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ABSTRACT 
 

Development of a novel aqueous hydrogen sulfide (H2S) detector is presented in this thesis. Nano 

copper (II) oxide (CuO) was selected as the detector material. Nano-CuO was synthesized by 

thermal oxidation and wet synthesis. CuS is produced from the reaction of CuO with H2S and 

Raman spectroscopy was used for its detection.  

 

The research presented in this thesis aimed at optimizing the parameters to produce coupons of 

CuO that can be used to detect H2S (aq) over the concentration range of 3.81 x10-3 ppm – 3.91 

x10-9 ppm (0.1 M – 0.1 µM) by using Raman spectroscopy. Four specific objectives were devised 

to (1) determine the optimal synthetic technique for CuO, (2) determine which synthesis provides 

optimal CuO/CuS Raman spectra, (3) determine the linear range and detection limit of H2S by 

measuring the Raman Spectrum of CuS and, (4) to determine the rate of accumulation of CuS in 

human serum. 

 

The nano-CuO material with the optimal CuO/CuS Raman bands of interest was synthesized by 

thermal oxidation, where copper mesh (149 µm) was heated at 400 °C in air for 2 hours. The limit 

of detection of H2S (aq) by the optimal CuO is 1.22 x10-8 ppm (3.59 x10-7 M) with a linear range 

extending from 7.53 x10-3 – 1.22 x10-8 ppm (6.56 x10-1 – 3.57 x10-7 M).  

 

This study has provided new knowledge through (1) the development of a novel methodology to 

measure H2S (aq) concentration in serum by using CuO and Raman spectroscopy, (2) the discovery 

that CuO is specific to H2S and does not interact with proteins in human serum or other sulfur 

compounds at clinical concentrations, (3) determination that H2S (aq) detection is linear over the 

7.53 x10-3 – 1.22 x10-8 ppm range with no interference of the Raman band from other biomaterials, 

and (4) the rate of accumulation is 0.1441 R/s.  
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CHAPTER 1: INTRODUCTION 

 
1.1. Background and Motivation 

Since the discovery of H2S as a neurotransmitter in the late 1980s1–3, every investigation of its clinical 

importance has revealed an increasingly important role of H2S in proper physiological functioning. H2S 

is a biological signalling molecule which is involved in many seemingly unrelated biological processes, 

for example neurotransmission and muscle relaxation. H2S is the third most prominent gasotransmitter, 

following nitric oxide (NO) and carbon monoxide (CO). Therefore, it is not surprising that H2S is involved 

in a number of diseases including diabetes, cardiovascular diseases, hypertension, erectile dysfunction, 

Alzheimer's disease, Parkinson's Disease4–14.  

  

The detection of early onset of disease would have tremendous impact in healthcare and the entire 

healthcare field. Many secondary and preventable diseases manifest themselves in already sick patients, 

resulting in early deaths, decreased quality of life, increased burden on our already over-worked health 

professionals, and the added cost of medications. Thus, a H2S detector can greatly benefit the health 

system. However, there is a severe lack of medical instruments capable of testing for this important 

molecule.  

  

High quality spectral detectors, as required in the health field, require a material to bind preferentially to 

the disease marker (in this case H2S) and upon binding have an easily detectable change in spectral 

response. The criteria for this material should be: 1) strong and selective binding, 2) easily detectable 

change in spectrum, 3) require small amounts of the disease marker, and 4) preferably, all materials should 

be non-toxic. Further practical considerations include: A) affordability, B) ease of production, C) size of 

device and D) small quantities of material required for measurement.  

 

The greatest difficulty arises from the selection of material and type of spectrometer. Raman Spectroscopy 

measures vibrational spectra through an inelastic scattering process. Raman spectroscopy is an excellent 

and widely used tool for molecular fingerprinting. Additionally, Raman spectra can be measured without 
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significant interference from aqueous media, thus making it an excellent probe of biomaterials. Raman 

spectrometers are now available commercially as hand-held devices, for example by Horiba Scientific15, 

making them practical for individual care and monitoring.  

 

The last requirement for a detector is having a material with strong, preferential binding and an easily 

detectable spectral change. Nano-CuO reacts with H2S to produce CuS, which forms Cu-S-S-Cu through 

a disulfide bridge. A new and clearly defined Raman band unequivocally fingerprints the Cu-S-S-Cu. 

Thus, nano-CuO is a promising material for H2S detection.  

 

1.2. Previous Work on H2S Detection Methods 

 

Until the 2000s, the main methods of H2S detection required large samples of tissue and were not 

convenient for clinical applications16,17. A novel technique was developed for the detection of H2S was 

utilizing CNTs and confocal laser scanning microscopy or Raman spectroscopy to determine the quantity 

of H2S in serum16,17. The underlying principle is similar to that of activated carbon used in scrubbers of 

chimney stacks where H2S dissociates into HS- and reacts with dissolved oxygen in the presence of 

activated carbon (heated/processed carbon in order to increase its reactivity). Upon reacting, hydroxide 

and sulfide ions are produced, the sulphide binds irreversibly with the activated carbon. The change in 

emission between the sulphur bound and non-sulphur bound CNT can be measured. One of the drawbacks 

of this method is that the defect sites of the CNT preferentially binds the sulfide ion and since defects on 

CNT are not well controlled, there is significant variability in the measurement17. This process was further 

developed, but the quality control of CNT posed a problem with reproducibility of results17. Another major 

drawback of this technique is that H2S binds both reversibly and irreversibly with CNT and, it is likely 

that the reversible association of the H2S within the pores of the CNT produced a significant percentage 

of the signal. The dominant mechanism for H2S (aq) adsorption is likely through the filling of the CNT 

pores and vacancies17,18. As with any non-equilibrium reversible process, a steady state will not be 

reached, so the intensity of the signal of interest will change with time at physiological pH (pH of 7.4) and 

room temperature (25 °C), there is approximately 31% H2S, 69% HS- and approximately 0% S2- (~2.5 

x10-12 times lower than [HS-])18,19, whereas at physiological pH and temperature (37 °C) there is a 

difference in the acid dissociation constant (pKa) values. Experimentally, it has been found that the 

percentage of H2S in trout is ~18.5%. As such it must also be remembered that due to the temperature 
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difference, the pKa1 and pKa2 values for the dissociation of H2S into HS- and subsequently into S2- change 

as well19. Interestingly there is a debate over the value of pKa2; the two proposed values of pKa2 are 19 

and 13.420. It has been claimed that lower pKa2 value is based heavily on theoretical calculations from 

thermodynamic equations whereas pKa2 = 19 was determined using experimental methods21.  For the 

purpose of this research the value of 19 is selected giving pKa values of pKa1 = 7.05 & pKa2 = 1922; at 

37 °C: pKa1 = 6.75519 and pKa2 is unknown. Regardless of the exact value of the pKa2, it is known that 

the concentration of S2- in physiological conditions is negligible6,23.  Both the Raman and the confocal 

laser microscopy are very limited in their ability to discern even 1 µM samples (the limit is 10 µM) and 

as such these methods are not sensitive enough to be useful17.  

 

Moreover, with a fluorescent technique, there is always a residual baseline. It is known that activated 

carbon and CNT can bind to many constituents of sera, so the technique may not be a reliable source of 

detection for H2S. It has been found that CNTs bind to Human Serum Albumin (HSA)24 (the most abundant 

protein in the human body25), hemoglobin26, DNA27, antigens28 , myoglobin29, streptavidin30, Bovine 

Serum Albumin (BSA)31, apolipoproteins32 and various other proteins33 and cannot be used to specifically 

determine the H2S concentration levels. Taking hemoglobin as an example, let us imagine the case of two 

patients; one patient is physiologically normal and the other has an undiagnosed case of hemolytic anemia 

(a disease where the body destroys blood cells and thus the hemoglobin count is low in these individuals34). 

In a normal patient, the hemoglobin competitively binds to CNT alongside H2S and gives a particular 

intensity of spectrum. The other patient has a tremendously larger H2S spectral signature due to the lack 

of hemoglobin inhibition. Upon receiving this result of the large H2S peak intensity, the medical examiner 

would have to conclude that either 1) there is an over production of H2S in the body and as such perhaps 

the body is responding to cardiac arrest or some other problem; 2) the patient is suffering from low blood 

pressure; 3) the patient is unable to break down H2S or 4) there is a lower quantity of one of the many 

competitive binders of H2S (in this case hemoglobin). In order to interpret the result of the measurement, 

2-3 more tests must be conducted, assuming that the patient only has one disease at a time which is not 

always the case. Although hemolytic anemia was given as an example, the same applies to each of the 

other competitive binding proteins mentioned and their corresponding diseases, making this method not 

practical. As such, based on the current technology, other mechanisms may be more reliable and useful. 

 

By using nano-CuO only characteristic binding of H2S to the CuO will be monitored, thus overcoming 
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the problems of CNT binding. The benefits of using nano-CuO is the reproducibility of the CuO samples, 

the ability to manufacture uniform CuO coupons, intense appearance of a spectral band at 472 cm-1 

forming the Cu-S-S-Cu bond and the (expected) specificity of CuO for H2S or HS-. The Raman band at 

472 cm-1 can be red or blue shifted due to size effects. 

 

1.3. Research and Objectives 

 

The aim of this research is to develop a coupon for the detection of H2S over the concentration range of 

0.1 µM – 0.1 M, which corresponds to 3.81 x10-3 to 3.9 x10-9 ppm of H2S. In order to do this, four 

specific objectives must be met which are: (1) optimization of the synthesis of the CuO, (2) 

determination of an optimal CuO/CuS synthesis technique, (3) determine the linear detection range as 

well as the limit of detection of H2S using CuO, and (4) determine the rate of accumulation of CuS in 

serum solution.  

 

1.4. Thesis Organization 

 

The purpose of Chapter 2 is of two-fold; the first purpose is to provide background information on the two 

main compounds of interest (H2S and CuO) and the second purpose is to provide a justification for the 

objectives mentioned in section 1.3 as well as the techniques used throughout this thesis. 

 

Chapter 3 is focused on the materials and methods of the samples prepared and the experiments performed. 

The results and discussions are reported in Chapter 4. The results for the selection of the optimal synthetic 

technique, the 4-hour experiment, determination of the rate of accumulation and the H2S specificity tests. 

Lastly, Chapter 5 describes the conclusion where the successes and limitations of the methods employed 

in this thesis are highlighted. Future recommendations are also made.  
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CHAPTER 2: LITERATURE OVERVIEW 
 

A literature review is presented in the following section. Section 2.1 discusses hydrogen sulfide, and its 

role in the biological systems and its role in biological systems and section 2.2 provides a brief overview 

on the synthesis of nano-CuO materials and 2.3 provides a brief description of Raman spectroscopy. 

 

2.1. H2S in Biological Systems 

 

Hydrogen sulfide is a deadly yet necessary compound. Since the initial studies in the 1990s revealed that 

endogenous hydrogen sulfide (H2S) is an important neurotransmitter and a vasodilator involved in the 

control of blood pressure, the discoveries have yet to cease6.  The importance and relevance of H2S to 

physiological systems have been predicted since the 1940s.  Modern science recognizes the importance 

of H2S as a signalling molecule with many diverse functions ranging from angiogenesis to the healing of 

wounds35–38. In mammals H2S is derived mainly from three enzymes: cystathionine γ-lyase (CSE), 

cystathionine-β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST)35. These three 

enzymes are expressed differentially in various tissues, implying that there are many functions of H2S in 

the nervous, circulatory, cardiovascular, respiratory, musculoskeletal and urinary systems in addition to 

anti-inflammatory properties and prevention of mitochondrial damage12. Mutations or otherwise abnormal 

regulation of H2S have been shown to result in diabetes, cardiovascular diseases, hypertension, renal and 

hepatic malfunction, antioxidant and anti-inflammatory properties, erectile dysfunction, as well as 

Alzheimer's Disease, and Parkinson's Disease4–14. At the cellular level, H2S has been found to interact 

with cellular targets such as heme proteins, nitric oxide, and cysteine residuces12-14. As further research 

expounds more light on to the importance of H2S on various biological functions, a demand for medical 

devices to measure H2S becomes evident. 

 

In summary, H2S serves three main physiological functions in the body: as a signalling molecule9,12, as an 
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antioxidant12, and as a muscle relaxant/vasodilant39. Through these functions, H2S has an intimate 

connection with many cellular pathways, including the cardiovascular and renal systems, liver, pancreas, 

gastrointestinal system, urinary system and the reproductive system10.  

 

2.1.1. The Role of H2S in Diabetes 

 

H2S is intricately involved in blood glucose regulation. It has been found that insulin inhibits CSE activity, 

which in turn down regulates H2S production40,41. H2S has been found to upregulate the enzyme PEPCK, 

while downregulating AKT-P and AMPK-P. PEPCK, is an upregulator of glucose production. AKT-P, 

AKT, and AMPK-P are enzymes involved in the inhibition of gluconeogenesis. The AMPK-P pathway 

involves a key enzyme, glucokinase, which is a primary enzyme involved in glucose consumption and 

storage in the liver. Increases in H2S lead to high glucose production and the pancreas begins to over-

produce insulin in retaliation. An excessive amount of insulin results in insulin insensitivity (insulin 

resistance), a state where insulin no longer causes a consumption of the glucose, thus leaving elevated 

levels of blood glucose. Thus, H2S is intimately involved with type-2 diabetes and may be used for 

screening for early detection17,18. 

 

2.1.2. The Role of H2S in Cardiovascular Diseases 

  

The involvement of H2S in cardiovascular diseases, is tied to its role in muscle relaxation. H2S relaxes 

smooth muscle, such as the heart, as a result of activating potassium ATP-channels42. There are three main 

mechanisms through which sulfide poisoning leads to cardiac arrest: 1) inhibiting L-type calcium channels 

on cardiomyocytes (thus preventing muscle contraction), 2) reducing available ATP by reducing 

mitochondrial cytochrome C activity (through reducing aerobic respiration and through the promotion of 

gluconeogenesis which requires energy) and 3) an upregulation of the neurotransmitter NO, which is 

known to have depressive effects in muscles7. However, it is also well known that with the correct 

concentrations, H2S has healing properties for heart attack patients; H2S induces angiogenesis and 

promotes blood-vessel growth43. Diallyl trisulphide, an organosulfur compound commonly found in garlic 

which steadily releases H2S, has been utilized in H2S-based treatment to reduce damage due to heart 

attacks20. Thus, there is a delicate balance between too much and too little H2S for cardiovascular patients.   
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Due to its muscle relaxing properties, an increase in endogenous H2S can lead to a cardiac arrest7. It is 

difficult to diagnose cardiac arrest as it occurs almost instantly after symptoms appear and thus the need 

for early detection is critical. On the other hand, a heart attack, or myocardial infarction, is the death of 

heart muscle tissue. It has been found that an increase in endogenous H2S is beneficial to heart attack 

patients, but dangerous to patients of cardiac arrest43. Interestingly, after a heart attack, natural mechanisms 

of the body recruit H2S towards the heart in order to minimize damage, thus the H2S levels after a heart 

attack are higher than before the heart attack44. However, a heart attack may lead to cardiac arrest, so if 

H2S is used as a therapeutic then the treatment dosage of H2S must be carefully administered.  

 

This is further complicated by the fact that heart attacks can be “mimicked” by several other diseases, 

which may result in a misdiagnosis and therefore risk either over-looking the disease (under-diagnosis) or 

unnecessary expensive tests (over-diagnosis) of the known myocardial infarction biomarkers such as 

lactate dehydrogenate (LDH) and troponin. Hypertension is among diseases that may mimic a heart attack. 

 

LDH and troponin are dependable biomarkers (among others) of heart attacks because there is a specific 

version (differential expression) of these biomarkers which, under ordinary conditions, is only present 

within the heart and have short half-lives. Following a heart attack, damaged tissue “leaks” these 

differential proteins into the blood for a short period of time and by analyzing the concentration of these 

biomarkers medical professionals can derive the details of a heart attack, including the approximate time 

of the incident and the extent of damage45. However, an indirect method of determining a heart attack can 

be significantly cheaper, require less laboratory resources and maybe more feasible for consistent, at-home 

patient monitoring as well as provide an earlier risk assessment of possible cardiac related diseases. H2S 

maybe a useful indicator. It has found that increased levels of urinary sulfur metabolites (thus bodily 

sulfides) are correlated to more favourable cardiovascular risk profiles46. Furthermore, H2S inhibits 

calcification and osteoblastic differentiation, both of which are responsible for vascular calcification47. 

Since vascular calcification is a strong indicator of many diseases including myocardial infarction and is 

known to be a strong indicator of future cardiac events in patients with chronic kidney disease and 

diabetes, H2S could possibly be a method to establish risk profiles of future cardiac events in order to 

facilitate early detection within diabetics and patients of chronic kidney disease47–49. 

 

As mentioned earlier, hypertension may sometimes be misdiagnosed for heart disease. Hypertension, or 
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high blood pressure, occurs when the blood flows through the arteries at a higher pressure than normal. 

The symptoms of hypertension are: shortness of breath, chest pain, tiredness, a racing heart beat among 

others. The most common symptom for a heart attack is also chest pain or discomfort in the chest, but 

patients also experience light- headedness or dizziness, tiredness and breathing problems among others. 

With so many overlapping symptoms, some misdiagnoses are to be expected. H2S is responsible for 

vasodilation of the blood vessels through the activation of potassium-gated ATP channels, which decreases 

blood pressure13,38,50–52. A lack of H2S then causes an increase in blood pressure, or hypertension38,50. 

Thus, a distinction between a heart attack and hypertension can be made with regard to levels of H2S 

present. Beyond the circulatory system, H2S also causes vasodilation in reproductive systems of men and 

have many implications with erectile dysfunction6. Animal model treatments of H2S have been shown to 

improve erectile dysfunction6,14. 

 

To further complicate the situation, hypertension itself is commonly misdiagnosed. The “white collar 

effect” describes the phenomenon where the blood pressure of a patient is higher when in a medical setting 

than in a relaxed setting, such as home. Furthermore, estimates predict that approximately 10 – 20% of 

the population are likely to have undetected hypertension, also known as “masked hypertension” 53. It is 

evident from the above that a novel technique to diagnose and monitor hypertension detection must be 

developed. 

 

2.1.3. The Role of H2S in Renal Disorders 

 

Beyond the cardiovascular and circulatory systems, H2S is also greatly involved in the renal pathway10. 

H2S concentrations has been found to be correlated to renal blood flow, glomerular filtration rate, urinary 

excretion, natriuresis and kaliuresis54. Moreover, H2S is an upregulator of many antioxidants including 

glutathione, catalyse, Nrf-2, superoxide dismutase as well as a downregulator of reactive oxygen species’ 

generators including NADPH-oxidase10,54. Unregulated H2S is thought to be a contributing factor of renal 

disease and also a potential therapeutic target for its cure10.  

 

2.1.4. The Role of H2S in Neurological Disorders 

 

Regarding mental disorders, H2S has a history with neurological disorders. Interestingly, while CSE is the 
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primary source of H2S in many systems such as the cardiovascular and respiratory systems, CBS is the 

primary enzyme for H2S production in the brain12. It has been found that H2S helps regulate the N-methyl-

D-aspartate receptors in the brain, which are responsible for controlling synaptic activity and are heavily 

involved with memory control12,55. The intricate involvement of H2S with memory has made it a prime 

target for the treatment of Alzheimer's Disease (the most prominent form of dementia with the most 

common symptoms being loss of short-term memory, mood changes, and disorientation). Moreover, CBE 

activators such as S-adenosylmethionine, are negatively correlated with patients of Alzheimer's 

disease12,56. Furthermore, concentration of Homocysteine (Hcy), a neurotoxin produced in the brain, is  

increased since CBE is involved in its degradation pathway12. It has also been found that H2S donors such 

as NaHS detoxify Hcy through its antioxidant properties as well as reduce the accumulation of other 

toxins, such as hypochlorous acid, in the temporal and frontal cortex (associated with attention, short-term 

memory and memory associated tasks)6,12,56. It has been demonstrated that H2S treatments impair 

Alzheimer's Disease and increase memory and learning in rat models44,55,57. It has been found that there 

was a deficiency in H2S levels in Alzheimer's patients, and in vitro studies have shown promise of H2S as 

a possible therapy for the disease12. As such, H2S may also be useful as a diagnostic test for Alzheimer's 

disease as well as a possible therapy. 

