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ABSTRACT

Linear Predictive Coding (LPC) has been used to compress and encode speech

signals for digital transmission at a low bit rate. The Partial Correlation (PARCOR)

parameter associated with LPC that represents a vocal tract model based on a

lattice filter structure is considered for speech recognition. For the same purpose,

the use of FIR coefficients and the frequency response of AR model were previously

investigated.

In this thesis, we investigate the mechanics of the speech production process in

human beings and discuss the place and manner of articulation for each of the major

phoneme classes of American English. Then we characterize some typical vowel and

consonant phonemes by using the eighth order PARCOR parameter associated with

LPC.

This thesis explores a method to detect phonemes from a continuous stream

of speech. The system being developed slides a time window of 16 ms and calcu-

lates PARCOR parameters continuously, feeding them to a phoneme classifier. The

phoneme classifier is a supervised classifier that requires training. The training uses

TIMIT speech database, which contains the recordings of 630 speakers of 8 major

dialects of American English. The training data are grouped into the vowel group

including phoneme [ae], [iy] and [uw] and the consonant group including [sh] and

[f]. After the training, the decision rule is derived. We design two classifiers in this

thesis, one is a vowel classifier and the other one is a consonant classifier, both of

them use the maximum likelihood decision rule to classify unknown phonemes.

The results of classification of vowel and consonant in a one-syllable word are

shown in the thesis. The correct classification rate is 65.22% for the vowel group.

The correct classification rate is 93.51% for the consonant group. The results in-

dicate that PARCOR parameters have the potential capability to characterize the

phoneme.
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Chapter 1

INTRODUCTION

1.1 LPC Background

The theory of linear predictive coding (LPC), as applied to speech, has been

well studied and understood. LPC determines a Finite Impulse Response (FIR)

system that predicts a speech sample from the past samples by minimizing the

squared error between the actual occurrence and the estimated. The parameters

called Partial Correlation (PARCOR) associated with a FIR model represent the

basic physical properties, i.e. transmittance and reflectance of the sound wave

propagating through the vocal tract. LPC is one of the promising approaches for

compressing speech signals and encoding. The LPC encoding is related to analysis

of speech whereas decoding corresponds to speech synthesis. [1] The whole system

is referred to as a vocoder which is shown in Figure 1.1 The coefficients of the

FIR system are encoded and sent. At the receiving end, the inverse system called

Autogregressive (AR) model is excited by a random signal to reproduce the encoded

speech. In the decoder, excitation and the vocal tract model play important roles

to reproduce the speech. The vocal tract is modeled by a time-invariant, all-pole,

recursive digital filter over a short time segment (typically 10-30 ms). The time-

varying nature of speech is handled by a succession of such filters with different

parameters. The excitation is modeled either as a series of pitch pulses (voiced) or as

white noise (unvoiced). The use of LPC can be extended to speech recognition since

the FIR coefficients are the condensed information of a speech signal of typically

10-30 ms. The Residual Excited Linear Predictive (RELP) vocoder, a class of

LPC that uses the residual error signal as a source of excitation, was developed

1
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and reported. In the Residual Excited Linear Predictive (RELP) vocoder, the

vocal tract is characterized in the same way as in the pitch-excited LPC. However,

instead of switching the source of excitation between pitch pulses for voiced and

white noise for unvoiced speech, the residual error signal is used. Since the residual

signal becomes a significant amount of data to transmit, RELP is not efficient in

compression, but produces more natural speech. [2]

LPC Analyzer

Pitch Detector

Speech Signal

<TRANSMITTER>

CODER�
��>

Z
ZZ~ �

��>

Z
ZZ~

<RECEIVER>

Synthesized
Speech Signal

LPC Synthesizer DECODER

-

?

���

Figure 1.1 An illustration of LPC vocoder

1.2 Speech Recognition

Speech recognition generally may be interpreted as translation of speech signals

into linguistic indexes such as words and sentences by machines. Or in other words,

it is a speech-to-text conversion problem. The speaker wants his or her voice to be

transcribed into text by a machine. It can be used for voice-activated transcrip-

tion, hearing impaired individuals and telephone assistance. Recently, Research has

helped to develop systems that recognize continuous speech in specialized applica-

tions, such as to create telephony applications in continuous-speech recognition.

For instance, the Uniter Airlines has several speech recognition systems, including

employee travel reservations, consumer flight information, up-to-the-minute report-

ing of lost baggage. Here’s an example of a person calling the flight information.

When system ask for arrival or departure information, the caller can answer depar-
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ture or arrival. When the system ask for the flight number, it’s expecting to hear

many different responses from callers, such as three sixty-one, three six one and

flight three sixty-one etc. Because of this, the speech recognition system should be

accountable for "understanding" all possible answers. [3] There are some popular

software for speech recognition in the market, such as "Dragon NaturallySpeaking

9" which is developed by InSync Speech Technologies, Inc. It is up to 99% accurate.

It is often more accurate and faster than typing because there is no spell mistake

and people usually can speak 100 words per minute but type around 40 words. You

can use it to dictate letters, e-mails and surfing the web by voice. [4] IBM’s ViaVoice

is another speech to text software. In order to achieve higher accurate rate, the

software need to be trained and listen the target speech in a good environment.

People can distinguish a target sound from the interference sound, which is not big

enough noise. But for speech recognition by machine, most of the speech recog-

nition system assumes that speech signals have the high signal-noise-ratio (SNR).

The high SNR speech signals are extracted and fed into the recognition system

or the recognizer. Recently there are some research in recognizing speech sounds

in a complex realistic acoustic environments. [5] [6] However, we will not discuss

the technologies in this thesis. The ultimate goal is giving computers the ability

to act on complex, naturally spoken queries and commands. From the point of

system design, the isolated word recognition is more productive and simple. That’s

why there are are several speech recognition systems available for the variety of the

speech recognition task such as the small vocabulary with isolated words or con-

nected words and large vocabulary with isolated words or connected words. In this

research, we investigate recognition of phonemes in a continuos speech stream by

using PARCOR parameters in LPC vocoder. LPC is not a new technique in speech

signal processing, which is used for low-bit rate speech coding and transmission for

many years. The speech which is reproduced by LPC synthesize is recognizable,

but the rate of understanding synthesis speech signal is around between 70% and

80% in some case.

The speech recognition system involves complicated techniques, which gener-



4

ally include five modules. The five modules are speech signal processing, feature

extraction, segmentation, classification and language model, which are shown in

Figure 1.2

Speech Signal Signal Processing

Feature Extraction

Segmentation

Classification

Language Modeling Word Strings

-

-

?

?

?

?

Figure 1.2 A general speech recognition process

The first and second modules, speech signal processing and feature extraction,

deal with digitalizing speech signal and processing the sampled speech signal and

converting the processed signal into a feature pattern that is suitable for recogni-

tion. In general these steps compute a set of parameters, which are the typical

representation corresponding to each speech sound. These parameters are often

called the features and are generally computed at a short fixed-time interval. In

our research, the linear predictive coding (LPC) technique is introduced and the

PARCOR parameters are extracted as the features.

In the feature space, the segmentation module partitions the feature pattern

into different segments each corresponding to a linguistic unit such as phoneme

or word. The classification matches a segment to one of the trained classes such

phoneme, words and sentences.
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The final language processing stage tries to predict and determine the possible

word selections by using the linguistic constraint or rule. [7]

1.2.1 Signal Processing and Feature Extraction

First the A/D (analog to digital) converter is used to digitize the speech signal.

The appropriate sample rate must be chosen in order to insure the quality of the

speech. The low pass anti-aliasing filter must be implemented before the A/D

converter so that the frequencies of the speech signal can be band limited thereby

there is not any aliasing between the baseband from 2πn/T intervals (1/T is the

sample rate). [8]

The most sensitive frequency band for the human ear is around 3 KHz. So a

8 KHz sampling rate is enough to provide satisfactory quality speech. A 16 KHz

sampling rate provides very high quality speech. When the speech signal is sampled

or digitized, we can analyze the discrete-time representation in a short time interval,

such as 10-30 ms. Although the speech signal is naturally time variant signal, it can

be assumed to be a time invariant signal in short intervals in order to make analysis

simple. In a time-varying system, the parameter estimation is fairly difficult. [9]

One of the most important features for speech signal is frequency. A popular

method to get the representation of the digitized speech signal in frequency do-

main is the short time discrete Fourier transform (DFT). The short time spectrum

of speech signals can identify the formants, which are considered very important

factors to classify the vowels. Formants change as the phoneme class varies, corre-

sponding to the change of the place of articulation, which is mainly determined by

the shape of the vocal tract. [10]

The direct digital representation of the short time spectrum can be used as a

feature vector for speech recognition, but the feature vector includes too excessive

dimensions. A low-dimension feature vector, which can effectively represent the

relevant information, is obviously needed. Linear Predictive Coding is one of the

effective methods. The LPC based on investigating the human being speech pro-

duction mechanism provides an efficient parametric model for the physical processes
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in the vocal tract. In other words, the vocal tract can be modeled by successive

and time-invariant filters, which are characterized by the LPC parameters.

1.2.2 Segmentation and Classification

Segmentation and classification should account for differences in speaker vari-

ability, such as pronunciation duration and regional accent differences, in a speaker

independent automatic speech recognition (ASR) system.

The segmentation divides the feature pattern into segments or pattern, each

segment corresponds to a linguistic unit such as a phoneme or a word. The classifi-

cation or pattern matching is to match the feature vector pattern into a prescribed

class model, which are designed during the training stage. The class model, which

usually is represented by a set of parameters, may also be referred to as the tem-

plate or prototype. There are various ways of classification or pattern matching

techniques, which match the unknown pattern into the template or prototype. One

basic method in pattern classification is to compare the distance between input

pattern and the class model, which is trained prior to classification. In a concrete

mathematical way, the distance can be given by the Euclidean distance,

d(k) =
n
∑

i=1

[x(i)− ck(i)]2 k = 1, 2, · · · , m (1.1)

where x(i) i = 1, 2, 3 . . . , n is the input feature vector sequence or unknown

pattern, ck(i) i = 1, 2, 3 . . . , n and k = 1, 2, 3, . . . , m is the template, which

is designed beforehand, the i is the dimension of the feature space and k indicates

the different classes.

The classification rule is that if d(k) is the minimum distance, then the unknown

pattern x belongs to class k.

1.3 Motivation

For speech recognition, the greatest common denominator of all recognition sys-

tems is the signal processing front end, which converts the speech waveform to

some type of parametric representation (generally at a considerably lower informa-
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tion rate) for further analysis and processing. A wide range of possibilities exists for

parametrically representing the speech signal; these include the short time energy,

zero crossing rates, short time spectral envelope and other related parameters. In

Section 1.1, we mentioned that the FIR coefficients of LPC have the condensed in-

formation of a speech signal of typically 10-30 ms. Therefore the LPC is generally

considered as the core of the signal processing front end in a speech recognition

systems.

LPC provides a good model of the speech signal. The all-pole model of LPC

provides a good approximation to the vocal tract spectral envelope. How LPC is

applied to the analysis of speech signals leads to a reasonable source-vocal tract

separation. As a result, a representation of the vocal tract characteristics becomes

possible. The method of LPC is mathematically precise and is simple to implement

in either software or hardware. Based on the above considerations, the LPC is used

as the signal processing at the front end of recognizers. [10]

1.4 Research Objectives

Investigating human speech production and perception process is very useful

to develop a mathematical model, which can realize the recognition. One of the

research objectives is to investigate the speech production process of human beings

to characterize the acoustic characteristics of some typical vowel and consonant

speech sounds by using PARCOR parameters associated with LPC. The speech

recognition system is a quite complicated process, particularly the large vocabulary

continuous speech recognition (CSR) in automatic speech recognition (ASR). In

order to build the complex and big system, we usually start to analyze the related

simple and small system. For the speech recognition, we can start to research

the recognition of isolated words in small vocabulary. The other objective of this

research is to explore a method to classify vowel and consonant phonemes in a

one-syllable word in a continuous speech by means of PARCOR parameters.
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1.5 Thesis Organization

The thesis is organized into seven chapters.

Chapter 1 introduces the brief background of LPC technique and speech recog-

nition. Motivation and objectives of research are discussed. Thesis organization is

given in this chapter.

Chapter 2 discusses the mechanics of speech production process in human beings.

The summary of phonemes of American English and the discussion of the place

and manner of articulation for each of the major phoneme classes are given in this

chapter. Then a simple model for speech production is illustrated.

Chapter 3 introduces Linear Predictive Code (LPC) of speech and its mathemat-

ical background. In this chapter, we take a look at liner prediction and the sister

topic of autoregressive modeling. In the discussion of linear prediction, an algo-

rithm known as the Levinson recursion is introduced to solve the Normal equations

and get the LPC coefficients. Although the original motivation for the Levinson

recursion was to provide a fast method to solve the Normal equations, the method

brought on other insights are more farreaching. They lead to an efficient lattice

structure for the filter associated with PARCOR parameters. Finally, the LPC

vocoder model is given.

Chapter 4 describes an experimental method to how to characterize the phonemes

by means of the PARCOR parameters. The distributions of PARCOR parameters

are presented among different phoneme classes. The experimental results are dis-

cussed in this chapter. The potential capability of the PARCOR parameters to

characterize phonemes is derived.

Chapter 5 is to explore a method to realize the classification of phonemes in

one-syllable word. How to train data and derive the decision rules are discussed.

By using the decision rule, which is maximum likelihood decision rule, we design

two classifiers, one is vowel classifier and the other one is consonant classifier. After

the preprocessing, the test data are fed into the classifiers and the test results are

listed and the discussion are presented in this chapter.
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Chapter 6 summarizes the research conclusions and the future research directives

are suggested.



Chapter 2

PRODUCTION AND BASIC
CHARACTERIZATION IN SPEECH SIGNAL

In order to apply digital signal processing (DSP) techniques to the speech signal,

it is essential to understand the fundamentals of the speech production process and

to find the basic properties of speech sound.

2.1 Speech Production

How do human beings produce speech sounds? In order to answer this question,

first we should see the physical and physiological vocal organs. The vocal organs

involved in human beings speech production mainly include the lung, larynx, vocal

cord and vocal tract. Figure 2.1 illustrates the vocal systems. [11]

Lungs serve as an air reservoir and energy source for the production of speech.

The Larynx contains a pair of vocal folds which extend from the thyroid cartilage

to the arytenoid cartilages. The space between the vocal folds, called the glottis,

is controlled by the arytenoid cartilages. During speech production the vocal folds

are on-off to control the vibration and fundamental frequency. The vocal tract can

be imagined as a single tube which begins at the vocal folds and ends at the lips

with a side branch leading to the nasal cavity. The nasal cavity extends from the

velum to the nostrils and assists the vocal tract to produce the nasal sounds of

speech. The vocal tract consists of the pharynx which connects the larynx as well

as the oesophagus with the mouth or oral cavity. The function of oral cavity is

the most important in the vocal tract because its size and shape can be varied by

adjusting the relative positions of the palate, the tongue, the lips, the jaws and

10
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Figure 2.1 The vocal systems of human beings.Source: Depart-
ment of Linguistics, University of Pennsylvania

the teeth. The length of the vocal tract is typically about 17 centimeters. Speech

production is performed during the expiration phase. The expiratory airflow passes

through the vocal folds to reach the vocal tract to produce different types of sounds.

