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ABSTRACT 
Large above-grade overburden landforms comprised of low-grade lean oil sands (LOS) are 

amassed during the surface mining of oil sands in northern Alberta, Canada. Reclamation soil 

covers consisting of locally-salvaged soils are subsequently placed above the LOS landforms 

in single and multi-layered configurations. The soil covers are intended to 1) provide sufficient 

pore-gas O2 to facilitate the growth of native boreal forest vegetation and to 2) oxidize 

methane (CH4) produced in the anaerobic zones of the LOS before being exhausted to the 

atmosphere as a greenhouse gas.  

Prior to covering the LOS with soil covers, rates of CO2 efflux from the surface of the LOS to 

the atmosphere ranged from 0.1-7.1 kg/m2/a. Pore-gas concentrations within the uncovered 

LOS ranged from 0-18% for oxygen (O2), 3-21% for carbon dioxide (CO2), and 0-12% for 

CH4. Following placement of soil covers, peak rates of CO2 efflux were 2.3 kg/m2/a from the 

surface of the soil covers to the atmosphere and 1.8 kg/m2/a from the LOS into the soil covers. 

Peak rates of O2 influx from the atmosphere through the soil covers was 18 kg/m2/a. Pore-

gasses within the overlying soil covers and uppermost LOS were typically below the threshold 

that poses a risk to the survivability of reclamation vegetation, >10% O2 and <15% CO2. Pore-

gasses deeper than 2 m within the LOS surpassed this threshold with O2 falling to 0% and 

CO2 rising to >16%.  

Rates of CH4 oxidation were quantified in batch soil column experiments for the soil cover 

materials and LOS in single and multi-layered configurations. Oxidation rates were sensitive 

to variations in temperature, moisture content, and bulk density. The results of the column 

experiments indicate that CH4 generated deeper than 2 m within the LOS landform will be 

partially oxidized in both the soil covers and uppermost LOS horizon.   

Statistical analyses and finite difference numerical modelling were conducted to guide mine 

operators regarding practical issues involving the construction of LOS landforms, design of 

soil cover systems, and management of reclamation sites. Based on these exercises, it 

appears that the characteristics of the LOS landform are more important to pore-gas dynamics 

than the design of the soil cover systems. 
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1.0 INTRODUCTION 
1.1 Study Motivation 

Above-grade overburden landforms are amassed during the surface mining of oil sands in 

northern Alberta, Canada. To facilitate the reclamation of these landforms, engineered soil 

covers ranging in thickness from 0.3 m to 1.5 m are placed onto the landforms and 

subsequently planted with native boreal forest plant and tree species (reclamation vegetation). 

Restrictions in soil-atmosphere gas exchange within the plant rooting zone of the soil covers 

develop into conditions of O2 deficiency and CO2 toxicity by inhibiting the ingress of 

atmospheric oxygen (O2) and efflux of carbon dioxide (CO2). It is therefore essential that 

sufficient soil-atmosphere gas exchange be maintained in order to preclude concentrations of 

pore-gasses within the soil covers from surpassing the threshold that poses a risk to the 

growth and survivability of reclamation vegetation.  

This thesis is intended to provide C.O.S.I.A. operators (listed below) with a scientific basis for 

the site-specific estimation of the risk of gas-related toxicity to plant growth during the re-

vegetation phase of the reclamation of lean oil sands landforms. The findings in this thesis 

may inform mine operators regarding issues involving the construction of lean oil sands 

landforms, design of soil covers, and future management of the reclamation site.  

Funding for this thesis is provided by C.O.S.I.A. – the Canadian Oil Sands Innovation Alliance. 

Contributing C.O.S.I.A. members include Syncrude Canada Ltd., Suncor Energy Inc., Shell 

Canada Energy, Imperial Oil, Total E&P Canada Ltd., and Canadian Natural Resources 

Limited. This thesis is a continuation of the “Hydrocarbon Mobility and Degradation Study” 

started by Dr. I.R. Fleming.   

1.2 Overview 

With production rates surpassing 1 million barrels of oil per day (CAPP 2015), the surface 

mining of oil sands in Alberta, Canadsa operates on a massive scale in terms of project size, 

mineable area, and land disturbance. The Athabasca, Peace River, and Cold Lake bitumen 

deposits underlie a 140,000 km2 area in Alberta and are estimated to contain 170 billion barrels 
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of recoverable oil (Alberta Energy 2016). Of the three bitumen deposits, the Athabasca oil 

sands region (AOSR) is the largest in mineable area and recoverable reserves.  

Syncrude Canada Limited (SCL) is one of the leading mine operators in the AOSR with two 

active mines situated 50 km and 80 km north of Fort McMurray, Alberta. The Aurora soil 

capping Study (ASCS) is a field-scale mine cover testing site located at SCL’s northernmost 

Aurora North mine. The ASCS is a multi-disciplinary collaboration between industry, 

universities, and consultants that aims to systematically investigate the effectiveness of single 

and multi-layered coarse-textured locally-salvaged soil covers placed over “lean” oil sands 

(LOS) consisting of ≤7% petroleum hydrocarbons (Barber et al 2015).  

Regulations in Alberta mandate that oil sands operators must prepare long-term site closure 

plans and implement the associated land reclamation programs. For LOS, operators are 

required to design and grade closure landforms prior to covering the landforms with 1.2-1.5 m 

of locally-salvaged soil (Government of Alberta 2007). Subsequently, native boreal forest 

vegetation are planted with >90% of the rooting zone concentrated in the uppermost 0.6 m 

(Van Rees 1997). A major risk to the growth and survivability of the reclamation vegetation is 

whether rates of gas exchange between the soil covers and the atmosphere (atmospheric O2 

moving downwards into the soil covers and LOS; CO2 and CH4 moving upwards from the LOS 

to the soil covers and atmosphere) are sufficient to preclude the development of conditions of 

O2 deficiency and CO2 toxicity within the plant rooting zone. The research presented in this 

dissertation supplements the multi-disciplinary ASCS research by developing a 

comprehensive understanding of the storage, transportation, and reactions of pore-gasses in 

single and multi-layered soil covers and in the underlying lean oil sands landform.   

1.3 Research Objectives 

Understanding pore-gas dynamics in reclamation soil covers and lean oil sands (LOS) is 

fundamental to understanding the risks of gas-related toxicity to plant growth during the re-

vegetation stage of the reclamation of boreal forest ecosystems. The objective of this 

dissertation is to develop a scientific basis to estimate the site-specific risk of gas-related 
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toxicity to reclamation vegetation in order to inform mine operators regarding practical issues 

related to construction of LOS landforms, design of soil covers, and future management of the 

reclamation site. The following specific objectives are addressed within the four manuscripts 

comprising this dissertation: 

1. characterise LOS degradation rates and pore-gasses within the uncovered LOS 

landform; 

2. characterise pore-gasses at various depths in the single and multi-layered soil covers 

and LOS landform following placement of soil covers; 

3. quantify rates of O2 ingress through the soil covers and CO2 efflux from the soil covers; 

4. estimate O2 and CO2 flux rates resulting from pressure-gradient driven advection and 

concentration-gradient driven diffusion; 

5. quantify the relative importance of advection and diffusion to total gas transport; 

6. quantify methane oxidation rates in the laboratory while controlling for temperature, 

moisture content, and bulk density; and  

7. evaluate the factors controlling the storage and transport of pore-gasses in the soil 

covers and LOS, including air temperature, soil temperature, soil moisture, soil-

atmosphere pressure gradients, petroleum hydrocarbon content of the LOS, in-situ 

bulk density of the LOS, soil cover thickness, and soil cover material. 

This dissertation contains four research manuscripts. Manuscript 1 is presented in Chapter 2 

and addresses objective 1. This manuscript was prepared by K. Scale based on the raw data 

collected in the field and laboratory by Tomasz Korbas for his M.Sc. (2014). It should be noted 

that much of the fieldwork was performed collaboratively with both Korbas and Scale working 

together at the field site. While most of the basic data collection had been completed by T. 

Korbas, considerable additional calculations, modelling, and analyses were carried out by K. 

Scale as part of the preparation of this manuscript. While not wholly the work of K. Scale, this 

chapter represents a starting point for the work that was completed independently by K. Scale 

and is presented in the later chapters. The manuscript is separated into field and laboratory 
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sections. In the field section, concentrations of O2, CO2, and CH4 pore-gasses within the LOS 

landform are characterised in-situ using a combination of single-point soil vapour probes 

(SVP) and a re-purposed landfill gas analyser. Rates of CO2 efflux from the uncovered LOS 

are directly measured using static flux chambers. In the laboratory section, rates of CO2 efflux, 

PHC degradation, and PHC volatilization are measured in soil column experiments. 

Furthermore, the fractions of F1-F4 petroleum hydrocarbons comprising the LOS are 

measured with analytical laboratory techniques.    

Manuscript 2 is presented in Chapter 3 and addresses objectives 2-5. Following placement of 

soil covers, concentrations of O2, CO2, and CH4 pore-gasses within the soil covers and LOS 

are characterised using a combination of SVP and a re-purposed landfill gas analyser. Static 

flux chambers were used to directly measure CO2 effluxes from the surface of the soil covers. 

A novel subsurface flux chamber is custom designed and fabricated to measure CO2 effluxes 

from the LOS into the soil covers and O2 ingress from the atmosphere through the soil covers. 

Fluxes of O2 and CO2 through the soil covers driven by concentration-gradient driven diffusion 

are indirectly measured based on pore-gas profiles and estimations of diffusivity based on 

vertical profiles of soil temperature and soil moisture. Fluxes of O2 and CO2 through the soil 

covers driven by pressure-gradient driven advection are indirectly measured based on pore-

gas profiles and in-situ measurements of air conductivity and vertical profiles of gas pressures. 

The relative importance of advection and diffusion is quantified at each gas sampling location. 

Manuscript 3 is presented in Chapter 5 and addresses objective 6. Methane oxidation rates in 

soil cover materials and lean oil sands are quantified in the laboratory using transient “batch” 

soil column experiments. Oxidation rates in single and multi-layered configurations of locally 

salvaged soils (peat, subsoil, LFH) and LOS are characterised over the range of CH4 fluxes 

characterised in the field. Temperature, moisture content, and bulk density are controlled in 

the experiments.  

Manuscript 4 is presented in Chapter 4 and addresses objective 7. The aim of this manuscript 

is to guide mine operators in practical issues involving the construction of LOS landforms, 
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design of soil cover systems, and future management of reclamation sites. Statistical analyses 

are conducted to evaluate the storage of pore-gasses in the context of on-site conditions, 

measurable soil parameters, soil cover design, petroleum hydrocarbon content of the LOS, 

and in-situ bulk density of the LOS. Finite difference numerical modelling is conducted to 

evaluate the transport of pore-gasses by simulating the diffusive and advective-diffusive flux 

of CO2 through multi-layered soil covers.    

Findings from this research are applicable to mine operators using engineered soil covers to 

reclaim LOS deposits consisting of low petroleum hydrocarbon content oil sands. 

1.4 Literature Review 

1.4.1 Pore-gasses and plant growth 

Reclamation vegetation planted in soil covers require sufficient pore-gas O2 in the rooting zone 

to facilitate essential biological processes like metabolism and respiration (Geigenberger 

2003). Reductions in pore-gas O2 may arise from biological activity or restrictions in air porosity 

from over-compaction or elevated soil moisture conditions. Symptoms of O2 deficiency 

generally manifest at pore-gas concentrations less than 10% (Flower 1981; Kozlowski 1985), 

while CO2 may be phytotoxic at pore-gas concentrations greater than 15% (Flower 1981; 

Whitton 1991).  

Physiological impairments from deficient O2 or excess CO2 include drying of leaves 

(desiccation), loss of pigmentation (chlorosis), shedding of leaves (abscission), impeded 

nutrient absorption, reduced photosynthesis (and thus reduced growth rates), and the 

production of organic compounds such as ethylene (Chang and Loomis 1955; Leone 1977; 

Flower 1981; Kozlowski 1985; Wong 1988; Whitton 1991; Pezeshki et al 1993; Bartholomeus 

et al 2008).    

1.4.2 Flux chambers 

Soil gas effluxes are commonly measured using the static flux chamber (SFC) method. The 

upper section of the static flux chamber is sealed to atmospheric gasses and the lower section 

is permeable to soil gasses. The lower section of the flux chamber is embedded into the soil 
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to minimize intrusion of atmospheric O2. The efflux of gasses is calculated from the rate of 

increase of gasses within the enclosed headspace over an incremental time. 

Equation 1.1 is the general equation used to calculate gas fluxes using the SFC method:   

Fi = VC
A𝐶𝐶

ΔCi
Δt

                [1.1] 

Where Fi is the mass flux of a gaseous species into the closed chamber [ML-2T-1], Vc is the 

volume of the chamber headspace [L3], Ac is the area enclosed by chamber [L2], and ΔCi/Δt = 

concentration change of the gaseous species in the headspace over a time interval [ML-3T-1].  

The main systematic error involved with SFC measurements is the underestimation of flux 

rates due to accumulation of gasses in the headspace to concentrations surpassing levels 

representative of the natural environment, thus reducing the concentration gradient that drives 

diffusive gas transport (Fick 1855; Nay 1994; Hutchinson et al 2000; Davidson et al 2002; 

Pumpanen 2004; Heinemeyer and McNamara 2011; Pihlatie 2012).  

1.4.3 Diffusion 

Gaseous diffusion is the movement of gasses from regions of higher concentration to regions 

of lower concentration. For soil covers, the dominant O2 and CO2 concentration gradient exists 

between the atmosphere and soil. With O2 the gradient is positive since O2 decreases with 

depth below ground surface (BGS); for CO2 the gradient is negative since CO2 typically 

increases with depth BGS. 

Diffusion of soil gasses driven by concentration gradients is explained by Fick’s Law that 

molecules move from regions of higher to lower concentration at a rate proportional to the 

diffusion coefficient, D (Fick 1855). Fick’s Law is expressed in Equation 1.2.  

F = −D ∗ ΔC
Δz

                [1.2] 

Where D is the bulk diffusion coefficient [L2T-1] and ΔC/Δz is the concentration gradient [ML-4]. 
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A “harmonic” diffusion coefficient as described by Aubertin et al (2000) in Equation 1.3 takes 

into account variations in the diffusion coefficient in layered soils by considering the layers 

above (for O2 diffusing downward) and layers below (for CO2 diffusing upward):  

Dı� = Σti
Σti/Di

                [1.3] 

Where Di is the diffusion coefficient of a given soil layer [L2T-1] and ti is the corresponding 

thickness of the soil layer [L]. 

The “bulk” diffusion coefficient D assumes unrestricted diffusion through free air. To practically 

reflect the physical constraints of gaseous diffusion in soil pores, the diffusion coefficient 

accounts for irregularities along the flow path by incorporating tortuosity (τ) and constrains the 

pore volume to the air-filled fraction by incorporating air porosity (θa). The modified diffusion 

coefficient presented in Equation 1.4 is expressed as Dp for single-phase flow and is 

expressed as tortuosity (τ) multiplied by the diffusion coefficient in air, Da0. Tortuosity 

describes irregularities along the flow path that reduce the flow rate of gasses travelling 

through porous media. 

Dp = Da0 ∗ τ                [1.4] 

Where Da0 is the diffusion coefficient in air [L2T-1] and τ is the coefficient for tortuosity [LL-1].  

Dual-phase diffusion takes into account diffusion through the water-filled fraction of the pore-

volume in addition to the air-filled fraction by incorporating the coefficient for diffusion in water 

Dw0, with units of [L2T-1], which is orders of magnitude smaller than the coefficient for diffusion 

in air (Cussler 2009, Haynes 2013). Dual-phase models, as presented in Equation 1.5, are 

expressed as the “effective” diffusion coefficient (Collin and Rasmuson 1988): 

De = Dp0 + HDw0                [1.5] 

Where De is the effective diffusion coefficient [L2T-1] and H is Henry’s law equilibrium coefficient 

for a solution of gas in water. 
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1.4.4 Soil concentration gradient method 

The soil concentration gradient method (CGM) enables soil-atmosphere diffusive fluxes to be 

calculated using position-dependent gas concentrations and a known diffusion coefficient (de 

Jong and Schappert 1972; Maier and Schack-Kirchner 2014; Kanako et al 2008; Billings et al 

1998; Risk et al 2002; Sihota et al 2011). The equation to estimate gas fluxes using CGM is 

based on Fick’s law and is presented in Equation 1.6: 

FCGM = De
Cs−Ca

∆z
               [1.6] 

 

Where Cs is the concentration of a gaseous species in the subsurface [ML-3], Ca is the 

atmospheric gas species concentration [ML-3], and Δz is the vertical distance between gas 

sampling location and ground surface [L].  

The CGM has several advantages to estimating gas fluxes using static flux chambers. Since 

the process involves measuring vertical gas profiles, it is possible to account for gaseous 

storage in pore-spaces (Risk et al 2002). The depth of gas sources (e.g. CO2 production) and 

gas sinks (e.g. O2 consumption) can be estimated (Martin and Schack-Kirchner 2015). Lastly, 

CGM negates errors inherent to static flux chambers such as the systematic under-estimation 

of gas fluxes due to accumulation of gasses in the chamber headspace (Maier and Schack-

Kirchner 2014).  

Although CGM has advantages to static flux chambers, there are also limitations to the 

approach. One such limitation is that diffusion is restricted to the vertical direction and thus 

neglects lateral diffusion (Maier and Schack-Kirchner 2014). Moreover, diffusion is assumed 

to be at steady-state and doesn’t consider temporal variations in gas production or 

consumption (Martin and Schack-Kirchner 2015). There are also limitations to the applicability 

of Fick’s Law to for multi-component gas mixtures (Jaynes and Rogowski 1983; Leffelaar 

1987; Thorstenson and Pollock 1989; Voudrias and Chiayang 1992). Fick’s laws don’t 

consider Knudsen diffusion, which occurs in finer-grained soils when molecules collide more 
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with pore walls than with other molecules (Klinkenberg 1941). Moreover, Fick’s Laws aren’t 

applicable for stagnant gasses with no fluxes, sources or sinks (Scanlon 2002).  

In order to assign position-dependent diffusion coefficients to multi-layered soils, the diffusion 

coefficient must be assumed to abruptly change between soil layers (Liu and Si 2008). This 

may be a poor assumption in some cases because it is rare for natural soils to be stratified 

with sharp or level transitions (Liu and Si 2008). At the ASCS, however, this is likely a valid 

and defensible assumption since the soil covers were precisely graded with GPS-assisted 

graders and dozers.   

1.4.5 Barometric pressures and gas transport 

Barometric pressure is the weight exerted on Earth’s surface by atmospheric gasses. 

Temporal variations in barometric pressures occur due to i) transient low and high pressure 

weather systems; ii) changes in density of atmospheric gasses resulting from diurnal 

temperature and gravity variations; iii) precipitation and subsequent moisture infiltration; and 

iv) fluctuations in the groundwater table (Auer 1996; Hillel 2003; Dong-mei Sun 2015).  

Barometric pressure influences rates and direction of soil-atmosphere gas exchange 

(Buckingham 1905; Fukuda 1955; Jaynes and Rogowski 1983, Thorstenson and Pollock 

1989, Nilson et al 1991; Auer et al 1996; Boeckx 1996; Cepiel 1996; Christophersen 2001; 

Poulsen 2003; Massman 2006; Gebert 2011; Redecker 2015). This phenomenon is denoted 

in the literature as “barometric pumping”; falling pressures induce gas flow from soils to 

atmosphere, whereas rising pressures suppress gas flow from atmosphere to soils (Young 

1990; Czepiel 1996; Christophersen 2001; Massman 2006; Gebert 2011).  

1.4.6 Advection 

Equation 1.7 presents the relationship for one-dimensional fluxes of pore-gasses due to 

advection for a single phase is derived from Darcy’s Law (Darcy 1856; Falta et al 1989; Seely 

et al 1994; Hillel 2003; Kim and Benson 2004; Kjeldsen et al 2005): 

Fa = νCi = − �kaρgg
θa µg

∇P� ∗ Ci                [1.7] 
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Where Fa is advective flux of species i [ML-2T-1], ka is intrinsic air permeability of the porous 

media [L2], ρg is gas density [ML-3], g is gravitational constant [LT-2], µ is dynamic viscosity of 

the gas [ML-1T-1], Ci is concentration of species i, and ∇P is soil-atmosphere pressure gradient 

[ML-4].  

The coefficient of gas permeability, ka, can be estimated with Equation 1.8 by modifying 

Freeze and Cherry’s (1979) relationship: 

ka = Kaµg

ρgg
                 [1.8] 

Where Ka is the air conductivity [LT-1].  Air conductivity through a porous soil is reduced at 

higher soil moisture contents.  

1.4.7 Biochemistry of CH4 oxidation 

Methanogenic biodegradation of petroleum hydrocarbon substrates occurs under anaerobic 

conditions when O2 is unavailable to be terminal electron acceptor (Grishchenkov et al 2000, 

Salminen et al 2004). The product, gaseous CH4, may be subsequently exposed to O2 in the 

aerobic zone of an overlying cover soil. Methanotrophic microorganisms (methanotrophs) in 

the aerobic zone of the cover soil can facilitate reduction-oxidation reactions (methane 

oxidation) by transferring electrons from electron-donating CH4 to electron-accepting O2.  

All methanotrophs are characterised by the methane monooxygenase enzyme (Anthony 1982; 

Hanson and Hanson 1996). The only energy source for methanotrophs is the carbon in 

methane (Anthony 1982); the energy gained in the electron transfer is used to carry out cell 

functioning while the carbon is incorporated into biomass. The net reaction for methane 

oxidation is presented in Equation 1.9 and results in the consumption of O2 and CH4 and 

production of CO2 and water:  

CH4 + 2O2 → CO2 + 2H2O                 [1.9]   

Based on this stoichiometric relationship, 2 moles of O2 are consumed for every 1 mole of CH4 

consumed; this means pore-gas CH4 concentrations greater than 10% could potentially fuel 

the consumption of all O2 in the pore space and lead to anoxic conditions in the cover soil.   
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There are 2 types of methanotrophs that are of interest in this study: 1) high capacity/low 

affinity (typically present at CH4 concentrations >40 ppm) and 2) low capacity/ high affinity 

(typically present at CH4 levels <1.7 ppm). Low affinity methanotrophs survive by utilizing the 

abundant carbon supplied by relatively high fluxes of CH4. On the other hand, it is still a 

mystery how high affinity methanotrophs avoid starvation with the relatively low CH4 fluxes 

(Knief and Dunfield 2005): they may survive by consuming low levels of atmospheric CH4 

(Bender and Conrad 1994), using alternate substrates like methanol (Jensen et al 1998), or 

relying on intermittent bursts of methanogenic activity (Dunfield et al 1995). The first to observe 

methane oxidation at low, atmospheric-level CH4 concentrations (<1.7 ppmv) were Bender and 

Conrad (1992, 1994) before a novel species of methanotroph was later isolated by Bull et al 

(2000).  

1.4.8 Statistical procedures 

Multiple statistical procedures are used in the following dissertation to i) evaluate the goodness 

of fit of various models with R2 and adjusted R2; ii)  determine if data sets were correlated with 

ANOVA, T-test, and F-test; and iii) estimate the relationships between a dependent variable 

and one or more independent variables with single-variable and and multi-variate regression.   

i) Goodness of fit 

The coefficient of determination, R2, is an indicator of how well a regression model 

approximates measured values when one independent variable (regressor) is being evaluated 

(Montgomery and Runger 2014). The formula for calculating R2 is presented in Equation 1.10: 

R2 = SSR
SST

= Σ(Yest−Yest������)2

Σ(Y−Y�)2                             [1.10] 

Where, SSR is residual sum of squares, SST is total sum of squares, Yest is the estimated Y 

value from the model, Yest����� is the mean estimated Y value, Y is the measured Y value, Y� is the 

mean measured Y value.  

When more than one regressor is being evaluated in multi-variate linear regression, the R2 

needs to be adjusted to account for the additional variables (Zar 1999). The adjusted R2, 
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presented in Equation 1.11, reduces the R2 with each added regressor. It is useful quantity to 

examine when comparing multi-variate regression models with various combinations of 

regressors. 

Radj
2 = 1 − ��1−R2�(n−1)

n−k−1
�            [1.11] 

Where n is the number of data points and k is the number of regressors (variables) in the 

model.  

ii) Data correlation 

Analysis of variance (ANOVA) is a test to evaluate if multiple groups of data (3 or more) are 

statistically correlated. The results of ANOVA tests that are analysed herein are the p-value, 

the F-value, and the F-critical value. 

P-values are the estimated probability that a null hypothesis should be rejected, where the null 

hypothesis is that data sets are not significantly different (Montgomery and Runger 2014).  P-

values are compared to alpha values in order to determine whether to accept or reject the null 

hypothesis, where: alpha = 1 – confidence level (CI). For example, the alpha values for 95% 

CI and 99% CI are 0.05 and 0.01, respectively. Therefore, if p-values are larger than alpha, 

the values aren’t statistically different and the null hypothesis is accepted; conversely, if p-

values are less than alpha, the values are considered statistically different and the null 

hypothesis is rejected.  

F-values are also compared when examining results of ANOVA. The F-test mesures the 

significance of the difference between sample variances (McBean and Rovers 1998). Re-

phrased, the F-test is the ratio of variance between groups to variance within groups. 

Therefore, large values of F indicate more variance between different groups than within 

groups; thus, the groups are statistically different and the null hypothesis should likely be 

rejected (McBean and Rovers 1998). The F-value is compared to the F-critical value; if F is 

larger than F-critical than the null hypothesis should likely be rejected.  
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ANOVA is an omnibus test, meaning the results don’t predict which of the groups compared 

is different, only that there is a difference between groups. Therefore, if results of ANOVA 

produce p-values less than alpha, signifying that the groups are statistically different, further 

post-hoc statistical analyses need to be done to determine precisely which groups are 

different.  

The post-hoc statistical procedures used herein were t-tests with Bonferroni correction 

applied. The T-test is used to evaluate whether means of two groups are different from each 

other. The issue with conducting multiple T-tests in post-hoc testing, however, is that it 

compounds the likelihood of Type 1 errors. Note, a type 1 error is equal to alpha; it is the error 

that the null hypothesis was true, but was wrongly rejected. 

When multiple comparisons are made using T-tests, a “Bonferroni correction” is applied to 

reduce compounding of Type I errors (Dunn 1961). The Bonferroni correction divides alpha 

by the number of post-hoc comparisons made. For example, for a 95% CI, the alpha value is 

0.05; if 3 comparisons are made with T-tests at 95% CI, then the Bonferonni adjusts alpha to: 

alpha = 0.05/3 = 0.0167.  

iii) Regeression 

Regression analysis is a statistical procedure to quantify the relationship between a dependent 

variable and one or more independent variables. The results of regression tests analysed 

herein are the p-value, the F-value, and the F-significance value.  

As mentioned previously, the p-value is the probability that the null hypothesis should be 

rejected. The F-value, when applied to regression analysis, can be stated as the ratio of the 

variance that can be explained to the variance that is unexplained; therefore, the higher the 

F-value, the more variance in the dependent variable that is explained by the independent 

variable.   

The results of regression analysis are analyzed with a similar procedure as ANOVA results. 

P-values are compared to alpha values to assess whether to accept or reject the null 
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hypothesis. F-values are compared to F-significance values; if F is larger than F-significance 

than the independent variable is likely a good predictor of the dependent variable.  
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2.0 DEGRADATION AND MOBILITY OF    
 PETROLEUM HYDROCARBONS IN OILSANDS  
 WASTE 

Preface 

This manuscript was prepared by K. Scale based on the raw data collected in the field 

and laboratory by T. Korbas for his M.Sc. (2014). It should be noted that while much of the 

basic data collection had been completed by T. Korbas, additional calculations, modelling, 

and analyses were carried out by K. Scale as part of the preparation of this manuscript. This 

chapter, while not wholly the work of K. Scale, represents a starting point for much of the work 

independently completed by K. Scale as presented in the subsequent chapters.  