 

H2S may also have potential benefits for Parkinson's disease6. Parkinson's disease is a neural disorder, 

mainly effecting motor-control but also effect mood, behaviour and thought, caused by a dopamine 

deficiency usually due to the death of dopamine-producing cells58. Medication for Parkinson's disease 

largely involve administering the precursor of dopamine, L-Dihydroxyphenolalanine (L-DOPA). L-DOPA 

is processed into Dopamine by specialized neural cells called nigrostriatal cells. However, as the disease 

progresses, the inflammatory response of microglial cells cause permanent damage to the neural cells 

which cause damage to the nigrostrial neurons, preventing them from being able to process L-DOPA into 

Dopamine. Moreover, the accumulation of L-DOPA is thought to create oxidative stress onto the cellular 

environment59. As such L-DOPA derivatives that would slowly release H2S were developed. H2S, being a 

potent anti-inflammatory, was able to reduce microglial cells and their toxic effects, while its property as 

an antioxidant reduced the oxidative stress of the excess L-DOPA. The overall result of the production of 

H2S is retarding neurodegeneration and thus reducing the symptoms of Parkinson's disease6,58–60.  
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Table 2.1: A summary of the change in H2S levels of a patient based on a number of 

diseases. Downward arrows represent low levels of H2S whereas upward arrows indicate 

increased levels of H2S. 

 

 Disease H2S (level) Description 

1. Hypertension  A lack of H2S causes high blood pressure. 

2. Cardiac Arrest  H2S inhibits ATP generation, thus causing a heat to 

stop. 

3. Myocardial 

Infarction 

 H2S increases healing process after an infarction. 

4. Vascular 

Calcification 

 H2S inhibits vascular calcification, which is an 

indicator of future cardiovascular issues for people with 

chronic kidney disease. 

5. Type-2 Diabetes  Insulin inhibits CSE, thus down regulating H2S 

production. 

6. Alzheimer’s 

Disease 

 A lack of H2S causes an increase of toxins in neural 

cells. 

7. Parkinson’s 

Disease 

 H2S reduces oxidative stress, thus slowing disease 

progression. 

8. Erectile 

Dysfunction 

 Lack of H2S reduces blood flow to the reproductive 

organs. 

 

 

2.1.5. H2S and its Therapeutic Applications 

 

Table 2.1 summarizes the change in the H2S levels in a patient with the corresponding disease. However, 

a question may arise as to determine which disease caused the H2S imbalance. The answer is to use the 

method of elimination to deduce the disease. For example, when a patient who has not had a heart attack 

(myocardial infarction) has high levels of H2S, it can be known that the patient is at risk of cardiac arrest 

or a heart attack. Another example is the case of a patient without any neurological disorders who is having 

trouble breathing and has an irregular heart beat and low H2S levels. This patient is having hypertension. 

Many other examples can be provided.  

It may also be asked that in the case of a patient with neurological disorders, how can H2S be a viable 

detector for their condition? The answer is that a patient with a particular disease will have the symptoms 

of that disease. For example, if a healthcare professional measures the H2S levels of an Alzheimer’s 

patient, then the levels of H2S reflect the condition of Alzheimer’s rather than a disease the patient does 



 

11 

 

not have. This is similar to the case of the blood glucose detectors. Apart from diabetes, there are more 

than 18 diseases associated with blood sugar (high and low blood sugar). However, the blood sugar levels 

of a diabetic specifically reflect their diabetes (i.e. if should they take insulin or not).  

    

Kimura, H., and SpringerLink have published a book, Hydrogen Sulfide and its Therapeutic Applications, 

outlining the different potential uses of H2S as a therapeutic medicine52. However, as there is a fine balance 

between lack of H2S and intoxication due to H2S, proper measuring tools are necessary if H2S is ever to 

become a feasible therapeutic agent. The physiological H2S level in blood is under serious debate in the 

literature. The range of possibilities is between 0.4 µM – 1 mM, a variance of four orders of 

magnitude4,61,62. Some techniques have reported 100-10 µM and claim that levels up to 300 µM do not 

effect cell viability61. However other research has approximated that the physiological concentration to be 

up to 1 mM4 and still others have suggested that baseline levels have been found to be on the order of 0.4 

- 0.9 µM62. In total the variance in the literature regarding the concentration of free sulfide in the blood 

differs greatly and is likely a result of the variety of techniques used for the measurements. To the extent 

of my knowledge all methods require a series of reactions (usually acidic or reducing) to first isolate the 

free sulfide and subsequently measure this sulfide level. However, before the present work, a simple 1-

step measuring method has yet to be proposed. It is hypothesized that the proposed method will find the 

H2S levels on the order of 0.4 - 0.9 µM, as measured using a monobromodimane measurement38. The 

reason for this hypothesis is that the monobromobimane method is the closest to the presented method 

and it’s likely the correct concentration of H2S is in the 0.1 µM range63. 
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Figure 2.1.  A summary of the effects of H2S in various diseases. The yellow oval represents 

Diabetes, the blue rectangle represents neurological diseases, the pale-yellow triangle 

represents cardiovascular complications, the green hexagon represents vascular 

calcification and the colorless, shapeless section represents circulatory and muscular 

system effects. Underlined words are major physiological diseases or benefits, while non-

underlined words are minor physiological effects. Straight arrows represent activation or 

promotion, truncated lines represent inhibition, straight bubble arrows represent 

transportation of the first compound to the second and curved bubble arrows represent a 

transformation of the original compound to the end compound. Blue circles represent 

enzymes, while green circles represent cells and black circles (or hexagons) represent 

biomolecules.  

 

2.2. Nano-CuO Overview 

CuO has been found to be a strong and reliable sensor for gaseous H2S. This section provides a brief 
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overview of CuO with the intent to provide background information. This overview presents a summary 

of the plethora of synthetic techniques as well as the rationales for the selection of CuO as the sensor 

material and the synthetic methods utilized in this thesis. 

 

Nano-particles of copper (II) oxide (nano-CuO) has been developed and worked on since the 1980s. The 

1980s represents the dawn of nano-CuO research, putting out less than 50 papers in 2 decades. A 

significant increase in the number of publications has been observed from the year 2000 onwards. In 1986 

copper removal from common copper nitrate solutions was studied64. In doing so, the investigators 

reported the production of very fine black powder – copper oxide. In 1991, Metallo Organic Chemical 

Vapor Deposition was used to study the superconductivity of CuO nanoparticles and their Y-Ba-Cu-O 

derivative films65. From 1991 to 1994 there was an increase in the interest in the study of CuO and as a 

result a significant amount of work has been done on the synthesis of nano-CuO and its various 

derivatives66–71. Since then the interest in the subject has only increased with time. This brief review will 

show the humble beginnings of nano-CuO research as well its modern day counterpart. It will begin with 

a description of the physical – chemical properties of nano-CuO. Afterwards, a brief discussion on the 

methods of synthesis of nano-CuO is presented and finally, a number of the applications of nano-CuO are 

presented, with an emphasis on biosensors. 

 

2.2.1. Basic Chemical-Physical Properties of CuO: 

  

First solved in 1933, the crystal structure of CuO has an unusual symmetry. CuO has a monoclinic crystal 

structure with 𝑐2ℎ
6   (C2/c) group symmetry giving 4 atoms per unit cell of Cu and O, but only 2 CuO atoms 

in the primitive cell. The Cu2+ ions occupy the 4c locations on the unit cell and the O2- are in the 4e 

locations, as shown in Fig 2.2. The parameters of the CuO unit cells have been calculated and are 

summarized in Table 2.2. 72,73.   
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Figure 2.2. The structure of CuO. The large red balls represent oxygen and smaller orange 

balls represent copper72. 

. 

 

Table 2.2: Crystallographic properties of the bulk CuO Unit Cell at 25 °C72,73 

Quantity Value 

Space group C2/c 

Unit cell a = 4.6837 Å 

b = 3.4226 Å 

c = 5.1288 Å 

α, γ = 90° 

β = 99.54° 

Volume 81.08 Å 3 

Density 6.515 g/cm3 

Atomic Distances Cu – O 

Cu – O   

O – O  

Cu – Cu  

1.96 Å 

2.62 Å 

2.90 Å 

 

It has been established that there are no phase transitions between the temperature range of 673.15 K – 

973.15 K and 1300 K – 3000 K as well as pressures of up to 700 kbar74–76. However, the lattice parameters 

of the bulk CuO monocrystalline structure increase as a function of temperature. The data is summarized 

in Figure 2.3.  
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Figure 2.3. Variation of the lattice parameters a, b and c in units of Angstrom (Å) with 

temperature (K)77.  

 

2.2.2. IR and Raman Spectra of CuO 

 

As mentioned earlier, the symmetry of the CuO molecule is 𝐶2ℎ
6  which gives a total of 12 phonons. There 

are three Raman active modes (1Ag + 2Bg), 6 infrared active (3Au + 3Bu) and 3 acoustic modes (Au + 2Bu). 

The Raman spectra shows bands at 288 cm-1 (Ag), 330 cm-1 (Bg) and 621 cm-1 (Bg). The largest peak 

appears at 288 cm-1, while the 330 cm-1 is the smallest peak77–79. It has been found that a smaller grain 

size leads to red shifting due to size-effect interferences80–83.  Shifted CuO peaks located at 277.5 cm−1, 

329.9 cm−1 and 610.8 cm−1 to the Ag, and 2Bg phonons respectively have also been reported75.  

 

2.2.3. The Electromagnetic Properties of CuO 

 

Electric: 

It has long been known that CuO is a p-type semiconductor with a narrow electronic bandgap of 1.0 - 1.4 

eV72,77,84–86. Furthermore it was discovered that CuO is antiferromagnetic below 220 K and CuO 

deficiencies arise from Cu vacancies72. Interestingly, evidence suggests that the reason CuO is a p-type 

semiconductor, a semiconductor containing electron holes, is also due to this vacancy of copper atoms in 

the CuO material72,87.  
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The electronic band gap of CuO depends on the crystalline size and the morphology of the structure88. 

Energies can be 1.425, 1.429, 1.447 and 1.371 eV for flower shaped, boat shaped, plate-shaped and 

ellipsoid shaped CuO crystal structures respectively88. Furthermore, a bandgap of 4.13 eV for 10 nm 

quantum particles and 3.02 eV for nanoplatelets have even reported as well as 3.48 eV for nanowires and 

3.02 eV for nanoplatelets81,83,89. 

 

Furthermore, seven main surface structures of CuO have been produced, each defined by growth along a 

different plane. Comparisons of the various growth directions of (111), (1̅11), (110), (011), (101), (010) 

as well as (100), have concluded that CuO growth along the (111) and (1̅11) planes were the most stable 

surface structures90. The stability of these structures arises from the electronic configuration of the Cu and 

O atoms; in the (111) and (1̅11) CuO surfaces, the electrostatic repulsion is minimized. In contrast, it has 

been found that the (100) surface has the lowest stability of the seven surface structures that were 

investigated90. 

 

Semi-conducting: 

As mentioned above, CuO is a p-type semiconductor due to vacancies of Cu atoms. A semiconductor is a 

material that has conductivity between insulators and conductors, and are usually associated with 

impurities/defects. The defects either result in an increase in the number of electrons, called n-type 

semiconductors, or an increase the number of holes, called p-type semiconductors. Conductivity of p-type 

semiconductors is generally due to the holes in their valence shells rather than free electrons. CuO is a p-

type semiconductor and its conductivity, 1.59 x10-3 to 0.11 (Ω cm)-1, is due to deficiencies in the Cu atoms, 

leaving excess holes in the valence shells allowing for conductivity. As such electrical conductivity can 

be controlled by controlling the dopant in the CuO material. It has been found that the adsorption of 

oxidizing gases, such as O2 or N2, result in a decrease in the conductivity of CuO, similarly the adsorption 

of H2O results in a decrease in the conductivity because H2O increases the band gap and acts as a source 

of electrons.72,90. It has been found that CuO and Cu2O are usable as ethanol detectors, showing a decrease 

in conductivity with an increase in ethanol binding91. The electrical conductivity can be controlled by the 

partial pressure of O2 gas during the growth of the CuO. It was found that the resistivity of CuO increased 

by 1000x from 1017 to 1020 by increasing the oxygen flow from 6.0 sccm to 8.0 sccm73 (sccm = standard 
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cubic centimeters per minute).  

 

Certain physical structures, specifically grain boundaries, play a significant role in growth and 

conductivities. Conductivity is influenced by many parameters including structural and morphological 

factors, including grain size, grain boundary, full thickness, specific phase and dopants92–96. Moreover, the 

conductivity of CuO is strongly correlated to temperature and growth conditions95. It has been found that 

the conductivity is negatively correlated to the temperature, but deviates quickly from a linear model. 

Furthermore, an increase of conductivity from 1.59 x10-3 to 0.11 Ω-1 was reported with an increase from 

200 nm to 400 nm in the grain size of nano-CuO. Moreover, there is a positive correlation between the 

conductivity and the thickness of CuO. It is suspected that the cause of this increase in conductivity is due 

to the increase of defects – increased grain boundaries and the scattering of charge carriers96. CuO 

nanostructures synthesized by a sol-gel method using copper acetate heated between 573.15 K to 973.15 

K show an increase in conductivity from 10-6 to 10-5 (Ω cm)-1, which is attributed to a removal of H2O 

which would otherwise resist conduction between the CuO grains. They also observed an increase in 

electron carrier concentration and mobility from 4.6 x1019 cm-3 to 7.2 x1019 cm-3 and a decrease in the 

optical bandgap from 1.64 eV to 1.46 eV97.   

 

Most defects in CuO have been reported along the grain boundaries. However, there is a considerable 

amount of debate regarding the defects of CuO. Deviances from the stoichiometry and a strong following 

to the stoichiometry have been reported, meaning that CuO structures with ratios of 1 Cu for every 1 O 

atom as well as l Cu for every 3 O atoms have been reported, along with others ratios.72,98. Although the 

discussion continues in the literature. Interestingly, certain monoclinic CuO structures are insulators at 

low temperatures, particularly Mott insulators, while others are not. This clearly emphasizes the need to 

study the various synthetic techniques of CuO and the levels of defects present99,100. 

 

Magnetic: 

A diameter of at least 10 nm is a critical size for CuO particles to exhibit magnetic properties. Below 10 

nm the magnetic properties seem to be dominated by electron spin101–103. Initially it was reported that bulk 

CuO is antiferromagnetic, but there have been contradicting reports which present the presence of a weak 

ferromagnetism104,105. Weak ferrormagnetism was found in CuO particles between the sizes of 13 – 33 nm 

and a  Néel temperature TN = 230 K has been reported 106. Further research has shown that the magnetic 
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phase of CuO can vary with temperature103,107–110. 

 

2.2.4. The Synthesis of Nano-CuO 

 

Several techniques have been developed for the effective and efficient synthesis of CuO nanomaterials. 

This overview briefly discusses three main methods of synthesis including thermal oxidation, solution 

based synthesis, and electrochemical methods. 

 

Thermal Oxidation Method: 

Thermal oxidation is the most common method of synthesis and consists of heating Cu substrates (usually 

foil) at high temperatures in air, oxygen or nitrogen.  

 

CuO nanowhiskers, of lengths less than 5 µm and a thickness greater than 100 nm, have been prepared 

with growth along the (111) plane by heating Cu to 400 °C – 600 °C under nitrogen gas111. Furthermore, 

CuO nanowires have been synthesized through treating Cu at 400 °C to 500 °C with various oxygen flow 

rates112. Similar results were found by other investigators113. Synthesis of CuO nanwires on a Cu film on 

a Si substrate was prepared by heating at 350 °C – 550 °C for 4 hours in air and a 21% O2 gas flow114. 

Regarding the effects of annealing time on CuO crystal growth, it was found that heating at 300 °C – 

500 °C, an increasing annealing time results in longer nanowires. Catalysts have also been employed in 

CuO synthesis. Using a cobalt tungsten phosphide catalyst, single crystals of CuO nanowires were 

synthesized at 200 °C – 400 °C. It was found that the nanowires increased in length, yet not diameter due 

to the catalyst. However the catalyst was only effective for a maximum of 2 hours115. It has been found 

that stress is an important factor in the first step of the formation of the CuO nanowires: the formation of 

CuO hills and troughs116,117.  CuO nanowires with lengths of 1 µm to 5.5 µm were synthesized by initially 

roughing the Cu substrate then treated at 200 °C – 500 °C118. The experiments have shown that the major 

factors affecting CuO nanostructures are the Cu substrate, the annealing time and the calcination 

temperature.  
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Solution Based Synthetic Techniques: 

In contrast to the simplicity and relatively few options for Cu precursors of the thermal oxidation method, 

the solution based techniques offer a greater variety of precursors. Solution based synthesis techniques 

range from relatively easy to moderately difficult and offer a plethora of techniques and Cu precursors for 

the synthesis. Most, but not all, solution based methods require the dehydration of Cu(OH)2 into CuO. 

The most common and successful wet synthetic method is the hydrothermal synthetic method. 

 

In the hydrothermal synthetic method reactions are conducted in solutions under high pressures and above 

the critical temperature conditions of water119–121. The requirement of high temperature and pressure are 

obvious disadvantages to this technique, but these are offset by the advantages. Firstly, the high 

temperature and pressure allows for easy production of supersaturated solutions. Solutions can be 

supersaturated with catalysts, surfactants, etc. as one needs. Moreover, water is a cheap and well-studied 

solvent with an abundance of separation/filtration methods and so there are a variety of methods which 

may allow the removal, and thus reuse, of some catalysts. Furthermore, the hydrothermal method can be 

“green”, with no unnecessary toxic solvents or by-products. Lastly, the polarity of water may be involved 

in the growth and orientation of the CuO crystals120.  

 

As mentioned earlier, the synthesis is generally based on a 2 step process: 1) the formation of Cu(OH)2 

particles from Cupric precursors and a basic solution and 2) The Cu(OH)2 particles are then thermally 

dehydrated in an autoclave to yield CuO. The literature shows an abundance of morphologies that can be 

obtained using the hydrothermal technique by varying the experimental parameters, including Cu2+ 

concentration, pH, growth time, pressure and temperature. The disadvantage of the hydrothermal 

technique is it is incapable at studies requiring low temperatures and pressures. 

 

CuO nanorods have been synthesized from the precursor CuCl2. The results yielded nanorods with 

diameters between 10 – 35 nm and a length of 0.5 – 1 µm were preferentially grown along the [111] 

direction when heated at 120 °C122–125. In contrast, CuO microspheres and nanoribbons were successfully 

prepared using the precursor Cu(NO3)2·3H2O in ethyl alcohol when treated at 180 °C for 2 – 24 hours. It 

is believed that the rhombic structure of the CuO crystal lattice supplies the curvature of the sphere126. 

Similar results have been reported from other investigators127,128. Expanding on these results, oval shaped 
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2D CuO nanosheets and 3D nanoellipsoids have been synthesized from a solution of Cu(CH3COO)2·H2O 

heated at relatively low temperatures and various pH values. An interesting result was found in that the 

pH of the solution can alter the 2D or 3D structure of the nanoellipsoid and also the size of the 

nanostructure. The results are summarized in Table 2.3 below. The data shows that low temperatures 

(65 °C) and lengthy annealing times allow for the production of 3D nanoelipsoids. Furthermore, a basic 

pH heavily supports the creation of 2D nanosheets instead of the 3D nanoellipoids129–131. CuO 

nanostructures of various shapes have also been synthesized namely shuttle-like (leaf shaped) CuO 

nanostructures, polyhedrons, nanosheets and nanowires through heating a solution prepared from 

Cu(CH3COO)2 at 120 °C for 12 hours132,133.  

 

Table 2.3: Results of the production of nanosheets and nanoellipsoids129. 

pH Temp ( °C) Time (min) Morphology 

7.5 65 5 0D nanoparticles 

7.5 65 40 Almost 3D nanoellipsoids 

7.5 65 1140 3D nanoellipsoid formation 

7.5 85 1140 Well developed 2D nanosheets 

8.5 65 40 2D incomplete nanosheets 

8.5 65 1140 2D nanoribbon based sheets 

8.5 85 1140 2D nanorod based sheets with sharp tips 

8.5* 65 1140 Irregular nanoflakes 

* NaOH instead of NH3·H2O 

 

Furthermore, in 2008, highly crystalline CuO nanoneedles with ultra thin nanotips were reported. The 

synthesis procedure involved heating Cu(NO3)2·3H2O at relatively low experimental temperatures 

between 120 °C – 180 °C for 20 - 60 hours134. In contrast to the nanoneedles, nanoflakes were prepared 

by heating Cu(NO3)2·3H2O at 200 °C for 2 hours135. Furthermore, the effects of the size, purity and yield 

of the formation of CuO nanoparticles from a Cu(NO3)2 precursor were investigated through the variation 

of treatment temperature, annealing time, pH and concentration of the precursor. The results have shown 

that a temperature of 500 °C, duration of 2 hours and a concentration of 0.1 mol/dm-3 of Cu(NO3)2 at pH 
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3 was the optimal synthesis condition. The authors also reported that the morphology depends on the 

concentrations and temperature of the reaction136.  

