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ABSTRACT 

 

Studies were conducted at three different sites in Saskatchewan, Canada 

(Colonsay, Vanscoy and Rosthern) over two years (2005 and 2006) to determine the 

effect of dribble banded and coulter injected liquid fertilizer applied in the spring of  

2005 at 56, 112 and 224 kg N ha-1 with and without P at 28 kg P2O5 ha-1. A similar 

study was conducted in 2006 at one site in Mongolia to determine the effect of 

granular N and P fertilizer application on dry matter yield, and N and P concentration 

in plant biomass in the year of application (2006) only. The three Saskatchewan sites 

were unfertilized, 7-8 year old stands of mainly meadow bromegrass (Bromus 

riparius) dominated haylands, while the Mongolia site was mixed species of native 

rangeland.   

All fertilization treatments produced significantly (p≤0.05) higher dry matter 

yield than the control in the year of application at the three Saskatchewan sites. The 

addition of 28 kg P2O5 ha-1 P fertilizer along with the N fertilizer did not have a 

significant effect on yield in most cases. In the year of application, increasing N rates 

above 56 kg N ha-1 did not significantly increase yield over the 56 kg N ha-1 rate in 

most cases but did increase N concentration, N uptake and protein content. A 

significant residual effect was found in the high N rate treatments in 2006, with 

significantly higher yield and N uptake. In 2005, the forage N and P uptake were in 

all cases significantly higher than the control in the fertilized treatments. The N 

uptake at the three Saskatchewan sites increased with increasing N rate up to the high 

rate of 224 kg N ha-1, although the percent recovery decreased with increasing rate. 

The P fertilization with 28 kg P2O5 ha-1 also increased P uptake at the three 

Saskatchewan sites. The site in Mongolia was less responsive to fertilization than the 

three Saskatchewan sites, with only a significant response in yield, N uptake and no 

significant effect of P fertilization.  
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For incubation soil cores collected in the fall of 2006, mean respiration rates 

were similar among the fertilized treatments at all the sites and the pattern of CO2 and 

N2O evolution measured over a two-week period showed similar trend at the three 

sites, with no significant difference between treatments. However a significant 

increase in gas production occured as the soils were wetted during the incubation. By 

the fall of 2005, the fertilization effect had likely diminished along with available 

substrate for the soil microbial biomass. 

Overall, rates of fertilizer of approximately 50 kg N ha-1 appear to be 

sufficient to produce nearly maximum yield and protein concentration of the grass in 

the year of application for the Saskatchewan and Mongolia sites. Surface banding 

placement was as effective as in soil placement and there was limited response to P 

fertilization. A small amount of N fertilizer that is surface-placed on these grass 

dominated forage systems appears to be an effective means of increasing production 

in the year of application. Higher rates are needed to sustain the rejuvenation beyond 

one year. 
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1.0 Introduction 
 

 Tame and native grasslands are a significant source of feed for ruminant 

animals. In Canada approximately 40% of the agricultural land is under perennial 

forage (Malhi et al., 2004), the majority of which is used for beef cattle production. 

Cash receipts from the sale of cattle and calves in 2005 totaling $6.4 billion or 17% 

of the total farm cash receipts (National Beef Industry Development Fund, 2006). 

Native rangeland in Mongolia is a major agricultural resource that supports the 

production of 30 million head of ruminant livestock. Presently, it is estimated that the 

agricultural sector provides 43% of employment in Mongolia with seven out of the 

ten jobs in the sector from livestock activities (World Bank, 2006).  

 Establishing seeded pasture for animal production is an important way to 

diversify farm income and improve the economic value of marginal land (Popp et al., 

1997). In western Canada, most forage stands for grazing and hay production are 

established on marginal soils. Over time, the productivity and livestock carrying 

capacity of these hay fields and pastures may decline, largely as a result of reduced 

stand vigor, the invasion of unpalatable or less productive species, over grazing and 

poor soil fertility. To increase the productivity of old stands, producers generally 

break up the stand through tillage and then re-seed (Kruger, 1997). The cost of 

establishment of meadow bromegrass pasture is high, and was estimated in one study 

to be approximately Can $ 360 ha-1 (Kruger, 1997). Traditionally, forages are 

generally grown on low fertility soils and their production can be increased markedly 

with fertilization (Malhi et al., 2004). Rather than breaking the stand, rejuvenation of 

forage stands is probably the most economic and practical method to improve 

production and quality (Lardner et al., 2002). The effectiveness of fertilizers in 

increasing forage dry matter yield (DMY) and economic return is dependent upon the 

levels of nutrients in soil, climatic conditions, source, rate and method of fertilizer 

application, soil type and forage species. 
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 It is hypothesized that old grass dominated hayland and rangeland in the semi-

arid Canadian prairies and Mongolia would respond to added fertilizer in increased 

yield, plant and soil nutrient content and biological activity. The objectives of the 

research described in this thesis were to 1) determine forage stand yield and nutrient 

uptake as influenced by fertilization with nitrogen and phosphorus in three 

Saskatchewan tame grass pastures and on Mongolian native grass pasture. 2) assess 

the effects of fertilization on residual available soil nutrients, organic matter and 

production of carbon dioxide and nitrous oxide gases in an incubation.  
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2.0 Literature Review 
 

 Forage is the herbaceous plant material (mainly grasses and legumes) eaten by 

grazing animals. There are four major forage types: pasture, rangeland, hay and 

silage. Forage crops may consist of a single species or a grass and legume mixture. In 

terms of their nutritional value, legumes are rich in protein and grasses are rich in 

carbohydrates (Sengul, 2003). In addition, perennial grasses have widespread, 

extensive root systems that enhance soil organic matter, soil structure and soil 

aeration. Legumes fix atmospheric N into the soil and enhance the N status. An in-

depth understanding of nutrient cycling through the “soil-plant-animal” system is 

necessary to preserve the long-term productivity and sustainability of forage systems 

(Chen et al., 2004). Forages require essential nutrient elements from soil for normal 

healthy growth (nitrogen, phosphorus, potassium, sulphur, calcium, magnesium, 

copper, zinc, iron, manganese, boron, molybdenum, cobalt). The amounts of these 

nutrients required vary considerably among forage species (Agriculture & Agri-Food 

Canada, 1993). This literature review covers the nature of forage systems common in 

the semi-arid and sub-humid regions of the prairies, their fertility requirements, 

management, and relation to soil properties and impact on the emission greenhouse 

gases. 

 2.1 Meadow Bromegrass (Bromus riparius)  

In recent years, meadow bromegrass has become a popular pasture grass 

species for the Canadian prairies. Meadow bromegrass is a temperate-zone 

bunchgrass and cool-season species with long, narrow leaves. It has rapid vegetative 

regrowth compared to smooth bromegrass after grazing or cuttings (McCaughey, 

1998; Ferdinandez and Coulman, 2001). As a result, it has become widely accepted as 

a pasture species, particularly in areas of the Canadian Prairies that receive between 

350 to 500 mm of annual precipitation (Kruger, 1997). Meadow bromegrass starts 

growth approximately a week earlier in the spring than smooth bromegrass (Knowles 
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et al., 1993). Meadow bromegrass maintains a high density of small vegetative tillers 

that regrow rapidly. These growing points or vegetative tillers are located below the 

animal grazing height, and result in meadow bromegrass being less vulnerable to 

frequent leaf removals (Pearen and Baron, 1996). In addition, meadow bromegrass 

has a more spreading and less upright architecture form than smooth brome (Figure 

2.1).  

 

Figure 2.1. A photographic 

comparison of A – Meadow 

bromegrass; B – Smooth 

bromegrass  
Adapted from Agriculture & Agri-

Food Canada Website 

(http://www.agr.gc.ca/pfra/pub/fora

ge1.htm) 

 

 

Meadow bromegrass is responsive to fertilization. Meadow bromegrass yield 

was increased by 104-149% in the third year after establishment when it was 

fertilized at rate of 120 kg N ha-1 in Manitoba (McCaughey, 1998). In another study, 

fertilization with N over four years increased meadow bromegrass pasture production 

by 2.1 t DM ha-1 year-1 (Kopp et al., 2003). However, dry conditions reduce response 

of meadow bromegrass to N fertilization (Loeppky and Coulman, 2002). In terms of 

quality characteristics, leaves of meadow bromegrass is higher in neutral detergent 

fiber (NDF) and acid detergent fiber (ADF), and lower in crude protein (CP) 

concentration than smooth and hybrid bromegrasses, regardless of the growth stage 

(Ferdinandez and Coulman, 2001).  

2.2 Grass-legume mixtures 

In forage-animal production systems, grass-legume mixtures are favoured due 

to several reported advantages over pure monocultures (Haynes, 1980; Chen et al., 

A B
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2004; Sengul, 2003). The mixtures do impart challenges in forage management such 

as fertilization, height, cutting time and frequency, and maintaining the desired 

proportion of legume and grasses in the mixture (Baylor, 2002). The proportion of 

alfalfa (Medicago sativa L.) in relation to grass in the forage tends to decrease over 

time, and this results in a loss of nutritional value (Kopp et al., 2003). Moreover, 

yields are generally higher in the mixtures (Baylor, 2002) because of more efficient 

light utilization and the transfer of symbiotically fixed N from legumes to grasses 

(Ledgard, 1991). N fixation by the legume can eliminate the need for chemical N 

applications, and helps production of high quality forage with high protein. Besides 

producing more nutritious hay, it also reduces the risk of environmental pollution 

from the application of synthetic N sources (Gokkus et al., 1998; Sengul, 2003). In 

mixed forage production, dry matter yield is generally more balanced or evenly 

distributed throughout seasonal cuts because grasses are more productive in the 

spring, and legumes more productive in the summer. In addition, the more vertical 

nature of grass leaves vs. more horizontal leaves of legumes minimizes any inter-

specific plant competition for light (Mooso and Wedin, 1990). According to Sengul 

(2003), the dry matter production of a legume mixed with one or two grass species 

under fertilized and unfertilized conditions was higher than that of pure grass stands 

with a high rate fertilizer applied.  

 The total amounts of N fixed by legumes in mixed stands should be sufficient 

to replace the N fertilizer applications required for grass only stand while maintaining 

sufficient plant protein (Chen et al., 2004). Mixtures of grass and legumes affect both 

above and below ground dry matter yields. The botanical composition is affected by 

environmental conditions, such as soil nutrient status or grazing management. This 

can lead to rapid changes in pasture and livestock productivity. The percentage of 

alfalfa in mixtures has been observed to decline with time. However, better 

persistence of alfalfa cultivars has been found with rotational grazing where pastures 

are grazed for varying periods followed by a rest period (Popp et al., 2000). On 

legume-grass mixed pasture, average daily gains by sheep were 0.06 kg d-1 compared 

with 0.03 kg d-1 on grass only pastures (Campbell, 1981).  Also, milk production was 
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higher from cows grazed in mixed pastures than in single stand pasture (Baylor, 

2002). 

 2.3 Soil Fertility Management  

 2.3.1 Nitrogen (N) 

Rejuvenation of pastures to increase yield production via fertilization has been 

studied for a number of years (Brown et al., 1960; Dodds and Van Der Puy, 1985; 

Ukrainetz et al., 1988; Fairey, 1991; Lardner, 1998). The decision to fertilize in a 

rejuvenation program must be based on the yield potential of the soils and degree of 

pasture deterioration (Lardner, 1998). N is the major limiting nutrient in agricultural 

lands (Theaker et al.,1994) and has the greatest impact on forage production (Malhi et 

al., 2004). N is the primary nutrient limiting forage production, but P may also be 

limiting in some soils (Sedivec and Manske, 1990; Berg and Sims, 1995). 

A study in Manydown Estate, UK by Theaker et al. (1994) showed that 

fertilizer applications increased available N in the soil. However, N fertilization for 

grass production has been shown to be uneconomical when a moisture limitation 

commonly occurs (Table 2.1), such as on soils in the Brown soil zone in south-

western Saskatchewan (Campbell et al., 1986).  

 Generally, soils with low water-holding capacities such as coarse textured, 

sandy soils respond poorly to fertilizer application when compared with applications 

on heavier-textured soils unless they have a high water table or above-normal rainfall 

(Lardner, 1998). Fertilization, especially with N and P, can increase dry matter 

production of pastureland up to two to three times depending on annual rainfall 

(Aydin and Uzun, 2005). On Gray Wooded (Grey Luvisol) and Black soils where 

available moisture is generally greater than on Brown soils, annual applications of 

100 kg N ha-1 have increased DMY by greater than 300% when P, K and S were non-

limiting (Ukrainetz and Campbell, 1988).  

 Similar increases have also been observed for injected liquid swine manure on 

brome, crested wheat (Agropyron Cristatum L.) and Russian Wild Rye (Elymus 

junceus) stands in east-central Saskatchewan (Pastl et al., 2000). 
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Table 2.1. Economic return ($ ha-1) at Swift Current, SK (1981-1984) from 

fertilization of ammonium nitrate on grass stand at rate of 50 kg N ha-1 (fertilizer cost 

0.68 $ kg-1 N, and forage price $ 85  t-1 DM regardless of species or forage quality). 

 
                          Time of N application 

Fertilizer Year/ Weather Control Late Oct Late Nov Late Dec Mid Apr Mean 

Constant forage price 

34-0-0 1981/ normal 18 1 4 -5 10 3 

 1982 /wet 42 73 68 45 88 69 

 1983/ normal 8 25 29 15 8 19 

  1984/ dry -24 -48 -52 -53 -52 -51 

Adapted from Campbell et al., 1986.  

 

Adequate water is required to enable photosynthesis to occur and the 

subsequent growth of plant tissues. N fertilizer effects on the crop will depend on the 

amount of rainfall during the growing season (Cohen et al., 2003). Under dry soil 

conditions, NO3-N has reduced mobility in the soil, which may limit the flow of N to 

roots (Cohen et al., 2003).  

 

Figure 2.2. Maximum 

economic return from the 

application of nitrogen to 

smooth bromegrass occurs 

between 91 and 170 kg ha-1 

in Missouri, USA. Adapted 

from:http://www.muextension.miss

ouri.edu 

 

The availability of N affects herbage yield through its influence on various 

aspects of the morphology and physiology of the grass plant. Factors such as tiller 

production, leaf area and root growth are all modified by N supply (Whitehead, 
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1970). Both physical response to applied N and economics must be considered when 

determining the most appropriate rate (Figure 2.2).  

