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ABSTRACT 

This thesis focuses on the effects of lactobacilli and their end-products, lactic acid 

and acetic acid, on Saccharomyces cerevisiae growth and fermentation, and on 
antimicrobials used to manage such contaminants. To assess the effects of the bacteria, 
normal gravity (22 - 24 @ZOO ml dissolved solids) wheat mashes inoculated with yeast at - 
106 colony forming units (CF'U)iml were deliberately infected (coinoculated) with each of 
five industrially important strains of Iactobacilli at - I@, - 106, - 107, - 108, and - 109 
CFUfd. Controls with yeast alone or with bacteria alone (- 107 CFUlml) were included 
End-products, yeast growth and fermentation rates were monitored Results indicated that 
production of Iactic acid by lactobacilli and suspected competition of the bacteria with yeast 
cells for essential growth factors in the fermenting medium were the major reasom for 
reductions in yeast growth and decreases in fmal ethanol yield 

A chemicdy defined minimal medium was used to determine the effects of added 
acetic and lactic acid and their mode of action on two strains of S. cerevkiae. The effects 

of these two acids on yeast intracellular pH (pH& plasma membrane H+-ATPase activity 
and on the phma membrane fatty acid composition were studied. It was found that the 
speciF~c growth rates (p) of the two yeast strains decreased exponentially ( ~ 2  > 0.9) as the 

concentrations of acetic or lactic acid were increased. Acetic and lactic acids synergisticalIy 
reduced the specific growth rate of yeast Acetic acid caused h e  yeast cell to expend ATP 
to pump out excess protons that result fmm the passive diffusion of the acid into the cell at 
medium pH (pHe) foUowed by its dissociation within the cefl as a result of higher pHi. 
Lactic acid (0.5 % wiv) caused intracellular acidification (which could lead to arrest in 
glycolytic flux) as a result of a significant decrease (P = 0.05) in the plasma membrane H+- 

ATPase activity. Moreover, the plasma membrane fluidity was reduced due to decrease in 

unsaturated fany acyl residues. 
Among the andmicmbiah studied, urea hydrogen peroxide (UHP) was superior 

compared to stabitid chIorine dioxide and nisin, but its bactericidal activity was greatIy 
affixted by the presence of pardcuIate matter. When used near 30 rnM (in unclarified 
mash), in addition to its bactericidal effect UHP provided near optimum levels of 
assimiIable nitrogen and oxygen that aided in vigorous yeast fermentation. This process 
was patented- 
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1. INTRODUCTION 

"But surely this is an old tale you tell tbey say; 
But surely this is a new tale you tell, others say. 

Tell it once again, they say; 
Or, do wt rell it yet again, others say. 

But I have heard all this before, say some; 
Or. but this is not how it was before, say the rest" 

(Naqsbbandi recital. h m  The Way of the Sufi, by [dries Shah) 

Ethanol is produced commercially by fermentation of cereal grains, moIasses or 
other materiais with high starch andlor sugar contents. Tbe process involves conversion of 
sugars to alcohol and carbondioxide by the yeast, Saccharotnyces cermsiae. About 24 

billion litres of ethanol are produced per year around the worId (Dixon, 1999). This 
includes both potable alcohol (beer, wine, and distilled spirits) and non-potable (industrial 
and fuel) alcohol, The demand for ethanol, as a substitute for gasoline, is expected to 
increase due to concerns related to environmentd impacts and global warming (in addition 
to the soaring gas prices) which calls for maximizing the existing production. According to 
the US Depanment of Energy Life-Cycle analysis, use of ethanol (as a fuel) wouId reduce 
green house gases by 99 8 when compared to the gasoline that it replaces. Repiacing the 

banned gasoline oxygenate MTBE (methyl tertiary butyI ether) with ethanol will also 
increase the demand. 

Etbaml ( k r h  
dioxide 

TheoreticaIIy, based on the eqyation above, 100 kg glucose when fermented 
completely should yield 51.1 kg ethanol. But this degree of stoichiomtry cannot be 
achieved since the yeast uses some of the glucose for growth (biomass production). The 
conversion efficiency in most production plants, at best, is 90 - 93 %. Since growing 



yeasts produce erbanol at a rate 33 times faster than non-growing ceUs (Kirsop, 1982), it is 
desinble to keep the yeast growing for as long as possible. Therefore, a slight reduction in 
ethanol yield caused by ceU growth has to be tolerated 

A number of Eactors other tban growth also contribute to the reduction in final 
ethanol yields and thereby lower the productivity of a plant. These include.. (i) minor end- 
products of yeast metabolism (such as glycerol higher alcohols, esters, organic acids and 
aldehydes), (u) stuck and sluggish fermentations, (iii) losses during mashing and (iv) 
bacterial infections (Ingledew, 1999). These factors have to be reduced or eliminated in 

order to maximize both ethanol yield and profits. 
Amcsg the factors listed, bacterial idkction (oontamination) is a major cause of 

reduction in ethanol yield during the fermentation of starch-based feedstocks by S. 
cerevisiae. High numbers of bacterial contaminants interfere with yeast metabolism 
through competition for nutrients, through production of end-products (Iactic acid and 
acetic acid) which inhibit yeast growth and metabolism. or through lowering the activity of 
enzymes such as glucoamylase. Fermentation patterns may also be altered (Ingiedew, 
1993). Lactic acid bacteria are the mast troublesome bacterial contaminants encountered 
because of their ability to d v e  low pH, high alcohol, and high temperature. They grow 

rapidly under the exact conditions of the alcohol fernentadon. Lactobacilli are of major 
concern to distilleries and fuel dcohol plants. In the literature, uncertainities exist regarding 
the effect of lactobacilli on ethanol yield, When bacterial contaminants are compared, the 
problem of the correlation of ethanol yield loss with the presence of Lactic andor acetic acid 
is complicated in part due to the fact that hornofmentathe lactic acid bacteria metabolize 

glucose to two molecules of lactic acid almost in stoichiometric quantities, whereas 
heterofermentative Iactic acid bacteria produce lactic acid COz, and ethanol as well as 
minor amounts of acetic acid and glycerol, Despite considerable research in the atea, the 
effect of Iactic acid bacteria on the rate and completion of yeast-catalyzed fermentations 
remains uncIear (Huang et d., 1996). At the time this work was started, any correIation 
between the extent of bacterial contamination and losses in ethanol yield had yet to be 
documented In view of the narrow profit margins of f d  alcohol distillers, losses of even 
1 8 of total ethanol can play an important role in the financial success of the plant 

The management of bacterial contaminants is often achieved in industry by using 
single antibiotics like penicillin G, streptomycin, virginiamycin, and tetracycline (Day er 

d., 1954; Aquarone, 1960) or mixtares of these compounds. However, antibiotics are 
expensive, and the concept of ii~ltibioti~ me in an industrial process is in question in spite 
of the absence of antiiiotic residues in spent grains subsequent to distillation, General 
misuse of antibiotics in society has conmimed to a b&-up of reservoirs of antibiotic- 



resistant bacteria (Khachamurians, 1998), providing an incentive to scientists to examine 

other antimicrobial substances which ace not antibiotics. 
This project was therefore designed with the following objectives: 

(i) to study the relatioosbip between bacterial cwtamination of wheat mashes and the 
corresponding effects of these bacteria on yeast growth and ethanol yield; 

(i) to deduce the mechanism of action of lactic acid on yeast (S. cerevzsiae) and to re- 
evaluate the mechanism of action of acetic acid on S. cerevisiae (since both these weak- 

acids are end-products of lactic acid- bacterial fermentation that inhibit yeast growth and 
metabolism); and 

(iii) to assess the effectiveness of antibiotics in the akohol fermentation and identify a 
suitabIe andmicrobid that could be used (instead of antibiotics) to effectively manage 
the bacterkd contaminants in fermentation mashes. 



2. REVIEW OF LITERATURE 

2.1 Importance of lactic acid bacteria in olu~hol production 
Lactic acid bacteria are the most troublesome p u p  of contaminacing bacteria found 

in breweries, distilleries and fuel alcohol plants, These bacteria are Gram-positive, rod- 
shaped, facultative anaerobes with a fermentative metabolism which produce high levels of 

acids as end-products. Depending on their me tabob ,  lactic acid bacteria are grouped as 
homofmentative (I mob of hexose convected to 2 moles of lactic acid through the 
Embden - Meyethof pathway) and betemfermentative (1 moIe of hexose converted to - L 
mole C@, -I mole ethanol, -1 mole of lactic acid with minor amounts of acetic acid and 
pynrvic acid through the 6 - phosphogluconate pathway) lactic acid bacteria [Kandler, 
1983). Kader  also mentioned a group of lactic acid bacteria cal1e.d facultative 
heterofermenters. This group of homofennentative bacteria possess an inducible 
phosphoketolase pathway with pentoses acting as inducers. In winemaking, the 
occurrence of the so-called 'ferocious' lactobacilli have been reported (Bodton er d, 
19%). These fast growing ferocious laCt0hd.i produce xeric acid (rather than lactic acid) 

in concentrations high enough to impede yeast growth and fermentation 
Lactic acid bacteria are relatively cesistatlt to heat and can grow and metabolize at 

Low pH. Some strains are known to grow rapidly in the fermentor after only 24 h of 
Cementation at which point the oxygen has been mostly depIeted and the aerobic bacteria 

have died off Wright, 1995). Chang et al. (1999 collected samples from a commercial 
ethanol production plant to enumerate bactedal contaminadon in each step of a starch-based 

ethanol production process. All bacterial isolates (that stwived and propagated through the 
process) were identifid as lactic acid bacteria, the major ones king LambaciUus 
fentennun, krcrobocilllus salivarius (kterofermenotive) and Lactobaciillus casei 

(fdtadvely hetmfermentative)). 'Ihe lactic acid bacterh isolated from distillery 
fermentations are, as would be expected, particularly suited to the conditions existing in 
these fermentations (Bryan-Jones, 1975). Therefore, the enumeration of bacteria in many 
distilIeries is often Iimited to the detection of "I;sctics" dm to the fact that the aembes and 
facultative anaerobes wirh Iide pH tolerance do not pose a serious threat to product quality 

or production efficiency. 



2.2 Interactions between lactic acid bacteria and yeast 

In name, micro-organisms are rarely found in pure cultures but most of our 
understanding of microbial physiology is derived from studying pure cultures. There is a 
need for investigation of growth and metabolism of organisms growing in assoCiation with 

each other. Yeasts and lactic acid bacteria are often encountered together in natural 

ecosystems and may be in competition for the same substrates (Alexander, 197 1). A 
thorough understanding of their interactions would help in achieving more controlled 
fermentations. Momose et al. (1%9) observed that lactobacilli caused agpgation of yeast. 
They found that the aggregation resuited due to the elecaostatic force between yeast and 
bacterial cell surfaces and was revemile on changing the pH. Challinor and Rose (1954) 
studied the interactions between a yeast (S. cerevisiae) and a bacterium (Lactobacillus sp.) 
grown together in a defined medium. They observed the yeast to have synthesized a 
missing substance essential for the growth of the kctobacillus sp. Inhibitory and 
stirnulatory interactions between champagne strains of S. cerevisiae and lactic acid bacteria 
were studied by Lemamquier (1987). Among the lactic acid bacteria tested (Pediococcus 
cerm'siae, Loctohacillus hilgardi, Lucmbacillus phranrm. Luctobocillus brevis and an 
unknown Lactobacillus sp.), he found that the growth of L plantanun was stimulated by 
yeast, while the others were inhibited. The stimulation may be due to vitamins excreted by 
the yeast (Young et al., 1956). Ethanol and S@ produced by the yeast in wine 
fermentation could also be responsible for inhibition of lactobacilli (King and Beelman, 
1986). but Lemaresquier (1987) suggested that the inhibition may be due to the release of 

inhibitors (similar to antibiotics) by the yeast 

Yeast was shown to stimulate bacterial sunrival in a poor culture medium and, as a 
result, aid in an increase in the lactic acid production by 60 8, whereas the bacteria reduced 
the growth and aicohotic fermentation of yeasts by 65 5% (Leroi and Pidoux, 1993a). In a 
complex medium with beet molasses, where sucrose is the most important carbohydrate, 
hydrolysis of sucrose by yeast seemed to be a mechanism of lactobacilli stimulation (Essia 
Ngang et aL, 1992). While characterizing the interactions between L hilgardii and 
Saccharontycesflorenrinus isolated from sugary Icefir grains, Leroi and Pidoux ( 1993b) 
showed that C@, pycuvate, propionate, acetate and succinate excreted by the yeast 
stimulated the growth of lactobacilli and, in turn, the production of Iactic acid They also 

suggested that the interactions differed greatly depending on the sugar source- deOliva- 
&to and Yokoya (1997) confirmed amino acids as the main nutrients needed to stimulate 

the growth of k contaminant, L fennmnun, during an akohotic fed-batch yeast 
fennentatioa Lactobacilli have Iong been known to be fastidious - requiring a number of 
amino acids and vitamins for growth (KandIer and Weiss, 1986). 



2.3 Lactic acid bacteria and loss in alcohol yield 
Contaminating organisms may enter the fennentor in a number of ways. Cleaning 

and sanitation are not as rigorous in fuel alcohol plants as in breweries. Contaminants arise 
from tankage. transfer Iines, heat exchangers, grains, active dry yeast, backset, or the yeast 
slurry inoculum if yeast cells are recycled (Reed and Nagodawithana, 199 1). Microbial 
numbers can be significantly reduced by maintaining backset at temperature over 70" C 

prior to use, by keeping equipment clean and steamed thoroughly or chemically sanitized, 

by adding antibiotics such as penicillin or virginiamycin to fermentors, and by pasteuridng 
or chemically treating the substrate (Ralph, 1981). In spite of this, the problem of bacterial 
contamination still exists in the ethanol production industry. 

Dolan (1976) predicted ethanol losses of 1 - 3 96 which corresponded to bacterial 
contamination levels between 106 and 107, and 3 - 5 46 losses with bacteria in the range 
between 107 and 108. He gave no specific figures or experimental &tail. From studies in 

an industriaI scale distillery it was suggested that when bacterial numbers exceeded 108 per 
ml, the spirit loss was approximately 5 per cent (Dolan. 1979; Barbour and Priest, 1988). 
However, Makanjuola et aL (1992) showed that a bacterial count of 4 5  x 108 at 30 h 
resulted in 17 per cent reduction of ethanol yield which was substantidly higher than 

expected from Dolan's predictions. In a cell-recycled ethanol fermentation contaminated by 
L fermenncnr, the ethanol productivity reduced from 9.00 g~-lh-I (in the absence of L 
f emntwn)  to 5.72 gL-lh-l (Chang et d., 1995). Alcoholic fernentation of high-test 
molasses and yeast viability were strongiy inhibited by L fennenm after a few cycles in a 
fed-batch process with cell recycling (deoliva-Neto and Yokoya, 1994). 

Chin and hgledew (1994) showed that four cycles of 50 5% backsetting of wheat 

mashes highIy contaminated with L fennentwn (up to 150 million cells per ml) did not 
aEfect alcohol production, although there was a slight reduction in yeast growth. They also 
indicated thac gross contamination of dilute wheat mashes (14' Plato) with Lactobocillus 
defbrueckii (up to 6 x 108 cells per ml) did not reduce ethanol yield but lactic acid 
produced by bacteria did accumulate to a high enough concentration to cause loss in yeast 

viability towards the end of the fourth and tXh sequential fermentation nms. It is known 
that the concentration of Iactic acid in fermentation inc~leases with bacterial numbers 

(Barbour and Priest, 1988). Lactic acid and other byptoducts, especially acetic acid are 
I t h o e c l  into the medium by contaminating lactic bacteria and this leads to a decrease in 

ethanol production rates (Essia Ngang et d., 1990). These authors also reported that the 

inbiiitim of yeast by these metabolites is further accentuated in the presence of viabk 
lacrobacilli Lactic acid appears to be an important factor in inhibition of ethanol production 



by yeast The lowering of the medium pH due to Iactate production might also inhibit the 

sac~har~cation process (Makanjuoh er aL, 1992; Ingledew, 1993). The excessive 

amounts of acetic acid produced by contaminating bacteria can slow alcoholic fermentations 

but does not solely account for tbe bacterial inhibition of yeast (Edwards et d, 1999). 

Makanjuola et d (1992) also indicated that two strains of L planmum (33a and 

33b) cause flocculation of yeast cells. These bacteria also caused a high level of inhibition 

of ethanol formation by the yeast Therefore, they suggested that flocculation might be an 
important mechanism for inhibition. Stewart (1975) reported a mechanism called 

coflocculation in yeast. It refers to h e  situation where two non-flocculant yeast strains, 
when mixed in a fixed ratio exhibited flocculation. White and Kidney (1979) have shown 

such cosedimentation to occur b e m n  a strain of yeast and various species of beer 
spoilage bacteria including LactobaciIIm spp. 

According of Makanjuola et d (1992), there is great difficulty in estimating the 
Iosses of ethanol due to bacterial contamination on an industrial scale. Bacterial counts 

seem uniikely to give a very reliable guide, since there is a wide variation in the inhibition 

caused by different strains. A bear understanding of the mechanism by which ethanol 

production is inhibited might suggest improved methods for assessment. Huang er aL 

(1996) studied the relationship between sluggish fermentations and the antagonism of yeast 

by Iactic acid bacteria They reported that the dcoholic fermentation of Chardonnay grape 

juices by S. cerevisiae was inhibited by the three bacterial isoIates, YH-15, YH-24 and 
YH-37. 

2.4 Inhibition of microbial growth by weak organic acids 
Organic acids are known to have both fungistatic and fungicidal effects which xe 

maximal at low pH (Neal et al., 1965). Benzoic and sorbic acids are very effective 

inhibitors of microbial growth and are inrentionally added to many foods as preservatives 

(Dziezak, 1986). Acids such as acetic, propionic and lactic are often added to foods to 

prevent or delay the growth of pathogenic or spoilage bacteria (Dziezak, 1986; Podolak et 

al., 1996). Lactic acid is the major metabolite of Iactic acid bacteria. and may cause a 
significant pH change in the growth medium d c i e n t  to antagonise many 

microorganisms. For example, acidiliadon with lactic acid inhibits the growth of 

Ercherichia coli, PseuctDmonas, SalnconeUa and Clostridim spp. (Piard and Desmazeaud, 
199 1)- A pH change in the medium resnlting h m  the concentration of this weak acid is, 
however, not extensive because a Iarge part of lactic acid does not dissociate at the pH 
value used (pKa for lactic acid = 3.86). The extent of any pH change is also influenced by 

the medium composition, medium pH and the degree of bnffering provided 



Early experiments by Levine and Fellers (1940) demonstrated that acetic acid was 

more lethal to microorganisms than hydrochloric acid or lactic acid. They concluded that 

this toxicity was not due to. hydrogen ion concentradon alone, but seemed to be a function 

of the concenaation of undissociated molecules. With acetic acid in the medium, lowering 
the pH increased the inhibitory activity confirming that the undissociated molecule was the 

effective inhibitor. Thus, the inhi'bition by organic acids used as antimicrobial agents 

would increase with decreasing pH depending on their dissociation constants (Freese er d., 
1973). This implies that efficacy relies upon the undissociated form of the molecule which 

passively diffuses m s s  the lipid biIayer of the cell membrane due to its high solubility in 

the phospholipid portion of the plasma membrane. The molecule then dissociates inside the 
cell - the extent of dissociation depending on the intfacelluiar pH. The membrane is 

impermeable to the ionized (dissociated) acid (Hunter and Segel, 1973; Kashket, 1987). In 
case of S. cerevisiae IGC 4072, metabolizing aerobically, a mediated transport system 

behaving as an electroneutral proton syrnport for the anionic form of acetic acid has been 

reported when this yeast was grown in a medium with acetic acid (Cad et al., 1996). 

C k i o  et al. (1987) reported an accumulative electroneutral proton-lactate symport with a 
proton-lactate stoichiometry of 1:l for S. cerevisiae IGC 4072 grown aerobically in lactic 
acid medium. However, it cannot be generalized that only the undissociated form is 

actively antimicrobial, as Eklund (1983) has demonstrated cellular effects attriiutable to 
both dissociated and undissociated forms of sorbic acid above pH 6.0 in minimum 

inhibitory concentration experiments. He showed that the inhibitory action of undissociated 

acid was LO - 600 times greater than hat of dissociated acid But the latter caused more 
than 50 % growth inhibition of Bacillus subtilis, Staphylococcus aurerrs and E. culi at pH 

levels above 6.0 (whece more than 95 % would be present as sorbate anion). 

Chung and Guepfert (1970) showed that Salmonella was inhibited by lactic acid at a 
pH value below 4.4 and by acetic acid at a pH below 5.4- Considering the respecrive pKa 

values of these two acids (3.86 and 4.74), inhibition apparently occured when the non- 

ionized (undissociated) fraction reached about 20 % of the total acid concentration, Acetic 

acid (pKa = 4.74) has between two and four times more molecules in the undissociated 
form over a pH range between 4.0 and 4.6 compared to lactic acid (Lindgren and 

Dobrogosz, 1990). The electronegative hydroxyl group of lactic acid pulls electrons from 
the carboxyl group and lowers the p& value to 3.86 @ussell and Diez-Gonzalez, 1998). 

Using S. aureus as a modei strain, DaIy et ai. (1972) established that the inhibitory 

activities of both acetic and lactic acids increased as the pH decreased. Wong and Chen 

(1988) showed that the growth of Bacill. cereus was completely m t e d  at pH dues  of 
6.1.6.0 and 5.6 in the case of acetate, formate and lactate, respectively, and they found 



that acetate was more inhibitory than the other acids tested They also reported that spore 

germination was inhibited at the 50 46 level at 0.1 molIL of formate, lactate and acetate at 

pH 4.4,4.3 and 4.2 respectively. 

2.4.1 Importance of acetic and lactic acids in alcohol production by 

Saccharomyces cerevisiae 

Acetic acid (a minor end product of heterofennentative lactic acid bacteria and wild 

yeasts, or a major end product synthesized by the aerobic bacterium, Acetabacter) and lactic 

acid are inhibitory to yeast growth at 0 5  - 9 gL and 10 - 40 gL respectively. An 80 per 
cent reduction in yeast cell mass occurs at 7 5  g/t acetic acid and 38 g/L lactic acid 

(Maiotella et al., 1983). While studying the winemaidng of musts at high osmotic strength 

by 15 strains of thermotolerant S. cerevisiae, Caridi et d. (1999) reported the production of 
1.63 - 3.65 g acetic a c i a  by the yeast in must with 40' Brix as a consequence of osmotic 

stress. This, of course had a clearly detrimental effect on the ethanol production. &Oliva- 

Neto and Yokoya (1994) reported that there was a decffase in alcohol yield when lactic acid 

concenmtion exceeded 6.0 g/L, and at a concentration of above 4.8 g/L, lactic acid 

seriously interfered with yeast viability. Essia Ngang et al. (1989) examined the effect of 

lactic acid on S. cerevisiae growing on high gravity beet molasses. They obsemed that 

lactic acid reduced the specif~c growth rate of yeast by over 60 %, and the specfic rate of 
alcohol production by 40 %. The overall alcohol yield was not affected by the presence of 

up to 30 g/L of lactic acid in a wort with 70 g/L of sugar. However, as the concentration of 
acid inneased there was a reduction in the fermentation rate. They concluded that the 
toxicity of lactic acid depended on its concentration and was enhanced by an increase in 

osmotic stress. Reduced yields of ethanol, lower yeast crops, reduced carbohydrate 

utilhtion and an inmase in acidity are all caused by the buildup of lactic acid in the 

fermentation medium (Mhjuo la  et al., 1992; deOIiva-Neto and Yokoya 1994). 

Pinto et al. (1989) reported that acetic acid was responsible for the death of S. 

cereuisiue both at high and at low temperatures. Such lipophilic weak acids at intermediate 
and lower temperatures induced a second type of cell death which appeared to be a 

consequence of ineracellular acidification (Cardoso and M o ,  1992). In case of 

Zygosucchmomyces bailii, S. cerevisiue, inaacelIuIar adiiication induced by weak 
acids (acetic and other carboxylic acids) was Iess pronounced and did not have a significant 

roIe in cell death at an intermediate temperature of Z0 C (Femandes et d., 1999). 
Pampulha and Loureiro (1989) showed that acetic acid inhibited exponentially the 

fermentation in a respiratory deficient mutant of cerevisiize (KC 3507-1 11). The 
presence of ethanol potentiates the inhibitory effect (of acetic acid) in a synergistic way and 



narrows the temperature range of growth from 3-42O C to 19-26' C (Ramos and Madeira- 
Lopes, 1990). Rasnassen et al. (1995) reported that additioa of acetic acid (4 &) 

midway through grape juice fermentations slowed the fermentations. However, it is 
unclear whether the amount of acetic acid produced by spoilage bacteria would inhibit yeast 
growth and cause stuck fermentations as observed by Huang et al. (1996) who reported 
that high Ievels of volatile acidity (3 g/L) produced by a bacterial isolate YH- 15 were 

associated with stuck fermentations. 
The effect of acetic acid in inducing slowlstuck fermentations was studied by 

Edwards et al(1999). They found that the inhibitory effect of acetic acid on S. cerevisiae 
was dependent on the saain (evident from the wide range of minimum inhibitory 
concentrations obsewed, 4 5  - 7.5 g/L, for the 11 strains studied). 

2.4.2 Interactive effects of acetic and lactic acids on microorganisms 
Adams and Hall (1988) investigated the individual and cumulative effects of lactic 

and acetic acids on E coli and SalmoneUu mtentidis. They confirmed that the 
undissociated forms of these two acids are toxic for the bacteria They attributed the higher 

toxicity of acetic acid to the fact that its pKa is higher than that of lactic acid (and therefore 
at a given pH, more acetic acid is undissociated in the medium compared to lactic acid). 
The authors also showed thac these two acids acted synergistically in weakly-buffered 
me&; lactic acid decreased rhe pH. thereby increasing the toxicity of acetic acid. Lactic 
and acetic acids we11: shown to be slightly synergistic in their inhibitory interrelationship 
against Salnronella ryphimuriwn (Rubin, 1978). 

Moon (1983) studied the inhibition of the growth of acid-tolerant yeasts by acetate, 
lactate and propionate and found that pppionate was more inhibitory than acetate or lactate. 

She aIso studied the inhibition of yeast growth by mixtures of acetic, lactic and propionic 
acids at one pH value and derived simple polynomial expressions liokiag growth rate with 
concentrations of the preservatives, Formulae included interactive terns that implied 
synergisms, although it was not stated whether differences were statistically significant. 
The results, however, suggested that the three acids used in combination were 
synergistically inbiitory to Hans& crmadenris and Ge~~churn  cmrdidwn 
Saccharomyces w ~ l l ~ n  was iahibited by synergistic mixtwes of acetate/pmprionate 
whereas Endomycopsis b m i i  was inhibited by synergistic mixtures of acetateflactate, 

acetatdpropionate and lactateJpropionatenate 



2.5 Mode of action of weak organic acids on microorganisms 
The inhibitory activity of organic acids depend on tbe pH of the medium, the 

dissociation constant of the acids and their molar concentration. In solution, weak acids 
exist in a pHdependent equilibrium between the dissaciated and undissociated state. The 
effect of pH on weak acid dissociation is given by the Henderson-Hasselbalch equation: 

pH = pKa + log# 
where A- and HA are the dissociated and undissociated species, respectively. At neutral 
pH there is very littIe undissociated a5d, but the concentration of the undissociated acid 
increases logarithmically as the pH declines. Siace organic acids are generally more toxic 

to microorganisms at low pH, it had genetally been assumed that the antimicrobial activity 
of these acids was caused by the undissociated m o k u h  (Salmond et al., 1984). The 
weak acids diffuse into the microbial cell until an equiliirium of the undissociated molecule 
is established across the membrane, and then dissociates in the cytoplasm in accordance 
with the intraceIlular pH (Fig. 2.1). The protons Iiberated this way will either be pumped 
out of the cell in exchange for a cation or will be absorbed by the bulfering capacity of the 
cytoplasm (Booth and Kroil, 1989). 

Inhibition of growth by weak acids has been proposed to be due to (i) membrane 
disruption (F- et al., 1973; Stratford and Anslow. 1998); (i) inhibition of essential 
metabolic reactions by either a possiiIe fall in internal pH as a result of uptake of the 
undissociated acid and its subsequent dissociadon within the c e k  or as a direct inhibitory 
action of the acid on critical enymes of the cell (Neal er al., 1%5); (ii) stress on 
intracellular pH homeostasis (Salmond et  al, 1984) and.(iv) accumulation of toxic anions 
(Eklund, 1985). In yeasts, it has been proposed that weak acids could cause the induction 
of an energetically expensive stress response that attempts to testore homeostasis and 
results in the reduction of available energy pooh (ATP) for growth and other metabolic 
functions (Bracey et aL. 19981, or could cause the uncoupling of transmembrane proton 
gradients h m  the energy-requiting p~ which are linked to the interactions of these 
weak acids with cell membranes (Cole and Keenaa 1987; Warth, 1977). 