 

Continued research on CuO nanostructures from Cu(NO3)2 and CuSO4 was conducted. CuO from 

Cu(NO3)2 were prepared with lactic acid and also with NaOH, whereas CuO from the CuSO4 was prepared 

using NaOH. Interestingly, the nanorods of the Cu(NO3)2 and lactic acid formed a sphere (thickness 20 – 

150 nm and breadth of 100 -200 nm) instead of individual rods. In the NaOH case, those rods formed but 

aggregated in a random fashion rather than spherical shapes. The rods were 5 µm in length and 50 nm in 

diameter. In the case of the CuSO4, the rods are more and less separate with lengths of approximately 5 

µm and width of approximately 50 nm137. Nano flowers have also been reported138. The authors 

successfully created CuO nanoflowers using Cu(C5H7)2: Cu(AA)2 and Cu(NO3)2·3H2O at various 

concentrations in water. Afterwards, the solutions were autoclaved for 22 hours at 180 °C. The results 

showed that both methods lead to the formation of flower like structures of CuO in single phase, but had 

different vibrational properties, yielding an unexpected peak at 218 cm-1 in the Raman spectra of the first 

method (utilizing the Cu(AA)2). Although it is clear that this peak is from a defect in the final product, it 

is not entirely clear what causes it. It is suspected to be caused by either presence of the Cu(AA)2 or 

presence of Cu2O. For both methods, it was also found that increased concentrations of the precursors lead 

to an increase of grain sizes138. In 2011, the authors prepared a plethora of nanostructures of CuO including 

pseudo-flower, pseudo-boat, pseudo-plate and pseudo-ellipsoid. Cu(NO3)2·3H2O and polyethylene glycol 

(PEG)139. The results show that the three greatest influencers of morphology were the reactants, the 

temperature of the reaction and the reaction time. The thickness of the nanostructures was between 100 – 

150 nm. Plate and ellipsoid CuO nanostructures were formed using polyethylene glycol and NH3OH while 

flower and boat morphologies were obtained by increasing the reaction time.  

 

The presence of PEG affects the morphology of CuO through the formation of a Cu-PEG complex. Upon 

heating, the complex would deteriorate leaving CuO, and the PEG would become absorbed onto some 

CuO structures thus stunting its growth and causing layers to form on top of one another. Although many 

questions remain, these results provide an interesting starting point onto the discovery of the mechanism 

of CuO production88. Further researchers could try to determine what type of CuO surfaces are capable of 

absorbing PEG or if there is an unusual Cu-PEG complex formed during the Cu(OH)2 phase. In another 

work, the authors have found that CuO is a possible detector for gaseous HCN. Using a similar procedure, 
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they produced microspheres composed of sharp nanorods with a band gap of 3.02 eV. They also reported 

that CuO nanoplates had the highest sensitivity (2.26 Hz/µg) of the flower structures, boat-like structures, 

nanoellipses or the nanoplates139. 

 

Simple nanoparticles were grown using a unique apparatus called a T-type mixer. A number of metal 

oxides including CuO, Fe2O3 and NiO were synthesized. In the procedure, water was added at a 

temperature of 673 K (400 °C) at 30 MPa to a starting solution of Cu(NO3)2·3H2O at 298 K (25 °C). This 

resulted in the rapid heating of the solution and arrival at supersaturated solutions past the supercritical 

point. At the end of the reaction, the mixed solution was cooled using an external water jacket flowing at 

100 g of water per minute. The metallic oxides precipitated out of solution and were analyzed. It was 

found that the average particle size of CuO increased from 23.7 nm to 34.3 nm as residence time moves 

from 0.002 seconds to 2.008 seconds. Growth of the nanoparticles occurs through nucleation and is 

suspected to occur through the Ostwald Ripening process140. 

 

Surfactants have been used to produce specific morphologies and pores. In one experiment, investigators 

dissolved CuSO4·5H2O in water followed by addition of specifically denatured alcohols heated at 30 °C. 

It was found that by increasing annealing time from 0.5 hours to 2 hours, CuO-ethanol go from small 

whisks of CuO nanoparticles to flowers of CuO. The whisks tended to aggregate and were less than 100 

nm in length and less than 30 nm in width and the flowers were several micrometers in diameter and grew 

in all directions. Very similar results were found for the rest of the surfactants141.  

 

The Electrochemical Method of Synthesis: 

The electrochemical method is defined by its dependence on redox reactions initiated by electric currents. 

The parameters for these reactions are dependent upon the voltage, current, temperature and 

concentrations of the reagents and the protocols are much less involved than the thermal oxidation and the 

solution based methods. Furthermore, interestingly, often it does not require the Cu2O or Cu(OH)2 

intermediates as seen in the thermal oxidation or solution based methods, but contain similar 

intermediates.   

 

A novel electrochemical technique was developed to produce CuO. The experimental procedure was as 

follows: A Cu anode was submerged in tetraoctylammonium bromide in acetonitrile (75%) and 
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tetrahydrofuran (25%) at room temperature. The cathode used was platinum and a constant current of 5 

mA cm-2 was applied under oxygen atmosphere. The result of the experiment produces CuO nanowires of 

various lengths of 3.5 nm, 6.5 nm and 10.0 nm. He also described a blue-shifting of the optical band gap 

of 1 eV to 2.35 eV due to quantum confinement142. An improvement on the above method was made by 

increasing the temperature to 25 - 30 °C and increasing the pH to 13. The authors report CuO crystal 

growth in the [010] direction143.  

 

Synthesis of CuO nanospindles were reported using a Cu cathode and stainless steel anode in a NaNO3
- 

solution. The reaction was performed under constant currents of 5, 10 and 15 mA cm-2 at room 

temperature. The results revealed that there were several easily adjusted reaction parameters: the reaction 

media (electrolytes and electrolyte solution) and current density. As for the influence of the reaction media, 

it was found that that an addition of ethanol effected the diameters and aggregation of the nanospindles. 

NaNO3 in dH2O gave nearly uniform nano-splindles with blunt ends of about 80 – 100 nm in diameter 

and 200 – 300 nm in length. Moreover, it appears these nanospindles aggregate together to form bunches. 

However, addition of ethanol produced nanospindles with diameters of 20 – 50 nm and equal lengths as 

before. Moreover, they seem to be more “individual” rather than aggregated.  The growth direction of both 

methods seems to be along the (1̅11) plane. Current denisy has a profound impact on the morphology. By 

increasing from 5 mA to 10 mA to 15 mA cm-2 to 20 mA cm-2 the morphology changes from nanospindles 

to nanoplates. At 5 mA cm-2, CuO nanospindles are formed and at 20 mA cm-2 CuO nanoplates are formed. 

However, at 10 and 15 mA cm-2, both CuO and Cu2O were observed. These results are inspiring in that 

they state that even simple changes can easily lead to different morphological forms of CuO, especially 

simple ones including change in current density. The reaction with NaNO3 gradually changed colors from 

clear and colorless to blue to dark-green and finally to black precipitates. This clearly indicates that the 

reaction occurred in multiple steps. Firstly, the blue color is characteristic of Cu(OH)2 and the dark green 

color may be Cu2O. Regardless, the black precipitates are the final product, CuO144.   

 

Synthesis of CuO honeycombs were reported using a two – step electrochemical deposition process. A Cu 

foil cleaned with acetone and HCl was placed in a 3 M KOH solution containing CuSO4·5H2O. Afterwards 

the solution was aged for a week at 15 °C. Throughout the week, the solution turned from blue to dark-

brown, suggesting the creation and degradation of Cu(OH)2 and the brown-black color is characteristic of 

the CuO. The Cu(OH)2 precipitate was then dried at 80 °C for 12 hours. The proposed mechanism of the 
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reaction is the removal of Cu2+ ions from the Cu substrate and then the formation of Cu(OH)2. Subsequent 

to the addition of NH3, the Cu(OH)2 transforms into an orthorhombic structure, which then slowly 

decomposes into CuO145. 

 

CuO nanorods were also synthesized on glass substrates using the electrochemical method. The 

experimental parameters studied in this investigation were the deposition time and the voltage.  The 

experimental setup was as follows: Cu plate (0.5 cm3 x 2.2 cm3 x 0.16 cm3) and a steel plate, of similar 

size, attached to a glass substrate dissolved in deionized water were subjected to a constant current while 

varying the voltage (10 – 30 V of direct current) or the deposition time (1 – 8 hours). The voltage was 

varied by increasing the distance between the plates. The results showed that an increase in the distance 

(i.e. increase in voltage) is correlated by a decrease in the diameters of the nanorods (from 27 + 5 nm to 

25 + 5 nm) and a decrease in the thickness (from 23 + 3 nm to 1 + 3 nm). Increasing the deposition time 

causes increasing aggregation. With only 1 hour of deposition, mainly nanorods are found whereas 8 hours 

resulted in nanorods and bundles. By increasing the reaction time to 8 hours, the nanorods began to 

aggregate and form nanobundles instead of nanorods. The maximum of 635 nm thickness with a minimum 

thickness of ~25 nm.  

 

Furthermore, CuO nano-flowers were synthesized using the electrochemical method. The experimental 

setup included a glass discharge with two Cu electrodes in distilled water (dH2O) supplied with 32 V. They 

investigated the effect of the distance between the plates by setting the electrodes at 1, 3, 5 and 7 mm 

distances and then producing a plasma discharge, the voltage and current were kept constant. 

Unfortunately, CuO and Cu2O spectra were both observed using the XRD spectra. The percentage of CuO 

to Cu2O was roughly 66% and had no dependence on the gap between the electrodes. As for the 

morphology, each of the experiments resulted in micro-flower nanostructures. The nanostructure was 

composed of nanorods over the range of 0.5 – 1 µm and the nanorods thinned towards the top, as compared 

to their base. The major benefits of this method include an ecologically friendly technique that is cost 

effective. However, before it’s widespread usage, it must be able to make many other shapes146. 
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2.2.5. The Mechanisms of Growth 

 

The Ostwald process: 

The Ostwald ripening process was discovered in 1896 by Wilhelm Ostwald. The process describes the 

spontaneous growth of crystal structures from smaller crystallites in a solution147–151. The process has been 

extended to explain crystal growth in sol gels as well. Briefly, the Ostwald process is based on the concepts 

of Gibbs energy and thermodynamic stability: surface particles have higher total Gibbs energy than their 

internal counter-parts, thus making larger particles with higher internal particles–to–surface particle ratios, 

more thermodynamically stable than smaller particles.  

 

The Ostwald process has been very well studied for the growth of many crysals including CuO83,127,152–

154. Through the Ostwald process, well aligned CuO nanoplatelets were grown with only slight variations 

in thicknesses (50 – 80 nm), width (150 – 250 nm) and length (0.8 – 1.5 µm).  The growth process for the 

nanoplatelets was 1) dissolving of atoms into solution, 2) spontaneous attachment of atoms to large 

nanopatches 3) the CuO nanoflakes serve as seeds for the nanoplatelets, and 4) atoms spontaneously leave 

the small nanopatches and attach themselves to the nanoflakes to form the nanoplatelets83,154. Synthesis 

of CuO as long as 6 µm have been reported via the Ostwald ripening process for the growth of smaller 

single crystals and an aggregation of these smaller crystals, via Van der Waals forces, for the production 

of the final plates152.   

 

Aggregation Mechanism of CuO: 

Work by many authors, have shown that monoclinic CuO crystal growth stems from smaller crystals 

through aggregation129,131. The aggregation method describes the growth process of crystals which come 

together due to Van der Waals attraction between the crystals. Typically, the smaller crystals grow through 

another process such as the Ostwald ripening process described above and then aggregate together to form 

the final structures. 

 

The production of 3D monocrystalline architectures using CuO along the (001) direction was done using 

an aggregation method131.  A hydrothermal route was used under varied reaction times. Both authors 

describe methods to produce highly oriented CuO nanoplatelets using the aggregation method83. As 

mentioned earlier researchers were motivated to develop an environmentally friendly technique to develop 
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CuO nanostructures. They succeeded in creating CuO plates using a hydrothermal technique using 

microwaves. The methodology was a typical reaction of 1M NaOH and 2.5 x10-3 mol of CuCl2·2H2O. 

The following solution was heated and autoclaved in a Teflon autoclave at 130 °C for 30 mins at 294 kPa. 

The washed solution was then subjected to drying at 60 °C for 5 hours. The Ostwald ripening process is 

responsible for the formation of the larger CuO platelets from smaller CuO nanoparticles. It is thought 

that microwaves increase the vibrations of the Cu(OH)2 molecules, causing the nanoparticles to heat. The 

increase of thermal energy causes a weakening of the hydrogen bonds which destabilizes the Cu(OH)2 

structure and increases water loss. Then the smaller crystals then aggregate together to form larger 

plates152.   

 

The synthesis of hollowed microspheres of CuO, via a “green method”, has also been reported. Most 

methods required toxic raw materials for their production and caused contamination of the microspheres. 

The method of synthesis was to dissolve Cu(CH3COO)2·H2O in dH2O, forming Cu(OH)2 which is then 

autoclaved at 120 °C for 24 hours and subsequently cooled to room temperature. The CuO was purified 

by washing with dH2O followed by vacuum drying at 150 °C. The heating times were adjusted between 

12 hours and 24 hours to test the effects of the experimental time on the morphology. The morphology of 

the CuO structures was that of microspheres. Closer inspection of the microspheres revealed nanorods of 

width 5 – 20 nm oriented perpendicular to the microspheres The authors ascribed the formation of the 

microspheres to the aggregation method, asserting that the nanorods were formed through the Ostwald 

process, but then aggregated to form the microspheres127.    

 

The Dehydration Method: 

The third method to discuss is the method of dehydration. Nanosheets are the primary example of the 

dehydration method since they could not be formed by the above two processes. Nanosheets of CuO are 

thin pieces of foil made up of CuO molecules which grow in a particular orientation. Inherently, the 

production of nanosheets could not be due to the Ostwald process because of a few reasons. The first 

reason is that the Ostwald process depends on the difference in thermodynamic stability of the internal 

particles as compared to the surface particles. In the case of nanosheets, there is a significantly higher 

percentage of surface particles and thus much less internal particles, thus making the nanosheets unstable 

from the perspective of the Ostwald process. Furthermore, the Ostwald process generally develops near-

spherical particles (symmetrical particles), whereas in nanosheets the growth is directional. Secondly, 
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nanosheets could not be due to the process of aggregation either since aggregates are pieces of differently 

oriented crystals merging into one. Nanosheets, however, were found to be single directional.  

 

The simplest process of nanosheets and nanoribbon formation is via the dehydration process. Under 

alkaline and oxidative conditions, Cu becomes Cu2+, and the alkaline solution favors a square planar 

formation of Cu(OH)2 along the [100] direction. Subsequently, the long polymer chains attach to each 

other to form lengthy 2D structures. These polymers can stack on top of each other using hydrogen 

bonding (H-bonding) to form 3D structures. However, in highly alkaline environments, the H-bonding 

may become weak and thus the 3D structures begin to deteriorate. The deteriorating 3D structures become 

2D structures that roll to form tubes. Finally, heating the polymeric Cu(OH)2 forms CuO nanosheets 

through the process of olation127,155–159.  

 

Stress and Grain-boundary Diffusion: 

Most of the above methods correspond to wet synthetic methods. However, another train of thought, 

thermal oxidation, can also be utilized for the formation of CuO crystalline structures. Despite the 

numerous benefits of the thermal oxidation method, the mechanism of crystallite growth is shrouded with 

uncertainty. One of the most famous synthetic methods has been the Vapor-Liquid-Solid (VLS) method, 

but it has been discredited as the method of formation for CuO preparation by thermal oxidation by many 

researchers112,116,160–167.  

 

The VLS method is a growth mechanism of 1D structures of uniform diameters such as nanowires. It 

begins with a metal catalyst at the tip of the nanowire which then adsorbs vapors of a compound to increase 

the local concentrations to the level of supersaturation. Subsequently, the compound crystalizes between 

the metal catalyst and the metal substrate and forms the 1D nanowire structure. Investigations on the 

nanowires formed from the thermal oxidation method and discovered that the wires are thinner at the tip 

in comparison to the base. Moreover, they were not able to detect the metal catalyst at the tip of the 

nanowires116. It has been reported that the diameter of the nanorods was related to the oxygen flow rate 

and the annealing temperature. Moreover, they ascribed the CuO formation to the changes of the volume 

and structure causing compressive and relaxation stress. By heating copper foil at high temperatures 

(300 °C – 400 °C) for varying lengths of time under an oxygen flow rate and taking images at different 

stages, it was discovered that under all conditions the first stage of synthesis was the formation of hill and 
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valley structures at grain boundaries. Upon further heating, the hills and valleys become triangular and 

grow in size. These new triangular shapes are a combination of Cu2O and CuO crystallites. The cause of 

the triangular shape is thought to be the result of the difference in the crystallographic parameters of CuO 

(monoclinic) and Cu2O (simple cubic) and thus there is a significant amount of stress on the boundaries 

of the triangular prisms. Upon further oxidation, the stress continues to increase until a critical point is 

reached. After this critical point, nano-CuO rods are produced to reduce the stress. Thus, the top layer of 

the Cu substrate is entirely covered by the CuO nano-rods. The results were an interesting find; heated at 

400 °C for 5 minutes and 350 °C for 30 minutes produced successful results. However, heated at 350 °C 

for 10 minutes, or a lower temperature, did not produce CuO nanowires112.  

 

Furthermore, the thermal oxidation of Cu foil at various annealing temperatures has lead to many 

interesting conclusions. Growth was found in the [010] direction. Cu was heated at various temperature 

between 500 – 800 °C under a steady oxygen flow for 4 hours. It was found that the optimal growth 

temperature between 600 – 700 °C, is 675 °C. It was found that CuO nanowires could grow in both crests 

and troughs of CuO films covering the Cu. However, there is a distinct difference in the length and 

thicknesses of the CuO nanowires; nanowires in crests (“hills”) are thinner yet longer whereas in troughs 

(“valleys”) they are thicker and shorter. In both cases, the thickness of the nanowires at the bottom is 

greater than at the tips. Lastly, they established that the CuO nanowires are composed of smaller crystalline 

structures of CuO. These results agree with other investigators’ results160. 

 

Moreover, Cu (though not restricted to Cu as Fe, Zn and other metals can also be fabricated using this 

method) boat shaped micro-containers on glass substrates were fabricated and exposed to oxygen flow 

while being heated at 400 °C for 3 hours. The glass substrates of 1.1 mm thickness were washed and 

cleaned followed by an ultrasonic bath and dried with nitrogen. A thin layer (2.5 µm) of photoresist was 

spun on and exposed to UV light through a mask. Successively, Cu is deposited by direct current (DC) 

sputtering to a thickness of 400 nm. Then the photoresist is removed using acetone, leaving the Cu boat 

on the glass substrate. As it turned out, CuO nanowires were obtained only on the inner, flat surface of the 

boats. It is thought that as the oxygen flowed, a layer of CuO will form on both the inside and outside of 

the boats, causing an expansion of the boat. On the inner side of the boat, the expansion brings the CuO 

molecules closer and an increase of concentration is observed. Whereas, the outer surface just experiences 

tensile stress and the CuO become more distant. Due compactness of the film, the preferred direction of 
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growth is normal to the film, the [110] direction. Eventually an increase in concentration leads to a 

significant increase in CuO nanowires along the flat surface on the inner of the boats. In contrast, the 

tensile forces at the outer surface prevents the formation of nanowires161.  

 

Some researchers have investigated the mechanism of CuO formation in the thermal oxidation method. 

They found that compressive forces present at the grain boundary at the CuO and Cu2O crossing point 

were responsible for the formation of the CuO nanowires. They also presented a kinetic model of CuO 

formation focusing on grain boundary diffusion as the predominant factor for the continuation of growth. 

Briefly, they proposed at the copper surface was originally coated with Cu2O and then completely covered 

again with a thin layer of CuO. It is in this configuration that, under heat, there are compressive forces 

which cause Cu+ ions to migrate from the Cu source to the grain boundaries of CuO and Cu2O, due to the 

defects. It has been shown that rougher surfaces can significantly increase the CuO nanowire formation 

rate. It is thought that by roughing the surface of the Cu, then smaller grains of CuO and Cu2O are produced 

implying that perhaps Cu is better capable of transporting along grain boundaries for enhanced nanowire 

formation168.  

 

CuO was formed using the thermal oxidation method using annealing temperatures between 600 – 1000 °C 

with different purities of oxygen gas at a final pressure of 0.1 MPa. It was found that the growth of CuO 

was not parabolic yet grew slowly at the beginning and then maintained an almost consistent thickness 

throughout. It was found that the CuO remained as whiskers and did not develop further to become plates 

or long wires. The mechanism used in this synthesis is also thought to be based on grain boundary diffusion 

of Cu atoms167. Similar reports have been provided by many other researchers117,168–171.   

