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Parameters and Stability of Surface Waves for
Single and Double Layer Liquid Flows:
An Experimental and Computational Study
The flow of thin liquid layers is industrially important, and commonly found in
many engineering applications. In modem technology flows of thin liquid films play a
major role in fine liquid coating processes, such as the production of photo film and
magnetic tape. The principle of such processes is the application of one or more thin
layers of coating liquids to a solid substrate. The quality of the products and the efficiency
of the coating operation depend to a large extent on the mechanics of the thin film flow.
The flow of thin liquid film is known to frequently develop surface waves due to its

instability. In liquid coating industry these waves lead to defective products, when the

wavy film is dried with a non-uniform thickness.

This work is an experimental and numerical study of the instability and the wave
parameters of free-surface waves, running on the surface of falling liquid films over an
inclined plane. An experimental procedure employing optic-electric transformation and
digital signal processing techniques is designed, and used to obtain the frequency
information about waves on the surface of a single layer flow and a double layer flow.
Also, the criteria for onset of waves and the transit distance information are experimentally
determined for a single layer flow. An unsteady state time-accurate computational model
employing finite difference and numerical grid generation techniques is developed and

used to simulate the single layer film flow subjected to a minute velocity disturbance. The



method is able to produce stable wavy regimes for a wide range of flow conditions. Wave
profile and wave speed reflecting the speed of disturbance propagation over the free-
surface were obtained for different liquid properties 0.0467 < y [=(v4g)'Po/p] < 467,
different angles of inclination 0.1° < 0 < 89.9°, and different Reynolds numbers Re < 30.
Computations for vertical flow 8 = 90° always diverged. However, any shift in angle from
90° produced stable solutions. Calculations for higher Reynolds numbers consumed

increasingly more CPU time.
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ABSTRACT

In modern technology flows of thin liquid films play a major role in fine liquid coating
processes, such as the production of photo film and magnetic tape. The principle of
such processes is the application of one or more thin layers of coating liquids to a solid
substrate. The quality of the products and the efficiency of the coating operation
depend to a large extent on the mechanics of the thin film flow. The flow of thin liquid
film is known to frequently develop surface waves due to its instability. In liquid
coating industry they lead to defective products, when the wavy film is dried with a non-

uniform thickness.

This work is an experimental and numerical study of the instability and the wave
parameters of the free-surface wave of thin liquid film flow. An experimental procedure
employing optic-electric transformation and digital signal processing techniques is
designed, and used to obtain the frequency information about waves on the surface of a
single layer flow and a double layer flow. Also, the criteria for onset of waves and the
transit distance information are experimentally determined for a single layer flow. A
computer model employing finite difference and numerical grid generation techniques is
developed and used to simulate the single layer film flow subjected to a minute

disturbance.
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INTRODUCTION

THIN LIQUID FILM FLOW

The flow of thin liquid layers is industrially important, and commonly found in many
engineering applications. In modem technology flows of thin liquid films play a major
role in fine liquid coating processes, such as the production of photo film and magnetic
tape. The principle of such processes is the application of one or more thin layers of
coating liquids to a solid substrate. The quality of the products and the efficiency of the
coating operation depend to a large extent on the mechanics of the thin film flow. The
flow of thin liquid film is known to frequently develop surface waves. These waves play
different roles in different industrial applications. In liquid coating industry they lead to
defective products, when the wavy film is dried with a non-uniform thickness. In
cooling towers, wavy film increases the area of heat transfer. Wave motion on the
surface of a thin liquid film has been the subject of extensive studies in the past few
decades since the pioneering work of Nusselt (1916), and Kapitsa (1948). However,
most of the studies were of theoretical nature. Few experimental results exist in this
field. A better knowledge and understanding of surface waves, their onset, and decay
are important to many industries, particularly those applying liquid coating. In the
following section we expand on the concepts of coating technology in order to gain

deeper appreciation of the issues surrounding flows of thin liquid films.

LIQUID COATING PROCESSES

Some of the typical products of coating processes are photo-sensitive materials. There
are produced in many types such as black and white print film, color print film and slide
film, photo paper, medical X-ray film, etc. In order to produce these materials, several
silver halide emulsion layers and other auxiliary layers have to be coated on the web of

base material. These layers are very thin. For example, the total thickness of the



coating layer of Kodak Ektachrome color slide film is 0.02 mm in dry state (Levey,
1992), and about 0.2 mm before drying.

The coating of modern materials is a complex task and the coating methods in current
use are the subject of commercial secrecy. One of the earliest methods of coating
flexible supports was ‘dip’ or ‘trough’ coating (Figure 1). Dip coating is limited in
speed since faster dip-coating results in thicker emulsion layers which are difficult to
dry, and which have undesirable photographic properties. This method has been
replaced by other coating techniques outlined below.

Figure 1 Schematic Diagram of Dip Coating

In order to increase the coating speed dip coating has been modified by the use of an
air-knife. It is an accurately machined slot directing a flow of air downwards onto the
coated layer. The knife controls the thickness of the coated layer by pushing the excess
liquid back into the coating trough. Coating by this method results in faster coating

speeds, thinner coating layers, and more concentrated emulsions.

Other coating methods employ accurately machined slots through which emulsion is
pumped directly onto the base (slot applicator or extrusions coating) or pumped to flow

down a slab before touching the base (slide coating and curtain coating). Figures 2 and



3 show the schematic diagrams of multiple slide coating and multiple curtain coating,
respectively. Such coating methods allow coating speeds to be much higher than was
possible with the more traditional methods. It is believed (Jacobson, 1988) that in
photographic industry coating speeds approaching 60 meters per minute or possibly
higher are now being used to coat base material which is approximately 1.4 meters
wide.

SUBSTRATE

Figure 2 Multi-layer Slide Coating

I A ¥
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Figure 3 Multi-layer Curtain Coating




Modern monochrome materials are coated with more than one layer. Color materials
may have as many as 14 layers. Figure 4 shows a multiple layer structure of a color
slide film. In modemn coating technology, many layers are coated in a single pass of the
base through the coating machine. This is done either by using multiple slots, by using a

number of coating stations, or by a combination of both.

It is important that the uniformity and thickness of the applied coating be held to very
rigid specifications, because emulsion thickness is very important in controlling the
photographic properties of the products. Not only it is essential that the coating be of
the proper thickness; but it must be uniform over both the width and the length of the
roll, and from one roll of base to another. Thickness and uniformity are controlled by
the physical properties of the emulsion, the stability behavior of the flow system

involved, and the surrounding conditions.

. Protective layer

A

_

. Blue-sensitive emulsion layer and yellow coupler

. Yellow filter (colloidal silver)

. Green-sensitive (fast) emulsion layer and magenta coupler
Green-sensitive (medium) emulsion layer and magenta coupler
Green-sensitive (slow) emulsion layer and magenta coupler

. Interlayer

x O m m O 0O W >

. Red-sensitive (fast) emulsion layer and cyan coupler
Film Base I. Red-sensitive (medium) emulsion layer and cyan coupler
J. Red-sensitive (slow) emulsion layer and cyan coupler

K. Anti-halation coating

Figure 4 Multiple Layer Structure of a Modem Color Slide Film



HYDRODYNAMIC STABILITY OF LIQUID FILM FLOWS

The study of changes which occur in a flowing liquid film when it is subjected to various
disturbances has industrial importance. In any processes random disturbances are
inevitable. They could be any changes in surrounding conditions such as the changes in
fluid properties, or in flow parameters. If the liquid flow is stable as a dynamic system,
the disturbance will not alter the system and will disappear in the flow process.

The steady state theoretical solution of the flow of a liquid film describes a flow with
uniform thickness, a straight (plane) free surface, and a parabolic distribution of velocity
across the film (Nusselt, 1916). In laboratory experiments such a flow is obtained at
low speeds and for a limited distance from the starting point of the film. Considering
the film flow to be the steady state system subjected to a disturbance, slight shifts in
velocities, pressure, and film thickness will occur as a result of the disturbance. The
thickness change is particularly visible since it manifests itself by the appearance of a
small amplitude surface waves. Similar arguments can be made about multiple layer
flows with interfacial waves appearing on the surfaces separating layers as a result of
disturbances. If the system is stable the magnitude of this disturbance will gradually
decrease, and the free surface and/or the interfaces will gradually become smooth and
undisturbed. Stable liquid film flows with uniform thickness are less favorable to the
heat/mass transfer across the liquid film. However, the uniformity of the layers is a
matter of great importance in coating processes. If the flow system is unstable the
disturbance will be amplified in the flow process. Its magnitude will gradually increase,
and the free surface and/or the interfaces will be disturbed and become rough. Such
wavy surfaces enhance the heat/mass transfer across the liquid film, but are undesirable
in coating processes. Wavy coating will eventually appear on the coated product as

unevenness. These defects will down-grade the quality.



