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Abstract 

A dual infrared frequency comb spectrometer with heterodyne detection has been used to perform 

time resolved electrochemical attenuated total reflectance surface enhanced infrared absorption 

spectroscopy (ATR-SEIRAS). The measurement of the potential dependent desorption of a 

monolayer of a pyridine derivative (4-dimethylaminopyridine, DMAP) with time resolution as 

high as 4 µs was achieved without the use of step-scan interferometry. An analysis of the detection 

limit of the method as a function of both time resolution and measurement co-additions is provided 

and compared to step-scan experiments of an equivalent system. Dual frequency comb 

spectroscopy is shown to be highly amenable to time-resolved ATR-SEIRAS. Microsecond 

resolved spectra can be obtained with high spectral resolution and fractional monolayer detection 

limits in a total experimental duration that is two orders of magnitude less than the equivalent step-

scan experiment.  
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Introduction 

Time resolved infrared spectroelectrochemistry is a powerful tool for monitoring the kinetics 

of electrochemical processes and electrocatalytic reactions.1-5 Conventionally, fast (sub 

millisecond) infrared spectroelectrochemistry (SEC) requires the use of step-scan spectroscopy, 

whereby the moving mirror in the interferometer is stopped at a given retardation position, δ, and 

the transient IR response of a time dependent chemical/physical process is measured. Data cubes 

of time resolved interferograms are constructed by repeating the process at different δ values.6-7 

The co-addition of many data cubes (replicate measurements) is typically needed to improve the 

S/N to acceptable levels, such that, paradoxically, the total duration of a step-scan measurement is 

often very long. For example, a subset of these authors recently performed a step-scan experiment 

that needed more than 105 potential steps to measure the time resolved spectrum of the transient 

adsorption of a pyridine derivative. Additionally, the electrochemically triggered event must be 

robust enough to give a consistent response for a total number of transients defined by the product 

of the number of mirror positions and the number of co-added data blocks. 

The advent of quantum cascade lasers and laser frequency combs has led to a paradigm change 

in time resolved IR spectroscopy.8-10 The heterodyned detection of two IR laser combs covering 

the same optical bandwidth but with different free spectral ranges yields a radio frequency 

interference signal.11-12 This GHz signal can be digitized using a fast data acquisition card and 

eventually Fourier transformed to provide interferograms with microsecond level resolution. This 

negates the need to construct an interferogram through successive mirror movements as is done in 

step-scan IR spectroscopy. Herein, we report the first demonstration of microsecond-resolved 

ATR-SEIRAS (attenuated total reflectance surface enhanced infrared spectroelectrochemistry) 
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using dual comb IR laser spectroscopy by measuring the potential-dependent desorption of a 

physisorbed pyridine derivative.  

Experimental 

The internal reflection element (IRE) was a 60o face angled Si crystal (PIKE technologies) 

with anti-reflection coatings on its two face angled surfaces. A 20 nm thick layer of indium tin 

oxide (ITO) was sputtered on the principal reflecting plane of the IRE and the modified crystal 

was then annealed under vacuum for 1 hour at 300 C° (see Scheme 1). The IRE was assembled in 

a JackfishSEC J1 cell (Jackfish SEC) and a gold island film was electrodeposited on the ITO from 

a solution of 0.25 mM KAuCl4, 50 mM NaF and 0.1 mM 4-methoxypyridine.13 The SEC cell was 

disassembled, thoroughly washed and reassembled with fresh electrolyte (50 mM KClO4) 

containing 0.1 mM 4-dimethylaminopyridine (DMAP) in D2O. The geometric area of the working 

electrode in contact with the electrolyte was 0.32 cm2. IR measurements were made on an IRis-F1 

mid-IR dual comb spectrometer (IRSweep) with nominal 6 µm quantum cascade laser sources. 