In Saskatchewan, based on the price of N fertilizer and hay, the most 

economical application rate was stated to be 56 kg of N ha-1 to a grass dominated 

stand, even though further dry matter responses were observed with 112 kg of N ha-1 

in a Dark Brown Chernozem soil in Saskatchewan (Szwydky, 2005). In mixed forage 

stands, legumes increase N concentration in the soil due to N fixation. When a high 

rate of N fertilizer is applied on grass-legume forage with a 50% or greater proportion 

of legume, the response to added N will be limited: the legume will use the added N 

rather than fix it (Malhi et al., 2004). The presence of a legume might also cause a 

greater amount of residual N in the soil. Therefore, in mixed forage stands with a 

legume, natural fixation will reduce the need for N fertilizer application, either to 

none or to a lower rate. Forage stands that contain more than 50% legume do not 

require N fertilizer, whereas grass-dominated forage with one-third legume is 

reported to require addition of N fertilizer to optimize forage yield in Ontario 

(OMAF, 2002).    

 According to Cohen et al. (2003), much of the applied N that is not used by a 

forage crop in the year of application stays in the soil without significant leaching or 

denitrification in semi-arid soils. The residual N may contribute to higher yield for a 

number of years after fertilizer application has stopped, particularly in the first year 

after the application at high N rates. Many studies have shown that a pasture or forage 

with both legume and grass is difficult to remain in proper or desired balance. The 

stands become either grass dominated or legume dominated depending on the soil 

nutrient status and other forage management practices (Baylor, 2002).  Although N 

fertilizer applications on pasture or forage increases dry matter yield, it usually causes 

a decrease in legume to grass ratios in the stand (Aydin and Uzun, 2005).  As a result, 

forage quality may decline without continued high application of N. Unlike legumes, 

the grass dry mass ratio to biomass is increased rapidly in response to the N fertilizer 

application. According to Aydin and Uzun’s (2005) study at Samsun, Ondokuz Mayis 

University Research Station, Turkey, the proportion of grass in control plots was 19-
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36%, and in plots receiving 180 kg N ha-1 the proportion of grass increased to 61-

87% (on average) during 1998-2000.  

 In general, soil N availability influences grass-legume competition. The 

increase in the proportion of grass is because N fertilizer stimulates grass growth and 

increases its competitive ability over legumes. Grasses have a greater relative growth 

rate than legumes where high soil N is available, because N promotes leafy growth of 

grasses. High soil N also greatly increases water use efficiency (McFarland, 2003) by 

increasing growth rate. Grasses are generally more tolerant than alfalfa to frequent 

cutting (McCaughey, 1998). In areas with low soil N availability, legumes are more 

competitive because they can supplement mineral N uptake with N2 fixation. Some 

researchers have studied differences between N applied to forage and forage without 

any external N application. According to research by Gokkus et al. (1999), legume 

and grass mixed forage without any N fertilizer application gave yields equal to or 

more than grass only forage with high N application.  Also, dry matter production and 

crude protein concentration were both higher in the mixture than in the grass or 

legume only pastures. Hence, they concluded that substantial yields with minimal or 

no use of fertilizer inputs may be sustained in grass-legume mixtures, which could 

otherwise only be achieved by a heavy application of N to pure grass stands. 

However, in moist areas heavy application of N may have leaching effects, leading to 

subsequent pollution of water resources (Gokkus et al., 1999).  

 2.3.2 Phosphorus (P), Potassium (K) and Sulphur (S) 

Phosphorus can become a yield limiting factor as a result of high N fertilizer 

application and high yield depleting soil P supplies (Cohen et al., 2003). Baylor 

(2002) suggested that the application of N stimulates not only grass growth, but also 

results in greater uptake of P and S by grasses, increasing competition for these 

nutrients. Legume growth can be enhanced by addition of P fertilizers (Snyman, 

2002). Applying P, K and S fertilizers increases forage dry matter yield, but has no 

consistent response on quality in terms of protein concentration in forage dry matter 

(Malhi et al., 2004). For example, a significant increase in dry matter production was 
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achieved where the forage received both N and P fertilizer applications (Aydin and 

Uzun, 2005). In their study the dry matter yield of control plots was 1467 kg ha-1, 

while 52 kg P ha-1 and 180 kg N ha-1 added as fertilizer increased yield up to 4810 kg 

ha-1, and crude protein concentration increased.  

 Malhi and Dew (1987) reported that the majority of agricultural soils in the 

Prairies contain adequate available K. However, in a study conducted in central 

Alberta, they observed response to K fertilizer on bromegrass on grown on organic 

soils.  Plant species differ in their ability to extract nutrients from soil. Alfalfa is more 

effective in extracting soil K than grasses such as smooth bromegrass and Russian 

wild rye (Bailey, 1974). 

 In western Canada, increased forage yield from S fertilization has been 

observed in some instances (Western Canada Sulphur Handbook). Malhi et al. (2000) 

has shown that elemental S was less effective than sulphate-S fertilizer for increasing 

DMY and S uptake in the initial two or three years, while it may be as effective as 

sulphate-S fertilizers in subsequent years, depending on the soil and climatic 

conditions (Table 2.2).    

 

Table 2.2. Dry matter yield (DMY) increase of grass with one sulphate-S (Na2SO4) 

and two elemental S (Agric-Grade 0-0-0-95 and Tiger 90) fertilizers surface-

broadcast annually for three years in early spring at different rates at Leslieville, 

Alberta (Malhi et al., 2000). 

 
Na2SO4   Agric-Grade 0-0-0-95   Tiger 90 Rate of  S    

(kg S ha-1) year 1 year 2  year 3  year 1 year 2 year 3  year 1 year 2  year 3 

  DMY increase (t ha-1) in three years 

10 1.81 1.11 2.72  0.17 0.97 2.62  0.22 0.31 0.48 

20 2.20 1.58 5.45  0.54 1.23 4.27  0.79 0.58 0.52 

40 2.84 1.16 5.05   1.18 1.36 5.80   0.05 0.83 0.52 
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 2.3.3 Fertilization of natural rangeland 

Notable increases in the yield of natural rangeland from N fertilization have 

been documented by several researchers (Rogler and Russell, 1957; Wayne and 

Elder, 1960; Badam M, 1965; Cosper et al., 1967; Lardner, 1998). The response of 

native grassland to fertilization appears to vary with location in the Great Plains 

(Frank et al., 1968).  

 Fertilization of natural rangeland (native prairie species) could affect species 

composition differently than for tame forages (Lardner, 1998). The N fertilization of 

rangeland in order to increase dry matter yield results in a decrease in legume ratios 

in the botanical composition (Aydin and Uzun, 2005). High or moderate levels of P 

on native range will decrease or eliminate mycorrhizal fungi that have a symbiotic 

relationship with desirable grasses.  

Badam (1965) conducted research to improve pasture production in the 

mountainous regions of Mongolia in Selenge Province from 1962-1964 at 

Zuunkharaa Research Station. The effect of adding fertilizer and the benefit of 

harrowing and additional seed planting on yield, botanical and chemical composition 

of three types of pastures were evaluated. The study showed that P and K fertilizers 

did not increase yield in the pastures. However, it was found that an application of 60 

kg actual N ha-1 increased yield from 1.08-1.29 Mg ha-1 during the two years of 

study. Manure fertilizer (20 Mg ha-1) increased the yield by 140-600 kg ha-1. Plant 

composition was not affected by applications of P, K and manure. However, N 

application increased the amount of grass and reduced the amount of broad-leaf 

plants. In addition, Badam (1965) noted that the application of combined (N60P60K60) 

fertilizer increased the amount of total protein in the plants by 280-430 %. 

 Jigjidsuren (1975) conducted research on improving mountainous steppe 

pasture in the central region of Mongolian People’s Republic using a mechanical 

method in 1970-1975. He planted alfalfa (Medicago falcata), smooth bromegrass 

(Bromus inermus), wheatgrass (Agropyron cristatum), Siberian and Dahurian 

ryegrass (Elymus sibirica and Elymus Dahurian) and couch grass at an alfalfa: grass 

ratio of 1:2, 1:3 and 1:4 and studied the effect of fertilization. The study also included 
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the effect of added mineral fertilizer on alfalfa planted alone. Changes in biological 

characteristics of perennial plants due to the effects of external environment and the 

nutritional regime were observed and Jigjidsuren (1975) concluded that planting 

alfalfa with smooth bromegrass, Siberian ryegrass and wheatgrass at a 1:2 ratio is 

more beneficial for the pasture and more nutritious compared to other mixtures. He 

also found that the application of mineral fertilizer, especially N, on alfalfa-grass 

pasture increased yield by 590-750 kg ha-1.  

A more recent study in Mongolia (Nyamdorj, 1980) examined the effect of 

mineral and organic fertilizers on steppe meadow, meadow and dry steppe hayfields. 

The study results showed that applying a mixture of the combined mineral fertilizer 

(N60P60K60) and manure was more effective than either mineral fertilizer or manure 

alone. Application of N, NK and NP fertilizers in the following year increased grass 

yield by 20-30% while application of the mixture of manure and the combined 

mineral fertilizer increased yield by 50-60%.    

 2.3.4 Fertilizer application management 

There are a number of agronomic strategies for management of fertilizers 

through selection of rate, form and method of application that will give best results 

for improving the yield and quality of pastures. These strategies are covered in this 

section. 

Soils under long-term grassland have large reserves of organic matter built up 

from the constant addition and decomposition of dead above and below ground 

material that eventually forms humus (Mensah et al., 2003; Collins and Allinson, 

2004). The potentially mineralizable N under perennial grassland after plowing has 

been estimated to cumulatively reach 4000 kg N ha-1 over 20 years (Collins and 

Allinson, 2004). N mineralization under unplowed perennial grassland may vary 

according to grass species, root development, and rates of litter decomposition, and 

will contribute to N availability to the forage stand. A system for measuring the 

actual N available should include the combination of mineralization as well as 

inorganic forms like nitrate and ammonium already present in soil so as to enable a 
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more accurate rate of application of N fertilizer sufficient for optimum plant growth 

(Collins and Allinson, 2004).   

There are a number of ways of applying fertilizer nutrients in forage fields. 

They are mostly dependent on the type of the fertilizer input. If it is solid manure, it 

must be broadcast on the forage field. Liquid manure like swine manure can be 

injected (Pastl et al., 2000). Commercial mineral fertilizers containing N, P, K, and S 

can be applied using different methods, depending on the formulation: granular or 

liquid. Both granular and liquid fertilizers can be placed in the seed row when the 

stand is being established, banded away from the seed (side-band or deep band) prior 

to or at the time of establishment, and broadcast on top of the soil or banded into the 

soil in an established stand.  

Banding results in greater use efficiency of N, P and K fertilizers than 

broadcasting. Fertilizers can be banded after emergence (Figure 2.3) using a coulter 

or disk banding method (Tremblay and Panchuk, 2000).  

 

Figure 2 3. Coulter disk 

for fertilizer application. 

 

 

 

 

 

 

 

 

 

 If N is applied by broadcasting, there is some risk of N becoming “hung up” 

in the surface if rainfall does not come soon after the broadcast. Top-dressed 

ammonium nitrate (34-0-0) is usually more effective than top-dressed urea (46-0-0), 

due to potential for additional volatile ammonia losses when urea is hydrolyzed to 
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ammonia gas by urease enzyme on the soil surface. Dribble banding liquid urea 

ammonium nitrate (UAN) solution on the soil surface is considered more effective 

than foliar sprays (Tremblay and Panchuk, 2000). They also suggest that placing N in 

the soil using a spoke-wheel applicator, coulter or disc bander avoids the potential 

problem of N loss. However, no studies have compared surface dribble band to 

coultered UAN solution. 

With P fertilizers, forage establishment can be improved by the placement of a 

high phosphate containing fertilizer in a band close to the roots, as P is immobile in 

prairie soils. However, a study conducted in Ponoka, Alberta by Malhi et al. (2001) to 

compare effectiveness of banding versus broadcasting (Table 2.3) showed that 

broadcasting P fertilizer was more effective than banded P fertilization.  

 

Table 2.3. Increase in dry matter yield of bromegrass with different methods and 

rates of annual P fertilization 

 

  DMY increase (kg ha-1) 
Placement Method Rate of P 

 (kg P ha-1) 
1993 1994 1995 Mean 

Broadcast 10 1146 2523 8049 3906 
 20 1265 2619 8486 4123 
 30 1482 3540 9641 4888 
 40 1831 3294 8929 4685 
      
Band 10 826 2206 5926 2986 
 20 729 2182 7710 3541 
 30 575 2834 7072 3494 
 40 907 2450 8328 3895 
      
Broadcast (mean)  1431 2994 8776 4400 
Band (mean)   759 2418 7259 3479 
Adapted from Malhi et al., 2001 

 

Phosphate can be applied with the K when both are required. However, 

grasses or legumes usually show less incidence of K deficiency than P deficiency in 

Western Canadian soils (Malhi et al., 2004). K deficiency is occasionally found in 

alfalfa, with symptoms being small necrotic spots on the leaf, usually close to the 
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margin of the leaflets. Phosphate deficiency symptoms are rare and non-specific in 

forages, but shortage of phosphate may be shown by stunting and poor winter 

survival of legumes (OMAF, 2000; McFarland, 2003).   

2.4 Effect of Perennial Forages on Soil Properties 

 2.4.1 Soil organic matter  

Organic matter has a role in the storage of nutrients, improving tilth, air and 

water movement, water retention and availability, erodibility, pesticide efficacy and 

decomposition processes in soil (Gregorich et al., 1994).  Maintenance of adequate 

soil organic matter level is therefore considered imperative to sustain soil quality and 

agricultural productivity. According to Smith et al. (2000), Canadian soils are 

considered to have lost about 25-35% of their C due to cultivation and the 

replacement of native perennial vegetation with annual crops. On the other hand, land 

use change from annual crop to perennial grasses increases soil organic C level by 

sequestering C into the soil (Gebhart et al., 1994; Mensah et al., 2003). The 

particulate organic matter fraction and soil organic matter is considered an active 

organic matter pool that participates in the release of nutrients, and is an early 

indicator of the influence of management change on soil organic matter content 

(Cambardella and Elliott, 1992). Forages can be used to enhance soil organic matter 

content due to the prolific and extensive root systems that add soil organic matter and 

dry out the soil, reducing decomposition rate. Legumes increase soil organic N 

through symbiotic N fixation with rhizobial bacteria (Guretzky et al., 2004). Adding 

fertilizer for several years to a perennial forage pasture in central Alberta resulted in 

increased organic matter content (Malhi and Nyborg, 1999). Addition of liquid swine 

manure fertilizer also increased the light fraction of organic matter in forage grass 

systems in east central Saskatchewan. This increase in organic matter was attributed 

to increased biomass production and higher organic C inputs to the soil as a result of 

the fertilization (King, 2001).  