OBJECTIVES
The purpose of thiis research work is to study the wave motions on the free surface of
single and double layer flow systems. The study includes experimental investigation and

numerical simulation.

The objectives are;

1. To design an experimental procedure by employing optic-electric transformation and
digital signal processing techniques, and use it to obtain the frequency information about
surface wave motions, in a single layer flow.

2. To use the experimental technique to investigate the frequencies of waves on the
surface of two liquid layers (double- layer flows).

3. To determine experimentally, the onset condition and the transit distance of the wave
motions on the free surface of single layer flow system.

4. To develop a computer model by employing finite difference and numerical grid
generation techniques, and use it to simulate the single layer film flow subjected to a

minute disturbance.



LITERATURE REVIEW

Wave formations on the free surface and interfaces of thin liquid films have been the
subject of extensive studies in the past few decades. However, most of the known
studies are of a theoretical nature. Few experimental results exists in this field.
Following is a review of the previously known experimental investigations, followed by

a review of the more extensive previous theoretical works.

EXPERIMENTS
SINGLE LAYER SYSTEMS

Wave Patterns

Flowing films are stable when their Reynolds number is below a critical value. The film
surface is completely smooth and mirror-like, troubled only occasionally by small
random "dimples"”, which rapidly damp out in the direction of film flow. Otherwise,
when the Reynolds number is greater than the critical value, the flow will be unstable
and waves start to appear on the film surface. In practice, these waves are of a
complicated nature. The wave patterns may vary from simple and nearly sinusoidal
forms in the wave inception region to complex forms beyond the inception region
(Kapitsa & Kapitsa 1949; Tailby & Portalski 1962; Fulford 1964; Krantz & Goren
1971a; Dukler 1972; Chu & Dukler 1974, 1975; Esmail 1980; Sivashinsky & Michelson
1980; Brauner & Maron 1982; Alekseenko et al. 1985; Lin & Wang 1985; Kelly et al.
1989; Goussis & Kelly 1991; Lacy et al. 1991; Liu & Gollub 1993). These complex
forms include solitary waves with one or more peaks, the evolution of subsidiary wave
fronts, the development of three-dimensional instabilities, the production of irregular
fully developed waves, etc. Experimental observations have shown the strong

dependence of the evolution of wavy films on the initial wave number.



Critical Reynolds Number

Earlier experimental investigations were concerned only with finding the critical
Reynolds number, at which wave motion can be detected (primary instability). The
methods used include careful visual observation (Binnie 1957, Fulford 1962), taking
photographs of the free surface (Binnie 1959), and employing an electric "feeler”
(Brauer 1956). Their results generally lie above the prediction of linear theories
(Benjamin 1957), but indicate a similar trend with inclination angle.

According to the stability theory, this critical Reynolds number should be zero for a
vertically falling film. But experimental observations show a scatter and the Reynolds
number differs from zero. This is mainly due to the fact that although the theory
predicts that vertical films will always be unstable, the waves on the free surface may be
of too small an amplitude at low flow rate to be observed. The fact that the use of more
sensitive methods of wave detection leads to smaller experimental values of the critical

Reynolds numbers may be indirect confirmation of this argument (Fulford 1964).

Due to the difficulty in measuring the primary instability at very low flow rates there has
been no progress on this subject until a recent work done by Liu et al. (1993). Using
fluorescence imaging and computer image processing techniques they were able to
dynamically measure the liquid film thickness with a claimed accuracy of several
microns. Their result of the critical Reynolds number as a function of inclination angle
is in agreement with the linear theory (Benjamin 1957, Yih 1963) for inclination angles
of less than 10°. They also measured the growth rates and wave velocities. These
experiments demonstrated that overall the linear stability theories are able to give a

reasonably accurate prediction of the critical conditions for the onset of surface waves.

Wave Parameters
Tailby & Portalski (1962) reported measurements of the wavelengths near the point of
wave inception on vertical films of various liquids. The results were considerably

greater than the prediction of Kapitsa theory (1964). Similar results have been obtained

8



by Fulford (1962) for water films on an inclined wall. These results also show that at a
given liquid flow rate, the wavelength increases rapidly as the inclination angle is
decreased.

Jones and Whitaker (1966) measured wavelengths and wave velocities of the surface
waves on a water film flowing down a vertical plane by optic-clectric means. Their
results were in agreement with a numerical solution of the Orr-Sommerfeld equation
(Whitaker 1964) in the region near the top of the film where the theory of small
disturbances is expected to be valid.

After the above work quite a few experiments have been reported (Anshus & Goren
1966, Strobel & Whitaker 1969, Krantz & Goren 1971b, Portalski & Clegg 1972,
Portalski 1973, Pierson & Whitaker 1977, Hoffman & Potts 1979, Brauner & Maron
1982, Alekseenko et al 1985, Lin & Wang 1985, Liu et al. 1993). They mainly use local
probes and photography. The wave velocity and/or wavelength have been determined
for small amplitude waves. The comparison of their experimental results with the
fastest growing disturbance in linear theories leads to semi-quantitative agreement with
the theoretical predictions of linear theories but with fairly large scatter. Wave motion
in the inception region can be described by the linear theories as long as the Reynolds
number of film flow is not very high. Measurement of spatial growth rates (Krantz &
Goren 1971b, Portalski & Clegg 1972, Alekseenko et al. 1985, Liu et al. 1993) also

confirmed this point.

Krantz and Goren (1970) measured the wavelengths, wave velocities, and amplification

rates of waves on thin liquid (two kinds of viscous oil) films flowing down an inclined

plane (the inclination angle is 74.5°). Their results were in good agreement with the

various linear stability analyses and showed that the stability of thin film flow at

moderate or low Reynolds numbers is violated by disturbances of long wavelengths

compared to the film thickness. But the waves in their experiment are produced by

imposing disturbances of controlled amplitude and frequency. They tried to take the
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effect of the inclination angle into account by correlating the equilibrium amplitude for
the most highly amplified waves with the dimensionless group,
(l.2Re-cot9)3WeIRe, where 8 is the inclination angle and We the Weber number.

There are very few published experimental reports about the frequency characteristics of
free surface waves of thin liquid film flows. For a vertical water film flow Chu &
Dukler (1974, 1975) found that there exist at least two classes of random waves, long
wavelength waves which camry the bulk of the fluid and small waves which cover a
substrate film that exists between large waves. At low Reynolds numbers (Re < 200)
the frequency of the free surface waves is unimodal and increases with Reynolds
number. This is in agreement with Kapitsa's data (1964). With further increase in
Reynolds number the frequency becomes bimodal. One mode is associated with small
waves and the frequency value continuously increases with Reynolds number. Another
mode is associated with large waves, and the frequency value decreases rapidly with
increasing Reynolds numbers in the transition periods (up to Re = 750), and increases

thereafter in almost the same fashion as that of small waves.

For a non-vertical falling film flow Javdani (1976) found that inclination angle is an
important parameter in this flow system. The frequency of the most highly amplified
wave is expressed in the form:

y=aN" (a>0,n<0)

Y =2nhgffug
N = (1.2Re-cot8)We/Re
Re = phoug/

We =( phgug?) /o
where, N is the compact dimensionless number suggested by Yih (1963); hg and ug are
the undisturbed film thickness and mean velocity, respectively; f is the wave frequency,
and O is the inclination angle to horizontal. The power n is a small but fairly constant
number, and the coefficient ‘a’ consistently decreases with the increase in the inclination
angle. The wave frequency of developed waves far downstream of the inlet was
10



reported by Brauner & Maron (1982) for inclined water film flows. Actually, they
measured the spectra of the mass transfer rates of a chemical species from the liquid to
the solid bottom. However, they experimentally demonstrated that these spectra are
close to the wave spectra. Liu et al (1993) reported two point experimental
measurements of most rapidly amplified frequency for giycerin-water solutions at the
inclination angle of 4.6°. These results are consistent with Brauner & Maron's (1982)

results.

MULTIPLE LAYER SYSTEMS

Much less experimental work has been reported on multiple layer flows of viscous
liquids. Earlier work concentrated only on finding the critical Reynolds number for each
phase at which the flow becomes turbulent (Charles & Lilleleht 1965, Kao & Park
1972). Both experiments were conducted in a rectangular channel in which oil and

water flow concurrently. There was no free surface in these experiments.

