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Abstract

This thesis concerns the localization of an Internet-of-Things (IoT) target (sensor) that

intermittently transmits a signal (message) to an array of spatially separated receivers (gate-

ways). In the setting of primary interest the source’s signal is known to the receivers. The

application of primary interest is a target (sensor) transmits a short time duration (burst)

signal in a homogeneous line-of-sight environment to gateways that can measure the time of

arrivals (ToAs) of the source’s signal subject to suffering zero-mean Gaussian measurement

errors. The time when the source emits the signal (i.e., the transmit time) is unknown.

However the results can be applied in a wide range of applications.

The problem of localizing a target is approached from a probability density point of view

as opposed to the well-explored point estimation point of view. Equations for the joint

a posteriori probability density functions (pdfs) of the target’s coordinates in both two-

dimensional (2D) and three-dimensional (3D) spaces are developed using the measurements

of the times that a transmitted message arrives at the spatially separated gateways. The

a posteriori pdfs also take uncertainty, i.e., measurement errors, in the positions of the

gateways into account.

The corroboration and utility of the a posteriori pdf are explored through various ex-

amples to demonstrate its superiority and usefulness. First, it is shown that the joint a

posteriori pdf of the target’s location is not always approximately jointly Gaussian, espe-

cially when the target is in close proximity to one of the gateways, or when the gateways are

located in close proximity to each other. Next, several examples are provided to examine the

effects of the measurement errors in the positions of the gateways to the spread and position

of the resulting a posteriori pdfs. These examples also incorporates the a priori pdf, which

makes the a posteriori pdf very useful in many practical scenarios, especially when the a

priori pdf is quite restrictive. Lastly, an improvement of the a posteriori pdf is thoroughly

analyzed for a scenario where there are multiple transmissions of the message from a target

located at a fixed position.

While intermittently active targets are the rule in the application of primary interest,
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a chapter is dedicated to targets that transmit a continuous signal that is unknown to

the receivers. In a scenario where the transmitted signal is unknown to the receivers, the

ToAs can not be estimated, but the time-difference-of-arrivals (TDoAs) can be estimated by

time-windowing the continuous signal and cross-correlating the windowed segments. An a

posteriori pdf is developed for TDoAs obtained by taking the difference of ToAs. It is shown

that this a posteriori pdf does not apply to TDoAs obtained by cross-correlation unless one

of the segments being cross-correlated is noise free.
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1. Introduction

There is a variety of applications where one needs to know the location of an object. For

example many applications that run on a cellular telephone need to know the location of the

cell phone. Another example is trucking companies need to know the on-route locations of

their trucks so that the people who load a truck can be scheduled to be on site when the truck

arrives. Another example is locating house pets that run away from a transmitter located in

the pet’s collar. Also, our military depends heavily on locating objects. For example they

would like to know the location of all the ships and submarines in the ocean all the time.

This thesis is concerned with the localization of low-power asynchronous burst transmis-

sions. The transmitters would be placed on trucks or in the collars of pets or on/in one of

many other things. Of interest in this thesis is a posteriori probability density function for

the co-ordinates of the transmitter. The algorithm used to generate the a posteriori use the

times the burst signal arrives at a network of spatially separated receivers. Of primary in-

terest is a low-power wide-area network known as LoRaWAN and the transmitters designed

to work within that standard.

1.1 A General LoRaWAN System

Low-power wide area wireless networks (LPWANs) are composed of battery-powered

devices that communicate over long ranges at low bit rates with several centralized receivers

that are connected to the Internet. Such networks allow data generated by remote sensors to

be collected by an application server and used to control machines or initiate a human action.

For example, temperature sensors that transmit a message when the temperature drops

below 1◦C could be deployed throughout an orange orchard. Upon receiving “temperature”
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messages, the application server could send messages to turn on sprinklers that shower the

orange trees providing extra thermal mass that prevents the trees from freezing.

Low-power wide area wireless networks are self-contained and do not have to adhere to

standards. However, standards have been developed by service providers and manufacturers

to allow interoperability of equipment from different manufacturers and, at the same time,

increase the scale of manufacturing.

Example standards developed for LPWANs include Sigfox [1], Ingenu [2], DASH7 [3],

LoRaWAN [4], and NB-IoT [5]. While different standards use different technologies and have

their own advantages and disadvantages [6], this PhD research is concerned with LoRaWAN.

This technology is gaining tremendous commercial growth in more than 100 countries around

the world (see https://lora-alliance.org/). Furthermore, the industrial partner of this

research, Cisco Systems Canada, is also a key member in the LoRa Alliance, an organization

responsible in developing the LoRaWAN standard and promoting it.

A generic LoRaWAN network is shown in Figure 1.1. The network consists of 4 different

types of equipment: (i) battery powered sensors, (ii) the sensor-internet interface referred to

as the gateways, (iii) a computer that controls/administers the gateways referred to as the

network server, (iv) a computer that interprets and reacts to sensor data referred to as the

application server and (v) a computer to communicate with the application server referred

to as the e-commerce server.

The purpose of the system is to gather information collected by a network of sensors

and use this information to control them or possibly some other sensors. The information

collected by the sensor is organized into a message and transmitted wirelessly over the ISM

band (902 to 928 MHz in North America) to all gateways that are in range. All gateways

that receive the message re-format it and send it over the Internet using User Datagram

Protocol (UDP) to a single network server. The UDP protocol is a low-reliability “best

effort” protocol that does not guarantee delivery of the message.

The network server analyzes the messages it receives to get the identification number of

the sensor that originated the messages. The network server then forwards the messages

2



Figure 1.1: A generic LoRa network.

to the appropriate application server using the more reliable transmission control protocol

(TCP).

The application server processes the messages, perhaps displaying information on a web-

page or perhaps sending a control command through the network server and through a

specified gateway to a network of sensors. In addition, the application server receives and

processes requests from e-commerce servers initiated by end-users to serve their specific

needs.

Commands that control sensors are originated from the application server. They are sent

to the network server where they are forwarded to the gateways. The gateways broadcast

the messages over the ISM band to the network of sensors.

The LoRaWAN standard specifies the radio frequency (RF) signals that link the gateways

and sensors. The standard also specifies the interface protocols for communication between

the application server and network server, network server and gateways, and gateways and
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sensors. The only protocol of importance to this proposal is the protocol for communication

between gateways and sensors. The standard allows for three different protocols that support

different levels of trade-off between battery efficiency and gateway-to-sensor communication.

The class A protocol was derived to preserve battery in the sensors. In this protocol, the

sensors transmit whenever they need to, which is usually not often, and have their receivers

turned off except for a small window of time immediately after they transmit. While the

time of transmission is determined by the sensor, the standard limits the transmission rate

to something like 3 messages an hour. Limiting communication with a sensor to a short time

immediately after it has initiated a message severely limits the ability of the application

server to control the sensors. This is the price that must be paid to preserve battery power

that would be consumed by an active receiver.

The class B protocol has the sensors communicating with the gateways at regularly

scheduled times. This gives the application server better control over the sensors, but at the

expense of battery power needed to run the receiver in the sensor.

The class C protocol is derived to give the application server very good control over the

the sensors. In this protocol the sensors have their receivers turned on at all times. Of course

this will be a steady drain on the battery. Practically, class C sensors are powered from the

electrical grid.

The objective of this research is to find algorithms that run in the application server that

not only estimate the location of Class A sensors but also determine the probability that the

target is or is not in a specified region. There are two types of inputs. One is the geo-location

of the gateways. The other is the “time stamp” inserted in the message by the gateways.

The precision of both affect the precision of the estimate and therefore is discussed in the

next section.

1.2 Timestamp Precision of a LoRaWAN Gateway

This section has been included for two reasons:
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1. It is prudent to explain the physics that provides the geo-location of the gateways and

the time used in the time stamp since the ability to locate a class A device depends

entirely on the ac-curacies of the geo-locations of the gateways and the time stamp

inserted by the gateways.

2. The methodology used to locate and set the time in a GPS receiver have been adapted

to the localization of class A devices and provides background for several methods

proposed in the literature. Some of these methods will be discussed later in this thesis

and the background provided in this section provides a foundation.

It is pointed out that, while quite interesting and supportive of existing methods, this

section, i.e., Section 1.2 does not directly contribute to the understanding of the techniques

proposed n this thesis, and does not need to be fully understood or even read for the that

matter, to understand the research reformed in this thesis.

The LoRaWAN standard supports the gateways “time stamping” messages with the times

the messages are received before forwarding them to the network server. This is done by

reformatting the message to include a field that contains the time the message was received

from the sensor by the gateways. The gateways derive the time that they stamp in the

messages from GPS satellites.

The time stamps in the messages as well as the geo-locations of the gateways are used

in the application server to estimate the geo-location of the sensor that transmitted the

messages. The error in the estimate of the geo-location of the sensor depends on the errors

in times that are stamped in the messages as well as the errors in the geo-locations of the

gateways. The gateways derive their geo-locations and the time used in the time stamps

from the GPS satellites. To further understand the precision of the “time stamps” in the

gateways, a basic understanding of the Global Positioning System is required.

A constellation of 27 orbiting satellites is used by the Global Positioning System (GPS)

in order to provide positioning, navigation, and timing service [7]. They are arranged into six

equally-spaced planes surrounding the Earth at the height of 20,200 km. At least 4 satellites

are in the view of any point on the planet. The on-board oscillators of the GPS satellites,
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which are made of either rubidium or cesium, are automatically adjusted to Coordinated

Universal Time (UTC) managed by the United States Naval Observatory. Therefore, the

GPS satellites become the primary source for time and frequency to most points on the

planet. This time is distributed by broadcasting messages with an embedded pseudo-random

noise (PRN) code, which is either a coarse acquisition (C/A) code with a chip rate of 1023

chips per millisecond or a precision (P) code with a chip rate of 10230 chips per millisecond.

The PRN code is used to identify the broadcasting satellite [8]. The C/A code embedded

in the message is transmitted in L-band on a carrier of frequency 1575.42 MHz (L1) and

the P code embedded in the message is transmitted in L-band on two carriers of frequencies

1575.42 MHz and 1227.6 MHz (L2).

A gateway locates itself using messages broadcasted from GPS satellites. To simplify the

explanation of how this is done, assume that the LoRaWAN gateways and the satellites are

in the same plane. The location of Satellite i, (x
(s)
i , y

(s)
i ) and the time at which the message

is transmitted, t
(s)
i , are obtained in the message sent from Satellite i. The time the message

from Satellite i arrives at the gateway according to the onboard-clock is denoted t̂i. This

time includes a bias b from the gateway’s clock since its clock is not synchronized to the clock

in the satellite. Since all the satellites are synchronized in time, the bias b is the same for

all satellites. The Time-of-Flight (ToF) from Satellite i to the gateway is (t̂i − b− t(s)i ). For

L satellites, the position (xg, yg) of the gateway is the solution to the set of range equations:

ri = (t̂i − b− t(s)i )c , i = 1, 2, . . . ,L, (1.1)

where c = 2.9979× 108 m/s is the speed of light and ri =

√
(xg − x(s)

i )2 + (yg − y(s)
i )2 is the

range from the gateway to Satellite i.

Several methods can be used to solve the set of equations generated in (1.1) and can be

visually explained by their geometric interpretation. Let r̂i = ri+b×c, i = 1, 2, . . . ,L, denote

the measured range from the gateway to Satellite i. The most popular method estimates the

position of the gateway as one point in the polygonal whose vertices are the intersections of

pair-wise circles which are centered at (x
(s)
i , y

(s)
i ) with radii r̂i as shown in Figure 1.2.
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Figure 1.2: Circle geometry.

The exact position of the gateway coincides with the intersection of the circles with the

correct ranges.

Another popular method uses one measurement to cancels out the bias b by using the

measured range difference, denoted d̂i,j = r̂i − r̂j = ri − rj. The locus of the points which

have a constant difference between ranges from them to two satellites is a hyperbola. The

position of the gateway is the intersection of two hyperbolas associated with two measured

range differences. While it is possible to determine the location of the gateway within an

order of centimeters, doing so is expensive. Commercially available LoRaWAN gateways [9]

specify self-location accuracy of a few meters.

The GPS satellites can be also used to synchronize gateways in the network to minimize

the relative errors in the timestamps. There are three techniques used to synchronize the

clocks among gateways: one way technique, the common-view technique, and the carrier

phase technique [8]. In the one-way technique, the gateway’s clock is synchronized with the

GPS satellite’s clock by using the 1 pulse per second signal generated by the GPS satellite.

The pulse controls a time interval counter, that estimates the propagation delay based on

the co-ordinates of the satellite and gateway and the time sent by the satellite. A gateway

that uses the C/A code can synchronize its time with an error that has a standard deviation

of 10 ns or less [8].
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The common-view technique is an enhancement of the one-way technique designed to

synchronize the clocks in two gateways. It is essential for the two gateways to receive the

message sent from a common satellite at the same time. In order to meet this condition, the

two gateways are scheduled to simultaneously observe the message sent from the common

satellite based on the tracking schedules of the GPS satellites published by the Bureau

International des Poids et Mesures. This technique works well providing the times the

message arrives at the two gateways are nearly the same. Figure 1.3 shows an example

of synchronizing the clocks of Gateways A and B in which the Time-of-Flight (ToF) of

the messages propagating from the common satellite to Gateways A and B are ToFA and

ToFB, respectively. The times the signal transmitted from the satellite arrives at Gateways

A and B are recorded using the time of the local clocks. These times are denoted tA and

tB, respectively. The difference between the clocks of Gateways A and B is tA − tB −

(ToFA − ToFB). The quantities tA, tB, ToFA, and ToFB are exchanged between the two

gateways in order to set the clock of one gateway to be the same as the other. While

most of the systematic errors (common errors) in the ToFs and arrival times at the two

gateways completely cancel out, the independent errors, which are caused by things like the

Johnson noise or local oscillators in the two gateways do not cancel out and impact the

8



accuracy of the time synchronization. The difference in time between two gateways after

they are supposedly synchronized can have a standard deviation as little as 2.5 ns if the

synchronization procedure utilizes measurements taken over 1-day. A standard deviation of

2.5 ns requires multiple satellites. With just one reference satellite, a standard deviation of

5 ns is possible [8].

The carrier phase technique is the enhancement of either the real-time one-way technique

or common-view technique. It uses both the L1 and L2 carrier frequencies, which are 1000

times higher than the C/A code frequency in order to achieve higher resolution. The error

in time after synchronizing using measurements taken over 1-day has a standard deviation

of 250 ps or less. The drawback of this technique is that it requires extensive post-processing

of the collected data and, hence, is more suitable for establishing exact time in a laboratory

setting [8].

From the above discussion, the random error in timestamps of gateways can have a

standard deviation of 5 ns or less depending on the technique used to extract the time from

GPS satellites and to synchronize the clocks in the gateways. Localization methods proposed

in this proposal use only the time stamps to compute the location of the target. While the

error in timestamps of the gateways can be less than 5 ns, or even 2.5 ns depending on the

time recovery technique used, unfortunately it is not the only source of error.

The accuracy of the “time stamp” in a gateway has two components. One component is

the accuracy of the clock that has been loosely synchronized to the clock in a GPS satellite.

The other component is error in recognizing the point in time the message has been received.

The accuracy of the latter depends on the bandwidth and duration of the message as well

as the signal-to-noise-ratio (SNR) at the input to the receiver. The error in the latter will

not be investigated in this Ph. D. research. However, whatever algorithm is proposed, it has

to work with the accuracy provided by any of the commercially available gateways, which

could be a standard deviation of 25ns or even larger [10,11].
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Figure 1.4: Geo-localization system with L gateways.

1.3 Scope of the Research

As mentioned, the objective of this research is to find algorithms that run in the applica-

tion server with two goals. The primary goal is to determine the probability that the target,

i.e., the class A device, is either inside or outside a specified region. The secondary goal

is to estimate the location of the target with minimum mean squared error. The inputs to

the algorithm are the geo-locations of the multiple gateways that receive the message and

the “time stamps” that are inserted in the messages by the gateways. Of course, the time a

gateway receives the message will depend on its distance from the sensor. This is illustrated

in Figure 1.4, where the gateways and the target are assumed to lie on a planar surface and

the surface location of the gateways indicated by (x`, y`), ` = 1, 2, . . . ,L, and the surface

location of the target is indicated by (x, y).

The time stamp inserted in the message by Gateway ` will be the measured time the

message arrives at Gateway `. This time is referred to as the estimated Time-of-Arrival
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(ToA) and is given by

T̂oA` = t+ ToF` + ∆T`, (1.2)

where ∆T` is the measurement error in the “time stamp” of Gateway ` and ToA` is the true

time-of-arrival given by

T̂oA` = t+ ToF` + ∆T`, (1.3)

where ToF` is the time of flight from the target to Gateway ` and t is the exact time of

transmission of the message. The errors, ∆T`, ` = 1, 2, . . . ,L, in (1.2) are caused in part by

loose time synchronization to the GPS satellites and in part by Johnson noise at the input

to the low noise amplifier. Therefore, ∆T`, ` = 1, 2, . . . ,L are random errors, independent

of each other and reasonably modeled as Gaussian.

The times of flight from the target to the gateways depend on the lengths of the prop-

agation paths. In a line-of-sight environment, which is an environment where there is no

obstacle in the straight line between the antennae of the target and the gateway, the time-of-

flight is the speed of light times the Euclidean distance between two antennae. This scenario

is called a line-of-sight (LoS) scenario. For a LoS path the time of flight from the target to

Gateway ` is given by

ToF` =

√
(x` − x)2 + (y` − y)2

c
. (1.4)

In urban environments often the LoS path is blocked and the propagation from the

target to the gateway is indirect via a reflection from a building or other structure. Such an

environment is referred to as a non-line-of-sight (NLoS). A NLoS scenario is illustrated in

Figure 1.5.

The presence of NLoS paths makes it impossible to use multi-lateration� to find the

location of the target. In these urban environments the application server has to sort out

which gateways are linked to the target by NLoS paths and either discard them or make

some sort of correction to minimize the effect of the excessively long propagation paths.

�Multi-lateration is the localization of a target using the times-of-arrival of a burst transmission from
the target at a system of spatially separated sensors.
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The objective is to localize a target with a solver, which is a program that runs on a

computer, connected to the application server that uses the time stamp information inserted

by several gateways into the single message they relay from a Class A end device to the

network server. Here the word “localize” is used to mean both find the probability the

target is either inside or outside a specified areas and find a point estimate that minimizes

the mean squared error.

It should be pointed out that, beside the time of arrival, the received-signal strength

(RSS) is usually obtained at the gateway as well. The set of RSS measurements can also

be used for the purpose of localization. While RSS-based localization algorithms [12–17] are

generally simpler than ToA-based algorithms, they are very sensitive to the path-loss model

used to convert RSS to distance. ToA-based localization algorithms [18–26] are generally

much more accurate than RSS-based algorithms, but they require precise clock synchro-

nization. It is possible to combine RSS-based and ToA-based algorithms to achieve better

performance [27–29]. It will be explained how RSS information can be used to improve

performance of the techniques presented in this thesis.

LoRaWAN is a relatively new technology, but geo-localization is not a new topic. Cer-
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tainly GPS satellites have been used for localization for years. A great deal of research has

been done on localizing things like spacecraft orbiting the earth, the buoys tethered to a

fisherman’s lobster traps, adversarial submarines deep in the ocean, assets in transit and

ear-tagged wildlife. While the localization of LoRaWAN compatible sensors is similar to

localization of other objects, it is sufficiently different to warrant independent investigation.

The objective of this study is to efficiently and accurately localize LoRa end devices (i.e.,

LoRa sensors) that are referred to as the targets to be localized.

A major part of this research is to investigate algorithms used in other applications and,

where possible, relate those algorithms to the geo-localization of LoRa targets. Unfortu-

nately, the algorithms described in the literature use a variety of notational systems that

consist of systems of symbols, conventions (e.g. use a bar over a variable to indicate a time

average) and unique terminology. Estimation algorithms are communicated by engineers and

scientists mathematically using probability and statistics, which is an area of mathematics

that has an elaborate notational system that includes a large number of symbols, large set

of conventions and many mathematical terms. There is no universal system of symbols and

conventions for probability and statistics. The notational systems, which are quite complex,

vary from application area to application area and also from country to country. However,

probability theory underpins all of the different notational systems, so it is certainly pos-

sible to translate one system to another. Unfortunately, the notational systems are quite

complicated making it very difficult for engineers and scientists to think in terms of more

than one system. Real-time symbol-by-symbol translation while reading a paper diffuses the

arguments and leads to misunderstanding.

In order to properly describe work done by others, considerable effort will be spent on

both explaining and translating symbols and notational conventions found in the literature.

Great care will be taken in defining the problem and tying the symbols and conventions to

the physics that underpins the problem. Unfortunately, paying great attention to details will

not help those who are familiar with the system of symbols presented in this document. Such

readers may find the next Chapter tedious, but for them, with this warning of tediousness,

the next Chapter should be a quick read.
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2. The Problem, Existing Solutions and the

Symbolism

2.1 The Physics of the Problem

In this chapter, the problem is simplified by assuming that the target and the gateways

all lie in the same plane. It is referred to as the 2-dimensional localization problem. Later,

the problem will be expanded to 3-dimensions. The spatial geometry of the two-dimensional

problem is illustrated in Figure 2.1.

It is pointed out that the gateways are typically mounted on towers or the top of tall

buildings and will, in most cases, be higher than the target. However, it will be shown later

including the third dimension will in general not provide useful height information as the

standard deviation in the height estimator will often exceed the roughness of the terrain in

most applications.

2.2 Probabilistic Model of the Physics for an LoS Environment

Probabilistic assessment, by its nature, involves statistical analysis that includes random

variables and their associated density functions. The foundation for almost all probabilistic

problems tackled in scientific papers involves “probabilistic experiments” (page 23 in [30]).

Papers in the literature that develop algorithms for the estimator of a random variable

usually let the reader imagine the probabilistic experiment. It is believed by the author that

a very clear understanding of the probabilistic experiment is necessary to fully comprehend

an algorithm that makes a probabilistic assessment or estimates a parameter. For that reason

the model for determining the probability that the geo-location of a LoRaWAN end-device is
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Figure 2.1: Spacial geometry of the problem.

within a specified area is constructed in detail starting with the definition of the probabilistic

experiment. While, for the case at hand, the probabilistic experiment could have been left

for the reader to imagine, an explicit definition is very helpful to understand the algorithm

and the results it produces.

A probabilistic experiment is performed by drawing a single element from a set S [30].

The element that is drawn is referred to as the outcome of the experiment. The set S is

referred to as the sample space and, by definition, contains all possible outcomes of the

experiment. An experiment also requires a probability function. The probability function,

denoted P (·) [30], maps each possible event into a “probability of occurrence”, where an

event is a subset of S. For the problem at hand, the sample space has a countable infinity of

elements and is denoted S = {ζ1, ζ2, . . . }. If after performing the experiment the outcome is

ζi, then any event containing outcome ζi is said to have occurred. For example, if event G is

the subset {ζ1, ζ2, ζ3} and the outcome of the experiment is either ζ1, ζ2, or ζ3 then event G

occurs. Otherwise event G does not occur.

Each element of S is an I-tuple consisting of the geo-location of the target, the time the
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message is transmitted, the measured geo-locations of the L gateways in range of the target

and the measured times the message arrives at the gateways as well as the errors on the

measurements.

The probability function is completely defined if the probability of occurrence of each

elementary event {ζi}, i = 1, 2, . . . , is defined. For the analysis carried out in this thesis,

the probability function will be defined implicitly through the definition of several random

variables and their density functions.

Random Variables (RVs) are, by definition, functions with domain S and counter-domain

the real line. Since the domain S consists of outcomes ζ1, ζ2, . . . the generic argument of

every RV will be symbolized with ζ. For example, x(ζ) represents the random variable “x”,

with argument ζ being a variable that could be any one of ζ1, ζ2, . . . .

Prior to performing the experiment a random variable, x(ζ), could be any of the values

x(ζ1), x(ζ2), . . . . After the experiment is performed and the outcome is known, say it is

ζi, then random variable x(ζ) becomes x(ζi) and has just one value. Note the value that

a random variable takes on depends entirely on the outcome. If the outcome is ζ2, then

x(ζ) has the value x(ζ)
∣∣
ζ=ζ2

= x(ζ2). Prior to performing the experiment x(ζ) is referred

to as a random variable. After the experiment is performed the value that random variable

x(ζ) takes on is denoted x(ζ), which differs in notation in that ζ is not bold. That is x(ζ)

is an observation or an instance of random variable x(ζ). The symbol ζ can be viewed

as a variable representing all possible outcomes and ζ is the outcome after the experiment

is performed. It is both easy and unambiguous to refer to x(ζ) when the experiment has

been performed and the outcome is known. For example, if the outcome is ζ2 then the post

experiment value is x(ζ2). However, there are many occasions where a reference is made

to the post experiment value without knowing the outcome. That is, after the experiment

has been performed x(ζ) is observed to be a value, say 3.9, but the specific outcome is not

known. In such cases, the observation is written x(ζ), where ζ is not bold.

In order to remove ambiguity “ζ” will be in bold if x(ζ) is used in the context of a random

variable, i.e., pre-experiment, and “ζ” will be in regular font if x(ζ) is either an observation
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or a hypothesized outcome. Stated simply, x(ζ) denotes a random variable and x(ζ) denotes

an observation of the random variable.