Massive above-grade lean oil sands (LOS) overburden landforms will be a permanent feature 

of reclaimed landscapes in the Alberta oilsands. This manuscript focuses on characterizing 

the degradation and mobility of petroleum hydrocarbons within the LOS. In the field, pore-gas 

O2, CO2, and CH4 concentrations within the uncovered LOS landform were measured in single-

point probes using a repurposed landfill gas analyser; CO2 effluxes from the LOS were 

measured using static flux chambers. In the laboratory, PHC fractions, degradation rates, and 

CO2 flux rates were characterized for the LOS. This research helps to develop a baseline for 

the concentrations of pore-gasses and rates of CO2 efflux from the uncovered LOS landform.  

Reference: Scale KO, Korbas TK and Fleming IR. 2016. Degradation and Mobility of 
Petroleum Hydrocarbons in Oil Sand Waste. Environmental Geotechnics, DOI: 
10.1680/jenge.15.00035  

Abstract 
In Northern Alberta, Canada, large volumes of low-grade “lean” oil sands (LOS) 

overburden are translocated during the surface mining of oil sands and remain 

in future reclaimed landscapes. The objectives addressed in this paper are to (1) 

characterise in-situ petroleum hydrocarbon (PHC) content of LOS; (2) evaluate 

the effect of LOS temperature on rates of CO2 flux and PHC biodegradation; and 

(3) evaluate the potential for PHC to leach from LOS into groundwater. Results 

show that LOS is predominantly composed of heavier F3 and F4 PHC fractions, 
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temperature appears to affect CO2 fluxes and PHC degradation rates, and it is 

unlikely that the presence of LOS in reclamation soils will release significant 

quantities of PHC into groundwater. 

2.1 Introduction 

Massive quantities of “lean” oil sands (LOS) overburden consisting of ≤7% petroleum 

hydrocarbons (PHC) are trans-located during the surface mining of oil sands in Alberta, 

Canada to access underlying deposits of bitumen-rich ore (CEMA 2011). Surface mining is 

the primary extraction method for shallower (<75 m) oil sand deposits and involves the 

complete removal of inter-connected (upland) boreal forest ecosystems and (lowland) wetland 

ecosystems. Land reclamation programs are enforced by the Alberta Environmental 

Protection and Enhancement Act (Alberta Government 2007) to return areas disturbed by 

mining to a land capability similar to what existed prior to disturbance. 

In practice, oil sands are excavated in active mining zones and hauled to extraction facilities 

where they are processed to extract bitumen for upgrading to useable petroleum products.  

The remaining material, LOS, is uneconomical to process and is placed in large capacity LOS 

landforms. There are concerns regarding the risks to ecological receptors arising from the fate 

and transport of the bituminous substrate that remains in the reclaimed landscape.   

The Fort Hills LOS disposal area at Syncrude Canada Limited’s (SCL) Aurora North mine 

spans more than 1000 hectare with a maximum height of 100 m and final capacity of ~615 

Mm3. Within the Fort Hills LOS disposal area, 36 hectare was designated for the purpose of 

conducting reclamation research, including surface landform grading of the LOS, placement 

of various configurations of soil cover, and planting of native tree species of differing 

stocking densities. This study, termed the “Aurora soil capping study” (ASCS), is a multi-

disciplinary and collaborative effort to evaluate the efficacy of various soil cover designs 

placed over LOS in order to re-establish a self-sustaining native boreal forest ecosystem 

with tree species of the local region. The location of the ASCS within SCL’s Aurora North 

mine is depicted in Figure 2.1. 
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Figure 2.1 Syncrude Canada Limited’s Aurora North Mine (right) Location of the Aurora Soil 
Capping Study within the Aurora North Mine (inlet left) 

As part of this larger research effort, the main objectives described in this study are to i) 

characterise pore-gasses within the LOS overburden landform; ii) quantify rates of CO2 efflux 

and PHC biodegradation over a range of temperatures; iii) characterise in-situ petroleum 

hydrocarbon (PHC) content of LOS material and leachate; and iv) evaluate potential for PHC 

mobilized from LOS leachate to enter groundwater. 

Part I – Field study  

The field portion of this study involves i) estimating CO2 effluxes from LOS using the static flux 

chamber (SFC) method and ii) measuring gas concentrations at various depths below the 

surface of a LOS deposit. 

2.2 Materials and methodology 

2.2.1 Flux chambers 

Gas efflux from the LOS into the soil covers may pose a risk to the growth and survivability of 

reclamation vegetation as a result of the accumulation of pore-gas CO2 and consequent 

depletion/ displacement of pore-gas O2 (Chan 1997; Trotter and Cooke 2005).    

SYNCRUDE CANADA LTD. 
AURORA NORTH MINE 

AURORA SOIL CAPPING STUDY 
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To measure CO2 efflux from the LOS to the atmosphere, custom-fabricated circular gas flux 

chambers were temporarily installed on 16 discrete locations at the ASCS prior to placement 

of soil covers. The test locations were selected to be representative of the 36 ha surface area 

of the Fort Hills LOS disposal area. SFC measurements were taken during successive field 

trips before placement of reclamation soil material and re-vegetation planting in order to 

evaluate the repeatability of collected data and sensitivity of gas flux to temperature and 

moisture content. 

Each gas flux chamber consisted of two parts: a lower part (the ring) and upper part (cap). 

The diameter of the upper and lower parts was 0.70 m. The heights of the rings and caps were 

0.20 m and 0.15 m, respectively. Prior to conducting measurements, the lower ring was 

installed in the surface to a depth of 0.04-0.08 m (depending on the soil’s hardness) and 

sealed around the edges with bentonite clay. The circular gas flux chamber is illustrated in 

Figure 2.2.  

 

Figure 2.2 Illustration of custom-fabricated static flux chamber field setup 

A minimum of 1 day after installation, the upper cap was placed on the ring and the flanges 

and gasket were tightened to ensure a tight seal. Two tubes, one for inlet and one for outlet, 

were attached to the top of the chamber. The outlet tube was connected to the Fourier-

transform infrared (FTIR) and oxygen sensor, whereupon data was collected on a portable 

laptop computer.  
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Before each sampling event, the chamber headspace was purged with 99.998% purity 

compressed nitrogen (N2) gas. Gas concentrations in the SFC headspace were measured 

using a GasTec DX4015® field portable FTIR system in line with a Varsalla paramagnetic O2 

sensor. The equipment was connected to a computer that enabled data to be measured and 

recorded at pre-determined 1 and 2 minute time intervals. Changes in CO2 concentrations 

within the chamber headspace over time at each location were collected on three separate 

occasions in order to investigate spatial/ temporal variability and the repeatability of collected 

data. No physical calibration was required in the field; however, the FTIR was purged with N2 

gas prior to each sampling event. 

The rate of gas flux at each location was estimated based on the measured CO2 

concentrations and the known dimensions of the SFC using Equation 2.1:  

FCO2 = VC
AC

ΔCi
Δt

               [2.1] 

Where Fi is the mass flux of a gaseous species into the closed chamber [ML-2T-1], Vc is the 

volume of the chamber headspace [L3], Ac is the area enclosed by the chamber [L2], and ΔCi/Δt 

is the concentration change of the gaseous species in the headspace over a time interval ML-

3T-1].   

2.2.2 Soil vapour probes 

Soil vapour probes were installed at various depths in the uncovered LOS overburden 

landform. The soil vapour probe system consists of a drive-point gas vapour tip connected to 

plastic tubing driven into the ground using specially constructed rods (AMS sampling system 

and Gas Vapour Probe Kit®). The metal rods are then removed, thus leaving the gas vapour 

probe tip embedded in the LOS at the desired depth below ground surface. The holes were 

backfilled with bentonite clay to seal out atmospheric gasses. Approximately 1 m of tubing 

was left above the ground surface to allow for future sampling. Thirty-one soil vapour probes 

were successfully installed at 13 locations across the site at depths ranging from 0.5-7.5 m 

below ground surface during 3 site visits in 2010 and 2011.  
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Partial pressures of and O2, CO2 and CH4 were monitored using LandTEC Gem 2000® (NDIR/ 

paramagnetic) field portable gas analyser. Measurements were conducted the following day 

after installation and at several times afterwards to ensure repeatability of the data. The GEM 

2000® was physically calibrated with high-purity O2, CO2 and CH4 calibration gasses daily 

during field sampling events. Gas bottles used for calibration include 1% CH4, 4% O2, and a 

mixture of 50% CH4/ 35% CO2, all with a balance of undetectable nitrogen (N2) gas. 

2.3 Results 

2.3.1 Flux chambers 

In October 2010, the average air temperatures fluctuated between 6-10°C, with temperatures 

as low as 0°C measured by the end of the sampling event. In July 2011, the site conditions 

appeared wetter due to recent multi-day precipitation events, while the daytime air 

temperatures ranged from 20-30°C. In September 2011, the site conditions appeared dry due 

to lack of precipitation during the previous 3 to 4 weeks, while daily air temperatures ranged 

from 15-25°C. Note that field samples of the LOS were not obtained, so it was not possible to 

quantify soil water contents on site. However, it is expected that restrictions in air porosity at 

higher water contents will lead to reductions in gas flux.  

CO2 flux rates calculated using Equation 2.1 averaged between 0.1-0.4 kg/m2/a in October 

2010 with peaks of 0.8-1.1 kg/m2/a. In July 2011, CO2 flux rates averaged between 0.1-1.2 

kg/m2/a with a peak of 7.1 kg/m2/a. In September 2011, estimated CO2 flux rates averaged 

between 0.4-1.5 kg/m2/a with a peak of 2.3 kg/m2/a.  

The high CO2 flux rate of 7.1 kg/m2/a measured in July 2011 was associated with an area of 

relatively loose sand (compared to more compact, finer-textured LOS material with increased 

bitumen at the surface across most of the site). This area may have represented a zone of 

high air permeability and preferential flow.  

Low CO2 flux rates were estimated in July 2011 at two locations that appeared to correspond 

to higher levels of soil saturation caused by heavy rainfall events. An example of this is that in 

September 2011 the CO2 flux rate was 1.5 kg/m2/a during relatively dryer conditions; however, 
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the CO2 flux rate was only 0.1 mg/m2/h in July 2011 at the same location during relatively 

wetter conditions.  

The summary of CO2 flux results from the three site visits is presented in Table 2.1. Tabulated 

values represent the averaged CO2 flux rates from repeated testing using the SFC method. 

Note that it was not possible to sample each location during each visit. 

Table 2.1 Summary of gas flux measurements recorded during three site visits 

Sampling 
Period 

CO2 fluxes 
[kg/m2/a] 

October, 2010 0.1 – 1.1 
July, 2011 0.1 – 7.1 

September, 2011 0.4 – 2.3  
 

Concentrations of trace gasses other than carbon dioxide (CO2) were monitored in the SFC 

headspace. Methane (CH4) was present at low and steady concentrations that fluctuated 

between 2.5-4 ppm. Other trace gasses such as nitrous oxide (N2O), ammonia (NH3), sulphur 

dioxide (SO2), nitrogen dioxide (NO2), ethylene (C2H4) and carbon disulfide (CS2) were found 

at very low concentrations (≤1 ppm) or could not be detected at all at some locations. 

2.3.2 Soil vapour probes 

Installation of soil vapour probes was difficult in dense clays and several installations were 

found clogged on subsequent visits.  Clogging is presumed to result from bitumen and/or clay 

moving in and sealing the gas vapour vents. Furthermore, several probes have drawn water 

in measureable quantities, indicating zones of perched shallow groundwater conditions below 

the surface. 

Soil vapour concentrations measured during the three sites visits in 2010 and 2011 typically 

ranged from 0-18% for O2, CO2 ranged from 3-21%, and CH4 ranged from 0-12%. 

2.3.3 Purge tests 

Due to the unique design of the surface and buried flux chambers, it was not possible to 

conduct standard closed chamber tests, which involve enclosing a volume of air and 

measuring the accumulation of gasses within that volume over an incremental time period. 
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Instead, the chamber headspaces were purged with N2, while a vent was left open to the 

atmosphere to prevent pressure build up inside the headspace. Headspace gasses were 

periodically sampled during purging, which was deemed complete after repeated non-detect 

measurements of O2, CO2, and CH4.  

During testing, headspace gasses were pumped in a continuous loop through the analysers 

and returned to the chamber headspace. This cycle was repeated for up to 10 channels, 

resulting in a sampling interval of roughly 10 minutes to 1 hour.  By sampling in a continuous 

loop, sampling-induced pressure changes were largely avoided. 

Part II – Laboratory study 

The laboratory portion of this study involved i) characterizing the PHC content of LOS; ii) 

characterizing the composition of LOS leachate; iii) estimating rates of PHC biodegradation; 

and iv) measuring rates of CO2 gas flux.  

2.4 Materials and methodology 

2.4.1 Soil columns 

The LOS material used in the column study was collected from the ASCS site and delivered 

to the University of Saskatchewan.  The LOS material was stored in a climate chamber at 4°C 

before being used to study the effects of PHC degradation.  

Six custom-designed Teflon lined steel columns (0.3 m diameter and 1 m height) were 

manufactured at the University of Saskatchewan machine shops for the soil column 

experiment. To minimize potential sorption or catalytic effects in the columns, all interior 

surfaces were lined with Teflon or glass. Each column was designed to enable a glass access 

tube to run vertically down the centre of the column as shown in Figure 2.4. The purpose of 

the glass access tube was to provide access for a SenTek EnviroScan® soil moisture probe, 

which operates on the principle of frequency-domain reflectometry (Sentek Sensor 

Technologies, Australia).  

Six soil columns were prepared using the methodology outlined in the following paragraph. 

The bottom of each column was filled with approximately 0.1 m of coarse silica sand (0.5-1 
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mm particle size) to create a capillary break within the LOS/overburden material. On top of the 

sand layer, approximately 0.6 m of LOS material was carefully placed in equal increments of 

0.01 m and compacted to dry densities ranging from 1.5-1.8 T/m3. The remaining space 

(approximately 0.3 m) provided a headspace for monitoring volatilized gasses. On average, 

approximately 2.8 kg of hydrocarbons were placed in each column. 

 

Figure 2.4 Illustration of cross-section of Teflon-lined steel soil column used in laboratory experiments 

Special connections were made in the wall of each column in order to connect to the Micro-

Oxymax® respirometer (Columbus Instruments, Columbus, OH, USA). The Micro-Oxymax® 

is an aerobic/anaerobic respiratory system that continuously measures changes in 

concentrations of CO2, O2 and CH4 in the headspace as a surrogate of microbial activity. 

In the column study, each individual test was carried out in triplicate to ensure the accuracy 

and repeatability of the collected data. Three columns were set up at room temperature (22°

C), while another three columns were set up in the climate chamber at varying cooler 

temperatures (from 2°C-14°C) for a period of several weeks. 
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2.4.2 Particle-size distribution 

Grain size distributions were performed on a total of 12 samples of LOS (two from each 

column) in order to determine the average particle size distribution for the material in the 

columns. The American Society for Testing of Materials (ASTM) D2422-63 “Standard Test 

Method for Particle-Size Analysis of Soils” method was used for each of the 12 samples 

(ASTM 2007).  

2.4.3 Leachate composition 

The columns were operated under unsaturated conditions using a low-flow peristaltic pump to 

supply demineralized water in order to replicate field conditions. The amount of water provided 

daily to each column was determined to be 30 mL added 3 times per day based on an average 

annual precipitation for Fort McMurray (460 mm/year). 

The daily addition of water to the columns resulted in the production of leachate. Leachate 

was collected from a reservoir at the bottom of each column on a weekly basis and analysed 

for TC (total carbon) and TOC (total organic carbon). All carbon analyses in water samples 

were conducted on the Tekmar-Dohrman Phoenix 8000® UV/persulphate gas 

chromatograph.  

Along with TC/TOC analyses, every three weeks a small sample of leachate was collected 

and sent to Exova analytical laboratories in Calgary, Alberta for analysis of BTEX, F1, F2 and 

F3 hydrocarbons with the CCME Tier-1 method (2008) for petroleum hydrocarbons (PHC) in 

soil using an Agilent 7890 gas chromatograph (GC) system that included a CompiPal system 

to conduct simultaneous flame ionization (FID) detection and mass spectrometry.  

Furthermore, a sample of leachate was also sent to Exova labs to be tested for “oil and grease” 

in order to weigh all organic compounds, not just hydrocarbons. Oil and grease was tested 

using the United States Environmental Protection Agency (USEPA) partition-gravimetric 

method, which uses liquid-liquid extraction with normal hexane as the extraction solvent 

(USEPA 1999).  

2.4.4 PHC characterization data 

In Canada, PHC fractions are defined as follows (CCME 2008): 
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Table 2.2 Definition of hydrocarbon fractions 

Fraction Equivalent carbon number 
F1 C6 to C10 
F2 >C10 to C16 
F3 >C16 to C34 
F4 C34+ 

 

Lighter F1-F2 PHC fractions are of potentially more risk to the environment than heavier F3-

F4 because they are generally more soluble, mobile, and bioavailable. When considered in 

terms of fate and transport, the less mobile, heavier hydrocarbon fractions tend to degrade 

slower and be more persistent in the environment. The more mobile and soluble lighter 

fractions, however, can potentially be transported in pore water and impact ecological 

receptors further from the source (CCME 2010).   

In total, 60 soil samples were collected from all six experimental columns and analyzed for 

PHC content according to the CCME (2008) Tier-1 method for “Canada-wide standards for 

petroleum hydrocarbons (PHC) in soil.” Visser (2008) and Fleming (2012) also used the CCME 

(2008) Tier-1 method to evaluate the PHC contents of LOS and conglomerated masses of 

bitumen known as “tarballs,” respectively. Visser’s (2008) results were that the PHC content 

of LOS is comprised mainly of F2-F4 fractions: 0.15% F1, 8.6% F2, 37.7% F3, and 53.8% F4. 

Fleming’s (2012) results were that the PHC content of tarballs were primarily comprised 

heavier F3 and F4 fractions: 0.01% F1, 0.09% F2, 4.07% F3, and 95.8% F4.  

2.4.5 PHC biodegradation 

During aerobic biodegradation, oxygen is consumed by microorganisms in order to degrade 

hydrocarbons into simpler organic compounds and eventually reduce them to compounds 

such as carbon dioxide and water. The relationship presented in Equation 2.2 below was used 

by Zytner et al. (2001) to provide a simplified stoichiometric equation for the complete 

biodegradation of a diesel molecule by microbial activity:       

                               C16H34 + 24.5O2 → 17H2O + 16CO2                                          [2.2] 
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Estimated PHC degradation was determined by applying Zytner's relationship to CO2 

production; this includes the total cumulative CO2 produced by respiration and the total 

concentration of dissolved CO2 that was monitored in leachate over the course of this study. 

Calculations for CO2 dissolved in water were based on i) regular monitoring of volume of 

leachate removed from system; measured values of TIC (Total Inorganic Carbon), which was 

converted to a mass of total dissolved CO2 using the relationship C + O2 → CO2; and CO2(g) + 

H2O → CO2(l), which forms carbonic acid H2CO3. At measured pH values of 6.8, H2CO3 

dissociates to bicarbonate HCO3- ion only; therefore, CO2 dissolved in the leachate will be 

present mostly as bicarbonates and free CO2 as equivalent of H2CO3 (Snoeyink and Jenkins 

1980). 

2.4.6 Volatile hydrocarbons 

The LOS material used in the experiment contained a significant amount of PHCs and their 

volatiles. Accordingly, an activated charcoal trap (Orbo 302® charcoal sorbent tube) was used 

to collect volatiles and prevent the Micro-Oxymax® gas sensors from being damaged (Micro-

Oxymax® user's manual). At the end of the study, one such charcoal tube that had collected 

volatilized gasses for 5 months was eluted for analysis of volatile PHCs. 

2.4.7 CO2 flux rates 

Based on the cumulative slopes of CO2 production, the long-term gas fluxes for each column 

were estimated for various temperatures. The individual CO2 gas fluxes were estimated based 

on calculations using best fit linear regression applied to the cumulative slopes of the CO2 

production at various temperatures. 

2.5 Results 

2.5.1 Particle-size distribution 

The average particle size distribution curve is shown in Figure 2.5 and represents the sandy 

loam type of soil according to the USCS soil classification. In general, LOS contained 

approximately 10% clay, 35% silt and 55% sand. These values were relatively consistent 
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between all 6 columns. However, in a field scenario the ratio between sand and fines may be 

different due to the variability of the material. 

  

Figure 2.3 Particle-size distribution curve for LOS tested in the laboratory based on the average of 12 
samples 

2.5.2 Leachate composition 

The water analyses for chromatographable PHCs measured a small amount of F2 and F3 

fractions in the leachate, but did not detect F1 or BTEX fractions. The hydrocarbon content in 

the leachate is shown separately in Figure 2.6 for the two sets of column experiments 

(columns 1-3 and 4-6).  

For the columns 1-3 at room temperature (23°C), concentrations of F2 hydrocarbons 

decreased over time from an average across all columns of 0.97 mg/L to 0.27 mg/L and 

concentrations of F3 hydrocarbons remained stable with an average across all columns of 0.6 

mg/L to 0.5 mg/L from July 6, 2012 when the experiment began to October 16, 2012 when the 

experiment ended. For the columns in the 4°C climate chamber (columns 4-6), concentrations 

of F2 hydrocarbons increased from an average across all columns of 0.1 mg/L to 0.2 mg/L 

and concentrations of F3 hydrocarbons increased from an average across all columns of 0.2 

mg/L to 0.4 mg/L from September 6, 2012 when the experiment began to October 16, 2012 

when the experiment ended. Moreover, at the end of the experiment F2 and F3 concentrations 

spiked in a relatively short time due to the temperature in climate chamber increasing from 

4°C to 9°C. F2 concentrations averaged across all columns increased from 0.4 mg/L to 0.6 
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mg/L and F3 concentrations averaged across all columns increased from 0.4 mg/L to 0.7 mg/L 

from October 16, 2012 to November 13, 2012. Peak F2 and F3 concentrations for columns at 

23°C were 2.2 mg/L and 1.2 mg/L, respectively, both measured at the beginning of the 

experiment on July 6, 2012. Peak F2 and F3 concentrations for columns at 4°C were lower at 

0.6 mg/L and 0.7 mg/L, respectively, both measured at the end of the experiment on 

November 13, 2012.  

 

 

Figure 2.4 F2 and F3 concentrations in leachate for soil columns at room-temperature from June 5 to 
Sept 16, 2012. F2 and F3 concentrations in leachate for soil columns in the climate chamber from 
Sept 6 to Nov 13, 2012 

 

The results from oil and grease tests revealed the presence of some BTEX and light diesel 

(most abundant at ~C20). There were also some indications of heavier materials not detected 

by the chromatogramph.  The total average concentration of oil and grease in the leachate 

was 49 mg/L. 

The results suggested that other organic compounds may be present in the leachate at 

increased concentrations. Accordingly, additional leachate analyses test were conducted at 

Environment Canada for the presence of organic acids known as the Naphthenic acid fraction 
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component (NAFC) and other acid-extractables. These tests revealed the presence of a 

NAFC’s at concentrations averaging approximately 150 mg/L.  

Monitoring of TC and TOC was conducted in order to estimate the mobility and quantity of 

organic/inorganic material in the leachate. As seen in Figure 2.7, the concentrations of TC and 

TOC decreased over time.  The organic carbon concentrations measured in the leachate 

analysis were several orders of magnitude higher than the reported concentration of 

chromatographable PHCs presented earlier in Figure 2.6. 

 
Figure 2.7 Total Carbon and Total Organic Carbon in leachate for columns at room-temperature and 
in climate chamber 

2.5.3 PHC characterization 

The characterization of the PHC content of the LOS was similar to the PHC content 

determined in Visser (2008). Results showed that LOS is comprised mostly of high molecular 

weight and not readily degradable F3 (47%) and F4 (45%) hydrocarbons. The remaining PHC 

fractions present in the LOS contained small amounts of volatile and easily degraded F1 
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(0.1%; excluding undetectable BTEX) and F2 (8.3%) hydrocarbons. The detailed summary of 

collected data is presented in Table 2.3. Note that samples from columns 1-3 and columns 4-

6 were evaluated at different times and are presented in separate columns accordingly. 

Table 2.3 Summary of PHC data for all columns 

PHC Fraction Units 
Columns 1-3 Columns 4-6 

Mean STDEV# Mean STDEV 
BTEX mg/kg non-detect N/A non-detect N/A 
F1 C6-C10 mg/kg 40 20 30 10 
F2 C10-C16 mg/kg 2,900 800 1,700 400 
F3 C16-C34 mg/kg 16,300 5,700 9,400 1,800 
F4HTGC C34-50+ mg/kg 15,500 6,700 9,300 2,200 
F4G mg/kg 53,300 15,000 23,400 3,700 

 

The analytical results for PHC content of the LOS are presented relative to the results from 

Visser’s (2008) study on LOS and Fleming’s (2012) study on LOS inclusions in soil reclamation 

material (Figure 2.8). 

 

Figure 2.8 PHC content for LOS and tarball materials present in soil covers during the reclamation of 
boreal forest ecosystems 

2.5.4 PHC biodegradation 

The Micro-Oxymax® respiratory system continuously monitored changes in O2, CO2 and CH4 

gas concentrations in the headspace of the steel columns. Oxygen consumption and carbon 

dioxide production were monitored as a surrogate for microbial activity.  
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Cumulative data collected by the Micro-Oxymax® represents the total amount of gas 

expressed in (L) or (mg) that has been produced or consumed (expressed as negative values) 

since the beginning of the experiment. The average cumulative CO2 production and O2 

consumption for the columns at room temperature (22°C) over period of 196 days were 

approximately 47 L and 93 L, respectively. The total cumulative average CO2 production and 

O2 consumption for the columns in the climate chambers (at temperatures between 2 and 

14°C) over period of 168 days were approximately 8.8 L and 21.6 L, respectively. The 

cumulative consumption of O2 and production of CO2 for all columns are presented in Figures 

2.9. 

 

Figure 2.9 Total cumulative O2 consumption and CO2 production measured during laboratory study 
using MicroOxymax® respirometer 

For columns at room temperature (22oC) for 196 days, the total average amount of CO2 

produced by microbial activity was estimated to be approximately 100 g as a result of the 

degradation of 22 g of PHC. For columns running at cooler temperatures (2-14°C) for 196 

days, the total average amount of CO2 produced by microbial activity was estimated to be 
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approximately 32 g as a result of the degradation of 7 g of PHC. The total estimated PHC 

degradation from respiration was 60 g/year and 15 g/year at room temperature and cooler 

temperatures, respectively. Methane production was found to be very low and was 

representing a very small fraction (0.1%) of total CO2 production. It was therefore concluded 

the experiments were running primarily in an aerobic environment as planned. 

2.5.5 Volatile hydrocarbons 

Results from the elution of the activated charcoal trap are shown in Table 2.4. Results 

indicated the presence of hydrocarbons on the downstream module of the two-module trap, 

suggesting that the tube may have been overloaded. Accordingly, the mass of hydrocarbons 

reported in Table 4 underestimate, by an unknown margin, the true mass volatilized.  The 

relative mass of volatilized PHC of the various fractions may provide some insight into the sort 

of PHC’s that may partition to the gas phase under field conditions. The entire mass of PHC 

collected in the tube was 131 mg, of which 123 mg was within the lighter part of the F2 fraction 

(up to C20), reflecting the limitation of the GC instrument used which could only quantify up to 

C20; therefore, the F3 fraction content only represents PHCs between C16 to C20. 