Kobayashi et al (1986, 1990) reported experimental work for multiple layer systems.
Multiple layer film flow on inclined planes is often encountered in modemn coating
technology. If the flow on the slide is not stable the effect of instability would appear
on the coated web as unevenness. This is the basic idea of their experiments. The pitch
of unevenness can be easily obtained by measuring the density fluctuation of the coated
web. This pitch is considered as the wavelength of the most rapidly amplified wave.
Using this kind of technique they found good agreement between theoretical predictions
and experimental results for the wavelengths of most unstable waves in the case of two-
and three-layered film flows. Also, their experiment qualitatively supported the
theoretical predictions of the effects of various factors, such as viscosity, flow rate,
inclination angle, and the length of inclined plane, on the stability of two-layered film

flow.
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THEORETICAL WORK

SINGLE LAYER SYSTEMS

Linear Theory

The stability problem is formulated by taking the given steady state solution of the
equations of motion and superimposing a disturbance of a suitable kind. This results in
a set of non-linear disturbance differential equations, which govern the behavior of the
disturbance. If the solution of the equations shows that any disturbance ultimately
decays to zero, the flow is said to be stable, whereas if the disturbance can be

permanently different from zero, the flow is unstable.

Naturally, the solution of the disturbance differential equations is simplified considerably
by linearization for small disturbances. In the linear theory (Lin, 1955), the disturbances
are assumed to be so small that the effect of the Reynolds stress on the mean motion can
be neglected. Squire's theorem (1933) proved that three-dimensional disturbances are
less dangerous to stability than their two-dimensional counterpart. This limits the
problem of hydrodynamic stability to the two-dimensional case. As a result the stream
function formulation of the equations of motion can be used. After that Fourier normal
modes in flow direction are used as models for disturbances. These procedures lead to

the well-known Orr-Sommerfeld equation.

The stability problem of the flow of thin liquid films was first formulated by Yih (1955).
Unfortunately, the results of critical Reynolds number and neutral stability curves were
incorrect. Based on Yih's formulation, Benjamin (1957) performed a new but very
laborious calculations with the assumption that wave number is small. He found that

free surface flows down a vertical plane are unstable for all finite Reynolds numbers.

A new perturbation procedure was introduced by Yih (1963). The advantages of this
method were that it was simple and can be applied at low Reynolds numbers to any

value of wave number, however large. The results showed: 1) The axis o = 0 (o is the
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wave number) in the a--Re (Re is the Reynolds number) plane is always a part of the
neutral stability curve. 2) The actual rate of damping of very short waves is reduced in
magnitude if the viscosity is increased. Also, Yih suggested that there are two kinds of
waves, soft waves or surface waves (longer wavelengths), and hard waves or shear
waves (shorter wavelengths). At low Reynolds numbers soft waves violated the overall
stability of the flow. Graef (1966) and Pierson & Whitaker (1977) extended this work
to Re < 150 and Re < 1000, respectively.

The general features of neutral stability curves were given by Lin (1967a). It was found
that surface tension is a stabilizing factor and the inclination angle is a destabilizing
factor. For a given inclination angle there exists a critical wave number. If the
wavelengths of the free surface disturbances are shorter than this critical value the film
flow can become unstable due to shear waves. Otherwise if the wavelengths of the free
surface disturbances are longer than this critical value the film flow is always unstable
due to surface waves. Later De Bruin (1974) pointed out that an incorrect surface

boundary condition was used in Lin's calculation.

For large Reynolds numbers (1000 < Re < 10000) Chin et al (1986) numerically
investigated the effects of inclinaiion angle, surface tension, and form factor (the ratio of
displacement thickness to momentum thickness) for both the surface and shear waves.
They concluded that the effects of inclination angle and surface tension are duplex.
When inclination angle increases the flow is moderately destabilized for surface waves
and slightly stabilized for shear waves. When surface tension increases the flow is
stabilized for surface waves and slightly destabilized for shear waves. The form factor

has little effect on surface waves and is very important for the shear waves.
Yih (1965) and Lin (1967b) applied the linear theory to the flow of a non-Newtonian

inelastic (triply non-linear) liquid films. The flow is always stable with respect to

surface waves and the instability of the flow is due to shear waves only. Inclination
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angle plays the same role as it does in Newtonian fluid systems and the second viscosity

is a stabilizing factor.

Gupta's (1967) study showed that the instability of a visco-elastic (second-order) liquid
film flow is governed by shear waves rather than surface waves. This is contrary to the
corresponding results for an ordinary viscous fluid. The explanation was given as
follows. The shear on an element of the fluid is reversed at such a frequency that the
elastic stresses cannot relax when the flow of such a fluid is subjected to a disturbance.
This results in a decrease in dissipation of the disturbance energy. So, part of the energy
is stored in the element as strain energy and this disturbance makes the flow unstable. It
is also shown that the elasticity of fluid is a destabilizing factor. Similar work were done
by Gupta & Rai (1967), Lai (1967), Ting (1975), and Dandapat & Gupta (1978). Using
Oldroyd-B model to describe a visco-elastic fluid Shaghfeh et al (1989) found out that
the elasticity of fluid is actually a stabilizing factor.

Non-Linear Theory

In practice disturbances can be of finite amplitudes, and three-dimensional. For the
stability problem with respect to finite amplitude disturbances the interdependence of
the mean and disturbance parts of the flow must be taken into account. This creates a
set of non-linear equations that fall into the domain of non-linear stability theory. The
stream function can not be used for three-dimensional disturbances. Therefore, Orr-

Sommerfeld equations are not the governing equations of non-linear stability problem.

Benjamin (1961) considered a three-dimensional small disturbance, introduced a double
Fourier integral to represent a bounded disturbance, and found that the disturbance,
which is initially concentrated around a point on the free surface, lies mainly within an
elliptical region whose area increases linearly with time as it moves downstream and
appears as long-crested waves. Photographic records of a growing disturbance on an
unstable film indicated that the main features of the wave motions are in agreement with

the theory. Gupta and Rai (1968) arrived at an important conclusion, when they
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investigated the instability of a visco-elastic liquid system with respect to three-
dimensional disturbances. Under certain circumstances these disturbances are more
unstable than the two-dimensional ones. This is contrary to Squire's theorem (1933).
Similar conclusions were obtained by Krishna (1977) and Lin (1977).

Another important feature (Lin 1969) is that in the neighborhood of the neutral stability
curve an exponentially growing infinitesimal disturbance may develop into the
supercritical stable wave motion of small but finite amplitude if the surface tension of
the liquid is sufficiently large, i.e. the unstable disturbance predicted by linear theory is
actually stable under certain conditions. Further investigation about nonlinear surface
waves was done by Nakaya (1975), who found that surface waves on the fluid layer
resemble gravity waves and capillary waves for small and large wave numbers,

respectively.

The profiles of free surface waves were calculated by Esmail (1980) based on a non-
linear (with respect to the wave amplitude) dynamic analysis. It was found that once the
wavelengths fall into the unstable region, if we gradually move from the region close to
the neutral stability curve inside of the unstable region, surface waves will gradually
change in shape from nearly sinusoidal waves of small amplitude to the complicated
close to solitary waves of high amplitude. The wavelengths will also gradually increase.
By examining the profile changes as the inclination angle varies it was also found that

any change in the inclination angle from 90° will induce stability in the flow system.

Mechanisms

An early work involving the stability mechanism was reported by Hsieh (1965). He
used the kinematic wave theory (Yih, 1955) to predict the wave velocity of the lowest
order. A necessary condition for thin film flows was obtained by balancing the inviscid
perturbation pressure with the change in the hydrostatic pressure associated with the
perturbed surface. The laminar flow of a layer of viscous and electrically conducting

fluid down an inclined plane in a transverse magnetic field was analyzed. It was found
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that surface tension always tends to stabilize the flow while gravity will tend to stabilize
or destabilize the system depending on whether the fluid is flowing down the upper side
or the underside of the inclined plane, and the critical Reynolds number obtained agreed
with those of Yih's (1963) and Benjamin's (1957).

Following the analysis of Stuart (1960), Lin (1970) discussed the mechanism of non-
linear stability from the point of view of energy transfer between the mean flow and
disturbance. The results of his analysis were compared with Reynolds & Potter's (1967)
results. The comparison showed that for long gravity waves, non-linear stability was
found to be due to the large rate of work done by the normal stress to deform the free
surface. For relatively short gravity waves, the stability was shown to be mainly due to
the generation of higher harmonics that lead to the distortion of the wave form. It was
also pointed out that the non-linear stability mechanism for capillary waves was likely to
be more complicated due to the possibility of competition between gravity waves and

shear waves for instability.