With the advent ofthe 'chemiosmotic hyporhesis' (MitcheIl, 1961) as an acceptable 
mode1 for energy transduction events such as oxidative phosphoryladon and active 
transport, studies were done to test weak acid presniatives as nncouplers. 



F i  2.1 Proton movement in cells with respect to pH homeostasis (Booth and KroIl, 
1989). (A) Proton efflux is driven by chemical energy provided either by ATP or by 
reducing power (in yeast, the pIasma membrane H+-ATPase works on proton efflux by 
using energy provided by ATP). (B) In order to achieve net akahisation of the cytopIasm 
a net eiecaogenic flux of cations into the cell must be active to dissipate the membrane 
potential genemed by the proton p u m p  (C) At steady sfate, proton exmuion is balanced 
by a number of proton entry pathways which carry out useful work (e.g. ATP synthesis, 
transport and motility). @) A weak acid will distriiute across the membrane in accordance 
with the initial rransmembrane pH gradient Some of the protons liberated by the weak acid 
Will be expelled by the proton pump but, once the capacity for proton extrusion is 
outsaipped, internal pH will fall. (E) Any compound (e.g a food preservative) which 
interferes directly with the generation of either ATP or reducing power will Iimit the 
capacity of the cell to regdate its internal pFL 



Sheu and Freese (1972) determined that in bacteria. short chain fatty acids such as acetic 
acid reversibly react with the cell membrane and altet its smxme, They postulated that by 
uncoupling the electron transport chain, the short chain fatty acids interfered with the 

regeneration of ATP or the transport of certain metabolites into the cells. However, there is 

no consistent evidence to suggest that weak acid food pte~ervatives have any uncoupling 
activity (E3ooth and Kroll, 1989). In an aaempt to compare the inhibitory action on S. 
cerevisiae of weak-acid preservatives, uncouplers and medium-chain Fatty acids, Stratford 
and Anslow (19%) suggested that decanoic acid bad a mode of action (inhibition of yeast 
growth being a consequence of rapid cell death) distinct from both weak-acid preservatives 
and uncouplers. They proposed the cell death to be due to membrane tupture and loss of 
cytoplasm. 

Studies by S k u  et al. (1972) on the effects of acetate and other short-chain fatty 
acids on sugar and amino acid uptake by B. subd'lis indicated that acetate uncouples the 
amino acid carrier protein from the cytochrome-linked electron transport chain and inhibits 

amino acid transport noncompetitively. Serine uptake by membrane vesicles of B. subrilis 
is inhibited when exposed to fatty acids. Using the same system, it was shown that active 
transport of amino acids such as L-Ieucine and L-rnaIat was inhibited by fatty acids (Freese 
et al.,' 1973). 

In a later study, Sheu et al. (1975) recognized that if compounds that donate 
electrons (reducing) were no longer available to the cell as a result of transport inhibition by 
the fatty acids, oxygen consumption wodd be reduced. In order to understand these 
processes, the bacterial cell was converted into a spbaemplast under isotonic conditions and 
these membrane vesicfes were used to study uptake of a substrate against a gradient. 
Oxygen was consumed in the presence of membrane preparations and an energy source 
indicating that the inbition of substrate tmnsport is mainly due to an "uncoupling" of 
transport h m  ATP production via the eIecaon &import chain (probably by elimination of 
a proton gradient). The~fore, it was pstulaced that lipophilic agents such as undissociated 
shortchain fatty acids would shut& protons through the membrane until the proton motive 
force had been destroyed and transport thus eIiminated (since active transport of a rnoIea.de 
wouId depend upon the proton gradient generated during the oxidation of a substrate). 

Freese and Levine (1978) futthet psmIad that the most effective antimicrobial 

agents would be Iipophiiic enough to attach to microbid membraues and yet be soluble in 
- aqueous phase. This is because they can approach the membrane hrn the aqueous 

medium, and easily penetrare the membrane lipid bilayer without the need to expend 



energy. Undissociated acids of short chin length can penetrate the cell more easily 

because they possess these characteristics @oores, 1983). A variety of weak acids at or 
below their pKa values are potent inhibitors of amino acid transport in Penicilliwn 

chrysogenum. The effective compounds include sortrate, benzoate and propionate (Hunter 

and SegeL 1973). Some acids will dissociate to give anions (e.g. lactate, citrate) which the 

cell can transport (Chi0 er al.. 1987) and whose presence therefore does not inhibit 
energy-yielding metabolism. Other acids such as acetic and formic are not only proton 
conductors, but inhl'bitory concentrations of their anions may occur within the cell (Corlen 
Jr. and Brown, 1980). 

Biological and chemical systems are dependent upon an interaction between acids 

and bases. The microbial cell normally maintains the intracellular pH within a narrow 

range (near neutrality) which fluctuates very little over wide changes in extracellular pH. 

Yeast cells are known to maintain heir intracelldar pH within a narrow physiological range 

(between about 5.0 and 6.5) despite large decreases in external pH (Imai and Ohno, 1995). 
An alteration of this causes destruction of the microbial cell (Doores, 1983). 

2.5.1 Importance of intracellulac p H  (pHd 
Maintenance of intraceUuIar pH (in mimrganisms) within a narrow physiological 

range is essential for the optimal activity of a number of critical metabolic p r o c e s s  (Busa 
and Nuccitelli, 1984). Changes in intracellular pH are believed to be important in 

controlling the cell cycle, and rates of DNA and RNA synthesis appear to increase with 

higher pHi within the normal physiologicd range (Madshus, 1988). While studying the 
role of intracelluIar pH in the regdation of cation exchanges in yeast, Ryan and Ryan 
(1972) concluded that pHi was a major factor in the controI of the K+-€I+ exchange 

system, and that a second system involved in K+-K+ or K+-Na+ exchange was directly 
influenced by changes in the intraceIlular pH In addition, key enzymes of glycolysis and 
gluconeogenesis are believed to be regulated by pHi. As key enzymes in glycolysis and 

gluconeogenesis are regulated by cascade reactions of c-AMP dependent protein kinases 
(e.g. phosphofructokinase, phosphoryIase, hctose 1.6-bisphosphatase), c-AMP plays an 
important role in this regulation, Moteover, c-AMP is ~gulated by pE& (Imai et al., 1994). 
InaacelluIar pH is also being recogni;oed as having a roIe in signalling. Acidification of 
cytoplasm can intedere with signal transduction (Lambert and Stradotd, 1999). 
Furthermore, pHi is also thought to regulate other cellular responses, including induction 
of heat shock protein synthesis and thennotolerance (Bmey et d, 1998). 



2.5.1.1 Methods to measure intracellular pH 
A number of methods have been employed to estimate p&. The most common 

method used is the equilibrium distribution of radioactively labelled weak-acid across the 
plasma membrane (Kotyk, 1963). This method is based on the assumption that only 
undissociared form of the acid can diffuse through the cell membrane and not the anion. 
There should be no binding, metabolism or active uansport of the probe molecule. 
Although widely used, this method has limited application as an in viwo method because 

measurements are ma& in buffers following centrifugation steps. Other ficulties with 

this method inch& inhibitory effects (of weak acids) on cell physiology, 
compartmentalization of weak acids within the cell, and the method's limited temporal 
resolution (Bust and Nuccitelli, 1984). 

Another method to estimate pHi is by using pH-sensitive rnicroelectrodes. This 

method is destructive (Madshus, 1988) and is clearly not suitable for studying Iarge 
populations of organisms. 

Measmment of pHi can also be done using 31P-nuclear magneac resonance 
spectroscopy. This method is based upon the fact that ~ ~ P - N M R  chemicd shift of 
intracel1u.k orthophosphate is a function of cell pH (Salhany n al., 1975). This is a non- 
invasive method, but a universd problem with this technique is the need to use high cell 
densities. The technique also caIIs for expensive equipment that is complicated to use 

(Busa and NucciteIli, 1984). 
Many ammpts have been made to use pH-dependent fluorescent probes, or dyes, to 

measure pHi in yeast (Slavik, 1982). The pH dependent fluorescence forms the basis of 
the method. Using probes such as carboxyfluorescein diacetate (CFDA) (Imai et al., 
1994), fluorescent techniques have the potential advantage of rapid inexpensive. non- 
invasive determination of inmacellular pH. 

2.5.12 Effects of weak acids on the intracellular pE of yeasts 

According to Kashket (1987), the intracellular pH of micmorganisms is usually 
more basic than the external medium, and it favors the ionization of the weak acid 
molecuIes (the undissociated form that diffUses through the cell membrane). This causes 
an acidification of the cytoplasm, and also results in inhibitions, especially of enzymes, by 
excesses of s a k  He a h  reported that the organic acids and aIcohoIs produced could act as 
protonophores in the membrane and accentuate the entry of protons. 

The effect of an inorganic acid (phosphoric acid) and a weak organic acid (acetic 
acid) on the internal acidification of yeast cells was studied by Neal et d (1965). They 



concluded that acetic acid aciditid the cell interior more effectively than phosphoric acid. 

At pH 4.0, formic, acetic and butytic acids a l l  inhibited glycolysis in intact cells (Neal et 

al., 1965). Studies on the mechanism of the andfungal action of benzoic acid at low 
external pH levels by Krebs et al. (1983) suggest that the toxic action of benzoic acid in 
cells of S. cerevkiue is mainly caused by the dissociation of the undissaciated acid in the 
cytoplasm as a consequence of an internal pH thac was greater than the pK, of the acid. 
Therefore, the internal pH could decrease to d u e s  in the range at which 
phosphofructokinase is sensitive. The subsequent inhibition of glycolysis (due to loss in 
phosphohctokinase activity) could cause a fall in the concenuation of ATP, which could 
resaict growth 

Pampulha and LourebDias (1989) studied the combined eRet of acetic acid, 
exaacelluIar pH and ethanol on the intracellular pH of fermenting yeast as determined by 
using the distribution of [I-14C] propionic acid to measure pHi. They reported that the 
internal pH did not depend on the concentration of total external acetic acid but only on the 

concentration of the undissociated form of the acid. Further, they found that ethanol 
accentuated the effect of acetic acid both with respect to inhibition of fermentation and 
internal acidification, Ionization coastants (Ka) of weak acids are known to change wih 
the nature of solvents (akohob). Acetic acid in I0 96 methano1 has a PICa of 4.904 at 25'C 
(Robinson and Stokes, I%$). This suggests that ebanol could increase the pKa of acetic 
acid which would therefore result in higher amounts of undissociated acid (at a given pH) 

in the medium that can diffUse into the cell. This may be one of the reasons for an 

increased effect of acetic acid on internal acidification in the presence of ethanol, 
Guldfeldt and Arneborg (1998) have described the effects of acetic acid and 

exuaceUular pH (pHex) on the inaacellular pH (pHi) of non-fermenting individual S. 
cermXue ceUs by using thorescent microscopy and a p e w o n  system. These authors 
concluded that the decreases in pHi at PHex 5.6 and 6.5 were significantly smaller than the 
decreases in pHi at p& 3 5 and 4.5, indicating that the decreases in pHi were dependent 
on pHex. In Z baillii, weak acids and hydrogen ions in different concenuations affected the 
intraceilular pH value sigM1cantlyy The lowest pHi d u e  measured was not at the most 
exneme, but at intermediate conditions of inhibition (Cole and Keenan, 1987). 

2.5.1.3 Regulation of intracellular pH 
The mechanisms involved in the regdadon of int~;lcellnlar pH are reviewed in detail 

by Madshus (1988). lltese include: Na+/H+ antiport, anion antiport, Na+MC@- symport 
and H+-translocating ATPases. 



la yeasts. a proton-translocating H+-ATPase, present in the plasma membrane is 
involved in the regulation of intmcellular pH- In S. cerevisiae, the H+-ATPase is most 
abundant, constituting over 20 96 of the total membrane protein. The membrane H+- 
ATPase couples ATP hydrolysis to the expulsion of protons, generating a proton gradient 

across the membrane (Senano, 1984)- This transmembrane proton gradient is essential for 

active transport of nutrients (such as maltose and amino acids) and thus growth (Eddy, 
1982). Significantly, the plasma membrane H+-ATPase has been shown to be rate limiting 
and essential for growth (Serrano et al., 1986). Considering the high energy investment 

resulting from the proton pump working at its maximum capacity (under special 
conditions), usually ATPase activity is maintained at much lower values (Serrano. 1984). 

For example, when cells of S. cerevisiae were incubated in vivo with glucose, the plasma 
membrane H+-ATPase activity increased as much as 10-fold (Serrano, 1983) which could 

be a consequence of inuacellu1a.r acidification caused by glucose (Rarnos et al., 1989). 

When weak-acid preservatives are present in the medium, the cellular response to 

inhibition may involve removal of preservatives by an efflux pump (Warth. 1989)- 

although evidence for this is disputed (CoIe and Keenan, 1987). Of greater importance is 
the plasma membrane H+-ATPase (if the principal inhibitory effect of weak-acids is to 

reduce pH& The membrane H+-ATPase has been shown to be involved in weak-acid 
resistance (Cole and Keenan, 1987) although, its role remains questionable given that if 

pHi were raised by proton pumping, further weak-acid molecules would penetrate the cell 

and reacidify the cytoplasm. The pIasma membrane H+-ATPase is indeed increased during 

growth under acidic conditions (Eraso and Gancedo, 1987). These facts suggest that 

intracellular pH and plasma membrane H+-ATPase play and important role in yeast 

physiology. 

The changes in the activity ofthe plasma membrane H+-ATPase could be due to the 
alteration in the membrane lipid composition. since it is known that changes in the lipid 
composition can signifcantly alter the activity of proteins in the plasma membrane (van der 
Rest et al., 1995). The physical state of the bilayer including surface charge, density and 
fluidity can iduence enzyme activity in a number of ways (Gemis, 1989). Plasma 
membrane H+-ATPase has an absolute requirement for lipids in order to function (Serrano 
et al., 1988) and the enzyme activity is a function of the type of lipid incorporated 

2.5.2 Mode of action of acetic acid and lactic acid on S. cerevisiae 
Parnpulha and Loureiro-Dias (1990) have studied two possible inhibition 

mechanisms in .% cerevkim either acidification of the cytoplasm or the action of acetic acid 



directly on transport or enzymatic activities. These authors reported that enolase was he 

most affected enzyme by acetic acid, and hat this resulted in alteration of glycolysk 

The maximum specifiic growth mte and yield coefficient of a respirarory deficient 

mutant of S. cerm'siae decreased whereas the specific rate of glucose consumption 

increased in the presence of acetic acid in batch cultures (Pampulha and Loureiro-Dias, 
2000). They also observed a decrease in cell yield from 14 to 4 g biomasslmole ATP when 

acetic acid concentration increased from 0 to 170 mM, The authors concluded that about 1 
mole ATP is consumed for every mole of acetic acid diffusing into the cells. 

Not much resuch has gone into understanding the mode of action of lactic acid on 

yeast Being a short chain acid, lactic acid should be expected to act in a manner similar to 
acetic acid (Eklund, 1989). However, studies on the mode of action of acetic acid and 

Iactic acid on yeasts indicate that they may not act in the same manner on the cell, as 
Maioreila et al., (1983) reported that acetic acid interference with yeast metabolism resulted 
in an increase in ATP requirement for cell maintenance whereas "the exact mechanism of 

lactic acid inhibition is probably different than that of acetic acid". Data for the action of 
acetic, lactic and propionic acids on yeasts showed growth inhibition different Crom that 
predicted on the basis of dissociation constants and aIso indicated that these acids may not 

act in the same manner (Moon, 1983). 

2.6 Management of bacterial contaminants in alcohol production 
The methods used in the alcohol fermentation industry to control contaminant 

bacteria include stringent cleaning and sanitation, acid-washing of yeast destined for reuse 

(in case of breweries), adjustment of mash pH, and the use of antibiotics during 

fermentation. The method(s) used depends to a large degree on h e  end use of the alcohol. 

Penicillin G is the most common antibiotic and has been used in the alcohol 

production industry during fermentation since the '50s to control bacterial contaminants 

(Aquarone, 1960). Day et al. (1954) have studiddifferent antibiotics as contamination 

control agents in grain alcohol fermentations. They found penicillin to be more effective in 

inhibiting bacterial growth tban other anh'biotics such as aureomycin, baciuacin, 

chloromycetin and terramycin. Tyrothricin, streptomycin and polymixin were found to be 
ineffective. Penicillin G, the first blactam antibiotic discovered, is primarily active against 

Gram-positive bacteria. Its target is the aanspeptidation reaction involved in the cross- 
linking step of peptidoglycan biosynthesis in the Gram-positive bacteria This antibiotic 

does not inhibit yeast activity even when present at concenaations as high as 500,000 
tmitsn. (Aquacone, 1960). 



Kheirolomaom et al. (1999) analyzed the stability of penicillin G as a funcdon of 

temperature, pH. and the combined effects of pH and temperature; and derived a second- 
order polynomial model for penicillin G decomposition reaction rate constant The authors , 

reported that penicillin G was more stable at the pH range 5.0 - 8.0 and Iower tempera- 
(temperam range used: 0-52°C). It was less stable at acidic pH than basic pH values. 
They also found that the stability of penicillin G m d  with increase in temperature for 
a l l  pH values (pH range tested: 1.8-10.0). 

The emergence of resistant microflora (to penicillin G) and the instability of 
penicillin G at acidic pH values have resulted in the use of other antibiotics such as 
penicillin V, monensin, tetracycline (Aquaroue, 1960) and virginiamycin (Hynes et al., 
1997) either individually or as mixtures. V i y c i n ,  since is more stable in acidic pH 
(unlike penicillin G), was investigated for its effectiveness on the contaminants in alcohol 
production (Hynes et al., 1997). The authors concluded that the use of virginiamycin 
reduced potentid ethanol yield losses of up to 11 % of the produced ethanol. They also 
found that the effectiveness of virginiamycin varied among the strains tested and was 
reduced over prolonged incubation in wheat mash (especially in the absence of yeast). 

Stroppa et al. (2000) studied the effects of the antibiotics penicillin and rnonensin 
on contaminants of alcohol-fermentations. They observed a decline in viable cell numbers 
of all the strains tested in the presence of either antibiotic (although the reduction of L 
planurum was in the magnitude of 1 or 2 togs in 24 - 48 h), at all the three concentrations 
applied (1.0,2.0,4.0 ppm and 1.5,3.0,6,0 ppm of penicillin aad monensin, 
respectively). These authors proposed the use of these two antibiotics in combination since 
penicillin was most effective over shoa contact times, and monensin more efficient with 
prolonged contact 

The concept of antibiotic use in an industrial process is in question in spite of 
absence of antibiotic residues in the spent grains subsequent to distilIarioa The emergence 
of antibiotic-resistant bacteria as a result of antibiotic misuse (Khachatourians, 1998) is 
now becoming a serious threat in human health. This provides an incentive to examine 
other antimimbials (to control bacterial contaminants in aicohol production) which are not 
antiiio tics. 

2.6.1 Chlorine dioxide (Cia) 

Chlorine dioxide has been used for decades in the disinfection of drinking water 
(Johnson and Kunz, 1998). CIO2 is more potent than chlorine as a disinfectant. It lacks 
flavor prome, odors and corrosiveness typical of chIorinaaon methods (Johnson, 1997). It 
acts as an oxidizing agent Chlorine dioxide has potentid antimimbial properties and is 



sometimes used to sanitize equipment in breweries. A 50 - 100 ppm solution of Cl@ is 

used for post-rinse sanitation (Johnson. 1997). Johnson and Kunz (1998) reported the use 
of chlorine dioxide as a yeast-washing agent. They observed that 421% cleared the two 

yeast slurries tested of bacteria even at the 13 ppm level, without decreasing the viability of 
yeast These properties of chlorine dioxide provide a chance to evaluate its use to control 
contaminating bacteria during the fermentation of grain mashes. 

2.6.2 Nisin 
Nisin is a polypeptide bactesiocin (htibiotic) of 34 amino acids produced by 

Lactococcus factis subsp. lath. It has an amphipathic character. The N-terminal part of the 
nisin molecule contains relatively Iarge number of hydrophobic residues, whereas the C- 
terminal part is hydrophilic. Nisin is cationic due to the presence of three lysine residues 
and one (in nisin 2) or two (in nisin A) histidine residues, and the absence of glutamate and 
aspartate. The nisii mo1ecule exhibits'greatest stability under acid conditions (Hurs~ 
I98 1). 

S i  its discovery about 70 years ago, nisin has proven to be an effective inhibitor 
of a broad spectnun of Grampositive bacteria (DeIves-Broughton, 1990). It also inhibits 
the outgrowth of spores of bacilli and closrridii (Hurst, 1981). Even the Gram-negative 
bacterium E. coli becomes sensitive to nisin when its outer membrane is ma& permeable 

by osmotic shock. The inhibition of other Gram-negative bacteria using nisin can be 

achieved by the addition of an agent which mmes and chelates the outer membrane, such 
as Ethylenediaminetetraacetic acid (EDTA) (Dielbandhoesiag et af., 1998). 

The primary target of nisin in sensitive bacteria is the energy-transducing 
cytoplasmic membrane. Addition of nisin d t s  in an efflux of essential small cytoplasmic 
components (amino acids. monovdent cations, ATP), disruption of proton motive force 
and cessation of biosynthesis (Bruno et af., 1992). However, nisin does not inhibit yeasts 
or filamentous fungi @elves-Brougbton, 1990). These organisms have a rigid cell wall, a 
complex saucture consisting of glucan cross-Iinked with chitin and cell wall proteins, In 
S. cerm%i.de, the cell wail protein 2 (Cwp2p) plays a prominent role in the protection of 
ceIls agaiast antimimbiai peptides such as nisin @idbandhoesing et d., 1998). 

N i i  has therefore been tried, and shown to have potential in controlling spoilage 
lactic bacteria in beer (Ogden, 1986; Ogden and Waites, 1986; and Ogden et al., 1988), and 
wine (Radler, 199Oa.b). In the brewing indpst~y, nisin finds its application a h  in 

washing pitching yeast as an aIternative method to acid washing (which affects yeast 

viabiity) (Ogden, 1987). It has has also indicated by these researchers that the yeasts are 



completely unaffected. This suggests the possibility of introducing nisin during the 

fermentation to control bacterial contaminants. 

2.6.3 Hydrogen perordddurea hydrogen peroxide 
The physiological differences between yeast and lactobacilli suggest the use of 

hydrogen peroxide to manage rhese bacteria in mashes used for alcoholic fermentations. 
Literature concerning the antibacterial effects d hydrogen peroxide covers a period of over 
100 years. Lactobacilli lack the enzyme catalase which decomposes hydrogen peroxide and 

therefore tbey are unabIe to eliminate its toxic effect tn an attempt to evaluate &te and 
hydrogen peroxide as bacterial-contamination control agents. C b g  et al. (1997) have 
xeported that the viability of Lfermennun could be selectively controlled by hydrogen 
peroxide at concentntiofls of 1 to 10 mM in adl-recycled ethanol fermentation prccess. 

For maximal b~tericidd wtivity, hydrogen peroxide should be electrolytically pure 
and allowed to come into contact with only staintess steel or other cornsion-resistant 
materials (Luck, 1956). At higher temperatures, bactericidal effiency of hydrogen 
peroxide increases (Amin and Olson, 1x7). The stabiIity of the compound also decmses 
as pH increases (Luck, 1956). Moreover, in contact with organic matter, hydrogen 
peroxide breaks down into nascent oxygen and water. To avoid the problem of instability, 
Banerjee (1947) prepared an adduct of hydrogen peroxide and urea in his Iaboratory and 

claimed that this compound, urea hydrogen peroxide, was perfectly stable in dry state at 

ordinary temperatures. Urea hydrogen peroxide has since been used as an antiseptic for 
topical application on wounds, and against gingivitis and dentat plaque ( h e r  et al., 1978; 
Etemadzadeh, 199 1)- 



3. MATERIALS AND METHODS 

3.1 Studies on the effects of lactobacilli and their endproducts, lactic acid 
and =tic acid, on yeast growth and alcohol production 

3.1.1 Organisms used 

3.1.1.1 Bacteria 
Twelve species of Iactobacilli were screened for growth rates in &Man. Rogosa, 

Sharpe (MRS) broth (Unipath, Nepean, ON, Canada) as described by Casey and Ingledew 

(198 1) at 30' C, aod for alcohol tolerance- Five species capable of extensive growth in 
wheat mash within 36 h and tolerance to greater than 10 96 (vfv) ethanol were selected for 
further study so that information gained would be of use to the alcohol industry. Two 
species were obtained fmm Centro de TechnoIogia Copersucar, Piracicaba. SP, Brazil and 
were tentatively identified to species and numbered biotype by API 50 CHI, test kits 
(bioM&ieux, Montreal, PQ, Caaada) as L planf~~wn 1 and Lactobacillus paracasei ssp. 

pamcusei 2 ( d e d  L partxasei hereafter). Two other strains, Lactobaciflus r h a m s w  

(ATCC 15280) and L firmennun (ATCC I493 1). were obtained from the American Type 
Culnne Collection, RockviIle, MD. The fifth strain was an industrial isolate labelled 

Cargill # 3 from Cargill Corn Milling (Eddyville, IA), An API 50 CHL test kit for 

Lucmbacillus identified this l a m  strain as L pmacasei ssp. puracasei 2 but it diffeted in 
microscopic and colony morphology when compared to the L pracusei sstrain obtained 
from Copemcar. Therefore, for the purpose of this work, it was designated as 

Lucrobaci11us # 3. AU Iactobacilli used are homofermentative except for L f e r n n u n  

3.1.1.2 Yeast 
Two strains of S. cemisiae were used in this study. One was an isoiate purified 

born an indnstriat preparation of active dry yeast marketed to fuel alcohol pIants and 

potable alcohol distilleries by Alltech Inc, (NicholasviUe, KY), and the other, an dcohol 
tolerant, temperam tolerant yeast used for ethanol production from sugarcane or sorghum 
( A T E  26602, American Type CuIture Collection, Roc- MD) which was isohred 
h m  a sugar &ry in EugIand. flwo yeast strains, both of cornmetcia1 sigdkance, 
were used in order to ensure that the liaeage of the selected mains and any resultant genetic 



diversity would not influence the physialogical hdings and events described in this 

thesis). 

3.1.2 Composition of the medium used to study the effects oE acetic and 
lactic acids on yeast 

A chemically defined (minimal) mineraI salts medium with glucose (2 % w/v) and 
vitamins was used momas et al., 1998). The final concentrations of ingredients in the 
medium were : (mmoles/L) (NH4)$04.37.85; KzHPQ, 0.86; KHzP04,6.83; MgS04, 
2.03; NaCI, 2.05; and (pmoIes/L) H@@, 24; MnS04.20; Na;?MoOq, 1.5; CuS04, 10; 
CoC12, 1.5; ZnS04, 100; KI, 1.8; FeQ, 100; CaC12,82; and (pg/L) biotin, 200; calcium 
pantothenate, 2000; folk acid, 20; myo-inositol, 10,000; niacin, 400; pyridoxine HCl, 400; 

riboflavin, 200; thiamine HCl. 200. The vitamin solution was prepared as a 1,000 fold 
concentrated stock and kept frozen at -200 C When needed, an aliquot was thawed and 
filter-sterilized (0.2-pm membrane filter), and the required amount was added to the 
medium. 

3.1.3 Preparation of bacterial inocula 

Lactobacilli were grown in 250 ml screw-capped side-arm Erlenmeyer flasks 
containing 50 ml of MRS broth. Then, 4 mi of Iate log phase culture were transferred to 
I L screwcapped flasks containing 200 d of MRS broth. The headspace of each flask 
was flushed with filter-sterilized C02 gas (0.22 pm membrane filter) and incubated at 30' 

C in a # G25 Controlled Environmental shaker (New Brunswick Scientific Co. hc., 
Edison, NJ) at 150 rpm. Growth of these organisms was measured by a Klett-Summerson 
calorimeter (Klett Mfg. Co., New York, NY) with a number 66 red filter (420 - 660 nm) 
and the time for growth to early stationary phase was determined. A relationship between 
Klett units and the number of colony forming units (CnT) lml in mid-log phase cultures 
was established for each strain. 

Bacterial cells (1,000 ml) were aseptically harvested by cenuiiiigation at 10.200 x g 

for 15 rnin at 4' C (Somall RC 5C centrifuge; GSA rotor, Sorvall Instruments, Division of 
Du Pont, Newtown, CT). The pellet was washed twice with sterile 0.1 % w/v peptone 
water @ifw laboratories, Detroit, MI) and the cells were then resuspended in 50 ml of 
sterile 0.1 % wlv peptone water and chilled in ice until dispensed into ferrnentors. 

