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Abstract

Feature selection is demanded in many modern scientific research problems that use high-

dimensional data. A typical example is to find the genes that are most related to a certain

disease (e.g., cancer) from high-dimensional gene expression profiles. There are tremendous

difficulties in eliminating a large number of useless or redundant features. The expression

levels of genes have structure; for example, a group of co-regulated genes that have similar

biological functions tend to have similar mRNA expression levels. Many statistical methods

have been proposed to take the grouping structure into consideration in feature selection

and regression, including Group LASSO, Supervised Group LASSO, and regression on group

representatives. In this thesis, we propose to use a sophisticated Markov chain Monte Carlo

method (Hamiltonian Monte Carlo with restricted Gibbs sampling) to fit T-probit regression

with heavy-tailed priors to make selection in the features with grouping structure. We will

refer to this method as fully Bayesian T-probit. The main feature of fully Bayesian T-probit

is that it can make feature selection within groups automatically without a pre-specification

of the grouping structure and more efficiently discard noise features than LASSO (Least

Absolute Shrinkage and Selection Operator). Therefore, the feature subsets selected by fully

Bayesian T-probit are significantly more sparse than subsets selected by many other methods

in the literature. Such succinct feature subsets are much easier to interpret or understand

based on existing biological knowledge and further experimental investigations. In this thesis,

we use simulated and real datasets to demonstrate that the predictive performances of the

more sparse feature subsets selected by fully Bayesian T-probit are comparable with the

much larger feature subsets selected by plain LASSO, Group LASSO, Supervised Group

LASSO, random forest, penalized logistic regression and t-test. In addition, we demonstrate

that the succinct feature subsets selected by fully Bayesian T-probit have significantly better

predictive power than the feature subsets of the same size taken from the top features selected

by the aforementioned methods.
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Chapter 1

Introduction

1.1 Feature Selection in High-throughput Data

Today, high-throughput biotechnologies (such as microarrays and RNA sequencing) can easily

measure the expression levels of thousands of genes. An important challenge in genomic

research is to identify genes that are relevant to a categorical variable (called a “response”

hereafter); for example, an indicator of cancer stage. Once such genes are found and verified

by biological experiments, they can be used for prognosis or diagnosis of the disease. For

this purpose, researchers collect some “training” samples, for which their true class labels are

known. Typically, the number of training samples is very small, such as tens or hundreds,

but the number of candidate genes is large, such as thousands or tens of thousands depending

on the organism being studied and various platforms. Identifying relevant genes for a disease

from thousands of candidates (with only hundreds of samples) is still a tremendous challenge

to statisticians. Ordinary classification algorithms may not scale well to high-dimensional

data, which is known as the curse of dimensionality.

It has been reported that high-throughput biological data has grouping structures. This

often has a biological basis; for example, a group of genes relate to the same molecular

pathway, or are in close proximity in the genome sequence, or share a similar methylation

profile. Biologically speaking, genes in eukaryotic genomes are not completely randomly

distributed, and genes located within the same genomic neighborhoods tend to have similar

expression patterns (Michalak, 2008). Genes that encode similar polypeptides or proteins

are often found within a few thousand bases, and are called gene clusters. Usually, different

genes in the same gene cluster tend to produce different kinds of proteins; however, they often

share a common function. Gene clusters may range in size from a few genes to hundreds

1



of genes in different organisms (Yi et al., 2007). For example, the homeobox family is a

large group of similar genes that direct the formation of many body structures during early

embryonic development. As a result, these genes can be viewed as being from the same “gene

group”, since they share a generalized function with similar expression levels. The grouping

structures of genes may also be due to other reasons, such as sharing similar methylation

profiles. For example, Jerónimo et al. (2004) identified several genes whose methylation levels

progressively increase in prostate carcinogenesis.

The simplest way to detect group structure in gene expression data is to use direct visual

inspection. Cho et al. (1998) proposed an approach to group genes with similar expression

patterns within particular phases of the cell cycle. This method is appropriate when the

patterns of interest are clear with prior knowledge (such as a periodic fluctuation in phase

within the cell cycle); however, it is inappropriate for situations without prior knowledge.

Many studies have been conducted to identify gene groups related to certain responses. For

example, Spellman et al. (1998) applied a hierarchical average linkage clustering algorithm

to find groups of co-regulated yeast genes. In practice, many statistical groups, as found by

different clustering techniques such as in Spellman et al. (1998), may not match perfectly with

functional groups. In addition, such simple grouping structures are probably too artificial to

satisfactorily explain complicated gene expression processes. Without causing confusion, we

use the phrases “clusters” and “gene groups” interchangeably in this thesis.

1.2 Existing Feature Selection Methods

Univariate Screening Methods

The simplest kind of feature selection methods may be univariate screening methods and

model-based inference methods with independence assumptions for genes within classes, such

as Student’s t-test, Diagonal Linear Discriminant Analysis (DLDA) (Dudoit et al., 2002), and

the Prediction Analysis of Microarrays method (PAM) (Tibshirani et al., 2002). Univariate

methods ignore the correlations between genes, which are prevalent in gene expression data

due to gene co-regulation; see Ma et al. (2007), Clarke et al. (2008) and Tolosi and Lengauer
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(2011) for real examples. The consequence is that many differentiated but redundant genes

are included in the univariate feature selection results; meanwhile, useful but weakly differ-

entiated genes may be omitted.

Penalized and Bayesian Regression Methods without Considering

the Grouping Structure in Features

Methods that work by fitting classification models, which attempt to capture the conditional

distribution of the class labels (responses) given the features, can take correlations among

features into account. However, when the number of observations is not much larger than the

number of features, maximizing the likelihood of a classification model will over-fit the data,

with noise rather than signal captured. Therefore, when the number of features is greater

than the number of observations, we need to shrink the coefficients (if there are any) in

classification models towards 0 to avoid overfitting. An alternative solution to this problem is

a logistic regression model with penalized likelihood, known as Penalized Logistic Regression

(PLR). Wahba (1990) employed this idea with L2 norm (Euclidean norm) penalization terms

for coefficients to enforce a sparse feature solution. LASSO (Least Absolute Shrinkage

and Selection Operator) replaces the L2 penalization norm with L1 absolute shrinkage

(the sum of the absolute values) and is a trending topic that has drawn attention from

statistics communities in recent years. The major advantage of LASSO is that with strong

penalizations (regularizations) some feature coefficients will converge to 0. Therefore, L1

norm generally provides more sparse feature selection results than L2 norm, which is very

important for high-throughput gene expression analysis.

In the last 15 years, many researchers have worked on proposing priors with tails heav-

ier than the Laplace distribution, called hyper-LASSO priors (Griffin and Brown, 2011) or

global-local priors (Polson and Scott, 2010), for high-dimensional regression problems. A

common goal of these priors is to shrink each coefficient differently so that large signals can

be less penalized while small signals are shrunk towards 0. These priors are often given in

the form of a scale mixture of normal or Laplace distributions. Such alternative penalties or

priors to Laplace include, but are not limited to: SCAD (Fan and Li, 2001), horseshoe and
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normal/inverted-beta priors (Gelman, 2006; Carvalho et al., 2009, 2010; Polson and Scott,

2012c; van der Pas et al., 2014), NEG priors (Griffin and Brown, 2011), Normal/Gamma

(Caron and Doucet, 2008; Griffin and Brown, 2010), adaptive LASSO (Zou, 2006), gener-

alized double-Pareto (Armagan et al., 2013) and Dirichlet-Laplace and Dirichlet-Gaussian

(Bhattacharya et al., 2012). Such methods are also called non-convex learning. For unified

reviews of these penalties, one can refer to Kyung et al. (2010) or Polson and Scott (2010,

2012a,b); in addition, Bhattacharya et al. (2012) compared a broad class of shrinkage priors

in terms of prior and posterior concentration, and showed that the commonly used Laplace

prior is suboptimal in high-dimensional problems.

In the Bayesian community, the most popular choice (of priors) is to explore a posterior

based on “spike-and-slab” priors — mixture distributions of a point mass at 0 and a con-

tinuous distribution; see Mitchell and Beauchamp (1988), Brown et al. (1998), Sha et al.

(2004), Ishwaran and Rao (2005a), Ishwaran and Rao (2005c), Hans et al. (2007), Bottolo

and Richardson (2010), Fan and Zhang (2010), Guan and Stephens (2011), Rockova and

George (2013), among many others. Such priors may best express our prior belief. However,

the inference results using this approach are highly sensitive to the choice of width of the

continuous part. If the width is large enough, any features, no matter how large the sig-

nals they carry, will be classified as “irrelevant”, with data information totally ignored. The

sensitivity has been discussed in the context of regression problems theoretically in Denison

et al. (2002, p.23) and empirically in Lamnisos et al. (2012); indeed, the problem has long

been known as the Jeffreys-Lindley’s paradox regarding a Bayesian test of null hypothesis

about a point (Lindley, 1957; Shafer, 1982; Robert, 2013).

Penalized Regression Methods Using the Grouping Structure in

Features

A recent development of LASSO is Group LASSO (Meier et al., 2008), which considers

penalties that enforce similarity for the coefficients of features within groups. Group LASSO

achieves better predictive performance than the original LASSO method, because it reduces

the dimensionality of features and also consolidates the predictive power of all features within
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groups. However, since the coefficients of the features within a group are forced to be similar,

it will become harder to select features within groups. Another problem of this approach is

the so-called correlation bias problem (Tolosi and Lengauer, 2011)—the magnitudes of the

coefficients of a group will decrease as the group size increases—which results in ambiguity

in comparing features across groups when the group sizes vary greatly. Considering that the

genes in a group may not all be associated with the response, Ma et al. (2007) propose Super-

vised Group LASSO (SGLASSO), which applies LASSO in two steps: 1) applying LASSO to

the features of each group separately, and 2) applying LASSO to the features selected from

each group in step 1. A drawback of SGLASSO is that it makes selection separately in each

group. Therefore, it cannot consider the joint effects of features from different groups. It is

possible that a feature is not useful marginally but becomes very predictive if combined with

another feature. Another problem of Group LASSO and SGLASSO is that both rely on a

pre-specification of the grouping structure, which is often found by a clustering algorithm.

1.3 Contributions of this Thesis

An important property of heavy-tailed priors when used in regression or classification models

for features with grouping structures is that they can make selections within groups: either

splitting important features into different modes or suppressing less important features. Sec-

tion 4.1 provides a simple demonstration of this property. Li and Yao (2014) provided a

geometric explanation with figures by looking at the “path” of constrained maximum a pos-

terior probabilities (MAPs). This property confers both advantages and disadvantages. The

advantage is that the single mode of the posterior provides a feature subset that is much more

parsimonious than that given by LASSO. The disadvantage is that the posterior distribution

is highly multi-modal. Therefore, optimization algorithms, such as the expectation maxi-

mization (EM) algorithm and conjugate gradient method, have great difficulty in reaching

a good mode; more discussions of the local mode problem are given by Wang et al. (2014).

Therefore, we think that the fully Bayesian approach—using Markov chain Monte Carlo

(MCMC) methods to sample from the posterior—is a valuable alternative for the non-convex

learning problem, because a well-designed MCMC algorithm has a better chance of traveling
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across many modes.

In this thesis, we introduce a feature selection method by using a sophisticated MCMC

method to explore the posterior of a classification model (called T-probit herein) based on a

class of heavy-tailed t priors with moderate degrees of freedom (such as 1, corresponding to

the Cauchy distribution) and small scales. Our MCMC algorithm applies the Hamiltonian

Monte Carlo method (Neal, 2011) to sample regression coefficients in a restricted Gibbs

sampling framework in which the t prior is expressed as a scale-mixture normal. Our examples

will show that this algorithm can efficiently travel across a large number of modes. After

we obtain the MCMC samples of the coefficients, we further divide them into sub-pools

according to the posterior modes. Each sub-pool or posterior mode represents a selected

feature subset. Using this method we report a list of selected feature subsets. Furthermore,

we use cross-validation to measure the predictive goodness of each feature subset, which

provides additional information for selecting from the list of feature subsets.

The main features that distinguish the above feature selection method from other methods

in the literature are summarized as follows:

1. Our method makes selections within groups automatically without a pre-specification

of the group identities. In addition, the selections within groups are in conjunction

with other features in other groups.

2. A single feature subset (posterior mode) is much more parsimonious—only one or very

few features are selected from each group, and most noise features are discarded. Such

succinct feature subsets are much easier to interpret or understand based on existing

biological knowledge and further experimental investigations.

3. The coefficients of each feature subset will not be subject to correlation bias (Tolosi and

Lengauer, 2011) because only one or very few features are selected from each group.

4. The multiple feature subsets found by MCMC simulations provide multiple explana-

tions of the associations for scientists to further explore.

Liu (2004) proposed the robit model (with EM algorithm) to find a sparse feature selection

results; however, the algorithm seemingly has not been tested in high-dimensional problems.

Li and Yao (2014) discussed the choice of degrees of freedom and scale of t priors for logistic

regression models, but did not develop a feature selection method by dividing the MCMC

6



samples according to the posterior modes. This thesis uses a t prior in T-probit regression,

and empirically demonstrates its within-group selection property.

We test fully Bayesian T-probit on simulated datasets with independent and correlated

groups of features, and also compare it with other methods using three real microarray

datasets. Our empirical results show that the predictive performances of some feature sub-

sets selected by our method are comparable with feature subsets of much larger size selected

by plain LASSO, Group LASSO, Supervised Group LASSO, random forest, logistic regres-

sion with non-convex penalization and t-test. In addition, we demonstrate that the succinct

feature subsets selected by fully Bayesian T-probit have significantly better predictive power

than the feature subsets of the same size taken from the top features selected by the afore-

mentioned methods.

The remainder of this thesis is structured as follows. In Chapter 2, we review a wide

range of current methods for feature selection and classification problems. These methods

range from univariate filters to penalized regression models and nonparametric methods. In

Chapter 3, we describe our fully Bayesian T-probit regression with heavy-tailed t priors in

technical detail. In Chapter 4, we present the results of comparing fully Bayesian T-probit

with the most commonly used of the feature selection methods using simulated datasets with

different grouping structures. We also employ simulation studies to investigate parameter

tuning issues and assess the computational efficiency by comparing our algorithm to JAGS

(Just Another Gibbs Sampler). In Chapter 5, we compare our method with other methods

using three real gene expression datasets related to cancer. The thesis concludes in Chapter

6 with a discussion of future work.
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Chapter 2

Literature Review

In this chapter we review some well-known methods for high-dimensional feature se-

lection and prediction. We use X = (xij), i = 1, 2, ..., n, j = 1, 2, ..., p to denote all ex-

planatory variables, where xij is the value of the jth feature from the ith observation, n

is the number of observations, and p the number of features. Y = (Yi, i = 1, 2, ..., n)

are the values of the response variable, which can only take discrete values from 1, ..., C.

{xi. = (xi1, xi2, ..., xip), i = 1, ...n} is the vector containing all values of features from the ith

observation, and {x.j = (x1j, x2j, ..., xnj), j = 1, ...p} is the vector containing all values of

feature j across all observations. The feature matrix of all observations with response value

y = c is given as xy=c = (xij, i ∈ Gc, j = 1, 2, ..., p), where Gc is the set of all observations

from class c, and |Gc| = nc is the number of observations in class c. The goal is to select a

feature subset containing significant features, and construct a prediction model f : x∗. → y∗

for an unknown response y∗ of a future case based on covariate values x∗. = (x∗1, x∗2, ..., x∗p).

2.1 Review of Feature Selection Methods

2.1.1 Univariate Screening Methods

Univariate filtering is a feature selection method. The idea of univariate selection is to

construct a ranking index for each feature and then select features according to their ranks.

To complete this task we need two quantities: a ranking index and a selection criterion.

Available ranking indexes include t-test, F-test and Fisher’s Score. The index of the t-test
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of the jth feature (for binary classes) is given as

x̄
(1)
.j − x̄

(2)
.j

Sj
, (2.1)

where

Sj =

√
(s

(1)
j )2

n1

+
(s

(2)
j )2

n2

, (2.2)

and x̄
(c)
.j , c = 1, 2 are the mean values of the jth feature across all observations from class

c: x̄
(c)
.j = 1

nc

∑
i∈Gc

xij, c = 1, 2. Gc is the index of all observations from class c, and |Gc| = nc

is the number of observations in class c. (s
(c)
j )2, c = 1, 2 are the unbiased estimators of the

variances of the corresponding samples:

(s
(c)
j )2 =

1

nc − 1

∑
i∈Gc

(xij − x̄(c)
.j )2. (2.3)

The Fisher’s score is just the square of the t-test score. The F-test is defined as

F =
between-class variability

within-class variability
. (2.4)

The between-class variability of the jth feature is

2∑
c=1

nc(x̄
(c)
.j − x̄)2/(C − 1), (2.5)

where x̄
(c)
.j , c = 1, 2 are the mean values of the jth feature across all observations from class

c, and x̄ = 1
C

C∑
c=1

x̄
(c)
.j is the mean of all x̄

(c)
.j . The within-class variability is

C∑
c=1

∑
i∈Gc

(x
(c)
ij − x̄

(c)
.j )2/(n− C), (2.6)

where C is the total number of classes.
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Most univariate screening methods focus on univariate relevance ranking of features. For

example, the t-test searches for features with significantly different class mean values with

respect to the sample variance, and the F-test searches for features with significant between-

class variability with respect to within-class variability. After the test statistics for all features

are evaluated and ranked, the p-value will be calculated as a criterion to screen features. One

disadvantage of univariate screening is the multiple testing problem. That is, with a large

number of hypothesis tests of features, the probability of wrongly rejecting a null hypothesis

will increase and a substantial number of false significance cases (Type I errors) might occur.

Alternatively, a corrected p-value with FDR (False Discovery Rate) correction, known as the

q-value, is also available as a feature selection criterion. Another disadvantage of univariate

selection methods is that they ignore correlation information, so some marginally “irrelevant”

but “useful” features may get a very low score. For example, consider the data points in

Figure 2.1. The univariate test is inappropriate here since the T-score will be very small

for each axis even though the data points from the two genes are “useful” to construct a

linear classifier. This is actually the problem encountered by all univariate screen methods:

that some “insignificant” features may still be “useful” when considered in conjunction with

others.
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Figure 2.1: A 2-dimensional dataset is illustrated here. Blue points are datapoints
from cluster 1 and red points are from cluster 2. The X-axis represents the feature 1
values and the Y-axis represents the feature 2 values.
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2.1.2 Penalized and Bayesian Regression Methods without Con-

sidering the Grouping Structure in Features

LASSO

Ridge Regression is a commonly used method of regularization on ill-posed problems (because

of non-uniqueness of solutions of regression coefficients). The penalized likelihood of ridge

regression is

LLRidge(β|X, Y ) = ||Y −Xβ||2 + λ||β||2, (2.7)

which is equivalent to minimizing

||Y −Xβ||2, subject to ||β||2 ≤ t. (2.8)

The solution (of β) to this minimization problem is (XTX + λIp)
−1XTY . By introducing

the regularization parameter λ the problem becomes nonsingular even when XTX is singular

(which is always the case when n � p), and it is the motivation of Hoerl and Kennard

(1970) which leads to regularized linear discriminant analysis. The estimation of λ can be

achieved with cross-validation or analytical risk estimates (Donoho et al., 1995). In practice,

cross-validation is favored if the data size is large.

LASSO uses the L1 penalization norm (absolute shrinkage), which gives the likelihood

LLLASSO(β|X, Y ) = (Y −Xβ)T (Y −Xβ) + λ

p∑
j=1

|βj|, (2.9)

which is equivalent to minimizing

||Y −Xβ||2, subject to |β| ≤ t. (2.10)

One major advantage of LASSO is that with large values of λ, some coefficients β will
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(a) Elliptical Contours with a L1 constraint.
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(b) Elliptical Contours with a L2 constraint.

Figure 2.2: Elliptical Contours with L1 and L2 constraints.

be shrunken exactly to 0. Geometrically, this is because with a L1 norm the elliptical con-

tours centered at the regularized least square (RLS) estimator will touch the polyhedron

(constrained area defined by t) at the LASSO solution, which may happen at a corner, with

corresponding zero coefficients of some covariates (Figure 2.2). With the L2 norm the ellip-

tical contours will touch the polyhedron at a point with nonzero entries of covariates. As

a result the L1 norm will generally provide more sparse feature selection results than the

L2 norm, which is necessary for microarray data analysis since most features are considered

“useless”.

The LASSO solution does not have an explicit form and the estimation of β involves

quadratic programming. We refer to Tibshirani (1996) for a review of LASSO.

Penalized Logistic Regression with the L2 norm (Wahba, 1990) is a widely used calcifica-

tion strategy in medical decisions. The penalized log-likelihood is

LLPLR(β|x1., ..., xn., y1, ..., yn) =
n∑
i=1

log(1 + exp(−yixTi.β)) + λ||β||2. (2.11)

The L1 norm can also be replaced by the L2 norm. Then the task is to optimize the log-
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likelihood

LLG-LASSO(β|x1., ..., xn., y1, ..., yn) =
n∑
i=1

log(1 + exp(−yixTi.β)) + λ|β|, (2.12)

where xi. is a column vector containing feature values of the ith observation, and yi is the

ith response coded as -1 or +1.

An interesting derivation of the LASSO method is the LAR (Least Angle Regression)

method, developed by Efron et al. (2004). LAR is an efficient path-computing method and

an interesting “bisect” regression strategy, which is an intermediate between classical forward

selection and stage-wise regression. It gives almost the same traces as LASSO in many cases.

The Ridge Regression model and LASSO can be cast into the Bayesian framework with

negative log-likelihood

LL(β|X, Y ) = (Y −Xβ)T (Y −Xβ). (2.13)

Thus, Ridge Regression adopts an N(0, 1/λ) Gaussian prior for β while LASSO adopts a

double-exponential prior equation π(β) in (2.14). The prior distribution of λ is usually con-

sidered as a non-informative prior. The probability density function of these two distributions

are shown in Figure 2.3.

π(β) ∝ exp(−λ|β|). (2.14)

Bayesian LASSO does not enforce β values to be exact zero (as LASSO does) since the

posterior distribution of β is continuous on the domain of real values. The double-exponential

prior (LASSO) puts more mass on tails (compared with Ridge Regression) to obtain sparse

feature selection results. Some Bayesian methods then are motivated to adopt more sparse

point-mass priors (Lee et al., 2003).
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Figure 2.3: Gaussian prior and double-exponential prior

π(βj) ∝

 point mass at 0, with probability pj

N(0, σ2
j ), with probability 1− pj

(2.15)

This can be interpreted as inserting a covariate indicating vector γ = (γ1, ..., γp), while

γj, j = 1, ...p indicates the presence of feature j in the model:

π(βj|γj) ∼

 point mass at 0, if γj = 0

N(0, σ2
j ), if γj = 1

(2.16)

γj is from a Bernoulli distribution with failure probability pj, which actually corresponds

to the prior probability of different models in the model space. This structure emphasizes

the sparsity and heavy-tail property of the parameters; thus, it can operate feature selection

automatically. However, the underlying assumption of the independence across γj is not

always appropriate, which means deeper structure for γ may be required (like a transition

probability based Markov Model for pj), which will increase model complexity quickly and
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cause onerous Markov chain mixing.

One major advantage of the Bayesian formulation is that it enables us to assess the

posterior probability of all models, even though the analytical forms of these probabilities

are usually complex and difficult to handle (Bayesian Model Averaging (BMA) (Hoeting

et al., 1999)). The sampling process, however, may be tricky: the results may fall into

several “mode traps”, each corresponding to a different model on model space.

Bayesglm: Penalized Logistic Regression with t Priors

The common problems for maximum likelihood estimation of logistic regression are the non-

identifiability issue and separation. For fixed data, non-identifiability means that if two

parameter estimates give rise to the same log-likelihood, then it will be impossible to dis-

tinguish between the two candidate vectors and identify the true parameter values based

on the data alone. Separation means a regression model using two or more covariates can

separate the classes (of training cases) without misclassification. From an estimation perspec-

tive, separation results in infinite coefficients and standard errors as noted in Zorn (2005).

In high-dimensional gene expression data, separation always happens since the dimension p

is substantially larger than n. However, non-identifiability is a particularly difficult prob-

lem because the dimension is high and multiple candidate parameter values will yield same

likelihood values.

An approach toward stable logistic regression coefficients is through Bayesian inference.

Firth (1993) first proposed the Jeffreys prior distribution to reduce the bias in maximum

likelihood estimation. Gelman et al. (2008) generalized the scaled prior distribution to the

Student’s t-distribution, with a set up for reliable computation of logistic regression param-

eters. The main procedure incorporates an EM algorithm and the usual iteratively weighted

least squares. The algorithm is included in the R package Bayesglm.

Consider a logistic regression model with data x for binary classification problem y ∈

(0, 1). The coefficients β = (β1, ..., βP )′ have independent Student’s t priors with scale pa-
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rameters α = (α1, ..., αP ) and ν = (ν1, ..., νP ).

LL(β) =
n∑
i=1

[log(Pr(Y = yi))] =
n∑
i=1

[xi.βyi − log(exp(xi.β))], (2.17)

βj ∼ N(0, σ2
j ), σ

2
j ∼ IG(αj, νj). (2.18)

where IG(αj, νj) is the inverse gamma distributions with shape parameter αj and scale

parameter νj.

Bayesglm implements the algorithm with an initial estimate of β (it could be a guess such

as βj = 0) and sets each σj to the value of ν. The choice of initial point does not change the

nature of this algorithm. By default, the values of αj is set to 1 and νj is set to 2.5 for logit

model. It proceeds as follows:

1. Suppose β̂ is the current estimate of parameter β, we construct the auxiliary variable

zi and the auxiliary variances (σzi )
2

zi = xi.β̂ +
(1 + exi.β̂)2

exi.β̂
(yi −

exi.β̂

1 + exi.β̂
), (2.19)

(σZi )2 =
1

n

(1 + exi.β̂)2

exi.β̂
. (2.20)

2. Use the EM algorithm to update the parameters βj and σj. The E step (in the EM

algorithm) starts with weighted least squares regression (assigning each observation

a different amount of influence over the estimates of β) based on data augmentation

techniques. More specifically, we can add pseudo-data points to obtain observations z∗,

X∗ and weight vector w∗, where

z∗ =

(
z

0

)
, X∗ =

(
X

Ip

)′
X,w∗ = (σz, σ)−2. (2.21)

Weighted linear regression on z∗, X∗ and w∗ can be performed to obtain an estimate
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β̂. With the augmented X∗, the logistic regression is well defined and the resulting

β̂ has finite variance, even if the original data have non-identifiability and separation

problems.

3. The second step in the E step is to approximate the expectation with respect to posterior

distribution of β:

E(log p(β, σ|y)) ≈ −1

2

p∑
j=1

(
1

(σ̂j)2
(β̂j)

2 + log(σ̂2
j ))− p(σ̂j|αj, νj). (2.22)

4. The M step is to maximize the (approximate) expected value of the log-posterior func-

tion in equation (2.36) to get a new estimate σ̃j,

σ̃2
j =

(β̂j)
2 + (σ̂j)

2 + αν

1 + α
, (2.23)

and repeat steps 1-4 above with new estimates of β and σ.

In this approach, the iteratively weighted least squares algorithm (Holland and Welsch,

1977) is used to estimate β with the approximate EM algorithm (Dempster et al., 1977).

The method of iteratively weighted least squares is widely applied to solve logistic regression

problems. The whole approach above is included in the R package arm. In this thesis, we use

this package to fit Bayesian logistic regression with Student’s t priors. The final converged

values βj are then recorded as the significance score to select features.

In addition to the LASSO methods and the penalized logistic regression methods, there

are also techniques for exploring a posterior based on “spike and slab” priors (Mitchell and

Beauchamp, 1988; George and McCulloch, 1993; Brown et al., 1998; Sha et al., 2004; Ishwaran

and Rao, 2005b; Hans et al., 2007; Bottolo and Richardson, 2010; Li and Zhang, 2010;

Guan and Stephens, 2011; Ročková and George, 2014). Spike and slab priors utilize mixture

distributions of a point mass at 0 and a continuous distribution. Theoretically, this model

design naturally encourages sparse solutions in high-throughput data (Ishwaran and Rao,

2005b). Gibbs sampling is usually considered to identify posterior modes over the parameter

spaces with a specified hierarchy of spike and slab priors. However, with increasing numbers

17



of features p, the choice of hierarchy (priors) can be tricky. More specifically, the choices of

the width of the continuous distribution often have a great impact on the inference results.

With a choice of large width the data information will be ignored and many useful features

may be classified as irrelevant. This problem is well addressed theoretically in Denison (2002)

and Lamnisos et al. (2012). Theoretically, this problem is also known as the Jeffreys-Lindley’s

paradox regarding a Bayesian test of a null hypothesis about a point (Lindley, 1957; Shafer,

1982). On the other hand, most of the Gibbs samplers with spike and slab priors are processed

using posterior mean values to summarize posterior information (Barbieri and Berger, 2004).

The reason is that with a large value of p (in the example of microarrays p can be tens of

thousands), it is common to find that none of the posterior modes have high frequency.

2.1.3 Penalized Regression Methods Using the Grouping Struc-

ture in Features

Group LASSO

A recent development of LASSO is Group LASSO, which considers group structure among

features. Suppose that p covariates can be divided into L groups, with pl features in group

l. Yuan and Lin (2006) proposed Group LASSO to solve the convex optimization problem

min
β∈<p

(||y − xβ||22 + λ
L∑
l=1

√
pl||βl||2), (2.24)

where xl represents the covariates belonging to the lth group with corresponding coefficient

βl,
√
pl accounts for the varying group sizes, and ||.||2 is the Euclidean norm. The parameter λ

controls the amount of penalization since different values of λ will result in different numbers

of groups being selected. With L = 1 the entire group structure will degenerate to conven-

tional LASSO. This penalty can be viewed as an intermediate between the L1 and L2 penalty

and can be applied to models other than linear regression such as Cox regression (Tibshirani

et al., 1997), logistic regression (Shevade and Keerthi, 2003; Genkin et al., 2007) and multi-

nomial logistic regression (Krishnapuram et al., 2005) by replacing ||y − 1 −
L∑
l=1

xlβl|| with
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the corresponding negative log-likelihood function. The logistic Group LASSO estimator βλ

is then given by the minimizer of the convex function

−l(β) + λ
G∑
g=1

√
pl||βg||2, (2.25)

where l(.) is the log-likelihood function, i.e.,

l(β) =
n∑
i=1

[xiβyi − log(1 + exp (xiβ))]. (2.26)

The biostatistics community has begun to apply Group LASSO to microarray studies

since it recognizes the importance of group structures (Meier et al., 2008). Analysis of gene

expression data is challenging since there may exist natural groups (i.e., gene clusters) that

are composed of co-regulated genes with coordinated functions. Meier et al. (2008) applied

the Group LASSO penalty with logistic classification to microarray data analysis. Group

LASSO is able to select important groups of genes rather than selecting genes individually.