 16

 2.4.2 Soil pH and electrical conductivity (EC)  

Acidity in soil is determined by the measurement of the soil reaction (pH) and 

is a variable that impacts many different chemical and biological properties in soil 

(Brady and Weil, 2002; Havlin et al., 2005).  Some sources of soil acidity are 

precipitation, CO2 evolved from microbial respiration, nutrient uptake, leaching, clay 

minerals, soluble salts, and fertilizers (Havlin et al., 2005). In a forage system in 

central Alberta, the annual application of 100 kg N ha-1 of ammonium nitrate for five 

years lowered the pH of the soil in the 0-7.5 cm depth and this effect increased as the 

rate of N increased (Agriculture Agri-Food Canada, 1993).  

 

Table 2.4. The pH of soil layers after 16 years of ammonium nitrate application at 

seven rates to smooth brome grass at Crossfield in south-central Alberta.  

 

Levels of applied N (kg N ha -1)  
Depth (cm) 0 56 112 168 224 280 336 

                                           —————————— Soil pH —————————— 
0-5 7.07 6.47 5.62 4.87 4.32 4.32 4.27 
5-10 7.12 7.25 7.32 7.12 6.50 6.03 5.05 
10-15 7.30 7.15 6.98 6.37 6.20 5.40 5.25 

 Adapted from: Fertilizer management for forage crops 

                         in central Alberta (Research Branch Technical Bulletin 1993-3E) 

 

In a long term experiment where ammonium nitrate was annually applied over 

a 16-year period, N fertilizer had a marked effect on soil acidification (Table 2.4).  

Electrical conductivity (EC) is a measure of soil salinity.  Salinity is known to be 

generally related to the downslope movement and discharge of soil water containing 

dissolved salts. Salinity will restrict growth of many crops due to its osmotic effect on 

holding back water from the plants (Larney et al., 1994). Salinity may restrict the 

activity of soil microorganisms, which in turn will affect the turnover of elements 

such as C and N (Campbell, 1978).  Forage crops are grown on salt-affected land on 

the prairies to lower the water table and reduce salt movement upward with capillary 

rise of water and discharge (Henry et al., 1987). 
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2.5 Production of carbon dioxide and nitrous oxide gases 

 The composition of soil air depends on the relative intensity of sources and 

sinks for the various gas components, exchange between soil air and atmospheric air, 

and the partitioning of the gases between the gaseous, liquid, and solid phases of the 

soil (Farrell et al., 2002). The concentration of CO2 has an effect on soil pH, 

especially in calcareous soils (Buyanovsky, 1972).  

 Soil is also the major source and potential sink for greenhouse gases including 

CO2, N2O, and CH4 (Duxbury et al., 1993). These gases are produced near the soil 

surface as well as in underlying soil horizons and parent material, extending to and 

including ground water (Rice and Rodgers, 1993).        

 2.5.1 Carbon dioxide 

 Soils are the largest reservoirs of carbon (C) in the agricultural ecosystem. 

Release of CO2 from soil to the atmosphere is an important part of C cycling in nature 

and provides a useful index for the effects of management on the C budget of an 

agricultural production system (Aslam et al., 2000). Agriculture contributes to the 

release of CO2 through the oxidation of soil organic matter (SOM), especially with 

continuous tillage and high soil disturbance. Studies have indicated that losses of 

organic C to the atmosphere as CO2 are most rapid when soils are first converted from 

grassland or forest to cultivated land (Mensah et al., 2003).  

 The activities of soil organisms and root respiration are important sources of 

C emission from the soil. The major sources of CO2 associated with soil respiration, 

are live root respiration, microbal decomposition of dead roots and soil humus, along 

with aboveground residue decomposition. These sources influence the dynamics and 

seasonal patterns of CO2 evolution from the soil and the distribution of residual C in 

an ecosystem. Buyanovsky et al. (1987) noted that in a multispecies grass stand 

dominated by slow-growing perennials with extended activity, less CO2 was evolved 

than winter wheat, due to both autotrophic and heterotrophic competitive activities 

for most of the year. Davidson et al. (2000) observed that annual CO2 emissions were 

lower from pasture soils (10–15 Mg C ha–1 yr–1) than from forest soils (18–20 Mg C 
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ha–1 yr–1) in the eastern Amazon. Unfortunately, there is lack of CO2 measurement 

data for grassland soil in temperate regions.  

 2.5.2 Nitrous oxide 

 Nitrous oxide (N2O) is a greenhouse gas with important impacts on our 

environment. Its global warming potential is about 320 times as strong as that of CO2 

(Wrage et al., 2001), with a lifetime of approximately 120 years in the atmosphere 

(U.S.EPA, 2006). Nitrous oxide is emitted into the atmosphere as a result of biomass 

burning, and biological processes in soils. Biomass burning is not only an 

instantaneous source of nitrous oxide, but it results in a longer term enhancement of 

the biogenic production of this gas (Freney, 1997). Considerable anthropogenic 

emissions of N2O arise from agricultural soil. In 1997, the largest single source of 

N2O globally was reported to be the use of N fertilizers in agriculture (Wrage et al, 

2001). From the study of Corre et al (1999) conducted in transitional grassland-forest 

region in Saskatchewan, Canada the average annual N2O fluxes were higher in 

fertilized cropland, than pasture/hay land and forest areas (Table 2.5). 

Table 2.5. Annual nitrous oxide emissions in different land use systems in 

Saskatchewan, Canada. 

 

Area Crop land Pasture/hay land Forest 
 ——————————kg N2O ha-1 yr-1————————— 
Emissions  2.00 0.04 0.02 
Adapted from Corre et al (1999)   
 

On a clay loam, cropped site, 2% and 3% of the applied N fertilizer was emitted as 

N2O on the shoulders and footslopes respectively (Corre et al., 1999). Nitrous oxide 

production is controlled by temperature, pH, water holding capacity of the soil, 

irrigation practices, fertilizer rate, tillage practice, soil type, oxygen concentration, 

availability of carbon, vegetation, land use practices and use of chemicals (Freney, 

1997). In a study by Eichner (1990) and Mosier et al. (1991), N fertilization and 

ammonium containing fertilizer increased N2O emissions from grassland soils. 

Another study conducted by Clayton et al. (1997) found that the annual N2O fluxes in 
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grassland soil ranged from 0.2 to 2.2 % of the N applied, which was in the range of 

the present international estimate (1.25 ± 1.0 %) used for N2O emission estimation 

from applied N. Soussana et al. (2007) noted that N2O evolution was four times more 

in fertilized (175 kg N ha-1) than unfertilized grassland at Laqueuille, France. 

 2.5.3 Methane 

 One of the contributors to global warming is the greenhouse gas methane. 

Soils can act as both a source and a sink of CH4 (Nelson, 2002). Methanogenic 

bacteria are strict anaerobic bacteria that produce CH4 as an end product of their 

energy pathways. Methane release is greatest in poorly drained soils (Frederick et al., 

2005) and produced by the anaerobic reduction of CO2, acetate, methanol, formate, 

carbon monoxide, methylated amines and dimethyl sulphide by methanogenic 

bacteria (Tyler, 1991). Groundwater and soil moisture are important factors 

controlling CH4 emission and Moore and Roulet (1995) found that emissions were 

greater from falling water tables than rising ones. Temperature is another factor that 

is positively correlated to the flux of CH4 (Rask et al., 2002). Research conducted by 

Soussana et al. (2007) in Laqueuille, France, showed that methane emission from 

fertilized (175 kg N ha-1) grassland was 79 g m-2 year-1 (CO2-C equivalent), when 

unfertilized grassland produced 43 g m-2 year-1 (CO2-C equivalent) where mean 

annual rainfall was 1313 mm. 
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3.0 Plant and Soil Responses to Nitrogen and Phosphorus Fertilization in 

Saskatchewan, Canada and Selenge, Mongolia: Field Experiments  

3.1 Introduction 

 Forages are the cheapest source of feed for livestock and there is potential to 

increase forage production through fertilization. N is the most commonly deficient 

essential nutrient in soil and generally has the greatest impact on forage production 

(Malhi et al., 2004), but P also may be limiting in some soils (Sedivec and Manske, 

1990; Berg and Sims, 1995). Forage N concentration, N uptake also increase with N 

rate (Malhi et al., 1986; Ukrainetz and Campbell, 1988).  The effectiveness of 

fertilizers in increasing forage dry matter yield (DMY) and economic return is 

dependent upon the levels of nutrients in the soil, moisture conditions, source, rate 

and method of fertilizer application, soil type and forage species. The amount and 

quality of forage production can have direct effects on animal performance. Fertilizer 

applications to perennial forage pastures have resulted in substantial increases in 

animal gain and carrying capacity compared to the pastures that receive no fertilizer 

(Agriculture and Agri-Food Canada,1993). This section of the thesis addresses the 

effect of N and P fertilization rate and application methods on the forage dry matter 

yield (DMY) and nutrient uptake and concentrations, residual nutrients, soil organic 

carbon (SOC), particulate organic matter (POM), pH and salinity.  

3.2 Study Area Descriptions 

The fertilization trials in Saskatchewan were started in the spring of 2005. All 

forage stands at the three sites in Saskatchewan were established between 1997 and 

1999. The Baruunkharaa site in Mongolia was native rangeland. All sites had no 

history of fertilization at, or subsequent to, establishment.   
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 3.2.1. Colonsay site 

 The Colonsay site was located near Colonsay, Saskatchewan, approximately 

30 km east of Saskatoon (Figure 3.1) (legal location: NW 11-26-28 W2) (Owner of 

hayland is Ken Nowaselski). The soil at the site was a Dark Brown Chernozem of 

sandy loam texture and classified as Biggar soil association. The forage at the site 

was a meadow bromegrass dominated hayland, with about 10% alfalfa and 90% 

meadow brome composition of the stand, with relatively few weeds.  

 

 
 

Figure 3. 1. Colonsay site receiving fertilizer application in spring of 2005 

3.2.2 Vanscoy site 

 

 The Vanscoy site was located near Vanscoy, Saskatchewan, approximately 20 

km southwest of Saskatoon (Figure 3.2) (legal location: NW 6-35-7 W3). The stand 

was mixed grass-alfalfa dominated by meadow bromegrass with less than 10% 

alfalfa. Soil at the Vanscoy site was a Dark Brown Chernozem of loamy sand texture 

(Owner of hayland is J. Wright). The site is mapped as Asquith soil association 

(Figure 3.2).  
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 Figure 3. 2. Forage grass at the Vanscoy site following fertilizer application 

 in June of  2005 

 3.2.3 Rosthern site 

  

 
  Figure 3. 3 Rosthern site in the summer of 2005 
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 The Rosthern site was located near Rosthern, Saskatchewan, approximately 5 

km north of the Seager Wheeler farm (legal location: SW 3-43-2 W3) (Owner, of 

hayland is R. Gauthier). Soil at the Rosthern site was a Black Chernozem of a sandy 

loam texture, mapped as the Meota soil association. Unlike the other sites, this site 

was a pure meadow bromegrass hayland (Figure 3.3).  

 

 3.2.4 Baruunkharaa site 

 The fourth site was located in Mongolia and the fertilizer trial was conducted 

only in spring of 2006. The forage cover at the site is a degraded and overgrazed 

natural pasture (State pastureland). The site was located near Baruunkharaa Soum, 

about 150 km north of the capital city Ulaanbaatar, Mongolia (Trans Mongolian 

highway Ulaanbaatar-Darkhan 151 km). The forage composition at the site was 

typical of mountain-steppe species (Festuca -15%, Agropyron -20%, Alliums -10%, 

Broadleaf -50%).  The soil at the Baruunkharaa site is a Calcic Kastanozem (by FAO 

classification) with sandy loam texture. Slopes dominantly range from 2 to 5% that 

produce hummocky, inclined landforms (Figure 3.4).  

 

 
    Figure 3. 4 Baruunkharaa site in the spring of 2006 
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3.3 Experimental Design and Treatments  

The fertilizer experiments in Saskatchewan were established in spring of 

2005, and in the spring of 2006 in Mongolia. The experimental design was a 

randomized complete block design (Figure 3.5).  

 
 

Figure 3. 5 Plot diagram 
 
Treatment for Saskatchewan sites: 
  
   1.   Coulter Control-No Fertilizer (Coulter Inserted) 

   2.   56 kg N and 28 kg P2O5 ha-1 Blend Coulter Injected 

   3.   112 kg N and 28 kg P2O5 ha-1 Blend Coulter Injected 

    4.   Dribble Control-No fertilizer 

    5.   56 kg N and 28 kg P2O5 ha-1 Blend Dribble Banded 

    6.   112 kg N and 28 kg P2O5 ha-1 Blend Dribble Banded 

    7.   56 kg N ha-1 Dribble Banded (no P2O5) 

    8.   112 kg N ha-1 Dribble Banded (no P2O5) 

   9.   224 kg N ha-1 Dribble Banded (no P2O5) 

  10.   56 kg N ha-1 Coulter Injected (no P2O5) 

  11.   112 kg N ha-1 Coulter Injected (no P2O5) 

  12.   224 kg N ha-1 Coulter Injected (no P2O5) 

 

 Saskatchewan sites: The forage fertilization experiment in Saskatchewan 

involved six fertilizer rate treatments: 1) Control-No fertilizer; 2) 56 kg N ha-1; 3) 56 

kg N and 28 kg P2O5 ha-1; 4) 112 kg N ha-1; 5) 112 kg N and 28 kg P2O5 ha-1; 6) 224 
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kg N ha-1 (Figure 3.5). The fertilizers were applied as solution N and P fertilizers (28-

0-0 and 10-34-0) using two different application methods: 1) dribble banded in which 

fertilizer was surface - applied as a dribble band, and 2) coulter injected with a coulter 

disc placing the fertilizer directly in the soil as a band (Figure 2.3). The fertilizer was 

applied in the third week of April in 2005. The coulter injection and dribble banded 

treatments applied the liquid fertilizer at about 5 cm depth, in bands 30 cm apart. In 

total, there are 12 treatments and each treatment was replicated three times. 

Therefore, each site has a total of 36 experimental plots, each 3 m x 30 m.   

 Mongolia site: The treatments were: 1) Control-No fertilizer; 2) 50 kg N ha-1; 

3) 50 kg N and 25 kg P2O5 ha-1; 4) 100 kg N ha-1; 5) 100 kg N and 25 kg P2O5 ha-1; 6) 

200 kg N ha-1. The fertilizer was applied on May 10, 2006. The fertilizer form at the 

Mongolian site was granular, as liquid sources were not available. Ammonium nitrate 

(34-0-0) and triple super phosphate (0-40-0) fertilizers were applied using two 

different application methods: 1) surface banded in which granular fertilizer was 

dribbled onto the surface in a band and; 2) knife inserted with a narrow opener 

placing the fertilizer directly in the soil as a band. The knife was inserted at a 5 cm 

depth, and the spacing between knife or dribble was 23 cm. There were 12 treatments, 

with three replicates. The site had 36 experimental plots, each 3 x 30 m.   