Speech sounds vary depending on the different manner and place of the human vocal

systems, such as vibration vs. no vibration of the vocal folds, front vs. back position

of the tongue and stop vs. continuous of the sound. [12]

So far, we briefly discuss how human beings produce speech sounds. There are

lots of different languages in the world and each language has its own sounds. In the

following, we will discuss the classification of speech sounds in American English.

2.2 Characterization of Speech Sounds

Most languages, including English, can be classified into a set of distinctive

sounds or phonemes which are smallest units of speech sounds. One or more

phonemes combine to form a syllable, and one or more syllables to combine form a
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word. Languages vary in terms of the number of distinct sounds they use. For ex-

ample, American English has 39 standard phonemes, but Italian has approximately

25 phonemes (depending on the accent). In TIMIT speech corpus of American En-

glish, there are 54 basic distinctive sounds. [13] In Table 2.1, the phonetic symbols

for American English are listed. [10] In Table 2.1, we use a unique phonetic sym-

bol to represent each distinctive sound. The phonetic symbols are represented in

ARPABET. The most common phonetic alphabet is the International Phonetic Al-

phabet (IPA). Linguists devised the International Phonetic Alphabet (IPA), which

is a system of phonetic notation. It is used to accurately and uniquely represent

each of the wide variety of sounds used in spoken human language. The IPA is

intended as a notational standard for the phonemic and phonetic representation of

all spoken languages, but it uses many special characters that are not part of the

ASCII character set. So the ARPABET is a widely used phonetic alphabet, which

uses only ASCII characters.

There are a variety of ways to classify the speech sounds. From the view of the

mode of excitation, we can classify the speech sounds into voiced, unvoiced sounds

and plosive sounds. For voiced sounds, the airflow expelled from the lung is forced

to pass the glottis with the tension of the vocal folds adjusted so that they generate

vibration, thereby producing a quasi-periodic pulse of air as the excitation to the

vocal tract. For example, in Table 2.1, the sounds [iy], [ey], and [ae] in the word

"bee", "bait" and "cat" are voiced sounds. For unvoiced sounds, the vocal folds

are the absence of vibration, and the forcing airflow passes through the constriction

which forms at some point in the vocal tract to produce turbulence, also thereby

producing a broad-spectrum noise source to excite the vocal tract. In Table 2.1, the

sounds labelled [sh], [p] and [f] in the word "shut", "pet" and "fun" are unvoiced

sounds. For plosive sounds, by making a complete closure which is usually toward

the front of the vocal tract, building up pressure behind the closure and abruptly

releasing it, the plosive sounds are produced. The sound [ch] in the word "church"

in Table 2.1 is a typical representation.

We can classify sounds into the continuant or the noncontinuous sound. Usually
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Table 2.1 Phonetic symbols for American English

Symbol Example Symbol Example

iy bee m mom

ih bit n noon

eh bet ng sing

ae cat v van

aa bob dh that

er bird z zoo

ah but zh azure

ao bought f fun

uw boot th thin

uh book s sat

ow boat sh shut

ay buy b bee

oy boy d dog

aw down g goat

ey bait p pet

w wit t too

l let k kick

r rent jh judge

y you ch church

h hat
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when producing continuant sounds, the vocal tract keeps a fixed shape excited by

the appropriate source. but the noncontinuous sounds are produced by a changing

vocal tract shape. [14]

In American English, the phonemes can be classified into the four broad cate-

gories: vowels, diphthongs, semivowels, and consonants. In all phonemes of Amer-

ican English, vowels are always voiced and most consonants are unvoiced except

some stop and fricative phonemes. Each of the classes can be broken into sub-

classes according to the manner and place of articulation of the sound within the

vocal tract. [10] [1]

2.2.1 Vowels

The principle of vowel production can be described from the excitation as source

energy and the place of articulation. Vowels are excited by a quasi-periodic pulse

caused by the vibration of the vocal folds. The place of articulation determines the

shape of the vocal tract and thereby different sounds are generated by changing the

shape of the vocal tract. For vowels, actually the vocal tract shape is relatively fixed

and primarily determined by the position of tongue and the positions of the jaw,

lips and velum, which also influence the resulting sounds. The resonant frequencies

of the vocal tract are decided by the shape of the vocal tract. In the context of

speech production, the resonance frequencies of the vocal tract, independent of

pitch, are called formants. The pitch and the fundamental frequency (F0) are often

used interchangeably, although there is a subtle difference. Pitch is a perceptual

measure, in other words, pitch must be heard and measured by ears connected to a

brain. The lowest frequency produced by any particular instrument is known as the

fundamental frequency. It does not have to be sensorially perceived. The formants

in speech are the resonances in the vocal tract. The summary is that different

sounds are produced by the varieties of the vocal tract shape, and the vocal tract

shape further determines the formants of the speech sounds, so the formants of the

vocal tract are very useful in characterizing each speech sound class and play a very

important role in speech recognition. The transfer function of the vocal tract can
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determine the spectral envelope of each vowel. When vowels are produced, the vocal

tract keeps an essentially fixed shape and the spectra of the vowel are generally well

defined, which contributes to the recognition not only for human beings but also

for machines.

In terms of tongue position in the oral cavity, vowels are classified into front,

central and back three sub categories. Front vowels are [iy], [ih], [eh] and [ae]. The

vowels [aa], [er], [ah] and [ao] are mid vowels, and [uw], [uh] and [ow] are back

vowels.

2.2.2 Diphthongs

American English has four diphthongs including [ay], [oy], [aw], and [ey] in the

respective words "buy", "boy", "down" and "bait", which shown in Table 2.1. The

class of the diphthong are transitional sounds. They are produced by starting in a

manner and place of articulation of one vowel and ending the articulation position

of another vowel. In other words, when diphthong sounds are produced, the vocal

tract shape moves smoothly from one vowel to another.

2.2.3 Semivowels

Semivowels lie midway between vowels and consonants. In these phonemes,

there is more constriction in the vocal tract than for the vowel, but less than the

other consonant categories which will be introduced below. But because of their

vowel-like nature, these sounds are called semivowels. They are strongly influ-

enced by the context where they occur which results in a difficulty to characterize.

Semivowels consist of the [w] in "wit", the [l] in "like", the [r] in "red", and the [y]

in "yes."

2.2.4 Consonants

The principle of consonant production is more complicated than the vowel. We

describe it in the following categories: voiced vs. unvoiced; manner of articulation;

place of articulation. The place of articulation means where the constriction is

located in the vocal tract. The consonants are classified into the following sub-

classes.
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Nasals

Nasals are voiced phonemes which mean the vocal fold vibrate to cause the

excitation source air flow. Nasals are generated when the vocal tract is constricted

at some point and the velum is lowered (air can flow through the nasal cavity).

There are three nasal consonants including [m] in the word "me", [n] in the word

"no" and [ng] in the word "sing". The position where the constriction is made in

oral cavity for each nasal is different. The constriction of the [m] is at the lips.

The constriction of the [n] is just back of the teeth. For the [ng], the constriction

is forward of the velum itself.

Fricatives

Fricatives are grouped into two sets, one is the unvoiced fricative and the other

one is the voiced fricative.

For unvoiced fricatives, when they are produced, the vocal folds do not vibrate

and the vocal tract is excited by a steady air flow which becomes turbulent in the

location of the constriction in the vocal tract. The position of the constriction

determines which fricative sound is generated. Unvoiced fricatives include [f] in

the word "fun", [th] in the word "thin", [s] in the word "set" and [sh] in the word

"sheep". The constriction of [f] is located near the lips, for [th] it is near the teeth,

for [s] it is close the middle of the oral cavity, and the constriction of the [sh] is

located the back of the oral cavity.

For unvoiced fricatives, the broad spectrum noise serves as the source at the

position where the constriction is located in the vocal tract. For voiced fricatives,

because they are voiced sounds, the excitation source is generated by the vibration

of the vocal folds. It makes a significant difference from their unvoiced counterparts.

But the place of articulation or the position of the constriction for the two groups

fricatives are essentially identical. The counterparts of the unvoiced fricative [f],

[th], [s], and [sh] are [v], [dh], [z] and [zh] in the voiced fricatives group. The example

words are "vote", "then", "zoo", and "azure".
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Stops

There are two subsets of the stop consonants, like the fricative consonants, one

set consists of voiced stop consonants, the other one is comprised of the unvoiced

stop consonants.

Stop consonants are produced by building up pressure behind some position

where a total constriction is located in oral cavity, then abruptly releasing the pres-

sure. Stop consonants are short in duration and are not continuant sounds. Voiced

stop consonants include [b], [d], and [g], the corresponding words are "bus", "dog"

and "good". For [b] the constriction is at the lips, for [d] it is back of the teeth,

and [g] the constriction is close to the velum. The places of constriction of unvoiced

stop consonants are similar to voiced stop counterparts. The corresponding un-

voiced stop consonants are [p] in the word "park", [t] in the word "ten", and [k] in

the word "kite". But the major exception for unvoiced stops is during the pressure

builds up and the vocal tract is constricted at some point with the closure of tract,

the vocal folds do not vibrate. Even though the vocal tract is closed at some point,

the vocal folds are able to vibrate for voiced stop consonants.

Affricates and Whisper

The final two classes of consonants in American English are the affricatives [jh]

[ch] and whisper phoneme [h]. The affricate [ch] is unvoiced and dynamical sound.

We can model it as a concatenation of the stop [t] and the fricative [sh]. The affricate

[jh] is voiced and dynamical sound, too. It can be imaged as the concatenation of

the stop [d] and the fricative [zh]. The phoneme [h] is produced without the vocal

folds vibrating and by a steady air flow exciting the vocal tract. But the turbulent

flow is produced at the glottis. It is not easy to characterize the phoneme [h], since

the characteristics of phoneme [h] are similar to those of the vowel which follows

phoneme [h]. It means when production of the phoneme [h], the vocal tract assumes

the position for the following vowel.
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2.3 Vocal Tract Model

We have discussed speech sounds and the way they are produced. We shall

consider mathematical models of the process of speech production. In other words,

based on the important physical characteristics, realistic and tractable mathemat-

ical models should be studied and constructed. Such a model is the basis for the

analysis and synthesis of speech. [1] The following block diagram in Figure 2.2 shows

the simplified model for speech production.

Lungs Vocal Tract Speech- -

Periodic
Pulse

Random
Noise

Vocal Tract Model
( Parameters) Output

-

-

s
w
i
t
c
h

- -

Figure 2.2 Block diagram of the simplified model for speech
production

On the top of Figure 2.2, it is a simple block model to represent the speech

production process from the physiological view. The corresponding mathematical

model is shown at the bottom Figure 2.2. The lungs act as the source of air for

exciting the vocal tract. Based on the knowledge that the actual excitation for

speech essentially is either a random noise (for unvoiced sounds) or a periodic pulse

(for voiced sounds). So we use a switch to chose the excitation source, which is either

a random noise or a periodic pulse. In physiologically view, the shape, position and
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manner of the vocal tract play an important role to determine the different sounds.

In the mathematical way, we need to find a set of parameters to characterize the

vocal tract. These parameters can be thought as time-invariant in a short time

(10-30 ms).



Chapter 3

LINEAR PREDICTIVE CODING OF SPEECH

3.1 Overview

Before introducing the LPC vocoder, let us to talk about the speech CODEC.

The main speech coding techniques are broadly categorized as waveform coding,

vocoding and hybrid coding. [15] The idea in waveform coding is signal indepen-

dent, it attempts to produce a reconstructed signal whose waveform is as close as

possible to the original. Waveform codecs have been comprehensively characterized

by Jayant and Noll. [16] One of the well known waveform coding is the 64 Kbps

PCM (Pulse Code Modulation). It uses non-linear companding characteristics to

result in near-constant signal-to-noise ratio (SNR) over the total input dynamic

range, which are standardized by the CCITT. The adaptive differential PCM (AD-

PCM), is standardized by ITU Recommendation G.721. Hybrid coding attempt to

fill the gap between waveform and vocoding. The most successful and commonly

used are time domain Analysis-by-Synthesis (AbS). [17]

Vocoding uses the knowledge of how the speech signal to be coded was generated,

which we discussed in Chapter 2, to extract an appropriate set of source parameters

to represent the speech signal to be coded in a given duration of time. In other

words, it works in a model form associated with a set of parameters. The vocoder

usually is applied to the area of the low bit rate encoding of speech for transmission

and storage for computer response systems, for example, the 9.6 Kbps coding by

RELP. [2]

The production process of human speech can be modelled in rather detailed

mathematical representations, but we need to find out the basic features of the

20
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speech signals in order to further process and analyze. One of the most powerful

speech analysis techniques is the method of linear prediction. Linear prediction has

been used in numerous problems relating to signal processing. [18] [19] Particularly,

in digital processing of speech signals area, the method of linear prediction is used

for speech synthesis, recognition, coding and many other applications. [1] [20] LPC

determines a FIR model associated with a set of parameters which play a very

important role in estimating the basic speech parameters, such as pitch, formants

and spectra. The reverse of FIR is called the AR model which is a valid approach

to representation of the vocal tract with the excitation.

3.2 Mathematical Background of LPC

3.2.1 Linear Predictive Analysis

Linear prediction estimates the current value of a random sequence x[n] from p

previous values of x[n]. The estimate 
x[n] can be written as [21]


x[n] = −a1x[n− 1]− a2x[n− 2]− · · · − apx[n− p] (3.1)

The prediction error in Equation 3.1 is given by

ε[n] = x[n]− 
x[n] = x[n] + a1x[n− 1] + a2x[n− 2] + · · ·+ apx[n− p]

=
p
∑

k=0

akx[n− k] where a0 ≡ 1

(3.2)

In Equation 3.2, the vector ak (k = 0, 1, 2 . . . p) is called linear prediction

coefficients. The variance of error ε[n] is

σ2ε = E{|ε2[n]|} (3.3)

The linear prediction parameters consist of linear prediction coefficients and the

error variance.

Recall the Equation 3.2, we notice that the linear prediction problem leads to a
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FIR filter. The transfer function of the FIR filter is given by [22]

A(z) = 1 + a1z
−1 + a2z

−2 . . .+ apz
−p = 1 +

p
∑

k=1

akz
−k (3.4)

A(Z) is called the prediction error filter. We know that any regular stationary

random process can be represented as the output of a linear shift-invariant filter

driven by white noise, it is given by [21]

x[n] = −α1x[n− 1]− α2x[n− 2]− . . .− αpx[n− p] + w[n] (3.5)

x[n] is called an autoregressive or AR process, the process is " regressed upon itself."

It can be seen by comparing Equation 3.2 and Equation 3.5 that if αk = ak (k =

1, 2, 3, . . . , p), then w[n] = ε[n]. Thus, the transfer function of the AR model

which given in Equation 3.5 is an inverse A(z). It can be written

H(z) =
1

A(z)
(3.6)

Since A(z) only has the negative powers of z, the AR model is an all-pole IIR filter.

3.2.2 Levinson Recursion

The basic problem of linear prediction analysis we have to solve now is to de-

termine a set of linear prediction coefficients. We use the Orthogonality Theorem

to minimize the error variance in order to find the optimal prediction error filter

coefficients. The Orthogonality Theorem is give by [21]

E{x[n− k]ε[n]} = 0 where k = 1, 2, . . . , p (3.7)

and

σ2ε = E{x[n]ε[n]} (3.8)
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so, we can get the Normal Equations















Rx[0] Rx[1] . . . Rx[p]

Rx[−1] Rx[0] · · · Rx[p− 1]
...
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...