However, it is not capable of selecting important individuals within each group, and so it does

not yield sparsity. The significances of covariates are generally averaged over each group, so

if a group of coefficients is non-zero then they will all be included.

In this thesis, we use the R-package glmnet to obtain Group LASSO solutions to mi-

croarray classification problems. This package is developed by Lukas Meier and uses the

coordinate descent algorithm to solve the resulting convex problem. The least angle regres-

sion algorithm (LAR) (Efron et al., 2004) is the default method for linear models with the

LASSO penalty. However, with the Group LASSO penalty, some approximate path-following

algorithms (Zhao et al., 2009; Park et al., 2007) are not applicable (Tibshirani et al., 2005).

Kim et al. (2006) first proposed a gradient descent algorithm to solve the corresponding con-

strained problem for logistic regression with the Group LASSO penalty. Meier et al. (2008)

developed the idea from Genkin et al. (2007) and presented an asymptotic consistency the-

ory for the Group LASSO to deal with high-dimensional problems (where p is fairly large).

The key component of this algorithm is a block coordinate gradient descent method from

Tseng and Yun (2009), which combines a quadratic approximation of the log-likelihood with
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an additional linear search. The whole procedure is computationally efficient for large-scale

problems (Genkin et al., 2007).

Group LASSO requires a pre-specification of the grouping of features. In most scenarios,

we do not expect the experimenters to provide such prior information with the original

molecular dataset. Therefore, we need to cluster features into groups. One of the most

popular clustering methods, k-means clustering, is easy to implement and also available as

an R package. The basic idea of k-means clustering is to partition p features into k groups

in which each feature belongs to the group with the nearest mean, serving as a prototype

of the group. More specifically, given a set of features (x.1, x.2, ..., x.p), where each feature is

an n-dimensional vector, k-means clustering aims to partition the p observations into k sets

S = {s1, s2, ..., sk} so as to minimize the within-group sum of squares

argmin
k∑
i=1

∑
x.j∈si

||x.j − ~µi||2, (2.27)

where ~µi is the mean of the features in si. Several algorithms are available for k-means

grouping, including the algorithm of Hartigan and Wong (Hartigan and Wong, 1979), the

algorithm of MacQueen (MacQueen et al., 1967), and the algorithm of Forgy (Forgy, 1965).

By default we apply the algorithm of Hartigan and Wong to obtain k-means grouping results.

An alternative method of clustering analysis is Hierarchical Clustering (Rokach and Mai-

mon, 2005; Johnson, 1967), which seeks to build a hierarchy of clusters. The basic idea is

to combine clusters (or divide a cluster) with respect to a measure of dissimilarity between

groups. Generally, agglomerative hierarchical clustering (bottom-up method) lets each obser-

vation start in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.

Divisive hierarchical clustering (top-down method) lets all observations start in one cluster,

and splitting is performed recursively as one moves down the hierarchy. Both methods re-

quire a linkage method to be selected, which determines the dissimilarity between two groups

based on the similarity of the members of those groups. Some commonly used linkage criteria

to test the dissimilarity between two groups A and B include maximum linkage

max{d(a, b) : a ∈ A, b ∈ B} (2.28)
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and average linkage (also known as Unweighted Pair Group Method with Arithmetic Mean,

UPGMA)

1

|A||B|
∑
a∈A

∑
b∈B

d(a, b), (2.29)

where d(a, b) is the chosen metric, which can be Euclidean distance (|a−b| =
√∑

i

(ai − bi)2),

squared Euclidean distance (|a−b| =
∑
i

(ai−bi)2), Manhattan distance (|a−b| =
∑
i

|ai−bi|),

etc.

In this thesis, we use average linkage (UPGMA) and the squared Euclidean distance

metric, even though technically squared Euclidean distance is not really a “metric” as it

is defined, and use them as the default configuration for clustering analysis. UPGMA is a

simple bottom-up hierarchical clustering method to construct a dendrogram with a pairwise

dissimilarity matrix. It is widely used in ecology to classify sampling units and create phe-

netic trees (phenograms) in bioinformatics. Fionn Murtagh proposed a time-optimal O(p2)

algorithm to construct a standard UPGMA tree (Murtagh, 1984). We use the R package

hclust to perform hierarchical clustering analysis of the gene expression data.

Both k-means clustering and hierarchical clustering require the number of groups. Re-

member that k-means grouping aims to find k prototype genes and classify each gene into

the neighborhood of these prototypes; thus, the problem of how many prototypes are needed

remains. For hierarchical clustering, the dendrogram needs a cut point (how many groups

are needed) to select a specific structure. Tibshirani et al. (2001) proposed the gap statistics

for estimating the number of groups in a set of features. Suppose that we have grouped the

features into k groups S = {s1, s2, ..., sk} with nk = |sk|. Let

Dk =
∑
i,i‘∈Ck

dii′ (2.30)
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be the sum of the pairwise distances for all features in group k, and set

Wk =
K∑
K=1

1

2nk
Dk. (2.31)

Then Wk is the pooled within-group sum of squares around the group means if we choose

distance d as the squared Euclidean distance. The gap statistic is then defined as

GapK = Enlog(WK)− log(WK), (2.32)

where En denotes expectation under a sample of size n from the reference distribution. Our

estimate k̂ will be the value maximizing GapK when the sampling distribution is taken into

account.

An alternative way to choose the number of groups involves the silhouette value (Struyf

et al., 1997). It evaluates how well each feature lies within its group. More specifically,

assume the jth feature x.j is clustered into group A. Then

a(j) =
1

|A| − 1

∑
i∈A,i 6=j

4(i, j) (2.33)

measures the average distance of the jth feature to all other features in group A. For any

group C 6= A

d(j, C) =
1

|C|
∑
i∈C

4(i, j) (2.34)

measures the general distance from the jth feature to other groups. The minimum value

b(j) = min
C 6=A

d(j, C) (2.35)

quantifies the distance of the jth feature to the nearest neighbor group. The silhouette value
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s(j) is then defined as

s(j) =
b(j)− a(j)

max{a(j), b(j)}
, (2.36)

and it indicates how well x.j fits into group A. The average silhouette value is the mean value

of all s(j) across all features, and measures the general quality of clustering. In this thesis, we

employ both Gap statistics and silhouette values to choose reasonable cutting points, though

when p is large the results from both are often similar.

Supervised Group LASSO

Supervised Group LASSO is a recent development of Group LASSO (Ma et al., 2007). Com-

pared with individual gene selection made by LASSO and the group averaging solution of

Group LASSO, Supervised Group LASSO employs two levels of shrinkage across groups and

within groups. As a result, the within-group gene selections will lead to a more sparse feature

solution.

Supervised Group LASSO consists of 2 steps.

1. For a single group j = 1, ...,m, compute β̂j, the group-wise LASSO estimator of the

coefficients in group j, according to

β̂j = argmax Rn(βj) (2.37)

subject to |βj,1|+ ...+ |βj,pj | ≤ uj, where uj is a group-wise tuning parameter and

Rn(βj) =
n∑
i=1

yi log

(
exp(xijβj)

1 + exp(xijβj)

)
+ (1− yi) log

(
1

1 + exp(xijβj)

)
(2.38)

for binary (yi = 0 or 1) classification. xij here is the covariate vector containing all

features from the jth group (from the ith observation).

2. Feature coefficients found in Step 1 for each group will have mostly zero entries. Then
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we fit Group LASSO again with

β̂ = argmax Rn(β) (2.39)

subject to |β1|+ ...+ |βm| ≤ u, where

Rn(β) =
n∑
i=1

yi log(
exp(βxi.)

1 + exp(βxi.)
) + (1− yi) log(

1

1 + exp(βxi.)
), (2.40)

and xi. here is the covariate vector (from the ith observation) only containing features

with non-zero coefficients found in Step 1. u is the group regularization parameter. All

values of u and uj are chosen via cross-validation. By default, the values are determined

with 3-fold cross validation in the R package grpLASSO (Meier, 2009).

2.1.4 Nonparametric Models

1.0 1.5 2.0

0
.4

8
0
.5

0
0
.5

2
0
.5

4

Feature 1

F
e
a
tu

re
 2

Figure 2.4: SVM classifier on binary cases. Red data points: y=1, blue data points:
y=0. X-axis: feature 1 values of data points. Y-axis: feature 2 values of data points.

Recently, the notion of margin for pattern recognition has been popularized by the success

of support vector machines (SVM). The original motivation of SVM is very intuitive for

binary cases as in Figure 2.4. The different colors denote binary responses. With only
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two features, there are numerous straight lines that can perfectly separate the two classes.

The linear SVM method chooses the linear classifier (the dashed line in the picture) that

produces the maximum “non-occupied” area between two classes. More specifically, the goal

is to find a hyper-plane classifier such that the distances to the nearest points (for each class)

are maximized. In Figure 2.4 it means the distance between the two solid parallel lines is

maximized among all possible choices.

Although the primary idea is simple (Boser et al., 1992), SVM turns out to have vast

potentials for further adjustment and improvement. It can be blended with regularized

optimization as we introduced in section 2.1.2. For example, regularized support vector

machines (Vapnik, 1995) can be equivalently expressed as to optimize the corresponding

log-likelihood

LLG-SVM(β|x1., ..., xn., y1, ..., yn) =
n∑
i=1

(1− yixTi.β) + λ||β||2, (2.41)

where xi. is a column vector containing feature values of the ith observation, and yi is the

ith response coded as -1 or +1.

On the other hand, the linear classifier can be modified to non-linear using kernel methods.

The multi-class problem can be decomposed into multiple binary problems. Cortes and

Vapnik (1995) invented a modified version called “soft margin” to deal with mislabeled cases,

by adding a slack variable to measure the degrees of misclassification. Then the optimization

problem gets an additional error penalty term. For this improvement and its practical usage

Cortes and Vapnik received the 2008 ACM Paris Kanellakis Award. However, the SVM also

has limitations: the biggest question may be the choice of the kernel and its parameters;

other open questions involve the optimality of multi-class cases and quadratic programming

efficiency. Like any non-parametric method, SVM can be used on non-regular data, i.e.,

the data points have an unknown distribution; however, it cannot give analytical feature

selection results. Even though users can have a graphical explanation of the classification,

the underlying relationsip between features (genes) and responses can be unclear. For further

discussion we refer to Weston et al. (2001) for feature selection techniques and Ben-Hur et al.

(2002) for clustering techniques via SVM.
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Other non-parametric methods, including NN (Nearest-Neighbor classifier) and Classi-

fication And Regression Trees (CART) (Steinberg and Colla, 2009), have been used for

classification tasks. The K-nearest-neighbor rule works as follows: first, for each test case, K

training cases are identified due to a pre-specification of the distance function (i.e., Euclidean

distance). Then the prediction is decided with the most frequently appearing label among the

K-neighbors, and the value of K can be chosen by cross-validation. A well-known generation

of NN is to assign a label to each test case according to the average weight of each point in

the training pool, while the weight is defined by a kernel function

Prediction(y∗|x∗) = sign(
n∑
i=1

yiK(xi., x
∗)), (2.42)

where x∗ is a new test case and (xi., yi), i = 1, ..., n are training samples. This is called Parzen

Windows. One advantage of Parzen Windows is the outliers have less influence on weight

when it deviates from majority points; however, no guarantees can be made on its predictive

performance with small data sizes. The CART method introduces a decision tree to split the

root set (starting from the original input data) to descendant nodes, which represents the

“finer” subsets of the parental set. After several iterations, which can be decided by cross-

validation, each terminal node is given a label. Then this recursive tree is fully explored and

can be used for future prediction. There are certain decision strategies that should be made

before processing, and the exploration of the optimal tree is known to be NP-complete. In

Dudoit’s paper (Dudoit et al., 2002), it seems CART is outperformed by simpler learning

methods like DLDA and NN when the data size is small.

Non-parametric/semi-parametric methods have been favored in pattern recognition as a

“first-pass”, since they make fewer assumptions. However, they also have limitations and

act more like a “black box”. More specifically, direct probability estimates are absent from

the results, which will cause difficulty in outlier classification. For example, if two clusters

overlap, these overlapped points can be classified into either class and no probabilities are

computed according to a naive SVM. On the other hand, because non-parametric/semi-

parametric methods are feature space object oriented, some data points may fall into neither

of these objects and remain “unclassified”. This problem is more acute with high throughput
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data.

Random Forest

Random forest is a nonlinear and non-parametric method first proposed by Breiman (2001).

The name comes from the random decision forests that was first proposed by Ho (1995).

The major extension to the original decision methods is Breiman’s “bagging” idea and the

random selection of feature subsets. Consider a binary classification problem with a training

dataset X = {x1, ..., xn} and responses Y = {y1, ..., yn}, where n is the total number of

observations. We repeatedly select a bootstrap sample of the training set and fit trees.

For b ∈ (1, 2, ..., B):

1. sample n training cases (with replacement) from X, Y ; call these Xb, Yb

2. train the decision tree Pb on Xb, Yb. For binary classification problems a conventional

choice of training models is the logistic regression link

Pb(Yb = 1) =
exp(βbxb)

1 + exp(βbxb)
, (2.43)

where βb is the logistic regression parameters in tree b. B is the total number of trees. After

training, the prediction of y∗ on a test case x∗ can be made by averaging all the predictions

from the classification trees on x∗

P (y∗ = 1) =
1

B

B∑
b=1

Pb(y
∗ = 1). (2.44)

In the bagging algorithm, the number of trees B can be tuned according to the size of

the training set. With bigger values of B, the variance of the decision trees will decrease

while the computational time will grow substantially. An optimal number of trees B can

be found using cross-validation to find a balance between precision and computational cost.

An ad-hoc candidate list of B usually goes from hundreds to thousands in microarray data

analysis.

The original random forest includes a random selection of feature subsets in each split
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(step 2) in the learning process. The reason for such random selection is to reduce the

correlation across the B trees: if a specific set of variables has great predictive power with

respect to the response variable, then these variables will be selected repeatedly across B

trees, causing them to be highly correlated. An ad-hoc selection of the number of input

variables tried at each split will be
√
p, where p is the total number of variables.

Random forest can provide the importance of variables in classification problems. Breiman

suggest a permutation-based significance scoring technique to the obtain importance of each

feature.

1. Fit the data set with random forest and record the out-of-bag error for each data

point. More specifically, for each tree b after we obtain the model pb we collect the test

performance on all out-of-bag cases. All these out-of-bag errors are then recorded.

2. For each feature j and each tree b, the values of the jth feature are permuted among

the training data. The corresponding out-of-bag error is recomputed and the difference

between it and the results from step 1 (the original error) are recorded as djb, b ∈

(1, ..., B). The average value dj =

∑
b

djb

B
√

Varb(djb)
is then recorded as the importance

score for feature j.

The random forest method has been applied to various problems in bioinformatics in the

last decade, including large-scale association studies for complex genetic diseases (Lunetta

et al., 2004) and SNP-SNP interaction detection in a case-control context (Bureau et al.,

2005). Dı́az-Uriarte and De Andres (2006) compared the performance of random forest with

some standard classification methods (including DLDA, KNN and SVM) with microarray

data, and recommend random forest as part of a standard toolbox for gene selection and class

prediction on microarray data. Unlike many other nonparametric methods, random forest

provides a feature importance score for each possible feature selection choice. However,

this selection may not be sparse in most cases. In this thesis, we include random forest

as a standard non-parametric feature selection method to compare with our proposed full

Bayesian T-probit models.
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2.2 Review of Bayesian Inference with Markov Chain

Monte Carlo Methods

2.2.1 Bayesian Inference

In statistics, Bayesian inference is to update the probability estimate of an event with “prior”

information learned earlier with Bayes’ rule

P (θ|D) =
L(θ|D)π(θ)∫
L(θ|D)π(θ)dθ

, (2.45)

where θ is the parameter of interest and D is the given data. π(θ) is the prior probability,

which indicates one’s preconceived beliefs about θ before collecting data D. L(θ|D) is the

likelihood function of θ given dataD, which is usually defined by a probability density function

of outcome D given θ values, that is

L(θ|D) = P (D|θ), (2.46)

where P (D|θ) is the probability density function of outcome D given θ. The likelihood func-

tion tells us the compatibility of the parameter value θ with collected data D.
∫
L(θ|D)π(θ)dθ

is termed the marginal likelihood of θ. It indicates the likelihood of the data D considering

all possible parameter values. It is a common factor for each individual value of θ since it

does not rely on θ. P (θ|D) is the posterior probability. In words, the posterior probability

P (θ|D) is proportional to the combination of the prior probability of the hypothesis π(θ) and

the compatibility of the data with the parameter values θ (likelihood L(D|θ)).

The essential part of Bayesian inference is the usage of the prior information. It includes

an independent source of information about the estimation of the parameter θ given the

data. It makes sense to consider both the likelihood and prior to make a decision (prediction)

according to the posterior probability; if either the data does not likely come from the model

(with a specific parameter value) or a value of θ is highly unlikely by nature, then the posterior
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probability of such values of θ will be low.

Bayes’ rule can be incorporated in finding posterior predictive probability. For example,

let’s consider classification/regression problems with independent variable x and response

y. A classification/regression model is determined by the likelihood function L(θ|x, y) =

P (y|x, θ) with parameter value θ. Consider the prediction problem on a test case x∗ with

observed data D = (x, y). Then we can integrate over space Θ (of all possible values of θ) to

find the posterior predictive probability

p(y∗|x∗, x, y) =

∫
Θ

p(y∗|x∗, x, θ)dθ =

∫
Θ

p(y∗|x∗, θ)p(θ|x, y)dθ (2.47)

for any possible values of the test response y∗. p(θ|x, y) here is the posterior weighting factor

which can be obtained with Bayes’ rule

p(θ|x, y) =
L(θ|x, yπ(θ)∫

Θ
L(θ|x, y)π(θ)dθ

. (2.48)

The posterior distribution (equation (2.48)) is the distribution of the parameter θ after taking

into account the observed data D = (x, y).

In practice, we can obtain the posterior predictive distribution in equation (2.47) using

sampling techniques. Assume we have a set of samples of (θ1, θ2, ..., θm), which are inde-

pendent and identically distributed random samples according to the posterior distribution

p(θ|x, y). Then a natural estimation of the posterior predictive distribution will be

p(y∗|x∗, x) =
m∑
i=1

p(y∗|x∗, θi)p(θi|x, y), (2.49)

where the integration of equation (2.47) is approximated with the summation. Apparently

the estimation of posterior probability can be improved with more samples.

An alternative set of algorithms to estimate posterior prediction probability uses a single

solution of parameter estimation instead of marginalization over the entire distribution p(θ|x),
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which is called the maximum a posteriori probability (MAP) estimate.

θMAP = argmax
θ∈Θ

p(θ|x) = argmax
θ∈Θ

p(x|θ)π(θ), (2.50)

where π(θ) is the prior distribution of θ. Then the simple prediction probability on a new

case x∗ will be

p(y∗|x∗, y, x, θ) ≈ p(y∗|x∗, θMAP). (2.51)

With the assumption of equal a priori probabilities for parameter θ ∈ Θ, the MAP in

equation (2.50) will lead to the maximum likelihood (ML) estimation

θML = argmax
θ∈Θ

L(θ|x, y) = argmax
θ∈Θ

p(y|x, θ). (2.52)

2.2.2 Markov Chain Monte Carlo Methods

Starting in the 1980s, there was a substantial growth in applications of Bayesian methodology

using Markov chain Monte Carlo Methods (MCMC) to analyze complex problems (Wolpert

et al., 2004). Markov chain Monte Carlo Methods construct a Markov chain that has the

desired probability distribution as its equilibrium distribution and use that Markov chain to

obtain samples. The basic idea is to create a Markov chain whose equilibrium distribution is

the target sampling distribution. Then, starting from an initial state θ, a proposed “jump”

strategy is employed to obtain the next accepted state. After several iterations, the converged

state will be considered as from the desired distribution. More specifically, consider θt =

{θt1, ..., θtp} as the set of variables at step (time) t. Then the chain is defined by giving an

initial value (or initial distribution) for θ0 and transition probabilities p(θt−1 → θt). The

transition probabilities are carefully chosen so that the distribution of θt converges to the

desired distribution for θ as t → ∞. Then with a sufficiently long Markov chain, equation

(2.49) can be used to approximate the integration.

The theory of Markov chains is well-developed (see Gilks (2005) and Norris (1998)). We
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will present the essential theory of Markov chains here in developing Monte Carlo methods.

Instead of discussing properties of some arbitrary Markov chains, we avoid elaborations of the

Markov chain theory and focus on the fact that certain Markov chains converge to a unique

invariant distribution, and can be used to estimate expectations of variables of interest.

A series of variables of interest, θ(0), θ(1), θ(2), θ(3), ..., is called a Markov chain if the value

of θ(n+1) depends only on the value of θ(n). More formally,

P (θ(n+1)|θ(n), {θ(t), t ∈ ε}) = P (θ(n+1)|θ(n)), (2.53)

where ε is any subset of {0, ..., n − 1}. The index t ∈ {0, 1, 2, ...} is viewed as successive

“time”. The possible values of θ(t) are known as the state space of the Markov chain, which

can be either discrete or continuous.

A Markov chain is specified by giving the initial probabilities of the state space (marginal

distribution for θ(0)) and the transition probabilities for one state to jump to the next one

(conditional distributions for θ(t+1) given the possible values for θ(t)). The initial probability

of state θ is written as p0(θ), and the transition probability from state θ (at time t) to state

θ′ (at time t+ 1) is written as Tt(θ, θ
′). If the transition probability Tt(θ, θ

′) does not depend

on the time t, the Markov chain is called homogeneous (or stationary) and Tt(θ, θ
′) can just

be T (θ, θ′).

A distribution π(θ) is called invariant with respect to the Markov chain with transition

probabilities T (θ, θ′) if

π(θ) =

∫
π(θ̃)T (θ̃, θ)dθ̃. (2.54)

It can be proven that a finite Markov chain (when the state splace is finite) always has at

least one invariant distribution.

We are interested in constructing a Markov chain for which the target distribution to

sample from, given by π, is invariant. In practice we tend to use time reversible homogeneous
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Markov chains that satisfy the (more restrictive) detailed balance equation

π(θ)T (θ, θ′) = π(θ′)T (θ′, θ), (2.55)

which implies that π is an invariant distribution.

However, it is not enough to construct a Markov chain with target invariant distribution;

we also require the Markov chain to be ergodic – that the probability of state θ occurring at

time n, denoted by pn(θ), converges to the target invariant distribution as n→∞, regardless

of the choice of initial state θ0. For an ergodic Markov chain the invariant distribution is

unique and usually referred to as the equilibrium distribution.

Two of most important threads of development of MCMC algorithms are the Metropolis-

Hasting algorithm and Gibbs sampling. Metropolis-Hasting sampling was first introduced in

Metropolis et al. (1953). The method chooses the next new state by adding a small change

to the current state, and accepting or rejecting this change based on how the probability

of the proposed state compares to that of the current state. More specifically, let f(θ) be

a function that is proportional to the desired probability distribution p(θ). We choose an

arbitrary probability density Q(θ|δ) that will suggest a candidate for the next sample value

θ, given the previous sample value δ. For the Metropolis-Hasting algorithm, Q must be

symmetric (Q(θ|δ) = Q(δ|θ)). A conventional choice for Q(θ|δ) is a Gaussian distribution

centered at δ. The function Q is referred to as the proposal (jumping) density distribution.

The Metropolis-Hasting algorithm then works as follows:

1. Initialization. Choose an initial value θ0.

2. For each iteration (step) t,

(a) Generate a candidate value θ∗ as a potential sampling from the distribution

Q(θ∗|θt).

(b) Calculate the acceptance probability α = max{f(θ∗)
f(θt)

, 1} = max{p(θ
∗)

p(θt)
, 1}, which is

used to decide whether to accept or reject the candidate value.
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(c) Generate U ∼ U(0,1) (uniform distribution from 0 to 1). If U < α we accept the

new value with θt+1 = θ∗; otherwise, we keep the previous sample value θt+1 = θt.

The Metropolis-Hasting algorithm proceeds by randomly attempting to move around

the sample space. Note that the acceptance probability α indicates how probable the new

proposed sample is with respect to the current sample, according to the distribution value

p(θ). That means if we attempt to move to a more probable point than the existing state with

higher density region of p(θ), we will always accept the move. If we propose to move to a less

probable value, we will sometimes reject the move but still be capable of moving outward.

Thus, we will tend to stay in (and maintain large numbers of samples from) high-density

regions of p(θ) and only occasionally visit low-density regions.

However, the Metropolis-Hasting algorithm also suffers from low efficiency due to its

“local” strategy. In applications, consider θt as a vector with length p. Then the naive

Metropolis-Hasting algorithm will propose a new value θt+1 from a multivariate normal den-

sity function. Then each component is from a conditional univariate normal distribution.

When the value p goes large like hundreds or even thousands, the acceptance ratio will be

substantially reduced with only one “bad” proposal θt,j. That is, if we propose θt whose

jth feature value θt,j has low probability p(θt,j), then the total acceptance probability α will

also be substantially reduced. Part of the solution lies in the “local” fashion of exploring

the space. In other words, it is more feasible to propose a new value θt+1 with only one

different component compared with θt - e.g., it may differ with respect to θt,i, for some i,

but have θt,j = θt+1,j for j 6= i. In the Markov chain framework it is possible to guarantee

that such step-by-step local methods eventually produce a sample of points from the desired

distribution.

A technique based on the “locality” known as Gibbs Sampling has been widely applied to

obtain samples from a specified multivariate probability distribution (from the joint probabil-

ity distribution of two or more random variables). This method is named after the physicist

Josiah Willard Gibbs and described by brothers Stuart and Donald Geman in Geman and

Geman (1984). Suppose we want to obtain samples of random variables θ = (θ1, ..., θp)

from a joint distribution p(θ1, ..., θp). We obtain the transition from θt−1 = (θt−1
1 , ..., θt−1

p ) to

θt = (θt1, ..., θ
t
p) with Gibbs sampling as follows:
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Draw θt1 from p(θ1|θt−1
2 , ..., θt−1

p )

Draw θt2 from p(θ2|θt1, θt−1
3 , ..., θt−1

p )

...

Draw θti from p(θi|θt1, ..., θti , θt−1
i+1 , ..., θ

t−1
p )

...

Draw θtp from p(θp|θt1, ..., θtp−1)

The samples can then be proved to approximate the joint distribution of all variables.

The initial value is not necessary to guarantee the convergence of the Markov chain; however,

it does impact the efficiency of the Markov chain mixing speed. That is, if the initial value

is far from the high probability density region it may take a very long time for the Markov

chain to travel around the sample space since it will take the first few iterations to jump out

of the “remote” region whose probability density function value is low. Alternatively, the

initial value can be determined by other algorithms such as MLE, MAP, EM algorithm, etc.

Their solutions may not be in the high probability density region but it is usually helpful to

start the Markov chain from a single parametric estimator.

Another set of sampling techniques called “molecular dynamics” was proposed by Alder

and Wainwright (1959) around the same time as when the Metropolis-Hasting sampling

algorithm was developed. The primary idea is to find new states by simulating the dynamical

evolution of the system. We refer to this technique as the dynamical method, since it can in

fact be used to sample from any differential probability distribution, not just distributions for

systems of molecules. A combination of the Metropolis-Hasting algorithm and the dynamical

method leads to the Hamiltonian Monte Carlo method of Duane et al. (1987).

2.2.3 Hamiltonian Monte Carlo Method

The original molecular dynamics approach was first proposed to simulate physical systems

with the help of the Metropolis-Hasting algorithm (Alder and Wainwright, 1959). The origi-

nal dynamical approach only works to sample from the canonical distribution for states under
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conditions of constant total energy. Andersen (1980) introduced a stochastic element so that

the energy and volume of the phase states can fluctuate. More formally, suppose we want

to sample from the canonical distribution for a set of real variables, q = {q1, ..., qn}, with

respect to the potential energy function, E(q), which is differentiable with respect to the qi.

The canonical distribution is defined as

P (q) =
1

C
exp (−E(q)), (2.56)

where C is a constant so that the distribution integrates to 1. In applications of molecular

dynamics problems, the qi are the position coordinates to be simulated (with n = 3). In

Bayesian statistical inference, the qi are our model parameters of interest. In the context

below we use qi to denote the “position” variables.

We introduce another set of variables, p = {p1, ..., pn} with kinetic energy function K(p) =

1
2

∑
i

p2
i . In the context of molecular dynamics, pi are the components of the momentum of

the particles, and in Bayesian inference pi are auxiliary random variables. We will refer to

the pi as the “momentum” variables.

All possible states of the combination of position and momentum variables are known as

phase space. In phase space each unique point corresponds to the states of both position

variables and momentum variables. The total energy function for all possible points in phase

space is known as the Hamiltonian,

H(q, p) = E(q) +K(p) = E(q) +
1

2

∑
i

p2
i . (2.57)

The canonical distribution over phase space can then be written as

P (p, q) =
1

C
exp (−H(q, p))

=
1

C1

exp (−E(q))
1

C2

exp (−K(p))

= P (q)P (p),

(2.58)
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where C1 and C2 are the corresponding integration factors of the marginal distribution for q

and p. If we can sample from the canonical distribution over phase space, we can also obtain

a sample of values for q from the desired distribution P (p).