3.13.1 Inoculation of bacteria to wheat mashes 

Appropriate volumes of the 20 foId concentrated cell suspension were added to 500 
mI quantities of mash in f'entors to give h a 1  viable bacterial cell numbers of -105,106, 



107. and l@ cells (0 I d  Volumes of inofuiation were always made equal with 
sterile 0.1 % wlv peptone water to keep dilution of nutrients the same. In control mash 

fermentations, bacteria were not inoculated, but yeast wae added at - 106 viable ceWmL 

Growth and metabolism of bacteria in the absence of yeast were studied by inoculating 

mashes with -107 CFUImL 

3.1.4 Preparation of yeast inocdum for fermentations 
Eleven grams of S. cerevisiae active dry yeast (ADY) ("Allyeast Superstart", 

Alltech Inc., Nicholasville, KY) were dispersed into 99 ml of pre-warmed (38' C), stede, 

0.1 % (W Iv) peptone water and incubated at 38' C for 20 rnin with periodic shaking. 

ALiquots (025 ml) of this suspension were added to each fixmentor to obtain -106 viable 

yeast cells iml. 

3.1.5 Mashing of wheat and fermentation 
Commercial red spring wheat bought from a local supplier was ground at setting # 5 

on a S 500 Disk Mill (Glen Mills Inc., Clifton, NJ). For mashing, 19 L of distilled water 
containing 1 rnM CaC12.2H20 was warmed to 60° C in a jacketed steam kenla Seven kg of 
ground wheat was slowly added followed by 35 rnl of high temperature (HT) a - amylase 

(Alltech Inc.). After 5 min, the temperature was raised to 90 - 95" C and held for 45 min 

with s'tirting to gelruinize starch It was then cooled to 80° C by passing cold water thmagh 
the jacket of the kettle and a second 35 ml dose of HT a - amylase was added. The mash 

was held for 30 min at this temperature to complete liquefaction of the gelatinized starch 

The mash was strained under aseptic conditions through a sterile stainless steel food grade 

sieve (1.5 mm pore diameter), distributed into sterile bottles and frozen at -40" C. Three 
days prior to fermentation, the mash was thawed and 500 ml quantities were aseptically 

m f e d  to sterile, jacketed 1 L Celstir bioreactors (fermentors) (Wheaton Instruments, 

Millvine, NJ). Diethyl pyrocarboaate (DEPC) (Sigma Chemical Co., St. Louis, MO) was 
then added at a concentration ofO.Ol% viv to sterilize the mash. The fennentors were 

cooled immediately to 4' C by connecting them to a refrigerated water bath circulator and 

then stored at this temperature for 48 h. 
The fennentors were connected to a water bath circulator maintained a 30' C and 

stirred magnetically (IKA-Labortechnik, Stauien, Germany). One mi of Nter-sterilized urea 
was added to each of the fermentor to give a final concentration of 8 m M  (Jones and 
Ingledew, 1994). Saccharification of dextrins to glucose was carried out by adding 0.8 ml 

glncoamylase (AllcohoIase I& AUtech Inc) per fermentor, 30 min before inoculation with 

yeast Just prior to yeast inocuIation, fermentors were contaminated (inoculated) with 



bacteria at the IeveIs mentioned above. The temperanue was maintained at 30' C throughout 

the fermentation. Samples were withdrawn for analysis from each fermentor every 6 h for 

the fvst 24 h and then at 36.48 and 72 h. 

3.1.5.1 Assay methods 
3.1.5.1.1 Viable counts of bacteria and yeast 

Viable cell counts were monitored by the membrane fltration technique (Tngledew et 

d, 1980). For enumeration of yeast cells, the membranes were incubated aerobically at 30" 
C on the surface of YPD plates ( yeast extract, 10 g/L; peptone, 10 g/L; dextrose, 20 g/L; 
and agar, 15 glL) supplemented with 0.005 96 (wlv) gentamycin and 0.01 % (wlv) 

oxytevacycline (Sigma Chemical Co.) to suppress the growth of bacteria The plating was 

done in triplicate for each dilution used 
Viable counts of bacteria on membrane-filtered samples were obtained by pIacing the 

filters on plates of MRS agar containing 0.001 % (wlv) of cycloheximide (Sigma Chemical 
Co.) to inhibit the growth of yeast, and incubating in a C02 incubator (National Appliance 

Co., Portland OR) at 30' C after 2 cycles of evacuating and refilling with commercial-grade 

(99.5 percent) C*. The results were expressed as colony forming units (CFU) /mi. 

3.1.5.1.2 Determination of dissolved solids 
Portions of samples were centrifuged at 10,300 x g for 30 min and the supernatants 

were collected and stored at -20' C until analysed. Total dissolved solids in these 

supernatants were determined by measuring the speafic gravity at 200 C with a DMA45 
density meter (Anton Pam KG, Graz, Austria). The readings were converted to grams of 

dissolved solids per 100 ml. 

3.1.5.1.3 HPLC analysis 
Ethanol and Iactic acid were determined by High Performance Liquid 

Chromatographic (HFLC) analysis. A 5 pl aliquot fiom a suitably diIuted supernatant 
tk t ion  of fermentation sample was analysed using a F A M - P W  column which anaIyses 
sugars, alcohols and organic acids (Waters Chromatographic Division, Milford MA) 
maintained at 65' C. Orthophosphoric acid (1.5 mM) was used as the mobile phase at a 
flow rate of I d m i n .  Methanol was used as the internal standard. In another portion of 

the study dealing with the effects of acetic and Iactic acids on yeast a HPX-87H column 

(Bio-Rad laboratories Ltd., Mississauga, Ontario, Canada) wbich analyses sugars, 
aIcohoIs, and organic acids maintained at 404 C was used. Sdphudc acid (5 mM) was 
used as the mob* phase at a flow rate of 0.7 rnl/min. Boric acid (2 % wlv) was nsed as 



the internal standard The components were detected with a differentid rehtometer 
(Model 410, Waters Chromatographic Division). The data was pro~essed using the 

Maxima 810 computer program (Waters Chromatographic Division). 

3.1.6 Growth conditions for studying the effects of acetic acid and lactic 
acid on yeast 

Growth was measured turbidmetrically using a Klett-Summerson calorimeter 

equipped with a number 66 red filter (420 to 660 MI), CaliMon curves of Kleu units 

plotted against cell number and cell mass were coastructed~ Starter c d ~  were grown 

with shaking (I00 rpm) (Model G25 ControlIed Environmental Shaker) at 30' C for 24 h, 
in 50 ml of minimal medium (pH 4.3 in 250 ml Erlenmeyer flasks. Then, - 2 x 107 cells 
of the Alltech yeast strain and - 4 5  x 107 cells of S. cerevisiae ATCC 26602, respectively, 

were inoculated into experimental flasks and grown at 30' C with shaking f 100 rpm). The 
flasks used were 250 ml screwcapped side-=, Erlenmeyers with 50 ml medium and a 
range of concentrations of the acids, (0,O.L. 0.2,0.3,0.4 and 0.5 5% wfv €or acetic acid 
and 0,02,0.4,0.6,0.8, and 1.0 5% w/v for lactic acid). Experiments were done in 
duplicate. The speEific growth rates (CL in h-1) and lag cimes Ih) were calculated for both 
yeast suains at various concentrations of both acetic and lactic acids. 

3.1.6.1 Determination of minimum inhibitory concentration (MIC) 
The minimum inhibitory concentration of each acid for bob yeast strains was 

determined. For this work, MIC was defmed as the lowest chosen concentration of the 
acid that inhibited yeast growth for a period of at least 72 h. The concentrations of acetic 
and lactic acids tested were 0,0.1,0.2,03,0.4,0.5,0.6,0.7 and 0.9 % wiv; and 0,0.5, 
1.0, 1.5,2.0,2.5, 3.0.3 J and 4.0 % wfv respectively. Each concentration was tested in 
duplicate. 

3.1.7 Determination of fermentation rates at various concentrations of 
acetic and lactic acids 

The yeast strains were grown in minimat medium with 2 % w/v glucose and 
different concentrations of the acids (0.0.1.02 and 0.3 416 wlv acetic acid; and 0.0.2, 
0.4, and 0.6 46 wiv lactic acid). Samp1es were withdrawn at 3,6,9, 12, 155.20 aad 24 
h, filtered tbrough a 0.45 p filter, and d y s e d  for glucose consumed and ethanol 
produced using WE. 



3.1.8 Experimental design for the evaluation of the interactions between 
acetic d lactic acid 

The experiment was planned and conducted using lesponse surface central 
composite design (Cocbran and Cox. 1957) for two variables at 5 levels (Table 3Ja & 
3. I b). The maximum concentrations of acetic acid and lactic acid selected were based on 
the criteria that they should not completely inhibit the metabolic activity of the yeasts 
studied. Two replicate experiments were conducted There were 13 treatment 
combinations of the two acids, includiag five centre points. The growth of the yeasts was 

monitored as a measure of turbidity in each of the 13 experimental flasks for 24 h at 3 h 

intends. The specific growth rates were calculated from the exponentid phases of 

growth. 

3.1.8.1 Statistical analysis of data 
Data was analysed using the General Linear Model of SAS@ (SAS Institute, 1988). 

Estimates for the linear* quadratic and intention effects of each acid (ie. acetic and lactic 
acid) were developed which fit the foUowing equation : 

y = 00 + 01x1 + kx2  + BLlx12 + b x 2 2  + L112xlx2 + E 
where y is the specif~c growth rate (p) at a certain level of acetic and lactic acid, XI 

is the concentation of acetic acid, x2 is the concenuation of lactic acid, &, is the parameter 
estimates, 60 is the estimate for the y-intercepf 01 is the estimate for the hear effect of 
acetic acid concentration, & is the estimate for the linear effect of lactic acid concentration, 
811 is the estimate for the quadratic effect of acetic acid concentration, 822 is the estimate 

for the quadratic effect of lactic acid concenaation, 012 is the estimate for the interactive 
effect between acetic acid and lactic acid, and E is the emr term. 

3.1.9 Measurement of Intraceilulac pH 
The intracellular pH method ( h a i  et aL, 1994) was followed with sIight 

modifications. This is a truly non-invasive in vivo fluoromeuic mehd  the modification of 
which avoids many cenaifugation steps and resuspensions in buffers. In his  method, 
yeast cell suspensions are mted with esterified S(6)carboxyfluores~ein (S(6)- 
carboxyfluorescein diacetate) which is not flwmcent by itself. This compound once 
inside the yeast cells is hydrolyzed by esterases in the cytosol to yield fluomcent S(6)- 

carboxyfluorescein, The intraceUaIar pH of yeast was determined using a calibration curve 
which showed a linear relationship between pH and fluorescence intensity. 



Table 3.1a Levels of acetic acid and lactic acid corresponding to coded values as 
designated by ttae central composite design (Alltech strain) 

tndeoendent Code level - . - - - - - 

v&le - 1.414 - 1 0 + 1 + 1.414 
Acetic acid 0 0.037 0.125 0.2 13 0-25 
(5% wlv) 
Lactic acid 0 0.07 0.25 0.43 0.5 
(% wlv) 

Table 3.lb Levels of acetic acid and lactic acid corresponding to coded values as 
designated by the centraI composite design (ATCC 26602) 

- 

Independent Code level 
Variable - 1.414 - 0 + 1 + 1-414 - -  - . 

&tic acid 0 0.05 1 0.175 0.299 
(% wlv) 
Lactic acid 
f% w/v) 



The cells grown with various concentrations of acetic or lactic acid in the medium 
were harvested (3,000 x g for 5 min at 20' C) in the mid-exponential phase. Appropriate 

amounts of the cultures were harvested to yield l-ml pellets of yeast. Pellets were washed 
twice with sterile double distilled water at room temperature (20' C) and resuspended in 
double distilled water and the volume was adjusted to 3.0 ml, Then, 0 3  ml of S(6)- 
carboxy£luorescein diacetate (10 mM dimethyl suifoxide solution) was added to the yeast 
suspension. The solution was immediately shaken vigorously for 1 min and kept on ice. 
After 15 min, it was mixed again and allowed to stand for another 15 m h  Yeast loaded 
with 5(6)-carbolrytluoce~cein was washed three times with sterile double distilled water. 
The resulting pellet was resuspended in fresh double distilled water and the volume made 
up to 2.0 ml. An aliquot of the suspension (0.3 mi) was added to 5.0 mi of double distilled 
water. (This can be kept in an ice bath for about 1-2 h after cennifugation). The 
suspension was transferred to a quartz cuvette and the tluorescence intensity measured 
using a fluorescence spectrophotometer (model F-2000; Hitachi, Ltd Tokyo, Japan) at an 
emission wavelength of 518 nm and excitation wavelengths of 441 and 488 MI. After 
measuring the fluorescence intensity at both the excitation wavelengths, the cells were 
removed and the fluorescence of water was measured (background fluorescence) at both 
the wavelengths and was subtracted. This experiment was repeated three times for both the 
strains at each concentration of acetic or lactic acid 

3.1.9.1 Intracellular pH estimation 
A calibration curve was made by using 5(6)-carboxyfluorescein in the indicated pH 

buffer (50 mM citrate disodium hydrogen phosphate buffer; pH 6.4,6.2,6.0,5.8,5.6, 
5.4,5.2,5.0 and 4.8). It was constructed by plotting the ratio of fluorescent intensities 
(emission wavelength 518 nm) at excitation wavelengths of 488 and 441 nm as a function 
of pH (Fig. 3.1). Intracellular pH was calculated using this calibration curve. 

3.1.10 Activity of plasma membrane ATPase 
To study the effect of acetic and lactic acids on the plasma membrane ATPase of S. 

cerevisiae, the activity of the ATPase was determined in the total membrane h a o n  
prepared h m  cells grown in the presence of increasing concentrations of acetic or Iactic 
acid and harvested (3,000 x g for 5 min at 4' C) in the mid-exponential phase according to 

the method of Rosa & Sa-correia (1991). 



Figure 3.1 Relationship between pH and the logarithmic ratio of fluorescence intensities 
measured at 518 nm after excitation at 441 and 488 nm of 5(6)-carboxyfluo1lescein in the 
indicated pH buffer. 



3.1.10.1 Preparation of the total membrane fraction 
The cell suspensions, in aliquots of 2 ml, were disintegrated with 1.5 ml of glass 

beads (Sigma; 0 5  mm diameter) by mixing with a vortex mixer for 1 min and placing on 

ice for I min (repeated eight times). The homogenates were diluted with 5 ml of a medium 

containing 0.33 M sucrose, 0.1 M Tris (adjusted to pH 8.0 with HCl), 5 m M  EDTA, and 2 
mM dithiothreitoi. supernatants collected by cenaifugation at 4' C for 3 min at 1 . 0  x g, 

were recentrifuged for 45 min at 40,000 x g (Sorvall SS-34 rotor) at 4' C The total 

membrane fraction was resuspended in a medium containing 20 % glycerol, LO mM Tris 
(adjusted to pH 7.5 with HCI), 0.1 mM EDTA, and 0.1 mM dithiothreitol. Protein 

concentrations of the membrane fractions were determined using the Bio-Rad protein assay 

kit I1 (Bio-Rad laboratories Ltd.). 

3.1.10.2 ATPase assay 

The ATPase activity of each total membrane fraction was determined in the assay 

medium containing 50 mM 2-(N-morpholino) ethvlesulfonic acid (MU) (pH 5.7, adjusted 

with NaOH), 10 mM MgSO4,50 mM KCI, 5 mM sodium azide (to inhibit mitochondria1 

ATPase), 0.2 mM ammonium molybdate (to inhibit acid phosphatases) and 100 mM K N Q  
(to inhibit vacuolar ATPase). Under these conditions, the observed ATPase activity is 
reported to be predominantly that of plasma membrane origin (Rosa & Sa-correia, 199 1). 
After 5 min of thennostabilization of the assay mixture at 30' C, the reaction was started by 

the addition of a concentrated solution of ATP (final concentration 10 mM). After 5 min, 
the leaction was stopped by the addition of 0.5 rnl of trichloroacetic acid (10 % w/v) at 4' C 
to 0 5  ml of the reaction mixam. The membranes were then separated by cenmgation 
(10,000 x g for 5 min at room temperature). The concentration of inorganic phosphate (Pi) 
liberated was determined using an inorganic phosphorus estimation kit (Sigma). The 

ATPase activity measured was expressed in pmol Pi released/min/mg protein. 



3.1.1 1 Lipid extraction 
Lipids h m  yeast cells were extracted according to the method used by Kemp et al- 

(1975). Yeast c e k  were harvested by centrifugation and washed three times with 

deionized water. The washed cells were resuspended in 1 ml of deionized water. Ten ml 

of chlorofom : methanol : 5 M HC1 (S:6: 1 by volume) containing 50 mg of butylated 

hydroxy toluene (BHT) per liue were added to 1 ml of cell suspension, After 20 min at 

room temperame, 22 ml of deionized water were added and mixed thoroughly. The lower 

chloroform-rich phase was then taken to dryness in a rotary evaporator. The lipids were 

hydrolysed by refluxing for 1 h with 40 d of 6 46 wfv KOH in 95 8 vfv ethanol. After 

cooling, an qua1 amount of deionized water was added The mixture was extracted three 
times with half a volume of petroleum ether to remove u~lsaponified material. The mixture 

was then acidified with HC1 (to pH 20) to Iiberak free fatty acids and extracted three times 

with petroleum ether. These extracts were pooled together and taken to dryness in a rotary 

evaporator. The Iipid sample was dissolved in 2 ml of hexane. 

3.1.11.1 Preparation and analysis of fatty acid methyl esters 
Lipid extracts were transferred to test mbes (100 mm x 10 mm) with teflon-lined 

screw caps. One-ml solutions of heptadecanoic acid in n-hexane (10.88 mg/ml) were 

added as the internal standard Hexane was evaporated off by heating the tubes under 

nitrogen gas on a heating block (80' C). The tubes were cooled to room temperature, and 2 
ml of methanolysis reagent (sulphuric acid : methano1 : toluene; 1:20:10 by volume) was 

added and capped tightly. The t u b a  were then heated at 100' C on a heating block tbr 30 
rnin and cooled to room tempefaave. To this, 2 mI of deionized water was added followed 

by 2 mI of n-hexane. The contents of the tube were mixed thoroughly. The organic layer 
was removed using a Pasteur pipette and dried over anhydrous sodium sdphate (2.0 g). 

Aliquots of 05 ml were dispensed into autosampler vials, seaIed and stored at -70' C. The 

fatty acid methyl esters were d y a e d  by gas chromatography (HewIea Packard 5890 
series IT plus) m&r the foIIowing conditions : injection temperame 2%" C, oven 
temperature 170' C, detector temperature 3000 C; carrier gas (Hd 30 ml min-l, air 400 ml 

min-1, nitrogen gas (&Gas) 30 mI min-1; and a methylphenyi silicone fused silica 

cap- c o h m  (25 mm x 02 mm; HP19091B-102). 



3 2  Management of lactobacilli in yeast-catalyzed alcohol production 

3.2.1 Penicillin G 
3.2.1.1 Assessment of the bactericidal effect of penicillin G in wheat 

mash 
Normal gravity (20 - 21 g 1100 ml dissolved solids) wheat mash (pH 55)  was 

prepared and distributed into ten, 1 L jacketed glass fermentors in 500 ml quantities. The 
fennentors were connected through a circulating waterbath which was maintained at a 
temperature of 30° C throughout the experiment Fdter sterilized urea was added to the 
mashes so that the final concentration of urea was 8 mM. GlucoamyIase (Allcoholase 11) 
(0.4 ml) was added to al l  the fernentors for saccMcation. The lactobacilli included in 
the study were L plantmum, L puracusei, Lacwbacitlus #3, L rhmwsus, and L 
fermennun Penicillin G at a concentration of 15 mglL (2,475 unitsn) was added to each 
treatment AU treaanents were studied in duplicate, 

Bacteria were grown in MRS broth, harvested by cenuifugation (10,200 x g for 15 

min) at 4' C and resuspended in stede 0.1 R wtv peptone water and stored in ice until 
used The mashes were deliberately "infectedn with the respective bacteria by inoculating 
appropriate quantities of the cell suspensions to the respective treamencs so that they would 
have an initial bacterial load of approximately lo7 CFU/mL Samples were withdrawn from 
all the fennentors at 0, 12.24.36.48 and 72 h to study the survival of these bacteria by 
enumerating the colony forming uuits using membrane !%mion 

3.2.1.2 Use of penicillin G in the fermentation of wheat mash 
Penicillin G is not stable at acidic pH values at 5 and lower. In order to to see if 

penicillin G performed similarly at both the pH conditions (4.5 and 5.6), a set of 
experiments were carried out using normal gravity wheat mash (pH 5.6), and wheat mash 
with its pH adjusted to 4 5  using 1 N sulfuric acid The mashes were prepared and 
distributed into eight, 1 L jacketed gIass fennentors in 500 mI quantities. Filter sterilized 
urea was added to the mashes so that the final concentmion of urea was 8 mM- The 
treatments included a control with no bacteria and no penicillin G, a control with no bacteria 

but with penicillin G at 1.5 m@, bacteria inoculated at - 107 CFUfml mash and penicillin 
G added at 1.5 mg/L, and bacteria inoculated at - 107 CFCffmi mash (no penicillin G). All 
treatments had yeast inacotated at approximately 104 CFU/ mL 

L paracarei was p w n  in MRS broth, harvested by centrifugation (10,200 x g for 

15 min) at 4O C and andresuspended in sterile 0.1% wlv peptone water (slurry was stored in 

ice). GIucoamyIase (AUcohoIase II) (0.4 d) was added a alI tk fermentors for 



saccharification. The mashes to be contaminated with bacteria were inoculated with L 
paracasei to give approximately 107 CFtr/mL Penicillin G ( 1.5 mg/L) was added to 

treatments where needed The fernentors were inoculated with yeast (ADY) at 

approximately 106 CFU/ml, 30 min after the addition of glucoamylase and tk 
fermentations were carried out at 30' C. Then, samples were withdrawn h m  all the 

fennentors at 0, 12,24,36,48 and 72 b; and aaalysed for viable numbers of bacteria and 

yeast (by membrane Eltcation), dissolved solids (using the DMA45 digital density meter), 

ethanol and lactic acid (using HPLC). 

3.2.2 Stabilized chlorine dioxide 
Sanitech (product of Alltech hc., Wlholasville, KY) releases chlorine dioxide 

under acidic conditions which has potent antimicrobial properties. It acts as an oxidizing 

agent. This is used for sanitizing equipment in beweries. 

3.2.2.1 Determination of the bactericidal effect of chlorine dioxide 
The bactericidal effectiveness of chlorine dioxide was tested against five lactobacilli 

species which are resistant to low pH and to alcohol concentrations of 10 5% vlv or more 

(L plantarum, L paracasei, krctobacilius # 3,L rhamnosus and L fermentum). This 

study was cartied out at various pH levels to find if the effect of chlorine dioxide was 

affected by the pH of the media It bas been mmmended (by the manufacnuer) that 

chlorine dioxide is more effective when used at pH 4 - 5. Since the mash pH is about 5.5, 
the range of pH levels studied were 4.0,4.5,5.0,5.5 and 6.0. (The mash pH is taken into 
considenuon because the ultimate objective was to see the effect of chlorine dioxide on 

contaminant bacteria when added directly to fermentation mashes). 

Eifty ml quantities of MRS broth in 250 ml xxew-capped, side-ann Erlenmeyer 

flasks were used in this study. After adjusting the pH with 0.1 N Ha, the media were 

sterilized at 121° C for 20 min. The media were inoculated with 1 ml of the bacterial culture 

grown to late log phase (- 109 CFU/mL). Chlorine dioxide at 100 ppm (as recommended 

by the manufacturer) was added to he flasks, Controls (no chlorine dioxide) were also 
included at all the pH levels. AU the treatments were done in duplicate. Tbe Basks were 
incubated at 30' C in an incubam-shah (150 r p )  and the growth was monitored over 

h e  using che Klett-Summerson cdorimeter (as a measare of turbidity) at 420 - 660 urn. 

Later, similar set of experiments were carried out at pH 5.5 with lower conmuations of 
chlorine dioxide (0,40,50,60,70,80, and 90 ppm) against al l  the five lactobacilli at 30' C 
since it was found that chloriue dioxide at 100 ppm greatly affected the growth r a ~  of 

yeat 



3.2.2.2 Determination of the dose of chlorine dioxide to be used in 
fermentation mashes 

Fifty ml quantities of normal gravity wheat mash were distributed into sterik, 250 
mi screw-capped Erlenmeyer £lasks. A commercial isolate of L pracasei was used since 

this bacterium is well adapted to fermentation conditions and tolerant to higher 

concentrations of ethanol. The bacteria was grown in MRS broth at 30° C, harvested by 
centrihgacion at 10300 x g for IS min at 4' C and resuspended in sterile 0.1 % wfv 

peptone water. The slurry was stored in ice. Appropriate quantities of the bacterial 
suspension were added to the mashes so that the bacterial numbers were approximately 107 
CFU/mL Five different doses of chlorine dioxide (0 pprn - control, 100,200,300 and 400 
pprn were tested in triplicate (it has been claimed by the manufacturer that 100 - 300 ppm is 
effective in W g  bacteria). The flasks were then placed in aa incubator shaker at 30" C; 
150 rpm. After 48 h, samples were withdrawn from the flasks, centrifuged at 10,200 x g 

for 30 min and the supernatant was analysed for lactic acid by WLC. It was established 
from initid studies that there was a linear relatioaship between tinal lactic acid concentration 
and initial viable bacterial cell numbers. 

3.2.2.3 To study the effect of chlorine dioxide on yeast growth 

Yeast extract-peptone-dextrose (YPD) broth was prepared. The pH was adjusted to 
55  using 0.1 N HC1. This acidified broth was dispersed in 50 mi quantities into 250 ml 
side-arm, screw-capped Erlenmeyer flasks and sterilized at 121°C for 20 min. These flasks 
were then inoculated with 1 ml of S. cerevisiae cells grown to late Iog phase (- 108 
CFUIml) at 30" C. Chlorine dioxide at LOO ppm was added to the flasks. Control with no 
c h t o ~ e  dioxide was also included. The treatments were done in duplicate. The flasks 
were incubated at W C in an incubator-shaker (150 rpm) and the growth of yeast was 

monitored over time by the EUett-Summerson wlorimeter (as a measure of turbidity) at 420 

- 660 m. Later, the same experiment was camed out using lower concentrations of 
chlorine dioxide (0 ppm - control, 50,60,70,80 and 90 ppm) (since it was found that 
chlorine dioxide at 100 ppm greatly affected the growth rate of yeast). All treatments were 
duplicateb 

3.2.3 Nisia 
3.2.3.1 Determination of the bactericidal effect of nisin 
The bactericidal effectiveness of ~isapIin@ (nisin at 1000 units per mg produced by 

Aplin & Barre& UK) was tested against five species of Lacrobacillrcs which are all resistant 



to low pH and to alcohol concentrations of 10 46 vlv or more (L plontmwn, L paracasei, 
Lactobacilius # 3, L rhamnosus and L firmennun). 

Frfty d quantities of MRS broth were dispensed into screw-capped side-arm 
Erlenmeyer flasks (250 ml). These £lads were inoculated with lml of bacterial culture 
( g m  to late log phase; - 109 CFUlml). Nii (a gift from Aplin & Barrett Ltd, Dorset, 
UK) was dissolved in 0.02 N HC1 and filter sterilized using 0.45 pi pore diameter 
membranes. Appropriate amounts of this solution were added to the media as required. 
The concentrations of &in tested were 50,60,70,80,90 and 100 m a  because the 
manufacturer recommends the use of 50 - 100 mg/L in fermentations. AU the mtments 
for al l  five lactobacilli were carried out in duplicate. The flasks were flushed with sterile 
C@ gas (passed through a 0.22 pm membrane tilter), incubated at 30' C in an incubator- 
shaker (150 rpm) and the growth was monitored by measuring turbidity using a Klea- 
Summerson coIorimeter with red filter. 

Niiplin@ was tested against the test organism Micrococcus luteus (ATCC 4698) to 

check the effectiveness of the preparation, The growth of the organism in Bond's broth 

(peptone, 10 gL; beef exuact, 3 glL; yeast extract, 1.5 g/L; sodium chloride. 3 g/L; and 
sucrose, 1.0 g/L; pH adjusted to 5 5  with 0.1 N HC1) in the presence of nisin at 50 mg/L 
was monitored for 72 h in at 30' C. 

3.2.4 Using urea hydrogen peroxide and hydrogen peroxide 
3.2.4.1 Determination of the most suitable concentration 

Normal gravity wheat mash made as mentioned in section 3.1.5 (with particulates 
left in mash), was distributed into sterile, 250 ml screw-cqped Erlenmeyer flasks at 50 
dflask. For this particular set of experiments, L pracasei was used since it is well 
adapted to fermentation conditions and toIerant to higher concentrations of ethanol. 
Appropriate quantities of the bacterial suspension (prepared as described above) were 
added to the mashes so that the bacterial numbers approximated 107 CFUtmL Six different 
concentrations (2.1.5.4, 10.7,21.3,32.1, and 42.6 mM) of urea hydrogen peroxide 
(Sigma Chemical Co.) were tested in triplicate. A 40 % w/v solution of urea hydrogen 
peroxide was made in deionized water, filter-stedlized through a 0.22-pm-pore size 
membrane filter and dispensed The inocutated £la& were then incubated at 300 C in an 
orbital shaker (150 rpm), After 48 h, samples were withdrawn from the Elasks, cenaifirged 
at 10,200 x g for 30 min and the supernatants were andysed for lactic acid It was 

established from initial studies that there was a iinear rehionship between f h I  M c  acid 
concentration and initial viabIe bacterial ceil numbers. 