Rx[−p] Rx[−p+ 1] · · · Rx[0]
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a1
...

ap
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σ2ε

0
...

0















(3.9)

where Rx = E{xxT}.

The Normal Equations can be solved by the Levinson recursion. The Levinson

recursion provides a fast method to solve the Normal equations. It begins with a

filter of order 0 and recursively generating filters of order 1, 2, 3, and so on, up to

the desired order p.

The Levinson recursion is introduced in the following description. First Let us

consider the forward Normal Equations of order p, which are shown in Equation 3.9.

They can be written here as

R̃
(p)

x ap =















σ2p

0
...

0















(3.10)

for simplicity, the σ2ε is replaced with σ2p. where

R̃(p)
x =















Rx[0] Rx[1] · · · Rx[p]

Rx[−1] Rx[0] · · · Rx[p− 1]
...

...
...

...

Rx[−p] Rx[−p+ 1] · · · Rx[0]















(3.11)

and

ap =















1

a1
...

ap















=















1

a
(p)
1

...

a
(p)
p















(3.12)

Backward prediction predicts the current value by using the "future" points. We
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can describe it in a simple mathematical way by using Equation 3.13


x[n− p] = −b1x[n− p+ 1]− b2x[n− p+ 2]− · · · − bpx[n] (3.13)

The backward Normal Equations are















Rx[0] Rx[−1] · · · Rx[−p]

Rx[1] Rx[0] · · · Rx[1− p]
...

...
...

...

Rx[p] Rx[p− 1] · · · Rx[0]





























1

b1
...

bp















=















σ2ε′

0
...

0















(3.14)

Similarly, the backward Normal Equations of order p have the form

R(p)
x bp =















σ′2p

0
...

0















(3.15)

the σ2ε′ is replaced with σ′2p for simplicity, too.

R(p)
x =















Rx[0] Rx[−1] · · · Rx[−p]

Rx[1] Rx[0] · · · Rx[1− p]
...

...
...

...

Rx[p] Rx[p− 1] · · · Rx[0]















(3.16)

and

bp =















1

b1
...

bp















=















1

b
(p)
1

...

b
(p)
p















(3.17)
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Now, we define the term rp

rp =















Rx[1]

Rx[2]
...

Rx[p+ 1]















(3.18)

Equation 3.11 and Equation 3.16 can be written as

R̃(p)
x =















R̃(p−1)
x | r̃p−1

|

− − −−− | −−

r̃∗Tp−1 | Rx[0]















(3.19)

and

R(p)
x =















R(p−1)
x | r̃∗p−1

|

− − −−− | −−

r̃Tp−1 | Rx[0]















(3.20)

We assume that the linear prediction parameters of order p − 1 are known. Then

think of an augmented set of Normal Equations for the forward problem

R̃(p)
x















ap−1

−−

0















=















R̃(p−1)
x | r̃p−1

|

− − −−− | −−

r̃∗Tp−1 | Rx[0]





























ap−1

−−

0















=















σ2p−1

0
...

4p















(3.21)

where the

4p = r̃∗Tp−1ap−1 = r∗Tp−1ãp−1 (3.22)

The corresponding augmented set of Normal Equations for the backward linear
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prediction problem is given by

R(p)
x
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−−

0
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R(p−1)
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|

− − −−− | −−
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(3.23)

where the

4′p = r̃Tp−1bp−1 = rTp−1b̃p−1 (3.24)

We reverse all of the terms in Equation 3.23 and get this
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x
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(3.25)

We use a constant c1 to multiply Equation 3.25 and add it to Equation 3.21; the

result is
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(3.26)

Now compare Equation 3.26 with Equation 3.10, which is the Normal Equations

of order p. Considering the solution to the Normal Equations is unique, then the

following results are derived
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(3.27)
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and
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= ap (3.28)

From Equation 3.27, we can get

σ2p−1 + c14′p = σ2p (3.29)

and

4p + c1σ
′2
p−1 = 0 (3.30)

Similarly, this procedure can be recreated for the backward linear prediction of

equations. Reverse Equation 3.21

R(p)
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ãp−1















=















4p

0
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σ2p−1















(3.31)

Then this equation is multiplied by a constant c2 and add it to Equation 3.23,
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0
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(3.32)

In the same way as forward problems, we compare this to the backward Normal

Equations 3.15, and the results are given
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0
...
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, (3.33)
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bp−1

−−

0















+ c2















0

−−

ãp−1















= bp, (3.34)

σ′2p−1 + c24p = σ′2p , (3.35)

and

4′p + c2σ
2
p−1 = 0. (3.36)

To complete the recursion procedure, the consonant c1 and c2 are should be found

from the Equation 3.30 and Equation 3.36

c1 = −
4p

σ′2p−1
(3.37)

c2 = −
4′p
σ2p−1

(3.38)

Because c1, c2, 4p and 4′p are defined in terms of the correlation function and the

parameters of order p− 1, these quantities can be computed immediately.

Now let γp = −c1 and γ′p = −c2, these parameters are known as forward and

backward reflection coefficients. The recursion is initialized with Equation 3.39

a0 = 1; r0 = Rx[1]; σ20 = Rx[0]. (3.39)

The following results can be derived,

γp =
r∗Tp−1ãp−1

σ2p−1
(3.40)

ap =









ap−1

−−

0









− γp









0

−−

ã∗p−1









(3.41)

σ2p = (1− |γp|2)σ2p−1 (3.42)
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where the vector ap is defined in Equation 3.12. Note that the last element of the

vector ã∗p−1 is equal to 1, the following result is derived from Equation 3.41,

a(p)p = −γp. (3.43)

From Equation 3.42, since the σ2p and σ2p−1 are both greater or equal zero, we can

draw that

|γp| 6 1 (3.44)

Also it implies that

σ2p−1 > σ2p (3.45)

The recursion for prediction errors can be given by

εp[n] = εp−1[n]− γpεbp−1[n− 1] (3.46)

The γp are known as RC (reflection coefficients) because their analogy with

similar quantities that occur in the analysis of propagating waves. [1] [23] They

are also called partial correlation or PARCOR coefficients because of the statistical

interpretation.

3.2.3 Interpretation of the Reflection Coefficients by
Partial Correlation

The PARCOR parameter, γp, plays an important role in the linear prediction

and ARmodeling. First, we consider a set of random variables {u, w1, w2, · · · , wL, v}.

If u remains correlated with v when the effect of the intermediate variables is re-

moved, this type of correlation is known as partial correlation. [21] The following

illustration gives us more direct explanations.

As an illustration of this, we suppose there are three random variables u, v, and

w and that they have functions like these

u = u(w)
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w = w(v)

u and v are correlated in general, but if the correlation u with w is removed, then

v won’t have any influence on u. But if u depends explicitly on both w and v, then

we get

u = u(w, v)

in this case, even if the dependance of u on w is removed, v still has a direct influence

on u. This explicit dependence of u on v produces partial correlation.

We can develop a geometric picture of partial correlation. It is illustrated in

Figure 3.1.
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Figure 3.1 Geometric interpretation of partial correlation.(a)
Projection of random variables u and v on subspace
W and definition of errors.(b) Partial correlation in
terms of errors.

In order to remove the influence of the intermediate wi (i = 1, 2, , · · · , L), we

project the u and v on the subspace W which is defined by wi (i = 1, 2, , · · · , L).

Now, we only deal with the residuals. The estimation errors are given by

εu = u− 
u

εv = u− 
v

(3.47)

The correlation between the random vectors u and v can be given as

E{uv} = E{(
u+ εu)(
v + εv)} = E{
u
v}+ E{εuεv} (3.48)
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Because both 
u and 
v lie in the same subspace W and εu and εv are orthogonal to

that subspace, the cross-terms are zero, as can be seen in Figure 3.1(a). On the

right of Equation 3.48, the first term represents the indirect correlation because of

the presence of the random variables wi, the second term is the partial correlation.

It is the correlation of the errors. Usually, the partial correlation is measured as a

normalized quantity which is called the PARCOR coefficient and given by

PARCOR[u; v] =
E{εuεv}
E{|εu|2}

(3.49)

Recall the definition of the inner product for this vector space, PARCOR[u; v] is

the inner product of εu and εv and normalized by the inner product of εu with itself.

The magnitude is the ratio of the length of the projection of εu on εv to the length

of εu, as can be seen in Figure 3.1(b) The partial correlation is zero when the errors

are orthogonal. Also we notice that |PARCOR[u; v]| 6= |PARCOR[v;u]| due to

the normalization for general random variables u and v.

Let us consider the p + 1 data points shown in Figure 3.2 and the associated

(p − 1)th order forward and backward linear prediction problems. We use u to

identify x[n−p] and v to x[n], the points between x[n−p] and x[n] are represented by

wi. In Figure 3.2, the common set C of the intermediate points are used by both the

forward prediction of x[n] and backward prediction of x[n− p]. The error residuals

corresponding to x[n] and x[n− p] are εp−1[n] and ε
′
p−1[n− p] = εbp−1[n− 1]. Recall

the Equation 3.49, the partial correlation between x[n] and x[n− p] is expressed as

PARCOR[x[n− p];x[n]] =
E{εbp−1[n− 1]εp−1[n]}
E{|εbp−1[n− 1]|2}

(3.50)

Now we will prove that the quantity in Equation 3.50 is just equal to γp. Let us

start to look at the full set of points x[n−p], x[n−p+1], · · · , x[n] in Figure 3.3(a).

Note that the backward error εbp−1[n − 1] is a linear combination of the points in

the set A while the forward error εp[n] is orthogonal to the points in this set. So ,
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Figure 3.2 Points used for forward and backward linear predic-
tion in interpretation of partial correlation

it shows that

E{εbp−1[n− 1]εp[n]} = 0 (3.51)

Recall the Equation 3.46, we substitute it for εp[n] then get

E{εbp−1[n− 1](εp−1[n]− γpεbp−1[n− 1])} = 0 (3.52)

or

γp =
E{εbp−1[n− 1]εp−1[n]}
E{|εbp−1[n− 1]|2}

(3.53)

So far, we prove the result. Now, we will apply the partial correlation to a

first-order AR process. In particular, we define the process given by

x[n] = ρx[n− 1] + w[n] (3.54)

where w[n] is a white noise sequence with mean zero and variance σ2w. The corre-
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Figure 3.3 Points used in linear prediction

lation function of the resulting random process is

Rx[l] =

{ σ2w
1−|ρ|2ρ

l l ≥ 0

σ2w
1−|ρ|2ρ

−l l < 0
(3.55)

In Figure 3.4, a typical correlation function is illustrated. The x[n − p] and

x[n] are correlated for any value of p is obvious and the degree of correlation is

represented by the value of the correlation function at l = p.

Now recall the partial correlation or γp, which is representation of direct influence

of x[n− p] on x[n]. The coefficients of the first-order AR process are

ap =





















1

−ρ

0
...

0





















(3.56)

and from Equation 3.43 we get

γp = −a(p)p =

{

ρ p = 1

0 p > 1
(3.57)
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Figure 3.4 Correlation function for a first-order AR process

From Equation 3.57, it shows that the partial correlation of x[n] and x[n − 1] is

equal to ρ and the partial correlation of x[n] and any earlier points is zero.

3.2.4 Lattice Filter and PARCOR Parameters

We have discussed how to calculate the linear prediction coefficients, once we

know these parameters, we can realize the prediction error filter. The direct form

of the prediction error filter is shown in Figure 3.5. The corresponding AR model,

- - - - -cx[n]
z−1 z−1 z−1 z−1p p p

? ? ? ?

a1 a2 app p p
- - - - -p p p ε[n]c

Figure 3.5 Prediction error filter realized by direct form

which is realized in direct form, is illustrated in Figure 3.6. The prediction error

filter and the AR model can be realized by the lattice filter structure. The lattice

filter is a useful form of a filter representation in digital speech processing. In order

to realize both filters by the lattice filter, PARCOR parameters are needed.

In Levinson recursion, the following results can be derived, if we know the p− 1th

order forward and backward prediction errors, those pth order can be obtained by
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- - - - - -cε[n] x[n]cp p p
6 66
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−a1−a2−ap p p p
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z−1 z−1 z−1 z−1
p p p

Figure 3.6 AR model realized by direct form

the following equations.

(

εp[n]

εbp[n]

)

=

(

1 −γp
−γp 1

)(

εp−1[n]

εbp−1[n− 1]

)

(3.58)

Where εbp[n] is backward prediction error. Equation 3.58 shows that we can realize

the prediction error filter by using the cascading lattice section, which is shown in

Figure 3.7. From Equation 3.58, we can get

ε1[n] ε2[n]
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Figure 3.7 Prediction error realized by lattice filter

εp−1[n] = εp[n] + γpε
b
p−1[n− 1] (3.59)

The AR model also can be realized in lattice form by inverting the structure of

Figure 3.7. The AR model realized by lattice filter is shown in Figure 3.8.
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Figure 3.8 AR model realized by lattice filter
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3.3 LPC Vocoder

First, a typical LPC vocoder is illustrated in Figure 3.9. The LPC analyzer can

be detailed in Figure 3.10.

LPC Analyzer

Pitch Detector

Speech Signal

<TRANSMITTER>

CODER�
��>

Z
ZZ~ �

��>

Z
ZZ~

<RECEIVER>

Synthesized
Speech Signal

LPC Synthesizer DECODER

-

?

���

Figure 3.9 LPC vocoder block diagram
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+


s[n]

s[n] m+ ε[n]

Linear Prediction Analysis

−a1,−a2, · · · ,−ap

A(z)

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ apz
−p

Figure 3.10 LPC analyzer

In Figure 3.9, the vocoder consists of two parts, the transmitter and the receiver.

The transmitter performs LPC analysis and pitch detection, then codes the param-

eters for transmission. The choice of the order p in LPC analyzer is an important

consideration. If the order p is in the range of 8 to 10, the input speech signal
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can be represented well by the LPC parameters. [1] The prediction error is a good

approximation to the excitation source in the receiver of LPC vocoder. The predic-

tion error signal is expected that to be large (for voiced sounds) at the beginning

of each pitch period. By detecting the positions of the samples of prediction error

which are high value, we can determine the pitch period.

The receiver decodes the parameters and synthesizes the output speech from

them. In the receiver, the excitation source, which is either a white noise (for

unvoiced sounds) or a periodic pulse (for voiced sounds), goes through the LPC

synthesizer. LPC synthesizer is the inverse of A(z). It is called AR model, and

its transfer function is H(z) = A(z)−1. In order to produce the speech-like signal,

the excitation and the AR model have to vary with time since the speech signal is

the time-varying signal in nature. But it is reasonable to assume that the general

properties of the excitation and vocal tract remain fixed for a short time, such as

10 to 30 ms. So a time-invariant AR model excited by an excitation signal which

switches from quasi-periodic pulse for voiced speech to random noise for unvoiced

speech is used to model the speech production in a short time. The synthesized

speech signal is produced at the output of the AR model.