We then use the Hamiltonian function to define a dynamics on phase space, and treat

both qi and pi as functions of a “time” parameter τ . τ is supposed to satisfy the Hamiltonian

dynamics equations

dqi
dτ

= +
∂H

∂pi
= pi, (2.59)

dpi
dτ

= −∂H
∂qi

= −∂E
∂qi

, (2.60)

where τ is the physical time, which is totally arbitrary in statistical inference. It should not

be confused with the actual Markov chain discrete time parameter t.

The total energy H is conserved under time evolution since

dH

dτ
=
∑
j

[
∂H

∂qj

dqj
dτ

+
∂H

∂pj

dpj
dτ

] =
∑
j

[
∂H

∂qj

∂H

∂pj
− ∂H

∂pj

∂H

∂qj
] = 0. (2.61)

The Hamiltonian dynamics can also be viewed as a deterministic transformation Ts on the

phase space (the space of (p, q)) mapping the state at (p(t), q(t)) to the state at (p(t+s), q(t+

s)). The dynamics preserves volume under all these kinds of transformations. Actually, if

we follow these points in some small region with volume V , then the volume of the range of

transformation Ts is also V . Then it follows that the total canonical probability, defined by

the total energy H, in these two sets under transformation are also equal to each other. This

is known as Liouville’s theorem

∑
i

[
∂

∂qi
(
dqi
dτ

) +
∂

∂pi
(
dpi
dτ

)] =
∑
i

[
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

]
= 0. (2.62)

In practice we need to use discretization methods to approximate the dynamics equa-

tions ((2.59) and (2.60)) with non-zero time evolution steps. The reason is that we can not
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follow the dynamics exactly, and it can be proven that Liouville’s theorem still holds for

discretization, while the discretization errors can be corrected using the Metropolis-Hasting

acceptance-rejection step.

One common discretization scheme is the leapfrog method. It is time reversible (which

is crucial for the Hamiltonian Monte Carlo method, as we are going to introduce), and

also preserves phase space volume. In each single iteration during leapfrog we calculate the

transformation of p and q from time τ to time τ + ε:

p̂i(τ +
ε

2
) = p̂i(τ)− ε

2

∂E

∂qi
(q̂(τ)) (2.63)

q̂i(τ + ε) = q̂i(τ) + εp̂i(τ +
ε

2
) (2.64)

p̂i(τ + ε) = p̂i(τ +
ε

2
)− ε

2

∂E

∂qi
(q̂(τ + ε)). (2.65)

The leapfrog method involves a half step updating for pi, a full step for qi, and a full step

for pi. It can also be replaced by a half step for qi, a full step for pi, and a full step for qi.

But the alternative is slightly less convenient since it is almost always easier to update the

momentum variable p. ε in equation (2.60) represents a change of time period, which should

be small enough to give an acceptably small discretization error. The last step of equation

(2.61) and the first equation (2.59) are combined since the updating of pi in equation (2.61)

is immediately followed by the half-step updating of pi in equation (2.59).

Hamiltonian Monte Carlo (HMC) samples points in phase space ((p, q)) with a Markov

chain. The dynamical transition in HMC is similar to that of stochastic dynamical methods,

with only 2 modifications – first, during each transition the Markov chain can both jump

forward (in time) or backward; second, the final position of the transition will only be a

proposal for the Metropolis-Hasting algorithm. The proposed value can be rejected with a

rejection probability based on the total energy change as in the Metropolis-Hasting algo-

rithm. If the dynamics functions in equation (2.59) and equation (2.60) are followed exactly,

the total energy change and the rejection probability will be zero, and the proposed value
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will be accepted. This kind of rejection mechanism is crucial to eliminate the dynamical

errors introduced by the inexact approximation of the leapfrog method. More formally, the

dynamical transitions of the HMC algorithm can be implemented as follows:

1. Randomly choose a direction, λ ∈ {1,−1}, to define a forward or backward trajectory.

2. Starting from the current phase state (q, p) = (q0, p0), implement L leapfrog steps with

a stepsize ε, and end up with a new state (q∗, p∗).

3. Calculate the acceptance probability α = min(1, exp (−(H(q∗, p∗)−H(q0, p0)))), which

is used to decide whether to accept or reject the candidate state (q∗, p∗).

4. Generate U ∼ U(0,1) (uniform distribution from 0 to 1). If U < α we accept the new

state (q∗, p∗); otherwise, we reject the candidate and keep the previous state (q0, p0).

The values of ε and L need to be chosen carefully. In practice, it is good for the number

of leapfrog steps, L, to be fairly large, so the proposed value can explore the target sampling

distribution thoroughly. If the value of ε is too large, the acceptance probability will be too

low, and if the value is too small, the leapfrog method will jump rather slowly. Both values

of ε and L should be carefully chosen for a specific situation and we will discuss this later in

the thesis.

An important variant of the Hamiltonian Monte Carlo method is the Langevin Monte

Carlo Method (LMC). Similar to HMC, Langevin Monte Carlo proposes a new state with

leapfrog methods using only one single leapfrog iteration (L = 1). As in the case of the

Hamiltonian Monte Carlo, LMC can produce exactly unbiased results. It is often viewed

as a “simple” version of HMC. In this thesis, we will include both HMC and LMC in the

computational efficiency experiments to assess the performance of our proposed sampling

methods with the Hamiltonian Monte Carlo method.
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Chapter 3

Fully Bayesian T-probit Regression with Heavy-

tailed Priors

3.1 T-probit Models with Heavy-tailed Priors

A probit model is a type of regression model in which the response variables yi, i = 1, ..., n

can only take binary values: 0 and 1. The vector of regressors xi is assumed to influence the

response value yi. Traditionally, probit models can be expressed using a continuous auxiliary

variable z so that many tools for linear models can be used (Andrews and Mallows, 1974).

More specifically, we have the auxiliary probit model with a normal link function as follows:

yi =

 1, if zi > 0

0, if zi < 0
(3.1)

zi = xiβ + εi,

εi ∼ N(0, 1).

where β = (β0, β1, ..., βp)
′ is the coefficient vector, xi contains the ith observation of all

features and zi is the auxiliary variable.

With zi integrated out, the probit model can also be expressed with a conditional prob-

ability function:

P (yi|xi, β) = Φ(xiβ)yi(1− Φ(xiβ))1−yi , (3.2)
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where Φ is the cumulative distribution function (CDF) of the standard normal distribu-

tion. There are also other binary outcome models with different choices of link functions F

(replacing Φ), for example, with the logistic function the model becomes logistic regression.

One advantage of auxiliary variable methods is to bridge the classification model with a

familiar linear model. For linear models Gaussian error is common, but may not be appro-

priate here because of the existence of outliers. Robit regression (Lange et al., 1989) replaces

the normal link distribution with Student’s t-distribution and the model becomes

yi =

 1, if zi > 0

0, if zi < 0
(3.3)

zi = xiβ + εi,

εi ∼ T (α0, ω0),

where T (α0, ω0) is the scaled t-distribution with shape parameter α0 and scale parameter
√
ω0. The probability density function (PDF) value of the scaled t-distribution at ε can be

given as:

tα0,ω0(ε) =
Γ(α0+1

2
)[1 + ε2

ω0α0
]−(

α0+1
2

)

√
ω0απΓ(α0

2
)

, (3.4)

where Γ(.) is the Gamma function. As in the probit model, with zi integrated out, the whole

model is equivalent to the following conditional probability:

P (yi|xi, β) = Tα0,ω0(xiβ)yi(1− Tα0,ω0(xiβ))1−yi , (3.5)

where Tα0,ω0 is the cumulative distribution function of the scaled t-distribution with shape

parameter α0 and scale parameter
√
ω0:

Tα0,ω0(xiβ) =
1

2
+

xiβ√
ω1

Γ

(
α1 + 1

2

)
2F1

(
1
2
, α1+1

2
; 3

2
;− (xiβ)2

α1ω1

)
√
πα1Γ

(
α1

2

) , (3.6)
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where 2F1 is the hypergeometric function, which is given as the sum of an infinite series

(Abramowitz and Stegun, 1972). This model was also called the robit model by Liu (2004).

In this thesis, we refer to it as T-probit to emphasize the role of the t distribution and also

the similarity with probit models.

In most high-dimensional problems, we want to find the very few features are most relevant

to the response y. One of the key components in our method is the assignment of the t

distribution with small degrees of freedom, α1, and small scale,
√
ω1, as a prior for β, which

is written as follows:

βj ∼ T (α1, ω1), for j = 1, . . . , p. (3.7)

For Markov chain Monte Carlo (MCMC) sampling consideration, we express the above t

prior for β as a scale-mixture normal by introducing a new variance λj for each βj, which is

given as follows:

βj|λj ∼ N(0, λj), (3.8)

λj
iid∼ Inverse-Gamma(α1/2, α1ω1/2),

Hereafter, we will write λ = (λ1, . . . , λp). The intercept β0 is assigned with a normal distri-

bution with large variance since β0 may be centered far from 0.

If the auxiliary variable zi in equation (3.3) is integrated away, then the heavy-tailed

T-probit model can be written as:

P (yi|xi, β) = Tα0,ω0(xiβ)yi(1− Tα0,ω0(xiβ))1−yi , (3.9)

β = (β0, β1, . . . , βp)
′

βj|λj ∼ N(0, λj),

λj
iid∼ Inverse-Gamma(α1/2, α1ω1/2).

The choices of values for α1 and ω1 are critical, reflecting our knowledge about the sparse-

ness of β. From our empirical studies in 4.4, an ad-hoc choice for α1 is 1, which corresponds
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to the Cauchy distribution; see the empirical investigations in logistic regression (Li and Yao,

2014). The posterior is fairly robust to the choice of ω1. Theoretically, the choice of a very

small value is also crucial. Because when ω1 is large, the posterior may be influenced by the

shape of the t distribution near the origin (which is close to normal) rather than the heavy

tails. From our empirical studies, we recommend fixing ω1 at a value around exp(−10), i.e.,

a scale of 0.007 for the t distribution. More discussions about the choices of α1 and ω1 are

provided by Li and Yao (2014). This choice of scale seems to be significantly smaller than

other values we have seen from the literature for non-convex penalization learning with op-

timization approaches - for example the default value, 2.5, recommended by Gelman et al.

(2008). Optimization approaches may have trouble with very small scale. For example, using

a small scale like 0.007, the R function bayesglm in the R package ARM (which implements

penalized logistic regression with t priors) will converge to a mode where almost all coeffi-

cients are shrunken to a value very close to 0. The MCMC algorithm to be described in this

thesis can handle such small scales; hence, the hyper-LASSO sparseness property in the tails

of t distribution can be utilized.

3.2 MCMC Sampling for T-probit Models

We propose our MCMC sampling algorithm to sample from the joint posterior of (β, λ),

denoted by f(β, λ|y,X), which is based on the hierarchical models given by equations (3.9),

(3.8), and (3.1) with α0, ω0, α1, ω1 fixed (so omitted in the following model descriptions). The

log posterior can be written as follows:

log(f(β, λ|y,X)) =
n∑
i=1

log(P (yi|xi, β)) +

p∑
j=0

log(f(βj|λj)) +

p∑
j=1

log(f(λj)) + C, (3.10)

where the first three terms come from the models defined by equations (3.9), (3.8), and (3.1).

C is the log of the normalization constant unrelated to β and λ. In more detail, the first

three terms in equation (3.10) are given as follows:
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lp(yi, xiβ) ≡ log(P (yi|xi, β))=yi log(Tα0,ω0(xiβ)) + (1− yi) log(Tα0,ω0(−xiβ))(3.11)

log(f(βj|λj)) = −1

2
log(λj)−

β2
j

2λj
+ C1, for j = 0, . . . , p (3.12)

log(f(λj)) = −
(α1

2
+ 1
)

log(λj)−
α1ω1

2λj
+ C2, for j = 1, . . . , p. (3.13)

where C1 and C2 are two constants unrelated to (β, λ). Also note that λ0 is fixed.

Our MCMC sampling algorithm (referred to as Restricted Gibbs Sampling with HMC)

uses Gibbs sampling with the Hamiltonian Monte Carlo (HMC) method for sampling β. The

algorithm starts with an initial value for (β, λ). The choice of initial value does not change

the nature of our sampling algorithm. In this thesis, we use LASSO solution as a guess of

the initial point. Then, given a previous state for (β, λ), we iteratively obtain a new state

denoted by (β̂, λ̂) as follows:

Restricted Gibbs Sampling with HMC

step 1: For each j, draw a new λ̂j from the conditional distribution f(λj|βj) with log PDF equal

to the sum of equation (3.12) and equation (3.13). It is well-known that λj given βj has

an Inverse-Gamma distribution given as follows:

λj|βj ∼ Inverse-Gamma

(
α1 + 1

2
,
α1ω1 + β2

j

2

)
. (3.14)

step 2: With the new values of λ̂j drawn in step 1, determine a subset, βU , of β to update in

step 3 below. We update βj if λ̂j is large enough. That is, given a prescribed threshold

value η, the subset is defined as U = {j|λ̂j > η}. The βU is defined as {βj|j ∈ U}. The

subset of βF = {βj|j ∈ F = {0, . . . , p} \ U} will be kept unchanged in step 3.

step 3: Update the set of βj with j ∈ U , denoted by βU , by applying HMC to the conditional

distribution of βU given as follows:
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log(f(βU |βF , λ̂, X, y))

=
n∑
i=1

lp(yi, xi,UβU + xi,FβF ) +
∑
j∈U

log(f(βj|λ̂j)) + C3, (3.15)

where the function lp for computing log likelihood is defined in equation (3.11), and xi,U

is the subset of xi with its feature index in U . More details of HMC are given in the

Section 2.2.3. After updating β̂U , the new value of β is denoted by β̂ in which βF does

not change. Note that, because HMC is a Metropolis algorithm, the new β̂ may be equal

to β if a rejection occurs.

step 4: Set (β, λ) = (β̂, λ̂), and go back to step 1 for the next iteration.

We will make additional remarks and supplement some details about the above algorithm:

1. Even if a new proposed βU is rejected in step 3, the subset U in step 2 will change in

the next iteration due to the new values of λ̂ drawn in step 1.

2. The thresholding with λ̂ in step 2 chooses only the coefficients with large variance λj to

update. This is intended to save a great deal of computation because most coefficients

are near 0. Updating the coefficients with small λj in HMC does not change the

likelihood as much as updating the coefficients with large λj, but will consume the

same computing time. We often choose η so that only 10% of the values in β are

updated in step 3.

3. We can save computing time in step 3 by caching values of xi,FβF from the previous it-

eration. Computing the linear combinations xiβ is the major computation in evaluating

the log posterior of β. The thresholding in step 2 can save a great deal of computation.

4. The thresholding in step 2 does not change the Markov chain property of the above

algorithm. The reason is that the choice of subset U does not depend on the value of

β, therefore, the transition in step 3 is reversible with respect to f(βU , βF |λ̂, X, y). As
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a result, the combination of step 2 and step 3 is a reversible Markov chain transition

with respect to the conditional distribution f(β|λ̂, X, y). Note that the Markov chain

is not reversible if we integrate λ out, i.e., using the t density equation (3.7) directly

as prior for β, and threshold on β directly in step 2. This is an advantage of using

the scale-mixture normal expression (equations (3.8) and (3.1)) instead of using the t

density equation (3.7).

5. In applying HMC, we need to compute the gradient of

U(βU) = − log(f(βU |βF , λ̂, X, y)), (3.16)

which is called potential energy function; see details in Section 2.2.3. The gradient will

be used to define the leapfrog trajectory. The first-order partial derivative is given by

this formula:

∂U
∂βj

=
n∑
i=1

Γ
(
α0+1

2

)
√
α0π Γ

(
α0

2

) × xij√
ω0

×

(
1 +

(xi,UβU + xi,FβF )2

α0ω0

)−α0+1
2

1− yi − Tα0,ω0(xi,UβU + xi,FβF )
+
βj

λ̂j
.

(3.17)

6. An advantage of HMC is that it can explore a highly correlated posterior quickly

without suffering the random walk with a long leapfrog trajectory. This property plays

an important role in the sampler’s ability to travel quickly between multiple modes of

the posterior. This is explained as follows. When λ̂j and λ̂k for two correlated features j

and k are large after a draw in step 1, (βj and βk) given λ̂j and λ̂k are highly correlated.

For such distributions, HMC can move more quickly than Gibbs sampling algorithms

along the least constrained direction to avoid random walk, and this move will lead to

the change of modes in the joint distribution of (βj, βk) with λ marginalized.

When the number of features p is large, such as thousands, it is necessary to implement

two-stage sampling for T-probit models. The reason is that the number of modes in the

posterior when p is large is be too huge to summarize. Therefore, we first run the restricted

Gibbs sampling with HMC using the dataset containing all p features, called Stage 1. Then

we calculate the MCMC means of all coefficients β and choose only the top p∗ = 100 features
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with the largest absolute values of MCMC means. The choice of p∗ does not change the

property of our MCMC methods and can be arbitrarily made according to users’ need. We

then run the MCMC sampling once again with only the selected features (Stage 2). Our

feature selections will be based on the MCMC samples obtained from Stage 2.

More details of HMC sampling and a list of parameters with recommended values are

given in Section 2.2.3 and Section C.2, respectively.

3.3 Dividing MCMC Samples to Find Feature Subsets

We run the MCMC sampling as described in Section 3.2 to obtain samples from the posterior

of β. With the intercept βi removed, this sample is denoted by a matrix B = (βj,i)p×R, in

which βj,i represents the value of βj in the ith sample and R is the number of MCMC

samples. In many cases, the posteriors of β based on T-probit models with heavy-tailed

priors are highly multi-modal. For a demonstration, one can look at Figure 4.1, which

shows a scatterplot of MCMC samples of two β’s for two correlated features from one of our

simulation examples. We divide the Markov chain samples B into sub-pools according to

the mode that each sample represents. However, the number of such feature subsets may

be huge even if the number of features p is small. Therefore, we only consider dividing

the Markov chain samples according to the multiple modes for the Markov chain samples

obtained in stage 2. In this thesis, we use a scheme that examines the relative magnitude of

βj in comparison to the largest value in all features. Our scheme is described as follows:

step 1: We set Ij,i = 1 if |βj,i| > 0.1 × max{β1,i, . . . , βp,i}, and Ij,i = 0 otherwise. By this

way, we obtain a boolean matrix (Ij,i)p×R with entry Ij,i denoting whether the jth

feature is selected or not in the ith sample.

step 2: Discard the features with overall low frequency in step 1. We calculate fj = 1
R

R∑
i=1

Ij,i.

We will discard a feature j if fj is smaller than a pre-defined threshold, which is set

to be 5% as an ad-hoc choice. Let D = {j|fj < 5%}. For each j ∈ D, we set Ij,i = 0

for all i = 1, ..., R. This step is to remove the features that are selected in step 1 due

to MCMC randomness.
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step 3: Find a list of feature subsets by looking at the column vectors of I. Each different

column in I represents a different feature subset.

The algorithm above may not be the best to accurately divide the MCMC samples ac-

cording to the posterior modes of β. The reason is that the MCMC simulation introduces

small jitters into the samples of the features that are not selected in the mode. This is why

we need to use the thresholds 0.1 in step 1 and 5% in step 2 to avoid the selection of features

with the jitters. However, the resulting feature subsets selection will depend on the choices

of the thresholds. The choices of 0.1 and 5% we use in this thesis are only ad-hoc based on

our empirical experiences. A better method may be to find the posterior modes starting from

each MCMC sample using a certain optimization algorithm. However, finding such posterior

modes for a large number of MCMC samples is time-consuming. In this thesis, we present

the results based on the fast algorithm described here for simplicity.

3.4 Feature Subset Evaluation Using Cross-validation

In statistics, there are a number of different ways to evaluate predictive accuracy in binary

response models. The predictive performance can be measured using several different criteria,

including error rate (ER), average minus log-probability (AMLP) on true response, and area

under the ROC (receiver operating characteristic) curve (AUC). Suppose the true responses

of n cases are y1, . . . , yn. A prediction method provides an estimate of Pr(yi = 1|xi) with

p̂i(1) and Pr(yi = 0|xi) with p̂i(0). Note that the predictive probability at the true label yi

can be written as p̂i(yi). Then the error rate (ER) is calculated as:

ER =
1

n

n∑
i=1

I(ŷi 6= yi), (3.18)

where ŷi = arg maxc p̂i(c), c = 1, 2 is our prediction of the true label yi using a threshold of

0.5. That is, ŷi = 1 if p̂i(1) > 0.5; otherwise, ŷi = 0. The ER criterion is very useful to

evaluate the performance of the predictions at the boundary 0.5, but does not punish very

poor predictions. For example, suppose that the true response of a test case is 1, for which
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method A gives a predictive probability 0.49 that it is from class 1, and method B gives 0.2;

using 0.5 as threshold, they are both wrong, but we can see that method A is better.

The second criterion is defined as the average of minus log predictive probabilities (AMLP):

AMLP =
1

n

∑
− log(p̂i(yi)). (3.19)

We also include ROC curves to assess the performance of p̂i as we vary the discrimination

threshold. The curve reflects the true positive rate value and the false positive rate value at

different threshold settings. The true positive rate is the proportion of positive cases that

are correctly identified as such. The false positive value is the number of false (positive)

predictions over negative conditions, and the false positive rate is the ratio of false positive

value to negative conditions. The true-positive rate is also known as sensitivity in biomedicine

(Pepe, 2000), which measures a “hit” for the purpose of prognosis. The false positive rate is

also known as the fall-out and can be calculated as 1 - specificity. In this thesis we will collect

the corresponding AUC (area under the ROC curve) value as an important measurement to

evaluate the performance of different classifiers. Among all three methods mentioned above,

the ER is the most intuitive measurement to evaluate prediction accuracy, but it may not be

enough to differentiate models. For example, it may be more important for a model to give

better predictive performance on “tough” cases (i.e., improve the prediction probability for

the true label from 20% to 30%) even though both of them are wrong, rather than improving

the prediction probability for a true label from 80% to 90%. Average minus log-probability

(AMLP) serves this purpose: for each response value yi we calculate the predicted probability

for true cases. The predictive probability of P (Yi = yi) for the true label yi is p̂(Yi = yi), and

log(p̂(yi)) gets smaller when the prediction probability gets smaller. In other words, AMLP

puts a greater penalty penalize on the wrong prediction of cases of interest.

For each feature subset found after we divide the MCMC samples we can examine the

cross-validated training predictive power of different feature subsets. For example, if we find

a top feature subset (x1, x2, x8), we then use (x1, x2, x8) as the new training dataset and

find the cross-validated AMLP/AUC/ER of predictive probabilities given by a method that

uses only these three features. More specifically, the training dataset is first reduced to 3-
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dimensional new data with the selected feature subset x1,2,8 and dimensions n × 3. Then

we divide the training cases into leave-one-out folds. For each fold f , the new training

matrix can be denoted as x,S where x is the matrix containing all p features (columns). S

is the subset containing all selected features (S = {1, 2, 8} here). Then x,S is a matrix with

dimensions (n − 1) × 3 since we have n − 1 observations and 3 features in S. The test case

is a vector containing 3 features. We use the R package arm to fit a Bayesian generalized

logistic model to the new training cases and test the model on the fold-specific test case.

The resulting prediction probability is then recorded for each fold. Then over all folds we

collect the prediction results and find ER/AMLP/AUC with the true labels. This process

is repeated for each feature subset we found from the MC samples. An sample of such a

cross-validated evaluation table is given as follows:

Table 3.1: A feature subsets table with cross-validated prediction AMLP/ER/AUC

fsubsets freqs cv AMLP cv ER cv AUC coefs(w/int)
1 1,2,8 0.27 0.37 0.17 0.91 -1.88,6.13,-0.86,6.01
2 1,2,11 0.09 0.38 0.18 0.91 0.48,4.06,-1.93,1.91
3 1,2 0.07 0.47 0.26 0.84 -1.35,10.93,-6.11
4 1,2,7 0.06 0.39 0.17 0.90 -0.74,6.64,-3.56,4.38

3.5 Out-of-Sample Predictions with Fitting Results of

Bayesian T-probit Models

In this section, we describe three methods for making predictions for test cases. The conven-

tional prediction is made using the whole Markov chain. In Bayesian analysis, the posterior

prediction for a test case with features x∗ given a training case with features X = (x1, ..., xn)

and response Y = (y1, ..., yn) is

P (y∗|x∗, X, Y ) =

∫
β

P (y∗|x∗, β)P (β|X, Y )dβ, (3.20)

where P (y∗|x∗, β) is the new likelihood and P (β|X, Y ) is the posterior probability of param-

eter β.
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Given a Markov chain, we have (β1, β2, ..., βm) as random samples according to the pos-

terior distribution of β. A natural estimation of the posterior predictive probability will be:

p̂(y∗|x∗, X, Y ) =
m∑
i=1

P (y∗|x∗, βi)/m. (3.21)

We compute the prediction probability P (y∗|x∗, βi) and average all probabilities over the

MC samples. The samples will naturally reflect the posterior probability if the MC is mixed

well, and then we only need to record
∑m

i=1 P (y∗|x∗, βi)/m since each single sample accounts

for 1/m of the entire set of MC samples. We refer to this method as the “Tpro average”

method.

Alternatively, we can find prediction probabilities with specific feature subsets. Two of

the most interesting feature subsets are the “Top” feature subset and the “Optimal” feature

subset. The “Top” feature subset is the one with the highest frequency (among all subsets)

across the Markov chains. That is, given a set of training data (and corresponding training

process), we can analyze the Markov chain samples and find the “Top” feature subset with

the highest frequency. Then we use this feature subset S to find the predictive probability

on the test case y∗ with features x∗,S and estimation of βS. We refer to this prediction

method as the “Tpro top” method. Similarly, we have the “Tpro optimal” method to find

predictive probabilities on a test case using the “optimal” feature subset, which is the feature

subset that generates the optimal value of training average minus log-probability (among all

feature subsets). In this thesis, we provide predictive performance of both the “Tpro top”

and “Tpro optimal” methods in each data analysis.

We implement all three prediction methods (“Tpro average”, “Tpro top” and “Tpro optimal”)

and evaluate them as well as other methods in simulation studies and real data analysis. The

evaluation process is slightly different for simulations and real data analysis. In simulation

studies, we generate a training dataset (X, Y ) and a test dataset (X∗, Y ∗). The T-probit

regression is trained solely on (X, Y ) and the resulting Markov chain samples are saved. We

first identify the “Top” and “Optimal” feature subsets S from the Markov chain samples, and

then we find the prediction probabilities of the test cases Y ∗ with features X∗,S and estimation

of βS. In real data analysis, we have data (X, Y ) where X has limited numbers of obser-
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vations n (usually hundreds). Thus we evaluate the predictive performance of all methods

using cross-validation. The overall prediction probabilities across folds are then recorded and

the corresponding ER/AMLP/AUC values are used to evaluate predictive performance of all

three methods. An example of the resulting prediction table (both from simulation and real

data analysis) is shown in Table 3.2.

Table 3.2: An example table of predictive performance with the T-probit model us-
ing Top selected feature subsets, Optimal feature subsets and averaging over all MC
samples.

Tpro top Tpro optimal Tpro average
ER 0.19 0.1 0.1

AMLP 0.57 0.38 0.33
AUC 0.86 0.94 0.91

No. of Features 2.85 1.26
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Chapter 4

Simulation Studies

4.1 A Toy Example for Demonstrating the Separation

of Correlated Features into Different Feature Sub-

sets

We generate a dataset with only 2 features (p=2) and 100 samples (n=100). The dataset is

generated from the following model:

P (yi = c) =
1

2
, i = 1, 2, ..., n, c = 1, 2, (4.1)

µ1,j = 0, µ2,j = 2, j = 1, 2,

zi ∼ N(0, 1),

εi1 ∼ N(0, 1), i = 1, 2, ..., n,

εi2 ∼ N(0, 1), i = 1, 2, ..., n,

xi1 = µyi,1 + zi + 0.1εi1, i = 1, 2, ..., n,

xi2 = µyi,2 + zi + 0.1εi2, i = 1, 2, ..., n,

εij ∼ N(0, 1), i = 1, 2, ..., n, j = 1, 2,

where yi can only take values 1 or 2. µc, c = 1, 2 are the mean centroids of two features

with µ1,j = 0 and µ2,j = 2 for feature j = 1, 2. xij is the ith observation value of feature j
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(xj, i = 1, 2).

xi1

µ1,1 = 0

xi2

zi

µ1,2 = 0

µ2,1 = 2 µ2,2 = 2

(a) Data structure demonstration. xi1
and xi2 are the values of feature 1 and fea-
ture 2 from the ith observation. µyi,j are
the sample mean values of feature 1 and
feature 2, where yi is the response value of
the ith observation.
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(b) Scatterplot of feature 1 and fea-
ture 2 values.

Figure 4.1: Data structure demonstration and scatterplot of feature 1 and feature 2
values.

The structure of this data set is shown in Figure 4.1a. From the graph we can see that

both feature 1 and feature 2 are relevant to class label y with similar predictive power. They

both have a nonzero mean value for yi = 1 and yi = 2 (µ1,j = 0, µ2,j = 2). zi is the common

factor shared by feature 1 and feature 2, while εi1 and εi2 are independent components of

each feature (from the ith observation). As a result, feature 1 and feature 2 are strongly

correlated with each other with correlation 99.5%, and they also have similar predictive

power with respect to the response yi. Figure 4.1b shows a scatterplot of feature 1 and

feature 2.

We run MCMC on this dataset with the parameter settings given in Appendix C. The

initial values of β and λ are computed with LASSO, and then we fit our T-probit regression
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with all 100 features. In the end, we record 12,000 iterations of β and λ in 11413 seconds.

The Markov chain samples obtained with T-probit regression are demonstrated in Figure

4.2, Figure 4.3, Figure 4.4 and Figure 4.5. Figure 4.2 shows both Markov chain samples

of coefficients of feature 1 and feature 2 (separately), and Figure 4.4 shows the results of

Markov chain samples after the first 285 seconds. We also provide the scatterplot of the

feature 1 and feature 2 Markov chain samples (at 11413 seconds and the first 285 seconds) in

Figure 4.3 and Figure 4.5. Both Figure 4.2 and Figure 4.4 show that feature 1 and feature 2

are selected separately into two different modes across Markov chains; that is, in each single

Markov chain sample either feature 1 or feature 2 is selected. Figure 4.3b and Figure 4.5

show sample values of the two features connected with solid lines. Both graphs show that

T-probit regression can switch between feature 1 and feature 2. In conclusion, the T-probit

regression selects the 2 features with similar frequency.