3.2.4.2 Determination of the badericidal effect of urea hydrogen 
peroxide 

UncIarilied wheat mash was distributed in 500 mI quantities into ten, jacketed, 

sterile glass fermentors. The mashes were inoculated with L plantmum L pracasei, L. 
rluunnosus, L femnnun and Lambacillus # 3 at appmximateIy 107 CFU/ml folIowed by 
the addition of a solution of 40 5% w/v urea hydrogen peroxide (a volume to give a final 

concentration of 32 mM) immediately after the 0 h sample was withdraws All tests were 
done in duplicate. Samples were withdrawn at 0,2, and 4 h and analysed in triplicate for 
viable bacterial numbers (CFU/ml) by the membrane filtration technique. 

3.2.4.3 Use of urea hydrogen peroxide in batch fermentation of 
unclarified wheat mash 

Wheat mash was prepared and distributed into 1 L jacketed glass fennentors in 500 
ml quantities The fennentors were coanected through a circulating waterbath maintained at 
30' C throughout the fermentation and stirred magnetically (IKA-Labortech&). The 
treatments included: controI with no bacteria but yeast and 30 mM urea added; yeast 

coinoculated with bacteria and 30 mM urea added; no bacteria but yeast and 30 m M  urea 
hydrogen peroxide added; yeast coinoculated with bacteria and 30 mM urea hydrogen 
peroxide added; no bacteria but yeast and 30 rnM urea and 30 mM hydrogen peroxide 
(BDH Chemicals Inc., Toronto. Ontario, Canada) added separately; yeast cohodated 
with bacteria and 30 mM nrea and 30 mM hydrogen peroxide added separately (Table 3.2). 
L parucasei (- 107 CFtJIml) was used to infect the mash where required. SarnpIes were 

withdrawn from infected fermentors for determination of initial via& numbers of bacteria. 
Af'ter 90 min, 0.4 d glucoamylase (AUcohotase IJ, AUtech Inc.) was added to all the 
fermentors to saccharify the liquefied mash Thirty min after the addition of glucoamyhse, 
yeast was inoculated into all fernentors at appmximate1.y 106 W / m I .  This allowed a 
preincubation period of 2 h for the urea hydrogen peroxide and hydrogen peroxide before 
yeast inoculation. Samples were withdrawn immediately after yeast inoculation at 0 h, and 
at 12 h, 24 h, 36 h, 48 h and 72 h for analysis. 



Table 3.2 Treatment details for evaluating the use of urea hydrogen peroxide in batch 
fermentation of unclarified wheat mash, 

Treatment Yeast Bactena Urea * Hydrogen hydrogen 
peroxide * peroxide * 

* A concentration of 30 mM. 



3.2.4.4 Comparison of two other nitrogenous soucces (diammonium 
hydrogen phosphate, ammonium dihydrogen phosphate) along 
with urea in combination with hydrogen peroxide in batch 
fermentation of undarified wheat mash 

Diammonium hydrogen phosphate (DM) and ammonium dihydmgen phosphate 
were compared to urea in combination with hydrogen peroxide (H202) to fmd if they had 
the same effect The treatments included control with yeast. 30 mM urea and no bacteria; 
yeast, 30 mM urea and 30 mM Hz@; yeast, L parucasei. 30 mM urea and 30 mM Hz@; 
yeast. 30 mM H f i  and 60 mM (NH4)H2P04; yeast, L parucusei, 30 m M  H2@ and 60 
m M  (NH4)H2P04; yeast 30 mM Hz02 and 30 mM DAP; and yeast, L paracasei, 30 mM 
Hz@ and 30 mM DAP. AU the treatments w e e  done in duplicate. Yeast was inoculated at 
- 106 CFUlml and L parucosei was inoculated at - 107 CFU/d. The fermentation was 
carried out exactly as mentioned previously with urea hydrogen peroxide (3.4.4.3). 

3.2.4.5 Evaluation of the bactericidal effectiveness of urea hydrogen 
peroxide in the presence of mash particles 

Liquefd wheat mash (a-amylase mated) was fdtered through Wharman no. 1 

fiiter paper and the insoluble mash solids were co11ecte4 washed three times with sterile 
distilled water and ~filtered. Collected solids were spread on stainless steel trays and 
frozen at -40' C. Trays were placed in a tray dryer (Labconco Corporation, Kansas City, 
MO) and lyophilized for 48 h. Once the particles were dry, the Imps were broken and 
powdered with a mortar aad pestle and stored at room temperature. 

The experiment was done in 250 ml screwcapped. side-arm tlasg with 50 ml of 
MRS broth in each. The aeatments included the use of urea hydrogen peroxide at two 
different doses (2 mM and 42.6 mM) in the presence and absence of wheat mash particles 
(10 96 w/v). The doses were chosen based on (i) the observations made by Andes er af. 

(1970) that > 15 mM of H f i  would induce celI death of lactic acid bacteria and (ii) that 

42.6 mM was the maximum concentration of urea hydrogen peroxide tested to manage 

Iactic acid bacteria in grain mashes (dthough 30 mM was found to be quite effective). AU 
treatments had L pmacusei inoculmd at - 107 CFU/mL AU treatments were done in 

duplicate. In treatments where clear media were used-tbe growth of the organism was 

measured by optical density (KIett units) using a KIett-Summerson colorirneter. in the 
presence of panicles, samples were withdrawn at 0,Z 4,6,12 and 24 h and assessed (in 
triplicate) using the membrane filtration technique for bacteM viable counts (CFWml)). 



3.2.4.6 Decomposition of hydrogen peroxide and urea hydrogen peroxide 
in wheat mash 

Normal gravity wheat mash was prepared and distributed into two, 1 L jacketed 
glass ferrnentors in 400 ml quantities. The fermentors were connected through a circulating 
waterbath maintained at 30' C and magnetically stirred. Hydrogen peroxide at 40 m M  was 

added to one fermentor while urea hydrogen peroxide at 40 mM was added to the other. 

This experiment was repeated three times (triplicate). Samples were withdrawn at 0.5, 1, 
15,2,3 and 5 h after addition of the bactericidal agents and analysed for the presence of 
hydrogen peroxide by fluorometry. The method involved (i) hydrolysis of stabIe reagent 
dichlomfluorescein diacetate (T.,DADCF) by sodium hydroxide to the less stabre non- 
fluorescent compound L-dichlorofluomcein (tDcF) and (ii) subsequent oxidation of L- 

dichlomfluorescein (LDCF) and measurement of the formed ff uorescent compound 
dichlorofluorescein @CF) by the horseradish peroxidase (HRP)-catalyzed reaction with 
hydrogen peroxide (Keston and Brandf 1965). Fluorescence was measured using the 

primary 6lter 405 and secondary filter 2A-12 (corresponding to 468 nm excitation 
wavelength and 519 nrn emission wavelength) using a fluorometer (Model 1 1 1, GK Turner 
Associates, Palo Alto, CA). Concentrations of hydrogen peroxide were dculated from the 
standard curve prepwd by using different known concentrations of hydrogen peroxide. 

3.2.4.7 Enzyme Assays 

3.2.4.7.1 Preparation of cell extracts 
Cells of lactobacilli were grown. harvested, washed and resuspended at (- 1.5 x 

101° cells/mi) in 40 m M  potassium phosphate buffer (pH 7.2). The ceU suspensions were 

passed 3 times through a French pressure cell (American Instrument Co. Inc., 
Silverspring, MD) at 20,000 lb/in2 (1,410 kg/cmq. Cell debris was removed from each 
extract by cenuifugation at 10,300 x g for 30 min. The supematants (cell-free extracts) 

were used as the enzyme source. The entire procedure was carried out at 4' C. The 

enzyme assays were done without delay, and for the estimation of total protein cell entracts 
were stored at 4' C for no longer than 24 h, 

3.2.4.73 Specific activity of NADH peroxidase 
Oxidation of NADH (Sigma Chemical Co.) by hydrogen peroxide at 30' C was 

foIIowed spectrophotomemcaIIy at 340 nm (Chang et d., 1997). The minor amount of 
NADH oxidizing activity (in the absence of H202) was subtracted The reaction mixture (I 
rnl) contained 40 mM potassium phosphate buffer (pH 7.2), 0.2 mM EDTA, 0.17 m M  
NADH, 0.02 mM FAD, cell extract (0.05 d) and 1.3 m M  Hz@. The reartion was 



initiated by adding Ha. AU solutions used in the assay were flushed with oxygen-free 
niuogen gas for about 10 min. Total protein in the cell extract was measured using the B i e  
Rad protein assay kit II (Bio-Rad laboratories). Tbe specihc activities presented are means 

of three separate assays using a different cell extract for each assay. 



4. RESULTS 

"Emy novel idea io sdence passes h g b  three stages. 
Fmt people say it isn't uue. Them they say i& m but 

not imporrant. And fimUy they say it's ape and impom!. 
but not new." 

(Anonymous) 

4.1 E f f ~ t s  of lactobacilli and their endproducts, lactic acid and acetic 
acid, on yeast growth and alcohol production 

4.1.1 Screening of lactobacilli based on their growth rates and alcohol 

tolerance 
Twelve strains of lactobacilli (Table 4.1) from the cultwe collection of Dr. W M  

Ingledew, Depr of Applied Microbiology and Food Science, University of Saskatchewan, 

were screened on the basis of growth rates and alcohol tolerance. One mI of a 24 h culture 

of each strain was transferred to 50 ml MRS broth in 250 rnl screw-capped, side-arm 
ErIenmeyer flasks. The flasks were flushed with sterile C@ gas (passed through a 022 

pm membrane tiher) and incubated at 30' C with shaking (150 rpm). The growth was 

monitored at two hour intervals up to 24 h using a Klett-Summerson colorheter (equipped 

with flilter # 66). The experiments were done in duplicate. Growth curves were obtained 

for each strain. The generation times in the logarithmic phase of growth (Table 4-1) were 

then cafcuiated using the formula : 

n = log Kt - log KQ 
log 2 

where, Kg is Nett reading at 0 time, 
is the Klett reading after a time interval of 't', and 

n is the number of generations. 
t Generation h e  (g) (i h) = ;; 

Seven strains with low generation times (faster growth rates) were selected and 
tested for alcohol tolerance by growing them in the presence of 5,10 and 15 46 viv ethanol 
Suitable controls were also included. Five smahs with fast growth rates and capability of 

growth m media containing 10 56 viv or more of ethanol (Fig 4.1) were tinally selected for 
further studies (as mentioned in the Materials and Methods). 



Table 4.1 Generation times (in the logarithmic phase of growth) of selected strains of 
lactobacilli in MRS broth at 30' C 

Strains Generation time (h) 
Laclobacillus fennennun 1.74* 

Cargill # 1 (Lambacillus # 1) 
Cargill # 3 (hcwbacillus # 3) 

hcwbacillus rhamnosus 
Lambacillus delbreuckifi 

Lacwbacillus homohiochi 
Lacwbacillus delbreuckii (ATCC %49) 

Cargill # 4 (Lactobacillus # 4) ddc 
a Obtained from the culture collection of Dr. W.M. Ingledew, Dept. of Applied 
Microbiology and Fwd Science, University of Saskatchewan, Canada. 
b ~ i l l e r  B & & ~  CO.. Milwaukee, WL 

- 

c not determined. These strains grew exuemely slowly and hence it was dift?cuIt to 
determine the generation time. 
* The stmins selected for study of dcohol tolerance. 
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figure 4.1 Growth of different IacmbacilIi in MRS broth in the presence and absence of 
5,10, and 15 % vhr ethanol at 30' C. In the controls with 5, LO, and 15 % dilutions, the 
media were diluted with the corresponding amounts of stede deionizd water. 
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Among the 7 strains as indicated in TabIe 4.1, five strains were capable of growth 

at 10 9% v/v ethanol (Fig. 4.1). but two isdates obtained from Cargill Corn Milling, IA; 
Car@ #1 (hcrobacillus # 1) and CargiIl#2 (Lactobacilh # 2) grew at an extremely slow 
rate with 5 % vlv e w o l  and did not grow with 10 % vlv ethanol in the medium. 

4.1.2 Effects of IactobaciHi on yeast growth and alcohol production 
4.1.2.1 Fermentation rates 

The disappearance of dissolved solids Erom mash during yeast fermentation is a 
measure of conversion of glucose to alcohol. Specific gravity is a measure of dissolved 
solids in the mash. This value &mses as sugar is converted to ethanol (density 0.789) 
and C@ gas (which leaves the Ormentor). Only small differences in fermentation rates 
were observed between yeast fermentafions containing lactobacilli and the controls with no 
bacterial inocdation (Fig. 42)). When the initial bacterial numbers were high, only a slight 
change in the rate of carbohydrate u t W o n  was observed, but all the fermentations 
completed to constant specit?c gravity. The bacteria appeared not to consume more than 1 g 

per LOO ml of mash dissoIved solids (fennentabIe carbohydrates) for growth and 
mesabolism as determined by specific gravity (Fig. 4.2). However. the assessment of 
specific gravity as a measure of sugar fermentation is not valid in the case of bacterial 
fermentation because one mole of glucose is either converted to 2 rnoIes of tactic acid 
(homofemenmtive s a i n s )  or to 1 mole of lactic acid, one mole of ethanol and one mole of 
C@ gas (heterofementauve suains). tittle or less weight loss would take place, therefore 
specific gravity measurements would not change as much as in a yeast fermentation. Since 
the lactic acid made by L plantam was 1 % w/v, the organism must have used at least 1 g 

of sugad100 ml mash (L p h r m  being an homofermentative strain). Similar trends 
were observed in the experiments done with L p r k e i ,  Lactobacii1u.s # 3, L rhmosus 
and L. fernenturn. 

4.1.2.2 Growth of lactobacilli in yeast-catalyzed fermentations 
The growth of the 5 different Iactobacilli i n d a t e d  in wheat mash at various levels 

was followed (Fig. 4.3). Bacteria growing in the absence of yeast remained viable while in 
the presence of yeast, they died off towards the end of fermentation. Moreover, the death 
rate of these bacteria increased with increases in the concentration of lack acid in the 
presence of ethanoL 
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Figure 4.2 Concentration of dissolved solids over time in a wheat mash fermentation at 
30" C inoculated at various cell concentrations with diflkmt lactobacilli, The mashes we= 
inoculated with yeast at approximately lo6 CFCJlmL Symbols : 0, control (no bacterial 
inoculation); R -105 CFtl of bacterialrnk 0, -106CFU of bacteridml; a, -107CFU 
of bacterialmk d - 108 CFU of bacteria/& A, -109 CFU of ba~eria/xx& and 0, - 107 
CN of bacteria/ml (no yeast inocuIarion). 
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lhis suggests that ethanol and lactic acid act synergistically to kill these bacteria and 

that the toxicity of ethanol is enhanced by the decrease in pH caused by the lactic acid in the 

medium. Based on the results shown in Figure 4.3, the homofermentative strains L 

pmucasei and Lactobacillus # 3 appear to be relatively more tolerant to ethanol than L 
rhamnosus and L plantwwn- L fermennun, a heterofermentative strain, produced only 

05  % wfv lactic acid while LactobuciUus # 3 produced 1.59 96 wlv (Fig. 4.4). As the 

hhiiitoty effect of ethanol is accentuated by the low pH caused by lactic acid, LacmbuciUus 
# 3 died faster than L fennentwn while L paracasei is relatively more tolerant to ethanol 

even at higher lactic acid concentrations in the medium. 

4.1.2.3 Effect of lactobacilli on growth and metabolism of yeast 

As the inoculum size of the different IactobaEilli was increased, growth rates of 

yeast decreased With l d  CFU/rnl of L phranun in the medium, the specific growth rate 
was 0.42 h-1, while the specific growth rate decreased to 036 h-1 when the bacterial 

inocdum size was increased to 109~FWrn1. Similar values were observed with the other 

four strains. Decreases in maximum yeast growth Fig. 4 3 ,  final ethanol concentration 

(Table 4.2) and in final pH of the medium also were seen. During fermentation, the 
concentrations of lactic acid achieved increased as the levels of bacteria inoculated increased 
(Fig, 4.4). h dl experiments, total yeast ceU numbers reached a maximum at 24 h of 

fermentation and then started to decrease (Fig, 4.5). 

The effects of each Lactobacillrrs sp, at the 5 different inoculation levels on the 

maximum ethanol produced (% vlv) by yeast cells were studied in separate sets of 

experiments (Table 4.2)). Single mashes were used for each experiment because between 

experiments, there are minor changes in the dissolved solids content of the mashes that 

would lead to the variations in final ethanol concenvation produced by yeast in the absence 

of bacteria Yeast-catalyzed fermentations completed within 48 h. Therefore, even when 

bacteria are present in high numbers, they mast increase in biomass quickly in order to 
create enough metabolic potential to compete with yeast for sugar and create ethanol yield- 

reducing IeveIs of lactic acid prior to terminab'on of fermentation. 
The increases in lactic acid with the 5 bacterial strains correlated with the &teases 

in the tinal ethanol concentrations (comIation coefficients of 022 - 0 9 )  and the viabie 

yeast numbers. The metabolic end product of these bacteria, lactic acid, inhibits yeast 

growth and metabolism and is the major cause for the decrease in ethanol yield in this 

study. 
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Figure 4.4 Effect of the initial numbers of Iactobacilli on the fmd lactic acid 
concentration. The mashes contained yeast at approximately 106 CFUirnL Symbois : 9, 
L plnntanun; H, L paracasei; 0, LactobnciIltis # 3; a, L rhamnosus ; and A, L 
fennennun, 
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Figure 4 3  Growth of yeast in fermenting wheat mash at 30° C coinoculated with (A) L 
planranmt, (B) L paracarei, (C) krctioban'flus# 3, @) L rhamnosus and (E) L 
fennentrrm at various levels. The m a s h  contained yeast at approximately 106 CFtJ/mL 
Symbols : Q control (no bacterial inoculation); - 1@ CFU of bacterialml; 0, - 106 
CFU of bacteria/& a, - 107 CFU oEbcmialrnI; A, -lo8 CFU of bacterialml; and A, 
-109 CFU of bacteria/mL 



Table 4.2 Maximum concentration of ethanol produced after fermentation of normal 
gravity (22 - 24' P) wheat mash at 30" C for 72 h by yeast coinoculated with lactobacilli at 
various levelsa 

Approx. 
numbers of 

bacteria Maximum ethanol produced (% v/v)b 
inoculated 
(CFUIml) 

# 3  
None 12.71 12-46 12.24 12.7 1 13.14 

(Control) 

109 1 1.99 11.5 1 11.30 11.86 12.63 
a Mashes we= inoculated with approximately 106CFU of yeast ceWml and the bacterial 
numbers indicated. 

All assays were done in duplicate using HPLC analysis. Variations in ethanol (in 
duplicate assays) were in a l l  cases less than 0.04 46 vlv. 



In the case of L fennentwn, a hemfermentative organism, the final lactic acid 
concentrations were not as high as those observed with the homofermentative strains (Frg. 
4.4). Yet, the percent reduction in ethanol was s h i h  (about 2 5%) when mash was 
inoculated at approximately 106 CFU/cnI with the homofemntative organisms (L 
plantarwn and L rfuunnow). This may be partly due to the production of 0.03 - 0.05 % 

WIV of acetic acid by L femnnrm towards the end of fermentation - the actual amount 
depending on the inoculation level 

To alleviate concerns regarding the pH effect of lactic acid on saccharification of 
dextrins to glucose, experiments were conducted to demonstrate activities of giucoamylase 
over a range of pH conditions. GIucoamyIase retained 9 1 45 of its activity at pH 4.0, and 
70 8 at pH 3.0 (Fig. 4.6). The pH never dropped below 3 9 in any of the Fermentations 
reported here. 

Results obtained in this study show that an initial bacterial contamination of mash of 
approximately 106 CFU/ml led to as much as 3.8 8 reduction in ethanol yield (Table 4.2). 
Higher levels (109 CFUIml) led to more than 7 % Losses in ethanol. Fiial Iactic acid 

concentrations and decmses in ethanol yields cordateti directly wilh the initial numbers of 
viable bacteria in the mash (Fig, 4.4 and 4.7). 

4.1.3 Effats of lactic acid and acetic acid (end-products of lactobacilli 

metabolism) on yeast growth aad firmentation 

4.1.3.1 Inhibition of yeast growth by acetic and lactic acids 
The speci6c growth ntes (p) of the two yeast strains (Alltech strain and ATCC 

26602) decreased exponentially while lag times iecreased exponentially as the concentration 
of the acids in the medium were increased 4.8 and 4.9). (Specific growth rate, p = 

0Ag3 
). The miminimum inhibitory concentration (MIC) for acetic acid was 0.6 46 Doubling time 

W/V (100 mMl and that for lactic acid was 2.5 % wlv (278 mM) for both yeast suains 
tested (i.e. these were the concentrations at which absoIutely no growth of the yeast strains 
was observed for at least 72 h after inoculiuion). Concurrently, it was found that acetic 
acid at concentrations of 0.05 - 0-1 % wlv and lactic acid at concentrations of 02 - 0.8 % 

WIV begin to stress the yeast as seen by reduced growth rates, and decreased rates of 
glucose consumption and ethanol production in minimal medium with glucose (2 % wlv) as 
the carbon source. Acetic acid is inhibitory to yeast at a much Iower concenmtion than is 
Iactic acid 
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Figure 4.6 (A) Standard curve to determine the concentration of glucose using the 
Glucose (hexokinase) kit (Sigma ChemicaI Co.). (B) The specific activity of Allcoholase II 
(glu~oamylase) enzyme (Alltech Inc.) at various pH IeveIs. Substrate : 0.5 46 wlv Dextrin 
solution, Buffer : 0.1M Citrate - 0.2 M Na2HPOd9 Temperature of the assay = 30' C. 
Rotem content of the enzyme preparation was 125 mg/d (Lowry et al., 1951). 
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Figure 4.7 Effect of the initial numbers of lactobacilli on the reduction in final ethanol 
concentration compared to the control with no bacterial inoculation. The lid ethanol 
concentrations (Table 4.2) were approximately 10 % w/v (127 8 vlv), so the o v e d  yield 
loss of produced ethanol ranged from 0-7 to 7.5 46. The mashes contained yeast at 
approximately 106 CFUImI. Symbols : Q, L plancarurn; I, L paracasei; 0, 
Lactobacillus # 3; 0, L rhamnosus ; and A, L fennennun. 
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Figure 4.8 Effect of acetic acid on specific growth rates (a ); and lag times ( of two 
strains of S. cerevisiae in minimal medium at 30' C. 
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Figure 4 3  Effect of lactic acid on speciftc growth rates (a ); and lag times (I) of two 
shahs  of S. cerwisiae in minimal medium at W C 



4.1.33 Effects of acetic and lactic acids on fermentation rates 
There was a reduction in the rates of glucose consumption and ethanol production 

as the concentration of acetic acid increased in the media 4.10). Reduction of 
biomass decreased with increasing concentrations of acetic and lactic acids (Table 43). It 
was necessary to show that the decreases in biomass observed in the presence of the acids 
were not just due to the lowering of pH of the medium (when the acids were added). To 
verify this, the pH of the medium was adjusted to 2.6 or 3.0 with 1 N HCl and the yeast 
were grown at 30" C. The total biomass produced after 24 h of growth was 1.3818 mghl  
and 1.4 mglml, for the Alltech strain and for ATCC 26602 respectively when the initial 
media pH was 2.6. Biomass values were 2.1 168 mg/d and 1.833 mg/ml for the Alltech 
strain and for ATCC 26602, respectively, when the initial media pH was 3.0. Vatues for 
dry weight when acetic or lactic acids were added (Table 4.3) were more than 8 fold Iess 
than when the medium was adjusted to the same pH values with Ha, but without organic 
acids. Therefore, it can be concluded that the reduction of total biomass of both yeast 
strains (Table 43) was due to the presence of acetic or lactic acid which at low pH values 
(2.64 or 3.19, Tabk 4.4) exist predominantly in the undissociated fom. Even though 

biomass production decreased with increasing concentrations of acetic acid in the medium, 
a l l  of the glucose was consumed and the same levels of maximum ethanol were produced in 
24 h by both yeast strains (Fig. 4-10). 

Lactic acid appears to have a different effect than acetic acid in both yeast stmins 

(Fig 4.1 1). WhiIe an increased acetic acid concentration delayed both the utilization of 
glucose and production of ethanol, lactic acid at a relatively low concentration (0.6 % wfv) 
shut down glucose utilization and ethanol synthesis in the minimal medium. A IeveI of 0.8 

% wlv k t i c  acid is an industrially relevant concentration and is easily produced through the 

action of lactic acid bacterial contaminants in fermentation. 

4.1.3.3 Interaction of acetic and lactic acid on the inhibition of yeast 
growth 

TabIes 4.5a and 4 3  show the analyses of variance (ANOVA) for the two 
independent variabIes (acetic acid and Iactic acid) for the Alltech and ATCC 26602 strains. 
Several criteria such as  R~ values, coefficient of variation (CV) and model signitlcance 
were used to judge the adequacy of the models. For a good fit of any model* R* should be 
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Figure 4.10 Glucose depIetion (open symbols) and ethanol production (closed symbols) 
by S. cerevisiae in minimal medium at 30' C in the presence of increasing concentrations of 
acetic acid. Symbols : 0, I, 0 % wlv (control); 0, a, 0.1 % wlv (17 mM); A, A, 0.2 8 
W/V (33 mM); and 0, +, 0.3 % w/v (50 mM). 



Table 4 3  Maximum yeast cell mass ( m d d  dry weight) obtained in minimal medium 
with various concentrarions of acetic and lactic acids in 24 h at 30' C. 

Concenuation Dry weight (mg/d) 
Acid (% w/v) Alltech st& ATCC 26602 

Control (no acid) 0 2.1952 1.8224 
&tic 0.1 (17 mM) 2.0776 1 -5664 

0.2 (33 mM) 1.7248 1.3338 
0.3 (50 mh4) 1.4014 1 -0998 

Lxtic 0.2 (22 mM) 1.8228 1.4430 
0.4 (44 mM) 1.1270 0.6630 
0.6 (66 mM) 0.0918 0.1794 



Table 4.4 Percentages of undissociated acid and anions of acetic and Iactic acids in 
minimal medium at pH values attained corresponding to the various acid concentrations. 

Concn. pHs Undrssoclated Anion (%)b mole conca, 
(mM) acid (%)b of 

undissociated 
acid mM) 

Aaetic 17 94.63 5.37 16.08 
33 z 96.37 3.63 3 1.80 
50 3.19 97.25 2.75 48.63 

Lactic 22 2.95 87-68 12.32 19.29 
44 2.76 92.06 7 -94 40.48 
66 2.64 43-97 6-03 62.98 

a Values are mean of duplicate samples 
b Values were c a l c u l i  using the kderson-~aselbaeh equation 
(pH = pKa + log ( [ A - m ] ) )  and pKa values of acetic (4-74) and lactic acid (3.86) 
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Figure All Glucose depletion (open symbols) and ethanol pmduction (closed symbols) 
by S. cerevisiae in minimal medium at 300 C in the presence of increasing concentrations of 
lactic acid. Symbols : 9, I, 0 % w/v (conml); 0, a, 0.2 % w/v (22 mM); A, A, 0.4 % 

W/V (44 mM); and 0, *, 0+6 96 wlv (66 mM). 



Table 4Sa : computer-generatedl analysis of variance for sWc growth rates of S. 
cerevisiae (Alltech saain) 

Source DF Type 111 SS Mean square F value b b  
Trial I 0.0000087 0.0000087 0.29 0.596 1 
Acetic 1 0.0011091 0.0011091 37.25 0.000 I 
k t i c  1 0.0002367 0.0002367 7.95 0.01 10 
Acetic * Acetic I 0.00002 1 1 0.00002 1 1 0.7 1 0.4098 
k t i c  * Lactic I 0.0035682 0.0035682 119.85 0.000 1 
Acetic * Lactic 1 0.000528 1 0.000528 1 17.74 0.0005 
1 (SAS/STA~?, SAS Institute, 1988) 

Table 4.91 : Computer-generated1 analysis of variance for specific growth rates of 
cermXae (ATCC 26602) 

Source Dt: Type ILI SS Mean square t. value Prob 
1 0.0000203 0.0000203 0.10 0.75 t 3 - -- 

Acetic 1 0.0029339 0.0029339 14-91 0.00 1 1 
Lactic 1 0.0031810 0.0031810 16.17 0.0007 
Wc*Acetic 1 0.0001114 0.0001114 4.57 0.000 1 
Lactic * Lactic 1 0.000654I 0.0006541 3.33 0.000 1 
Acetic * Lactic 1 0.000703 1 0.000703 1 3.57 0.00 i 1 

(SAS/STAT@, SAS Institute, 1988) 



at least 80 96, CV should not exceed 10 8 and model significance (P value) should be less 
than 0.05 (Wang et al., L999). The models developed in this study were highly adequate, 

since the levels of ~ 2 ,  CV and model significance agx& to the above criteria for a good fit 
(Table 4.6). 

