ be the updating values of the pixel, p

after geometrical raster transformation. We can calculate the updated values by multiplying the input values

with the transformation matrix. 
a1 a2 b1

a3 a4 b2

c1 c2 1

×

x

y

1

 =


x′

y′

1


Affine transformations preserve parallelism if projection matrix is zero (See Figure 2.5).

16

Figure 2.5: Affine image transformation.

2.2.2 Image Warping with Piecewise Affine Transformation

Piecewise affine transformation is the process that distorts an input image by image warping with the help

of affine transformation based on the movement of some specific pixel points from the source position to

the destination position. In piecewise affine transform, some nodes at the input image are supposed to

move at their destination position on the output image. The input image has been warped using affine

transformation so that those nodes fall at their destination positions. The features or shapes, or pixels

within those nodes have stretched or sheared. In Figure 2.6(a), blue nodes are at the source position, and

blue dots in Figure 2.6(b) are their destination positions. In this example, destination points have been

calculated using the sine function. After defining the source and destination positions of the nodes, piecewise

affine transformation generates the output image, Figure 2.6(b) from an input image Figure 2.6(a).

Figure 2.6: (a) Input image with blue nodes (source position) as grid points, (b) output image after
applying a piecewise affine transformation with the destination point.

2.3 Quality Measurement metrics

There are several metrics for the statistical accuracy calculation. Different researchers use different error

calculations based on their needs. We will use Cartographic Error, Mean Relative Area Error (MRAE), Root

Mean Square Error (RMSE), and Mean Quadratic Error (MQE). These metrics are important for those

applications where statistical accuracy is crucial [132, 52].

17

2.3.1 Statistical Accuracy metrics

There are several metrics for the statistical accuracy calculation. Different researchers use different error

calculations based on their needs. We will use Cartographic Error, Mean Relative Area Error (MRAE), Root

Mean Square Error (RMSE), and Mean Quadratic Error (MQE).

Cartographic Error

One of the standard measurements of the spatial area error of each region or polygon is defined as the

Cartographic Error, ei. Assume that A is an m×n table. So, there are total of m×n polygons. Let Adesired
i

be the desired area or the given weight of i polygon and Aactual
i be the actual area after the cartographic

transformation [72], then

Cartographic Error, ei =

∣∣Adesired
i −Aactual

i

∣∣
Adesired

i

(2.2)

Thus, if N = m× n, the average cartographic error for a set of polygon, P is defined as

ẽi =
1

N

[
N∑
i=1

ei

]
(2.3)

Average cartographic error ranges from 0 to any number, where 0 is the best case with no error and higher

the error is the worse the scenario is.

Relative Area Error

Another metric for statistical accuracy calculation is the Relative Area Error. For previously defined m× n

table A, Keim et al. [76] defined this relative area error, ereli for i polygon as follows.

ereli =

∣∣Adesired
i −Aactual

i

∣∣
Adesired

i +Aactual
i

(2.4)

Now, for N = m× n, the average Relative Area Error for a set of polygon, P would be as follows,

ẽreli =
1

N

[
N∑
i=1

ereli

]
(2.5)

The range of average relative area error is from 0 to 1, where 0 is the best case with no error and 1 is the

worst case scenario.

Mean Quadratic Error

Keim et al. [76] also formulated another error metric from relative area error and named it as Mean Quadratic

Error. It is actually the average of root squared relative area error. Again for m×n table A, Keim et al. [76]

18

calculated Mean Quadratic Error, IMQE for a set of polygon, P as below,

IMQE = ẽreli =
1

N

√√√√ N∑
i=1

ei2 (2.6)

IMQE lies in between from 0 to 1. Here, 0 is the best case with no error and 1 is the worst case scenario.

Root Mean Square Error

Root Mean Squared Error is another metric for accuracy calculation. It is the root value of the average of

squared cartographic error. If N = m × n, we can define Root Mean Squared Error, IRMSE for a set of

polygon, P as below using Equation 2.2,

IRMSE =

√∑N
i=1 ei

2

N
=

√√√√√∑N
i=1

(
|Adesired

i −Aactual
i |

Adesired
i

)2

N
(2.7)

The range of IRMSE is also from 0 to 1, where 0 is the best case with no error and 1 is the worst scenario.

2.3.2 Comprehensiveness Measurement metrics

The readability of the cartogram output plays a crucial role. If a person could not understand the informative

insight of a visualization, there is no point in generating such visualization. We considered average aspect

ratio (average AR) and concave count for the readability of the visualization. These metrics are particu-

larly important for those applications that use image processing or image transformation followed by the

cartographic distortion output.

Aspect Ratio

Aspect Ratio (AR) refers to the ratio between height and width of the bounding box of a region or polygon.

Aspect ratio is often used as a measure for shape distortion [16, 136] and visual quality of cartogram generation

techniques [13, 138].

The range for average Aspect Ratio is [0, 1], where 0 is the worst and 1 is the best. For a m× n table A,

let widthi and heighti be the width and height of the bounding box of polygon i from a set of polygon P .

Now, if the total number of polygon, N = m× n, the mean AR is as below,

Mean AR =
1

N
.

N∑
i=1

[
min(widthi, heighti)

max(widthi, heighti)

]
(2.8)

The range of mean aspect ratio is also from 0 to 1. Here, 1 is the best case where height and width are

similar and 0 is the worst case.

19

Concave Count

The concave count is simply the number of concave quadrilaterals after tabular cartographic transformation.

If a quadrilateral transforms into a convex one, it follows linear transformation for all point coordinates after

applying piecewise affine transformation. However, the concave quadrilaterals do not follow this properly

and also generate glitches on the output transformed image. Thus, the applications using piecewise affine

image transformation should not accept any concave quadrilateral. Concave count would be any positive

value starting from 0. Zero concave cell is the best case, whereas the higher the count worsen the scenario.

2.4 Miscellaneous

Concave and Convex Quadrilateral

A quadrilateral is a polygon with four edges. The line segment connecting non-adjacent vertices is called

diagonal. A quadrilateral is called a convex quadrilateral if all internal angles are less than or equal to 180o.

Two diagonals of a convex quadrilateral usually intersect each other. If one of the internal angles of a convex

quadrilateral becomes 180o, it turns into a triangle. So, a triangle is a degenerate convex quadrilateral. On

the other hand, a quadrilateral is concave if one of its internal angles is greater than 180o. Another way to

think is that the two diagonals of a concave quadrilateral do not intersect each other.

2.5 Summary

In this chapter, we described the background information for several topics. We defined different types of

cartograms related to table cartogram. Afterward, we illustrated the piecewise affine tranformation technique

which was used in several applications of large table cartograms. We also described several important

performance metrics to calculate the statistical accuracy and the readability of the cartographic visualization.

All the topics in this chapter are required to understand before proceeding to the following chapters.

20

3 Literature Review

Researchers and scholars has drawn their attention towards cartograms and different problems of car-

tograms since 18th century. These problems include different fields like cartography, computational geometry,

computer graphics, and many others. Different techniques and approaches has been demonstrated to tackle

those various complex problems and scenarios. Our primary focus is to explore different table cartograms for

large tables having thousands of cells, along with their numerous applications. In this chapter, we describe

the history of cartograms, different types and techniques of cartograms to tackle the problems, and table

cartograms with their applications and problems. Finally, we describe different algorithmic techniques such

that Tutte’s embedding, force directed layout, and quadtree.

3.1 Related Works

3.1.1 Cartograms

History of Cartograms: Cartographic representation was used from an early age, even before it was

named as ‘cartogram’. Tobler [135] mentioned that the first reference to the term ‘cartogram’ was used

when Emile Levasseur presented cartograms in an economic geography textbook dated back to 1870. Before

that, cartogram-like representations had appeared in 19th-century atlases in the US. In 1837, William C.

Woodbridge presented ‘comparative charts’ of North America, Europe, Africa, and South America in his

‘Modern atlas on a new plan to accompany the system of Universal Geography’ (See Figure 3.1(a)). In

the same year, the size and population of the major empires and kingdoms were visualized in ‘New and

Improved School Atlas’ by Jesse Olney (See Figure 3.1(b)). In 1897, ‘Rand McNally World Atlas‘ published

cartogram-like representations with two circles for each empire symbolizing the area and the population of

the empires [108] (See Figure 3.1(c)).

Later in 20th century, according to Fabricant [94], German election results in 1903 were visualized with

cartograms. William B. Bailey showed ‘1911 Apportionment Map of the United States’, where the size of

the states is proportional to their population [82] (See Figure 3.2). In 1934, the first formal definition of

rectangular cartograms was given by Raisz [119]. In the 1979 Atlas of Canada and the World, population

cartogram and oil production cartograms were published [114] (See Figure 3.3). In the 90s decade, cartograms

became popular and frequently described in geography and cartography textbooks [19, 128].

Surveys: Guseyn-Zade and Tikunov [56] presented a short review on several methods for cartogram

generation. They introduced several desired properties to construct a cartogram such as the reproducibility

21

Figure 3.1: Cartogram-like representations from early ages [109, 1], (a) “Chart of the comparative
magnitudes of countries” by Woodbridge in 1837, (b) figure from “New and Improved School Atlas”
by Olney in 1837, (c) figure from “Rand McNally World Atlas” of 1897.

Figure 3.2: 1911 Apportionment map of the United States by William B. Bailey [1].

of the results and the recognizability of the regions by preserving original geographic shapes. Kocmoud [80]

compiled another survey of cartogram generation techniques and discussed additional characteristics such as

shape preservation, prevention of region overlapping, and trade-offs between area and shape accuracy. To-

bler [135] compiled a comprehensive survey of cartograms, including different cartogram generation methods

with their limitations. Tobler highlighted the necessity of cartogram evaluation measures mentioning three

fundamental factors: (i) statistical accuracy, (ii) shape preservation, and (iii) computational efficiency. In

2016, Nusrat and Kobourov [109] conducted a detailed survey on cartograms and categorized all types of

cartograms based on their design dimensions and task taxonomies. The surveys by Tobler [135] and by Nus-

rat and Kobourov [109] demonstrated historical progress in cartogram since an early age. Recently, Langton

et al. [83] surveyed with a study design to measure how people interpret different cartograms of the same

data to draw a conclusion. Hografer et al. [65] also conducted another survey on map-like visualization and

22

Figure 3.3: Cartograms from the ‘Atlas of Canada and the World’ (1979) showing (left) population,
(right) oil production [108, 109].

provided a hierarchical classification of the existing techniques.

Cartographic Transformation: Cartographic representation of maps is a classic area of research.

Cartographic representations can be divided into two major categories: contiguous and non-contiguous. In a

contiguous area cartogram, the area of each region in the cartogram corresponds to a given measured value

for that region, and all the regions together preserve the map topologies. Non-contiguous cartograms (e.g.,

circular [35, 29], rectangular [119, 129, 21] cartograms) do not require the map topologies to be preserved.

Table cartograms can be thought of as a contiguous area cartograms.

Early algorithms were based on the metaphor that considers the original map as a rubber sheet, and defines

forces on the points such that they move to realize the cartographic representation. A major challenge in

such an approach is to ensure fast convergence, and preserve the shape of the regions on the map. Many

algorithms [25, 36, 67] have been proposed to tackle these challenges, yet the slow convergence remained a

problem.

The diffusion-based algorithm [51] is another popular method for drawing contiguous cartograms. This

is inspired by the idea of diffusion in physics, where the points move from high density to the low-density

regions. A diffusion-based algorithm often produces blob and spike like artifacts, and narrow corridors. Hence

Cano et al. [23] proposed mosaic cartograms, where regions are represented as a set of regular tiles of the

same size. The tiles help compare the regions via counting, better preserve the shape, but also have a cost

of making winding region boundaries and tentacles like artifacts.

There exist many approaches beyond rubber sheet or diffusion based algorithms. For example, medial-

axis based cartogram [77] that transforms the regions based on the medial axis of the map polygon, neural

network based approach inspired by self-organizing map [61], etc.

Fast Computation: In 2013, Sun [132] presented a rubber-sheet inspired algorithm (Carto3F) that sig-

nificantly improves the computational efficiency by using a quadtree structure, and eliminates the topological

error by adding appropriate conditions while computing forces. In addition, the implementation of Carto3F

exploits parallel computation. Recently, Gastner et al. [52] proposed a flow-based technique (FastFlow),

inspired by the way particles of varying density into the water diffuse across the water over time that also

leverages parallelism for fast cartogram computation.

23

Table Cartograms: Table cartograms [41] were proposed to visualize tabular data, where cells are

restricted to be convex and to form a tiling of a rectangle. However, if we relax table cartogram constraints,

then it is possible to use existing physics-inspired cartogram algorithms to create cartograms for tables.

Winter [143] used the diffusion-based cartographic representation to visualize periodic table of chemical

elements. However, this deforms the outer boundary of the table, as well as produces non-convex cells.

Cartogram algorithms (in particular Carto3F [132] and flow-based approach [52]) often use an underlying

regular grid (sometimes of size 1024× 1024, e.g., Carto3F allows using a quadtree of depth 10) to transform

the map, but the number of map regions makes a major difference. The existing approaches for cartographic

representation focus on transforming at most a few hundred regions, while a 1024× 1024 table may contain

over a million cells.

Table cartogram is closely related to another well-studied problem called prescribed area drawing. Given a

planar graph with positive face weights, a prescribed area drawing computes a planar drawing of the graph in

R2 such that each interior face realizes a prescribed face area. In 1990, Ringel [120] introduced the prescribed

area drawing problem. Since then a rich body of literature has focused on computing prescribed area drawings

for various classes of planar graphs. Thus a table cartogram is a version of prescribed area drawing problem

where the input graph is an m× n grid graph. We refer the reader to [55, 4] for the literature related to the

prescribed area drawing.

Recent Works on Table Cartogram: Since the introduction of table cartogram, there have been

various attempts to produce aesthetic cartograms based on optimization. Inoue and Li [71] showed an

optimization-based approach for the construction of table cartograms by changing the bearing angles on the

edges of the polygons. McNutt and Kindlmann [95] proposed another approach that instead of convexity

constraints, puts simpler restriction such as to preserve the x and y axis ordering of the grid points. They

showed that one can construct multiple table cartograms that have the same cartographic error but visually

look very different. Recently, McNutt [96] has further examined table cartogram with the perspective of the

data and tasks where table cartogram may be useful, and observed that table cartogram may be suited for

various tasks such as understanding sorted order of cells or to find anomalies; especially when the table size

is small.