The coefficients from LASSO, Bayesglm and random forest are shown in Table 4.2. The

T-probit regression selection results are presented in Table 4.1, which shows that T-probit

regression gives similar selection frequency to feature 1 and feature 2, with 56% and 42%

frequency among all Markov chain samples, respectively. This means that in most Markov

chain samples (98%), either feature 1 or feature 2 will be selected, while in 2% of the Markov

chain samples T-probit regression will select feature 1 and feature 2 simultaneously. In

conclusion, the T-probit regression is able to provide multiple feature subset selection results,

while other methods (including LASSO, Bayesglm and random forest) only provide a single

vector of coefficients which signifies the importance of both features.

Table 4.1: Feature Subset Selection Table with T-probit regression. fsubsets: feature
subsets. freqs: frequency of the corresponding feature subset. coefs: coefficient values
(with intercept).

fsubsets freqs coefs(w/int)
1 1 0.56 0.25,2.82
2 2 0.42 0.08,1.96
3 1,2 0.02 0.26,2.35,0.61

We also show the prediction results of all methods on test cases in Table 4.3 and Table

4.4. Table 4.3 shows the prediction results of T-probit regression using the three different

feature subsets found in Table 4.1, and Table 4.4 shows the prediction results of coefficient
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(a) The entire set of Markov chain coefficients of
feature 1 after 11413 seconds.
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(b) The entire set of Markov chain coefficients of
feature 2 after 11413 seconds.

Figure 4.2: The entire set of Markov chain coefficients of feature 1 and feature 2.
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(a) Scatterplot of Markov chain coefficients of fea-
ture 1 and feature 2.
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(b) Scatterplot of Markov chain coefficients of fea-
ture 1 and feature 2 with line connections.

Figure 4.3: Scatterplot of Markov chain coefficients of feature 1 and feature 2.

Table 4.2: Feature Coefficients of LASSO, Bayesglm and Random Forest.

LASSO Bayesglm Random Forest
Feature 1 1.15 24.63 1.26
Feature 2 1.27 24.53 1.26
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(a) Traceplot of Markov chain coefficients of fea-
ture 1 after the first 285 seconds.
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(b) Traceplot of Markov chain coefficients of fea-
ture 2 after the first 285 seconds.

Figure 4.4: Traceplot of Markov chain coefficients of feature 1 and feature 2 after the
first 285 seconds.
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(a) Scatterplot of Markov chain coefficients of fea-
ture 1 and feature 2 after the first 285 seconds.
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(b) Scatterplot of Markov chain coefficients of fea-
ture 1 and feature 2 (after the first 285 seconds)
with line connections.

Figure 4.5: Scatterplot of Markov chain coefficients of feature 1 and feature 2 after
the first 285 seconds.
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vectors from the other methods. From the results, we can tell that all methods provide

similar prediction results with AUC close to 0.91, AMLP close to 0.37 and ER close to 180

out of 1000 test cases. The worst result is from random forest, which has relatively weak

predictive power with ER 219/1000 and AUC 0.88. The predictive performance of T-probit

regression is not superior to other methods on this simple case; however, it is able to provide

satisfactory prediction results using only one feature. In conclusion, the T-probit regression

is able to detect relevant features with strong correlations, and only select one of them as a

representative in a single Markov chain sample.

Table 4.3: Feature Subset Prediction Table of T-probit regression.

fsubsets AMLP ER AUC
1 1 0.37 0.185 0.91
2 2 0.37 0.180 0.91
3 1,2 0.37 0.178 0.91

Table 4.4: Prediction Table of LASSO, Bayesglm and Random Forest.

Method AMLP ER AUC
LASSO 0.37 0.184 0.91

Random Forest Inf 0.219 0.88
Bayesglm 0.37 0.184 0.91

4.2 Feature Selection Performance in Datasets with In-

dependent Groups of Features

We generate datasets with dimension p = 2000 (the total number of features) and n = 1200

(the total number of cases). Among all 1200 cases, 200 are used as training cases and 1000 are

test cases. The response vector y and feature values xij, i = 1, ..., n, j = 1, ..., p are generated

as follows:

zij ∼ N(0, 1), i = 1, ..., n, j = 1, 2, 3, (4.2)

εij ∼ N(0, 1), i = 1, ..., n, j = 1, ..., 150
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εi ∼ N(0, 1), i = 1, ..., n,

xil = zi1 + 0.5εil, i = 1, ..., n, l = 1, ..., 50, (Group 1)

xim = zi2 + 0.5εim, i = 1, ..., n,m = 51, ..., 100, (Group 2)

xin = zi3 + 0.5εin, i = 1, ..., n, n = 101, ..., 150, (Group 3)

xik ∼ N(0, 1), i = 1, ..., n, k = 151, ..., 2000, (Group 4)

Φi =
zi1 + zi2 + zi3√

3
+ 0.1εi, i = 1, ..., n,

yi = IΦi>0, i = 1, ..., n,

where Φi is the value of the auxiliary variable from the ith observation. We define Group 1

as the feature group containing the first 50 features, Group 2 contains feature 51 to feature

100 and Group 3 contains feature 101 to feature 150. zi1, zi2 and zi3 are common factors of

Group 1, Group 2 and Group 3 respectively. εij are the “noises” attached to the jth feature

from the ith observation. We construct an auxiliary variable Φi and each observation of

response yi takes value 1 when Φi > 0 and value 0 otherwise. Data generated in this way can

be viewed as from a robit model with nonzero coefficients values (1,1,1) for feature 1 (x1),

feature 51 (x51) and feature 101 (x101).

The data structure is shown in Figure 4.6. From this figure, we can see that all fea-

tures (x1 to x150) from three groups (Group 1 to Group 3) are “relevant” to the response

since they all share information with feature 1 (x1), feature 51 (x51) and feature 101 (x101).

xk, k = 151, ..., 2000 are all irrelevant and are denoted as Group 4 features. We then im-

plement T-probit regression and other methods including LASSO, Group LASSO (GL), Su-

pervised Group LASSO (SGLASSO), random forest (RF), Penalized Logistic Regression

(using Bayesglm) and simple Student’s t-test (t-test). The T-probit method is conducted

with parameter settings α0=1, ω0=0.5, α1=1, ω1=exp(−10), R1=2000, n1=1000, R2=3000,

n2=1000, l1=5, l2=50, ε=0.5, η=0.05. Readers may refer to Appendix C for an explanation

of the tuning parameters of the other methods. The goal of this simulation study is to eval-

uate the feature selection performance of T-probit (as well as the other methods) between
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yi

Group 1 Group 2 Group 3 Group 4

Figure 4.6: Data structure demonstration. xi1, ..., xi,50 are the feature values (in the
first group) from the ith observation. xi,51, ..., xi,100 are the feature values (in the second
group) from the ith observation. xi,101, ..., xi,150 are the feature values (in the third
group) from the ith observation. xi,151, ..., xi,2000 are the feature values (in the fourth
group) from the ith observation. zi1, zi2, zi3 are three independent values. zi1, zi2, zi3
determine the value of Φi. The response values yi (of the ith observation) are then
decided by Φi.
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groups (independent groups of features) and within groups.

We show the feature selection results of all methods based on a single dataset simulated

with the above method in Table 4.5 and Table 4.6. The numbers of features selected by

each method (except Tpro optimal and Tpro top) are determined by 0.1 multiplied by the

maximum value of the coefficients. That is, for a coefficient vector β, the number of features

selected by this method is equal to
2000∑
j=1

I{βj>0.1 max{βj}}. For the Tpro optimal and Tpro top

methods, this number is just the size of the selected feature subset. Table 4.5 gives the feature

subsets extracted from the Markov chain samples returned by T-probit. For each of these

feature subsets, we record its coefficient values and frequency across all of the MC samples.

In table 4.6, for each method (each column) we show the number of features selected from

Group 1 to Group 4. For example, the Tpro top method (the first column) picks one feature

from each of Group 1 to Group 3 and it discards all of the features from Group 4, which are

basically random noise. From table 4.6 we see both Group LASSO and Bayesglm successfully

select all (150) relevant genes; however, they also select a large number of irrelevant features

from Group 4. LASSO and Supervised Group LASSO both provide sparse feature selection

results; however, they both select more than 10 irrelevant features from Group 4. The T-

probit is the only method that discards all of the irrelevant features. More importantly, all of

the top 4 feature subsets from Table 4.5 contain one feature from each of the three different

groups. This implies that T-probit is able to select a representative feature from each group.

The top feature subset (1,57,140) and optimal feature subset (1,51,140) contain no irrelevant

features. In all feature subsets shown in Table 4.5, there are 7 features selected across all the

Markov chains, and none of them is from the noise group (Group 4). The detailed feature

selection results are shown in Figure D.7a to Figure D.10b.

We also show predictive performance of all methods with respect to AMLP, NMC (number

of misclassified cases) and AUC in Table 4.7. The T-probit method makes predictions for test

cases in 3 different ways: Tpro top makes predictions with only the top feature subset found

by T-probit, i.e., the subset (1, 57, 140) in Table 4.5. Tpro optimal uses the optimal (with

respect to cross-validated training AMLP) feature subset selected with T-probit regression.

Tpro average makes predictions by averaging the results of each single iteration across the

Markov chains. The results show that the values of ER and AUC stay at a similar level for all
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fsubsets freqs coefs(w/int) cv AMLP cv NMC cv AUC
1 1,57,140 0.22 0.4,14.93,16.19,15.97 0.13 9.00 0.99
2 1,51,140 0.11 0.02,19.18,14.06,18.85 0.13 8.00 0.99
3 16,57,140 0.10 -0.24,11.97,13.05,13.21 0.14 8.00 0.99
4 1,51,101 0.09 0.75,19.33,19.3,17.03 0.14 8.00 0.99
5 12,57 0.04 -0.6,13.52,4.65 0.41 39.00 0.89
6 57,140 0.04 -0.48,18.33,15.01 0.45 43.00 0.87
7 1,57,101 0.04 -0.14,13.56,12.1,13.15 0.14 12.00 0.99
8 1,57,121 0.03 2.75,19.5,15.72,17.9 0.14 11.00 0.99
9 16,57,101 0.03 1.45,18.63,14.45,15.91 0.14 12.00 0.99

10 16,51,140 0.03 0.94,16.65,17.59,18.44 0.14 9.00 0.99
11 51,140 0.02 1.78,17.48,14.91 0.45 48.00 0.87
12 1,51 0.02 0.03,17.88,18.04 0.42 43.00 0.88
13 12,57,101 0.02 1.21,19.96,20.19,16.93 0.15 12.00 0.99
14 1,57 0.02 -0.96,16.67,13.68 0.40 35.00 0.90
15 1,140 0.02 2.06,16.34,19.06 0.42 33.00 0.89
16 12,51,101 0.01 -2.36,8.76,13.13,11.18 0.15 7.00 0.99
17 16,51,101 0.01 0.85,11.92,20.96,19.32 0.15 8.00 0.99
18 12,57,140 0.01 0.61,2.44,12.46,10.28 0.15 13.00 0.99

Table 4.5: Cross-validated prediction results with top selected feature subsets. For
each selected feature subset its predictive performance (AMLP/NMC/AUC) is mea-
sured with cross-validation on 1000 cases using Bayesglm.

Tpro top Tpro optimal LASSO GL SGLASSO RF Bayesglm T
Group1 1.00 1.00 6.00 49.00 7.00 49.00 50.00 43.00
Group2 1.00 1.00 5.00 50.00 10.00 49.00 50.00 44.00
Group3 1.00 1.00 6.00 50.00 6.00 48.00 50.00 44.00
Group4 0.00 0.00 13.00 341.00 12.00 14.00 1305.00 42.00

Table 4.6: The number of features selected within each group from all methods. Group
1, Group 2 and Group 3 are the groups with significant features, while Group 4 is the
group containing noise features. GL: Group LASSO. SGLASSO: Supervised Group
LASSO. RF: random forest. Bayesglm: bayesian logistic regression. T: t-test.
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methods. Only the AMLP (average minus log-probability) values are substantially different.

Among all methods, the simple t-test has the smallest AMLP values (0.15 and 0.14). LASSO,

Group LASSO, and Supervised Group LASSO show competitive results (0.18-0.24), while

random forest shows the worst AMLP performance (0.38). Group LASSO is expected to

outperform LASSO since it is a LASSO approach embedded with a grouping index; however,

both its ER and AMLP performance here are not superior to LASSO. One reason may be

that it does not clearly identify useful group information and over-selects features. In the

mean time Tpro top and Tpro optimal both have satisfactory prediction results using only

3 feature representatives from three groups.

In Table 4.8 we show the predictive performance of feature subsets selected by the T-

probit method as well as other methods using the same number of features. From the table

we can see the top feature subset and optimal feature subset selected by the T-probit method

both contain 3 feature representatives from 3 groups. In the top 3 features selected by the

LASSO method, Group LASSO and random forest Group 1 and Group 2 are both selected;

however, Group 3 is totally missed by all these methods. Supervised Group LASSO missed

features from Group 2 and other methods (Bayesglm and t-test) include irrelevant features

(in the top 3 features). The predictive performance of the T-probit methods in Table 4.8

are superior to the others since they include relevant feature representatives, one from each

group, and ignore all irrelevant features. In conclusion, among all competitors, T-probit is

the most efficient prediction method to achieve satisfactory prediction results using the same

number of features.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
ER 0.10 0.10 0.06 0.09 0.07 0.10 0.08 0.08 0.07

AMLP 0.22 0.22 0.15 0.21 0.22 0.24 0.38 0.18 0.14
AUC 0.97 0.97 0.99 0.97 0.99 0.97 0.98 0.98 0.99

No. of Features 3 3 30 490 35 160 1455 173

Table 4.7: Prediction results (ER, AMLP and AUC) and the number of features
selected from each method.

To validate the consistency of the feature selection and prediction results, we also repeat

this simulation study with 100 different experiments (datasets) generated with the mech-

anism described above. The corresponding average prediction results are given in Table

4.9 and feature selection results are shown in Table 4.10. From the two tables we can see
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Method fsubsets AMLP ER AUC
T-probit top subset 1,57,140 0.22 0.10 0.97

T-probit optimal subset 1,57,140 0.22 0.10 0.97
LASSO 16,57,61 0.46 0.22 0.87

Group LASSO 16,32,57 0.44 0.20 0.88
Supervised Group LASSO 16,138,140 0.47 0.24 0.86

Random Forest 28,50,67 0.46 0.22 0.86
Bayesglm 12,32,218 0.63 0.34 0.72

t-test 57,140,167 0.44 0.21 0.88

Table 4.8: Top feature subsets selected by each method and corresponding predictive
performance (AMLP, ER, and AUC) on the test cases.

that Tpro average is the most powerful prediction method (with AMLP 0.12 and ER 0.04).

LASSO, Group LASSO and Supervised Group LASSO have competitive predictive power

as well. The feature selection results are similar to the previous single data results. Com-

pared to the other methods, Tpro top and Tpro optimal select feature subsets that are much

smaller in size and also have better predictive power.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
ER 0.05 0.06 0.04 0.08 0.06 0.08 0.10 0.08 0.05

AMLP 0.15 0.16 0.12 0.21 0.20 0.20 0.39 0.17 0.13
AUC 0.99 0.99 0.99 0.98 0.99 0.98 0.97 0.98 0.99

No. of Features 3.00 3.40 32.39 551.17 27.06 147.42 1447.68 169.05

Table 4.9: Prediction results (ER, AMLP and AUC) of each method (averaged over
100 datasets).

Tpro top Tpro optimal LASSO GL SGLASSO RF Bayesglm T
Group 1 1.00 1.07 6.01 49.95 6.20 47.82 50.00 42.93
Group 2 1.00 1.08 6.00 49.94 5.99 47.48 50.00 42.90
Group 3 1.00 1.06 5.94 49.95 6.04 48.34 50.00 43.13
Group 4 0.00 0.19 14.44 401.33 8.83 3.78 1297.68 40.09

Table 4.10: The number of features selected within each group for each method
(averaged over 100 datasets). Group 1, Group 2, and Group 3 are the groups with
significant signals, and Group 4 is the group of noise features.

We generated another dataset with larger noise to examine the robustness of T-probit

regression (and all the other methods). More specifically, we replace the noise in equation

(4.2) from 0.1εi to 0.5εi and generate a new dataset. The corresponding feature selection table

is shown in Table 4.11. The table shows that T-probit still selects feature representatives from
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all three groups. However, this time all 3 feature subsets are chosen with low frequency. We

also show the corresponding prediction table in Table 4.12. Among all methods Tpro average

has the lowest ER and AMLP with sparse feature selection results (compared with the other

methods). Tpro top and Tpro optimal both select three features from three groups and

ignore all noise features, and with only three features their predictive performance will be

competitive to other methods using hundreds (Group LASSO) or even thousands (Bayesglm)

of features. The group feature selection (Table 4.13) shows similar results as in Table 4.6.

Among all methods, T-probit methods (both Tpro top and Tpro optimal) provide the most

sparse feature selection results and ignore all irrelevant features. Group LASSO is able to

find all relevant features; however, it also includes far more irrelevant ones. Random forest

is balanced between the selection of relevant features and irrelevant ones. However, the

predictive performance of random forest is unsatisfactory. In summary, compared to other

methods, Tpro top and Tpro optimal select subsets that are much smaller in size but with

slightly worse (but very similar) predictive power.

fsubsets freqs coefs(w/int) cv AMLP cv ER cv AUC
1 20,81,128 0.02 0.22,9.52,6.01,9.57 0.22 14.00 0.97
2 20,55,128 0.02 -0.25,14.84,12.23,8.65 0.20 10.00 0.97
3 50,89 0.01 0.82,15.07,13.11 0.37 38.00 0.91

Table 4.11: Cross-validated prediction results with top selected feature subsets (from
the whole dataset with T-probit regression). For each selected feature subset, its pre-
diction values (AMLP/NMC/AUC) are obtained using cross-validation on 1000 cases
using Bayesglm.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
ER 0.21 0.20 0.16 0.18 0.19 0.20 0.18 0.19 0.19

AMLP 0.45 0.44 0.32 0.42 0.40 0.49 0.44 0.46 0.71
AUC 0.90 0.90 0.92 0.90 0.90 0.90 0.91 0.92 0.91

No. of Features 3.00 3.00 35.00 666.00 30.00 148.00 1449.00 142.00

Table 4.12: Prediction results (ER, AMLP and AUC) and the number of features
selected by each method. Tpro top conducts feature selection and prediction with only
the top feature subset selected by T-probit. Tpro optimal conducts feature selection
and prediction with the optimal (with respect to cross-validated training error) feature
subset selected with T-probit. Tpro average conducts feature selection and prediction
results averaging over the Markov chains obtained with T-probit regression.

We also repeat these experiments 100 times to verify consistency of T-probit (and all the
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Tpro top Tpro optimal LASSO GL SGLASSO RF Bayesglm T
Group 1 1 1 7 50 9 50 50 31
Group 2 1 1 6 50 6 50 50 38
Group 3 1 1 4 50 6 46 50 33
Group 4 0 0 18 516 9 2 1299 40

Table 4.13: The number of features selected within each group by each method.
Group 1, Group 2, and Group 3 are the groups with significant signals, and Group 4 is
the group of noise features.

other methods) on this type of data. The averaged prediction and feature selection tables are

given in Table 4.14 and Table 4.15. These tables show that T-probit has the best AMLP and

ER values. The T-probit method also provides a sparse feature selection with more relevant

features and fewer irrelevant features compared with the other methods; Tpro top selects

0.94, 0.94, 0.94, and 0.73 features from Group 1 - 4, respectively. It means that, on average,

the Tpro top method almost always selects one feature from each group in Groups 1 - 3, and

sometimes (with 0.73 frequency) selects features from Group 4. The Tpro average method

employs all feature subsets found in all Markov chain iterations and, on average, selects 3.38,

3.59, 3.17, and 1.56 features from the four groups, respectively, which is also far more sparse

than the other methods (e.q., LASSO with 4.14, 4.2, 4.19, and 15.47). Comparing Table 4.15

with Table 4.10, we can see that all methods tend to include more irrelevant features on these

difficult datasets. In conclusion, based on these difficult datasets, the T-probit methods are

still able to find succinct feature subsets consisting of feature representatives from Group 1

to Group 3, and the Tpro average method outperforms all other methods with respect to

predictive performance.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
ER 0.21 0.20 0.15 0.17 0.16 0.19 0.17 0.17 0.19

AMLP 0.46 0.48 0.33 0.41 0.36 0.43 0.47 0.43 0.65
AUC 0.88 0.89 0.92 0.90 0.92 0.90 0.90 0.91 0.90

No. of Features 3.55 4.31 28.00 705.22 27.42 165.58 1488.62 151.09

Table 4.14: The average numbers of features selected and prediction results (ER,
AMLP and AUC) of all methods over 100 datasets.
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Tpro top Tpro optimal LASSO GL SGLASSO RF Bayesglm T
Group 1 0.94 0.98 4.14 49.80 5.42 46.48 50.00 37.20
Group 2 0.94 0.97 4.20 49.78 5.48 46.64 50.00 36.86
Group 3 0.94 1.00 4.19 49.92 6.02 47.25 49.98 37.47
Group 4 0.73 1.36 15.47 555.72 10.50 25.20 1338.64 39.56

Table 4.15: The average numbers of features selected within the signal groups and
the noise group of all methods over 100 datasets.

4.3 Feature Selection Performance in Datasets with In-

dependent and Correlated Groups

In this section, we simulate data with both independent and correlated group structures.

More specifically, we generate multivariate normal data with 3 variables. The first 2 features

are correlated and both weakly differentiated, while the third feature is independent with

the first 2 features but more differentiated. More specifically, we generate the dataset in this

way:

P (yi = c) =
1

2
, i = 1, 2, ..., n, c = 1, 2, (4.3)

µ1,1 = −0.3, µ2,1 = 0.3,

zij ∼ N(0, 1), i = 1, ..., n, j = 1, 2, 3,

εij ∼ N(0, 1), i = 1, ..., n, j = 1, ..., 600,

xij = µyi,1 + zi1 + 0.5εij, i = 1, ..., n, j = 1, ..., 200, (Group 1)

µ1,2 = 0.3, µ2,2 = −0.3,

xij = µyi,2 + 0.8zi1 + 0.6zi2 + 0.5εij, i = 1, ..., n, j = 201, ..., 400, (Group 2)

µ1,3 = 1, µ2,3 = −1,

xij = µyi,3 + zi3 + 0.5εij, i = 1, ..., n, j = 401, ..., 600, (Group 3)

xij ∼ N(0, 1), i = 1, ..., n, j = 601, ..., 2000, (Group 4)
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where the centroid matrix (µc,1:3) for the features in Group 1 to Group 3 can also be written

as

µc,1:3 =

−0.3 0.3 1

0.3 −0.3 −1



zi2

Group 2

zi3

Group 3 Group 4

... xi,2000
......xi1 xi,201 xi,400 xi,401 xi,600 xi,601

µ1,2 = 0.3

µ2,2 = −0.3

µ1,3 = 1

µ2,3 = −1

zi1

Group 1

µ1,1 = −0.3

µ2,1 = 0.3

... xi,200

Figure 4.7: Data structure demonstration. xi1, ..., xi,200 are the feature values (in the
first group) from the ith observation. xi,201, ..., xi,400 are the feature values (in the second
group) from the ith observation. xi,401, ..., xi,600 are the feature values (in the third
group) from the ith observation. xi,601, ..., xi,2000 are the feature values (in the fourth
group) from the ith observation. zi1, zi2, zi3 are three individual values. µyi,j, j = 1, 2, 3
are sample mean values of features from Group j, where yi is the response value of the
ith observation.

The data structure generated in this way is shown in Figure 4.7. From the figure we can

see that there are 3 significant groups and each one contains 200 features. We define Group

1 as the feature group containing the first 200 features, Group 2 contains feature 201 to

feature 400 and Group 3 contains feature 401 to feature 600. Group 4 contains all remaining

features. The data structure contains Group 1, Group 2 and Group 3 as significant features,

with all remaining 1850 features classified as noise. A strong correlation (0.8) exists within

each group, and Group 1 - Group 2 have a strong correlation (0.64) between groups. Group
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3 is independent from Group 1 and Group 2; however, it has a larger difference in centroids

in the two classes (µ1 = −1, µ2 = 1) than Group 1 and Group 2 (µ1 = −0.3, µ2 = 0.3) .

We run T-probit regression on the training cases with parameter settings α0=1, ω0=0.5,

α1=1, ω1=exp(−10), R1=2000, n1=100, R2 =1500, n2=100, l1=5, l2=50, ε=0.5, η=0.05. We

compare T-probit with LASSO, Group LASSO, Supervised Group LASSO, random forest,

Bayesglm and the simple t-test. To obtain a grouping index for Group LASSO and Supervised

Group LASSO, we use K-means correlation and Gap statistics to choose the number of

clusters and the corresponding K-means clustering index for each feature. We then run

Group LASSO and Supervised Group LASSO method with the same grouping index.

fsubsets freqs coefs(w/int) cv AMLP cv ER cv AUC
1 119,235,451 0.19 -1.59,1.63,-10.12,-11.53 0.15 0.04 0.99
2 235,451 0.18 1.22,-11.57,-13.69 0.27 0.07 0.96
3 189,236,416 0.12 0.75,1.46,-5.63,-7.41 0.22 0.05 0.98
4 14,235,451 0.09 -0.87,6.44,-11.93,-10.62 0.17 0.05 0.98
5 113,235,451 0.07 1.77,2.66,-10.28,-6.24 0.16 0.05 0.99
6 14,416 0.04 0.39,5.45,-9.11 0.37 0.17 0.92
7 141,235,451 0.04 -2.21,-1.38,-7.43,-11.91 0.18 0.06 0.98
8 14,236,451 0.03 -0.29,11.04,-12.83,-8.74 0.19 0.04 0.98
9 235,1298 0.03 3.98,-15.77,-6.26 0.54 0.31 0.79

10 416 0.03 -0.77,-2.33 0.38 0.18 0.91
11 235,451,1298 0.02 0.89,-9.03,-18.34,-4.25 0.25 0.09 0.96
12 14,236,416,451 0.02 2.76,11.37,-7.41,-2.76,-7.46 0.18 0.05 0.98
13 236,416 0.02 0.6,-2.69,-5.15 0.30 0.12 0.95
14 141,235,1298 0.02 3.59,3.37,-14.79,-2.93 0.30 0.14 0.95
15 14,235,236,451 0.02 0.62,4.46,-3.11,-8.31,-7.79 0.16 0.04 0.99
16 141,235,451,1298 0.02 1.02,7.46,-15.97,-8.07,-2.99 0.15 0.06 0.99
17 14,236,416 0.01 3.6,4.97,-4.7,-6.6 0.22 0.07 0.97

Table 4.16: Cross-validated prediction table (on training cases) with top selected
feature subsets from T-probit.

For each method, we fit the model with the training cases (n1 = 100) and then make

predictions on the test cases (n2 = 1000). The results are shown in Table 4.17. More

specifically, we obtain cross-validated feature subset selection results as in Table 4.16. The

optimal feature subset (with respect to the performance measures AMLP and ER) is feature

subset (119,235,451). With Tpro optimal method we then use this optimal feature subset

to make predictions on the test cases and record the corresponding prediction results. The
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same approach applies to Tpro top, Tpro average and all the other methods. From the

prediction table, we can see that Tpro average shows competitive results with Group LASSO

and Bayesglm. LASSO and random forest have higher but still satisfactory error rate/AUC.

Supervised Group LASSO does not work as well as Group LASSO. Bayesglm is working well

with all 2000 features. The surprising part of this table is that Tpro top and Tpro optimal

methods do not work well, with a rather high error rate (0.16). The reason is that both

of them only use three features to make the predictions. For example, the optimal feature

subset (119,235,451) includes only one feature from each group (Group 1 - Group 3). This is

a succinct demonstration of representative feature selection from groups and shows that the

excellent predictive performance of Group LASSO and Tpro average is may be another kind

of overfitting using redundant features.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
ER 0.17 0.17 0.15 0.15 0.10 0.20 0.14 0.10 0.18

AMLP 0.41 0.41 0.32 0.34 0.25 0.51 0.37 0.24 0.51
AUC 0.91 0.91 0.94 0.93 0.97 0.90 0.93 0.97 0.90

No. of features 3 3 21 983 60 149 1539 134

Table 4.17: Prediction results (ER, AMLP and AUC) and the number of features
selected by each method. Tpro top conducts feature selection and prediction with only
the top feature subset selected by T-probit. Tpro optimal conducts feature selection
and prediction with the optimal (with respect to cross-validated training error) feature
subset selected by T-probit. Tpro average conducts feature selection and prediction
results averaging over the Markov chains obtained with T-probit regression.

Method fsubsets AMLP ER AUC
T-probit top subset 119,235,451 0.41 0.17 0.91

T-probit optimal subset 119,235,451 0.41 0.17 0.91
LASSO 416,235,324 0.49 0.20 0.88

Group LASSO 1532,1407,1461 0.77 0.49 0.51
Supervised Group LASSO 1532,324,14 0.61 0.27 0.79

Random Forest 587,595,527 0.41 0.18 0.90
Bayesglm 1532,1298,1407 0.78 0.49 0.52

t-test 54,159,147 0.67 0.40 0.64

Table 4.18: Top feature subsets selected by each method and corresponding predictive
performance (AMLP, ER, and AUC) on 1000 test cases.

To compare the efficiency of each method, we also fit other models with the same number

of features T-probit is using (3 features). Table 4.18 shows that the Tpro optimal method
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provided the most accurate predictive performance across all methods. Tpro top is also better

than any other methods when fitting with only 3 features. From the table we can see that

T-probit is the only method that selects one feature from each of the three groups. LASSO

detected the significance of Group 3; however, it misses Group 1 since it is less differential.