 

The Self-Diffusion Method: 

Lastly, a novel technique for the fabrication of one-dimensional CuO nanoneedles was developed and 

provided a novel explanation of the process. The synthesis was done using copper electrodes in an 

electrolytic solution made up of cupric sulfate, boric acid, saccharin and sodium fluoride adjusted to a pH 

of 1.0 using H2SO4 and KOH. By sending electrical pulses, they could produce CuO nanoneedles. The 

proposed mechanism for CuO nanoneedle development is one of self-diffusion. Initially, local electric 

fields are established by oxygen atoms at the solid/gas interface which cause the diffusion of copper ions 

(from the substrate) to accumulate at this interface. When the temperature rises above the critical value, 
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the Cu ions react with the oxygen ions, forming a Cu2O precipitate. The Cu2O then acts as a catalyst 

allowing more Cu and O ions to diffuse within itself. In doing so, the CuO nanoneedles are produced. 

However, many details are still lacking including why Cu2O is produced first and why subsequent 

diffusion of Cu and O result in the formation of CuO rather than more Cu2O. 

 

2.1.1. The Applications of Nano-CuO 

 

Nano-CuO has been studied for a wide range of applications, either in its pure form or as a dopant, 

including as biosensors, H2S sensors, nanofluidics, superhydrophobic surfaces, photodetectors and solar 

cells and purification of water of arsenic and organic pollutants172–183. There is enough work for each of 

these topics to have their own review, however this review will focus mainly on the applications of CuO 

as a sensor. 

 

CuO has been used as a catalyst for many reactions. This includes as a heterogeneous catalyst for complete 

combustion, as a cathode in an electrochemical cell with elements such as lithium184–186, and solar-cell 

and solar energy transformation174–178.  

 

General Biosensors: 

Biosensing is a vast and growing field of metabolite detection. There are two main branches of biosensing: 

external biosensors and implantable biosensors. External biosensors generally rely on test strips which 

measure the metabolite (e.g. glucose) from a small sample of blood. A common example of an external 

biosensor is a diabetes blood glucose monitor. This method is simple, cheap, easy to use, less invasive and 

easy to upgrade, however, it causes a small amount of daily discomfort for every use and it depends on 

the patient to take the measurement – if they forget or lose it, the measurement is not taken. In contrast, 

implantable biosensors are surgically placed inside the body and measure continuously. There are 

advantages and disadvantages of both methods and many researchers aim to improve both methods. The 

main disadvantages of the implantable biosensors are biofouling (degradation), foreign body response, 

sensor drifts, lack of temporal resolution and difficulty to upgrade (the device would have to be surgically 

removed and then surgically replanted). The main benefits of these devices are constant measurements, 

statistically significant number of measurements leading to significantly more accurate measurements and 

lack of daily (or hourly depending on the patient’s needs) discomfort. Two examples where implantable 
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biosensors maybe more advantageous are cases where a patient is in critical condition and constant 

monitoring is crucial to their health and the other example is of elderly patients who may not remember 

to take measurements so frequently176–178,187–196. A debate continues in the literature as to which method 

is more useful. 

 

CuO based Glucose Sensors: 

Biosensors for glucose detection are extremely important for clinical monitoring of glucose in the blood 

as well as the food industry and environmental monitoring. It has been said that all biosensing can be 

traced back to the search for a viable glucose detector172,173. Regarding the clinical relevance of glucose 

detection, diabetes is a growing problem for our population. The current approach for glucose 

measurements is an electrochemical method stemming from the catalytic oxidation of glucose (from the 

blood) into gluconic acid by the enzyme glucose oxidase. A by-product of this reaction is hydrogen 

peroxide, which is then oxidized to O2 by an oxidizing electrode. The amount of current produced is 

correlated to the moles of glucose oxidized, and thus a measurement of the glucose concentration in the 

blood is obtained. Many researchers have developed nanodevices to add onto the electrode to increase 

sensitivity197–199 . 

 

However, due to the shelf-life of glucose oxidase and its highly specific storage conditions (i.e. pH = 7, 

physiological osmolality, etc.) result in high cost of production of the glucose test strips. Moreover, the 

enzyme must be protected from its own by-product, as high concentrations of H2O2 can denature the 

enzyme. Furthermore, the current technology uses reactions with relatively slow kinetics and/or require 

large voltages both of which decrease the specificity of the sensor 197,200.   

 

Due to these limitations, researchers have developed electrochemical biosensors without the use of 

enzymes. Biosensors based on metals, carbon nano-tubes, conductive polymers, and transition metal 

oxides were extensively tested. A one-step production of 1D nanorods has been reported from potassium 

and sodium nitrates and CuO nanoflowers from sodium and potassium hydroxides. The results showed 

that composites of the nanoproducts with the graphite electrodes were both more sensitive than the 

graphite electrodes by themselves. The nanoflowers were the most sensitive, however they have a small 

linear range due to slow electron transfer and possible contaminants. The nanorods on the other hand had 

an equally low detection limit (4 µM) but were linear over the range of 4 µM – 8 mM of glucose 
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concentrations. The only drawback to this experiment is that the presence of dopamine and ascorbic acid 

were required to obtain these results. However, it is noteworthy to point out that the storage and handling 

conditions of both of these compounds is easier and cheaper than that of glucose oxidase201.  

 

An ion based method was developed to produce 2D CuO nanoleaves202. Cu2+ ions were used as the starting 

material through successive reactions in the presence of sodium oleate. Although nanoleaves were the 

main products, it was also found that further incubation in the sodium oleate solution produced some 1D 

nanorods on the tops of the nanoleaves. The resulting nanoleaves were then added to an electrode of 

naffion and a glassy carbon electrode and were tested against a glucose/sodium hydroxide solution. The 

sensitivity of the electrode was found to be 26.6 µA mmol-1. The response was linear over the range of 10 

µM to 7.3 mM. Unfortunately, the testing was done under a heavily basic solution, rather than at 

physiological pH. However, the results show that monitoring glucose with CuO is possible202.   

 

Researchers have developed an electrode utilizing CuO nanowires. CuO nanowires were synthesized by 

heating Cu nanowires at 400˚C for 5 hours. Then the CuO was suspended in ethanol (5 mg/mL) before 

being dropped onto a cleaned glassy carbon electrode followed by addition of 20 µL of Naffion. The 

resulting nanowires had an average diameter of 200 nm. The resulting electrode was then utilized to 

measure glucose in a highly basic solution of sodium hydroxide. The explanation of the increase of voltage 

as the concentration of NaOH increases is due to the fact that the hydroxide ions allow for a greater 

increase in the aniodic current transfer during the catalytic oxidation of glucose. The resulting electrode 

has a limit of detection of 2 µM at a voltage of +0.55 V. The authors then utilized their CuO glucose 

detector to measure glucose concentrations in human serum. The human serum samples were injected 

with 5 mL of 50 mM NaOH to increase the pH before measurement. The result of the comparison between 

commercially available glucose detectors and the CuO detectors are shown below in Table 2.4 at +0.3 

V200. The average accuracy of the CuO sensor as compared to the commercial sensor is 1.01%. However, 

further work must be done to ensure that the measurement is accurate over a wide range of blood sugars. 

The glucose measurements were obtained over the range of 6 – 7.5 mM, whereas blood sugar can range 

from less than 4 mM  to greater than 12 mM (in extreme conditions)172.   
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Table 2.4: Comparing the results of glucose concentration measurement by a CuO electrode 

with a commercially available electrode in an alkaline solution at +0.3 V200. 

Sample [Glucose] (mM) 

from CuO sensor 

Relative Standard 

Deviation of CuO 

Sensor (%) (N=5) 

[Glucose] (mM) 

from commercial 

sensor 

Percent Accuracy 

of CuO Sensor 

(%) 

1 6.50 2.4 6.3 1.03 

2 6.52 4.2 6.5 1.00 

3 6.78 2.1 6.5 1.04 

4 6.54 2.2 6.4 1.02 

5 7.45 2.3 7.8 0.96 

 

Other researchers have used CuO nanoparticles along with multi-walled carbon nanotubes203. In this 

procedure, carbon multi-walled nanotubes were prepared using a tube reactor heated to 800 – 900˚C and 

then a quartz plate was added inside under N2 gas flow. In a separate glass bottle, N2 was bubbled in 

ethylenediamine at a flow rate of 500 sccm to form the “feeding gas” with 8% ethylenediamine. The 

feeding gas was then put into the reactor and reacted for 5 – 45 mins. Then cooled to room temperature 

under ambient N2
204.) The CuO was added to the multi-walled carbon nanotube via Cu sputtering. The Cu 

was oxidized to CuO by oxygen at 100 mL min-1 O2. It was determined from the XRD spectra that all of 

the Cu was oxidized to CuO. The resulting CuO/multi-walled carbon nanotube was tested in alkaline 

solution made with 0.1M NaOH. The sensor was linear over the range of 0.4 µM to 1.2 mM glucose with 

the sensitivity of 2596 µA mM-1 cm-2 with a detection limit of 0.2 µM. Further worked on human serum 

samples, 40 µL of serum samples were added to 10 mL of 0.1 M NaOH and recorded to +0.4 V. The results 

of the tests have shown that there is a 95% accuracy. The results of the above mentioned CuO electrode 

are tabulated in Table 2.5203.  

Table 2.5: Results of the measurements of the CuO with multiwalled carbon nanotubes.  

Sample 
Concentration of 

Sample (mM) 

Relative Standard 

Deviation (%) (N=3) 

Measured 

Concentration (mM) 
Recovery (%) 

1 12.3 1.7 11.93 97 

2 5.0 4.3 4.90 98 

3 4.8 3.8 4.61 96 

4 5.4 1.3 5.29 98 

5 4.9 1.9 4.66 95 
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CuO Based Cholesterol Sensor: 

In 2015, a ZnO – CuO matrix capable of sensing cholesterol levels was synthesized. The electrodes were 

capable of detecting free cholesterol over the range of 0.12 – 12.93 mM, with sensitivity of 680 µA mM-

1 cm-2 and the total cholesterol concentration over the range of 0.5 – 12 mM with a sensitivity of 760 µA 

mM-1 cm-2. The most promising aspect of this electrode is that the response time is only 5 seconds. The 

ZnO – CuO composite thin film was made using a pulsed laser deposition technique. The two parameters 

that were studied were pressure (50 – 500 mT) and temperature (25 – 400 °C) giving the optimal 

parameters of 100 mT and 300 °C. The ZnO and CuO composities were deposited onto IT/glass using a 

pulse rate of 10 Hz and λ = 266 nm sequentially to a thickness of 120 nm. Finally, the composite matrix 

was annealed at 300 °C for 2 hours. The main purposes for the incorporation of CuO was to increase the 

conductivity of the electrode. ZnO has a DC conductivity of 1.95 x10-6 Ω-1 cm-1 while ZnO – CuO has 4.8 

x10-6 Ω-1 cm-1 In order to measure cholesterol, ChOx was added to the ZnO – CuO electrode 

electrostatically and thus becomes absorbed via the physical adsorption technique205. 

 

However, different methods of cholesterol and glucose detection have been proposed. A rapid fluorescent 

method using luminol-CuO nanoparticles with H2O2 has shown to be effective. Cupric oxide was prepared 

by a reaction of Cu(As)2 with glacial acetic acid with 4 g/mL NaOH heated at 80 °C. When the pH reached 

6.0 – 7.5, CuO spontaneously precipitated and were purified by centrifugation, washing (ethanol and 

dH2O) followed by air drying at room temperature. The powder was then further annealed at 400 °C for 

an hour in order to yield the nanoparticles. The morphology of the nanoparticles was spherical with 

diameters between 24.2 – 33.2 nm. To test with glucose or cholesterol: two solutions were made, the first 

involved 200 µL of luminol with the CuO nanospheres and the second was made using 250 µL of glucose 

(or cholesterol) and 250 µL of glucose oxidase (cholesterol esterase and cholesterol oxidase) in a 0.1 M 

phosphate buffer in a dark cell. The first solution was incubated at room temperature for 20 minutes 

following its preparation and the 200 µL of the second solution was added. The concentration of 

measurement for glucose 1.2 x10-6 – 1.0 x10-3 M (R2 = 1.00) with a detection limit of 7.1 x10-7 M and a 

range of 2.5 x10-5 – 7.17 x10-3 M (R2 = 1.00) with a detection limit of 6.4 x10-6 M179. Similar work was 

done by other researchers206–208. 

 

Lastly, CuO nanowires were also used as cholesterol sensors. Unlike the above mentioned methods, pure 
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CuO was used as the detector. The authors grew CuO nanowires in along the [010] direction using the 

hydrothermal technique on gold coated glass substrates using Cu(CH3COO)2·H2O. By dissolving 

Cu(CH3COO)2·H2O into methanol and then added a solution of KOH (also dissolved in methanol) 

dropwise while heating to 60 °C and continuous stirring. The solution forms the characteristic blue of 

Cu(OH)2. The Cu(OH)2 solution was spin coated onto the gold coated glass substrate before annealing at 

120 °C for 20 minutes with an equimolar solution of 0.025 M hexamethylenetetramine and copper nitrate 

hemi pentahydrate. Afterwards, the solution was again heated at 80 °C for 2 – 6 hours. The CuO was then 

washed with dH2O. To prepare the cholesterol detection technique, cholesterol oxidase was 

electrostatically attracted to the CuO using the dip coating technique at a pH of 7.3. The cholesterol sensing 

was done using the CuO – cholesterol oxidase electrode. The detection limit of the sensor was 1.00 x10-3 

mM with a linear range of 5.00 x10-3 – 5.00 x100 mM with an R2 value of 0.99 and a slope of 33.88 

mV/decade in a 0.1 mM PBS buffer at pH =7.5. The response time for the sensor was less than 10 seconds. 

Furthermore, the CuO nanowires showed indifference to the concentration of glucose, uric acid, urea and 

ascorbic acid – it only responded to the cholesterol209. 

 

CuO Based Gas Sensors: 

CuO is intrinsically a cheap, p-type metal oxide. In general, n-type metal oxides behave differently from 

p-types in that n-types have mobile electrons whereas p-types have mobile holes which allow them to 

conduct. The absorption of gasses complicates this simple picture. Freshly prepared CuO is capable of 

conduction, however, if left in air for long enough, it will decrease in conductivity. It is thought that oxygen 

molecules are adsorbed into the CuO with time and once adsorbed they form oxygen ions (O-, O2-, O2
-). 

The oxygen ions then negatively charge the CuO and cause an increase in electrons and decrease in holes. 

This results in a decrease in the conductivity of CuO. In contrast, when exposed to an oxidizing gas e.g. 

NO2, H2S, etc., the gas relieves the excess electrons, thereby increasing the holes and restoring the 

conductivity of CuO.  Gas testing have been done with many different gasses including organic gases such 

as ammonia, cyclohexane, 1,2-dichloroethane, formaldehyde, methanol, acetone, ethanol and 

propanol210,211, CO180–183, NO2 
182,212 , NH3

213, HCN214, petroleum215, Cl2 and Cl- (aq)215, H2 (g) 
215 , 

oxygen211,182,183,212–216 and water216. This review is most focused on the H2S
215 , however for convenience 

the references of other gases are provided and the curious reader is encouraged to read through the articles. 

    



 

36 

 

 

CuO Based H2S (g) detector: 

CuO nanowires have also been utilized, prepared by an in situ micromanipulation, to measure gaseous 

H2S. CuO nanowires were fabricated by heating copper foil to 500 °C for 5 hours. The measured 

nanowires were 80 – 200 nm in diameter. After oxidization, the CuO nanowire foil was cut into squares 

of 2 mm x 2 mm. To test for the H2S, the 2 mm x 2 mm CuO foil was taken and pasted on to a copper 

plate. The conductivity of CuO was measured during exposure to H2S at different rates (500 ppb, 1 ppm, 

5 ppm, 10 ppm, 50 ppm, 100 ppm and 1000 ppm) at room temperature and at 160 °C. It was determined 

that no saturation was observed for concentrations at any concentrations lower than 100 ppm. It was also 

found that the current response was unrecoverable at concentrations over 5 ppm, due to the formation of 

CuS. Consistent with other researchers, it was determined that CuO is highly selective for H2S in 

comparison to H2, CO and NH3
217. 

 

CuO leaf-like nanosheets have also been used for the selective H2S detection in an environmentally 

friendly method, using CuSO4·5H2O as a precursor for a wet synthetic method. The 0.2 mM CuSO4·5H2O 

was reacted with 0.08 mM KOH were mixed and 300 mL of 13.8% of ammonia was added. After filtration, 

the Cu(OH)2 was heated, incubated over night at 60˚C and then calcined at 500˚C for 1 hour. Concentrated 

H2S and air were mixed and then exposed to the substrate. Before measurements, the chambers were 

purged with air for 0.5 hours. The resistivity of CuO when reacted with H2S was tested at various levels 

of relative humidity were tested (10%, 30%, 50%, 70% and 90%) as well as different substrate 

temperatures (90 °C, 140 °C, 190 °C, 240 °C and 300 °C). The linear range of the detection was from 

0.880 µM to 35.2 µM (30 ppb to 1.2 ppm) with a detection range of 58.7 nm (2 ppb), with a signal to 

noise ratio of 3:1218.   

 

Combinations of various synthesis techniques have also been employed to produce CuO sensors. CuO 

nanowire based sensors used a thermal oxidation combination of an electrodeposition technique, 

dielectrophoresis and thermal oxidation. The CuO nanowire was created in several steps. In the first step, 

orange-red Cu nanowires were grown inside hollow polycarbonate membranes which were coated with a 

thin layer of Ag on the reverse side. On the front side of the polycarbonate, was a glass tube filled with 

copper plating solution. The cathode used was a Cu plate. A constant current of 2 mA was applied through 

a platinum electrode and a copper plate. To release the Cu nanowires, the membrane was dissolved in 
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dichloromethane. The nanowires were then washed and stored in ethanol. The next step was to orient the 

nanowires, which was done through dielectrophoresis. The Cu nanowires – ethanol solution was placed 

on substrate electrode under non-uniform electric field using an AC voltage. The result was that the 

nanowires were oriented vertically to the substrates (pointing from one electrode to the other), also the Cu 

wires became dark orange. The dark orange Cu nanowires were than heated at 700 °C for 4 hours to form 

CuO, which was dark black. The resulting nanowires had a detection limit of 73.4 nM (2.5 ppb) with a 

linear range of 0.293 µM (10 ppb) to 2.93 µM (100 ppb). The sensing tests were conducted for 10 minute 

intervals of H2S at 100 ppb at 9 different temperatures (25 °C, 80 °C, 140 °C, 180 °C, 240, 280 °C, 320 °C, 

380 °C and 420 °C). It was found that the highest resistance occurs at 180 °C219.   

 

Nano-spheres have also been used for H2S detection. CuO hollow spheres with 3 types of pores were 

fabricated; the first are the quasi-micropores (1.0 – 1.2 nm), the second are the mesopores (5 – 30 nm), 

and the last are the macropores (2 – 4 µm). The spheres were created using a wet synthetic method 

involving 3 mL of 0.4 M CuSO4·5H2O and 1 mL of 0.48 M KOH mixed with 0.9 mL ammonia and 15 

mL of dH2O. The resulting Cu(OH)2 was then incubated at 68 °C until a black precipitate was seen. Then 

the black precipitate was centrifuged and washed with dH2O. Before being utilized, the CuO was coated 

with Au at 500 °C for approximately 1 hour. Before measurements the chamber was purged with fresh air 

for 30 minutes. Then H2S was introduced to the system via a microsyringe at different temperatures (90 °C, 

140 °C, 190 °C, 240 °C and 300 °C). The hollow spheres were tested for their H2S sensing capability and 

it was found that the limit of detection was 58.7 nM (2 ppb) and a large linear range from 0.880 µM (30 

ppb) to 39.6 µM (1350 ppb). An inverse relationship between the temperature and the response was found, 

meaning that the 90 °C gave the largest response and 300 °C gave the lowest response, although beyond 

200 °C, there was very little difference154. 

 

CuO thin films prepared by a spray pyrolysis technique have also been used for H2S detection. The weight 

of the CuO was determined by weighing the substrates before and after. The resultant CuO nano-thin films 

was then tested for the reactivity against H2S, among other gasses, at different temperatures. Four samples 

of CuO were created at deposition times of 10 (labelled S1), 20 (labelled S2), 30 (labelled S3) and 40 

(labelled S4) minutes. The CuO was exposed to H2S at a rate of 100 ppm at various temperatures between 

200 – 400˚C. The maximum response with H2S occurs at 250˚C and the highest response was given by 

S3, followed by S2, S4 and lastly S1. It has been discovered that the sensing capability of a substance is 
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based on the interaction of the gas and the surface of the CuO. However, interestingly, different samples 

(S1 – S4) react differently and give different levels of response for different gases. For example, the third 

sample is the most responsive for H2S, yet the second sample was the most responsive for H2 gas. Another 

important observation is that hydrogen sulfide provides a response almost two – to – three orders of 

magnitude greater than any of the other gasses215. Similar results have been found by other 

researchers183,220–222. 