3.1.2 Algorithmic Techniques

Our proposed table cartogram algorithm, TCarto, can simulate tables with thousands of cells. Tutte’s

embedding motivated us initially to design TCarto. Later, we adapted a force-directed layout graph model

to devise our table cartogram algorithm. Parallel processing made the algorithm capable of simulating

thousands of cells within reasonable processing time (5-7 minutes for 64×64 table in Figure 5.2(a)(TCarto)).

We improved the task distribution technique for parallelization of TCarto with the concept of quadtree.

Tutte’s embedding: Tutte’s embedding or barycentric embedding is a classic algorithm in graph drawing

and geometric graph theory. In 1963, Tutte showed that every simple 3-vertex-connected planar graph has a

24

non-overlapping straight-line embedding such that the outer face is a convex polygon and interior vertex is

at the barycenter of its’ neighbors’ positions [137]. This theorem motivated lots of research works, such as

mesh processing methods [18], and force-directed graph drawing algorithms.

Force-directed layout: A force-directed graph drawing algorithm draws graphs aesthetically by clus-

tering similar types of nodes. It is also called the spring-embedder model [53, 79, 127] or energy-based

model [105, 106]. The basic idea is to define the model (node and edges) with some initial energy that

converges to the minimum energy state by moving all nodes over a certain number of iterations. Non-

adjacent nodes repeal each other, and adjacent nodes attract each other. The node movements become zero

at the minimum energy state. This layout is used for both directed [47] and undirected [33, 46] graphs.

Many researchers improved the efficiency [68] and aesthetical quality [34] of this algorithm over time. Many

proposed some hybrid models with other well-known techniques such as genetic algorithm [63, 15, 78], space-

filling method [73], stochastic sampling [100]. Parallelization is also applied to increase the scalability of this

force-directed layout [134, 97, 149] to support thousands of nodes. GPU is also used to make this layout

faster [141, 20]. Researchers also considered the nodes into multiple levels and proposed different multi-level

algorithms [140, 57, 10]. The force-directed layout is used in different types of applications, such as large

graph [49, 101, 90], cluster [38, 124, 130], network [93, 14, 60] visualizations, and many others.

Quadtree: A quadtree is a tree data structure with each internal node having precisely four children.

Two-dimensional space is partitioned to subdivide recursively into four quadrants [42, 121, 122]. Several

important surveys on quadtree or octrees [27, 6] provided different techniques and methods of the quadtree.

Researchers conducted researches on making quadtree more efficient [131, 150, 32], and some focused on

getting the optimal solutions [126, 85, 146]. Many researchers explored different applications of the quadtree,

such as image processing [69, 102, 9], connected component labeling [123, 9], spatial queries [48, 151, 9], mesh

generation [148, 111, 98, 9], and many others.

3.1.3 Parallel Processing

Parallel processing is the computation where many calculations or tasks are processed simultaneously. Ini-

tially, the tasks or instructions are distributed to several computation units such as central processing unit

(CPU) [75, 113], graphic processing unit (GPU) [66, 17], and the results or outcomes of all the computations

are accumulated and combined as the final output. Parallel processing can be classified into several classes

such as multi-core computing, symmetric computing, distributed computing, cluster computing, and many

others. The main advantage of such parallel processing is that large problems can be solved easily with a

short processing time. After the invention of the Analytical Engine by Charles Babbage [87, 64], parallelism

in numerical calculations was discussed first in 1958 [142, 117]. Later, Amdahl’s law was devised to define

the limit of speed-up due to parallelism in 1967 [142]. Since then, researchers have been relentlessly worked

on improving parallelism.

Nowadays, parallel computations with central processing unit (CPU) [75, 113] and graphic processing unit

25

(GPU) [66, 17] are very prevalent and widely used to speed up computation in image processing [117, 37] and

visualization [84, 139]. Many applications with grid like input (image or matrix) use column-based [31, 74]

and quadtree-based [99, 86] parallelism. We used both techniques to parallelize our proposed algorithm

TCarto.

3.2 Summary

In this chapter, we discussed the brief history of cartograms, several important surveys on cartograms, and

different types of cartographic transformation. We also described various fast computational cartogram

generation techniques and different table cartograms. We also mentioned all the recent works with table

cartograms and their applications. Finally, we finished this chapter with a summarized discussion on different

algorithmic techniques such as Tutte’s embedding, force-directed layout, and quadtree.

26

4 Table Cartogram Algorithms

The primary focus of this thesis is to explore the table cartograms for a large table and adapt the

existing algorithms. Evans et al. [40] designed a table cartogram algorithm and proved that it produces

minimal (almost zero) error. We implemented the algorithm and referred it as Baseline. However, this

algorithm produced some skinny triangles (See Figure 1.3) that made this algorithm impractical to our

proposed applications. Then, Gastner et al. [52] designed and implemented FastFlow, one of the fastest

known cartographic transformation in the literature. Since FastFlow was not developed to use for the table

cartograms, we adapted this algorithm to run on large table cartograms. However, this algorithm generates

concave cells (See Figure 1.6) for the data with a high number of local maxima and sudden value changes

into neighboring cells. These concave cells might mislead specific applications of the table cartograms. Thus,

we designed and implemented a new table cartogram generation technique, TCarto to simulate a large table

without generating any concave cells. In this chapter, we illustrate the design of the TCarto and Baseline

algorithm. Finally, we discuss the FastFlow algorithm and describe the details of our adaptation.

4.1 TCarto: An Optimization Based Algorithm

TCarto is different than the known optimization based algorithms [71, 95, 96] in two ways. First, it contains

explicit convexity constraints (instead of considering an under-constrained version). Second, it leverages

parallel computing to handle large tables. TCarto is inspired by the classic Tutte’s approach for drawing

planar graphs [137]. At each iteration of the Tutte’s algorithm, every vertex moves towards the barycenter

of its neighbors, and hence over time, the algorithm attempts to minimize a global energy function defined

on the layout. In TCarto, every vertex except four at the corner moves towards the locally optimum point.

Let T be an m× n table. We normalize the cell weights wi,j to satisfy the following equality:
∑
Wi,j =

m× n. We set the initial cartogram to be a regular m× n grid of area mn, where each cell area Ai,j is one

unit square. We can describe this with an undirected graph, G = (V,E), where V = Vi,j are the vertices

(i ∈ {0, 1, ...,m} and j ∈ {0, 1, ..., n}) and E are the edges connecting each vertex to its neighbouring vertices

at its top, right, bottom and left side (Figure 4.1).

The total number of vertices is (m + 1) × (n + 1). Let, W be the weights or target values for all cells,

and we normalize W . Assume the areas of the cells are Ai,j = Area (Vi,j , Vi+1,j , Vi+1,j+1, Vi,j+1), where

i ∈ {0, 1, ...,m} and j ∈ {0, 1, ..., n}.

Initially, it is a regular (m × n) equal-area grid, and the area for every cell individually is 1. We can

27

deduct the total area of table T from Equation ?? as below,

∑
i,j

Ai,j = m× n =
∑
i,j

Wi,j . (4.1)

This total area remains constant throughout the whole algorithm life-cycle. The vertices, Vi,j changes

their position based on local optimization so that all cells remain convex and,

∀Ai,j → ∀Wi,j . (4.2)

We have used quadratic programming [7, 147] for this local optimization. This local optimization depends

on the neighborhood cells’ vertices, weights and areas. It is not biased on the non-neighboring attributes

directly. So, this local optimization can not reach the solution for the global optimization in a single run.

After several iterations of local optimization, it impacts non-neighboring cells also. The solution for the

global optimization is that all Vi,j move to certain positions so that all Ai,j is equal to their corresponding

Wi,j . The global optimization function can be formulated by the following Equation 4.3.

f(ψ) =
∑
i,j

|Wi,j −Ai,j |2, (4.3)

where i ∈ {0, 1, ...,m− 1} and j ∈ {0, 1, ..., n− 1}. The goal of the global optimization is to find the right

combination ψ for the positions of all Vi,j so that f(ψ) becomes the minimum.

Three types of nodes

We can categorize the nodes into three types based on their movement. These three types are fixed nodes

(red color), boundary nodes (orange color) and inner nodes (blue color) (See Figure 4.1).

Fixed Nodes (red color): Fixed nodes are the four corner nodes and their position is fixed throughout

the whole life-cycle of the algorithm.

Boundary Nodes (orange color): Boundary nodes are the nodes residing on the boundary. These

nodes can only move on top of the boundary. These nodes are two types - vertical boundary nodes (See

Figure 4.2(a)-(b)) and horizontal boundary nodes (See Figure 4.2(c)-(d)).

In Figure 4.2(a), Vi,j is a vertical boundary node that will move on top of vertical boundary line,

Line(Vi,j−1, Vi,j+1). We denote by W and A as the weights and areas of the neighbouring cells, respec-

tively. Assume that y
′

is the vertical displacement of Vi,j towards Vi,j−1, and V
′

i,j is the new position of Vi,j .

If A
′

is the area of the triangle ∆Vi,jV
′

i,jVi+1,j , then

Ai,j +A
′

Ai,j−1 −A′ =
Wi,j

Wi,j−1
(4.4)

28

Figure 4.1: Initial m × n table T , where V , W and A are the vertices, weights and the areas of
corresponding cells, respectively. There are three types of vertices - red, orange and blue vertices. Red
(fixed) vertices are fixed, orange (boundary) vertices can move only towards boundary line and blue
(inner) vertices can move anywhere inside so that each cell remains convex.

A
′

= Ai,j−1 −
Wi,j−1. (Ai,j +Ai,j−1)

(Wi,j +Wi,j−1)
. (4.5)

Assume that h
′

the shortest path from Vi+1,j to the vertical boundary line Line(Vi,j−1, Vi,j+1). We can

calculate y
′

as follows:

y
′

=
2A

′

h′ . (4.6)

If y
′

is positive, then Vi,j will go upwards. It will go downwards for a negative value. Similarly, we can

calculate horizontal displacement x
′

from Figure 4.2(c) as follows:

x
′

=
2A

′

h′ . (4.7)

Due to the convexity constraint, boundary nodes can not move beyond certain region. F is the vertical

and horizontal nodes in Figure 4.2(b) and (d), respectively. In both cases, F node should remain in between

F1F2 line to keep ABCF and CDEF quadrilateral as convex. If F moves between AF1, then EDCF will

become concave. ABCF will become concave if it goes between EF2.

29

Figure 4.2: (a) Boundary node movement on vertical boundary line, (b) constraints for the movement
of the vertical boundary node, F so that ABCF and CDEF cells remain convex. F can only move
in between F1 and F2 along vertical boundary, (c) boundary node movement on horizontal boundary
line, (d) constraints for the movement of the horizontal boundary node, F so that ABCF and CDEF
cells remain convex. F can only move in between F1 and F2 along horizontal boundary.

Inner Nodes (blue color): All other nodes inside the boundary are inner nodes. We move these based

on local optimization using quadratic programming. Let t be the current vertice to be moved (e.g., See

Figure 4.3(c)), and consider the top left face tpaq quadrangle of t. We now construct four constraints

determined by the lines through pq, qs, sr, rp such that t must preserve its location relative to these lines

even after the move. These four constraints alone cannot ensure that the four neighboring faces must remain

convex after we move t. For example, moving t outside of the shaded region (but keeping it inside the

quadrangle pqsr) would make one of the four faces non-convex. The reason is that for each face, the edges

which are not incident to t also put constraints on where t can move. Hence, we need to add another set of

eight constraints, two for each neighbor of t. Specifically, for a neighbor q, let qa and qb, where t 6∈ {a, b},

be the edges such that each lies on the boundary of one of the faces adjacent to the edge qt. Then the two

constraints corresponding to q are determined by the lines corresponding to qa and qb. The twelve constraints

30

together ensure that the neighboring faces of t remain convex even after the move. Since no other face is

affected by the move of t, all the faces in the layout remain convex.

Figure 4.3: (a) Initial setup, (b) computation of the height, h
′

, (c) a feasible region for moving a
point, t.

We now describe the optimization function. Let ht,1, ht,2, ht,3, ht,4 be the perpendicular distances (heights)

of t from the lines pq, qs, sr, pr, respectively. Note that these heights relate to the errors of the corresponding

faces, and moving t would change these heights (e.g., See Figure 4.3(b)). We then define a set of required

heights h′t,i, where 1 ≤ i ≤ 4. Here we only show how to compute h′t,1. Denote by W (tpaq) the target weight

of a face tpaq, and let A(tpaq) denote area of the same face. Assume that γ = W (tpaq) − A(tpaq) −∆tpq.

If γ > 0, i.e., we need to add more area by moving t, then the required height is determined by the equation

1
2 |pq|h

′
t,1 = γ + ∆tpq, where |pq| is the Euclidean distance between p, q. Otherwise, γ ≤ 0, i.e., we already

have more than the required area. In this case we assume1 that h′t,1 = ht,1. We then minimize the error∑
w∈V

∑
1≤i≤4(h′w,i − hw,i)

2, where V is the set of grid nodes.

We can fit this minimization with quadratic programming mentioning all those twelve constraints. If

aix+ biy = ci, where 1 ≤ i ≤ 4 are the equation of four diagonal lines (pq, qs, sr, rp) and h′i are the required

heights respectively, we can define the quadratic minimization function as follows:

minimize

4∑
i=1

((
a2ix

2

ai2 + bi
2

)2

.x2 +

(
b2i y

2

ai2 + bi
2

)2

.y2 +

(
ai.bi√
ai2 + bi

2

)
.xy +

(
ai. (ci − h′i)√
ai2 + bi

2

)
.x+

(
bi. (ci − h′i)√
ai2 + bi

2

)
.y

)
(4.8)

subject to all twelve constraints that creates shaded region in Figure 4.3(c).

1Note that this case can also be handled based on the area excess, we did not consider that for simplicity.

31

(a) (b) (c) (d) (e)

Figure 4.4: (a)–(b) Load distribution among different threads in two phases, (c)–(e) preprocessing
for the Div-Con approach.

Algorithm 1 TCarto Parallel

1: Input: A square size positive matrix T , iteration count c

2: Create a square grid and sort the vertices of the grid based on the area error of the neighboring cells

3: for each iteration i from 0 to c do

4: Split the grid and assign column intervals to the threads

5: Run each thread to move the vertices assigned to it in the precomputed order

6: Join threads and accumulate the results

7: Run each thread to move the vertices on the interleaved columns

8: Join threads and accumulate the results into a layout Γ

9: return Γ

Parallel Computing

To take advantage of parallel computing, we partition the layout and distribute the load to different threads.