Tpro top Tpro optimal LASSO GL SGLASSO RF Bayesglm T
Group 1 1 1 3 154 5 1 158 0
Group 2 1 1 3 176 7 16 186 26
Group 3 1 1 4 170 9 120 180 82
Group 4 0 0 11 483 39 12 1015 26

Table 4.19: The number of features selected within each group for each method.
Group 1, Group 2, and Group 3 are the groups with significant signals, and Group 4 is
the group of noise features.

To directly look at the feature selection performance of each model, we collect the num-

ber of features selected from all 3 groups. For each method (other than Tpro top and

Tpro optimal), the global feature selection decision is measured with the 0.1 criterion on

coefficient scores. If one feature has an absolute coefficient βj larger than 0.1 ∗ max
p∈1,...,P

βp, it

is then selected. Table 4.19 shows the group identities for all feature selection results. It is

clear that Tpro top and Tpro optimal (actually the same feature subset as top, by chance,

selects only one representative from each of groups). The features selected by Supervised

Group LASSO and random forest are mainly from Group 3, which have relatively strong

signals. The detailed feature selection results are shown in Figure D.11a to Figure D.14b.

We repeat the same process with 100 simulated datasets. The predictive performance

(ER, AMLP, AUC) for each simulated dataset with each method is presented in Table 4.20.

Group LASSO exhibits the best results, while Tpro average and Bayesglm have the worst

results. This verifies that Group LASSO always exhibits better performance when there is a

clear grouping structure. The feature subsets selected by Tpro top and Tpro optimal have

less accurate prediction results than Tpro average and Group LASSO. However, this does not

imply worse performance of T-probit; Table 4.21 shows that Tpro optimal almost guarantees

feature representative selection from each group from Group 1 to Group 3 while it filters most

of the noise features in Group 4. The Tpro top method also detects signals from Group 1 to

Group 3, but gives fewer chances of identifying signals compared with Tpro optimal method.
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In a word, the T-probit methods (with top and optimal feature subsets) give clearer feature

representative selections from Group 1, 2 and 3 while Tpro average gives more accurate

predictive performance.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
ER 0.18 0.17 0.12 0.14 0.10 0.16 0.15 0.10 0.19

AMLP 0.47 0.48 0.33 0.34 0.25 0.46 0.37 0.26 0.54
AUC 0.90 0.91 0.95 0.93 0.97 0.92 0.93 0.97 0.89

Table 4.20: Prediction results (ER, AMLP and AUC) from each method averaged
over 100 simulation datasets.

Tpro top Tpro optimal LASSO GL SGLASSO RF Bayesglm T
Group 1 0.74 1.01 2.98 151.79 4.30 2.58 175.44 0.03
Group 2 0.81 1.09 3.16 149.41 5.29 4.63 177.12 49.28
Group 3 0.95 1.24 7.24 171.61 11.63 114.34 191.79 45.76
Group 4 0.13 0.47 9.40 237.77 21.61 2.85 1019.91 40.15

Table 4.21: The number of features selected within each group for each method
averaging on 100 simulated datasets.

4.4 An example for Investigating the Choice of Degrees

of Freedom of t priors

We generate a dataset with p=2000, n=1100 and implement T-probit regression with different

choices of the heaviness index α1. Among all 1100 cases, 100 cases are used to fit models and

1000 cases are used to evaluate model performance. The response vector y = (y1, ..., yn) and

the first 12 features are generated as follows:

P (yi = c) =
1

2
, i = 1, 2, ..., n, c = 1, 2, (4.4)

µ1,1 = 0, µ2,1 = 2,

xi1 = µyi,1 + zi1 + εi1, i = 1, ..., n, (Group 1)

xi2 = 5zi1 + zi2 + 0.5εi2, i = 1, ..., n, (Group 2)
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µ1,3 = 0, µ2,3 = 1,

xij = µyi,3 + zi3 + 0.5εi3, j = 3, ..., 12, i = 1, ..., n, (Group 3)

xij ∼ N(0, 1), j = 13, ..., 2000, i = 1, ..., n, (Group 4)

zij ∼ N(0, 1), i = 1, 2, ..., n, j = 1, 2, 3,

εij ∼ N(0, 1), i = 1, 2, ..., n, j = 1, 2, 3,

where the centroids matrix (µyi,1:12) for the features in Group 1 to Group 3 can also be

written as

µc,1:12 =

2 0 1 · · · 1

0 0 0 · · · 0

 ,

zi1 is the common factor of xi1 and xi2. zi2 is the unique component of xi2, and zi3 is the

common factor of features x3, x4,..., x12. All other feature values xj, j = 13, ..., 2000 are

random noise.

The total data structure is shown in Figure 4.8. From this figure, we can see that all

features in Group 1, Group 2 and Group 3 are relevant to the response vector y for this

dataset. Features in Group 2 have mean values equal to 0, but they are strongly correlated

(ρ = 0.69) with features in Group 1 and then they are all relevant to the response vector

y. Group 3 features are relevant features sharing the same information (zi3) with a strong

correlation (ρ = 0.8). The signal of features in Group 3 is relatively weak (µ1,3 = 0, µ2,3 = 1)

compared to Group 1 (µ1,1 = 0, µ2,1 = 2). The motivation of this study is to run T-probit

regressions (with different priors) on this dataset, and evaluate feature selection results of

different methods between groups (Group 1 and Group 3) and within Group 3.

We first implement T-probit regression on the training cases. The parameters are set as

α0=1, ω0=0.5, R1=2000, n1=100, R2=3000, n2=100, l1=5, l2=50, ε=0.5, η=0.04. α0 and
√
ω0 are the shape and scale parameters for the model, while α1 and

√
ω1 are the shape

and scale parameters for the coefficients β. To test the sensitivity of different priors, we

take values of α1 from (0.2,0.5,1,5,10) and ω1 from (exp(−5), exp(−10), exp(−20)). Each
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µ2,1 = 2

µ1,1 = 0

zi1 zi2

xi1 xi2

Group 1 Group 2

zi3

Group 3 Group 4

µ1,2 = 0

µ2,2 = 0

µ1,3 = 0

µ2,3 = 1

...xi3 xi,12 ...xi,13 xi,2000

Figure 4.8: Data structure demonstration. xi1 and xi2 are the first and second feature
values from the ith observation. xi3, ..., xi,12 are the feature values in the third group
from the ith observation. xi,13, ..., xi,2000 are the feature values in the fourth group
from the ith observation. zi1, zi2, zi3 are three individual values. µyi,j.j = 1, 2, 3 are
sample mean values of features from group j, where yi is the response value of the ith
observation.
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configuration (out of 15 different configurations) is tried with different criteria η to make

sure the number of features updated within each Markov chain sample is around 2.5% for

computational convenience (the coefficients of about 50 features are updated each round

among all 2000 features). Other methods including LASSO, Group LASSO, Supervised

Group LASSO, random forest, Penalized Logistic Regression and simple Student’s t-test are

also implemented. The Group LASSO and Supervised Group LASSO are implemented with

R package gglasso using the original group structure.

fsubsets freqs cv AMLP cv ER cv AUC coefs (w/int)
1 1,2,8 0.27 0.37 0.17 0.91 -1.88,6.13,-0.86,6. 01
2 1,2,11 0.09 0.38 0.18 0.91 0.48,4.06,-1.93, 1.91
3 1,8 0.07 0.47 0.26 0.84 -1.35,10.93,-6.11
4 1,2,7 0.06 0.39 0.17 0.90 -0.74,6.64,-3.56, 4.38
5 1,2,4 0.05 0.39 0.18 0.91 -0.97,6.9,-2.53,4 .26
6 1,2 0.05 0.46 0.19 0.87 -0.63,7.11,3.2
7 1,2,3 0.04 0.39 0.17 0.91 -1.7,5.66,-4.39,1 .75
8 1,2,8,621 0.02 0.32 0.12 0.94 -0.07,4.75,-3 .12,5.45,-0.55
9 1,2,8,210 0.02 0.34 0.15 0.93 -4.45,19.68,- 11.26,11.37,-7.32

10 1,11 0.02 0.47 0.20 0.86 0.67,6.94,5.63
11 1,2,8,15 0.02 0.35 0.15 0.93 -0.34,9.43,-5 .54,5.64,-1.59
12 1,8,48 0.02 0.41 0.22 0.89 -0.5,4.16,4.9,- 4.61
13 1,7,483 0.01 0.43 0.20 0.88 0.31,7.84,8.66 ,5.27
14 1,2,7,483 0.01 0.34 0.15 0.92 -0.52,14.78, -7.45,8.36,2.53
15 1,8,15 0.01 0.42 0.19 0.89 -1.9,19.94,19.1 8,-11.18
16 1,2,4,210 0.01 0.34 0.13 0.92 -0.38,5.97,- 3.61,2.85,-2.42
17 1,2,621 0.01 0.46 0.23 0.86 -0.64,13.28,-8 .32,-2.21

Table 4.22: Cross-validated prediction results with top selected feature subsets (from
the entire dataset with T-probit). The prediction accuracy values (ER/AMLP/AUC)
are obtained with cross-validation using Bayesglm based on all of the data.

We show the feature subset selection table of T-probit regression with default parameter

settings α1=1, log(ω1)= -10. The corresponding predictive power (with cross-validation) and

coefficients of all selected feature subsets are shown in Table 4.22. From the table we can see

that the feature subset (1,2,8) has the highest frequency 27%, while T-probit also provides

alternative feature subsets such as (1,2,3), (1,2,4), (1,2,7) and (1,2,11).

Table 4.23 shows the prediction results (using test cases) of the top 3 feature subsets from

all methods. For the other methods, the top 3 feature subsets are the subsets containing the

top 3 features with the largest coefficients. The results show that all methods except T-

75



Method fsubsets AMLP NMC AUC
T-probit Optimal Subset 1,2,11 0.33 0.14 0.93

T-probit Top Subset 1,2,8 0.35 0.15 0.92
LASSO 1,8,483 0.48 0.24 0.85

Group LASSO 1,383,483 0.64 0.34 0.73
Supervised Group LASSO 1,8,1568 0.47 0.23 0.86

Random Forest 1,4,12 0.42 0.20 0.89
Bayesglm 1,8,48 0.52 0.25 0.84

t-test 1,26,66 0.52 0.26 0.82

Table 4.23: Prediction results on test cases with selected top 3 feature subsets (with
T-probit, LASSO, Group LASSO, Supervised Group LASSO, random forest, Bayesglm,
simple t-test). The prediction values (AMLP/NMC/AUC) are obtained with test cases
(with each selected feature subset) using Bayesglm.

probit and random forest will select irrelevant features. In conclusion, the T-probit with

df = 1 and random forest avoid all irrelevant features. Group LASSO and Supervised Group

LASSO select many irrelevant features. LASSO selection is rather sparse (though not as

much as T-probit); however, it ignores x2. Bayesglm also selects many irrelevant features.

In conclusion, the T-probit shows the best feature screening performance among all methods

for this specific case.

We also show the coefficients score of different methods in Figure D.1 to Figure D.6. With

different parameter settings, we fit T-probit regression and obtain Markov chain samples of

the coefficients β. The median values of each feature coefficient across the Markov chains

is then recorded as the feature score for T-probit regressions. For all other methods, the

feature score (Figure D.3 to Figure D.6) is the corresponding coefficient vector of different

methods. The results show that T-probit regression with α=1 and log(w)= -10 has great

feature selection performance. We highlight the following observations. 1) T-probit identifies

feature 2 (x2), which is ignored by LASSO and random forest. Both Group LASSO and

Supervised Group LASSO successfully identify feature 2. 2) T-probit selects representatives

(feature 8) from Group 3. 3) T-probit ignores all other irrelevant features. 4) LASSO selects

features 1, 8, 48, 383 and 483, which means LASSO identifies representatives from Group

1 and Group 2 while still including two irrelevant features and is missing a representative

from Group 3. 5) Group LASSO only selects features from the first 700 features and it has

the over-selection problem. 6) Supervised Group LASSO identifies feature 1, 2 and 8 while
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including dozens of irrelevant feature selections. 6) Random forest and Bayesglm both have

severe over-selection problems. In conclusion, the T-probit regression is the only method

that selects representatives from all 3 groups and ignores all irrelevant features.

The results of T-probit regression with different parameter settings show how prior in-

formation affects feature selection. The T-probit regression with α=1 has optimal feature

selection results (and better than any other models) across two different choices of log(w):

exp(−10) and exp(−20). With larger α values such as (5,10), T-probit underperforms LASSO

by selecting more irrelevant features. With a smaller scale (α=(0.2,0.5)), the model adopts

heavy tails and results in feature selection with much a larger magnitude because the flat

tails of the prior distribution will allow coefficients to diverge to large values. Therefore, we

recommend α = 1 as the default value for all experiments with T-probit regression.

The predictive performance of all methods is given in Table 4.24. From this table, we

see that the predictive performance of the sparse feature selection results (from T-probit and

LASSO) are much better than the other methods, which select many irrelevant features. The

T-probit also outperforms LASSO because it incorporates feature 2 (x2) (the correlated but

non-differential feature) into the model. To look further into the consistency of the predictive

performance, we also show the boxplots of the negative log-probability on each test case for

all methods in Figure 4.9. With α=1, T-probit has significantly lower AMLP than LASSO,

and only the extreme values of hyper-priors (α=10, log(w)=0.2) lead to a T-probit with bad

performance. All other methods underperform both T-probit and LASSO. Bayesglm has a

very high AMLP because Bayesglm makes “extremely” wrong predictions on some difficult

cases.

In conclusion, for these simulated datasets, T-probit with hyper-prior α=1 has superior

feature selection and predictive performance compared to other methods. With proper pa-

rameter settings, T-probit regression is able to provide a feature subset table with multiple

selected feature subsets. The T-probit method also has better predictive performance (with

respect to ER/AMLP/AUC) compared with LASSO and other methods. However, inappro-

priate choices of α and ω in T-probit may result in very poor performance. In practice, we

recommend default parameter settings (α=1, log(w)=-10) to implement T-probit regression.
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Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
No. of features 3 4 5 451 23 73 1238 55

ER 0.14 0.16 0.14 0.23 0.38 0.32 0.29 0.40 0.37
AMLP 0.33 0.35 0.37 0.54 0.65 0.68 0.64 0.75 1.54
AUC 0.93 0.93 0.93 0.86 0.68 0.76 0.76 0.65 0.68

Table 4.24: Prediction (ER, AMLP and AUC) results and the number of features se-
lected from all methods. Tpro top conducts feature selection and prediction with only
the top feature subset selected with T-probit regression. Tpro optimal conducts fea-
ture selection and prediction with the optimal (with respect to cross-validated training
error) feature subset selected with T-probit regression. Tpro average conducts feature
selection and prediction results averaging over the Markov chain obtained with T-probit
regression.
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Figure 4.9: AMLP Boxplots of T-probit, LASSO, Group LASSO, Supervised Group
LASSO, random forest, and Bayesglm.
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4.5 Investigation of Computational Efficiency of T-probit

Methods

The aim of this section is to assess the computational efficiency of the HMC approach (with

leapfrog method) we used to implement the T-probit model. In HMC, the Hamiltonian

dynamics cannot be simulated exactly because of the problem of time discretization, and the

leap-frog method is an alternative solution to preserve the volume in 3 steps:

M̂j(τ +
ε

2
) = M̂j(τ)− ε

2

∂E

∂βj
(β̂(τ)), (4.5)

β̂j(τ + ε) = β̂j(τ) + εβ̂j(τ +
ε

2
), (4.6)

M̂j(τ + ε) = M̂j(τ +
ε

2
)− ε

2

∂E

∂βj
(β̂(τ + ε)). (4.7)

These 3 steps are repeated L times with stepsize ε. The number of leapfrog steps L is a

parameter that demands careful tuning. HMC with L = 1 reduces to Langevin Monte Carlo

(LMC), also known as the Metropolis-Adjusted Langevin Algorithm (MALA) (Rossky et al.,

1978). Specific suggestions for tuning ε and L can be found in Neal (2011). The primary

measurement to tune these parameters is the acceptance rate. If ε and L are too small,

the MCMC acceptance rate may be too high (rejection rate too low) and the Markov chain

will waste time in a small neighborhood. On the contrary, with large ε and L the MCMC

samples may have a rather high rejection rate. Fortunately, the tuning of L and ε can be

independent and a satisfactory acceptance rate is recommended to be between 60% to 80%

for HMC (Neal, 2011). According to our experience, L = 50 is reasonable in most cases.

To evaluate the computational efficiency of our exact approach, we compare three different

methods: Leapfrog with L = 1, Leapfrog with L = 50, and naive Gibbs sampling. Gibbs

sampling is implemented with JAGS (Just Another Gibbs Sampler) (Plummer et al., 2003).

The BUGS project (Lunn et al., 2009) is designed for MCMC sampling of complex statistical
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models using Gibbs sampling. Since JAGS needs an object representing a Bayesian graphical

model, we describe the T-probit model in the JAGS dialect of the BUGS language in the

form of auxiliary variables:

yi =

 1, if zi > 0

0, if zi < 0
(4.8)

zi = xi.β + εi, (4.9)

εi ∼ N(0, σ2
i ),

σ2
i
iid∼ Inverse-Gamma(α0/2, α1ω0/2),

βj ∼ N(0, λ2
j),

λ2
j
iid∼ Inverse-Gamma(α1/2, α1ω1/2),

Thus we trace the Markov chains of parameters βj, λj, σi, εi.

The main focus of computational efficiency is the Markov chain convergence speed. With a

specific MCMC sampling techniques application, we expect our chains to eventually converge

to our target stationary distribution; however, there is no guarantee that the Markov chain

obtained really converged. To measure the quality of Markov chain samples, we mainly

focus on two different aspect: the convergence time of the Markov chain and the switching

frequency between the converged values. More specifically, we expect the Markov chain to

explore the posterior fully and reflect the whole picture of the target distribution. However,

there is no way to tell if the MC samples really reflect the true stationary distribution if the

target distribution is rather complicated or even unknown to users.

An alternative way to interpret the MC mixing speed is to determine how well the Markov

chain will propose a new sample independent from the current state. If ideally the MC can

propose states independently from the stationary distribution, then given enough time the

MC will have enough samples from all possible values in the sample space to reflect the

desired posterior distribution. Then the only question left is if we have enough computa-

tional resources to run the Markov chain long enough. This aspect of mixing speed can be
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visualized in terms of a trace plot (density plot) of Markov chain samples, running means

plot (running magnitude plot), autocorrelations, etc. Analytical diagnosis can also be made

based on the rejection rate, the Gelman and Rubin multiple sequence diagnostic (Gelman

and Rubin, 1992), the Geweke Diagnostic (Geweke et al., 1991), the Raftery and Lewis Di-

agnostic (Raftery and Lewis, 1992), etc. In this thesis, we performed Markov chain diagnosis

using the traceplots and autocorrelations.

Another important aspect of Markov chain mixing speed is the switching speed of the

Markov chain between multiple modes of posterior distribution, if they exist. The switch-

ing frequency between modes is just a natural realization of the MC traveling speed. If

MC successfully visits the whole sample space with respect to the invariant distribution,

the switching frequency will reflect the real probability densities. However, even though the

Markov chain proposes states independently from previous states, it is still unknown if the

Markov chain is long enough to cover all states. On the other hand, even if the Markov chain

successfully explores all states, we expect the Markov chain will reflect the real probability

density function in terms of sample frequency counts. For T-probit, this is especially im-

portant since we are interested in exploring them and interpreting them as feature subsets

containing small numbers of features.

We compare three different methods on a simulated dataset. The dataset is generated

with grouping structure. More specifically, we generate multivariate normal data with three

variables. The first two are correlated and both weakly differentiated (with centroid (-0.3,0.3)

to (0,0) across clusters), while the third feature is independent of the first two but more

differentiated (with centroid (-1,1) to (0,0) across clusters). More specifically, we generate a

dataset X as follows:

P (yi = c) =
1

2
, i = 1, 2, ..., n, c = 1, 2, (4.10)

µ1,1 = −0.3, µ2,1 = 0.3,

zij ∼ N(0, 1), i = 1, ..., n, j = 1, 2, 3,

εij ∼ N(0, 1), i = 1, ..., n, j = 1, ..., 30,
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xij = µyi,1 + zi1 + 0.5εij, i = 1, ..., n, j = 1, ..., 10, (Group 1)

µ1,2 = 0.3, µ2,2 = −0.3,

xij = µyi,2 + 0.8zi1 + 0.6zi2 + 0.5εij, i = 1, ..., n, j = 11, ..., 20, (Group 2)

µ1,3 = 1, µ2,3 = −1,

xij = µyi,3 + zi3 + 0.5εij, i = 1, ..., n, j = 21, ..., 30, (Group 3)

xij ∼ N(0, 1), i = 1, ..., n, j = 31, ..., 100, (Group 4)

where n is the total number of cases (n = 100) and the centroid matrix (µc,1:3) for group 1

to group 3 features can also be written as

µc,1:3 =

−0.3 0.3 1

0.3 −0.3 −1



The data generated in this way has three significant groups, each containing 10 features. All

other features (70) are noise. The data structure is also shown in Figure 4.10.

We run T-probit regression on the training cases with parameter settings α0=1, ω0=0.5,

α1=1, ω1=exp(−10), R1 =5000, n1=1000, R2=6000, n2=2000, ε=0.5, η=0.05. To test the

efficiency of the leapfrog methods, we also include two different approaches: l1 = 5, l2 = 50

and l1 = 1, l2 = 1. The latter breaks down to Langevin Monte Carlo (LMC). The naive

Gibbs sampling method is also tested on JAGS and the corresponding results are recorded as

T-probit jags. After obtaining these three Markov chains, we reorganize them in terms of the

computational time. More specifically, for each Markov chain (m = (1, 2, 3)) obtained, we

have the number of samples I(m) and its computational time T (m). Then, for an arbitrary

number of new Markov chain (n=1000 for example), we shrink the three Markov chains with

respect to the minimal computational time TM = minT (m),m = 1, 2, 3. A new Markov

chain M is constructed based on the old one. For the jth sample on the new Markov chain

M , its recording time is j × TM/n, which corresponds to the sample (on old Markov chain
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Figure 4.10: Data structure demonstration. xi1, ..., xi,10 are the feature values (in the
first group) from the ith observation. xi,11, ..., xi,20 are the feature values (in the second
group) from the ith observation. xi,21, ..., xi,30 are the feature values (in the third group)
from the ith observation. xi,31, ..., xi,100 are the feature values (in the fourth group)
from the ith observation. zi1, zi2, zi3 are three individual values. µyi,j, j = 1, 2, 3 are the
sample mean values of features from Group j, where yi is the response value of the ith
observation.
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m) j TM I(m)
Tmn

. This number may not be an integer; if this is the case, we then use the rounded

number as the exact sample we record on the new Markov chain. After this transformation,

we obtain three new Markov chains M , which have the same number of Markov chain samples

(1000) and same consuming time (16835 seconds). Each sample from the three Markov chains

are synchronized at approximately the same moment.

Figure 4.11, Figure 4.12, and Figure 4.13 show the coefficients of features 21 and 28 with

corresponding auto-correlations using different approaches. Clearly, T-probit jags has much

stronger auto-correlations, which means the mixing speed of T-probit jags is slower than

LMC and HMC. It should also be noted that T-probit jags selects feature 23 within the first

100 samples, while it switches to feature 21 after that. In other words, the T-probit jags

switches from a feature subset that includes feature 21 to a feature subset that includes

feature 23 only once and stops switching after that, while LMC and HMC frequently switch

between modes.

Computational Time (s) CT NMS Number of Modes Features
JAGS 16835.206 16835.206 28 9 1,11,21,28,29,88
LMC 55975.444 16835.206 798 79 1,4,8,9,11,12,16,21,23,28
HMC 55644.778 16835.206 899 70 1,4,8,9,11,12,16,21,28

Table 4.25: CT: Computation time that are used from each Markov chain. NMS:
Numbers of iterations in which mode switching happens. Features: Features selected
(across all modes).

fsubsets freqs coefs (w/int)
1 1,11,21 0.42 1.21,4.32,-4.86,-3.68
2 1,11,28 0.41 1.52,6.75,-8.2,-2.21
3 1,11,21,88 0.05 0.05,8.41,-10.17,-5.94,-1.07
4 1,11,29 0.05 -0.13,4.01,-3.7,-0.56
5 1,11,28,29 0.03 1.16,4.13,-4.51,-3.24,-0.76
6 1,11 0.03 0.71,4,-4.49
7 1,11,21,28 0.01 1.44,5.91,-7.4,-3.64,-1.13

Table 4.26: Feature subsets selected by T-probit jags.

Table 4.26, Table 4.27 and Table 4.28 are the feature subset selection results extracted

from the three Markov chains. The T-probit jags (ordinary Gibbs sampling) only detected

7 different modes while LMC and HMC detect more feature subsets. This indicates that
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Figure 4.11: Magnitude and autocorrelation in Markov chains with T-probit jags.

0 200 400 600 800 1000

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Magnitude of MC iterations with LMC

Iterations

LM
C

(a) Magnitude of Markov
chain samples with LMC.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
ACF of MC magnitude with LMC

(b) Autocorrelation in
Markov chain samples
with LMC.

Figure 4.12: Magnitude and autocorrelation in Markov chains with LMC.
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Figure 4.13: Magnitude and autocorrelation in Markov chains with HMC.
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Figure 4.14: Traceplot of mode switching status with T-probit jags.
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Figure 4.15: Traceplot of mode switching status with LMC.
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Figure 4.16: Traceplot of mode switching status with HMC.
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fsubsets freqs coefs (w/int)
1 1,11,21 0.20 -0.12,4.93,-7.43,-4.63
2 4,11,21 0.14 -0.57,1.76,-3.23,-4.02
3 1,11,28 0.11 -0.35,6.19,-8.18,-4.37
4 8,11,21 0.09 -1.53,3.11,-3.85,-5.79
5 21 0.05 -0.98,-3.81
6 16,21 0.04 -0.58,-1.88,-7.93
7 11,21 0.03 -1.41,-3,-7.54
8 4,16,21 0.03 -0.17,3.66,-6.15,-9.88
9 9,11,21 0.03 -0.6,1.92,-2.89,-4.36

10 1,11 0.03 0.07,4.2,-4.95
11 1,11,23 0.02 -0.83,2.88,-3.79,-1.83
12 8,16,21 0.02 -1.68,5.61,-7.49,-14.48
13 4,21 0.02 -0.25,1.16,-4.44
14 12,21 0.02 -1.73,-1.49,-8.28
15 1,16,21 0.01 -1.28,1.98,-2.89,-5.1
16 8,12,21 0.01 -1.06,1.69,-2.93,-6.09
17 4,12,21 0.01 -2.16,3.23,-4.42,-5.51
18 8,21 0.01 -0.65,0.23,-2.18

Table 4.27: Feature subsets selected by LMC.

fsubsets freqs coefs (w/int)
1 1,11,21 0.17 -1.05,6.44,-10.56,-6.61
2 4,11,21 0.15 -0.78,2.42,-4.32,-4.99
3 8,11,21 0.10 -0.13,1.44,-1.84,-4
4 1,11,28 0.10 -0.53,6.89,-8.63,-3.12
5 21 0.05 -0.48,-3.15
6 16,21 0.04 -1.2,-0.9,-7.16
7 11,21 0.03 -2.27,-8.49,-7.41
8 8,16,21 0.03 -2.61,3.23,-6.62,-10.92
9 4,16,21 0.03 0.3,1.8,-3.12,-7.83

10 1,11 0.03 0.1,2.65,-3.68
11 9,11,21 0.02 -1.38,3.21,-4.14,-3.21
12 4,21 0.02 -1.18,2.6,-8.19
13 8,21 0.02 -0.28,0.53,-2.41
14 8,12,21 0.02 -0.29,1.69,-1.43,-8.24
15 12,21 0.02 -1.31,-0.6,-5.79
16 9,16,21 0.01 -1.21,2.54,-6.67,-9.17
17 1,16,21 0.01 -0.37,3.61,-7.17,-10.68
18 4,12,21 0.01 -0.09,1.16,-1.67,-2.09
19 1,12,21 0.01 -0.48,2.67,-4.16,-8.92
20 1,11,23 0.01 -0.74,3.18,-3.75,-2.62

Table 4.28: Feature subsets selected by HMC.
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LMC and HMC can switch between modes more frequently. For each sample of new Markov

chains, we label its feature subset index and draw the changing plots. Figure 4.16 shows the

cluster ID change across 1000 transitions (or 16835 seconds). We use the changing index

(CI) to denote whether the Markov chain switches to a different feature subset or not. CI =

1 means the Markov chain switches to a different feature subset while 0 means staying in the

same subset. Figure 4.14 and Figure 4.15 show the changing index of LMC and T-probit jags

(naive Gibbs Sampling method). From these plots, we can tell HMC is frequently switching

between multiple modes while T-probit jags stays in the same feature subset most of the

time. Table 4.25 shows the quantitative transition information. From the table, we can

see that the mode switching rates for different methods are: T-probit jags 28/1000, LMC

798/1000, HMC 899/1000. Apparently HMC has the highest switching frequency.

We also run experiments with p=1000 to examine the efficiency of the three methods in

high-dimensional problems. Table 4.29 shows the general Markov chain information for all

three methods. For each of them, the experiment is run for over 10 hours and the switching

rates are 16.9%, 47.1% and 92.8% for T-probit jags, LMC and HMC, respectively. It is worth

noting that HMC has almost double the mode switching frequency compared with LMC.

Total Time CT Switching Modes Modes Features
JAGS 42230.661 42230.661 169 52 42,65,86,105,124,156,201,237,266,367
LMC 52191.94 42230.661 471 57 65,111,153,156,201,237,277,291,658
HMC 59118.072 42230.661 928 72 65,111,153,156,201,237,291,296,297,658

Table 4.29: CT: Computation time that are used for each method. Switching Modes:
The number of iterations in which mode switching happens. Modes: The number of
modes across Markov chains. Features: Features appeared in all modes.