3.4 Soil Sampling and Analysis 

 Soil samples were taken from the centre of the plots of the control treatments 

to characterize the sites. Using a truck equipped with a hydraulic punch, in each plot 

three cores were taken to a 60 cm depth with the cores segmented into three depth 

increments (0 to 15; 15 to 30; 30 to 60 cm) for soil nutrient and carbon content. The 

cores were placed in plastic bags and put in an insulated container, and stored at 4ºC 

until further processing was done. In the fall of 2005, in each plot at all Saskatchewan 

sites a PVC pipe of 10 cm diameter, and 15 cm length was forced down to a depth of 

15 cm to remove a core of 0-15 cm. One core was taken from each plot.  The cores 

were put in plastic bags and placed in an insulated container and stored at 4ºC.  Prior 

to processing the cores for their static properties (organic C, EC, pH, extractable 
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nutrients), the cores were subjected to a two week incubation at field moisture 

content, as described in Section 4, to measure CO2 and N2O evolution and nutrient 

supply rate using PRS™ probe. When it came time to process the cores for their static 

properties, they were air dried before being ground to pass through a 2 mm sieve. 

 Cores segmented into 0 to 15, 15 to 30 and 30 to 60 cm depths were taken in 

the spring of 2006 to measure residual N.  

 3.4.1 Organic carbon  

 Soil organic carbon was determined using a LECO CR-12 Carbon Analyzer 

(Wang and Anderson, 1998).  The soil preparation for use in the Carbon Analyser 

first involved grinding the soil to pass through a 40 mesh sieve.  A 0.15 g sub-sample 

was then placed into the furnace at a set temperature of 840º C.  The soil organic 

carbon was oxidized to CO2 which was then measured by an infrared (IR) cell (Leco, 

1987).  In order to prevent drift the IR cell was calibrated with a known carbon 

sample (sucrose). To ensure that only organic carbon is was measured care was also 

taken to remove the sample from the furnace after 120 seconds as inorganic carbon 

begins to decompose after 150 seconds.  

 3.4.2 Particulate organic matter 

 Particulate organic matter is considered recent, it formed easily oxidizable 

organic material in soils, changes in which have been proposed as an early indicator 

of SOC changes (Hussain et al., 1999).  Particulate organic matter was measured in 

the surface (0-5 cm) depth increment, as POM at the surface is the fraction most 

sensitive to management of organic matter (Hussain et al., 1999).  Particulate 

(>53µm) and mineral-associated organic matter (<53 µm) were separated from each 

aggregate size fraction by sieving after mechanical dispersion of the soil by agitation 

in water with glass beads according to the procedure outlined by Balesdent et al. 

(1991) as cited in Aoyama et al. (1999).  In this method aggregate size fractions of 

less than 2 mm were subsampled (5 g) and placed in a 125 mL Erlenmeyer flask.  The 

soil in the flask was shaken with 50 mL deionized water and five glass beads (6 mm 
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in diameter) for 16 hr on a reciprocal shaker.  The dispersed particulate organic 

matter plus sand were collected on the surface of a 53-µm sieve and washed with 

340mL deionized water from a squeezable water dispenser.  The material >53 µm 

was dried in a forced-air oven at 40ºC and weighed.  The mass of particles in the 

aggregate size fractions was determined by the difference between the mass of 

undispersed particulate (> 53 µm) aggregates and that of the material in the <53 µm 

size fraction.  The contents of total C in the fractions were directly determined by the 

LECO CR-12 Carbon Analyzer (Wang and Anderson, 1998). 

 3.4.3 Electrical conductivity (EC) and pH   

 The procedure for determining the electrical conductivity (EC) and pH 

followed the technique of Hendershot and Lalande (1993) and Janzen (1993) 

respectively. Twenty g of soil was weighed into a plastic bottle and 40 mL of distilled 

water was added. The bottles were placed on a rotary shaker at 142 revolutions per 

minute (RPM) for 20 minutes, then left to stand for two hours.  The resulting 2:1 

distilled water to soil suspension was filtered through a Whatman No. 1 filter.  The 

filtrate was analyzed for pH and EC with a Beckman 50 meter for pH and a Horiba 

ES-12 conductivity meter for EC. 

 3.4.4 Soil extractable nutrients 

 The KCl extraction to measure NO3-N and NH4- N was carried out according 

to Keeney and Nelson (1982).  Five grams of soil was weighed out into extraction 

bottles, and 50 mL of 2M KCl solution added. The bottles were then shaken on a 

rotary shaker for 1 hour at 142 RPM.  The solution was then filtered through a 

Whatman® 454 filter paper into vials.  The vials were capped and stored at 4ºC until 

they were analyzed using a Technicon™ Auto-analyzer sampler II; AAII single 

channel colorimeter with 1.5 (id) x 30 mm tubular flowcell, 420 nm interference 

filter, and voltage stabilizer and recorder (Technicon Industrial Systems, Tarrytown, 

NY 10591) 



 28

 A Modified Kelowna (MK) extraction was used to determine extractable P 

and K according to the procedure outlined by Qian et al. (1994a).  The extractant 

solution was prepared by mixing 0.25M HOAc, 0.25M NH4OAc, and 0.015M NH4F 

with a measured pH of 4.9.  A known weight of soil (3 g) was placed into 100 mL 

plastic extraction bottles with 30 mL of the MK extractant solution, then shaken on a 

rotary shaker at 200 RPM for 5 min.  The mixture was then filtered using a 

Whatman® #454 filter paper into plastic vials and the extractant stored at 4º C until 

the samples were able to be colorimetrically analyzed using the Technicon™ Auto-

analyzer sampler II. 

3.5 Plant Sampling and Analysis  

 3.5.1 Dry matter yield  

 Above ground forage dry matter yield measurements were made in 

Saskatchewan in the summer of 2005 and 2006, between June 30 and July 8 each 

year. The Mongolian sampling was done on August 5, 2006, because of cold weather 

conditions in the spring that delayed growth. Sampling of each plot was conducted by 

taking three subsamples using a 0.25 m2 quadrat (50 x 50 cm) at randomly selected 

points. Plants were cut level with the ground to simulate a mower and placed in 

cotton bags and air-dried at 30o C in a forced airbox for 5 days, then weighed to 

obtain biomass yields.  The plant material was run through a Wiley plant grinding 

machine and a representative 30g subsample kept for determine plant nutrient uptake. 

 3.5.2 Total N and P 

 Total N and P concentrations in the plant were determined on dried, ground 

sample using a standard H2SO4-H2O2 digestion method (Thomas et al., 1967).  This 

procedure involved taking a ground plant sample of 0.25 g and placing it in a 75 mL 

digestion tube and then adding 5 mL of concentrated sulphuric acid.  The mixture was 

then mixed vigorously on a vortex shaker and placed in a block digester at 360º C for 

20 min.  Then 0.5 mL of 30% (vol vol-1) H2O2 was added to the tubes, which were 

vortexed a second time and heated at 360º C for another 30 min.  The tubes were then 
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removed, cooled and an additional 0.5 mL H2O2 were added to the tubes.  This 

heating and cooling procedure was repeated five more times.  The last heating 

procedure involved a one-hour heat treatment instead of a 30 min treatment to 

completely remove the last remaining H2O2 from the sample.  When the 30 min 

cooling had taken place, the remaining sample was brought up to volume (75 mL) 

with deionized water.  The samples were shaken and transferred into 50 mL plastic 

vials for storage and further analysis.  Total P and N concentrations were determined 

colorimetrically as phosphate and ammonium in the digest solution using the 

Technicon™ Auto-analyzer (Tarrytown, NY).  Total plant nutrient uptake was 

determined by multiplying the dry matter nutrient concentrations by yield. 

3.6 Statistical analysis 

 This experiment was set up as a randomized complete block design.  A 

significant ANOVA result indicates that at least one of the mean treatments was 

different (Zar, 1999).  Mean separation was done using least significant difference 

(LSD) at an α = 0.05 unless otherwise stated (SPSS, 2005). 

3.7 Results and Discussion  

 3.7.1 Meteorological data and basic soil properties 

 Weather data from Saskatoon (central to all three sites), showed that the mean 

monthly temperatures for April were warmer than the long-term average. The 

temperatures at the Mongolia site were below the long-term averages (April and May 

of 2006). May, June, July and August temperatures were below average in 2005 and 

close to or slightly higher than the long-term average in 2006 at all four sites. In 2005 

and 2006 at all three Saskatchewan sites, spring (April-June) precipitation was above 

the long-term average. Precipitation in June was nearly double the long-term average, 

whereas July and August totals were below or near the long-term average. Total 

annual precipitation at all three Canadian sites during 2005 and 2006 was above the 

long-term average. 
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Table. 3.1. General weather data of 2005 and 2006 at three Saskatchewan sites and 

Baruunkharaa site in Mongolia. 

 

 Months 
 April May June July August September 

Saskatchewan (Saskatoon) 
Years Daily average temperature (oC) 
2005 6.4 10.2 14.4 17.5 15.4 11.3 
2006 8.0 11.7 16.2 20.0 18.0 M† 
30 Year average 4.4 11.5 16.0 18.2 17.3 11.2 
 Precipitation (mm) 
2005 15.5 27.5 160.5 53.5 53.5 74.0 
2006 38.0 39.9 108.0 32.0 30.0 M 
30 Year average 23.9 49.4 61.1 60.1 38.8 30.7 

       
Mongolia (Baruunkharaa) 

 Daily average temperature (oC) 
2006 -6.0 3.7 17.0 19.5 18.0 11.2 
30 Year average 2.7 10.7 16.5 18.5 16.5 9.4 
 Precipitation (mm) 
2006 6.4 63.6 51.8 55.9 24.3 24.3 
30 Year average 9.1 19.4 55.7 82.8 74.4 35.9 
†- Data is missing. 
Source: Environment Canada and Meteorological Centre of Mongolia. 2006 

 

Table 3.2. Basic soil properties of the three Saskatchewan sites. 

 

 Sites 
  Colonsay  Vanscoy  Rosthern 

Available NO3, μg g-1 0.65  0.75  0.30 
Available NH4,  μg g-1 0.67  0.38  0.23 
Available P, μg g-1 2.81  1.45  5.66 
Available K, μg g-1 164.32  61.82  62.52 
Mean pH 7.34  7.43  7.30 
EC, dS/m 0.25  0.11  0.08 
Organic Carbon, % 1.26  1.27  1.06 
 

The Mongolia site received precipitation amounts that were below the long-term 

average for April to September but with greater than average precipitation in May. 
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Soil basic properties of the three Saskatchewan sites showed deficient amount of 

nutrients are available for the plants (Table 3.2). 

 

3.7.2 Forage dry matter yield response  

 All fertilization treatments produced significantly (p<0.05) (Tables 3.3 and 

3.4) higher yield than the control in the year of application. The dry matter yield 

response to fertilization varied among sites, with less response in the native rangeland 

in Mongolia (Table 3.4) than in the tame grass haylands in Saskatchewan. There were 

no significant differences in yield between application methods except in the 224 kg 

N ha-1 treatment at Vanscoy in 2005, where dribble banded was higher than coulter 

injected. In all cases at the Saskatchewan sites, in the second year following 

fertilization the DMY in fertilized treatments was lower than in first year and not 

significantly different than the 2006 control except the high rate treatments (224 kg N 

ha-1). At this rate, there was a sufficient amount of residual N to produce a significant 

yield increase over the control in year 2. At Rosthern the biomass yield in year two 

(2006) was not significantly different than year 1 (2005). The findings are similar to 

the findings of Misselbrook et al. (1996) who reported on a study of injection of 

slurry fertilizer (80 kg N ha-1) on a ryegrass (Lolium perenne L.)/white clover 

(Trifolium repens L.) sward and Lardner (1998) who injected liquid fertilizer (100 kg 

N, 45 kg P2O5, 23 kg K2O, and 12 kg S ha-1) into a 20-year old pasture with smooth 

bromegrass (Bromus Inermis Leyss.) and alfalfa (Medicago sativa L.) at Pathlow, 

Saskatchewan. Both these studies showed lower yields in the second year after 

application as the applied N was utilized by the crop in the first year (Lardner, 1998; 

Malhi et al., 2004). In the current study, a carryover effect of the N fertilizer was 

observed on the 224 kg N ha-1 treatment plots in the three Saskatchewan sites, and for 

the 112 kg N ha-1 treatment at Rosthern, in 2006. High rates of N fertilizer in excess 

of crop requirement in the year of application can effectively carryover and supply N 

to the forage in the following year, although possible loses by denitrification or 

leaching must be considered.  



 32

Table 3.3. Dry matter yield (kg ha-1) at the three Saskatchewan sites in 2005 and 

2006. 

 

 2005   2006 
 Colonsay Vanscoy Rosthern  Colonsay Vanscoy Rosthern 
Fertilizer application method and rate ———————————  kg ha-1  ———————————— 

 Dribble Banded 
Control- No Fertilizer 3029 2046 1946  2578 2103 1889 
56 kg N & 28 kg P   4749*   4243*   4502*  2561 1754 2154 
112 kg N & 28 kg P   4949*   5002*   4735*  2753 2336 2468 
56 kg N    4643*   4446*   4183*  2369 1991 1986 
112 kg N    4552*   4959*   4458*  2549 2240   3261* 
224 kg N    5081*   5400*   4578*   4096*   2686*   4402* 

 Coulter Injected 
Control- No Fertilizer 2777 2358 2634  1844 1854 2176 
56 kg N & 28 kg P   4707*   3723*   3984*     2727* 1932 2544 
112 kg N & 28 kg P   5366*   4823*   4600*     2704* 1870 2327 
56 kg N    3835*   4026*   4274*     2890* 1970 1936 
112 kg N    3946*   5150*   4602*     2825* 2222   3150* 
224 kg N    4658*   4239*   4339*    3534*   2706*   4315* 
LSD (0.05) 842 818 1048   568 532 777 
* Significantly different than the control for same application method at the 0.05 probability level  
 

 At Baruunkharaa in 2006, DMY increases over the control were observed for  

all fertilized treatments (Table 3.4). The response was similar to that reported in the 

study of Badam (1961) and Jigjidsuren (1974) who found an increase in DMY, from 

applied N fertilizer on native rangeland in Mongolia. 