The SEC cell was mounted on a VeeMAX III specular reflection accessory (PIKE) that had been 

modified to accept collimated laser light (Figure 1). The angle of incidence was 60o. An SRS 

EC301 potentiostat (Stanford Research Systems) was used to control the working electrode 

potential. A coiled Au wire served as the counter electrode and all potentials were measured versus 

a Ag/AgCl (saturated KCl) reference electrode. Post-acquisition data processing was performed 

using tools from the open source software project, Quasar 

[https://doi.org/10.5281/zenodo.1188775]. 
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Scheme 1 : Preparation of a Si face-angled crystal internal reflection element (IRE) with a thin 

layer of indium tin oxide and subsequent modification through the electrodeposition of a gold 

nanoparticle film. 

 

 

 

 

 

 
 

Figure 1 : Optical configuration for performing ATR-SEIRAS with a laser based source. 
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Results and Discussion 

The minimum response time of an electrochemical interface is controlled by the RC or cell 

constant which is the product of the electrolyte resistance and the working electrode capacitance. 

External reflection based IR techniques, such as infrared reflection absorption spectroscopy 

(IRRAS), require the working electrode to be pushed very close to an IR transparent window. The 

presence of a highly-resistive, thin electrolyte layer makes IRRAS incompatible with sub-second 

resolved IR spectroelectrochemistry. In contrast, the Kretschmann configuration used in ATR-

SEIRAS removes the need for the thin electrolyte layer14-15 and allows for time resolved SEC with 

millisecond resolution.16-17 In these experiments, the RC constant of the gold island film in the 

spectroelectrochemical cell containing 50 mM KClO4 was determined from electrochemical 

impedance spectroscopy to be 10-20 ms. 

The potential dependent adsorption of DMAP on gold surfaces has been previously studied 

with both electrochemical18-19 and spectroelectrochemical20 techniques. Briefly, DMAP adsorbs 

on polycrystalline gold from neutral and basic solutions through the lone pair of electrons on the 

endocyclic nitrogen. This phase of adsorption is stable on the metal surface in the approximate 

potential range -0.8 V < E < 0.5 V.18 The pyridine derivative is totally desorbed by application of 

potentials more negative than -0.8 V. The broad-band ATR-SEIRAS spectrum of DMAP consists 

of several, strong absorbance peaks corresponding to A' ring modes,20 the most prominent of which 

is centred at approximately 1628 cm-1 which conveniently lies within the approximately 100 cm-1 

comb bandwidth. Measurements of DMAP desorption were made by initially biasing the working 

electrode at +0.30 V for 15 seconds to allow a complete monolayer to form and then stepping the 

potential to -0.90 V. The absorbance transient was measured for a total of 33 ms with the first 3 

ms being recorded before the potential step and serving as a reference spectrum. The potential step 
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and IR data acquisition were repeated a total of 128 times. The resulting time-dependent spectra 

are dominated by the emergence of a single negative absorption band at 1628 cm-1 (Figure 2) which 

reaches a maximum magnitude of 7.5 mAbs by the end of the recorded transient and a final value 

of 11.1 mAbs after prolonged polarization at -0.90 V. Of additional note is the positive shift in the 

baseline, which has been noted in previous SEIRAS studies21 and has been observed to be more 

prominent when conductive metal oxide films are used as supports for metal island films.13 

 

Figure 2 : Time resolved evolution of the ATR-SEIRAS absorbance change upon a potential 

jump from +0.30 V to -0.90V using the dual-comb IR spectrometer. Spectral processing 

conditions were 128 co-additions with 20 µs time binning. Spectral resolution was 3.3 cm-1. 
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Figure 3 shows the transient evolution of the integrated 1628 cm-1 band with either 20 µs or 

200 µs time binning. In both cases the time resolution greatly exceeds the time scale of the changes 

in the molecular absorption band and the apparent time required for desorption of the pyridine 

derivative is surprisingly large. Fitting the experimental transients to an empirical double 

exponential function (red line in Figure 3) yields time constants of 1.5 ms and 42 ms. Given the 

high solubility of DMAP in aqueous solutions, the expected time needed for the desorbed 

monolayer to diffuse from the electrode surface to a distance, x, where the electromagnetic 

enhancement is negligible (approximately 5 nm)22-23 can be estimated as 
2 1 t x D s   for a 

 

Figure 3: Integrated peak area for the A' ring mode of DMAP (peak frequency 1628 cm-1) as a 

function of time using a) 20 µs and b) 200 µs time binning. The two curves are offset along the 

ordinate for clarity. Spectra are the result of 128 co-additions with 3.3 cm-1 spectral resolution. 