Analysis of variance for the Alltech strain (Table 45a) and for ATCC 26602 (Table 

4.5b) was done to determine the statistical sigaificance of linear, quadratic and interactive 

effects of acetic and lactic acids on the specific growth rates. Experiments conducted at 

different times yielded similar results. 'here were no significant differences observed 

between the triaIs (P = 0.5% 1 for the AUtech stmin and P = 0.7513 for ATCC 26602). All 

the other effects (linear, quadratic and interaction) of acetic and lactic acids were highly 

significant (P 10.001). The tinear eE't of lactic acid is still significant for the Alltech 
strain since P = 0.0 11, but the: quadratic effect of acetic acid is not statistically significant (P 
= 0.4098) indicating statistical insignificance of the clwacure ptoduced by acetic acid 

(Table 4.5a). A signif'j~ant interaction of acetic acid and I;actic acid is observed in the 

reduction of the specific growth rate of both strains d S. cerevisiae ( P  10.001). This 

indicates synergism. Figure 4.12 indicates the influence of acetic acid and lactic acid on the 
specitic growth rate (p) of S. cerevisiae. These acids when present together in the medium 

exert a higher inhibitory effect (due to synergy) on the specific growth rate of yeast than 
when each acid was present alone. When there is 0.5 5b wlv tactic acid present in the 

media, the presence of even 0.04 % whr acetic acid (which does not cause a significant 

change in yeast growth rate when present by itself) causes a sipillcant reduction in the 

growth rate of 3. cerevisiae (P I0.001) (Fig. 4.12). 

4.1.4 Mode of action of acetic acid and lactic acid on S. cerevisiae 
4.1,4,1 Effects of acetic and lactic acid on the inbacellular pH (pBi) of 

S. cerevisiue 

Ehmellular pH (pw at the dme of harvest fi.e during the mid-exponential phase 
when 0 5  to 0.7 % wiv glucose was Ieft in the medium with acetic acid and 0-6 to 1.0 % 

wlv glucose was Ieft in the medium with various co~~~e~ltrations of lactic acid) are given in 

Table 4.7. Using these pH values and the p% values of acetic and lactic acids, the molar 

concentrations of the undissociated acids in the medium was calculated based on the 

Henderson-kibach relationship (pH = pKa + log [A-]/IHA]) (Table 4.7). 



Table 4.6 Modeis for the response variable (specific growth rate) obtained from the 
general linear modeis procedure for the two strains of S. cerevisiae. 

Vanabk and Source df Sum of squares E value P > F  

Model 6 0.1097708 
Emr 19 0.0005657 
Comted total 25 0.1 103365 
R2 = 0.9948 

Coefficient of variation (CV) = 2.895 5% 

Coeflcienrs for response su@ce mo&l 
Specific growth rate 

y = 0-306 + (0.001/2) - 0.354~1- O.O81x;? + 0.158~1~ - 0.508~2~ - 05 13~1x2 

Emr 19 0.0037370 
Corrected total 25 0.0903500 

~2 = 0.9586 
CoeMicient of variation (CV) = 9.625 % 

Co@cientsfor response surfnce nwdel 
Specific gtowdt rate 

y = 026 + (0.00212) - 0.409~1 - 0.214~2 + 0. 184xt2 + 0.1 1 2 ~ ~ 2  - 0.302~1~2 
y = S-c growth rate (CI) 
x l  and x2 : concentrations of acetic and Iactic acids respectively. 
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Figure 4.U Influence of acetic acid and lactic acid on the specific growth rates (p) of S. 
cereyisiae in minimar medium at 30' C. A negative (synergistic) interaction between the 
compounds is shown, 



Table 4.7 Thc: pH of the medium (pHe) at the time of harvest of the ceh of both strains 
of yeast and the corresponding molar concentration of undimciated acid as the 
concentrations of acetic and lactic acids were varied. 

Acid Concn. p k b  % undissociated Molar conce of 
(% wlv) acid= undissociated 

acid (mM) 
k t i c  0.05 (8.3)a 2.48 99.45 8.25 

0.10 (16.7) 2.54 99.37 16.60 
0.15 (25.0) 2.57 99.32 24.83 
0.20 (33.3) 2.59 99.29 33.06 
0.25 (41.7) 2.6 1 99.26 4 1.39 

Lactic 0.1 (11.1) 2.38 96.69 10.73 
0.2 (22.2) 2.42 96.37 2 1.39 
0.3 (33.4) 2.48 95.83 32.0 1 
0.4 (44.5) 2.52 95.43 42.47 
0.5 (55.6) 2.56 94.99 52.8 1 

a Numbers in parentheses indicate concentration in mmolesk 
b Values are tk averages of two e p m  obsavations that did not differ by > OM units 
CCalcuiated based on Henderson-HasseIbach equation (pH = pK, + log [A-]/[HA]) where 
A = CH3COO- or CH3CHOHCOO- 



The intracellular pH values @Hi) of both yeast saains at different concentrations of 
acetic acid in the medium are shown in Table 4.8 and Fig. 4-13. Tables and figures are 
provided for experiments using acetic and lactic acids in order to indicate both statistical 
significance of data and the trends in pHi values and in plasma membrane H+-ATPase 
activities. 'Ihe sigmticance of differences among treatments was tested by Duncan's 
multiple range test In case of the AUtech yeast, the inhacellular pH did not differ 
signthcantly from the control with no acetic acid (P =OM) until acetic acid reached 0.15 % 

W/V. Moreover the intraceUular pH values were not significantly different h m  one another 
in the various treatments with different concentrations of acetic acid (Table 4.8). 

No significant differences (P = 0.05) were obsemed in the p& of S. cerevisiae 
(ATCC 26602) as the concenmtion of acetic acid increased in the medium pable 4.8) 
although there was an increase in the molar concentration of the undissociated acid; (Table 
4.7). A small decrease in the inuacellular pH was observed as the concentrations of lactic 
acid in the medium increased, although at Iower concentrations of Iactic acid (up to 0.2 % 

W/V) the changes in pHi were not simcant (P = 0.05). At 05 % wlv (55 mM), the pHi 
decreased significantly by 0.6 units in both yeasts (Table 4.9 and Fig. 4.14). 

4.1.4.2 Efkcts of acetic and lactic acid on the plasma membrane R+- 
ATPase activity of S. eersvisiire 

The effects of acetic acid and Iactic acid on the activity of the plasma membrane H+- 
ATPase (which is involved in the re-on of intracellular pH in yeast) were studied in 

vivo in mid-exponential phase ceIls of S. cerm3iae (Alltech strain and ATCC 26602). The 
results are shown in Tables 4.10 and 4.11 (Figs 4.15 and 4.16). The data were subjected 
to Duncan's multiple range r e s ~  The activity of the plasma membrane ~ T k e  increased 
signiticantiy with increasing concentrations of acetic acid (TabIe 4.10; Fig. 4.15) for both 
strains of yeast studied. The rehitionship between increases in the activities of ATPase and 
increases in the concenaations of acetic acid appeared to be Iinear up to 0.25 9% wlv (42 
mM) acetic acid in the medium (the maximum cancentmeion used in the study) for both the 

strains. When the acetic acid concentratian was 0.25 % wlv, a 58 % increase in plasma 
membrane ATPase was observed in AUtech strain and a 55 % increase was shown by 
ATCC 26602 (Table 4.10). This appears to be the reason why there is no significant 
changes in pHi of these two yeast serains in the presence of inmasing concentrations of 
acetic acid in the medium (Fig. 4-13). 



Table 4.8 htracellular pH values (pHJ of S. cerevisiae as concentrations of acetic acid in 
the medium were varied. 

Iatracelluiar pH (ph)* 
Acetic acid (% wtv) AUtech saain ATCC 26602 

0 (control) 5.41a 5.16a 

0.25 5.18b 5 . P  
* Values are means of three separate experiments 
The Ietters in superscripts indicate the leveIs of significance (P = 0.05) between treatments 
and mt between the strains (based on Duncan's multiple range test). Means with the same 
lester are not ~ i ~ c a n t l y  different 



AUtecb strain - I ATCC 26602 

Acetic acid (% w/v) Acetic acid (% wlv) 

Figure 4.13 Intracellular pH (pHJ of S. cerevisiae at various concentrations of acetic 
acid in the medium. Values are means ofthree separate experiments. Error bars indicate + 
standard deviation. 



Table 4.9 Intracellular pH values (pHJ of S. cerevisiae as concentrations of lactic acid 
were varied in the medium, 

tntracellular pH (pHi)* 
Lactic acid (% wlv) AUtech saain A T W  26602 

0 (control) 5.41a 5.16a 
0.1 5.24* 5.08ab 
0.2 522°C 5. loab 
0-3 5. lOCd 4.97b 
0.4 4.99d 4-79 
0.5 4.W 4.60d 

Values are means of three separate experiments 
The letters in superscripts indicate the levels of signif~cance (P = 0.05) between trearments 
and not between the strains (based on Duncan's multiple range test). Means with the same 
letter are not significantly different. 
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figure 4.14 Intracellular pH (pHJ of S. cerevisiae as Iactic acid concentrations were 
varied in the medium. Values are means of three separate experiments. Error bars indicate + 
standard deviation 



Table 4.10 Plasma membrane H+-ATPase activity of two saains of S. cerevisiae in the 
presence of various concentrations of acetic acid 

ATPase activity -01 pi released/min/rng protein)* 
Acetic acid (96 wiv) AUtech s m  ATCC 26602 

0 (control) 2.3W 2.34 la 

0.25 3.638d 3.62 1e 

* VaIues ye means of three seuarate assays done at different times 
The Ieuers in superscripts indiiate the l&eIs of sipitlcauce (P = 0.05) between trearments 
and not between the strains (based on Duncan's multiple range test). Means with the same 
letter are not significantly different. 



Plasma membrane H+-ATPase activity Plasma membrane H+-ATPase activity 
(pmol Pi released/min/mg protein) (pmol Pi released/min/mg protein) 



Table 4.11 Plasma membrane H+-ATPase activity of two strains of S. cerevisiae in the 
presence of various concentrations of lactic acid. 

ATPase activity ( p o l  Pi reIeasedlmin/mg protein)* 
Lactic acid (96 wlv) Alltech strain ATCC 26602 

0 (control) 2.3W 2.34 la 
0.1 2.212ab 2.250ab 
0.2 2. 2.244b 
0.3 2.268a 2.307a 
0.4 2.092b 2.063C 
0.5 1.639 1.646d 

* Values are means of three separate assays done at different times 
The letters in superscripts indicate the levels of significance (P = 0.05) between treatments 
and not between the strains (based on Duncan's multiple range test). Means with the same 
letter are not significantIy different. 
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Figure 4.16 Plasma membrane H+-ATPase activity (ptnol Pi reIeased/rnin/mg protein) of 
S. cerevisiue (rnidexponentiaI phase cells) in the presence of various concentrations of 
lactic acid in minimal medium at U)O C The symbols indicate values from separate 
experiments, 



Lactic acid appears to act differently from acetic acid. The H+-ATPase activity 
decreased sigaiscantly at higher soncentrations (0.4 - 0.5 % wlv) of lactic acid in the 
medium (Table 4.1 1; Fig. 4.16). No significant differences (P = 0.05) were observed in 

the €I+-ATPase activity up to a concentration of 0.3 46 wlv lactic acid (Table 4.1 1). The 
relationship was not hear, instead fitting best as a 3rd order polynomial. The decrease in 
the H+-ATPase activity corresponds to the decrease in p& observed at higher 
concentrations (0.4 - 0.5 % wlv) of lactic acid in the medium (Fig. 4.14). 

4.1.43 E f h t s  of acetic and lactic acid on the plasma membrane fatty 
acid composition of S. cerevisioe 

The lipid composition of the cell membranes of both yeast strains grown to the mid- 
exponential phase of growth in the presence of 05  % wlv lactic acid and 0.25 % wlv acetic 
acid (concentrations which significantly affected the plasma membrane H+-ATPase activity) 

were determined and compared to the control with no acetic acid or lactic acid added to the 
medium. The resuits are shown in Table 4.12 

The fatty acid composition of both yeast strains was affected when yeast cells were 
grown with lactic acid (0.5 8 wlv). In the pcesence of lactic acid the propomon of 
unsaturated fatty acids (palmitoleic acid, C 16: 1; and oleic acid, C 18: 1) decreased 
considerably (47 96 and 29 96 for Alltech yeast; and 33 % and 19 % for ATCC yeast) 
compared to the control without any acid present in the medium (Table 4.12). At the same 
the,  an increase in the corresponding saturated fatty acyl residues (pahitic acid, C16:O; 
and stearic acid, C 18:O) was observed- These changes were not observed to the same 
extent when the cells were grown with 0.25 % wlv acetic acid (Table 4-12). 



Table dl2 Effect of acetic acid (0.25 % wfv) and lactic acid (0.5 8 wiv) on fatty acid 
composition of S. cerevisiae. 

Percentage of total fatry acids* 
Fatty acid AUtech strain ATCC 26602 

Control Acetic acid La& acid Control Acetic acid Lactic acid 
C140 4. IfO. 1 3.M-1 

C18:l 2 5 2 0 . 6  21.=.9 17.8M.3 18.9f0.5 20.4H.4 15.4W.4 
* VaIues are means of two separate experiments f the standard deviation 



4.2 Management of lactobacilli in yeast-catalyzed ethanol production 
4.2.1 Bactericidal effect of the antibiotic penicillin G in wheat mash 

The results show that the bactericidal effect of penicillin G vaties between different 
species of Iactobacilli L fermentum, L paracusei and Lacfabacillus #3 appear to be more 
sensitive to the dose of penicillin G used (1.5 mglL) compared to L phtanun and L 
rhamnosus (which appears to be the least sensitive organism of all tested; Fig. 4.17). 

43.1.1 Bacteriadal eftect of penicillin G when used in the fermentation 
of wheat mash 

There were no major differences in the fermentation rates of mashes adjusted to 
initial pH values of 45 and 5.6. Fermentation in all the treatments came to an end by 48 h 

after yeast inoculation (Fig. 4.18). Less than 0.1 96 fermentable sugars remained at the end 
of the fernentation in each case. 

The growth of L paracusei (no antibiotic) was quite different in mashes adjusted to 
pH 4.5 and 5.6. The bacteria did not grow as well at pH 4.5 as they did at pH 5.6 (Fig. 

4.19). Killing of the organism at pH 4.5 in the presence of penicillin G was less extensive 
(Fig. 4.19). This shows that the bactericidal activity of penicillin is not as good at pH 4.5 
as it is at pH 5.6. 'Ibis codinns that the stability of penicillin drops as the pH becomes 
acidic (and wouId be lost at pH values of 4.0 or below). Neverheless, penicillin still 

resulted in a 4 log reduction of the bacterium at pH 4.5 (5 logs in 48 h in pH 5.6 mash). 
Multiplication of S. cerevisiae is also aEfected at the low initial mash pH of 4.5 

when compared to a normal mash at pH 5.6. The maximum viable cell numbers attained 

was higher when the initial mash pH was 5.6 (237 x 108) compared to 1.80 x 1@ when 
mash initial pH was 4.5 (Fig. 4.20). When the initial mash pH was 4.5, tbe bacteria also 

did not grow as well (Fig. 4.19). This led to reduced lactic acid production (057 96 w/v) 
(Fig. 421) and the yeast cells in the treatment with L paracasei and (no penicillin G) did 
not loose viability as much as they did in the same treatment where the initial mash pH was 

5.6 (Fig 4.20). h this case, the bacteria m w  well and a higher concentration of lactic 
acid was produced (0.99 % wlv, after 72 h). This suggests that the effects caused by this 

weak organic acid, tactic acid, are more lethal to yeast than those caused by a strong 

inorganic acid. 
The maximum ethanol produced (96 vtv) was higher when the initial mash pH was 

5.6 (which reached a pH of 4.6, after 72 h) than when it was 4.5 (which reached a pH of 
3.6 after 72 h). When penicillin G was added, there was no loss in ethanol observed at 
either initial pH conditions (Fig, 4.22)). 



0 I5 30 45 60 75 
Time (h) 

Figure 4.17 SurvivaI of various Iactobadi (inoculated at - 107 CFUIml) in the presence 
of penicillin G (1.5 mg/L or 2,475 units/L) in wheat mash (pH 5.5) at 30° C. Symbols : 
Q, L plantc~rum; I, L paracasei; 0, tactobacilEus #3; *, L rhanmosus; and A* L 
fermentam 
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Figure 4.18 Concentrations of dissolved solids during the fermentation of wheat mash 
(pH 5.6 and 45) by yeast at 30" C. Symbols : P , Control (no bacteria and no penicillin 
G); I , Penicillin G at 1.5 mg/L (2,475 unitsll); O , L paracasei infected (inoculated) at - 107 CFU/ml+ penicillin G; , L prrracusei infected (inoculated) at - 10' CFUiml (no 
penicillin G). All treatments were inoculated witfi yeast at - 106 CFU/mL 
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Rgure 4.19 Viable L pamcasei in fermenting wheat mash (pH 5.6 and 4.5) at 304 C in 
the presence and absence of penicillin G. 



Figure 4.20 Growth of yeast during the fermentation of wheat mash (pH 5.6 and 4.5) at 
30' C. Symbols : Q , Conwl (no bacteria and no penicillin G); I , Penicillin G at 1.5 
mg/L (2,475 uniWL); 0 . L pmacasei infected (iioculated) at - 107 Wid + penicillin 
G; , L puracasei infected (inoculated) at - 107 CFUfml (no penkillin). AU treatments 
were inoculated with yeast at - 106 CFUId- 
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Figure 4.21 Concentration of lactic acid produced by L paracasei in the absence of 
penicillin G in fermenting wheat mash (pH 5.6 and 4.5) at 30' C. Both aeatments were 
inoculated with yeast at - 106 CFUImL 



Figure 4.22 Concentration of ethanol produced after fermentation of normal-gravity 
wheat mash (pH 5.6 and 4 3  at 300 C for 72 h by yeast. (A) Yeast alone; (B) Yeast + 
penicillin G; (C) Yeast + L pmucaei + penicillin G; (D) Yeast + L paracasei. Yeast was 
inoculated at - L O 6  CFUlml and L parmasei was inoculated at - 107 CFUIml. 



In the treatment where the mash was inoculated (contaminated) with the bacteria and 

penicillin G was not added, a 5.27 96 yield loss of ethanol was recorded at pH 5.6 and a 
3.34 46 yield loss was recorded at pH 4.5 (Fig. 4.22). The results show that penicillin G 
at a dose of 1.5 mglL,, a concentration used by industry, effectively controls L parucmei. 

4.2.2 Bactericidal effect of stabilized chlorine dioxide 
From the results, it is obvious that chlorine dioxide (ClOL) demonstrates a 

bactericidal effect against all the five species tested at mash pH 5.5 and lower. Only L 
plantarum and L fennennun grew (at pH 6.0) while no growth was observed with other 
species even at p H  6.0 for up to 30 h (Fig. 4.23). 

4.22.1 Dosage of chlorine dioxide to be used in fermentation mashes 
An experiment was conducted to determine if a higher dose of chlorine dioxide 

needs to be applied directly to the fermentation mash containing particulate materials. It is 
known that LOO ppm chlorine dioxide is sufficient to kill bacteria in clear media From the 
results (Table 4.13), 100 ppm chlorine dioxide, the lowest concentration tested, was 

chosen as an effective dose. 

4.2.2.2 Effect of stabilized chlorine dioxide on yeast growth 
The growth rate of yeast was reduced considerably in the presence of chlorine 

dioxide (100 ppm) (Fig. 4.24). Then, a similar experiment in duplicate was carried out 
using lower concentrations (0 pprn - control, 50,60,70,80 and 90 ppm), The resuIts 
(Fig. 4.25) show that a concentration of 50 ppm Cl@ led to a slight reduction of yeast 
growth rate, but the reduction was not extensive enough to negate 50 ppm as a suitable 
concentration for industrial application. 

The pattern of growth of yeast in Figure 4.24 suggested a period of incubation of 
media with C1@ prior to yeast inoculation that could lead to the dissipation of the 
compound and allow growth of yeast at a normal rate. These experiments were done by 

designating different periods of preincubation of the media (YPD broth at pH 5.5) with 100 

ppm of CIOz before yeast inoculation (0 - control, 1,2,3,4,5,6 and 12 h). All 
treatments were done in duplicate. Yeast inoculation and monitoring of its growth were 

done as mentioned in the Materials and Methods. Results (Fig. 426a and 4.26b) show 
that even a preincubation of the media with CI* for a period of 12 h was not snfficient to 
match the growth rate of yeast with that in the absence of CIQ. In a l l  the experiments, the 
pattern of carves appeared to be the same both in the presence and the absence of (30% 
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Figure 4.23 Effect of stabilized chlorine 
dioxide at 100 a m  on the mwth of various 
Iacto bacilli in broth ac30'' C at different 
pH levels. I , pH 4.0; 0, pH 4.5; A, pH 
5.0; v, pH 5.5; and *, pH 6.0. AN the 
6lIed symbois indicate 0 ppm chlorine dioxide 
controls while the presence of chlorine dioxide 
is indicated by open symbols. 

Time (h) 



Table 4.13 Concentration of lactic acid produced by L paracasei 
inocuIated at approximately 107 CFUIml ta 50 mt of wheat mash 
30' C (after 48 h) in the pfesence of stabilized chlorine dioxide at 
various levels. 

Chlorine dioxide Lacdc Acid Standard 
@Em (% WIV) I Deviation (a) 

Control (0) 1-10 
100 0.03 !::; 
200 0.00 0.00 
300 0.00 0.00 
400 0.00 0.00 
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Figure 4.24 Effect of stabilized c h l 0 ~ e  dioxide on the growth of S. cerevisiae (Alltech 
strain) in yeast extract-peptone-dexmose (YPD) broth of pH 5.5 at 30° C. 
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Figure 4.25 Growth of S. cerevisiae (AUtech strain) in YPD broth (pH 525) at 30' C as 
affected by various concentrations of stabilized chlorine dioxide. 0 . 0 ppm (control); . . 
50 pprn; 0.60 ppm; a .70 ppm; A, 80 ppm; and A, 90 ppm. 
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Figure 4% Effect of s t a b W  chlorine dioxide at 100 ppm on the growth of S. 
cereuisiae (Alltech suain) in YPD broth (pH 5 5 )  at 30' C. The media were preincubared 
with chiorhe dioxide before yeast inoculation for various time intervals as indicated 
Symbols : P , chlorine dioxide at 0 ppm (control); and 1, 100 ppm. 
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Figure 4.26b Effect of stabilized chlorine dioxide at 100 ppm on the growth of S. 
cerm'siae (Alltech strain) in YPD broth (pH 5.5) at 30' C. The media were preincuhted 
with chlorine dioxide before yeast inoculation for various time intervals as indicated. 
Symbols : 0 , chlorine dioxide at 0 ppm (control); and 1 ,100  ppm, 



The results (Fig. 4.26a and 4266) imply that chlorine dioxide remains stable in the 
medium for at least 12 h in the absence of yeast A pincubation period of the media with 

Cl@ for over 12 h is not likely to be adopted commercially by the ethanol industry. The 
pattern of growth observed in Figures 426a and 4.26b suggest the possibility of induction 
of resistance in S. cerevisiae to chlorine dioxide in the initial 8 - 10 h of growth in the 
presence of CL* (100 ppm). 

To study if resistance to chlorine dioxide was induced in S. cerevisiae, the cells 
were grown in YPD broth (pH 5.5) to exponential phase in the presence of 100 pprn Cl@ 
and the.se ceUs were inOcuIated into fresh media (YPD broth) both in the presence and 

absence of Cl@ (100 ppm) and the growth was monitored (Fig. 4.27). The same pattern 
was still observed (Fig. 4.27) indicating that there is no development of resistance to 
chlorine dioxide in S. cerevisiae. The organism adapts to the presence of CQ during the 

initial 8 - 10 h of growth, but resumes its normal rate of growth after the long lag. 

4.2.2.3 Bactericidal effect of chlorine dioxide at lower concentrations 
Concenmtions of C Q  lower than 100 pprn were tested to find the minimum 

concentration of ClOz that would inhibit the growth of L paracasei (since at a concentration 
of 50 ppm the growth of yeast is unaffected as seen in Figure 4.25). The result (Fig. 4.28) 
showed that the minimurn inhibitory concentration of (3% for L paracasei was 90 ppm. 
At 80 pprn, there was a slight increase in cell density after 30 h (4 Klett units). Chlorine 
dioxide at a concentration of 90 pprn would be the least concentration that could be used for 
effective control of this one strain of lactobacilli One manufacturer has indicated that 100 

pprn is required to achieve a 99.99 5% kill of both Pseudomonas aemgimsu and 

Srreptococcus spp. The work reported here has been coiiducted with organisms more 
relevant to the etbano1 fermentation industry. 

The bactericidal effects of CI@ at concenuatiom ranging from 0 - 90 pprn were 
then tested against the other four strains of Iactobacilli Diff int  lactobacilli differed in 

their ability to tolerate stabilized chlorine dioxide (Fig 4.29). L planzunun grew well even 
at 80 pprn Cl@, while krcwbucilIus #3 grew well at 70 ppm within 24 h These 
concentrations are inhibitory to culture yeast (Sacchmmyces cerevisiue). Therefore, 
stabilized chlorine dioxide (Cloz) is not suitable to conaoI lactobacilli during alcoholic 
fermentation of grain m a s k  The concentrations foyd to inhibit a l l  possible lactic 
bacteria (at Ieast 80 ppm) wouId affect yeast growth and reduce its vitality and rate of 
fermentation, 
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Figure 4.27 Effect of stabilized chlorine dioxide on the growth of S. cerevisiae 
(Alltech strain; pre-grown to Log phase in YPD broth (pH 5.5) with 100 ppm 
chlotine dioxide at 30° C) in the presence of 100 ppm chlorine dioxide in YPD broth 
(pH 5.5) at 30" C. SymboIs : 0 ,  No chlorine dioxide (control); and N , 
c h l 0 ~ e  dioxide at 100 ppm. 



Figure 428 GmMh of L pomcavi in the presence of various concentrations of 
stabilized c h l 0 ~ e  dioxide in MRS broth (pH 5.5) at 30' C. 
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Figure 4.29 Growth of various lactobacilli in the presence of different concentrations of 
stabilized chlorine dioxide in MRS broth (pH 55) at 30' C- Symbols are: Q, 0 ppm 
(control); V, 40 ppm; . -50 ppm: a, 60 ppm; A, 70 ppm; *, 80 ppm; and f, 90 
PPm. 



4.2.3 Bactericidal effect of nisin 
The effectiveness of nisin varies with each organism studied @g. 4.30). Niin 

even at a concentration of 100 mgL did not affect the growth of L paracasei and 

Lambacillus #3. In the case of L plantarum, the addition of nisin delayed growth for 
about 12 h even at 50 m@. However, growth resumed at close to the previous rate and L. 
rhamnow showed no growth until 30 h (even at 50 mg/L) after which growth resumed at 
all rhe concentrations of nisin used. L fennennun was totally inhibited by nisin at 50 
mg/L for up to 48 h (Fig. 4.30)- 

~isaplin@ (the nisin preparation used) was also tested against the test organism 
luteus (ATCC 4698). There was absolutely no growth of the organism in the presence of 
nis i .  at 50 mgCt for 72 h in Bond's broth at 30' C. This indicated that the preparation of 
nisin was effective. 

4.2.4 Bactericidal concentrations of urea hydrogen peroxide 
Urea hydrogen peroxide at a concenuatioa of 32 mM reduced the final lactic acid 

produced by L paracasei in unclatified wheat mash from 1.14 % wlv (in the control) to 0 

96 w/v (Table 4.14). Urea hydrogen peroxide in mash breaks down into urea and 
hydrogen peroxide. If yeast was added at the beginning or immediately after the addition 
of ma hydrogen peroxide, the hydrogen peroxide would be decomposed into water and 
molecular oxygen through the action of catalase (present in yeast) resulting in the loss of 
the bactericidal effect of hydrogen peroxide on contaminating lactobacilli. Therefore, it was 

necessary to preincubate the mash with urea hydrogen peroxide for a specified period prior 
to yeast inocuiation. This may be done during saccharitlcation of the mash or post- 
saccharification (in the fermentor), but must be done prior to yeast addition. For maximal 
bactericidal action on high levels of contaminating bacteria, a preincubation period for 2 h 
with urea hydrogen peroxide was required to kill up to 5 logs of bacteria and to reduce any 
chance of growth of these bacteria in new mash (Fig. 4.3 1). 