 Many researchers have indicated that N is the major limiting nutrient in grass 

dominated pastures and haylands (Malhi et al., 2004; Theaker et al., 1994; Chen et 

al., 2004). The higher DMY because of response to N fertilization observed in this 

study is similar to the findings in Brown and Dark Brown soils in Saskatchewan 

(Campbell et al., 1986) and Black soils in Alberta (Malhi et al., 1993). The addition 

of 28 kg P2O5 ha-1 P fertilizer with the N fertilizer did not increase yield, with the 

exception of the Colonsay site, where the coulter injected treatment increased the 

yield. 
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Table 3.4. Dry matter yield (kg ha-1) at Baruunkharaa site in 2006 (LSD (0.05) = 406) 

 

    ————  kg ha-1  ————— 
Fertilizer application method and rate Dribble Banded  Knife Inserted 

Control- No Fertilizer 1277  1281 
50 kg N & 25 kg P   1832*    1891* 
100 kg N & 25 kg P   2043*    1852* 
50 kg N    1705*    1771* 
100 kg N    1965*    1828* 
200 kg N    2094*     2008* 
* Significantly different than the control for same application method at the 0.05 probability level 
 

 Harapiak et al. (1984) also reported that grass dominated haylands are much 

less responsive to P fertilizer than N. This may be due to mineralization of organic P 

in the rhizosphere of grasses and/or a significant role of arbuscular mycorrhizal fungi 

in enhancing P turnover and availability. The study indicated a trend for increased 

production in the year of application with increasing fertilizer N application rates, as 

the meadow bromegrass tended to have higher yield at rates of 112 kg N ha-1 and 224 

kg N ha-1 than 56 kg N ha-1 fertilizer treatments. The same trend was evident with the 

Mongolian site. However in many cases, the DMY at N rates above 50 kg N ha-1 was 

not significantly different from the 50 kg ha-1 rate. It would appear that close to 

maximum yield could be achieved by application of ~50 kg N ha-1 according to the 

results of this study.         

 

 3.7.3 Forage N and P uptake 

 Total plant uptake of N and P (yield x N and P concentration) generally 

followed the same pattern as yields. In year 2005 the N and P uptake in the fertilized 

treatments was higher than the control at the all sites (Table 3.5) except the P uptake 

in the 112 kg N ha-1 dribble banded treatment at Colonsay site, and the 56 kg N ha-1 

and 224 kg N ha-1 coulter injected treatment at Vanscoy. Good weather condition 

with sufficient precipitation for good growth and nutrient demand would promote 

forage N and P uptake with fertilization. The N uptake at the three sites increased 

with increasing rate up to the highest rate of 224 kg N ha-1, including rates above 



 34

which yield was maximized. Therefore it appears that much of the additional N 

uptake at the high rates is contributing to protein.   

Table 3.5. Forage N and P uptake in 2005 at the three Saskatchewan sites 

 

Sites Colonsay   Vanscoy   Rosthern 
 N † P†   N P   N P 

 ———————————  kg ha-1  ————————— Treatment + Fertilizer application 
method and rate Dribble Banded 
Control- No Fertilizer  42.4 4.7  21.4 2.1  18.7 3.7 
56 kg N & 28 kg P    82.9*   8.5*    60.2*   5.6*     59.8*   8.5* 
112 kg N & 28 kg P  105.4*   8.9*    92.7*   9.1*     71.6*   9.9* 
56 kg N     92.0*   7.9*    66.4*   4.9*     54.1*   7.7* 
112 kg N     98.8* 5.8    87.3*   5.6*     70.3*   8.4* 
224 kg N   126.8*   7.2*  130.2*   6.5*     88.5*   8.6* 

 Coulter Injected 
Control- No Fertilizer 34.2 3.5  25.2 3.2  28.8 5.2 
56 kg N & 28 kg P   84.4*   8.5*    54.6*   5.1*    53.6*   8.0* 
112 kg N & 28 kg P 116.6* 10.6*    78.3*   6.7*    72.2*   8.8* 
56 kg N    73.2*   5.1    50.9* 4.0    56.2*   7.9* 
112 kg N    91.5*   5.9*    87.3*   5.4*    61.8*   7.9* 
224 kg N  124.8*   7.7*    88.6* 4.1    97.4*   9.3* 
LSD (0.05) 18.9 2.1   21.5 1.7   20.5 2.4 
* Significantly different than control for same application method at the 0.05 probability level 
† N - Nitrogen;  P - Phosphorus P2O5        

 

In a study conducted by Lutwick and Smith (1979), bromegrass N uptake increased 

with an associated increase in yield and protein production with N fertilizer 

application. They observed that N uptake was greater in wet years (1967 and 1969) 

than in dry years (1970). The P uptake also increased with N fertilizer addition, 

reflecting greater demand for other nutrients when a N limitation is overcome. The P 

fertilization with 28 kg P2O5 ha-1 also increased P uptake over the equivalent rate of N 

with no P fertilizer. 

P fertilization increased P uptake at Colonsay, Vanscoy, and Rosthern. The 

additional P uptake was not associated with a yield response to P at any of the sites. 

Kilcher (1958) also reported that a grass stand in southern Saskatchewan was not 

responsive to P, but there was a higher P uptake associated with the general yield 

response to increasing amounts of N. The site in Mongolia (Table 3.7) showed less 
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effect of fertilization on N and P uptake than the three Saskatchewan sites. There was 

a significant response to N fertilization on N uptake, but no effect of P fertilization. 

The P uptake increased at the highest N rate. Overall, the native range species at the 

Mongolia site removed much less N and P than the meadow bromegrass at the 

Saskatchewan sites.  

 In the year after fertilization, 2006, the forage P uptake (Table 3.6) did not 

show any significant differences between treatments except at Rosthern where P 

uptake was increased at the highest N application rate, consistent with the higher 

yield from carryover of N and subsequent increased demand for P. However N uptake 

in the 224 kg N ha-1 treatment at all sites and the 112 kg N ha-1 treatment at the 

Rosthern and Colonsay sites, and the 56 kg N ha-1 treatment at the Colonsay site were 

significantly higher than the control. Lutwick and Smith (1979) also found that only 

very high rates of N (254, 354 kg ha-1) produced a long-term effect, lasting two or 

three years.   

Table 3.6. Forage N and P uptake in 2006 at the three Saskatchewan sites  

 

Sites Colonsay   Vanscoy   Rosthern 
 N  P   N P   N P 

 ——————————  kg ha-1  ————————— Treatment + Fertilizer application 
method and rate Dribble Banded 
Control- No Fertilizer 36.5 4.2  26.0 3.4  17.9 3.8 
56 kg N & 28 kg P 33.4 4.3  22.3 3.3  21.3 3.9 
112 kg N & 28 kg P 32.0 4.6  29.5 3.9  23.8 4.5 
56 kg N  32.4 3.9  26.1 3.0  19.0 3.5 
112 kg N  32.5 3.7  26.8 3.2    32.4*   5.6* 
224 kg N    54.9* 4.6    45.2* 3.2    51.7*   7.5* 

 Coulter Injected 
Control- No Fertilizer 23.4 3.3  21.6 3.1  21.6 4.4 
56 kg N & 28 kg P 30.3 4.4  27.2 3.0  26.1 4.6 
112 kg N & 28 kg P 32.8 4.3  23.9 3.1  22.9 4.2 
56 kg N     32.9* 4.0  25.2 3.0  18.4 3.4 
112 kg N     38.9* 4.0  28.8 3.3    30.7* 5.5 
224 kg N    54.6* 4.5    35.4* 3.2    50.6*   7.5* 
LSD (0.05)     9.3 1.3   7.9 0.8   7.1 1.5 
* Significantly different from control for same application method at the 0.05 probability level  
† N - Nitrogen;  P - Phosphorus P2O5        
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Table 3.7. Forage N and P uptake in 2006 at the Mongolian site (Baruunkharaa) 

 

Uptake † N   P  
  ———————— kg ha-1———————— 
Fertilizer application method and rate ‡ DB KI DB KI 
Control 14.4 14.2 1.3 1.2 
50 kg N & 25 kg  P    23.1* 20.2 1.7 1.9 
100 kg N & 25 kg P    24.7* 19.7 1.9 2.0 
50 kg N    22.8* 20.2 1.8 1.6 
100 kg N    23.2* 18.7 1.7 2.0 
200 kg N    26.0* 20.9 1.9   2.6* 
LSD(0.05) 6.7 0.75 
* Significantly different from control for same application method at the 0.05 probability level  
† N - Nitrogen;  P - Phosphorus P2O5 
 ‡ DB - Dribble Banded; KI- Knife Inserted 
 

Brown et al. (2000) report that N uptake by perennial grass averaged over two years 

was 165 kg N ha-1 when 200 kg N ha-1 was applied. These findings are similar to the 

current study, where N uptake by meadow bromegrass was 180 kg N ha-1 over two 

years when applied at a rate of 224 kg N ha-1 at the beginning of the first year at the 

Colonsay site.  

 3.7.4 N concentration in forage 

 The N concentration in the forage was increased (significantly p≤0.05) at the 

Colonsay, Vanscoy and Rosthern sites in 2005 by applying N fertilizer (Table 3.8).   

The concentrations increased with increasing N application rate. The N concentration 

values ranged from 12.3- 26.7 g kg-1 at Colonsay; 10.8-24.0 g kg-1 at Vanscoy; and 

9.6-22.4 g kg-1 at the Rosthern site.  

 Campbell et al (1986) noted that when N was applied in a single application at 

Swift Current, Saskatchewan, the N concentration in forage grass was significantly 

(p≤0.05) increased at all rates (50, 100 and 200 kg N ha-1) and in all years (1976, 

1979-1981) except in a very dry year (1980) when lack of moisture probably limited 

N uptake. However, the N concentration not increased at the Mongolian site (Table 

3.9).  
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Table 3.8. N concentration in dry matter in 2005 at the three Saskatchewan sites 

 

  Colonsay Vanscoy Rosthern 
 —— g kg-1  ——— 
Fertilizer application method and rate Drrible Banded 
Control- No Fertilizer 12.3 10.8 10.9 
56 kg N & 28 kg P   18.0*   14.6*    13.5* 
112 kg N & kg 28    22.0*   16.3*    15.7* 
56 kg N    19.0* 12.6    13.0* 
112 kg N    23.2*    17.1*    13.4* 
224 kg N    26.7*    21.1*    22.4* 
 Coulter Injected 
Control- No Fertilizer 14.0 10.8 9.6 
56 kg N & 28 kg P    17.5* 14.1 13.3* 
112 kg N & kg 28     21.2*    18.5* 15.2* 
56 kg N     19.8*    14.9* 12.9* 
112 kg N     21.9*    17.3* 15.9* 
224 kg N     25.1*    24.0* 19.3* 
LSD (0.05) 3.3 3.3 2.2 
* Significantly higher than control at the 0.05 probability level than control 
 

Table 3.9. N concentration in DMY in 2006 at Mongolia site (LSD0.05=3.3) 

 

  —————— g kg-1  —————— 
Fertilizer application method and rate Dribble Banded Knife inserted 
Control- No Fertilizer 11.4 11.2 
50 kg N & 25 kg P 12.0 12.7 
100 kg N &  25 kg P  12.4 10.6 
50 kg N  10.6 10.6 
100 kg N  12.4 11.0 
200 kg N  10.9 12.5 
 

The N concentration is used to estimate crude protein in plants, calculated by 

multiplying % N by 6.25 (Malhi and Ukrainetz, 1990). In 2005, the protein 

concentration in bromegrass increased with increasing rates of N and, in 2006, at the 

highest N rates at some sites. Protein concentration tended to be highest at Colonsay, 

possibly due to a greater proportion of alfalfa in the stand at this site. In a study by 

Malhi et al. (2002), found an increase in protein content of 3.6% when 60 kg N ha-1 

was applied and 9.4% when at 180 kg N ha-1 was applied in spring on a smooth 

bromegrass stand in Lacombe, Alberta. In our study, we had a similar protein 
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response with an increase in percentage of protein of 3.6% with 56 kg N ha-1 and 9.0 

% with 224 kg N ha-1 at the Colonsay site in dribble banded fertilizer applications. At 

the Vanscoy and Rosthern sites, similar results were also obtained (Table 3.10). 

There was a general trend of higher forage N concentration from the high 

rates of N fertilizer application treatments in 2006 (Table 3.11).  This effect was also 

noted in several other studies where application of high rates (≥200 kg N ha-1) of N 

fertilizer increased forage N concentration (Ukrainetz et al., 1988; Lardner, 1998). At 

N rates less than 100 kg ha-1 the response is observed for only one or two years (Read 

and Winkelman, 1982). 

 

Table 3.10. Percentage of protein in forage dry matter 

 

  2005 2006 
  Colonsay Vanscoy Rosthern Colonsay Vanscoy Rosthern 
 ————————— %  ————————— 
Fertilizer application method and rate Dribble Banded 
Control- No Fertilizer 7.7 6.8 6.8 8.2 7.3 6.2 
56 kg N & 28 kg P 11.3* 9.2 8.4 8.1 8.8 6.4 
112 kg N & 28 kg P 13.8* 10.2*   9.8* 8.4 8.0 6.2 
56 kg N  11.9* 7.9 8.1 7.9 8.0 6.0 
112 kg N  14.5* 10.7* 8.4 8.5 8.1 6.1 
224 kg N  16.7* 13.2* 14.0*   9.3* 8.1 7.3 
 Coulter injected 
Control- No Fertilizer 8.8 6.7 6.0 9.2 7.7 6.0 
56 kg N & 28 kg P 10.9* 8.8 8.3 8.4 8.0 6.2 
112 kg N & 28 kg P 13.3* 11.6*   9.5* 7.4 7.9 6.1 
56 kg N  12.4* 9.3 8.1 8.7 8.3 6.0 
112 kg N  13.7* 10.8*   9.9* 8.2 7.5 6.3 
224 kg N  15.7* 15.0* 12.1* 9.6 10.6*   7.4* 
LSD (0.05) 2.1 2.6 1.9 1.1 1.5 1.3 
* Significantly higher than control at the 0.05 probability level than control 
 

Overall, the highest N fertilization rates have significant effects on forage N 

concentration. However when a high rate of N is applied annually, nitrate toxicity in 

forages may become an issue, as high nitrates were observed in bromegrass that 

became a problem in later years as mineral N accumulated (Ukrainetz et al., 1988).  
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Table 3.11. N concentration in dry matter in 2006 at the three Saskatchewan sites 

 

  Colonsay Vanscoy Rosthern 
 —— g kg-1  ——— 
Fertilizer application method and rate Drrible Banded 
Control- No Fertilizer 13.1 11.7 10.0 
56 kg N & 28 kg P 13.0   14.1* 10.3 
112 kg N & kg 28  13.4 12.8 10.0 
56 kg N  12.6 12.8 9.5 
112 kg N  13.5 13.0 9.8 
224 kg N  14.9 13.0       11.7* 
 Coulter Injected 
Control- No Fertilizer 14.8 12.3 9.6 
56 kg N & 28 kg P 13.5 12.8 9.9 
112 kg N & kg 28  11.9 12.6 9.7 
56 kg N  14.0 13.2 9.6 
112 kg N  13.1 12.0       10.0 
224 kg N  15.3   16.9*       11.8* 
LSD (0.05) 2.3 2.2 1.0 
* Significantly higher than control at the 0.05 probability level than control 
  

 3.7.5 Extractable soil nutrients 

 Due to time constraints, soils were not collected from the Mongolian site at 

the end of the 2006 season. Therefore the section on soil measurements is restricted to 

the three Saskatchewan sites.  