Dagan (1975) found out that the local growth rate of the amplitude of disturbance
depends on both the normal pressure gradient and the strain rate on the free surface. It
means that there exist two mechanisms associated with the instability of film flow. One
is due to the kinematic effect of the strain rate on the free surface and another due to the
dynamic effect of the normal pressure gradient. For moderate values of Reynolds
number, Goussis & Kelly (1983) examined the equation governing the rate of change of
kinetic energy for a spatially periodic disturbance. They found that the dominant energy
production term was associated with the rate at which work is done by the perturbation
shear stress at the surface. The same conclusion was obtained by Kelly et al (1989),
who performed disturbance energy analysis of the film for a disturbance of arbitrary
wavelength and identified the various contributions to the disturbance energy. They
concluded that: when a film is unstable to long wavelength disturbances, the dominant
energy production term is associated with the work done by the perturbation shear

stress at the free surface. The mechanism of instability, however, is associated with a

16



shift of perturbation vorticity relative to the surface displacement resulting from

advection.

A two-part-mechanism theory, an initiating mechanism that produces the dominant
motion in the film and a growth mechanism that produces the unstable motion of the
surface, was proposed by Smith (1990). The initiating mechanism is very similar to the
one described by Kelly et al (1989). When the surface is deformed, a perturbation shear
stress is induced, but the total surface shear stress at the non-deformed surface position
remains constant. The magnitude of this induced shear stress is proportional to the
curvature of the basic-state velocity at the surface. The primary effect of this stress is to
drive a longitudinal flow perturbation in the film and the work done by this stress is the
main energy source for instability. The inertial stresses, which are proportional to the
Reynolds number, are produced by the interaction between the leading-order velocity
perturbations induced by the initiating mechanism and the basic-state velocity relative to
the moving disturbance. When these inertial stresses are positive, they drive the
perturbation from crests to troughs and reduce the surface deformation. Such a flow is
stable. When these inertial stresses are negative, they do the opposite action to

disturbances, and such a flow is unstable. This is the growth mechanism.

Hsieh (1990) interpreted Reynolds number as Froude number. A critical Froude
number of O(1) is indeed what we would expect for roll waves in hydraulics. It is also
consistent in the context that the perturbed wavelengths are long compared with the
depth of the fluid layer. As Reynolds number or Froude number increases, i.e. as
inclination angle increases, the gravitational restoration force tends to decrease, while

the destabilizing Bernoulli force tends to increase. Thus the system becomes unstable.
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MULTIPLE LAYER SYSTEMS

Linear Theory

Kao (1965a, 1965b) first extended Yih's (1963) work to double layer systems, and
investigated the stability of a layer of two viscous fluids of different densities but equal
viscosity, and found that there exist two modes of long wave instabilities, one is
associated with the free surface and another with the fluid-fluid interface. For the case
in which the density of the upper layer is somewhat less than that of the lower layer, the
interfacial mode is found to govem the stability of the flow. However, when the upper
density becomes much smaller, the free surface mode and the interfacial mode compete
in dominating this system. It was found that the density stratification can be a stabilizing
or destabilizing factor depending on whether the upper density is less than or greater
than the lower density, the more stabilizing or destabilizing effect, the more difference in
densities; but for the case in which the density ratio is very small, the introduction of an
interface is always destabilizing, even though the stratification may be bottom heavy.
Later Kao (1968) considered the situation with fluids of different viscosity, and found
that viscosity stratification changes the situation dramatically. The interfacial mode is
stabilized for the range of viscosity ratio less than unity (bottom viscous system), and
the free surface mode is generally the governing mode in that range. The overall effect is

stabilizing compared with the equal viscosity system.

Chen's (1993) work showed that the viscosity stratification has two contributions,
inertial and non-inertial contributions. They are always competing in the long-wave
range, and the outcome depends on Reynolds number. For the lubricated configuration
with the less viscous fluid adjacent to the inclined wall the interface mode is always
unstable, and it is impossible to stabilize the interface mode and the surface mode
simultaneously. For the opposite arrangement with the more viscous fluid occupying
the region next to the inclined wall, if a non zero interfacial tension is present to stabilize
the short wave instability, linear stability can be achieved by disturbances of all

wavelengths at low-Reynolds number.
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Kobayashi et al (1986) found out that viscosity stratification is always unstable for
double layer systems. Their numerical calculations for the interfacial modes indicated
that: 1) The flow rate and viscosity of the upper liquid have stronger effects on flow
stability than those of lower liquid. For the bottom viscous system higher viscosity
differences increase instability. 2) Surface tension has a very weak effect on flow
stability. 3) The density ratio (upper density/lower density) has a strong effect on flow
stability and higher density ratios increase instability. 4) Longer inclined planes increase
instability. By observing the defects on the coated web they found that theoretical
analysis of the effects of these factors on flow stability and the wavelength agrees with

their observations.

Akhtaruzzaman et al (1978) formulated the stability problem of n-layer systems, and
investigated a triple layer system. For the case of equal kinematic viscosity for all the
three liquids and equal thickness for the top and bottom liquids: 1) The wave speed of
free surface mode is less than twice the undisturbed free surface velocity for a bottom
heavy configuration, and is more than twice the free surface velocity for a top heavy
configuration. The speed can be reduced by raising the rate of density increase toward
the bottom plane. 2) The wave speed of the interfacial mode is much smaller than that
of the free surface mode. The interfacial waves propagate only slightly faster than the
fluid particle at the undisturbed interface for a bottom heavy system, and the converse is
true for a top heavy system. For the case of equal kinematic viscosity for the top and
middle liquids and equal thickness for the top and bottom liquids, if the kinematic
viscosity of bottom liquid is small enough, the wave speed of the free surface mode can
be greater than that of a single layer system. In addition the wave speed of the
interfacial mode is smaller than the speed of a fluid particle at the undisturbed interface
in the bottom heavy configuration.

For each mode of wave motion at various values of the thickness of the middle liquid in
the case of equal kinematic viscosity for all three liquids and a bottom heavy

configuration: 1) The wave motion of the free surface mode is in-phase at all interfaces.
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The displacements decrease toward the bottom plane. 2) The wave motion of the
second (interfacial) mode is in-phase at the second and the third interfaces, and out-of-
phase on the free surface. Moreover, the wave amplitude at the second interface is
always greater than that at the other interfaces. When the thickness of the middle layer
decreases to zero the amplitude of the free surface wave reduces to a small fraction of
the wave amplitude of the other two interfaces. 3) Depending on the values of the
dimensionless thickness of the middle layer (the ratio of the thickness of the middle layer
to that of the top layer) the wave motion of the third (interfacial) mode is in-phase at the
free surface and the second interface, or out-of-phase at the third interface. There exists
a critical value of this thickness below which the wave motion at the second and the
third interfaces is respectively in phase or out of phase. At this critical value, the second

interface is completely flat but the other two interfaces are not.

Wang et al (1978) discussed the stability of the wave motion based on the higher order
solution, and described the features of the neutral stability curves for various cases. In
the case of a triple layer system of different thickness ratios but of given density,
interfacial tension, and viscosity ratios, the third mode instability associated with the
step increase in viscosity can be eliminated by an increase in the thickness of the most
viscous third layer. However, such a stabilization could not be achieved for the second
mode instability associated with the step decrease in viscosity either by reducing or

increasing the thickness of the least viscous second layer.

In the case of five liquid layers of equal density, thickness, and interfacial tension but of
different viscosity, the neutral curves corresponding to the free surface mode have the
same form as that of a single-layered film. The free surface mode instability is obviously
caused by the gravitational potential at the free surface, and changes in viscosity
stratification merely shift the position of the neutral curves slightly. The slope of the
neutral curve for a particular interfacial mode is positive or negative depending on
whether there is a downward step decrease or increase in viscosity, at the corresponding

interfaces. The instability of the interfacial mode is solely due to the shear waves caused
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by viscosity stratification. A downward step decrease in viscosity across an interface
makes five-layered systems unstable for all Reynolds numbers if disturbances of all
possible wavelengths are present. However, there exists a cutoff wave number below
which the film is stable to the relatively long shear waves associated with the step
decrease in viscosity across an interface. A downward step increase in viscosity causes
quite a different type of instability. The film is unstable to relatively long shear waves
with wave numbers smaller than the cutoff wave number, but stable if the Reynolds
number is greater than the Reynolds number corresponding to that wave number on the

neutral curve.

In the case of the five layers system of equal thickness, viscosity, and interfacial tension,
but of different density, it was found that for bottom heavy configuration the film is
stable for the interfacial mode but may be unstable for the free surface mode. The film
becomes more unstable as the rate of increase in density toward the bottom plate is
raised due to the increased gravitational potential. Interfacial instability can only occur
in top heavy systems. If the top heavy film is subjected to disturbances of all
wavelengths the film is actually unstable at all Reynolds numbers.

They also found that the variation of the inclination angle does not change the character
of the instability of various modes, however, the reduction in inclination angle can lead

to stabilization of the free surface mode of the wave motion.

Three kinds of stability modes for multiple layer flow systems were proposed by
Kobayashi (1990). The surface mode is strongly influenced by surface tension. As
surface tension increases it is more effective as a medium of propagating capillary waves
(short waves). There are two kinds of surface waves, one that propagates downward
and another upward. When the wave number increases the growth rates of these two
kinds of waves coincide, i.e. the capillary wave is no longer affected by the base flow.
Interfacial tension plays a very important role in the instability of interfacial modes.