RVs are completely characterized by their Probability Density Functions (pdf). The

probability density function for RV x(ζ) is denoted fx(a), where the subscript x indicates

the density function is associated with RV x(ζ) and the argument “a” is a real number. The

density function fx(a) could have been defined as: “The function fx(a) whose area between

x = −∞ and x = a is the probability that the outcome ζ belongs to the set of outcomes

that make x(ζ) less than a.”. In mathematical terms fx(a) is defined as any function that

satisfies

P ({ζ : x(ζ) ≤ a}) =

a∫
−∞

fx(x)dx, (2.1)

where the set {ζ : x(ζ) ≤ a} is the set of all ζi’s that satisfy x(ζi) ≤ a. Each random variable

has a specific density function, but the converse is not true.

In experiments where several random variables are defined their all of the probabilistic

information is contained in joint probability density function (pdf). The individual pdfs,

which are called marginal pdfs, do not contain all of the probabilistic information. The joint

density function for three random variables x(ζ), y(ζ) and t(ζ), which is denoted fx,y,t(x, y, t),

is defined as any function fx,y,t(x, y, t) satisfying

P ({ζ : x(ζ) ≤ x1, y(ζ) ≤ y1, t(ζ) ≤ t1}) =

t1∫
−∞

y1∫
−∞

x1∫
−∞

fx,y,t(x, y, t)dxdydt, (2.2)

where the set {ζ : x(ζ) ≤ x1, y(ζ) ≤ y1, t(ζ) ≤ t1} is the set of all ζi’s that simultaneously

satisfy the three inequalities x(ζ) ≤ x1, y(ζ) ≤ y1, and t(ζ) ≤ t1. The subscripts in the

joint density function fx,y,t(x, y, t) are vital as they associate the argument with the random

variable. For example, fx,y,t(1, 2, 3) indicates the arguments associated with RVs x(ζ), y(ζ),

and t(ζ) are 1, 2 and 3, respectively.

There are 5L + 5 fundamental random variables defined in this chapter. None of the

5L + 5 fundamental of random variables is observable, which means none can be measured
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Table 2.1: Random variables used in the analysis for a system with L gateways.

Random
Variable

Variance Description

t(ζ) ≈ ∞ The time at which the target transmits the message

x(ζ) ≈ ∞ The x-coordinate of the target

y(ζ) ≈ ∞ The y-coordinate of the target

x`(ζ) ≈ ∞ The x-coordinate of Gateway `

y`(ζ) ≈ ∞ The y-coordinate of Gateway `

∆xc(ζ) N/A
The component of error in the x-coordinate common to the location
of all gateways

∆yc(ζ) N/A
The component of error in the y-coordinate common to the location
of all gateways

∆x`(ζ) σ2
x`

= σ2
`

The component of the random error in measurement of the x-
coordinate of the location of Gateway `

∆y`(ζ) σ2
y`

= σ2
`

The component of the random error in measurement of the y-
coordinate of the location of Gateway `

∆T`(ζ) σ2
t`

The error in measuring the time the message arrives at Gateway `

without error. These fundamental random variables are listed in Table 2.1 and described

below:

t(ζ): This is the time that the target transmits the message. t(ζ) is independent of all other

RVs. Its probability density function is assumed to be Gaussian with a mean of zero

and a variance that tends to ∞. It could have been defined as uniformly distributed

in the interval (−a, a) where a is very large. Such a distribution will be referred to

as widely uniform. In Bayesian terminology, density functions based on the physics

that underpins the application or other pre-experiment knowledge is referred to as the

a priori pdf. Therefore, this zero-mean large-variance Gaussian pdf (i.e., this widely

uniform pdf) is the a priori pdf for t(ζ).

This density function is referred to as the a prior pdf.

x(ζ), y(ζ): These two RVs are the x and y coordinates of the target. They may or may

not be independent of each other. They have a joint density, fx,y(x, y), that is known

from the physics of the application. Often the physics does not provide information

about fx,y(x, y) in which case it is taken to be zero-mean, which is equivalent to being
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uniformly distributed over the region −a < x < a and −a < y < a for very large a,

uncorrelated Gaussian with marginal variances that tend to ∞.

In Baysian terminology this probability density function is referred to as the a priori

pdf.

x`(ζ), y`(ζ): These two RVs are the x and y coordinates of Gateway `. They are assumed

to be independent of each other and all other RVs and have zero-mean Gaussian dis-

tributions with variances that tend to ∞. Since there are L gateways, there are 2L

of this type of RVs. Obviously, measured values of these random variables are used in

the localization algorithm.

∆xc(ζ), ∆yc(ζ): These two RVs represent the component of error common to the location

of all gateways. The error is due to the variation in the orbits of the GPS satellites

(probably caused by the moon and the sun shifting the center of the gravity so the

plane of the satellites orbit does not go through the center of the earth). They are

assumed to be independent of all other RVs. However, no assumption is made about

the shape of their joint density and whether or not they are independent of each other.

∆x`(ζ), ∆y`(ζ): These two RVs represent the random errors in the measurements of the x

and y coordinates of Gateway `. Should these coordinates be measured using the GPS,

the variance of this error will depend on the strength of the received satellite signal.

Since there are L gateways, there are 2L of this type of RVs. They are assumed to

be independent of all other RVs as well as independent of each other. They are also

assumed to be zero-mean Gaussian RVs with identical variances denoted σ2
x`

= σ2
y`

=

σ2
` . These variances are assumed to be computed by the gateway and their values

placed inside the messages sent to the network server.

∆T`(ζ): This is the error in measuring the time a message arrives at Gateway `. These RVs

represent the sum of two types of error:

i. The random error introduced in the process that attempts to synchronize the

gateway’s clock to the GPS satellites’ clocks, and
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ii. The error due to Johnson noise in the receiver blurring the point in time a message

is received.

There are L such random variables. They are assumed to be mutually independent

and also independent of all other fundamental random variables. They are assumed

to be zero-mean Gaussian RVs with possibly different variances, denoted σ2
t`

. The

variances of these RVs are calculated in the gateways at the time a message is received

and inserted into the message sent to the network server.

The errors represented by ∆xc(ζ), ∆yc(ζ), ∆x`(ζ) and ∆y`(ζ) are in part due to limi-

tations of the GPS satellites and in part due to Johnson noise at the input to the receiver.

The physics governing the motion of the GPS satellites, most notably the diurnal variations

in the satellites orbits, and the physics that underpins Johnson noise (i.e., thermal noise)

together with the circuits/algorithms that generate the measurements determine the joint

density function of the 5L+ 5 fundamental random variables listed in Table 2.1.

The majority of the random error in the measurements of the gateways’ locations and

the times-of-arrival is caused by the Johnson noise at the inputs of the low-noise amplifiers

in the gateways’ receivers. Since Johnson noise has a Gaussian amplitude distribution and

any linear operation on a signal with a Gaussian amplitude distribution produces a signal

with a Gaussian amplitude distribution, it is expected that the errors caused by the Johnson

noise will have a Gaussian amplitude distribution.

The joint distribution function for the random errors is a little more difficult to predict.

There are L gateways, but the signals from the target and the GPS satellites occupy different

frequency bands therefore there are 2L sources of Johnson noise affecting 3L measurements.

Even so, it is believed that the errors in the 3L random measurements are independent.

The errors common to the gateways’ locations, i.e., ∆xc(ζ) and ∆yc(ζ) are unrelated to

the Johnson noise so they are independent of the 3L random errors. No restrictions have

been placed on the joint density of the common error. The analysis to follow will be careful to

allow any joint distribution for ∆xc(ζ) and ∆yc(ζ). To be specific, the analysis to follow will

consider the effect of ∆xc(ζ) and ∆yc(ζ) on the estimate of the target’s location separately.
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This leaves the a priori distributions for the x-y coordinates of the target, the a priori

distribution of the time that the target transmits the message and the a priori distribution

for the x-y coordinates of the L gateways. In many estimation problems some quantities

are completely unknown. Often these unknown quantities are modeled with an independent

uniform distribution spanning from −∞ to ∞. Equivalently, these unknown quantities can

be modeled with a zero-mean Gaussian distribution with a variance that tends to infinity,

which will be done in this thesis. The coordinates of the target, the time of transmission,

as well as the 2L coordinates of the gateways will be modeled as independent zero-mean

Gaussian random variables with variances that tend to infinity. This is done to simplify the

mathematics.

Having established ∆x`(ζ), ∆y`(ζ), and ∆T`(ζ) for ` = 1, 2, . . . ,L, as independent zero-

mean Gaussian random variables, their distributions are characterized by their variances.

The variances for ∆x`(ζ), ∆y`(ζ), and ∆T`(ζ) are denoted σ2
x`

, σ2
y`

, and σ2
t`

, respectively,

where it is understood that σ2
x`

= σ2
y`

= σ2
` .

Random variables ∆xc(ζ) and ∆yc(ζ) likely do not have Gaussian distributions. The

analysis to follow does not use their joint distribution, i.e., the analysis does not use

f∆xc,∆yc(∆xc, ∆yc).

It is important enough to repeat that the a priori distributions for unknown random

variables t(ζ), x`(ζ) and y`(ζ) are assumed to be independent zero-mean and Gaussian

distributed with variances that tend to∞. The a priori joint density for x(ζ) and y(ζ) may

be known, in which case it could be any valid pdf, or it may be unknown, in which case

it could be assumed to be zero-mean uncorrelated Gaussian with marginal variances that

tends to be ∞.

Lastly, random variables ∆xc(ζ) and ∆yc(ζ) are applied to the estimated location of

target after the target’s location is estimated. Shifting the location of all gateways by

(∆xc(ζ), ∆yc(ζ)) prior to estimating the location of the target is equivalent to estimating

the location of the target without shifting the locations of the gateways and then shifting the
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estimated location of the target by (∆xc(ζ), ∆yc(ζ)). The common error in gateway location

must be applied to the post estimation location of the target. This approach is necessary

to make the analysis tractable when f∆xc, ∆yc(∆xc, ∆yc) is not Gaussian. The effect of the

error common to all gateways is not included in any examples in this study.

2.3 Mathematical Model for Localization in an LoS Environment

The approach that will be taken is to consolidate the information into L equations, 1 for

each gateway. The L equations must relate the coordinates of the target to the measure-

ments of the times-of-arrival (ToA) and the geo-locations of the gateways. The relationship

of interest is established through the time-of-flight (ToF) equations. Each time-of-arrival

measurement is a sum of: (i) the time the message is transmitted, (ii) the time of flight and

(iii) the error in measuring the arrival time.

The convention that will be used to distinguish measurements from the exact quantity is

to symbolize the measurement by placing a “hat” on top of the symbol for the exact value.

Since all measured quantities will be functions of the outcome of the experiment, measure-

ments are instances of a random variable. For example, the set of possible measurements of

the random variable representing all of the times-of-arrival at Gateway ` is symbolized by

the random variable T̂oA`(ζ) (note: ζ is bold for random variables) and the post experiment

measurement value of the time-of-arrival will be symbolized T̂oA`(ζ) (note: ζ is regular font

for observations, i.e., instances of random variables), where ζ represents the outcome of the

experiment and will be one of ζ1, ζ2, . . . This implies the random variable representing the

set of all of the possible exact times-of-arrival is denoted ToA`(ζ) and its post experiment

value, which is also referred to as the observation, is ToA`(ζ).

The L equations for the RV T̂oA`(ζ) are

T̂oA`(ζ) = ToA`(ζ) + ∆T`(ζ)

= t(ζ) + ToF`(ζ) + ∆T`(ζ) (2.3)
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and the L equations for the post-experiment observations are

T̂oA`(ζ) = ToA`(ζ) + ∆T`(ζ)

= t(ζ) + ToF`(ζ) + ∆T`(ζ) (2.4)

respectively, where t(ζ) is the time of transmission, ∆T`(ζ) is the measurement error in the

time the message arrives at Gateway `, i.e., the error in the time stamp that is inserted in

the message by the gateway, and ToF`(ζ) is the time-of-flight from the target located at

(x(ζ), y(ζ)) to Gateway ` located at (x`(ζ), y`(ζ)).

The time-of-arrival measurements together with the measurements of the coordinates

for the gateways are used to determine the probability the target is within a specified area

and to estimate the coordinates of the target. The analysis, which is presented in detail in

Chapter 3, provides the joint probability density function (pdf) of the target’s coordinates

(x, y). In order to contrast the approach taken in this research which is to find the Bayesian

a posteriori pdf, against point estimation techniques, the next sections review classical and

state-of-the-art methods used to find point estimates of the target’s location.

It will be made clear that none of the previous work has provided a minimum mean

squared error point estimate and that no literature has been found on determining the

probability that the target is in a specified area. That is, a literature search did not turn up

any previous work on determining the a posteriori pdf for the coordinates of a target from

time-of-arrival measurements.

2.4 Classical Methods for the Localization Problem

It must be emphasized that a fairly extensive literature review did not turn up any papers

on the probability that the target is in a specified area. However, the literature review did

turn up many papers on point estimators for the target’s coordinates. It is pointed out the

none of these papers on point estimators derived the minimum mean squared error estimator.

In the literature, the time difference of arrivals (TDoA) is widely used to deal with the

unknown transmission time of the target [31]. Specifically, L− 1 TDoA values are obtained
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by subtracting one of the measured ToA values from the other L− 1 values so as to remove

the unknown transmission time. For example, using the first ToA value as a reference, one

obtains

T̂DoA`(ζ) = T̂oA`(ζ)− T̂oA1(ζ), ` = 2, 3, . . . ,L, (2.5)

The observed TDoA values together with the coordinates of the gateways are used to

estimate the (x, y) coordinates of the target. First, T̂DoA`(ζ) is related to the difference

between the ranges from the target to Gateways ` and 1 by substituting (2.3) for T̂oA`(ζ) in

(2.5) and multiplying both sides of the result by the speed of light, c. The measured range

difference between Gateway ` and Gateway 1, denoted d̂`,1(ζ), is given by

d̂`,1(ζ) = cT̂DoA`(ζ)

= c
(
ToF`(ζ) + ∆T`(ζ)

)
− c
(
ToF1(ζ) + ∆T1(ζ)

)
= c(ToF`(ζ)− ToF1(ζ)) + c

(
∆T`(ζ)−∆T1(ζ))

= c(
√

(x` − x(ζ))2 + (y` − y(ζ))2 −
√

(x` − x(ζ))2 + (y` − y(ζ))2)

+ c
(
∆T`(ζ)−∆T1(ζ)), ` = 2, 3, . . . ,L, (2.6)

where ToF`(ζ) =
√

(x` − x(ζ))2 + (y` − y(ζ))2. Since d̂`,1(ζ) is a measurement it is an ob-

servation of random variable

d̂`,1(ζ) = c(
√

(x` − x(ζ))2 + (y` − y(ζ))2 −
√

(x` − x(ζ))2 + (y` − y(ζ))2)

+ c
(
∆T`(ζ)−∆T1(ζ)), ` = 2, 3, . . . ,L, (2.7)

Then, if x(ζ) and y(ζ) are given, say to be x and y, then d̂`,1(ζ) has a Gaussian distribution

since ∆T`(ζ) has a Gaussian distribution.

In order to reduce notional clutter let d̂`,1 = d̂`,1(ζ), the vector d̂ be d̂ = (d̂2,1, . . . , d̂L,1)

and d̂(ζ) be the vector of random variables d̂(ζ) = (d̂2,1(ζ), . . . , d̂L,1(ζ)) since d̂`,1(ζ) is Gaus-

sian if x(ζ) and y(ζ) are given. Then, the joint probability density function of d̂2,1(ζ), . . . , d̂L,1(ζ)
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conditioned on the target location is a multivariate Gaussian density. It is given by [31]

f
d̂

∣∣x,y
(d̂
∣∣x, y) =

1√
(2π)L−1|Φ|

exp

(
−1

2
(range diff)>Φ−1(range diff)

)
, (2.8)

where Φ is the covariance matrix of RVs d̂2,1(ζ), . . . , d̂L,1(ζ), given by [32,33]

Φ =


c2(σ2

t2
+ σ2

t1
) c2(σ2

t1
) . . . c2(σ2

t1
)

c2(σ2
t1

) c2(σ2
t3

+ σ2
t1

) . . . c2(σ2
t1

)
...

... . . .
...

c2(σ2
t1

) c2(σ2
t1

) . . . c2(σ2
tL

+ σ2
t1

)

 .

and range diff is the vector
d̂2,1 −

√
(x2 − x)2 + (y2 − y)2 +

√
(x1 − x)2 + (y1 − y)2

d̂3,1 −
√

(x3 − x)2 + (y3 − y)2 +
√

(x1 − x)2 + (y1 − y)2

...

d̂L,1 −
√

(xL − x)2 + (yL − y)2 +
√

(x1 − x)2 + (y1 − y)2

 .

The target’s location is often estimated with the (x, y) coordinates which are in some

sense most consistent with the observation d̂. Within this class, different criteria have been

introduced in the literature to measure the consistency. These include (i) position that

minimizes the sum of squares of the errors in L− 1 range differences, and (ii) position that

is most likely to occur given the measured range differences. Furthermore, estimators that

adopt these criteria can be classified further as either non-linear or linear [31]. They are

discussed in the following subsections.

2.4.1 Non-Linear Estimators

The non-linear least squares (NLS) estimator minimizes the sum of the squares of the

error in the measured range differences. Specifically, the NLS estimator minimizes the cost

function:

JNLS = (range diff)>(range diff). (2.9)

25



On the other hand, the maximum-likelihood (ML) estimator finds a location that maxi-

mizes the joint pdf in (2.8). For each hypothesis of the target location (x, y), the joint pdf in

(2.8) essentially measures the likelihood of measurements d̂`,1(ζ), hence the name maximum-

likelihood estimator. Since the ln(·) function is monotonic increasing, such an estimator is

equivalent to the one that maximizes the log of the likelihood function of the measurements

d̂`,1(ζ), which is:

ln(fd̂|x,y(d̂ | x, y) =ln

(
1√

(2π)L−1|Φ|

)
− 1

2
(range diff)>Φ−1(range diff). (2.10)

Since the first term on the right side of (2.10) is a constant, maximizing (2.10) is equiv-

alent to minimizing

JML = (range diff)>Φ−1(range diff). (2.11)

Whether the NLS or ML estimator is used, the problem becomes finding (x, y) to min-

imize JNLS or JML, respectively. Since a closed-form solution is very difficult, if not im-

possible, to obtain, the solution is typically found with a computer search that could be a

global grid search or a steered iterative search. There are a variety of algorithms available

for conducting iterative searches, including genetic algorithms, particle swam optimization,

Newton-Raphson, Gauss-Newton, and steepest descent [31].

Among these iterative search methods, the steepest descent method is perhaps the sim-

plest and most stable. This method solves the problem of minimizing (2.9) or (2.10) itera-

tively as follows:

x̃(n+1) = x̃(n) − λ∇J (n)
NLS

and x̃(n+1) = x̃(n) − λ∇J (n)
ML

(2.12)

where x̃(n) = (x̃(n), ỹ(n)) is the solution at the nth iteration, ∇J (n)
NLS and ∇J (n)

ML are the

gradient vectors of JNLS and JML evaluated at x = x̃(n), respectively, and λ is a positive

constant that controls the convergence rate (it is usually set as small as necessary to ensure

stability).
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The gradient vectors ∇J (n)
NLS and ∇J (n)

ML are obtained by taking the partial derivatives of

JNLS and JML, respectively, with respect to the target’s coordinates x and y and evaluating

the results at x = x̃(n). In particular, ∇J (n)
NLS and ∇J (n)

ML are given by

∇J (n)
NLS = 2


∑L

`=2

(
d̂`,1 − d̃(n)

`,1

)(
− x̃(n)−x`

r̃
(n)
`

+ x̃(n)−x1
r̃
(n)
1

)
∑L

`=2

(
d̂`,1 − d̃(n)

`,1

)(
− ỹ(n)−y`

r̃
(n)
`

+ ỹ(n)−y1
r̃
(n)
1

)
 and

∇J (n)
ML =


∑L

`=2

2∂R`

∂x
R`b`−1,`−1∑L

`=2

2∂R`

∂y
R`b`−1,`−1

+


∑L

i=2

∑L
j=2,j 6=i

∂Ri

∂x
Rj(bi−1,j−1 + bj−1,i−1)∑L

i=2

∑L
j=2,j 6=i

∂Ri

∂y
Rj(bi−1,j−1 + bj−1,i−1)

 .

(2.13)

where d̃
(n)
i,j = r̃

(n)
i − r̃

(n)
j , r̃

(n)
i =

√
(x̃(n) − xi)2 + (ỹ(n) − yi)2,

∂R
(n)
`

∂x
= − x̃

(n) − x`
r̃

(n)
`

+
x̃(n) − x1

r̃
(n)
1

and
∂R

(n)
`

∂y
= − ỹ

(n) − y`
r̃

(n)
`

+
ỹ(n) − y1

r̃
(n)
1

.

2.4.2 Linear Estimators

Due to the high complexity of non-linear estimators, linear estimators have been devel-

oped by converting the non-linear range equation Λ = d + n to a set of equations that are

linear in the target’s location x = (x, y)>. Specifically, the transformed range equation is

b = Ax+ q, (2.14)

where b and A are known, while q is a noise vector transformed from n.

Some linear estimators such as linear least squares (LLS) [34, 35], weighted linear least

squares (WLLS) [36–39], or subspace [40–43] generally have a lower accuracy than the non-

linear estimators, but they have lower computation complexity.

2.4.3 State-of-the-Art Methods

Recently, convex optimization has been used to solve the point-estimate localization

problem in wireless sensor networks. Methods developed based on this technique can be
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classified as either second-order cone programming (SOCP) or semidefinite programming

(SDP) [44]. The SDP programming technique is considered as a generalized form of SOCP

when the SOCP constraints are written as a linear matrix inequality.

The work in [45] proposed a SDP method to solve the localization problem under the

ideal scenario that the distances from the target to gateways do not have any errors. The

authors in [46] extended the problem in [45] to allow errors in distance measurements. The

methods in [24, 44] can provide estimates of the target’s location when the transmission

time is unknown and the measurements of gateways’ locations contain errors. Several works

[21, 47, 48] have recently solved the ToA-based localization problem in NLoS environments

without knowing the transmission time.

As an example, consider solving the localization problem based on the ToA measurements

(without knowing the transmission time) by SDP presented in [47]. Skipping all the details,

the SDP problem posed by the authors in [47] is as follows:

min
h,q,x,y,u,z,t,s

L∑
`=1

m`(c
2T̂oA

2

` + c2s− 2c2T̂oA`t− h` − q`)2 +
L∑
`=1

λ(q2
` + s2) + γ

L∑
`=1

u2
`

subject to: hi =


x`

y`

−1


>I2 0

0 z



x`

y`

−1

 ;

I2 0

0 z

 ≥ 0;

q` ≥ 0;

T̂oA` ≥ t;

(T̂oA
2

` − T̂oA`t)c
2 + u` ≥ h`;

u` ≥ 0, ` = 1, . . . ,L;

(T̂oAi − t)c+ (T̂oAj − t)c ≥ ‖(xi, yi)> − (xj, yj)
>‖, i 6= j; i, j = 1, . . . ,L

In the above SDP problem, the objective function is the sum of errors in ToA measurements.

The other parameters/variables are as follows:
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� t is the unknown transmission time at the target.

� m`,λ, γ are the optimization variables of the SDP problem, which are found by solving

other optimization problems formulated based on a specific assumption of the range

difference measurements. In [47], the values of these variables are manually set, which

visually achieve a good localization accuracy.

� h = (h1, . . . ,h`), q = (q1, . . . , q`),u = (u1, . . . ,u`), z, s are variables used to convert the

non-linear ToA-based localization problem to a linear convex problem.

The above SDP problem can be solved with optimization tools such as the MATLAB

toolbox CVX [21]. In general, the accuracy of the SDP-based solutions strongly depends on

many optimization variables and predefined constraints. Besides, the accuracy also depends

on the linearization technique used to turn the objective function into a linear polynomial

form required by the SDP technique.

2.4.4 Comparison of Existing Point-Estimation Methods

Table 2.2 summarizes different point-estimation methods discussed in previous sections.

It is similar to the table on page 35 of [31], but also includes the more recent SDP-based

methods. The classical methods in Table 2.2 are presented with a prefix “TDoA” in their

names to emphasize that their estimates are the (x, y) coordinates which are in some sense

most consistent with the time-differences-of-arrival d̂.

The accuracy of the existing localization methods mostly depends on their objective func-

tions. These objective functions are mainly classified as either linearized or non-linearized.

The methods with non-linearized objective functions such as TDoA-ML and TDoA-NLS

methods generally have high accuracy when all information of the input data is used to esti-

mate the target’s location. The main disadvantage of this class is that the complexity is from

moderate to high, especially when the grid or random search is applied to achieve very high

accuracy. The methods with linearized objective functions that include SDP, TDoA-LLS

and TDoA-WLLS can provide only the point estimate for the target’s location with different

levels of complexity. Their accuracies vary from low to high depending on the amount of the
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Table 2.2: Comparison of different localization methods (point estimation).