  3.7.5.1 Extractable ammonium and nitrate in fall of 2005 

 Only the 224 kg N ha-1 treatment at the Vanscoy and Rosthern sites showed a 

significant effect of fertilizer treatment on extractable ammonium (NH4
+-N) in fall 

2005 (Table 3.12), with mean ammonium concentrations (0-15 cm) that were 

significantly higher than the control for coulter injected. A similar treatment effect 

(Table 3.13) was observed for the nitrate (NO3-N) concentrations, with significantly 

higher nitrate concentration only at the 224 kg N ha-1 rate for some sites and 

application methods. The elevation in soil available N observed at the end of the 2005 

season at the highest N application rate likely was the main factor contributing to 

enhanced yield in these N rate treatments in 2006. 
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Table 3.12.  Soil extractable ammonium (NH4-N) in the 0-15 cm depth in fall of 

2005 

Sites Colonsay   Vanscoy   Rosthern 
——————  mg kg-1  ——————— Fertilizer application method and rate 

Dribble Banded 
Control- No Fertilizer 2.25  2.69  1.93 
56 kg N & 28 kg P† 2.69  3.11  2.41 
112 kg N & 28 kg P 2.14  2.70  2.12 
56 kg N  3.54  4.09  2.15 
112 kg N  3.69  5.34  3.43 
224 kg N  1.89  3.36  2.29 

 Coulter Injected 
Control- No Fertilizer 6.26  4.19  2.85 
56 kg N & 28 kg P 3.74  4.59  2.85 
112 kg N & 28 kg P 4.25  3.96  2.66 
56 kg N  3.71  3.89  1.78 
112 kg N  4.08  5.31  3.93 
224 kg N  4.34     9.78*  11.56* 

LSD (0.05) 2.76   1.96   2.79 
* Significantly different than control at the 0.05 probability level  
† N - Nitrogen;  P - Phosphorus P2O5     
 

 

Table 3.13.  Soil extractable nitrate (NO3-N) in the 0 to 15 cm depth in Fall of 2005. 

  

Sites Colonsay   Vanscoy   Rosthern 
—————  mg kg-1  ——————— Fertilizer application method and rate 

Dribble Banded 
Control- No Fertilizer    7.86  11.97  3.68 
56 kg N & 28 kg P†    6.05  7.17  3.54 
112 kg N & 28 kg P    3.02  9.28  4.31 
56 kg N  10.18  5.10  1.76 
112 kg N     8.05  7.76  3.55 
224 kg N     5.80       15.64  10.59* 

 Coulter Injected 
Control- No Fertilizer    6.27  8.60  4.23 
56 kg N & 28 kg P     8.38  7.69  2.98 
112 kg N & 28 kg P    7.95  7.34  2.33 
56 kg N     7.32  7.05  1.92 
112 kg N  10.28  7.22  2.32 
224 kg N   12.63*  12.20*  5.51 

LSD (0.05) 4.25   5.09   2.45 
* Significantly different from control for same application method at the 0.05 probability level  
† N - Nitrogen;  P - Phosphorus P2O5     
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  3.7.5.2 Extractable phosphorus (P) in fall of 2005 

 The Modified Kelowna (MK) extractable P concentrations did not show a 

treatment difference at any of the sites. The limited effect of the P fertilizer addition 

on extractable soil P may be explained by the greater P uptake and removal in  

 

 Table 3. 14.  Soil extractable phosphorus in the 0-15 cm depth in fall of 2005 

 

Sites Colonsay   Vanscoy   Rosthern 
——————  mg kg-1  ——————— Fertilizer application method and rate 

Dribble Banded 
Control- No Fertilizer 4.24  2.86  10.55 
56 kg N & 28 kg P† 4.62  4.28  7.87 
112 kg N & 28 kg P 3.91  3.35  7.20 
56 kg N  4.22  2.89  10.46 
112 kg N  3.22  2.77  9.33 
224 kg N  2.60  3.25  8.53 

 Coulter Injected 
Control- No Fertilizer 3.54  3.43  13.79 
56 kg N & 28 kg P 4.75  3.94  8.79 
112 kg N & 28 kg P 5.06  3.66  7.85 
56 kg N  2.98  3.14  9.74 
112 kg N  3.59  2.81  12.15 
224 kg N  3.29  3.31  9.38 

LSD (0.05) 2.27   1.30   6.52 
* Significantly different from the control for same application method at the 0.05 probability level 
† N - Nitrogen;  P - Phosphorus P2O5     
 

response to N fertilization (Table 3.5), as well as entry of fertilizer P into soil P forms 

that the MK extraction does not remove, such as organic P.   

  3.7.5.3 Extractable Potassium in the 0-15 cm depth in fall of 2005 

 Control treatments had significantly higher extractable K than many of the N 

and P fertilized treatments, at Rosthern site (Table 3.15). This is likely due to 

increased K removal in yield responses to N application that resulted in increased K 

uptake from the soil. Perennial grasses are luxury consumers of K, and N fertilization 

of low K soils such as Rosthern (Table 3.2) will result in increased K uptake that 

decreases soil K (Cherney et al., 1998). 
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Table 3.15.  Soil extractable potassium (K) from 0 to 15 cm depth in fall 2005 at 

three sites in Saskatchewan 

 

Sites Colonsay   Vanscoy   Rosthern 
——————  mg kg-1  ——————— Fertilizer application method and rate 

Dribble Banded 
Control- No Fertilizer  395  197   207 
56 kg N & 28 kg P† 325  190    140* 
112 kg N & 28 kg P 388  194  159 
56 kg N  390  154  155 
112 kg N  318  168  159 
224 kg N    257*  177    130* 

 Coulter Injected 
Control- No Fertilizer 326  197  275 
56 kg N & 28 kg P 310  189    142* 
112 kg N & 28 kg P 297  176    148* 
56 kg N  292  180    139* 
112 kg N  332  181    137* 
224 kg N  347    266*    155* 

LSD (0.05) 128   59   53 
* Significantly different from the control for same application method at the 0.05 probability level 
† N - Nitrogen;  P - Phosphorus P2O5     
 

The increase in extractable K at the high rate of N at Vanscoy is unexpected. It could 

be due to release of interlayer K from clay minerals induced by a high concentration 

of ammonium.  

 

 3.7.6 Residual nitrate in spring 2006  

 There were few significant differences in profile (0 to 60 cm) NO3 

concentrations in the spring of 2006 with the exception of some of the higher N 

fertilizer application rates where nitrate concentrations were elevated (Table 3.16). 

This is similar to the pattern in concentrations of NO3-N in the 0-15 cm cores 

collected in fall 2005. In our study, there is little residual NO3-N present in the entire 

soil profile even at the highest rates. Similar results were found in a study conducted 

by Ukrainetz and Campbell (1988) in northwestern Saskatchewan. These workers 
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observed that only when N fertilizer application rates were 200 kg N ha-1 or above on 

bromegrass was there any residual nitrate. 

 

Table 3.16. Residual NO3 in spring 2006 at three sites of Saskatchewan. 

 

    Sites 
  Colonsay Vanscoy Rosthern 
Depth (cm) 

  
0-30  
cm 

30-60 
cm 

0-30 
cm 

30-60 
cm 

0-30 
cm 

30-60 
cm 

——————  mg kg-1  ————— Fertilizer application method and rate 
Dribble Banded 

Control- No Fertilizer 2.6 1.9 3.6 1.7 1.8 1.7 
56 kg N & 28 kg P† 2.6 1.8 3.6 1.9 1.7 1.9 
112 kg N & 28 kg P 2.6 1.9 2.8 2.0 1.4 1.8 
56 kg N  2.4 2.9 3.0 2.2 1.5 1.9 
112 kg N  2.7 1.9 2.7 1.7 1.5 1.4 
224 kg N  3.0 2.7   4.5*   2.5* 1.6 1.5 
 Coulter Injected 
Control- No Fertilizer 2.7 2.0 2.9 2.0 2.1 1.7 
56 kg N & 28 kg P 1.8 1.7 2.3 1.8 1.7 1.8 
112 kg N & 28 kg P 1.9 1.9 2.5   2.6* 1.6 1.7 
56 kg N  2.7 2.0 3.3 2.4   1.4* 1.3 
112 kg N  2.8 2.2 2.9 1.6   1.2* 1.2 
224 kg N  3.8   3.9* 3.5 2.1 1.6 1.2 
LSD (0.05) 1.9 1.3 1.0 0.6 0.7 1.0 
* Significantly different from control for same application method at the 0.05 probability level 
† N - Nitrogen;  P - Phosphorus P2O5 
 

 

There was also another study conducted by Read and Winkelman (1981) in which 

100 kg N ha-1 was applied to crested wheatgrass in southwestern Saskatchewan, and 

there was no residual N as nitrate after 2 years.  However, when 400 kg and 800 kg N 

ha-1 was applied, there was a pool of residual N that lasted for up to ten years on a 

crested wheatgrass stand in southern Saskatchewan.  

 3.7.7 Fertilizer N recovery 

 The proportion (percentage) of added N fertilizer that was recovered in the 

biomass produced over two years (2005 and 2006) was calculated (Table 3.17), using 
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sum of N uptake of both years, minus N uptake from control treatment, dividing to 

the rate of applied N fertilizer and multiplying by 100.  There was the general trend 

that when fertilizer application rate increased, the proportion of added N fertilizer 

recovered decreased. Added P fertilizer did not have a significant (p≤0.05) effect on 

N recovery. Apparent recovery of N in the herbage was highest in the treatment with 

56 kg N and 28 kg P, with a coulter injected method of fertilizer application.  

Table 3. 17. Percentage of added fertilizer N recovered in forage biomass in 2005 

plus 2006 seasons 

 

Sites Colonsay   Vanscoy   Rosthern 
N %   Fertilizer application method and rate 

Dribble Banded 
Control- No Fertilizer NA  NA  NA 
56 kg N & 28 kg P† 66.6  62.6  79.6 
112 kg N & 28 kg P 52.2  66.7  52.5 
56 kg N  81.2  80.4  65.3 
112 kg N  46.7  59.5  59.0 
224 kg N  45.9  57.1  46.3 

 Coulter Injected 
Control- No Fertilizer NA  NA  NA 
56 kg N & 28 kg P 101.8  62.4  52.4 
112 kg N & 28 kg P 81.9  49.4  39.9 
56 kg N  86.6  52.2  43.3 
112 kg N  65.0  61.8  37.6 
224 kg N  54.4   34.4   43.6 
† N - Nitrogen;  P - Phosphorus P2O5         
‡ NA - Not Applicable         
 

Power (1980) found that N recovery varied with soil moisture, with rainfall being 

particularly critical. Good moisture conditions conductive to rapid plant growth and 

nutrient uptake by roots contributes to high recovery. Ukrainetz and Campbell (1987) 

found that when 100 kg N ha-1 ammonium nitrate fertilizer was applied on smooth 

bromegrass, the stand had N recovery of 53% in the year of application.  
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3.7.8 Total Organic Carbon (TOC) and Particulate Organic Matter 

(POM) 

Soil carbon is a major factor affecting soil productivity and represents a 

significant pool of stored carbon in the ecosystem and globally (Schlesinger, 1997; 

Schoenau and Campbell, 1996).  The treatment effects on the total organic carbon 

(TOC) concentrations (0 to 15 cm) (Table 3.18) were not significant (p ≤ 0.05) except 

for lower TOC % than the control in the 224 kg N ha-1 dribble banded treatment at 

Vanscoy. 

 

Table 3. 18.  Soil total organic carbon concentrations (0 to 15 cm) at three sites of 

Saskatchewan 

 

Sites Colonsay   Vanscoy   Rosthern 
——————  % ——————— Fertilizer application method and rate 

Dribble Banded 
Control- No Fertilizer 1.95   1.91  0.90 
56 kg N & 28 kg P† 1.84  1.70  0.85 
112 kg N & 28 kg P 1.84  1.88  1.10 
56 kg N  1.81  1.61  0.90 
112 kg N  1.62  1.61  0.94 
224 kg N  1.51  1.49  0.80 

 Coulter Injected 
Control- No Fertilizer 1.76  1.90  1.17 
56 kg N & 28 kg P 1.69  1.72  1.33 
112 kg N & 28 kg P 1.77  1.63  0.83 
56 kg N  1.57  1.67  0.74 
112 kg N  1.65  1.90  0.83 
224 kg N  1.54  1.91  0.96 

LSD (0.05) 0.66   0.32   0.43 
* Significantly different from control for same application method at p≤ 0.05 
† N - Nitrogen;  P - Phosphorus P2O5     

 

A trend toward lower organic concentration at high rates of N fertilization 

suggests that the N fertilization may be enhancing decomposition rate. There was also 

no significant treatment effects on the fraction of TOC identified as POM (Figure 

3.8).  
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Figure 3. 5. Percentage of TOC comprised of POM fraction at three sites of 

Saskatchewan. The LSD 0.05  was 0.91, 0.36 and 0.23 at Colonsay, Vanscoy and 

Rosthern sites. 

In a study by Mensah et al (2003), it was found that with conversion of 

cropped land to perennial forage grass, the SOC mass in the surface layer was 

significantly increased after five to twelve years in east-central Saskatchewan.  

Research into the effect of long-term fertilization of forage stands in the Black 

soil zone in Alberta by Nyborg et al. (1997) and Malhi et al. (2001) showed that 

annual application of N and S fertilizer increased SOC after 11 to 23 years. It seems 

likely that in the current study, the history of fertilization (one year) is not sufficiently 

long to produce measurable differences either TOC or POM. 