Table 2.4 BTEX and total hydrocarbons in the charcoal tube for CH2 

Analyte Mass volatiles [mg] 
BTEX 0.093 

F0 (C4-C6) 0.025 
F1 (C6-C10) 5.8 

F2 (C10-C16) 122.8 
F3 (C16-C20) 2.4 

Sum 131.2 
 

2.5.6 CO2 flux rates 

The average cumulative CO2 production at various climate chamber temperatures was 

estimated by calculating the CO2 production rate for each incremental change in LOS 

temperature. The results of these estimates are presented in Figure 2.10 and show a linear 

relationship between CO2 gas fluxes and LOS temperature.  
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Figure 2.10 Relationship between LOS temperature and CO2 gas flux rates for all columns 

2.6 Discussion and conclusions  

Surficial CO2 flux measurements were taken at 16 locations across ASCS on three separate 

occasions. Temperature was observed to have an effect on the rate of PHC degradation as 

indicated by variations in gas fluxes at different times of the year. It was also observed that 

higher levels of soil moisture caused by rainfall events may have temporarily reduced CO2 flux 

rates.  

The results show that gas flux rates in the field varied spatially and temporally. Occasionally, 

elevated concentrations in the soil of up to 21% CO2 and up to 12% CH4 were detected. It is 

hypothesized that high CO2 and CH4 pore-gas concentrations may have been caused by the 

presence of low-permeability layers of bitumen in the subsurface inhibiting free flow of gas to 

the surface. This would explain why elevated gas concentrations were measured below these 

layers.  

High concentrations of CO2 and CH4 at these depths in the soil may have some negative 

impact on plant growth. For example, CH4 entering a well-aerated cover soil at concentrations 

greater than 10% can potentially consume all oxygen in the soil atmosphere due to the 

stoichiometry of methane oxidation (CH4 + 2O2 → CO2 + 2H2O). Furthermore, O2 

concentrations less than 10% may be detrimental to tree and root growth as a result of 

insufficient energy being available to perform essential root function and mineral uptake 

(Kozlowski 1985). CO2 concentrations greater than 15-20%, meanwhile, can potentially 
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impact nutrient and water absorption and be lethal to plants (Chang and Loomis 1955; Whitton 

1991). 

The LOS/overburden material collected from ASCS and used in the column study contained 

PHC’s predominantly composed of F3 (47%) and F4 (45%) hydrocarbon fractions (i.e. heavy 

molecular hydrocarbons that are not readily degradable). The remaining PHC fractions 

present in the LOS contained small amounts of volatile and more easily degraded F1 (0.1% 

excluding undetectable BTEX) and F2 (8.3%).   

The results from the PHC mobility study suggest that the LOS material will likely have a low 

environmental impact to surface or groundwater quality. The F1 fraction (including BTEX) was 

not detected in the column leachate. The F2 fraction slightly exceeded clean water guidelines 

on a few occasions at temperatures ≥ 22°C.  At low temperatures, ≤ 4°C, the concentration of 

F2 hydrocarbons was near the 0.1 mg/L detection limit. The F3 hydrocarbons were present at 

low concentrations, but are not regulated for groundwater. It should be noted that based on 

measurements made at the site, the LOS temperature beneath 0.3-1.5 m of reclamation cover 

ranged from 17°C to -7°C, with an average annual temperature of 4.2°C.   

The results from the leachate analysis showed that organic carbon concentrations were 

several orders of magnitude higher than the reported concentrations of chromatographable 

hydrocarbons, which indicates the presence of other organic compounds. Additional tests 

conducted on leachate water revealed the presence of 49 mg/L concentrations of oil and 

grease and 150 mg/L of NAFC’s and other acid extractables. Organic acids found in the 

leachate were complex and detailed quantification was not carried out for individual 

compounds in this study.   

Based on soil respiration, the rate of biodegradation is apparently dependent on temperature 

as it is widely described in the literature (Atlas 1981; Leahy and Colwell 1990).  The total 

estimated PHC degradation from respiration was 60 g/year at 22°C and 15 g/year at 

temperatures from 2 to 14°C. However, these amounts constitute only a small portion of the 

approximately 2.8 kg of hydrocarbons present in each column. Thus, the results indicate that 
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the degradation of hydrocarbons from LOS material is occurring at relatively slow rates. For 

comparison, Fleming at al. (2012) showed that degradation of PHC from naturally-occurring 

oil sand inclusions in native surface soils in the region, (as determined in soil column studies 

at 20°C) was on average 8.5 g/year, which is nearly half of the rate measured for LOS in this 

study. PHC volatilization at rates of 0.3 g/year was observed to be two orders of magnitude 

less than that of PHC degradation of LOS. 

Controlling temperature during the experiments allowed the effects of temperature on PHC 

degradation and CO2 production to be investigated. Temperature dependence became further 

evident during climate chamber failure when the temperature in the climate chamber abruptly 

increased from 4-23°C within 24 hr and resulted in a spike in gas flux rates. The estimated 

CO2 flux rates showed a linear relationship between CO2 gas fluxes and temperatures. The 

gas flux rates ranged from 0.1 kg/m2/a at 2°C to 2.3 kg/m2/a at 22°C. Interestingly, the gas flux 

results obtained under controlled steady lab conditions were comparable with the gas flux 

rates obtained in the field prior to placement of reclamation cover soil (while the LOS was 

exposed to atmospheric air temperatures). The CO2 fluxes ranged from 0.1-1.5 kg/m2/a with 

peaks of 2.3 and 7.1 kg/m2/a. The results from the field and laboratory respiration studies were 

also relatively similar, indicating that the column study could be used to produce meaningful 

and low cost estimates of in situ PHC degradation. 
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3.0  PORE-GAS DYNAMICS IN OVERBURDEN   
  AND RECLAMATION SOIL COVERS  

Preface 

Reclamation efforts using engineered soil covers depend on aeration of the rooting zone to 

freely allow O2 ingress and CO2/CH4 effluxes. This manuscript focuses on characterizing pore-

gas concentrations and quantifying gas flux rates in 8 composite single and multi-layer soil 

covers. Pore-gas O2, CO2, and CH4 concentrations were measured in single-point probes 

using a repurposed landfill gas analyser. CO2 effluxes from the cover soils were measured 

using surface static flux chambers. O2 ingress into the cover soils and CO2 efflux from the lean 

oil sands were measured using custom designed and fabricated subsurface static flux 

chambers. Relative contributions of advection & diffusion were calculated from soil gas profiles 

based on soil temperatures & soil moisture measured by O’Kane Consultants, air conductivity 

measured by Zettl et al (2013), and differential pressures measured herein. This research is 

fundamental to predicting the long-term success of reclamation efforts using engineered soil 

cover systems by providing insight into the pore-gas dynamics of the soil cover systems and 

lean oil sands. 

Reference: Scale KO and Fleming  

IR. 2017. Pore-gasses Dynamics in Overburden and Reclamation Soil Covers. 
Accepted June, 2017.  

Pore-gas dynamics in single and multi-layered soil covers were characterised in 

a mine cover testing program for reclamation of lean oil sand overburden. Pore-

gas concentrations of O2 and CO2 in the upper 1.5 m of soil covers and lean oilo 

sands did not reach a threshold that poses a risk for plant growth. Below 1.5 m 

in the LOS, O2 dropped to 0% and CO2 rose to >16%. Frozen moisture in peat 

coversoil at one sampling location was a barrier to gas exchange and resulted in 

accumulation of CH4 (>35%). Novel subsurface flux chambers were designed 

and fabricated to directly measure O2 ingress through soil covers and CO2 

effluxes from lean oil sands into soil covers. Soil cover material and placement 

thickness affected gas flux rates; O2 fluxes peaked at 18.0 kg/m2/a and CO2 

fluxes peaked at 2.3 kg/m2/a. Diffusive fluxes were calculated from soil gas 

profiles by estimating diffusion coefficients from position-dependent soil moisture 
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and temperature. Advective fluxes were calculated from pressure gradients and 

in-situ air conductivity. Advection dominated over diffusion in soil covers except 

for one location that was a localized zone of PHC degradation and methane 

oxidation and/or the lean oil sands was coarser-textured and quickly responded 

to barometric pressure fluctuations.  

3.1 Introduction 

Surface mining of oil sands in Alberta, Canada, produces >1 million barrels of crude oil per 

day and has disturbed >700 km2 of Canada’s boreal forests (Alberta Energy 2016; CAPP 

2015). Oil sands operators are mandated to reclaim areas disturbed by mining to a capability 

equivalent to pre-disturbance (Government of Alberta 2007). Establishing an appropriate soil 

cover design considering soil material type, horizon configuration, and capping thickness, is 

one of the most effective measures available for oil sand mine operations to mitigate the 

constituents of risk of a landform substrate. Soil reclamation cover designs are also used in 

upland reclamation to facilitate the growth of native boreal plant and tree species by providing 

sufficient nutrients, moisture, and an adequate supply of oxygen (O2) for plants and biologically 

active soil microbial populations to remove methane gas (CH4) in aerobic microbial reactions.  

Overburden are landforms that will make up a significant portion of the closure mine landscape 

for oil sand mine operations. During the mine operation, overburden material above the oil 

sand deposit is removed and transported to a dedicated disposal area. Large above-grade 

overburden landforms are created in the operation which must later be reclaimed. For some 

oil sand mine operations in the Athabasca oil sands region, the overburden may contain a 

petroleum hydrocarbon (PHC) concentration up to the economical ore grade concentration of 

approximately 7%. This overburden substrate is referred to as lean oil sand (LOS) and there 

is uncertainty in the magnitude of risk associated with the removal, displacement, and 

placement of LOS in a new environment in the closure landscape. One of the risks associated 

with LOS involves degradation of PHCs near or within the root and biologically active cover 

soil zone, which may reduce plant-available O2 by displacement with carbon dioxide (CO2) or 

by consumption in CH4 oxidation reactions (Leone et al 1977).  
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Current operating approvals for oil sand mine operations mandate placement of a minimum 

soil reclamation cover thickness ranging from 1.2 to 1.5 m for LOS. However, there is 

insufficient data available to evaluate the real risk of LOS and assess whether the current 

mandated minimum soil cover thickness is sufficient, optimal, or overly conservative to 

achieve the goal of “equivalent land capability”. Accordingly, there is an opportunity for 

research to address these uncertainties and provide information to support the establishment 

of an optimal soil cover design and thickness for the reclamation of LOS landforms. One 

specific research question relates to the potential for vegetation to experience distress as a 

result of pore-gas composition or pore-gas dynamics.  

The Aurora Soil Capping Study (ASCS) is a 36 hectare soil cover research study constructed 

at Syncrude Canada Limited’s Aurora North mine (57°20’ N, -111°32’; Figure 3.1). The primary 

goal of the ASCS is to assess the effectiveness of single and multi-layered soil cover systems, 

as well as the optimal reclamation capping thickness to alleviate the risk(s) of LOS and meet 

targeted vegetation growth targets to achieve equivalent land capability. The study area was 

subdivided into 36 one hectare cells, each capped with one of twelve different soil cover 

configurations, denoted hereafter as treatments. Each cell was instrumented with moisture, 

temperature, and suction sensors; an on-site meteorological (MET) station collects data on 

wind-speeds, air temperature, precipitation, and barometric pressure. For the purposes of soil 

gas sampling, static flux chambers (SFC) were installed on 2 treatments and soil vapour 

probes (SVP) were installed in 8 of the soil cover treatments to a depth down to 4 m below 

ground surface (BGS).  
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Figure 3.1 Map showing location of Alberta on the map of Canada (left). Map of Alberta showing the 
location of Syncrude's Aurora North mine (right) 

The objective of this paper is to supplement the multi-disciplinary research conducted at the 

ASCS (see Barber et al 2015) by developing an understanding of pore-gas dynamics in the 

soil covers and LOS. The tasks that are addressed in this paper are intended to achieve the 

following: 

• characterise pore-gasses at various depths in the soil covers and LOS over a range of 

field conditions; 

• directly measure O2 ingress through the soil covers and CO2 efflux from the LOS into 

the soil covers using static flux chambers and a novel subsurface static flux chamber; 

• indirectly quantify O2 fluxes resulting from concentration-gradient driven diffusion and 

pressure-gradient driven advection by evaluating soil gas concentration and pressure 

profiles in conjunction with soil moisture and temperatures; and  

• quantify the relative importance of diffusion and advection to soil-atmosphere O2 and 

CO2 fluxes across the interface of the LOS and soil covers. 
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3.2 Background 

The soil cover materials investigated herein were salvaged during oil sands mining activities 

and either directly placed at the study or stockpiled awaiting construction of the ASCS.  

The soil reclamation materials comprising the ASCS were the following: 

• Peat – salvaged from bogs and fens in the mine footprint, it is a cover soil (topsoil) 

horizon that provides organic carbon, nutrients, and improves water holding capacity 

(Rowland 2009). It was placed at a depth of 0.1 or 0.3 m at the ASCS. It should be 

noted that the organic carbon content of the peat in this study is lower than typical 

organic soils (Kroetsch et al 2011);   

• LFH – surface litter layer, A horizon and potentially a portion of the B horizon salvaged 

from upland soils within the mine footprint. It was placed at a depth of 0.1 or 0.2 m at 

the ASCS; and   

• Subsoil – coarse-textured (median texture of loamy sand), glaciofluvial surficial 

geology deposits within the mine development footprint containing a variable 

proportion of naturally-occurring hydrocarbons embedded in the soil matrix. Subsoil 

types varied depending on their salvage depth, ranging from approximately 0.15-0.5 

m, 0.5-1.0 m or 0.15-2.5 m. Subsoil placement depth and configuration varied for the 

ASCS treatments; thickness varied from 0-1.5 m and consisted of 1 or 2 subsoil 

horizons (when subsoil present). 

The soil cover treatments investigated herein are illustrated in Figure 3.2. LOS is present 

below every soil cover treatment; however, it is only illustrated in Figure 3.2 if present within 

1.5 m of the surface. 
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Figure 3.2 Single and multi-layer soil cover treatments at the Aurora soil capping study investigated in 
this research project. † 

†Note: two types of subsoil are illustrated in the figure above: SUB 1 and SUB 2. The materials differ in their 
salvage depth but have similar particle-size distributions and soil-water characteristic curves. For simplicity, the 
two types of subsoil may be considered interchangeable for the purposes of this study and are both referred to as 
subsoil hereafter.     

The treatments illustrated in Figure 3.2 were categorized based on capping thickness, soil 

texture, and gas sampling technique as listed in Table 3.1.   
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Table 3.1 Soil cover treatments grouped by capping thickness, soil cover design, and gas sampling 
technique. 

Group Soil Cover Design Treatment1 Sampling 
Technique2 

A 
(< 1.5 m thickness) 

1 layer design of Peat coversoil 
(0.3 m) 

1A SVP 

1B SVP 

2 layer design of Peat (0.3 and 
Subsoil (0.7 m) 2 SVP 

B 
(1.5 m thickness) 

2 layer design of Peat (0.1 or 0.3 
m) and Subsoil (1.4  or 1.2 m) 

3 SVP 

4 SVP 

C 
(1.5 m thickness) 

2 layer design of LFH (0.1 or 0.2 
m) and Subsoil (1.4  or 1.3 m) 

5A SVP 

5B SFC 

6 SVP 

7 SVP 

D 
(1.5 m thickness) 

3 layer design of Peat (0.3 m), 
SUB 1 (0.3 m) and SUB 2 (0.9 

m) subsoils 

8A SVP 

8B SVP 

8C SVP 

8D SFC 
1 Letters indicate replicate cells of treatments. 
2 SVP = soil vapour probe; SFC = static flux chamber. 
 

Samples of soil reclamation materials and LOS at the ASCS were analyzed for particle-size 

distribution (PSD) in accordance with ASTM D422-63 (2007) and are presented in Figure 3.3. 

 

Figure 3.3 Particle-size distribution for soil reclamation materials and lean oil sand of the Aurora Soil 
Capping Study.  
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LOS, with the oil component removed, has more silt and clay relative to the cover soil 

materials. LFH and subsoil have similar particle sizes; however, LFH has slightly higher silt 

content. The peat was only classified for particle sizes ranging from 0.1-5 mm. 

Laboratory measurements of the soil water characteristic curve (SWCC) for peat, subsoil, and 

LFH were conducted in accordance with ASTM D-6836-02 (2008). Measurements of the 

SWCC for LOS were conducted by Pernitsky et al (2016) using the suction table apparatus 

described by Dane and Topp (2002). Results of the SWCC tests are shown in Figure 4. Peat 

has the highest total porosity of approximately 78%, followed by LFH with a total porosity of 

42%. LFH and subsoil have similar shaped SWCC’s; however, the LFH curve is shifted slightly 

above the subsoil curve, likely due to the greater organic matter and silt content. 

 

Figure 3.4 Laboratory-measured soil-water characteristic curves for soil reclamation materials and 
lean oil sand of the Aurora Soil Capping Study. 

3.2.1 Significance of PHC degradation in reclamation soil covers 

The methanogenic biodegradation of PHCs (such as the oil component of LOS) occurs under 

anaerobic conditions when O2 is unavailable to be the terminal electron acceptor 

(Grishchenkov et al 2000; Salminen et al 2004). The products of this reaction are gaseous 

CH4 and CO2, which may subsequently enter the reactive aerobic zone of the overlying cover 

soils, whereupon methanotrophic microorganisms (methanotrophs) facilitate reduction-

oxidation reactions (methane oxidation) by transferring electrons from electron-donating CH4 
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to electron-accepting O2. The net effect to the composition of pore gasses is the removal of 

O2 and an increase in CO2 and CH4. Whether this effect is problematic is dependent upon the 

concentrations of CH4 and O2 to facilitate this reaction and the response of the reclamation 

vegetation to such changes in pore-gas composition.   

Plants require sufficient O2 in the rooting zone to facilitate essential biological processes 

(Geigenberger 2003). Reductions in pore O2 may result from microbiological activity or 

restricted air porosity. Symptoms of O2 deficiency generally manifest at concentrations less 

than 10% (Flower 1981; Kozlowski 1985). Moreover, CO2 in the air-filled pore space can be 

phytotoxic at concentrations greater than 15% (Flower 1981; Whitton 1991).  

Physiological impairments from deficient O2 or excess CO2 include drying of leaves 

(desiccation), loss of pigmentation (chlorosis), shedding of leaves (abscission), impeded 

nutrient absorption, reduced photosynthesis (and thus reduced growth rates), and the 

production of organic compounds such as ethylene (Chang and Loomis 1955; Leone et al 

1977; Flower 1981; Kozlowski 1985; Wong 1988; Whitton 1991; Pezeshki et al 1993; 

Bartholomeus et al 2008).   CH4 and CO2 produced during methanogenic biodegradation of 

the oil component of LOS can be transported by various gas transport processes into the 

aerobic pore space of the overlying unsaturated cover soil treatments. 

3.2.2 Mass transport of pore gas in unsaturated reclamation cover soils 

Gas transport processes that induce the movement of pore-gasses include concentration-

gradient driven diffusive fluxes and pressure-gradient driven advective fluxes. Diffusive fluxes 

depend upon the assumed value of the diffusion coefficient, Dp, and there are a number of 

models published in the literature to estimate the diffusion coefficient. A sensitivity analysis 

was therefore conducted using six different models for the diffusion coefficient as listed in 

Table 3.2.  Diffusive gas fluxes were calculated using the concentration gradient method (de 

Jong and Schappert 1972; Billings et al 1998; Risk et al 2002; Kanako et al 2008; Maier and 

Schack-Kirchner 2014).  Values for the diffusion coefficients were determined from the various 

models and used with position-dependent gas concentrations. 
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Table 3.2. Diffusion coefficient models tested in sensitivity analysis.  

Type Model Reference 

Two-
parameter  

Dp

Da0
= θa

10 3⁄

θT
2              [3.1] 

Millington and Quirk (M-Q) 
(1961) 

Dp

Da0
= θa

2

θT
2 3⁄          [3.2] 

Millington and Quirk (1960) 

Moisture-
corrected  Dp

Da0
= �2θa100

3 + 0.04θa100� � θa
θa100

�
2+3

b
      [3.3] 

Moldrup (1996) 

Dual-phase De = 1
θT

2 [Da
0θa

P + HDw
0 θw

P ]        [3.4] Aachib et al (2004) 

De = τDa
0[1 − Sr]α + τSrDw

0

𝐻𝐻
             [3.5] Elberling (1993) 

Density-
corrected  

Dp

Da0
= 0.1 ��θa

θT
�

3
+ 0.04 �θa

θT
��                     [3.6] 

Deepagoda (2011) 

 

Advective fluxes, on the other hand, may be induced by soil-atmosphere barometric pressure 

gradients causing bulk movement of gasses into or out of soils (Christophersen 2001; Poulsen 

2003; Massman 2006; Gebert 2011; Redecker 2015).  Pressure gradients may also be 

induced by reactions; for example the simple stoichiometry of CH4 oxidation results in a net 

decrease in pore-gas volume, while the production of CO2 and CH4 result in a net increase in 

pore-gas volume (Molins and Mayer 2007). The direction of flow depends on whether soil-

atmosphere pressure gradients are positive (atmospheric pressure > pore-gas pressure) or 

negative (atmospheric pressure < pore-gas pressure) (Elberling et al 1998). Advection, 

especially in coarser-grained soils, can be orders of magnitude greater than diffusive gas 

transport (Nilson 1991; Redecker 2015). 

One-dimensional flux of pore-gasses due to advection for a single phase is described by 

Darcy’s Law (Seely et al 1994; Hillel 2003; Kim and Benson 2004; Kjeldsen et al 2005).  At 

the field study site, the coefficient of gas permeability was determined based on in-situ air 

conductivity measured using an air permeameter and the soil-atmosphere pressure gradient 
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measured using a high-precision digital manometer attached to soil vapour probes as 

described in the following section.    

3.3 Materials and Methodology 

3.3.1 Flux chambers 

Soil gas effluxes are commonly measured using the static flux chamber (SFC) method in which 

the upper section of the chamber is sealed to atmospheric gasses and the lower section is 

embedded into the soil and permeable to soil gasses. The ingress and efflux of gasses was 

calculated from the change in gas concentration within the enclosed headspace over an 

incremental time using the following general equation: 

Fi = VC
AC

ΔCi
Δt

                     [3.7] 

Where Fi is the flux of a gaseous species into the closed chamber [ML-2T-1], Vc is the volume 

of the chamber headspace [L3], Ac is the area enclosed by the chamber [L2], and ΔCi/Δt is the 

concentration change of the gaseous species in the headspace over a time interval ML-3T-1].  

Accumulation of gasses in the headspace may result in non-representative concentration 

gradients and reduce the concentration gradient driving diffusive gas flux (Fick 1855; Nay 

1994; Hutchinson et al 2000; Davidson et al 2002; Pumpanen 2004; Heinemeyer and 

McNamara 2011; Pihlatie 2012). It should be noted that analysis of data from SFC tests was 

carried out to specifically address this potential systematic error.  

Square 1.22 m by 1.22 m by 0.31 m surface and subsurface chambers were installed at the 

ASCS. The surface chambers were fabricated from PVC with holes drilled for inlet and outlet 

tubes. A solar-powered fan was inserted into the chamber to circulate headspace gasses. 

During installation, bentonite clay was placed in a groove around the perimeter of the chamber 

and hydrated to minimize gas exchange between the headspace and atmosphere. The 

surface chambers were moved periodically to locations within an approximate 20 m radius of 

the field laboratory.  
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For the steel subsurface flux chambers, the bottom was open and top covered by welded wire 

mesh (to support the weight of the overlying soil). A 0.053 mm aperture size gas-pervious 

stainless steel screen was fastened over the wire mesh. The upper surface of the chamber 

was comprised of two sealed compartments (to measure upward diffusion of gasses) and two 

open compartments (to account for downward diffusion of gasses from the surface). The 

compartments were staggered diagonally in an effort to account for non-uniform gas flow. The 

subsurface flux chamber is illustrated in Figure 3.5.  

 

 

 
Figure 3.5 Illustration of the subsurface flux chamber. Not illustrated is welded wire mesh used to 
support weight of overlying soil.   

The subsurface flux chambers were placed immediately on top of the LOS and in the soil 

reclamation material. Teflon tubing (6.4 mm diameter) was placed in a protective conduit and 

led to the surface and connected to an on-site instrumentation lab containing a 10 channel 

auto-sampling Columbus Instruments® Model 180-C™ gas analyser (Columbus Instruments, 

Columbus, Ohio, USA). The arrangement of the flux chambers and field laboratory is 

illustrated in Figure 3.6. 
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Figure 3.6 Cross-sectional illustration of field setup for sampling surface and subsurface flux 
chambers using Columbus Instruments® Model 180-C™ gas analyser. 

3.3.2 Gas sampling 

Gasses were pumped from the SFC headspace at a nominal flow rate of 0.5 L/min for 2 

minutes per sampling interval. Excess moisture was removed from the gasses in the 

condensing air dryer unit.  Gasses were further dried in the sample drier fitted with two 

desiccant columns containing Drierite (CaSO4). Next, the gas passed through a 0-100% 

paramagnetic O2 sensor and 0-1% and 0-30% single-beam non-dispersive infrared CO2 and 

CH4 sensors (4 sensors in total). 

The gas analyser was calibrated before each site visit with O2 at 20%, CO2 at 0.8% and CH4 

at 25%. Calibration was conducted at temperatures from 0-40°C and measurements were 

within ±0.1% of the specified value, suggesting that temperature fluctuations from 0-40°C in 

the field laboratory should not have a significant effect on the measured gas concentrations. 

3.3.3 Purge tests 

Due to the unique design of the surface and buried flux chambers, it was not possible to 

conduct standard closed chamber tests, which involve enclosing a volume of air and 
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measuring the accumulation of gasses within that volume over an incremental time period. 

Instead, the chamber headspaces were purged with N2, while a vent was left open to the 

atmosphere to prevent pressure build up inside the headspace. Headspace gasses were 

periodically sampled during purging, which was deemed complete after repeated non-detect 

measurements of O2, CO2, and CH4.  

During testing, headspace gasses were pumped in a continuous loop through the analysers 

and returned to the chamber headspace. This cycle was repeated for up to 10 channels, 

resulting in a sampling interval of roughly 10 minutes to 1 hour.  By sampling in a continuous 

loop, sampling-induced pressure changes were largely avoided. 

3.3.4 Soil vapour probes 

Soil vapour probes (SVP) were installed in the LOS and the cover soils using the AMS® SVP 

Kit™. The tubing is attached to the “harpoon” tip (Figure 3.7), pulled through hollow steel rods 

and advanced into the subsurface with a slide hammer.  In each SVP cluster, tubing was 

installed into the soil reclamation covers to depths ranging between 0.3 m and 1.5 m and into 

the LOS to a maximum total depth of 4 m as illustrated in Figure 3.7.  

Pore-gas concentrations were measured in the SVP using a LandTEC® GEM 2000™ field 

portable gas analyser (LandTec 2010) which measures CH4 and CO2 using dual-beam 

infrared adsorption to ±0.3% at concentrations <5% and ±1% at concentrations up to 15%.  

Oxygen is measured to ±1% with a galvanic cell.  This instrument is equipped with a digital 

manometer to measure differential pressures to ±0.25 Pa.     
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Figure 3.7 Cross-sectional illustration of field installations for a nest of soil vapour probes (Left). 
Illustration of AMS® dedicated soil vapour probe “harpoon” tip embedded in the soil for gas sampling 
(Right). 

3.3.5 Air permeameter  

As part of the multi-disciplinary ASCS research, air conductivity of the soil covers were 

measured in-situ to a depth of 0.4 m using a custom-fabricated portable air permeameter 

apparatus (Zettl 2013; Huang 2015).  The apparatus involved inserting a 0.16 m diameter by 

0.4 m length steel cylinder into the cover soil with a drop hammer and measuring pressure 

drops across the base and headspace of the cylinder while applying a constant flow rate of 

non-reactive gas. A detailed methodology is described in Huang et al (2015). 