LPC vocoder is well applied in the low bit rate transmission and speech response

system (SRS). Since we have known that the vocal tract imposed its resonances on

the excitation to produce different sounds by varying the shape of vocal tract, the

poles of transfer function in AR model correspond to the resonances (formants) of

speech sound, we can consider applying these parameters’ information to charac-

terize speech sound in speech recognition systems. The LPC parameters have the

ability to characterize the speech signals in speech recognition systems, particularly

for vowels in the phoneme level. [24] In the LPC parameters, one of the important

parameters is the PARCOR parameter associated with the AR model. It is the

representation of speech physical characteristics. [25] [26]



Chapter 4

IMPLEMENTATION OF PARCOR IN SPEECH
SIGNALS

In Chapter 2, we discuss the acoustic characterization of various phoneme classes

from the manner and place of articulation. In other words, it is observed from the

sound production process of the human being in real life. From the mathemat-

ical view, the speech signal can be represented in some type of parametric form

for further analyzing and processing. There are a wide range of possibilities for

representing the speech signals in the mathematical way, one of them is short time

spectral envelope in speech signal processing and analyzing. Linear predictive cod-

ing (LPC) is another important and dominant technique in analyzing and processing

speech signals, which is introduced in Chapter 3.

In this chapter, we explore a method to illustrate the distributions of PARCOR

parameters of some typical phonemes obtained by the LPC technique. The PAR-

COR parameters are calculated by the auto correlation method which was discussed

in 3. The corresponding waveforms and short time spectral characterizations of the

typical phonemes are illustrated, too. Then we summarize the characteristics of

different speech sound in the phoneme level by analyzing the parametric repre-

sentation. Finally, we present correlations among eight PARCOR parameters in a

two-dimensional space.

4.1 Acoustic-Phonetic Characterization

In the experiments, the speech signals were chosen from a continuous stream of

speech in the TIMIT database. TIMIT contains total of 6300 sentences, 10 sentences

38
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spoken by 630 speakers from 8 major dialect regions of the United States. [13] The

speakers of dialect region distribution and phonemic and phonetic symbols are listed

in Appendix A. The speech in TIMIT database is sampled at a 16K sampling rate.

First, we extracted single phonemes and categorized them into two groups. One

is the vowel group, and the other one is the consonant group. There are vowel

phonemes [ae], [iy] and [uw] in the vowel group. The consonant group includes

fricative consonants [sh] and [f].

Each phoneme sound in both groups was spoken by a female and a male speaker.

The speakers are from different dialect regions. Then we segmented each single

phoneme utterance into consecutive frames and each frame has 256 samples. Since

the speech sampling rate is 16K in TIMIT database, the 256 samples frame is 16

ms in duration. We mentioned that if limited to a 10-30 ms short time, the speech

signal can be characterized as a time-invariant signal, the 16 ms duration falls into

that range. For each utterance, the number of frames is different. This is because

the sounds are different in duration. Even for the same phoneme sound, different

speakers produce slightly different duration. Also it is very natural that the dura-

tion varies from time to time when the same person produces the same phoneme

repeatedly. In Figure 4.1 to Figure 4.10, we show the waveform, FFT spectra and

the eighth-order PARCOR parameters distributions for each frame. In Table 4.1,

we list the information of data such as the speaker name, the dialect region, the

gender, and the word used to extract the phoneme in Figure 4.1 to Figure 4.10.

In each figure, the number of sub-figures is different, but in each sub-figure, at the

top rows are the waveform plots, which are normalized amplitude signal between

−1 and +1. The spectra of the corresponding waveforms are illustrated in the

middle rows, which are square of frequency response of normalized signal shown in

top rows. At the bottom rows are the eighth-order PARCOR parameters distribu-

tions associated with the LPC technique. From Equation 3.44, we know that the

PARCOR parameters are between −1 and +1.

The consecutive frames of 256 samples, which are generated by segmenting each

single phoneme sound, are illustrated in numeric order on the top of the sub-figures.
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Table 4.1 Information of data in Figure 4.1 to Figure 4.10

Figure Label Phoneme Region Speaker Name Gender Extract Word

Figure 4.1 [ae] DR5 fkkh0 Female Cat
Figure 4.2 [ae] DR4 mcss0 Male Cat
Figure 4.3 [iy] DR3 falk0 Female Greasy
Figure 4.4 [iy] DR4 mbma0 Male She
Figure 4.5 [uw] DR2 flma0 Female Moon
Figure 4.6 [uw] DR6 mrxb0 Male Moon
Figure 4.7 [sh] DR4 falr0 Female She
Figure 4.8 [sh] DR2 mcew0 Male She
Figure 4.9 [f] DR4 falr0 Female Enough
Figure 4.10 [f] DR7 mbbr0 Male Enough

For the same phoneme, there are two sets of figures to show the characterization

of the waveform, corresponding spectra and PARCOR distributions because it is

spoken by two different speakers.

4.1.1 Vowels
Vowel [ae]

In Figure 4.1, the vowel [ae], which is extracted from the word "cat", is spoken

by a female speaker from dialect region five. There are 9 consecutive frames in

Figure 4.1, it means this vowel sound lasts around 144 ms (16 ms/frame* 9 frames)

in duration. Given that the waveforms, spectral shape and PARCOR parameters

distributions in nine frames are similar to each other, for simplicity, we pay attention

to frame 3 in Figure 4.1 (a). It can be observed that the waveform is periodic,

the spectral shape is well defined. The first to the fourth PARCOR parameters

alternately distribute between positive and negative. The first PARCOR parameter

is close to−1. The second PARCOR parameter is close to +0.9. The third is located

around −0.4 and the fourth goes up to +0.5. The fifth, seventh and eighth are all

around zero. The sixth is located around +0.4.

The waveforms, spectra and PARCOR distributions of another vowel [ae] is

illustrated in Figure 4.2. This vowel [ae] is extracted from word "cat", too, but it

is spoken by a male speaker from dialect region four. Also, there are 9 consecutive
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frames in Figure 4.2, so it lasts the same 144 ms in duration. We pick frame 3 in

Figure 4.2 (a) to analyze; similarly, the periodic characteristics are shown in the

waveform plot. The first four PARCOR parameters distribute alternately between

negative and positive. The fifth is close to zero. But the distributions of the sixth,

the seventh and the eighth PARCOR parameters are slightly different between

Figure 4.1 and Figure 4.2, it is natural that the same sound spoken by different

people produces difference.

Vowel [iy]

In Figure 4.3 and Figure 4.4, waveforms, spectra and PARCOR distributions of

vowel [iy] are illustrated. The vowel [iy] in Figure 4.3 is extracted from the word

"greasy" and is spoken by a female from dialect region three. In Figure 4.4, the

vowel [iy] is extracted from the word "she" and is spoken by a male from dialect

region four. In both figures, there are two sub-figures and 6 consecutive frames,

the duration of the two vowel [iy] is same, and it is 96 ms. The waveform plots

in both figures show periodic characteristics. We draw our attention to PARCOR

distributions in Figure 4.3, the first, the third and the fifth PARCOR parameters

in first five frames are all negative and located between −0.5 and −0.7. Only the

fifth PARCOR parameter of the frame 6 in Figure 4.3 is located at −0.2. Except

for frame 6, the second PARCOR parameters in all frames are all positive and are

located around +0.4 , the second PARCOR in frame 6 is a little bit lower than

others, it is close to +0.2. From frame 1 to frame 6 in Figure 4.3, the seventh and

eighth PARCOR are all positive values. The sixth PARCOR parameter in frame 1 is

around zero, in frame 2 is about +0.3, in other frames, they are all negative between

−0.3 and −0.2. Although the PARCOR distributions in all frames are slightly

different, they are similar to each other in general. Now we turn to the distributions

of PARCOR parameters in Figure 4.4, all of the first PARCOR parameters are close

to −1 , all of the second PARCOR parameters are around +0.4 and all of the third

PARCOR parameters are around −0.5 in all six frames. The fourth PARCOR

parameters in frame 1 and frame 2 are close to zero, but in frame 3 to frame 6 are
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all around +0.2. The fifth PARCOR parameters are negative and located between

−0.1 and −0.3 from frame 2 to frame 6. In frame 1, the fifth PARCOR parameter

is around zero. The sixth PARCOR parameters in all frames are all negative and

located between −0.3 and −0.1. The seventh PARCOR parameters in all frames

excluding the frame 2 are all positive and close to +0.2. All of the eighth PARCOR

parameters are located around +0.4.

Vowel [uw]

In Figure 4.5 and Figure 4.6, waveforms, spectra and PARCOR distributions of

the vowel [uw] are illustrated. The vowel [uw] in Figure 4.5 is extracted from the

word "moon" and is spoken by a female from dialect region two. In Figure 4.6,

the vowel [uw] is extracted from the word "moon", too, but it is spoken by a male

from dialect region six. In Figure 4.5, there are two sub-figures and 6 consecutive

frames, the duration of the vowel [uw] is 96 ms. In Figure 4.6, there are four sub-

figures and 12 consecutive frames, the duration of the vowel [uw] is 192 ms. The

waveform plots in both figures show the periodic characteristics. When we observe

the eighth PARCOR parameter distributions in Figure 4.5, the first to the fourth

PARCOR parameters in all frames distribute similarly. All of the first PARCOR

parameters are close to −1. For the second parameters in all frames, they are

all located about +0.5. The third parameter in each frame is around −0.15 and

the fourth is around +0.4 in each frame. The sixth parameters are located −0.3

in frame 1, frame 2, frame 3 and frame 6, but in frame 4 and frame 5, they are

very close to −0.1. All of the seventh and the eighth PARCOR parameters swing

between +0.1 and −0.1 in Figure 4.5. In Figure 4.6, the PARCOR distributions are

similar to those in Figure 4.5. All of the different PARCOR parameters are close to

−1. For the second parameters in all frames, they are all located about +0.5. The

third parameter in each frame is between −0.1 and +0.1. The fourth and the fifth

are all positive and located around +0.3. All the sixth, the seventh and the eighth

PARCOR parameters fluctuate between −0.1 and +0.1.

By comparing the PARCOR distributions of vowel [ae], [iy] and [uw] in Figure
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Figure 4.1 to Figure 4.6, we notice that the PARCOR distributions of different

vowels are quite different, but for the same vowel such as vowel [uw] in Figure 4.5

and Figure 4.6, they are only slightly different. The distributions of PARCOR

parameters have the potential ability to distinguish the vowel [ae], [iy] and [uw].

4.1.2 Consonants

From Figure 4.7 to Figure 4.10, waveforms, spectra and PARCOR distributions

of consonant [sh] and [f] are shown.

Consonant [sh]

In Figure 4.7, a consonant [sh] is extracted from word "she" and spoken by a

female from dialect region four. Another consonant [sh] in Figure 4.8 is extracted

from word "she", too, but it is spoken by a male speaker from dialect region two.

There are 6 and 4 consecutive frames in Figure 4.7 and Figure 4.8 respectively, so it

lasts 96 ms and 64 ms in duration respectively. The non-periodic nature is obvious

in the waveform plots in both figures. We can see the broad-band noise spectra

in the middle of row in each frame. In Figure 4.7, except the seventh parameter

in frame 1, all of the PARCOR parameters distribute in the positive space. All of

the first parameters in all frames are about +0.2, the second are around +0.7. In

Figure 4.8, all of the first PARCOR parameters are located −0.4, the second to the

seventh in each frame have the similar distributions as those in Figure 4.7.

Consonant [f]

The consonant [f] is extracted from the word "enough" and spoken by a female

from dialect four is shown in Figure 4.9. Another consonant [f], shown in Fig-

ure 4.10, is extracted from word "enough", too, but it is spoken by a male speaker

from dialect region seven. There are 6 and 5 consecutive frames in Figure 4.9 and

Figure 4.10 respectively, so it lasts 96 ms and 80 ms in duration respectively. In the

waveform plot of each frame, the non-periodic nature is noticeable in both figures.

Also we can see the broad-band noise spectra in the middle of the row in each

frame. In Figure 4.9, except for the first parameters in frame 1 and frame 2, all of

the PARCOR parameters fluctuate around zero. Turn to Figure 4.10, we see the
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similar situation, except the first PARCOR parameters in frame 1 and 2, all of the

PARCOR parameters swing around zero.

4.1.3 Vowels and Consonants

By observing the duration in Figure 4.1 to Figure 4.10, generally speaking,

the vowel [ae], [iy] and [uw] is longer than consonant [sh] and [f] in duration. In

Figure 4.1 and Figure 4.2, there are nine consecutive frames , which means both

vowels last around 144 ms. We look at the vowel [iy] in Figure 4.3 and Figure 4.4,

they both have six consecutive frames and last 96 ms . In Figure 4.5 and Figure 4.6,

there are six and twelve consecutive frames , so the vowel [uw] last 96 ms and 192 ms

respectively. For the consonant [sh] and [f], in Figure 4.7 and Figure 4.9, there are

six consecutive frames and both of them last 96 ms in duration, but in Figure 4.8

and Figure 4.10 , there are only four and five consecutive frames, it means they last

64 ms and 80 ms respectively.

If we compare the waveforms in vowel figures (from Figure 4.1 to Figure 4.6) with

waveforms in the consonant figures (from Figure 4.7 to Figure 4.10), the periodic

characteristics are obvious in vowels, but for consonants [sh] and [f], the non-periodic

nature is noticeable. The spectra of vowel [ae], [iy] and [uw] are shown in the middle

of each sub-figure from Figure 4.1 to Figure 4.6 are well defined. This is because

that the vowels are generated by exciting an essentially fixed vocal tract shape with

the quasi-periodic pulsed of air caused by the vibration of the vocal folds. But for

the consonants, there are broad band noise spectra in the middle of each sub-figure

from Figure 4.7 to Figure 4.10. These consonants are generated by exciting the

vocal tract with a steady air flow, which becomes turbulent in the location of the

constriction in the vocal cavity. That’s why we can see the broad-band noise spectra

in the middle of each sub-figure.

The distributions of PARCOR parameters of vowel [ae], [iy] and [uw] in Fig-

ure 4.1 to Figure 4.6 are quite different from consonant [sh] and [f] in Figure 4.7 to

Figure 4.10. Generally, the PARCOR parameters (specially, the first four PARCOR

parameters) in vowel [ae], [iy] and [uw] alternately distribute between −1 and +1,
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but for the consonant [sh] and [f], most of the eight PARCOR parameters distribute

close to zero.

So far, we can tell the difference of the eighth-order PARCOR distributions by

observing each phoneme in all figures. But it is difficult to differentiate them by

observing them in Figure 4.1 through Figure 4.10, since only two samples in each

phoneme classes are illustrated. In the next section, we will use two-dimensional

space to show the correlation pattern between two PARCOR parameters among

different phoneme classes. For each phoneme class, we will choose more than two

samples.
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Figure 4.1 Waveforms, spectra and PARCOR distributions of
the vowel sound [ae]. Dialect:5 Speaker:female
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Figure 4.2 Waveforms, spectra and PARCOR distributions of
the vowel sound [ae]. Dialect:4 Speaker:male
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Figure 4.3 Waveforms, spectra and PARCOR distributions of
the vowel sound [iy]. Dialect:3 Speaker:female
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Figure 4.4 Waveforms, spectra and PARCOR distributions of
the vowel sound [iy]. Dialect:4 Speaker:male
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Figure 4.5 Waveforms, spectra and PARCOR distributions of
the vowel sound [uw]. Dialect:2 Speaker:female
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Figure 4.6 Waveforms, spectra and PARCOR distributions of
the vowel sound [uw]. Dialect:6 Speaker:male
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Figure 4.7 Waveforms, spectra and PARCOR distributions of
the consonant sound [sh]. Dialect:4 Speaker:female
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Figure 4.8 Waveforms, spectra and PARCOR distributions of
the consonant sound [sh]. Dialect:2 Speaker:male
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Figure 4.9 Waveforms, spectra and PARCOR distributions of
the consonant sound [f]. Dialect:4 Speaker:female
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Figure 4.10 Waveforms, spectra and PARCOR distributions of
the consonant sound [f]. Dialect:7 Speaker:male
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4.2 PARCOR Distributions Among Different Phoneme
Classes

In Figure 4.1 to Figure 4.10, we noticed that consecutive 16 ms frames in the

same utterance are similar in waveforms, spectra and PARCOR distributions each

other. For example, in Figure 4.1, there are total 9 consecutive frames, which are

marked (1) to (9) on the top of sub-figures, all nine frames are similar to each other.