 The downward trend in proportion of TOC comprised of POM with added N 

fertilizer could in fact be a result of enhanced decomposition of POM with N 
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fertilization, from increased microbial activity. This may be due to insufficient time 

to increase and build up SOC. A one year time-frame is likely not enough to show 

differences, as Cambardella and Elliott (1992) reported the estimated half-life of 

grass-derived POM is approximately 13 years.  

 3.7.9 Soil pH and Electrical Conductivity 

Soil pH (Table 3.19) was not significantly different from the control 

treatments at any of the sites for either of the fall 2005 or spring 2006 sampling times. 

However, the pH values in spring 2006 were higher than for fall 2005 for the 

Colonsay site. The change may well relate to the upward movement of CaCO3 from 

calcareous subsoils. Soil surveyors have noted that horizons that do not normally 

effervesce, may do so on occasion, especially with strongly calcareous Ca horizons.  

 

Table 3.19. Soil pH (0-15 cm depth) in fall 2005 and in spring 2006 at the three 

Saskatchewan sites. 

 
  Fall 2005 Spring 2006 

 Colonsay Vanscoy Rosthern Colonsay Vanscoy Rosthern 
Fertilizer rate Dribble Banded 
Control- No Fertilizer 6.9 6.6 6.4 7.6 6.9 6.7 
56 kg N & 28 kg P† 6.9 7.2 6.4 7.6 7.2 6.6 
112 kg N & 28 kg P 6.9 6.6 6.4 7.6 6.5 6.5 
56 kg N  6.8 7.1 6.5 7.6 7.0 6.6 
112 kg N  6.8 6.7 6.5 7.6 6.6 6.5 
224 kg N  6.8 6.9 6.2 7.6 7.5 6.6 

 Coulter Injected 
Control- No Fertilizer 6.8 6.7 6.5 7.6 6.9 6.9 
56 kg N & 28 kg P 6.8 7.3 6.4 7.8 7.0 6.6 
112 kg N & 28 kg P 6.8 7.2 6.5 7.8 7.4 6.6 
56 kg N  6.8 7.1 6.5 7.6 7.3 6.6 
112 kg N  6.7 6.6 6.4 7.5 6.5 6.4 
224 kg N  6.8 6.7 6.4 7.6 6.7 6.5 

LSD (0.05) 0.19 0.65 0.24 0.71 0.69 0.51 
† N - Nitrogen;  P - Phosphorus P2O5      
This is consistent with general trend to higher EC at Colonsay in the spring of 2006. 

Some researchers have found that long term N fertilization of grass stands has 



 48

resulted in some acidification of soil (McCoy and Webster, 1977; Malhi et al., 1998), 

with depression in pH increased with the amount of applied N (Perl et al., 1982).   

There were also no significant differences among treatments in surface (0-15 

cm) soil salinity as determined by EC measurement (Appendix, Table A3). Perennial 

forages can help reduce the effect of salinity, reclaiming areas and controlling the 

spread of salinity (Malhi et al., 2004). However in our study there were no significant 

differences in EC; however, the soils were not saline to begin with. It might be 

expected that greater plant growth from fertilization would favor greater transpiration 

that would assist in lowering a high ground water table. This could help reduce 

surface ground water discharge and accumulation of salts at the soil surface. 

3.8 Conclusions   

The N and P fertilizer treatments produced significantly higher forage dry 

matter yield than the control in the first year at the Saskatchewan sites. Good 

moisture, especially in June, likely contributed to yield increases of 1.5 to 2.5 times 

that of the control. There was no significant difference between the two application 

methods (surface dribble band vs coulter injected) for any fertilizer treatments. 

Response to the added P fertilizer in this study was limited.  The high rates of N 

fertilizer application produced the highest yield and, N and P uptake with a residual 

effect from the N was evident in 2006 at the highest rate (224 kg N ha-1). Increased N 

uptake by plants with increasing N fertilizer leads to a higher protein yield. The 

native rangeland in the Mongolia site was less responsive in plant N and P uptake 

than the Saskatchewan sites, likely due to lower yield potential and a dominance of 

native range species. Significant rainfall after application of the fertilizer likely 

contributed to a lack of difference between surface banding and coultering methods 

of application in this study, as the rainfall would move the surface banded N into the 

mineral soil. There was no effect in TOC and POM associated with a single year of 

fertilizer addition, except for a decrease in TOC at the highest N rate at Vanscoy site.  

Several years of repeated fertilizer application may be required to show significant 

measurable effects.  
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4.0 Soil Gas Production and Nutrient Ion Fluxes: Incubation Experiment  

4.1 Introduction 

 Increasing concentration of carbon dioxide (CO2) in the atmosphere is an 

environmental concern and one that agricultural producers can help mitigate by 

sequestering carbon as soil organic matter. Nitrous oxide (N2O) is another greenhouse 

gas that is linked to agricultural production, particularly the use of N fertilizer and 

manure management. Current estimates indicate that N2O accounts for over 50% of 

greenhouse gas emissions from agriculture (Kachanoski, 2003). The N2O may be 

produced in the soil from both nitrification and denitrification processes in the N 

cycle. Application of N fertilizer or manures to agricultural soils at rates in excess of 

crop requirements increases the risk of N2O emission. The N2O emissions from 

agricultural soils are of concern because they represent a loss of N and decrease in 

amount available to crops and also contribute to global warming and the destruction 

of ozone layer (Crutzen, 1981). Another important dynamic process in the soil N 

cycle is mineralization. N mineralization is the conversion of organic N to the plant 

available inorganic forms of ammonium and nitrate. Ion exchange resin membranes 

placed in direct contact with the soil over a period of time will adsorb inorganic N 

released by mineralization and can be used as a predictor of soil N supply power 

(Qian and Schoenau, 2005). 

 This section of the thesis addresses the effect of N and P fertilization of the 

three Saskatchewan forage sites in the spring of 2005 on the release of soil CO2 and 

N2O, and the supply rates of bioavailable plant nutrients using soil cores collected 

from the field in the fall of 2005. Measurement of soil gases produced and supply 

rates of ammonium, nitrate and phosphate in were made in intact cores incubated in 

the laboratory for two weeks. 

4.2 Materials and Methods  

 The carbon dioxide (CO2) and nitrous oxide (N2O) measurement and PRS ™ 

probe analysis of soil nutrient ion supply rates were conducted on the intact soil cores 

removed from the sites in the fall of 2005 as described in section 3.4. Field sampling 
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was conducted at Colonsay, Vanscoy and Rosthern sites with PVC pipe to obtain 

intact soil cores, and the incubation for two weeks was conducted prior to processing 

the soils for analysis as described in section 3.4.   

 4.2.1 Incubation protocol 

 Intact PVC cores (10 cm in diameter and 15 cm in length) were sampled from 

each treatment plot in the second week of October of 2005 close to freeze-up. The 

intact soil cores were immediately transported from the field to the laboratory and 

stored at 4ºC.  The cores were then placed in an incubation chamber with 

electronically controlled environmental settings.  The chamber was set for 16 hr at 

25ºC (day) and 8 hrs at 18ºC (night).  The cores were incubated for one week at field 

capacity moisture content. After one week, 70 mL of water was added to the cores to 

compensate for drying in the chamber and to bring back them back to field capacity 

and then they were incubated for another week.  Due to previous analysis which 

showed no significant difference in yield between fertilizer application methods, we 

used only treatments with the dribble banded method of fertilizer application in the 

incubation and also excluded the 56 kg N ha-1 and 112 kg N ha-1 N only treatments. 

Therefore treatments included were control, 56 kg N and 28 kg P2O5 ha-1, 112 kg N 

and 28 kg P2O5 ha-1 and 224 kg N ha-1.  During the incubation, ion exchange resin 

membrane (Plant Root Simulator™) probes were installed and used to measure 

nutrient ion supply rates while CO2 and N2O gases were collected and measured 

using gas chromatography. (Figure 4.1) 

Figure 4. 1. Intact core 

with PRS™ probe 

inserted and ready to be 

placed into chamber.  
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 4.2.2 Carbon dioxide and nitrous oxide gas sampling protocol 

 For the incubation experiment, intact PVC cores were placed into a two piece 

container made up of two PVC pipes each 15 cm in diameter and 18 cm in length and 

two plastic caps (Nelson, 2003) (Figure 4.2).   

 

Figure 4. 2. Sealed chambers 

containing intact soil cores 

with syringe inserted ready 

for gas sampling 

 
 
 
 
 
 
 
 

 

The two-part PVC chamber was joined together by a rubber airtight flange fastened 

with hose clamps.  A rubber septum was inserted into the top cap of the container so 

that gas samples could be extracted.  The PVC containers were capped and sealed 

daily for one hour.  A syringe (20 mL) was placed through the rubber septum and was 

used to transfer a 20 cm3 gas sample into an evacuated vial (10 cm3) every 4th day at 

the same time for two weeks.  Before sampling commenced, three ambient 20 cm3 

CO2 samples were placed into three 10 cm3 evacuated vials.  After sampling, the tops 

of the PVC containers were removed to allow natural airflow between the chamber 

and the intact soil cores. 
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 4.2.3 Gas analysis 

 Carbon dioxide concentrations were determined using a Varian CP-2003 

micro-GC with twin micro-thermal conductivity detectors.  An on-board vacuum 

pump pulled the sample into a He gas stream with an injector temperature of 110º C.  

The sample CO2 was separated using a Hayesep column at 50º C. For the nitrous 

oxide, the injector temperature was 70o C in front and 70o C in back.  The sample 

N2O was separated by a Poraplot™ Q column and sampled by a Compupal™ 

autosampler. 

 4.2.4 Bioavailable nutrients using plant root simulator (PRS™) 

probes 

 The bioavailable nitrate, ammonium, and phosphate supply rates were 

determined using Plant Root Simulator (PRS™) probes (ion exchange resin 

membranes) according to the procedures outlined in Qian and Schoenau (2002).  The 

PRS™ anion probes were initially soaked in distilled water for 24 hours.  The probes 

were then charged for 2 hours in 0.5 M NaHCO3 to saturate the exchange sites with 

bicarbonate as the counter ion.  This was repeated a total of 4 times.  The probes were 

then washed twice and stored in distilled water, after which they are ready for 

insertion into the soil.  Cation PRS™ probes were charged by soaking in 0.5 M HCl 

for 2-4 hours to saturate the exchange sites with H+ ions.  

 The anion and cation probes were inserted into the intact soil cores collected 

from the field just before placement of the cores into the incubation chambers.  After 

two weeks of incubation, the probes were removed from the soil and placed into 

plastic Ziplock™ bags for transport to the laboratory.  After transport, the probes 

were washed of all remaining soil particles and placed into a clean Ziplock™ bag and 

treated with 20 mL of 0.5 M HCl for one hour to elute the sorbed ions from the 

membrane surface.  The eluent was then placed in a 7 dram vial, capped, and stored at 

4º C until it was colorimetrically analyzed for NO3 – N, NH4 – N and PO4 – P using 

the Technicon™ Auto-analyzer II. 
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4.3 Statistical Analysis 

 This experiment was set up as a randomized complete block design.  Due to a 

non-normal distribution obtained from the nitrous oxide flux measurements, a log 

transformation was required before analysis of variance (ANOVA) could be 

completed (SPSS 14.0, 2005).  A significant ANOVA result indicates that at least one 

of the treatments mean was different than control (Zar, 1999).  Mean separation was 

done using least significant difference (LSD) at α = 0.05 unless otherwise state 

4.4 Results and Discussion  

 4.4.1 CO2  evolution 

 Average respiration rates were similar among the fertilized treatments at all of 

the sites and the pattern of CO2 evolution measured over a two-week period showed a 

similar trend at the three sites (Appendix, Table A1). The CO2 evolution data for the 

Rosthern site is shown as an example (Figure 4.3). The CO2 evolution decreases in 

the first days as the cores dry out and substrate is utilized (Figure 4.3).  When the 

cores dry out the activity of the microbial biomass decreases and less CO2 is respired.  

Addition of water to bring the soil to field capacity on Day 7 is responsible for the 

increase in respiration rate from day 4 to day 9. Wet-dry cycles tend to stimulate CO2 

production the soil, as desiccation causes the death of soil microbial biomass, which 

then acts as a substrate for new microbial activity when the soil is rewetted. This 

phenomenon is also known as the “Birch effect” (Birch, 1958). In other studies by de 

Jong (1981) and Fierer and Schinel (2002) they, noted that CO2 evolution and 

microbial respiration are closely linked to soil moisture. 

Figure 4. 3. Mean CO2 evolution rate from intact soil cores (Rosthern site), sampled 

in a sealed container after one hour (µg CO2 cm-2 h-1) every 4 days over a two week 

period 
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However, the relationships between soil CO2 respiration and water content or 

temperature are nonlinear (Bunnell and Tait, 1974).  

Over the two weeks of incubation there was no significant (p≤0.05) difference 

in the cumulative amount of CO2 evolved (Figure 4.4) among the treatments at all 

three sites except the 112 kg N plus 28 kg P2O5 ha-1 treatment at Colonsay site, which  

 

 

 

Figure 4. 4. Cumulative CO2 evolution (sum of four one hour measurements made) 

over a two week period from intact soil cores from the three sites   
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appears that by the fall the fertilization effect likely has diminished, and readily 

available substrate such as POM for the soil microbial biomass to use for growth may 

be depleted by fall of the year. 

4.4.2 N2O  evolution 

 Average N2O production rates were similar among the treatments at all the 

sites and followed a similar pattern. The pattern of N2O evolution measured over a 

two-week period shows the same trend at the three sites (Appendix, Table A1). The 

N2O fluxes are shown in Figure 4.5 for the Rosthern site as an example. The large 

increase in N2O production from Day 4 to Day 9 is likely related to the addition of 

water on Day 7. The added water would contribute to development of anaerobic 

microsites in the soil, in which denitrification and nitrous oxide production occurs. 

When soil dries, the N20 evolution rates decreased. Treatments with higher rates of N 

application tended to have greater N2O evolution than control and treatments with 

lower rates of applied N fertilizer. However there were no significant (p≤ 0.05) 

differences in N2O evolution between treatments at any of the sampling times for any 

of the sites. 

 Bedard-Haughn et al. (2006) noted that there was no impact on N2O evolution 

when N fertilizer was applied (72% as 46-0-0 and 28% as11-52-0 at a rate of 135 kg 

ha-1) to a cultivated wetland soil in central Saskatchewan. 

  Incubation of the intact soil cores did not show any significant differences in 

cumulative N2O evolution amongst the treatments (Figure 4.6). The amount of 

cumulative N2O produced at Rosthern site was lower than Colonsay and Vanscoy 

sites (Appendix, Table A1).  