At each iteration, we partition the columns into k regular intervals with one column gap in between (e.g., See

Figure 4.4(a)). The iteration is completed in two phases. In the first phase, each thread moves their allocated

points, and in the second phase the threads move the interleaved columns (e.g., See Figure 4.4(b). We will

refer to this procedure as TCarto Parallel. Algorithm 1 presents pseudocode of TCarto Parallel.

The limitation of the TCarto Parallel is that if the data density is very high in a particular interval,

then it would take many iterations until the points move towards a low density region. To cope with this

challenge, we take a top-down approach, as follows. Let the input be a 2j×2j grid. For each i from 0 to j, in

the ith level we group the cells into a 2i×2i grid and run the procedure TCarto Parallel for j− log(i)+1

iterations. Thus the major weight shift occurs early in the top levels and further refinement occurs at the

bottom levels. We will refer to this approach as Div-Con. Algorithm 2 presents a pseudocode for Div-Con.

Implementation Details: We implemented our system in Python and used CVXOPT [8] for quadratic

optimization. For parallel computing, a process-based parallelism package, multiprocessing [45], has been

used for concurrent code execution. Movement of boundary points sometimes causes the loss of convexity of

the grid due to the floating point error. We adjusted the computed point location to avoid non-convexity.

32

Algorithm 2 Div-Con

1: Input: A 2j × 2j size positive matrix T , iteration count c

2: for each iteration i from 0 to j do

3: create a square grid Gi of size 2i × 2i

4: for each iteration i from 1 to j do

5: call TCarto Parallel for Gi with (j − log(i) + 1) iterations

6: Compute a layout Γ by calling TCarto Parallel on Gj with c iterations

7: return Γ

We also ensured that the points do not overlap or lie on a non-incident edge by using a small threshold.

4.2 Baseline - Errorless Table Cartogram Algorithm

Evans et al. [40] proved that a table cartogram can always be achieved from a m × n table having positive

weights. They construct a table cartogram with zero cartographic error and claim to generate such an

errorless table cartogram every time with mathematical and geometric theory. They divide the input table in

half based on the weights, make weighted triangles from those partitioned tables, finally compute cartograms

for the triangles using the similar concept of barycentric coordinates. However, the authors mentioned that

the generated output may not be visually pleasing and require better heuristics for aesthetically improvement.

The aspect ratios of the width and height for the cells become high because of their triangle based partitioning

process.

Let A be an m× n table of non-negative weights Ai,j . Let S =
∑

i,j Ai,j and Si be the sum of weights in

row, i, i.e., Si =
∑

1≤j≤nAi,j . Assume, S > 4 and R be the rectangle with height=2 and width=S
2 having

four corners as (0, 0), (S
2 , 0), (S

2 , 2), (0, 2) (See Figure 4.5). We assume such height and width for an easy

explanation of the algorithm; however, we set height=
√
S and width=

√
S in the actual implementation.

There are four major steps for this algorithm.

(a) Partition the input table and define two partitioned tables with roughly equal sum.

(b) Compute the polygonal zig-zag line Z in the rectangle R to partition it into triangles.

(c) Compute final cartogram with the idea of barycentric coordinates by splitting the triangles.

At the initial step, we need to find the splitting row k for which the cumulative row weight from top

becomes larger than the half of total weight S. Then, we split A into two partitioned tables, At and Ab. The

splitting factor λ is calculated λ from the equations (See equation 4.9 and 4.10) below.

∑
1≤i≤k−1

Si + λSk =
S

2
(4.9)

33

Figure 4.5: (a) Demonstration of Input table, a partitioned tables, At and Ab where total row, n=4,
and splitting row, k =2 and splitting factor, λ = 0.886 and splitting row, (b) computation of zig-zag
path, Z, (c) the subdivision of triangles, where Z is red color, (d) the final cartogram output.

∑
k+1≤i≤n

Si + (1− λ)Sk =
S

2
(4.10)

We calculate the new weights for the split rows of At and Ab tables. Let Dt
p and Db

q are two-column

sums, where p = 1, 2, ..., n2 + 1, and q = 1, 2, ..., n2 . Here, Dt
1 and Dt

p have only single column. It is shown

with blue and orange colors in Figure 4.5(a).

At the second step, we compute the zig-zag Z = z0, z1, ..., zn inside the rectangle R in such a way so

that each triangle acquires the same area of their corresponding two-column sums, Dt
p and Db

q (Shown in

Figure 4.5). The first triangle has an area equal to the left column of At, and each subsequent triangle has

an area equivalent to the next 2-columns. The last triangle may have one or two columns. The zig-zag Z

always ends at one of the two rightmost corners.

At the last step, we split these triangles into subdivisional triangles so that all those smaller triangles

represent the face of each cell of the input table A, with an area equal to their corresponding weights. We

use barycentric coordination to calculate the smaller triangles.

We can consider ∆z0z1z2 to split into smaller triangles (See Figure 4.6). The weight of the top-left cell

is assigned to ∆z0pz1 and top-right cell to ∆z1pz2. The sum of the rest is assigned into ∆z0pz2. Since we

know the distance between z0 and z2, we can calculate the height, y of ∆z0pz2. After that, we consider a

line l0l1 parallel to z0z2 line and point p would be on top of that line anywhere between xmin and xmax.

To find p, we do a binary search as follows. We first chose the position of point p randomly on top of line

34

Figure 4.6: (a) Barycentric coordinates approach to subdivision the triangle, ∆z0z1z2. To make
it readable and easier to understand, we have distorted the regions by pushing p point towards the
bottom, (b) final output.

l0l1 in between xmin and xmax. If ∆z1pz0 > 0.34, that means our point p is too much to the right. To make

the search on the left, we set xmax at p position. If ∆z1pz0 is smaller than 0.34, we set xmin at p position.

In this way, we narrow down the search region and chose point p again. The iteration ends when p position

generates error within reasonable threshold.

We calculate the points p0, p1, p2 at Figure 4.6(b) using a similar approach. After we remove the red

zig-zag Z from Figure 4.5(c), we obtain the final cartogram output as in Figure 4.5(d).

4.3 FastFlow - Fast Flow-based Density-Equalizing Algorithm

The flow-based cartogram, introduced by Gastner et al. [52], is inspired by the density-equalization technique.

This FastFlow algorithm is an all-coordinate cartographic transformation technique with linear equalization.

Since this algorithm was not developed originally for the table cartogram technique, it does not maintain a

fixed rectangular boundary and might generate empty spaces among the outer boundary and regions. Table

cartogram and image-based applications require a fixed rectangular boundary and do not allow empty space

inside the rectangular boundary. These adaptations are required to use it as a table cartogram technique

and for image-based applications.

In our adaptation, FastFlow takes the regular grid table as input (See Figure 4.7(a)) where each cell is

water filled. Initially, some particles or populations are placed on each region such that the density of each

region is proportional to its corresponding weights (See Figure 4.7(b)). Then, the populations or particles

diffuse across the entire outer-rectangular region. The populations or particles flow from higher density

regions to lower density regions. Thus, higher density regions expand and lose some density, whereas lower

density regions shrink to gain additional density. When the densities of all the regions are equal, the flow

of populations or particles stops (See Figure 4.7(c)). Then, the final distorted regions are calculated by the

boundary particles of each region, and the final output is generated (See Figure 4.7(d)).

35

Figure 4.7: (a) Input table, (b) initial setup for FastFlow by putting particles into water-filled
rectangular areas such that the density of each region is proportional to its corresponding weight, (c)
equal density for all the regions, (d) the final output.

Formally, if ρ(x, y) is the population density function of a small rectangular area with corners (x±dx/2, y±

dy/2), this rectangle contains the population ρ(x, y)dxdy. This rectangular area projects into a quadrilateral

T = (Tx, Ty) in such a way that ρ(x, y)dxdy = ρdTxdTy, where ρ is the spatially averaged density to preserve

the total map area. This transformation T is the density-equalizing projection. If dx → 0, dy → 0 and T is

differentiable, we can get the prescribed Jacobian equation [30, 11],

δTx
δx

δTy
δy
− δTx

δy

δTy
δx

=
ρ(x, y)

ρ
(4.11)

In flow-based cartogram, the population density ρ is defined with not only position r = (x, y) but also

time t. This density must approach to its mean over time: limt→∞ ρ(x, y, t) = ρ for all x and y. The points

must flow so that the initial differences in their density become equal over time. This alone can not define

transformation T. We also need to know the velocity v(x, y, t) with which (x, y) point is dragged at time t.

This v satisfies the continuity equation,
δρ

δt
+∇.(ρv) = 0 (4.12)

If v(x, y, t) is known for all x, y and t, we can calculate the position r(t),

r(t) = r(0) +

∫ t

0

v(r(t′), t′) dt′ (4.13)

The projection T will shift r(0) to limt→∞ r(t). By integrating Fick’s law, v = −D(∇ρ)/ρ (,where D is the

diffusion co-efficient) into equation 4.12, we can get δρ/δt = D∇2ρ. This new equation controls the evolution

of ρ. If this new equation is replaced by a linear density equalization toward the mean,

ρ(x, y, t) =

(1− t) ρ0 (x, y) + t ρ if t ≤ 1

ρ if t > 1
(4.14)

A velocity field v exists for Eq. 4.13 such that the resulting transformation T satisfies Eq. 4.11 [30] that

has been calculated using sine and cosine Fourier transformation.

After an affine transformation, all the coordinates are mapped inside a rectangular box with bounding

coordinates xmin = 0, ymin = 0, xmax = Lx and ymax = Ly. There is no flow at the edges of this bounding

36

box. We compute velocity v(r, t) for each grid point r and move the population with that velocity v. A

predictor-corrector method is used to adapt the time step dynamically for next iteration. The iteration stops

when all regions own the spatially averaged density ρ.

Adaptation for table cartogram: We adapted this flow-based cartographic transformation technique

to simulate large tables with thousands of cells. Since this algorithm is not developed for table cartograms,

it expands or squeezes the outer boundary based on the needs in general. To make it perform similar to

a table cartogram, we fix the outer boundary that no region can go beyond the outer boundary. We also

ensure that there would be no empty space in between the outer boundary and the regions inside. We do

not implement any restrictions for the concave quadrilateral because it takes a reasonable amount of time to

verify this cells’ convexity. One of the key features of this algorithm is faster processing speed, and we do

not want to compromise its speed by applying convexity restriction. Thus, it might generate concave cells.

Later, when this algorithm runs the data table with high spikes in values and many local maxima, this

algorithm is stuck within the predictor-corrector method to update the time step for the next iteration. It

divides the time step into smaller and smaller on each iteration and eventually freezes the algorithm. So, we

relaxed the rules of decreasing time steps and tweaked time step calculation to get out from the frozen state.

After this modification, it can run a large table without freezing but generates overlapping cells followed by

concave cells.

4.4 Summary

In this chapter, we discussed the implementation of the Baseline algorithm initially, and then moved to the

next algorithm because of the skinny cells (See Figure 1.3). Then, we tried to adapt FastFlow algorithm,

but it generated concave and overlapping cells for a large table with high spike data (See Figure 1.4). Later,

we designed a new table cartogram, TCarto that could run a large table cartogram without generating any

concave cells. We demonstrated the design and implementation of TCarto and Baseline. At the end, we

explained the FastFlow algorithm along with the augmented part to make it fit for the table cartogram.

37

5 Applications of Table Cartograms

The first two research questions are to explore applications of large table cartograms beyond visualizing

tabular data and the importance of convexity of each transformed cell in such applications. In this chapter,

we propose several potential applications that use the underlying mechanism of a large table cartogram (i.e.,

positive evidence towards RQA1). We demonstrate how a table cartogram can be used to reveal spatial

relation between a pair of variables, to understand clusters better in a scatter plot, and for different visual

effects in images such as mosaic effect, expanding light illumination. For each application, we examine and

discuss whether the convexity is crucial or not (i.e., RQA2). In the end, we describe how an angle constraint

can be applied to produce better aesthetically pleasing visualization.

5.1 Infographics to Reveal Spatial Relation

Table cartograms for large metrics reveal the spatial correlation between pairs of geospatial variables. One

variable is used for the input weights of the table cartogram and another to generate the initial contour plot.

Then, the table cartogram algorithm transforms the initial regular grid to distorted grid output based on

the weights. Afterward, image warping with piece-wise affine transformation [54, 115] is used on top of the

contour plot based on the initial grid cells and the distorted grid output provided by the table cartograms.

The expansion or shrinkage of the contour plot at the final output image reveals the spatial relation between

those two variables.

In Figure 5.1, the two matrics representing two geospatial variables A and B. Let variable A be the input

weight for the table cartogram, and Contour (variable B) be the contour plot of B. To calculate the input

weight from variable A, we put the grid on top of the expected region, and then consider the average of all

the values of variable A within a grid cell to calculate the input weight for that grid cell. We computed

output for the table cartogram (i.e., TCarto, Baseline, and FastF low) based on the input weights, variable

A. Image warping took three inputs: Contour (Variable B) as the input image, the initial grid position as

source nodes, and the distorted output grid generated by table cartogram algorithm as destination nodes.

Image warping with piecewise affine transformation [58] generated the resulting output image that revealed

the potential spatial relation between A and B.

Figure 5.2(first column) illustrates how a contour plot of ALBEDO (the reflected solar energy by the

surface) is transformed based on the table cartogram for soil liquid water (SH2O) values. The blue color

in the contour plot indicates a low value (lakes and ocean) and yellow indicates a high value. Since the

38

Figure 5.1: Applying table cartogram algorithm and image warping to reveal spatial relation between
two variables, A and B. Here, we used soil liquid water (SH2O) as variable A and ALBEDO (the
reflected solar energy by the surface) as variable B.

transformation grows the ocean, one can observe that SH2O is high in ocean (which is a low ALBEDO area).

Figure 5.2 shows the cartograms obtained using TCarto and FastFlow for various combinations of

ALBEDO (Solar Energy Reflectance), TSK (Surface Skin Temperature), PBLH (Planetary Boundary Layer

Height), SH2O (Soil Liquid Water), and EMISS (Surface Emissivity). In the contour plot, blue and yellow

regions are the lowest and highest values consecutively. The expansion of yellow (high value) region or

shrinkage of blue (low value) region indicates potential positive relation. For example, see Figure 5.2(c)

for shrinkage of blue. We can infer a negative relation if the opposite happens, e.g., see Figure 5.2(a), (b)

and (d) for expansion of blue. In Figure 5.2(a), SH2O as weight transforms the contour plot and expands

the low valued regions of ALBEDO. It indicates that ALBEDO and SH2O are negatively correlated. From

Figure 5.2(b-d), we can say that TSK and ALBEDO are negatively, EMIS and PBLH are positively, and

ALBEDO and SH2O are negatively correlated. We excludes the output images for Baseline from Figure 5.2

on purpose since the grid output of Baseline generates lots of skinny cells and the output image also lacks

the accurate neighborhood adjacencies (See Figure 5.3).