4.2.4.1 Bactericidal effect of urea hydrogen peroxide 
Application of urea hydrogen peroxide resulted in four to five log reductions in 

via& cell numbers of all five industrially important isolates of lactobacilli studied in 2 h 

mabk 4.15). The results indicate that urea hydrogen peroxide is effective in preventing the 

growfh of bacterial contaminants which cause reduction in ethanol yield 
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Figure 4.30 Effect of various 
coicentrations of nisin on Cive Merent 
strains of lactobacilli in MRS broth 
(pH 5.5') at 30' C. Symbols: 0, 0 mgL; 
1, 50 mg/L; 0 , 6 0  m a ;  a, 70mg/L; 
A, 80 m e ;  4,90 mg/L; and 0,100 m g L  
(A) h b a c i h  planranun, 
(B) L prucasei, (C) Lactobacillus ##3, 
@) L riuuMosm and (E) L fenrtpnrwn. 

Time (h) 



Table 4.14 The 48 h concentration of lactic acid produced by L paracasei 
inoculated at - 107 CFUlml into unclarired wheat mash at 30' C in the presence 
of urea hydrogen peroxide at various levels. 

Urea hydrogen peroxide (mmoledL) Lactic Acid (% w/v)* 
0 1.14 f 0.03 

2.1 1-10 f 0.01 
5.4 1.05 f 0.0 1 
10.7 1.01 f 0.03 
21.3 0.57 f 0.03 
32.1 0.00 f 0.00 
42.6 0.00 f 0.00 

1 Mean of triplicate samples f standard deviation 
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Figure 4.31 Viable numbers of L paracasei in unclarif~ed wheat mash (no added yeast) 
with added urea hydrogen peroxide over a 6 h incubation at 30' C. 



Table 4.15 The survival of various ktobacilli in unclarif'x'x wheat mash at 30" C in the 
presence of urea hydrogen peroxide at 32.1 mmoIes/L (the numbers are expressed in 
CFWml*). 

T i e  (h) L planfanun L pracarei &crobcu:iUus # 3 L rhamnosus L fermenturn 
- - - - - 

* All values are the mean of duplicate samples. Plating was done in triplicate. 



Further work (on UHP) indicated that application of 2 mM urea hydrogen peroxide 
was sfllcient to kill Gram-positive sugar and brewing contaminants Pediococcus 
damnosus (ATCC 29358), Pediococcus spp. @SO 77) and the Gram-negative 
contaminant, Zynwmonus anaerobia in MRS broth when inoculated at - 107 C F U i d  
Similarly, Block (1991) has reported that hydrogen peroxide is also Iethal to other bacterial 

species llke S. aureus, E coli, Streptococcus spp. and spore forming Bacillus spp. 
The bactericidal effectiveness of urea hydrogen peroxide did not differ sigtlificantiy 

when added as a powder or in the form of a filter-sterilized 40 % (wiv) solution in 
deionized water (Fig. 4.32). 

Batch fennentations of unclarified wheat mash contaminated with L paracasei at 
-107 CFUIml were carried out in the presence and absence of urea hydrogen peroxide. 
The details of the treatments are given in the Materials and Methods section. The 
fermentations were complete (less than 0.05 g/100 ml dissolved solids remaining) in 36 h 
in aU the treatments. Viable yeast counts reached a maximum during the fvst 24 h, 
Compared to the controls, the yeast viable numbers were higher in treatments with urea 

hydrogen peroxide and with hydrogen peroxide. The viable number of yeast cells wete the 
lowest in samples treated with bacteria, but where no agents were added 433). 

The viable bacterial numbers in mash dropped signifTcmtly from - 107 CFUIml to 
-2 x 102 CFUIml in the first 2 h when mated with urea hydrogen peroxide or hydrogen 

peroxide. Once the yeast was inoculated, remaining viable bacteria were able to reinitiate 
growth (Fig. 4.34) because the yeast rapidly decomposed the residual hydrogen peroxide 
in the medium using catalase enzyme. Even though the fermentation was effectively over at 
36 h, the bacteria continued to grow (Fig. 434) - presumably on substrates not used by 
yeast and on lytic products from yeast At 36 h, however, the bacterial numbers were too 

Iow to have caused significant reductions of ethanoi control of the fermentation at the 

critical time was effected by this practice, 
The lactic acid concentration in the medium where urea hydrogen peroxide was 

used was as low as that in the treatment with yeast alone with no bacteria (-0.03 % w/v) 
(Fig. 4.35). In the treatment where hydrogen peroxide alone was used. 0.05 46 (wiv) 
lactic acid was defected. But, in the medium where neither bactericidal agent was used 09 
% (wiv) lactic acid was found at the time when the ethanol production was maximi in a I I  

treatments. This level (0.9 % w/v) severely affected yeast viability (Fig. 4.33). 
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Figure 4.32 SUfYivaI of L pu~cusei  in wheat mash at 30' C in the presence of urea 
hydrogen peroxide. A 40 % wlv s01ation of urea hydrogen peroxide was made in sterile 
deionized water. 
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Figure 4.33 Growth of yeast during the fermentation of wheat mash at 30' C. Symbols : 
0 ,  Control (yeast + 30 mM urea, no bacteria); . , yeast + L puracasei + 30 m M  urea (no 
antirnimbial agent); 0 , yeast + urea hydrogen peroxide at 30 mM; , yeast + L 
parucusei + urea hydrogen peroxide at 30 mM; A, yeast + 30 mM Hz02 + 30 mM urea 
(added separately); A , yeast + L patacarei + 30 m M  Hz02 + 30 mM area (added 
separately). In all cases, yeast was inoculated at -106 CFUlml. Where added, L pmacasei 
was inoculated at -107 CFUlml, 
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Figure 4.34 Growth of L paracasei in fermenting wheat mash at 30' C in the presence 
and absence of hydrogen peroxide or urea hydrogen peroxide- All matmenu had yeast 
inoculated at - 106 C N i d  (at time 0 h). Urea hydrogen peroxide (30 mM) yields 30 
rnmofes/l of Hz02 and 30 mmoIes/L urea. 
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Figure 4.35 Concentration of lactic acid produced (after 36 h) by L paracasei in the 
presence and absence of urea hydrogen peroxide or hydrogen peroxide in fermenting whea~ 
mash at 30' C. A, Control (yeast + 30 m M  urea, no bacteria); B, yeast + L pmacasei + 30 
mM urea (no antimicrobial agent); C, yeast + urea hydrogen peroxide at 30 mM; D, yeast + 
L paracasei + urea hydrogen peroxide at 30 - E, yeast + 30 m M  Hz@ + 30 mM urea 
(added separately); F, yeast + L puracasei + 30 m M  H2@ + 30 mM urea (added 
separately). In al l  cases, yeast was inoculated at -106 CFU1m.L Where added, L pmacmei 
was inoculated at - lo7 CFU/mL Error bars indicate mean of duplicate values + standard 
deviation. 



The maximum concentrations of ethan01 produced in a l l  the treated famentors were 
not sigdkantly dif f iot  from each other, but in the fenneator that had neither urea 
hydrogen peroxide nor hydrogen peroxide to kill the L pmacasei, there was a 5.84 % 

reduction in o v e d  ethanol yield compared to the control with yeast done and no agents 
added (Fig. 4.36). 

4.2.4.2 Comparison of two other nitrogenous sources along with urea in 
combination with hydrogen peroxide in batch fermentation of 
unclarified wheat mosb 

Diammonium hydrogen phosphate (calIed DAP in the fermentation industry) and 
ammonium dihydmgen phosphate were compared to urea in combination with hydrogen 
peroxide to fmd if this combination had a similar effect as did urea hydmgea peroxide, The 

treatment details are outlined in the Mamiah and Methods section. 
Fermentations were complete (less than 0.05 #I00 ml dissolved solids remained) 

in 36 h in matments I through 3 where ma was used. This was because of the increased 
availability of assimilable nitrogen. As grain mashes are deficient in usable nitrogen, yeast 

growth and fermentation rate benefit from the added nitrogen source (urea). But in 
ueaunents 4 through 7 where either (m)H2EQ or (MI4hHP04 was used, the 
fermentation was not compIete even after 72 h (stuck), leaving - 0.5 g dissolved solids/100 
ml. The dissolved solids remaining were verified by HPLC analysis to be mainly gIucose. 

The viable batted numbers in mash dropped significantly from -107 CFUlrnl to 
-2 x lo2 CFUfml and - 8 x 102CFU/ml (where DAP was used as nitrogen source) in the 

2 h pre-incubation due to the presence of hydrogen peroxide in the absence of yeasf. Once 
the yeast was inoculated, swviving ktic bacteria stacted to grow because the yeast again 
decomposed the remaining hydrogen peroxide in the medium using the enzyme c a b .  In 
the treatments where (NH4)H2PQ and (NH4hEWQ were used, the growth rates of 
bacteria initially were higher compared to rhat in which urea was used, but the onset of a 
progressive death of these bacteria was observed after 36 h when (N&)H2P04 was used 
and after 48 h when DAP was used (FI~. 437). This might be attributed to the pH of the 

medium (the pH was 3.8 - 3.9) and/or the presence of phosphate anion. It can even be 
speculated that these organisms afoer a stress due to hydrogen peroxide are not able to adapt 

to a second stress (acidity). Nutrients may be Iimidng.as well by this time. 

Numbers of viable yeast ceIls reached a maximum during the first 24 h. The 
maximum viable numbers attained in the various treatments are shown in Fig, 438. 
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Figure 4.36 Concentration of ethanol after 36 h of fermentation of wheat mash by S. 
cerm'siae at 30a C. A, Contml (yeast + 30 mM urea, no bacteria); B, yeast + L paracmei 
+ 30 mM urea (no antimicrobial agent); C, yeast + area hydrogen peroxide at 30 mM, D, 
yeast + L paracarei + urea hydrogen peroxide at 30 m M  E, yeast + 30 mM Hz@ + 30 
mM urea (added separately); F, yeast + L pamcasei + 30 mM Hz02 + 30 mM urea (added 
separately). [a allcases, yeast was inoculated at -106 CFUfmI. Where added L pmacarei 
was inoculated at - 107 CFUlmL Error bars indicate mean of duplicate values k standard 
deviation, 
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Figure 437 Growth of L paracasei in fermenting wheat mash at 30' C in the presence of 
hydrogen peroxide at 30 m M  with different nitrogen sources (0,  ucea; I. ammonium 
dihydrogen phosphate; and 0, diamm'onium hydrogen phosphate). AU treatments had 
yeast inoculated at - 106 WId (at time 0 h). Approx. 107 bacteriahl had been 
inocalated at time - 2 h. Added ammonium dihydrogen phosphate (60 rnM) and DAP (30 
mM) yield the same amount of usable nitrogen as that yielded by 30 mM urea 
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Figure 4.38 Maximum viable cells of yeast during the fermentation of wheat mash at 30' 
C. A, Control (Yeast + 30 m M  urea, no bacteria); B, Yeast + 30 mM urea + 30 mM Hz@; 
C, Yeast + L paracasei + 30 mM urea + 30 mh4 Hz@; D. Yeast + 30 mM H2Q + 60 
m M  (NH4)H2EQ ; E, Yeast + L paracasei + 30 mM Hz02 + 60 mM (N'&)H2P04; F, 
Yeast + 30 mM Hz02 + 30 rnM (!W&HPO4; and G . Yeast + L puracmei + 30 mM 
Hz@ + 30 rnM (NH&HPQ. Yeast inoculated at - 1Qd CFU1m.I; L paraeasei inoculated 
at - 107 CFU1m.l. Error bars indicate +standard deviation of the mean of duplicate samples. 



In treatments where (M4)H2P04 or DAP was used, the maximum cell numbers 

attained were Iess (ca 140 million ceilslml) compared to the control and the treatments 

where urea was used (ca. 210 million ceWml) as the nitrogen source (either in the presence 

or absence of H202). This might have been due to the decrease in pH as a result of NEQ+ 
removal horn k media by yeast (leaving phosphate anion behind). The pH dropped to 

3.8 in DAP-fortifiid fermentation whereas it was approximately 4.5 in the control and in 

treatments with urea as the nitrogen some. When urea is used as a nitrogen some, no 

anion remains in the ferment in conmt to the likely situation with increased IeveIs of DM. 
In all treatments, the majority of ethanol production was achieved in 36 h. The 

maximum ethanol concentrations pmduced are shown in FLW 4.39. A 2.0 - 2.2 % 

reduction in overall ethanol yield was observed where (NH4)H2PO4 was used a s  nitrogen 

source in the absence and presence of bacteria respectively (compared to the control with 

yeast alone and no agents added). A 1.6 - 19 % overall yield reduction was observed 

where DAP was used as a nitrogen source in the absence and presence of bacteria 
respectively (Fig. 4-39). Urea appears to be a better source of nitrogen for this 

fermentation compared HI ammonium dihydrogen phosphate and diammonium phosphate 

PAP) when used in combination with hydrogen peroxide at 30 mmoles/l. Interestingly. 

the availability of urea hydrogen peroxide (in a solid and stable fom) makes it a good 

choice for use in the production of fuel and industrial ethanol. 

4.2.4.3 Decomposition and bactericidal effectiveness of urea hydrogen 
peroxide in the presence of particulate matter 

Hydrogen peroxide (released h m  the breakdown of urea hydrogen peroxide in the 

medium) is presumed to be quickly decomposed in the presence of particulate materiaIs. 

ResuIts have indicated that a dose of 2 mmolesll. of urea hydrogen peroxide is enough to 
kill L pmasei in a clear medium (MRS broth), whereas a much higher dose is needed in 
the presence of grain particles (Table 4.16). A similar experiment was conducted with 

c m e d  wheat mash obtained by removing mash particles by filtering mash through 

Wbatman no. 4 filter paper followed by a fdtration using diatomaceous earth, The clarified 
mash was then passed through a 0-45 p Versaflow capde (Gelman Sciences Ltd) and 

used It was then found that urea hydrogen peroxide at a dose as low as 2 rnmoledL killed 

L pmucmei when inoculated at -107 CFUfmL There was absolutely no bacterial growth 

observed for up to 48 h after addition of urea hydrogen peroxide. 
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Figure 4.39 Fial ethanol concentration after 48 h of fermentation of wheat mash at 30' 
C. A, Control (Yeast + 30 mM urea, no bacteria); B, Yeast + 30 mM urea + 30 mM Hz@; 
C, Yeast + L pracasei + 30 mM urea + 30 mM Hz@; D, Yeast + 30 mM H20y + 60 
mM (NH4)H2P04 ; E, Yeast + L pacasei + 30 mM Hz02 + 60 mM (NH4)H2EJC14; F, 
Yeast + 30 mM H202 + 30 mM (NH4hHPOq; and G , Yeast + L paracasei + 30 mM 
Hz02 + 30 mM (NH4)2HPO4. Yeast inoculated at -106 CFU/ml; L paracasei inoculated 
at -107 CFtJimI. Error bars indicate f staadard deviation of tbe mean of duplicate samples. 



Table 4.16 Survival of L paracasei in the presence and absence of  particulate maaer at 
two different doses of ma hydrogen peroxide. 

T k l ~  Ih) MRS broth MRS broth + 10 8 (wlv) wheat 
mash particles 

2 mmolesfl, 42.6 r n m o l d  2mmolescL 42.6 mole& 
o 1.07 x 107 1.02 x 107 1.06 x 107 1.08 x 107 

24 - - 837 x 108 127 x I@ 
Values are the mean of duphcate samples. The numbers are expressed as CbU/ml. A value 
of < 102 indicates that no colonies wen? seen on places. A dashkdiuta chat the Klett value 
remained at 0 indicating no regrowth of the bacteria (since media was clear, growth was 
measured by optical density when MRS broth was used). 



A similar experiment was also done using wet miller's corn mash received h m  

Williams Ethanol Sewices Inc. (Pekin, IL) which had approximately 1 96 w/v particulate 
material. It was found that 5 mM urea hydrogen peroxide reduced the numbers of L 
paracusei by 6 logs in two hours. At a higher concentration of 6 mM, the bacteria were 
killed totally in an hour (Fig. 4.40). It was pmiously found that urea hydrogen peroxide 
in wheat mash at a concentration of 40 mM was totally decomposed in 5 h. No significant 
differences were observed in the decomposition of hydrogen peroxide. whether added as 

Hz@ or as urea hydrogen peroxide (Fig. 4.41). 

4.2.4.4 NADH peroxidase activity 
Lactic acid bacteria lack the enzyme cabbe, but hydrogen peroxide when present 

in sublethal amounts, is decomposed by the enzyme NADH peroxidase. To determine that 
the activity of NADH peroxidase was lost in the absence of Hz@, the NADH peroxidase 
activities of al l  five selected indusaially-important IactobaciUi were assayed. Assays were 
performed on cultures grown in MRS broth at 30' C in screwcapped Erlenmeyer flasks 
flushed with sterile C@ gas, on cultures grown in MRS broth with Hz02 at a sublethal 
level (0.75 mM) and on cultures transferred to fresh MRS broth without Hz@ from those 
grown in the presence of 0.75 tnM H2Q. The fmal set of experiments were done to see if 
the activity is reduced in the absence of hydrogen peroxide. The data was subjected to 
Duncan's multiple range test (SAS Institute, Cary, NC). A significant increase (P = 0.05) 
in NADH peroxidase activity was observed with all five lactobacilli studied when grown 

in the presence of a sublethal concentration (0.75 mM) of Hz@ (Table 4.17). On 
transferring back to fresh MRS broth without Hz02 (for - 18 h), there was a simcant 
toss (P = 0.05) in the specific activity* The data however suggest that if a high enough 
concentration of H 2 Q  was applied, the organisms wodd be unable to adapt quickly 
enough to enzymatically degrade the antimicrobial at a meaningful rate, and all 
contaminants regardless of their ability to make catalase would be killed, The metabolic 
capability of these organisms for Hz02 degradation would not be high enough to avoid 
H2@-induced death. 
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Figun A40 Survival of L paracdsei (inoculated at - 107 CFU/ml) in wet miiler's corn 
mash in the presence of various concentrations of urea hydrogen peroxide at 300 C. VaIues 
~IE the means of two sepamte samples. mating (by membrane tilaation) was done in 
duplicate. 
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Figure 4.41 Decomposition of hydrogen peroxide'when applied as Hz02 ( O ) or in the 
fom of urea hydrogen peroxide ( ) in normal gravity wheat mash at 30' C, The error 
bars indicate f standard deviation obtained from triplicate analyses. 



Table A17 NADH peroxidase activity in various lactobacilli grown in MRS broth at 30' 
C in the presence and absence of hydrogen peroxide (0-75 mmold)  

S p e d i i  activity (pmol NADH oxidizedlmidmg total protein)* 
@- No hydrogen Hydrogen peroxlde No ~ Y W P  

peroxide (control) (0.75 mM) added peroxide * 
L P* 0.143 k 0.012C 0.233 f 0.03 la 0,159 f 0.018b 
L paracusei 0.093 i 0.02OC 0.241 f 0.023a 0.1 19 f 0.031b 
kurobctciUus # 3 0.217 f 0.012c 0.324 f 0.021a 0.215 f 0.030b 
L rhamnosus 0.05 1 + 0.029 0.347 f 0.018a 0.104 f 0.007b 
L fernenturn 0.062 f 0.003C 0.149 f 0.02la 0.052 f 0.009b 
In this case, ceUs were grown in MRS broth containing 0.75 mM H202 until late log 

phase and then transferred to k h  media for - 18 h to stationary phase without hydrogen 
peroxide. 
* The values given are the mean of three separate analyses + the standard deviation. 
The leuers in superscripts indicate the levels of significance (P = 0.05) between manents 
and not between organisms (based on Duncan's multiple range test). Means with the same 
letter ~IE not significantly different. 



5. DISCUSSION 

5.1 Effects of lactobacilli, lactic acid and acetic acid on yeast growth and 
alcohol production 
The occurrence of bacterial contamination is unavoidable in an industriaI scale 

production of ethanol from starch or sup-based substrates. As mentioned by Makanjuola 
et al. (1992). studies on the direct effects of contamination are not easily carried out The 
differences between and within batches of raw materials will produce differences in 
chemical composition and measured fermentation parameters. Raw materials themselves 
may harbour contaminating bacteria which during fermentation may compete with yeasts 

for growth promoting nutrients. In this study, the effects of five contaminating lactobacilli 
were studied in conditions where a l l  factors were conttolled. 

The differences observed in fermentation rates between the treatments containing L 
plunmnun and the conuols with no bacterial inoculation were minimal (Fig. 4.2). Although 
a slight change in the rate of sugar urdimion was observed when initial bacterial numbers 
were high, ail fermentations completed (to constant specific gravity). This suggests that 

coflocculation (Makanjuola et al., 1992) as a reason for incomplete utibation of 
carbohydrates and loss of ethanol yieId due to high levels of bacterial contamination was 

not a factor here. When cofldat ion exists, yeast are unable to utilize a l l  the fermentable 
carbohydrates in the mash which results in a "stuck" fermentation, residual unfermented 
sugars, and a concomitant overall loss (up to 17 % ) of ethanol (Makanjuola et ai., 1992). 
In the present study. less than 0.1 96 fermentable sugars remained at the end of these 

fermentations, and this obviously ruled out cofloccnlation, 
The bacteria when inoculated done at - 107 CFUIml did not consume more than 1 

g/lOO mi of mash dissdved solids (Fig. 4.2) for their growth and metabolism. This 
implies that in most cases, the homofermentative lactobacilli make Iess than 1 % w/v Iactic 
acid under these conditions and that some growth factor other than sugar Iimirs further 
growth of lactic acid bacteria in mash. It follows that most glucose wodd be available for 
conversion to ethanol by yeast as suggested by Chin and Iugledew (1994). However, 



when two organisms grow together in the same medium, there is always a competition 
between them for certain nutrients. 'Ihese bacteria anaerobically metabolise giucose to 
lactic acid to derive energy for growth and cell maintenance, and it is the production of 
lactic acid which leads to a reduction in overall ethanol yield (since every mole of lactic acid 
formed is at the expense of production of one mole of ethanol). 

Since they did not die off as fast as the other organisms, L paracasei and 
Luctobaciilus #3 appear to be the most tolerant to ethanol of the five strains of lactobacilli 
studied (Fig. 4.3). These two strains, both recent industrial isolates, may be particularly 
suited to the stressful conditions in an alcohol fermentation. This suppons the fmding of 
Bryan-Jones (1975). When the bacteria were grown without yeast in the mash, their 

growth rates were initially slightly lower than that observed when they were grown in the 
presence of yeast. 'Ibis might be attributed to the fact that these bacteria benefit from 
undetermined growth factors excreted by the yeast during its growth (Young et aL. 1956; 

KandIer and Weiss, 1986; Lemafe~quier, 1987). 

In contaminated yeast fennentations, the final lactic acid concentration measured at 
72 h is proportional to the number of new bacterial cells produced Once the maximum 
population is achieved, it is followed by the death of a proportion of the cells while the 
survivors still metabolise glucose for cell maintenance. Therefore. when high numbers of 
cells are produced, higher rates of lactic acid production occur. Under anaerobic 

conditions, these bacteria derive energy by fermenting carbohydrates to lactic acid 

(homofermentative strains), or to a mixture of end products such as ethanol, C@, lactic 
acid and minor end products Iike acetic acid (heternfermentative strains). 

Decreases in maximum yeast growth, final ethanol concenuation, and in f d  pH 
of the medium aIso were seen as the inoculum of lactobacilli increased This is in 

agreement with the results obtained by Makanjuola et ai. (1992). During fermentation, the 

concentrations of lactic acid achieved increased as the levels of bacteria inocuIamt 
increased. This was also observed by other authors (Barbour and Priest, 1988; 

Makanjuola et al., 1992). In fact, both final Iactic acid concentrations and demases in 

ethanol yields at end fermentation were directly correlated to initial numbers of viable 
bacteria in mash. This is the first time that a linear relationship between these parameters 
has been reported Likewise, it is seen that a relationship exists between the metabolic 
pathways (ktem vs hornofementation), growth rates and Iactic acid concentratioas 
produced by these bacteria. Growth of the heterofementative strain as indirectly measured 
by optical density in MRS broth was less than that of homofementative strains which, via 

glycoIysis, produce twice the amount of ATP per molecule of glucose fermented This 
agrees with the theory on the relationship of ATP to biomass in anaerobically grown 



bacteria; and twice the weight of Iactic acid is ptoduced by homofermentative M c  acid 

bacteria than heterofmentative strains (GottschaIk, 199)- 
As little as 1 96 decrease in overall ethanol yield is highly significant to distillers of 

hd alcohol since their profit margins are very m w  (h4akanjuoIa er d, 1992). In large 

plants with outputs of 400 - 1 I00 million L ethanol/yr, such a loss wodd reduce income by 

$ 1  - 3 million annually. In the study reported here, decleases of over 2 % in overall 
ethanol yield w m  observed with L parucasei and Lacto&zcillrcs # 3, even when these 

bacteria were inoculated into mash at Iow kveIs of 105 CFU/mL This may be because 
they did not die off towards end fermentation as did the other strains (Fig. 4.3). These 
observations are in contrast to those repotted by D o h  (1979) and Barbour and Riest 
(1988) for industrial scale fermentations. Makanjuola et al. ( 1992) have tepmd a 
substantial (2 1 46) reduction in ethanol yield when high numbers (1.6 x L O 8  CWmL) of 

contaminant bacteria were present in the mash 

In the case of L fennennun, a heteroferrnentative organism, the reduction in 

ethanol production was comparable (when inoculated at - 106 CFUfrnl) with 
homofermentative organisms (L plantmum and L rkamnosus)), although the 6naI lactic 
acid concentration was not as high as those achieved by homofermentative strains. This 

could be due to the production of 0.03 to 0.05 % wlv acetic acid by L finnenntm (the 

actual amount depended on the inoculation Level). Acetic acid is more mxic to yeast than 

lactic acid since its pKa value is higher than hat of Iactic acid. It is the undissociated form 
of the organic acid that is responsiile for antimicrobial activity (Baird-Parker, 1980). A 

higher concentration of the undissociated form of acetic acid exisls at the pH vahes of 
mash fermentation (pH 5.0 - 5.5). The two acids have ken shown to have a synergistic 
negative effect on yeast growth and metabolism (Moon, 1983). It has also been ceponed 
that ethanol accentuates the inhibitory effect of acetic acid on fermentation by yeast 

(Pampulha and Loureiro.Dias, 1989). The presence of Iactic acid and acetic acid dong 
with ethanol would act synergistically on yeast growth and metabolism resulting in a loss in 

o v d  ethanol yield. It has been reported that acetic acid, in its undissociated form, causes 
an increased expenditure of energy (ATP) for cell maintenance (MaioreIIa er uf., 1983). 
However, data for the action of acetic acid and lactic aEid on yeasts show growth inhibition 
different from that predictabie on the basis of dissociation constants, indicating that these 

acids may not act in the same manner on the yeast cell (Moon, 1983). 
Lactobacilli are extremely fastidious, They nxph a variety of growth factors like 

nucIeotides, amino acids and viramins (KandIer and Weiss, 1986)- Biotin and vitamin B 12 
are required by a few strains (m, 1%8; Kandter and We&, 1986)- Biotin is a h  an 
essential growth factor for Saccharomyces ceraisiae (Koser, 1968). Therefore, these 



bacteria, when present in high numbers, could quickly scavenge from the medium large 

amounts of the essential growth factors cequired by the yeast. S i e  the growth rates of 

these selected lactobacilli are faster than yeast (S. cerevisiae) and lactic acid bacteria found 

in b~weries and the food industry, removal of essential growth factors could result in 

reduction in yeast growth rate and catalytic activity. This would reduce the frnal ethanol 

yield. Although the growth rates of the selected lactobacilli are faster than other lactic acid 

bacteria, these bacteria could not be grouped as 'ferocious' lactobacilli (Boulton et al., 
1996) that commonly occur in winemaking, since they did not produce large amounts of 

acetic acid rather than Lactic acid. Dm to the ~lative sizes of yeast and lactobacilli, it is 

likely however that 50 - 100 foId more lactobacilli than yeast would be needed before a real 

competitive effect wouid be seen. 

It has been reported that there can be a sign%cant loss in glucoamyIase activity 

when the pH of mash undergoing simultaneous saccharification and fermentation falls 

below 3.5 (Chin and Ingledew, 1994). The lowest pH observed in the present study was 

3.9. The glucoamyiase (Allcoholase ll) at pH 4.0 retained 91 percent of its activity. 

Therefore, the teduction of pH in the medium due to lactic acid production was not a factor 

likely to affect the saccharification process in this work, 

The results obtained from the studies on the effects of lactobacilli on yeast growth 

and fermentation indicate that apart from the diversion of small amounts (Iess than I % 

WIV) of fermentable sugar for growth of these bacteria, the production and effects of lactic 

acid and a suspected competition by these bacteria with yeast for essentid nutrients 

(unstudied) are the important rearom for the reduction in yeast growth, metabolism and 

ultimately the final ethanol yieId 

The endproducts of metabolisn by tactobacilli lactic acid and acetic acid are 
inhibitory to yeast growth, The effects of these two weak acids on yeast growth and 

fermentation and theii modes of action on yeast were studied at 30' C using a chemically 

defined medium with glucose (2 % wlv) as the carbon source, Chemically defined media 

was used because the growth of yeast is always faster in complex than in minima1 media 

Moreover, the presence of components such as yeast extract in yeast exmct-peptone- 

dextrose (YEPD) broth offers some protection against stress conditions. It is difficuIt (and 

in some cases impossible) to quantitate the uptake of substrates in complex media and to 

study the effects of stress conditions. Use of chemically defined media overcomes many of 

the limitations of complex media, although growth rates are reduced and are not 
representative of industrial fermentations. 