Method Accuracy Complexity
Statistics
Required

Linearized

TDoA-
ML

Highest accuracy
High if grid or random search
is applied

Yes No

TDoA-
NLS

High accuracy, generally lower
than the ML method

High if grid or random search
is applied

No No

SDP
Can achieve accuracy of the
ML method with constraints

High No Yes

TDoA-
LLS or
subspace

Generally low Low No Yes

TDoA-
WLLS

Can achieve accuracy of the
ML method with constraints

Low to moderate, may require
iterations

Yes Yes

information from the input data being lost after the linearization process and the preciseness

of the constraints to limit the search space.

2.4.5 Approximated Region Estimation Based on the Point Esti-

mation

In contrast to the point estimation paradigm, the region estimation paradigm has yet

to be explored. In the following, we summarize the analysis by Foy in [49], which could

be extended to obtain a rough Gaussian approximation to the a posteriori density of the

target’s location.

Foy [49] presented an iterative algorithm that finds the LS solution (a point estimate) to

the set of non-linear equations and he also provided the approximate covariance matrix for

the solution. His technique improves an initial guess for the solution by linearizing (using

a first-order Taylor series polynomial) the set of non-linear equations about the guessed

solution and then using linear algebra to get the LS solution to the linear equations. The

process is repeated using the improved solution as the “guessed solution” until it converges.

Let (x̄, ȳ) be the final solution obtained by Foy’s iterative technique. Then (x̄, ȳ) serves

as the mean of the Gaussian approximation, while the covariance matrix is the 2× 2 upper
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left block of the following 3× 3 matrix:

C̄ = c2
(
A>C−1

∆TA
)−1

, (2.15)

where C∆T = diag(σ2
t1

, . . . ,σ2
tL

), and A is a L× 3 matrix with row ` being

[
x̄− x`√

(x̄− x`)2 + (ȳ − y`)2
,

ȳ − y`√
(x̄− x`)2 + (ȳ − y`)2

, 1

]
(2.16)
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3. A Posteriori Probability Density of Target’s

Coordinates and MMSE, MAP Estimators

3.1 Review of Estimation Theory

The roots of estimation theory go back to 1792 when work by Thomas Bayes [50] was

published posthumously. The next major change happened in 1933 when mathematician

Andrey Kolmogorov published a book titled “Foundation of the Theory of Probability”. In

that book Kolmogorov set forth 3 axioms (three statements that must be true) and developed

probability theory from those axioms. The entirety of probability theory as we know it today

could be developed and proven from Kolmogorov’s three axioms. Estimation theory, which

is a subset of probability theory has not changed significantly in 50 years. Evidence of this

lies in two of publications. Van Trees published a book titled “Detection Estimation and

Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory” [51] in

1968. Forty three years later, in 2001, this book was reprinted in paperback [52]. Twelve

years on, in 2013, a second edition was printed [53].

However, advances in computer technology over the last decade or two have facilitated the

widespread application of estimation theory. The widespread application was paralleled by

a proliferation of textbooks written for a wide variety of readers, many of which did not have

a strong background in statistical mathematics. The rigor of the mathematics as well as the

notational systems of symbols and terminology vary considerably across the spectrum of the

great number of textbooks and even more across the massive amount of web-based material

available today. In an attempt to reduce confusion caused by the many reformulations of

estimation theory, a specific formulation will be used going forward and that formulation,

which is based on [30,51], will be briefly explained.
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The application of estimation theory involves the manipulation of random variables that

are defined on a sample space S. The manipulation takes into account that some of those

random variables can be observed and some can not. The intermediate objective, if not the

final objective, in virtually all estimation problems is to find the most compact density func-

tion for the random variable that represents a parameter of interest by using the information

obtained by observing related random variables.

The probability density function can be used to find the probability that the outcome

will map x(ζ) to a specified interval. For interval x1 ≤ x(ζ) ≤ x2 that probability is given

by

P ({ζ : x1 ≤ x(ζ) ≤ x2}) =

∫ x2

x1

fx(x)dx.

The joint probability density function can be used to find the probability that the out-

come will map the target’s coordinate, (x(ζ), y(ζ)) to a specified region. For region R that

probability is

P ({ζ : (x(ζ), y(ζ)) ∈ R}) =

∫∫
R

fx,y(x, y)dxdy.

A point estimator will be a constant whose value is obtained through mathematical ma-

nipulation of the probability density function. If the density function is described by a

closed-form expression, then the constant will be a function of the parameters of the density

function. For example, the estimator for a random variable with a Gaussian probability

density function will be a function of its mean, µ, and variance, σ2.

The MMSE point estimator is the constant xMMSE that minimizes the probabilistic av-

erage of (x(ζ)− xMMSE)2. That is xMMSE is the constant that minimizes the expectation

E[(x(ζ)− xMMSE)2] =

∞∫
−∞

(x− xMMSE)2fx(x)dx. (3.1)

This constant is given by

xMMSE = E[x(ζ)], (3.2)

which is the mean value of x(ζ).
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If another random variable, say u(ζ), is observed to have value u(ζ) = u�, then the

information in the observation of u(ζ) usually rules out certain outcomes. If u(ζ) is in some

way related to x(ζ) the information gained through its observation will change the density

function of x(ζ). The modified density function for x(ζ) is referred to as the conditional

density function of x(ζ) given u(ζ) = u. This conditional density function is referred to as the

a posteriori density function of x(ζ). It will be a function of u, which is the observed value

of u(ζ). The conditional density function is symbolized fx|u(x
∣∣ u). The first symbol in the

subscript, which is the letter x, indicates the density function is for the random variable x(ζ)

and the second indicates the random variable that was observed is u(ζ). The argument of

the conditional density has two symbols separated by a vertical line. Both symbols represent

real numbers. The first letter, which is x, is the true argument of the conditional density.

The second symbol indicates the observed random variable is known to have value u.

In estimation scenarios where random variables are observed the a posteriori for a random

variable takes into account that certain outcomes are no longer possible. Therefore, the a

posteriori pdf provides the most up to date information about the random variable of interest.

Therefore, the a posteriori density should be used to find the probability that the random

variable is in a region. It is also used to find the MMSE estimate and the maximum a

posteriori (MAP) point estimate, which is the point estimate given by the value of x that

maximizes the a posteriori pdf.

Other estimators are used for reasons of computational efficiency. These estimators are

usually sub-optimum with respect to the minimum mean squared error criterion. They could

approximate the MMSE estimate or they could use some other cost criterion entirely, for

example “minimize the maximum possible error”.

�Knowing that the outcome of the experiment is such that u(ζ) = u does not imply the outcome is
known. This knowledge indicates the outcome is one of possibly many where u(ζ) = u. The statement
u(ζ) = u has a slightly different meaning. It implies the experiment has not yet been performed, but once
the experiment is performed the outcome ζ will be such that u(ζ) = u.
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Table 3.1: Identities for conditional probability functions.

No. Identity

1 fz,u(z,u) = fz|u(z | u)fu(u) = fu|z(u | z)fz(z)

2 fu(u) =
∞∫
−∞

fz,u(z,u)dz =
∞∫
−∞

fu|z(u
∣∣ z)fz(z)dz

3 fz|u(z | u) =
fu|z(u | z)fz(z)

fu(u)
; Bayes theorem

4 fz|u(z | u) =
fu|z(u | z)fz(z)

∞∫
−∞

fu|z(u | z)fz(z)dz
; more useful form of Bayes theorem

5 fz, u|q(z, u | q) = fz|u, q(z | u, q)fu|q(u | q); chain rule or product rule

3.2 Developing the A Posteriori Probability Density Function

Since the a posteriori probability density function (pdf) is used to find the probability

that the target is in a specified region as well as to find the MMSE estimate, the task at

hand is to find the a posteriori pdf for target coordinates x(ζ) and y(ζ). This is done using

Bayes theorem, which is well known and fully explained in textbooks covering estimation

theory [30, 51, 54, 55]. The theorem as well as other identities involving conditional density

functions are summarized in Table 3.1.

The errors in the measurements of the gateways’ locations can and will be approximated

in a way that isolates their effect on the estimate of the target’s location and, at the same

time, greatly reduces the computation time needed to find the estimate. However, doing so

comes at the expense of some accuracy, but the degradation will be tolerable and most of

the time it will be insignificant. The quantity that will eventually be approximated is the

range error, also referred to as range difference for Gateway `, which is defined by:

∆r`(ζ) =

√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2 −
√(

x̂`(ζ)− x(ζ)
)2

+
(
ŷ`(ζ)− y(ζ)

)2
, (3.3)

where x̂`(ζ) and ŷ`(ζ) are the measured coordinates of Gateway ` for outcome ζ.

The objective of introducing ∆r`(ζ) is to isolate the effect of gateway location measure-

ment error on the estimate of the target. To do that ∆r`(ζ) has to be transformed so that

it is a random variable dependent only on ∆x`(ζ) and ∆y`(ζ).
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Such an expression is obtained by manipulating
√(

x`(ζ)− x(ζ)
)2

+
(
y`(ζ)− y(ζ)

)2
into

a function of x̂`(ζ) and ŷ`(ζ). First x`(ζ) and y`(ζ) are expressed as x̂`(ζ) − ∆x`(ζ) and

ŷ`(ζ)−∆y`(ζ), respectively. Then the squared terms inside the square root are expanded to

get

√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2

=

√(
x̂`(ζ)−∆x`(ζ)− x(ζ)

)2
+
(
ŷ`(ζ) + ∆y`(ζ)− y(ζ)

)2

=
((
x̂`(ζ)− x(ζ)

)2 − 2∆x`(ζ)
(
x̂`(ζ)− x(ζ)

)
+ ∆x2

`(ζ)

+
(
ŷ`(ζ)− y(ζ)

)2 − 2∆y`(ζ)
(
ŷ`(ζ)− y(ζ)

)
+ ∆y2

` (ζ)
) 1

2
. (3.4)

Assuming the error in the estimated location of Gateway ` is much smaller than the

distance between the target and the gateway, i.e., assuming

√
∆x2

`(ζ) + ∆y2
` (ζ)�

√(
x̂`(ζ)− x(ζ)

)2
+
(
ŷ`(ζ)− y(ζ)

)2
, (3.5)

then both |∆x`(ζ)| and |∆y`(ζ)| are much less than
√(

x̂`(ζ)− x(ζ)
)2

+
(
ŷ`(ζ)− y(ζ)

)2
.

Under this assumption, ∆x2
`(ζ) and ∆y2

` (ζ) in (3.4) are insignificant and can be removed.

Removing the insignificant terms from (3.4) and re-arranging the argument of the square

root produces the approximation

√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2 '√((
x̂`(ζ)− x(ζ)

)2
+
(
ŷ`(ζ)− y(ζ)

)2
)(

1 + 2ε`(ζ)
)

, (3.6)

where

ε`(ζ) = −
∆x`(ζ)

(
x̂`(ζ)− x(ζ)

)
+ ∆y`(ζ)

(
ŷ`(ζ)− y(ζ)

)(
x̂`(ζ)− x(ζ)

)2
+
(
ŷ`(ζ)− y(ζ)

)2 . (3.7)

Under the assumption for ∆x`(ζ) and ∆y`(ζ) expressed by (3.5), it can be shown that

|∆x`(ζ)
(
x̂`(ζ)− x(ζ)

)
| �

(
x̂`(ζ)− x(ζ)

)2
+
(
x̂`(ζ)− y(ζ)

)2

|∆y`(ζ)
(
ŷ`(ζ)− y(ζ)

)
| �

(
ŷ`(ζ)− x(ζ)

)2
+
(
ŷ`(ζ)− y(ζ)

)2
.

(3.8)
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The inequalities of (3.8) ensure ε`(ζ) is much less than 1, which implies ε2`(ζ) is much

less than 2ε`(ζ). The smallness of ε`(ζ) allows the term
(
1 + 2ε`(ζ)

)
to be replaced with(

1+2ε`(ζ)+ε2`(ζ)
)

without adding significant error. Since
(
1+2ε`(ζ)+ε2(ζ)

)
=
(
1+ε`(ζ)

)2
,

the modified (3.6) becomes

√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2 '
(
1 + ε`(ζ)

)√(
x̂`(ζ)− x(ζ)

)2
+
(
ŷ`(ζ)− y(ζ)

)2
.

(3.9)

Rearranging (3.9) produces the range difference approximation

√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2 −
√(

x̂`(ζ)− x(ζ)
)2

+
(
ŷ`(ζ)− y(ζ)

)2

' ε`(ζ)

√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2
.

(3.10)

Since the left side of (3.10) is ∆r`(ζ), substituting (3.7) for ε`(ζ) and changing (3.10), which

is an equation with post experiment observations, to a pre-experiment equation has

∆r`(ζ) ' −
∆x`(ζ)

(
x`(ζ)− x(ζ)

)
+ ∆y`(ζ)

(
y`(ζ)− y(ζ)

)√(
x`(ζ)− x(ζ)

)2
+
(
y`(ζ)− y(ζ)

)2
. (3.11)

Since ∆x`(ζ) and ∆y`(ζ) are independent, zero-mean Gaussian random variables with

the same variance, i.e., σ2
x`

= σ2
y`

= σ2
` , it is easily shown that ∆r`(ζ) is Gaussian with

zero-mean and variance σ2
∆r`

= σ2
` . The proof of this is outlined below.

Proof of the variance of ∆r`(ζ): The proof falls out of the expression for the conditional

expectation. Since the conditional mean of ∆r`(ζ) is 0, i.e., since E[∆r`(ζ)
∣∣ x(ζ) =

x, y(ζ) = y, x̂`(ζ) = x̂`, ŷ`(ζ) = ŷ`] = 0

σ2
∆r`

= E[(∆r`(ζ))2
∣∣ x(ζ) = x, y(ζ) = y, x̂`(ζ) = x̂`, ŷ`(ζ) = ŷ`]

=
E[∆x2

`(ζ)]
(
x̂` − x

)2
+ E[∆y2

` (ζ)]
(
ŷ` − y

)2(
x̂` − x

)2
+
(
ŷ` − y

)2

=
σ2x`

(
x̂` − x

)2
+ σ2y`

(
ŷ` − y

)2(
x̂` − x

)2
+
(
ŷ` − y

)2 . (3.12)
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If σ2
x`

= σ2
y`

, then the right side of (3.12) reduces to σ2
` . Therefore, σ2

` is the conditional

variance of ∆r`(ζ). Clearly, the conditional variance of ∆r`(ζ) does not depend on the

observations x, y, x̂` or ŷ`. This means, σ2
` is the variance of ∆r`(ζ). Therefore, ∆r`(ζ)

is a zero-mean Gaussian RV with variance σ2
∆r`

= σ2
` regardless of observations x(ζ),

y(ζ), x̂`(ζ) and ŷ`(ζ). Therefore, ∆r`(ζ) is a zero-mean Gaussian random variable with

variance σ2
` if σ2

x`
= σ2

y`
. The difference is its variance will depend on the observations.

Should σ2
y`

not be equal to σ2
x`

then σ2
∆r`

will depend on the observations of x(ζ), y(ζ),

x̂`(ζ) and ŷ`(ζ). In this case the variance of ∆r` can not be calculated, but it can easily be

shown (see Appendix D on page 107) that is bounded by σ2
∆r`
≤ max(σ2

x`
,σ2

y`
).

It is important to point out that under conditions where x(ζ), y(ζ), x̂`(ζ) and ŷ`(ζ)

are known, i.e., observed, ∆r`(ζ) will be the sum of two independent zero-mean Gaussian

random variables so it will be a zero-mean Gaussian random variable whether or not σ2
x`

is

equal to σ2
y`

.

The equation critical to the analysis going forward is the equation that relates T̂oA`(ζ)

to the range from Gateway ` to the target. This equation is obtained by updating (1.4) to

use the nomenclature developed in the previous chapter. The updated (1.4) becomes

T̂oF`(ζ) =

√
(x`(ζ)− x(ζ))2 + (y`(ζ)− y(ζ))2

c
. (3.13)

Substituting the above for ToF`(ζ) in (2.3) produces

T̂oA`(ζ) = ToF`(ζ) + t(ζ) + ∆T`(ζ)

=

√
(x`(ζ)− x(ζ))2 + (y`(ζ)− y(ζ))2

c
+ t(ζ) + ∆T`(ζ)

=

√
(x̂`(ζ)− x(ζ))2 + (ŷ`(ζ)− y(ζ))2 + ∆r`(ζ)

c
+ t(ζ) + ∆T`(ζ)

=

√
(x̂`(ζ)− x(ζ))2 + (ŷ`(ζ)− y(ζ))2

c
+ ∆ToF`(ζ) + t(ζ) + ∆T`(ζ), (3.14)

where ∆ToF`(ζ) =
∆r`(ζ)

c
represents the difference in the time-of-flight from the target
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to the true and measured locations of Gateway `, respectively, and ∆T`(ζ) represents the

error in the time-of-arrival measurements. Both random variables are zero-mean Gaussian

under conditions where x(ζ), y(ζ), x̂`(ζ) and ŷ`(ζ) have been observed but the former has

variances σ2
x`

and σ2
y`

, which are σ2
`/c

2 if σx` = σy` , and the latter has variance σ2
t`

. Each of

∆T`(ζ) is independent of all other fundamental RVs. Also, each of ∆ToF`(ζ) is independent

of all fundamental RVs except ∆x`(ζ) and ∆y`(ζ).

The problem at hand has three parameters that are neither known nor measured, but are

related. These three parameters are modeled as RVs x(ζ), y(ζ), and t(ζ). The conditional

joint densities of interest is that for x(ζ) and y(ζ), but in this case the conditional joint

density for all three RVs must be obtained and then integrated over t, where t is the variable

in the argument of the density function for RV t(ζ), to produce the conditional joint density

of x(ζ) and y(ζ). That is to say, the desired density function is

f
x,y

∣∣T̂oA`, x̂`, ŷ`, `=1,2,...,L
(x, y

∣∣ T̂oA`, x̂`, ŷ`, ` = 1, 2, . . . ,L), (3.15)

which is obtained by the integration

∞∫
−∞

f
x,y,t

∣∣T̂oA`, x̂`, ŷ`, `=1,2,...,L
(x, y, t

∣∣ T̂oA`, x̂`, ŷ`, ` = 1, 2, . . . ,L)dt. (3.16)

The subscript and argument lists for the conditional density functions of (3.15) and (3.16)

are quite long and cumbersome. Unfortunately, both the subscript and the argument contain

essential information so neither can be omitted. In order to shorten the notation, the vectors

defined in Table 3.2 are introduced to the nomenclature.

To help distinguish vectors from scalars, the symbols for vectors will be in bold font. The

elements of a vector may be random variables or observations of random variables so the

vector may be a function of ζ or ζ. For example, the elements of vector ToA(ζ) defined in

Table 3.2 contains the RVs ToA1(ζ), ToA2(ζ), . . . , ToAL(ζ). Similarly, ToA(ζ) is a vector

of observations with elements ToA1(ζ), ToA2(ζ), . . . , ToAL(ζ). ToA(ζ) is said to be an

observation or instance of ToA(ζ).
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Table 3.2: Definition of relevant vectors.

Vector Description Definition

gx(ζ)
Vector of RVs representing the true x coordi-
nates for the L gateways gx(ζ) =

[
x1(ζ), x2(ζ), . . . , xL(ζ)

]>
ĝx(ζ)

Vector of RVs representing the measured x co-
ordinates for the L gateways ĝx(ζ) =

[
x̂1(ζ), x̂2(ζ), . . . , x̂L(ζ)

]>
gy(ζ)

Vector of RVs representing the true y coordi-
nates for the L gateways gy(ζ) =

[
y1(ζ), y2(ζ), . . . , yL(ζ)

]>
ĝy(ζ)

Vector of RVs representing the measured y co-
ordinates for the L gateways ĝy(ζ) =

[
ŷ1(ζ), ŷ2(ζ), . . . , ŷL(ζ)

]>
ToA(ζ)

Vector of RVs representing the times of arrival
at the L gateways in the absence of all mea-
surement errors

ToA(ζ) = [ToA1(ζ), . . . ,ToAL(ζ)]>

T̂oA(ζ)
Vector of RVs representing the measured times
of arrival at the L gateways

T̂oA(ζ) = [T̂oA1(ζ), . . . , T̂oAL(ζ)]>

τ

Vector of RVs representing the measured val-
ues of the times of arrival at the L gateways.
This vector is an observation of T̂oA(ζ), i.e.,

τ = T̂oA(ζ)

τ = [τ1, . . . , τL]> =

[T̂oA1(ζ), . . . , T̂oAL(ζ)]>

The vectors defined in Table 3.2 allow the two conditional density functions in (3.15) and

(3.16) to be written as

f
x,y

∣∣T̂oA`, x̂`, ŷ`, `=1,2,...,L
(x, y

∣∣ τ`, x̂`, ŷ`, ` = 1, 2, . . . ,L) = f
x,y

∣∣T̂oA,ĝx,ĝy
(x, y

∣∣ τ, ĝx, ĝy) (3.17)

and

f
x,y,t

∣∣T̂oA`,x̂`,ŷ`, `=1,2,...,L
(x, y, t

∣∣ T̂oA`, x̂`, ŷ`, ` = 1, 2, . . . ,L) =

f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣ τ, ĝx, ĝy). (3.18)

Note that the vector τ, which appears in the arguments of the conditional densities on the

right sides of (3.17) and (3.18), is implicitly defined to be the observation of T̂oA(ζ). The

vector τ is used in place of T̂oA(ζ) to make the notation even more compact.
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Bayes theorem allows the latter joint density to be expressed as

f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣ τ, ĝx, ĝy) =
f

T̂oA,ĝx,ĝy

∣∣x,y,t
(τ, ĝx, ĝy

∣∣ x, y, t)fx,y,t(x, y, t)

fT̂oA,ĝx,ĝy
(τ, ĝx, ĝy)

. (3.19)

Random variables x(ζ) and y(ζ), while not necessarily independent of each other, are

independent of t(ζ). This fact allows the joint density fx,y,t(x, y, t) to be expressed as

fx,y,t(x, y, t) = fx,y(x, y)ft(t).

Making this substitution into (3.19) and then applying the theorem of total probability to

the denominator on the right side of (3.19), i.e., the denominator is the triple integration

from -∞ to ∞ of the numerator with respect to x, y and t produces

f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣τ, ĝx, ĝy) =

f
T̂oA,ĝx,ĝy

∣∣x,y,t
(τ, ĝx, ĝy

∣∣x, y, t)fx,y(x, y)ft(t)

∞∫
−∞

∞∫
−∞

∞∫
−∞

f
T̂oA,ĝx,ĝy

∣∣x,y,t
(τ, ĝx, ĝy

∣∣x, y, t)fx,y(x, y)ft(t)dxdydt

. (3.20)

It can be argued, very convincingly, that ft(t) can be moved outside the triple integral

in the denominator and cancel the ft(t) in the numerator. On the surface this seems to defy

the basic rule of integration which says a function of t can not be moved outside an integral

with respect to t. However, in this case, it is argued that ft(t) is constant over the interval

of t where the integrand is non-zero.

The mathematical logic for moving ft(t) outside the triple integral is listed below

1. The density function ft(t) is given by

ft(t) =
1√
2πσ

exp

(
− t2

2σ2

)
,

where σ is very large and approaches∞. This implies ft(t) = 1√
2πσ

for any t with finite
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value.

2. The physics dictates that signal strength limitation restricts the distance between a

gateway and the target to be at most 100 km. This means the time-of-flight, which is

ToA`(ζ)− t(ζ), will be less than 100km/c.

3. Therefore

ToA`(ζ)− 105m/c < t(ζ) < ToA`(ζ), ` = 1, 2, . . . ,L.

4. The time origin will certainly be defined so that ToA`(ζ) is finite, therefore the value

of t(ζ) is also finite.

5. Since ft(t) is a zero mean Gaussian pdf with a variance that tends to ∞ the exponent

will be nearly zero and ft(t)→ 1√
2πσ

for a finite value of t(ζ).

6. Therefore ft(t) is constant over the interval of t where the integrand is possibly non-zero

and can be moved outside the integral with respect to t.

After moving ft(t) outside the triple integral and canceling the same term in the numer-

ator, Bayes equation becomes

f
x, y, t

∣∣T̂oA, ĝx, ĝy
(x, y, t

∣∣ τ, ĝx, ĝy) =

fx,y(x, y)f
T̂oA, ĝx, ĝy

∣∣x, y, t
(τ, ĝx, ĝy

∣∣ x, y, t)

∞∫
−∞

∞∫
−∞

∞∫
−∞

fx,y(x, y)f
T̂oA, ĝx, ĝy

∣∣x,y,t
(τ, ĝx, ĝy

∣∣ x, y, t)dxdydt

. (3.21)

The right side of (3.21) can be further simplified using the fact that x̂`(ζ), ŷ`(ζ) and

T̂oA`(ζ) are independent of x̂k(ζ), ŷk(ζ) and T̂oAk(ζ) for ` 6= k. This independence relation-

ship allows the conditional joint density to be factored into the conditional joint densities
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f
T̂oA`, x̂`, ŷ`

∣∣x, y, t
(τ`, x̂`, ŷ`

∣∣ x, y, t), ` = 1, 2, . . . ,L, with the result

f
x, y, t

∣∣T̂oA, ĝx, ĝy
(x, y, t

∣∣ τ, ĝx, ĝy) =

fx,y(x, y)
L∏̀
=1

f
T̂oA`, x̂`, ŷ`

∣∣x, y, t
(τ`, x̂`, ŷ`

∣∣ x, y, t)

∞∫
−∞

∞∫
−∞

∞∫
−∞

fx,y(x, y)
L∏̀
=1

f
T̂oA`, x̂`, ŷ`

∣∣x, y, t
(τ`, x̂`, ŷ`

∣∣ x, y, t)dxdydt

. (3.22)

The reformation of (3.19) is not yet complete. It is transformed to a useful form in 5

steps.