The red line is the result of a fit of the 20 µs resolved data to a double exponential decay. 

diffusion coefficient of 10-6 cm2 s-1. The results of more sophisticated treatments of the diffusion 

of a desorbed monolayer24 gives comparable time scales. Thus, even the smaller of the two 



8 

 

experimentally observed time scales is roughly three orders of magnitude larger than expected. 

This is most likely a consequence of the RC constant of the spectroelectrochemical cell. 

Although the relatively sluggish response of the spectroelectrochemical cell prevents a 

meaningful interpretation of the absorbance transient, the time resolved ATR-SEIRAS data 

provide extremely useful information for quantifying the limits of detection and the minimum time 

binning requirements of the dual frequency comb heterodyne detection method for future time 

resolved spectroelectrochemical experiments with cell constants in the microsecond regime. The 

noise level of the experiment can be quantified by analyzing the spectra collected prior to the 

potential step. Although the entirety of the first 3 ms of the transient measurement is averaged to 

make the reference spectrum, this data is actually composed of individual, ~ 4 µs resolved, “single 

shot” spectra. A 0% absorbance line can be calculated by binning single-shot spectra over a range 

of Δt and dividing the result by the reference spectrum. The rms noise (in absorbance units) in the 

region of the DMAP peak (i.e. 1620 cm-1 – 1635 cm-1) was determined using this approach and 

quantified through Equation 1, 

1
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 Equation 1 

where N is the number of spectral points in the region, and Δi is the square of the absorbance 

difference between successive points. The noise level is a function of both time-binning and the 

number of co-added repeat measurements (the equivalent of ensemble averaging).10 Figure 4a 

shows the Allan plot for four co-added measurements with variable time binning, Δt. The noise 

level is ~ 2 mAbs at Δt = 4 µs and an order of magnitude lower for Δt = 800 µs. Increasing the 

number of co-added measurements to 128 provides an approximately five-fold systematic 

lowering in the noise level. Alternatively, the rms noise is plotted as a function of the number of 
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co-adds in Figure 4b for both Δt = 4 µs and Δt = 800 µs. In all cases, the slopes of the lines in 

Figure 4 are -0.5 ± 10% which indicates the noise is dominated by random noise and obeys the 

basic assumptions of Nyquist averaging. 

 

Figure 4 : Allan plots for noise analysis of the dual comb ATR-SEIRAS data as a function of a) 

the time binning interval and b) the number of co-added measurements. The number of co-added 

spectra, N, and the time binning intervals, Δt, for the respective plots are labelled accordingly. 
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The Allan plots allow the detection limit of a time-resolved ATR-SEIRAS measurement to be 

established. Defining the minimum detectable signal as three times the noise level of the 

measurement, a signal as low as 0.6 mAbs can be discerned from a time resolved experiment with 

~10 µs time binning and 128 co-adds. As the maximum absorbance signal from the DMAP 

monolayer (Γmax = 7.4 × 10-10 moles cm-2)18 is 11.1 mAbs, the limit of detection under these 

conditions is 5% of a monolayer which can be improved to 0.7% by increasing the time binning 

to 800 µs. For comparison, the noise from the same ATR-SEIRAS configuration was evaluated 

using a conventional IR source and spectrometer working in step-scan mode and found to be 0.5% 

of the DMAP monolayer signal after 128 co-additions and 1 ms time binning at 8 cm-1 resolution. 