 

CuO and single walled carbon nanotubes (CuO-SWCNT) were synthesized and subsequently tested for 

its capability as an H2S detector. The morphology of the CuO was flower-shaped, with diameters of several 

micrometers, and the device had a shelf life of 1 month. The device also shows a remarkably low limit of 

detection of 100 ppb H2S (g). The synthesis of the detector began with the preparation of the CuO 

nanoflowers. Cu(NO3)2 was dissolved in dH2O while stirring. After 5 minutes NaBH4 was added followed 

by 15 minutes of more stirring. The pH of the solution was adjusted to 2 – 3 using HCl. The solution was 

transferred to an autoclave and different temperatures were tested ranging from 130 – 150 °C for 3 hours. 

Subsequently, the solution was washed with dimethylformamide to reach pH = 7. Afterwards, 20 mg of 

functionalized SWCNT were added to the solution and the solution was heated again at 100 °C for 30 

minutes to obtain the flower shaped nano-CuO-SWCNT. The nano-CuO-SWCNT was washed with 

ethanol and filtered using a 0.45 µm pore filter. To test for the H2S sensing properties, 5 mg of the CuO-

SWCNT was mixed with 50 mL of dimethylformamide, which was sonicated before being spin coated at 

500 rpm for 30 seconds onto gold interdigitated arrays. The device was annealed at 90 °C.  The principle 

of the device is: CuO will absorb oxygen gas and form an O2
- ion. H2S will react with the responded O2

- 

to form SO2 and H2O. The reaction also releases 3 electrons, which will tend to move toward the SWCNT 

(due to the higher affinity for electrons). This will cause a decrease in the conductivity of the electrode, 

corresponding to the concentration of H2S present. This work is interesting as compared to the rest as it 

uses a reducing agent (NaBH4) and an acidic solution223. 

 

2.2. Raman Spectroscopy  

 

Raman Spectroscopy is a quick, non-destructive structural identification method of characterization. 

Raman spectroscopy measures vibrational energy coming from inelastic interactions between photons and 

molecules. For wavelengths of light within the infrared and ultraviolet range, most of the interactions 
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occur between photons and electrons. Many of the photons interact with the molecule in such a manner 

that its incident and emitted wavelengths are the same, this is called elastic scattering or Rayleigh 

scattering. However, inelastic scattering occurs as well. Some photons are absorbed by the electrons such 

that the emitted photon contains either less or more energy. If the emitted photon has less energy than the 

incident photon (thus higher wavelength) it is known as Stokes scattering. Under this circumstance, the 

electron absorbs the incident photon and rises to an excited state, but upon returning down, it remains in 

a higher energy state than in which it began. The other possibility is for the electron to absorb the photon 

and rise to a higher energy level and fall to a lower level than the initial state, releasing a photon with 

greater energy than the incident (thus lower wavelength), and this is known as anti-Stokes. The difference 

in energy from the two inelastic scattering of the photons is converted into rotational and vibrational 

energy in the bonds of the molecule. Since each type of molecule is unique, thus each molecule gives off 

a unique vibrational spectrum, similar to a “finger print”, with the intensity of the peaks corresponding to 

the concentration. Thus, to identify an unknown compound, one can take a reading of its Raman spectra 

and compare it to a library. An identical match must mean the same compound224,79.                   

                  

Figure 2.4. An energy diagram comparing the infrared (far-left) state and the Raman energy 

states. The blue arrows represent the molecules absorbing energy and increasing to higher 

energy states. After energy absorption, the molecule shifts to either real or virtual energy 

states. The infrared absorption takes molecules to higher real energy states. In Raman 

Spectrometry, the molecule rises to “virtual” states. The red arrow represents Rayleigh 

scattering, the green arrow represents the Stokes Scattering and the purple arrow represents 

Anti-stokes scattering. This image was adapted from www.geo.arizona.edu.  

http://www.geo.arizona.edu/xtal/geos306/geos306-12.htm
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CHAPTER 3: MATERIALS AND METHODS 

 
Introduction 

 

In this chapter, the materials utilized throughout the experiments in this thesis are described. Some of the 

materials have been used more than once and sometimes the final product of one preparation may be the 

initial material of another preparation. For example, CuO is the final product in its own preparation and 

an initial material of CuS preparation. The materials include copper foil, copper pellets (<1 mm), ground 

copper (149 µm), copper (II) nitrate, copper (II) acetate, hydrogen sulfide gas, sodium sulfide nanahydrate, 

blood plasma, blood serum, magnesium sulfate heptahydrate, L-cysteine·HCl, L-methionine, sodium 

sulfate and sodium sulfite. The methods of H2S (aq) solution preparation are by bubbling H2S (g) in water 

and form sodium sulfide solution preparation. CuO was prepared by the thermal oxidation and wet 

synthetic method. The method used to analyze the uniformity of CuO or CuS was Raman spectroscopy. 

 

3.1. Materials  

 

Copper precursors used in this these are Cu foil (0.1 mm thickness) (Cat# 349178), ground Cu pellets (< 

1 mm), Cu(NO3)2 (Cat# 305340) and Cu(oAs)2 (Cat # 326755-25G) were ordered from Sigma-Aldrich, 

Edmonton, Canada except Cu mesh (100 mesh, 149 µm) (Cat# 90682) which was ordered from Alfa Aesar, 

USA.  Other reagents NH3OH (l) (Cat# 320145-6X500ML), Na2S·9H2O (Cat# 407410-10 g), Pb(ClO4)2 

(Cat# 205311-25g) and NaOH (Cat# S5881-500G) from Sigma-Aldrich, Edmonton, Canada. Furthermore, 

SAOB (Cat# 941609) from Thermo-Fisher, Mississauga, Canada. Distilled water (dH2O) and distilled and 

deionized H2O (ddH2O) were prepared from Milli-Q water.  

 

Sulfide measurements are made from a pH meter and Cole-Parmer ISE Silver/Sulfide electrode (Cat # 

27502-41) purchased from Cole-Parmer, Montreal, Canada. Raman measurements were made with a 
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Renishaw Invia Reflex Raman Microscope (Renishaw, Gloucestershire, UK). 

 

3.1.1. Preparation of H2S solutions  

 

Aqueous H2S solutions were prepared by two different methods: bubbling H2S (g) into dH2O and 

dissolving Na2S·9H2O with ddH2O followed by a pH adjustment.  

 

H2S solutions by bubbling H2S (g): 

H2S water was prepared fresh everyday for the experiment. H2S gas (90% H2 (g) and 10% H2S (g)) was 

bubbled into 100 mL of dH2O at a flow rate of 60 mL min-1 for 5 minutes. The gaseous H2S was generously 

supplied by Dr. Dalai (Chemical Engineering, University of Saskatchewan) and his lab.  

 

Figure 3.1. Preparation of a H2S through bubbling. 

 

H2S solutions prepared from Na2S·9H2O: 

The second method of H2S (aq) preparation involved 100 g of Na2S·9H2O was dissolved in 100 ml of 

ddH2O over night. Subsequently, an aliquot was pH adjusted to 7.53 using concentrated H2SO4. 

 

3.1.2. Preparations of CuO 

 

There were two methods of CuO production used in this thesis – the thermal oxidation method and the 

wet synthetic method. 
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Thermal Oxidation Method: 

CuO was prepared by heating a substrate of copper in a tube furnace, shown in Figure 3.2. The diameter 

of the heating tube is approximately 5 cm. Caps were placed on the ends of the heating tubes with holes 

with diameters of approximately 0.75 cm. The air pipe was attached to one end of the cap, and air was 

released from the other side. The first substrate heated in the tube furnace was a thin, shiny, orange piece 

of copper foil of dimensions of 4 cm x 7 cm x 0.25 mm which was cut into small pieces of 0.25 cm x 0.25 

cm x 0.25 mm. The second substrate were copper pellets of the size <1 mm which were heated without 

further modification. The last substrate was copper mesh, <149 µm (100 mesh), which were layered on 

glass wool and then heated.  

 

 

Figure 3.2. The tube furnace used in the thermal oxidation preparations. The end cap 

through which the air exits is not shown. 
 

The Wet Synthetic Method: 

Two techniques of wet synthetic method were used for CuO production. The first involved Cu(NO3)2 and 

NH3OH. The bright blue crystals of Cu(NO3)2 were dissolved in dH2O, with a drop of glycerol, and reacted 

with NH3OH to the precipitate which was heated. The second technique involved Cu(oAs)2 and NaOH,. 

similar to the Cu(NO3)2, the Cu(oAs)2 was dissolved in dH2O, mixed with a drop of glycerol, reacted with 

NaOH and the precipitate was heated. These compounds are generous gifts from the laboratory of Dr. 

Foley. 
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3.2. Methods 

 

3.2.1. Preparation of H2S solution by H2S bubbling  

 

H2S water was prepared fresh every day for the experiment. H2S gas (90% H2 (g) and 10% H2S (g)) was 

bubbled into 100 mL of dH2O was at a flow rate of 60 mL min-1 for 5 minutes. It was then closed by an 

air-tight lid until the experiment. 

 

3.2.2. Preparation of the concentrated sulfide solution and the weekly stock solution 

 

To begin, ddH2O was obtained by bubbling dH2O (Milli-Q water) with N2 (g) for at least 1 hour. Next, 

100 g of Na2S·9H2O was dissolved in 100 ml of ddH2O over night. After 13 hours, a clear and colorless 

solution of concentrated Na2S (aq) was obtained. The pH of this concentrated sulfide solution was 13.4. 

Subsequently, 10 mL of the concentrated Na2S solution was diluted x 1000 by 990 mL of a solution of 1:1 

SAOB to ddH2O to prepare the “weekly stock solution”. To determine the concentration of the weekly 

stock solution, 30 mL of the weekly stock solution it was titrated with 0.1 M Pb(ClO4)2. The concentration 

of the weekly sulfide solution was given by the equation (derived from the manufacturer’s instructions): 

 

[𝑆2−](𝑝𝑝𝑚) = 

 
𝑚𝑜𝑙 𝑃𝑏(𝐶𝑙𝑂4)2

𝐿
 ·

1 𝑚𝑜𝑙 𝑃𝑏𝑆

1 𝑚𝑜𝑙 𝑃𝑏(𝐶𝑙𝑂4)2
 ·  

1 𝑚𝑜𝑙 𝑆2−

1 𝑚𝑜𝑙 𝑃𝑏𝑆
 ·

32.06 𝑔 𝑆2−

1 𝑚𝑜𝑙  𝑆2−  ·
1000 𝑚𝑔

1 𝑔
 ·

1 𝑝𝑝𝑚

1 𝑚𝑔/𝐿
 ·

𝑉𝑃𝑏(𝐶𝑙𝑂4)2

𝑉𝑊𝑆𝑆
    (3.1) 

 

The above equation can easily be converted to mol/L. The titration curve of the 0.1 M Pb(ClO4)2 vs 30 

mL of weekly stock solution is shown below.   
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Figure 3.3. Titration of the Weekly sulfide solution with 0.1 M Pb(ClO4)2. The endpoint of 

the reaction occurs between 3 mL and 3.5 mL, thus the average value of 3.25 mL was 

utilized for the calculation. The concentration of the weekly stock solution was determined 

to be 528 ppm (1.65 x 10-2 M). 

 

3.1.1. Calibration of the Sulfide Electrode 

 

The sulfide electrode used to measure the total sulfide concentration was the Cole-Parmer ISE 

Silver/Sulfide electrode. The calibration was done as per the manufacturers instructions.  

 

A standard curve was prepared by diluting the weekly stock solution with a solution of 1:1 sulfur 

antioxidant buffer (SAOB) and ddH2O (as prepared in the section 3.2.2) to the following concentrations: 

176 ppm (5.5x10-3 M), 17.6 ppm (5.5x10-4 M), 1.76 ppm (5.5x10-5 M) and 0.176 ppm (5.5x10-6 M). 

According to the manufacturer’s instruction, the acceptable slope of a line connecting a 10x change in 

concentration must be ±26. An example of a curve is presented below.  
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Figure 3.4. A representative calibration curve of the ISE Ag/S electrode. 

 

3.1.2. Preparation of H2S solutions ranging from theoretical concentrations of 3.41x103 ppm (1x10-

1 M) to 3.41x10-5 ppm (1x10-9 M) 

 

The pH dependence of the ratios of H2S (aq), HS- (aq) and S2- (aq) 

 

Given that H2S is in fact a weak acid, there is some dissociation constant that can be derived from the 

reactions. Although it is difficult to determine the exact concentrations, the ratios of H2S:HS-, HS-:S2- and 

H2S:S2-.The derivation is provided in the appendix in section A. The final equations are:  

 

 
[𝐻2𝑆]

[𝐻𝑆−]
= 1.12234 𝑥 107 ∙ 10−𝑝𝐻         (3.2) 

 
[𝐻𝑆−]

[𝑆2−]
= 1𝑥1019 ∙  10−𝑝𝐻          (3.3) 

 
[𝐻2𝑆]

[𝑆2−]
= 1.12233446 𝑥1026 ∙ 10−2𝑝𝐻       (3.4) 

Substituting pH = 7 to the above equations yields: 

[𝐻2𝑆]

[𝐻𝑆−]
= 1.12234            (3.5) 

y = 26.83x - 841.06
R² = 0.9971
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[𝐻𝑆−]

[𝑆2−]
= 1𝑥1012          (3.6) 

[𝐻2𝑆]

[𝑆2−]
= 1.12233446 𝑥1012         (3.7) 

It is important to notice that at pH = 7, [H2S] = ~[HS-] and [S2-] is approximately 0. 

 

Determination of H2S (aq) concentration from the sulfur electrode 

 

The sulfide electrode is only capable of providing the concentration of S2- (aq) in a solution. As such a 

reverse calculation is required to determine the concentration of H2S (aq) in the original sample from the 

S2- (aq) concentration of the measured sample. The pH of the original solution was adjusted using H2SO4 

until it reached pH = 7.4. The resulting solution will be referred to as the “hydrogen sulfide solution” or 

“H2S solution” since most of the S2- has converted to H2S. The concentration of the total sulfide (S2-) in 

mol/L was obtained from mixing an aliquot of the H2S solution (Vi) with SOAB (to reduce all of the H2S 

and HS- into S2-), thus making a S2- solution of volume = VT, and then measure the S2- (aq) concentration 

with the sulfur electrode. The total number of moles of S2-, was then obtained by multiplying the 

concentration of S2- by the volume of the S2- sample used in the measurement. It is also known that the 

total moles of S2- in the solution come from the sum of the total moles of S2-, HS- and H2S in the original 

H2S (aq) solution. Figure 3.5 shows the experimental setup.  

[S2-]T VT = mol S2- + mol HS- + mol H2S       (3.8) 

Dividing both sides by the volume of the aliquot of the initial solution (Vi), 

[S2−]𝑇𝑉𝑇

𝑉𝑖
 =  

mol S2−+ mol HS−+ mol H2S

𝑉𝑖
       (3.9) 

[S2−]𝑇𝑉𝑇

𝑉𝑖
 =  

mol S2−

𝑉𝑖
+ 

mol HS−

𝑉𝑖
+  

mol H2S

𝑉𝑖
      (3.10) 

[S2−]𝑇𝑉𝑇

𝑉𝑖
 = [S2−] + [HS−] + [H2S]       (3.11) 

[S2−]𝑇𝑉𝑇

𝑉𝑖
 = [𝑆2−] + [𝑆2−]1.12𝑥1012 + [𝑆2−]1.122𝑥1012    (3.12) 

[S2−]𝑇𝑉𝑇

𝑉𝑖
 = [H2S](1 + 1.122𝑥1012 + 1.12𝑥1012)     (3.13) 

[S2−]𝑇𝑉𝑇

𝑉𝑖(1+2.24𝑥1012)
 = [𝑆2−]        (3.14) 

Subbing in VT = 2 mL and Vi = 2 mL and that [H2S] = [S2-] x 1.12 x1012., 
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[S2−]𝑇 𝑥 1.12𝑥1012

(1+2.24𝑥1012)
 = [𝐻2𝑆]        (3.15) 

      

  

Figure 3.5. Preparation of the SAOB - S2- (aq) solution used for the measurement of [S2- 

(aq)] with the ISE Ag/S electrode. The blue solution represents the initial H2S solution 

containing all H2S, HS- and S2- species. The yellow solution represents the SAOB solution. 

An aliquot (Vi) is taken from the blue H2S solution and mixed with the yellow SAOB 

solution, giving the green solution with a final volume of VT. By determining the 

concentration of the green solution and multiplying by VT, the total moles of H2S, HS- and 

S2- transferred from Vi can be determined as well as its concentration. Since the 

concentration of the entire blue solution is assumed to be equal, the concentration of Vi is 

equivalent to the concentration of the blue H2S solution. Subsequently, the pH and the H2S, 

HS- and S2- ratios can then be used to determine the actual concentrations of the blue H2S 

solution. Please note: the solutions are not actually blue, yellow and green. The colors are 

added for clarity.  

 

The Dilution Methodology  

 

The concentrated sulfide solution (pH = 12.9) was titrated with H2SO4 until it reached a pH of 7.58.  Using 

the sulfide electrode (calibrated as described earlier) the concentration of the H2S solution was determined. 

Subsequently, the H2S solution was diluted in blood serum as needed to make H2S solutions ranging from 

concentrations of 3.41 x103 ppm (1 x10-1 M) to 3.41 x10-5 ppm (1 x10-9 M) of total sulfide concentration.  

 

3.1.3. Determination of the actual concentrations of the H2S (aq) solutions  

 

The actual concentrations of the H2S solutions were determined by diluting the above prepared sulfide in 

SAOB buffer (as described in section 3.2.2) and measuring the S2- (aq) concentrations with the sulfide 

electrode and then back calculating the H2S concentration as described in section 3.2.4. 
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3.1.4. Preparation of H2S – Blood Serum Solutions 

 

The sulfide solution was prepared as mentioned in section 3.2.2. Subsequently, 10 mL of sulfide solution 

was aliquoted and 200 µL of concentrated H2SO4 was added. The final pH of the solution as measured 

with a pH meter, was 7.34 while the pH of pure blood serum was determined to be 7.43. The concentration 

of the sulfide in the above mentioned H2S solution was determined as described in section 3.2.5. 

Successively the SAOB dilutions were made and actual concentrations of sulfide in the blood serum were 

determined using the sulfur electrode as described in 3.2.3. The results are shown in Table 3.1. 

 

The samples were subsequently then reacted with CuO as described in section 3.4.1. The experiment was 

also repeated 3x to determine the standard deviation of the reaction. Figure 3.6 shows the materials used. 

 

3.1.5. Raman Spectral Accumulation Conditions 

 

Raman Spectra were measured using a Reinshaw Invia Raman Spectrometer. A 514.5 nm laser was used 

as the excitation source. The scan range was from 100 to 800 cm-1. Three sets of data were collected at an 

integration that was set at 30 seconds. 

 

Figure 3.6. The blood serum used in the reaction is shown in Figure 3.6 a), while Figure 

3.6 b) shows the SAOB solution with the aliquot of H2S solution. 

 

 

 

 

a) b) 
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Table 3.1: Details of the calculation of the H2S (aq) concentration from the S2-. The S2- (aq) 

solution was prepared and measured with the ISE Ag/S electrode as described in section 

3.2.3. The calculations for the back calculation of H2S were performed as described in 

section 3.2.4. 

 

Calculated 

concentration of S2- 

ppm (Concentration in 

mol/L) 

mV Reading 

of ½ 

concentration 

Actual Concentration of 

concentration of the total S 

moles in ppm (in mol/L) 

Experimental [H2S]  

3.41x103 ppm  

1 x10-1 M 

-799 2.10 x103 ppm  

6.17 x10-2 M 

1.05 x103 ppm  

3.09 x10-2 M 

3.41x102 ppm  

1 x10-2 M 

-765 1.22 x102 ppm  

3.57 x10-3 M 

6.08 x101 ppm  

1.79 x10-3 M 

3.41x101 ppm  

1 x10-3 M 

-719 2.57 ppm  

7.54 x10-5 M 

1.28 ppm  

3.77 x10-5 M 

3.41 ppm  

1x10-4 M 

-700 5.21 x10-1 ppm  

1.53 x10-5 M 

2.61 x10-1 ppm  

7.65 x10-6 M 

3.41 x10-1 ppm  

1 x10-5 M 

-690 2.26 x10-1 ppm  

6.63 x10-6 M 

1.13 x10-1 ppm  

3.32 x10-6 M 

3.41 x10-2 ppm  

1 x10-6 M 

-683 1.26 x10-1 ppm  

3.69x10-6 M 

6.29 x10-2 ppm  

1.85 x10-6 M 

3.41 x10-3 ppm  

1 x10-7 M 

-670 4.23 x10-2 ppm  

1.24 x10-6 M 

2.11 x10-2 ppm  

6.20 x10-7 M 

3.41x10-4 ppm  

1 x10-8 M 

-660 1.83 x10-2 ppm  

5.37 x10-7 M 

9.15 x10-3 ppm  

2.69 x10-7
 M 

3.41x10-5 ppm  

1 x10-9 M 

-610* 2.76 x10-4 ppm *  

8.10 x10-9 M * 

1.38 x10-4 ppm * 

4.05 x10-9 M * 
*The numbers in red are unsure because they are below the concentration limit of the ISE electrode. 