Each interfacial mode is associated with an interface. When the wave number increases,
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the wave velocity of an interfacial mode approaches that of the base flow at the related
interface. In other words, the interfacial modes do not influence each other at large
wave numbers. This feature is very useful, and makes it easy to estimate the interfacial
mode instability of multiple layer flows by using the results of double layer systems.
Each shear mode is associated with a layer of most stresses. However, the stability is
usually governed by the surface mode or interfacial modes.

Anturkar et al (1990) analyzed the development of the coating film in multiple layer slot
coating process by the Reynolds lubrication approximation, which is originally given by
Reynolds (1886). They found that: 1) The viscosity ratio does not affect the ultimate
stability characteristics of this flow system, although it has some effects on the wave
developing process. 2)The larger the surface tension, the longer the downstream
distance waves can travel, therefore the more dangerous these waves are. Compared to
free surface tension, interfacial tension between two adjacent layers has less effect on

wave motion.

Li's (1970) investigation of a double layer system of Oldroyd-B fluid showed that the
elasticity of a liquid can stabilize a flow subjected to an interfacial mode of disturbances
for certain values of density, viscosity, and elasticity ratios (the upper properties the
lower properties). But it can destabilize the flow when viscosity ratio and elasticity ratio
are both small enough. The elasticity can also stabilize the flow which is subjected to a

free surface mode of disturbances.

Weinstein (1990) considered the effect of shear thinning rheology on the spatial growth
of waves for multiple layer systems. The Carreau viscosity constitutive equation was
used to model the fluid. Shear thinning behavior affects interfacial and surface modes
waves differently. For surface waves, except at very low frequencies, shear thinning
results lie between results of the two Newtonian cases corresponding to the maximum
and minimum Newtonian viscosity, respectively. This means that surface mode waves

propagate as if they were in a Newtonian system, where the viscosity is some average of

22



the varying viscosity in shear thinning layer. But interfacial modes are largely affected
by local viscosity in the vicinity of the interface. Wave propagation can not be governed
by some average Newtonian viscosity across the layer. Shear thinning behavior can be
stabilizing or destabilizing, depending on the jump in strain across the interface. If it
reduces the jump in strain across the interface then it leads to greater stability. If it

increases the jump in strain across the interface it is a destabilizing factor.

Non-Linear Theory

There are few papers dealing with nonlinear stability of multiple layer systems. It is
predictable that three-dimensional disturbances or those of finite amplitudes will largely
change the stability of this flow system. Howard (1963) presented an example of anti-
symmetric stratified shear flow and found that in some cases the neutral stability curve is
not necessarily the boundary of stability.
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CHAPTER1
EXPERIMENTAL METHOD

The experimental setup, the measuring procedures, using optic-electric means for signal
detection, and the digital signal processing technique for extracting frequency
information, are described in this chapter.

1.1 EXPERIMENTAL SETUP

The test liquid is placed in a reservoir tank A. Pump B (max. 2300ml/min) is used to
pump the liquid into the flow loop (Figure 1-1) through a control valve C and a flow
meter D. The liquid is delivered to a buffer chamber E, where a layer of sponge
material F lines the bottom. The bottom of the buffer chamber is extended into the flat
surface G, where a layer of the experimental liquid runs down. The liquid then pours
into the liquid reservoir tank. The purpose of the sponge material at the bottom of the
buffer chamber is to minimize flow disturbances as the liquid starts its free surface layer

motion.



A Reservoir Tank
B Pump

C Valve

D Flow Meter

A E Buffer Chamber
F Sponge Material
G Inclined Flat Plane

(a) Single Layer System

A Reservoir Tank
B Pump

C Valve

D Flow Meter

E Buffer Chamber
A F Sponge Material
G Inclined Flat Plane

(b) Double Layer System
Figure 1-1 Flow Loop of Experiment Setup

A narrow beam of light from a fiber optic lamp H (Figure 1-2) penetrates the bottom
plate of the channel and the fluid film. A portion of the light intensity is absorbed by the
fluid. The rest reaches a light sensor “T’ mounted above the liquid layer. The output
current signal from the sensor contains information about the frequency of waves. A
pre-amplifier J is used to amplify this weak current signal and to transform it to a
voltage signal for easier recording and detection. This voltage signal is the input to a
read-out unit K for detection and regulation. The scaled signal is sampled by a
25



computer sampling processor consisting of an analog-to-digital (A/D) converter K and a

computer M.

IIl_-lJﬁ::: K _LLJ

: M
HF::::2::2z:2:::| N F ::MainPower
Signal :::: Power
H Light Source I Light Sensor J Pre-amplifier

K Read-out Unit L A/D Converter M Computer
N Constant Voltage Transformer

Figure 1-2 Optical Measurement System

In this work the elimination of the effects of external vibrations is a very important
issue. In addition to those mentioned measures, a constant-voltage transformer is used
to provide stable power to the lamp and the read-out unit. All experiments are
conducted late into the night for minimizing the effect of surrounding vibrations and
voltage fluctuations in main power. Table 1-1 is a list of the instruments and chemicals

used in this work.



Table 1-1 A List of the Instruments and Chemicals Used

Item Name Model Manufacturer

B | Pump 7144-00 Cole-Parmer Instrument Co.
Chicago, IL.
U.S.A.

D | Flow Meter No.3 Gilmont Instruments Inc.
No. 4 Great Neck, NY.
U.S.A.

H | Lamp FO-150 Chiu Technical Corp.
Kings Park, NY.
U.S.A.

I | Photo Diode 71802 Oriel Corporation
Stratford, CONN.
U.S.A.

Pre-amplifier 70710 ibid.

Read-out Unit 70701 ibid.

ol g L

A/D Board DAS-8 Keithley Instruments Inc.
Taunton, MA.
U.S.A.

Computer PC6300 AT &T

zZZ

Transformer 23-22-150 Sola Electric
Elkgrove Village, IL.
U.S.A.

Viscometer A-120 Burrell Corp.
Pittsburgh, PA.
U.S.A.

Tension Meter 21 Fisher Scientific
U.S.A.

Surface Active Extran 300 | BDH Inc.
Agent Toronto and Branches
Canada

Dye Basic Blue 9 | Matheson Coleman & Bell
Manufacturing Chemists
Norwood, Ohio

U.S.A.
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1.2 THE FLUIDS

Test fluids are a mixture of water and glycerol. Surface active agent is added to the
solutions to lower the surface tension of the fluids and to increase their wettability with
respect to Plexiglas. A blue dye is added into the fluids used for the frequency
measurement for enhancing the light absorptivity of the fluids. Tables 1-2 and 1-3 show
the physical properties of the fluids used in this work for single layer and double layer
experiments, respectively. The physical properties of test liquids are measured at room
temperature (23° C £ 1.0° C).

Table 1-2 Physical Properties of Test Fluids

(Single Layer System)
Experiment Density Viscosity | Surface Tension | vy Number
g/ml cp dyne/cm (v4g)-130/p
Critical 1.08 3.10 32.60 346
Reynolds 1.09 3.30 34.20 335
Number 1.16 7.93 45.03 140
1.02 1.05 34.23 1508
Transit 1.07 2.53 44.20 613
Distance 1.14 4.32 31.00 215
1.16 8.05 30.11 92
1.04 1.10 31.08 1296
Frequency I.11 3.34 35.53 344
1.16 7.93 45.03 140
1.19 23.00 32.30 25




Table 1-3 Physical Properties of Test Fluids

(Double Layers System)

Density p | Viscosity i | Surface Tension s | <y Number
g/ml cp dyne/cm v4g)-136/p
1.04 1.10 31.08 1296
1.14 5.14 36.03 198
1.21 67.95 39.87 7

1.3 FREQUENCIES AND AMPLITUDE

1.3.1 An Example

For the flow system considered in this work the highest frequency component is less
than 30 cycles per second according to previous work (Jones & Whitaker, 1966;
Javdani, 1976). Our experiments also support this point. So, 120 samples/second is a
proper sampling frequency in this work. The sampling duration is 20 seconds. It is
much longer than the longest period (about 0.5 second) presented.