But we have to mention that, sometimes the first frame and last frame are more

different from other frames, as you can seen in Figure 4.3, except the last frame, all

other five frame are more similar, in Figure 4.10, the first frame are more different

from others. This is because all of the single phoneme sounds are extracted from

continuous speech and the first fame and the last frame may be in transition from

the previous or to the next frame. In order to show the distributions of PARCOR

parameters among different phoneme classes, we select the typical frames from each

phoneme class to calculate the corresponding PARCOR parameters, then illustrate

the correlation distributions of the eighth-order PARCOR parameters in a two-

dimensional space. The distributions of eight PARCOR parameters are divided

into two groups of PARCOR parameters. One is the vowel group, the other one is

consonant group.

4.2.1 Vowels

First, in TIMIT database we choose three vowels [iy], [ae] and [uw]; then each

vowel is segmented into consecutive 256 samples frames. The typical frames are

selected from each vowel to calculate the PARCOR parameters. It includes 50 [iy],

50 [ae] and 54 [uw] frames which are spoken by male and female people from eight

dialect regions.

PARCOR distributions of typical frames from the vowel [iy], [ae] and [uw] are

illustrated in the Figure 4.11. In Figure 4.11, the phoneme [iy], [ae] and [uw]

are marked by star, circle and plus respectively. Calculated PARCOR parameters

form a cluster for each of [iy], [ae] and [uw] which overlap to a degree, but are

separable by properly choosing partitioning lines. Since the database contains same
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phoneme spoken by different people from different dialect regions, there are assorted

variations, such as time and tone. From Figure 4.11, the potential capability to

characterize the phoneme [iy], [ae] and [f] by the PARCOR parameters is indicated.
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Figure 4.11 Distributions of PARCOR parameters of the vowel
[ae], [iy] and [uw]

4.2.2 Consonants

For consonants, we choose the fricative sounds [sh] and [f] in TIMIT database.

Similar to the vowel sounds, each consonant is segmented into consecutive 256

samples frames. The typical frames are selected from each consonant to calculate

the PARCOR parameters. It includes 101 [sh] and 63 [f] frames which are spoken

by male and female people from eight dialect regions.

PARCOR distributions of typical frames from the consonant [sh] and [f] are

illustrated in Figure 4.12. In Figure 4.12, the phoneme [sh] and [f] are marked by

star and circle respectively. In Figure 4.12 (a), we can see the separation of the

cluster of [sh] and [f], the distribution of cluster of [sh] is localized in the upper
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region and well separated with [f]. Although there is some degree of overlapping

between the cluster [sh] and [f] in Figure 4.12 (b), the separation of the cluster [sh]

and [f] appears possible. In Figure 4.12 (c), there is overlap between [sh] and [f],

also there is higher degree of overlapping between [sh] and [f] in Figure 4.12 (d),

but the separation of consonant [sh] and [f] in Figure 4.12 (a) and (b) is clear, it

means the consonant [sh] form a cluster, which is well separated from the cluster

of the fricative consonant [f]. From Figure 4.12, the PARCOR parameters have the

potential capability to characterize the phoneme [sh] and [f].
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Figure 4.12 Distributions of PARCOR parameters of the con-
sonant [sh] and [f]



Chapter 5

CLASSIFICATION OF PHONEMES

In Chapter 4, we discussed the PARCOR parameters distributions at the phoneme

level. In this chapter, we explore a method to classify phonemes in one-syllable

words by means of PARCOR parameters in a continuous speech stream.

The phonemes [ae], [iy], [uw], [sh] and [f] in one-syllable words, such as "cat",

"greasy", "moon", "she" and "leaf", were chosen to classify. The PARCOR pa-

rameters of each phoneme were fed into a classifier, the classifier is a supervised

classifier that requires training. The training uses TIMIT speech database, which

contains the recordings of 630 speakers of 8 major dialects of American English.

The training data were grouped into the vowel group including phoneme [ae], [iy]

and [uw] and the consonant group including [sh] and [f]. In the vowel group, there

were fifty training data for [ae], fifty training data for [iy] and fifty-four training

data for [uw]. The data were selected from eight dialect regions and spoken by

different male and female speakers. Similarly, in the consonant group, there were

one hundred and one training data for [sh] and sixty-three training data for [f].

They were spoken by different male and female speakers from eight dialect regions.

For the vowel group, including [iy], [ae] and [uw], the eighth-order of PARCOR

parameters of each training data were calculated. By observing PARCOR param-

eters distributions of the vowel training data in a two-dimensional space, which

are shown in Figure 5.1, we notice that the cluster of the third and the fourth

PARCOR parameters of each vowel is well separated, which is shown in Figure 5.1

(b). When we paid attention to the mean distributions of PARCOR parameters

of the vowel training data in a two-dimensional space, which are illustrated in Fig-

59
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ure 5.2, we also notice that the distances between mean of [ae], mean of [iy] and

mean of [uw] in Figure 5.2 (b) are bigger than sub-figure (a), (c) and (d). We chose

the third and the fourth PARCOR parameters to further process and derive the

decision rule. For the consonant group, when we observed the eighth-order of PAR-

COR parameters distributions of the consonant training data in a two-dimensional

space in Figure 5.3, we found that the third and the fourth PARCOR parameters

of each consonant clustered together better than others. We also selected the third

and fourth PARCOR parameters to further train and process. Assuming the two

PARCOR parameters (the third and the fourth of the eighth-order PARCOR pa-

rameters) of each phoneme sound are Gaussian distributions, we can construct a

Gaussian distribution template for each phoneme sound. The Gaussian probability

distribution templates of vowel [ae], [iy] and [uw] are constructed by using training

data in the vowel group. For the consonant group, we construct two Gaussian prob-

ability distribution templates, one is for [sh] and the other one is for [f]. The training

data in the consonant group are used to construct the probability distribution.

In order to classify the unknown phonemes in one-syllable word into the [ae],

[iy], [uw], [sh] or [f] class, we designed two classifiers, one is a vowel classifier and the

other one is a consonant classifier. For the vowel classifier, the unknown phoneme

can be classified into one of [ae], [iy] and [uw] classes. For the consonant classifier,

the unknown phoneme can be classified into either [sh] or [f]. For both classifiers,

the maximum likelihood decision rule is adopted to classify the unknown phoneme.

That is, when the third and fourth PARCOR parameters are input into the classifier,

the classifier will calculate and compare the probability of each phoneme and then

decide the unknown phoneme belongs to the phoneme class which has the maximum

probability. For instance, when the third and fourth PARCOR parameters of an

unknown phoneme are fed into the vowel classifier, the vowel classifier will calculate

the probability of vowel [ae], [iy] and [uw] respectively and compare the three values

of the probabilities, if the probability of vowel [iy] has the maximum value, then

the unknown phoneme will be classified into the vowel [iy] class. Applying this

procedure to different phonemes, we can classify the unknown phonemes into [ae],



61

[iy] or [uw] class.

Since the input of the both classifiers are the third and the fourth PARCOR

parameters of unknown vowel or consonant phonemes, we need to explore a method

to preprocess unknown phonemes and calculate their corresponding PARCOR pa-

rameters. This method also is accountable for detecting the vowel and consonant

phonemes in one-syllable words in order to feed the PARCOR parameters into ei-

ther the vowel classifier or the consonant classifier. The preprocessing method is

illustrated in Figure 5.9. The method is broadly divided into three steps, the first

step is to segment speech signals by frame energy and zero-crossing rate, then group

frames into consonant, vowel or silence, the last step is to calculate the PARCOR pa-

rameters for the vowel and consonant group and the third and the fourth PARCOR

parameters are selected to feed into the classifier. The calculated third and fourth

PARCOR parameters of unknown phonemes from the vowel group were fed into

the vowel classifier and The calculated the third and the fourth PARCOR param-

eters of unknown phonemes from the consonant group were fed into the consonant

classifier.

5.1 Training and Derivation of the Decision Rule

The training data are divided into the vowel group and the consonant group.

In the vowel group, the phoneme [ae], [iy] and [uw] are selected from eight dialect

regions and spoken by different male and female speakers. There are fifty training

data for [ae], fifty training data for [iy] and fifty-four training data for [uw]. All of

vowel phonemes are segmented into consecutive 16 ms frames and typical frames

are selected from each vowel to calculate the eighth-order of PARCOR parameters.

PARCOR parameters distributions of the vowel training data in a two-dimensional

space are shown in Figure 5.1. In Figure 5.2, it shows the corresponding mean dis-

tributions of PARCOR parameters of the vowel training data in a two-dimensional

space. In Figure 5.1, we can see the the phoneme [iy], [ae] and [uw], which are

marked by star, circle and plus respectively, form cluster, particularly in sub-figure

(b) of Figure 5.1, the cluster [iy], [ae] and [uw] are separated better than other
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Figure 5.1 PARCOR parameters distributions of the vowel
training data in a two-dimensional space

sub-figure (a), (c) and (d). When we turn our attention to Figure 5.2, we observe

that the mean distributions of PARCOR parameters of the vowel [iy], [ae] and [uw]

are separated better in sub-figure (b) than other sub-figures. We selected the third

and the fourth PARCOR parameters as feature vector to further process and derive

the decision rule.
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Figure 5.2 Mean distributions of PARCOR parameters of the
vowel training data in a two-dimensional space

In the consonant group, it includes the phoneme [sh] and [f] and the training

phonemes are selected from eight dialect regions and spoken by different male and
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female speakers. There are one hundred and one for [sh] and sixty-three for [f],

which are spoken by different male and female speakers from eight dialect regions.

All consonant phonemes are segmented into consecutive 16 ms frames and typical

frames are selected from each consonant to calculate the eighth-order of PARCOR

parameters. PARCOR parameters distributions of the consonant training data in

a two-dimensional space are shown in Figure 5.3. In Figure 5.4, the corresponding

mean distributions of PARCOR parameters of the consonant training data in a

two-dimensional space are illustrated. In Figure 5.3, we can see the the phoneme
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Figure 5.3 PARCOR parameters distributions of the consonant
training data in a two-dimensional space

[sh] and [f], which are marked by star and circle respectively, form separable clus-

ter, particularly in sub-figure (a) and (b), the cluster of [sh] and [f] are separated

better than sub-figure (c) and (d). Comparing sub-figure (a) with sub-figure (b) in

Figure 5.3, the cluster of [f] more condense in sub-figure (b) than sub-figure (a).

When we observed Figure 5.4, we noticed that the mean of [sh] and the mean of

[f] are separated very well in sub-figure (b), the third and the fourth PARCOR

parameters are selected as feature vector to further process in the consonant group.

Assuming distributions of the third and fourth PARCOR parameters in both

vowel and consonant group are Gaussian distributions, the Gaussian distribution

probability of PARCOR parameters can be estimated by using the sample data in

training set for each phoneme class. The following equations were used to construct



64

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(a)

PARCOR parameter r1
PA

RC
OR

 pa
ra

me
ter

 r2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(b)

PARCOR parameter r3

PA
RC

OR
 pa

ra
me

ter
 r4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(c)

PARCOR parameter r5

PA
RC

OR
 pa

ra
me

ter
 r6

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(d)

PARCOR parameter r7

PA
RC

OR
 pa

ra
me

ter
 r8

 

 

mean of [sh]
mean of [f]

Figure 5.4 Mean distributions of PARCOR parameters of the
consonant training data in a two-dimensional space

the Gaussian density function and estimate the statistics parameters, such as mean

and variance. In the Equation 5.1, the density function of a multivariate Gaussian

is illustrated. [21]

fx(x) =
1

(2π)n/2|Cx|1/2
e−

1
2 (x−mx)

TC−1x (x−mx) (5.1)

where n is the dimension of x. This density function is completely characterized by

the mean vector mx and the covariance matrix Cx, which are given in Equation 5.2

and Equation 5.3.

mx = E{x} =
∫

x

xfx(x)dx (5.2)

Cx = E{(x−mx)(x−mx)
T}

=









σ11 · · · σ1n
...

...
...

σn1 · · · σnn









(5.3)

How to estimate the mean and covariance from samples in training data set is given
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by Equation 5.4 and Equation 5.5. [27]

mx ≈
1

M

M
∑

j=1

yj (5.4)

σij ≈
1

M

M
∑

k=1

(yki −mi)(ykj −mj) (5.5)

where the M is the number of samples.

Figure 5.5 Estimated Gaussian density functions of PARCOR
parameters of the vowel [iy], [ae] and [uw]
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Figure 5.6 Contour lines of estimated Gaussian density func-
tions of the vowel [iy], [ae] and [uw]
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For the vowel group, we construct the Gaussian density function of the third and

fourth PARCOR parameters for each vowel [iy], [ae] and [uw] by using the samples in

training data set and Equation 5.1 to Equation 5.5. The estimated Gaussian density

functions of PARCOR parameters of the vowel [iy], [ae] and [uw] are illustrated in

Figure 5.5. The corresponding contour lines of the estimated Gaussian density

functions are give in Figure 5.6. Similarly, for the consonant group, we construct

the Gaussian density function of the third and fourth PARCOR parameters for each

consonant [sh] and [f] by using the samples in training data set and Equation 5.1

to Equation 5.5. In Figure 5.7, it shows the estimated Gaussian density functions

of PARCOR parameters of the consonant [sh] and [f]. The corresponding contour

lines of the estimated Gaussian density functions are give in Figure 5.8.

Figure 5.7 Estimated Gaussian density functions of PARCOR
parameters of the consonant [sh] and [f]

By observing Figure 5.5 to Figure 5.8, we found that each phoneme class in both

vowel and consonant group can be partitioned by choosing an appropriate partition

line. The maximum likelihood decision rule is selected to determine partition line.

The maximum likelihood decision rule (MLDR) is given by Equation 5.6. [27]

C(x) = j if pjpj(x) ≥ pkpk(x) for all k 6= j (5.6)

where C(x) is defined as the decision function, the value of which is the best choice
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Figure 5.8 Contour lines of estimated Gaussian density func-
tions of the consonant [sh] and [f]

of class to which to assign x. Where pj is the apriori probability and pj(x) is the

class conditional probability. The j and k denote different classes. In principle, pj

is determined by some knowledge that is independent of the observation of samples.

Usually the apriori probability is supposed to be provided by designer’s experience

and knowledge. The other key part of maximum likelihood decision rule is to

estimate the class conditional probability. For each vowel and consonant class in

our training data set, we assume the apriori probabilities are equal. The class

conditional probabilities are constructed from the samples in training data set by

means of Equation 5.1 to Equation 5.5. The construed class conditional probabilities

for [ae], [iy], [uw], [sh] and [f] are shown in Figure 5.5 and Figure 5.7.