Discussion

Both TCarto and FastFlow showed similar transformation in regions and revealed potential relation be-

tween geospatial variables (RQA1). The cell convexity did not appear to be a crucial phenomenon since the

grid size is large (RQA2). However, a close inspection of the grid showed that there exist major differences

that were not readily visible in the images, but in the transformed grid. Hence overlaying the grid on the im-

age or placing them side-by-side might help guide the interpretation when creating infographic pictures. Note

that two cartograms might look very different even when their cartographic error was small (See Table 6.1).

This had also been observed by McNutt [96], but for small tables. Hence such cartogram infographics were

mostly useful to spark excitement among the viewers, or to covey a major concept.

39

Figure 5.2: The first row shows the contour plots of different variables over western Canada (blue
and yellow are low and high values). Then we have TCarto and FastFlow outputs with both the
transformed images and the cartograms.

40

Figure 5.3: The output image for Baseline algorithm where ALBEDO is the contour and SH2O is
the weights.

Both FastFlow and TCarto are suitable for the application to reveal the geospatial correlation

between a couple of variables and convexity does not appear to be crucial for this application (RQA1,

RQA2).

5.2 Different visual effects in images

Large table cartograms can potentially be used to create visual effects in images. Table cartograms expand

the cells with higher weights and shrink the cells with lower weights. Because of this characteristic, large

table cartograms can assist in increasing or decreasing the lightness of an image and generate different effects,

such as the mosaic effect in an image. We described two such applications: increasing the light illumination

and generating mosaic effect.

5.2.1 Increasing Light Illumination

A large table cartogram can embellish the illumination on the higher lightness regions and dim the lower

lightness regions. To increase the illumination of light sources in an image (See Figure 5.4), we divided

the input image into m× n equal area grid and calculated the weights as the average value of the lightness

channel of HSL (Hue, Saturation, and Lightness) for each pixel within a single grid cell. Then, the large table

cartogram algorithm transformed the grid cells based on those weights. Afterward, we generated a masked

image (black and white) on the table cartogram output based on the weights and then applied Gaussian

Filtering (Gaussian Blur with radius 10) to smooth the sharp edges. Finally, we increased the lightness

channel of input image from 0% to a maximum of 25% based on the distorted cells and their corresponding

weights to generate the final output image.

Figure 5.5 illustrates examples where the lightness channel of HSL (Hue, Saturation and Lightness) has

been transformed using table cartogram to expand the light illumination from the light sources. This has been

41

Figure 5.4: Increasing light illumination using table cartogram algorithm, image masking and image
filtering.

achieved by overlaying a 64×64 grid on the image and then creating a weighted table T by accumulating the

lightness values for each grid cell. Next the lightness channel has been adapted based on the table cartogram

of T , which enlarges the brighter regions and compresses the darker areas.

5.2.2 Mosaic Effect

Another visual effect that we can create using large table cartograms is similar to mosaic arts. A mosaic

art generates a picture using small stones or glass fragments. For the mosaic art effect (See Figure 5.6), we

generated weights for m × n grid randomly and applied a table cartogram algorithm to deform the initial

equal-area grid. We applied image warping with piece-wise affine transformation [115, 144] on the input

image with the initial grid as source nodes and the table cartogram output grid as destination nodes. Then,

we applied cell borders on top of the generated output to produce the final output. We can also apply

different artistic effects or filters on the lines of the distorted grid or the transformed image programatically

or using any photo-editor software (See Figure 5.7).

In Figure 5.8, we produce a 64×64 table T with random weights to generate the mosaic image effect. We

then transform the image based on the table cartogram of T and then overlay the grid to create the mosaic

effect.

Discussion

Both TCarto and FastFlow were able to create some mosaic effect (RQA1), where the cell sizes in the

FastFlow cartogram appear to be more uniform compared to that of TCarto. While we only focused on

potential application, it would be interesting to investigate whether one is more artistic than the other. Since

the weights were chosen at random in a small interval, the cells produced were convex, with FastFlow cells

42

Figure 5.5: Table cartograms to expand light illumination using 64 × 64 grids, (left) input images,
(middle) generated output using TCarto algorithm, (right) FastFlow algorithm.

43

Figure 5.6: Mosaic effect generation using table cartogram algorithm, image masking and image
filtering.

having better average aspect ratio (RQA2).

FastFlow outputs are slightly more uniform than TCarto, but both are acceptable for this type of

applications and convexity is not crucial here (RQA1, RQA2).

5.3 Understanding Clusters in a Scatter-plot

Detecting clusters and density estimation of a highly dense scatter plot is always challenging due to the

overlapping of data points. In 2019, Raidou et al. [118] proposed Pixel-Relaxed Scatter Plot as an addition

to the traditional scatter-plot to detect the clusters with their corresponding densities compromising the

cluster’s actual positions (See Figure 5.9).

Large table cartogram may also assist in detecting clusters and interpreting their density, maintaining

their coordinated actual positions on the scatter plot. Initially, we divided the scatter plot into a regular

equal-area grid and calculated the weights for each cell as the number of data points residing on that cell

(See Figure 5.10). We set a minimum positive value for the cells having no data point. Then, the table

cartogram algorithm generated output based on the weights, where dense clusters expanded, and the other

clusters shrank. We developed a mask image by coloring each cell with a sequential grey-scale color scheme

based on the weights where black is the lowest and white is the highest. We applied the Gaussian Filtering

to smooth the edges. Finally, we created a contour plot from the filtered mask image.

For example, Figure 5.11 column (a) illustrates three input scatter plots, each containing four clusters

with 500 (blue), 200 (orange), 120 (red) and 120 (green) points. The density and sample number remain

constant, but the position is changed to generate several scenarios such that partial overlapping (top row),

44

Figure 5.7: (a) Input image, (b) artistic effect on the lines of the grid transformed by TCarto,
(c) artistic effect on the transformed image by TCarto using Cutout artistic effect in ‘Microsoft
PowerPoint 365’.

no overlapping (middle row) and all four overlapping (bottom row). The scatter plots has transformed into

weighted tables by overlaying a 64×64 grid where the weight of each cell corresponds to the number of points

in it. A table cartogram then expands the dense clusters which has been visualized using a contour plot.

While comparing the contour plot outputs by TCarto and FastFlow in Figure 5.11, the TCarto outputs

seem expanding either vertical or horizontal way rather than growing equally to all directions. A potential

reason could be the CPU distribution among the nodes using TCarto DivCon algorithm (See Algorithm 2 and

Figure 4.4(c-e)). The weights are distributed depending on the quadtree based top-down approach. Then, all

the inner nodes of those miniature quadtrees are processed in TCarto Parallel approach (See Algorithm 1).

In contrast, the boundary nodes of those miniature quadtrees can only move to their vertical or horizontal

boundaries that restrict the overall weights’ distribution equally to all the directions. However, a more

uniformly shaped load distribution may reduce this tendency. On the other hand, FastFlow outputs seem to

spread along all the directions equally because of the diffusivity of the medium.

Discussion

Both TCarto and FastFlow were able to reveal the differences in the relative densities of the clusters, which

was hard to depict in the original scatterplot. They even showed some detailed structures within the largest

cluster. The FastFlow output looked more symmetric (circular) compared to that of TCarto.

Both FastFlow and TCarto are acceptable for this type of applications of cluster and density

detection of a scatter-plot and cell convexity does not appear to be crucial here (RQA1, RQA2).

45

5.4 Tabular Data with Angle Constraint

Here we examine large table cartograms for general tabular data. This is a challenging case because a

general table may contain many sharp local maxima and minima compared to the ones we observed in

image applications or weather dataset [88]. In addition, the values between adjacent cells can be drastically

different. In such scenario, the available implementation of FastFlow performed poorly, i.e., it generated

many concave cells and also failed to converge.

Since the perception of rows and columns are important in interpreting a table, we augmented TCarto

DivCon with angle constraints so that the corner of each cell was above a given angle threshold. In

Figure 5.12, t is the previous position of a node, and t′ is the optimized position of t calculated by quadratic

programming. θ1, θ2, θ3 and θ4 are the angles of pt′q, rt′p, rt′s and st′q, respectively. Then, we check

whether all these angles are higher than the angle threshold. If it satisfies, t′ is the new position for t node.

Otherwise, we calculate t1, which is 5% away from t′ towards tt′ line and check all the angles for this newly

calculated t1 position. It continues until it finds a suitable position satisfying angle threshold, or the newly

calculated node is a minimum distance away from the previous position t.

Figure 5.13(a)–(d) illustrate TCarto outputs for US migration data on 2018, where rows and columns

represented a subset of 32 states and each cell (i, j) corresponded to the quantity that migrated from i to j.

The cells were color coded based on their weights, where higher values were represented in blue. The angle

constraints that had been used from left was 0◦, 25◦, 50◦, 75◦, respectively. The available implementation of

FastFlow did not support any angle constraints. It failed to converge and the predictor-corrector method [52]

that iteratively moved the points, got stuck after 3rd iteration. It produced 152 concave cells as shown in

red in Figure 5.13(e). To overcome this situation, we replaced the predictor-corrector method with uniform

step size. Although it allowed us to run for more iterations, it created more concave cells and error.

Discussion

For large tabular data with many sharp local optima, TCarto performed way better than FastFlow. The

rows and columns were hard to follow in a TCarto output, but it improved with larger angle constraints.

Larger angle constraints also contribute to larger cartographic errors, and hence for real-life use cases (RQA1),

it is important to choose an appropriate angle constraint that balances this potential trade-off between

readability and cartographic error. This is where the convexity appears to be important than most other

applications (RQA2).

TCarto is the only suitable algorithm for visualizing tabular data with angle constraint and convexity

is very important for the readability of the visualization (RQA1, RQA2).

46

5.5 Summary

In this chapter, we demonstrated our proposed applications of large table cartograms beyond visualizing

tabular data (RQA1) and explained the importance of the cells’ convexity in such applications (RQA2). We

described how a large table cartogram benefitted us in infographics to reveal the geospatial relation between

variables, different effects in images (i.e., expanding light illumination, mosaic effect), cluster detection with

densities maintaining actual coordinated positions in a scatter plot, and generating visualization for tabular

data with angle constraint. We demonstrated the findings for research questions, RQA1 and RQA2 in this

chapter.

47

Figure 5.8: Table cartograms to create mosaic effect using 64× 64 grid, (left) input images on first
row ‘Mona Lisa’ by Leonardo da Vinci (1503), on second row ‘Whistlejacket’ by George Stubbs (1762),
on third row ‘Girl with a Pearl Earring’ by Johannes Vermeer (1665), (middle) generated mosaic effect
for TCarto algorithm, (right) FastFlow algorithm.

48

Figure 5.9: (a) Scatter plot (opacity =0.25), (b) density plot, (c) pixel-relaxed scatter plot using
linear sum assignment [118].

Figure 5.10: Detecting clusters with their densities using table cartogram algorithm.

49

Figure 5.11: Table cartograms for interpreting clusters with their densities in a scatter plot while
maintaining the clusters’ position, (a) the input scatter plot, (b) marked the clusters with colored circle
to describe the number of sample points. Blue, orange, red and green circle has 500, 200, 120 and
120 sample points respectively. The density and sample number remains constant, but the position is
changed to generate partial overlapping(top row), no overlapping(middle row) and all four overlapping
(bottom row), (c) contour plot output using TCarto algorithm, (d) FastFlow algorithm.

50

Figure 5.12: Finding new optimized position satisfying angle threshold, where t is the previous
position and t′ is the optimized position calculated by quadratic programming. θ1, θ2, θ3, and θ4
are 6 pt′q, 6 rt′p, 6 st′r, and 6 qt′s respectively. If all these angles are higher than threshold angle, we
consider it as the new position. Otherwise, we calculate t1 and check the angles again.

Figure 5.13: (a-d) TCarto DivCon output for 2018 US migration data with 0, 25, 50 and 75 angle
constraint with cartographic errors of 122.01, 174.65, 175.33 and 184.71, respectively, (e) FastFlow
output after 3rd iteration with 152 concave (red) cells (it got stuck in an infinite loop afterwards).

51

6 Experimental Results & Analysis

In this chapter, we describe the datasets and images that we have used in our experiments for large table

cartograms. We also mention the sources, acquisition process, pre-processing steps, and various parameters

of the datasets. Afterward, we define the evaluation metrics and compare the performances for all large

table cartogram algorithms (i.e., Baseline [40], TCarto Parallel, TCarto DivCon, FastFlow [51]) for

two different real-life datasets. We then present the experimental results. Afterward, we discuss the po-

tential relationship among accuracy, readability of visualization, grid size and processing speed for all table

cartograms. Finally, we describe the potential association of threshold angle with cartographic error (accu-

racy) and mean aspect ratio (the readability of the visualization) for the angle constrained table cartogram

algorithms.

6.1 Experimental Setup

6.1.1 Dataset Description

We used two datasets for our experiments: the Weather Research and Forecasting (WRF) model output for

several weather parameters [44] (See Table 6.1) and the United States(US) State-to-State Migration Flows

from 2015 to 2019 published by the US Census Bureau [22] (See Table 6.2).

Weather Research and Forecasting (WRF) Dataset: The Weather Research and Forecast (WRF)

dataset consists of the weather data of 8 years from 2008 to 2015 [88]. Each data file contains hourly data

for every day over 699 latitude and 639 longitude points of western Canada and is stored as a NetCDF file

(approximately 1.3 GB) containing 10 million (10,719,864) samples. Each sample has around 36 weather

parameters. The tables for this dataset does not contain any sharp spike.

For our experiment, we chose the data for January 2013. For a missing data point, we considered the

average value of its eight neighboring cells. We picked ten variables such as ALBEDO, TSK, EMISS,

SMOIS, LWUPB, PBLH, U10, PSFC, Q2, SH2O. ALBEDO measures the solar energy reflected by the

earth’s surface, and TSK measures the temperature of surface skin. EMISS measures the emissivity of the

surface, SMOIS measures the water held in the surface, LWUPB stands for ‘Upwelling Longwave Flux’,

PBLH stands for ‘Planetary Boundary Layer Height’, and U10 stands for the wind velocity at 10-meter

height. PSFC stands for surface pressure, Q2 stands for the ratio of water vapour mixing at 2 meter height,

and SH2O measures the liquid water in the surface. We downloaded the data (netCDF) files from the remote

52

server and then extracted the CSV file. We considered the pairs of the geospatial variables for the temporal

inpainting. Each temporal pair was selected randomly without repetition. Later, patches were cropped from

them, maintaining the temporal order. We used perceptually uniform sequential colormap [107] to generate

the contour plots from the weather dataset [88] and also calculated the weights for different grids (i.e., 16×16,

32× 32, 64× 64 grids). Figure 6.1(a) shows the workflow from data acquisition to the processed weight data

and the contour plots.