Figure 1-3 shows a raw signal in our experiments. In the post signal process high
frequency noises are filtered by a double exponential digital filter. The corresponding
signal after a double exponential filter (filter constant is 0.7) is shown in Figure 1-4.
The filtered signal will be normalized before being analyzed according to Fourier
method. Figure 1-5 is the corresponding normalized signal. Obviously, it is much less
rippled (noised) than its raw form. Fourier analysis will produce the energy spectrum

plot (Figure 1-6) in the form of relative energy level vs. frequency.
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Figure 1-6 The Energy Spectrum Plot
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1.3.2 Frequency

Due to the complex nature of free surface waves, energy spectral analysis produced
numerous frequency components (Figure 1-6). Some have larger portion of energy, and
some have a much smaller portion. In our calculations the frequency components
having a relative energy level of less than 0.5% are eliminated. Also, the characteristic
frequency components of white noise are picked out from the energy spectral plot. The
white noise is obtained right before every experimental run by making the final
arrangements for the run without allowing liquid on the surface. Three frequency terms
are used to represent the remaining frequency components. Upper Limit Frequency
(ULF) and Low Limit Frequency (LLF) are respectively the highest and the lowest
frequency components that appear in the energy spectral plot. The Dominant Frequency
(DF) has the highest relative energy level in the plot.

1.3.3 Maximum Relative Amplitude
Higher flow rates correspond to the thicker fluid films. So more light will be absorbed
by the fluid and the output signal in these cases is smaller. Experiments show that the
average signal level does decrease with the increase in flow rate as we expected. A
theoretical model on the relation between signal level and film thickness is needed for
the extraction of amplitude information. The experimental data strongly support the
linear model,

AS =khg (1-1)
where AS is the signal level drop, k the model coefficient, and hg the total theoretical
steady-state film thickness.

The average signal drop from the reference signal (Sg, when no fluid flows) AS = S-S,
will represent the average thickness of the fluid film, and the maximum signal deviation
Smax» represents the maximum amplitude of the surface waves. Actually, in this work
for better representation, we take Spax as the mean value of the several biggest signal
deviations in the sampling history. The maximum relative amplitude (MRA) will be



MRA = S;,,x/ASX100% (1-2)

1.4 EXPERIMENTAL ERRORS

1.4.1 Frequency Measurement
Experimental error in frequency measurement is mainly contributed by the resolution of

the instrument used to digitize the analog voltage signals and the interference of the
surrounding vibrations. DAS-8 is used in our work to transform the analog voltage
signal to digital form, and has the resolution of 1.4 mV. The absolute value of the
voltage signal occurred in experiments is between 1 to 5 Volts. So, the measurement
error caused by the instrument is less than 0.15% (1.4/1000*100%) and is negligible.

The major experimental error in frequency measurement came from the surrounding
vibrations. In order to minimize the effect of the surrounding vibrations we put a layer
of foam rubber sheet between our experimental setup and experimental table to damp
the surrounding vibrations. The experimental table is fixed firmly on the floor and will
create no additional vibrations. Besides, experimental runs were made in late evening

and early weekend moming when the building was quite.

According to Pierson & Whitaker (1977) the building itself had a characteristic
frequency of the order of 4 Hz, and pump and fan motors provided frequencies in the
range of 20 to 30 Hz. By processing the white noise (reference signal) we are able to
identify these two frequencies. The characteristic frequency of the pump and fan motors
is around 23 Hz in this work. Our experimental results of wave frequencies suggested
that the frequencies of the wave motions on the free surface of thin liquid film are less
than 20 Hz. So, the pump and fan motors do not interfere with our measurement results
of wave frequencies. The frequency of the building vibration changes slightly from case
to case, and was in the range of 3.75 to 4.16 Hz. This frequency clearly interfered with
the experimental measurements. However, as we said before, this frequency is removed

by picking it out from the frequency spectrum.
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In our work, the light source is operated at low intensity range (< 20% of full scale).
The light is the range of orange, and is close to the red-end of the visible light spectrum.
Water has good absorptivity with respect to the red-end light. Besides, a blue dye is
added into the experimental fluids to further enhance the light absorptivity of the fluid.
When a narrow beam of the light (approximately 4 mm in diameter) penetrates a layer of
the test fluid, a portion of the light intensity is absorbed by the test fluid, a small portion
of the intensity is deflected by the wavy free surface (acting like a convex or concave
lens), and the remaining intensity reaches a light sensor that is 3 cm above the light
source. In addition to the above mentioned facts, the wave motion detected in this
work is a small-scale phenomenon and has a limited deflection ability to the light. So,
compared to the amount of absorbed intensity, the amount of deflected intensity is
small.

When a wave peak moves to the measurement position the liquid film has larger
thickness, and more light intensity is absorbed. The light sensor will catch less light
intensity, and produce weaker signal. When a wave valley moves to the measurement
position the liquid film has smaller thickness, and less light intensity is absorbed. The
light sensor will catch more light intensity, and produce stronger signal. In order to
achieve higher experimental accuracy of frequency measurement, we want the signal to
vary more significantly with wave motion. Let us consider the deflection effect of the
wavy surface. When a wave peak moves to the measurement position the deflection
action of the liquid film will turn away a small portion of light intensity from the
measurement point like a convex lens does. This will cause the light sensor to catch less
light intensity and to produce weaker signal. When a wave valley moves to the
measurement position the deflection action of the liquid film will focus a small portion
of light intensity toward the measurement point like a concave lens does. This will
cause the light sensor to catch more light intensity and to produce stronger signal.
From the above argument we can conclude that the deflection effect of the liquid film

actually benefits the frequency measurement.
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1.4.2 Amplitude

In order to obtain the information about the maximum wave amplitude we need a model
to describe the relation between the amount of the voltage signal drop from the
reference signal and the thickness of the liquid film. Based on all of that and the
experimental results (refer to Table) we could suggest the following linear model (1-1).

Table 1-4 Experimental k Value of The Linear Model

(Based on The Mean Thickness)
Test Number of Arithmetic Mean Maximum Relative
Data Points | k Value, (Volts/mm) Error, (%)
#1 2 1.1426 3.07
#2 5 1.3319 2.00
#3 6 1.3080 4.52
#4 5 1.4792 4.54
#5 5 1.4884 8.45

The above tests were conducted for the same fluid and at different times of the day.
Considering that the reference signal (i.e. the setting of the light intensity at the start of
experiment) is different each time we can say that this linear model is appropriate for

our work.
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CHAPTERII
EXPERIMENTAL RESULTS
AND DISCUSSION

The experimental results are obtained by employing the optic-electric detection system
and digital signal processing techniques described in the previous chapter. We apply the
experimental techniques to a single layer liquid system, and a double layer liquid system.
The frequency characteristics of the waves running on the free surface of single and
double layer system are studied. Also, the inception and development of the free

surface waves of single layer system are investigated.

2.1 DIMENSIONAL ANALYSIS

In this work, the parameters are liquid properties p (density), i (viscosity), and ©
(surface tension coefficient); the acceleration of gravity g; and two reference quantities
u, (mean velocity of the liquid film in x-direction) and h; (mean thickness of the liquid
film). All the physical values we want to know, such as transit distance, wave

frequencies, and wave speed, are expected to be the functions of these six parameters.

The Buckingham Pi theorem (Shames 1962) provides the maximum number of
dimensionless groups which govern our flow system as independent variables. This is
equal to the number of parameters (six) less the number of primary dimensions (three:

mass, length, and time). So, only three dimensionless groups could be independent.

The same conclusion may be reached when we consider the various acting forces
involved in this flow system. They are: gravity, inertial, surface, and viscous forces.
These four forces provide at least six well known dimensionless groups which can be

used as governing parameters (Esmail & Ghannam 1990). They are Re (Reynolds
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number), Fr (Froude number), We (Weber number), Ca (Capillary number), Bo (Bond
number), and Dr (Deryagin number), and defined as following:

Re = puh /u (2-1)
Fr=u, /h.g (2-2)
We =pu,'h /o 2-3)
Ca=pu/o (2-4)
Bo = pgh, /& 2-5)
Dr = pgh, /ju, (2-6)

In addition, the physical properties number introduced by Esmail (1980) y is an
important parameter in the system. It is defined as

Y=0(v'g) " Ip -7
where, v = Wp is kinematic viscosity. Four independent relationships exist between the
described seven parameters (considered as entities in their own right rather than as

products of dimensional variables or their reciprocals):

We =ReCa (2-8)
We = FrBo (2-9)
Fr = Re/Dr (2-10)
We=ReBo' y @-11)

This leaves three independent parameters for our flow system. We chose Re, We, and 7y
in this work. All the physical values we want to know will be the functions of these

three independent dimensionless groups.

2.2 SINGLE LAYER SYSTEM

In these experiments a single layer of a glycerol solution was allowed to flow down the
inclined plane at a controlled flow rate. The inclination angle of the plane was also
controlled. Several glycerol solutions were tested. Properties number is used to
characterize the physical properties of the test liquid. Glycerol solutions are uniquely
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characterized by their Y number. Correlating the resuits to this dimensionless number
makes it possible to generalize the conclusions to all liquids sharing the same value of

the number.