5.2 Classification

5.2.1 Data Conditioning for Classification

In this preprocessing for classification, we extract the one-syllable word from

a continuous stream of speech in TIMIT database. [13] Then, we segmented the

word into consecutive frames and extract typical vowel and consonant frames to

calculate the corresponding PARCOR parameters. The preprocessing method can

be broadly divided into the following steps shown in Figure 5.9.
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Step1

Step2

Step3

Input Speech Signal

Frame Features:Energy and ZCR

Classification:V/C/S

Frame Extraction and PARCOR Calculation

?

?

?

Figure 5.9 Illustration of preprocessing method

Segmentation of Speech Signals by Frame Energy and Zero-Crossing
Rate

In the first step, basic features are extracted. The input speech signals are

segmented into 16 ms long, non-overlapping frames. Two frame features, frame

energy and zero-crossing rate (ZCR), are calculated. The energy and ZCR are used

to segment speech into smaller units corresponding to phonemes and to find the

boundary between voiced and unvoiced portions of speech.

The short-time energy of the speech signal provides a convenient representation

that reflects these amplitude variations. In general, we can define the short-time

energy as [1]

En =
m=+∞
∑

m=−∞

[x(m)w(n−m)]2 (5.7)

where w(n−m)is the window function. In our experiments, we choose the rectan-

gular window as

w(n) = 1; 0 ≤ n ≤ N − 1
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w(n) = 0; otherwise (5.8)

The choice of the window determines the nature of the short-time energy represen-

tation. The value of N can not be too large or small. If N is too large En will

change very slowly and thus will not adequately reflect the changing properties of

the speech signals in energy. If N is too small, En will fluctuate very rapidly. We

chose N equal 256. Since the speech signal in TIMIT database has the 16K sample

rate, the 256 consecutive samples frame is 16 ms long in duration.

In Figure 5.10, we show the energy of word "cat", which is extracted from in the

continuous speech "Get a calico cat to keep" and spoken by a female person who is

from dialect region five. The word "cat" is segmented into consecutive 16 ms frames

and the energy of each frame is calculated by Equation 5.7 and Equation 5.8. For

high quality speech (high signal-to-noise ratio), the En can be used to distinguish

speech from silence. From Figure 5.10, it is clear that frames segmented from the
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Figure 5.10 Energy value of each frame in the word "cat"

vowel [ae] have the high energy. The frames at the beginning and the end of the

word have the low energy, which are consonant [k] and [t].

The other selected frame feature is ZCR. ZCR stands for Zero Crossing Rate,

it occurs if successive samples have different algebraic signs. The value of ZCR is
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defined by the following equation [1]

ZCR =
m=+∞
∑

m=−∞

|sgn[x(m+ 1)]− sgn[x(m)]|w(n−m) (5.9)

where sgn function is given by

sgn[x(m)] = 1; x(m) > 0

sgn[x(m)] = 0; x(m) = 0

sgn[x(m)] = −1; x(m) < 0

(5.10)

and

w(n) = 1
2
; 0 ≤ n ≤ N − 1

w(n) = 0; otherwise

(5.11)

Equation 5.9 to Equation 5.11 means that the ZCR is to check samples in pairs and

find where the zero-crossings occur.

We show the ZCR of each frame in a word "cat" in Figure 5.11. In Figure 5.11,

0 1000 2000 3000 4000 5000 6000 7000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
The ZCR value of each frame

 

 

Waveform
ZCR

Figure 5.11 ZCR value of each frame in the word "cat"

we can see ZCR values of the vowel frames are relatively low. But the consonant

frames with high ZCR value are noticeable in the beginning and end of the word
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"cat". Generally, we draw the conclusion that if the zero-crossing rate is high, it

indicates the speech is unvoiced, and if the zero-crossing rate is low, it indicates

that the speech is voiced speech. So ZCR is quite useful in making the distinction

between voiced and unvoiced speech.

From speech production, we know that voiced speech produced by the quasi-

periodic air to excite the relatively fixed vocal tract, so the energy of voiced speech is

concentrated below about 3 KHz , whereas for unvoiced speech, most of the energy

is found at higher frequencies. Since high frequencies imply high zero-crossing rate,

and low frequencies imply low zero-crossing rate, there is a correlation between

zero-crossing rate and energy distribution with frequency, we illustrate it in the

Figure 5.12.
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Figure 5.12 Correlation of energy and ZCR value of each frame
in the word "cat"

Grouping Frames into Consonant, Vowel or Silence

In the second step, all consecutive frames, which segmented by the rectan-

gular window which is shown in Equation 5.8, are grouped into C/V/S (Conso-

nant/Vowel/Silence) at the phoneme level. By using the following rules, frames

are classified to one of C/V/S groups. We already know ZCR provides a basis for

distinguishing voiced speech frames from unvoiced speech frames, so a threshold of
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ZCR should be set up. In this experiment, the threshold of ZCR is set by the mean

of ZCR plus the standard deviation of ZCR divided by two. If one frame’s ZCR

value is greater than the threshold of ZCR, it will be determined to be a consonant

frame. Then we set a threshold of energy for distinguishing the silence frame from

vowel frames. The threshold of energy is given by the mean of energy plus the

standard deviation of energy divided by two. If the frame’s energy is lower than

or equal to the threshold of energy, it will be decided into the silence frame group.

The rest of the frames, whose ZCR values are less than or equal to the threshold of

ZCR and energy is greater than or equal to the threshold of energy, all belong to

the vowel frames. The rules can be summarized in the following:

• Compare the frame’s ZCR value with the threshold of ZCR, if ZCR is greater

the threshold of ZCR, the frame will be grouped into the consonant frame

group, otherwise the frame’s energy will be calculated.

• Compare energy of the frame, whose ZCR is less than and equal to ZCR

threshold with the threshold of energy, if energy is less the energy threshold,

then the frame is determined as a silent frame.

• The rest of frames belong to vowel frames.

We applied the rules above to the word "cat" and "she", we can classify the vowel,

consonant and silence frames, the results are shown in Figure 5.13. The positive val-

ues means vowel frames, negative values are consonant and zero are silence frames.

Calculating PARCOR Parameters

In the third phase, the typical vowel and consonant frames are extracted in order

to calculate the PARCOR parameters. We search for a contiguous stretch of vowel

frames, then select the center frame of the vowel group as a typical vowel frame.

Once the typical vowel frame is located, the consonant frames are determined by

backward and forward search from the position of the typical vowel frame. The

first on-set of a contiguous vowel frame group and the last frame of the group are
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Figure 5.13 Classification of each frame in the word "she" and
"cat"

tested in their similarity to the typical vowel. If similar, the search moves forward

and backward to find a frame which is different from the typical vowel frame but

still has sufficient energy.

Now, the PARCOR parameters can be calculated for the selected typical vowel

and consonant frame. Here the eighth-order PARCOR parameters are calculated.

It is clear that if the order of the PARCOR parameters is higher, more details of the

speech characteristics are represented. But our objective is to characterize speech

signals by using PARCOR parameters at a considerably lower information rate to

realize speech recognition. The eighth-order PARCOR parameters are appropriate

to reflect the characteristics of speech signals. The Autocorrelation method was

implemented to solve the PARCOR parameters. When this method is applied, the

large prediction error occurred at the beginning of the frame due to the fact that we

are attempting to predict the samples of the signals from the zero valued samples
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outside the interval.

5.2.2 Classification Results and Discussion

In TIMIT database, some one-syllable words are selected as the test words.

The test words are chosen from eight dialect regions and are spoken by different

male and female speakers, the information of the test words, such as speaker name,

gender and dialect region, are listed in Appendix B.

Based on the method, which we talked in Section 5.2.1, test words were pre-

processed for the classification. After the preprocessing, the PARCOR parameters

of typical vowel and consonant frames were obtained. Then the third and fourth

PARCOR parameters are fed into either the vowel classifier or consonant classifier.

Finally, we classify the phonemes by using the maximum likelihood decision rule,

which is introduced in Section 5.1. The vowel and consonant classification results

are shown in Table 5.1 to Table 5.7. The summary of the results are listed from

Table 5.8 to Table 5.14.

In Table 5.1 and Table 5.2, the classification results of the phoneme [iy] in the

one-syllable word are listed. There are totally fifty test words, which are selected

from eight dialect regions. We noticed that the classification rate is different in

different dialect regions, as is summarized in Table 5.8. Similarly, we summarized

the classification results of vowel [ae] and [uw] in different dialect regions in Table 5.9

and Table 5.10. In Table 5.11, it shows the vowel [ae], [iy] and [uw] classification

rate respectively and the total classification rate of the vowel group. In Table 5.8,

we can see the total eleven test words in dialect region one and eight are all classified

correctly. The classification results for vowel [iy] in dialect region two has the lowest

correct classification rate, which is 54.55%. In Table 5.9, we can see the highest

correct classification rate of 75.00% is in dialect region one and three, there are four

test words in each dialect region and each account for 8.16% of all the test words.

In dialect region two and six, there are ten test data respectively, which totally

account for 40.82% of all the test words, both of the correct classification rates are

60.00%. In Table 5.10, the correct classification rate is same in dialect region one,
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three, four, six and seven, all of them are 60.00%. The lowest correct classification

rate is 57.14% in dialect region two. In Table 5.11, it shows the summary of vowel

[ae], [iy] and [uw] classification rate respectively and the total classification rate in

the vowel group. The correct classification rate of the vowel [iy] is 74.00% for all test

words from eight dialect regions. Test words for the vowel [iy] are totally 50, which

account for 36.23% of all test words in the vowel group. The correct classification

rate of the vowel [ae] is 63.27% for all test words from eight dialect regions. Test

words for the vowel [ae] are totally 49, which account for 35.51% of all test words

in the vowel group. The correct classification rate of the vowel [uw] is 58.97% for

all test words from eight dialect regions. Test words for the vowel [uw] are totally

39, which account for 28.26% of all test words in the vowel group. In total, there

are 138 test words in the vowel [iy] [ae] [uw] group, and the correct classification

rate is 65.22%.

For consonant [sh] and [f], we summarized the classification results of consonant

[sh] and [f] in different dialect regions in Table 5.12 and Table 5.13. In Table

5.14, we can see consonant [sh] and [f] classification rate respectively and the total

classification rate in the consonant group. In Table 5.12, except dialect region

one and two, the test words are all classified correctly in other dialect regions. The

correct classification rate in dialect region one and dialect region two are 75.00% and

60.00% and the number of test words account for 20.00% and 12.50% respectively.

From Table 5.13, we can see the correct classification rate is very high in all dialect

regions, the correct classification rate is 100.00% from dialect region one to seven,

only in dialect region eight, the correct classification rate drops to 80.00%, there

are five test words in this dialect region and account for 13.51% of all test words.

In Table 5.14, it shows the summary of consonant [sh] and [f] classification rate

respectively and the total classification rate in the consonant group. The correct

classification rate of the consonant [sh] is 90.00% for all test words from eight dialect

regions. Test words for the consonant [sh] are totally 40, which account for 51.95%

of all consonant test words. The correct classification rate of the consonant [f] is

97.30% for all test words from eight dialect regions. Test words for the consonant
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[f] are totally 37, which account for 48.05% of all test words in consonant group. In

total, there are 77 test words in the consonant group, and the correct classification

rate is 93.51% for the consonant group.

The consonant group has the higher correct classification rate (93.51%) than

the vowel group (65.22%), we can explain it from the the following facts, one is

that there are only two classes in the consonant group, but there are three classes

in the vowel group, from the statistics view, the probability of correct classification

of unknown consonant is 50.00% and 33.33% for unknown vowel. The other fact,

we can see from Figure 5.6 and Figure 5.8, the overlap degree between vowel [iy],

[ae] and [uw] is bigger than [sh] and [f].

But for both group, the vowel and the consonant group give us a good enough

classification result, particularly for consonant group. In this thesis, the eighth-

order PARCOR parameters are calculated, then the four combination of eight PAR-

COR parameters are investigated in the training stage, finally the third and the

fourth PARCOR parameters are selected as feature vector to classify the unknown

phonemes. We know the combination of eight PARCOR parameters is twenty-eight.

It further proves that the PARCOR parameters have the potential ability to classify

the unknown phonemes.
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Table 5.1 Vowel [iy] classification results (Test words from di-
alect region 1, 2, 3, 4 and 5)

Test Word [iy] [ae] [uw] Results True/False

She 0.3129 0.0624 3.4422e-005 [iy] T
She 1.3950 0.7121 0.0034 [iy] T
Me 0.9030 0.0370 7.2836e-006 [iy] T
Seem 1.8390 0.0047 1.6732e-006 [iy] T
Be 2.0656 0.0126 6.1008e-006 [iy] T
Seed 1.4525 0.3409 8.3558e-004 [iy] T
She 2.6460 0.0412 2.4901e-005 [iy] T
She 0.0228 0.5543 3.1422 [uw] F
He 1.2441 1.6718 0.0134 [ae] F
Clean 0.2098 1.7719 0.3786 [ae] F
Street 3.2695 0.0668 5.8643e-005 [iy] T
Feel 0.0323 1.3110 1.2176 [ae] F
Leaf 3.2226 0.0508 4.1710e-005 [iy] T
Each 3.9527 0.2703 5.0105e-004 [iy] T
Real 1.7551 2.5096 0.0332 [ae] F
Cream 2.1624 0.0080 3.5465e-006 [iy] T
Me 2.5010 0.0116 5.9452e-006 [iy] T
Feed 3.9742 0.6788 0.0022 [iy] T
She 3.3691 0.0687 7.2246e-005 [iy] T
Me 2.4032 0.6576 0.0027 [iy] T
Tea 0.0291 0.8880 0.1611 [ae] F
Me 3.6870 1.4478 0.0101 [iy] T
Steep 3.7542 0.1358 1.9426e-004 [iy] T
Read 0.0063 0.1524 2.1202 [uw] F
She 1.7835 2.9313 0.0506 [ae] F
Me 3.5686 0.0883 9.5784e-005 [iy] T
Be 3.6553 0.1442 1.8347e-004 [iy] T
Beach 1.6908 0.0111 3.3649e-006 [iy] T
Flee 1.9879 0.0045 1.7004e-006 [iy] T
Seem 2.4966 1.5051 0.0085 [iy] T
See 1.7310 4.6623 0.2045 [ae] F
Cheap 0.3118 3.6082e-004 1.9246e-008 [iy] T
Teeth 0.0373 0.0048 2.5491e-007 [iy] T
Be 0.0441 1.3690 5.4635 [uw] F
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Table 5.2 Vowel [iy] classification results (Test words from di-
alect region 6, 7, and 8)

Test Word [iy] [ae] [uw] Results True/False

Me 3.4432 1.6135 0.0110 [iy] T
She 2.6936 0.5370 0.0011 [iy] T
Me 1.4594 0.0299 1.6477e-005 [iy] T
Seed 1.9629 4.0600 0.1304 [ae] F
Meet 2.2924 0.0954 1.0848e-004 [iy] T
Me 1.4456 0.1009 1.0457e-004 [iy] T
She 3.4418 0.0921 9.3887e-005 [iy] T
Me 3.4032 0.8794 0.0031 [iy] T
Meet 0.7894 0.0067 1.4790e-006 [iy] T
Meat 1.5498 2.8478 0.0649 [ae] F
Feel 0.0181 0.9070 4.9601 [uw] F
Be 2.4044 0.3258 7.8987e-004 [iy] T
Free 3.2864 1.4014 0.0078 [iy] T
Need 3.1481 0.0500 4.5818e-005 [iy] T
We 0.6757 0.1017 2.7374e-005 [iy] T
Sleep 1.0601 0.3789 0.0010 [iy] T