US State-to-State Migration Dataset: The US Census Bureau [22] has published State-to-State

migration data for the United States (US) since 2004. These data are stored in excel files yearly, and each

yearly data file contains migration data from 52 states to 52 states. This dataset has sudden value changes

to its neighboring cells and many local maxima.

For our experiment, we selected data from the year 2015 to 2019 for 32 states only (See Table 6.2). We

downloaded the excel file for the 2019 year first, ordered all 52 states based on migration value in descending

order (large value at top), and chose the top 32 states. Then, we downloaded all excel files from 2015 to 2019

and logged the values for our selected 32 states with the alphabetical order. Later, we generated a 32 by 32

correlation matrix with the migration data. The workflow in Figure 6.1(b) describes the data processing for

the migration dataset.

Figure 6.1: (a) Workflow for Weather Research and Forecast (WRF) [88] data processing, (b) work-
flow for the US State-to-State Migration Dataset [22].

6.1.2 Evaluation Metrics

The primary two assessments of the large table cartogram algorithms are the accuracy and the readability of

the visualization. The accuracy of the cartogram refers to how accurately each polygon spatially transforms

based on its desired weights. The readability of the visualization defines how easily a user can read or

comprehenad the visualization accurately. We considered two accuracy calculations and two measures for

the readability of the visualization.

53

Accuracy

One standard quality metric for accuracy is the average cartographic error, ẽi. If Adesired
i is the desired area or

the given weight of ith polygon (cell) and Aactual
i is the actual area after the cartographic transformation [72],

then ẽi is computed as follows: ẽi = 1
N

[∑N
i=1 ei

]
,where ei =

|Adesired
i −Aactual

i |
Adesired

i

. (See Equation 2.2 for details)

The mean quadratic error IMQE is another commonly used quality metric for accuracy used in the

literature [76]: IMQE = 1
N

√∑N
i=1 ei

2, where ei =
|Adesired

i −Aactual
i |

Adesired
i +Aactual

i

. (See Equation 2.6 for details)

Comprehensiveness

We considered mean aspect ratio (mean AR) and concave count (α) to measure the readability of a visualiza-

tion. The concave count (α) is simply the number of concave quadrilaterals in the output. The mean aspect

ratio is defined as follows: Mean AR = 1
N

∑
1≤i≤N

min(wi,hi)
max(wi,hi)

, where wi and hi are the width and height of the

ith cell, respectively. (See Equation 2.8 for details)

6.2 Results and Analysis

6.2.1 Performance Comparison with Weather Dataset

The weather dataset [88] contains no sudden value changes to its neighborhood cells and not many local

maxima. We compared all the measurement metrics for accuracy and readability of the visualization among

Baseline (Evans et el.) [40], TCarto Parallel, TCarto DivCon and FastFlow [52] algorithms. Baseline

(Evans et el.) and both TCarto are table cartograms, whereas FastFlow is a cartographic transformation

algorithm. We fixed the outer bounding box holding all regions (polygons) to make FastFlow generate

an output similar to a table cartogram. It mostly behaved like a table cartogram without following the

convexity constraints. We used the large table cartogram techniques to visualize the spatial correlation of a

pair of variables from the Weather Research and Forecasting (WRF) data [44]. We took a weather variable

as weight and another one to generate the initial contour plot. We measured the metrics for ten different

pair wise combinations of weather variables for 16 × 16 (See Tables A.1 and A.2), 32 × 32 (See Tables A.3

and A.4), 64× 64 (See Tables A.5 and A.6) tabular grids. Finally, we categorized the data based on the grid

size of tabular grid cells and eventually considered the average value. Table 6.1 is the summarized table of

all Tables A.1, A.2, A.3, A.4, A.5, and A.6, which are provided in the Appendix.

Performance Comparison: From Table 6.1, we can observe that the Baseline had a very high accuracy

but the average aspect ratio was too low to be used in the applications that we explored in Chapter 5.

Table 6.1 reports the results on weather datasets [88], where there is no sudden spikes and not many

local maxima. Both TCarto DivCon and FastFlow had very small average cartographic error and mean

quadratic error (RQB1), with FastFlow having the smaller average among the two. The average cell aspect

54

Grid Algorithm ẽi IMQE Mean AR Mean α

16 by 16

Baseline 0.00007 0.0000026 0.21039 0

TCarto Parallel 0.28991 0.00952 0.80894 0

TCarto DivCon 0.03421 0.00161 0.76672 0

FastFlow 0.00763 0.00034 0.79762 0

32 by 32

Baseline 0.0004 0.0000012 0.12073 0

TCarto Parallel 0.23297 0.00402 0.83869 0

TCarto DivCon 0.02905 0.00076 0.82364 0

FastFlow 0.00648 0.00014 0.85596 0.7

64 by 64

Baseline 0.00007 0.0000009 0.11617 0

TCarto Parallel 0.49741 0.91715 0.83401 0

TCarto DivCon 0.03632 0.00052 0.75623 0

FastFlow 0.00817 0.000095 0.791 5

Table 6.1: Cartographic error (ẽi), mean quadratic error (IMQE), mean aspect ratio (AR) and average
concave count (α) for weather dataset [88].

ratio was above 0.75 for both TCarto and FastFlow, where FastFlow had better aspect ratio compared

to TCarto. Only a few concave cells appeared in FastFlow (even for large tables).

Table 6.1 indicates that constraint based table cartogram TCarto DivCon can compute large table

cartograms with small cartographic error (RQB1). TCarto DivCon and FastFlow both perform

similarly on the data table of weather datasets [88] that have no high spike in values; however,

FastFlow generates a few concave cells (RQB2, RQB3). Sometimes, the outputs by TCarto Div-

Con and FastFlow are slightly different. However, user studies or interviews with domain expert

(meteorologists for weather dataset) may potentially help to understand which technique reveals the

relationship than others.

6.2.2 Performance Comparison with Migration Dataset

The US migration dataset is a 32 × 32 matrix as the weighted table and consists of a very sudden value

change in neighboring cells. This dataset also has many local maxima. We made a comparison table among

Baseline (Evans et el.) [40], TCarto Parallel, TCarto DivCon and FastFlow [52] algorithms. For this,

we ran ten iterations for both TCarto Parallel and 15 iterations for FastFlow. We categorized the US

migration data by year and generated the comparision table (See Table 6.2).

Performance Comparison: In Table 6.2, Baseline has the better accuracy than the others, but

contains very low Mean Aspect Ratio. It made it unable to apply on the applications. Here, we observed

55

Year Algorithm ẽi IMQE Mean AR α

2019

Baseline 0.0083 0.00170 0.12322 0

TCarto Parallel 0.9676 0.030685 0.949539 0

TCarto DivCon 119.777 0.01297 0.563086 0

FastFlow 5.9962 0.00813 0.539933 346

2018

Baseline 0.0081 0.00082 0.12335 0

TCarto Parallel 0.9662 0.03066 0.95056 0

TCarto DivCon 101.1979 0.0131 0.56454 0

FastFlow 12134.8996 0.02895 0.591651 746

2017

Baseline 0.0081 0.00086 0.125121 0

TCarto Parallel 0.9666 0.03068 0.94793 0

TCarto DivCon 111.805 0.01261 0.568921 0

FastFlow 2100.1133 0.02229 0.187013 768

2016

Baseline 0.0079 0.000845 0.122745 0

TCarto Parallel 0.969 0.03071 0.94822 0

TCarto DivCon 89.5294 0.01248 0.570147 0

FastFlow 67.3776 0.016234 0.501046 513

2015

Baseline 0.0086 0.00093 0.123013 0

TCarto Parallel 0.9656 0.0307 0.947668 0

TCarto DivCon 131.5762 0.01229 0.571858 0

FastFlow 2562.7078 0.02280 0.424352 752

Table 6.2: Results on US State-to-State Migration Flows from 2015 to 2019 published by the US
Census Bureau [22]. On each input, TCarto Parallel runs until 10 iterations and FastFlow until 15
iterations with our modification to tackle the convergence problem.

both TCarto to have lower cartographic error, and better aspect ratio compared to FastFlow(RQB2).

Furthermore, FastFlow produced hundreds of concave cells with inconsistent higher cartographic error.

Though TCarto Parallel had better accuracy and average aspect ratio than TCarto DivCon, only ten

iterations are not good enough for TCarto Parallel to disform the whole grid and to produce meaningful

output. Thus, TCarto DivCon is preferred for the dataset having lots of spikes in values and with many

local optima.

The data table of US State-to-State migration dataset [22] contains sudden value changes in adjacent

cells and many local optima. For this type of dataset, TCarto gives better aspect ratio and often

results less cartographic error, but FastFlow produces many concave cells. Baseline gives better

accuracy conceding lower aspect ratio (RQB2, RQB3), but does not produce a readable output.

56

6.2.3 Relationship between Accuracy and Readability of Visualization

We categorized weather data of 64×64 grid from Table A.5 and Table A.6 by different large table cartogram

algorithms. We plotted cartographic error and mean aspect ratio in a scatter plot with trend lines to visualize

the relationship between accuracy and readability of the visualization. Figure 6.2 demonstrates that Baseline

has the highest accuracy, but lowest mean aspect ratio. TCarto Parallel has the lowest accuracy. The scatter

plot shows that both FastFlow and TCarto DivCon look promising since both of them have small amount

of cartographic error (lower than 0.1) and higher mean aspect ratio (RQB4).

Though mean aspect ratio is similar for both FastFlow and TCarto DivCon algorithm, the accuracy

of FastFlow is slightly better than TCarto DivCon. Thus, FastFlow is preferable for all large table

cartograms when convexity is not crucial. TCarto DivCon is recommended for large table cartogram

algorithms when cells’ convexity is important (RQB4).

Figure 6.2: Relationship between cartographic error and mean aspect ratio for all table cartograms
on weather dataset with 64×64 grid, where each data point represents the performance measurements
of two weather variables (See Tables A.5 and A.6), and the straight lines represent the linear regression
for their corresponding color (green star is the best case and red circular shape is worst scenario).

FastFlow is preferable for large table cartograms when both accuracy and readability of the visual-

ization are accountable, but convexity is not crucial. If convexity is important, TCarto DivCon is

recommended (RQB4).

57

6.2.4 Relationship of Grid Size with Accuracy and Processing Speed

It is interesting to investigate how accuracy changes by different grid sizes for constraint based algorithm.

To analyze this, we categorized weather data for TCarto DivCon based on various grid sizes (i.e., 16× 16,

32 × 32, 64 × 64) from Tables A.2, A.4, and A.6. We plotted a box plot with cartographic error where

each data point is the accuracy for a pair of weather variables (one is weight and another is contour plot).

Figure 6.4 shows that the minimum values of all grid sizes are similar and close to 0.05 . The mean error for

16×16 grid is the highest, whereas 32×32 grid performs better than other grids based on the accuracy. The

performance of 32× 32 grid looks promising since the first half of this grid is lower than 0.01 (RQB4).

Figure 6.3: Relationship between cartographic error and the grid size for TCarto DivCon on
weather dataset, where each data point represents the accuracy of two weather variables (one is weight
and another is contour plot). Green star represents the best case and red circular shape shows the
worst case.

Another interesting analysis would be to investigate whether the increment of grid size for TCarto

DivCon raises the processing time linearly. Similar to earlier, we categorized the weather data based on the

grid size and plotted the processing time in a box plot. Figure 6.4 shows that processing time increases with

the increment of the size of the grid. The increase in processing time looks exponential rather than linear

(RQB4).

58

Figure 6.4: Relationship between processing time and the grid size for all table cartograms on weather
dataset, where each data point represents the processing time for the algorithm of two weather variables
(one is weight and another is contour plot). Green star represents the best case with lower processing
time.

Accuracy does not change linearly by changing the grid size. TCarto DivCon performs better with

32× 32 grid based on accuracy. However, processing time changes exponentially with the change of

grid size (RQB4).

6.2.5 Relationship of Threshold Angle with Accuracy and Readability of Visu-

alization for Angle Constraint Table Cartogram

We augmented TCarto DivCon with angle constraint so that the corner of each cell was above a given

angle threshold. It is important to understand the corresponding rows and columns for each cell. We ran

TCarto DivCon with angle constraints on US migration data (See Table B.1). Figure 6.5 shows all the

outputs for different angle constraints such as 0◦, 20◦, 40◦, 60◦, and 80◦ respectively (RQC). The outputs

follow the color scheme from blue to yellow based on the weights, where blue is for high value and yellow is

for the opposite. From Figure 6.5, we can observe that it is difficult to identify the row and column for a cell

upto 20◦ angle constraint and it becomes easier to comprehend for more than 40◦ angle constraint.

Since the angle constraint blocks the cells to deform by enforcing additional angle limitations, it defi-

59

nitely compromises the accuracy. For understanding the relationship between accuracy and threshold angle,

we plotted cartographic error (accuracy) with different angle in a line chart at Figure 6.6. It shows that

cartographic error increases with the increment of threshold angle overall. However, the cartographic error

lines dip for most of the cases (i.e., on 2015, 2016, and 2018) at the 40◦ angle constraint. We also plotted

another line chart with aspect ratio and threshold angle (See Figure 6.7). It shows that aspect ratio increases

exponentially with the increment of threshold angle.

While considering both line charts simultaneously from Figure 6.6 and Figure 6.7, we can observe a trade-

off between the cartographic error and the aspect ratio. The aspect ratio improves with the increase of the

threshold angle escalating the cartographic error. Since the readability of visualization enhances with the

increase of threshold angle conceding some accuracy an appropriate threshold angle may be chosen based on

the ratio or the priority of the accuracy and an aspect ratio parameters.

TCarto DivCon with angle constraint can generate outputs for large tables with the aspect ratio

more than 0.5 . This aspect ratio can be increased upto 0.95 by raising threshold angle; however it

also increases cartographic error. We can increase the threashold angle to enhance the readability

of the visualization upto the acceptable cartographic error based on the requirement. The row and

column identification for a cell is difficult upto 20◦ threahold angle, but it becomes easier from 40◦

angle restriction (See Figure 6.5)(RQC).