 

Raman spectra were processed with Origin (2016) software. The baseline was subtracted using a “User 

Defined” method using a straight line with slope = 0 and y-intercept = 0 and 8 anchor points. After baseline 

subtraction, the peak(s) of the Raman spectra were found using the peak find method. 

 

  Peak Finding Method: Local Maximum 

  Smoothing Window Size: 3 

  Threshold: 0.05 

  Number of Points: 8 

  Interpolation method: Spline 
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3.2. Preparation of CuO Samples 

 

CuO samples were prepared using two techniques: the thermal oxidation technique and the wet synthetic 

technique. Air and oxygen gas entered and exited the tube furnace through 0.5 cm holes in the endcaps of 

the heating tube. Using various cylinder gauge pressures of 1, 2 and 3 psi, “light”, “medium” and “high” 

gas flows were obtained.  

 

3.2.1. Thermal Oxidation Method 

 

The thermal oxidation method was adapted from the works mentioned earlier with some 

modifications112,115,117. Firstly, copper foil (20 cm x 10 cm x 0.1 mm), copper pellets (<1 mm) and copper 

pellets (149 µm) were heated directly in a quartz tube (with or without fiberglass). Moreover, the Cu foil 

was cleaned by 100 mM HCl for 2 minutes (on both sides) followed by a wash of dH2O. Furthermore, the 

samples were heated in a tube furnace, as shown in Figure 3.5. The tube furnace was preheated to the 

desired temperature before the samples were put inside. Also, the nominal calcination temperature range 

was from 200 °C to 400 °C.  Lastly, a light flow of gas (air or oxygen) was added to the reaction.  

 

CuO Preparation from Cu Foil Samples: 

A thin copper foil of dimensions of 4 cm x 7 cm x 0.1 mm was obtained and cut into small pieces of 0.25 

cm x 0.25 cm x 0.1 mm which were placed in a quartz boat (as shown in Figure 3.7) and then heated in 

the tube furnace at different temperatures between 200 °C to 400 °C for an interval of 1 hour from 1 hour 

to 4 hours under a light flow of air. The samples were then taken on the Raman Spectra as described in 

section 3.2.7. 

 

 

 

 

 

Figure 3.7. Cu foil clippings in a quartz tube ready to enter the furnace tube. The sizes of 

the clippings were approximately 0.25 cm x 0.25 cm x 0.1 mm.  
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CuO from Ground (<1 mm) Cu Samples: 

Copper pellets of the size 1 mm were placed in a quartz boat and heated in a tube furnace for the same 

temperatures, time durations and Raman spectral accumulation conditions as in section 3.3.7.  

 

 

 

 

 

Figure 3.8. Copper pellets (<1 mm) in a quartz tube before heating. The discoloration is 

due to the lighting and the camera. The copper pellets (< 1mm) are the bright orange color 

as depicted in the far left of the image. 

 

CuO from 149 µm Cu Samples: 

A small portion of glass wool was obtained and spread out on a quartz boat. 100 mesh ground copper (size 

of 149 µm) were lightly sprinkled on the glass wool. Then this was layered with another layer of glass 

wool and then had more copper mesh was sprinkled on the glass wool. Then these layers were heated in 

the tube furnace at 400 °C between 1 to 3 hours. The Raman spectra were obtained as described in section 

3.2.7.  

 

   

 

a)      b)      c) 

Figure 3.9. Cu pellets (149 µm) and the CuO from the pellets after heating at 400 °C in air. 

Figure 3.9a) shows the Cu pellets (149 µm) as obtained from the manufacturer. Figure 

3.9b) shows the layered Cu in the quartz tube ready for heating. Lastly, Figure 3.9c) shows 

the CuO that resulted after heated at 400 °C in air. 
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3.2.2. CuO Preparation using the Wet Synthetic Method 

 

The wet synthetic technique, also known as the sol-gel technique, was used for the preparation of nano-

CuO structures. The wet synthetic technique was adapted from previous protocols with some 

differences125,128. Firstly, two different precursors were explored: Cu(NO3)2 with NH4OH and Cu(oAs)2 

with NaOH. Glycerol was added to Cu(oAs)2 substituting thioglycerol. Lastly, the nomial calcination 

temperature range was from 200 °C to 450 °C. 

 

CuO Preparation from Cu(NO3)2 Samples: 

CuO was prepared as described earlier, with a slight modifications: the calcination temperature range was 

from 200 °C to 450 °C128. Briefly, 1.199 g of Cu(NO3)2·H2O was dissolved in 6.393 mL of dH2O in a 

round-bottom flask and then stirred for 20 minutes. After stirring, the precipitate, Cu(OH)2, was isolated 

using suction filtration and subsequently heated in a tube furnace under airflow, as described in section 

3.3.1 and the Raman spectra was collected as described in section 3.2.7. 

 

 

Figure 3.10. The setup for the Cu(NO3)2 sol-gel preparation of CuO. The reaction was 

conducted in stages. Figure 3.10 a) shows the first stage where Cu(NO3)2 and NH3OH are 

mixed under constant stirring. Figure 3.10 b) shows the filtration of the Cu(OH)2, which is 

then put onto a quartz tube, Figure 3.10 c), and heated at 400 °C for 4 hours. The final CuO 

product is shown in Figure 3.10 d). 
 

 

CuO production using the Cu(oAs)2 Method:  

The CuO was prepared as described earlier with two minor changes125. Firstly, glycerol was added to 

a) b) c) d) 
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replace thioglycerol and secondly, the calcination temperatures were between 200 °C to 450 °C to 

determine the optimal synthesis temperature. Briefly, 1.901 g of copper (II) acetate (Cu(oAs)2) was 

dissolved in 19 mL of dH2O and then stirred. Afterwards, a drop of glycerol (~100 µL) was added to the 

Cu(oAs)2 and it was stirred for another 10 minutes. Subsequently, 3.809 mL 5M NaOH (1.90x10-2 mol) 

was added dropwise to the Cu(oAs)2 solution along with 120 mL of dH2O. The blue solution was further 

stirred for another half hour after which it was suction filtered for 5 hours. The experimental setup was 

nearly identical to that of CuO from Cu(NO3)2 with only slight modifications as shown in Fig 3.10. 

 

3.2.3. CuO preparation in Oxygen 

 

CuO Preparation of Cu foil in Oxygen: 

Small clippings of Cu foil (0.25 cm x 0.25 cm x 0.1 mm) were prepared as mentioned in section 3.3.1. 

These were then placed onto the quartz boat and placed onto the tube furnace at 300 °C and 400 °C, for 1 

to 3 hours under low, medium and high oxygen flow. At the designated times, small samples were removed 

from the tube furnace. 

 

CuO Prepared from Cu (<1 mm) Pellets  

 

The Cu pellets (<1 mm) were prepared and heated as described in section 3.3.1.  

 

CuO Preparation from Cu 149 µm Pellets 

 

CuO 149 µm pellets were prepared by layering Cu on glass wool (3 layers) on a quartz tube and then 

heated in the tube furnace with the same oxygen flow, times and heat as described in section 3.3.3.  

   

3.3. Preparation of CuS Samples 

 

CuS was prepared from the reaction of CuO and H2S solutions as described in section 3.4. 

 

3.3.1. 4-hour CuS samples 
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CuO samples prepared from the Cu mesh (149 µm) was prepared as described in section 3.3.1. Small 

amounts of these samples, ~130 grains (a volume of approximately 0.3 cm x 0.3 cm x 0.02 cm), were 

placed into 9 eppendorf tubes, one for each concentration sample. Then 500 µL of the H2S solution + 

H2SO4 + Blood serum (as prepared in section 3.2.6) was added to the tube. To ensure all the CuO samples 

were exposed, the tube lid was closed and the tube was inverted multiple times. After the required time 

had elapsed, the H2S solution was pipetted out and the tube was rinsed with dH2O twice. All experiments 

were repeated three times. The Raman spectra was obtained as described in section 3.2.7.  

 

3.3.2. Determination of the Rate of Accumulation of H2S of 3.41 x10-2 ppm (1x10-6 M) when exposed 

from 2 hours to 12 hours 

 

The rate of accumulation was determined by taking the time derivative of the relation between the band 

intensity and time. The procedure was the same as in section 3.5.1 with the following differences. Firstly, 

CuO was placed into 5 eppendorf tubes labelled 2 hours, 6 hours, 12 hours, 16 hours and 24 hours. 

Moreover, 500 µL of only the 3.41 x10-2 ppm (1 x10-6 M) of H2S + H2SO4 + Blood serum solution (as 

prepared in section 3.2.6) was added to each of the tubes. Lastly, the time of exposure were different, 

varying from 2 hours to 24 hours. However, each experiment was conducted 3 times to determine the 

standard deviation of the reaction. The Raman spectra was obtained as described in section 3.2.7.  

 

3.4. Specificity Tests 

 

To test for the specificity of CuO, solutions of common sulfur compounds were prepared at clinically 

relevance concentrations. CuO pellets (<1 mm), as prepared in section 3.3.1., were used for the experiment 

and the raman spectra was obtained as described in section 3.2.7. 

  

3.4.1. CuO Interaction with L-Cysteine (Cys) Solutions 

 

Cys·HCl 

2.31 mg of L-Cys·HCl was dissolved 100 mL of freshly obtained dH2O (Milli-Q water). CuO pellets 

(<1mm) were exposed to this solution for 5 mins before being washed with dH2O.  
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Cys·HCl + NaBH4
 in blood plasma 

To ensure that the Cys was not dimerizing a weak acid, NaBH4, was added. Initially 6 mg of L-Cys·HCl 

was added to 100 mL of fresh dH2O to make a 6 mg/ 100 mL solution. Furthermore, 1 mL of the 6 mg/100 

mL solution was added to 1 mL of blood plasma, with a final solution of 3 mg/100 mL in 50% blood 

plasma. Preparation of the NaBH4 solution began by dissolving 0.946 g of NaBH4 in 100 mL of dH2O to 

make a 0.25 M solution. Then 76 µL of the 0.25 M solution was added to 3 mg/ 100 mL solution of L-Cys 

in blood plasma. This solution was then reacted with CuO for 5 minutes as described in section 3.4. 

 

3.4.2. CuO Interaction with Methionine in blood plasma 

 

Similar to section 3.5.1., 4.0 mg of L-Methionine was dissolved in 100 mL of dH2O and then subsequently 

1 mL of the 4 mg/100 mL solution was mixed with 1 mL of blood plasma, thus making a 2 mg/100 mL 

solution of L-Methionine in 50% blood plasma. The solution was then exposed to CuO for 5 minutes as 

described in section 3.5.1.  

 

3.4.3. CuO Interaction with SO3
2- in blood plasma 

 

Similar to section 3.5.1, 300 mg of Na2SO3 was dissolved in 100 mL to make a 4.72 mg/100 mL solution 

of SO3
2- (aq). Subsequently, 1 mL of the 4.72 mg/100 mL solution was mixed with 99 mL of dH2O to 

make a 3.0 mg/100 mL solution of SO3
2- (aq).   

 

3.4.4. CuO Interaction with SO4
2- in blood plasma 

 

The preparation of 3.0 mg/mL solution of SO4
2- (aq) was prepared just as in section 3.5.3. The only 

variance was the use of Na2SO4 (aq) instead of Na2SO3
 (aq). 

 

3.5. Coupon Production 

 

Small rectangles of plastic (1 cm x 2 cm) were cut out and washed with acetone. A drop of crazy glue was 

added to the plastic and CuO (as prepared in section 3.4.1.3) was lightly sprinkled onto the glue. 
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Figure 3.11. The mock 1 CuO coupons. 
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CHAPTER 4: RESULTS  
 

In this section the results from the four experiments are presented. The first set of experiments are referred 

to as the “Results of the CuO/CuS Preparation Techniques” determine the optimal method for the synthesis 

of CuO which will be used for the subsequent experiments. The experiment utilizes the Raman spectra of 

the samples to judge the quality of the CuO and CuS samples. The second set of experiments are referred 

to as the “4-hour experiment”. The purpose of this experiment is to determine the correlation between the 

peak intensity of the Cu – S – S – Cu (475 cm-1) peak and the concentration of H2S in the samples. The 

third experiment is called “the Determination of the Rate of Accumulation” and its purpose is to determine 

the rate at which the band intensity changes with time for a 1.22 x10-6 ppm concentration, the most 

probable concentration of H2S in the body. The last experiment is referred to the “Specificity Tests”. The 

purpose of this ensure that the peak at 475 cm-1 is specific to the H2S and not other sulfur compounds.  

 

4.1. CuO/CuS Preparation Techniques 

 

CuO was prepared by several methods. The objective was to determine the optimal CuO synthesis method 

for the production of CuS. CuO was prepared from copper foil, copper pellets (<1 mm), copper pellets 

(149 µm) all in air and oxygen gas as well as Cu(NO3)2 and Cu(oAs)2. The CuO samples were then reacted 

with H2S solutions. The quality was analyzed by using Raman spectroscopy. The criteria for selection 

were: 

1. High quality CuO (having only 3 peaks located at the Ag and 2 Bg peaks of CuO) 

2. Reproducibility 

3. Good CuS spectra 
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4.1.1. Results of Thermal oxidation with Airflow 

 

CuO preparation from Cu Foil 

 

Cu foil clippings were prepared as described in section 3.3.1. Uniformity and reproducibility were 

determined by Raman spectral accumulations as described in section 3.2.7. The most uniform and 

reproducible CuO was prepared from Cu foil heated at 400 °C at 3 hours. Raman spectra were obtained 

of the optimal CuO from Cu foil along with the Cu foil background spectra in Fig 4.1. There are 4 peaks 

observed in the mentioned CuO spectra: 160 cm-1, 310 cm-1, 340 cm-1 and 620 cm-1. Subsequently, 

scanning electron microscopy (SEM) images were obtained in order to determine the morphology of the 

CuO. SEM images were taken and the results are shown in Fig 4.2. It can be seen from Fig 4.2 that the 

CuO morphology of the foil is flowershaped. Figure 4.3 furthermore the size of the nanoparticles are 

shown to be approximately 1.4 nm by atomic fluorescent microscopy. 

 

 

Figure 4.1. Copper background spectra and the CuO spectra obtained from heating Cu foil 

(0.25 cm x 0.25 cm x 0.1 mm) in a tube furnace for 3 hours at 400 °C. Fig 4.1a) shows 3 

overlapping background spectra of copper foil. In contrast Fig 4.1b) shows the CuO spectra 

after the thermal oxidation. It contains 4 peaks at 160 cm-1, 310 cm-1, 340 cm-1 and 620 cm-

1. A high degree of uniformity can be observed from the spectra. It is important to note that 

there are no peaks between the 340 cm-1 and 620 cm-1 peaks. 

 

 

a) b) Raman Shift (cm-1) 
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Figure 4.2. Results of the SEM imaging on CuO from Cu foil heated at 400 °C for 3 hours. 

Figure 4.2a) shows the CuO foil while b-h) show the various SEM images at different 

magnifications. 

 

Figure 4.3. Atomic Fluorescent Microscopy of the CuO flakes. The average size of the CuO 

flakes is approximately 1.4 nm. 

 

CuO from Cu pellets (<1 mm) 

 

Copper pellets (< 1 mm) were obtained and heated as described in section 3.3.1. The uniformity and 

reproducibility were determined by Raman spectral accumulations as described in section 3.2.7. The 
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optimal CuO formation from the Cu pellets < 1 mm also occurred when heated at 400 °C for 3 hours. The 

Raman spectra of the Cu pellets (<1 mm) (background spectra) and the optimal CuO are shown in Fig 4.4. 

Subsequently, morphological information was obtained through SEM images as shown in Fig 4.5. The 

results of the SEM clearly show the CuO nanorods. 

 

 

 

 

 

 

 

 

 

Figure 4.4. Raman spectra of the copper pellet (< 1mm) background spectra and the optimal 

CuO prepared from it. Fig 4.3a) shows the overlapping of 7 background spectra. Figure 

4.4b) shows three overlapping CuO spectra (heated at 400 °C for 3 hours). There are 4 

notable peaks on the spectra located at 180 cm-1, 300 cm-1, 340 cm-1 and 640 cm-1. It is also 

noteworthy that there are no peaks from 340 cm-1 until 640 cm-1 in CuO. 

 

 

Figure 4.5. Results of the SEM imaging on CuO from Cu pellets (< 1mm) heated at 400 °C 

for 3 hours. Figure a) shows the CuO pellet (<1 mm) while b-h) show the various SEM 

images at different magnifications. The morphology of the CuO at the nanoscale are 

nanorods.  

a) b) 
Raman Shift (cm-1) 
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CuO from Cu 149 µm pellets 

CuO was prepared from Cu 149 µm pellets as described in section 3.3.1. The reproducibility and purity 

of CuO was determined by Raman spectral accumulations as described in section 3.2.1. The results have 

shown that after 2 hours of heating at 400 °C, nearly perfect, uniform and highly reproducible CuO 

Raman spectra were obtained. The Raman spectra are shown below in Figure 4.6.   

 

 

Figure 4.6. Seven overlapping spectra of CuO prepared from Cu 149 um pellets heated at 

400 °C for 2 hours. There are 3 peaks in the spectra located at 300 cm-1, 320 cm-1 and 610 

cm-1. Moreover, there are no peaks in between the 320 cm-1 and 610 cm-1 spectra.  

 

The Raman spectra of CuO prepared from Cu 149 um pellets is among the highest quality of CuO and 

among the most reproducible. There are three peaks in the CuO spectra corresponding to the 1Ag, 1Bg and 

2Bg spectral peaks of CuO. Their peak locations are at 300 cm-1, 320 cm-1, and 620 cm-1 respectively. 

  

CuO from Cu(oAs)2 

 

CuO from Cu(oAs)2 was prepared as described in section 3.3.2. Briefly, a drop of glycerol was added to 

a 0.5 molar solution of Cu(oAs)2. Subsequently, a 5 M NaOH solution was added dropwise to the Cu(oAs)2 

solution and immediately after 120 mL of dH2O was added. The mixture went from clear and colorless to 
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bright blue and the resulting solution was stirred for an hour. Afterwards, the Cu(OH)2 was separated by 

suction filtration, placed in a quartz boat and then heated in a tube furnace at 380 °C and 400 °C for 1 to 

4 hours. The resulting CuO was then examined under Raman spectroscopy for quality and reproducibility. 

According to the results, the optimal CuO spectra was formed by heating at 400 °C for 2 hours, however, 

the three and four hour samples were just as successful. Fig 4.7 shows the Raman spectra of CuO from 

Cu(oAs)2 heated at 400 °C for 2 hours, 3 hours and 4 hours. It can be seen from Fig 4.7 that CuO prepared 

through this method has high purity and reproducibility.  

 

Figure 4.7. Raman spectra of CuO as prepared from Cu(oAs)2. The figure shows samples 

heated at 400 °C for 2 - 4 hours, with a total of 9 spectra. There are three notable peaks at 

300 cm-1, 320 cm-1 and 620 cm-1. Also, there are no peaks in between the 320 cm-1 and 620 

cm-1 peak. 

 

CuO from Cu(NO3)2  

 

CuO prepared from Cu(NO3)2 was prepared in the manner described in section 3.3.2. Unfortunately, there 

was no optimal CuO spectra obtained - the purity was low, yet the reproducibility was quite high. Fig 4.8 

shows the Raman spectra of CuO as prepared from a 1 M Cu(NO3)2 and 1.5 M NH3OH at 400 °C for 2 – 

4 hours. 



 

63 

 

 

Figure 4.8. Raman spectra of CuO as prepared from Cu(NO3)2 and NH3OH heated at 

400 °C for 2 – 4 hours. Raman spectral accumulations were taken over the range of 100 

cm-1 to 700 cm-1 for 30 seconds an accumulation. The spectra are highly reproducible but 

lack clear and concise peaks. there are 4 visible peaks in the spectra: 190 cm-1, 290 cm-1, 

320 cm-1 and 610 cm-1. It is also noteworthy that although there are no peaks between the 

320 cm-1 and 610 cm-1 peak, there is a high signal – to – noise ratio in between the peaks. 

 

As can be seen from the Figure 4.8, that the CuO samples are reproducible, albeit not of high quality. 

Nevertheless, there are 4 visible peaks in the spectra: 190 cm-1, 290 cm-1, 320 cm-1 and 610 cm-1. It is also 

noteworthy that although there are no peaks between the 320 cm-1 and 610 cm-1 peak, there is a high 

signal – to – noise ratio in between the peaks making the possibility of measuring a 474 cm-1 (Cu – S – S 

– Cu) peak difficult. 