Minimum iahibitory concentrations (MI0 of acetic acid and lactic acid for both 

yeast saains were I00 mM and 278 mM, respectively. Stratford and Anslow (1998) have 



reported a concentration of90 mM acetic acid to be the MIC for S. cerevisiae X218(FlB. 

Similar values for acetic acid were reported by MaioFella et al. (1983). Acetic acid is 

inhibitory to yeast at a much lower concentration than lactic acid. At a given acidic pH 
(became of the higher pK, value of axtic acid), there is more undissociated acetic acid 

present than would be found with an equal ~0nCenhation of lactic acid (Lindgren and 

Dobrogosz, 1990). The u n e  . . forms of these acids being uncharged and lipophilic 
in nature, diffuse into yeast cells through the cell membme Once inside, these acids 

because of the higher inmacellular pH, dissociate producing hydrogen ions and thereby 

cause changes in yeast metabolic activity (Hunter and Segel, 1973; iCasbket, 1987). 
Even in the presence of inaeasing co~lce~mations of acetic acid in the medium, a l l  

of the glucose was still consumed and the same lev& of maximum ethanol were produced 

in 24 h by both yeast strains studied (Fig, 4.10) - aithough a decrease was observed in total 

yeast biomass. This can be explained by rhe classic weak acid theory that undissociated 
moledes freely diffuse though the cell membrane and dissociate in the cytoplasm due to 

the higher intracelldar pH, thereby acidifying the cytoplasm. The cell, however, tries to 

maintain its internal pH homeostasis by pumping out the excess protons via the H+ 
translocating plasma membrane ATPase which u h  ATP for its activity. The 

interference of acetic acid therefore results in an increased ATP requirement for cell 

maintenance (MaioreUa et al., 1983). In other words, the ATP required for production of 

cell mass is channeued for maintenance of pH homeostasis inside the cell rather than for 
growth. This causes a reduction in the total biomass produced According to van der Rest 

et al. (1993, ATPase activity is estimated to consume 10 - 15 % of the ATP produced 

during yeast growth and has a reaction stoichiometry of one proton extruded per rnoIecule 

of A'IP hydrolyzed. 

The inhibitory activity of acetic and lactic acid in the medium is determined by the 

pH of the medium, the dissociation constants of the acids and by their molar 
concentrations. These values are given in Table 4-4. Taking this into consideration, 

different effects are observed for glucose uptake and &an01 production in the two yeast 

strains as caused by acetic and lactic acids, although both the acids have similar molar 

concentrations of undissociM acid in the medium. Studies on the mode of action of these 

acids indicate that they may not act in the same manner on the celL For example, MaioreRa 
et al. (1983) reported rhat acetic acid interfince with yeast metabolism d t e d  in an 
increase in ATP requirement for cell maintenance w6ereas the mechanism of lactic acid 
inhibition was probably different Data for the action of acetic, k t i c  and propionic acids 
on yeasts showed growth inhihition diffe~ent h m  that predictable on the basis of 



dissociation constants indicating that these acids may not act in the same manner (Moon, 
1983). 

Higher maximum concentrations of acetic acid and lactic acid were chosen for strain 
ATCC 26602 (TabIe 3.1 b) because this strain was capable of growth at higher 
concenttations of both these acids compared to the AUtech strain (although the MIC of both 
the acids for both strains were similar). If disproportionate inhibitory concentrations of the 

two acids are used, the ratios will shift to one end of the specmun, thus appearing to be 
additive (Rubin, 1978). This is probably why it has been reported that acetic acid and lactic 

UUUWlL acid when present together exert an additive inhibitory effect on Salmonella gall' 
(Sorells and Speck, 1970). 

It is difficult to demonstrate that two or more agents act synergistically or 
antagonistically on the specific growth rate of a culture. Only by very careful experimental 
design can such synergy be assessed. Response surface central composite design is one 
way of detecting interactions between two or more agents. However, when concentrations 
of weak acids are set at particular values, the proportions of dissociated and undiiiated 
weak acid at any given pH will vary depending upon the dissociation constant of the acid 
In this study, the interactive effect of acetic acid and lactic acid on the specific growth rate 
of S. cerevisiae was evaluated based on the concenaations of these acids (at particular 
values) in the medium (i.e. fluctuations in the molecular species weren't taken into 
consiberation). The results obtained indicate the presence of a signif~cant interaction 
between acetic acid and lactic acid in the reduction of the specific growth rates of both 
strains of S. cerevisioe (P I0.001) indicating synergy (Fig. 4.12). This provides the 
explanation to a phenomenon noted in the Fuel alcohol industry that small concentrations of 
acetic acid (ie. - 0.05 % W/V) have an enormous inhibitory effect on fermentation of 
mashes which already have significant levels of lactic acid produced by contaminating lactic 
acid bacteria The industrial practices of backsetting (containing Iactic acid) and the use of 
process condensate (containing acetic acid) exacerbate this problem (Ingledew, 1993). 

5.1.1 Mechanism of action of acetic and lactic acid on S. cerevisiae 

Weak organic acids such as acetic (pKa = 4.74) and Iactic (pKa = 3.86) acids inhibit 
the growth of both bacteria and fungi. In solution, weak acids exist in a pHdependent 
equilibrium between the dissociated and undissociated stata The inhibition effected by 
weak acids is enhanced by low pH because this favours the uadissociated state of the 
moIecule. Uncharged (undissociated) molecules are freely permeable across the plasma 



membrane. The weak undissociated acids diffuse into the cell until equilibrium is reached 

in accordance with the pH gradient across the membrane (see Fig. 5.1 and 5.2 for 
diagramatic representations at pH 2.5 and 4.0). Once inside the cell, due to a higher 
intracellular pH (pH& the undissoci;lted molecule will at least in part dissociate reflllting in 
the release of charged anions and protons and a reduction in cytoplasmic pH. As a result, a 
number of studies have implied that inhibition of yeast growth could be due to disruption of 
pHi homeostasis by factors such as low pH (O'Hara et al., 1989), ethanol (Cartwright et 

al., 1986) and weak acids (Salmond et al., 1984). Moreover, many studies have suggested 
that the reduction in pHi is the principle inhl'bitory action of weak acids (Salmond et al., 
1984; Cole & Keenan, 1987; Booth & Kroll, 1989). 

In this study, however, no significant intracellular acidif~cation was observed in the 
pfesence of increasing concentrations of acetic acid compared to the control with no acetic 
acid in the medium (Fig. 4.13). The maximum concentration of acetic acid used in the 
study was 41.7 mM. Fernandes et al. (1999) have reported that concentrations above 200 
mM acetic acid began to induce a demonstrable intracellular acidification in S. cerevisiae . 
Maintenance of pHi homeostasis can be energetically expensive, resulting in the membrane 
H+-ATPase consuming between 40 - 60 % of total ceUuIar ATP (Holyoak et al., 1996). 

Therefore, the maintenance of p& homeostasis in the price of weak acids (acetic acid) 
may deplete cellular ATP levels signK1cantly. Such a depletion of ATP restricts growth. 

Thai explains why the production of maximum biomass decreased as the concentrations of 
acetic acid in the medium increased (Table 4.3), although all the glucose was depleted h m  
the medium. Reduction in growth of S. cereyi3iue by acetic acid is due to the increased 
energy that the cell uses to pump out the excess protons using H+-ATPase of the plasma 
membrane in order to maintain the pHi homeostasis ofthe cell. Tbis is e&ht from the 
inc~ea~e in the plasma membrane H+-ATPase activity with increasing concentrations of 
acetic acid (Fig. 4.15). Maiorella et al. (1983) has reported that the presence of acetic acid 

in the medium causes an increased expenditure of energy in the form of ATP for cell 
maintenance in cerevisiae. 

Lactic acid, on the other hand, when present at higher concentrations (2 0.4 8 wlv) 
in the medium reduced the intracelldar pH significantly (Fig. 4.14). It is generally 
accepted that low cytoplasmic pH is detrimental to the microbial cell. Changes in 
intracellular pH are believed to be important in controlling the cell cycIe, and rates of DNA 
and RNA synthesis appear to increase with higher pHi within the normal physiological 
range (Madshus, 1988). In addition, key enzymes of glycolysis and gluconeogenesis are 
believed to be regdated by pHi. As key enzymes in gIycolysis and giuconeogenesis are 



Acetic add ( p h  = 4.74) 
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Figure 5.1 An illustration of the concentrations of anions and undissociated acids that 
would be present in the medium and inside the cell (based on the p b t  and pH& when an 
equal concentration (40 mM) of ;retic acid or lactic acid is present in the medium (pH 2.5). 
The concentrations were caIcuIated based on the Henderson-Hasselbach equation. A 
sampIe calculation is shown in appendix L Cfhe concentfations do not remain steady since 
there is a constant pumping out of the excess protons (by H+-ATPase) to raise the pHi 
resulting in funher penetration of weak acid molecules into the ceII that reacidify the 
cytopIasm). 



Figure 5.2 An illustration of the concentrations of anions and undissociated acids that 
would be present iu the medium and inside rbe cell (based on the p& and ppHid when an 
equal concentmion (40 mM) of acetic acid or lactic acid is present in the medium (pH 4.0). 
The concentrations were calculated based on the Henderson-hlbach equation. 



regulated by cascade reactions of c-AMP dependent protein bases (e-g. 
phosphohctokinase, phosphory1ase. fructose 1,6-bisphosphatase), the CAMP pIays an 
important rote in these regulations, Moreover, c-AMP can be regulated by pHi (Imai et at., 

1994). When weak-acid preservatives are present in the medium, the plasma membrane 
H+-ATPase is of greater importance (in yeasts) if the principal inhibitory effect of the 
we&-acids is to reduce pHi. The membrane H+-ATPase couples ATP hydrolysis to the 
expulsion of protons, generating a proton gradient (Serrano, 1984) (Fig. 53). This 
mmembrane proton gradient is essential for active transport of nutrients and thus growth 
(Eddy, 1982). 

The change in the intracelldar pH observed at higher concentrations of M c  acid 
could therefore lead to disruptions in the transmembrane proton gradient (since there is a 
decrease in the activity of the plasma membrane H+-ATPase), thereby causing an inhibition 
of nutrient uptake. The internal pH values codd decrease to values in the range at which 
phospbofructokinase is sensitive (Krebs et al., 1983) subsequently causing inhibition of 
glycolysis that Ieads to a fall in the concentration of ATP in the cell ultimately resulting in 
restriction of growth. Intracellular acidification (Fig 4.14) and a probable disruption of 
transmembrane proton gradient caused by the reduction in membrane H+-ATPase activity 
(Fig. 4.16) could be the reasons for the cessation of alcohol production in the presence of 
lactic acid (0.6 % wlv) in the medium (Fig. 4.1 I). 

The change. in the activity of the plasma membrane H+-ATPase could be due to he  
alteration of plasma membrane Lipid composition Lipids are essential for the catalytic 
activity of many rnembrane-bound enzymes and changes in the lipid composition can 
significantly alter the activity of proteins in the plasma membrane (van der Rest er al., 
1995). For this reason. the fatty acid composition of the cell membrane of both yeast 
strains (Alltech and ATCC 26602; in the mid-exponential phase of growth) in the pmnce 
of 0.5 % wlv Lactic acid and 025 % wiv acetic acid (concentrations which sigtuficantly 
affected the membrane H+-ATPase activity) was determined and compared to the control 
with no acetic acid or tactic acid added to the medium. 

The fauy acid composition of both S. cerevisiae strains was dtered by the presence 
of lactic acid (0.5 % wlv) in the medium. There was a significant decrease in unsaturated 
fm acid residues flabIe 4.12). Lipids can potentially activate plasma membrane H+- 
ATPase that has an absolute requirement for the lipids in order to function (Serrano et al., 
1988), and that enzyme activity is a Function of the type of lipid incorporated. Moditication 
in the fatty acid composition likely will cause changes to the plasma membrane fluidity. 

Unsartnated fatty acids play an important role in keeping cell membrane fluidity and 



ADP + Pi 

Figure 5.3 Media and cytoplasmic weak-acidhion equilibria Undissociated acid (HA) 
freely d8uses through the plasma membrane. Inside the cell, HA dissociates to H+ and A*. 
Charged anions (A*) and protons (K+) are retained within the cell; cytoplasmic protons are 
expelled by the membrane bound H+-ATPase. This may result in fiather change in 
dissociation of acetic or Iactic acid in the medium. (Adapted from Lambert and Stratford. 
1999). 



f k t i o n .  An increase in unsaturated fatty acyl residues results in an increase in membrane 
fluidity; and the presence of itlMeased u~l~aturated residues increases the stability of 
membrane-bound enzymes momas  et al., 1978). This is probably why a signrficant 
decrease in the plasma membrane H+-A'IPase activity was observed when the ceils were 
grown in the presence of 0.5 % w/v lactic acid (Fig. 4.16). Thus, the presence of lactic 
acid at higher concentrations affects the pIasma membrane fluidity which results in 

decreasing the stability and activity of H+-ATPase. This leads to rhe inability of the yeast 
cell to maintain its internal pH, the disruption of proton gradient across the membrane 
W y  leading to the disruption of many physiological functions essential for cell growth 
The &ts from this work on the differences in intracellular pH values, plasma membrane 
H+-ATPase activity and the membrane fatty acid composition indicate that although both 
lactic acid and acetic acid are short chain weak acids, the mode of inhibition of yeast by 
both these acids is not similar. 

5.2 Management of lactobacilli in yeast-catalyzed ethanol production 
Management of lactobacilli in the industry is usually achieved with the use of 

antibiotics either as single antibiotics or as a mixture of antibiotics. Penicillin G is the 

predominantly used antibiotic. Due to the emerging problem of antibiotic resistance. it was 
decided to evaluate a few non-antibiotic antimicrobials such as stabilized chlorine dioxide 
and hydrogen peroxide/urea hydrogen peroxide, and nisin for use to control lactobacilli 
during fermentation. 

Stabilized chlorine dioxide does not appear to be very effective against the selected 
commercial saains of lactobacilli with fast growth rates and high ethanol tolerance, since 
the concenvations requhd to control these bacteria are also inhibitory to the culture yeast 

resulting in poor fermentation performance by the yeast. 

The chemical reaction as to how chlorine dioxide is generated from the stabilized 
form is as follows: 

5 NaCla  + 4 H+ * 4 C1@ (gas) + 5 Na+ + C1- + 2 Hz0 
The acidification of sodium chlorite, (NaCI02) generates chlorine dioxide (CIOr). Once the 
gas is gone it leaves behind two by-products, salt and water. At higher temperatures, the 
solution destabiik by faster reIease of CI@ gas. This results in less effective gas and a 
more corrosive solution. For best results, chlorine dioxide has to be used at temperatures 
less than 27' C (Johnson, 1997). Unfortunately, this eliminates the use of stabilized (302 
in saccharification tanks where the temperatare is maintained at 60'' C. However, chlorine 
dioxide can be used to sanitize equipment such as heat exchangers, surge tanks, and 
fixmentors. 



With respect to nisin, its addition to the medium at 50 mg/L or 100 mg/L delayed 

the growth of some lactobacilli (L plrmtmwn and L rhamnosus). Different strains of 

lactobacilli showed differences in their sensitivities to nisin (Fig. 430). The lactobacilli 

that resumed growth after severid hours may have developed mistance induced by the 

presence of nisin in the medium. During the induction with nisin, the cells produce an 
anionic, phosphatecontaining plysaccharide with subunits of rhamnose and galactose and 

this will protect sensitive cells against the bactericidal action of nisin (Breuer and Radler, 

19%). 

It has been reported by Faia and Radler (1990) that L casei (now called L 
pzmcaseq is very resistant to nisin and wodd be killed only at extremely high 

concentrations of nisin (>2,000 units/cnI). Application of nisin at these concentrations 

would be far too expensive for use in the fuel alcohol industry. Ogden et al. (1988) have 

already indicated that at the price o f c o m m e d  grade nisin (Niiplin) of - f 186Kg (109 

units), its addition at 100 units/& to fermentations or beer would be too expensive. 

Therefore, nisin is not a good choice as an antimimbial to be used in fermentations for fuel 

ethanol production. 

Urea hydrogen peroxide (which eIiminates rhe risk of emergence of antibiotic- 
resistant microorganisms) appears to be an eco-hndly agent to effectively manage lactic 

acid bacteria and other bacterial contaminants encountered during the production of 

industrial or fuel ethanol, 

Batch fermentations were complete by 36 h in all cases in the experiments done to 
study the effect of urea hydrogen peroxide on mashes deliberately contaminated with L 
paracasei. This was due to the increased availability of a s i d a b l e  nitrogen under all 

conditions. As grain mashes in genera1 are deficient in usable nitrogen (IngIedew, 1999). 

both yeast growth and fermentation rate benefit i r k  the added urea whether it is added as 

free urea or as urea hydrogen peroxide. In samples with bacteria but without the agents, 

the yeast viability decreased signihntly towards the end of fermentation. This is tikely 

due to the competition for nutrients by the bacteria as wen as the production of lactic acid 

which at levels of 0.8 % wlv begin to stress the yeast. In experiments done to compare 

diammonium hydrogen phosphate @AP), and ammonium dihydrogen phosphate with urea 

(aIl added to provide the yeast with equal amounts of nitrogen) along with hydrogen 
peroxide, urea appeared to be a better source of nitrogen in combination with hydrogen 

peroxide at 30 mM. Interestingly, the availability of urea hydrogen peroxide (in a solid and 

stable fom) & this compound a good choice for use in the production of industrial or 
fuel ethanol The use of urea hydrogen peroxide for fuel dcohol production by 



fermentation has now been patented both in the USA (Ingledew et al., 1999) and in Canada 
(Ingledew et al., 2000). 

Hydrogen peroxide is a nahual product of the action of some tlavoprotein oxidases 

of lactic acid bacteria with oxygen and it may accumulate in "aerobic" culaures of many 

strains. In lactococci sensitive to hydrogen perorride, pre-exposure to a sublethal 

concentration of tbe compound dowed the organism to grow in the W n c e  of a lethal 

concentration of hydrogen peroxide (Condon, 1987). Condon (1987) observed a 

simultaneous induction of NADH peroxidase and, to a Iesser extent, of NADH oxidase. 

Since lactic acid bacteria lack catalase (due to their inability t synthesize hemoporphyrins), 

they use NADH poxidase to rid themselves of hydrogen peroxide when it is present at 

sublethal levels (Andes et al., 1970; Piard and Desmazeaud, 199 1). NADH peroxidase 

catalyzes the following reaction. 

NADH + H+ + Hz02 * 2H20 + NAD 
As the activity of NADH peroxidase is rapidly lost when the organism grows in the 

absence of H2QL (Table 4.17). the risk of resistant mutants (organisms that would 

constitutively express high levels of NADH peroxidase) is reduced. 

Urea hydrogen peroxide a h  offers the advantages of providing yeast with a 

nitrogen source (in the form of urea) and a supply of oxygen (from the bleakdown of 

hydrogen peroxide into water and oxygen) - in addition to its bactericidal activity against 

lactic bacteria and other microbial contaminants. ''Stuck" or sluggish fermentations, 

common in the alcohol industry, are caused by inadequate levels of yeast nutrients that lead 

to a cessation of yeast growth with a concomitant reduction in ethanol yield (Ingledew, 

1995). Two such nutrients usually deficient in fermentation mashes arr: usabie 

(assimilable) nitrogen and oxygen Use of urea hydrogen peroxide serves to prevent 

"sluggish" or "stucK' fermentations that would Iead to reduction in alcohol yields. 

Yeasts used in alcohol production are not proteolytic and can use only low 

molecular weight nitrogenous compounds such as  ammonium ion, urea, amino acids or 

dipeptides (Ingledew, 1993; Patterson and IngIedew, 1999). Urea and liquid ammonia are 

commonly used in the fuel alcohol industry as inexpensive sources of nitrogen for yeast 

(Ingledew, 1995); diammonium phosphate is often added to must in wine making. In 
addition to a source of usable nitrogen, oxygen is q u i d  in small quantities for the 

synthesis of unsaturated fatty acids and sterols which are both essential components of the 
yeast cell membrane (Andreasen and Stier, 1954). Unfortunately, oxygen is not availabIe 
at optima1 levels due to indusaiaI practices and its lower solubility in mashes (Tngledew, 

1995). Deticiencies of oxygen and usabk nitrogen a h  affect the ethanol tolerance of 



yeast. Judicious use of nubients can lead to the production of more than 23 9b vlv ethanol 
by commercial yeast strains in batch fermentation (Thomas et al., 1993). 

Urea hydrogen peroxide leaves no residues when added to the fermentation 
medium. The pH of the mash is not affected as it would be if ammonium salts were 
employed, nor are there residues in the whole or thin stillage. Moreover, urea hydrogen 
peroxide at the dose recommended can also eliminate a wide variety of contaminating 
bacteria that are present in low levels in the mash, and eliminate the use of yeast foods (N- 
containing), oxygen, and antibiotics. 

Urea hydrogen peroxide proves to be an ideal additive for use in the production of 
industrial or fuel ethanol A dose of 2 mmoWL, urea hydrogen peroxide or hydrogen 
peroxide can be used as a Wec tan t  only in mashes free of particulate materials. 
Supplementing the mash with yeast numents would still be required For mashes with 
particulates, - 32 mmoIes of urea hydrogen peroxide (or hydrogen peroxide)/L is required 
to disinfect the mash. At this concentration, urea hydrogen peroxide provides all of the 

usable nitrogen and oxygen needed to enswe a predictable, troubIe-free fermentation. In 
contrast, hydrogen peroxide at 32 mM would only serve as a disinfectant 

Urea hydrogen peroxide is available at this time only as a specialty (pharmaceutical 
grade) chemical At present UHP is available at $70 (US)flcg. At least one producer 
estimated S 2 - 6 (US)/kg for a demand only 10-50 times current saIes of this chemical. It 
remains to be seen if cost of production of UHP can be reduced further so that it would be 
utilizable in the fuel alcohol industry. Cost projections should include considerations on 
elimination of the use of antibiotics and the replacement of part or all yeast foods (including 
oxygen) by UHP. 



6. CONCLUSIONS 

1. Linear relationships exist between the initial numbers of viable bacteria in mash and both 
decreases in overall ethanol yield and f i  lactic acid produced. 

2 A decrease in the overall ethanol yield of approximately 2 96 was observed in wheat 
mash fermenting at 30' C, if L plantarum, L rhumnosus. and L fermenturn were 
inocuIated at -106 CFUlml. Smaller initial numbers (only 105 CFIJIml) of L paracasei or 

Lumbucili~ #3 were sufficient to cause decreases of more than 2 % in overall ethanol 

yields. Such effects may have been due to the higher ethanol tolerance of the latter two 

bacteria, the more rapid adaptation (shorter lag phase) of these two organisms to 
Fermentation conditions, andlor to their more rapid growth and metabolism. 

3. The addition of - 109 CFU of bacteridml in mash causes 3.8 to 7.6 8 reductions in 

o v e d  ethanol yields depending on the strain. 

4. Lactic acid produced by lactobacilli is the major factor responsible for reductions in yeast 

growth and fmal ethanol yield (apart from a suspected competition for essential growth 
factors between yeast and lactobacilli). 

5. The minimum inhibitory concentntion (MIC) of acetic acid for yeast growth in a defined 

medium (with 2 46 wlv gIucose as the carbon source) is 0.6 % wlv (100 mM), and that of 

lactic acid is 2.5 5% w/v (278 mM) for the two strains of yeast studied (AUtech strain and 

ATCC 26602). However, acetic acid at concentrations as low a s  0.05 - 0.1 45 w/v and 

lactic acid at concentrations of 0 2  - 0.8 46 w/v are able to smss the yeast as  seen by 

reduced growth rates, and decreased rates of glucose consumption and ethanol production. 

6. Acetic acid and lactic acid, end-products of lactic acid bacterial fermentation, when 
present in the medium synergisticaIly inhibit yeast 



7. Reductions in yeast growth c a d  by acetic acid are due to the increased expenditure of 
energy required by the cell to pump out the excess protons using plasma membrane H+- 
ATPase in order to maintain the pHi homeostasis of the ceU. 

8. Lactic acid, on the other hand, when present at higher concentrations in the medium 
reduces the activity of the plasma membrane H+-AWE signiscantly, and this results in 
intracellular acidific;ltion which in turn could affect critical metabolic reactions in the cell, 
The mechanism may involve disruption of the transmembrane proton gradient. 

9. The plasma membrane lipid composition is altered in the presence of 05 % wlv lactic 
acid There is a decrease in the proportion of unsarurated fatty acids (Cl6:l. palmitoleic 
acid and C18:1, oleic a5d) which Ieads to a decrease in the pIasma membrane fluidity. 
This subsequently affects the stability of membrane bound proteins. 

10. Urea hydrogen peroxide (UHP) appears to be an ideal additive for controlling 
1actobaciIli in ethanol fermentations. Stabilized chlorine dioxide and nisin do not appear to 

be good choices for use against lactobacilli during the fermentation of starch or sugar-based 
mask. Penicillin and virginiamycin (reported by Hynes er al., 1997) ae both useful 
antibiotics for this industry. 

1 I. Urn hydrogen peroxide also provides nitrogen and oxygen, the two essential nutrients 
r e q W  for better fermentation performance by the yeast At present, cost may be the only 

impediment to the use of UHP in the fuel alcohol industry. 

12. The bactericidal activity of urea hydrogen peroxidehydrogen peroxide is affiected 

significantly by the presence of particdates in the mash, In clarifid mashes (similar to the 
corn wet milling industry), only 2 mM urea hydrogen peroxide is required for antibacterial 
activity, whereas in mashes with particulates (as in dry milling of corn or wheat) 230 mM 

urea hydrogen petoxide is required In the Iatter case, sufficient amounts of nuaients are 

provided by UHP for yeast growth. 



Adams, M.R, and CJ. Hall. 1988. Gmwth inhibition a€ food-borne pathogens by lactic 
and acetic acids and their mixtures. ht. 1. Food d TechnoL 23: 287-292. 

Alexander, M. 197 1. Microbial Ecology, John Wiey & Sons, hc. London. 

Amin, V.M., and N.F. Olson. 1967. Effect of temperature on stability of hydrogen 
peroxide in milk, J. Dairy Sci. 50: 1336-1338. 

An&rs, RZ., D M  Hogg, and G.R. Jago. 1970. Formation of hydrogen peroxide by 
group N streptococci and its effects on their growth and metabolism. Appl. 
Microbiol. 1% 608-6 19, 

Andreasen, A.A., and T. Stier. 1954. Anaerobic nutrition oPSaccharomyces cerevisiae. 
Journal of Cellular and Comparative Physiology 43: 27 1-28 1. 

Aquarone, E. 1960. Penicillin and tetracycline as contamination control agents in alcoholic 
fermentation of sugarcane molasses- AppL Microbiol. 8: 263-268. 

Baird-Parker, kc. 1980. Organic Acids. In: Microbial Ecology of Foods, vol. I, J.H. 
Silliker, R.P. Elliott, AX. Baird-Parker, EL. Bryan, J.H.B. Christian, D.S. 
Clark, LC. Olson Jr. and TA. Roberts (eb), pp. 126- 134. Academic Press, 
London. 

Bane jee, N L  1947. Use of hydrogen peroxide as a milk preservative. Indian Medical 
Gazette: 156-159. 

Barbour, E A ,  and F.G. Priest. 1988. Some effecb of Lacsobacillur contamination in 
scotch whisky fermentations. J. Inst. Brew. 94: 89-92. 

Block, S,S. 1991. Peroxygen compounds. In: Disinfection, Sterihation, and 
Preservation, 4th edn., S.S. Block (ed.), pp. 167- 18 1. Lea & Febiger, 
Philadeiphia 

Booth, LR., and R.G. Kroll. 1989. The preservation of foods by low pH- In. Mechanisms 
of Action of Food Resewation Rccedures, G.W. GouId (ed), pp. 119-160. 
Elsevier, London. 

Boulton, U., VL. SingIeton, L.F. Bisson, and RE K&. 1996. Principles and 
Practices of Winemaking. Chapman Hall, New Yo& 

Bracey, D, C.D. Holyoak, and PJ, Coote- 1998, Comparison of the inhibitory effect of 
sorbic add and arnphotericin B on Sacchmomyces cerevisiae : is growth inhibition 
dependent on reduced intraceUular pH? I. AppL MimbioL 85: 1056-1066. 



Breur, B., and F. Radler. 1996. Inducible resistance against nisin in Lacmbacillus casei. 
Arch. Mimbiol. 165: 114-1 18. 

Bruno, M.E.C., A Kaiser, and T.J. Montville. 1992. Depletion of proton motive force by 
nisin in Listeria mnocytogenes cells. Appl. Environ. Microbiol. 58: 2255-2259. 