To examine the convergence of the Markov chains, we plot the magnitude and its autocor-

relation for all three Markov chains. Figure 4.17 shows that the T-probit jags method leads

to a Markov chain with poorer convergence speed compared with LMC and HMC. HMC

have lower autocorrelation compared with LMC. Another important aspect of Markov chain

mixing speed is the switching frequency between different modes, which is shown in Figure

4.20, Figure 4.21 and Figure 4.22. The first plot is the cluster ID for each sample in the

Markov chains and the second plot is the switching status. If the Markov chain jumped to

a new state of cluster ID (no matter how close this new state is to the previous state), we
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will then record this node as “switched” and mark it as 1. However, this measurement is not

accurate since MC may only travels between two close states and still leaves a dense color.

But combined with the traceplots it still implies a frequently mode switching Markov chain

using a plot with dense color. Both plots show that HMC outperformed T-probit jags and

LMC, with higher mode switching frequency.
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Figure 4.17: Magnitude and autocorrelation in Markov chains with T-probit jags.
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Figure 4.18: Magnitude and autocorrelation in Markov chains with LMC.
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Figure 4.19: Magnitude and autocorrelation in Markov chains with HMC.
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Figure 4.20: Traceplot of mode switching status with T-probit jags.
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Figure 4.21: Traceplot of mode switching status with LMC.
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Figure 4.22: Traceplot of mode switching status with HMC.
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4.6 An example for Investigating the Choice of Regu-

larization of Coefficients

We generate a dataset with 200 features (p=200) and 1100 samples (n=1100). 100 samples

are used as training cases (ntr = 100) and 1000 samples are used as test cases (nts = 1000).

The whole dataset is generated from the following multivariate Gaussian model:

P (yi = c) =
1

2
, i = 1, 2, ..., n, c = 1, 2, (4.11)

µ1,1 = 0, µ2,1 = 2,

µ1,2 = µ2,2 = 0,

zij ∼ N(0, 1), i = 1, 2, ..., n, j = 1, 2,

xi1 = µyi,1 +
10

7
zi1, i = 1, 2, ..., n, (Group 1)

xi2 =
10

7
zi1 + 2zi2, i = 1, 2, ..., n, (Group 2)

xij ∼ N(0, 1), i = 1, 2, ..., n, j = 3, ..., 200, (Group 3)

where xij is the ith observation of feature j. The data structure is also shown in Figure 4.23.

With data generated in this way, we have both feature 1 and feature 2 relevant to the

response vector y = (y1, ..., yi, ..., yn). Feature 1 (x1) has nonzero mean value difference (µ2,1

- µ1,1 = 2), while feature 2 (x2) has zero mean value difference (µ2,2 = µ1,2 = 0), but it

is strongly correlated with feature 1. Data generated in this way can be considered from a

logistic regression model:

P (yi = 1) =
exp(β0 + xi.β)

1 + exp(β0 + xi.β)
, i = 1, 2, ..., n, (4.12)

where intercept value β0 = 0 and the coefficient values β are (β = (2.6,−1.22, 0, ..., 0)) with
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Figure 4.23: Data structure demonstration. xi1 and xi2 are the first and second
feature values from the ith observation. xi3, ..., xi,200 are the feature values (in the same
group) from the ith observation. zi1, zi2, zi3 are three individual values. µyi,1 and µyi,2
are the sample mean values of feature 1 and feature 2, where yi is the response value
of the ith observation.

only nonzero entries on feature 1 and feature 2. Thus, among all 200 features, only the

first two features are relevant to the response vector y and the others are irrelevant. The

scatterplots of feature 1 - feature 2 and feature 1 - feature 3 are shown in Figure 4.24.

We implement both T-probit regression and the LASSO methods under varying regular-

ization parameter values. The T-probit regression is implemented with parameter settings

α0=1, ω0=0.5, α1=1, R1=2000, n1=30, R2=3000, n2=15, l1=5, l2=50, ε=0.5, η=0.04. In

total, we obtain 45000 Markov chain samples after a 60000 burn-in period. In the end, we

only record 3000 samples of β and λ. During the burn-in we use a small number of leapfrogs

(L1=5) and after the burn-in the number of leapfrogs is set as L2=50. The stepsize factor

for each iteration is the same (ε=0.05). η=0.04 is the cutting off value used in the restricted

Gibbs sampling. α0 and
√
ω0 are the shape and scale parameters for the model, while α1

and
√
ω1 are the shape and scale parameters for the coefficient vector β. The values of the

regularization parameter log(ω1) are chosen evenly from -10 to -4. The entire Markov chain

only takes 10 minutes to create and it converges quickly to equilibrium. For different values

of log(ω1), we record the values of all coefficients. We also conduct LASSO path solution

study using the LARS algorithm for different values of the regularization parameter λ. The
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Figure 4.24: Scatterplots of feature 1 - feature 2 and feature 1 - feature 3.

coefficients from LASSO are also recorded with respect to the regularization parameter values

log(1/λ).

In Figure 4.25, we show the solution paths of the T-probit model and LASSO with respect

to the regularization parameters. The true values of the first two coefficients are shown as

two horizontal lines. The red curves denote changing coefficient values of feature 1 (x1) and

feature 2 (x2) with respect to the regularization parameter log(ω1). For each chosen value

of log(ω1), we also show the number of features selected (by two methods) on the top of

each figure. That is, with a specific regularization parameter and a chosen criterion (0.1), we

identify how many features are significant (0.1×max{β}) and print the number on the top.

In Figure 4.25 we see that T-probit consistently selects the first 2 features while LASSO

has the over-selection problem with large log(1/λ). For T-probit, the coefficients of feature

1 and feature 2 (β1 and β2) are close to the true value while log(ω) ranges from -10 to -8.

However, when the regularization is increased the magnitudes of β1 and β2 grow larger. In

comparison, LASSO only correctly identifies the first two features within a narrow range of

regularization parameter values (2.09, 2.28). If the regularization parameter is smaller (less

than 2.09), then only feature 1 is selected. The reason is that feature 2 is not relevant alone,

so it is easy to be omitted by models when regularization is tight. When 1/λ is larger than
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Figure 4.25: Regularization path for LASSO and T-probit model. Red curve denotes
the changing coefficients values of feature 1 and feature 2 with respect to changing
regularization parameter. Numbers on the top: the numbers of features selected re-
spectively.

95



2.09, more than two features (some of which are irrelevant) will be selected by LASSO. With

the default optimal λ value (with respect to cross-validated training error), there are as many

as seven features selected. In conclusion, the feature selection results of T-probit regression

are more consistent compared to LASSO with respect to regularization, while LASSO suffers

from the over-selection problem with loose regularization.

The predictive performance of LASSO and T-probit regression with respect to changing

regularization parameters shows that T-probit is better than LASSO on this simple logistic

regression case. Figure 4.26 shows the error rate, AUC and AMLP of both methods. The error

rates of T-probit are around 20% while the LASSO results are less stable and substantially

higher than T-probit. The T-probit also has consistently better AMLP and AUC values

than LASSO. Most importantly, T-probit has robust prediction results to the choice of λ,

while LASSO fails to provide stable prediction results since it omits the relevant but weakly

differentiated (small fold change) feature 2 with stronger regularization. On the other hand,

with looser regularization, too many irrelevant features are included in the selection pool

and the predictive performance will be reduced. In conclusion, with varying regularization

parameters, T-probit provides more stable feature selection results compared to the LASSO

method; as a result, the predictive performance of T-probit is also superior to the LASSO

method.
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Figure 4.26: The ER (error rate), AMLP (average minus log-probability) and AUC
values of LASSO and T-probit regression with respect to different regularization pa-
rameter values. For LASSO, the regularization parameter (λ) value is chosen from 1 to
6, and for T-probit regression the regularization parameter (ω) is chosen from exp(−10)
to exp(−4).
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Chapter 5

Comparison of Different Methods Using Real

Datasets

5.1 Analysis of Breast Cancer Data

Breast cancer is a type of cancer that begins in breast tissue, which is composed of lobules

(lobular carcinoma in situ) and ducts (ductal carcinoma in situ) that connect the lobules to

the nipple. In many cases, it eventually grows to be a mass or lump called a tumor. Most

tumors are benign and do not spread out of control, and some of them are called in situ since

they are confined within the lobulesor milk ducts. Another type of cancer is called invasive

since it does not confine itself within the initial tissue compartment (lobules or ducts) and

tends to break the walls to invade neighboring tissues of the breast. In practice, patients are

classified using the “TNM system” based on the size of their tumors (T), whether or not it

spreads to lymph nodes (N), and whether or not the tumor has metastasized (M).

In 2013, there were 23,800 new cases of breast cancer diagnosed among women in Canada,

which represents 26% of all new cancer cases in women in this year, and around 5,000 women

will die of their metastatic disease (Canadian Cancer Society). Cancer cells may or may not

have three different types of receptors on their surface and in their nucleus: Human epidermal

growth factor receptor 2 (HER2), estrogen receptor (ER) and progesterone receptor (PR).

HER2+ cancers (whose cells have HER2 receptors) are generally more aggressive than HER2-

cancers (Rubins and Cotran pathologic basis of disease). Compared with ER- cancers, ER+

cancers depends on estrogen to grow and so there are treatments developed to block estrogen

(e.q., tamoxifen), which can result in a substantial improvement in prognosis.

ER- cancers are usually recognized as having a high risk for recurrence, even though there
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are ER- patients who do well without adjuvant chemotherapy or remain disease free after

local therapy alone. For ER+ patients, there have been RT-PCR (Reverse Transcription

Polymerase Chain Reaction) prognostic tests developed to estimate the recurrence rate and

suggest possible choices of chemotherapy (Oncotype DX). However, such tests have limited

predictive power of recurrence on ER- cases (Paik et al., 2004). Therefore, it is of interest to

conduct genome-wide studies to discover genes associated with ER status.

In this chapter, we use the data collected from Surgical Pathology at Johns Hopkins

Hospital (Baltimore, Maryland) in 2011. This dataset includes 124 samples, with 21 normal

and 103 primary invasive cancer samples. The invasive samples include two strongly estrogen

receptor-positive (ER++), 48 moderately estrogen receptor-positive (ER+), and 53 receptor-

negative (ER-). The methylation was reported as a β-value, and the values of β range from 0

to 1. The samples were analyzed using the Human Methylation27 DNA Analysis BeadChip

(GPL8490) platform, which includes 27,578 probes.

We downloaded the data from the Gene Expression Omnibus (GEO) repository, and

then preprocessed it with Bioconductor in R (http://www.bioconductor.org). We use the

R package samr to pre-process the data before conducting different classification algorithms.

After analysis using Significance Analysis of Microarrays method (SAM) (Tusher et al., 2001),

the top ranking 5000 genes were selected according to their t-test statistics and they are all

normal distributed. We save the feature values in a data matrix X and responses in vector Y .

Each feature xj, j = 1, ..., p (p=5000) is then standardized with its median value and standard

deviation. We conduct classification analysis for the ER status Yi, i = 1, ..., n (n=101) with

different methods, including T-probit.

Our experiments includes six different methods we want to compare with T-probit:

LASSO, Group LASSO, Supervised Group LASSO, random forest, Penalized Logistic Re-

gression with t priors. We run T-probit as discussed in Appendix C. In total, we obtained 3.9

million Markov chain iterations (after 600K burn-in period) in 29131.16 seconds. In the end,

we record 1500 Markov chain samples for further analysis. Figure 5.1 illustrates the magni-

tude of Markov chain iterations obtained. The magnitude of an iteration β = (β1, ..., βp) is

calculated as

√
p∑
j=1

βj
2. We show the magnitude of 1500 iterations in Figure 5.1a and corre-

sponding correlogram in Figure 5.1b. The autocorrelations for Markov chain magnitudes at
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Figure 5.1: Magnitude and auto-correlation of Markov chain samples.

varying time lags is demonstrated in Figure 5.1b with the R function acf. The autocorre-

lation here is the cross-correlation of the magnitudes with itself at a specific time lag across

the Markov chain. From the plot we see the autocorrelation quickly converges to 0 with time

lag l ≥ 1. This ascertains randomness of Markov chain transitions and thus we are assured

that the Markov chain is mixing well. Figure 5.1a also confirms this conclusion since the

magnitude of the iterations stabilize quickly after the first few hundred iterations.

We first implement all seven methods on the whole data (101 observations) and obtain

gene feature selection results. The feature significance of all methods (except T-probit) is

measured with coefficient vectors. For T-probit we can extract a set of sparse feature subsets

from Markov chain and report them as feature selection results. Table 5.1 reports all feature

subsets and their relative frequency among all Markov chains. The “coefficient” column

shows the feature coefficients that signify the importance of each gene. For each feature

subset as shown in Table 5.1, we use leave-one-out cross-validation (LOOCV) to evaluate

its predictive performance by applying Bayesglm with the default choice of prior (Cauchy)

distribution. The last three columns (“AMLP”, “NMC” and “AUC”) show respectively the

AMLP (average minus log-probability), the number of misclassified cases and area under the

ROC (Receiver operating characteristic) curve with cross-validation. For example, given a
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fixed feature subset (23, 77), we train Bayesglm on features (x23, x77) with LOOCV, and

collect predictive probabilities on validation cases across 101 splits. The LOOCV evaluations

of predictive performance in Table 5.1 and Table 5.2 are optimistically biased because the

feature subsets were pre-selected with the whole data set that contains all features in the

beginning, and we test these feature subsets on the exact same data set again with LOOCV.

Nevertheless, these evaluations can still be used to compare the predictive power of different

feature subsets.

fsubsets freqs coefs(w/int) cv AMLP cv NMC cv AUC
1 23,77 0.05 2.68,-1.76,-5.4 0.21 9.00 0.98
2 77,554 0.03 3.43,-6.9, 1.81 0.25 11.00 0.96
3 1,366,1795 0.02 0.76,-3.27,-3.43,4.01 0.11 4.00 0.99
4 23,77,1587 0.02 2.84,-2.33,-5.59,1.21 0.16 6.00 0.99
5 1,1526 0.02 0.57,-2.58,1.87 0.23 12.00 0.96
6 3 0.01 0.66,-2.94 0.36 12.00 0.91
7 77 0.01 2.17,-5.43 0.38 19.00 0.89

Table 5.1: Top selected feature subsets (from whole data with T-probit) and cor-
responding cross-validated predictive performance. The prediction is measured with
cross-validation using Bayesglm. AMLP: average minus log-probability. NMC: number
of misclassified cases. AUC: area under ROC curve.

Method fsubsets cv AMLP cv NMC cv AUC
T-probit subset1 (T-probit top) 23,77 0.21 9.00 0.98

T-probit subset2 (T-probit optimal) 1,366,1795 0.11 4.00 0.99
T-probit subset3 23,77,1587 0.16 6.00 0.99

LASSO 25,266,614 0.27 10.00 0.95
Group LASSO 2256,1795,266 0.52 21.00 0.82

Supervised Group LASSO 266,2256,1756 0.51 25.00 0.83
Random Forest 10,8,103 0.32 13.00 0.93

Bayesglm 1,2256,4832 0.27 12.00 0.95
t-test 1,2,3 0.29 11.00 0.93

Table 5.2: Cross-validated prediction results with selected 3 feature subsets (with T-
probit, LASSO, Group LASSO, Supervised Group LASSO, random forest, Bayesglm,
simple t-test). The prediction is measured with cross-validation using Bayesglm.

Table 5.2 shows the cross-validated prediction evaluation of all feature subsets containing

three features for all other methods. Table 5.3 shows the corresponding prediction evaluation

of 10 feature subsets. From Table 5.2, we can see that the feature subsets selected by T-
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probit have better predictive performance than other subsets of the same size selected by the

other methods. In Table 5.2, the optimal feature subset (with respect to AMLP/NMC/AUC)

selected by all methods is (1,366,1795) from T-probit, with significantly better AMLP/AUC

than that of the other methods. Among all other methods LASSO and Bayesglm achieve

the best predictive performance with respect to AMLP/NMC. In Table 5.3, we expand the

feature pools into the top 10 features and the results show that even with the top 10 fea-

tures, all methods underperform T-probit with the top feature subset (1,366,1795). The only

comparable results are that of Bayesglm, which has AMLP 0.16, NMC 4.00, and AUC 0.98.

It is only slightly worse than (1,366,1795) since Bayesglm also selects gene 1 and gene 1795.

More feature selection results of other methods can be found in Appendix E.

Method fsubsets AMLP NMC AUC
LASSO 25,266,614,67,1980,2081,2256,3009,49,69 0.08 5.00 1.00

Group LASSO 2256,1795,266,3009,2762,2081,2819,2539,4832,1980 0.21 10.00 0.97
SGLASSO 266,2256,1756,23,1980,19,2855,67,413,49 0.12 7.00 0.99

Random Forest 10,8,103,3,31,26,30,1223,18,57 0.32 10.00 0.93
Bayesglm 1,2256,4832,3009,1980,2855,266,2819,4955,1795 0.16 4.00 0.98
t-test 1,2,3,4,5,6,7,8,9,10 0.26 8.00 0.95

Table 5.3: Cross-validated prediction results with selected 10 feature subsets (with
T-probit, LASSO, Group LASSO, Supervised Group LASSO, random forest, Bayesglm,
simple t-test). The prediction is measured with cross-validation using Bayesglm.

In conclusion, the T-probit is able to select multiple feature subsets, with each containing

few genes. More importantly, these feature subsets have better predictive performance com-

pared with top feature subsets selected by the other methods. That is, the feature subsets

selected by T-probit are able to achieve better prediction accuracy using the same number

of features compared with feature subsets from other methods. The detailed annotation in-

formation of these feature subsets provided by the original experiment platform and HGNC

(HUGO Gene Nomenclature Committee) is given in Table 5.4. Further evidence is needed

to validate the biological relevance of these genes to breast cancer hormone receptor status.

We also draw the scatterplots of the values (X) of these feature subsets selected in Table

5.1. From Figure 5.2, 5.3, and 5.4 we see that these feature subsets seem to separate ER+

and ER- very well. This may not be enough to draw the conclusion that these feature subsets

are optimal for the purpose of ER+/ER- classification, but such results show the necessity
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Feature
ID

gene
ID

gene Sym-
bol

Synonym Annotation Gene Product

1 100 ADA adenosine amino-
hydrolase

Go function hydrolase activ-
ity, adenosine deaminase ac-
tivity. go process nucleotide
metabolism, purine ribonucle-
oside monophosphate biosyn-
thesis, antimicrobial humoral
response sensu Vertebrata.

adenosine deami-
nase

366 196472 FAM71C MGC39520 synonym: MGC39520 hypothetical pro-
tein LOC196472

1795 25946 ZNF385 HZF; RZF;
ZFP385; DK-
FZP586G1122

retinal zinc finger, go compo-
nent: nucleus; go function:
DNA binding; go function:
zinc ion binding; go function:
metal ion binding; go pro-
cess: transcription; go pro-
cess: regulation of transcrip-
tion; DNA-dependent

zinc finger protein
385

23 10164 CHST4 LSST N-acetylglucosamine 6-
O-sulfotransferase; HEC-
GLCNAC-6-ST; go com-
ponent: membrane; go
component: Golgi stack;
go component: Golgi trans
face; go component: integral
to membrane; go compo-
nent: intrinsic to Golgi
membrane; go function:
transferase activity; go func-
tion: N-acetylglucosamine
6-O-sulfotransferase activity;
go process: inflammatory
response; go process: sulfur
metabolism; go process:
carbohydrate metabolism; go
process: N-acetylglucosamine
metabolism

carbohydrate (N-
acetylglucosamine
6-O) sulfotrans-
ferase 4

77 84816 RTN4IP1 NIMP;
MGC12934

NOGO-interacting mitochon-
drial protein; go function:
zinc ion binding; go function:
oxidoreductase activity

reticulon 4 inter-
acting protein 1.

1587 9274 BCL7C BCL7C B-cell CLL/lymphoma 7C B-cell CLL/lym-
phoma 7C

Table 5.4: Annotation table for genes selected by T-probit.
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of exploring generic interactions among these genes and their roles in the ER symptoms of

patients.

The plots in Figure 5.5 to Figure 5.8 show all feature scores from all methods. The

intercepts (if they exist) are omitted from the feature scores for all methods. For T-probit,

we show the coefficients of selected feature subsets separately, and for the other methods we

only need to show all the coefficient values. To extract feature subsets from the Markov chain

obtained with T-probit, we use the 0.1 criterion to find significant genes. We also use the

0.1 criterion on the feature score plots of the other methods to denote significant features.

Specifically, with a coefficient vector β = (β1, ..., βp), the 0.1 criterion is determined as the

value 0.1 maxj |βj|. We plot this 0.1 criterion (as well as the 0.01 criterion) on the feature

scores plots.

Figure 5.5 provides us a better view of the sparseness of feature selections from the

different methods. Group LASSO and random forest both suffer from over-selection problems.

Bayesglm selects hundreds of features with a lack of sparseness and most coefficients were

not shrunk to zero while the selected features (beyond the 0.1 criterion) are similar to the

T-probit results. For example, feature 266, feature 1795, feature 2256, and feature 3009 are

also selected by T-probit. This makes sense since the model of Bayesglm is similar to our

T-probit. In conclusion, the T-probit provides sparse feature subset selection results, as does

the LASSO method, while other methods suffer from over-selection problems.

At last, we explore the predictive performances of the eight methods using leave-one-out

cross-validation. We make 101 folds of the entire datasets, each of which leaves one case out

as a test case, and use the remaining 100 cases to train/fit a model. In each fold, we fit T-

probit using MCMC in two stages as described previously. We obtain a feature subset similar

to Table 5.1 for each fold. To make the prediction for the test case, we have three methods:

“Tpro top”, “Tpro optimal”, and “Tpro average” (as we introduced in Section 3.5). For

“Tpro top” and “Tpro optimal”, we also record the number of features used in each method.

For “Tpro optimal” and “Tpro top” the number of features used is the number of features

in the “Optimal” feature subset and “Top” feature subset.

From Table 5.5, we can see “Tpro optimal” has comparable predictive performance with

LASSO, Group LASSO and Supervised Group LASSO using fewer features. For example,
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Figure 5.2: Scatterplots of feature subsets (23, 77) and (554, 77). Colors: green y=1,
red y=0.
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Figure 5.6: LASSO and Group LASSO feature scores.
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Figure 5.7: Supervised Group LASSO and Random Forest feature scores.
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feature scores.
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the “Tpro optimal” algorithm has an error rate of 9/101 and an AUC of 0.96 (which is best

among all the methods) using only 2.98 features on average in each fold. From this table, we

see that only LASSO and Supervised Group LASSO have sparse feature selection results, with

39.57 and 36.62 features used (on average). Group LASSO and Bayesglm have acceptable

prediction results, but they do give little relevant information on the role of particular genes

in the model since they both have over-selection problems. In conclusion, the T-probit is

able to provide better predictive performance with sparse feature selection results, which is

even more important since it shows the necessity of exploring further the roles of these gene

subsets in breast cancer.

Tpro optimal Tpro top Tpro average LASSO GL SGLASSO RF Bayesglm T
No. of features 2.98 2.02 39.57 2209.73 36.62 187.63 2667.47 100.00

NMC 9.00 21.00 10.00 8.00 9.00 10.00 10.00 10.00 12.00
AMLP 0.33 0.51 0.33 0.28 0.27 0.42 0.34 0.45 0.33
AUC 0.96 0.88 0.91 0.94 0.94 0.95 0.93 0.95 0.94

Table 5.5: Cross-validated prediction results and the number of features selected with
each method (averaging over all folds).

5.2 Analysis of Childhood Acute Leukemia Data

Leukemia is a group of cancers that usually starts in early blood-forming cells and results in

large numbers of white blood cells in the bone marrow. The exact cause of this disease is

believed to be different for different types of leukemia, and may include both inherited and

environmental factors. There are 4 primary types of leukemia: acute lymphoblastic leukemia

(ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic

myeloid leukemia (CML), as well as other rare types. Leukemia is the most common type of

cancer in children, and the most common types of leukemia cases in children are ALL and

AML.

Acute lymphoblastic/lymphoid leukemia (ALL) is an acute form of cancer of the white

blood cells. It starts from the early version of the white blood cells called lymphocytes

in the bone marrow, and causes over-production of immature white blood cells (known as

lymphoblasts). Lymphoblasts usually are overproduced quickly in the bone marrow and

invade into the blood. They are able to spread to other organs, including the liver, lungs,
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spleen, lymph nodes, brain, kidneys, etc. Acute lymphoblastic leukemia is the most common

leukemia in children 2-5 years of age. With early detection, it is possible to induce a lasting

remission, defined as the absence of detectable blast cells in the marrow. In people with 5

years of leukemia remission, the cancer is unlikely to return.

Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells. The malig-

nant cell in AML is known as a myeloblast, which may go through genetic changes and freeze

in the immature stage. The rapid growth of these immature white blood cells in the bone

marrow will hinder production of normal blood cells. The cancer then causes replacement of

normal bone marrow with leukemic cells, and results in a drop in red blood cells, platelets,

and normal white blood cells. Compared to ALL, myeloid leukemia is relatively rare, and also

has a lower survival rate. The 5-year survival rate for children with ALL has been improved

to 85%, while the 5-year survival rate for children with AML is now in the range of 60% to

70%. Distinguishing AML from ALL is critical for successful treatment since chemotherapy

regimens for AML and ALL are different (Bishop, 1999).

We applied T-probit methods to classify ALL and AML on a childhood leukemia dataset

with 121 cases based on the Swegene Human DNA microarray platform. The experiment was

initiated by Andersson et al. (2007). 98 acute lymphoblastic leukemias (87 B-lineage ALLs,

11 T-cell ALLs) and 23 AMLs were traced between 1997-2004 at Lund University Hospital

and Linkoping University Hospital. In summary, RNA extraction, labeling, hybridization,

scanning and post hybridization washing were performed on 121 samples from childen with

ALL or AML. As a result, they obtained 27K microarrays containing 25,648 clones corre-

sponding to 13,616 Unigene clusters and 11,645 Entrez gene entries (Unigene build 186). For

experimental details, the reader can browse the entry GSE7186 in the GEO repository. The

original purpose of their study is to build up a supervised classification system to differentiate

ALL and AML. As a result, a K-nearest neighbor (KNN) classifier is presented with a high

prediction accuracy.

We pre-process the data using similar techniques as we did in 5.1. First we label each

patient with AML as 0 and ALL as 1 (yi ∈ 0, 1, i = 1, 2, ..., n,n=121). To eliminate irrel-

evant information, we eliminate probes/features that have too many missing entries across

observations. Specifically, for a single probe, if it has over 20% missing values (i.e., more
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than 25 observations missing across 121 samples), we do not include it in our study. Af-

ter reducing the data scale from 27498 to 18529, we conduct a significance study using the

significant analysis of microarrays method developed by Tusher et al. (2001). As a result,

we have 14546 significant features, including 7383 positively correlated significant genes and

7163 negatively correlated significant genes. In practice, we select the top ranking 6000 genes

(3000 positive significant genes and 3000 negative significant genes) with high significance

scores. The data matrix (with dimensions 121 × 6000) is then standardized with median and

standard deviation. More specifically, each gene value xij, i = 1, ..., n, j = 1, ..., p is replaced

with x̂ij=
xij−µj
SDj

, where µj is the median value of gene ID j and SDj is the standard deviation

of gene ID j. The resulting data matrix x and response vector y is now suitable for analysis.

We implement T-probit regression with our method (as we discussed in Appendix C),

and in total we obtained 5.85 million Markov chain iterations (after 400K burn-in period)

in 33860 seconds. In the end, we record 1500 samples of coefficients β and variance of

coefficients λ. We provide the magnitude of Markov chain samples and the corresponding

auto-correlations in Figure 5.9. The results show that the selected Markov chain samples

have low auto-correlations.
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Figure 5.9: Magnitude and auto-correlation of Markov chain samples.

We first implement all methods on the whole data (121 observations) and evaluate the
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feature selection results. Except for T-probit, the feature significance of all methods are

measured with coefficient scores. For T-probit, we extract a set of sparse feature subsets from

the Markov chain samples as described in Section 5.1. The full table of significant feature

subsets selected by T-probit is shown in Table 5.6. The counting frequency of each feature

subset is listed under the “freqs” column. The “coefficient” column shows the coefficients

of each gene within each gene subset averaged over all Markov chain samples containing the

corresponding subset (including intercept). Their corresponding predictive power and relative

frequency among all Markov chains are also included in the table. The AMLP/NMC/AUC

values of the gene subsets are evaluated on the whole data set using Bayesglm with leave-one-

out cross-validation. From Table 5.6, we see that T-probit selects several succinct subsets,

including (32,35), (30,35), (30,31), and (32,36) with excellent predictive performance. In

total, the T-probit method selects 11 feature subsets, and the most significant genes are gene

30 and gene 32, both with frequencies over 0.1. Except for gene30 and gene32, there are still

4 subsets including these two genes: (30,35), (32,35), (30,31), and (32,36). These 6 subsets

account for 62% of all samples and all have satisfactory predictive power. This confirms that

T-probit can select multiple succinct feature subsets with better predictive performance. We

also draw the 2-dimensional scatterplots of selected features in Figure 5.10 and Figure 5.11.

These plots show that the feature subsets (30,35), (30,31), (32,36), (32,35) found by T-probit

can be used to detect certain patterns in classification, and may lead to further study in the

corresponding gene interactions.