Step 1: The conditional joint density f
T̂oA`, x̂`, ŷ`

∣∣x, y, t
(τ`, x̂`, ŷ`

∣∣ x, y, t) is transformed using

the chain rule, which is given in the 5th entry of Table 3.1, to get

f
T̂oA`, x̂`, ŷ`

∣∣x, y, t
(τ`, x̂`, ŷ`

∣∣ x, y, t) =

f
T̂oA`

∣∣x̂`, ŷ`, x, y, t
(τ`
∣∣ x̂`, ŷ`,x, y, t)f

x̂`, ŷ`

∣∣x, y, t
(x̂`, ŷ`

∣∣ x, y, t). (3.23)

Step 2: Since x̂`(ζ) and ŷ`(ζ) are independent of x(ζ), y(ζ) and t(ζ), f
x̂`, ŷ`

∣∣x, y, t
(x̂`, ŷ`

∣∣ x, y, t)

is equal to fx̂`, ŷ`(x̂`, ŷ`) and therefore the latter can replace the former in (3.22).

Step 3: Substituting (3.23) into (3.22) and then replacing f
x̂`, ŷ`

∣∣x, y, t
(x̂`, ŷ`

∣∣ x, y, t) with

fx̂`, ŷ`(x̂`, ŷ`) transforms (3.22), which means it also transforms (3.21), into

f
x, y, t

∣∣T̂oA, ĝx, ĝy
(x, y, t

∣∣ τ, ĝx, ĝy) =

fx,y(x, y)
L∏̀
=1

f
T̂oA`

∣∣x̂`, ŷ`, x, y, t
(τ`
∣∣ x̂`, ŷ`,x, y, t)fx̂`, ŷ`(x̂`, ŷ`)

∞∫
−∞

∞∫
−∞

∞∫
−∞

fx,y(x, y)
L∏̀
=1

f
T̂oA`

∣∣x̂`, ŷ`, x, y, t
(τ`
∣∣ x̂`, ŷ`,x, y, t)fx̂`, ŷ`(x̂`, ŷ`)dxdydt

.
(3.24)

Step 4: The quantity
L∏̀
=1

fx̂`, ŷ`(x̂`, ŷ`) can be taken outside the triple integral in the denom-

inator where it cancels the same quantity in the numerator, since fx̂`, ŷ`(x̂`, ŷ`) does

not depend on x, y or t. After removing
L∏̀
=1

fx̂`, ŷ`(x̂`, ŷ`) from both the numerator and
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denominator, (3.22), and therefore (3.21) as well, becomes

f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣τ, ĝx, ĝy)0

=

fx,y(x, y)
L∏̀
=1

f
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣x̂`, ŷ`,x, y, t)

∞∫
−∞

∞∫
−∞

∞∫
−∞

fx,y(x, y)
L∏̀
=1

f
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣x̂`, ŷ`,x, y, t)dxdydt

. (3.25)

Step 5: Finally the conditional density f
T̂oA`

∣∣x̂`, ŷ`, x, y, t
(τ`
∣∣ x̂`, ŷ`,x, y, t) is evaluated. This

is done using first principles to evaluate the associated cumulative distribution func-

tion, which is F
T̂oA`

∣∣x̂`, ŷ`, x, y, t
(τ`
∣∣ x̂`, ŷ`,x, y, t). Then f

T̂oA`

∣∣x̂`, ŷ`, x, y, t
(τ`
∣∣ x̂`, ŷ`,x, y, t)

is obtained from the distribution function. It will be shown that this conditional dis-

tribution function is Gaussian, which means once the mean and variance are obtained

the conditional joint density is also obtained.

The conditional distribution function, by definition, is given by

F
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣ x̂`, ŷ`,x, y, t) =

P
(
{ζ : T̂oA`(ζ) ≤ τ`

∣∣ x̂`(ζ) = x̂`, ŷ`(ζ) = ŷ`, x(ζ) = x, y(ζ) = y, t(ζ) = t}
)
.

The primary RV is T̂oA`(ζ) so by definition the set of ζ ′is in the argument of the

probability function can also be defined in terms of the RVs on the right side of (3.14)

by substituting the right side of (3.14) for T̂oA`(ζ). Making this substitution and then

substituting the given conditions into the result has

F
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣ x̂`, ŷ`,x, y, t) =

P
(
{ζ : t+

√
(x̂` − x)2 + (ŷ` − y)2

c
+ ∆ToF`(ζ) + ∆T`(ζ) ≤ τ`}

)
.

(3.26)
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Rearranging terms in the inequality that defines the set of ζ ′is in (3.26) produces

F
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣ x̂`, ŷ`,x, y, t) =

P
(
{ζ : ∆T`(ζ) + ∆ToF`(ζ) ≤ τ` −

√
(x̂` − x)2 + (ŷ` − y)2

c
− t}

)
,

(3.27)

where, to make the equation more compact, x̂`, ŷ`, t and τ` are used in place of x̂`(ζ),

ŷ`(ζ), t(ζ) and τ`(ζ), respectively.

Since the observed values of x(ζ), y(ζ), x̂`(ζ) and ŷ`(ζ) are used in (3.26), ∆ToF(ζ),

which is located on the left side of the set defining inequality, will be a zero-mean

Gaussian random variable. Therefore, the left side of the set defining inequality in

(3.27) is the sum of 2 independent zero-mean Gaussian random variables. Let the sum

of those RVs be denoted sum`(ζ), then sum`(ζ) = ∆T`(ζ) + ∆ToF`(ζ) and sum`(ζ) is

a zero-mean Gaussian random variable with variance

σ2
sum`

= σ2
t`

+ σ2
∆r`
/c2,

where σ2
∆r`

= σ2
` if σ2

x`
= σ2

y`
= σ2

` . This fact allows (3.27) to be expressed as

F
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣ x̂`, ŷ`,x, y, t) =

P
(
{ζ : sum`(ζ) ≤ τ` −

√
(x̂` − x)2 + (ŷ` − y)2

c
− t}

)
.

By definition the probability on the right side is Fsum`(sum`)
∣∣
sum`=τ`−

√
(x̂`−x)2+(ŷ`−y)2/c− t.

Therefore,

F
T̂oA`

∣∣x̂`,ŷ`,x,y,t
(τ`
∣∣ x̂`, ŷ`,x, y, t) = Fsum`(τ` −

√
(x̂` − x)2 + (ŷ` − y)2/c− t), (3.28)

where, as just explained, Fsum`(sum`) is a zero-mean Gaussian distribution with vari-

ance σ2
sum`

.

Having established the conditional distribution function for T̂oA`(ζ), it is clear that
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the conditional density function for T̂oA`(ζ) is given by

f
T̂oA`

∣∣x̂,ŷ,x,y,t
(τ`
∣∣ x̂, ŷ,x, y, t)

= fsum`

(
τ` −

√
(x̂` − x)2 + (ŷ` − y)2

c
− t
)

=
1√

2πσ2
sum`

exp
((τ` −

√
(x̂` − x)2 + (ŷ` − y)2/c− t)2

2σ2
sum`

)
. (3.29)

Substituting (3.29) into (3.25) produces

f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣ τ, ĝx, ĝy)

=
fx,y(x, y)

∏L
`=1(2πσ2

sum`
)−

1
2 exp

(
− (τ`−

√
(x̂`−x)2+(ŷ`−y)2/c−t)2

2σ2
sum`

)
∞∫
−∞

∞∫
−∞

∞∫
−∞

fx,y(x, y)
∏L

`=1(2πσ2
sum`

)−
1
2 exp

(
− (τ`−

√
(x̂`−x)2+(ŷ`−y)2/c−t)2

2σ2
sum`

)
dxdydt

=
fx,y(x, y)

∏L
`=1 exp

(
− (τ`−

√
(x̂`−x)2+(ŷ`−y)2/c−t)2

2σ2
sum`

)
∞∫
−∞

∞∫
−∞

∞∫
−∞

fx,y(x, y)
∏L

`=1 exp
(
− (τ`−

√
(x̂`−x)2+(ŷ`−y)2/c−t)2

2σ2
sum`

)
dxdydt

. (3.30)

Equation (3.30) is a useful expression for f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣ τ, ĝx, ĝy) but the objective

is to find a useful expression for f
x,y

∣∣T̂oA,ĝx,ĝy
(x, y

∣∣τ, ĝx, ĝy). The conditional joint density for

f
x,y

∣∣T̂oA,ĝx,ĝy
(x, y

∣∣ τ, ĝx, ĝy) is obtained by integrating f
x,y,t

∣∣T̂oA,ĝx,ĝy
(x, y, t

∣∣ τ, ĝx, ĝy) with

respect to t from −∞ to ∞. Careful examination of (3.30) shows that the denominator on

the right side is already integrated with respect to t, which means it is not a function of t.

However, the numerator is a function of t and needs to be integrated with respect to t. It

also shows that the numerator is fx,y(x, y) multiplied by an exponential function of t with

exponent

−1

2

L∑
`=1

(
t− (τ` −

√
(x̂` − x)2 + (ŷ` − y)2/c)

)2

(σ2
sum`

)
= −1

2

L∑
`=1

(
t− µ`

)2

(σ2
sum`

)
, (3.31)

where µ` = τ` −
√

(x̂` − x)2 + (ŷ` − y)2/c.
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Clearly, the exponent is the sum of quadratics in t, which will be a quadratic in t. This

means the integration with respect to t can be performed symbolically. The method for

this integration has two steps: the first step, which is easily done, but very tedious, is to

manipulate the exponent into the form − (t−µ)2

2σ2 − 1
2
γ, where µ, σ2, and γ are not functions

of t. Then the integration with respect to t is quite simple since it is well known that
∞∫
−∞

e−
(t−µ)2

2σ2 dt =
√

2πσ2. Integrating both the numerator and denominator in the right side

of (3.30) with respect to t has

f
x,y

∣∣T̂oA,ĝx,ĝy
(x, y

∣∣ τ, ĝx, ĝy) =

√
2πσ2e−

γ
2 fx,y(x, y)

∞∫
−∞

∞∫
−∞

√
2πσ2e−

γ
2 fx,y(x, y)dxdy

. (3.32)

Since σ2 does not depend on x or y,
√

2πσ2 can be taken outside the double integral in

the denominator. In doing so it cancels with the same term in the numerator leaving

f
x,y

∣∣T̂oA,ĝx,ĝy
(x, y

∣∣ τ, ĝx, ĝy) =
e−

γ
2 fx,y(x, y)

∞∫
−∞

∞∫
−∞

e−
γ
2 fx,y(x, y)dxdy

. (3.33)

The tedious manipulation of (3.31) to get the form −(t − µ)2/(2σ2) − 1/γ has been

relegated to Appendix A on page 102. It shows that µ, 1
σ2 , and γ are given by

µ =

∑L
`=1

τ`−
√

(x̂`−x)2+(ŷ`−y)2 /c

σ2
sum`∑L

`=1
1

σ2
sum`

, (3.34)

1

σ2
=

L∑
`=1

1

σ2
sum`

, (3.35)

γ =
L∑
`=1

(
τ` −

√
(x̂` − x)2 + (ŷ` − y)2/c

)2

σ2
sum`

−

(
1∑L

`=1
1

σ2
sum`

)(
L∑
`=1

τ` −
√

(x̂` − x)2 + (ŷ` − y)2/c

σ2
sum`

)2

, (3.36)

σ2
sum`

= σ2
t`

+ σ2
∆r`
/c2 = σ2

t`
+
σ2
x`

(
x̂` − x

)2
+ σ2

y`

(
ŷ` − y

)2(
x̂` − x

)2
+
(
ŷ` − y

)2 . (3.37)
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Note that the denominator on the right side of (3.33) is a constant that makes the volume

under exp(−γ/2) fx,y(x, y) equal to 1. The double integral that produces the constant will

likely have to be performed numerically.

3.3 Defining the a Priori PDF

The initial a priori pdf, fx,y(x, y), is approximated using physics, the geography and

knowing the region where the sensors were deployed. While physics may allow the exact

calculation of fx,y(x, y), practically the mathematics are usually too complicated to find

fx,y(x, y) exactly.

For example, suppose the class A target is known to be inoperable in water. Then

physics dictates that fx,y(x, y) should be zero for x, y coordinates where water is covering

the surface of the earth. The problem is the shorelines of oceans, lakes and ponds change

hourly depending on the tide, wind and rain, making it practically impossible to zero out the

correct regions of fx,y(x, y). Practically, it would make sense to only consider large bodies

of water and then either use their “average” shorelines or include a taper in fx,y(x, y) to

account for the uncertainty in the shoreline.

In many applications no data are available to support the physics and mathematics used

to find a priori pdf fx,y(x, y). In such cases fx,y(x, y) is assumed to be widely uniform. For

example, x(ζ) and y(ζ) are assumed to be independent zero-mean Gaussian random variables

with variances that tend to ∞. Under this assumption fx,y(x, y) can be taken outside the

double integral in the denominator on the right side of (3.33) for the same reason that ft(t)

was taken outside the triple integral. Once taken outside the integral it cancels fx,y(x, y) in

the numerator.

There may be occasions when the joint a posteriori pdf for x(ζ) and y(ζ) has been found

from other measurements that were made previous to the time of arrival measurements.

Should that be the case, the a posteriori found with those measurements becomes the a

priori pdf in (3.32). In fact the a priori pdf is found using (3.32) can be used as the a priori

pdf the next time (3.32) is used. For example, suppose it is known that the target is fixed.
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On the first transmission the a posteriori pdf is found using (3.33) with the T̂oA and an

approximate a priori pdf that was found based on physics. Then, on a second transmission,

the a posteriori pdf is updated using the a posteriori pdf found on the first transmission for

the a priori pdf.

3.4 The MMSE and MAP Estimators for x(ζ) and y(ζ)

It must be emphasized that the primary objective of this work is to find the probability

that the target is in a specified credible region�. However, since the literature only discusses

points estimator for time of arrival based localization applications, the discussion on point

estimators has been disproportionate. The MMSE estimate for x(ζ) given the observations

of T̂oA(ζ), ĝx(ζ) and ĝy(ζ) is

xMMSE(ζ) = E[x(ζ)
∣∣ T̂oA(ζ) = τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy]. (3.38)

Obviously, the estimate xMMSE(ζ) depends on the outcome of the experiment through the

observations of T̂oA(ζ), ĝx(ζ) and ĝy(ζ), i.e, through τ, ĝx and ĝx. This means xMMSE(ζ)

can be viewed as an observation of random variable xMMSE(ζ). Random variable xMMSE(ζ)

is referred to as the MMSE estimator. The estimator is obtained by substituting T̂oA(ζ) for

τ, ĝx(ζ) for ĝx, ĝy(ζ) for ĝy i.e.,

xMMSE(ζ) = E[x(ζ)
∣∣T̂oA(ζ) = τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy]

∣∣∣ τ=T̂oA(ζ), ĝx=ĝx(ζ), ĝy=ĝy(ζ).

(3.39)

The expectation in both (3.38) and (3.39) is taken using the conditional density

f
x

∣∣T̂oA, ĝx, ĝy
(x
∣∣ τ, ĝx, ĝy).

�In Bayesian analysis such a region is called a credible region as opposed to a confidence region, which
is the term used for a region in statistical analysis.
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Substituting T̂oA(ζ) for τ, ĝx(ζ) for ĝx, ĝy(ζ) for ĝy produces

xMMSE(ζ) =

∞∫
−∞

x
∞∫
−∞

e−
γ
2 dydx

∞∫
−∞

∞∫
−∞

e−
γ
2 dydx

∣∣∣∣∣∣∣∣
τ=T̂oA(ζ), ĝx=ĝx(ζ), ĝy=ĝy(ζ)

. (3.40)

Similarly, the MMSE estimator for y(ζ) is given by

yMMSE(ζ) = E[y(ζ)
∣∣ T̂oA(ζ) = τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy]

∣∣
τ=T̂oA(ζ), ĝx=ĝx(ζ), ĝy=ĝy(ζ)

=

∞∫
−∞

y
∞∫
−∞

e−
γ
2 dxdy

∞∫
−∞

∞∫
−∞

e−
γ
2 dydx

∣∣∣∣∣∣∣∣
τ=T̂oA(ζ), ĝx=ĝx(ζ), ĝy=ĝy(ζ)

. (3.41)

Unfortunately, the integrals on the right sides of (3.40) and (3.41) are extremely difficult

if not impossible to evaluate symbolically and most likely will have to be done numerically.

Even with efficient numerical integration, the computation time required to evaluate (3.40)

and (3.41) may be significant.

The joint maximum a posteriori (MAP) estimates are easier to obtain. They are the

values of x and y that jointly maximizes (3.33). Since the denominator on the right side of

(3.33) does not depend on either x or y, it plays no role in the maximization and can be

removed. It is pointed out that the numerator by itself is not a density as the volume under

its surface is not 1. The numerator is referred to as the maximum a posteriori function, i.e.,

the MAP function. In the special case where the a priori joint density, which is fx,y(x, y) in

(3.33) is constant over the region of x and y where e−
γ
2 is non-zero, the MAP function is also

the maximum likelihood (ML) function and the MAP estimator is also the ML estimator.

Since an exponential function is monotonic increasing with its argument, the values of

x and y that maximize e−
γ
2 also maximize −γ. Therefore, the ML estimate is the values of

x and y that maximize −γ or minimize γ. This is also the case for the MAP estimate if
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fx,y(x, y) is widely flat.

Since γ is a complicated function of x and y, the ML estimator for x(ζ) and y(ζ) is found

numerically using a hill climbing or valley descending algorithm. Such algorithms are much

more computationally efficient than numerical integration algorithms.

Valley descending algorithms perform much better if the gradient is available in closed

form. For this reason a closed form expression for the gradients associated with two likeli-

hood functions, both denoted f
ToA
∣∣ĝx,ĝy ,x,y

(τ
∣∣ ĝx, ĝy,x, y), one for t known and the other

for t unknown are developed in Appendix B on page 104. The results are given in equa-

tions (B.1) and (B.2), respectively.

The complex computation of the integrals on the right sides of (3.40) and (3.41) can be

avoided at the expense of the accuracy by using a Gaussian approximation of the a posteriori

density function given by (3.33). A Gaussian approximation is developed in Appendix E on

page 111. The approximation is predicated on a non-linear least squared error analysis and

does not require integration. The resulting approximate a posteriori density function yields

a Gaussian pdf for a pdf that is not Gaussian, but it is a reasonable approximation if the

errors on the ToA estimates are small and the target is not near one of the gateways.

3.5 Finding the Probability of a Specified Credible Region

The conditional joint density function f
x,y

∣∣T̂oA, ĝx, ĝy
(x, y

∣∣ τ, ĝx, ĝy) contains all the in-

formation in x(ζ) and y(ζ) gained through the ToA and gateways’ location measurements.

In terms of the probabilistic experiment it contains all the information gained through the

observations of the random variables T̂oA(ζ), ĝx(ζ), ĝy(ζ). This joint density is used to

obtain the probability the target is in any specified region, which is more properly called a

specified credible region, of the x-y plane. That probability is the the volume under the joint

density that is supported by the specified credible region.
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3.6 Summary of Point and Region Estimators and Associated Ter-

minology

Often estimates are obtained without using the joint density. Many of these estimates,

especially those obtained from adhoc algorithms, cannot be obtained from the conditional

joint density, but the MMSE and ML estimators can.

MMSE estimate: The MMSE estimate is the conditional mean, which is obtained by

taking the first moment. An MMSE estimate of the a posteriori pdf reduces the

information in the conditional joint density to a single value. Obviously, this is a

massive compression of the information in the a posteriori pdf.

ML estimate: The ML estimate for a single random variable is the value of the argument

that maximizes the conditional marginal density. The estimate obtained is the ML

estimate if the a priori pdf is widely uniform. The joint ML estimates of two random

variables are the two coordinates that jointly maximize the conditional joint density. In

general the marginal ML estimates, which are the values that maximize the respective

marginal densities, differ from the joint ML estimates. Since the joint ML estimates

are pair of points the information in their values, this is a massive compression of the

information in the a posteriori pdf.

The conditional joint density f
x,y

∣∣T̂oA,ĝx,ĝy
(x, y

∣∣ τ, ĝx, ĝy) is a function of two real vari-

ables and as such contains a massive amount of information. The information is often

characterized or summarized in a more condensed form. Some of these forms are listed

below.

Conditional mean: The conditional mean condenses the conditional joint density to a

single coordinate, which is either xMMSE or yMMSE. The conditional means of x(ζ) and

y(ζ) are their MMSE estimates.

Maximum likelihood: The pair of coordinates, (xML, yML), that maximize the conditional

joint density when fx,y(x, y) is widely constant is the maximum likelihood estimate of

the target’s location.
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Conditional variance: The conditional variances of x(ζ) and y(ζ) measure the spread

of the conditional joint density. They are given by E[(x(ζ) − xMMSE)2
∣∣ T̂oA(ζ) =

τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy] and E[(y(ζ)−yMMSE)2
∣∣ T̂oA(ζ) = τ, ĝx(ζ) = ĝx, ĝy(ζ) =

ĝy].

One-dimension densities: The joint density is often summarized, again with considerable

loss of information, to the density for the Euclidean distance from the MMSE estimate.

That is, the joint density can be compressed to the marginal density

f
ρ

∣∣T̂oA, ĝx(ζ)=ĝx, ĝy(ζ)=ĝy
(ρ
∣∣ τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy)

for random variable ρ(ζ) =
√

(x(ζ)− xMMSE)2 + (y(ζ)− yMMSE)2. Such a density is

easily obtained with numerical integration.

Probability for a Bayes Credible Region: A Bayes credible region, which is often short-

ened to credible region, is any specified region in the domain of the a posteriori prob-

ability density function (pdf). There is a probability associated with every specified

credible region. This probability is the volume under the a posteriori pdf that is sup-

ported by the specified Bayes credible region. For example, if a credible region was

specified for the location of the target, then the probability that the target is within

that region is the volume under the joint a posteriori pdf supported by the specified

credible region.

A Bayes credible region is in some ways quite similar to a confidence region, but in

other ways it is quite different. The two regions are similar in that they both have

a probability associated with them. The probability associated with a Bayes credible

region is the probability a parameter or set of parameters, e.g. the coordinates of

the target, fall within the specified credible region. The probability associated with a

confidence region is the probability that an estimate obtained from a specified estimator

will fall into the confidence region.

There are two main differences:

1. The Bayes credible region is specified and the probability associated with it is
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calculated where as the probability associated with a confidence region is specified

and the confidence region itself is estimated.

2. The probability associated with a Bayes credible region is calculated from a sin-

gle experimental outcome using the a posteriori pdf obtained from that outcome.

The confidence region is estimated from the outcomes of a large number of experi-

ments. The confidence region is the connected region with the smallest area where

the number of estimates in the confidence region satisfies the relative frequency

definition for the specified probability.

For example, if the experiment was repeated N times to obtain N estimates and

the specified probability was PCONF, then the confidence region is the smallest

connected region containing N × PCONF of the N estimates.

Contour plots: The credible regions defined by a a posteriori pdf can be constructed from

a series of level curves, which are better known as contours. Each closed contour

becomes a credible region and can be labeled by a probability that is the volume under

f
x,y

∣∣T̂oA, ĝx(ζ)=ĝx, ĝy(ζ)=ĝy
(x, y

∣∣ τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy) that is supported by the

credible region. That is, each contour is labeled with the probability that (x(ζ), y(ζ))

is located in the area enclosed by the contour.

It is important that the relative values of point estimators, like the MMSE, MAP and

ML estimators, compared to credible regions and the joint density

f
x,y

∣∣T̂oA, ĝx(ζ)=ĝx, ĝy(ζ)=ĝy
(x, y

∣∣ τ, ĝx(ζ) = ĝx, ĝy(ζ) = ĝy)

be put into perspective. It may seem that the sole purpose for obtaining the joint density

was to obtain the MMSE and ML estimates. Thinking along those lines would suggest that

if a closed form expression for the MMSE and ML estimators were somehow obtainable,

there would be no value in finding the probability associated with a specified credible region.

However, that is not the case.

There is considerably more information in the a posteriori pdf than any point estimator

or the probability associated with a particular credible region. In fact, the a posteriori
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pdf could be used to generate point estimates or probabilities associated with any credible

regions. To put the worth of the probabilities associated with credible regions and the

point estimates in perspective, consider the example where the target happens to be a LoRa

sensor worn by a missing child. A point estimator would provide a good starting point for

the search, but the contour lines defining credible regions and the associated probabilities

would be great value in organizing a grid search for the child.
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4. Corroboration and Utility of the a Posteriori

PDF and Multiple Transmissions

4.1 Corroboration of (3.33) in the Absence of Gateway Location

Error

Unfortunately, for reasons that will be explained later, it is not possible to corroborate

the accuracy of (3.33) with a Monte Carlo simulation. Instead, an example that compares

the a posteriori pdf given by (3.33) to the rough Gaussian approximation obtained using

Foy’s linearized model, introduced in Appendix E on page 111, is used to corroborate the

development of (3.33). In this section it is assumed the locations of the gateways are known

exactly, which means the exact values are used for the observations in (3.33) and σ2
t`

is used

in place of σ2
sum`

. The example is based on a system of 4 gateways positioned as shown in

Fig. 4.1 with gateways 1 to 4 having co-ordinates (4, 4) km, (−4, 4) km, (−4,−4) km, and

(4,−4) km, respectively, is used for that purpose. The target is located at the origin in the

same horizontal plane as the gateways. The gateway spacing and location of the target

were chosen so that all the range equations are nearly linear. This was done to ensure good

agreement between a posteriori pdf and the Gaussian approximation. The measurement

errors on the times-of-arrival at the four gateways are independent with identical zero-mean

Gaussian distributions that have standard deviations of 25 ns.