Bryan-Jones, G. 1975. Lactic acid bacteria in distillery fermentation In: Lactic Acid 
Bacteria in Beverages and Foods, Proceedings of the IV Long Ashton Symposium. 
J.G. Carr, C.V. Cutting and G.C. Whiting (ed.), pp. 165- 175. Academic Press, 
London. 

Busa, WB., and R Nuccitelli. 1984. Metabolic regulation via intracellular pH. Am. J. 
Physiol, 246: 409-438. 

CasaI, M., H. Cardoso, and C. W. 1996. Mechanisms regulating the transport of acetic 
acid in Saccharomyces cerevisiae. MimbioL 142: 1385- 1390. 

Ch io ,  F., C. U o ,  and N. van Udea 1987. Tramport of lactate and other short-chain 
monocarboxylates in the yeast Sacchamnryces cerevisiae. Appl. Environ 
Microbiol. 53: 509-5 13. 

Cardoso, H., and C. M o .  1992. Mechanisms underlying low and high enthdpy death 
induced by short-cbain monocarboxylic acids in Saccharomyces cerevisiae. Appl. 
Microbiol. BiotechnoI, 38: 388-392. 

Caridi. A., P. Crucitti. and 0. Ramondino. 1999. Winemaking of musts at high osmotic 
strength by themotolerant yeasts. Biotechnol. Lett. 21: 617-620. 

Camright. C.P., J K  Juorszek, MJ. Beavan, F.M.S. Ruby, S.M.F. DeMorais. and 
GH, Rose. 1986. Ethanol dissipates t f ~  proton-motive force across the plasma 
membrane of Saccharomyces cereviiiue. J. Gen. Microbiol. 132: 369-377. 

Casey, G.P.. and WM. IngIedew. 198 1. The use and understanding of media used in 
brewing bacteriology. IL Selective media for lactic acid bacteria Brewers Dig. 56: 
38-45. 

Challinor, S.W., and AH. Rose. 1954. Inter-rdationships between yeast and bacterium 
when growing together in a defined medium. Nature 174: 877-878. 

Chang, LS., BH. Kim, and P.K Shin, 1997. Use of sulfite and hydrogen peroxide to 
control bacterial contamination in ethanol fermentation. Appl. Environ. MimbioL 
63: 1-6. 

Chmg, IS., B.H. Kim, P.K. Shin, and W. Lee 1995. Bacterial contamination and its 
effects on ethanol fermentation, L MimbioL Biotechnol. 5: 309-3 14. 

Chin, P.M., and W M  Ingledew. 1994. Effect of lactic acid bacteria on wheat mash 
fermentations prepared with laboratory backset Enzyme Microb. Technol. 16: 
31 1-317- 

Chung, KC-. and J.M. Goepfen, 1970. Growth of SalmoneUa at low pH- J. Food Sci. 
35: 326-328. 



Cochran, W.G., and G.M. Cox. 1957. Some methods for the study of response surfaces. 
hx Experimental Designs, 2nd edn, pp, 335-370. Wiley, New York. 

CoIe, MB., and MHJ. Keenan, 1987. Effects of weak acids and e x t e d  pH on the 
intraEeUular pH of Zygo~~~cclrmontyces bailii and its implications in weak-acid 
resistance. Y m t  3: 23-32. 

Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS MimbioL Rev. 46: 
269-280. 

Corlett Jr., D.A., and MH. Brown. 1980. pH and acidity. In: Microbial Ecology of 
Foods, IH. Silliker (ed), pp. 92-1 11. Academic Ress, New York. 

Daly. C,, W.E. Sandine+ and P.R mliker. 1W2 Interactions of food starter cultures and 
food-borne pathogens : Streptococcus diacetihds wrsus food pathogens. L Milk 
Food Technol. 35: 349-357. 

Day, WH., W.C. Se jak, J.R. Stratton, and L. Stone. 1954. Antibiotics as contamination- 
control agents in grain alcohol fermentations. J. Agric. Food Chem. 2: 252-258. 

Delves-Broughton, J. 1990. N i i  and its use as a food preservative. Foad Technol. 44: 
100-1 12, 117. 

deOIivia-Neto, P., and F. Yokoya 1994. Evaluation of bacteriai contaminadon in a fed- 
batch alcoholic fernentation process. World J. MicrobioL B iotechnol. 10: 697- 
699. 

deolivia-Neto, P., and F. Yokoya. 1997. Effects of nubitional factors on growth of 
Lacmbacillurfemnm mixed with kcchromyces cerevisiae in alcoholic 
fermentation. Revista & Mimbiologia 28.25-31. 

Dielbandhoesing, S.K., ti. Zhang, LHP. Caro, JM van der Vaart, F.M. Klis, C.T. 
Verrips, and S- BruL 1998. Specitic cell wall proteins confer resistance to nisin 
upon yeast cells. Appl. Environ. MimbioL 64: 4047-4052 

Dixon, B. 1999. Yeasu: rising stars in biotechnology. Am. Soc. MicrobioI. News 65: 2- 
3.  

Dolan, T.C.S. 1976. Some aspects of the impact of brewing science on scotch malt whisky 
production, J. kt. Brew. 82: 177-181. 

Dolan, T.C.S. 1979. Bacteria in whisky production. Brewer 65: 6U64. 

Doores, S. 1983. Organic acids. Ia: Antimicrobials in Foods, A.L. Braaen aud P.M. 
Davidson (ed), pp. 75-108, Marcel Dekker, Inc., New York. 

Dziezak, JD. 1986. Preservatives: antimicrobiai agents. A means towards p d u c t  
stability. Food Technol. 40: 1044 1 I. 

Eddy, A A  1982, Mechanisms of solute tramport in selected eukaqotic microorganisms. 
Adv. Mimb. PhysioL 23: 1-78. 



Edwards, C.G., AG. Reynolds, AV. Rodriguez, MJ- Semon, and J.M. Mills. 1999. 
Implication of acetic acid in the induction of sbwlstuck grape juice fermentations 
and inhibition of yeast by LnctohciUur sp. Am. I. Enol. Vitic. 50: 204-210. 

EkIund, T. 1983. The antimicrobial effect of dissociated and undissociated sorbic acid at 
different pH levels. J. Appl. Bacterial. 54: 383-389. 

Eklund, T. 1985. The effect of sorbic acid and esters of pa-hydmxybenzoic acid on the 
proton motive force in Escherichia coli membrane vescicles. J. Gen. MimbioL 
131: 73-76. 

Eklund, T. 1989. Organic acids and esters. In. Mechanisms of Action of Food Preservation 
Procedures, G.W. Gould (ed.), pp. 161-200. Elsevier Applied Science, London. 

Eraso, P., and C. Gancedo. 1987. Activation of yeast plasma membrane ATPase by acid 
pH during growth. FEBS  let^ 224: 187-192. 

Essia Ngang, JJ., F. Letoumeau, and P. Villa 1989. Alcoholic fermentation of beet 
molasses: Effects of lactic acid on yeast fermentation parameters. AppL MimbioL 
Biotechnol. 31: 125-128. 

Essia Ngang, J.J., F. Letoumeau, E, WoIniewicz, and P. Villa. 1990. Inhibition of beet 
molasses alcoholic fermentation by lactobacilli. Appl. Mimbiol. Biotechnol. 33: 
490-493. 

Essia Ngang, J.J., E. Wohiewicz, F. Letoumeaa, and P. Villa 1992. Stimulation of 
lactobacilli during alcoholic fermentation: Action of sucrose hydrolysis by yeast. 
Biotech. Lea 14: 741-746. 

Etemadzadeh, H. 1991. Plaque growth inhibiting effect of chewing gum containing urea 
hydrogen peroxide. I. Ch. Periodontal. 18: 337-340. 

Faia, A.M., and F. Radler. 1990. Investigation of the bactericidal effect of uisin on lactic 
bacteria of wine. Vids. 29: 233-238. 

Fernandes, L., M. Carte-real, and C. Wo. 1999. A peculiar behaviour of cell death 
induced by weak carboxylic acids in the wine spoilage yeast Zygosacchurumyces 
bailii. Lett. AppL Mimbiol. 28: 345-349. 

Freese, E., and B.C. Levine. 1978. Action mechanisms of preservatives and antiseptics. 
In: Developments in IndusmaI Microbiology, L A  Underkofler (ed.), p. 207. 
American Instirute of Biobgical Sciences, Washington, D-C. 

Freese, E., C.W. Sheu, and E. GalIiers. 1973. Function of lipophilic acids as antimimbial 
fwd additives. Nature 241: 321-325. 

Gennis, RB, 1989, Membrane dynamics and protein-lipid interactions. In: Biomembtanes: 
MoIecuIar Structure and Function, R CharIes (ed), pp. 166-198. Springer-Veriag, 
New York. 

Goaschalk, G. 1979. Bacterial Metaboiism. Springer-VerIag, New York. 



Guldfeldt, L.U., and N. Arneborg. 1998. Measurement of the effects of acetic acid and 
extracellular pH on intracelldar pH of non-fennenhg, individual Wcharomyces 
cerwisiae cells by fluorescence microscopy. AppL Environ. MimbioL 64.530- 
534. 

Holyoak, C.D., M. Stratford, 2. McMullin, MB. Cole, K. Crimmins, AJ2. Brown, and 
PJ. Coote. 19%. Activity of plasma membrane H+-ATPase and optimum 
glycolytic flux are requited for rapid adaptation and growth of S u c c ~ o ~ c e s  
cerevisiae in the presence of the weak-acid preservative sorbic acid AppL Environ 
Microbiol. 62: 3 158-3 164. 

Huang, Y.C., C.G. Edwards, J.C. Peterson, and K.M. Haag, 1996. Relationship 
between sluggish fermentations and the antagonism of yeast by lactic acid bacteria. 
Am. J. Enol. Vitic. 47: 1 - 10. 

Hunter, D.R, and I.H. Segel. 1973. Effect of weak acids on amino acid transport by 
Penicillium chrysogenum : evidence for a proton or charge gradient as the driving 
force. J. Bacterial. 113: 1 184- 1 192, 

Hursf k 1981, Niin. Adv. Appi. Microbiol. 27: 85-123. 

Hynes, S.H., D.M. Kjarsgaard. KC. Thomas, and W.M. Ingledew. 1997. Use of 
virginiamycin to conml the growth of lactic acid bacteria during alcohol 
fermentation. J. Ind Microbiol. Biotechnol. 18: 284-291. 

h a i ,  T., and T. Ohno. 1995. Measurement of yeast intracellular pH by image processing 
and the change it undergoes during growth phase. I. Biotechnol. 38: 165-172. 

Imai, T., L Nakajima and T. Ohno. 1994. Development of a new method for evduation of 
yeast vitality by measuring intracellular pH. J. Am. Sac. Brew. Chem. 52: 5-8. 

Ingledew, W.M. 1993. Yeasts for the production of fuel ethanol In: The Yeasts, Vol. 5, 
Yeast Technology, AH. Rose and I.S. Harrison (ed.), pp. 245-29 1. Academic 
Press, London, UK. 

hgledew, W M  1995. The biochemisuy of alcohol production. In: The Alcohol 
Textbook, 2nd edn., T.P. Lyons, D.R. KeIsall and JE. Murtagh (ed.), pp. 55-79, 
Nottingham University hess, Nottingham, UK. 

Ingledew, W.M. 1999. Alcohol production by Saccharomyces cerevkiae : a yeast primer. 
In: The Alcohol Textbook, 3rd edn., K. Jacques, TJ. Lyons and D K  Kelsall 
(ed.), pp. 49-87. Nottingham University Press, Nottingham, UK 

Ingledew, W.M., J.D. Burton, D.W. Hysert, and G. Van Gheluwe. 1980. Membrane 
tiltration: mvival of brewing microbes on membranes during storage at reduced 
humidities. I. Am- Soc. Brew. Chem, 38: 125-129. 

Ingledew, W.M., KC. Thomas, and N.V. Narendranath, 1999. Use of urea hydrogen 
peroxide in fuel alcohol production. US Patent Application # 09127 1,877 (filed 
March 18,1999). 



Ingledew, W.M., KC. Thomas, and N.V. Nandranath, 2000. Use of urea hydrogen 
petoxide in fuel alcohol production Canadian Patent Application # 2300,807 (filed 
March 17,2000). 

Johnson, D. 1997. Applications of chlorine dioxide : A postrinse sanitizer that won't leave 
a bad taste in your mouth. Brewing Techniques (MarcWApril): 76-8 1. 

Johnson, D., and K. Kunz 1998. Coming clean: A new method of washing yeast using 
chlorine dioxide. New Brewer (SeptlOc~): 56-57. 

Jones, A.M., and W.M. Ingledew. 1994. Fuel alcohol production: appraisal of 
nitrogenous yeast foods for very high gravity wheat mash fernentation, Proc. 
Biochem. 29: 483488. 

Kandler, 0.1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van 
Leeuwenhoek J. MicrobioL Serol. 49: 209-224. 

KandIer, 0. and N. Weiss. 1986. Regular, n o n s p o ~ g  gram-positive rods. In: Bergey's 
Manual of Systematic BacterioIogy, VoL 2, RGE. Murray, P.H.A Sneath, NE. 
Mair, ME. Sharpe and J.G. Holt (ed.), pp. 1208-1234. The Wiiams & Wilkins 
Co., Baltimore, MD. 

Kashket, E.R. 1987. Bioenergitics of lactic acid bacteria : cytopIasmic pH and 
osmotolerance. FEMS MicrobioL Rev. 46: 233-244. 

Kemp, P., RW. White, and DJ. Lander. 1975. The hydrogenation of unsaturated fatty 
acids by five bacterial isolates h m  s k p  rumen, including a new species. J. Gen. 
Microbial. 90: 100- 1 14. 

Keston, AS., and R Brandt. 1965. The fluommetric analysis of ultramicro quantities of 
hydrogen peroxide. Anal. Biochern, 11: 1-5. 

Khachatourians, G.G. 1998. AgriculturaI use of antibiotics and the evolution and transfer 
of antibiotic-resistant bacteria Can, Me& Assoc. J. 159: 1129-1 136. 

KheiroIomoom, A, A. Kazemi-Vaysari, M, Ardjmand, and A Baradar-Khoshfetrat. 
1999. The combined effecrs of pH and temperature on penicillin G decomposition 
and its stabity modelling. Process Biochem. 35: 205-21 1. 

King, S.W., and R.B. Beelman. 1986. Metabolic interactions between Sacchuromyces 
cerevisiae and Leuconostoc omas in a model grape juice/ wine system. Am. J. 
Enol. Vitic. 37: 53-60. 

Kirsop, BH. 1982 Developments in beer fermentation, Topics in Enzyme and 
Fermentation Technology 6: 79- 13 1. 

Koser, S.A. 1968. Lactobacillus, h~ Vitamin Requirements of Bacteria and Yeasts. pp. 
340-366. Charles C Thomas, hblisher, Springfield, Illinois. 

Katyk, A 1963. IntracelluIar pH of bakers yeast Folia MimbioL 8: 27-3 1. 

Krebs, HA, D. Wiggins, M Stubbs, A. Sols, and F. Bedoya, 1983. Studies on the 
mechanism of audfungaI action of benzoate. Biochem- 1.214: 657-663. 



Larnbert, RJ., and M. Smtford. 1999. Weak-acid preservatives: modelling microbial 
inhibition and response. J. AppL MicrobioL 86: 157-164. 

Lemaresquier, H. 1987, Inter-relationships between strains of Saccharomyces cerevisiae 
from the champagne area and lactic acid bacteria, Lett. AppL MiMobioL 4: 91-94. 

Leroi, F., and M. Pidoux 1993a. Detection of inwactions between yeasts and lactic acid 
bacteria isolaced from k& gmins. J, Appl. BacterioL 74: 48-53. 

Leroi, F., and M. Pidoux. 1993b. Cbatrtcterization of interactions between Lacrobacillus 
hilgardii and Sacchmomycesflorentinus isolated from sugary kefr grains. J. 
Appl. Bacteriol. 74: 54-60. 

Levine, AS., and C.R Fellers. 1940. Action of acetic acid on food spoilage 
microorganisms. J. Bacteriol. 39: 499-5 15. 

Lindgren, S.E, and W.I. Dobrogosz 1990. Antogonistic activities of lactic acid bacteria 
in food and feed fermentations. EEMS Microbiol. Rev. 87: 149-164. 

Lowry, O.H., N.R. Rosebrough, A.L. Farr, and RJ. Randall. 1951. Protein 
measurement with the Folin phenol reagent, I. Biol. Chem. 198: 265-275. 

Luck. H. 1956. The use of hydrogen peroxide as a dairy preservative. Dairy Sci. Abstracts 
18: 363-386. 

Madshus. LH. t 988. Regulation of intracelluiar pH in eukaryotic cells. Biochem. 1.250. 
1-8. 

Maiorella. B.. H.W. Blanch. and C.R. Wilke. 1983. By-product inhibition effects on 
ethanotic fermentation by Saccharomyces cerwiiiae. Biotech. Bioeng. 25: 103- 
12 1. 

MakanjuoIa, D.B., k Tymon, and D.G- Springham. 1992. Some effects of lactic acid 
bacteria on Iaboratory scale yeast fermentations. Enzyme Microb. Technol. 14: 
35 1-357. 

Mitchell, P. 196 1. Coupling of phosphorylation to electron and hydrogen transfer by a 
chemi-osmotic type of mechanism. Nature 191: 144-148. 

Momose, H., K. fwano, and R Tonoike. 1969, Studies on the aggregation of yeast 
caused by Iactobacilli. IV. Force responsi'ble for aggregation- 1. Gen. AppI. 
Microbiol. 15: 19-26. 

Moon, NJ. 1983. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and 
propionate and their synergistic mixam. 1- Appl- BacterioI. 55: 453-460. 

Neal, AL., LO. Weinstock, and J.O. Lampen, 1965. Mechanisms of fatty acid toxicity 
for yeast. J. Bacteriol. 90: 126-131. 

Ogden, K 1986. Msin: A bacterid with a potential use in brewing. J. Inst. Brew. 92: 
379-383. 

Ogden, K 1987. Cleansing contaminated pitching yeast with nisin. I, Inst Brew. 93: 
302-307. 



Ogden, K,  and MJ. Waites. 1986. The action of nisin on beer spoilage lactic acid 
bacteria. J. Inst Brew. 92: 463-467. 

Ogden, K, M.J. Waites, and J.R.M. Hammond. 1988. N i  and brewing. J. Inst. Brew. 
94: 233-238. 

O'Hara, G.W., T.J. Goss, MJ. Dilworth, and A X  Glenn. 1989. Maintenance of 
inmacellular pH and acid toIerance in Rhitobium meliloti. AppL Environ, 
Microbiol. 55: 1870- 1876. 

Pampulha, M E ,  and V. Loureiro. 1989. Interaction of the effects of acetic acid and 
ethanol on inhibition of fermentation in Saccharomyces cerwisiae. Bio~hnol. Lett. 
11: 269-274. 

Pampulha, ME., and M.C. Loureiro-Dias. 1989. Combined effect of acetic acid, pH and 
ethanol on intracellular pH of fermenting yeast. AppL MicrobioL BiotechnoI- 31: 
547-550. 

P a m p a  M.E.. and M.C. Loureiro-Dias. 1990, Activity of glycolytic enzymes of S. 
cerevisiae in the presence of acetic acid. Appl. MicrobioL Biotechnol. 34: 375-380. 

Pampulha, ME, and M.C. Loureiro-Dias. 2000. Energetics of the effect of acetic acid on 
growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 184: 69-72. 

Patterson, C.A., and W.M. Ingledew. 1999. Utilization of peptides by a lager brewing 
yeast. J. Am. Soc. Brew. Chem. 57: 1-8. 

Piard, LC.. and M. Desmazeaud. 1991. Inhibiting factors produced by lactic acid bacteria. 
1, Oxygen metabolites and catabolism end-products. Lait 71: 525-541. 

Pinto, I., H. Cardoso, C. Leiio, and N. van Uden, 1989. High enthalpy and low enthalpy 
death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol. Bioeng. 33: 
1350- l 352. 

Podolak, RK., J.F. Zayas. C.L. Kasmer, and D.Y.C. Fung. 1996. Inhibition of Listeria 
monocytogenes and Ercherichia coli 0157:W on beef by application of organic 
acids. J. Food Prot. 59: 1037-1040. 

Radler, F. 199Oa. Possible use of nisin in winemaking. L Action of nisin against lactic acid 
bacteria and wine yeasts in solid and Iiquid media Am. I. Enol. Vitic- 41: 1-6. 

- Radler, F. 1990b. Possible use of nisin in winemaking. IL Experiments to control lactic 
acid bacteria in the production of wine. Am, 1. Enol, Vitic. 41: 7- 11. 

Ralph, RJ. 198 1. Practical aspects for operating an alcohol plant. In: A Step to Energy 
Independence - A Textbook for Fuel Alcohol Production, T.P. Lyons (ed.), pp- 
255-265, AUtech Technical Publications, Lexington, 

Ramos, M.T., and A. Madeira-Lopes. 1990. Effects of acetic acid on the temperature 
profile of ethanol tolerance in Sacchmomyces cerevisiae. BiotechnoL ktt. 12.229- 
234, 



Ramos. SM., M. Balbin, E. Raposo, and LA Pardo. 1989. The mechanism of 
intracellular acidification induced by glucose in Saccharornyces cervisiae. I. Gen. 
Microbiol. 135: 2413-2422, 

Rasmussen. JE.. E. Schultz R.E. Snvder. R.S, Jones. and C.R. Smith. 1995. Acetic 
afid as a causative agent in p~&uc&~ stuck ferhentations. Am. I. Enol. Vitic. 46: 
278-280. 

Reed, G., and T.W. Nagodawiha 1991. Yeast derived products. In: Yeast Technology, 
2nd ed., pp. 225 -256. Van Nostrand Reinhold, New York 

Robinson, R k ,  and RH, Stokes. 1968. Electrolyte Solutions, (2nd edn.), p. 538. 
Butterworths Publications Ld. London. 

Rosa, M.F., and L Sa-correia 1991. In vivo activation by ethanol of plasma membrane 
ATPase of Sacchmomyces cerevisiae. Appl. Environ. Microbiol. 57: 830-835. 

Rubin, H.E. 1978. Toxicological model for a two-acid system. Appl. Environ. Microbiol. 
36: 623-624. 

Russell, J.B., and F. Diez-Gonzalez. 1998. The effects of fermentation acids on bacterial 
growth. Adv. Microb. PhysioL 39: 205-234. 

Ryan, J.P. and H. Ryan. 1972. The role of intracellular pH in the regulation of cation 
exchanges in yeast Biochem. J. 128: 139- 146. 

Salhany, JM., T. Yamane, R.G. ShuIman, and S. Ogawa 1975. High resolution 3lP 
nuclear magnetic resonance studies of intact yeast cells. Roc, Natl. Acad. Sci. 72: 
4966-4970. 

Salmond, C.V., R.G. Kroll, and 1.R Booth, 1984. The effect of food preservatives on 
pH homeostasis in Escherichia coli. J .  Gen. Microbiol. 130: 2845-2850. 

SAS Institute. 1988. SAS/STAT@ User's guide. Release 6.03 edition. pp. 91-100, 139- 
200, SAS Institute, C q ,  NC- 

Serrano, R 1983. In vivo glucose activation of the yeast plasma membrane ATPase. FEBS 
Lett. 156: 1 1- 14. 

Serrano, R 1984. Plasma membrane ATPase of h g i  and plants as a novel type of proton 
pump. Cum. Top. Cell Reg. 23: 87-126. 

Serrano, R, M.C. Keilland-Brandt, and GR. Fink 1986. Yeast plasma membrane 
ATPase is essential for growth and has homology with (Na+ & K+) and Ca+ 
ATPases. Nature 319: 689-693. 

Serrano, R, C. Montessinos, and J- Sanchez 1988. Lipid requirements of the pplasma 
membrane ATPases from oat roots and yeast. Plant Sci. 56: 117-122. 

Sheu, C.W., and E. Freese. 1972. Effects of fatty acids on growth and enveiope proteins 
of Bacillus subtilis. J. BacterioL 111: 516-524. 



Sheu. C.W., W.N. Konings. and E, Freese. 1972. Effects of acetate and other short-chain 
fatty acids on sugk and amino acid uptake of Bacillus mbtilis. J. BacterioL 111: 
525-530. 

Sheu, C.W., D. Salomon, J.L. Simmons, T. Sreevalsan, and E. Freese. 1975. Inhibitory 
effects of lipophilic acids and related compounds on bacteria and mammalian cells. 
Antimicrob. Agents Chemother. 7: 349-363. 

Slavik, 1.1982, Intracellular pH of yeast cells measured with fluorescent probes. FEBS 
Lett. 140: 22-25. 

Sorells, K.M., and M.L. Speck. 1970. Inhibition of Salmonella gallinarum by culture 
filtrates of Leuconostoc citrovonun, J. Dairy Sci- 53: 239-241. 

Stewart, G.G. 1975. Yeast flocculation. Brewen Dig. 50: 42-62. 

Stratford, M., and PA. AnsIow. 1996. Comparison of the inhibitory action on 
Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium- 
chain fatty acids. FEMS Mimbiol, Len 142: 53-58. 

Stratford, M., and P.A Anslow. 1998. Evidence that sorbic acid does not inhibit yeast as a 
classic 'weak acid preservative'. Lett. AppL Microbiol. 27: 203-206. 

Stroppa, C.T., M.G.S. Andriem, C. Steckelberg, and GE. Serra. 2000. Use of penicillin 
and monensin to control bacterial confamination of Brazilian alcohol fermentations. 
Int. Sugar J. 102: 78-82. 

Thomas, KC., S-H- Hynes, and W.M. Ingledew. 1998. Initiation of anaerobic growth of 
Saccharomyces cerm'siae by amino acids or nucleic acid bases: ergosterol and 
unsaturated fatty acids cannot replace oxygen in minimal media J. Ind. Microbiol. 
Biotechnol. 21: 247-253. 

Thomas, KC., S-H. Hynes, AM. Jones, and W.M. Ingledew. 1993. Production of fuel 
ethanol from wheat by VHG technology : effect of sugar concentration and 
fermentation temperature. Appl. Biochem. Biotechnol. 43: 21 1-226. 

Thomas, S., J.A Hossack, and AH. Rose. 1978. plasma membrane Lipid composition 
and ethanol tolerance in Sacchmomyces cerevisiae. Arch. Microbiol. 117: 239- 
245. 

van der Rest, M.E., AH. Karnminga, A Nakano, Y. Anraku, B. Poolman, and W.N. 
Konings. 1995. The plasma membrane of Sacchmomyces cerevisiae : structure, 
function and biogenesis. Microbiol, Rev, 59: 304-322. 

Wang, S., W.M. Ingledew, KC. Thomas, K. Sosnlski, and F.W. Sosulski. 1999. 
Optimization of fermentation temperature and mash specitic gravity for fuel alcohol 
production. Cereal Chem. 76: 82-86. 

Warth, AD. 1977. Mechanism of resistance of Sacchromyces bailii to benzoic acid on 
growth yield of yeasts differing in their resistance to preservatives, I- AppL 
Bacterial, 43: 2 15-230. 

Warrh, A D .  1989. Relationships among cell size, membrane permeability, and 
preservative resistance in yeast species. AppL Environ. Mimbiol. 55: 2995-2999. 



White, F.H., and E. Kidney. 1979. Idhence of yeast saain on beer spoilage bacteria. 
Proceedings of the 17th European Brewery Convention, pp. 801-815, European 
Brewing Commission, Berlin. 

Wright, S.A. 1995. Distillery quality control, In: The Alcohol Textbook, 2nd edn., T.P. 
Lyons, D.R Kelsall and JE. Murtagh (ed.), pp. 261-285, Noaingham University 
Press, UK. 

Wong. H. and Y. Chen 1988. Effects of lactic acid bacteria and organic acids on growth 
and germination of Bacillus cereus. AppL Environ, Micro bioL 54: 2 179-2 184, 

Young, G., RL. Kramer, and P L  Yndkofsky. 1956. Interactions of oral strains of 
CMdida albicuns and lactobacilli J .  BacterioL 7% 525-529. 

Zinner, DD., LE. Duany, and hd. Liorente. 1978. Effects of urea peroxide in anhydrous 
glycerol on gingivitis and dental plaque. J. Reventive Dentistry 5: 38-40. 



APPENDIX I 

Sample calculations showing the percentages of anion and the undissociated acid calculated 
for acetic acid and Iactic acid at a known pH (ca 2 3  using the Henderson-Hasselbach 

[A-I equation, pH = pKa + log - 
[HA1 

Note : At a given acidic pH, there is more acetic acid in the undissociated (uncharged) fonn 
compared to Iacuc acid because of the higher pKa value for acetic acid. 

For I-(& = 3.86) ; m ( p K a  = 4.74) ; 



APPENDIX I1 

Acetic acid 

M c  acid 

Acetale 
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Figure A Percentages of undissociated and dissociated forms of acetic and lactic acids 
at various pH levels of the medium (caIcuIated based on the Henderson-Hasselbach 
telationship). 