Table 5.3 Vowel [ae] classification results (Test words from di-
alect region 1 and 2)

Test Word [iy] [ae] [uw] Results True/False

Had 1.9017 4.4157 0.1641 [ae] T
Rag 1.7942 4.7218 0.2017 [ae] T
That 0.5511 4.4772 0.6107 [ae] T
Had 2.1412 0.0179 7.4690e-006 [iy] F
Had 0.1084 0.7910 0.1014 [ae] T
Rag 0.8559 5.1009 0.6537 [ae] T
That 0.2835 3.9539 1.1760 [ae] T
That 1.1301e-004 0.0063 3.5959 [uw] F
At 3.1258 1.0221 0.0059 [iy] F
Cash 0.1767 3.0246 2.8895 [ae] T
Can 0.0299 1.2981 1.8106 [uw] F
Hat 0.0013 0.0886 6.4182 [uw] F
Rag 0.0379 0.1859 6.0846e-004 [ae] T
That 1.2648 4.2922 0.2192 [ae] T



79

Table 5.4 Vowel [ae] classification results (Test words from di-
alect region 3, 4, 5 6, 7, and 8)

Test Word [iy] [ae] [uw] Results True/False

Had 0.6167 4.8773 0.9979 [ae] T
Rag 0.4860 5.0196 1.4589 [ae] T
That 2.1270 4.1915 0.1267 [ae] T
back 0.3792 0.2169 1.1689e-004 [iy] F
Black 2.1048 4.2813 0.1374 [ae] T
Lack 0.0255 0.9432 6.2033 [uw] F
Panic 0.3087 0.4068 0.0015 [ae] T
Had 0.5011 4.4744 1.1474 [ae] T
Stag 1.7019 1.5360 0.0092 [iy] F
Ask 1.0797 5.4741 0.5392 [ae] T
Rag 3.2738 2.0782 0.0192 [iy] F
That 0.0175 0.9185 1.3530 [ae] T
Ask 1.3750 1.3254 0.0122 [iy] F
Rag 3.7053 0.2440 4.9355e-004 [iy] F
Had 0.1439 3.1702 2.7415 [ae] T
That 1.4847 5.0318 0.2904 [ae] T
Sat 1.8678 2.8495 0.0585 [ae] T
Had 1.5456 3.8510 0.1257 [ae] T
That 0.2328 3.7946 2.6643 [ae] T
Rag 3.5680 0.6624 0.0019 [iy] F
Rag 1.0565e-004 0.0162 1.6558 [uw] F
That 0.7790 5.2448 0.8151 [ae] T
Ask 0.8900 2.6792 0.0792 [ae] T
Rag 0.0021 0.2183 1.1383 [uw] F
Tax 0.1698 3.0576 3.0982 [uw] F
Cat 1.3982 4.2371 0.1867 [ae] T
Ask 1.3916 0.5453 0.0020 [iy] F
Rag 0.5780 1.6931 0.0324 [ae] T
That 0.1998 0.9577 0.0151 [ae] T
Lamp 1.1234 1.3247 0.0130 [ae] T
Has 0.1270 2.9389 2.1304 [ae] T
Had 0.6908 0.1866 8.4425e-005 [iy] F
Can 1.5629 0.1897 1.2654e-004 [iy] F
Lad 0.1261 0.9953 0.1666 [ae] T
Rag 0.4930 0.6468 0.0035 [ae] T
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Table 5.5 Vowel [uw] classification results (Test words from di-
alect region 1, 2, 3, 4, 5, 6, 7, and 8)

Test Word [iy] [ae] [uw] Results True/False

Foot 0.8213 5.4862 0.7896 [ae] F
Moon 0.0879 1.5569 2.3259 [uw] T
Fool 1.2408e-006 1.2283e-004 0.7195 [uw] T
Soon 3.7926 0.4643 0.0011 [iy] F
Room 8.7932e-005 0.0114 2.3970 [uw] T
Woods 1.7605e-004 0.0105 4.2055 [uw] T
Zoo 3.2690e-004 0.0064 0.7443 [uw] T
Zoo 0.0102 0.4198 6.5380 [uw] T
Noon 0.9355 0.5336 8.1590e-004 [iy] F
Noon 2.4200e-005 0.0057 0.3705 [uw] T
Roof 0.0890 0.3894 0.0024 [ae] F
Roof 8.5537e-004 0.0329 1.8255e-004 [ae] F
Roof 0.0018 0.0578 3.1300 [uw] T
Choose 0.9953 5.4777 0.6187 [ae] F
Noon 0.2748 2.4764 0.1924 [ae] F
Noon 0.8611 0.0979 2.8725 [uw] T
Toon 0.0098 0.5410 6.2739 [uw] T
Too 3.5667e-004 0.0070 0.7549 [uw] T
Room 3.5359 0.1786 3.0455e-004 [iy] F
Choose 9.7114e-005 0.1303 2.3244 [uw] T
Rooms 2.1913 1.4492 0.0127 [iy] F
Zoo 0.0286 1.2796 2.3624 [uw] T
Too 2.8904 0.8119 0.0024 [iy] F
Soon 2.7643 2.7450 0.0427 [iy] F
Choose 3.9401 1.0193 0.0050 [iy] F
Room 0.0432 0.1866 1.1122 [uw] T
Room 0.0054 0.2201 0.3680 [uw] T
Room 7.3359e-004 0.0908 1.9293 [uw] T
Tooth 0.0603 1.9774 3.9577 [uw] T
Sooth 0.0704 1.7446 0.5142 [ae] F
Roof 0.0045 0.3626 3.1093 [uw] T
Noon 0.0091 1.5120 3.1730 [uw] T
Proof 0.9861 4.8606 0.3940 [ae] F
Tooth 0.2971 2.4763 0.5318 [ae] F
Zoo 0.0058 0.3019 7.0480 [uw] T
Zoo 0.0074 0.5061 0.7032 [uw] T
Roof 0.0587 0.4597 0.0054 [ae] F
Proof 3.1243e-004 0.0497 0.7984 [uw] T
Proof 0.0124 0.0238 0.4295 [uw] T
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Table 5.6 Consonant [sh] classification results (Test words from
dialect region 1,2, 3, 4, 5, 6, 7, and 8)

Test Word [sh] [f] Results True/False

She 2.4826 2.4954 [f] F
Wash 0.9184 7.7010 [f] F
Wash 0.0086 0.0014 [sh] T
She 3.0659 0.1465 [sh] T
Wash 1.6108 0.9333 [sh] T
She 5.3151 0.0302 [sh] T
Wash 5.1490 0.1073 [sh] T
Wash 4.3749 0.0789 [sh] T
She 4.7404 0.0196 [sh] T
She 0.0031 0.0703 [f] F
Fish 3.7395 0.2649 [sh] T
Fish 5.1277 0.0391 [sh] T
Wash 2.1695 2.5148 [f] F
She 2.1008 8.7738e-004 [sh] T
Wash 4.3170 0.2299 [sh] T
She 1.9581 3.0584e-004 [sh] T
Shot 0.7064 2.1771e-004 [sh] T
She 2.3077 0.0897 [sh] T
Should 4.8045 0.0056 [sh] T
Wash 4.9615 0.1437 [sh] T
She 1.5637 0.06317 [sh] T
Should 3.1919 7.8590e-004 [sh] T
Fresh 5.3819 0.0348 [sh] T
Dish 2.3352 9.5467e-005 [sh] T
Wash 4.8205 0.0056 [sh] T
She 0.7884 3.4866e-006 [sh] T
Should 5.3314 0.0329 [sh] T
Shelt 0.0103 9.8455e-007 [sh] T
She 3.5569 1.3674 [sh] T
She 3.2165 9.5528e-004 [sh] T
Wash 3.2778 4.1324e-0047 [sh] T
She 1.6542 1.8567e-0057 [sh] T
Wash 3.2728 0.0018 [sh] T
Brush 4.4522 0.1617 [sh] T
She 3.2910 8.6683e-004 [sh] T
Shut 5.1188 0.0544 [sh] T
Shrimp 2.5228 0.0028 [sh] T
Wash 3.8399 0.1958 [sh] T
Wash 3.5374 1.3949 [sh] T
Ship 5.3622 0.0285 [sh] T
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Table 5.7 Consonant [f] classification results (Test words from
dialect region 1,2, 3, 4, 5, 6, 7, and 8)

Test Word [sh] [f] Results True/False

Far 1.2327 6.2735 [f] T
Fool 0.0422 1.0856 [f] T
Off 0.0374 5.7884 [f] T
For 0.2558 9.1685 [f] T
Foot 0.4066 10.0661 [f] T
Fish 0.2799 9.6487 [f] T
Feel 1.1337 6.8770 [f] T
Leaf 0.9017 7.1849 [f] T
Roof 1.3641 3.7811 [f] T
Roof 0.0141 4.7026 [f] T
Enough 2.0005 3.8533 [f] T
Roof 0.0588 2.6795 [f] T
Feed 9.7096e-004 0.6403 [f] T
From 0.7740 8.2306 [f] T
If 1.1843 5.2007 [f] T
If 0.3314 10.2137 [f] T
Enough 1.1275 6.6849 [f] T
Roof 0.0574 8.0399 [f] T
Fresh 0.78417 5.5536 [f] T
Flee 0.3665 9.4438 [f] T
First 3.1265e-004 0.4041 [f] T
Enough 0.0129 1.1430 [f] T
Of 0.1800 5.3871 [f] T
For 0.1613 10.3838 [f] T
First 0.6551 3.7237 [f] T
Jeff 0.1878 4.3599 [f] T
Fish 0.2284 2.6212 [f] T
Enough 0.9598 4.7870 [f] T
Form 0.6903 5.2687 [f] T
For 0.0483 3.3340 [f] T
Roof 0.1941 8.9762 [f] T
Proof 0.1331 9.4462 [f] T
If 0.0085 3.1391 [f] T
Free 0.2439 0.15257 [sh] F
Proof 0.0518 5.1547 [f] T
Foam 0.0777 5.6398 [f] T
Chief 0.0065 1.9503 [f] T
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Table 5.8 Summary of the vowel [iy] classification results in
eight dialect regions

Dialect Region Correct Wrong Total
DR1 6(100.00%) 0(0.00%) 6(12.00%)
DR2 6(54.55%) 5(45.45%) 11(22.00%)
DR3 5(83.33%) 1(16.67%) 6(12.00%)
DR4 3(60.00%) 2(40.00%) 5(10.00%)
DR5 4(66.67%) 2(33.33%) 6(12.00%)
DR6 4(80.00%) 1(20.00%) 5(10.40%)
DR7 4(66.67%) 2(33.33%) 6(12.00%)
DR8 5(100.00%) 0(0.00%) 5(10.00%)

Table 5.9 Summary of the vowel [ae] classification results in
eight dialect regions

Dialect Region Correct Wrong Total
DR1 3(75.00%) 1(25.00%) 4(8.16%)
DR2 6(60.00%) 4(40.00%) 10(20.41%)
DR3 3(75.00%) 1(25.00%) 4(8.16%)
DR4 5(62.50%) 3(37.50%) 8(16.33%)
DR5 2(50.00%) 2(50.00%) 4(8.16%)
DR6 6(60.00%) 4(40.00%) 10(20.41%)
DR7 4(66.67%) 2(33.33%) 6(12.24%)
DR8 2(66.67%) 1(33.33%) 3(6.12%)

Table 5.10 Summary of the vowel [uw] classification results in
eight dialect regions

Dialect Region Correct Wrong Total
DR1 3(60.00%) 2(40.00%) 5(12.82%)
DR2 4(57.14%) 3(42.86%) 7(17.95%)
DR3 3(60.00%) 2(40.00%) 5(12.82%)
DR4 3(60.00%) 2(40.00%) 5(12.82%)
DR5 3(50.00%) 3(50.00%) 6(15.38%)
DR6 3(60.00%) 2(40.00%) 5(12.82%)
DR7 3(60.00%) 2(40.00%) 5(12.82%)
DR8 1(100.00%) 0(0.00%) 1(2.56%)
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Table 5.11 Summary of vowels classification results

Vowel Correct Wrong Total
[iy] 37(74.00%) 13(26.00%) 50(36.23%)
[ae] 31(63.27%) 18(36.73%) 49(35.51%)
[uw] 23(58.97%) 16 (41.03%) 39(28.26%)
Total 90(65.22%) 48(34.78%) 138(100.00%)

Table 5.12 Summary of the consonant [sh] classification results
in eight dialect regions

Dialect Region Correct Wrong Total
DR1 6(75.00%) 2(25.00%) 8(20.00%)
DR2 3(60.00%) 2(40.00%) 5(12.50%)
DR3 7(100.00%) 0(0.00%) 7(17.50%)
DR4 3(100.00%) 0(0.00%) 3(7.50%)
DR5 5(100.00%) 0(0.00%) 5(12.50%)
DR6 5(100.00%) 0(0.00%) 5(12.50%)
DR7 3(100.00%) 0(0.00%) 3(7.50%)
DR8 4(100.00%) 0(0.00%) 4(10.00%)

Table 5.13 Summary of the consonant [f] classification results
in eight dialect regions

Dialect Region Correct Wrong Total
DR1 5(100.00%) 0(0.00%) 5(13.51%)
DR2 6(100.00%) 0(0.00%) 6(16.22%)
DR3 5(100.00%) 0(0.00%) 5(13.51%)
DR4 3(100.00%) 0(0.00%) 3(8.11%)
DR5 5(100.00%) 0(0.00%) 5(13.51%)
DR6 5(100.00%) 0(0.00%) 5(13.51%)
DR7 3(100.00%) 0(0.00%) 3(8.11%)
DR8 4(80.00%) 1(20.00%) 5(13.51%)

Table 5.14 Summary of consonants classification results

Consonant Correct Wrong Total
[sh] 36(90.00%) 4(10.00%) 40(51.95%)
[f] 36(97.30%) 1(2.70%) 37(48.05%)
Total 72(93.51%) 5(6.49%) 77(100.00%)



Chapter 6

CONCLUSIONS AND FURTHER STUDY

6.1 Conclusions

Linear predictive analysis is one of the most powerful speech analysis techniques.

Since the method can estimate the basic speech parameters, e.g., pitch, formants,

spectra and vocal tract area functions, and since it represents speech for low bit

rate transmission or storage, it has become the predominant technique. The ability

to provide extremely accurate estimates of the speech parameters and the relative

speed of computation decide the importance of the linear predictive method in

speech analysis area.

One of the most important applications of the linear predictive analysis in speech

is the area of low bit rate encoding of speech for transmission (LPC vocoder). In

the LPC vocoder system, the speech synthesis model shows that speech can be

modelled as the output of a linear, successive time-varying system excited by either

quasi-periodic pulses (for voiced sound) or random noise (for unvoiced sound). In

order to characterize the linear, time-varying system, it can be realized by linear,

successive and time-invariant filters. The linear prediction method can estimate the

parameters which characterize the successive and time-invariant filters. In fact, the

linear predictive method determines robust and reliable parameters associated with

an all-pole IIR filter in speech synthesis. The IIR filter can be realized by PARCOR

parameters in a lattice structure filter.