The mean of the joint Gaussian approximation, i.e., (x̄, ȳ), is taken to be the LS solution

to the L non-linear equations given by (2.3). The covariance matrix for x(ζ) and y(ζ) is the

2× 2 upper left block of the covariance matrix given by (2.15).

Fig. 4.2 shows two marginal a posteriori pdfs, both for the x-coordinate of the target,
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Figure 4.1: Geometry for the experiment.
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Figure 4.2: Corroboration of the validity of (3.33) (solid black and solid blue) by comparison
with the Gaussian approximations (dashed yellow and dashed green).

plotted in solid black and solid blue lines. The pdfs are then overwritten with their Gaussian

approximations which are the dashed yellow and green lines. The two a posteriori pdfs were
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generated from (3.33) using a widely uniform a priori pdf for two different outcomes: one

would be considered a lucky outcome and the other a “statistical outlier”. The “lucky”

outcome has no errors on the times-of-arrival at gateways 1, 2, 3 and 4 and the “statistical

outlier” outcome has errors of −125 ns, 0 ns, 125 ns and 0 ns, respectively. As explained

earlier, it is assumed the gateways’ locations are known so error in the gateways’ location

(0, 0) for both the “lucky” and “statistical outlier”. The “lucky” outcome produced the

solid black (a posteriori) and dashed yellow (Gaussian approximation) curves. Both curves

are centered at the origin, which is expected for an error free outcome. Clearly, there is

very good agreement between the a posteriori pdf given by (3.33) and approximation-based

Gaussian pdf as the dashed yellow curve seems to coincide with the solid black curve. The

“statistical outlier” outcome generated the curves centered at about 27 m. Obviously, the

measurement error in the ToAs causes the shift. Again, there is very good agreement between

the a posteriori pdf and the approximation to it. This suggests that the equation for the a

posteriori pdf given by (3.33) is correct for the case where the locations of the gateways are

known.

4.2 Value of (3.33) in the Absence of Gateway Location Error

The times-of-flight are non-linear functions of the target’s location. Therefore, if the

times-of-arrival have a Gaussian distribution, then the a posteriori pdf of the target’s location

cannot be Gaussian. The geometry is such that the equation for time-of-flight becomes

increasingly non-linear as the distance between the target and gateway decreases. This means

the Gaussian approximation becomes increasingly inaccurate as the distances between the

target and gateways decrease. Therefore, the effects of the non-linearities are more easily

demonstrated in a system where the gateways are close together. For this purpose the

gateways are moved closer together to be located on a square like that in Fig. 4.1, except

with coordinates (±100,±100) m. The target is positioned at (85, 85) m, which places it

21.2 m from gateway 1. This is a reasonable scenario in an urban setting.

Two variances are considered for the error on the ToA measurements: one optimistic,

the other more realistic. Both distributions are zero-mean Gaussian, but the optimistic
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Figure 4.3: Marginal densities for the x co-ordinate of the target for two sets of measurements
when the standard deviation for the error on the times-of-arrival is 25 ns.

distribution has a standard deviation of 25 ns, which translates to 7.5 m in ToF distance,

and the more realistic distribution has a standard deviation of 50 ns, which translates to

15 m in ToF distance. Two observations are drawn from each distribution. One is the “lucky”

observation, which has no measurement error, and the other is the more typical observation,

which has measurement error of plus one standard deviation on gateways 2 and 4.

Marginal a posteriori pdfs and their Gaussian approximations for the optimistic distri-

bution of ToA measurement error that has σt` = 25ns, are shown in Fig. 4.3. The solid lines

show the true a posteriori densities for the x-coordinate of the target’s location. The dashed

lines show the Gaussian approximations. The solid black and the dashed red curves result

from the “lucky” observation (no ToA measurement error), whereas the solid blue and the

dashed green curves result from the “more typical” observation (some ToA measurement

error). Comparing the dashed curves, which are Gaussian pdfs, to the solid lines it is clear

the a posteriori pdfs are not Gaussian, but the Gaussian approximations are reasonable.

Fig. 4.4 shows the marginal a posteriori pdfs and their Gaussian approximations for the

more realistic distributions for ToA measurement error, which has σt` = 50 ns. Similar to
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Figure 4.4: Marginal densities for the x co-ordinate of the target for two sets of measurements
when the standard deviation for the error on the times-of-arrival is 50 ns.

Fig. 4.3, the solid black and the dashed red curves are the a posteriori pdf and the Gaussian

approximation, respectively, resulting from the lucky observation. The solid blue and the

dashed green curves result from the more typical observation. It is very clear that the

marginal a posteriori pdfs are not at all Gaussian and that they should not be modeled as

such. A non-Gaussian a posteriori pdf indicates at least one of the time-of-flight equations

is significantly non-linear over the reach of measurement error.

It is important to mention that the Gaussian approximation is not always easy to obtain.

With the gateways located 200m apart one of the ToF equations becomes so non-linear

when the target is close to a gateway the iterative search for the nonlinear LS solution has

stability issues. For example, when the target was 1 meter from a gateway the steepest

decent algorithm had to be throttled with a convergence factor of 0.001 for it to converge.

Upon noticing the two a posteriori pdfs in Figure 4.4 are far from Gaussian, one may

wonder why these particular two pdfs were not corroborated. Unfortunately, all efforts to

find a method of corroboration are failed. One may think that (3.33) should be verifiable

by Monte Carlo simulations in all scenarios, but that is not the case. Each a posteriori pdf
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is computed entirely from a single set of ToA measurements and is unique to the errors in

that set of measurements. There is no way to “roll some dice” and then compute individual

points on the surface of the joint a posteriori pdf or on the curve of a marginal pdf. It was

for this reason that (3.33) was corroborated using a system and set of parameters such that

the ToF equations could be accurately approximated with Foy’s linearized model.

Finally, a contrived scenario where the a priori pdf is something other than uniform.

Suppose a target in inoperable in water and there is a large body of water in range of the

gateways. Further, suppose the shoreline is parallel to the y-axis, but its intercept with the

x-axis is not known exactly due to variation in water level.

For example, suppose the gateways are located in a horizontal plane as shown in Fig. 4.1,

while the target is located in the same horizontal plane at x = y = 7070 m and suppose

the x-axis intercept for the shoreline is uniform (7100, 7150) m. Then the a priori pdf

that accounts for the uncertainty in the x-intercept of the shoreline could be reasonably

represented by�

fx,y(x, y) =


ε, −50000 < x < 7100 m

ε×(7150−x)
50

, 7100 ≤ x ≤ 7150 m

0, x > 7150 m,

(4.1)

where ε is the constant that makes the volume under fx,y(x, y) equal to 1. Normally the

constant ε would have to be very small to make fx,y(x, y) a proper joint density. However,

fx,y(x, y) appears in both the numerator and denominator of (3.33), so it can be scaled

without changing the result. Therefore, for the purposes of computing the left side of (3.33),

ε can be assigned any value, the most logical of which is 1.

Using the a priori pdf given by (4.1), the system of gateways in Fig. 4.1, the realistic value

of 50 ns for σt` and the lucky observation (no measurement error on the ToAs), Eqn. (3.33)

yields the joint a posteriori pdf shown in Fig. 4.5. Contour lines on the joint pdf shown

in Fig. 4.5 provide credible regions. Two credible regions, as well as the MMSE and MAP

�This a priori pdf is chosen to reasonably represent the shoreline in the contrived example. In practice,
data could be collected from, say, satellite imagery and a a priori pdf is then generated from the data.
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Figure 4.5: The a posteriori density when the target is in the vicinity of a body of water.

estimates, are shown in Fig. 4.6. The asymmetry of the contour lines indicate that the a

priori density has changed the a posteriori pdf and that the pdf is not jointly Gaussian.

This is further verified in plots in Fig. 4.7 that show the marginal density f
x

∣∣T̂oA
(x
∣∣τ), which

is the marginal density for the x-coordinate of the target, along with the associated Gaussian

approximation.

Asymmetry in the a posteriori pdf causes separation between the MAP and MMSE

estimates, which means the MAP estimate cannot serve as a proxy for the MMSE estimate.

In this particular case the a priori density that models the presence of the body of water

did not change the MAP estimate, but did change the MMSE estimate. The MAP estimate

remains identical to the ML estimate since the a priori density is flat where e−
γ
2 peaks.

Clearly an a priori pdf can significantly change the MMSE estimate, making the probabilistic

approach superior to LS-based estimators when a priori information is available.
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Figure 4.6: Two credible regions and point estimates of the target when it is in the vicinity
of a body of water.

6900 7000 7100 7200 7300

0

0.002

0.004

0.006

0.008

0.01

0.012

ToA

Figure 4.7: The marginal density f
x

∣∣T̂oA
(x
∣∣τ) when the target is in the vicinity of a body of

water.
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4.3 Effects of Errors in Gateways’ Measured Locations

Uncertainty in the locations of the gateways contributes to the a posteriori pdf in two

ways:

1. The variance of error contributes to the spread, or the “size of the footprint”.

2. The measurement error, i.e., the error in the observations, causes a positional shift and

also contributes to the spread.

The effect of the error in the observation can be explained using (3.33) on page 47, by

letting σ2
x`
→ 0 and σ2

y`
→ 0 for ` = 1, 2, . . . ,L. With σ2

x`
and σ2

y`
set to zero the gateways’

locations are treated as known. This means if there was an error in an observation it would

change the system geometry, causing the maximum a posteriori (MAP) estimate to change.

Causing the MAP estimates to change, in essence, is equivalent to shifting the pdf, since the

MAP estimates coincide with the peak of the a posteriori pdf.

Furthermore, the error in the gateways’ locations will change the size of the aperture

(receiving cross section or effective area) of the system of gateways as seen by the target.

Since the accuracy of localization algorithms is somewhat proportional to the size of the

aperture, one would expect the relative change in the spread of the pdf to be somewhat

proportional to the relative change in aperture. Therefore, errors in the measurements of

the gateways’ locations will affect the spread of the a posteriori pdf with the effect being

more significant when the aperture is small.

The variances σ2
x`

and σ2
y`

affect the spread and shape of the a posteriori pdf. Under the

special condition where σx` = σy` and neither σx` nor σt` depend on `, it can be shown that the

ML estimate, i.e., the MAP estimate for a widely uniform a priori pdf, does not depend on

either σx` or σt` . While the authors cannot provide a mathematical proof for the general case,

simulations of cases where σ2
x`

= σ2
y`

and both σ2
x`

and σ2
t`

change with ` produced the same

ML estimate within the accuracy of computation. This suggests that under conditions where

σx` = σy` , the ML estimate depends only on the error in the observations, i.e., measurements

of the gateways’ locations. This means σ2
x`

and σ2
y`

will affect on the shape and spread of
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the a posteriori pdf, but will not shift it.

The dependencies discussed above can be illustrated by plotting the critical regions for

four scenarios. Consider a system with L = 4 gateways located at
(

5√
2
, 5√

2

)
km,

(
− 5√

2
, 5√

2

)
km,

(
− 5√

2
,− 5√

2

)
km and

(
5√
2
,− 5√

2

)
km. Suppose the ToAs are measured without error,

i.e., σt` → 0 and τ` has no error. Now consider four combinations of variances of error and

measurement errors for the gateways:

Case 1: σx` = σy` = 10m ∀`, gateway measurement errors are (0, 0) ∀`.

Case 2: σx` = σy` = 10m ∀`, gateway measurement errors are (−5, 0)m, (0,−5)m, (5, 0)m

and (0, 5)m.

Case 3: σx` = σy` = 30m ∀`, gateway measurement errors are (0, 0) ∀`.

Case 4: σx` = σy` = 30m ∀`, gateway measurement errors are (5, 0)m, (0, 5)m, (−5, 0)m

and (0,−5)m.

Note the errors in Case 4 have opposite signs to the errors in Case 2. The contour

lines on the a posteriori pdf that encompass a probability of 0.7 for the four cases above

are shown in Fig. 4.8. The solid black and solid green lines are the plots for Case 1 and

Case 2, respectively. The dashed red line and dashed blue lines are plots of Cases 3 and 4,

respectively. All four curves appear to be somewhat elliptical so they will loosely referred to

as elliptical. The “elliptical curves” for Cases 1 and 2 show a slight change in a position, but

no significant change in shape. The curves for Cases 3 and 4 indicate the same thing, except

the change in position is in the opposite direction. One can conclude that errors in the

measurements of the gateways’ locations affect the position of the critical region, but since

the aperture is quite large and the errors are relatively small the errors do not significantly

change the size of the aperture. In this case the errors in the measurements of the gateway’s

location will have very little effect on the size and shape of the critical region.

Comparison of the critical regions for Cases 1 and 3 suggests the size and shape of the

critical region depend on the variance of error on the measurement of the gateways’ locations.

The same conclusion is reached by comparing the critical regions for Cases 2 and 4.
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Figure 4.8: Critical regions with probability 0.70 for different measurements and variances
of the gateways’ locations.

4.4 Multiple Transmissions

The a posteriori pdf given by (3.33) was developed based on a single transmission of a

message from the target. From that transmission one set ToA measurements and one set

of gateway location measurements were made and those measurements were used in (3.33).

Should the target transmit multiple times from a fixed location, the a posteriori pdf can be

improved after each transmission. Of course the ToAs must be measured at each gateway for

each transmission. However, when it comes to the measurement of the gateways’ locations,

there are two different cases to consider:

1. The locations of the gateways are measured each time a transmission is received from

the target. For example, this case applies to the scenario where gateways are mobile.

2. The locations of the gateways are measured just once. This applies if the locations of

the gateways are fixed.

In the first case, the a posteriori pdf can be updated iteratively after each transmission.
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Specifically, since the measurements made for each transmission are independent, (3.33) can

be applied iteratively with the a priori pdf being the a posteriori pdf calculated in the

previous iteration.

In the second case, (3.33) cannot be applied iteratively since the measured gateway

coordinates are not independent from one transmission to the next. A rigorous analysis of

this case may be possible, but it is believed the analysis would be very tedious and likely

produce an expression that is too complicated to be of great practical value. Instead it is

proposed that the arrival times of the transmissions be averaged and that average be used

in (3.33) as a single measurement. Of course the averaged ToA measurements would have a

smaller variance and the variances σt` in (3.33) would have to be replaced with the smaller

variances. This approach does not use all of the information in the measured ToAs from the

multiple transmissions so (3.33) will produce a pdf that is a pessimistic approximation to

the true a posteriori pdf.

The validity of using averages for the time-of-arrival is demonstrated with the following

mathematical argument below.

Let the target make N transmissions and let the times the N transmissions arrive at

Gateway ` be considered independent random variables. Also, let the RVs associated with

the nth transmission be defined on sample space S(n) = {ζ(n)
1 , ζ

(n)
2 , . . . }. Furthermore, let

T̂oA
(n)

` (ζ(n)), or τ
(n)
` for short, symbolize the measured time of arrival of the nth transmission

at Gateway `. Then the average of the N times of arrival at Gateway ` is given by

τ` =
1

N

N∑
n=1

τ
(n)
`

=
1

N

N∑
n=1

(
t(n)(ζ(n)) + ToF`(ζ

(n)) + ∆T
(n)
` (ζ(n))

)
= t+ ToF` + ∆T `. (4.2)

where t(n)(ζ(n)) is the time of nth transmission, t = 1
N

∑N
n=1 t

(n)(ζ(n)) is the average of N

transmission times, ToF`(ζ
(1)) = ToF`(ζ

(2)) = · · · = ToF`(ζ
(N)) = ToF` is the time of flight
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from the target to gateway ` (which is the same for every transmission), and ∆T
(n)
` (ζ(n)) is

the measurement error on the time the nth transmission arrives at gateway ` and ∆T ` =

1
N

∑N
n=1 ∆T

(n)
` (ζ(n)).

Note that ∆T ` is an observation of a random variable that is the sum of N independent

zero-mean Gaussian RVs, each with variance
(σ

(n)
t`

)2

N2 . Such a random variable will be a zero-

mean Gaussian RV with variance

σ2
t`

=
1

N2

N∑
n=1

(σ
(n)
t`

)2.

Since (3.33) is invariant to the time of transmission, (4.2) has the form of a single transmission

and therefore can be used as such.

It is pointed out that, although the target and gateways are fixed, it is possible for σ
(n)
t`

to depend on the time of arrival, i.e., depend on n. This would be the case if a transmission

from another target collided or partially collided with the arrival of a transmission. This

could even cause the arrival of the nth transmission to go undetected. Such a case will be

discussed more later. For now it is assumed σ
(n)
t`

does not depend on n. Then the variance

of the average of the times of arrival at gateway ` is

σ2
t`

=
1

N
σ2
t`

for σ
(n)
t`

= σt` ; n = 1, 2, . . . ,N . (4.3)

Then (3.33) can be used to find an approximate a posteriori pdf for multiple transmissions

from a fixed target to gateways whose locations are fixed and have been measured only once.

This is done by substituting σ2
t`

=
σ2
t`

N
for σ2

t`
in (3.37), which modifies σ2

sum`
, then substituting

the modified σ2
sum`

into (3.36) as well as τ` for τ` into (3.36), which modifies γ, then using

the modified γ in (3.33) to get an approximate a posteriori pdf.

While the resulting pdf will be an improvement over the a posteriori pdf for a single

transmission, it will not be the true a posteriori for N transmissions since it can be shown

that the a posteriori pdf for N transmissions cannot be reduced to a function of
N∑
n=1

τ
(n)
` for

` = 1, . . . ,L.
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4.5 Effects of Multiple Transmissions

Recall from Section 4.4 that there are two scenarios for multiple transmissions: (1) The

locations of the gateways are measured each time a transmission is received from the target,

and (2) The locations of the gateways are measured just once. The quality of an approx-

imate a posteriori pdf developed using multiple transmissions for the second scenario can

be assessed experimentally using the first scenario. In the first scenario, (3.33) is applied

iteratively, once for each transmission, to produce the true a posteriori pdf. To verify the

quality of the pdf resulting from using the average τ` for τ` in (3.33), the average values of

the locations of the gateways must also be used for x̂` and ŷ`. These average values are given

by

x̂
(avg)
` =

1

N

N∑
n=1

x̂
(n)
` , ŷ

(avg)
` =

1

N

N∑
n=1

ŷ
(n)
` .

The variances of random variables x̂
(avg)
` (ζ) and ŷ

(avg)
` (ζ), which are

σ2
x`

=
1

N2

N∑
n=1

(
σ(n)
x`

)2

and

σ2
y`

=
1

N2

N∑
n=1

(
σ(n)
y`

)2
,

respectively, must be used in (3.33) for σ2
x`

and σ2
y`

. Should σ
(n)
x` = σx` and σ

(n)
y` = σy` for

n = 1, 2, . . . ,N , then σ2
x`

= 1
N
σ2
x`

and σ2
y`

= 1
N
σ2
y`

.

The pdf computed using the average values τ`, x̂
<avg>
` and ŷ<avg>` as well as variances

σ2
t`

, σ2
x`

and σ2
y`

in (3.33) can be compared to the true a posteriori pdf computed by applying

(3.33) iteratively using τ
(n)
` , x

(n)
` , y

(n)
` , (σ

(n)
t`

)2, (σ
(n)
x` )2 and (σ

(n)
y` )2. The similarity of the two

pdfs can be established by comparing critical regions defined by the contour lines on the

pdfs. Two such critical regions will be compared: one yielding a probability of 0.7 and

the other yielding a probability of 0.99. The system geometry used for the comparison has

L = 4 gateways located at
(

5√
2
, 5√

2

)
km,

(
− 5√

2
, 5√

2

)
km,

(
− 5√

2
,− 5√

2

)
km and

(
5√
2
,− 5√

2

)
km, respectively, and the target is located at

(
10√

2
, 10√

2

)
km.
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The comparisons are made for σt` = 100 ns and σx` = σy` = 30 m for ` = 1, 2, . . . ,L and

for N = 10, N = 33 and N = 100 for critical regions with probabilities 0.7 and 0.99.

The contours that encompass critical regions with probability 0.7 for N = 10, 33 and

100 are plotted in Fig. 4.9. The quantities τ`, x̂
<avg>
` and ŷ<avg>

` are the averages of samples

drawn from independent Gaussian random variables with means T̂oA`(ζ), x` and y` and

variances σ2
t`

, σ2
x`

and σ2
y`

. The agreement between the true a posteriori pdf (applying (3.33)

iteratively) and the approximation (applying (3.33) once using τ`, x̂
<avg>
` and ŷ<avg>

` ) is so

good that there appears to be just three somewhat elliptical curves. The true a posteriori

curves were plotted first in solid red and the approximations were plotted after the solid

curves in dashed green. The agreement is so good the dashed green curves seem to coincide

with the solid red curves. The largest “elliptical” curve is for 10 transmissions and the

smallest is for 100 transmissions.

The curves for contours that encompass critical regions with the probability 0.99 are

shown in Fig. 4.10. Again there is very good agreement between the true and approximate a

posteriori pdfs. Such good agreement in both of these critical regions suggests using (3.33)

once with τ for τ`, x̂
<avg>
` for x̂` and ŷ<avg>

` for ŷ` will provide a reasonable approximation

to the true a posteriori pdf for multiple transmissions from a fixed target.

It is pointed out that the average value of the ToA must be a simple average. If a weighted

average is used, the same weighting must be applied to the corresponding set of the times of

arrival at all L gateways. Otherwise the average transmission time, t, will not be the same

for all the gateways. For the same reason, if a transmission is missed at one gateway, the

corresponding ToA measurements at all other gateways must be discarded.

The effect of imperfect gateway location measurements on the a posteriori pdf for the

target’s location in the second scenario, where the gateways’ location are measured once,

shall be illustrated with an example. The example is contrived to be a clinical version of a

practical application. The gateways and target will be located as per the previous example,

which is as follows: gateways 1, 2, 3 and 4 are located at
(

5√
2
, 5√

2

)
km,

(
− 5√

2
, 5√

2

)
km,(

− 5√
2
,− 5√

2

)
km and

(
5√
2
,− 5√

2

)
km, respectively, and the target is located at

(
10√

2
, 10√

2

)
km.
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Figure 4.9: Critical regions with probability 0.70 for 10, 33 and 100 transmissions.
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Figure 4.10: Critical regions with probabilities 0.99 for 10, 33 and 100 transmissions.

The effect of a priori information on the a posteriori pdf is illustrated by locating the

target near a body of water, with the understanding that the target is inoperable in water.
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The shoreline is known to be parallel to the y-axis but, perhaps due to tides or seasonal

rainfall, the shoreline is not known precisely and is described by a pdf, which in this example

is assumed to be uniform between x = 7100m and x = 7150m. Then the a priori pdf is

fapriori(x, y) =


ε, −50, 000 < x < 7, 100 m

ε×(7,150−x)
50

, 7, 100 ≤ x ≤ 7, 150 m

0, x > 7, 150 m,

(4.4)

where ε is the constant that makes the volume under fapriori(x, y) equal to one.

The approximate a posteriori pdfs were generated with (3.33) using only measurements

of the gateways’ coordinates for x̂` and ŷ` and the average τ` in place of τ`. The variances of

the single measurements of the gateways’ coordinates were used for σ2
x`

, σ2
y`

, but the averages

σ2
t`

=
σ2
t`

N
were used in place of σ2

t`
. Then the contours that encompass a probability of 0.99

were determined. The contours were generated for four sets of repeated transmissions. The

numbers of transmissions in the four sets are N = 1, N = 16, N = 49 and N = 30, 000. The

errors in the measurements of the gateway locations for gateways 1, 2, 3 and 4, were not

chosen at random. They were either all (0, 0) or (−5, 0) m, (0,−5) m, (5, 0) m and (0, 5)

m, respectively, for every transmission. All except the first measured times of arrival were

chosen at random from a Gaussian distribution. All L times of arrival for n = 1 were chosen

to be error free.

Fig. 4.11 shows 8 somewhat elliptical curves, each representing a critical region. The solid

lines are for no measurement error on the gateways’ location and the dashed lines are for

the measurement error mentioned above. The variances are
(
σ

(n)
t`

)2

= σ2
t`

= (100 ns)2 and

σ2
x`

= σ2
y`

= (10 m)2 for ` = 1, 2, . . . ,L for all 8 curves. Since averaging reduces the effect

of both the ToA variances and ToA observations, the size of the critical regions diminish

with N . The largest pair of critical regions are for N = 1 and the smallest pair are for

N=30,000. For very large N the a posteriori pdf will only depend on the variances σ2
x`

and σ2
y`

and the measured values of the gateways’ locations. These effects of averaging are

illustrated in Fig. 4.11. At N = 1 the critical region is largest and gets progressively smaller
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as N increases. The critical region seems to converge to the smallest curve, which is the

curve for N=30,000. This implies the size of the area of the smallest critical region, i.e.,

the critical region for N = 30, 000, is due entirely to the variances of error in the gateways’

locations. The difference between the dashed and solid lines is caused by measurement error

in the gateways’ locations. In this case the error causes the critical region to shift without

significantly affecting the shape.