3.4 Results 

3.4.1 Direct measurement of fluxes using flux chambers 

The time vs. concentration results from the SFC purge tests indicated the accumulation of O2 

and CO2 in the chamber headspaces. O2 purge tests were conducted in the subsurface SFC 

placed at the soil cover/LOS interface below Treatment 5B (2 layer design of 0.1 m peat and 

1.4 m subsoil) and below Treatment 8D (3 layer design of 0.3 m peat, 0.3 m subsoil 1, and 0.9 

m subsoil 2). Using these results, O2 flux rates through the soil covers were calculated using 

Equation 3.7. The geometric mean O2 flux rates through the soil covers into the subsurface 

SFCs were plotted as shown for the subsurface SFC in Figure 3.8. Onset of O2 ingress into 
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the chamber headspace was delayed by roughly 2 hr for both treatments. Flux rates increased 

for approximately 20 hours and peaked at 18 kg/m2/a for Treatment 8D and approximately 8 

kg/m2/a for Treatment 5B.  

 

Figure 3.8 Geometric mean of all O2 fluxes through Treatment 5B and Treatment 8D into the open 
compartments of the subsurface flux chambers modelled with non-linear curve fitting equations. 

Geometric mean flux rates for CO2 from the ground surface into the surface SFCs on 

Treatments 5B and 8D and the geometric mean flux rates for CO2 from the LOS into the 

subsurface SFC on Treatment 8D are plotted in Figure 3.9. Mass flux of CO2 into the chamber 

headspace commenced instantaneously after starting the purge tests. Flux rates of CO2 

increased for approximately 2.5 hours to a peak of 2.3 kg/m2/a for Treatment 5B, 1.4 kg/m2/a 

for LOS, and 0.6 kg/m2/a for Treatment 8D.  



59 
 

 

Figure 3.9 Geometric mean of all CO2 fluxes through Treatment 5B and Treatment 8D into the 
surface flux chamber and through the LOS into the closed compartment of the subsurface flux 
chamber modelled with non-linear curve fitting equations. 

3.4.2 Indirect flux measurements using pressures and concentrations measured at 
various depths in soil vapour probes 

Concentrations of pore gasses and differential pressures were measured over the 2014-2015 

field seasons in soil vapour probes installed at depths of 0.3-0.5, 0.5-1, 1-2, 2-3 and 3-4 m.  

At total of 165 to 215 measurements were taken from the SVP’s at each of these depth ranges, 

except for the deepest (3-4 m), from which 43 measurements were made.    

Using the various models described in Table 3.2, the relationship between the O2 diffusion 

coefficient (Dp) and VWC was determined for each of the soil cover materials and LOS as 

presented in Figure 3.10. In general, the 6 models show a similar trend and at a higher water 

content generally predict similar values for the diffusion coefficient. Other than for LOS, which 

has similar predicted values over the full range of VWC, there is more scatter at lower water 

contents among the predicted values using the various models. In particular, Eberling (1993) 

generally predicts diffusion coefficients lower than that of the other models for peat and 

subsoil, while M-Q (1960) predicts diffusion coefficients higher than that of the other models 

for all soils and LOS. 
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Figure 3.10 Range of values of O2 diffusion coefficient for LFH, LOS, peat, and subsoil as a function of the 
volumetric water content of the soil for a selection of diffusion coefficient models. (Moldrup, 1996 was not used 
for LOS). 

The modelled values of the diffusion coefficient may be combined with the vertical variation in 

material and water content to develop a relationship between diffusion coefficient and depth 

for each soil cover treatment over LOS. Figure 3.11 presents this variation of O2 diffusion 

coefficient with depth for selected soil profiles. The geometric mean O2 diffusion coefficient of 

the 6 models were calculated at various depth increments.  
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Figure 3.11 Variation of the oxygen diffusion coefficient with depth for selected soil profiles. 

Mean O2 and CO2 pore-gas concentrations from all measured values are plotted in Figures 

3.12 to 3.15. The measured gas concentrations may be evaluated in the context of conditions 

monitored at a nearby area of undisturbed natural boreal forest within the lease area wherein 

the soil was found to be well-aerated with O2 concentrations close to 20% and CO2 

concentrations less than 0.3% to a depth in excess of 3 m (data not reported).The soil profile 

was similar in physical characteristics to the LFH and subsoil material in this study (e.g. PSD, 

SWCC, and proportion of oil), but did not have LOS type parent geologic material within the 

measured depth.  

Pore-gasses within LFH, peat, and subsoil at depths ranging from 0.3-0.5 m were well-aerated 

with relatively low CO2 concentrations of typically <1.5%. Within the subsoil at a depth of 1 m, 

O2 concentrations were typically between 16-20%, but dropped to a minimum of 8.7% on 

Treatment 8A. CO2 concentrations in the subsoil, while mostly between 0.5-3.5%, peaked at 

a maximum of 8.6% on Treatment 8A. The general trend was that median O2 concentrations 

in LOS below the soil covers decreased with depth to less than 5% at 3-4 m. CO2 generally 

followed the inverse trend, with median CO2 concentrations increasing with depth to more than 

8% at 3-4 m.  
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The distribution with depth of O2 diffusion coefficients for the various soil cover systems was 

estimated for all treatments using the six diffusion coefficient models (Equations 3.1 to 3.6). 

The geometric mean O2 diffusion coefficient of the six models was used to calculate diffusive 

O2 fluxes from field measurements of pore-gas concentrations measured in the SVP’s.  

Group A soils are displayed in Figure 3.12. Due to steeper O2 concentration gradients and 

lower VWC measured in Treatment 1A, diffusive fluxes increased in the LOS to a depth of 2 

m BGS. Peak diffusive fluxes for Treatment 1B were in the upper peat layer due to the high 

diffusion coefficient and at 2 m BGS in the LOS due to the steep concentration gradient. For 

Treatment 2, on the other hand, highest diffusive fluxes occurred in the cover soils, but were 

restricted in the LOS. 
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Figure 3.12 Range of O2 pore-gas concentrations measured with soil vapour probes and diffusive 
fluxes calculated using the concentration gradient method during the 2014 and 2015 field seasons for 
Group A soils. Horizontal black lines signify the interface between the soil covers and LOS.  

Diffusive fluxes for Group B soils are displayed in Figure 3.13. Diffusive fluxes were highest in 

the lower subsoil and upper LOS at 1-2 m BGS, however, fluxes at all other depths were 

similar in magnitude.  
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Figure 3.13 Range of O2 pore-gas concentrations measured with soil vapour probes and diffusive 
fluxes calculated using the concentration gradient method during the 2014 and 2015 field seasons for 
Group B soils. Horizontal black lines signify the interface between the soil covers and LOS. 

Diffusive fluxes for Group C soils are plotted in Figure 3.14. Treatment 6 with the LFH coversoil 

had the highest estimated diffusive fluxes of all treatments in the LFH layer at 0.3 m BGS and 

in the LOS between 1-3 m BGS due to steep concentration gradients and high diffusion 

coefficient estimation. Treatment 5A had high diffusive fluxes in the upper subsoil (0.3-0.5 m), 

but rates were restricted deeper into LOS. Diffusive fluxes for Treatment 7 were restricted in 

the upper LOS as a result of low O2 concentration gradients and a low estimation of the 

diffusion coefficient. 
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Figure 3.14 Range of O2 pore-gas concentrations measured with soil vapour probes and diffusive 
fluxes calculated using the concentration gradient method during the 2014 and 2015 field seasons for 
Group C soils. Horizontal black lines signify the interface between the soil covers and LOS. 

Diffusive fluxes for Group D soils are presented in Figure 3.15. All SVP measurements for 

Group D were within the same one hectare location. Location 8A and 8B had higher fluxes in 

the upper 0.3-0.5 m peat layer, but rates decreased with depth into the subsoil and LOS. Rates 

at Location 8C increased in the LOS at 3 m BGS due to steep concentration gradients. 
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Figure 3.15 Range of O2 pore-gas concentrations measured with soil vapour probes and diffusive 
fluxes calculated using the concentration gradient method during the 2014 and 2015 field seasons for 
Group D soils. Horizontal black lines signify the interface between the soil covers and LOS. 

During the 2014 field season from May to November, high pore-gas CH4 concentrations were 

measured in the SVP on Treatment 1B (0.3 m peat cover placed over LOS) relative to other 

locations at the ASCS, where CH4 ranged from 0-1.7% (data not reported). Mean CH4 

concentrations on Treatment 1B of 24.8% and 18.8% were measured at 2 m and 3 m BGS, 

respectively, with individual measurements surpassing 35% at the beginning of the 2014 field 

season in May and decreasing to less than 10% at the end of the field season in November. 

During the same period, mean concentrations of O2 were 8% in the LOS, with completely 

anaerobic (0%) concentrations detected on a number of sampling events. Note CH4 

concentration measurements on Treatment 1B were limited to the 2014 field season due to 

SVPs being found to be clogged at the beginning of the 2015 field season. 
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3.4.3 Relative importance of advection and diffusion 

Figure 3.16 displays soil-atmosphere differential pressures measured during the 2015 field 

season. Differential pressures varied by location and with depth.  In reality, the variable 

positive and negative pressure gradients with depth exhibited in most of the soil profiles 

actually represents a relatively constant pressure at depth with higher and lower barometric 

fluctuations. Thus for Treatments 1A and 8C, the lack of pressure gradient suggests highly 

air-permeable soils which respond quickly to fluctuations in barometric pressure. The general 

trend was that differential pressures increased in LOS with depth compared to the soil cover 

materials.  
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Figure 3.16 Differential pressure measurements during the 2015 field season at the ASCS.  

Soil-atmosphere advective O2 and CO2 fluxes across the soil covers resulting from pressure-

gradient driven advection were calculated using Darcy’s Law based on differential pressures, 

in-situ air permeability, gas density, and gas concentrations at the base of the soil cover. Soil-

atmosphere diffusive O2 and CO2 fluxes across the entire soil cover thickness resulting from 

diffusion were calculated with the geometric mean of the six different diffusion coefficient 

models (Equations 3.1-3.6). 
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The geometric mean of all diffusive and advective O2 fluxes across the interface between the 

LOS and soil covers for the 2015 field season are presented in Table 3.3 along with the 

geometric standard deviation and the ratio of advective flux to diffusive flux. Treatment 1A (0.3 

m Peat over LOS) and Treatment 2 (0.3 m Peat and 0.7 m subsoil over LOS) had the largest 

ratios of advection to diffusion. These high FA/FD may be misleading, however, since small 

differential pressures in the upper LOS directly below thinner covers can lead to large pressure 

gradients. Generally, advective fluxes decreased and diffusive fluxes increased with cover soil 

thickness. Comparing 1.5 m thick soil covers, FA/FD tended to be lower for Group D soil covers 

with 0.1-0.3 m peat caps, while the lowest FA/FD was for Treatment 6 (0.2 m LFH and 1.3 m 

subsoil), which had the lowest rates of advective fluxes and highest rates of diffusive fluxes. 

Table 3.3 Mass flux of O2 across interface between LOS and soil cover treatments by diffusion and 
advection. 

O2 Fluxes (kg/m2/a) 

Treatment 
Cover 

thickness 
(m) 

FA – 
Advective 

Flux 

 
Std. 
Dev. 

FD – 
Diffusive 

flux 

 
Std. 
Dev. 

Ratio 
FA/FD 

1A 0.3 82 80 0.31 0.46 265 
2 1 122 166 0.50 0.26 244 
4 1.5 41 48 0.32 0.41 128 

5A 1.5 53 112 0.77 0.30 69 
6 1.5 5 7 3.33 0.80 2 

8A 1.5 19 16 0.59 0.45 32 
8B 1.5 14 22 0.60 0.49 23 
8C 1.5 16 12 0.37 0.30 43 

 

Similarly, the geometric mean of all diffusive and advective CO2 fluxes across the interface 

between the LOS and soil covers for the 2015 field season, geometric standard deviation from 

the mean, and the ratio of advection to diffusion are presented in Table 3.4. Treatment 4 (0.3 

m peat and 1.2 m subsoil) and Treatment 5A (0.1 m LFH and 1.4 m subsoil) had the highest 

FA/FD. The lowest FA/FD was for Treatment 6 (0.2 m peat and 1.3 m subsoil), owing to having 

the lowest advective fluxes and highest diffusive fluxes. While the general trend was for 

diffusive fluxes to increase with increasing cover thickness, there was no clear trend for 

advective CO2 fluxes and cover thickness.   
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Table 3.4 Mass efflux of CO2 across interface between LOS and soil cover treatments by diffusion 
and advection. 

CO2 Fluxes (kg/m2/a) 

Treatment 
Cover 

thickness 
(m) 

FA - 
Advection 

 
Std. 
Dev. 

FD - 
Diffusion 

 
Std. 
Dev. 

Ratio 
FA/FD 

1A 0.3 0.9 1.1 0.10 0.16 9 
2 1 1.2 1.6 0.15 0.08 8 
4 1.5 6.1 14.6 0.21 0.30 29 

5A 1.5 29.6 70.8 0.53 0.22 56 
6 1.5 0.4 1.3 2.96 0.81 0.14 

8A 1.5 2.0 4.2 0.50 0.40 4 
8B 1.5 1.9 3.2 0.49 0.42 4 
8C 1.5 1.5 1.2 0.32 0.27 5 

3.5 Discussion of Results 

3.5.1 Flux chambers 

CO2 flux rates from Treatment 8D (0.3 m peat and 1.2 m of subsoil) were lower than Treatment 

5B (0.1 m LFH and 1.4 m subsoil). This may be attributed to the peat layer containing a greater 

saturated pore volume than the LFH to facilitate rapid dissolution of gaseous CO2. The peat 

layer was thicker than the LFH, 0.30 m thick compared to the 0.10 m thick LFH layer, while 

the peat also had a higher total porosity of 78% compared to 42% for the LFH layer.  

Conversely, O2 flux rates through Treatment 8D were greater than through Treatment 5B. This 

is hypothesized to be due to steeper positive pressure gradients (atmospheric pressure > soil 

pressure) driving downwards gas flow from the atmosphere into the subsurface static flux 

chamber headspace during field tests.    

3.5.2 Pore-gas characterization 

Concentrations of pore-gas O2 measured with SVPs installed in the upper 1.5 m of the various 

soil cover materials and LOS were found to be less than 10% O2 on only two occasions, while 

CO2 concentrations within the soil cover materials and LOS in the upper 1.5 m never exceeded 

15%. Extreme increases in CO2 and decreases in O2 didn’t appear until 2 m BGS (in the LOS), 

even in treatments with thinner covers such as Treatment 1A and 1B (0.3 m peat overlying 

LOS). Based on soil gas profiles, it appears that adequate soil-atmosphere gas exchange 

takes place in the upper 1.5 m regardless of whether LOS is present at that depth. Pore-gas 
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O2 and CO2 concentrations in the upper 1.5 m were within the range of values considered safe 

for reclamation vegetation and are not likely to pose a risk of O2 deficiency or CO2 toxicity for 

reclamation vegetation. Notwithstanding potential issues related to the transport and storage 

of moisture and penetrability to plant roots into the LOS, these findings hint at the possibility 

that a soil cover may not be needed to achieve adequate aeration in the upper 1.5 m.  

Pore-gas concentrations in LOS at depths below approximately 1.5 m were frequently less 

than 10% for O2 and greater than 15% for CO2, which may reflect PHC degradation and CH4 

oxidation. It should be noted that PHC degradation and CH4 oxidation may also be occurring 

at depths shallower than 1.5 m when LOS was present, however, sufficient soil-atmosphere 

gas exchange is likely replenishing O2 in the pore space and preventing the buildup of CO2. 

At a nearby undisturbed site with coarse-textured subsoil material, near atmospheric pore-gas 

O2, low CO2, and undetectable CH4 appeared to indicate that soils within undisturbed boreal 

forests are likely to be well-aerated and exhibit negligible methane production or oxidation 

(data not reported). However, the natural site is not entirely like the reclamation study sites. 

The soil texture characteristics of the natural site are similar to the LFH and subsoil 

reclamation soil cover materials, but there is no finer textured and PHC containing material 

present within the depth investigated (4 m) like LOS. Finer textured soils have been 

characterised to have low concentrations of pore-gas O2 (Bakker and Bronswijk 1993), 

however, due to the variable PHC content of the LOS it was not possible to directly compare 

O2 and CO2 pore-gas concentrations in the LOS to literature values.   

The selection of soil cover material and placement thickness also plays an important role in 

soil-atmosphere gas exchange. During the 2014 field season, pore-gas CH4 concentrations 

from 2-3 m BGS on Treatment 1B (0.3 m peat soil cover) averaged between 18.8-24.8% in 

the LOS, with individual measurements surpassing 35%. However, CH4 was mostly removed 

at a depth of 1 m (0.70 m below the peat soil cover), which indicates CH4 was produced deeper 

in the LOS (under near-anaerobic concentrations) and oxidized within the upper portion of the 

LOS (where O2 concentrations are near-atmospheric). High CH4 concentrations in the 0.3 m 
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peat soil cover treatment may be attributed to moisture in the peat layer remaining frozen until 

late-June (as inferred from sub-0°C temperatures measured by temperature probes installed 

at 0.25 m BGS), which restricts soil-atmosphere gas exchange by acting as a barrier to gas 

movement. It appears that the CH4 that had accumulated beneath the frozen peat layer and 

then was slowly released during the growing season after the peat layer thawed. This would 

explain the higher CH4 concentrations in June and the gradual decrease to the end of October.  

3.5.3 Diffusion and advection 

Significant differences in diffusive fluxes were observed in the various soil cover treatments 

and LOS due to variations in soil-atmosphere concentration gradients and diffusion coefficient 

estimations. Spatial variations in O2 and CO2 soil-atmosphere concentration gradients may be 

indicative of localized zones of microbial degradation, methane oxidation and/or respiration. 

The range of diffusion coefficients estimated for each soil cover material and LOS varied as a 

result of differences in soil texture, moisture, and temperature. Advective fluxes varied 

significantly in the various soil cover treatments and LOS. These differences can be attributed 

to differential pressures and air permeability varying spatially by orders of magnitude.  

The study found that advection dominated over diffusion in all treatments for O2 and CO2 

except for Treatment 6 (0.2 m LFH and 1.3 m Subsoil), which had the lowest FA/FD for O2 and 

was diffusion dominated for CO2. Note that Treatment 6 had the lowest FA/FD for O2 and CO2 

due to having the highest diffusive fluxes of all treatments (see Figure 3.14). These findings 

suggest that this location may have been either a localized zone of microbial degradation and 

methane oxidation, and/or the LOS was coarser-grained and quickly responded to barometric 

pressure fluctuations. However, it is more likely that Treatment 6 was coarser-grained since 

the LOS at this location had the lowest average bulk density based on a characterization of 

the bulk density of LOS at the ASCS in 2010 by AITF (2013) with the CPN® MC-1 DR-P 

Portaprobe Moisture/Density Gauge (CPN Inc., Concord, California, USA).  The dominance 

of advective fluxes over diffusive fluxes for the other treatments may be partially explained by 

the cover soils being relatively coarse-textured and the ASCS lacking shelter from wind gusts 
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(which induce near-surface pressure changes). Ratios of O2 advection to diffusion were 

highest in Group A soils with <1.5 m cover thickness (Treatment 1A and 1B – 0.3 m and 

Treatment 2 – 1.0 m). Soil gas profiles indicate that thinner soil covers had lower soil-

atmosphere concentration gradients than thicker cover soils. These low concentration 

gradients, in combination with relatively higher air permeability values, resulted in 0.3 m soil 

covers being advection-dominated to a higher degree than the thicker soil covers. When 

comparing O2 advective and diffusive fluxes in 1.5 m soil covers, Group D soils with 0.1-0.3 m 

peat or 1.4-1.2 m multi-layered subsoils tended to have low advective fluxes and FA/FD, which 

is possibly explained by the peat layer having a large air-filled pore volume capable of quickly 

responding to variations in barometric pressures.  

3.5.4 Comparison of direct and indirect flux measurements  

SFC measurements on Treatment 5B and SVP measurements on Treatment 5A were located 

roughly 300 m apart at different cells at the ASCS. The Treatment 8 SFC and the Treatments 

8A, 8B, and 8C SVPs, however, were within the same one hectare cell. Comparison of O2 and 

CO2 flux rates determined from direct measurements (SFC) and indirect measurements (SVP) 

for Group C soils (Treatments 5A and 5B) and Group D soils (Treatments 8A, 8B, 8C, and 8D) 

are presented in Table 3.5.  

Table 3.5 O2 and CO2 fluxes determined by direct (static flux chamber) and indirect (soil vapour 
probes) methods for Group D soils (0.3 m peat and 1.2 m multi-layered subsoil) 

Group Treatment1 Sampling 
technique2 

O2 fluxes 
(kg/m2/a) 

CO2 fluxes 
(kg/m2/a) 

C 
5A SVP 6.0 0.93 
5B SFC  7.5 1.4 

D 

8A SVP 19.6 2.4 
8B SVP 14.6 2.3 
8C SVP 16.4 1.8 
8D SFC 18.0 2.3 

1 Letters indicate replicate cells of treatments. 
2 SVP = soil vapour probe; SFC = static flux chamber. 

For Group C soils located on different cells at the ASCS, gas fluxes of O2 were 20% different 

and gas fluxes of CO2 were 34% different between direct SFC measurements and indirect 

calculations made with pressure and concentration measurements in the SVP. For Group D 
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soils located within the same 1 hectare cell, O2 fluxes were more comparable with 9-19% 

differences and CO2 fluxes were also more comparable with 0-22% differences between direct 

and indirect methods. Both the direct and indirect methods worked well to quantify gas fluxes 

through soil covers and results from the two methodologies were reasonably close when 

taking into account spatiotemporal differences.    

3.6 Conclusions 

This objective of this paper was to develop an understanding of pore-gas dynamics in LOS 

and reclamation soil covers by i) characterising pore-gasses at various depths in the soil 

covers and LOS; ii) directly measuring O2 ingress and CO2 efflux using static flux chambers; 

iii) indirectly measuring O2 fluxes by diffusion and advection; and iv) quantifying the importance 

of diffusion and advection to O2 and CO2 gas transport. 

Soil-atmosphere gas exchange occurred at a sufficient rate to a depth of 1.5 m into the soil 

covers and uppermost LOS horizon such that pore-gas concentrations of O2 and CO2 were 

typically below the threshold that poses a risk to the growth and survivability of reclamation 

vegetation (>15% CO2 and <10% O2). Deeper into the LOS landform, however, pore-gas 

concentrations of O2 and CO2 frequently surpassed the threshold considered to pose a risk to 

plant growth and survivability. Pore-gas CH4 within the LOS landform was typically detected 

at concentrations <1.7% other than one location where CH4 concentrations peaked at >35%.  

The novel subsurface flux chamber that was custom designed and fabricated for this study 

successfully enabled the direct measurement of O2 ingress through multi-layered soil covers 

and CO2 efflux from the LOS landform into the soil covers. Fluxes of O2 and CO2 directly 

measured with the subsurface chamber were comparable to fluxes of O2 and CO2 indirectly 

measured from concentration-gradient driven diffusion and pressure-gradient driven 

advection. 
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Transport of O2 and CO2 across the cover soils was dominated by advection for all treatments 

except for one location where the uppermost LOS horizon had been placed to a lower bulk 

density (1.45 Mg/m3) and responded quickly to variations in barometric pressure.   
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4.0  SOIL COLUMN EXPERIMENTS TO QUANTIFY 
 METHANE OXIDATION  RATES IN OVERBURDEN 
 AND RECLAMATION SOIL COVERS 

Preface 

Engineered soil cover systems are capable of passively removing gaseous methane with 

microbial reduction and oxidation reactions. Methane oxidation rates were quantified for peat, 

LFH, subsoil, and lean oil sand using batch soil column experiments. Loading rates of methane 

to the soil column were based on CO2 fluxes that were characterised in a preliminary study to 

range from 0.1-7.1 kg CH4/m2/a; higher loading rates up to 30 kg/m2/a were also tested in the 

column experiments. Gas concentrations were measured with continuous, non-dispersive 

infrared gas analysers capable of measuring 0-30% CO2 and CH4 and a paramagnetic gas 

analyser capable of measuring 0-100% O2. Variations in temperature were simulated by 

placing the soil columns in climate chambers at 4°C, 22°C, and >31°C. Reduced soil moisture 

was simulated by discontinuing the daily application of water to the multi-layered soil column 

for 45 days. Increased bulk density was simulated by running experiments with a column 

compacted to a dry bulk density of 1500 kg/m3 and then de-constructing the column and re-

packing to 1800 kg/m3. This research is important to predict whether CH4 produced by 

methanogenic biodegradation of petroleum hydrocarbon substrates will be passively 

consumed in the engineered soil cover systems overlying the lean oil sands and/ or the 

uppermost horizon of lean oil sands. 

Reference: Scale KO and Fleming IR. 2017. Soil Column Experiments to Quantify 
Methane Oxidation Rates in Overburden and Reclamation Soil Covers. Submitted to 
International Journal of Mining, Reclamation and Environment, March 2017. 

Abstract 
Methane oxidation rates were quantified using soil column experiments for three 

reclamation soil cover materials in single and multi-layer configurations and for 

lean oil sands salvaged from an oil sands mine in Alberta, Canada. Methane 

fluxes from the lean oil sands were characterized in a previous study to range 

between 0.1-7.1 kg CH4/m2/a; however, lower and higher CH4 loading rates were 

also tested in the column experiments to account for slow leaks and fugitive 
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emissions. The effects of variations in temperature, soil moisture, and bulk 

density were simulated. Oxidation rates were significantly higher for all soil 

materials and lean oil sands at temperatures >31°C and were higher at 22°C 

than 4°C. Daily application of water for the multi-layered soil column was 

discontinued for 45 days and oxidation rates decreased from 80% efficiency to 

38%. Dry bulk density for the sandy subsoil material was increased from 1500 to 

1800 kg/m3 and oxidation rates decreased by more than 35%. The transient soil 

column batch experiment method used in this study enabled oxidation rates to 

be quantified for expected CH4 loads (0.5-1 kg/m2/a) and for expected 

temperatures (≤22°C). At CH4 loads >10 kg/m2/a and at temperatures >31°C, 

however, the experiments were limited by the finite volume of O2 in the columns. 

4.1 Introduction 

Reclaiming areas disturbed by open-pit mining to an “equivalent land capability” is a significant 

priority and challenge for the oilsands industry in Alberta, Canada. Large above-grade 

overburden landforms are amassed during the mine operation when LOS is trans-located to 

dedicated disposal areas in order to access underlying oil sand deposits. The overburden 

substrate consists of low-concentration “lean” oil sands (LOS) with a petroleum hydrocarbon 

(PHC) concentration up to the economical ore grade concentration of 7%.The placement of 

single and multi-layered soil cover systems above the LOS landform is an effective strategy 

for upland reclamation whilst taking into consideration soil material type, horizon configuration, 

and capping thickness to facilitate the growth of native boreal plant and tree species. The 

Aurora soil capping study (ASCS) is a field-scale soil cover testing program at the Syncrude 

Canada Ltd. Aurora North mine (57°20’ N, -111°32’, Figure 4.1 below) that was constructed 

to evaluate the efficacy of various textural materials and capping thicknesses placed in single 

and multi-layer configurations.  
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Figure 4.1 Map showing the location of Alberta in Canada (left). Map of Alberta showing the location 
of Syncrude's Aurora North mine (right) 

The primary function of the soil covers is to provide moisture and nutrients to reclamation 

vegetation; however, since the soil covers are biologically active, they consume methane gas 

(CH4) produced during the methanogenic degradation of the PHC component of LOS (under 

methanogenic conditions) in biochemical redox reactions (CH4 oxidation). Soil covers are 

proven to be an effective and economically viable strategy for reducing CH4 emissions from 

landfills (Huber and Lechner 1999), however, the consumption of plant available oxygen (O2) 

in the aerobic zone of the soil covers could be problematic for the growth and metabolism of 

newly introduced reclamation vegetation (Bartholomeus et al 2008).  