6.3 Summary

In this chapter, we explained the sources, acquisition process, data preprocessing, and all used parameters

of the datasets. After mentioning the evaluation metrics, we discussed the performances of all four table

cartogram algorithms by comparing the measurement metrics with two different dataset. Then, we discussed

the potential relationship between accuracy and readability of visualization for all table cartograms. We also

demonstrated the relationship of the grid size with accuracy and the processing time for constraint based

table cartogram, TCarto DivCon. In the end, we presented the potential association of threshold angle

with accuracy and readability of visualization for angle constraint table cartograms. Most importantly, we

provided the findings and recommendations for research questions RQB1 to RQC .

60

Figure 6.5: The output of angle constraint with TCarto DivCon for US State-to-State migration
data [22] with 0, 20, 40, 60 and 80 degree angle constraints on the years from 2015 to 2019. The color
and area of each cell represent the similar variable, the number of population are migrating from one
state to another state. Blue and yellow color represent the highest and lowest values respectively. So,
blue regions are supposed to be larger, whereas the yellow regions are smaller. Rows and columns
of this visualization indicate the outgoing and incoming states. These states are Alabama, Arizona,
Arkansas, California, Colorado, Connecticut, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Ken-
tucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Jersey, New
York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Tennessee, Texas, Virginia, Washing-
ton and Wisconsin in the exact order from left to right for the columns and top to bottom for the
rows.

61

Figure 6.6: Relationship between cartographic error and the threshold angle for TCarto DivCon
with angle constraint table cartogram on US State-to-State migration flow dataset [22], where each
data point represents the cartographic error from Table B.1.

Figure 6.7: Relationship between aspect ratio and the threshold angle for TCarto DivCon with
angle constraint table cartogram on US State-to-State migration flow dataset [22], where each data
point represents the cartographic error from Table B.1 .

62

7 Conclusion

7.1 Summary

The primary aim of this thesis is to explore and investigate table cartogram algorithms for a large table with

thousands of cells. We implemented an errorless table cartogram algorithm (Baseline) proven by Evans et

al. [40]. Even with a high accuracy, this algorithm was unable to be used in the proposed applications because

of the skinny cells that it produces (See Figure 1.3). We adapted another recent algorithm of cartographic

transformation (FastFlow) [52] due to its fast processing time and investigated how it works as a table

cartogram. Since FastFlow produces concave cells, we proposed a new scalable optimization-based table

cartogram generation technique, TCarto. Later, we augmented TCarto with angle constraint for better

readability with the expense of introducing cartographic error.

In this thesis, we also showed that large-scale table cartograms could potentially be applied to various

applications beyond visualizing general tabular data. We used large table cartograms in creating infograph-

ics of cartographic transformations that can reveal correlations among different geospatial variables, or to

generate different visual effects (i.e., increase the illumination of an image, mosaic art effect), or for better

understanding of clusters with densities in a scatterplot. In all these applications, the underlying data had

the property that the neighboring cells’ values were similar, and the number of local maxima was small.

We observed both TCarto and FastFlow to perform similarly in such scenarios. However, the cells in the

FastFlow output appeared to be much more uniform compared to those of TCarto. Therefore, in the

image-based applications, the images were less distorted in the FastFlow output.

Both the constraint-based approach and physics-inspired cartographic map transformation effectively

generated large-scale cartograms (with low cartographic error, good cell aspect ratio, and few concave cells)

for image and weather datasets [88]. However, for data tables with a large number of local maxima and high

spikes, we observed constraint-based optimization to work better than the flow-based traditional cartographic

approach. Furthermore, we investigated the possible relationships among different criteria such as accuracy,

the readability of the visualization, processing speed and the grid size based on various measurement metrics

(i.e., cartographic error, mean aspect ratio, and count of concave cells).

In general, for the large tabular dataset with many local optima with large spikes and high value differences

between adjacent cells, neither the TCarto nor FastFlow produced appealing output. However, TCarto

with angle constraint improved the readability of the table conceding some cartographic error. This suggested

the importance of choosing an appropriate restricted angle that allowed users to follow the rows and columns,

63

as well as to understand the relative cell areas, peaks and valley regions.

7.2 Contribution

Our main contributions to this thesis are as follows:

1. We explored different table cartograms for large tables with thousands of cells. While investigating

several cartographic transformations and table cartogram algorithms, we found that some were adapt-

able and applicable, whereas some were not. We implemented an errorless table cartogram (Baseline)

based on the theoretical proof by Evans et al. [40] that produced skinny triangles (See Figure 1.3). We

amended another modern and fast cartographic transformation technique (FastFlow) by Gastner et

al. [52] with a restriction at the outer boundary to adapt a large table cartogram. The outputs for

this algorithm looked promising for the data tables with similar values on the neighboring cells having

no high spikes; however, it produced concave and overlapping cells for the data distribution with high

spikes and many local maxima (See Figure 1.4).

2. We also proposed a new constraint-based table cartogram technique, TCarto that preserves cell con-

vexity yet capable of handling large tables. In this approach, each node moved based on neighboring

nodes and weights via local optimization using quadratic programming [62, 43]. We proposed two ap-

proaches: column-based and quadtree-based approaches for parallelization, where the quadtree-based

method performed faster than the column-based approach because of its faster weight-dispersion.

3. We demonstrated several real-life applications (RQA1) of large table cartograms, e.g., for analyzing

correlations between geospatial variables, understanding clusters and their densities in scatterplots,

and creating visual effects in images (i.e., expanding illumination, mosaic art effect). We illustrated

that both TCarto and FastFlow could potentially be effective in these applications and discussed the

importance of convexity for each application (RQA2).

4. We examined the performance of Baseline, TCarto, and FastFlow with two different real-life

datasets: a meteorological weather dataset [88] and a US State-to-State migration flow dataset [22]

by comparing several measurement metrics such as cartographic error, mean aspect ratio, number of

concave cells (RQB1, RQB2, and RQB3). Baseline showed minimal errors with a lower aspect ra-

tio. The data distribution of the weather dataset had no spikes and many local minima, and both

TCarto and FastFlow showed impressive performance. For the migration dataset with many sharp

local maxima, both TCarto and FastFlow produced low-quality output, whereas FastFlow generated

hundreds of concave cells.

5. We also augmented TCarto with angle constraint to enhance the readability of the visualization. We

produced outputs for migration data with better readability by increasing the restricted angle conceding

64

some accuracy (RQC). We also analyzed the potential relationships among the measurement criteria,

such as accuracy, readability of the visualization, processing speed, the grid size and restricted angles

(RQB4, RQC). When both accuracy and readability of the visualization were concerned, FastFlow

was preferable; however, it generated concave cells. TCarto performed better and faster among table

cartograms that do not produce concave cells.

7.3 Limitations

In this section, we discuss the limitations of this thesis.

7.3.1 Data Limitations

We simulated all the large table cartograms on two different real-life datasets: a meteorological weather

dataset [88] and a US State-to-State migration flow dataset [22]. The results and analysis with datasets from

further domains could provide us with better insights towards generalizability of these algorithms and their

applications.

The tables for the meteorological weather dataset [88] had no high value changes in neighboring cells and

had small number of local maxima. In contrast, the data characteristics of the US State-to-State migration

flow dataset [22] were just the opposite, with high spikes and many local maxima. We ran all table cartograms

on both types of datasets. It may be useful to run controlled study with synthetic data to gain insights into

how various data features impacts the quality of the visualizations.

7.3.2 User studies

Since we devoted our focus and effort primarily to explore the scope of table cartogram for large tables,

we did not consider conducting controlled user studies or interviews with the domain experts (meteorologist

for weather dataset [88], artists or photographers for visual image effects) to evaluate the readability or the

artistic quality of the generated outputs by TCarto and FastFlow. For the weather dataset [88], such user

studies or interviews with meteorologists might potentially be helpful in understanding the best technique

to reveal the relationships among various weather parameters. It would also be interesting to investigate

the performance of the cartogram-based approaches and modern artificial intelligence-based techniques for

creating digital arts.

Furthermore, we used two measurement criteria: mean aspect ratio and the number of concave cells for

the readability of the visualization. Different people might observe such visualizations differently. Since such

visual observation is subject to human interpretation, it would thus be interesting to conduct a user study

on the readability of the visualizations generated by different table cartogram algorithms.

65

7.3.3 Evaluation metrics

In all our proposed applications, the underlying data characteristics were the small number of local maxima

and the similarity among values of the neighboring cells. TCarto and FastFlow performed well and similarly

in such applications. However, we observed FastFlow produced more uniform outputs than TCarto. Thus,

output images were less distorted in the FastFlow output for the image-based applications. The measurement

metrics we used were related to the accuracy or the readability of the table cartogram output. We did not

consider any metric for the image warping or image distortion. It would thus be interesting to devise such

performance metrics that also took the image warping or distortion into account.

7.3.4 GPU Implementation

We parallelized our proposed table cartogram algorithm, TCarto to compute a large table with thousands

of cells. Initially, we used a column-based parallelization approach, TCarto Parallel (See Algorithm 1).

Later, we improved the processing time with a quadtree-based parallelization approach, TCarto DivCon

(See Algorithm 2). GPU computation had not been used to leverage any of the current implementations.

Thus it would be an exciting opportunity to explore whether GPUs can be leveraged to compute table

cartograms in interaction time.

7.4 Future Work

In this thesis, we explored different table cartogram techniques for large table with thousands of cells. We

implemented an existing table cartogram technique and adapted a traditional cartographic algorithm so

that they could run large tables. We also proposed a new constraint based table cartogram technique using

quadratic programming powered by parallel computing. We also demonstrated several potential applications

for large table cartograms beyond tabular data visualizations. There are still scopes to improve the table

cartogram algorithm and explore various new applications. In Section 7.3, we discussed several limitations

that may lead to the future works.

1. The readability of a visualization has been measured using metrics such as mean aspect ratio, number

of concave cells. However, such visual interpretation varies from person to person. Thus, a user study

to investigate the readability of the outputs by table cartograms, might provide better insights.

2. We simulated and run all the table cartogram algorithms on real-life data. It would be interesting to

run the table cartograms on other data to generalize the algorithms, and also on synthetic or computer

generated data to understand how data properties influence visualization quality.

3. A controlled study or interview with domain experts (i.e., meteorologist for weather dataset [88], artists

or photographers for visual image effects) might give us better insight into the readability of the

visualizations or the artistic quality of the generated outputs by different algorithms.

66

4. Our proposed algorithm can compute thousands of cells leveraging by parallel computation, but can

not process faster enough to use it interactively. In fact, none of the algorithms has yet been leveraged

with GPU implementation and can process in interaction time (in a few seconds).

5. The performance of the algorithms has not considered any metric with image distortion. It would be

interesting to devise such measurement metric that can consider image distorting or image warping.

While using table cartogram to reveal potential relation between a pair of geospatial variables, we

only examined positive and negative relationships. It would be interesting to investigate whether one

can compute the strength of such relationship from the measurement metric that considers the image

distortion or image warping.

6. We have explored several applications of large table cartograms. There are still lots of applications exist

that can be achieved using table cartogram such as density equalizing cartogram, unique-identifier

matrix barcode system. Researchers may feel interested to explore more applications of large table

cartograms.

7. The table cartograms only support the positive weights since the polygons of distorted output can

occupy only the positive areas. It would be interesting to explore useful data transformations such that

the table cartogram algorithms can support negative and zero values by shifting or rescaling the range

of input weights.

8. Some algorithms are appropriate for better accuracy, and some are for aspect ratio. It would be

interesting to design algorithms that takes user priorities as input and tunes the algorithm’s parameters

to produce an output that best meets the user’s need.

9. The expectation is that the larger grid size might produce the less cartographic error. In Figure 6.4,

we observed that 32× 32 grid has a lower cartographic error than 64× 64 grid. It would be interesting

to investigate what restricts larger grid size to obtain better accuracy. Sometimes, load distribution

with different numbers of CPUs might affect the cell distortion. The potential relationship between

the accuracy and the number of CPUs can be examined in future.

67

References

[1] Cartogram history. https://makingmaps.net/tag/cartograms-history, 2008.

[2] Tinku Acharya and Ajoy K Ray. Affine and projective transformations. https://www.graphicsmill.
com/docs/gm/affine-and-projective-transformations.htm.

[3] Tinku Acharya and Ajoy K Ray. Image processing: principles and applications. John Wiley & Sons,
2005.

[4] Md Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann, Stephen G Kobourov, and
Torsten Ueckerdt. Computing cartograms with optimal complexity. Discrete & Computational Geom-
etry, 50(3):784–810, 2013.

[5] Md Jawaherul Alam, Stephen G Kobourov, and Sankar Veeramoni. Quantitative measures for car-
togram generation techniques. In Computer Graphics Forum, volume 34, pages 351–360. Wiley Online
Library, 2015.

[6] Srinivas Aluru. Quadtrees and octrees. In Handbook of Data Structures and Applications, pages 309–
326. Chapman and Hall/CRC, 2018.

[7] Fernanda A Andalo, Gabriel Taubin, and Siome Goldenstein. Psqp: Puzzle solving by quadratic
programming. IEEE transactions on pattern analysis and machine intelligence, 39(2):385–396, 2016.

[8] M Andersen, Joachim Dahl, and Lieven Vandenberghe. CVXOPT: Python software for convex opti-
mization, 2013.

[9] A Angelo. A brief introduction to quadtrees and their applications. In Style file from the 28th Canadian
Conference on Computational Geometry, 2016.

[10] Alessio Arleo, Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A distributed multilevel
force-directed algorithm. In International Symposium on Graph Drawing and Network Visualization,
pages 3–17. Springer, 2016.

[11] Albert Avinyo, Joan Sola-Morales, and Marta Valencia. On maps with given jacobians involving the
heat equation. Zeitschrift für angewandte Mathematik und Physik ZAMP, 54(6):919–936, 2003.

[12] S Balaji and M Sundararajan Murugaiyan. Waterfall vs V-Model vs Agile: A comparative study on
SDLC. International Journal of Information Technology and Business Management, 2(1):26–30, 2012.

[13] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the visualization of software
metrics. In Proceedings of the 2005 ACM symposium on Software visualization, pages 165–172, 2005.

[14] Michael J Bannister, David Eppstein, Michael T Goodrich, and Lowell Trott. Force-directed graph
drawing using social gravity and scaling. In International Symposium on Graph Drawing, pages 414–
425. Springer, 2012.

[15] André da Motta Salles Barreto and Helio JC Barbosa. Graph layout using a genetic algorithm. In
Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks, pages 179–184. IEEE, 2000.

[16] Michael Behrisch, Michael Blumenschein, Nam Wook Kim, Lin Shao, Mennatallah El-Assady, Johannes
Fuchs, Daniel Seebacher, Alexandra Diehl, Ulrik Brandes, Hanspeter Pfister, et al. Quality metrics for
information visualization. In Computer Graphics Forum, volume 37, pages 625–662. Wiley Online
Library, 2018.