Since the area in the N = 30, 000 critical region in Fig. 4.11 is much smaller than the

N = 1 critical region, the size of the area of the N = 1 critical area is largely determined by

the variances of the error in the times of arrival.

The determining factors for the size of the N = 1 critical region are corroborated by

plotting the critical region for different values of σ2
x`

and σ2
y`

with no error on either the time

of arrival or gateway location measurements. The critical region encompassed by the black

curve in Fig. 4.12 is that of Fig. 4.11 for N = 1 and no measurement error. The critical

region encompassed by the solid red line is for the same parameters except σx` = σy` is

changed from 10m to 0m. Clearly, decreasing the variance of the error in the gateways’

locations decreased the size of the critical region, but not that much. The size of the critical

region for N = 1 is more sensitive to the variances of the times of arrivals. The blue curve

in Fig. 4.12 was generated with the standard deviations for all times of arrival cut in half,

this is σ
(n)
t`

= σt` = 50ns. The critical region encompassed by the blue curve is much smaller

than the critical region encompassed by the red curve, which indicates the size of the critical

region is more sensitive to the variances of the times of arrival, at least in this particular

system with σx` = σy` = 10m for all ` and σ
(n)
t`

= 100ns for all ` and n.

The factors that determine the size of the critical region for N = 30, 000 are corroborated

in the same way. The critical region for N = 30, 000 encompassed by the solid black curve

in Fig. 4.11 is plotted again in Fig. 4.13 with the solid black curve. The dashed red curve in

Fig. 4.13 encompasses the critical region for the same parameters as the black curve except

the variances of error for all of the ToAs were changed from (100ns)2 to (500ns)2. It is clear

that the dashed red curve nearly coincides with the black curve, indicating the variances

of the error on the ToAs were greatly reduced by the averaging and did not affect the size
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Figure 4.11: Critical regions with probability 0.99 for 1, 16, 49 and 30,000 transmissions:(
σ

(n)
t`

)2

= σ2
t`

= (100 ns)2 and σ2
x`

= σ2
y`

= (10 m)2.

of the critical region. This shows that for large N the size of the 0.99 probability critical

region depends almost entirely on the variances of the measurement error on locations of the

gateways, at least for the particular system used for Figs. 4.11, 4.12 and 4.13.

4.6 Extension to 3D Localization

Having completed the 2D analysis, it is straightforward to extend (3.33) to apply to a

3-dimensional space where the gateways and target have 3 co-ordinates. Let z be the third

co-ordinate of the target’s location and z`, ` = 1, 2, . . . ,L, be the third co-ordinates of the

gateways’ locations. Then the 3-dimensional a posteriori density function is given as

f
x,y,z

∣∣T̂oA,ĝx,ĝy
(x, y, z

∣∣τ, ĝx, ĝy) =
e−

γ
2 fx,y,z(x, y, z)

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−
γ
2 fx,y,z(x, y, z)dxdydz

, (4.5)
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Figure 4.12: Critical regions with probability 0.99 for 1 transmission with different configu-
rations.

where fx,y,z(x, y, z) is the a priori density of the target’s co-ordinates and, for the 3-dimensional

space, γ is now given by

γ =
L∑
`=1

(
τ` −

√
(x̂` − x)2 + (ŷ` − y)2 + (ẑ` − z)2/c

)2

σ2
sum`

− σ2

(
L∑
`=1

τ` −
√

(x̂` − x)2 + (ŷ` − y)2 + (ẑ` − z)2/c

σ2
sum`

)2

, (4.6)

where, for the 3-dimensional equation, σ2
sum`

is given by (3.37).

It is very important to point out that, while (4.5) provides a 3-dimensional a posteriori

pdf, it is capable of providing a 2-dimensional a posteriori pdf that is more compact, i.e.,

better, than (3.33). Equ. (4.5) is reduced to two dimensions by setting z to be the function

of x and y that describes the elevation of a surface. Then (4.5) generates a 2-dimensional a
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Figure 4.13: Critical regions with probability 0.99 for 30,000 transmission with different
configurations.

posteriori pdf for a target that is known to sit on that surface. In fact, Equ. (4.5) can be

reduced to (3.33) by setting z as well the vertical coordinates of all gateways to 0. However,

leaving the vertical coordinates of the gateways as their true heights will generate a more

accurate 2-dimensional a posteriori pdf than (3.33). The reason is that by assuming all the

gateways are in the same horizontal plane introduces a bias in the time-of-flight equations

and thereby into the estimates.

The worth of (4.5) is demonstrated with an example similar to the one that produced

Fig. 4.4. The horizontal coordinates of the gateways are the same as in the 2-dimensional

(2D) example, i.e., at (±100 m,±100 m), but now gateways 1, 2, 3, and 4 have heights 25 m,

85 m, 105 m and 0 m, respectively, with the gateway numbering following that of Fig. 4.1.

Here, only the lucky observation from the ToA distributions with σt` = 25ns. The target is

positioned at the origin, which is not where it was positioned for the 2D example, and a lower

limit is placed on its vertical coordinate through an a priori pdf that is 0 for z < −300 m

and otherwise uniform.
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Figure 4.14: Marginal a posteriori pdf for the x coordinate computed from (4.5) and its
corresponding Gaussian approximation for the lucky observation from an optimistic distri-
bution for ToA error with σt` = 25 ns.

The three marginal a posteriori pdfs for the x, y and z coordinates along with their

Gaussian approximations are plotted in Figs. 4.14, 4.15 and 4.16, respectively. Note that

Gaussian approximations cannot accommodate an a priori pdf so they are not affected by

it.

The three marginal a posteriori pdfs show that the ToF equations are certainly non-

linear over the reach of the errors in the “optimistic” distribution, which has σt` = 25ns,

especially in the x and z directions. It is clear that the Foy’s linearized model used to

produce the Gaussian pdfs does not accurately represent the error in localization. When the

standard deviation on the ToA errors is reduced to 10 ns, the linear model becomes reasonably

accurate. All three of the marginal a posteriori pdfs are still noticeably non-symmetrical,

but track the Gaussian approximations reasonably well.

Finally, the worth of using the (4.5) with a fixed value for the z coordinate instead of the

2D a posteriori pdf given by (3.33) is demonstrated. The pdfs were generated using (4.5)

with z set to 0 m and (3.33) for the same system that produced Figs. 4.14, 4.15 and 4.16. Of
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Figure 4.15: Marginal a posteriori pdf for the y coordinate computed from (4.5) and its
corresponding Gaussian approximation for the lucky observation from an optimistic distri-
bution for ToA error with σt` = 25 ns.
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Figure 4.16: Marginal a posteriori pdf for the z coordinate computed from (4.5) and its
corresponding Gaussian approximation for the lucky observation from an optimistic distri-
bution for ToA error with σt` = 25 ns.
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Figure 4.17: Marginal a posteriori pdfs for the x coordinate computed from (4.5) with z given
to be z = 0 m and from (3.33) for the lucky observation from an optimistic distribution for
ToA error with σToA = 25 ns.

course, the elevations of the gateways and target are ignored in (3.33). The resulting pdfs

for the x-coordinate of the target are plotted in Fig. 4.17. There are two major differences

between Figs. 4.14 and 4.17. First, (3.33) introduces a bias caused by the actual ToFs being

larger than what were modeled. In this case the bias is 20 meters. Second, (3.33) is more

sensitive to the target’s horizontal position and produces a standard deviation that is smaller

than it should be. It is easily concluded that (4.5) should always be used over (3.33).
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5. A Posteriori PDF for Time-Difference of

Arrival Measurements

5.1 Background

In the literature, localization systems based on time measurements of a signal transmitted

from a source, i.e., target, and received at a set of spatially-separated receivers having known

positions (or known with some measurement errors) [56] can be classified into two different

groups distinguished by the types of signal transmitted by the source.

1. The first group centers on applications, like underwater sonar, where only statistical

information on the radiating signal, e.g. its power spectral density, is available. For

such localization systems, ToA measurement is not possible. Instead, TDoA measure-

ments are made by pairwise cross-correlation of the signals received at L receivers [57].

A wealth of literature on TDoA measurements with pairwise cross-correlation can be

found in [58].

2. In contrast, localization systems in modern wireless applications, such as Internet-of-

Things (IoT), cannot measure TDoAs because the receivers (also known as gateways)

in modern IoT systems (such as LoRaWAN) are not designed to relay the analog

signals they receive to the application server for computing pairwise cross-correlation.

Instead, the ToAs must be measured using a known portion of the transmitted signal,

for example an embedded preamble. If used in a localization algorithm, the TDoA

values are then computed from these ToA measurements.

It is pointed out that the statistics of the errors on the TDoA values calculated from

ToA measurements will be different from TDoA measurements made by pairwise cross-
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correlation. Therefore, literature that discusses a set of (L − 1) pairwise cross-correlation

measurements does not directly apply to a set of (L−1) TDoA values obtained by subtracting

a reference ToA. For example, the work in [59] does not apply to applications considered in

this paper. The authors in [59] show that, for the purpose of ordinary least squares (OLS)

estimation, under special conditions for the signal and noise, the full set of L(L−1)/2 TDoA

measurements obtained by pairwise cross-correlation can be transformed to a set of (L− 1)

TDoA equations without loss of information.

This chapter has been included to support localization systems that fall into the first

group, but the analysis is based on systems that fall into the second group, i.e., the analysis

is based on ToA measurements made at the gateways. Within this second group of systems,

there are two very different scenarios:

Scenario 1: the time that the message is transmitted from the target is measured and

Scenario 2: the time that the message is transmitted from the target is unknown.

Systems where the time of transmission is measured at the target, i.e., group 2 systems

with scenario 1 transmission, is less common for two reasons: scenario 2 systems are much

cheaper and there is very little difference in complexity/cost between measuring the time

of transmission from a GPS signal and measuring the location from a GPS signal. Also, in

both cases either the transmission time or the target’s location has to be included in the

message transmitted to the gateways.

Scenario 2 is the scenario of interest in this thesis. However, since there is one less

independent measurement in scenario 2, the a posteriori pdf for scenario 2 will be more

spread out and the marginal pdfs will have larger variances.

It is common to begin the analysis of systems with scenario 2 signals by using one ToA

measurement as a reference to obtain (L− 1) time-difference-of-arrival (TDoA) values with

respect to the remaining (L−1) ToA measurements, where L is the total number of gateways.

This is done to eliminate the unknown transmit time from (L − 1) equations. Each TDoA

value can be translated into the difference in distances from the target to the corresponding
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two gateways. Thus each TDoA value defines a hyperbola (or hyperboloid for 3-dimensional

localization) that the target is supposed to lie on. Then the final estimation of the target’s

location is done based on the intersections of (L − 1) hyperbolas (hyperboloids) [31]. In

particular, the maximum likelihood (ML) estimator based on TDoAs can be found in [31,60].

Another approach for Scenario 2 is to also estimate the target’s transmit time as a nui-

sance parameter jointly with the source location. The maximum likelihood (ML) estimator

is obtained in [44, 61], whereas the existence question for the ML estimator is recently ex-

amined in [62]. Since finding the ML solution is difficult, various simplifications are made

(hence sub-optimal solutions are obtained) in [44, 61, 63] that are more amendable to fast

computation.

It was observed via simulation results in [61] that the ML estimator obtained by jointly

estimating the time the message was transmitted and the target’s coordinates yields the same

localization performance as the ML estimator obtained from TDoA values. The authors

also pointed out that their simulation results show no performance difference when selecting

different ToA measurements as a reference. They show clearly, however, that for sub-optimal

estimators, such as linear least squares (LLS) and semi-definite programming (SDP), joint

estimation of the transmit time and target’s location based on ToAs is better than estimation

of the target’s location based on TDoAs. Similar observations were made in [44,63].

All the above discussion pertains to the point estimation paradigm. Another paradigm

for localization is region estimation. Each paradigm has its advantages. Point estimation

provides estimates of the coordinates of the target, whereas region estimation, more specifi-

cally Bayesian region estimation, calculates the probability the target is in a specified region.

While point estimation has been researched extensively [31], region estimation in the context

of TDoA based localization has not.

5.2 The a Posteriori Pdf for Scenario 2 TDoAs

The objective of this section is to find the a posteriori pdf for the coordinates of a target in

terms of the TDoAs calculated from the ToAs at a system of L spatially separated gateways.
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The set of (L− 1) TDoAs is obtained by subtracting the ToA at gateway k from the (L− 1)

ToAs at the other gateways. Specifically the set of (L− 1) TDoA estimates is given by

T̂DoA`,k(ζ) = T̂oA`(ζ)− T̂oAk(ζ), ` = 1, 2, . . . , k − 1, k + 1, . . . ,L, (5.1)

where gateway k is used as the reference.

Let τ`,k = T̂DoA`,k(ζ), then the equation above can be expressed as

τ`,k = τ` − τk, ` = 1, 2, . . . , k − 1, k + 1, . . . ,L.

The a posteriori pdf is given by (4.5) can be expressed in terms of the TDoAs by ex-

pressing γ in terms of TDoAs. The logic for converting the equation for γ given by (4.6)

to an expression in terms of TDoAs is quite straightforward. From physics, it is clear that

the a posteriori pdf given by (4.5) does not depend on the time of transmission. Therefore,

the time of transmission could be advanced or retarded by any value without affecting the

pdf given by (4.5). Therefore, after measuring τ`, ` = 1, 2, . . . ,L, any values, say b, could be

subtracted from all τ`, and then all occurrences of τ` in (4.6) could be replaced with τ` − b

without changing the a posteriori pdf. Now let b = τk, then all occurrences of τ` in (4.6)

must be replaced with τ` − τk, which will be symbolized τ`,k, and (4.6) becomes

γ =
L∑
`=1

(
τ`,k −

√
(x̂` − x)2 + (ŷ` − y)2 + (ẑ` − z)2/c

)2

σ2
sum`

− σ2

(
L∑
`=1

τ`,k −
√

(x̂` − x)2 + (ŷ` − y)2 + (ẑ` − z)2/c

σ2
sum`

)2

. (5.2)

Note that τ`,k for ` = k is 0 so γ is a function of τ`,k, ` = 1, 2, . . . , k − 1, k + 1, . . . ,L.

Therefore, the a posteriori pdf given by (4.5) can be computed using TDoAs τ`,k by

computing γ with (5.2). This result is also proved in Appendix C (page 105) in a different

way.
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5.3 Applicability of the a Posteriori Pdf in Applications where

ToAs Cannot Be Estimated

There are applications where it is not possible to estimate the ToAs. Such applications

include underwater sonar where the target emits a continuous random sonar signal. In these

applications it is possible to estimate TDoAs using the peak value of a cross-correlation [57].

Typically the continuous signal is windowed in time at all of the receivers and then these

finite time signals are cross-correlated and the peak of the cross-correlation becomes the

TDoA estimate.

Since the parameters in (5.2) are the variances of the errors in the ToA estimates, these

variances must be known to find the a posteriori with TDoA estimates. This begs the

question “If the ToAs cannot be estimated, how can the variances of the errors on the ToA

estimates be found?”. It turns out, unlike the ToA estimates themselves, the variances of

the errors on the ToA estimates can be calculated from the power spectral density functions

of the random signal and the random noises corrupting that signal at different receivers.

The adaptability of (5.2) to applications where the signal emitted/transmitted by the target

is continuous and random is explored below. It is pointed out that similar techniques and

variance analysis of the TDoA estimates by cross-correlation, but based on samples (discrete-

time) of the received signals can be found in [59,64].

Suppose a system of spatially separated receivers, which have been referred to as gateways

up to this point, receive a continuous random signal from a target and the receivers relay

these signals to a central processor. Furthermore, suppose the propagation delays in the

links from the receivers to the central processor are known and the auto-correlation function

and power spectral density of the noise corrupting the inputs to the receivers are also known

by the central processor. The central processor can then correct for the propagation delays

incurred in the links from the receivers. Then the central processor is in a position to window

the received signals and cross-correlate the windowed segments. Obviously, the location of

the peaks in the cross-correlation are the TDoA estimates.

Let the signal emitted/transmitted by the target be sample function s(t, ζ) from stochas-
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tic process s(t, ζ). That sample function is unknown to the receivers, but the auto-correlation

function and power spectral density of stochastic process s(t, ζ) are known to the receivers.

Let the signal plus noise received by gateway `, i.e., receiver `, be denoted as

v`(t, ζ) = α`s(t− d`, ζ) + n`(t, ζ), (5.3)

where α` is the linear gain of the link between the target and gateway `, d` is the unknown

propagation between the target and gateway ` and n`(t, ζ), which is a sample function

from stochastic process n`(t, ζ), is the noise corrupting the signal received by gateway `.

Furthermore n`(t, ζ) is independent of s(t − d`, ζ) and nk(t, ζ) for k 6= `. The central

processor windows the signal from the gateways with a window of length T , where T is

sufficiently large for cross correlation to produce a good estimate.

Note, in order to keep the number of symbols used in this thesis as small as possible,

the symbols used for the windowed signals will be the same as those used for the continuous

signals.

The correlator has three inputs: two are time signals and the other controls the delay

that the correlator forces on one of the time signal inputs. The auto correlation function for

the stochastic process from which time signal s(t, ζ) is drawn is denoted Rss(t1, t2), where

the auto-correlation function is defined as

Rss(t1, t2) = E[s(t1, ζ), s∗(t2, ζ)].

Here s(t1, ζ) and s(t2, ζ) are random variables that take on the values of s(t, ζ) at times t1

and t2, respectively.

The output of the correlator when the inputs are from receivers ` and k is

C`,k(τ, ζ) =

∞∫
−∞

(
αks(t− dk, ζ) + nk(t, ζ)

)(
α`s(t− d` − τ, ζ) + n`(τ, ζ)

)
dt, (5.4)

where the signals in the integrand of (5.4) are the windowed signals so the limits of the
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integral could be finite and the delay of τ is imposed on the signal from the receiver `.

The value of τ that maximizes C`,k(τ, ζ) is taken to be the estimate T̂DoA`,k(ζ), which

in this case is

τ@max = T̂DoA`,k(ζ) = τ`,k = d` − dk + ∆τ`,k(ζ),

where τ`,k is short for T̂DoA`,k(ζ) and ∆τ`,k(ζ) is the error in the TDoA estimate for outcome

ζ.

In this analysis we are only interested in the statistics of the error ∆τ`,k(ζ). Without

loss of generality, dk and d` can be set to zero. This is done to remove symbolic clutter as

well as remove a level of abstraction. This can be done in this analysis since d`− dk is of no

interest. Then τ@max = ∆τ`,k(ζ). Also, without loss of generality, the window is centered at

the time origin and extends from t = −T/2 to t = T/2.

There are two ways to deal with windowed signals. One way is to assume that the portion

outside the window is zero and the other is to assume the windowed signal is an excerpt

from a periodic signal with period T . Neither assumption is perfect and both introduce error

when a shifted version of the signal is the integrand of an integral over an interval of T . In

this analysis the windowed signal will be converted to a continuous infinite length periodic

signal by repeatedly pre-pending and appending the windowed segment to itself.

After setting d` = 0 for all ` and extending the windowed signals to make them periodic,

the cross correlation function given by (5.4) can be written as

C`,k(∆τ, ζ) = signal + noise1 + noise2 + noise3,

(5.5)
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where

signal =

T/2∫
−T/2

αkα`s(t, ζ)s(t−∆τ, ζ)dt,

noise1 =

T/2∫
−T/2

αks(t, ζ)n`(t−∆τ, ζ)dt,

noise2 =

T/2∫
−T/2

α`nk(t, ζ)s(t−∆τ, ζ)dt,

noise3 =

T/2∫
−T/2

nk(t, ζ)n`(t−∆τ, ζ)dt,

where the delay introduced by the correlator has been changed from τ to ∆τ. Since all d`

have been set to zero, ∆τ@max is the estimation error, i.e., ∆τ`,k(ζ) = ∆τ@max.

The windowed time signals have been extended to be periodic with period T so they can

be expressed as their Fourier Series, which is

s(t, ζ) =
M∑
m=0

As(m, ζ) cos
(2πmt

T
+ φs(m, ζ)

)
and

n`(t, ζ) =
M∑
m=0

A`(m, ζ) cos
(2πmt

T
+ φ`(m, ζ)

)
where As(m, ζ) and φs(m, ζ) are the Fourier series coefficients for amplitude and phase for

the sample function s(t, ζ) and A`(m, ζ) and φ`(m, ζ) are the Fourier Series coefficients for

amplitude and phase for the sample function n`(t, ζ).

Then replacing s(t, ζ) and nk(t, ζ) and n`(t, ζ) in (5.5) with their Fourier series, changing
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the order of summation and integration and integrating produces:

signal = α`αk

M∑
m=0

A2
s(m, ζ)

2
T cos

(2πm

T
∆τ
)

,

noise1 = αk

M∑
m=0

As(m, ζ)A`(m, ζ)

2
cos
(2πm

T
∆τ + φ`(m, ζ)− φs(m, ζ)

)
,

noise2 = α`

M∑
m=0

As(m, ζ)Ak(m, ζ)

2
cos
(2πm

T
∆τ + φs(m, ζ)− φk(m, ζ)

)
,

noise3 =
M∑
m=0

A`(m, ζ)Ak(m, ζ)

2
cos
(2πm

T
∆τ + φ`(m, ζ)− φk(m, ζ)

)
.

It is not possible to estimate the ToAs in practice since s(t, ζ) is drawn from a stochastic

process and therefore, unknown to the central processor. However, in a laboratory setting

s(t, ζ) can be fed into the reference input of the correlator. In this case the ∆τ that maximizes

the correlator output, i.e., ∆τ@max, is the error on the estimated ToA for receiver `, which is

denoted ∆τ`(ζ) . It is worth repeating that since all d` have been set to zero, ∆τ@max is the

estimation error, i.e., ∆τ`(ζ) = ∆τ@max.

Setting αk = 1 and nk(t, ζ) = 0 in (5.5) changes ∆τ@max from being ∆τ`,k(ζ) to being

∆τ`(ζ). Therefore, (5.5) can be used to find the error in estimates of ToAs or TDoAs, at

least in a laboratory setting.

5.3.1 Variances of ToAs and TDoAs

The variances of ∆τ`(ζ) and ∆τ`,k(ζ) can be found approximately through the following

sequence of steps.

Step 1: Approximate the signal in (5.5) with its second order Maclaurin polynomial in ∆τ

(i.e., the second order Taylor series about ∆τ = 0). For “signal” the correlator output

will be maximum at ∆τ = 0. Therefore, d signal
d∆τ

= 0 at ∆τ = 0 and the Maclaurin
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polynomial becomes

signal ' signal

∣∣∣∣∣
∆τ=0

+
d2signal

d∆τ2

∣∣∣∣∣
∆τ=0

∆τ2

2
,

where signal is the output of the correlator as a function ∆τ when the inputs are

αks(t, ζ) and α`s(t, ζ). Since the output of the correlator is a function of ∆τ and ζ and

the two inputs are scaled copies of sample function s(t, ζ), it will be denoted Css(∆τ, ζ).

Using this notation the approximation above is written:

signal ' Css(∆τ, ζ)

∣∣∣∣∣
∆τ=0

+ C”
ss(∆τ, ζ)

∣∣∣∣∣
∆τ=0

∆τ2

2
. (5.6)

Note that Css(∆τ, ζ)

∣∣∣∣∣
∆τ=0

is the energy in αkα`s(t, ζ).

Step 2: Set up the equation that, when solved, produces ∆τ`,k(ζ). This is done by replacing

signal in (5.5) with the approximation given by (5.6) then taking the derivative of (5.5)

with respect to ∆τ and setting it equal to zero. After moving the signal component to

the left side the result is

C”
ss(∆τ, ζ)

∣∣∣∣∣
∆τ=0

∆τ`,k(ζ) =

(
− d noise1

d∆τ
− d noise2

d∆τ
− d noise3

d∆τ

)∣∣∣∣∣
∆τ=∆τ`,k(ζ)

, (5.7)

89



where

d noise1

d∆τ
= −αk

M∑
m=0

As(m, ζ)A`(m, ζ)

2

2πm

T
×

sin

(
2πm

T
∆τ + φ`(m, ζ)− φs(m, ζ)

)
,

d noise2

d∆τ
= −α`

M∑
m=0

As(m, ζ)Ak(m, ζ)

2

2πm

T
×

sin

(
2πm

T
∆τ + φs(m, ζ)− φk(m, ζ)

)
,

d noise3

d∆τ
= −

M∑
m=0

A`(m, ζ)Ak(m, ζ)

2

2πm

T
×

sin

(
2πm

T
∆τ + φ`(m, ζ)− φk(m, ζ)

)
,

d2

d∆τ2
Css(∆τ, ζ) = −αkα`

M∑
m=0

A2
s(m, ζ)

2

(2πm

T

)2

cos
(2πm

T
∆τ
)

and ,

d2

d∆τ2
Css(∆τ, ζ)

∣∣∣
∆τ=0

= −αkα`
M∑
m=0

A2
s(m, ζ)

2

(2πm

T

)2

. (5.8)

The equation above plays a critical role in the quest to find the variances of ∆τ`,k(ζ)

and ∆τ`(ζ), but the specific values of ∆τ`,k(ζ) are not needed. Therefore, the equation

above does not need to be solved.