Speech recognition by machine (in many contexts also known as automatic

speech recognition, computer speech recognition) is the process of converting a

speech signal to a set of words or interpretation of everything the human speaker

85
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says while the machine is listening. To recognizing the basic phonemes, syllables

and isolated words in continuous speech is the fundamental purpose of speech recog-

nition systems. In this thesis, we make use of PARCOR parameters in LPC vocoder

systems to realize the recognition of phonemes in a continuous speech.

In Chapter 4, we present the distributions of PARCOR parameters of vowels

and consonants in Figure 4.11 and Figure 4.12. The data in both figures are spoken

by female and male people who are from from eight dialect regions. In Figure 4.11

(a) and (b), we can see the cluster of each vowel [iy], [ae] and [uw], which are

marked by star, circle and plus, are well separated. Also in the Figure 4.12 (a) and

(b), it is obvious that we can find the partition line between the cluster of [sh] and

[f]. They indicate that the PARCOR parameters have the potential capability to

characterize phonemes.

In Chapter 5, we explore a method to classify the phoneme in one-syllable word

by using a supervised classifier. The supervised classifier need to be trained. The

training uses TIMIT speech database, which contains the recordings of 630 speakers

of 8 major dialects of American English. The training data were grouped into the

vowel group including phoneme [ae], [iy] and [uw] and the consonant group includ-

ing [sh] and [f]. After the training, the decision rule was derived. Then we designed

two classifiers to classify the unknown phonemes in one-syllable words. Before clas-

sification, the test words needed to be preprocessed to detect the phonemes and

calculate the corresponding PARCOR parameters. In Figure 5.9, the preprocess-

ing method is illustrated. By using this method, the frames can be grouped into

vowel, consonant and silence group. Figure 5.13 shows the group results of vowel,

consonant phonemes and silence in the word "cat" and "she". It indicates the

preprocessing method is feasible to detect phonemes and group them into vowel,

consonant or silence. The calculated vowel and consonant PARCOR parameters

of frames are fed into the classifier, which uses the maximum likelihood decision

rule to classify the unknown phonemes. The classification results are shown from

Table 5.1 to Table 5.7. The correct classification rate, which is shown in Table 5.8

to Table 5.14 is good enough. In Table 5.11, we see the correct classification rate
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of each vowel [iy], [ae] and [uw] were 74.00%, 63.27% and 58.97% respectively. The

total correct classification rate was 65.22% for the vowel group. In Table 5.14, the

correct classification rate of [sh] and [f] were 90.00% and 97.30% respectively. The

total correct classification rate was 93.51% for the consonant group.

But in some cases, some phonemes can’t be recognized correctly, partly it is

because the variation of speech from different people who are from different dialect

regions. For the training data, we found that the cluster of PARCOR parameters

of each vowel in Figure 5.1 (b), was not completely separated, there is overlap

between the cluster of [ae], [iy] and [uw]. In Figure 5.3 (b), the cluster of PARCOR

parameters of [sh] and [f] is not completely separated, either. That’s why some

phonemes can’t be classified correctly. Overall, the results of classification are good

enough. They indicate PARCOR parameters have potential ability to characterize

the phonemes.

6.2 Further Study

In this thesis, we investigate a few vowel and consonant phonemes, more vowel

and consonant phonemes are should be studied and syllables should be classified in

the future.

For syllables, they are typically made up of a syllable nucleus (most often a

vowel) with optional initial and final margins (typically, consonants), first stage, we

classify vowel or consonant phonemes by using the vowel or consonant classifier, then

combine the classification results from both classifiers, finally judge the unknown

syllable belong to which class. For example, one unknown one-syllable word, after

acquiring the corresponding PARCOR parameters of vowel and consonant frame

by using the method shown in Figure 5.9, we feed vowel and consonant PARCOR

parameters into the vowel and consonant classifier respectively, if the vowel classifier

output is [iy] and the the consonant clarifier output is [sh], plus considering the

sequence of the frame occurred in the one-syllable word, we can judge the syllable

is "she".

Also how the combination of consonants and vowels affect the sound should be
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further studied, for example, the vowel [uw] in the one-syllable word "wood" often

is spoken as [uh].
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Appendix A

TIMIT CORPUS

TIMIT was designed to provide speech data for the acquisition of acoustic-

phonetic knowledge and for the development and evaluation of automatic speech

recognition systems. The corpus was prepared at the National Institute of Stan-

dards and Technology (NIST) with sponsorship from the Defense Advanced Re-

search Projects Agency - Information Science and Technology Office (DARPA-

ISTO).

Table A.1 Dialect distribution of speakers

Dialect Region (DR) Male Female Total
DR1: New England 31(63%) 18 (27%) 49 (8%)
DR2: Northern 71 (70%) 31 (30%) 102 (16%)
DR3: North Midland 79 (67%) 23 (23%) 102 (16%)
DR4: South Midland 69 (69%) 31 (31%) 100 (16%)
DR5: Southern 62 (63%) 36 (37%) 98 (16%)
DR6: New York City 30 (65%) 16 (35%) 46 (7%)
DR7: Western 74 (74%) 26 (26%) 100 (16%)
DR8: Army Brat (moved around) 22 (67%) 11 (33%) 33 (5%)
Total eight DR 438 (70%) 192 (30%) 630 (100%)

TIMIT contains a total of 6300 sentences, 10 sentences spoken by each of 630

speakers from 8 major dialect regions of the United States. Table A.1 shows the

number of speakers for the 8 dialect regions, broken down by sex. The percentages

are given in parentheses. A speaker’s dialect region is the geographical area of

the U.S. where they lived during their childhood years. The geographical areas

correspond with recognized dialect regions in U.S. (Language Files, Ohio State

University Linguistics Dept., 1982), with the exception of the Western region (DR7)
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in which dialect boundaries are not known with any confidence and dialect region

8 where the speakers moved around a lot during their childhood. All the phonemic

and phonetic symbols used in the TIMIT lexicon and in the phonetic transcriptions

are shown in Table A.2
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Table A.2 Phonemic and phonetic symbols from TIMIT speech
corpus

Symbol Example Symbol Example

iy beet m mom

ih bit n noon

eh bet ng sing

ey bay em bottom

ae cat en button

aa bott eng washington

aw bout nx winner

ay bike b bee

ah but d dog

ao bought g get

oy toy p put

ow boat t too

uh book k kite

uw boot dx dirty

ux toot q bat

ax about jh joke

ix debit ch choke

axr butter s sea

ax-h suspect sh sheep

er bird dh then

l lay z zone

r ray zh azure

w way f fun

y yacht th thin

hh hay v van

hv ahead pau paues

el bottle epi epenthetic silence
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Appendix B

TEST DATA

The information of the test words, such as speaker name, gender and dialect

region, are listed in Table B.1 to Table B.7.

95



Table B.1 Test words for vowel [iy] from dialect region 1, 2, 3,
4 and 5

Test Word Region Speaker Name Gender

She DR1 fadw0 Female
She DR1 fdml0 Female
Me DR1 faks0 Female
Seem DR1 faks0 Female
Be DR1 mdab0 Male
Seed DR1 mjsw0 Male
She DR2 fjas0 Female
She DR2 fcmr0 Female
He DR2 fdrd1 Female
Clean DR2 fdrd1 Female
Street DR2 mabw0 Male
Feel DR2 mabw Male
Leaf DR2 mrfk0 Male
Each DR2 fjre0 Female
Real DR2 fjre0 Female
Cream DR2 mccs0 Male
Me DR2 mccs0 Male
Feed DR3 fcmh0 Female
She DR3 fcmh0 Female
Me DR3 fcmh0 Female
Tea DR3 fcmh0 Female
Me DR3 mbdg0 Male
Steep DR4 fadg0 Female
Read DR4 fcft0 Female
She DR4 fdms0 Female
Me DR4 mjrf0 Male
Be DR4 mjrf0 Male
Beach DR4 mkcl0 Male
Flee DR5 fasw0 Female
Seem DR5 fawf0 Female
See DR5 fgmd0 Female
Cheap DR5 mahh0 Male
Teeth DR5 mahh0 Male
Be DR5 fcal1 Female
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Table B.2 Test words for vowel [iy] from dialect region 6, 7, and
8

Test Word Region Speaker Name Gender
Me DR6 fdrw0 Female
She DR6 fdrw0 Female
Me DR6 fmgd0 Female
Seed DR6 mesd0 Male
Meet DR6 flnh0 Female
Me DR7 fisb0 Female
She DR7 fisb0 Female
Me DR7 fdhc0 Female
Meet DR7 fisb0 Female
Meat DR7 mgrt0 Male
Feel DR7 mgrt0 Male
Be DR8 fcmh1 Female
Free DR8 fcmh1 Female
Need DR8 fjsj0 Female
We DR8 mjln0 Male
Sleep DR8 mdaw1 Male

Table B.3 Test words for vowel [ae] from dialect region 1 and 2

Test Word Region Speaker Name Gender

Had DR1 fdaw0 Female
Rag DR1 faks0 Female
That DR1 faks0 Female
Had DR1 mreb0 Male
Had DR2 fjre0 Female
Rag DR2 fjre0 Female
That DR2 fjre0 Female
That DR2 fcmr0 Female
At DR2 fjwb0 Female
Cash DR2 fjwb0 Female
Can DR2 mabw0 Male
Hat DR2 mdlb0 Male
Rag DR2 mcss0 Male
That DR2 mcss0 Male
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Table B.4 Test words for vowel [ae] from dialect region 3, 4, 5,
6, 7 and 8

Test Word Region Speaker Name Gender

Had DR3 fcmh0 Female
Rag DR3 fjlr0 Female
That DR3 mddc0 Male
back DR3 mdwm0 Male
Black DR4 fcrh0 Female
Lack DR4 fadg0 Female
Panic DR4 fdms0 Female
Had DR4 fdms0 Female
Stag DR4 mcdr0 Male
Ask DR4 mjrf0 Male
Rag DR4 mjrf0 Male
That DR4 mjrf0 Male
Ask DR5 fcal1 Female
Rag DR5 fcal1 Female
Had DR5 fawf0 Female
That DR5 mcrc0 Male
Sat DR5 mctt0 Male
Had DR6 fdrw0 Female
That DR6 fdrw0 Female
Rag DR6 fdrw0 Female
Rag DR6 fmgd0 Female
That DR6 fmgd0 Female
Ask DR6 fmgd0 Female
Rag DR6 mdsc0 Male
Tax DR6 flnh0 Female
Cat DR6 mjdh0 Male
Ask DR7 fisb0 Female
Rag DR7 fisb0 Female
That DR7 fisb0 Female
Lamp DR7 mers0 Male
Has DR7 mgrt0 Male
Had DR7 mdlf0 Male
Can DR8 fcmh1 Female
Lad DR8 fcmh1 Female
Rag DR8 mdaw1 Male
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Table B.5 Test words for vowel [uw] from dialect region 1,2, 3,
4, 5, 6, 7 and 8

Test Word Region Speaker Name Gender

Foot DR1 mstk0 Male
Moon DR1 mwar0 Male
Fool DR1 faks0 Female
Soon DR1 mrjo0 Male
Room DR1 msjs1 Male
Woods DR2 fdrd1 Female
Zoo DR2 feac0 Female
Zoo DR2 mrhl0 Male
Noon DR2 mrjm0 Male
Noon DR2 mrjt0 Male
Roof DR2 mjae0 Male
Roof DR2 mdlc2 Male
Roof DR3 fmjf0 Female
Choose DR3 fcmg0 Female
Noon DR3 fdfb0 Female
Noon DR3 mcal0 Male
Toon DR3 mcal0 Male
Too DR4 fdms0 Female
Room DR4 mjrf0 Male
Choose DR4 mesg0 Male
Rooms DR4 mkcl0 Male
Zoo DR4 mfrm0 Male
Too DR5 fasw0 Female
Soon DR5 fawf0 Female
Choose DR5 fmpg0 Female
Room DR5 fhes0 Female
Room DR5 fjsa0 Female
Room DR5 fmah0 Female
Tooth DR6 mesd0 Male
Sooth DR6 mjdh0 Male
Roof DR6 majp0 Male
Noon DR6 fklc1 Female
Proof DR6 fmju0 Female
Tooth DR7 fgwr0 Female
Zoo DR7 mjfr0 Male
Zoo DR7 mtml0 Male
Roof DR7 mgsl0 Male
Proof DR7 mcth0 Male
Proof DR8 mpam0 Male
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Table B.6 Test words for consonant [sh] from dialect region 1,2,
3, 4, 5, 6, 7 and 8

Test Word Region Speaker Name Gender

She DR1 fdaw0 Female
Wash DR1 fdaw0 Female
Wash DR1 fdml0 Female
She DR1 fjem0 Female
Wash DR1 fjem0 Female
She DR1 mwbt0 Male
Wash DR1 mwbt0 Male
Wash DR1 mstk0 Male
She DR2 fjas0 Female
She DR2 fcmr0 Female
Fish DR2 fdrd1 Female
Fish DR2 mwvw Male
Wash DR2 mwvw Male
She DR3 fcmh0 Female
Wash DR3 fpkt0 Female
She DR3 fpkt0 Female
Shot DR3 mdwm0 Male
She DR3 mthc0 Male
Should DR3 mthc0 Male
Wash DR3 mthc0 Male
She DR4 fdms0 Female
Should DR4 mrgm0 Male
Fresh DR4 mbns0 Male
Dish DR5 futb0 Female
Wash DR5 fnlp0 Female
She DR5 msfh1 Male
Should DR5 mrws1 Male
Shelt DR5 mrrk0 Male
She DR6 fdrw0 Female
She DR6 fmgd0 Female
Wash DR6 fmgd0 Female
She DR6 mrjr0 Male
Wash DR6 mrjr07 Male
Brush DR7 fgwr0 Female
She DR7 fisb0 Female
Shut DR7 mdvc0 Male
Shrimp DR8 fmld0 Female
Wash DR8 mres0 Male
Wash DR8 mpam0 Male
Ship DR8 majc0 Male
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Table B.7 Test words for consonant [f] from dialect region 1,2,
3, 4, 5, 6, 7 and 8

Test Word Region Speaker Name Gender

Far DR1 faks0 Female
Fool DR1 faks0 Female
Off DR1 fjem0 Female
For DR1 mwbt0 Male
Foot DR1 mstk0 Male
Fish DR2 fdrd1 Female
Feel DR2 mabw0 Male
Leaf DR2 mrfk0 Male
Roof DR2 mjae0 Male
Roof DR2 mdlc2 Male
Enough DR2 mabw0 Male
Roof DR3 fmjf0 Female
Feed DR3 fcmh0 Female
From DR3 fpkt0 Female
If DR3 mwjg0 Male
If DR3 mtdt0 Male
Enough DR4 fdms0 Female
Roof DR4 flhd0 Female
Fresh DR4 mbns0 Male
Flee DR5 fasw0 Female
First DR5 futb0 Female
Enough DR5 fnlp0 Female
Of DR5 mrws1 Male
For DR5 mrrk0 Male
First DR6 fdrw0 Female
Jeff DR6 mcmj0 Male
Fish DR6 mcmj0 Male
Enough DR6 mdsc0 Male
Form DR6 mjfc0 Male
For DR7 fcau0 Female
Roof DR7 mgsl0 Male
Proof DR7 mcth0 Male
If DR8 fjsj0 Female
Free DR8 fcmh1 Female
Proof DR8 mpam0 Male
Foam DR8 mdaw1 Male
Chief DR8 mjln0 Male
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