2.2.1 Critical Reynolds Number

Viscous liquids flow in undisturbed thin layers of uniform thickness in laminar regimes.
Such flows occur at very small speeds. As the speed increases the stability of thin liquid
layers decreases. At a certain critical speed random disturbances in the flow system
induce a transition from the laminar uniform thickness flow to a laminar flow with
waves running over the layer surface. At high speeds the laminar wavy regimes of thin
liquid layers tumn into turbulent regimes.

In this work we are concerned with thin liquid layers in the laminar uniform thickness
flows, their transition to wavy laminar regimes, and the description of these wavy
regimes. The critical speed of transition to laminar wavy regimes is associated with a
critical Reynolds number, Re. = houop/l, where hy is the mean thickness of the liquid
layer, uo the mean velocity, p the density, and W the viscosity of the liquid. For purpose

of mechanical similarity between flows the Reynolds number is used.

Experimental measurements of the critical Reynolds number are shown in Figure 2-1.
The experimental points divide the Re versus angle space into two regions. Flows that
fall under the points are stable uniform thickness laminar regimes. Flows that fall above
the points are wavy regimes. In Figure 2-2 a comparison between our measurements
and those of previous authors shows our experiments in variance with previous work
which covered a higher range of inclination angles. It is also notable that our

measurements show higher values than those in previous work.

As we described earlier our experimental apparatus and procedures included a number

of measures to eliminate disturbances from the flow prior to its entrance to the test



section. This should account for higher critical Reynolds number, since such measures
will help push the limit of stability upward.
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It is also interesting to compare experimental results with theoretical predictions. The
stability of laminar uniform thickness thin layers has been studied by linear analysis. The
basic linear stability theory (Benjamin 1957, Yik 1963) sets the critical Reynolds number
of transition from uniform laminar layer to a wavy regime at:

Re. = 5cot0/6 (2-12)

More recently Smith (1990) obtained two limiting cases for the linear stability analysis.
In the first case the flowing film is subjected to a shear stress T, and consequently a
tangential stress boundary condition is used in the perturbation analysis (Yih, 1963).
The critical Reynolds number according to this model is:

Re. = 5cot8/[6(1+7)] (2-13)
In the second model Smith (1990) assumes that the flowing film is bounded by a perfect
elastic compliant surface that is moving with the velocity U. This surface has no mass,
no bending stiffness, and no damping. Consequently a no-slip velocity boundary
condition is used in the perturbation analysis (Yih, 1963). The critical Reynolds number
according to the second model is:

Re. = 40cot6/[3(1-4U%)] (2-14)

The only driving force in the thin layers investigated in our work is gravity. When the
additional forces of shear t, and inertia U are driven to zero in the analysis of the two
models, two limiting cases criteria are obtained for the Reynolds number

Re. = cot@ (2-15)

Re. =48cot6/3 (2-16)
respectively.

Figure 2-3 shows the critical Reynolds number according to the linear stability theory of
Benjamin (1957), and the limiting cases of Smith (1990). Our experimental points are

located well above the linear theory but just below the inertia driven limiting case.
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2.2.2 Transit Distance

Observation of surface waves running down the inclined plane from the inception point
X=0, led us to record the distance downstream from X = 0 at which the wave has
completely damped. This distance normalized to the average film thickness is called the
transit distance. Figure 2-4 shows the transit distance for the flow of a glycerol solution
with property number vy = 613, for different angles of inclination. Surface waves which
appear at lager flow rates travel a longer distance before they are dampened. The angle
of inclination does not seem to have a noticeable effect on the transit distance. The
same trends (Figure 2-5, 2-6) were exhibited by two other glycerol solutions with
property numbers Y = 215 and 92. The higher the property number, the longer is the

transit distance of surface waves (Figure 2-7).
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2.2.3 Wave Frequencies

Experimental Results

Several glycerol-water solutions were tested in this work. Measurements were made at
different flow rates for various combination of the inclination angle (11° - 30°) and the

measurement positions (5 - 17 cm from the starting point of the inclined flat surface).

The optical signal registered at anyone of these positions was reduced to three
components, the upper limit frequency (ULF) which corresponds to the shortest
wavelength disturbances, the lower limit frequency (LLF) which corresponds to the
longest wavelength disturbances, and dominant frequency (DF), corresponding to

highest relative energy level.

Lower Limit Frequency

The lower limit frequency is pretty much constant for all positions, flow rates, and
angles of inclination (Figure 2-8, 2-9). The upper limit frequency varies with flow rate,
inclination angle, and liquid properties. Increases in flow rate lead to the appearance of
shorter wavelength disturbances (Figure 2-8). Smaller angles of inclination lead to
larger upper limit frequencies. These are ripples which flow over the surface of layers

with higher velocities and smaller gravitational effects.

Surface tension plays an important role in wave formations over the free surface of thin
liquid films. Its action is to minimize the surface area of the air/liquid interface. The
wave-free surface of a thin liquid film is the smallest possible surface. Therefore, it is
expected that surface tension force will exert a stabilizing influence on the laminar flow
of a film with uniform thickness. Figure 2-9 shows the lower and upper limit
frequencies plotted against the Weber number, which is a measure of inertia to surface
tension forces. Increases in the Weber number lead to appearance of higher upper limit
frequency disturbances. In terms of surface tension an increase in the Weber number

corresponds to lower surface tension energy.
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Upper Limit Frequency

The upper limit frequency of a disturbance is affected by the distance downstream.
Figure 2-10 shows that closer to inception (5 cm) the disturbance has a higher upper
limit frequency. However at longer distances (9 and 13 cm) the upper limit frequency
does not seem to change with distance. More viscous liquids tend to develop higher
upper limit frequencies. Figure 2-11 shows that higher frequencies rise rapidly with
small flow rates for the most viscous solution (y = 25). The rise in the upper limit
frequency is much slower and much less significant for the solution with the smallest
viscosity. The rise in the frequencies with decreasing surface tension is apparent from

Figure 2-12 for all tested solutions.
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Dominant Frequency

The dominant frequency represents the wavelength with the highest energy in the
spectrum of all wavelengths. In general it rises with flow rate. Liquids with high
property number (low viscosity) tend to have a more constant dominant frequency with
flow rates (Figure 2-13). However, even for such a liquid (y = 1296) the dominant
frequency rises slightly with high flow rates. More significant increases in the dominant
frequency are experienced by more viscous liquids such as the glycerol solutions with
property numbers Y = 344, 140, 25 (Figure 2-13). The effect of surface tension is
shown through the Weber number in Figure 2-14. More viscous liquids experience
higher values of the dominant frequency. Higher Weber numbers, corresponding to
decreasing surface tension energy, lead to higher dominant frequencies, i.e. the

dominant wavelength is shorter.

There is a noticeable effect of inclination angle on the dominant frequency. The effect
becomes more noticeable for moderate Reynolds numbers Re > 40 (Figure 2-15).
Higher inclination angles 8 = 19°, 28° were associated with higher dominant frequencies
that were rising with the Reynolds number. No noticeable effect on the dominant
frequency was associated with the distance downstream from inception. Figure 2-16
shows a set of results for the same conditions as those presented in Figure 2-13 except
that the measurements are recorded at a position 13 cm downstream compared to S cm

in Figure 2-13. Essentially the results are the same.
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Comparison With Previous Experiments

There are very few published experimental works about the frequency characteristics of
free surface waves of thin liquid film flows. Javdani (1976) argued that for a given flow
condition, the frequency of most highly amplified waves on falling films remains
constant in all the stages of growth, starting from the initial state where the wave is in
the form of an infinitesimal disturbance to the final state of equilibrium in which the
wave attains a finite amplitude and constant properties. This most highly amplified

frequency was measured by optical reflective technique.