Step 3: Find the mean of ∆τ`,k(ζ). Since Css(∆τ) is an even function of ∆τ, the pdf of

∆τ`,k(ζ) will be an even function and the mean of ∆τ`,k(ζ) will be zero.

Step 4: Find E[∆τ2
`,k(ζ)]. This expectation is the variance of ∆τ`,k(ζ) since the mean of

∆τ`,k(ζ) is zero. This is done by treating the sample functions in (5.7) as stochastic

processes, squaring (5.7) and taking the expectation of both sides.

First, find the expectation of the left-hand side. This is done by assuming the signal

is somewhat ergodic in the sense that the amplitude coefficients, As(m, ζ) are very

weakly dependent on ζ (however, the phase coefficients could depend on ζ). In which

case, i.e., evaluate this at ∆τ = 0, both Css(∆τ, ζ)
∣∣∣
∆τ=0

and C”
ss(∆τ, ζ)

∣∣∣
∆τ=0

weakly
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depend on ζ and can be treated as constants. Under this assumption,

C”
ss(∆τ, ζ)

∣∣∣
∆τ=0

= −αkα`
M∑
m=0

A2
s(m)

2
(2πm/T )2 ∀ζ,

where As(m, ζ) is assumed to be independent of ζ and therefore written As(m).

Therefore, the left-side of the square of (5.7) is

(
C”
ss(∆τ, ζ)

)2

∣∣∣∣∣
∆τ=0

∆τ2
`,k(ζ) =

(
− αkα`

M∑
m=0

A2
s(m)

2
(2πm/T )2

)2

∆τ2
`,k(ζ). (5.9)

The square of the right side of (5.7) has six different terms: three of which are the

squares of the 3 terms on the right-side of (5.7) and 3 of which are the products of

different terms. The expectation of a product of functions can be distributed to the

functions of independent random variables. Doing this has an expectation of a function

whose mean is zero. One of the expectations being zero ensures the product is zero

and therefore ensures the three terms with “cross products” will be zero.

This leaves the 3 squared terms. The expectations of which are

E
[(dnoise1

d∆τ

)2
]

= 1
2
α2
k

∑M
m=0 E

[A2
s(m,ζ)

2

]
E
[A2

` (m,ζ)

2

](
2π
T
m
)2

, (5.10)

E
[(dnoise2

d∆τ

)2
]

= 1
2
α2
`

∑M
m=0 E

[A2
s(m,ζ)

2

]
E
[A2

k(m,ζ)

2

](
2π
T
m
)2

, (5.11)

E
[(dnoise3

d∆τ

)2
]

= 1
2

∑M
m=0 E

[A2
` (m,ζ)

2

]
E
[A2

k(m,ζ)

2

](
2π
T
m
)2

. (5.12)

Suppose the bandwidth of the signal, which is 2πM
T

rad
sec

, is much larger than 2π
T

. That is

suppose the time-bandwidth product is much much greater than 2π, i.e., T× 2πM
T
� 2π

or M � 1. Then the frequency spacing of the Fourier sinusoids, which is 2π
T

rad
sec

, is small

and the power spectral densities of s(t, ζ) and n`(t, ζ) are approximately

Sss
(

2πm

T

)
'

E
[
A2
s(m,ζ)

2

]
2π
T

and Sn`n`
(

2πm

T

)
'

E
[
A2
` (m,ζ)

2

]
2π
T

,
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which means

E
[
A2
s(m, ζ)

2

]
' 2π

T
Sss
(

2πm

T

)
and E

[
A2
`(m, ζ)

2

]
' 2π

T
Sn`n`

(
2πm

T

)
.

Then the summations in (5.10), (5.11) and (5.12) can be treated as Riemann sums and

these equations become

E
[(d noise1

d∆τ

)2
]

= 1
2
α2
k

(
T
2π

)3 2πM/T∫
ω=0

ω2Sss(ω)Sn`n`(ω)d ω, (5.13)

E
[(d noise2

d∆τ

)2
]

= 1
2
α2
`

(
T
2π

)3 2πM/T∫
ω=0

ω2Sss(ω)Snknk(ω)dω, (5.14)

E
[(d noise3

d∆τ

)2
]

= 1
2

(
T
2π

)3 2πM/T∫
ω=0

ω2Sn`n`(ω)Snknk(ω)dω. (5.15)

For the same reason E[C”(∆τ, ζ)]
∣∣∣
∆τ=0

can be expressed as

(
αkα`

( T
2π

)2
2πM/T∫
ω=0

ω2Sss(ω)dω

)2

.

Then, after squaring (5.7), taking the expectation of both sides, and dividing both

sides by
(
C”(∆τ, ζ)

)2
, has

E[τ2
`,k(ζ)] =

π

T

[
α2
`

2πM/T∫
ω=0

ω2Sss(ω)Sn`n`(ω)dω + α2
k

2πM/T∫
ω=0

ω2Sss(ω)Snknk(ω)dω

]

α2
`α

2
k

(
2πM/T∫
ω=0

ω2Sss(ω)dω

)2

+
π

T

2πM/T∫
ω=0

ω2Sn`n`(ω)Snknk(ω)dω

α2
`α

2
k

(
2πM/T∫
ω=0

ω2Sss(ω)dω

)2 . (5.16)

For example, if Sss(ω), Snknk(ω) and Sn`n`(ω) are all flat, low pass power spectral

densities with spectral constants 1, βk and β`, respectively, all with unit watts/Hz
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and all stochastic processes have the same bandwidth B Hz (or 2πB rad/sec) then

E[τ2
`,k(ζ)] is

E[τ2
`,k(ζ)] =

π

T

2πB∫
0

ω2(α2
`βk + α2

kβ` + β`βk)dω

α2
`α

2
k

( 2πB∫
0

ω2dω
)2

=
π

T

(α2
`βk + α2

kβ` + β`βk)

α2
`α

2
k

1
3
(2πB)3

=
3

8π2B3T

(
βk
α2
k

+
β`
α2
`

+
βkβ`
α2
`α

2
k

)
=

3

8π2B3T

(
1

SNRk
+

1

SNR`
+

1

SNRkSNR`

)
, (5.17)

where SNRk and SNR` are the ratios of signal power to noise power at receivers k and

`, respectively.

Step 5: Find the variance for the time of arrival at receiver `. This is done by setting

nk(t, ζ) to zero of all ζ and setting αk to 1 and using (5.16). Since nk(t, ζ) = 0 ∀ζ,

Snknk(ω) = 0. Substituting 0 for Snknk(ω) and 1 for αk in (5.16) produces the variance

for ToA at receiver `. It is given by

E[τ2
`(ζ)] =

π

T

2πB∫
0

ω2Sss(ω)Sn`n`(ω)dω

(
α2
`

2πB∫
0

ω2Sss(ω)dω
)2

. (5.18)

Under the same assumptions with the above example for calculating E[τ2
`,k(ζ)], E[τ2

`(ζ)] is

E[τ2
`,k(ζ)] =

π

T

2πB∫
0

ω2β`dω

α2
`

(
2πB∫
0

ω2dω

)2 =
πβ`

Tα2
`

1
3
(2πB)3

=
3

8π2TB3SNR`
, (5.19)

where SNRk and SNR` are the ratios of signal power to noise power at receivers k and `,

respectively.
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5.4 Verification of Equations for E[τ2
`,k(ζ)] and E[τ2

`(ζ)]

In this section the equation for E[τ2
`,k(ζ)] and E[τ2

`(ζ)], i.e., (5.16) and (5.18), are verified

for a random signal and random noise with the following power spectral densities:

Sss(ω) =

1 W
Hz

, 0 ≤ ω ≤ 2πB

0, otherwise,

,

Sn`n`(ω) =
Sss(ω)

SNR
for all `,

where B = 400Hz and SNR is a parameter of the experiment.

The cross correlator is simulated and τ`,k(ζ) and τ`(ζ) are found for 10,000 outcomes.

The means and variances are computed from these outcomes and compared to the theoretical

results.

The parameters used in verification are chosen to test the sensitivities of the assumptions

made in the derivation of the variance equations. The two assumptions were T is chosen to

be much greater than 1
B

and the SNR is sufficiently high for ∆τ`,k(ζ) to be small enough

for a second order Maclaurin polynomial to be used for C`,k
(
∆τ`,k(ζ), ζ

)
. The results are

tabulated in Tables 5.1 and 5.2.

Comparison of the standard deviations calculated from the theoretically derived (5.17)

and (5.19) to the standard deviations obtained experimentally show a reasonably good agree-

ment. In most cases the agreement is within 10%. The case where the SNR = −10 dB and

T × B = 10, which stress the assumption of high time-bandwidth product and reasonable

SNR. In that case the theoretical standard deviation differs by about 15%.

While limited in number, the experimental results captured in Tables 5.1 and 5.2 indi-

cate Equations (5.17) and (5.19) are reasonable and can be used to draw conclusions on

the differences between TDoA valued obtained directly through cross-correlation and those

obtained by taking the difference of ToAs.

94



Table 5.1: An example for the estimates of the standard deviation for TDoA in units sec-
onds. The experimental standard deviations were calculated from 10, 000 cross-correlation
measurements.

SNR T ×B = 10 T ×B = 100

−10 dB Theoretical 0.00062262 0.00022042
Experimental 0.00067063 0.00019689

0 dB Theoretical 0.00026691 0.00008440
Experimental 0.00028146 0.00008393

10 dB Theoretical 0.00013189 0.00004170
Experimental 0.00012384 0.00004177

Table 5.2: An example for the estimates of the standard deviation for ToA in units sec-
onds. The experimental standard deviations were calculated from 10, 000 cross-correlation
measurements.

SNR T ×B = 10 T ×B = 100

−10 dB Theoretical 0.00027403 0.000086657
Experimental 0.00031921 0.000087236

0 dB Theoretical 0.00015410 0.000048731
Experimental 0.00015150 0.000048136

10 dB Theoretical 0.00008665 0.000027403
Experimental 0.00008188 0.000027471
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5.5 Applicability of (3.33) and (4.5) to Systems that Measure TDoAs

and Not ToAs

In general (3.33) and (4.5) cannot be applied to systems that measure the TDoAs directly

using cross-correlation. However, there are situations where (3.33) and (4.5) can be used to

generate an applicable a posteriori pdf. The argument for these two assertions is provided as

a sequence of assertions arising from the expressions for variance of error that were developed

in this chapter.

The logical argument for how and when to use (3.33) and (4.5) to get an approximate

a posteriori pdf for systems that estimate the TDoAs directly using cross-correlation of

windowed segments of continuous random signals is provided as the sequence of assertions

given below:

1. It is reasonably assumed that the power spectral density of the noise corrupting the

received signal is known. In other words it is assumed the power spectral densities

of both the Johnson noise for the receiver as well as the environmental ambient noise

picked up by the antenna/sensor can be either measured or calculated.

2. It is reasonably assumed that the power spectral density of the continuous signal plus

noise picked up by a receiver can be measured.

3. The power spectral density of the signal can be calculated by subtracting the power

spectral density of the noise from the power spectral density measured in assertion 2.

4. Since the power spectral densities of the transmitted signal and noise are available,

the variance of error for the cross-correlation based TDoA estimator can be calculated

from (5.16). The variance depends on T , α`, αk, Sss(ω), Snknk(ω) and Sn`n`(ω).

5. Even though s(t, ζ) is not known and the ToAs cannot be estimated, the variance of

error on the ToAs estimated from a cross-correlation with s(t, ζ) can be found using

(5.18). From (5.18) the variance depends on T , α`, Sss(ω) and Sn`n`(ω).

6. Comparing (5.16) and (5.18) shows the variance of the error on the TDoA estimates

is related to the variance of error on the ToA estimates (if it were possible to estimate
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ToAs) by

E[τ2
`,k(ζ)] = E[τ2

`(ζ)] + E[τ2
k(ζ)] +

π
∞∫
−∞

ω2Sn`n`(ω)Snknk(ω)dω

Tα2
`α

2
k

( ∞∫
−∞

ω2Sss(ω)dω
)2

.

7. The equation for γ given in (5.2) was developed under the assumption that ToAs were

estimated and the TDoAs were calculated from them as follows

T̂DoA`,k(ζ) = T̂oA`(ζ)− T̂oAk(ζ).

That being the case, since T̂oA`(ζ) and T̂oAk(ζ) are independent, the variance for the

TDoA estimator is

E[τ2
`,k(ζ)] = E[τ2

`(ζ)] + E[τ2
k(ζ)].

8. The variance of error on the TDoA estimates obtained directly from cross-correlation is

greater than that from estimating the TDoAs as the difference between ToA estimates

by the amount

π
∞∫
−∞

ω2Sn`n`(ω)Snknk(ω)dω

Tα2
`α

2
k

( ∞∫
−∞

ω2Sss(ω)dω
)2

.

9. Parameters in (3.33) and (4.5) include the variances for the error on the times of arrival,

but do not include the variances of the errors in the TDoAs. This means the equations

do not take into account the extra noise term given in assertion 8.

10. Equations (3.33) and (4.5) with γ calculated using TDoA estimates in (5.2) will produce

a good approximation for the a posteriori pdf if the noise term in assertion 8 is much

smaller than every one of the L variances E[τ2
`(ζ)].

11. From assertion 8 it is clear if only (L − 1) TDoA equations are going to be used

to generate an a posteriori pdf, or even in a point estimator for that quality of the
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approximate a posteriori pdf depends on the receiver used as the reference. The best

reference would be the one that collectively minimized the (L−1) extra variance terms.

In applications where the power spectral densities of the noise at all the receivers has

the same shape, then choosing the receiver with the highest signal to noise ratio as the

reference would produce the best estimate for the a posteriori pdf.

In conclusion the a posteriori pdf can be generated using (3.33) and (4.5) with γ computed

by using TDoA measurements. However, the resulting pdf will only be the a posteriori if

the TDoAs are obtained from the estimates of the ToAs. Using TDoAs estimated from

cross-correlation will produce a pdf of some sort, it just won’t be the a posteriori. It will

be a good approximation to the a posteriori pdf if the signal to noise ratio of the (signal +

noise) used a reference is significantly higher than the others.

A couple of observations, neither of which are related to the objective of this thesis, but

worth pointing out nonetheless, are: (i) if the signal is known, the best results are obtained by

using cross correlation to estimate the L ToAs rather than the set of L(L−1)/2 TDoAs, and

(ii) no one set (L− 1) TDoA equations will contain all the statistical information available.
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6. Summary and Suggestions for Further Studies

6.1 Summary

The contributions of this Ph.D. research are summarized as follows.

The first contribution is a novel localization method based on the theory of region esti-

mation and Bayesian a posteriori pdf. Although this theory has been extensively explored,

but has not been applied to the localization problem, at least not in the open literature.

In particular, expressions for both 2D and 3D joint a posteriori pdfs of a target’s coordi-

nates were developed for time-of-arrivals of the source’s signal in a line-of-sight environment,

provided that locations of the gateways are measured. These expressions present approxi-

mations for the a posteriori pdfs that can also cope with the errors in the measurements of

the gateways’ locations. The approximations along with their bounds were developed based

on the linearization of the relationship between the gateway’s location error and the range

to the target.

The obtained approximate a posteriori pdfs are functions of the measured times that a

message arrives at spatially separated gateways, the distribution of the error corrupting the

measurements of the ToAs and the gateways’ locations, and the a priori pdf of the target.

While the proposed method is applicable to any localization task that is based on time

measurements, it was specifically presented in the context of geo-location in LoRaWAN. In

particular the proposed method works with existing LoRaWAN infrastructure.

The proposed a posteriori pdfs of the target’s coordinates were clearly positioned with

respect to point estimators in literature. It was shown that the a posteriori pdfs of the tar-

get’s coordinates can provide much more information than any point estimates. Particularly,
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the a posteriori pdf is used to generate many types of point estimates as well as probabilities

associated with any credible regions that are useful in practice.

In the second contribution, corroboration and utility of the a posteriori pdf were thor-

oughly developed for a wide range of practical scenarios.

Firstly, it was corroborated when errors in the measurements of gateways’ locations are

either present or not. In the absence of errors in the measurements of gateways’ locations,

the proposed a posteriori pdf becomes the exact pdf for the coordinates of a target and

was corroborated by comparing with the approximate Gaussian a posteriori pdf obtained

using Foy’s linearized model. The comparison results revealed that the a posteriori pdf is not

jointly Gaussian, especially when the target is near a gateway or when the a priori pdf is not

Gaussian. This means that the Gaussian approximation to the a posteriori pdf cannot well

reflect the effect of the gateway topology to the localization estimates. Therefore, whether

2D or 3D estimation is required, the a posteriori pdf should be preferred to the Gaussian

approximation when the gateways are placed in the vicinity of each other.

The effects of errors of the measurements of the gateways’ locations to the a posteriori

pdf of the coordinates of a target were then explored. It was observed that the variance of

such error contributes to the spread and the amount of this error causes a positional shift as

well as contributes to the spread.

Secondly, the a posteriori pdf, which was initially developed for a single-transmission, was

adapted to the scenario the target transmits multiple times from a fixed location to improve

the quality of localization estimation. The a posteriori pdf for multiple transmissions was

developed when the gateways’ coordinates are measured either in every transmission or only

once overtime.

In the first case, the a posterior pdf can be updated iteratively after each transmission

since the measurements made for different transmission are independent. It is done by

applying (3.33) iteratively with the a priori pdf being the a posteriori pdf calculated in the

previous iteration.
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In the second case, Equation (3.33) cannot be applied iteratively since the measured

gateway coordinates are not independent from one transmission to the next. Instead, the

averages of the ToA measurements in multiple transmissions are used as single measurements

to calculate the a posteriori pdf using (3.33). Obviously, while the resulting a posteriori pdf is

not the true one since it does not use all information in the measured ToAs from the multiple

transmissions, it was shown to be an improvement over the a posteriori pdf obtained with a

single transmission.

In the third contribution, the equation and approximation for the a posteriori pdf have

been converted to accept TDoAs instead of ToAs, but the variances of the ToAs are still

required. The equation is only valid if the TDoAs are obtained by taking the difference of

ToAs since no information is lost in transforming L ToAs to (L− 1) TDoAs by subtracting

one ToA from the other (L− 1) TDoAs. Furthermore, it does not matter which ToA is used

as the reference.

If the TDoAs are measured directly through cross correlation, the variance of the error on

the measurement error is greater than the sum of the variances of error on the times-of-arrival

measured by correlation with a known signal.

If the TDoAs are measured directly through cross-correlation all L(L−1)
2

TDoA estimates

carry some independent statistical information. It has been shown in [59] that linearly

combining these TDoAs into a set of (L−1) equations contains all the statistical information

relevant to the ordinary least squares estimation, but the rendered (L− 1) TDoA estimates

may not contain all of the statistical information and may not produce the a posteriori pdf.

6.2 Suggestions for Further Studies

Given that the methods and results presented in this thesis are for the LoS environment,

it is of interest to consider the non-line-of-sight (NLOS) environment in future research. Also

it would be interesting and useful to develop probabilistic localization that can makes use of

multiple types of measurements (information), such as RSS and AoA, in addition to TDoA.
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Appendix A

Consider the right side of (3.31) on page 46, which is −1
2

∑L
`=1

(t−µ`)2
σ2
sum`

. Let a quadratic

in t be given by

g(t) = −1

2

L∑
`=1

(t− µ`)2

σ2
sum`

= −1

2

L∑
`=1

(
t2

σ2
sum`

− 2µ`t

σ2
sum`

+
µ2
`

σ2
sum`

)

= −1

2

[
L∑
`=1

t2

σ2
sum`

− 2
L∑
`=1

µ`t

σ2
sum`

+
L∑
`=1

µ2
`

σ2
sum`

]
.

Now let 1
σ2 =

∑L
`=1

1
σ2
sum`

. Then factor out 1
σ2 from the quadratic. This has

g(t) = − 1

2σ2

[
t2 − 2σ2

L∑
`=1

µ`t

σ2
sum`

+ σ2

L∑
`=1

µ2
`

σ2
sum`

]
.

Add

((
σ2
∑L

`=1
µ`
σ2
sum`

)2

−
(
σ2
∑L

`=1
µ`
σ2
sum`

)2
)

, which is zero, into the square brackets.

This allows g(t) to be expressed as

g(t) = − 1

2σ2

(t− σ2

L∑
`=1

µ`
σ2
sum`

)2

−

(
σ2

L∑
`=1

µ`
σ2
sum`

)2

+ σ2

L∑
`=1

µ2
`

σ2
sum`


= − 1

2σ2

(t− σ2

L∑
`=1

µ`
σ2
sum`

)2
− 1

2
γ,

where γ =
∑L

`=1

µ2`
σ2
sum`

− σ2
(∑L

`=1
µ`
σ2
sum`

)2

.
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For the exponential of (3.31) on page 46

µ = σ2

L∑
`=1

µ`
σ2
sum`

,

1

σ2
=

L∑
`=1

1

σ2
sum`

=
L∑
`=1

1

σ2
t`

+ σ2
`/c

2
,

µ` = τ` −
√

(x̂` − x)2 + (ŷ` − y)2

c
.
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Appendix B

The likelihood function for the case that t(ζ) is known is obtained by the density function

for t(ζ) being Gaussian with a mean of µ equal to the value of known t and a variance that

tends to zero. After integration with respect to t, the likelihood function is the numerator

in the right side of (3.30). It is an exponential with the exponent given by (3.31) on page 46

with the variable t now being its known value. The first derivative of −1
2

∑L
`=1

(
t−µ`
)2

σ2
sum`

given

on page 46 is

∂

(
−1

2

∑L
`=1

(
t−µ`
)2

σ2
sum`

)
∂x

= −
L∑
`=1

(
t− τ` +

√
(x̂` − x)2 + (ŷ` − y)2/c

)
(x− x̂`)

σ2
sum`

c
√

(x̂` − x)2 + (ŷ` − y)2
,

∂

(
−1

2

∑L
`=1

(
t−µ`
)2

σ2
sum`

)
∂y

= −
L∑
`=1

(
t− τ` +

√
(x̂` − x)2 + (ŷ` − y)2/c

)
(y − ŷ`)

σ2
sum`

c
√

(x̂` − x)2 + (ŷ` − y)2
.

(B.1)

The first derivative of γ given on page 47 is

∂γ

∂x
=−

L∑
`=1

2
(
τ` −

√
(x̂` − x)2 + (ŷ` − y)2/c

)
(x− x̂`)

σ2
sum`

√
(x̂` − x)2 + (ŷ` − y)2

+ 2

(
1∑L

`=1
1

σ2
sum`

)(
L∑
`=1

τ` −
√

(x̂` − x)2 + (ŷ` − y)2/c

σ2
sum`

)
(

L∑
`=1

x− x̂`
σ2
sum`

√
(x̂` − x)2 + (ŷ` − y)2

)
,

∂γ

∂y
=−

L∑
`=1

2
(
τ` −

√
(x̂` − x)2 + (ŷ` − y)2/c

)
(y − ŷ`)

σ2
sum`

√
(x̂` − x)2 + (ŷ` − y)2

+ 2

(
1∑L

`=1
1

σ2
sum`

)(
L∑
`=1

τ` −
√

(x̂` − x)2 + (ŷ` − y)2/c

σ2
sum`

)
(

L∑
`=1

y − ŷ`
σ2
sum`

√
(x̂` − x)2 + (ŷ` − y)2

)
.

(B.2)
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Appendix C

Without loss of generality, let τ1 be the reference to calculate the time-difference-of-

arrivals. The left side of (3.31) on page 46 is rewritten as

−1

2

L∑
`=1

(
(t+ τ1)− (τ` − τ1 −

√
(x̂` − x)2 + (ŷ` − y)2/c)

)2

σ2
sum`

.

Let the quadratic in (t+ τ1) be written as

g(t+ τ1) = −1

2

L∑
`=1

(
(t+ τ1)− (τ` − τ1 −

√
(x̂` − x)2 + (ŷ` − y)2/c)

)2

σ2
sum`

. (C.1)

Replacing T = t + τ1, τ`,1 = τ` − τ1 and r̂` =
√

(x̂` − x)2 + (ŷ` − y)2/c allows to simplify

(C.1) to

g(T ) = −1

2

L∑
`=1

(
T − (τ`,1 − r̂`)

)2

σ2
sum`

= −1

2

L∑
`=1

(
T 2

σ2
sum`

−
2
(
τ`,1 − r̂`

)
T

σ2
sum`

+

(
τ`,1 − r̂`

)2

σ2
sum`

)

= −1

2

[
L∑
`=1

T 2

σ2
sum`

− 2
L∑
`=1

(
τ`,1 − r̂`

)
T

σ2
sum`

+
L∑
`=1

(
τ`,1 − r̂`

)2

σ2
sum`

]
.

Now let 1
σ2 =

∑L
`=1

1
σ2
sum`

. Then factoring out 1
σ2 from the quadratic has

g(T ) = − 1

2σ2

[
T 2 − 2σ2

L∑
`=1

(
τ`,1 − r̂`

)
T

σ2
sum`

+ σ2

L∑
`=1

(
τ`,1 − r̂`

)2

σ2
sum`

]
.