The laboratory study presented herein is intended to supplement the multi-disciplinary 

research conducted at the ASCS (see Barber et al 2015) by quantifying CH4 oxidation rates 

in soil cover materials and LOS using transient “batch” soil column experiments. The materials 

characterised were locally-salvaged soils (peat, subsoil, LFH) and LOS. The soils and LOS 

were tested in single and multi-layered configurations over the expected range of CH4 fluxes 
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that were characterised in preliminary gas sampling carried out by Korbas (2014). Effects of 

variations in temperature, moisture content, and bulk density were simulated.  

4.2 Background 

4.3 Preliminary pore-gas and gas flux characterization at the ASCS 

The LOS at the ASCS was characterised for CO2 fluxes and CH4 pore-gas concentrations by 

Korbas (2014) prior to placement of soil covers. The methodology and results of the site 

characterization are described in detail in Korbas (2014) and Scale et al (2016). Pore-gas O2 

concentrations were found to decrease from 15% in the upper 2 m to near-anaerobic in the 

lower 4-5 m below ground surface (BGS). Key findings from gas sampling events conducted 

over a 2 year period were that soil-atmosphere CO2 fluxes ranged from 0.1-7.1 kg/m2/a (Scale 

et al 2016).  

4.4 Theory 

4.4.1 Factors affecting CH4 oxidation 

The relationship between soil moisture and CH4 oxidation has been researched extensively 

for landfill cover soils and has been found to strongly correlate to CH4 oxidation (Boeckx et al 

1996; Czepiel et al 1996; Whalen and Reeburgh 1996, Bogner 1997; Christophersen 2001; 

Stein and Hettiaratchi 2001; Scheutz and Kjeldsen 2004; Zeiss 2005; Einola et al 2007; Gebert 

et al 2011a). The effects of soil moisture on CH4 oxidation arise from restrictions in O2 and 

CH4 diffusivity at high moisture contents (Dorr et al 1993; Boeckx et al 1996; Moldrup 1996; 

Borjesson and Svensson 1997; De Visscher and Van Cleemput 2003; Aachib et al 2004; 

Molins et al 2008; Gebert et al 2011) and physiological stresses to microbial populations at 

low moisture contents (Whalen et al 1990; Boeckx et al 1996; King 1997; Borjesson 2004). 

The relationship between soil moisture and CH4 oxidation therefore tends to be non-linear and 

parabolic, with oxidation rates being reduced at high and low moisture contents (Eionola et al 

2007). Optimal ranges of gravimetric moisture contents to facilitate CH4 oxidation depend on 

soil texture, but typically ranges from 11-28%, with upper and lower limits of ≤ 3-7% and ≥ 30-

41% (Whalen et al 1990; Czepiel 1996; Boeckx 1996; Stein and Hettiaratchi 2001; Einola 

2007).   
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The relationship between soil temperature and CH4 oxidation has also been well-documented 

for landfill cover soils (Whalen 1991; Czepiel 1996; Humer and Lechner 1999; Christophersen 

2001; Borjesson 2004; Einola 2007; Hettiaratchi 2011). It has been noted, however, that soil 

temperature is less influential to CH4 oxidation rates than soil moisture content (King and 

Adamsen 1992; Adamsen and King 1993; Boeckx 1996). Similar to soil moisture, temperature 

affects CH4 oxidation by altering both the diffusivity of CH4 and O2 and the physiology of 

microbial populations (De Visscher and Van Cleemput 2003; Borjesson et al 2004; Scheutz 

and Kjeldsen 2004; Mohanty et al 2007). Optimal soil temperatures to facilitate CH4 oxidation 

typically range from approximately 20-38°C, with upper and lower limits of ≤ 5°C and ≥ 40°C 

(Whalen et al 1990; King and Adamsen 1992; Humer and Lechner 1999; Gebert et al 2003; 

Borjesson et al 2004; Scheutz and Kjeldsen 2004; Einola et al 2007; Mohanty et al 2007).   

Bulk density is related to total soil porosity, which is related to air-filled porosity by soil moisture 

(Ball et al 1997; Hilel 2003). As previously stated, CH4 oxidation rates are influenced by soil 

moisture and temperature due to restrictions in O2 and CH4 diffusivity (Dorr et al 1993; Boeckx 

et al 1996; Moldrup 1996; Borjesson and Svensson 1997; De Visscher and Van Cleemput 

2003; Aachib et al 2004; Molins et al 2008; Gebert et al 2011a). Increasing bulk density, which 

may result from compaction during placement of a soil cover, can therefore lead to reductions 

in air-filled porosity and connectivity of the pores depending on the soil texture (Ball et al 1997; 

Gebert et al 2011a; Rachor et al 2011). 

4.4.2 Guidelines for methane oxidation capacity of landfill soil covers 

Estimated CH4 oxidation rates for landfill soil covers vary significantly based on the texture of 

the soil as well as the field or laboratory testing methodology and (see Chanton 2009). Prior 

to 2013, CH4 oxidation rates for landfill soil covers were mandated to be 10% of the CH4 load 

by the US EPA greenhouse gas (GHG) reporting program (USEPA 1999). This 10% value 

was later revised to 10%, 25%, or 35% depending upon the field-specific conditions at the 

landfill (USEPA 2013). The problem with applying a fixed oxidation percentage is the 
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assumption that oxidation rates are a function of CH4 loading and the capacity of the soil cover 

system to oxidize CH4 scales indefinitely with CH4 loads (Gebert et al 2011c).  

An alternative criterion to assess the effectiveness of landfill cover soils is to compare 

oxidation rates to Austrian and German landfill guidelines, which recommend soil covers be 

capable of oxidizing CH4 at a minimum rate of 3.1 kg/m2/a (Stegmann 2006; Ritzkowski and 

Stegmann 2010; Gebert et al 2011c).  

4.5 Materials & Methodology 

4.5.1 Soil moisture probe 

The Sentek® Diviner 2000™ capacitance moisture probe was used to measure water content 

profiles in soil columns over the duration of the soil column experiments (SenTek 1999). The 

Diviner 2000™ probe uses frequency domain reflectometry to determine the volumetric water 

content (VWC) within a zone projected radially into the soil approximately 0.01 m. Water 

content profiles were regularly measured in 0.05-0.1 m increments. The probe was calibrated 

for each soil prior to conducting the column experiments; the probe was re-calibrated for each 

soil after completing the column experiments. 

4.5.2 Total alkalinity measurements 

Total alkalinity measurements on samples of soil column leachate were conducted using the 

Mettler-Toledo® T50™ auto-titrator. Calibration of the pH meter was conducted on a weekly 

basis with laboratory-grade pH buffer solutions with pH values of 4, 7, and 10.  

4.5.3 Design and construction of soil columns 

Soil column experiments were conducted using custom-fabricated, stackable 1 m tall by 

0.3048 m diameter Teflon-lined steel columns. Clean, washed gravel with a nominal particle 

size of 9 mm was placed to 0.1 m at the base of each column to serve as a drainage layer. 

The gravel was autoclaved using the Univclav® MJ-54™ to eliminate external microbial 

communities (Uniequip 2015). A 0.053 mm aperture size stainless steel mesh was placed 

between the gravel and soil materials to segregate soil materials while facilitating free 

drainage of water.  
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Soils were placed moist in the columns in thirty lifts of approximately 0.02 m with the goal to 

create a homogenous soil matrix and limit the formation of preferential flow paths. The Diviner 

2000™ access tube was centred on the metal screen separating the gravel drainage layer 

and soils. Each lift was compacted using a custom-fabricated ram with curved outer and inner 

edges to facilitate compacting the circular outer perimeters of the column and Diviner 2000™ 

access tube. The upper 2-3 mm of each lift was manually scarified to promote hydraulic 

connectivity between layers (Plummer et al 2004).  

Compaction was achieved to dry bulk density representative of field conditions as measured 

in a 2013 ASCS site survey that used a combination of CPN® MC-1 DR-P Portaprobe 

Moisture/Density Gauge and bulk density collar sampling techniques (AITF 2013). The dry 

bulk density levels achieved for each column are listed below: 

• Peat = 700 kg/m3; LFH = 1300 kg/m3; LOS = 1500 kg/m3; subsoil = 1500 kg/m3 

(initially); subsoil = 1800 kg/m3 (re-compacted). 

The multi-layered soil column (MLSC) setup is illustrated in Figure 4.2. Columns were sealed 

at the top to prevent intrusion of atmospheric gasses. The flowrate of CH4 gas delivered to the 

column was measured using an Agilent ADM1000® placed in-line with gas flow. Flow rates 

were routinely verified by measuring the volume of exhaust gas collected over a known period 

of time at the top of the column using a Tedlar bag. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Illustration of the soil column setup used in the laboratory soil column experiments. (E.g. multi-layered column).  
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4.5.4 Soil column sampling procedure 

The sampling procedure involved pumping 99.9% pure CH4 (supplied by Praxair®) at known 

inlet rates into soil column(s) for periods of 22-48 hour whilst conducting initial and final mass 

balances on gasses in the soil column, headspace, and exhaust. Initial pore-gas 

concentrations, gas pressures, and temperatures were measured at 3-4 ports along the side 

of the column. Gas-tight Tedlar bags ranging in sizes of 0.001-0.01 m3 (ESS 2015) were 

connected to a sampling port in the chamber headspace to mitigate buildup of pressures inside 

the headspace and enable the collection and monitoring of exhaust gasses.   

At the end of each experiment, pore-gas concentrations in the column headspace and exhaust 

gasses were measured using the Columbus Instruments® Micro-Oxymax™ and Model 

180C™ continuous O2, CO2, and CH4 gas analysers (Columbus Instruments, Columbus, Ohio, 

USA). The pore-volume of gasses in the columns were approximated using air-filled porosity 

determined from regularly measured VWC profiles. A complete mass balance of gasses in the 

column before and after the experiment was conducted for each batch experiment. The 

stoichiometry of O2 & CH4 consumed and CO2 produced was thusly determined for each 

experiment. 

4.5.5 Column water addition and collection 

Water dosage rates were calculated based on precipitation rates at the ASCS from May-

November in 2014 and 2015 measured at an onsite MET station. The average rate of 

precipitation from May-November was 1.77 mm/day for 2014 and 1.19 mm/day for 2015.  

Dosage rates ranging from 45-90 mm/day were therefore applied to simulate the mean 

precipitation rate of 1.48 mm/day, whilst taking into account storage and evaporation in the 

overlying soil covers.  

Pore-water samples were regularly collected from the bottom of the soil columns for 

measurement of pH and total alkalinity.  
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4.5.6 Loss on ignition 

Loss on ignition (LOI) tests were conducted in a Thermo Scientific® BF51842PBC-1 Lindberg 

Blue M® Box Furnace to estimate the percentage of organic matter in the soil sample (Ball 

1964).  Organic matter starts to ignite when heated to approximately 200°C and is completely 

depleted at 550°C, the standard temperature at which LOI was correlated to the percentage 

of organic carbon determined using chromatography (Dean 1974).  

4.6 Results 

4.6.1 Percentage organic matter 

LOI tests were conducted prior to constructing the soil columns in order to estimate the 

percentage of organic matter in the LFH, LOS, peat, and subsoil. Mean organic matter 

contents based on initial and final LOI testing were highest in peat (9.3%), followed by LOS 

(3.1%), LFH (1.6%), and lowest in subsoil (0.6%).  

4.6.2 Diviner 2000™ VWC profiles 

Mean VWC profiles measured with the Diviner 2000™ capacitance probe over the duration of 

the soil column experiments are presented in Figure 4.3. Minor variations in VWC were 

present in LFH, subsoil, and peat, which may indicate that the materials were not completely 

uniform. For the MLSC, peat retained more water than the subsoil or LOS. It appears that 

capillarity break effects occurred at the material interfaces, whilst a layering effect appears to 

have transpired in the middle of the subsoil at the height where the two columns were bolted 

together. The VWC profiles measured with the Diviner 2000™ appear to be lower on average 

than would be expected based on predictions from numerical solutions based on soil-water 

characteristic curves (Scale and Fleming (2016)). This discrepancy may be due to inadequate 

contact of soil particles with the Diviner 2000™ access tube or possibly due to density effects 

arising during packing the soil column or settling of particles over time.  
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Figure 4.3 Mean volumetric water contents and standard deviations from the mean as measured in 
the individual soil columns and the multi-layered soil column over the course of the soil column 
experiments using the SenTek® Diviner 2000™ capacitance probe  

4.6.3 Oxidation rates 

Experimentally determined oxidation rates and efficiencies for the columns packed with 

individual soil cover materials (LFH, LOS, peat, and subsoil) and the MLSC column are 

presented in Table 4.1. Oxidation rates for the columns packed with individual soil cover 

materials (LFH, LOS, peat, and subsoil) are presented in Figure 4.4 below. Columns packed 

with LFH, LOS, and peat oxidized nearly 100% of the CH4 added up to loading rates of 5 

kg/m2/a when placed in the climate chamber at temperatures >31°C. Columns at 22°C 

oxidized roughly 25-50% of the CH4 added up to loading rates of 10 kg/m2/a. At 4°C, however, 
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the soil columns were only capable of oxidizing 5-10% of the CH4 added, which is equal to or 

less than the US EPA’s minimum 10% CH4 removal efficiency guidelines for a landfill cover 

soil (USEPA 2009). The subsoil column packed at a dry density of 1500 kg/m3 at 22°C was 

deconstructed and re-compacted to a dry density of 1800 kg/m3. At this higher dry density, 

however, oxidation rates were not able to be measured across CH4 loads up to 30 kg/m2/a.  

All soil cover materials and LOS surpassed the 3.1 kg/m2/a oxidation rate recommended for 

German and Austrian landfill cover soils at temperatures >22°C (Stegmann 2006); however, 

none of the soil cover materials or LOS at 4°C were capable of oxidizing at 3.1 kg/m2/a.  

Table 4.1 Range of CH4 removal rates and oxidation efficiencies for the MLSC, LFH, subsoil, peat, 
and LOS columns as determined with batch soil column experiments conducted at climate chamber 
temperatures of 4°C, 22°C, and >31°C. CH4 removal rates and oxidation efficiencies for the subsoil 
column at a bulk density of 1800 kg/m3 are not included. 

   All tests 4°C 22°C 31°C 
   Min Max Min Max Min Max Min Max 

MLSC CH4 in (kg/m2/a) 0.3 14.1 N/A N/A 0.3 14.1 N/A N/A 
  CH4 rem. (kg/m2/a) 0.3 7.3 N/A N/A 0.3 7.3 N/A N/A 
  Efficiency (%) 38% 98% N/A N/A 38% 98% N/A N/A 

LFH CH4 in (kg/m2/a) 0.1 22.8 0.2 13.8 0.1 3.8 0.2 3.4 
  CH4 rem. (kg/m2/a) 0.0 3.8 0.0 1.1 0.0 33.8 0.2 3.2 
  Efficiency (%) 4% 100% 4% 14% 19% 54% 95% 100% 
SUB CH4 in (kg/m2/a) 0.1 33.8 0.1 23.7 0.2 4.6 N/A N/A 

  CH4 rem. (kg/m2/a) 0.0 4.6 0.0 2.0 0.1 4.6 N/A N/A 
  Efficiency (%) 5% 65% 6% 17% 14% 65% N/A N/A 
PEAT CH4 in (kg/m2/a) 0.1 38.9 0.1 16.9 0.1 38.9 0.1 15.8 
  CH4 rem. (kg/m2/a) 0.0 9.1 0.0 1.1 0.1 6.3 0.1 9.1 
  Efficiency (%) 4% 100% 4% 12% 15% 51% 59% 100% 
LOS CH4 in (kg/m2/a) 0.1 20.3 0.1 13.0 0.2 20.3 0.1 5.6 

  CH4 rem. (kg/m2/a) 0.0 4.6 0.0 1.3 0.1 4.3 0.1 4.6 
  Efficiency (%) 5% 99% 5% 12% 19% 54% 84% 99% 

1 N/A = not applicable  



 

 
 

 

 

Figure 4.4 CH4 removal rates for LFH, LOS, peat, and subsoil columns  at climate chamber temperatures of 4°C, 22°C, and >31°C.  
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Experimentally determined oxidation rates for the MLSC column are presented in Figure 4.5. 

Tests were only conducted at 22°C due to space limitations in the temperature-controlled 

climate chambers. Oxidation rates surpassed 3.1 kg/m2/a whilst regular column watering was 

conducted. After watering was discontinued, however, oxidation rates decreased over time to 

less than 3.1 kg/m2/a (Stegmann 2006). After watering had been discontinued for 45 days, 

oxidation rates decreased from 80% efficiency to 38% efficiency at CH4 loads of 6 kg/m2/a. 

 

Figure 4.5 CH4 removal rates for the multi-layered soil cover as determined with batch soil column 
experiments.  

4.6.4 Respiration rates 

Rates of microbial respiration were measured for the soil columns by using the same sampling 

procedure as the CH4 oxidation experiments without adding CH4 to the columns. Rates of CO2 

production resulting from respiration are presented in Table 4.2. The MLSC column had the 

highest respiration rates of any column at 22°C. For the individual soil materials, respiration 

rates were highest for peat, followed by LOS, and lastly LFH for the columns tested at 

temperatures of 4°C and >31°C. Rates of CO2 production in the MLSC column were reduced 

by up to 90% after watering had been discontinued for 12 days. 
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Table 4.2 CO2 production rates measured during soil column respiration experiments  

CO2 production rates [kg/a] 
Column 4°C 22°C >31°C 

MLSC -- • 0.29 - 0.48 
• 0.023 at low VWC 

-- 

LFH 0.0092 0.17 0.11 
LOS 0.012 0.12 0.16 
Peat 0.043 0.12 0.28 

Subsoil -- 0.14 -- 
 

4.6.5 Leachate pH and total alkalinity  

The range of pH values and total alkalinity for column leachate are compiled and presented in 

Table 4.3. Generally, leachate collected from the LOS column had the lowest pH, whilst having 

highest alkalinity levels. Leachate from subsoil, meanwhile, had the highest pH and lowest 

alkalinity levels. It should be noted that only two samples of subsoil leachate were able to be 

collected during the column experiments. Leachate collected from the MLSC column, LFH, 

and peat all had similar pH and total alkalinity levels when accounting for variations between 

tests. 

Table 4.3 Range of pH values and total alkalinity measured on samples of column leachate with the 
Mettler-Toledo® T-50™ 

  
 

Leachate pH 
Total alkalinity  
[mg/L CaCO3] 

Column 
#  

Tests Max Min Mean 
Std. 
Dev Max Min Mean 

Std. 
Dev 

MLSC 5 7.7 7.0 7.4 0.25 385 300 334 32 
LFH 13 8.4 6.7 7.3 0.52 445 198 317 96 
LOS 17 8.0 6.8 7.2 0.34 493 305 414 59 
Peat 11 8.0 6.7 7.4 0.38 464 177 289 84 

Subsoil 2 7.8 7.6 7.7 0.10 295 285 290 5 
 

The mass balance for missing CO2 in the CH4 oxidation experiments was evaluated using the 

mass of CO2 dissolved in the soil column pore-water calculated based on total alkalinity 

measurements and calculated based on Henry’s law with CO2 partial pressures. For two 

particular experiments, the mass balance for CO2 was closed in this manner as discussed in 

the following section and annotated on Figure 4.6.  
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4.6.6 Stoichiometry 

Rates of O2 consumption and CO2 production calculated as a function of CH4 removal rate are 

plotted in Figure 4.6. Rates of O2 consumption generally followed the 2:1 line, however, the 

trend was for rates to decrease below 2:1 at higher CH4 loads.  

There is significantly more scatter in rates of CO2 production compared to O2 consumption. 

CO2 production rates tended to be higher at relatively lower CH4 removal rates and lower at 

relatively higher CH4 removal rates. For two particular tests (carried out at CH4 loadings of 8 

and 9.5 kg/m2/a), the mass of CO2 partitioned to pore-water (including water removed from 

the bottom of the column) was calculated based on total alkalinity measurements and Henry’s 

law with CO2 partial pressure as measured.  Figure 6 shows that these approaches 

(particularly Henry’s Law) account for much of the missing mass of CO2, thus indicating a 

reasonable closure of mass balance up to the stoichiometric ratio for CH4 oxidation of 1 mole 

CO2 produced per 1 mole CH4 consumed. 
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Figure 4.6 Rates of O2 consumption and CO2 production in the soil column experiments as a function 
of the rate of CH4 removal. 

Microbial CH4 oxidation and microbial respiration are simultaneous processes contributing to 

the production of CO2. The contribution of respiration decreases significantly with increasing 

rates of CH4 oxidation (Gebert 2011b). Therefore, observations that O2 consumption and CO2 

production were higher at lower rates of CH4 oxidation are likely attributed to additional 

consumption of O2 and production of CO2 by microbial respiration. 

4.6.7 Statistics  

Single-factor ANOVA was conducted to compare oxidation rates at 4°C, 22°C, and 31°C for 

the LFH, LOS, and peat columns. There were significant differences in oxidation rates for all 
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columns at the different temperatures (p < 0.01). Post hoc T-tests with the Bonferonni 

correction were used to compare oxidation rates at the various temperatures in pairs (Dunn 

1961). Oxidation rates for all columns were statistically higher at 31°C than at 22°C; oxidation 

rates at 22°C were statistically higher than at 4°C.  

ANOVA was also conducted to compare oxidation rates for the subsoil column at 4°C and 22

°C (dry density of 1500 kg/m3) and oxidation rates at 22°C (dry density of 1800 kg/m3). There 

were significant differences for all three temperature and bulk density configurations. Based 

on post-hoc T-tests with the Bonferonni correction applied, oxidation rates were statistically 

higher at 22°C with a dry density of 1500 kg/m3 than at 22°C with a dry density of 1800 kg/m3. 

Furthermore, oxidation rates were statistically higher at 4°C with a dry density of 1500 kg/m3 

than at 22°C with a dry density of 1800 kg/m3. 

Oxidation rates at 4°C for LFH and LOS were not statistically different (p > 0.05), however, 

oxidation rates for the other columns compared in pairs were statistically different (p < 0.05). 

Subsoil had the highest oxidation rates at 4°C, followed by LOS and LFH, with peat having 

lowest oxidation rates. At 22°C, oxidation rates for peat were statistically higher than LFH (p 

< 0.05), although oxidation rates at 22°C for the other columns compared in pairs were not 

statistically different (p > 0.05). Lastly, oxidation rates at 31°C for peat and LOS were not 

statistically different (p > 0.05), but LFH was statistically lower at 31°C than both peat and LOS 

(p < 0.01). 

4.7 Discussion 

4.7.1 Oxidation rates 

Based on a preliminary characterization of gas fluxes from uncovered LOS at the ASCS, CH4 

fluxes ranged from 0.1-7.1 kg/m2/a, with the majority of fluxes ranging between 0.5-1 kg/m2/a. 

Soil column experiments were conducted at lower and higher CH4 loads in order to account 

for slow leaks and fugitive emissions.  
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Oxidation rates in the MLSC column were significantly higher than any of the columns packed 

with individual soil cover materials. This was anticipated, however, as the soil cover thickness 

for the MLSC was 1 m rather than 0.65 m, which results in a longer pore distance for the CH4 

to travel. Nearly all the CH4 added to the MLSC column was removed over predicted CH4 

loads of 0.5-1 kg/m2/a and roughly 70-80% removed at CH4 loads up to 10 kg/m2/a. The 

maximum thickness that soil covers could be tested in the laboratory was 1 m due to space 

requirements for a headspace, gravel drainage layer, and to facilitate access for the 1.6 m 

Diviner 2000™ capacitance probe. It should be noted that it is possible CH4 removal rates 

may have attained near-100% efficiency over the range of CH4 loads expected in the field had 

the thickness of the MLSC been increased by 0.5 m to re-create the 1.5 m placement thickness 

of many of the soil cover systems at the ASCS.  

The US EPA’s GHG reporting guidelines originally mandated a 10% oxidation efficiency for 

landfill soil covers (USEPA 2009) and later revised this guideline to mandate oxidation 

efficiencies to range from 10-35% (USEPA 2013). The individual soil cover materials tested in 

these column experiments surpassed the US EPA’s highest specified efficiency of 35% at 

temperatures >22°C. Oxidation rates at 4°C, however, were equal to or less than the US EPA’s 

minimum specified 10% CH4 removal efficiency. All soils surpassed the 3.1 kg/m2/a oxidation 

rate considered suitable for use as a landfill cover soil according to Austrian and German 

guidelines at temperatures >22°C, however, none of the soils at 4°C were capable of oxidizing 

at 3.1 kg/m2/a (Stegmann 2006, Ritzkowski and Stegmann 2010, Gebert et al 2011c).  

Based on field gas sampling at the ASCS, soil-atmosphere gas exchange sufficiently aerated 

the upper approximately 1 m of the LOS landform (data not reported). This 1 m thickness of 

LOS can therefore be considered an extension of the soil cover system for the practical 

purposes of removing CH4 released from the LOS.  
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4.7.2 Effects of moisture, temperature and bulk density  

Drought conditions were simulated for the MLSC column by discontinuing the daily application 

of water for 45 days. Reductions in VWC of the soil materials packed in the MLSC over the 

course of the drought simulation are indicated by VWC profiles measured with the Diviner 

2000™ in Figure 4.7.  

 

Figure 4.7 Volumetric water content profiles in the MLSC column measured with the Diviner 2000 
capacitance probe during regular column watering and after watering had been discontinued for 45 
days. 

As the plot of CH4 removal rate vs loading in Figure 4.5 clearly showed, the MLSC column 

maintained effective CH4 oxidation for several weeks after watering was discontinued. For 

experiments conducted during the first 8-17 days after watering was discontinued, oxidation 

rates were reduced from 80-100% efficiency to roughly 50% efficiency. For the experiment 

conducted 45 days after watering was discontinued, however, the oxidation rate had reduced 

to 38% efficiency. The prolonged lack of water to a soil cover is therefore expected to 

eventually compromise oxidation efficiency. 

Climate chamber temperatures were varied from 4-31°C to simulate the temporal variations 

in soil temperature that are representative of field conditions at the ASCS. Soil temperatures 

were measured at the ASCS using Campbell Scientific® CS229™ Heat Dissipation Matric 

Potential Sensors installed at various depths in the soil materials and LOS and are presented 
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in Table 4.4 (Campbell Scientific 2009). Minimum temperatures in all soils and LOS were well 

below 0°C and are thusly omitted from the table.  

Table 4.4 Maximum and mean soil temperatures measured during 2014 and 2015 with Campbell 
Scientific® CS229™ Heat Dissipation Matric Potential sensors installed at various depths in the cover 
soils and LOS at the ASCS 

  Soil temperatures [°C] 
  LFH LOS Peat Subsoil 
Shallow   
(0-0.15m depths) 

Max 42 14 26 29 
Mean 6 4.6 4 6.5 

Deeper  
(0.15-1.4m depths) 

Max N/A 14 24 21 
Mean N/A 4.6 3.5 5.2 

 

Nearly all the CH4 added to the columns was oxidized at temperatures >31°C for the columns 

packed with LFH, LOS, and peat. This high temperature is near the peak of temperatures 

measured at the ASCS for the LFH, peat, and subsoil, however, it is significantly warmer than 

would be expected for covered LOS. While the columns were at 22°C, the effectiveness of the 

soil covers to remove CH4 was reduced to roughly 30-50%. Lastly, CH4 removal rates 

remained low at 4°C, with typically less than 10% of the CH4 added being removed. This lower 

temperature is closer to the expected temperature at all depths for all soils. It should be noted, 

however, that CH4 production rates will likely be reduced at lower temperatures since 

methanogens responsible for CH4 are physiologically impacted by lower temperatures similar 

to methanotrophs (Anderson 1982). Moreover, reductions in CH4 production from the LOS at 

lower temperatures was observed in the laboratory column study presented in Scale et al 

(2016). 