68

https://makingmaps.net/tag/cartograms-history
https://www.graphicsmill.com/docs/gm/affine-and-projective-transformations.htm
https://www.graphicsmill.com/docs/gm/affine-and-projective-transformations.htm

[17] Lars Bergstrom and John Reppy. Nested data-parallelism on the gpu. In Proceedings of the 17th ACM
SIGPLAN international conference on Functional programming, pages 247–258, 2012.

[18] Janis Born, Patrick Schmidt, and Leif Kobbelt. Layout embedding via combinatorial optimization. In
Computer Graphics Forum, volume 40, pages 277–290. Wiley Online Library, 2021.

[19] Cynthia A Brewer. Cartography: thematic map design. Cartographic Perspectives, (17):26–27, 1994.

[20] Govert G Brinkmann, Kristian FD Rietveld, and Frank W Takes. Exploiting gpus for fast force-directed
visualization of large-scale networks. In 2017 46th International Conference on Parallel Processing
(ICPP), pages 382–391. IEEE, 2017.

[21] Kevin Buchin, Bettina Speckmann, and Sander Verdonschot. Evolution strategies for optimizing rect-
angular cartograms. In International Conference on Geographic Information Science, pages 29–42.
Springer, 2012.

[22] U.S. Census Bureau. State-to-state migration flows. https://www.census.gov/data/tables/

time-series/demo/geographic-mobility/state-to-state-migration.html. Last Revised Nov
2020.

[23] Rafael G Cano, Kevin Buchin, Thom Castermans, Astrid Pieterse, Willem Sonke, and Bettina Speck-
mann. Mosaic drawings and cartograms. In Computer Graphics Forum, volume 34, pages 361–370.
Wiley Online Library, 2015.

[24] Mackinlay Card. Readings in information visualization: using vision to think. Morgan Kaufmann,
1999.

[25] Colette Cauvin and C Schneider. Cartographic transformations and the piezopleth maps method. The
Cartographic Journal, 26(2):96–104, 1989.

[26] Thomas J Cheatham and John H Crenshaw. Object-oriented vs. waterfall software development. In
Proceedings of the 19th annual conference on Computer Science, pages 595–599, 1991.

[27] Homer H Chen and Thomas S Huang. A survey of construction and manipulation of octrees. Computer
Vision, Graphics, and Image Processing, 43(3):409–431, 1988.

[28] Federal Election Commission. Federal elections 2012. https://www.fec.gov/resources/

cms-content/documents/federalelections2012.pdf#page=11, 2013.

[29] Pedro Cruz. Wrongfully right: applications of semantic figurative metaphors in information visualiza-
tion. IEEE VIS Arts Program (VISAP), pages 14–21, 2015.

[30] Bernard Dacorogna and Jürgen Moser. On a partial differential equation involving the jacobian de-
terminant. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 7, pages 1–26.
Elsevier, 1990.

[31] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. Multithreaded sparse matrix-matrix
multiplication for many-core and gpu architectures. Parallel Computing, 78:33–46, 2018.

[32] LinLin Ding, Baiyou Qiao, Guoren Wang, and Chen Chen. An efficient quad-tree based index structure
for cloud data management. In International Conference on Web-Age Information Management, pages
238–250. Springer, 2011.

[33] Ugur Dogrusoz, Erhan Giral, Ahmet Cetintas, Ali Civril, and Emek Demir. A layout algorithm for
undirected compound graphs. Information Sciences, 179(7):980–994, 2009.

[34] Wenqiang Dong, Xingyu Fu, Guangluan Xu, and Yu Huang. An improved force-directed graph layout
algorithm based on aesthetic criteria. Computing and Visualization in Science, 16(3):139–149, 2013.

[35] Daniel Dorling. Area cartograms: Their use and creation, vol. 59 of concepts and techniques in modern
geography. University of East Anglia: Environmental Publications, 2, 1996.

69

https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
https://www.fec.gov/resources/cms-content/documents/federalelections2012.pdf#page=11
https://www.fec.gov/resources/cms-content/documents/federalelections2012.pdf#page=11

[36] James A Dougenik, Nicholas R Chrisman, and Duane R Niemeyer. An algorithm to construct continuous
area cartograms. The Professional Geographer, 37(1):75–81, 1985.

[37] A Downton and D Crookes. Parallel architectures for image processing. Electronics & Communication
Engineering Journal, 10(3):139–151, 1998.

[38] Peter Eades and Mao Lin Huang. Navigating clustered graphs using force-directed methods. In Graph
Algorithms And Applications 2, pages 191–215. World Scientific, 2004.

[39] Jared Espenant and Debajyoti Mondal. Streamtable: An area proportional visualization for tables with
flowing streams. In European Workshop on Computational Geometry, page 28:1–28:7, 2021. https:

//arxiv.org/abs/2103.15037.

[40] William Evans, Stefan Felsner, Michael Kaufmann, Stephen G Kobourov, Debajyoti Mondal, Rah-
numa Islam Nishat, and Kevin Verbeek. Table cartograms. In European Symposium on Algorithms,
pages 421–432. Springer, 2013.

[41] William Evans, Stefan Felsner, Michael Kaufmann, Stephen G Kobourov, Debajyoti Mondal, Rah-
numa Islam Nishat, and Kevin Verbeek. Table cartogram. Computational Geometry, 68:174–185, 2018.

[42] Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on composite keys.
Acta informatica, 4(1):1–9, 1974.

[43] R Fletcher. A general quadratic programming algorithm. IMA Journal of Applied Mathematics, 7(1):76–
91, 1971.

[44] National Science Foundation. Weather research and forecasting model. https://www.mmm.ucar.edu/

weather-research-and-forecasting-model. Last Accessed Jun 2019.

[45] The Python Software Foundation. Python: multiprocessing- process-based parallelism. https://docs.
python.org/3.4/library/multiprocessing.html. Last Accessed Jun 2019.

[46] Arne Frick, Andreas Ludwig, and Heiko Mehldau. A fast adaptive layout algorithm for undirected
graphs (extended abstract and system demonstration). In International Symposium on Graph Drawing,
pages 388–403. Springer, 1994.

[47] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed placement. Soft-
ware: Practice and experience, 21(11):1129–1164, 1991.

[48] Yu-Chen Fu, Zhi-Yong Hu, Wei Guo, and Dong-Ru Zhou. Qr-tree: a hybrid spatial index structure.
In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat.
No. 03EX693), volume 1, pages 459–463. IEEE, 2003.

[49] Pawel Gajer, Michael T Goodrich, and Stephen G Kobourov. A multi-dimensional approach to force-
directed layouts of large graphs. In International Symposium on Graph Drawing, pages 211–221.
Springer, 2000.

[50] Emden R Gansner and Stephen C North. Improved force-directed layouts. In International Symposium
on Graph Drawing, pages 364–373. Springer, 1998.

[51] Michael T Gastner and Mark EJ Newman. Diffusion-based method for producing density-equalizing
maps. Proceedings of the National Academy of Sciences, 101(20):7499–7504, 2004.

[52] Michael T Gastner, Vivien Seguy, and Pratyush More. Fast flow-based algorithm for creating density-
equalizing map projections. Proceedings of the National Academy of Sciences, 115(10):E2156–E2164,
2018.

[53] Jennifer Golbeck and Paul Mutton. Spring-embedded graphs for semantic visualization. In Visualizing
the semantic Web, pages 172–182. Springer, 2006.

70

https://arxiv.org/abs/2103.15037
https://arxiv.org/abs/2103.15037
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://docs.python.org/3.4/library/multiprocessing.html
https://docs.python.org/3.4/library/multiprocessing.html

[54] Ardeshir Goshtasby. Piecewise linear mapping functions for image registration. Pattern Recognition,
19(6):459–466, 1986.

[55] Jonathan L Gross and Jay Yellen. Handbook of graph theory. CRC press, 2004.

[56] Sabir M Guseyn-Zade and Vladimir S Tikunov. Numerical methods in the compilation of transformed
images. Mapping Sciences and Remote Sensing, 31(1):66–85, 1994.

[57] Stefan Hachul and Michael Jünger. Drawing large graphs with a potential-field-based multilevel algo-
rithm. In International Symposium on Graph Drawing, pages 285–295. Springer, 2004.

[58] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2003.

[59] Mohammad Rakib Hasan, Debajyoti Mondal, Jarin Tasnim, and Kevin A Schneider. Putting table
cartograms into practice.

[60] Henry Heberle, Marcelo Falsarella Carazzolle, Guilherme P Telles, Gabriela Vaz Meirelles, and Rosane
Minghim. Cellnetvis: a web tool for visualization of biological networks using force-directed layout
constrained by cellular components. BMC bioinformatics, 18(10):25–37, 2017.

[61] Roberto Henriques, Fernando Bação, and Victor Lobo. Carto-som: cartogram creation using self-
organizing maps. International Journal of Geographical Information Science, 23(4):483–511, 2009.

[62] Clifford Hildreth et al. A quadratic programming procedure. Naval research logistics quarterly, 4(1):79–
85, 1957.

[63] MHW Hobbs and Peter Rodgers. Representing space: A hybrid genetic algorithm for aesthetic graph
layout. In FEA’98 Frontiers in Evolutionary Algorithms in Proceedings of JCIS’98 The Fourth Joint
Conference on Information Sciences, volume 2, pages 415–418, 1998.

[64] Roger W Hockney and Chris R Jesshope. Parallel Computers 2: architecture, programming and algo-
rithms. CRC Press, 2019.

[65] Marius Hogräfer, Magnus Heitzler, and Hans-Jörg Schulz. The state of the art in map-like visualization.
Computer Graphics Forum, 39, 2020.

[66] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with memory-level and
thread-level parallelism awareness. In Proceedings of the 36th annual international symposium on
Computer architecture, pages 152–163, 2009.

[67] Donald H House and Christopher J Kocmoud. Continuous cartogram construction. In Proceedings
Visualization’98, pages 197–204. IEEE, 1998.

[68] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica journal, 10(1):37–71, 2005.

[69] Gregory Michael Hunter. Efficient computation and data structures for graphics. Princeton University,
1978.

[70] Sylvia Ilieva, Penko Ivanov, and Eliza Stefanova. Analyses of an agile methodology implementation.
In Proceedings. 30th Euromicro Conference, 2004., pages 326–333. IEEE, 2004.

[71] Ryo Inoue and Mao Li. Optimization-based construction of quadrilateral table cartograms. ISPRS
International Journal of Geo-Information, 9(1):43, 2020.

[72] Ryo Inoue and Eihan Shimizu. A new algorithm for continuous area cartogram construction with
triangulation of regions and restriction on bearing changes of edges. Cartography and Geographic
Information Science, 33(2):115–125, 2006.

[73] Takayuki Itoh, Chris Muelder, Kwan-Liu Ma, and Jun Sese. A hybrid space-filling and force-directed
layout method for visualizing multiple-category graphs. In 2009 IEEE Pacific Visualization Symposium,
pages 121–128. IEEE, 2009.

71

[74] Arpan Jain, Tim Moon, Tom Benson, Hari Subramoni, Sam Adé Jacobs, Dhabaleswar K Panda, and
Brian Van Essen. Super: Sub-graph parallelism for transformers. In 2021 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 629–638. IEEE, 2021.

[75] Stephen Jones. Introduction to dynamic parallelism. In GPU Technology Conference Presentation S,
volume 338, page 2012, 2012.

[76] Daniel A Keim, Stephen C North, and Christian Panse. Cartodraw: A fast algorithm for generating
contiguous cartograms. IEEE transactions on visualization and computer graphics, 10(1):95–110, 2004.

[77] Daniel A Keim, Christian Panse, and Stephen C North. Medial-axis-based cartograms. IEEE computer
graphics and applications, 25(3):60–68, 2005.

[78] Andrew Kennings and Kristofer P Vorwerk. Force-directed methods for generic placement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(10):2076–2087, 2006.

[79] Stephen G Kobourov. Spring embedders and force directed graph drawing algorithms. arXiv preprint
arXiv:1201.3011, 2012.

[80] Christopher James Kocmoud. Constructing continuous cartograms: a constraint-based approach. PhD
thesis, Texas A&M University, 1997.

[81] Mary Rebecca Duquette Krauss. The relative effectiveness of the noncontiguous cartogram. PhD thesis,
Virginia Tech, 1989.

[82] John Krygier and Denis Wood. Making maps: A visual guide to map design for gis. 2011.

[83] Samuel H Langton and Reka Solymosi. Cartograms, hexograms and regular grids: Minimising mis-
representation in spatial data visualisations. Environment and Planning B: Urban Analytics and City
Science, 48(2):348–357, 2021.

[84] Cleverson Ledur, Dalvan Griebler, Isabel Manssour, and Luiz Gustavo Fernandes. A high-level dsl for
geospatial visualizations with multi-core parallelism support. In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), volume 1, pages 298–304. IEEE, 2017.

[85] Jungwoo Lee. Optimized quadtree for karhunen-loeve transform in multispectral image coding. IEEE
Transactions on Image Processing, 8(4):453–461, 1999.

[86] Zhuoran Li, Guiling Wang, Jinlong Meng, and Yao Xu. The parallel and precision adaptive method of
marine lane extraction based on quadtree. In International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pages 170–188. Springer, 2018.

[87] AA Lovelace. Sketch of the Analytic Engine Invented by Charles Babbage by LF Menabrea. With
Notes upon the Memoir by the Translator, Ada Augusta Countess of Lovelace. P. Morrison and E,.
Morrison (Eds), Charles Babbage and his Calculating Engines, Dover, 1961.

[88] Juliane Mai, Kurt C Kornelsen, Bryan A Tolson, Vincent Fortin, Nicolas Gasset, Djamel Bouhemhem,
David Schäfer, Michael Leahy, François Anctil, and Paulin Coulibaly. The canadian surface prediction
archive (caspar): A platform to enhance environmental modeling in canada and globally. Bulletin of
the American Meteorological Society, 101(3):E341–E356, 2020.

[89] Environmental Systems Research Institute (ESRI) Map. Non contiguous cartogram.
https://carto.maps.arcgis.com/apps/StorytellingTextLegend/index.html?appid=

10fcf7bdaeac466a8662635861923b0f.

[90] Shawn Martin, W Michael Brown, Richard Klavans, and Kevin W Boyack. Openord: an open-source
toolbox for large graph layout. In Visualization and Data Analysis 2011, volume 7868, page 786806.
International Society for Optics and Photonics, 2011.