Although the noise level is comparable to that of the dual comb spectrometer, the lower resolution 

step-scan experiment required more than two days of continuous total measurement time. For 

comparison the measurement of 128 co-added spectra using the dual comb spectrometer was 

completed in 32 minutes. 

Conclusions  

Dual frequency comb IR spectroscopy has been used for the first time to measure time-

resolved electrochemical ATR-SEIRA spectra. In a proof of concept experiment, the desorption 

of a monolayer of a pyridine derivative was monitored with 10 µs time resolution and a detection 

limit of 5% of a monolayer. Relative to a step-scan IR experiment, the dual frequency comb ATR-

SEIRAS measurement required 2 orders of magnitude less experiment time to provide comparable 

S/N and temporal resolution but with better spectral resolution. The applications of the method are 

potentially immense for the study of short lived adsorbed species during electrocatalysis. Of 

critical importance for future applications is the need to further reduce the spectroelectrochemical 
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cell constant. We are currently developing the means to perform analogous experiments on 

microband electrodes with RC constants in the microsecond regime. 

Acknowledgements 

The authors are grateful to Kaiyang Tu, Tyler Morhart, Ian Andvaag and Burke Barlow for their 

assistance. This work was funded by Discovery (RGPIN-2019-04032) and Research Tools and 

Instruments Grants from the Natural Science and Engineering Research Council (NSERC) of 

Canada. Research described in this paper was performed at the 01B1-1 (mid-IR) beamline at the 

Canadian Light Source (CLS). The CLS is a national research facility of the University of 

Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural 

Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the 

Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the 

University of Saskatchewan. 

Conflict of Interest 

The authors report no conflicts of interest. 

 

 

  



12 

 

References 

 

1. Zhou, Z.-Y.; Lin, S.-C.; Chen, S.-P.; Sun, S.-G., In situ step-scan time-resolved microscope 

FTIR spectroscopy working with a thin-layer cell. Electrochem. Commun. 2005, 7, 490-495. 

2. Zhou, Z.-Y.; Sun, S.-G., In situ step-scan time-resolved microscope FTIR spectroscopy 

applied in irreversible electrochemical reactions. Electrochim. Acta 2005, 50, 5163-5171. 

3. Jin, B.; Tao, F.; Liu, P., Rapid-scan time-resolved FT-IR spectroelectrochemistry - Study 

on the electron transfer of ferrocene-substituted thiophenes. J. Electroanal. Chem. 2008, 624, 179-

185. 

4. Jin, B.; Liu, P.; Wang, Y.; Zhang, Z.; Tian, Y.; Yang, J.; Zhang, S.; Cheng, F., Rapid-Scan 

Time-Resolved FT-IR Spectroelectrochemistry Studies on the Electrochemical Redox Process. J. 

Phys. Chem. B 2007, 111, 1517-1522. 

5. Bellec, V.; De Backer, M. G.; Levillain, E.; Sauvage, F. X.; Sombret, B.; Wartelle, C., In 

situ time-resolved FTIR spectroelectrochemistry: study of the reduction of TCNQ. Electrochem. 

Commun. 2001, 3 (9), 483-488. 

6. Manning, C. J.; Palmer, R. A.; Chao, J. L., Step‐scan Fourier‐transform infrared 

spectrometer. Rev. Sci. Instrum. 1991, 62, 1219-1229. 

7. Johnson, T. J.; Simon, A.; Weil, J. M.; Harris, G. W., Applications of Time-Resolved Step-

Scan and Rapid-Scan FT-IR Spectroscopy: Dynamics from Ten Seconds to Ten Nanoseconds. 

Appl. Spectrosc. 1993, 47, 1376-1381. 

8. Chen, Z.; Hänsch, T. W.; Picqué, N., Mid-infrared feed-forward dual-comb spectroscopy. 

Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 3454-3459. 

9. Schnee, J.; Bazin, P.; Barviau, B.; Grisch, F.; Beccard, B. J.; Daturi, M., Coupling a Rapid-

Scan FT-IR Spectrometer with Quantum Cascade Lasers within a Single Setup: An Easy Way to 

Reach Microsecond Time Resolution without Losing Spectral Information. Anal. Chem. 2019, 91, 

4368-4373. 