Table 5.7 shows the cross-validated feature selection results of all methods. Feature sub-

sets containing the top 2 features are given under the column “fsubsets”, and the prediction

AMLP/NMC/AUC of these feature subsets are measured with LOOCV using Bayesglm. It

should be noted that the predictive performance obtained in this way is biased since we use

the whole dataset as the training set to obtain feature subsets, and test these feature subsets

on all cases again with LOOCV. Nevertheless, it still reflects the difference in the predictive

power of feature subsets selected by the different methods. Table 5.7 and Table 5.6 show that

T-probit selects multiple succinct feature subsets with better predictive performance (than

other subsets of the same size selected by the other methods). For example, the feature

subsets (30,35) and (32,35) both have the highest predictive power (compared with other
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fsubsets freqs coefs(w/int) cv AMLP cv NMC cv AUC
1 32 0.38 17.03,-14.27 0.06 2.00 1.00
2 30 0.18 10.74,-6.97 0.07 4.00 0.99
3 36 0.09 15.06,-8.88 0.09 2.00 0.99
4 37 0.05 14.98,-8.15 0.10 4.00 0.99
5 31 0.05 12.13,-6.71 0.11 4.00 0.99
6 28 0.03 17.88,-8.12 0.14 2.00 0.95
7 35,30 0.02 8.19,-2.64,-5 0.03 1.00 1.00
8 32,35 0.02 15.94,-12.31,-8.38 0.03 1.00 1.00
9 35 0.01 17.9,-13.97 0.18 6.00 0.93

10 32,36 0.01 8.48,-4.54,-2.62 0.04 2.00 1.00
11 30,31 0.01 14.44,-9.33,-2.06 0.04 2.00 1.00

Table 5.6: Cross-validated prediction results with top selected feature subsets (from
whole data with T-probit). The prediction is measured with cross-validation using
Bayesglm. AMLP: average minus log-probability. NMC: number of misclassified cases.
AUC: area under ROC curve.

methods in Table 5.7) with AMLP 0.03, NMC 1 and AUC 1. The LASSO method is the only

comparable method with respect to AMLP/NMC/AUC since it selects (32,35) as the top 2

features. In other words, the feature subsets (32,35) and (30,35) may have genetic similarity,

which results in similar predictive power. Such a phenomenon can be observed by looking

at the scatterplot in Figure 5.10. One strength of T-probit is that it is able to detect such

multiple gene subsets, while other methods are forced to deliver a single coefficient vector.

Group LASSO, Supervised Group LASSO and random forest select single gene 35 or gene

36, which leads to slightly worse prediction results (NMC 4). The results of Bayesglm and

simple t-test both ignore genes selected by T-probit, and as a result they both have worse

predictions, with NMC 12 and 8. In conclusion, with the top 2 selected features, T-probit

outperforms all other methods by providing multiple feature subsets with great predictive

performance. More feature selection results of other methods can be found in Appendix F.

The plots in Figure 5.12 to Figure 5.15 show the feature scores of these features selected

by all methods. For T-probit, we plot the coefficients for the two significant feature subsets

we found in Table 5.6, and for the other methods we use the whole coefficient vector to show

the significance score. Both the 0.1 and the 0.01 criterion are shown on the feature coefficients

plots to denote significant genes. Under the 0.1 criterion, Bayesglm only selects the most

significant gene. LASSO selects 16 genes and Supervised Group LASSO selects 48 genes.
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Figure 5.10: Scatterplots of two feature subsets: (35,30) and (32,35). Colors: red
y=1, black y=0.
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Figure 5.11: Scatterplots of two feature subsets: (32,36) and (30,31). Colors: red
y=1, black y=0.
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Method fsubsets cv AMLP cv NMC cv AUC
T-probit subset1 (T-probit optimal) 35,30 0.03 1.00 1.00
T-probit subset2 (T-probit optimal) 32,35 0.03 1.00 1.00

T-probit subset3 32,36 0.04 2.00 1.00
T-probit subset4 30,31 0.04 2.00 1.00

LASSO 32,35 0.03 1.00 1.00
Group LASSO 35,115 0.15 4.00 0.95

Supervised Group LASSO 115,35 0.13 4.00 0.96
Random Forest 36,28 0.07 4.00 1.00

Bayesglm 1,5794 0.20 12.00 0.96
t-test 1,2 0.18 8.00 0.97

Table 5.7: Cross-validated prediction results with selected 2-way feature subsets (with
T-probit, LASSO, Group LASSO, Supervised Group LASSO, random forest, Bayesglm,
simple t-test). The prediction results are obtained with cross-validation using Bayesglm.

Remember that in the implementation details we cluster all genes into two groups using

hierarchical clustering. With this grouping structure, Group LASSO has a very messy result,

selecting thousands of genes in one group and nothing in the other group. This is reasonable

since LASSO is expected to deliver sparse and stable feature selection results across different

data structures, while Group LASSO largely depends on the group structure of features.

In comparison, T-probit shows the most sparse feature selection results by selecting feature

subsets (30,35) and (32,35) simultaneously.

We also implement all methods and record their prediction results as well as the average

number of features used across folds with LOOCV. The approach is the same as we did for

the breast cancer dataset in Section 5.1. With T-probit, we extract significant feature sub-

sets (similar to Table 5.6) and select the top and optimal feature subsets. Their predictive

powers are then measured across folds. We also include the predictive power of T-probit by

averaging predictive probabilities over all Markov chain samples. Across folds the predictive

performance of “Tpro top”, “Tpro optimal”, “Tpro average” are then collected and com-

pared in Table 5.8. The prediction of other methods are conducted as usual, with the same

implementation procedure described in Section 5.1. We also record the number of features

used for each method to evaluate the sparseness. To choose the number of features used

for each coefficient vector, we use the 0.1 as the criterion for “Tpro average” and all other

methods, including LASSO, Group LASSO, etc.
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Figure 5.12: T-probit feature scores of the optimal feature subsets (30,35) and (32,35).
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(b) Group LASSO feature scores.

Figure 5.13: LASSO and Group LASSO feature scores.
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(b) Random forest feature scores.

Figure 5.14: Supervised Group LASSO and random forest feature scores.
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Figure 5.15: Bayesglm (with a Gaussian prior) and Bayesglm (with a Student’s t
prior) feature scores.
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Table 5.8 shows the unbiased prediction results of all T-probit methods and other models.

It is unbiased since the data training and prediction are conducted separately on different

cases (training and validation). The results in the table show that Group LASSO has the best

cross-validated error rate (0/121), the simple t-test has best AMLP (0.02), and all methods

have satisfactory AUC results. “Tpro top” and “Tpro average” both achieve satisfactory

predictive power (NMC 3/2, AMLP 0.07/0.09, AUC 1) using far fewer features. In conclusion,

this data is relatively simple and all methods have satisfactory predictive performance (except

Bayesglm). T-probit provides comparable prediction results to the other methods using fewer

features.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF Bayesglm T
No. of features 1.00 1.95 26.43 2783.26 50.34 149.33 3484.88 100.00

NMC 3.00 5.00 2.00 1.00 0.00 2.00 2.00 10.00 1.00
AMLP 0.07 0.09 0.09 0.04 0.05 0.03 0.12 0.34 0.02
AUC 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.8: Cross-validated prediction results with the number of features used with
each method (averaged over all folds).

5.3 Analysis of Colon Cancer Status Data

Colon cancer is a type of cancer that develops in the colon or rectum (parts of the large

intestine). It usually starts from a growth of polyp (abnormal tissue) on the inner lining

of the colon or rectum, and by chance some polyps may change into a malignant tumor

(cancer). Eventually, the cancer cells can grow into blood vessels or lymph nodes or even

spread to distant parts of the body. The causes of colon cancer are mostly lifestyle and age,

with only a small portion of cases being attributed to inherited genetic factors. Globally,

colon cancer is the third most common type of cancer, and accounts for around 10% of all

cases (Organization, 2014). Colon cancer is highly curable with a 90% 5-year survival rate

when detected early (before it has spread). The survival rate drops when the cancer spreads

outside the colon. The process of finding out if the cancer has spread to other organs of the

body is called staging. The linear progression from normal colon cell to invasive metastatic

carcinoma during tumorigenesis is well-studied since the beginning of global gene expression

profiling (Alon et al., 1999). A direct delineation of the genetic changes that take place
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during carcinogenesis can be obtained by comparing differences in gene expression between

colon cancer and adjacent normal cells.

We conduct gene expression classification between mucosa samples and tumor tissue to

find distinctive molecular factors related to colon cancer. The original experiment is de-

signed and conducted by Grade et al. (2007), who proposed a gene expression profiling with

103 samples using oligonucleotide microarrays. Among 103 samples there are 73 tumors (33

stage II and 40 stage III) and 30 normal mucosa samples from matched patients. The original

study identified a set of 1,950 genes with significant fold changes. The results also include

classification systems with LOOCV (100% prediction accuracy), support vector machines,

diagonal linear discriminant and compound covariates predictor (prediction accuracies rang-

ing from 96% to 98%). We apply T-probit as well as other methods to this dataset (103

samples, 21732 features) to find relevant genetic factors to distinguish between colon cancer

and normal samples.

Before implementing any algorithm, we preprocess the data with the Bioconductor pack-

age in R as we did before in 5.1 and 5.2. The original arrays contain 21732 genes (103 samples)

and no significant missing entries. The correlation study tells us 8784 of the genes have signif-

icantly positive correlations with response and 10089 of the genes have significantly negative

correlations with response. To eliminate irrelevant information, we only choose the top rank-

ing 6000 significant genes. The 103 × 6000 data matrix is then standardized with median

value and standard deviation. We implement T-probit regression on the whole data with all

p = 6000 features and n = 103 observations. In total we obtained 2.88 million Markov chain

samples (after 500K burn-in period) in 28752 seconds. In the end, we record 3000 samples of

β and λ. Figure 5.16 shows the magnitude of Markov chain iterations and the corresponding

auto-correlations.

We first implement all methods on the entire dataset (103 observations) and evaluate

the feature selection results. With T-probit, we extract a set of sparse feature subsets from

the Markov chain in the same way as we did in Section 5.1, and record the corresponding

predictive power (with cross-validation) and coefficients in Table 5.9. For other methods we

obtain vectors of coefficient scores. To compare their performance under the same criterion

we show the top 2 features selected by other methods in Table 5.11 as well as their cross-
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Figure 5.16: Magnitude and auto-correlation of Markov chain samples.

validated predictive performance. More feature selection results of other methods can also be

found in Appendix G. Remember that the corresponding predictive performance is biased;

nevertheless, it still reflects the predictive power of the selected feature subsets.

Table 5.9 shows the predictive performance of all significant feature subsets by T-probit.

From the table we see that some feature subsets have great predictive power: (14,26), (24,45),

(18,21) all give zero test error, (4,24) has two errors, (26,31) and (2,21) have one test error. In

Table 5.9, only feature 2, feature 4 and feature 26 have frequency over 10% across all Markov

chains, and in total they account for 51% of Markov chain samples. This table also includes

feature subsets ((14,26), (24,45), (24,4), (21,18), (2,26), (26,31), (2,21)). This discovery may

lead to further study of these genes (annotation of these genes is included in Table 5.10).

In Table 5.11 we show the cross-validated predictive performance of feature subsets se-

lected by all methods. The results show that all of them can achieve 90% accuracy with

only two features. T-probit selects optimal feature subsets with 0/103 misclassified cases,

while LASSO does well with 2/103 misclassified cases and random forest with 4/103. Group

LASSO and Supervised Group LASSO are worse but still give satisfactory numbers of 8/103

and 9/103. This confirms that this colon dataset is rather simple, with high classification

success rate of all methods. To illustrate this, we also draw the scatterplots of the features
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fsubsets freqs coefs(w/int) cv AMLP cv NMC cv AUC
1 2 0.22 7.38,4.2 0.15 7.00 0.98
2 4 0.18 7.26,7.85 0.13 5.00 0.99
3 26 0.11 11.18,-15.6 0.20 9.00 0.96
4 31 0.05 13.79,-10.49 0.24 10.00 0.95
5 14,26 0.05 13.5,12.47,-14.25 0.03 0.00 1.00
6 14 0.03 2.89,2.97 0.21 9.00 0.96
7 45 0.02 10.08,-11.58 0.29 10.00 0.93
8 24,45 0.02 18.52,-16.38,-20.52 0.03 0.00 1.00
9 18 0.02 14.32,-9.57 0.24 10.00 0.96

10 24,4 0.02 19.27,-10.3,15.1 0.04 2.00 1.00
11 19 0.02 13.83,-13.32 0.23 13.00 0.96
12 21,18 0.02 20.44,-14.02,-15.07 0.04 0.00 1.00
13 2,26 0.02 11.46,8.32,-0.92 0.06 3.00 1.00
14 21 0.02 7.11,-0.6 0.27 14.00 0.95
15 31,26 0.01 13.83,-19.12,-12.34 0.06 1.00 1.00
16 24 0.01 15.32,-7.08 0.27 15.00 0.95
17 2,21 0.01 13.26,5.89,-6.04 0.05 1.00 1.00

Table 5.9: Cross-validated prediction results with selected feature subsets (from whole
data with T-probit). The prediction is measured with cross-validation using Bayesglm.
AMLP: average minus log-probability. NMC: number of misclassified cases. AUC: area
under ROC curve.
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Feature
ID

MADB-
WELL-ID

OLIGO-ID GENE Annotation GB-LIST

14 1190336 H200016672 TBL1XR1 Transducin (beta)-like 1X-
linked receptor 1

AK022268

26 1194102 H200020399 STX16 syntaxin 16 (STX16), tran-
script variant 2, mRNA

AF008937,
NM003763

24 1193261 H200019567 C7orf27 Chromosome 7 open reading
frame 27

AK024482

45 1180755 H200007191 PTD004 GTP-binding protein
PTD004 (PTD004), tran-
script variant 2, mRNA

NM013341

4 1190065 H200016404 S100A11 S100 calcium binding protein
A11 (calgizzarin) (S100A11),
mRNA

NM005620

21 1179584 H200006032 ODC1 ornithine decarboxylase 1
(ODC1), mRNA

NM002539

18 1184479 H200010876 CYP2S1 cytochrome P450, family 2,
subfamily S, polypeptide 1
(CYP2S1), mRNA

NM030622

2 1181602 H200008029 SLC12A2 solute carrier family 12
(sodium/potassium/chloride
transporters), member 2
(SLC12A2), mRNA

AK025062,
NM001046

31 1173694 H200000203 CXCL1 chemokine (C-X-C motif) lig-
and 1 (melanoma growth
stimulating activity, alpha)
(CXCL1), mRNA

NM001511

Table 5.10: Annotation table for genes selected by T-probit.
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selected (by T-probit) in Figure 5.17 to Figure 5.20. These plots also show that feature

subsets selected by T-probit can provide predictive patterns in the dataset.

Method fsubsets cv AMLP cv NMC cv AUC
T-probit subset1 (T-probit optimal) 14,26 0.03 0.00 1.00
T-probit subset2 (T-probit optimal) 24,45 0.03 0.00 1.00

T-probit subset3 21,18 0.04 0.00 1.00
LASSO 70,31 0.05 2.00 1.00

Group LASSO 58,665 0.27 9.00 0.95
Supervised Group LASSO 58,1 0.21 8.00 0.97

Random Forest 4,54 0.11 4.00 0.99
Bayesglm 1,3743 0.26 10.00 0.95

t-test 1,2 0.14 4.00 0.98

Table 5.11: Cross-validated prediction results with selected 2-way feature subsets
(with T-probit, LASSO, Group LASSO, Supervised Group LASSO, random forest,
Bayesglm, simple t-test). The prediction is measured with cross-validation using
Bayesglm.

To see the feature selection results, we provide the coefficients/score from each method

with plots in Figure 5.21 to Figure 5.25. For T-probit, we plot the coefficients for the

top 2 significant feature subsets given in Table 5.9, and for the other methods we use the

corresponding coefficients vectors to show the significance score. The 0.1 and 0.01 criterion

are both drawn on the plot for all methods to denote significant features. Plots in Figure

5.21 to Figure 5.25 show that the T-probit methods provide sparse feature selections. The

only comparable method is LASSO, which selects 38 features. Supervised Group LASSO

selects hundreds of genes, while Group LASSO and random forest both select thousands of

features. Bayesglm failed to capture any meaningful signals, selecting only one feature. In

conclusion, only LASSO and T-probit generate sparse signals, while T-probit is better than

LASSO because it provides more sparse feature subsets.

We also compare the unbiased predictive performance of all methods in Table 5.12. The

approach is the same as in Section 5.1: For T-probit we record the predictive performance of

“Tpro top”, “Tpro optimal”, “Tpro average” and all the other methods, as well as the num-

ber of features used in Table 5.12. Tpro top and Tpro optimal both have worse predictive

performances compared with the LASSO family (but still attain 92% - 94% accuracy). The

Tpro optimal method consistently selects 2.00 features, which means in every fold the “op-
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Figure 5.17: Scatterplots of two feature subsets: (14,26) and (24,45). Colors: red
y=1, black y=0.
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Figure 5.18: Scatterplots of two feature subsets: (4,24) and (18,21). Colors: red y=1,
black y=0.
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Figure 5.19: Scatterplots of two feature subsets: (2,26) and (26,31). Colors: red y=1,
black y=0.
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Figure 5.20: Scatterplots of two feature subsets: (2,21) and (31,70). Colors: red y=1,
black y=0.
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Figure 5.21: T-probit feature scores of the two optimal feature subsets (14,26) and
(24,45).
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Figure 5.22: LASSO feature scores and another T-probit optimal feature subset
(18,21).
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Figure 5.23: Group LASSO and Supervised Group LASSO feature scores.
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Figure 5.24: Bayesglm (with a Gaussian prior and a Student’s t prior) feature scores.
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Figure 5.25: Random forest feature scores.
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timal” feature subset always contains two features. The Tpro average method shows better

predictive performance with NMC 2 and AMLP 0.11. The best predictive performance comes

from the Supervised Group LASSO and the simple t-test. Nevertheless, the predictive power

of all methods are not significantly different. The most interesting part of this table is that

the simple t-test also performs well with its top 100 selected features. This strengthens our

statement that this dataset has a relatively simple structure, since no low p-value features

contribute to the predictive power. The “No. of features” row shows that Group LASSO,

random forest, and Bayesglm all suffer from over-selection problems by selecting hundreds

or even thousands of features. In conclusion, all methods have good predictive performance

on this dataset, but only T-probit and LASSO have sparse feature selection results.

Tpro top Tpro optimal Tpro average LASSO GL SGLASSO RF T Bayesglm
No. of features 1.50 2.00 39.24 2345.98 70.45 193.17 100.00 2996.74

NMC 10.00 8.00 2.00 1.00 1.00 1.00 3.00 2.00 3.00
AMLP 0.24 0.24 0.11 0.04 0.06 0.02 0.17 0.03 0.10
AUC 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Table 5.12: Cross-validated prediction results with the number of features used with
each method (averaged over all folds).
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Chapter 6

Conclusions and Discussion

6.1 Conclusions

There are tremendous difficulties in selecting relevant features/genes in high throughput data,

as we discussed in Chapter 2. One problem is that the number of noise features is much larger

than the number of signals. Another problem facing gene expression analysis is that gene

expression data also have grouping structures, since co-regulated genes that share the same

molecular pathway tend to have similar mRNA expression levels.

In this thesis, we have proposed Bayesian T-probit models with heavy-tailed t priors

for high-dimensional feature selection problems. In Chapter 3, we described our Bayesian

T-probit model, which incorporates a heavy-tailed t distribution both for noise and for the

regression parameters β. We use the Hamiltonian Monte Carlo method (HMC) with re-

stricted Gibbs sampling to update β according to a marginalized posterior distribution. We

implement 2-stage sampling for the T-probit model for datasets with very high dimension. In

stage I we run the algorithm with all features and obtain Markov chain samples. In stage II

we screen features by looking at the posterior means of the coefficients; we then run MCMC

sampling again with only the features selected from stage I. For feature selection, we analyze

the MCMC samples that we obtain in Stage II: dividing the samples into sub-pools according

to their modes, from which we find a list of feature subsets. Furthermore, for each one of

these feature subsets, we can assess its corresponding cross-validated predictive performance.

We have investigated the computational efficiency of our MCMC sampling method by com-

paring it to ordinary Gibbs sampling implemented by JAGS and Langevin Monte Carlo in

Section 4.5. We have empirically shown that our MCMC sampling algorithm can explore the

multi-modal posterior more efficiently than JAGS and LMC.
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In Chapter 4 we used simulated datasets with different group structures (independent

group structure, correlated group structure and mixed group structure) to compare the T-

probit method with many other methods in the literature, including t-test, LASSO, Group

LASSO, Supervised Group LASSO, Bayesglm and random forest. In Section 4.1, we com-

pared these methods on a simple dataset with only two strongly correlated features. The

results showed that the T-probit method can split these two features into two feature sub-

sets. In Section 4.6, we generated a dataset with 2 features: feature 1 with significant sample

mean difference and feature 2 with zero mean difference but strongly correlated with fea-

ture 1. Feature 2 is marginally insignificant but useful for predicting the response. The

results showed that T-probit can better separate significant features (including feature 2)

from noise features, while LASSO includes many more noise features. In Section 4.4, we

generated datasets with four groups of features. Features in Group 1 are relevant to the

response vector y, Group 2 features have 0 mean differences across two classes, but they are

strongly correlated with Group 1 and relevant to the response. Group 3 features are relevant

features carrying weaker signals (compared with Group 1). We also generated datasets with

independent groups of features in Section 4.2, and both independent and correlated groups

in Section 4.3. The results from these simulation studies confirmed that the T-probit method

selects only one or very few features from each relevant group and omits most noise features.

Therefore, the feature subsets selected by T-probit are much more parsimonious. More im-

portantly, we showed that the predictive performances of the top and optimal feature subsets

selected by our method are comparable with the feature subsets of much larger size selected

by the aforementioned methods in the literature. Our empirical results also showed that the

succinct feature subsets selected by fully Bayesian T-probit have significantly better predic-

tive power than the feature subsets of the same size taken from the top features selected by

these methods.

In Chapter 5, we compared our T-probit regression method to other methods on three

real gene expression datasets, including a breast cancer dataset, a childhood acute leukemia

dataset and a colon cancer dataset. The results showed that Group LASSO and random forest

both suffer from the over-selection problem and Bayesglm also lacks sparseness. The T-probit

method is able to select the sparse feature subsets with good predictive performance. We also
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provided the annotations of the features selected by T-probit which will facilitate biological

interpretation and provide guidelines for further experimental investigation, possibly with

more accurate experimental methods than microarrays.

6.2 Directions for Future Work

In this thesis we have proposed our T-probit method to conduct feature selection and classifi-

cation for gene expression datasets. There are also some directions in which the method could

be extended. First of all, the implementation of the T-probit method can be accelerated by

replacing the stage I T-probit fitting with LASSO or other methods. This will save a lot of

computational resources, since LASSO is much faster than our T-probit method. Secondly,

we can improve the method for clustering Markov chain samples into subpools. The essential

part of our method is to extract feature subsets from Markov chain samples. To do that, we

first convert the whole Markov chain into a sparse matrix with only 0 and 1 entries. This

could be improved with advanced clustering techniques. Finally, this method can be applied

to multiclass problems. In this thesis, we have addressed binary classification problems using

the T-probit method. With a proper strategy, we believe we can apply the T-probit method

to multiclass classification problems, such as multiclass cancer diagnosis.
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Appendix A

Gene Expression Measurement Technologies

In genetics, gene expression is the process by which genetic information is used to syn-
thesize gene products. All existent forms of life, including prokaryotes (bacteria), eukaryotes
(complex structured organism such as animals and plants), and virus utilize this process
to interpret the genetic codes and generate the macromolecular machinery for life. On the
macromolecular level, this process can be represented as a generic information flow from
DNA to RNA to protein. DNA is first copied into RNA by RNA polymerase, then the mes-
senger RNA (mRNA) is produced and decoded by the ribosome to produce a specific amino
acid chain, which can be folded into an active protein. (Although some specific expression
information only results in with RNA production). The process by which DNA is copied to
RNA is called “transcription”, and the process in which cellular ribosomes create proteins is
called “translation”.

With advances in gene expression technologies, researchers may be interested in measuring
the expression levels of certain genes in a cell or organism because it helps us to “reverse
engineering” the expression process and find answers to questions involving certain genes of
interest. For example, the susceptibility of patients to certain complex diseases (cancer, etc.)
can be evaluated based on the expression levels of a few oncogenes. The severity of viral
infection in a cell/organ can be assessed based on the levels of viral protein expression.

In general, there are two ways to infer gene expressions: either with RNA quantification or
protein quantification. It is always easier/cheaper to perform RNA quantification. However,
proteome analysis can provide more stable and direct information of the pathways and the
biological system by focusing on the actually molecules of interest (Gygil et al., 1999), while
taking possible post-translational modifications into account (Anderson and Anderson, 2005).

The microarray is one of the most well-known technologies in the field of high-throughput
gene expression profiling. The word “microarray” refers to a 2-dimensional array (glass or
silicon chip) containing the gene expression information of genes. The target genes are usually
attached to specific probes on microarray spots and then detected with a high-throughput
screening method. It is argued that the basic methodology of microarrays was first introduced
in antibody microarrays (Chang, 1983). Some “gene chip” manufacturers such as Affymetrix
and Illumina started to establish series of protocols since the 1990s, and now DNA microarrays
have become one of the most widely used technologies for measuring gene expression. In this
section, we give a brief introduction to the microarray technique and its applications.

The basic idea behind most microarrays is to use complementary base-paring to hybridize
a cDNA or cRNA target sample with a specific DNA sequence. Each of the spots on the solid
microarray surface contains a specific probe (single stranded DNA oligonucleotide), which
is complementary to a specific mRNA molecule that corresponds to a gene. The target
molecule is then “hybridized” with its complementary probe (as in Figure A.1), which means
these complementary nucleic acid sequences pair with each other by forming hydrogen bonds
between nucleotide base pairs. The target sequences (mRNA molecules) are usually labeled
with fluorescent dye. The higher the amount of target sample hybridized to a probe, the
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higher the fluorescence intensity of the dye. The gene expression levels of specific genes are
then detected by measuring the intensity of fluorescence of spots on a microarray slide with
a scanner system.

Figure A.1: Hybridization with probes.

There are various commercial gene-chip processing systems available. One of the most
well-known gene-chip manufacturers is Affymetrix, which provides oligonucleotide arrays
and corresponding analysis tools. Despite the differences in protocols and platforms, each
oligonucleotide array usually contains hundreds of thousands of probe spots, each containing
millions of copies of a specific 25 base long DNA oligonucleotide. Affymetrix uses a collection
of probes to interrogate a given sequence, which is typically known as the 11 probe set.
This set of probes consists of perfect match (PM) probes as well as mismatch (MM) probes.
Each perfect match probe has a sequence exactly complementary to the particular gene and
represents the expression of the gene, while the mismatch probe contains the same 25 base
long sequence except that the 13th base in the chain is substituted with a different base that
disturbs the binding of the target gene transcript. The signals generated by PM and MM
are recognized as the “signal” and “noise” (background information). It helps to determine
the specific intensity value for each probe set.

Other than polynucleotide arrays, cDNA arrays are also common in microarrays experi-
ments. It is named as such because it measures complementary DNA (cDNA) levels instead
of mRNA levels. The length of probe bases from cDNA microarrays is usually longer than
mRNA microarrays, which contain hundreds of bases in many cases. Thus each spot cor-
responds entirely to a specific gene. It is usually more accurate to measure the expression
levels of a specific gene using its cDNA levels since each of the probes on cDNA arrays is
complementary to a cDNA molecule and a target gene.
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Appendix B

Preprocessing Gene Expression Data

Data pre-processing procedures, including standardization and normalization are often
required for data mining purposes. Several steps in the pre-processing procedure may be
modulated, including cleansing, standardization, normalization, and feature extraction/se-
lection if necessary. Standardization is usually recommended since the “raw” features may
have different scales and cannot be compared directly. One common method can be written as
x
′
j = (xj −µj)/σj, j = 1, 2, ..., p, where µj and σj are the mean and standard deviation of the
jth variable values. In data preprocessing, it is also possible to apply signal processing meth-
ods to enhance signal-to-noise ratio, like the Fourier transformation and wavelet transform
(Wang et al., 2003). In some cases, the expansion of input dimensionality is also considered.
For example, a recent study shows that certain protein interactions are functionally related
(Marcotte et al., 1999).

Data pre-processing is the first and one of the most important steps in gene expression
data analysis. The results of large scale gene expression data-gathering often have loosely
controlled entries with missing values, out-of-range values (e.g., -1000), etc. Such “bad data”
sometimes is a technical phenomenon, just like missing values or malformed records. For
gene expression data, the reason can be poor hybridization, incomplete documentation, etc.
The high dimension of gene expression data makes it necessary to identify and correct the
misleading entries so we can obtain consistently pre-processed data matrices. Such steps are
usually called “quality assessment”. The main point of data assessment is to differentiate
between good and bad data. Sometimes in practice there is often no choice but to completely
discard certain entries from further analysis. It is also crucial to comply with the data provider
to preserve useful information within the data according to the original experiment design.

In our study we mainly collect gene expression data from Gene Expression Omnibus
(GEO). GEO is a public genomics data repository supporting array and sequence-based
data. It also provides basic tools to help researchers to examine experiments and platforms.
In practice we work with Bioconductor (using the R programming language) to extract
information from GEO repository. With the help of the R package GEOquery, we download
a given data series using its GEO ID. The format of the files can be chosen as either GSE
Series Matrix or GSE SOFT. GSE SOFT files contain full information of the experiments;
however, the parsing of the GSE Series Matrix is faster than parsing the GSE SOFT files.
In practice we save GSE Series Matrix as the default data format. The expression entries
are saved within the GSEMatrix as ExpressionSet. Other important information such as
characteristics and protocols are also included in the GSE objects. Features of interest (such
as cancer stage label, tumor grading, etc.) can then be extracted from the GSE object.

After we obtain the intact expression matrix and corresponding response, the first quality
measurement issue is the treatment of missing values. Troyanskaya et al. (2001) conducted
a comparative study of several missing value imputation methods on gene microarray data
and showed that the K-nearest neighbor (KNN) imputation method provides robust results
for missing value estimation when the amount of missing data ranges from 1−20%. Suppose
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there is a missing entry present in gene A and sample 1. We will first identify K other
genes which satisfy two conditions: 1) having values in sample 1; 2) having the most similar
expression values (according to the Euclidean distance) to A in samples 2-N (N is the total
number of samples). The values of these K genes in sample 1 are then weighted by its
similarity to gene A and used as the imputed value of the missing entry (xA1). In our real
data analysis, we first discard genes that have over 20% entries missing, and then use package
SAMR to conduct the KNN imputation. The resulting data production is then an expression
matrix with a response vector.