 

4.1.2. CuO preparation in Oxygen gas 

 

The samples were prepared exactly as described in 3.4.3. Different levels of oxygen flow were tested; the 

flows were high, medium and low oxygen flows and each were defined in comparison to each other (i.e. 

the medium flow is greater than the low flow, yet less than the high flow rate). Then the copper substrates 

were heated at temperatures between 350 – 450 °C. 

 

Preparation of CuO from Cu foil 

 

Cu foil was prepared as described in 3.4.3.1. The optimal Raman spectra for CuO from Cu foil was seen 



 

64 

 

to be at 400 °C under medium oxygen flow for 2 hours (see Figure 4.9). 

 

Fig 4.9. Raman spectra CuO as prepared by heating Cu foil clippings of size ~0.25 cm x 

0.25 cm x 0.1 mm in a tube furnace at 400 °C for 3 hours under medium oxygen flow. 

There are a total of 7 peaks in the spectra located at 120 cm-1, 210 cm-1, 300 cm-1, 320 cm-

1, 410 cm-1, 500 cm-1, and 620 cm-1.  

 

The Raman spectra of CuO from Cu foil under oxygen gas is not uniform and contains many of the Cu 

background peaks (as seen in Figure 4.9). The spectra are non-reproducible, with every spectrum having 

a slight difference in peak ratios or an extra peak. 

 

Preparation of CuO from Cu pellets (<1 mm) in oxygen gas 

 

CuO from Cu pellets (<1 mm) was prepared under oxygen gas as described in section 3.3.1. The Raman 

spectra is shown in Fig 4.10. The Raman spectra of the CuO are non-reproducible and non-uniform. There 

are 7 visible peaks in the spectra located at 120 cm-1, 210 cm-1, 300 cm-1, 320 cm-1, 410 cm-1, 500 cm-1 

and 620 cm-1. Majority of the spectra correspond the background spectra of Cu pellets (see Figure 4.10).  

 

Figure 4.10 shows the spectra of CuO prepared from Cu pellets (< 1mm) as prepared by heating the pellets 

for 3 hours at 400 °C under medium oxygen flow. The spectra are of mediocre quality, having the 3 peaks 

of CuO at 300 cm-1, 320 cm-1 and 610 cm-1 and the impurity peak at 210 cm-1. The spectra are also 

reproducible which implies an ease in production. Moreover, there are no peaks in between the 320 cm-1 

and 610 cm-1 peak which does allow for detection of the 474 cm-1 peak. 
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Figure 4.10. CuO Raman spectra as prepared from heating Cu pellets (<1 mm) for 3 hours 

at 400 °C under medium oxygen flow. The spectra are moderately reproducible and of fair 

quality, giving 4 peaks at 210 cm-1, 300 cm-1, 320 cm-1 and 610 cm-1. Moreover, there is no 

peak between 320 cm-1 and 620 cm-1. 

 

Preparation of CuO from Cu 149 µm pellets in oxygen gas 

 

CuO was also produced from the thermal oxidation of Cu 149 µm pellets in a tube furnace at 380 °C 

400 °C for 1 to 3 hours as described in section 3.3.1. The optimal CuO preparation technique for Cu 149 

µm pellets was to heated at 400 °C for 3 hours. The Raman spectra are shown in Figure 4.11. The spectra 

are moderately reproducible yet the reaction is not uniform. 

 

 

Figure 4.11. Raman spectra of CuO prepared from Cu 149 µm pellets being heated at 

400 °C for 3 hours under medium oxygen flow. The spectra show a non-uniform oxidation 

of the Cu pellets giving rise to the two types of spectra.  



 

66 

 

 

The Raman spectra of the CuO from the thermal oxidation of Cu 149 µm of 400 °C for 3 hours are shown 

in Figure 4.11. The figure shows two different sets of spectra. The first set of spectra are from the Cu pellet 

background spectra. It contains 7 sets of peaks at 140 cm-1, 210 cm-1, 300 cm-1, 340 cm-1, 410 cm-1, 500 

cm-1 and at 640 cm-1. The second set of spectra has 4 peaks at 210 cm-1, 300 cm-1, 320 cm-1 and 620 cm-1. 

The presence of two sets of spectra suggests that the oxidation was non-uniform and the presence of the 

210 cm-1 peak in the second set suggests that there was imperfect CuO synthesis. Furthermore, since both 

sets have very little deviance from the spectral peak ratios (of the sets), it implies that the oxidation is 

reproducible. 

 

4.1.3. CuS Screening 

 

All of the Cu from Cu foil, pellet (<1 mm), pellet 149 um (1 hour and 2 hour), from Cu(NO3)2 and CuO 

from Cu(oAs)2 samples were reacted with H2S water as prepared in section 3.3.1 and their corresponding 

Raman spectra obtained. The purpose of this screening was to separate the CuO preparation technique(s) 

that produce the highest quality CuO (in terms of number of peaks and reproducibility) and that is most 

sensitive to [H2S]. The three criteria for screening are: 1) high quality of CuO (containing only 3 peaks at 

the locations 300 cm-1, 320 cm-1 and 620 cm-1), 2) the height of the 474 cm-1 peak and 3) the reproducibility 

of both the CuO spectra and the CuS spectra. The following data shows the most successful data of the 

entire screening selection of CuO. 

 

It should be noted that CuO spectra has three peaks, the first is the 300 cm-1, 320 cm-1 and 620 cm-1. They 

correspond the to 1Ag, 1 Bg and 2 Bg peaks as predicted by Group Theory. Full details were provided in 

section 2.2.2. 

 

The reactions were performed as described in section 3.1. After the reaction with H2S water, the sample 

substrate was rinsed with dH2O and subsequently dried for 1 hour after which the Raman spectra was 

obtained as described in section 3.2.7. None of the oxygen samples were selected for CuS screening since 

the CuO spectra were so weak. 
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CuS from Cu Foil: 

 

CuS from copper foil was prepared as described in sections 3.3.1. and 3.3.4. Interestingly, CuS was 

detected in the Cu foil substrates for the Cu foil heated at 400 °C at 2 hours. A comparison of the CuO 

spectra and CuS spectra of the Cu Foil heated at 400 °C for 2 hours are shown below in Fig 4.11. This 

sample is unique in that although the CuO spectra is very weak, the CuS spectra is the best recorded 

spectra in this thesis. In comparison to the spectra of Cu foil 2 hours, the Cu foil heated for 3 hours (the 

best CuO spectra from Cu foil set), has a very weak CuS spectra. The CuS spectra for Cu foil heated at 

400 °C for 3 hours is shown below in Fig 4.13. 

 

Figure 4.12. Comparing the Raman spectra of Cu foil heated at 400 °C for 2 hours and the 

same Cu foil reacted with H2S water. Fig 4.12 a) shows the CuO spectra of the sample 

while Figure 4.12 b) shows the CuS spectra of the sample. Figure 4.12a) is the background 

spectra of the Cu foil. The spectra of CuS in Figure 4.12 b) has 5 peaks. The first peak is 

at 200 cm-1, 300 cm-1, 320 cm-1, 475 cm-1 and 620 cm-1.  

 

The Raman spectra seen in Figure 4.12 b) has 5 spectral peaks at 200 cm-1, 300 cm-1, 320 cm-1, 475 cm-1 

and 620 cm-1. The ratio of the 475 cm-1 spectral peak to the 300 cm-1 spectral peak is approximately 3. 

The reproducibility of this sample was not tested due to the extreme weakness of the CuO spectra as seen 

in Figure 4.12 a). 

a) b) 
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Figure 4.13. Comparing the Raman spectra of Cu foil heated at 400 °C for 3 hours and the 

same Cu foil reacted with H2S water. Figure 12 a) shows the CuO spectra containing 4 

peaks at 180 cm-1. 300 cm-1, 320 cm-1 and 620 cm-1.  The spectra of Figure 12 a) are 

moderately reproducible. Similarly, there are 5 peaks in Figure 12b) located at 200 cm-1, 

300 cm-1, 320 cm-1, 475 cm-1 and 620 cm-1.  

 

Figure 4.13 a) and b) show the Raman spectra of CuO and CuS of Cu foil heated at 400 °C for 3 hours. 

The Raman spectra is of low quality, owing to the 180 cm-1 peak, and moderately reproducible, owing to 

the difference between the spectra. Similarly, the CuS spectra of Fig 4.13 b) was quite weak. There are 5 

peaks in the spectra located at 200 cm-1, 300 cm-1, 320 cm-1, 475 cm-1 and 620 cm-1.  The spectra are also 

non-reproducible as they have a high degree in variance.   

 

It is an interesting anomaly that although the spectra of CuO heated at 400 °C for 2 hours is weak, the CuS 

spectra is strong.  

 

CuS from CuO pellets (< 1 mm) 

 

CuO pellets (<1 mm) were prepared from Cu pellets (<1 mm) as described in section 3.3.1. Subsequently, 

the CuO pellets (<1 mm) were exposed to H2S water as described in section 3.4. Small quantities of the 

CuO pellets (<1mm) were put in eppendorf tubes and exposed to H2S water. 

 

CuO pellets (< 1mm) are much more predictable as compared to the CuO from foil. The optimal CuS 

spectra was obtained from CuO heated at 400 °C for 3 hours as shown in Figure 4.14. The figure shows 

a) b) 
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the comparison between the Raman spectra of the CuO and CuS of the sample.   

 

Figure 4.14. Comparison of the CuO and CuS spectra of Cu pellets (<1mm) heated at 

400 °C for 3 hours.  

 

The spectra of Figure 4.14 have certain important characteristics. Firstly, Figure 4.14 a) shows 4 spectral 

peaks and significant reproducibility. The spectral peaks include the 3 spectral peaks at 300 cm-1, 320 cm-

1 and 620 cm-1 of CuO and the spectral peak at 180 cm-1. Similarly, the Figure 4.14 b) shows the 5 peaks 

of the CuS sample. The peaks are located at 200 cm-1, 300 cm-1, 320 cm-1, 475 cm-1 and 620 cm-1. The 

peaks show reasonable reproducibility, yet the quality is debatable. The 200 cm-1 peak can be interpreted 

in two ways. The first is that it is the same signal as observed in Figure 4.14 a), a peak of the low quality 

CuO. The second possibility is that it is the Cu – S peak, which is expected to be at the 200 cm-1 length. 

Unfortunately, because there are two possibilities, it cannot be used for the standard curve. 

 

CuS from CuO pellets (149 µm)  

 

CuO pellets (149 µm) heated at 400 °C for 2 hours in air were reacted with H2S solutions as prepared from 

Na2S solutions as described in section 3.3.1. and section 3.4. and diluted until the concentration was in the 

range of 7.53 x10-3 ppm (1x 10-1 M). The CuO was exposed for 5 mins and then immediately washed with 

dH2O and dried for 1 hour. A comparison of the Raman spectra of CuO and CuS of the sample is shown 

below in Figure 4.15. 

a) b) 
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Figure 4.15. The comparison between the Raman spectra of the CuO and CuS as prepared 

from Cu pellets 149 µm heated at 400 °C for 2 hours. Figure 4.15 a) shows the 3 peaks of 

CuO located at 300 cm-1, 320 cm-1 and 620 cm-1. The spectra are also perfectly 

reproducible. In contrast Figure 4.15 b) shows an overlay of 6 spectra showing perhaps 

three peaks located at 120 cm-1, 280 cm-1 and 475 cm-1. The spectra are also highly 

reproducible.  

 

Figure 4.15 shows the comparison of the Raman spectra of CuO and CuS as prepared from Cu pellets 149 

µm. Figure 4.15 a) shows the Raman spectra of CuO prepared from the Cu 149 µm pellets. The spectra 

contain 3 peaks, each corresponding to one of the expected CuO peaks at 300 cm-1 (1Ag), 320 cm-1 (1Bg) 

and 620 cm-1 (2Bg). As Figure 4.15 b) shows, with such a high concentration of H2S, the largest and 

clearest peak occurs at 475 cm-1. The ratio of the 475 cm-1 peak and the 280 cm-1 peak is approximately 

7000. 

 

CuS from CuO prepared from Cu(oAs)2 

 

CuS reacted on CuO as prepared by Cu(oAs)2 as heated for 400 °C for 2 – 4 hours as described in section 

3.3.2. The Raman spectra of the CuS and the CuO are shown in Figure 4.16.   

a) b) 
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Figure 4.16: Raman spectra of the CuO and CuS as prepared by Cu(oAs)2 heated at 400 °C 

for 2 to 4 hours. Figure 4.16 a) shows the CuO Raman spectra, which contains 3 peaks 

located at 300 cm-1, 320 cm-1 and 620 cm-1. Figure 4.16 b) shows the corresponding CuS 

spectra, with 4 peaks at 300 cm-1, 320 cm-1, 475 cm-1 and 620 cm-1. The 475 cm-1 

corresponds the Cu-S – S-Cu bond.   

 

The Figure 4.16 shows a comparison between the CuO and CuS Raman spectra as prepared from 

Cu(oAs)2. As mentioned earlier, CuO which contains 3 peaks located at 300 cm-1, 320 cm-1 and 620 cm-1, 

each corresponding to one of the expected CuO peaks with great reproducibility. In Figure 4.16 b) the CuS 

spectra is presented. In the spectra, the three CuO peaks are present, along with the 475 cm-1 corresponding 

to the Cu-S-S-Cu bond. Moreover, it is interesting to note that the 475 cm-1 peak is quite small in 

comparison to the others. As such, although the quality of the CuO is high, the sensitivity to H2S is low. 

 

CuS from CuO prepared from Cu(NO3)2 

 

CuS from CuO as prepared from Cu(NO3)2 was prepared as described in section 3.3.2. The CuO was then 

exposed to H2S water for 5 mins after which it was rinsed with dH2O and subsequently dried for 1 hour 

before being measured by the Raman spectrometer. Figure 4.16 shows the Raman spectra of this CuO. All 

samples of CuO heated at 200 °C to 400 °C for 1 to 4 hours were tested, and none of them gave successful 

CuS spectra. 

 

a) b) 
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Figure 4.17. Results of the CuS experiment on CuO as prepared from the Cu(NO3)2. As it 

can be seen, there is no peak at 475 cm-1 therefore there was no CuS peak. As such these 

CuO samples are disregarded. 

    

4.2. The 4 – Hour Experiment 

 

Introduction: 

The previous experiment established the optimal method of CuO synthesis. This experiment builds on the 

previous by utilizing the optimal CuO to determine the relation between H2S concentration in solution and 

peak intensity. In this section, a detailed statistical description of the relationship between the H2S 

concentration and the average spectral peak at (approximately) 475 cm-1 upon 4 hours of exposure is 

presented.  

 

4.2.1. Results 

 

The graph of the H2S concentrations and corresponding peak intensities is shown in Figure 4.18. The 

results show an increase in the average peak intensities with increasing H2S concentrations. Although the 

results show moderate linearity, with an R2 value of 0.78, the results also show a stronger exponential 

fitting, with an R2 of 0.82. Although the exponential fitting appears to be a more accurate description of 

the data, it’s R2 decreases to 0.75 upon removing the data below the detection limit, whereas the R2 of the 

linear model increases to 0.82. As such the data is left unfitted and further measurements are required to 

distinguish between the two regression models.  
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Figure 4.18. Showing the S-S bond peaks located at ~475 cm-1 as a function of the negative 

log of the concentration of H2S after 4 hours of reaction. The concentrations of H2S used 

were 7.53 x10-3, 4.11 x10-4, 3.44 x10-6, 1.55 x10-6, 8.21 x10-7, 5.55 x10-8, 1.22 x10-8, 4.21 

x10-9 and 1.13 x10-9 ppm. 

 

There are some crucial points to discuss about the data obtained in Figure 4.18. Firstly, the data shows an 

effective measurement range of 7.53 x10-3 ppm until 1.22 x10-8 ppm (2.21 x10-1 M - 3.59 x10-7 M) and 

thus 1.22 x10-8 ppm is the effective detection limit.  

 

Secondly, it was found that as concentration decreased the frequency of Cu – S – S – Cu peak decreased. 

Since the Raman spectra can only be obtained of one spot at a time, in cases where the 475 cm-1 spectral 

peak was not observed, more spectral trials at other locations were taken until a maximum of 1 hour was 

spent searching. As such, spectra where a “0” peak at 475 cm-1 position are obtained have been interpreted 

as “difficult to find”/ “statistically low frequency of reaction” rather than “no Cu-S-S-Cu bonds on the 

CuO”. Based on this interpretation, the concentrations below the effective detection limit may have reacted 

with CuO, but due to the low frequency of the reaction it is improbable to find those reactive sites. A few 

curious observations inspired this interpretation of the data. Firstly, certain spots on the CuO were found 

to give the 475 cm-1 spectra, while directly adjacent to them there was no observed peak. This implies that 

the Cu-S-S-Cu reaction was not uniform over the CuO samples, but occurred sporadically. By the nature 

of non-uniform reactions, observation of the Cu-S-S-Cu product (via the 475 cm-1 spectral peak) would 

depend on where one searches. Secondly, the data overwhelmingly shows that higher concentrations of 

-2000

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10

R
am

an
 C

o
u

n
ts

-log[concentration] (ppm)

Peaks Avg



 

74 

 

H2S result in more frequent reactions. As the concentration decreases, it takes longer and longer to find 

reactive sites yet the maximum time spent searching per sample was only 1 hour.  

 

Furthermore, another critical trend is that as the concentration increases, the standard deviation of the peak 

intensities increases. The standard deviation of the peak intensities reflects the range of Cu-S-S-Cu present 

in a sample. As such, it implies that at higher concentrations, there is a greater variance between the 

extreme values. The interpretation of the result is as follows: the positions of CuO most reactive react very 

quickly and rapidly increase in Cu-S-S-Cu bonds thus giving large spectral peaks, whereas less reactive 

sites react more slowly and have much lower peaks. The difference between the highest peaks of the fastest 

reactions and slowest speed of the least reactive portions is the cause of the large standard deviation. In 

contrast, the lower concentrations do not contain enough H2S to produce any observable increase in peak 

spectra of the least reactive portions. Rather, only the most reactive sites react and develop the Cu -S -S-

Cu bonds. As such, the peaks are only detected on the most reactive portions and the standard deviation 

of the peaks among the most reactive portions is considerably less. This also explains why lower 

concentrations of H2S in CuO have smaller standard deviations. 

 

4.3. The Determination of the Rate of Accumulation  

 

In Raman spectroscopy, the band intensities are proportional to the chemical concentration. Thus, the rate 

of change of the intensity represents the rate of accumulation of CuS on the surface of the CuO. In the 

context of a point-of-care device, the rate of accumulation is essential to distinguish between slight 

variations in exposure time and patients with variations in concentrations of H2S. To illustrate this, let us 

suppose that the peak intensity corresponding to 7.53 x10-3 ppm in 1 min is equal to the peak intensity as 

obtained from 5.56 x10-8 ppm after 10 hours. How can a detector distinguish between these two peak 

intensities? The detector must be able to adjust for the time of exposure to distinguish between the two 

samples. In this chapter a study regarding the rate of accumulation of CuS with 5.55 x10-8 ppm (1.63 x10-

6 M) concentration of H2S is conducted.   

 

CuO samples, as prepared in section 3.3.1. were reacted with H2S solution of a concentration of 5.55 x10-

8 ppm as described in section 3.4.1. Small qualities of CuO samples (< 100 grains) were placed in 

eppendorf tubes and exposed to the H2S solution for various periods of time, all at room temperature. 
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When the reaction time had elapsed, the CuS samples were rinsed with dH2O and dried for at least 1 hour. 

Subsequently, the Raman spectra of the samples were obtained.  

 

4.3.1. The Rate of Accumulation  

 

The correlation is strongly linear with an R2 value of 0.98 and a linear range extending from 7,200 seconds 

(2 hours) until 86,400 seconds (24 hours). Fig 4.19 shows a plot of the band intensity (in Raman counts) 

against the elapsed time.  

 

The correlation between the concentration and the elapsed time is strongly linear with an R2 value of 0.98 

and a linear range extending from 7200 seconds (2 hours) until 86400 seconds (24 hours). The equation 

of the rate of accumulation is given by the equation: 

 

𝐼 = 0.1441𝑡 − 1597.6          (4.6) 

∂I

∂t
= 0.1441 𝑅/𝑠  

 

Regression statistics were obtained on the above correlation with a 95% confidence interval. The 

regression statistics is presented in Table 4.1, the ANOVA is shown in Table 4.2 followed by the Line of 

Fit plot in Figure 4.20 and lastly the plot of the residuals in Figure 4.21. 

Figure 4.19. Showing the plot of the concentration (measured in Raman counts) against the 

time elapsed for the experiment. The concentration of H2S used in the experiments was 

5.56 x10-8 ppm and the times tested for were 7,200 seconds, 21,600 seconds, 43,200 

seconds, 57,600 seconds, and 86,400 seconds.  

y = 0.1441x - 1597.6
R² = 0.9798
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The temperature is kept constant at room temperature. 