The effect of increased density (i.e. by compaction) was simulated for a single experimental 

setup by removing the column contents (subsoil packed to a dry bulk density of 1500 kg/m3) 

and re-compacting to a dry bulk density of 1800 kg/m3. This value is at the high-end of 

measured densities at the ASCS, whereas 1500 kg/m3 was closer to the mean for most of the 

soils tested (AITF 2013).  The rate of methane removal was lower than could be measured for 
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the column compacted at this density. This suggests that careful planning may be necessary 

to avoid over-compaction during placement of reclamation cover soils.   

4.7.3 Limitations of batch column experiments  

The batch soil column experiments successfully enabled CH4 oxidation rates to be quantified 

for expected CH4 loads (0.5-1 kg/m2/a) and for temperatures <31°C. The limitations of batch 

experiments result from the finite volume of O2 in the columns, which restricts CH4 oxidation 

when the majority of O2 is consumed. For tests with CH4 loads less than 7.1 kg/m2/a, which is 

the highest expected CH4 load, there was typically 12-18% O2 in the column pore spaces 

following the 22-48 hour experiments. At rates higher than 10 kg/m2/a, however, O2 in the pore 

space was often reduced to 5% or less. While oxidation rates were significantly higher at 

temperatures >31°C, O2 in the pore space was typically less than 5% after 22-24 hour for CH4 

loads less than 5 kg/m2/a. For some experiments at temperatures >31°C, all O2 was 

completely consumed in the pore space leading to anaerobic conditions. As a result, oxidation 

rates at temperatures >31°C were underestimated and experiments could not be conducted 

at CH4 loads greater than 5 kg/m2/a. Had sufficient O2 been supplied to the soil columns, 

however, it is possible that oxidation rates at temperatures >31°C would have maintained 90-

100% efficiency to CH4 loads in excess of 10 kg/m2/a.  

4.8 Conclusions 

The objectives of this study were to quantify CH4 oxidation rates in in single and multi-layered 

configurations of soil cover materials and LOS using transient “batch” soil column experiments 

whilst taking into consideration the effects of temperature, moisture content, and bulk density.  

Oxidation was nearly 100% efficient at temperatures >31°C across the range of CH4 loading 

rates studied for the columns packed with LFH, LOS, and peat. Oxidation was roughly 30-

50% efficient at 22°C across the range of CH4 loading rates studied for the columns packed 

with LFH, LOS, and peat. Oxidation was roughly 8-10% efficient at 4°C across the range of 

CH4 loading rates studied for the columns packed with LFH, LOS, and peat.  
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Increasing bulk density from 1500 kg/m3 to 1800 kg/m3 for subsoil at 22°C reduced the 

oxidation rate from roughly 50% efficiency over the range of expected CH4 fluxes to virtually 

0% efficiency. This is likely due to the significant reduction in air-filled porosity, which stifles 

CH4 and O2 diffusivity.  

Moisture also had a significant effect on oxidation rates. However, it took 45 days without 

watering before oxidation rates were reduced from 80% efficiency to 38% efficiency over the 

range of expected CH4 fluxes.  

The multi-layered soil cover had significantly higher oxidation rates at temperatures tested 

compared to the single layer soil covers. This may simply reflect the greater thickness of cover, 

or possibly the effect of varying moisture content or other synergistic effects of the layered soil 

profile.   

Batch soil column batch experiments enabled oxidation rates to be quantified for expected 

CH4 loads (0.5-1 kg/m2/a) and for the expected temperatures ≤ 22°C. However, at CH4 loads 

>10 kg/m2/a and at temperatures >31°C the experiments were limited by the finite volume of 

O2 in the columns.  
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5.0 THE ROLE OF PORE-GAS DYNAMICS IN   
 GUIDING RECLAMATION PRACTICES 

Preface 

Understanding pore-gas dynamics within the soil covers and overburden landform can provide 

a basis to inform mine operators regarding practical issues involving the construction of 

overburden landforms, design of soil cover systems, and management of the reclamation site. 

In order to gain insight into the factors affecting the transportation of pore-gasses, finite 

difference numerical models were developed to simulate CO2 flux from the LOS through multi-

layered soil covers. In order to gain insight into the factors affecting the storage of pore-

gasses, statistical procedures were conducted to examine correlations between pore-gasses 

and on-site conditions, measurable soil parameters, design of the soil covers, and 

characteristics of the overburden landform. The findings herein are used to provide practical 

recommendations to mine operators that can be implemented to facilitate the oxidation of 

methane within the soil covers and overburden whilst precluding the development of 

conditions that pose a risk to the growth and survivability of reclamation vegetation. 

Reference: Scale KO and Fleming IR. 2017. The Role of Pore-gas Dynamics in Guiding 
Reclamation Practices. Submitted to Environmental Geotechnics, April 2017.  

 

Abstract 
The storage and transportation of pore-gasses in overburden and reclamation 

soil covers were evaluated using statistical analyses and finite difference 

numerical modelling in order to guide mine operators regarding practical issues 

involving the construction of overburden landforms, design of soil cover systems, 

and management of reclamation sites. Factors affecting gas transfer as a 

function of depth were soil moisture, soil temperature, gas pressures, and in-situ 

bulk density of the overburden landform. Furthermore, the construction of the 

overburden landform appears to be more impactful to pore-gas dynamics than 

the design of the soil covers. Based on these findings, practicable 

recommendations can be inferred to simultaneously facilitate CH4 oxidation in 

the uppermost horizon of the overburden, while maintaining sufficient pore-gas 

O2 in the plant-rooting zone of the soil covers to facilitate growth and survivability 
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of reclamation vegetation. It is recommended that overburden be placed to <1.5 

Mg/m3 (at a relatively lower void ratio) for soil covers thicker than 1m and placed 

to 1.6-1.8 Mg/m3 (at a relatively higher void ratio) for soil covers thinner than 1m. 

Mine operators should also recognize and manage extreme moisture conditions 

in the soil covers and uppermost overburden to mitigate restrictions in gas 

exchange and CH4 oxidation.  

5.1 Introduction 

Single and multi-layered soil cover systems are adopted for oil sands mine reclamation in 

Northern Alberta, Canada to transform above-grade overburden landforms amassed during 

oil sands mine operations into reclaimed boreal forest landscapes. Placing soil covers is a 

coordinated effort that involves salvaging (and potentially stockpiling) soil cover materials and 

hauling to active reclamation areas for placement using mechanical shovels, haul trucks and 

dozers. The design of the soil covers (i.e. capping thickness and configuration) thus has 

economic ramifications to mine operators by dictating the volume of soil that needs to be 

excavated, hauled, and placed. Moreover, the soil cover design has practical ramifications to 

reclamation efforts by altering the exchange rates of gasses between the atmosphere, soil 

cover, and underlying overburden landform (Scale and Fleming 2017a). These altered gas 

exchange rates may restrict concentrations of oxygen (O2) in the plant-rooting zone of the soil 

covers to levels that pose a risk to the growth and survivability of reclamation vegetation 

(Flower 1981; Whitton et al 1991).  

Various soil cover designs are being tested on a field-scale at the Aurora Soil Capping Study 

(ASCS) on Syncrude’s Aurora North mine in Alberta, Canada (57°20’ N, -111°32’). The ASCS 

is a 36 hectare subsection of an above-grade overburden landform that is subdivided into 36 

one hectare study cells. Each cell is covered with one of twelve different configurations of soil 

cover materials and placement thickness. The landform substrate is predominantly lean oil 

sand (LOS), which ranges in texture from approximately sandy loam to loamy sand and may 

contain petroleum hydrocarbons (PHC) up to the economical ore grade of 7%. 

Characterisation of pore-gasses at the ASCS prior to placement of soil covers is presented in 
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Korbas (2014) and Scale et al (2016); characterisation of pore-gasses following placement of 

soil covers is presented in Scale and Fleming (2017a).  

The objective of this paper is to understand the factors that affect the transport and storage of 

O2 and carbon dioxide (CO2) pore-gasses in LOS and reclamation soil covers. To understand 

the factors affecting the transportation of pore-gasses, a finite difference numerical model is 

developed that simulates steady-state diffusive and advective-diffusive CO2 flux from the LOS 

through multi-layered soil covers. To understand the factors affecting the storage of pore-

gasses, analysis of variance (ANOVA), multivariate regression, and t-tests with the Bonferonni 

correction are conducted to examine correlations between CO2 and O2 pore-gasses and the 

following factors: 

• on-site conditions, specifically ambient temperature and barometric pressure; 

• measurable soil parameters, such as soil temperature and soil moisture; 

• soil cover design, including cover thickness and cover material; and 

• characteristics of the LOS landform, such as in-situ bulk density. 

Understanding the factors that affect the storage and transport of pore-gasses is intended to 

inform mine operators regarding practical issues involving the construction of LOS landforms, 

design of soil cover systems, and management of the reclamation site.         

5.2 Background 

5.2.1 Biodegradation of petroleum hydrocarbons 

Microbial biodegradation of PHCs (e.g. the oil component of the LOS) is a biochemical process 

whereby microorganisms transform PHCs into CO2 and water under aerobic conditions or into 

CO2 and methane (CH4) under anaerobic conditions (Zengler 1999; Townsend et al 2003; 

Salminen et al 2004). In practicality, the biodegradation of LOS has been demonstrated to be 

a source of CO2 and CH4 in laboratory column experiments and in field studies at the ASCS 

(Korbas 2014; Scale et al 2016; Scale and Fleming 2017). White these efforts represent a 

thorough characterization of pore-gasses and rates of gas flux at the ASCS, an in-depth 
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analysis was required to understand the factors affecting the storage and transport of pore-

gasses.    

5.2.2 Significance of soil moisture and temperature to gas transfer  

The relationships between pore-gasses and soil temperature and soil moisture have been 

extensively reported in the literature (Whalen and Reeburgh 1996; Bowden et al 1998; 

Davidson et al 1998; Risk et al 2002; Hashimoto and Komatsu 2006; Kettunen et al 2006; 

Bekele et al 2007; Gebert et al 2010). Microorganisms require a sufficiently well-aerated pore-

space for root and microbial respiration and the corresponding flux of O2 and CO2 to transpire. 

At higher water contents, less O2 is available to facilitate root and microbial respiration due to 

restrictions in diffusion and gas permeability (Hillel 2003). At lower water contents, on the other 

hand, more O2 is available and diffusion is less restricted, but insufficient water may be 

available for plants to carry out metabolic functioning (Dorr et al 1993; Boeckx et al 1996; 

Einola et al 2007; Gebert et al 2010). This leads to a non-linear relationship between soil 

moisture and the flux of O2 and CO2, with reductions in flux rates at both higher and lower 

water contents (Bekele et al 2007). The effect of temperature on microbial respiration is 

similarly non-linear. Root and microbial activity are impeded at extreme low and high 

temperatures, which leads to restrictions in the corresponding flux of O2 and CO2 (Bunt and 

Rovira 1955; Bekele et al 2007). 

5.3 Materials & Methodology 

5.3.1 Field sampling locations 

Pore-gas concentrations and rates of gas flux were measured at the ASCS from 2013-2015 

at the sampling locations presented in Figure 5.1. Further details regarding of the gas sampling 

procedures and results thereof are available in Scale and Fleming (2017a). 
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Figure 5.1 Gas sampling locations at the ASCS that were investigated from 2013-2015. 

Details of the soil cover designs investigated in this research at each gas sampling location 

are presented in Table 5.1. 

Table 5.1 Soil cover designs and associated in-situ bulk density in the upper 0.5 m of the LOS 

Location  1 2 3 4 5 6 7 8 9 10,11,12 
Treatment 5 8 1 2 3 4 5 6 7 8 
Sampling 
method1 SFC SFC SVP SVP SVP SVP SVP SVP SVP SVP 

Bulk density2 
(Mg/m3) 1.59 1.61 1.57 1.98 1.64 1.63 1.56 1.45 1.61 1.61 

0-0.5 m BGS 0.1m 
LFH 

0.3m  
Peat 

0.3m 
Peat 

0.3m  
Peat 

0.1m 
Peat 

0.3m 
Peat 

0.1m 
LFH 

0.2m 
LFH 

0.2m 
LFH 

0.3m  
Peat 

0.5 m BGS Sub Sub LOS Sub Sub Sub Sub Sub Sub Sub 
1 m BGS Sub Sub LOS Sub Sub Sub Sub Sub Sub Sub 
1.5 m BGS Sub Sub LOS LOS Sub Sub Sub Sub Sub Sub 
2 m BGS LOS LOS LOS LOS LOS LOS LOS LOS LOS LOS 
3 m BGS LOS LOS LOS LOS LOS LOS LOS LOS LOS LOS 
4 m BGS LOS LOS LOS LOS LOS LOS LOS LOS LOS LOS 

1 SFC = static flux chamber; SVP = soil vapour probe 
2 Average dry bulk density of the upper 0.5 m of the LOS landform 

All soil cover materials were salvaged from within the mine footprint and directly placed or temporarily 

stockpiled. Peat is a sand-textured material that is intended to provide organic carbon, nutrients, and 
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improve water holding capacity. LFH and subsoil are also predominantly sand-textured; however, they 

both contain a greater proportion of silt than the peat. The LFH is considered an upland surface soil 

and contains surface litter such as twigs, stems, and seeds. A more detailed description of the soil cover 

materials, particle-size distributions, and soil water characteristic curves are provided in Scale and 

Fleming (2017a). 

5.3.2 Field conditions 

The meteorological station at the ASCS (shown in Figure 5.1) recorded air temperature and 

precipitation throughout the 2013 to 2015 field seasons. The air temperature ranged from -

37°C to +33°C, with an arithmetic average air temperature of 2.5°C. Annual cumulative rainfall 

was 372 mm in 2013, 344 mm in 2014, and 248 mm in 2015.  

Each cell at the ASCS was instrumented with Campbell Scientific® CS616™ Water Content 

Reflectometers for measurement of volumetric water content (VWC) and Campbell Scientific® 

CS229™ Heat Dissipation Matric Potential Sensors for measurement of soil temperature 

(Campbell Scientific 2009, 2016). The probes were installed at various depths into the soil 

covers and underlying LOS.  

Profiles of arithmetic mean soil temperatures and standard deviations measured at the various 

gas sampling locations are presented in Figure 5.2. Mean temperatures in the soil cover 

materials and LOS tended to range from 3-7°C, with exposed surficial layers of peat and LFH 

varying more than intermediary layers of subsoil. The temperatures in the LOS, on the other 

hand, varied over a narrower range than the soil cover materials due to the LOS being better 

insulated from temporal variations in ambient temperature and solar radiation. 
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Figure 5.2 Arithmetic mean soil temperature measurements and standard deviations at all sampling 
locations from January 1, 2015 to December 31, 2015. Horizontal lines indicate the depth of the soil 
layers and the interface of the soil cover material and LOS.   

Profiles of the arithmetic mean VWC and standard deviations measured at the various gas 

sampling locations are presented in Figure 5.3. The VWC of LFH and subsoil were similarly 

low in the near subsurface. VWC for LOS and peat, on the other hand, tended to be higher, 

with peat varying over a wider range than any other soil cover material or LOS. Interestingly, 

the VWC often tended to increase sharply at the interface between the soil cover materials 

and LOS. 
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Figure 5.3 Arithmetic mean volumetric water content measurements and standard deviations at all 
sampling locations from January 1, 2015 to December 31, 2015. Horizontal lines indicate the depth of 
the soil layers and the interface of the soil cover material and LOS. 

5.3.3 Characterisation of pore-gasses 

Concentrations of pore-gasses and rates of gas flux were characterised at the ASCS during 

the 2013-2015 field seasons. Two methodologies were used at field scale as described by 

Scale and Fleming (2017a). In the first method, an automated multiplexing gas analyser 

(Columbus Instruments 2016) was used to directly measure gas fluxes in static flux chambers. 

A second methodology involved using the LandTec® GEM 2000™ (LandTec 2010) portable 

landfill gas analyzer to measure gas pressures and pore-gas O2, CO2, and CH4 concentrations 

in single-point AMS® soil vapour probes (SVP). The characterisation of O2 and CO2 pore-
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gasses in the soil covers and LOS during the 2014-2015 field seasons is presented in Figure 

5.4. Pore-gas concentrations of O2 and CO2 within the soil covers and within the upper 

(approximately) 1 m of the LOS landform were typically >10% O2 and <15% CO2. Pore-gasses 

deeper within the LOS landform, on the other hand, fell to 0% for O2 and rose to >16% for 

CO2. 

 

Figure 5.4 Pore-gas O2 and CO2 concentrations measured at the ASCS during the 2014 and 2015 
field seasons. (Loc. = location; Tr. = treatment #). 



117 
 

5.3.4 Bulk density of the LOS landform 

Spatial variability of the in-situ bulk density of the LOS landform was characterised at the 

ASCS in 2010 by AITF (2013) prior to placement of soil cover systems using the CPN® MC-

1 DR-P Portaprobe Moisture/Density Gauge (CPN Inc., Concord, California, USA). Of the gas 

sampling locations in Figure 1, the lowest bulk density was 1.45 Mg/m3 at location 8 

(Treatment 6) and the highest bulk density was 1.98 Mg/m3 at location 4 (Treatment 2). The 

bulk density at all other sampling locations ranged from 1.56-1.61 Mg/m3.  Bulk density of the 

LOS can be practicably controlled by mine operators during the construction of the LOS 

landform; as a result, the relationship between pore-gasses and bulk density of the LOS was 

evaluated. 

5.3.5 Development of the numerical model 

A numerical model was developed using MATLAB® that simulates CO2 fluxes driven by 

concentration gradients (diffusion) and pressure gradients (advection) through 1.5 m thick 

multi-layered soil covers into the headspace of static flux chambers (Fick 1855; Darcy 1856; 

MathWorks 2016; Scale and Fleming 2017a). The model was calibrated using results from the 

static flux chamber tests described in Scale and Fleming (2017a). The model does not 

consider CH4 transport, the transformation of CH4, nor the corresponding flux and 

consumption of O2. The model is a simplification of field conditions in that it considers CO2 flux 

to be steady-state; hence the dissolution of CO2 in pore-water is assumed to be in carbonate 

equilibrium.   

The finite difference approximation uses a block-centred grid that solves for concentration 

values at nodes and flux values to midpoints. The spatial discretization grid was specified in 

increments of 0.1 m, except for the flux chamber, which was uniquely specified as 0.3048 m 

(based on the physical dimensions of the flux chamber). The time discretization grid was 

specified in increments of 0.01 hour. The effect of grid size was evaluated by conducting a 

sensitivity analysis on discretization grid sizes. The model was calibrated based on flux 

chamber data presented in Scale and Fleming (2017).  
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Using vertical VWC profiles measured at the ASCS, the model calculates the corresponding 

position-dependent CO2 diffusion coefficient using the dual-phase Aachib et al (2004) 

formulation presented in Equation 5.1.  

De = 1
θT

2 �Da
0θa

P + HDw
0 θw

P �                             [5.1] 

Where θT is total porosity [L3L-3], Da0 is diffusion coefficient in free air [L2T-1], θa is air-filled 

porosity [L3L-3], H is Henry’s law equilibrium coefficient for a solution of gas in water, Dw0 is 

diffusion coefficient in water [L2T-1], θw is volumetric water content [L3L-3], and P is an empirical 

curve-fitting parameter.  

A constant CO2 concentration boundary condition (BC) is applied at the depth corresponding 

to the material interface between the LOS and soil covers. This constant CO2 concentration 

BC thus enables CO2 fluxes to be simulated from the LOS into the soil covers. In practicality, 

however, this is a simplification of field conditions in that it does not consider CO2 production 

resulting from the biodegradation of PHCs nor from CH4 oxidation. The constant CO2 BC was 

selected to be 1%, which is roughly the median value of all CO2 measurements at a depth of 

1.5 m. 

The mass balance (continuity) equation for compressible, non-reactive, dual-phase, one-

dimensional diffusive-advective flow through this representative elementary volume is 

presented in Equation 5.2. 

        θa
∂Cg

∂t
= De

∂2Cg

∂z2 − νCg

δz
− θw

∂Cw
∂t

                                [5.2] 

Where, Cg is the CO2 concentration in the gaseous phase [ML-3]; Cw is the CO2 concentration 

in the aqueous phase [ML-3]; ν is pore-gas velocity [LT-1]; and dz is the space step in the 

vertical direction [L]. 

The total gas flux due to advection and diffusion (FAD) is the sum of advective gas flux (FA) 

and diffusive gas flux (FD) as expressed in Equation 5.3.    
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FAD = FA + FD = −De
∂C
∂z

+ νC          [5.3] 

Where, FAD is advective-diffusive gas flux [ML-2T-1]; FA is advective gas flux [ML-2T-1]; FD is 

diffusive gas flux [ML-2T-1]; De is the effective diffusion coefficient [L2T-1]; C is gas concentration 

[ML-3]; ∂C
∂z

 is the vertical pore-gas concentration gradient [ML-4]; ν is pore-gas velocity [LT-1]. 

5.4 Results 

5.4.1 Numerical modelling to simulate advective and diffusive gas fluxes in the soil 
covers 

The CO2 transport model was applied to two soil cover treatments, specifically location 1 – 0.1 

m LFH and 1.4 m subsoil and location 2 – 0.3 m peat and 1.2 m subsoil. Input parameters and 

variables for the model were constrained to field measurements of CO2 pore-gas 

concentrations, soil moisture, and soil-atmosphere pressure gradients calculated with a digital 

monometer connected to soil vapour probes (see Scale and Fleming 2017).  

To verify the model output, simulations of diffusive and advective-diffusive CO2 fluxes were 

compared to CO2 concentration increases in the static flux chamber headspace measured 

during field tests conducted in 2013-2015 (see Scale and Fleming, 2017a). The numerical 

model successfully simulated CO2 fluxes with advective-diffusive transport; however, field 

results could not be simulated with diffusive-only transport. The advective component of the 

CO2 flux is based on an initial pressure gradient of 10 Pa between the soil and static flux 

chamber; this is a reasonable value in the context of field measurements of soil-atmosphere 

differential pressures (Scale and Fleming 2017a), which varied in magnitude from roughly 0-

20 Pa at the soil cover/ LOS interface at 1.5 m. Presented in Figure 5.5 are results of the 

numerical model simulations and the geometric mean increases in CO2 concentrations 

measured in the chamber headspace during flux chamber tests conducted at location 1 

(Treatment 5) and location 2 (Treatment 8).  
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Figure 5.5 Diffusion-only and advection-diffusion simulations of CO2 fluxes and CO2 increases in the 
static flux chamber headspace during purge tests conducted on locations 1 and 2 at the ASCS during 
the 2013-2015 field seasons. 

5.4.2 Effects of ambient temperature, soil temperature, water content, and differential 
pressures on O2 and CO2 pore-gasses  

Statistical analyses including single and multi-variable regression were conducted to identify 

whether independent variables such as air temperature, soil temperature, soil moisture, and 

soil-atmosphere differential pressures were explicative of variations in O2 and CO2 pore-

gasses at various depths in the soil covers and LOS. Note that air temperatures were only 

compared to O2 and CO2 at a depth of 0.5 m BGS.  

The coefficient of determination, R2, is an indicator of how well a regression model 

approximates measured values when one independent variable is being evaluated 

(Montgomery and Runger 2014). The adjusted R2 value is an indicator of how well a multi-

variable regression model approximates measured values when more than one independent 

vairable an is being evaluated (Montgomery and Runger 2014). R2 values from the single 

variable regression analyses are summarized in Table 5.2 for each depth increment.  
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Table 5.2 Significance of air temperature, differential pressure, soil temperature, and volumetric water 
content on variations in O2 and CO2 pore-gas concentrations 

 Independent variables 

Depth BGS 
[m] Air temperature Differential 

Pressure  
Volumetric water 

content Soil temperature 

0.5 NS NS R2 = 0.09 O2 (-) 
R2 = 0.16 CO2 (+) 

R2 = 0.26 O2 (-) 

R2 = 0.21 CO2 (+) 

1 - NS R2 = 0.13 O2 (-) 
R2 = 0.18 CO2 (+) NS 

2 - NS R2 = 0.65 O2 (+) 
R2 = 0.53 CO2 (-) NS 

3 - R2 = 0.34 O2 (+) 
R2 = 0.24 CO2 (-) NS NS 

4 - R2 = 0.54 O2 (+) 
R2 = 0.53 CO2 (-) NS NS 

Note: NS = Not significant; (+) = positively correlated; (-) = negatively correlated 

Differential gas pressures between the soil and the atmosphere were measured in 2015 at the 

ASCS using a high-precision digital manometer connected to soil vapour probes installed at 

various depths into the soil covers and LOS to a maximum depth of 4 m (Scale and Fleming 

2017a). The differential pressures at 4 m varied from approximately -150 Pa to +150 Pa. To 

evaluate whether these extreme differential pressures had an effect on O2 and CO2 pore-gas 

concentrations, the relationship between the differential pressures and pore-gasses was 

investigated and concentration gradients of O2 and CO2 were found to be strongly related to 

differential pressures. The soil-atmosphere pressure gradients and the corresponding O2 and 

CO2 soil-atmosphere concentration gradients at 4 m BGS for sampling locations 4, 6, 7, and 

9 are plotted in Figure 5.6. Note that these locations were the only locations with soil vapour 

probes installed at the maximum depth of 4 m.  
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Figure 5.6 Soil-atmosphere pressure gradients and O2 and CO2 concentration gradients in the LOS at 
4 m BGS  

5.4.3 Effects of soil cover design on O2 penetration 

ANOVA and t-tests with Bonferonni corrections were conducted to investigate whether O2 

concentrations in the plant-rooting zone at 0.5 m BGS were impacted by the design of the soil 

covers in the upper 0.1-0.3 m BGS (as presented in Table 5.1). Findings from the statistical 

analyses of O2 pore-gasses in subsoil and LOS at 0.5 m BGS underlying 0.1-0.2 m LFH and 

0.1-0.3 m peat are presented in Table 5.3. 

Table 5.3 Results from statistical analysis of O2 pore-gas concentrations in the LOS and subsoil at 
0.5 m BGS below 0.1 or 0.2 m LFH and 0.1 or 0.3 m Peat  
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Location  3 4 5 6 7 8 9 10 11 12 
Treatment 1 2 3 4 5 6 7 8 8 8 
0-0.5 m 
BGS 

0.3m 
Peat 

0.3m  
Peat 

0.1m 
Peat 

0.3m 
Peat 

0.1m 
LFH 

0.2m 
LFH 

0.2m 
LFH 

0.3m  
Peat 

0.3m 
Peat 

0.3m 
Peat 

0.5 m BGS LOS Sub Sub Sub Sub Sub Sub Sub Sub Sub 
Statistical 
Test NSD High High NSD NSD NSD NSD NSD NSD NSD 

1 NSD = no significant difference 

No significant differences in O2 concentrations were found in the subsoil below LFH, however, 

significant differences were present in the subsoil below peat. Locations 4 and 5, with 0.3 m 

and 0.1 m peat covers respectively, had statistically higher O2 than in the subsoil or LOS at 

any of the other locations. Not considering locations 4 and 5, however, O2 was not statistically 

different in the subsoil below LFH or peat; furthermore, O2 was not statistically different in the 

LOS below peat (location 3) and in the subsoil below LFH or peat. 