Add

((
σ2
∑L

`=1
(τ`,1−r̂`)
σ2
sum`

)2

−
(
σ2
∑L

`=1
(τ`,1−r̂`)
σ2
sum`

)2
)

, which is zero, into the square brack-

ets. This allows g(T ) to be expressed as
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g(T ) = − 1

2σ2

(T − σ2

L∑
`=1

(
τ`,1 − r̂`

)
σ2
sum`

)2

−

(
σ2

L∑
`=1

(
τ`,1 − r̂`

)
σ2
sum`

)2

+ σ2

L∑
`=1

(
τ`,1 − r̂`

)2

σ2
sum`


= − 1

2σ2

(T − σ2

L∑
`=1

(
τ`,1 − r̂`

)
σ2
sum`

)2
− 1

2
γ,

where

γ =
L∑
`=1

(
τ`,1 − r̂`

)2

σ2
sum`

− σ2

(
L∑
`=1

(
τ`,1 − r̂`

)
σ2
sum`

)2

. (C.2)

Equation (C.2) shows that the a posteriori pdf given by Equations (3.33) and (4.5) can

be generated using TDoA values that are obtained from the differences of the ToA measure-

ments.
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Appendix D

This appendix finds a bound on the error after linearizing the range with respect to the

measurement error on the coordinates of the gateways. The actual range from gateway ` is

r`(ζ) =
√

(x(ζ)− x`)2 + (y(ζ)− y`)2.

Substituting x̂`(ζ)−∆x`(ζ) for x` and ŷ`(ζ)−∆y`(ζ) for y` has

r`(ζ) =

√(
x(ζ)− x̂`(ζ) + ∆x`(ζ)

)2
+
(
y(ζ)− ŷ`(ζ) + ∆y`(ζ)

)2
.

The equation is linearized in ∆x`(ζ) and ∆y`(ζ) with a first order Maclaurin polynomial to

get the approximation

r`(ζ) '
√(

x(ζ)− x̂`(ζ)
)2

+
(
y(ζ)− ŷ`(ζ)

)2
+

(
∂r`(ζ)

∂∆x`(ζ)

∣∣∣∣
∆x`(ζ)=0,∆y`(ζ)=0

)
∆x`(ζ)

+

(
∂r`(ζ)

∂∆y`(ζ)

∣∣∣∣
∆x`(ζ)=0,∆y`(ζ)=0

)
∆y`(ζ), (D.1)

where

∂r`(ζ)

∂∆x`(ζ)
=

x(ζ)− x̂`(ζ) + ∆x`(ζ)√(
x(ζ)− x̂`(ζ) + ∆x`(ζ)

)2
+
(
y(ζ)− ŷ`(ζ) + ∆y`(ζ)

)2
.

Evaluating the above at ∆x`(ζ) = 0 and ∆y`(ζ) = 0 and substituting the result into (D.1)

yields the Maclaurin polynomial approximation

r`(ζ) ≈
√(

x(ζ)− x̂`(ζ)
)2

+
(
y(ζ)− ŷ`(ζ)

)2
+

(x(ζ)− x̂`(ζ))∆x`(ζ)√(
x(ζ)− x̂`(ζ)

)2
+
(
y(ζ)− ŷ`(ζ)

)2

+
(y(ζ)− ŷ`(ζ))∆y`(ζ)√(

x(ζ)− x̂`(ζ)
)2

+
(
y(ζ)− ŷ`(ζ)

)2
. (D.2)
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The error, i.e., the remainder, expressed in Lagrange form is given by

Pr`(z1, z2) =

(
∂2r`(ζ)

∂∆x2
`(ζ)

∣∣∣∣
∆x`(ζ)=z1

)
∆x2

`(ζ)

2
+

(
∂2r`(ζ)

∂∆y2
` (ζ)

∣∣∣∣
∆y`(ζ)=z2

)
∆y2

` (ζ)

2

for some value of z1 between 0 and ∆x`(ζ) and some value of z2 between 0 and ∆y`(ζ),

where

∂2r`(ζ)

∂∆x2
`(ζ)

∣∣∣∣
∆x`(ζ)=z1,∆y`(ζ)=0

= − (x(ζ)− x̂`(ζ))2(√
(x(ζ)− x̂`(ζ) + z1)2 + (y(ζ)− ŷ`(ζ))2

)3

+
1√

(x(ζ)− x̂`(ζ) + z1)2 + (y(ζ)− ŷ`(ζ))2

=

1−
(
x(ζ)−x̂`(ζ)

)2(
x(ζ)−x̂`(ζ)+z1

)2
+
(
y(ζ)−ŷ`(ζ)

)2√
(x(ζ)− x̂`(ζ) + z1)2 + (y(ζ)− ŷ`(ζ))2

. (D.3)

Similarly,

∂2r`(ζ)

∂∆y2
` (ζ)

∣∣∣∣
∆x`(ζ)=0, ∆y`(ζ)=z2

=

1−
(
y(ζ)−ŷ`(ζ)

)2(
x(ζ)−x̂`(ζ)

)2
+
(
y(ζ)−ŷ`(ζ)+z2

)2√
(x(ζ)− x̂`(ζ))2 + (y(ζ)− ŷ`(ζ) + z2)2

. (D.4)

The error in the approximation given by (D.2) is certain to be less than the maximum of∣∣Pr`(z1, z2)
∣∣ over the domain

∣∣z1

∣∣ ≤ ∣∣∆x`(ζ)
∣∣, ∣∣z2

∣∣ ≤ ∣∣∆y`(ζ)
∣∣. Unfortunately, the maximum

depends on the values of (x(ζ) − x̂`(ζ)) and (y(ζ) − ŷ`(ζ)) and could be ∞, which would

render it useless as an upper bound. However, under the assumption the target is spatially

separated from each gateway ` such that |x(ζ)−x̂`(ζ)| > (2+
√

2)|∆x`(ζ)| and |y(ζ)−ŷ`(ζ)| >

(2 +
√

2)|∆y`(ζ)|, the error is reasonably bounded. The numerators on the right sides of

(D.3) and (D.4) are bounded below by 0 and above by 1 for z1 between ±∆x`(ζ) and z2

between ±∆y`(ζ).

Replacing the numerators on the right sides of (D.3) and (D.4) with 1 and recognizing
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the resulting expressions is maximized when z1 = 0 and z2 = 0 produces the inequalities

max
z1, z2

∣∣∣∣ ∂2r`(ζ)

∂∆x2
`(ζ)

∣∣∣∣
∆x`(ζ)=z1,

∆y`(ζ)=0

≤ 1√(
x(ζ)− x̂`(ζ)

)2
+
(
y(ζ)− ŷ`(ζ)

)2
,

and

max
z1, z2

∣∣∣∣ ∂2r`(ζ)

∂∆y2
` (ζ)

∣∣∣∣
∆x`(ζ)=0,

∆y`(ζ)=z2

≤ 1√(
x(ζ)− x̂`(ζ)

)2
+
(
y(ζ)− ŷ`(ζ)

)2

which are certain to be true if the separation between the target and the measured x and y

coordinates of gateway ` are such that |x(ζ)− x̂`(ζ)| > (2+
√

2)|∆x`(ζ)| and |y(ζ)− ŷ`(ζ)| >

(2 +
√

2)|∆y`(ζ)|.

Therefore, the errors in the second and third terms of (D.2), which are due to measure-

ment errors ∆x`(ζ) and ∆y`(ζ), respectively, are bounded by

∣∣e∆x` | ≤
∆x`(ζ)2

2
√

(x(ζ)− x̂`(ζ))2 + (y(ζ)− ŷ`(ζ))2
,

and ∣∣e∆y`| ≤
∆y`(ζ)2

2
√

(x(ζ)− x̂`(ζ))2 + (y(ζ)− ŷ`(ζ))2
.

The absolute error is not as important as the relative error in the second and third terms

on the right side of (D.2). The ratios of
∣∣e∆x`| and

∣∣e∆x` | to the second and third terms on

the right side of (D.2), respectively, are

∣∣e∆x` |
Second Term

≤

∆x`(ζ)2

2
√

(x(ζ)−x̂`(ζ))2+(y(ζ)−ŷ`(ζ))2

|(x(ζ)−x̂`(ζ))∆x`(ζ)|√
(x(ζ)−x̂`(ζ))2+(y(ζ)−ŷ`(ζ))2

≤ |∆x`(ζ)|
2|x(ζ)− x̂`(ζ)|

,
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and ∣∣e∆y`|
Third Term

≤ |∆y`(ζ)|
2|y(ζ)− ŷ`(ζ)|

providing the target is spaced from all L the gateways such that |x(ζ) − x̂`(ζ)| > (2 +
√

2)|∆x`(ζ)| and |x(ζ)− x̂`(ζ)| > (2 +
√

2)|∆x`(ζ)|.

This means, for example, if |x(ζ) − x̂`(ζ)| > 5|∆x`(ζ)| and |y(ζ) − ŷ`(ζ)| > 5|∆y`(ζ)|,

then the components of (D.2) due to ∆x` and ∆y` will be in error by at most 10%.
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Appendix E

The Gaussian Approximation to the a Posteriori Density

An approximation to the a posteriori density is obtained by linearizing the set of non-

linear equations about their least squared error solution. The linearized model allows the

covariances of the co-ordinates of the target’s location to be computed from the covariances

of the times-of-arrival in units of m2. The logical progression from the set of non-linear

equations to the covariance matrix for the co-ordinate estimators is given below. The set of

non-linear range equations for outcome ζ is

r`(ζ) = c(T̂oA`(ζ)− t(ζ)), ` = 1, 2, . . . ,L,

where c is the speed of light, r`(ζ) is the range from the target to gateway ` and is given by

r`(ζ) =
√

(x(ζ)− x`)2 + (y(ζ)− y`)2 + (z(ζ)− z`)2,

T̂oA`(ζ) is the measured time that the message arrives at gateway ` and t(ζ) is the time the

message is transmitted.

The set of non-linear equations are re-organized to put the quantities that are measured

on the right side and the quantities being estimated on the left side with the result, again

for outcome ζ, being

r`(ζ) + ct(ζ) = cT̂oA`(ζ), ` = 1, 2, . . . ,L.

Then this set of equations is re-arranged into another set, which is the generalized least

squared form, by weighting and combining the equations with weighting factors wi,k. The
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new set of L generalized non-linear equations are expressed in the matrix form by

W


r1(ζ) + ct(ζ)

r2(ζ) + ct(ζ)
...

rL(ζ) + ct(ζ)

 = W


cT̂oA1(ζ)

cT̂oA2(ζ)
...

cT̂oAL(ζ)

 , (E.1)

where W is the L× L matrix with elements wi,k.

It is well known the squared error is minimized when W =
√
C−1 (see A. C. Aitken,

1934), where C is the positive definite covariance matrix for time-of-arrival vector

[
cT̂oA1(ζ), cT̂oA2(ζ), . . . , cT̂oAL(ζ)

]
.

The elements of C are co-variances in unit of m2.

Suppose the non-linear least squares solutions to the generalized non-linear equations

are x̂, ŷ, ẑ and t̂. Then the approximation to the a posteriori density is made under the

following assumptions:

� The target is located at x̂, ŷ, ẑ and the time the message was transmitted is t̂. Of

course this is unlikely to be true, but that is the assumption. However, the target

should be in the vicinity.

� The errors in the time-of-arrival measurements are so small that the measurement

errors in the ToAs and the estimation errors in the co-ordinates of the target are

accurately related by the first order Taylor series expansion of the non-linear equations

about the point (x, y, z) = (x̂, ŷ, ẑ) and t = t̂.

Under these two assumptions, the errors in the time-of-arrival measurements, which

are random variables that will be denoted ∆T̂oA`(ζ) for gateway `, and the errors in the

estimators that will be denoted ∆x(ζ), ∆y(ζ), ∆z(ζ) and ∆t(ζ), are related by the set of
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linear equations.

WA


∆x(ζ)

∆y(ζ)

∆z(ζ)

c∆t(ζ)

 = W


c∆T̂oA1(ζ)

c∆T̂oA2(ζ)
...

c∆T̂oAL(ζ)

 , (E.2)

where A is an L×4 matrix of the coefficients for the first order Taylor series expansion about

the points (x(ζ), y(ζ),x(ζ)) = (x̂, ŷ, ẑ) and t(ζ) = t̂. The matrix A is given by

A =


∂r1(ζ)
∂x

∂r1(ζ)
∂y

∂r1(ζ)
∂z

∂ct(ζ)
c∂t

...
...

...
...

∂rL(ζ)
∂x

∂rL(ζ)
∂y

∂rL(ζ)
∂z

∂ct(ζ)
c∂t


(x(ζ),y(ζ),x(ζ))=(x̂,ŷ,ẑ), t(ζ)=t̂

=


x̂−x1
r̂1

ŷ−y1
r̂1

ẑ−z1
r̂1

1
...

...
...

...

x̂−xL
r̂L

ŷ−yL
r̂L

ẑ−zL
r̂L

1

 , (E.3)

where r̂` =
√

(x̂− x`)2 + (ŷ − y`)2 + (ẑ − z`)2. The generalized least squared error solution

yields estimator errors ∆x(ζ), ∆y(ζ), ∆z(ζ) and c∆t(ζ) given by


∆x(ζ)

∆y(ζ)

∆z(ζ)

c∆t(ζ)

 = (A>W>WA)−1A>W>W


c∆T̂oA1(ζ)

c∆T̂oA2(ζ)
...

c∆T̂oAL(ζ)

 . (E.4)

The least squared error solution with the optimum weighting matrix W =
√
C−1 reduces
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to 
∆x(ζ)

∆y(ζ)

∆z(ζ)

c∆t(ζ)

 = (A>C−1A)−1A>C−1


c∆T̂oA1(ζ)

c∆T̂oA2(ζ)
...

c∆T̂oAL(ζ)

 , (E.5)

Since C is positive definite, so is C−1. Therefore, C−1 can be factored into the product of

two positive definite matrices C−1 =
√
C−1
√
C−1. With W =

√
C−1, the covariance matrix

for the estimators is given by

E
[
[∆x(ζ), ∆y(ζ), ∆z(ζ), ∆t(ζ)]>[∆x(ζ), ∆y(ζ), ∆z(ζ), ∆t(ζ)]

]
=
(
(A>C−1A)−1A>C−1

)
C
(
(A>C−1A)−1A>C−1

)>
= (A>C−1A)−1 (E.6)

The covariance matrix for the estimators is therefore given by
σ2
x σxy σxz σxt

σyx σ2
y σyz σyt

σzx σzy σ2
z σzt

σtx σty σtz σ2
t

 = (A>C−1A)−1. (E.7)

If the measurement errors, i.e., c∆ToA`(ζ), ` = 1, 2, . . . ,L are jointly Gaussian, then

the estimation errors will also be jointly Gaussian. The conditional pdf is therefore given by

f
∆x,∆y,∆z,c∆t

∣∣T̂oA
(∆x, ∆y, ∆z, c∆t

∣∣τ) =∣∣A>C−1A
∣∣ exp(−1

2
[∆x, ∆y, ∆z, c∆t]A>C−1A[∆x, ∆y, ∆z, c∆t]>)

4π2
, (E.8)

This joint pdf is the approximate a posteriori pdf.

It must be emphasized that this approximate joint conditional density, which is an approx-
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imation to the a posteriori density, was found without any numerical integration. Further

more, the marginal densities are Gaussian with variances σ2
x, σ

2
y and σ2

z .

Dilution of Precision

In the special case where ∆ToA`(ζ), ` = 1, 2, . . . ,L are independent with identical

variance σ2, then the covariance matrix is

CToA = E
[
c[T̂oA1, T̂oA2, . . . , T̂oAL]> × c[T̂oA1, T̂oA2, . . . , T̂oAL]

]
a diagonal matrix with all diagonal entries being σ2

m = c2σ2, where σ2
m has units m2. In this

special case the covariance of the estimation errors is given by

CEST ≡


σ2
x σxy σxz σxt

σyx σ2
y σyz σyt

σzx σzy σ2
z σzt

σtx σty σtz σ2
t

 = σ2
m(A>A)−1, (E.9)

where all covariances have units m2. Dividing the equation by the scalar σ2
m has

(A>A)−1 =



σ2
x

σ2
m

σxy
σ2
m

σxz
σ2
m

σxt
σ2
m

σyx
σ2
m

σ2
y

σ2
m

σyz
σ2
m

σyt
σ2
m

σzx
σ2
m

σzy
σ2
m

σ2
z

σ2
m

σzt
σ2
m

σtx
σ2
m

σty
σ2
m

σtz
σ2
m

σ2
t

σ2
m

 . (E.10)

In this scenario the diagonal elements of (A>A)−1 are the ratio of the variances of the

estimates to the variances of the measurement error. When the covariances are represented

as a ratio, the ratio becomes a “magnification factor” from the variance of the time-of-arrival

(in m2) to the variance in x, y or z (in m2). The “magnification factor” is the A matrix,

which in turn is entirely dependent on the spatial relationship among the gateways and

target.
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The square root of the trace of (A>A)−1, i.e., the sum square root of the diagonal elements,

is called the geometric dilution of precision (GDoP), the quantity
√

σ2
x

σ2
m

+
σ2
y

σ2
m

+ σ2
z

σ2
m

is called

the position dilution of precision (PDoP), the quantity
√

σ2
x

σ2
m

+
σ2
y

σ2
m

is called the horizontal

dilution of precision (HDoP), and
√

σ2
z

σ2
m

is called the vertical dilution of precision (VDoP).

To give context to the accuracy of the Gaussian approximation to the a posteriori joint

density, the Gaussian approximation will be compared to the actual a posteriori marginal

densities graphically.

However, before doing that some general comments on the accuracy are mentioned.

There are situations were the approximate 3 dimensional a posteriori density cannot be

found. Even if there are 4 or more gateways in view of the target. This situation arises for

the system of Figure 4.1 on page 57 when the target is located on either the x or y-axis and

the four gateways are mounted at the same elevation.

There are also situations where the a posteriori pdf is not jointly Gaussian. Of course,

the approximate a posteriori density, by the way it was derived, must be jointly Gaussian.

Therefore, the approximate pdf will not be a good approximation in these situations.

In general, the 3D Gaussian approximation to the approximate a posteriori pdf is not a

great fit to the 3D a posteriori pdf. However, under conditions where the z co-ordinate is

known or assumed, the Gaussian approximation to the 2D a posteriori, which is found by

including (z − z`) in the r`, but removing the third column in A, is a good fit pdf providing

the 2D a posteriori pdf is Gaussian.

The situations pointed out above, except for the case where the a priori pdf is not uni-

form, are illustrated with examples. In all examples the a posteriori and the approximation

are generated using the “very lucky” observation where there is no measurement error. The

error on the time-of-arrival measurement is assumed to be Gaussian with a standard de-

viation of 25ns (7.5m). The errors were assumed to be i.i.d so the covariance matrix for
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cT̂oA(ζ) was

CToA =


σ2
m 0 0 0

0 σ2
m 0 0

0 0 σ2
m 0

0 0 0 σ2
m

 (E.11)

where σ2
m = (7.5m)2. This is somewhat optimistic value for σm, which is realistically 25

to 30m (85 to 100ns). The smaller σm is favorable to the linearized model used in the

approximation. Thus the Gaussian approximation in the examples will be better than they

would in practice.

The examples are based on the scenarios of Figure 4.1 on page 57, with the gateways

either all located at 25m or located at elevations [z1, z2, z3, z4] = [25, 225, 425, 625]m.

Incorporating a Priori Information in the Gaussian Approximation

A priori information can also be incorporated into the Gaussian approximation to the a

posteriori probability density function. The Gaussian approximation was developed under

the assumption that the a priori density was uniform (i.e., constant). However, the a priori

information can be easily integrated into the Gaussian approximation, but, unless the a

priori density is jointly Gaussian, the computation of the approximate a posteriori pdf will

require a triple numerical integration for 3D estimation and double numerical integration

for 2D estimation. Should numerical integration be required to transfer the information

contained in the a priori pdf into the a posteriori pdf, then the primary advantage of the

Gaussian approximation, which is its computational efficiency, is lost.

The reasoning and methodology for transferring a priori information into the Gaussian

approximation of the a posteriori pdf is outlined below.

First, it is necessary to understand how the information in the a priori pdf is transferred
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into the a posteriori pdf with Bayes equation. Bayes equation states:

f
x,y,z,t

∣∣T̂oA
(x, y, z, t

∣∣τ) =
f

T̂oA
∣∣x,y,z,t

(τ
∣∣x, y, z, t)fx,y,z,t(x, y, z, t)

volume1

,

where

volume1 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

f
T̂oA
∣∣x,y,z,t

(τ
∣∣x, y, z, t)fx,y,z,t(x, y, z, t)dtdxdydz.

The joint a posteriori pdf for just the co-ordinates is obtained by integrating w.r.t t as

indicated below

∫ ∞
−∞

f
x,y,z,t

∣∣T̂oA
(x, y, z, t

∣∣τ)dt =

∫∞
−∞ fT̂oA

∣∣x,y,z,t
(τ
∣∣x, y, z, t)fx,y,z,t(x, y, z, t)dt

volume1

(E.12)

If ft|x,y,z(t|x, y, z) is widely uniform (i.e., constant) and does not depend on x, y or z, then

fx,y,z,t(x, y, z, t) = ft|x,y,z(t|x, y, z)fx,y,z(x, y, z)

= constant× fx,y,z(x, y, z).

Making the substitution above into (E.12) shows the integral w.r.t t in both the numerator

and denominator can be evaluated symbolically regardless of the shape of fx,y,z(x, y, z). After

performing the integrals, (E.12) can be written as

f
x,y,z

∣∣T̂oA
(x, y, z

∣∣τ) =
f

T̂oA
∣∣x,y,z

(τ
∣∣x, y, z)fx,y,z(x, y, z)

volume1

, (E.13)

where

volume1 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

f
T̂oA
∣∣x,y,z

(τ
∣∣x, y, z)fx,y,z(x, y, z)dxdydz.

Note that if the numerator in (E.13) is treated as a function of x, y and z, say g(x, y, z),

then volume1 is the hypervolume under the hypersurface described by g(x, y, z).

The a posteriori pdf for the general a priori pdf can also be found from the a posteriori
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pdf that was obtained using the widely uniform a priori pdf. That is to say, the a posteriori

pdf from the left side of (E.13) calculated with the widely uniform a priori pdf on the right

side of (E.13) can be directly converted to the a posteriori for any general a priori pdf on the

right side of (E.13). This is done multiplying the left side of (E.13) by the general a priori

pdf and then dividing by the appropriate constant, say volume2, to make the hyper-volume

under the product equal to one. The resulting equation is

f
(general)

x,y,z

∣∣T̂oA
(x, y, z

∣∣τ)dt =

f
(uniform)

T̂oA
∣∣x,y,z

(τ
∣∣x, y, z)f

(general)
x,y,z (x, y, z)dt

volume2

, (E.14)

where

volume2 =

∞∫
−∞

∞∫
−∞

∞∫
−∞

f
(uniform)

T̂oA
∣∣x,y,z

(τ
∣∣x, y, z)f(general)x,y,z (x, y, z)dxdydz.

Now consider the construction of an approximate a posteriori pdf for an a priori pdf

with any general shape. It was just demonstrated that the a posteriori pdf for a general a

priori pdf can be constructed from the a posteriori pdf constructed from a widely uniform a

priori pdf. Since we have a Gaussian approximation for the a posteriori pdf calculated with

the widely uniform a priori pdf on the right side of (E.13), that Gaussian approximation

can be used in place of the actual a posteriori pdf in updated to the a posteriori pdf for the

general shape. Therefore, the approximate a posteriori pdf for any general a priori pdf is

obtained by replacing the a posteriori pdf on the right side of (E.14) with its approximation.

There is no significant computational advantage in using the Gaussian approximation if

volume2 in (E.14) has to be computed with numerical integration. However, if the general a

priori pdf is jointly Gaussian, then the numerical integration can be avoided if the Gaussian

approximation for f
(uniform)

T̂oA
∣∣x,y,z

(τ
∣∣x, y, z) is used. If the general a priori density is Gaussian

with a mean vector µ0 and covariance matrix C0 and if the Gaussian approximation for

f
(uniform)

T̂oA
∣∣x,y,z

(τ
∣∣x, y, z), which obviously is Gaussian, has mean vector µ1 and covariance matrix

C1, then the approximation to a posteriori pdf for the general a priori pdf, which in this
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special case is Gaussian, is also Gaussian with the mean vector

µ2 = C1(C0 + C1)−1µ0 + C0(C0 + C1)−1µ1,

and covariance matrix

C2 = C1(C0 + C1)−1C0,

where

C0 is the covariance matrix for x, y and z from the Gaussian a priori pdf (i.e., the general

a priori pdf in Gaussian).

C1 is the covariance matrix for x, y and z from the Gaussian approximation to the a posteriori

pdf. The mathematics that produced the Gaussian approximation inherently assumes

a widely uniform a prirori pdf.

C2 is the covariance matrix for x, y and z from the approximate a posteriori pdf (which

will be Gaussian) developed using the Gaussian approximation as well as a Gaussian

a priori pdf.

µ0 is the mean vector for x, y and z from the Gaussian a priori pdf (i.e., the general a priori

pdf is Gaussian in this special case).

µ1 is the mean vector for x, y and z from the Gaussian approximation to the a posterirori

pdf. The mathematics that produced the Gaussian approximation inherently assumes

a widely uniform a prirori pdf.

µ2 is the mean vector for x, y and z from the approximate a posteriori pdf (which will be

Gaussian) developed using the Gaussian approximation as well as a Gaussian a priori

pdf.
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