 

 

Table 4.1: Regression statistics output for peak intensities of the 475 cm-1 peak as a function 

of the H2S concentration (ppm) solutions over the effective detection limit. 

 

Regression Statistics 

Multiple R 0.99 

R Square 0.98 

Adjusted R 

Square 0.97 

Standard Error 739.67 

Observations 5 

 

 

 

 

 

Table 4.7: ANOVA for the linear relationship between the H2S concentration (ppm) over 

the effective detection limit and the peak intensity of S-S peak at 475 cm-1. 

 

ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 79648410.7 79648411 145.58 0.0012  
Residual 3 1641331.944 547110.6    

Total 4 81289742.64        

       

  Coefficients Standard Error t Stat P-value Lower 95% 

Upper 

95% 

Intercept -1597.59 612.85 -2.61 0.080 -3547.95 352.77 

Time (hours) 518.73 42.99 12.07 0.0012 381.91 655.55 
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Figure 4.20: The Line Fit plot of the time (hours) and the band intensity (Raman counts). 

The blue diamonds represent the measured peak intensities whereas the orange squares 

represent the values predicted by the model. It can be seen that the linear model explains 

the data fairly accurately. 

 

Figure 4.21: The Residual plot for band intensity over the elapsed time (hours). The blue 

diamonds represent the residual values between the intensity (Raman counts) and the linear 

regression model that describes the data. The residual plot seems to be random, which 

provides proof for the existence of a linear relationship between the H2S concentration and 

the peak intensities.  

-1000

-800

-600

-400

-200

0

200

400

600

800

0 5 10 15 20 25 30

R
e

si
d

u
al

s

Time (hours)

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30

In
te

n
si

ty
 (

R
am

an
 C

o
u

n
ts

)

Time (hrs)

5.56e-8 ppm of H2S

Predicted 5.56e-8 ppm
of H2S



 

78 

 

 

The regression statistics show an R2 value of 0.98. Furthermore, the ANOVA table reveals that F > 

Significance-F and that significance level of the data is less than 0.01. Coupled with the very strong Line 

Fit Plot and the random residuals, there is strong evidence that the diffusion increases linearly with time. 

 

4.4. Results of the Specificity Tests 

 

Over the last few hundred years, the role of H2S has become ever more increasingly important. However, 

there are other sulfur containing compounds in the body, with the four main compounds being the amino 

acids L- Cysteine (Cys) (aq) and L- Methionine (Met) (aq) and SO4
2- (aq) and SO3

2- (aq). For a clinical 

diagnosis, the testing material must be sensitive for H2S, yet indifferent to the other sulfur containing 

compounds. The clinical concentrations of these sulfur containing compounds in blood plasma are quite 

small. The clinical concentration of Cys is between 0.57 – 1.79 mg/ L225 while Met is on the order of 0.85 

mg/ 100 mL226. SO3
2- and SO4

2- are approximately 3.4 mg/ 100 mL227.The experimental concentrations 

used for Cys, Met, SO4
2- and SO3

2- were 3, 2 , 3 and 3 mg/100 mL respectively. 

 

The solutions were prepared as described in section 3.5. Taking Met as an example, 4 mg of Met were 

dissolved in 100 mL of dH2O and then a 1 mL aliquot was mixed with 1 mL blood plasma. Subsequently, 

it was reacted with CuO as prepared in section 3.3.1. for 5 mins.  

 

The Raman spectra of the CuS for each of the samples was obtained. 

 

As it can be seen from the above Figures, there are no peaks at the 475 cm-1 location and as such the 

CuO detector is specific to the H2S concentration in the blood. 
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Figure 4.22. Raman spectra of 3 mg/ 100 mL Cys·HCl in blood plasma. 

 

 

 

 

 

 

 

Figure 4.23. Raman spectra of 2 mg/ 100 mL Methionine in blood plasma.  
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Figure 4.24. Raman spectra of 3 mg/ 100 mL SO3
2- in blood plasma.  

 

 

 
 

 

 

Figure 4.25. Raman spectra of 3 mg/ 100 mL SO4
2- in blood plasma. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATION 

FOR FUTURE WORK 
 

The optimal method to prepare CuO for H2S detection was by thermal oxidation of 100 mesh Cu (149 

µm) pellets heated at 400 °C for 2 hours in low airflow. These samples were highly reproducible and gave 

clean and distinct Raman spectra. The reaction of CuO with sulphur containing molecules is a selective 

for reaction for H2S. There is a linear response between the intensity of the Raman band at 475 cm-1 and 

the concentration of H2S in solution. Linearity was established between the range of from 7.53 x10-3 and 

1.22 x10-8 ppm (6.56 x10-1 and 3.57 x10-7 M). Prolonged exposure of CuO to ultra low concentration of 

H2S (ppm) showed that the Raman response increased linearly with time. Thus, it shows that CuO binds 

H2S irreversibly and that surface area and accumulation rate are optimizable parameters for better response 

and detection. 

 

It was illustrated in this thesis that the combination of Raman spectroscopic detection and nano-CuO is a 

feasible method for development of a rapid and much needed method to detect early onset of diseases 

such as hypertension and diabetes. 

 

The overall objective of this thesis research was to develop a coupon capable of determining the 

concentration of H2S over the range of 0.1 µM – 0.1 M in blood serum. There were four specific objectives 

which served as milestones for the overall objective:  

(1) determination and optimization of the synthesis of the CuO; 

(2) determination of an optimal CuO/CuS compound; 

(3) determination of the linear detection range as well as the limit of detection of H2S using CuO; 

(4) determination of the rate of accumulation of CuS in H2S – serum solution. 

 

5.1. Contributions of the research 
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The contributions of this research are: 

(1) The finding of a novel methodology to measure H2S (aq) concentration utilizing CuO via Raman 

spectroscopy; 

(2) The finding that CuO is specific to H2S and does not interact with other sulfur compounds; 

(3) The finding that CuO is capable of H2S detection over the 0.1 µM – 0.1 M range in a relatively 

easy method; 

(4) The finding that the H2S absorption is linear over the expected clinical concentration range. 

 

5.2. Recommendation for Future Work  

 

1: Surface Enhanced Raman Spectroscopy (SERS): With the proper nanomaterial SERS substrate, it is 

possible to provide 107 enhancement of the Raman signal. Other biomaterials, such as proteins, will not 

interfere with the band intensity since CuO is specific to H2S. This substrate would allow detection of ppb 

of H2S in seconds, rather than hours. Such a substrate could be fabricated from a combination of Au or Ag 

nano particles with the nano-CuO. A SERS enhanced signal would allow for a simple Raman device with 

a less sensitive detector. As a warning, one should be careful about choosing a SERS substrate that will 

not react with H2S. 

 

2: Electrochemical method of CuS detection 

2.1. Synthesis 

2.1.1. In principle, one should be able to heat the middle of a long and thin copper wire (< 100 

µm) in a tube furnace (or other furnace) to obtain a copper wire with CuO in the middle. If 

the wire is sufficiently thin, all of the Cu would have converted to CuO. Furthermore, the 

formation of CuS will involve nearly all of the CuO, giving the maximum response in the 

change in conductivity of this wire. 

2.2.  Reaction with H2S 

2.2.1. The CuO portion can be placed in H2S solutions and the change conductivity of the wire 

can be measured in real-time. This means the added information of the rate of change of 

conductivity can be used as a possible unique identifier of the concentration. Coupled with 

the change in conductivity, these two characteristic properties should be able to yield the 

specific H2S solutions which produced them. 
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2.2.2. It should also be noted that as electricity is put through a compound, its temperature 

increases. For single drops of H2S solutions, small amounts of energy can have tremendous 

impacts. It should also be noted that warmer solutions are less capable of dissolving H2S 

solutions.  

2.2.3. A question may arise as to the change in conductivity in a real sample of blood, a sample 

full of proteins, hormones and cells. It should be noted that since pure blood is an almost 

perfect insulator of electricity, the conductivity will be correlated to the levels of electrolytes 

in the blood sample228,229. In order to know for sure, experiments must be conducted. 

However, it is this author’s hypothesis that the effects of the electrolytes can be determined 

and subtracted from the experiment.  

2.3. Design of a Detector 

2.3.1. The design of a detector will be much simpler using an electrochemical method. The 

detector will simply measure and record the rate of change of the conductivity and the 

conductivity at a particular time and compare the values with a standard curve. 

2.3.2. The detector will be an incomplete circuit that requires the chip to complete the circuit 

The chip will contain the CuO portion of wire (possibly marked with a red-dot to let patients know where 

to drop the blood). 
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APPENDIX A: H2S RATIO EQUATION DERIVATIONS 
 

H2S – HS- – S2- Relation Derivation: 

 

1. The interrelated Reactions: 

a. H2O ⇌ H+ + OH- KaH2O = 1.8x10-16 

 

b. H2S ⇌ H+ + HS- pKa1 = 7.05 

Ka1 = 8.91x10-8 

 

c. HS- ⇌ H+ + S- pKa2 =19 

Ka2 = 1x10-19 

2. Ratio Equations 

At a given pH, the concentration of hydrogen ions ([H+]) remains constant.  

1) 1a) 𝑝𝐻 =  − log[𝐻+] 

1b) [𝐻+] = 10−𝑝𝐻 

 

2)  2a) 𝐾𝑎2 =  
[𝐻+][𝑆2−]

[𝐻𝑆−]
 

     2b) 
[𝐻𝑆−]

[𝑆2−]
=  

[𝐻+]

𝐾𝑎2
  

Sub in 1b into 2b and also Ka2 = 1x10-19: 

     2c) 
[𝐻𝑆−]

[𝑆2−]
=  

10−𝑝𝐻

1x10−19
  

 

     2a) 𝐾𝑎2 =  
[𝐻+][𝑆2−]

[𝐻𝑆−]
 

                 2d) 
[𝐻+][𝑆2−]

𝐾𝑎2
 = [𝐻𝑆−] 
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 Sub in 1b into 2d. 

                 2e) 
10−𝑝𝐻 ∙ [𝑆2−]

𝐾𝑎2
 = [𝐻𝑆−] 

 

3)  3a) 𝐾𝑎1 =  
[𝐻+][𝐻𝑆−]

[𝐻2𝑆]
 

     3b) 
[𝐻+]

𝐾𝑎1
=  

[𝐻2𝑆]

[𝐻𝑆−]
 

Sub in Ka1 = 8.91x10-8 

     3c) 
[𝐻+]

8.91x10−8 =  
[𝐻2𝑆]

[𝐻𝑆−]
 

Sub 1b into 3c.  

     3d) 
10−𝑝𝐻

8.91x10−8 =  
[𝐻2𝑆]

[𝐻𝑆−]
 

     3e) 
10−𝑝𝐻 ∙ [𝐻𝑆−]

𝐾𝑎1
= [𝐻2𝑆] 

 Sub in 2d into 3e. 

     3f) 
10−𝑝𝐻 ∙ 

10−𝑝𝐻 ∙ [𝑆2−]

𝐾𝑎2

𝐾𝑎1
= [𝐻2𝑆] 

     3g) 
(10−𝑝𝐻)

2
 [𝑆2−]

𝐾𝑎1∙𝐾𝑎2
= [𝐻2𝑆] 

     3h) 
(10−𝑝𝐻)

2
 

𝐾𝑎1∙𝐾𝑎2
=

[𝐻2𝑆]

[𝑆2−]
 

Simplify using exponent laws and sub in Ka1 = 8.91x10-8 and Ka2 = 1x10-19 

     3g) 
10−2𝑝𝐻 

8.91x10−8 ∙ 1x10−19 =
[𝐻2𝑆]

[𝑆2−]
 

     3h) 
10−2𝑝𝐻 

8.91x10−27 =
[𝐻2𝑆]

[𝑆2−]
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APPENDIX B: H2S RATIO CHARTS COMPARING THE 

RESULTS OF THE DIFFERENT PKA2 VALUES 
 

Using the ratio equations derived in Appendix A, by substituting the pKa2 value of interest and different 

pH levels, the following charts can be obtained. 

 
Table B1. A chart showing the ratios of H2S, HS- and S2- for the given pKa2 values 

 

pka2 = 19       pka2 = 13 

 

pH Ratio Ratio-Value Comment  pH Ratio Ratio-Value Comment 

1 [H2S]/[HS-] 1.1220E+06 

Mostly H2S 

in Sol'n and 

almost no S2- 

 

 1 [H2S]/[HS-] 1.1220E+06 

Mostly H2S 

in sol'n and 

almost no 

S2- 

 [HS-]/[S2-] 1.0000E+12    [HS-]/[S2-] 1.0000E+18  

 [H2S]/[S2-] 1.1220E+18    [H2S]/[S2-] 1.1220E+24  

    
     

2 [H2S]/[HS-] 1.1220E+05   2 [H2S]/[HS-] 1.1220E+05  

 [HS-]/[S2-] 1.0000E+11  
  [HS-]/[S2-] 1.0000E+17  

 [H2S]/[S2-] 1.1220E+16  
  [H2S]/[S2-] 1.1220E+22  

    
     

3 [H2S]/[HS-] 1.1220E+04   3 [H2S]/[HS-] 1.1220E+04  

 [HS-]/[S2-] 1.0000E+10  
  [HS-]/[S2-] 1.0000E+16  

 [H2S]/[S2-] 1.1220E+14  
  [H2S]/[S2-] 1.1220E+20  

    
     

4 [H2S]/[HS-] 1.1220E+03   4 [H2S]/[HS-] 1.1220E+03  

 [HS-]/[S2-] 1.0000E+09  
  [HS-]/[S2-] 1.0000E+15  

 [H2S]/[S2-] 1.1220E+12  
  [H2S]/[S2-] 1.1220E+18  

    
     

5 [H2S]/[HS-] 1.1220E+02   5 [H2S]/[HS-] 1.1220E+02  

 [HS-]/[S2-] 1.0000E+08  
  [HS-]/[S2-] 1.0000E+14  

 [H2S]/[S2-] 1.1220E+10  
  [H2S]/[S2-] 1.1220E+16  

    
     

6 [H2S]/[HS-] 1.1220E+01   6 [H2S]/[HS-] 1.1220E+01  
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 [HS-]/[S2-] 1.0000E+07  
  [HS-]/[S2-] 1.0000E+13  

 [H2S]/[S2-] 1.1220E+08  
  [H2S]/[S2-] 1.1220E+14  

    
     

7 [H2S]/[HS-] 1.1220E+00 

[H2S] = [HS-

] 

 

7 [H2S]/[HS-] 1.1220E+00 

[H2S] = 

[HS-] 

 [HS-]/[S2-] 1.0000E+06    [HS-]/[S2-] 1.0000E+12  

 [H2S]/[S2-] 1.1220E+06  
  [H2S]/[S2-] 1.1220E+12  

    
     

8 [H2S]/[HS-] 1.1220E-01   8 [H2S]/[HS-] 1.1220E-01  

 [HS-]/[S2-] 1.0000E+05  
  [HS-]/[S2-] 1.0000E+11  

 [H2S]/[S2-] 1.1220E+04  
  [H2S]/[S2-] 1.1220E+10  

    
     

9 [H2S]/[HS-] 1.1220E-02   9 [H2S]/[HS-] 1.1220E-02  

 [HS-]/[S2-] 1.0000E+04  
  [HS-]/[S2-] 1.0000E+10  

 [H2S]/[S2-] 1.1220E+02  
  [H2S]/[S2-] 1.1220E+08  

    
     

10 [H2S]/[HS-] 1.1220E-03   10 [H2S]/[HS-] 1.1220E-03  

 [HS-]/[S2-] 1.0000E+03  
  [HS-]/[S2-] 1.0000E+09  

 [H2S]/[S2-] 1.1220E+00 

[H2S] = [S2-

] 

 

 [H2S]/[S2-] 1.1220E+06  

    
     

11 [H2S]/[HS-] 1.1220E-04   11 [H2S]/[HS-] 1.1220E-04  

 [HS-]/[S2-] 1.0000E+02  
  [HS-]/[S2-] 1.0000E+08  

 [H2S]/[S2-] 1.1220E-02  
  [H2S]/[S2-] 1.1220E+04  

    
     

12 [H2S]/[HS-] 1.1220E-05   12 [H2S]/[HS-] 1.1220E-05  

 [HS-]/[S2-] 1.0000E+01  
  [HS-]/[S2-] 1.0000E+07  

 [H2S]/[S2-] 1.1220E-04  
  [H2S]/[S2-] 1.1220E+02  

    
     

13 [H2S]/[HS-] 1.1220E-06   13 [H2S]/[HS-] 1.1220E-06  

 [HS-]/[S2-] 1.0000E+00 [HS-]=[S2-]   [HS-]/[S2-] 1.0000E+06  

 [H2S]/[S2-] 1.1220E-06  
  [H2S]/[S2-] 1.1220E+00 [H2S]=[S2-] 

         

14 [H2S]/[HS-] 1.1220E-07   14 [H2S]/[HS-] 1.1220E-07  

 [HS-]/[S2-] 1.0000E-01  
  [HS-]/[S2-] 1.0000E+05  

 [H2S]/[S2-] 1.1220E-08  
  [H2S]/[S2-] 1.1220E-02  
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APPENDIX C: THE ONLY VALUE EFFECTED BY PKA2 

IS [S2-]: 
 

The following example illustrates how the only value effected by the pKa2 is [S2-]: 

 

At pH =7, given total [S2-] concentration of = 1.0 x10-1 M, obtained from a ½ dilution of H2S solution in 

SAOB, what are [H2S], [HS-], [S2-]? (See Section 3.2.4 for full details on the calculation.) 

 

pKa2= 19:  pKa2=13 

[𝑆2−] =
[𝑆2−]

𝑇
 𝑉𝑇

𝑉𝑖·(1+1.122𝑥1012+1𝑥1012)
   

 
[𝑆2−] =

[𝑆2−]
𝑇

 𝑉𝑇

𝑉𝑖·(1+1.122𝑥106+1𝑥106)
   

Given VT/Vi = 2  Given VT/Vi = 2 

[𝑆2−] =
2[𝑆2−]𝑇

(2.122𝑥1012)
 

 
[𝑆2−] =

2[𝑆2−]𝑇

(2.122𝑥106)
 

[𝑆2−] =
2 · 1.0𝑥10−1𝑀

(2.122𝑥1012)
 

 
[𝑆2−] =

2 · 1.0𝑥10−1𝑀

(2.122𝑥106)
 

[𝑆2−] =
2.0𝑥10−1𝑀

(2.122𝑥1012)
 

 
[𝑆2−] =

2.0𝑥10−1𝑀

(2.122𝑥106)
 

[𝑆2−] = 9.425𝑥10−17𝑀  [𝑆2−] = 9.425𝑥10−11𝑀 

[𝐻2𝑆] = 1.122 𝑥 1012[𝑆2−]  [𝐻2𝑆] = 1.122 𝑥 106[𝑆2−] 

[𝐻2𝑆] = 1.122 𝑥 1012(9.425𝑥10−17𝑀)  [𝐻2𝑆] = 1.122 𝑥 106(9.425𝑥10−11𝑀) 

[𝐻2𝑆] = 1.0575 𝑥 10−4M  [𝐻2𝑆] = 1.0575 𝑥 10−4M 

[𝐻𝑆−] = 1.00 𝑥 1012(9.425𝑥10−17𝑀)  [𝐻𝑆−] = 1.00 𝑥 106(9.425𝑥10−11𝑀) 

[𝐻𝑆−] = 9.42 𝑥 10−5𝑀  [𝐻𝑆−] = 9.42 𝑥 10−5𝑀 

 

 

Therefore:       Therefore: 

[H2S] = 1.0575 x10-4 M      [H2S] = 1.0575 x10-4 M 
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[HS-] = 9.45 x10-5 M      [HS-] = 9.45 x10-5 M 

[S2-] = 9.425 x10-17 M      [S2-] = 9.425 x10-11 M 
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APPENDIX D: INCOMPLETE PREPARATION OF 

COUPON USING CUO PLASMA 
 

Plasma Coupon Production 

Cu (foil) was cleaned with 100 mM HCl for 1 min and then scrubbed with scotch brite until it shined. The CuO was 

then screwed to a plate to the inside of a plasma chamber. A nominal voltage was applied (a negative bias) of ~600 

V (400V is the breaking point of O2, but 600V provided a bright blue-purple glow). The pressure of the chamber 

was dropped to 320 mTorr. The oxygen flow rate of 100 sccm (100%). The time used for the experiment was 1 

hour. However, due to a malfunction with the high voltage power supply, we were unable to finish it. Note: Oxygen 

plasma was observed. 

 

   

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

a)            b) 

Fig D1. Showing the vacuum plasma chamber and a piece of copper foil ready for experimentation. Fig D1a) 

showing the ion plasma chamber. This picture is courtesy of Prof. M.P. Bradley, University of Saskatchewan. 

Fig D1b) shows a piece of copper foil ready for the plasma reaction.  