 

Figure 4. 5. Mean N2O evolution rates from intact soil cores (Rosthern site), sampled 

in a sealed container after one hour (µg CO2 cm-2 h-1) every 4  days over a two week 

period 
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4.4.3 Nutrient supply rates 

 Nutrient supply rates measured by the PRS™ probes were not significantly 

different among the fertilization treatments, except for NO3-N at Rosthern (p≤ 0.05) 

in the 224 kg N ha-1 treatment. A similar trend was observed at the Vanscoy site. The 

NH4
+-N and P supply rates did not show any differences (p≤0.05).  These findings are 

consistent with lack of residual effects on yield and N uptake in 2006, except at the 

high (224 kg N ha-1) rate. Lack of significant difference in ion supply rates agree with 

lack of significant effect of fertilization on CO2 and N2O production. The effect of 

this one time treatment appears to have diminished by fall, with the possible 

exception of the highest rates. 

 

Figure 4. 6. Cumulative N2O evolution (sum of four one hour measurements) over a 

two week period from intact soil cores from the three sites  
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Table 4. 1. Supply rates measured by PRS™ probes over a two week period 
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      Sites   
   Colonsay Vanscoy Rosthern 

NO3  P NH4 NO3  P NH4 NO3  P NH4 Fertilizer rate 
————————   μg cm-2  ————————— 

Control no fertilizer 33.18 0.23 0.22 41.87 0.17 0.07 16.34 0.87 0.62 

56 kg N and 28 kg P2O5 ha -1 31.46 0.10 0.17 38.06 0.32 0.08 24.68 0.60 0.04 

112 kg N and 28 kg P2O5 ha -1 6.87 0.87 0.17 48.31 0.46 0.09 15.83 0.44 0.12 
224 kg N ha -1 24.17 0.15 0.18 64.99 0.22 0.08    58.76* 0.65 0.22 
LSD (0.05) 37.3 1.2 0.1 39.8 0.4 0.2 27.6 1.0 0.9 
* Significant at the 0.05 probability level.        
Note: Measured by ion exchange resin (PRS ™ Probes) over a two week incubation period 

  

 The PRS™ sorbed NH4
+-N at these sites was not significantly affected by 

fertilization.  This is most probably due to the process of nitrification happening at a 

high rate, resulting in low amounts of sorbed NH4
+-N. The P supply rates measured 

by the PRS™ probes at Colonsay, Vanscoy and Rosthern did not show any response 

to the treatments.  This is consistent with the extractable P concentrations which were 

also not significantly affected by N fertilization. 

4.5 Conclusion 

 There were few significant differences in CO2 and N2O production measured 

five months after fertilizer application at the end of the growing season as a result of 

fertilizer treatment. However it is clear that moisture is one of the major drivers 

affecting CO2 and N2O production. Higher additions of N fertilizer that result in 

plants using 50% (or less) of the applied N appear to result in the residual being 

retained in the soil, and not given off as N2O. Application of the high rates of N 

fertilizer (224 kg N ha-1) increased potential supply rates of NO3-N in soil and a 

residual benefit in increasing yield in the 2006 season.  
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5.0 General Discussion and Recommendation 

 

 The general objective of this study was to evaluate the effects of a single 

application of N and P fertilizer on forage quantity and quality and soil properties in 

hayland and native rangeland to assess the effectiveness of fertilization in 

rejuvenation. Surface N banding in the spring produced significant increases in forage 

dry matter yield by about 1.5 to 2.5 times greater yield than the control along with 

increased protein concentration at three sites in Saskatchewan. Rates of about 50 kg 

N ha-1 were effective, and produced the greatest incremental yield increase while 

higher application rates mainly resulted in additional protein concentration. The N 

and P fertilizer application had a limited effect on the soil chemical and physical 

properties as a whole as measured in the fall of the season of application. The 

exception was the high rate of N (224 kg N ha-1) application which left residual NO3-

N for the following year and contributed to a yield response in 2006. Previous studies 

suggest that N is the major limiting nutrient in grass hay pastures (Sedivec and 

Manske, 1990; Berg and Sims, 1995; Malhi, et al., 2004) and the results of our study 

support this, as responses to P in both the Saskatchewan sites and the Mongolian site 

were limited.  

 Yield was generally maximized at ~ 100 kg N ha-1 rate and meadow brome 

grass tended to yield better at the intermediate rate of fertilizer applications (112 kg N 

or 112 kg N and 28 kg P2O5
-1) than the low rate fertilizer treatments (56 kg N or 56 

kg N and 28 kg P2O5 ha-1).  There is a need for more precise determination of the 

economical N rate application based more N increments from zero up to 50 kg N ha-

1in future research. 

 There was no response to the added P fertilizer in this study. There was no 

significant difference between the two application methods (surface dribble band vs 

coulter injected) for any fertilizer treatments. Significant rainfall after application of 

the fertilizer likely contributed to a lack of difference between surface banding and 



 62

coultering methods of application in this study, as the rainfall would move the surface 

banded N into the mineral soil. Evaluation of surface placement performance in drier 

conditions such as in southern Saskatchewan is needed. 

 In our study there was little residual NO3-N present in the soil profile, with 

the grass systems being effective in recovery of fertilizer N applied at low rates, and 

in recycling excess N the year after when higher application rates were used. Similar 

results were found in a study conducted by Ukrainetz and Campbell (1988) in 

northwestern Saskatchewan. They reported that only when N fertilizer application 

rates were around 200 kg N ha-1 on a bromegrass stand was there any residual nitrate. 

Added P fertilizer did not have a significant effect on N recovery. Apparent recovery 

of N in the herbage was highest in the treatment with 56 kg N plus 28 kg P ha-1, as 

with a coulter injected method of fertilizer application over the 2 years of study (2005 

and 2006). The response to other macronutrients like S and K should be investigated 

in grass dominated pastures.   

 Grassland and native rangeland soils are considered to be net carbon sink in 

the environment and long-term fertilization can influence sequestration and retention 

of carbon.  However in this study, the year of fertilization did not increase TOC or 

POM amounts in the 0-15 cm soil layer. In fact there was a trend towards lower 

concentration in the top 15 cm soil that may be due to the fertilizer N enhancing the 

decomposition rate. Evaluation of the effect of two or more years of fertilization is 

recommended.  

 The production of CO2 and N2O was not significantly affected by fertilization 

when measured in the fall at the end of growing season in incubated cores. Further 

research is required as there was slight trend towards increased N2O production at 

higher rate (112 kg N and 224 kg N ha-1) of N fertilizer application, and the rate of 

N2O may have been significantly higher if it was measured shortly after N fertilizer in 

the spring. There is almost no research on CO2 emissions from fertilized grassland in 

either western Canada or in Mongolia. Suggested areas for further research also 

include studying the relationship between N supply and POM decomposition rates, 
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and the influence of N fertilization on belowground biomass from roots in grassland 

system, as the current study just assessed above ground production effects. 
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6.0 Conclusion  

 

 The addition of N fertilizer appears to be an effective way of rejuvenating a 

grass dominated forage stand. Significant increases in forage dry matter yield and 

crude protein were observed in forage yield in Saskatchewan meadow bromegrass 

stands and Mongolian native rangeland, whether the fertilizers were surface dribble 

banded or coultered. However, N concentration in plant biomass was not significantly 

affected at the Mongolia site and N uptake did not increase with increasing rate of 

application as at the Saskatchewan site. This may be due to the diverse plant 

composition and wide variety of native species in Mongolian native rangeland. 

Adequate precipitation during growing season in 2005 and 2006 at the Saskatchewan 

and Mongolian sites was a factor contributing to the good yield responses to 

fertilization that were observed. Rainfall after application of the fertilizer in the spring 

likely contributed to a lack of difference between surface banding and coultering 

methods of application in this study, as the rainfall would move the surface banded N 

into the mineral soil. Based in results of this study, a large response to P fertilization 

is not anticipated in similar grasslands. A carryover effect of high rate (> 112 kg N 

ha-1) of N fertilizer was detected in the second year, and was consistent with the 

observed elevation in nitrate concentration and supply rates in the fall of the year of 

application. However, there was no effect on TOC and POM. Cumulative mean CO2 

and N2O production measured five months after fertilizer application at the end of the 

growing season was not significantly affected by fertilization. However, it is clear 

that moisture is one of the major drivers of CO2 and N2O production, as gas 

production was stimulated by addition of water during the incubation. 

 According to our study, the application of ~50 kg N ha-1 using a surface 

dribble band method would appear to be an economically effective strategy for 

rejuvenation of a grass dominated forage stand. Fertility management has often been 
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over looked on hay and pasturelands, but because of the benefits to forage production 

and quality observed in this study, it is recommended as a way to increase production 

of a sustainable supply of high quality forage. Rejuvenation of a grass-dominated 

forage stand by adding the appropriate amount of N fertilizer enhances yield, protein, 

and improves feed quality. It is anticipated that after several years, benefits would 

also accrue in increasing soil organic matter and nutrient supply power.  An effective 

method to increase dry matter production in pasture or forage is appropriate 

fertilization management. 
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APPENDIX 

 Table A1.  CO2 and N2O production rate means and least significant difference   

  (LSD) values  

  Colonsay 

 Treatments ——————μg CO2 cm-2 hour-1—————— 
  First day 4th day 9th day 13th day Cumulative 
Control no fertilizer 162 135 166 116 579 
56 kg N and 28 kg P ha-1 138 134 150 112 535 
112 kg N and 28 kg P ha-1 168 228 209 158 763 
224 kg N ha-1 168 137 169 116 589 
LSD(0.05) 71 58 56 42 211 
  ——————μg N2O cm-2 hour-1—————— 
Control no fertilizer 0.06 0.06 0.45 0.04 0.61 
56 kg N and 28 kg P ha-1 0.05 0.05 0.75 0.04 0.89 
112 kg N and 28 kg P ha-1 0.07 0.06 0.33 0.04 0.50 
224 kg N ha-1 0.10 0.08 0.09 0.04 0.30 
LSD(0.05) 0.065 0.050 1.056 0.008 1.061 
  Vanscoy 

  ——————μg CO2 cm-2 hour-1—————— 
Control no fertilizer 144 133 158 117 551 
56 kg N and 28 kg P ha-1 125 170 165 144 605 
112 kg N and 28 kg P ha-1 134 186 190 140 650 
224 kg N ha-1 167 161 161 133 622 
LSD(0.05) 97 45 49 30 211 
  ——————μg N2O cm-2 hour-1—————— 
Control no fertilizer 0.04 0.07 0.22 0.08 0.41 
56 kg N and 28 kg P ha-1 0.04 0.07 0.23 0.05 0.40 
112 kg N and 28 kg P ha-1 0.05 0.12 0.24 0.04 0.44 
224 kg N ha-1 0.07 0.21 0.13 0.06 0.46 
LSD(0.05) 0.016 0.113 0.291 0.039 0.270 
  Rosthern 

  ——————μg CO2 cm-2 hour-1—————— 
Control no fertilizer 181 146 153 127 607 
56 kg N and 28 kg P ha-1 161 134 146 118 559 
112 kg N and 28 kg P ha-1 152 131 138 128 548 
224 kg N ha-1 146 122 131 105 504 
LSD(0.05) 79 46 44 40 198 
  ——————μg N2O cm-2 hour-1—————— 
Control no fertilizer 0.04 0.04 0.10 0.05 0.23 
56 kg N and 28 kg P ha-1 0.04 0.04 0.09 0.05 0.21 
112 kg N and 28 kg P ha-1 0.04 0.04 0.13 0.04 0.25 
224 kg N ha-1 0.04 0.04 0.11 0.04 0.23 
LSD(0.05) 0.005 0.013 0.132 0.009 0.139 
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Table A2. Residual NH4 in spring 2006 

 

      Sites 
Sites   Colonsay Vanscoy Rosthern 

Depth (cm)   0-30 30-60 0-30 
30-
60 0-30 

30-
60 

               
Fertilizer application method and rate Dribble Banded 
Control- No Fertilizer 2.8 1.8 2.5 1.9 1.9 2.5 
56 kg N & 28 kg P† 2.4 2.0 2.1 2.1 2.2 2.3 
112 kg N & kg 28  3.1 2.0 2.1 2.0 2.1 2.3 
56 kg N  3.0 2.1 2.0 1.9 3.2 3.3 
112 kg N  2.5 2.6 2.4 2.2 2.4 2.6 
224 kg N  2.5   3.0* 2.6 2.5 2.3 2.5 
Fertilizer application method and rate Coulter Injected 
Control- No Fertilizer   6.8* 2.1 2.7 2.3 2.5 2.6 
56 kg N & 28 kg P 2.0 2.2 2.2 2.2 2.7 3.1 
112 kg N & kg 28  1.9 2.1 1.9 1.9 2.1 2.2 
56 kg N  2.4 1.9 2.0 2.0 2.1 2.0 
112 kg N  2.5 2.6 2.4 2.2 2.7 3.2 
224 kg N  2.7 2.7   2.9* 2.1 3.0 2.6 
LSD (0.05)   4.0 0.9 0.9 0.6 1.4 1.4 
* Significant at the 0.05 probability level  
† N - Nitrogen;  P - Phosphorus P2O5 
 

Table A3.  Soil Electrical Conductivity. 

Years   2005 2006 
Sites Colonsay Vanscoy Rosthern Colonsay Vanscoy Rosthern 
   ——————  dS m-1 ——————— 
Fertilizer application method and rate Dribble Banded 
Control- No Fertilizer 0.14 0.14 0.10 1.30 0.09 0.08 
56 kg N & 28 kg P† 0.14 0.15 0.10 0.28 0.11 0.07 
112 kg N & kg 28  0.12 0.13 0.09 0.91 0.07 0.06 
56 kg N  0.15 0.14 0.09 0.69 0.10 0.07 
112 kg N  0.14 0.12 0.09 0.21 0.07 0.06 
224 kg N  0.12 0.17 0.11 0.20 0.16 0.06 

 Coulter Injected 
Control- No Fertilizer 0.15 0.12 0.11 0.23 0.09 0.10 
56 kg N & 28 kg P 0.13 0.19 0.10 0.28 0.08 0.06 
112 kg N & kg 28  0.15 0.13 0.09 0.26 0.09 0.07 
56 kg N  0.13 0.15 0.08 0.35 0.12 0.06 
112 kg N  0.14 0.11 0.08 0.91 0.07 0.07 
224 kg N  0.16 0.14 0.10 0.32 0.08 0.07 

LSD (0.05) 0.03 0.06 0.02 1.04 0.06 0.04 
† N - Nitrogen;  P - Phosphorus P2O5      
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