5.4.4 Effect of LOS bulk density on O2 and CO2 pore-gasses 

The average in-situ bulk density in the uppermost 0.5 m of the LOS at each gas sampling 

location is presented in Table 1.  The uppermost LOS horizon at location 4 (Treatment 2) had 

the highest average bulk density (1.98 Mg/m3) and the lowest CO2 and highest O2 of all 

locations sampled. Further, at location 8 (Treatment 6), the uppermost LOS horizon had the 

lowest average bulk density (1.45 Mg/m3) and the highest CO2 and lowest O2 of all locations 

sampled. The bulk density of the LOS for the other locations sampled ranged from 1.56-1.61 

Mg/m3 and the pore-gas concentrations of O2 and CO2 associated with these locations were 

intermediary. 

5.5 Discussion 

5.5.1 Numerical model  

The transport of CO2 through multi-layered soil covers into static flux chambers was measured 

during the 2013-2015 field seasons on location 1 (Treatment 5 – 0.1 m LFH and 1.4 m subsoil) 

and location 2 (Treatment 8 – 0.3 m peat and 1.2 m subsoil) as described in Scale and Fleming 

(2017a). The numerical model simulation of these static flux chamber experiments simulated 

field results by considering advective-diffusive CO2 flux, but not CO2 flux by diffusion alone.  
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Based on field results and numerical model simulations, CO2 fluxes were higher on location 1 

than location 2. In practicality, the peat layer contained a larger saturated pore-volume to 

facilitate the rapid dissolution of highly-soluble CO2. It should be noted, however, that the 

steady-state numerical model did not consider the dissolution of CO2. In the numerical model, 

CO2 fluxes were higher through location 1 than through location 2 due to location 1 having a 

lower VWC in the upper 0.3 m (as presented in Figure 5.7) and thus a larger air porosity.  

 

Figure 5.7 Average volumetric water contents measured in the subsurface with static flux chamber 
tests conducted on locations 1 and 2 at the ASCS during the 2013-2015 field seasons. (Tr. = 
treatment) 

5.5.2 Response of O2 and CO2 pore-gasses to changes in ambient temperature, soil 
temperature, water content, and differential pressures 

Air temperature was only evaluated in the upper 0.3-0.5 m and was not significant to either O2 

or CO2 pore-gasses. This may be attributed to the thermal insulation provided by the soil 

covers (Figure 2). Soil temperatures and VWC in the upper 0.3-0.5 m, on the other hand, were 

highly significant and accounted for more than 38% of the variations in O2 and CO2 based on 

the adjusted R2. This may be attributed to capacity for microbial communities to carry out 

respiration being sensitive to variations in temperature and moisture. 

At depths ranging from 1-2 m BGS, which represents the interface between the soil covers 

and LOS, VWC was found to have the strongest influence on O2 and CO2 and explained up 
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to 53% of the variation in O2 and 65% of the variation in CO2 (at 2 m BGS). This may be 

attributed to the sharp increase in VWC at the interface between the coarser-textured cover 

soils and the finer-textured LOS that is clearly visible in the VWC profiles in Figure 5.3. This 

sharp increase in VWC likely restricted the capacity of microorganisms to carry out respiration 

due to the reduction in air porosity and corresponding reduction in O2. 

Deeper in the LOS at depths of 4 m BGS, differential pressures accounted for up to 54% of 

the variations in O2 and 53% of the variations in CO2. Increasing soil-atmosphere pressure 

gradients (atmospheric pressure > soil pressure) suggest that the downwards movement of 

atmospheric air was penetrating deep into the LOS and aerating the soil pores with 

atmospheric concentrations of O2 of CO2. This was indicated by higher pore-gas O2 

concentrations (lower O2 concentration gradients) and lower pore-gas CO2 concentrations 

(higher CO2 concentration gradients). Conversely, decreasing soil-atmosphere pressure 

gradients (soil pressure > atmospheric pressure) suggest that pore-gasses within the LOS 

were rising upwards to the atmosphere and exhausting the finite volume of O2 supplied by the 

atmosphere and drawing up CO2 generated deeper in the LOS landform. This was indicated 

by lower pore-gas O2 concentrations (higher O2 concentration gradients) and higher pore-gas 

CO2 (lower CO2 concentration gradients). This phenomenon is denoted in the literature as the 

“barometric pumping effect” and has been observed to influence rates and direction of soil-

atmosphere gas exchange (Czepiel et al. 1996; Christophersen et al. 2001; Massman 2006). 

5.5.3 Soil cover design and O2 penetration 

Incorporating either 0.1-0.2 m LFH or 0.1-0.3 m peat into the design of a single or multi-layered 

soil cover did not have a significant impact on O2 pore-gas concentrations in the plant-rooting 

zone at 0.5 m BGS in the shallow subsurface. Interestingly, there was no statistical difference 

in O2 whether the material was intermediary subsoil or LOS. This corroborates the potential 

for a reduction of the soil cover design capping thickness (initially postulated in Scale and 

Fleming, 2017a).  
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5.5.4 Bulk density of the LOS and O2 and CO2 pore-gasses  

In-situ bulk density of the LOS landform impacted O2 and CO2 pore-gasses near the interface 

between the soil covers and LOS. Location 8, which had the lowest bulk density of 1.45 Mg/m3, 

had the lowest O2 and highest CO2 pore-gas concentrations. Location 4, which had the highest 

bulk density of 1.98 Mg/m3, had the highest O2 and lowest CO2 pore-gas concentrations. 

These findings suggest that the 1) CH4 oxidation capacity of the LOS is restricted at higher 

bulk density (lower void ratio), likely due to reductions in air porosity and the corresponding 

availability of O2; and 2) the CH4 oxidation capacity of the LOS is enhanced at the lower bulk 

density (higher void ratio), possibly due the increased air porosity and greater availability of 

O2. 

These relationships are supported by findings in Scale and Fleming (2017a) that rates of 

advective gas transport across the soil cover/LOS interface were significantly higher for 

location 4 than location 8, while rates of diffusive transport were significantly lower for location 

4 than location 8. There are also two relevant findings in the soil column experiments 

conducted in Scale and Fleming (2017b) that should be noted: 1) LOS is capable of oxidizing 

CH4 at rates comparable to soil cover materials; and 2) increasing bulk density by 0.3 Mg/m3 

significantly reduced methane oxidation rates.  

Moreover, the maximum concentration of unreacted pore-gas CH4 measured in SVP at the 

soil cover/LOS interface on location 4 was 0.7%, while on location 8 it was only 0.1%. On 

location 4 there was also an accumulation of unreacted pore-gas CH4 from 0.9-1.2% at depths 

from 2-4 m BGS that was not present on location 8. It is unlikely that rates of petroleum 

hydrocarbon degradation at location 4 were greater than location 8 due to both locations 

containing a maximum 1.2% petroleum hydrocarbon content in the uppermost 0.1 m LOS 

horizon (as determined in a preliminary site characterisation). This unreacted pore-gas CH4 at 

the soil cover/ LOS interface on location is further evidence that placing LOS to a higher bulk 

density (and lower void ratio) can lead to restrictions in rates of CH4 oxidation.  
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5.5.5 Implications to operational practices 

Notwithstanding highly relevant considerations such as moisture and nutrient dynamics, the 

efficacy of a soil cover system can be evaluated (albeit from a limited perspective) in terms of 

a) facilitating soil-atmosphere gas exchange to supply sufficient pore-gas O2 to the plant-

rooting zone; and b) functioning to passively remove pore-gas CH4 with microbial oxidation 

reactions.  

a) Passively removing pore-gas CH4 with microbial oxidation reactions 

Compaction of soil materials to a higher bulk density (and thus low void ratio) was found to 

restrict CH4 oxidation based on findings in the soil column experiments in Scale and Fleming 

(2017b). It is therefore recommended that operators exercise care during the placement of 

LOS in order to minimize the bulk density of the LOS (and thus maximize the void ratio) during 

construction the LOS landform, including limiting traffic of heavy equipment during placement 

of soil covers. It is important to note that at higher void ratios the LOS will be more 

compressible and susceptible to wetting collapse if the subsequently placed soil covers are 

anticipated to be trafficable (even to light vehicles) in the future.   

The LOS at location 8 had the lowest bulk density (relatively highest void ratio) of all gas 

sampling locations; it is likely that this low bulk density facilitated the rapid oxidation of CH4 

based on the pore-gas CO2 concentrations being highest and O2 being lowest of all the gas 

sampling locations. Note that soil-atmosphere gas exchange sufficiently aerated the soil 

covers on location 8 despite the rapid oxidation of CH4 occurring in the uppermost LOS (and 

corresponding consumption and flux of O2). In regards to management practices, it is 

recommended that mine operators be cognisant that rates of CH4 oxidation may be restricted 

at elevated moisture conditions for the LOS. Pore-gas concentrations of O2 and CO2 were 

found to be strongly related to VWC in the uppermost LOS, with more O2 and less CO2 present 

at higher VWC. This suggests that rates of CH4 oxidation were restricted by the additional 

moisture, possibly due to reductions in air porosity. In Scale and Fleming (2017b), a prolonged 

drought simulation reduced CH4 oxidation rates by more than 50% after 45 days; it is therefore 
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likely that in-situ CH4 oxidation rates may also be restricted under reduced moisture 

conditions. For this specific study, the extremes of VWC for the LOS that were found to restrict 

rates of CH4 oxidation were >24% and <17%. It should be noted, however, that due to the 

limited number of areas that were sampled in this study it is not clear whether it can be 

extrapolated that rates of CH4 oxidation will be restricted beyond these VWC extremes for the 

entire ASCS. 

b) Supplying adequate pore-gas O2 to the plant-rooting zone  

While oxidizing CH4 is an important function of soil covers for mitigating atmospheric carbon-

loading, it is also necessary for the soil covers to maintain sufficient pore-gas O2 to support 

reclamation vegetation. Compaction of the LOS during construction of the LOS landform did 

not inhibit pore-gas O2 in the plant-rooting zone. The LOS on location 4 had the highest bulk 

density (and lowest void ratio) of all gas sampling locations and sufficient pore-gas O2 was still 

supplied to the soil covers and LOS to a depth of roughly 3 m BGS. In this case, the soil cover 

and LOS were well-aerated due to the soil cover being thinner (1 m), the cover being relatively 

free-draining, and possibly also due to barometric “pumping” of atmospheric O2 deeper into 

the LOS landform. The design of the soil cover was relatively less important to pore-gas O2 

than the characteristics of the LOS based on pore-gas O2 concentrations in the plant-rooting 

zone at 0.5 m BGS in the LOS or intermediary subsoil being unaffected by the uppermost soil 

cover design. Pore-gas O2 concentrations were weakly correlated (R2≤13%) to VWC in the 

soil covers; it is therefore unlikely that seasonal variations in VWC in the soil covers will reduce 

pore-gas O2 concentrations to levels considered a risk for the growth and survivability of 

reclamation vegetation.  

The appropriate balance of facilitating oxidation of CH4 in the uppermost horizon of LOS and 

maintaining sufficient pore-gas O2 concentrations in the plant-rooting zone depends upon the 

placement thickness of the soil cover system. This study found with the soil reclamation and 

LOS materials at ASCS that an appropriate balance could be established with a LOS bulk 
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density <1.5 Mg/m3; however, the thinner soil covers (≤1 m) will require a LOS bulk density 

ranging from 1.6-1.8 Mg/m3.  

5.6 Conclusions 

The objective of this paper was to understand the factors affecting the transportation and 

storage of soil gasses in LOS and reclamation soil covers in order to inform mine operators 

regarding practical issues involving the construction of LOS landforms, design of soil cover 

systems, and management of the reclamation site.     

To understand the factors affecting the transportation of soil gasses, a numerical model was 

developed to simulate steady-state diffusive and advective-diffusive CO2 flux from the LOS 

through multi-layered soil covers. The results of the numerical model were calibrated based 

on static flux chamber tests conducted in the field during the 2013-2015 field seasons. 

Advective-diffusive transport simulated results from static flux chamber tests; however, 

diffusive-only transport was not capable of simulating results from static flux chamber tests. 

Elevated moisture contents in the soil covers restricted gas transport in the model.  

To understand the factors affecting the storage of soil gasses, statistical analyses were 

conducted to examine correlations between CO2 and O2 pore-gasses and on-site conditions, 

measurable soil parameters, the design of the soil covers, and in-situ bulk density of the LOS 

landform in the upper 0.5 m. 

Air temperature was not significant to O2 and CO2 pore-gasses in the upper 0.3-0.5 m; 

however, VWC and soil temperature at this depth accounted for more than 37% of the 

variations in O2 and CO2 (based on the adjusted R2 value). Near the interface between the 

soil covers and LOS at depths of 1-2 m, VWC accounted for up to 52% of the variations in O2 

and 65% of the variations in CO2. Deeper into the LOS at depths of 3-4 m BGS, differential 

pressures accounted for more than 52% of the variations in O2 and CO2.  

The design of the soil covers in the uppermost 0.1-0.3 m did not significantly alter the O2 pore-

gas concentration in the intermediary layer of subsoil or in the LOS at a depth of 0.5 m BGS.  
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Bulk density was found to be correlated to O2 and CO2 pore-gasses in the uppermost horizon 

of LOS. Rates of CH4 oxidation appear to have been elevated at lower LOS bulk density based 

on reduced pore-gas concentrations of O2 and elevated pore-gas concentrations of CO2. On 

the other hand, rates of CH4 oxidation appear to have been restricted at higher LOS bulk 

density based on elevated pore-gas concentrations of O2 and reduced pore-gas 

concentrations of CO2. 

If a thicker cover (≥1 m) is placed over the LOS, it is recommended that mine operators place 

LOS at a bulk density <1.5 Mg/m3 in order to maintain sufficient pore-gas O2 concentrations 

in the plant-rooting zone of the soil covers while allowing sufficient oxidation of CH4 in the 

uppermost horizon of the LOS. If a thinner soil cover (≤1 m) is placed, it is recommended that 

mine operators place LOS at a bulk density ranging from 1.5-1.8 Mg/m3 in order to maintain 

sufficient pore-gas O2 concentrations in the plant-rooting zone of the soil covers while allowing 

sufficient oxidation of CH4 in the uppermost horizon of the LOS. Mine operators may also want 

to recognize that the capability of the LOS to oxidize pore-gas CH4 may be limited when the 

VWC of the LOS is approximately less than 15% or greater than 24%.  

Based on these findings, the design of the construction of the LOS landform appears to be 

more impactful to pore-gas dynamics than the design of the soil covers. 
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6.0  SUMMARY OF CONCLUSIONS 
6.1 Characterization of F1-F4 petroleum hydrocarbons fractions in lean oil sands 

• Petroleum hydrocarbons (PHC) in the lean oil sands (LOS) material collected from 

ASCS and used in the column study consisted predominantly of heavier F3 (47%) and 

F4 (45%) fractions. The remaining PHC fractions consisted of smaller amounts of 

lighter F1 (0.1% excluding undetectable BTEX) and F2 (8.3%) fractions.   

• The F1 fraction (including BTEX) was undetectable in the column leachate. The F2 

fraction marginally exceeded clean water guidelines on a few occasions at 

temperatures ≥22°C. At lower temperatures, ≤4°C, the concentration of F2 

hydrocarbons was near the 0.1 mg/L detection limit. F3 hydrocarbons were present at 

low concentrations, however, the F3 fractions are not currently regulated for 

groundwater in Alberta.  

6.2 Pore-gasses and gas flux rates from uncovered LOS  

• CO2 effluxes from LOS landform typically ranged from 0.1-1.5 kg/m2/a with peaks of 

7.1 kg/m2/a. 

• Pore-gas concentrations in the LOS typically ranged from 0-2% for O2, 3-9% for CO2, 

and 0-4% for CH4, with peaks of 18% for O2, 21% for CO2, and 12% for CH4.  

• Based on laboratory soil column experiments, rates of PHC degradation for the LOS 

from respiration were 60 g/a at 22°C and 15 g/a at temperatures ranging from 2-14°C. 

Rates of PHC volatilization for the LOS were 0.3 g/a.  

• The effect of temperature on PHC degradation and CO2 production was clearly 

observed from 4-22°C, with rates of CO2 flux ranging from 0.1 kg/m2/a at 4°C to 2.3 

kg/m2/a at 22°C.  

• Rates of CO2 flux quantified under laboratory conditions were comparable with flux 

rates measured with static flux chambers in the field (wherein LOS was exposed to 

atmospheric air temperatures and precipitation). This suggests that the column study 
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could be useful to produce meaningful and low cost estimates of in-situ PHC 

degradation. 

6.3 Pore-gas concentrations in LOS and soil covers 

• Pore-gas O2, CO2, and CH4 concentrations were characterized in the soil covers and 

LOS following the placement of single and multi-layered soil covers. Concentrations of 

O2 and CO2 within the soil covers and within the uppermost approximately 1 m of LOS 

were generally at levels considered safe for plant growth (e.g. >10% O2 and <15% 

CO2). Pore-gasses deeper than 1 m within the LOS, however, surpassed the threshold 

considered safe for plant growth. Minimum O2 concentrations were measured at 0%, 

peak CO2 at 16%, and peak CH4 at 36%.  

• Frozen pore-water in a thin 0.3 m layer of peat overlying LOS remained frozen until 

late-June. This frozen layer blocked soil-atmosphere gas exchange and led to pore-

gas CH4 accumulating to concentrations greater than 36% deeper than 2 m in the LOS.  

6.4 Gas fluxes through soil cover systems  

• CO2 effluxes from the soil covers were directly measured with static flux chambers. 

CO2 effluxes from the LOS into the soil covers and O2 ingress through the soil covers 

was measured using custom-designed and fabricated subsurface static flux chambers. 

The subsurface flux chambers were installed at a depth of 1.5 m below ground surface 

at two locations: one with 1.4 m subsoil covered by 0.1 m LFH and the other with 1.2 

m subsoil covered by 0.3 m peat. Gasses were sampled with an automated 

multiplexing gas analyzer equipped to measure 0-100% O2, 0-30% CO2, and 0-30% 

CH4. Rates of O2 ingress peaked at 18 kg/m2/a. Rates of CO2 efflux peaked at 2.2 

kg/m2/a from the soil covers and 1.8 kg/m2/a from the LOS.  

• CO2 effluxes were lower from the multi-layered soil cover with a 0.3 m peat layer than 

from the multi-layered soil cover with a 0.1 m LFH layer. These lower CO2 effluxes are 

possibly due to the peat layer storing a greater volume of pore-water than the LFH to 

facilitate the rapid dissolution of CO2.  
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6.5 Relative contribution of advection and diffusion to soil gas transport 

• Rates of gas flux by concentration-gradient driven diffusion were indirectly measured 

from soil gas profiles using the concentration-gradient method and by estimating 

diffusion coefficients from vertical profiles of soil moisture and soil temperature. Rates 

of gas flux by pressure-gradient driven advection were indirectly measured from 

differential pressures and in-situ measurements of air conductivity. Diffusive fluxes 

ranged from 0.31-3.33 kg/m2/a for O2 and 0.10-2.96 kg/m2/a for CO2. Advective fluxes 

ranged from 5-122 kg/m2/a for O2 and 0.40-29.6 kg/m2/a for CO2.  

• Rates of gas flux quantified using the direct and indirect methodologies varied by 0-

34% in magnitude at comparable locations. These variations are reasonable when 

taking into consideration spatiotemporal differences and assumptions that soil 

characteristics are similar for locations within a 1 hectare study cell.    

• Diffusion differed over a wide range of values due to spatial and material variability in 

soil moisture contents. Advection differed over a wide range of values due to spatial 

variability in air conductivity. Advection dominated over diffusion in all single and multi-

layered soil covers except for one location wherein the LOS was placed at low in-situ 

bulk density (1.45 Mg/m3) and thus responded quickly to variations in atmospheric 

pressure.  

6.6 Methane oxidation rates in soil cover materials and lean oil sand 

• CH4 oxidation rates for LFH, peat, and subsoil reclamation soil cover materials and 

LOS were quantified using batch soil column experiments in single and multi-layered 

configurations. Based on CO2 flux rates measured from the uncovered LOS, predicted 

rates of CH4 flux were estimated to range from 0.1-7.1 kg/m2/a; however, higher CH4 

fluxes up to 30 kg/m2/a were tested in the soil column experiments. Variations in 

temperature, soil moisture, and bulk density were simulated.  
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• To simulate the effects of changing temperature, soil columns were placed in a climate 

chamber and tested at 4°C, 22°C, and >31°C. Oxidation rates were significantly higher 

for all soil materials and LOS at warmer temperatures.  

• To simulate drought conditions, the daily application of water for the multi-layered soil 

column was discontinued for 45 days and oxidation rates decreased from 

approximately 80% to 38%.  

• To simulate the effect of increasing bulk density, the column consisting of sandy 

subsoil was initially compacted to a dry density of 1500 kg/m3 and was later 

disassembled and re-compacted to 1800 kg/m3. Oxidation rates at the higher bulk 

density fell from approximately 50% to levels that were below detection limits.  

• The batch soil column experiments used in this laboratory study enabled oxidation 

rates to be measured over the range of expected CH4 fluxes (0.1-7.1 kg/m2/a) and for 

expected soil temperatures (≤22°C). At higher CH4 fluxes (>10 kg/m2/a) and at higher 

soil temperatures (>31°C), however, the experiments were limited by the finite volume 

of O2 in the columns and likely underestimated oxidation rates. 

6.7 The role of the storage and transportation in guiding reclamation practices 

• Soil moisture and soil temperature were weakly correlated to O2 and CO2 pore-gasses 

in the uppermost 1 m BGS (soil covers and LOS) and strongly correlated to O2 and 

CO2 pore-gasses to a depth of 2 m BGS (LOS). Deeper than 3 m BGS, O2 and CO2 

pore-gasses were strongly correlated to differential pressure.  

• Pore-gas concentrations of O2 at 0.5 m BGS within intermediary layers of subsoil and 

LOS were unaffected by the design of the soil cover in the upper 0.1-0.3 m.  

• Pore-gasses within the uppermost horizon of LOS were found to be related to the 

associated bulk density of the LOS in the upper horizon. Based on reduced pore-gas 

concentrations of O2 and elevated CO2, it appears that rates of CH4 oxidation were 

elevated at lower LOS bulk density. At higher LOS bulk density, on the other hand, 
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rates of CH4 oxidation appear to have been restricted based on elevated pore-gas 

concentrations of O2 and reduced CO2. 

• The steady-state transport of CO2 through two multi-layered soil covers was simulated 

with finite difference numerical modelling by considering flux by both advection and 

diffusion, but was not simulated by considering flux by diffusion alone. Elevated soil 

moisture conditions in the numerical model restricted CO2 transport due to associated 

reductions in air porosity. In practicality, the restriction in CO2 transport at elevated soil 

moisture conditions would be due to the additional dissolution of CO2 in the larger 

volume of pore-water as well as the reduction in air porosity.   
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7.0 IMPLICATIONS TO MINE RECLAMATION USING 
 SOIL COVERS 

This purpose of this thesis was to develop a scientific basis for the site-specific estimation of 

the risk of gas-related toxicity to plant growth during the re-vegetation phase of the reclamation 

of lean oil sands LOS landforms. Based on this research, several general implications can be 

widely applied to practical issues involving the construction of LOS landforms, design of soil 

cover systems, and management of the reclamation site. 

• While native boreal plants and tree species are sensitive to low O2 or high CO2/CH4 

pore-gas concentrations, the characterisation of pore-gasses in this study found that 

pore-gasses within the single and multi-layer covers were below the threshold that is 

considered a risk to growth and survivability of reclamation plant and tree species.  

• Since pore-gasses within the 0.3 m soil covers and in the uppermost LOS horizon did 

not surpass the threshold that is considered to pose a risk to plant growth and 

survivability, the thickness of soil covers can likely be reduced from the 1.2-1.5 m 

thickness currently used by mine operators to 0.3 m without risking the development 

of conditions of low-O2 stress or high-CO2 toxicity. Furthermore, based on these 

findings, the uppermost LOS horizon can likely be incorporated into the design of the 

soil cover system. Note that this recommendation does not consider other important 

factors like moisture and nutrient dynamics or root penetrability.  

• Pore-gas concentrations of CH4 within the soil covers and the uppermost LOS horizon 

were typically undetectable or present at low concentrations (<1%). This indicates that 

the soil covers and uppermost LOS horizon are passively oxidizing CH4 in-situ. The 

use of peat as a soil cover material may be inadvertently problematic, however, since 

pore-water within a 0.3 m peat layer at one sampling location remained frozen until 

late-June and acted as a barrier to gas exchange, thus leading to CH4 accumulating 

to >35% deeper in the LOS.  
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• Soil cover placement thickness was positively related to CH4 removal efficiency. 

Placing a thinner soil cover system is more economical since less soil is required to be 

hauled from the stockpiling location to the active reclamation site for placement. 

Placing a thicker soil cover system, while less economical, will have greater CH4 

removal efficiency and correspondingly lower CH4 emissions.  

• Oxidation rates were positively related to soil temperature, with higher oxidation rates 

measured at warmer soil temperatures. This suggests that the soil covers will oxidize 

CH4 more effectively during the warmer months from June to August and oxidize CH4 

less effectively during the cooler months from September to May.  

• Oxidation rates decreased significantly under reduced moisture conditions. This 

suggests that the capability of the soil covers to effectively oxidize CH4 could be 

hindered by extended periods of low-precipitation or drought.  

• Oxidation rates were reduced to below detectable levels when bulk density of the 

sandy subsoil was increased from 1.5 Mg/m3 to 1.8 Mg/m3. Moreover, concentrations 

of pore-gas O2 were lower and concentrations of pore-gas CO2 were higher in the 

uppermost horizon of LOS at a bulk density of 1.45 Mg/m3 than at a bulk density of 

1.98 Mg/m3. These results suggest that CH4 oxidation will likely be reduced at higher 

bulk densities. 

• In regards to the placement of a thicker soil cover (≥1 m), operators should carefully 

place the LOS with the intention to minimize the in-situ bulk density of the LOS 

landform. By placing LOS at a bulk density <1.5 Mg/m3, oxidation of CH4 in the 

uppermost horizon of the LOS should take place rapidly, while the thicker soil cover 

will ensure that pore-gas O2 is maintained at concentrations that do not pose a risk to 

the growth and survivability of reclamation vegetation.  

• In regards to placing a thinner soil cover (≤1 m), operators should place the LOS to a 

bulk density ranging from 1.6-1.8 Mg/m3 in order to limit rates of CH4 oxidation in the 

uppermost LOS horizon and reduce the associated consumption and flux of pore-gas 
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O2. This will maintain O2 pore-gas at concentrations that do not pose a risk to the 

growth and survivability of reclamation vegetation. 

• Mine operators should be aware that extreme soil moisture conditions can restrict gas 

exchange in the soil covers and oxidation of CH4 in the uppermost LOS horizon. 
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8.0  RECOMMENDATIONS FOR FUTURE WORK 
8.1 Recommendations for Field Work 

• Characterization of pore-gasses could be conducted during winter when there is 

snowpack and soil temperatures are sub-zero in order to develop a more thorough 

understanding of the temporal variability in pore-gasses in soil covers and LOS. The 

measurement of pore-gasses beneath snowpack was unsuccessfully attempted in 

early-April 2014 using soil vapor probes that had been installed in late-2013. The 

probes were found to be plugged, likely due to water vapour condensing in the tubing 

and expanding upon freezing. New probes would therefore need to be installed in the 

soil underlying the snowpack and pore-gasses measured shortly thereafter.  

• Additional soil vapour probes could be installed over a wider range of in-situ LOS bulk 

densities to develop a better understand the relationship between rates of O2 ingress, 

CO2 efflux and the in-situ bulk density of the LOS.  

• No probes were installed in the various low and high-density tree plots due to site 

restrictions. Installing additional probes within the various tree plots would enable the 

effect of expanding tree root networks to pore-gasses and rates of gas flux to be 

evaluated.  