[91] Riccardo Mazza. Introduction to information visualization. Springer Science & Business Media, 2009.

72

https://carto.maps.arcgis.com/apps/StorytellingTextLegend/index.html?appid=10fcf7bdaeac466a8662635861923b0f
https://carto.maps.arcgis.com/apps/StorytellingTextLegend/index.html?appid=10fcf7bdaeac466a8662635861923b0f

[92] Bob G McCullouch and Kamolwan Lueprasert. 2d bar-code applications in construction. Journal of
construction engineering and management, 120(4):739–752, 1994.

[93] Michael J McGuffin. Simple algorithms for network visualization: A tutorial. Tsinghua Science and
Technology, 17(4):383–398, 2012.

[94] Robert McMaster and Susanna McMaster. A history of twentieth-century american academic cartog-
raphy. Cartography and Geographic Information Science, 29(3):305–321, 2002.

[95] A. McNutt and G. Kindlmann. A minimally constrained optimization algorithm for table cartograms.
IEEEVIS InfoVis Posters, 2020. OSF Preprints, https://doi.org/10.31219/osf.io/kem6j.

[96] Andrew McNutt. What are table cartograms good for anyway? an algebraic analysis. Eurographics
Conference on Visualization (EuroVis), 40, 2021. To appear.

[97] Peng Mi, Maoyuan Sun, Moeti Masiane, Yong Cao, and Chris North. Interactive graph layout of a
million nodes. In Informatics, volume 3, page 23. Multidisciplinary Digital Publishing Institute, 2016.

[98] Antonio CO Miranda and Luiz F Martha. Mesh generation on high-curvature surfaces based on a
background quadtree structure. space, 500:N2, 2002.

[99] Pouria Mistani, Arthur Guittet, Daniil Bochkov, Joshua Schneider, Dionisios Margetis, Christian
Ratsch, and Frederic Gibou. The island dynamics model on parallel quadtree grids. Journal of Com-
putational Physics, 361:150–166, 2018.

[100] Alistair Morrison, Greg Ross, and Matthew Chalmers. A hybrid layout algorithm for sub-quadratic
multidimensional scaling. In IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.,
pages 152–158. IEEE, 2002.

[101] Christopher Mueller, Douglas P Gregor, and Andrew Lumsdaine. Distributed force-directed graph
layout and visualization. In EGPGV@ EuroVis/EGVE, pages 83–90, 2006.

[102] ZF Muhsin, A Rehman, A Altameem, Tanzila Saba, and M Uddin. Improved quadtree image segmen-
tation approach to region information. the imaging science journal, 62(1):56–62, 2014.

[103] Tamara Munzner. Process and pitfalls in writing information visualization research papers. In Infor-
mation visualization, pages 134–153. Springer, 2008.

[104] Mark Newman. Maps of the 2012 us presidential election results. http://www-personal.umich.edu/

~mejn/election/2012/, 2012.

[105] Andreas Noack. An energy model for visual graph clustering. In International symposium on graph
drawing, pages 425–436. Springer, 2003.

[106] Andreas Noack. Energy models for graph clustering. J. Graph Algorithms Appl., 11(2):453–480, 2007.

[107] Jamie R Nuñez, Christopher R Anderton, and Ryan S Renslow. Optimizing colormaps with con-
sideration for color vision deficiency to enable accurate interpretation of scientific data. PloS one,
13(7):e0199239, 2018.

[108] José Jesús Reyes Nuñez. The use of cartograms in school cartography. In Thematic cartography for the
society, pages 327–339. Springer, 2014.

[109] Sabrina Nusrat and Stephen Kobourov. The state of the art in cartograms. In Computer Graphics
Forum, volume 35, pages 619–642. Wiley Online Library, 2016.

[110] Jianxiong Pang and Lynne Blair. Refining feature driven development-a methodology for early aspects.
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, 86, 2004.

[111] F Pascal and JL Marechal. Fast adaptive quadtree mesh generation. 1998 International Meshing
Roundtable, 1998.

73

https://doi.org/10.31219/osf.io/kem6j
http://www-personal.umich.edu/~mejn/election/2012/
http://www-personal.umich.edu/~mejn/election/2012/

[112] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-scale development. In
International Conference on Product-Focused Software Process Improvement, pages 386–400. Springer,
2009.

[113] Matt Pharr and William R Mark. ispc: A spmd compiler for high-performance cpu programming. In
2012 Innovative Parallel Computing (InPar), pages 1–13. IEEE, 2012.

[114] G Philip. Atlas of canada and the world. George Philip and Son, Milwaukee, 4, 1979.

[115] Alain Pitiot, Grégoire Malandain, Eric Bardinet, and Paul M Thompson. Piecewise affine registration
of biological images. In International Workshop on Biomedical Image Registration, pages 91–101.
Springer, 2003.

[116] Helen C Purchase, Natalia Andrienko, Thomas J Jankun-Kelly, and Matthew Ward. Theoretical
foundations of information visualization. In Information Visualization, pages 46–64. Springer, 2008.

[117] Michael J Quinn. Parallel programming. TMH CSE, 526:105, 2003.

[118] Renata G Raidou, M Eduard Gröller, and Martin Eisemann. Relaxing dense scatter plots with pixel-
based mappings. IEEE transactions on visualization and computer graphics, 25(6):2205–2216, 2019.

[119] Erwin Raisz. The rectangular statistical cartogram. Geographical Review, 24(2):292–296, 1934.

[120] Gerhard Ringel. Equiareal graphs. Contemporary Methods in Graph Theory, BI Wissenschaftsverlag,
pages 503–505, 1990.

[121] Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys
(CSUR), 16(2):187–260, 1984.

[122] Hanan Samet. Hierarchical spatial data structures. In Symposium on Large Spatial Databases, pages
191–212. Springer, 1989.

[123] Hanan Samet and Markku Tamminen. Efficient component labeling of images of arbitrary dimen-
sion represented by linear bintrees. IEEE transactions on pattern analysis and machine intelligence,
10(4):579–586, 1988.

[124] Rodrigo Santamaŕıa, Roberto Therón, and Luis Quintales. Bicoverlapper: a tool for bicluster visual-
ization. Bioinformatics, 24(9):1212–1213, 2008.

[125] Ken Schwaber. Scrum development process. In Business object design and implementation, pages
117–134. Springer, 1997.

[126] Clifford A Shaffer and Hanan Samet. Optimal quadtree construction algorithms. Computer Vision,
Graphics, and Image Processing, 37(3):402–419, 1987.

[127] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. 3d-spring embedder for complete graphs.
BTU, Inst. of Computer Science, 2000.

[128] Terry A Slocum, R McMaster, F Kessler, and H Howard. Thematic cartography and visualization.
Prentice hall Upper Saddle River, NJ, 1999.

[129] Bettina Speckmann, Marc Van Kreveld, and Sander Florisson. A linear programming approach to
rectangular cartograms. In Progress in Spatial Data Handling, pages 529–546. Springer, 2006.

[130] Marc Streit, Samuel Gratzl, Michael Gillhofer, Andreas Mayr, Andreas Mitterecker, and Sepp Hochre-
iter. Furby: fuzzy force-directed bicluster visualization. BMC bioinformatics, 15(6):1–13, 2014.

[131] Gary J Sullivan and Richard L Baker. Efficient quadtree coding of images and video. IEEE Transactions
on image processing, 3(3):327–331, 1994.

[132] Shipeng Sun. A fast, free-form rubber-sheet algorithm for contiguous area cartograms. International
Journal of Geographical Information Science, 27(3):567–593, 2013.

74

[133] Kevin D Terwilliger, Orin M Ozias, and Scott C Lauffer. Secure information handling system matrix
bar code, March 31 2015. US Patent 8,997,241.

[134] Anna Tikhonova and Kwan-Liu Ma. A scalable parallel force-directed graph layout algorithm. In
Proceedings of the 8th Eurographics conference on Parallel Graphics and Visualization, pages 25–32,
2008.

[135] Waldo Tobler. Thirty five years of computer cartograms. ANNALS of the Association of American
Geographers, 94(1):58–73, 2004.

[136] Ying Tu and Han-Wei Shen. Visualizing changes of hierarchical data using treemaps. IEEE transactions
on visualization and computer graphics, 13(6):1286–1293, 2007.

[137] William Thomas Tutte. How to draw a graph. volume 3, pages 743–767. Wiley Online Library, 1963.

[138] Marc Van Kreveld and Bettina Speckmann. On rectangular cartograms. Computational Geometry,
37(3):175–187, 2007.

[139] Adriano Vogel, Cassiano Rista, Gabriel Justo, Endrius Ewald, Dalvan Griebler, Gabriele Mencagli, and
Luiz Gustavo Fernandes. Parallel stream processing with mpi for video analytics and data visualization.
In Symposium on High Performance Computing Systems, pages 102–116. Springer, 2018.

[140] Chris Walshaw. A multilevel algorithm for force-directed graph drawing. In International Symposium
on Graph Drawing, pages 171–182. Springer, 2000.

[141] Yong-Xian Wang, Zong-Zhe Li, Lu Yao, Wei Cao, and Zheng-Hua Wang. Two improved gpu ac-
celeration strategies for force-directed graph layout. In 2010 International Conference on Computer
Application and System Modeling (ICCASM 2010), volume 13, pages V13–132. IEEE, 2010.

[142] Gregory V Wilson. The history of the development of parallel computing. URL: http://ei. cs. vt.
edu/history/Parallel. html, 1994.

[143] Mark J. Winter. Diffusion cartograms for the display of periodic table data. Journal of Chemical
Education, 88(11):1507–1510, 2011.

[144] TzuYen Wong, Peter Kovesi, and Amitava Datta. Projective transformations for image transition
animations. In 14th International Conference on Image Analysis and Processing (ICIAP 2007), pages
493–500, 2007.

[145] Amichai Worms. Matrix barcode system, July 5 2012. US Patent App. 12/983,923.

[146] Jun Wu. Continuous optimization of adaptive quadtree structures. Computer-Aided Design, 102:72–82,
2018.

[147] Fang Yan, Yuanjie Zheng, Jinyu Cong, Liu Liu, Dacheng Tao, and Sujuan Hou. Solving jigsaw puz-
zles via nonconvex quadratic programming with the projected power method. IEEE Transactions on
Multimedia, 2020.

[148] Mark Yerry and Mark Shephard. A modified quadtree approach to finite element mesh generation.
IEEE Computer Graphics and Applications, 3(01):39–46, 1983.

[149] Enas Yunis, Rio Yokota, and Aron Ahmadia. Scalable force directed graph layout algorithms using
fast multipole methods. In 2012 11th International Symposium on Parallel and Distributed Computing,
pages 180–187. IEEE, 2012.

[150] Guangtao Zhai, Weisi Lin, Jianfei Cai, Xiaokang Yang, and Wenjun Zhang. Efficient quadtree based
block-shift filtering for deblocking and deringing. Journal of Visual Communication and Image Repre-
sentation, 20(8):595–607, 2009.

[151] XG Zhou and HS Wang. A quadtree spatial index method with inclusion relations for the incremental
updating of vector landcover database. The International Archives of the Photogrammetry, Remote
Sensing and Spatial, Information Sciences, 42:4, 2018.

75

Appendix A

Generated Results with Weather Dataset

Table A.1: Error and processing time for different table cartograms with the Weather Research and
Forecasting (WRF) dataset, (top) Baseline algorithm with 16× 16 grid, (bottom) TCarto Parallel
algorithm with 16× 16 grid [88].

76

Table A.2: Error and processing time for different table cartograms with the Weather Research and
Forecasting (WRF) dataset, (top) TCarto DivCon algorithm with 16×16 grid, (bottom) FastFlow
algorithm with 16× 16 grid [88].

77

Table A.3: Error and processing time for different table cartograms with the Weather Research and
Forecasting (WRF) dataset, (top) Baseline algorithm with 32× 32 grid, (bottom) TCarto Parallel
algorithm with 32× 32 grid [88].

78

Table A.4: Error and processing time for different table cartograms with the Weather Research and
Forecasting (WRF) dataset, (top) TCarto DivCon algorithm with 32×32 grid, (bottom) FastFlow
algorithm with 32× 32 grid [88].

79

Table A.5: Error and processing time for different table cartograms with the Weather Research and
Forecasting (WRF) dataset, (top) Baseline algorithm with 64× 64 grid, (bottom) TCarto Parallel
algorithm with 64× 64 grid [88].

80

Table A.6: Error and processing time for different table cartograms with the Weather Research and
Forecasting (WRF) dataset, (top) TCarto DivCon algorithm with 64×64 grid, (bottom) FastFlow
algorithm with 64× 64 grid [88].

81

Appendix B

Generated Results with US Migration Data for Angle-

Constrained Table Cartogram

Table B.1: Different measurement metrics for angle (i.e., 0, 20, 40, 60, 80 degree) constraint with US
migration data [22].

82

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Research Questions
	Contributions
	Methodology
	Chapter Organization
	Declaration
	Summary

	Background
	Cartogram
	Contiguous and Non-contiguous Cartogram
	Rectangular Cartogram
	Table Cartogram

	Image Transformation
	Affine Transformation
	Image Warping with Piecewise Affine Transformation

	Quality Measurement metrics
	Statistical Accuracy metrics
	Comprehensiveness Measurement metrics

	Miscellaneous
	Summary

	Literature Review
	Related Works
	Cartograms
	Algorithmic Techniques
	Parallel Processing

	Summary

	Table Cartogram Algorithms
	TCarto: An Optimization Based Algorithm
	Baseline - Errorless Table Cartogram Algorithm
	FastFlow - Fast Flow-based Density-Equalizing Algorithm
	Summary

	Applications of Table Cartograms
	Infographics to Reveal Spatial Relation
	Different visual effects in images
	Increasing Light Illumination
	Mosaic Effect

	Understanding Clusters in a Scatter-plot
	Tabular Data with Angle Constraint
	Summary

	Experimental Results & Analysis
	Experimental Setup
	Dataset Description
	Evaluation Metrics

	Results and Analysis
	Performance Comparison with Weather Dataset
	Performance Comparison with Migration Dataset
	Relationship between Accuracy and Readability of Visualization
	Relationship of Grid Size with Accuracy and Processing Speed
	Relationship of Threshold Angle with Accuracy and Readability of Visualization for Angle Constraint Table Cartogram

	Summary

	Conclusion
	Summary
	Contribution
	Limitations
	Data Limitations
	User studies
	Evaluation metrics
	GPU Implementation

	Future Work

	References
	Appendix Generated Results with Weather Dataset
	Appendix Generated Results with US Migration Data for Angle-Constrained Table Cartogram