10. Klocke, J. L.; Mangold, M.; Allmendinger, P.; Hugi, A.; Geiser, M.; Jouy, P.; Faist, J.; 

Kottke, T., Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with 

Quantum Cascade Laser Frequency Combs. Anal. Chem. 2018, 90, 10494-10500. 

11. Villares, G.; Hugi, A.; Blaser, S.; Faist, J., Dual-comb spectroscopy based on quantum-

cascade-laser frequency combs. Nat. Commun. 2014, 5, 5192. 

12. Wang, Y.; Soskind, M. G.; Wang, W.; Wysocki, G., High-resolution multi-heterodyne 

spectroscopy based on Fabry-Perot quantum cascade lasers. Appl. Phys. Lett. 2014, 104, 031114. 

13. Andvaag, I. R.; Morhart, T. A.; Clarke, O. J. R.; Burgess, I. J., Hybrid Gold–Conductive 

Metal Oxide Films for Attenuated Total Reflectance Surface Enhanced Infrared Absorption 

Spectroscopy. ACS Appl. Nano Mater. 2019, 2, 1274-1284. 

14. Osawa, M., Surface-enhanced infrared absorption. Top. Appl. Phys. 2001, 81, 163-187. 

15. Osawa, M., Surface-Enhanced Infrared Absorption Spectroscopy. In Handbook of 

Vibrational Spectroscopy, John Wiley & Sons, Ltd: 2006. 

16. Ataka, K.; Nishina, G.; Cai, W.-B.; Sun, S.-G.; Osawa, M., Dynamics of the dissolution of 

an underpotentially deposited Cu layer on Au(111): a combined time-resolved surface-enhanced 

infrared and chronoamperometric study. Electrochem. Commun. 2000, 2, 417-421. 

17. Noda, H.; Wan, L.-J.; Osawa, M., Dynamics of adsorption and phase formation of p-

nitrobenzoic acid at Au(111) surface in solution. A combined surface-enhanced infrared and STM 

study. Phys. Chem. Chem. Phys. 2001, 3, 3336-3342. 



13 

 

18. Barlow, B. C.; Burgess, I. J., Electrochemical Evaluation of 4-(Dimethylamino)pyridine 

Adsorption on Polycrystalline Gold. Langmuir 2007, 23, 1555-1563. 

19. Vivek, J. P.; Burgess, I. J., Crystallographic dependence of 4-dimethylaminopyridine 

electrosorption on gold. Electrochim. Acta 2013, 88, 688-696. 

20. Rosendahl, S. M.; Danger, B. R.; Vivek, J. P.; Burgess, I. J., Surface Enhanced Infrared 

Absorption Spectroscopy Studies of DMAP Adsorption on Gold Surfaces. Langmuir 2009, 25, 

2241-2247. 

21. Priebe, A.; Sinther, M.; Fahsold, G.; Pucci, A., The correlation between film thickness and 

adsorbate line shape in surface enhanced infrared absorption. J. Chem. Phys. 2003, 119, 4887-

4890. 

22. Wokaun, A., Surface-Enhanced Electromagnetic Processes. In Solid State Physics, 

Ehrenreich, H.; Turnbull, D.; Seitz, F., Eds. Academic Press: 1984; Vol. 38, pp 223-294. 

23. Osawa, M.; Ikeda, M., Surface-enhanced infrared absorption of p-nitrobenzoic acid 

deposited on silver island films: contributions of electromagnetic and chemical mechanisms. J. 

Phys. Chem. 1991, 95, 9914-9919. 

24. Pesika, N. S.; Stebe, K. J.; Searson, P. C., Kinetics of Desorption of Alkanethiolates on 

Gold. Langmuir 2006, 22, 3474-3476. 

  



14 

 

For Table of Contents Only 

 

 