• Measuring the diffusion coefficient (Dp) in-situ would enable diffusive fluxes to be 

calculated with greater accuracy than by estimating Dp based on measurements of soil 

moisture and temperature. 

• The Dean and Stark measurements of oil content should be conducted to depths 

greater than 0.10 m to account for heterogeneities in the oil content of the lean oil sand 

with depth. 

8.2 Recommendations for laboratory testing 

• Soil moisture sensors with data-logging capabilities installed within the soil columns 

would enable more frequent and accurate water content measurements than using the 

Diviner 2000™ capacitance probe.  
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• The effect of bulk density to rates of CH4 oxidation could be further investigated by 

compacting soil materials in smaller increments. For example, soil column experiments 

could be conducted on materials compacted to dry densities ranging from 1000 kg/m3 

to 2000 kg/m3 in increments of 100 kg/m3.  

• Accelerated rates of CH4 oxidation could be evaluated by incorporating layers of 

compost, bio-solids, or bio-char into the composite multi-layered soil covers tested in 

the batch soil column experiments.  

• Isotope fractionation of the soil column headspace gasses could be measured as a 

secondary means of verifying that oxidation was occurring and that CH4 wasn’t being 

lost in storage within the column.  

• Lean oil sands with petroleum hydrocarbon contents ranging from <1% to >7% could 

be incrementally tested to quantify the effects of petroleum hydrocarbon content to 

CH4 oxidation rates. 
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9.0 APPENDICES 
Appendix A: Calculating dissolved CO2 using total alkalinity 

The following calculations steps were used to estimate the CO2 dissolved in the pore-water 

from total alkalinity measurements: 

Step 1: Convert total alkalinity from units of mg/L CaCO3 to mol/L H+ 

Step 2: Relate HCO3 and CO3 using ka2 

[Alk]Total = [HCO3
−] + 2[CO3

−] + [OH−]   [A.1] 

HCO3
− ↔ H+ + CO3

2−      [A.2] 

ka2 = [H+][CO3
2−] [HCO3

−]⁄ ∴ [HCO3
−] = [H+][CO3

2−] ka2⁄   [A.3] 

 

Step 3: Re-write TA in terms of CO32- and solve for CO32- 

[𝐴𝐴𝐴𝐴𝐴𝐴]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − [𝑂𝑂𝐻𝐻−] = [H+]�CO3
2−�

𝑘𝑘𝑎𝑎2
+ [𝐶𝐶𝑂𝑂3

2−]    [A.4] 

Step 4: Solve for [CO2(aq)] using ka1 

𝐶𝐶𝑂𝑂2(𝑎𝑎𝑎𝑎) + 𝐻𝐻2𝑂𝑂 ↔ 𝐻𝐻+ + 𝐻𝐻𝐻𝐻𝑂𝑂3
−    [A.5] 

𝑘𝑘𝑎𝑎1 = [𝐻𝐻+][𝐻𝐻𝐻𝐻𝑂𝑂3
−]

[𝐶𝐶𝑂𝑂2(𝑎𝑎𝑎𝑎)]
∴ [𝐶𝐶𝑂𝑂2(𝑎𝑎𝑎𝑎)] = [𝐻𝐻+][𝐻𝐻𝐻𝐻𝑂𝑂3

−]
𝑘𝑘𝑎𝑎1

   [A.6] 

Step 5: Solve for [CO2(aq)]Total using the relationship for DIC 

DIC = [CO2(aq)] + [H2CO3
0] + [HCO3

−] + [CO3
2−]  [A.7] 

  



145 
 

Appendix B: Calculating dissolved CO2 using Henry’s Law 

An alternative procedure was used to estimate the CO2 dissolved in pore-water based on 

Henry’s law and partial pressures of CO2 in the column pores. The relationship for estimating 

the aqueous concentration of CO2 using Henry’s law is expressed below: 

[𝐶𝐶𝑂𝑂2(𝑎𝑎𝑎𝑎)] =
(𝐾𝐾𝐻𝐻)𝐶𝐶𝑂𝑂2

𝑃𝑃𝐶𝐶𝑂𝑂2
              [B.1] 

 Where, KH is Henry’s law equilibrium coefficient for a solution of gas in water [L4 T2 M-

1 mol-1], PCO2 is the partial pressure of CO2 [M L-1 T-2], and [CO2(aq)] is the aqueous 

concentration of CO2 [mol L-3]. 

 The temperature dependence of Henry’s law coefficients was considered in the 

procedure by including the following relationship (Sander 1999):  

H(T) = H° ∗ exp �− ΔsolH
R

�1
T

− 1
T°

��     [B.2] 
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Appendix C: Calibration of Diviner 2000™  

Preliminary calibration of the Diviner 2000™ capacitance moisture probe involved first 

normalizing the sensor by recording raw air and raw water counts (SenTek 2009). The next 

step involved inserting the access tubes into 0.02 m3 pails containing soil compacted to a 

specific dry bulk density. A hand-auger was used to remove a cylinder of soil and facilitate 

inserting the 0.056 m diameter access tubes. The Diviner 2000™ probe was inserted into the 

access tubes and the scaled frequency was recorded at incremental depths. The access tube 

was then removed. Soil samples were obtained from the pail at corresponding depths and the 

gravimetric water content of the samples was determined by placing the samples in the oven 

at 105°C for 24 hours. The volumetric water content was determined by the following 

relationship: 

 

VWC = MC ∗ ρd
ρw

     [C.1] 

Where, MC is the gravimetric water content [MM-1], ρd is the dry bulk density [ML-3], 

and ρw is the density of water [ML-3].  

A calibration equation was formulated relating the volumetric water content values and 

scaled frequencies in the form: 

VWC = ��SF
a

�
b

     [C.2] 

 A final water content profile was measured for each soil column after completing the 

soil column experiments, whereupon the columns were deconstructed, samples obtained at 

incremental depths, and gravimetric water contents subsequently measured. Volumetric water 

contents and formulation of a calibration equation was determined similar to the preliminary 
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calibration. The final calibration was used for the following VWC profiles. The calibration 

results for the Diviner 2000™ sensor are shown in Figure C.1: 

 

Figure C.1 Diviner 2000® calibration relationships for various soil materials. 

The corresponding calibration coefficients, soil type, and researcher are presented in 

table C.1 below: 

Table C.1 Calibration coefficient for Diviner 2000 for different soil materials 

  
Calibration 
coefficients   

Material   a b Source   
N/A  1.25 0.35 SenTek (2009) 
Topsoil  1.44 0.33 Williams (2003) 
Sand with PHC 0.71 2.80 Fleming (2012) 
LFH  2.98 0.92 Current study 
LOS  2.95 1.09 Current study 
Peat  2.83 1.71 Current study 
Subsoil   2.93 1.14 Current study 

 

Note that the calibration coefficients determined in this study are relatively large 

compared to the calibration equations in the previous study (not including Fleming, 2012). The 

reason for this is because the other coefficients were developed to simulate a large range of 
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VWC values for each soil. Whereas, with this current study, the coefficients were formulated 

to simulate a much narrower range of VWC values; thus, the coefficients determined result in 

more accurate VWC estimates over the range of scaled frequencies measured in the 

laboratory.  
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Appendix D: Technical description of Columbus Instruments® Microoxymax™ and 
Model 180C™ 

Gas analyses for the peat, LOS, and LFH soil columns were conducted using the Columbus 

Instruments® Micro-Oxymax™ modular gas analyser. Gas analysis for the double-stacked 

column, on the other hand, was conducted using the Columbus Instruments® Model 180-C™ 

gas analyser.  

The two gas analysers are similar and the modular sensor are inter-changeable. The main 

difference is that the Micro-Oxymax™ has more sophisticated software and is designed to 

facilitate conducting fully-automated respiration experiments by refreshing the chamber 

headspace at set thresholds, compensating for pressure and temperature changes, and 

accurately calculating the headspace volume, incremental and cumulative rates, and 

respiratory quotients (Columbus Instruments 2002). It should be noted, however, that these 

sophisticated capabilities were not utilized for the soil column experiments. The Model 180-

C™ can be considered to be a stripped-down version of the Micro-Oxymax™ that is capable 

of being equipped with various configurations of gas sensors with varying ranges of sensitivity 

(Columbus Instruments 2016). Both the Micro-Oxymax® and the Model 180-C® were 

equipped with condensing air drier units and a sample drier (with Ca2SO4 columns) to remove 

moisture from the gasses, 10 channel multiplexers to facilitate sequential sampling of 

numerous locations, and were both equipped with O2, CO2 and CH4 sensors. 

For the Micro-Oxymax™, the O2 sensor was a 0-100% paramagnetic unit, the CO2 

was a 0-10% non-dispersive infrared (NDIR) unit (note that a 0-100% extended range NDIR 

unit was available, but not needed), and lastly, the CH4 sensor was a 0-100% NDIR unit. For 

the Model 180-C™, the O2 sensor was also a 0-100% paramagnetic unit, while CO2 sensors 

were 0-1% and 0-30% NDIR units, and the CH4 sensors were 0-1% and 0-30% NDIR units.  

  



150 
 

Appendix E: Calibration of Columbus Instruments® Micro-Oxymax™ and Model 
180C™ 

Calibration of the CO2 and CH4 sensors for both gas analysers was conducted on a weekly 

basis using the following gas mixtures: 

• 0.9% CO2/ 99.1% N2 

• 25% CO2/ 75% N2 

• 0.9% CH4/ 99.1% N2 

• 25% CO2/ 75% N2 

As was discussed previously, the chambers were purged with “Extra-dry air”, supplied 

by Praxair®, which is approximately 20% O2. Calibration of the O2 sensors was done using 

the extra-dry air and was re-calibrated whenever a new gas cylinder was used, which 

happened approximately twice per week.  
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Appendix F: Governing equations 

The following equation describes general transport by advection and diffusion: 

JAD = −De
∂C
∂z

+ νC = −De
∂C
∂z

+ � 𝜌𝜌𝜌𝜌
𝜇𝜇𝜃𝜃𝑎𝑎

∇𝑃𝑃� ∗ 𝐶𝐶   [F.1] 

The continuity equation for transport by advection and diffusion considering reactions: 

θa
∂Cg

∂t
= De

∂2Cg

∂z2 − νCg

δz
− θw

∂Cw
∂t

− R    [F.2] 

To estimate whether O2 can diffuse downward from the column headspace into the 

soil column against the pressure gradient caused by the incoming methane, the Peclet number 

was calculated considered the maximum mass loading to the column was 5m3/min, the length 

of soil in the column was approximately 0.70m and the diffusion coefficient for oxygen in free 

air (a conservative value) is approximately 1.8x10-5 m2/s: 

Pe = νL
D

= �8.3x10−8ms−1�(0.7m)
1.8x10−5m2s−1 = 0.003   [F.3] 

∴ diffusive transport dominates advective transport 

Taking into consideration that diffusive transport dominates over advective transport, 

the advective term can be canceled out of the continuity equation, yielding the diffusion only 

variant of the continuity equation: 

𝛉𝛉𝐚𝐚
𝛛𝛛𝐂𝐂𝐠𝐠

𝛛𝛛𝛛𝛛
= 𝐃𝐃𝐞𝐞

𝛛𝛛𝟐𝟐𝐂𝐂𝐠𝐠

𝛛𝛛𝐳𝐳𝟐𝟐 − 𝛉𝛉𝐰𝐰
𝛛𝛛𝐂𝐂𝐰𝐰

𝛛𝛛𝛛𝛛
− 𝐑𝐑    [F.4] 
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Appendix G: MATLAB® numerical model 

function Scale_Assignment3_Model1 

clc, close all 

[z1,VWC]=load_VWC; 

[v,HFC,Da0,Dw0,nP,nS,Cbot,Ctop,Th,ThL1,ThL2,tmax,dz,dt,H,t,z,nt,nz,p,C0,JD,JT]=define_
var; 

[A,De,thetaeq,AP,AS,DeP,DeS,thetaeqP,thetaeqS,thetawP,thetawS,thetaaP,thetaaS,thetae
qFC]=define_layers(VWC,z,z1,ThL1,nP,nS,H,Da0,Dw0,p); 

 

[t1,t2,t3,t4,C1,C2,C3,C4,tmed,cmed]=load_observed; 

 

[t,CD]=ode15s(@DiffFun,t,C0,[],nz,HFC,JD,De,Cbot,dz,thetaeq,thetaeqFC);% Initial 
Conditions  

 

[t,CT]=ode15s(@TotalFun,t,C0,[],v,nz,HFC,JT,De,Cbot,dz,thetaeq,thetaeqFC);  % Call 
subfunction that calculates t and CT(modeled adv-diff C) 

 

% Fit mean experimental data w/ polynomial 

poly_fit(tmed,cmed) 

 

% Plot CO2 concentration w/ depth below ground surface (DBGS) 

CO2_DBGS(CT,z,dt) 

 

% Plot VWC of cover soil w/ DPGS 

VWC_DBGS(VWC,z1) 

 

% Plot model and CO2 conc. measured in SFC 

model_fun(t,CD,CT,t1,t2,t3,t4,C1,C2,C3,C4) 

 

% Plot model and mean CO2 conc. (measured in SFC) 

model_mean(t,CD,CT,tmed,cmed) 

 

function model_fun(t,CD,CT,t1,t2,t3,t4,C1,C2,C3,C4)  

figure('Color',[1 1 1])                                 % Change backgroun color of plot to white 
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% subplot(2,1,1)                                       % Plot in subplot (OPTIONAL) 

p1=plot(t,CD(:,end),'r',t,CT(:,end),'b');      % Create plot w/ diff-only and adv-diff models as 
red and black lines 

set(p1(1),'LineWidth',1.75)                       % Set model linewidth 

set(p1(2),'LineWidth',1.75)                       % Set model linewidth 

hold on                                                     % Retain plot 

p11=plot(t1,C1,'o',t2,C2,'o',t3,C3,'o',t4,C4,'o');      % Plot field data from 4xFC  

set(p11(1),'MarkerSize',4)                              % Set marker size for C1 

set(p11(2),'MarkerSize',4)                              % Set marker size for C2 

set(p11(3),'MarkerSize',4)                              % Set marker size for C3 

set(p11(4),'MarkerSize',4)                              % Set marker size for C4 

ylim([0 0.25])                                                   % Set y-axis limits 

l1=legend('Diff Only','Adv-
Diff','FC1','FC2','FC3','FC4','Location','Southoutside','Orientation','Horizontal'); % Set Legend 

set(l1,'FontSize',11)                                         % Set Legend font size 

legend boxoff                                                   % Remove box outline from Legend 

xlabel('Duration [hr]','FontSize',16)                  % Label x-axis 

ylabel('Concentration CO_{2} [%]','FontSize',16)        % Label y-axis 

set(gca,'FontSize',12)                                       % Set chart area font size  

 

function model_mean(t,CD,CT,tmed,cmed) 

 

figure('Color',[1 1 1])                                 % Change background color of plot to white 

% subplot(2,1,2)                                       % Create subplot (OPTIONAL) 

p2=plot(t,CD(:,end),'r',t,CT(:,end),'b');      % Plot diff-only and adv-diff models as red and 
black lines 

set(p2(1),'LineWidth',1.75)                        % Set linewidth of red diff-only  

set(p2(2),'LineWidth',1.75)                        % Set linewidth of black adv-diff 

hold on                                                      % Retain plot 

p22=plot(tmed,cmed,'ko');                         % Plot mean CO2 conc. from field data 

set(gca,'FontSize',12)                                % Set chart area font size 

l2=legend('Diff Only','Adv-Diff','Mean','Location','Southoutside','Orientation','Horizontal');  % 
Set legend 
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set(l2,'FontSize',11)                                   % Set font size of legend 

legend boxoff                                             % Turn off box around legend 

xlabel('Duration [hr]','FontSize',16)            % Label x-axis and set font size 

ylabel('Concentration CO_{2} [%]','FontSize',16)        % Label y-axis and set font size 

set(gca,'FontSize',12)                                % Set font size of chart area 

ylim([0 0.25])                                              % Set y-axis limits 

 

function VWC_DBGS(VWC,z1) 

figure('Color',[1 1 1])                                 % Change background color of plot to white 

v=plot(VWC,z1);                                         % Plot VWC w/ DPGS 

set(gca,'ydir','reverse')                               % Reverse the dir. of the y-axis 

set(v(1),'LineWidth',1.75)                              % Change linewidth of VWC 

xlabel('VWC [%]','FontSize',14)                         % Label x-axis and set font size 

ylabel('Depth BGS [m]','FontSize',14)                   % Label y-axis and set font size 

set(gca,'FontSize',12)                                  % Set font size of chart area 

  

function CO2_DBGS(CT,z,dt) 

figure('Color', [1 1 1])                                % Change background color of plot to white 

plot(CT(1,1:end-1),z(1:end-1),'g*','LineWidth',2)       % Plot initial [CO2] w/ DPGS (not FC) 
and assign color and linewidth  

hold on                                                 % Retain plot 

plot(CT(end,1:end-1),z(1:end-1),'r*','LineWidth',2)     % Plot final [CO2] w/ DPGS (not FC) 
and assign color and linewidth 

hold on                                                 % Retain plot 

plot(CT(2:(10*dt):end-1,1:end-1),z(1:end-1),'k')        % Plot adv-diff w/ DPGS for soil layers 
below FC and assign marker color 

hold on                                                 % Retain plot 

plot(CT(2:(10*dt):end-1,end),z(end),'k.')               % Plot adv-diff w/ DPGS for FC layer and 
assignn marker color 

hold on                                                 % Retain plot 

plot(CT(1,end),z(end),'g*','LineWidth',2)               % Plot initial [CO2] in FC and assign color 
and linewidth  

plot(CT(end,end),z(end),'r*','LineWidth',2)             % Plot final [CO2]in FC and assign color 
and linewidth 
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hold on                                                 % Retain plot 

set(gca,'ydir','reverse','FontSize',12)                 % Change dir. of y-axis and set font size 

xlabel('CO_2 concentration [%]','FontSize',14)          % Label x-axis and set font size 

ylabel('Depth BGS [m]','FontSize',14)                   % Label y-axis and set font size 

l3=legend('Initial','Final','Location','Southoutside','Orientation','Horizontal');  % Set legend 

set(l3,'FontSize',9.5)                                  % Set font size of Legend 

legend boxoff                                           % Turn off box around Legend 

 

function poly_fit(tmed,cmed) 

n=2;                                                    % Set nth order polynomial 

PF = polyfit(tmed,cmed,n);                              % Fit an nth order polynomial  

 

min_tmed=min(tmed);                                     % Min time in tmed 

max_tmed=max(tmed);                                     % Max time in tmed 

xx=[min_tmed:(max_tmed-min_tmed)/100:max_tmed];         % Create an array of ~100 pts 

 

yy=polyval(PF,xx);                                      % Find polynomial value at each pt 

 

resid = polyval(PF,tmed)-cmed;                          % Calculate residual values   

figure('Color',[1 1 1])                                 % Change background color of plot to white 

plot(tmed,cmed,'*',xx,yy)                               % Plot mean CO2 field data and polynomial 

hold on                                                 % Retain plot 

for i=1:numel(tmed)                                     % Plot mean conc. value w/ polynomial 

    xxx=[tmed(i) tmed(i)]; 

    yyy=[cmed(i) interp1(xx,yy,tmed(i))]; 

  

plot(xxx,yyy,'k')                                       % Plot lines connecting to residuals 

end 

grid on                                                 % Turn grid on  

title([num2str(n),' order fit'])                        % Title plot with polynomial order  

xlabel('Duration [hr]','FontSize',14)                   % Label x-axis and set font size 

ylabel('Concentration CO_2 [%]','FontSize',14)          % Label y-axis and set font size 
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set(gca,'FontSize',12)                                  % Set font size of chart area 

 

function [z1,VWC]=load_VWC 

 

data=csvread('Water_Contents2.csv');                    % Read VWC w/ DBGS data from Excel 
file 

 

z1=data(:,1);                                           % Assign variable "z1" to elevation (DBGS) data 

VWC=data(:,2);                                          % Assign variable "VWC" to water content data 

 

function 
[v,HFC,Da0,Dw0,nP,nS,Cbot,Ctop,Th,ThL1,ThL2,tmax,dz,dt,H,t,z,nt,nz,p,C0,JD,JT]=define_
var 

 

% Definte parameters 

Cbot=0.45;                                              % Bottom CO2 constant concentration boundary 
condition [%] 

Ctop=0.03;                                              % Top CO2 constant concentration boundary 
condition [%] 

ThL1=0.3;                                               % Thickness of first soil layer [m] 

ThL2=1.2;                                               % Thickness of second soil layer [m] 

Th=ThL1+ThL2;                                           % Thickness of cover soil [m] 

tmax=40;                                                % Duration of purge test experiment [hr] 

dz=0.1;                                                 % cover soil space step [m] 

dt=0.5;                                                 % time step [hr] 

H=0.03;                                                 % Henry's Law Constant for CO2  

p=3.3;                                                  % Material constant  

v=0.005;                                                % Pore-gas velocity [m/hr] 

HFC=0.3048;                                             % Height of flux chamber (HFC) 

 

% Define De variables  

Da0=0.0576;                                             % Diffusion coefficient in free air [m2/hr] 

Dw0=0.000008;                                           % Diffusion coefficient in water [m2/hr] 

nP=0.75;                                                % Total porosity of peat layer 
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nS=0.4;                                                 % Total porosity of subsoil 

 

 

% Generate finite difference grid 

t=0:dt:tmax;                                            % Initialize time matrix  

z=[Th-dz/2:-dz:dz/2 (-0.3048/2)];                       % Initialize coversoil thickness matrix (for 
block centered grid)including FC  

 

nt=numel(t);                                            % # of elements in time matrix 

nz=numel(z);                                            % # of elements in cover soil thickness matrix 

 

C0=(((Cbot-Ctop)/Th)*z)+Ctop;                           % Assign initial CO2 concentration 
conditions in soil 

C0(end)=0;                                              % Assign zero initial CO2 concentration in FC 

 

JD=zeros(nt,nz);                                        % Initialize diffusive-only initial flux matrix  

JT=zeros(nt,nz);                                        % Initialize advective-diffusive initial flux matrix  

 

function 
[A,De,thetaeq,AP,AS,DeP,DeS,thetaeqP,thetaeqS,thetawP,thetawS,thetaaP,thetaaS,thetae
qFC]=define_layers(VWC,z,z1,ThL1,nP,nS,H,Da0,Dw0,p) 

 

thetawP=mean(VWC(z1<ThL1));                             % Average VWC of peat during purge 
test (0-0.3m)      

thetawS=mean(VWC(z1>ThL1));                             % Average VWC of subsoil during purge 
test (0.3-1.5m) 

 

thetaaP=nP-thetawP;                                     % Air-filled porosity for peat 

thetaaS=nS-thetawS;                                     % Air-filled porosity for subsoi 

 

thetaeqP=thetaaP+H*thetawP;                             % Equivalent air content for peat 

thetaeqS=thetaaS+H*thetawS;                             % Equivalent air content for subsoil 

thetaeqFC=1; 
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DeP=10*(1/nP^2)*((Da0*thetaaP^p)+(Dw0*thetawP^p));      % Effective diffusion coefficient 
for peat 

DeS=(1/nS^2)*((Da0*thetaaS^p)+(Dw0*thetawS^p));         % Effective diffusion coefficient for 
subsoil 

 

AP=DeP/thetaeqP;                                        % Constant for peat to shorten code  

AS=DeS/thetaeqS;                                        % Constant for subsoil to shorten code 

 

% Define soil layer properties  

A(z<0.3,:)=AP;                                          % Assign AP (peat) at depths < 0.3m 

De(z<0.3,:)=DeP;                                        % Assign DeP (peat) at depths < 0.3m 

thetaeq(z<0.3,:)=thetaeqP;                              % Assign thetaeqP (peat) at depths < 0.3m 

     

De(z>0.3,:)=DeS;                                        % Assign DeS (subsoil) at depths > 0.3m 

A(z>0.3,:)=AS;                                          % Assign AS (subsoil) at depths > 0.3m 

thetaeq(z>0.3,:)=thetaeqS;                              % Assign thetaeqS (subsoil) at depths > 0.3m 

 

function [t1,t2,t3,t4,C1,C2,C3,C4,tmed,cmed]=load_observed 

% Import data from 4xFC purge test 

data=csvread('Excel_Data.csv');                         % Read data from 4xFC purge test 

 

t1=data(:,1);                                           % Assign "t" variable to time data 

t2=data(:,3);  

t3=data(:,5); 

t4=data(:,7); 

C1=data(:,2);                                           % Assign "C" variable to CO2 concentration data 

C2=data(:,4);  

C3=data(:,6);  

C4=data(:,8);  

 

ts=[t1 t2 t3 t4];                                       % Create array containing all time measurements  

tmed=mean(ts,2);                                        % Calculate mean time representative of 
sampling time for all 4 flux chambers  
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cs=[C1 C2 C3 C4];                                       % Create array containing all CO2 
measurements 

cmed=mean(cs,2);                                        % Calculate mean [CO2] representative of all 4 
flux chambers  

 

function [dCDdt]=DiffFun(t,CD,nz,HFC,JD,De,Cbot,dz,thetaeq,thetaeqFC)           

 

% Bottom flux BC 

JD(1,1)=-De(1,1)*((CD(1,1)-Cbot)/(dz/2));               % "Fudged" constant CO2 conc. bottom 
BC 

  

% Internal fluxes 

for i=2:nz-1 

    dCD=CD(i,1)-CD(i-1,1); 

    R=(De(i,1)+De(i-1,1))/2;                            % Average De for each space step in order to 
account for fringe zone at soil interface 

    JD(i,1)=-R.*(dCD/dz); 

end 

 

 

dCD=CD(nz,1)-CD(nz-1,1);                                               

JD(nz,1)=-De(nz-1,1)*dCD/(dz/2);                         % Calculate fluxes for internal points not 
including FC  

JD(nz+1,1)=0;                                            % No flux out of FC 

 

% Continuity 

dzz=HFC;                                                 % Assign "dzz" variable as HFC 

i=1:nz;                                                  % For all "i" up to, but not including, final "end" i 

dCDdt(i,:)=-(JD(i+1,1)-JD(i,1))./(dz*thetaeq(i,1)); 

dCDdt(nz,1)=-(JD(nz+1,1)-JD(nz,1))./(dzz*thetaeqFC);     % Changing space step for FC 

 

function [dCTdt]=TotalFun(t,CT,v,nz,HFC,JT,De,Cbot,dz,thetaeq,thetaeqFC)          
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% Bottom flux BC 

JT(1,1)=v*CT(1,1)-De(1,1)*((CT(1,1)-Cbot)/(dz/2));       % "Fudged" constant CO2 conc. 
bottom BC 

  

% Internal fluxes 

for i=2:nz-1 

    dCT=CT(i,1)-CT(i-1,1); 

    A=(De(i,1)+De(i-1,1))/2;                             % Average De for each space step in order to 
account for fringe zone at soil/soil interface 

    JT(i,1)=v*CT(i-1)-A.*(dCT/dz); 

end 

 

dCT=CT(nz,1)-CT(nz-1,1); 

A=De(nz-1,1);                                            % Average thetaeq and De for each space step in 
order to account for fringe zone at soil/soil interface 

JT(nz,1)=v*CT(nz,1)-A*dCT/(dz/2);                        % Calculate fluxes for internal points not 
including FC  

JT(nz+1,1)=0;                                            % No flux out of FC 

 

% Continuity 

dzz=HFC;                                                 % Assign "dzz" variable as HFC 

i=1:nz;                                                  % For all "i" up to, but not including, final "end" i 

 

dCTdt(i,:)=-(JT(i+1,1)-JT(i,1))./(dz*thetaeq(i,1)); 

dCTdt(nz,1)=-(JT(nz+1,1)-JT(nz,1))./(dzz*thetaeqFC);     % Changing space step for FC 
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