Dimension reduction sometimes is also necessary since the original arrays usually have
large scales even after deleting some missing entries. To address this problem, Tusher et al.
(2001) have proposed Significance Analysis of Microarrays (SAM) to assign scores to genes
with respect to changes in gene expression values relative to the standard deviation of re-
peated measurement. In our study we employ SAM as the default feature screening method
in data preprocessing to obtain a set of gene scores. We then rank them and select the
significant genes. The number of selections can be arbitrary with respect to the model, and
in many cases researchers only select hundreds or even dozens of features for further study.
Since our proposed T-probit model is capable of handing large amounts of data, we select
5000 to 6000 genes with top ranked relative difference (from SAM) in most cases.

Another important step we consider in data pre-processing is normalization. Normaliza-
tion is the process of reducing unwanted variation either within or between features. The
typical assumptions of most major normalization methods are 1) Only a small subset of
genes are expected to have substantial differences between conditions. 2) Any expression is
as likely to be up-regulated as down-regulated (about as many genes going up in expression
as are going down between conditions). Many methods are proposed to normalize microarray
data according to different platforms. Two well known normalization methods are scaling
and quantile normalization. Scaling involves choosing a baseline feature and scaling all other
features to have the same mean intensity as the chosen one. Quantile normalization is to cal-
culate an empirical distribution G(x) of intensities from all arrays first, then transform each
value with F−1[G(xi)] where F is the empirical distribution of the averaged sample quantiles.
In this thesis, we use the R package samr and Bioconductor to conduct normalization for
microarray datasets. More information about normalization can be found in Gentleman et al.
(2006) and Tibshirani et al. (2011).
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Appendix C

Implementation Details

C.1 Implementation of Existing Feature Selection Meth-

ods

In our simulation studies, we do data analysis with six different methods to compare with
our T-probit regression: LASSO (Least Absolute Shrinkage and Selection Operator),
Group LASSO (GL), Supervised Group LASSO (Sup), Random Forest (RF), Penalized
Logistic Regression with t priors (denoted by Bayesglm) and simple t-test ranking. For
a specific dataset we apply these methods to obtain feature selection results on training
datasets as well as prediction results on test datasets (if there are any). Then we look into
the feature selection efficiency and prediction accuracy of various classifiers corresponding
to different methods. The implementation details of all six methods are illustrated in this
section.

We use the R package arm to fit Penalized Logistic Regression with the iteratively
reweighted least squares method (IWLS). More specifically, with data (xi., yi), i = 1, ..., n
(from the ith observation) we use the R function bayesglm to train the logistic regression
with Student’s t-distribution for intercept β0 and coefficients β = {βj, j = 1, 2, ..., p} as

P (Yi = yi|xi., β0, β) =

(
(

1

1 + eβ0−xi.β
)yi(1− 1

1 + eβ0−xi.β
)1−yi

)
, (C.1)

β0 ∼ T (α∗, ω∗),

βj ∼ T (α1, ω1), j ∈ {1, 2, ..., p},

where T (α, ω) is the scaled t-distribution with shape parameter α and scale parameter
√
ω.

We use the default value set by bayesglm for specifying priors for coefficients β with shape
(degrees of freedom) parameter α1 (usually 1) and scale parameter

√
ω1 (usually

√
2.5). For

intercept β0 we set the shape (degrees of freedom) parameter α1 (usually 1) and the scale
parameter

√
ω1 (usually

√
10). To compare with T-probit regression, we also implement

this algorithm with the same shape and scale parameters α1,
√
ω1 as we used for T-probit

regression. As a result of model fitting, we have a coefficient vector {βj, j = 1, 2, ..., p}.
Feature selection can be conducted and discussed later based on this result. The coefficient
solution is also used to find predictive probabilities for a new test case x∗ using equation
(C.1). For convenience we use “Bayesglm” to denote the method using Penalized Logistic
Regression model in the thesis.

LASSO is implemented using the R package glmnet. For training data (x, y) we first train
LASSO with the R function glmnet with a set of regularization parameters λ = {λm,m =
1, 2, ...,M}. By default, we start with minimum λ1 value λ1 = 0.01 and choose M = 100
candidate values with λm = 0.01m,m = 1, 2, ...,M . To find an optimal LASSO solution,
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we conduct cross-validation with respect to average minus log-probability over all candidate
λm values. More specifically, for dataset (x, y) with n observations, we first split the whole
data into n folds with leave-one-out cross-validation (LOOCV). Within each fold of data, we
have n − 1 training cases and one test case. Then we train LASSO on n − 1 training cases
with each single value of regularization parameter λm, and use the resulting solution to find
predictive probabilities on the single test case. The predictive performance AMLP (average
minus log-probability) averaging over all folds is then collected and recorded for each single
value of λm. The value of λm with smallest AMLP is then chosen as the optimal λ value
with respect to the optimal LASSO solution. At last, we fit glmnet on the whole data (x, y)
again with only the optimal λ on all n observations. The fitting LASSO solution contains a
set of parameter coefficients β, based on which we can perform feature selection. For a test
case x∗ the predictive probability can be calculated with the optimal coefficients vector β
using R function predict.glmnet.

We implement Group LASSO with prior group structure determined by hierarchical clus-
tering (HC). With data set x we first conduct hierarchical clustering with the hclust function
in the R package clust. More specifically, for a given number of groups C, we first use the
R function hclust to construct a tree with UPGMA (Unweighted Pair Group Method with
Arithmetic Mean), and then the tree is cut into several groups by specifying the desired
number of groups C. For a list of candidate values of C (and corresponding group structure),
silhouette values are calculated. In practice, we usually set the candidate values from 2 to 50,
which means we divide the features into at most 50 groups. The optimal value of C is chosen
using the maximum silhouette value and the corresponding group structure of features in
x is then saved in the form of an “index”. That is, for each feature j, we assign an index
label Ij to denote the group origin of this feature. With such a group index, we run Group
LASSO (using the R function gglasso) on different values of the regularization parameter
λ. An optimal λ is then chosen to minimize the cross-validated AMLP (average minus log-
probability). At last we fit Group LASSO again with this optimal λ and the optimal group
index. The resulting Group LASSO solution contains the coefficient value of all β and can
be used to find the predictive probability for the test cases x∗.

Supervised Group LASSO is implemented with a two-stage strategy. 1) We borrow the
same group structure used in Group LASSO. For each feature group we then implement the
LASSO algorithm with a reduced dataset and use the LASSO solution to extract signifi-
cant features. More specifically, we combine all features in the kth group into xk and fit
LASSO (as we introduced before) on (xk , y). These features with nonzero coefficients in
the resulting LASSO solution will be retained and used as representatives of group k. 2) All
group representative features are then combined into a consolidated training dataset, while
their group indices are retained. We fit Group LASSO on this consolidated dataset with
the consolidated group structure. The resulting Group LASSO solution is assigned to the
corresponding features and all other features abandoned from stage II are labeled with zero
coefficients. The new coefficients and prediction results are then saved as Supervised Group
LASSO results.

We implement Breimans random forest algorithm with the RandomForest R package
(based on Breiman and Cutlers original Fortran code). Two important parameters in random
forest are the number of trees (ntree) to grow and the number of variables randomly sampled
as candidates at each split in the forest (mtry). With two arbitrary sets of candidate values
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for them, we fit randomForest with cross-validation. By default we use the candidate values
of mtry ranging from

√
p to n if

√
p < n, or n to

√
p if
√
p > n. The candidate values of

ntree are chosen from 250 to 500. For each pair value of mtry and ntree we run the random
forest algorithm with the R function randomForest with cross-validation. The optimal pair
values of mtry and ntree are then selected with respect to minimum AMLP. We then fit the
whole data again with the optimal value of mtry and ntree. A coefficient vector is obtained
as the feature scores and can be used to find predictive probabilities for test cases. Another
simple feature selection method included is the simple t-test. With the t-test, we simply rank
features and implement feature selection based on t-scores, and then perform classification
on test cases with only the top ranked 100 features. It will be used as a simple benchmark
to compare with other classification algorithms.

C.2 List of Setting Parameters for T-probit Implemen-

tation

We run MCMC sampling of T-probit regression in two stages. In stage 1, we run MCMC
sampling with all p features. Then we use MCMC means of p coefficients to choose the top
p∗ features. In stage 2, we run MCMC sampling with a reduced dataset with only the p∗

selected features from stage 1.
In each stage we use our C code to implement T-probit regression. To use our C function,

we need to decide an initial status for the coefficients β and Markov chain parameter values
for α0, ω0, α1, ω1, R1, n1, R2, n2, l1, l2, ε, η. The initial status for the coefficients β0

is obtained using the LASSO approach. The initial value for λ is then sampled from its
posterior distribution given β0. We then implement HMC sampling with leapfrog numbers
L (default value 50) and stepsize ε (default value 0.5). In the burn-in period, we set l1 and
run R1 × n1 samples but only record R1 (usually thousands) of them. After the burn-in
period, we record R2 iterations out of a total of R2×n2 samples. In circumstances with large
values of p (usually thousands), we implement two-stage fitting of T-probit regression. That
is, we first fit T-probit regression with all p features (as we discussed above) and record the
resulting Markov chain samples of β and λ. The mean sample coefficients of β are calculated
by averaging over all R1 samples. The top ranking 100 features are then selected by ranking
the mean values of the sample coefficients. The original dataset is then reduced to a smaller
one with dimension n and p = 100. We then conduct stage II T-probit fitting with the same
parameters α0, ω0, α1, ω1, R1, n1, R2, n2, l1, l2, ε, η. The final Markov chain of β and λ
are then recorded and analyzed for the purpose of feature subset selection. In other cases,
if we have a dataset with a small value of p (like hundreds), we then only implement proibt
regression once.

In summary, we use the same MCMC sampling settings in two stages as listed below:

1. α0,
√
ω0: shape and scale parameters of t priors for residual errors. They are all fixed

at α0 = 1, ω0 = 0.5.

2. α1,
√
ω1: shape and scale parameters of t priors for coefficients β. They are all fixed at

α1 = 1, ω1 = exp(−10) in most experiments except Section 4.4 and Section 4.6 when
their effects are investigated.
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3. η: the cutting off value used in the restricted Gibbs sampling. In step 3 of the “Re-
stricted Gibbs sampling with HMC” presented in Section 3.2, we only choose βj with

j ∈ U = {j|λ̂j > η} to update with HMC. We often choose η so that 10% of β are
updated.

4. ε: stepsize modifier for leapfrog steps in HMC sampling. There are two critical tuning
parameters for HMC: the stepsize of each leapfrog step and the length of the leapfrog
trajectory. Fortunately, they can be tuned independently (Neal, 2011). Following Neal
(2011), we set the leapfrog stepsize εj for βj with the second order derivative multiplied
by a common adjustment factor ε:

εj = ε

(
∂2U
∂β2

j

)−1/2

. (C.2)

The ε is an adjustment factor usually chosen from 0.1 to 1 such that we obtain the
optimal rejection rate 30% for HMC (Neal, 2011). The required second-order derivative
of U with respect to βj is approximated by:

∂2U
∂β2

j

≈
n∑
i=1

x2
ij

λ̂j
+

1

λ̂j
, (C.3)

where xij is the value of the jth feature in the ith case.

The choice of length of trajectory is complicated. Neal (1995) recommended running
HMC in two phases: initial (burn-in) phase and sampling phase. In the initial phase,
one uses a leapfrog trajectory of short length so that the log likelihood can be changed
more quickly and the Markov chain can more quickly reach equilibrium or a local
mode for our problems. In the sampling phase, one should use a leapfrog trajectory
of longer length to make full use of the ability of HMC to reach a distant point from
the starting point. However, the optimal choice of L is difficult to determine since it
depends on specific problems. In addition, for our problems, the posterior is highly
multi-modal. Therefore, the optimal choice of L may vary for different modes. An
automatic scheme for choosing L, called NUTS, is proposed by Homan and Gelman
(2014). In our empirical studies, for simplicity, we use L = 50 which appears to be
sufficiently long for our problems.

5. l1, R1: R1 is the total number of recorded samples in the burn-in period. l1 is the
number of transition states (not recorded) between two recorded samples in the burn-
in period.

6. l2, R2: R2 is the total number of recorded samples after the burn-in period. l2 is
the number of transition states (not recorded) between two recorded samples after the
burn-in period.
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Appendix D

Supplementary Figures for Simulations
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Figure D.1: The feature scores of T-probit regression (with df=1, and log(w)=-10 or
log(w)=-20) on dataset for investigating the choice of heaviness of heavy-tailed priors in
Section 4.4. The red features are the significant features selected by T-probit regression.
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Figure D.2: The feature scores of T-probit regression (with df=0.5, and log(w)=-
10 or log(w)=-20) on dataset for investigating the choice of heaviness of heavy-tailed
priors in Section 4.4. The red features are the significant features selected by T-probit
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(a) The feature scores of T-probit re-
gression (with df=10, log(w)=-10).
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Figure D.3: The feature scores of T-probit regression (with df=10, log(w)=-10) and
LASSO feature scores on dataset for investigating the choice of heaviness of heavy-tailed
priors in Section 4.4. The red features are the significant features selected by T-probit
regression and LASSO.
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Figure D.4: Group LASSO and Supervised Group LASSO feature scores on dataset
for investigating the choice of heaviness of heavy-tailed priors in Section 4.4. The red
features are the significant features selected by Group LASSO and Supervised Group
LASSO.
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Figure D.5: Random forest and Bayesglm (with Gaussian prior) feature scores on
dataset for investigating the choice of heaviness of heavy-tailed priors in Section 4.4.
The red features are the significant features selected by Random forest and Bayesglm.
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(a) Bayesglm (with a Student’s t
prior) feature scores.
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Figure D.6: Bayesglm (with a Student’s t prior) and Bayesglm (with Top 100 Features)
feature scores on dataset for investigating the choice of heaviness of heavy-tailed priors
in Section 4.4. The red features are the significant features selected by Bayesglm.
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Figure D.7: T-probit regression feature scores for the top feature subset (1,57,140)
and second (1,51,140) based on datasets with independent groups of features in Section
4.2.
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Figure D.9: Group LASSO and Supervised Group LASSO feature scores based on
datasets with independent groups of features in Section 4.2.
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Figure D.10: Bayesglm and random forest feature scores based on datasets with
independent groups of features in Section 4.2.
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Figure D.11: T-probit regression feature scores for the top feature subset
(119,235,451) and second (235,451) based on datasets with independent and correlated
groups in Section 4.3.
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Figure D.12: Third feature subset (189,236,416) and LASSO feature scores based on
datasets with independent and correlated groups in Section 4.3.
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Figure D.13: Group LASSO and Supervised Group LASSO feature scores based on
datasets with independent and correlated groups in Section 4.3.
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Figure D.14: Bayesglm and random forest feature scores based on datasets with
independent and correlated groups in Section 4.3.

146



Appendix E

Supplementary Tables and Figures for Breast

Cancer Data

fsubsets amlp er auc
1 25 0.46 21.00 0.87
2 25,266 0.35 12.00 0.93
3 25,266,614 0.27 10.00 0.95
4 25,266,614,67 0.18 6.00 0.98
5 25,266,614,67,1980 0.15 5.00 0.98
6 25,266,614,67,1980,2081 0.12 6.00 0.99
7 25,266,614,67,1980,2081,2256 0.08 2.00 1.00
8 25,266,614,67,1980,2081,2256,3009 0.08 3.00 1.00
9 25,266,614,67,1980,2081,2256,3009,49 0.08 3.00 1.00

10 25,266,614,67,1980,2081,2256,3009,49,69 0.08 5.00 1.00

Table E.1: LASSO: feature subset and corresponding predictive performance based
on breast cancer data in Section 5.1.

fsubsets amlp er auc
1 2256 0.63 33.00 0.70
2 2256,1795 0.58 35.00 0.75
3 2256,1795,266 0.52 21.00 0.82
4 2256,1795,266,3009 0.46 17.00 0.87
5 2256,1795,266,3009,2762 0.41 17.00 0.89
6 2256,1795,266,3009,2762,2081 0.29 13.00 0.95
7 2256,1795,266,3009,2762,2081,2819 0.28 16.00 0.95
8 2256,1795,266,3009,2762,2081,2819,2539 0.22 12.00 0.97
9 2256,1795,266,3009,2762,2081,2819,2539,4832 0.21 12.00 0.97

10 2256,1795,266,3009,2762,2081,2819,2539,4832,1980 0.21 10.00 0.97

Table E.2: Group LASSO: feature subset and corresponding predictive performance
based on breast cancer data in Section 5.1.
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fsubsets amlp er auc
1 266 0.56 25.00 0.78
2 266,2256 0.55 21.00 0.81
3 266,2256,1756 0.51 25.00 0.83
4 266,2256,1756,23 0.41 18.00 0.89
5 266,2256,1756,23,1980 0.36 14.00 0.92
6 266,2256,1756,23,1980,19 0.22 10.00 0.97
7 266,2256,1756,23,1980,19,2855 0.28 10.00 0.96
8 266,2256,1756,23,1980,19,2855,67 0.23 8.00 0.97
9 266,2256,1756,23,1980,19,2855,67,413 0.14 6.00 0.99

10 266,2256,1756,23,1980,19,2855,67,413,49 0.12 7.00 0.99

Table E.3: Supervised Group LASSO: feature subset and corresponding predictive
performance based on breast cancer data in Section 5.1.

fsubsets amlp er auc
1 10 0.37 16.00 0.90
2 10,8 0.34 11.00 0.91
3 10,8,103 0.32 13.00 0.93
4 10,8,103,3 0.32 11.00 0.93
5 10,8,103,3,31 0.32 10.00 0.92
6 10,8,103,3,31,26 0.33 10.00 0.93
7 10,8,103,3,31,26,30 0.32 10.00 0.93
8 10,8,103,3,31,26,30,1223 0.33 10.00 0.92
9 10,8,103,3,31,26,30,1223,18 0.30 9.00 0.93

10 10,8,103,3,31,26,30,1223,18,57 0.32 10.00 0.93

Table E.4: Random Forest: feature subset and corresponding predictive performance
based on breast cancer data in Section 5.1.

fsubsets amlp er auc
1 1 0.33 18.00 0.93
2 1,2256 0.30 14.00 0.94
3 1,2256,4832 0.27 12.00 0.95
4 1,2256,4832,3009 0.27 12.00 0.96
5 1,2256,4832,3009,1980 0.26 12.00 0.96
6 1,2256,4832,3009,1980,2855 0.24 12.00 0.96
7 1,2256,4832,3009,1980,2855,266 0.17 7.00 0.98
8 1,2256,4832,3009,1980,2855,266,2819 0.18 6.00 0.98
9 1,2256,4832,3009,1980,2855,266,2819,4955 0.17 6.00 0.98

10 1,2256,4832,3009,1980,2855,266,2819,4955,1795 0.16 4.00 0.98

Table E.5: Bayesglm: feature subset and corresponding predictive performance based
on breast cancer data in Section 5.1.
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fsubsets amlp er auc
1 1 0.33 18.00 0.93
2 1,2 0.29 13.00 0.94
3 1,2,3 0.29 11.00 0.93
4 1,2,3,4 0.27 12.00 0.94
5 1,2,3,4,5 0.27 12.00 0.95
6 1,2,3,4,5,6 0.26 10.00 0.95
7 1,2,3,4,5,6,7 0.26 11.00 0.95
8 1,2,3,4,5,6,7,8 0.27 11.00 0.95
9 1,2,3,4,5,6,7,8,9 0.26 9.00 0.95

10 1,2,3,4,5,6,7,8,9,10 0.26 8.00 0.95

Table E.6: t-test ranking: feature subset and corresponding predictive performance
based on breast cancer data in Section 5.1.
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Appendix F

Supplementary Tables and Figures for Child-

hood Acute Leukemia Data

fsubsets amlp er auc
1 32 0.06 2.00 1.00
2 32,35 0.03 1.00 1.00
3 32,35,1 0.02 0.00 1.00
4 32,35,1,27 0.02 0.00 1.00
5 32,35,1,27,115 0.02 0.00 1.00
6 32,35,1,27,115,76 0.02 0.00 1.00
7 32,35,1,27,115,76,6 0.01 0.00 1.00
8 32,35,1,27,115,76,6,197 0.01 0.00 1.00
9 32,35,1,27,115,76,6,197,325 0.01 0.00 1.00

10 32,35,1,27,115,76,6,197,325,2032 0.01 0.00 1.00

Table F.1: LASSO: feature subset and corresponding predictive performance based
on childhood acute leukemia data in Section 5.2.

fsubsets amlp er auc
1 35 0.19 6.00 0.93
2 35,115 0.15 4.00 0.95
3 35,115,1698 0.16 5.00 0.96
4 35,115,545,1698 Inf 4.00 0.95
5 35,115,545,1698,1927 Inf 4.00 0.95
6 35,115,410,545,1698,1927 Inf 4.00 0.95
7 35,115,410,545,1193,1698,1927 Inf 6.00 0.94
8 35,115,410,545,1193,1698,1927,2490 Inf 7.00 0.97
9 35,115,410,545,554,1193,1698,1927,2490 Inf 5.00 0.97

10 35,115,406,410,545,554,1193,1698,1927,2490 1.91 8.00 0.99

Table F.2: Group LASSO: feature subset and corresponding predictive performance
based on childhood acute leukemia data in Section 5.2.
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fsubsets amlp er auc
1 115 0.19 6.00 0.95
2 115,35 0.13 4.00 0.96
3 115,35,27 0.07 3.00 1.00
4 115,35,27,32 0.02 0.00 1.00
5 115,35,27,32,406 0.02 0.00 1.00
6 115,35,27,32,406,30 0.02 0.00 1.00
7 115,35,27,32,406,30,40 0.02 0.00 1.00
8 115,35,27,32,406,30,40,2032 0.01 0.00 1.00
9 115,35,27,32,406,30,40,2032,325 0.01 0.00 1.00

10 115,35,27,32,406,30,40,2032,325,2490 0.01 0.00 1.00

Table F.3: Supervised Group LASSO: feature subset and corresponding predictive
performance based on childhood acute leukemia data in Section 5.2.

fsubsets amlp er auc
1 36 0.09 2.00 0.99
2 36,28 0.07 4.00 1.00
3 36,28,30 0.04 2.00 1.00
4 36,28,30,32 0.04 1.00 1.00
5 36,28,30,32,29 0.04 2.00 1.00
6 36,28,30,32,29,37 0.04 2.00 1.00
7 36,28,30,32,29,37,34 0.04 3.00 1.00
8 36,28,30,32,29,37,34,227 0.03 1.00 1.00
9 36,28,30,32,29,37,34,227,115 0.03 1.00 1.00

10 36,28,30,32,29,37,34,227,115,47 0.03 1.00 1.00

Table F.4: Random Forest: feature subset and corresponding predictive performance
based on childhood acute leukemia data in Section 5.2.

fsubsets amlp er auc
1 1 0.21 11.00 0.96
2 1,5794 0.20 12.00 0.96
3 1,5794,1671 0.14 8.00 0.98
4 1,5794,1671,4099 0.15 10.00 0.98
5 1,5794,1671,4099,792 0.13 8.00 0.97
6 1,5794,1671,4099,792,115 0.06 3.00 1.00
7 1,5794,1671,4099,792,115,1184 0.06 3.00 1.00
8 1,5794,1671,4099,792,115,1184,2492 0.06 3.00 1.00
9 1,5794,1671,4099,792,115,1184,2492,5437 0.05 3.00 1.00

10 1,5794,1671,4099,792,115,1184,2492,5437,555 0.03 1.00 1.00

Table F.5: Bayesglm: feature subset and corresponding predictive performance based
on childhood acute leukemia data in Section 5.2.
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fsubsets amlp er auc
1 1 0.21 11.00 0.96
2 1,2 0.18 8.00 0.97
3 1,2,3 0.14 7.00 0.98
4 1,2,3,4 0.14 8.00 0.98
5 1,2,3,4,5 0.14 9.00 0.98
6 1,2,3,4,5,6 0.10 6.00 0.99
7 1,2,3,4,5,6,7 0.10 6.00 0.99
8 1,2,3,4,5,6,7,8 0.10 6.00 0.99
9 1,2,3,4,5,6,7,8,9 0.08 4.00 0.99

10 1,2,3,4,5,6,7,8,9,10 0.07 4.00 1.00

Table F.6: t-test ranking: feature subset and corresponding predictive performance
based on childhood acute leukemia data in Section 5.2.
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Figure F.1: Scatterplot of values of feature 32 and feature 30 based on childhood
acute leukemia data in Section 5.2.
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(b) Scatterplot of feature 37 between
groups

Figure F.2: Scatterplot of values of feature 36 and feature 37 based on childhood
acute leukemia data in Section 5.2.
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Figure F.3: Scatterplot of values of feature 31 and feature 28 based on childhood
acute leukemia data in Section 5.2.
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(a) Scatterplot of feature 35 and fea-
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Figure F.4: Scatterplot of feature group (35,30) and feature group (32,35) based on
childhood acute leukemia data in Section 5.2.
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(a) Scatterplot of feature 32 and fea-
ture 36 between groups
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Figure F.5: Scatterplot of feature group (32,36) and feature group (30,31) based on
childhood acute leukemia data in Section 5.2.
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Appendix G

Supplementary Tables and Figures for Colon

Cancer Status Data

fsubsets amlp er auc
1 70 0.33 12.00 0.90
2 70,31 0.05 2.00 1.00
3 70,31,58 0.03 0.00 1.00
4 70,31,58,665 0.03 0.00 1.00
5 70,31,58,665,844 0.02 0.00 1.00
6 70,31,58,665,844,14 0.02 0.00 1.00
7 70,31,58,665,844,14,8 0.02 0.00 1.00
8 70,31,58,665,844,14,8,5 0.01 0.00 1.00
9 70,31,58,665,844,14,8,5,21 0.01 0.00 1.00

10 70,31,58,665,844,14,8,5,21,24 0.01 0.00 1.00

Table G.1: LASSO: feature subset and predictive performance based on colon cancer
status data in Section 5.3.

fsubsets amlp er auc
1 58 0.32 11.00 0.94
2 58,665 0.27 9.00 0.95
3 58,665,110 0.27 9.00 0.96
4 58,665,110,68 0.30 10.00 0.95
5 58,665,110,68,374 0.32 9.00 0.95
6 58,665,110,68,374,73 0.25 6.00 0.95
7 58,665,110,68,374,73,893 0.27 9.00 0.95
8 58,665,110,68,374,73,893,31 0.24 8.00 0.96
9 58,665,110,68,374,73,893,31,1656 0.23 8.00 0.96

10 58,665,110,68,374,73,893,31,1656,1636 0.22 7.00 0.97

Table G.2: Group LASSO: feature subset and predictive performance based on colon
cancer status data in Section 5.3.
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fsubsets amlp er auc
1 58 0.32 11.00 0.94
2 58,1 0.21 8.00 0.97
3 58,1,31 0.18 6.00 0.98
4 58,1,31,665 0.17 6.00 0.98
5 58,1,31,665,5 0.07 3.00 1.00
6 58,1,31,665,5,1589 0.06 3.00 1.00
7 58,1,31,665,5,1589,3 0.07 2.00 0.99
8 58,1,31,665,5,1589,3,837 0.08 3.00 0.99
9 58,1,31,665,5,1589,3,837,68 0.12 3.00 0.99

10 58,1,31,665,5,1589,3,837,68,652 0.11 3.00 0.99

Table G.3: Supervised Group LASSO: feature subset and predictive performance
based on colon cancer status data in Section 5.3.

fsubsets amlp er auc
1 4 0.13 5.00 0.99
2 4,54 0.11 4.00 0.99
3 4,54,67 0.09 2.00 0.99
4 4,54,67,31 0.06 2.00 1.00
5 4,54,67,31,100 0.06 2.00 1.00
6 4,54,67,31,100,344 0.05 2.00 1.00
7 4,54,67,31,100,344,61 0.03 0.00 1.00
8 4,54,67,31,100,344,61,35 0.03 0.00 1.00
9 4,54,67,31,100,344,61,35,20 0.04 0.00 1.00

10 4,54,67,31,100,344,61,35,20,188 0.04 0.00 1.00

Table G.4: Random Forest: feature subset and predictive performance based on colon
cancer status data in Section 5.3.

fsubsets amlp er auc
1 1 0.25 11.00 0.95
2 1,3743 0.26 10.00 0.95
3 1,3743,844 0.22 10.00 0.97
4 1,3743,844,2666 0.21 8.00 0.96
5 1,3743,844,2666,1636 0.10 3.00 0.99
6 1,3743,844,2666,1636,3899 0.05 1.00 1.00
7 1,3743,844,2666,1636,3899,2810 0.04 1.00 1.00
8 1,3743,844,2666,1636,3899,2810,925 0.04 1.00 1.00
9 1,3743,844,2666,1636,3899,2810,925,3831 0.04 1.00 1.00

10 1,3743,844,2666,1636,3899,2810,925,3831,2499 0.03 1.00 1.00

Table G.5: Bayesglm: feature subset and predictive performance based on colon
cancer status data in Section 5.3.
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fsubsets amlp er auc
1 1 0.25 11.00 0.95
2 1,2 0.14 4.00 0.98
3 1,2,3 0.15 5.00 0.98
4 1,2,3,4 0.10 4.00 0.99
5 1,2,3,4,5 0.11 2.00 0.99
6 1,2,3,4,5,6 0.12 3.00 0.99
7 1,2,3,4,5,6,7 0.11 3.00 0.99
8 1,2,3,4,5,6,7,8 0.10 2.00 0.99
9 1,2,3,4,5,6,7,8,9 0.10 3.00 0.99

10 1,2,3,4,5,6,7,8,9,10 0.10 3.00 0.99

Table G.6: t-test ranking: feature subset and predictive performance based on colon
cancer status data in Section 5.3.
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Figure G.1: Scatterplot of values of feature 2 and feature 4 based on colon cancer
status data in Section 5.3.
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(a) Scatterplot of feature 14 and fea-
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Figure G.2: Scatterplot of feature group (14,26) and feature group (24,45) based on
colon cancer status data in Section 5.3.
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Figure G.3: Scatterplot of feature group (4,24) and feature group (18,21) based on
colon cancer status data in Section 5.3.
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Figure G.4: Scatterplot of feature group (2,26) and feature group (26,31) based on
colon cancer status data in Section 5.3.
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Figure G.5: Scatterplot of feature group (2,21) and feature group (31,70) based on
colon cancer status data in Section 5.3.
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