Figures 2-17 to 2-19 show our upper limit and dominant frequencies compared to
Javdani’s most highly amplified frequency over the dimensionless number N. The
comparison is made between our glycerol solution with the property number y = 25, and
Javdani’s mineral oil ¥ = 12. Our solution has a density p = 1190 kg/m’; viscosity pL =
23 mPa.s; and surface tension coefficient 6 = 32.3 mN/m. The properties of Javdani’s
mineral oil were p = 880 kg/m’; i = 33.6 mPa.s; and ¢ = 29.5 mN/m. Figure 2-17 to 2-
19 compare the results for three different combinations of almost the same inclination
angles, 11° and 11.8° in Figure 2-17, 19° and 20.9° in Figure 2-18, and 28° and 29.9°
in Figure 2-19 for our and Javdani’s work, respectively. The fundamental difference
between the results is the rise in Javdani’s highly amplified frequency for smaller N
numbers. This range corresponds to smaller Reynolds numbers. The frequencies in our

experiment were generally rising with the Reynolds number.
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More recent experiments were reported by Brauner and Maron (1982). Actually, they
measured the spectra of the mass transfer rate of a chemical species from the liquid to
the solid bottom. However, they experimentally demonstrated that these spectra are
close to the wave spectra. Figure 2-20 shows our dominant frequency for a glycerol
solution ¥ = 1296 compared with the dominant frequency reported by Brauner and
Maron for water 'y = 3362. The comparison is made for different inclination angles.
There seem to be a general agreement in the trend and to some extent the values of

frequency behavior.
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2.3 DOUBLE LAYER FLOW SYSTEMS

In these experiments two thin layers of the same glycerol solution were allowed to flow
down the inclined plane. Each of the layers had its own flow rate. Therefore, two
Reynolds numbers were defined for a single experiment, the bottom layer and upper
layer Reynolds numbers. The bottom layer Reynolds number is denoted by Rey. The
upper layer Reynolds number is denoted simply by Re. The Weber number We is based
on the flow rate of the upper layer. Measurements were taken at various combinations
of top and bottom flow rates, for different angles of inclination 11° to 28°, and at
different measurement positions X=5-17 cm from the starting point on the inclined
plane. It is expected that the effect of issuing two separate layers down the plane will
extend a certain distance, after which the flow should completely turn into a flow of a
single layer with the combined flow rate. The investigation in these experiments
centered on wave frequencies, and their comparison with frequencies arising in single

layer systems.

The optical signal registered at anyone of these positions was reduced to three
components, the upper limit frequency (ULF) which corresponds to the shortest
wavelength disturbances, the lower limit frequency (LLF) which corresponds to the
longest wavelength disturbances, and dominant frequency (DF), corresponding to

highest relative energy level.

2.3.1 Comparison With Single Layer Systems

Figures 2-21 to 2-23 show the upper limit frequencies measured for a single and double
layer systems as functions of the Reynolds number. Figures 2-21 and 2-22 show a
comparison of the upper limit frequencies at a position 5 cm downstream from the
starting point over the inclined plane. This position is not sufficiently far from the point
for the flow to fully exhibit the features of a combined single layer system in the case of
double layers. The velocity profiles of the two layers, originally separated by a solid
plane, where no-slip conditions apply, have not yet fully recovered from the original
separation. This should be particularly true for flows with less inertia, flow rate, and
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consequently less Reynolds numbers. Double layer flows with higher inertia forces
should be able to recover a single velocity profile at a distance closer to the starting
point. The upper limit frequencies of waves running down the free-surface of a double
layer flow are lower than those for a single layer flow for Reynolds numbers
approximately less than 500. This means that the spectrum of these waves has shorter
wavelengths in the case of single layer systems. From Figure 2-21 it can be argued that
these differences in the frequencies disappear for the position X=5 cm at Reynolds
numbers higher than Re=500, for liquids with properties numbers Y=1296 and for an
inclination angle 11°. The inclination angle does not seem to have any effect on this
conclusion. Figure 2-22 shows the same comparison for a different angle (19°). For
Reynolds numbers less than 500 the upper limit frequencies of a single layer flow are
higher than those for a double layer flow. The situation noticeably changes in
measurements at a position X=11 cm, that is further downstream (Figure 2-23). Upper
frequencies for the double layer flow seem to blend with those for single layer flows. In
addition the upper limit frequencies of the double layer flow are generally lower at
higher Reynolds numbers in position X=11 cm, than those measured at X=5 cm.

Figures 2-24 to 2-26 show a comparison of the dominant frequencies measured for a
single layer flow with those measured for a double layer flow. There does not seem to
be a distinct deviation in the results at lower Reynolds numbers as is the case for upper
limit frequencies. One can argue from Figures 2-24 to 2-26 that in general the dominant
frequency of waves running down the free-surface of double and single layer systems
are practically the same. There is no noticeable change with position (X=5 and 11 cm),

with the inclination angle (1 1° and 19°%), or with the Reynolds number.
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2.3.2 Frequencies

The lower limit frequency was pretty much constant for all positions of measurements,
flow rates, and angles of inclination (Figures 2-27, 2-28). The upper limit frequency
varies with flow rate, inclination angle, and liquid properties. Increases in the bottom
flow rate lead to the appearance of shorter wavelength disturbances (Figure 2-27), even
as the upper flow rate remains constant. However, this effect is significant only (Figure
2-28) in the region close to the inlet since the interface between the two fluid films
disappears very quickly downstream (Figure 2-28). At lower flow rates of the upper
layer, the upper limit frequency is still dependent on the bottom Reynolds number up to
an upper Reynolds number of about Re=100 for a liquid y=198 at 11° inclination and
X=9cm.
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2.3.3 Upper Limit Frequencies

The upper limit frequency varies with flow rates, the angle of inclination, and liquid
properties. The shorter wavelength disturbances depend more on the inclination angle
(Figure 2-29) at lower flow rates in the upper layer. For higher upper flow rates this
dependence seems to disappear. Liquid properties have a significant effect (Figure 2-
30) on the possibility of higher frequencies in the spectrum of surface disturbances.
This possibility is shifted towards lower flow rates of the upper layer for more viscous
liquids (lower properties number y ). The influence of the position of measurements
from the starting point of the inclined plane is shown in Figure 2-31. It is quite clear
that the upper limit frequency is more dependent on this position closer to the point of
inception. Downstream at positions X=9 and 13, there hardly seems to be any change in
the upper limit frequencies. Figures 2-32 and 2-33 show the upper limit frequency
versus the Weber number of the upper layer for different bottom Reynolds numbers
(Figure 2-32), and different liquids (Figure 2-33). Increases in the bottom flow rate lead
to the appearance of shorter wavelength disturbances (Figure 2-32) close to the upper
limit of the frequency spectrum. Figure 2-33 illustrates that increased surface tension
energy leads to disturbances with longer wavelengths. Surface tension is a stabilizing

factor for short wavelength disturbances.

80



18

(suoneurpouy 1ua1931(q) Aousnborg g roddn  gz-z undiy
wo G uonisod ‘61 roqumnp Anadaug

eN |
0S1 (174 | 06 09 0t 0
" “ " “ 0
OTr=99) ¥T @
(S'€S=039) 61 v
(SES=qo 11 =
(seaidop) uoneuriouy TS
[
o + 01
® v ]
v [ ]
v
| ]
Ve + 51
v L
[ ]
v

0t

(zH) Kouonbasy nun soddn



[4:}

(spiniy yuaagziqq) Aouanbarg Ny 1eddn  og-z andry
wo G uonIsoq ‘saaIdap 11 uonewouy

Ex |
001 01 I 1'0 100

; + } ; 0

+s
c
=)
v| %
. v e
g
v =
4 ey
v 01 g
° v =
o G
v «<
° ° v om m

(Ive=gP LY | cl

oo v (§'€6=q3Y) 861 ©
(1L€=93Y) 9671 ®
Joqum N Auadorg

0z



009

8

(uonisod 1uaaayyi(q) Aouanbarg nunyieddn [¢-z andiy
wo G uonisod ‘9671 1aqumn N Anadoig
N
00¢ 0oy 00t 00t 001

[l [l l 1 [l

1 { T 1 1

(29€=999) ¥T ®

(L9€=99) 61 ¥

(1Le=qy) 11 »
(s9a1dap) uoneurauy

L}
S
—

(zH) Aouanbarg nun addn

T
v
—

T
[
N

14



001

¥8

(9y wonog waayyic]) Aouanbarg nwiryeddn  zg-z 2y
wo ¢ uopisod ‘seudap | | uonewmou] ‘g6 JoqunN Auadorg

"M
01 I I'o
} $ 0
o
o + ¢
o o
o v
° y g % 01
o ° .
Owvvy ™
0
Y, - .
° " ycco
0IE ¥ + S
CN 0Ty ©
ggem
oY pm wonog

0c

(zH) Aduanbar 1tan soddn



001

<8
(spiniq waraypiq) Aouanborg iy seddn  gg-z undiy
Wwo G UoMsod ‘sa0139p |1 uoneurjouy

oM
] I 10 10°0
f " t 0
T¢
= v
v
T 01
v
] ° v
©
v
° v
. 0 (re=ew LY |
0o v (S'€6=0Y) 861 ©
(1L€=G9Y) 96T1 ™
JaqumN Auadoig

0¢

(zH) Kdouanbaig -y 1addn



2.3.4 Dominant Frequencies
Higher upper flow rates correspond to higher values of the dominant frequency for all
flow rates of the bottom layer (Figures 2-34, 2-35). This means that higher flow rates

are associated with shorter wavelength waves

An increase in Weber number corresponds to lower surface tension energy, and
consequently leads to the appearance of higher frequency disturbances (Figure 2-34).
Surface tension effect is more significant for the dominant frequency than for the upper

limit frequency.

Liquid physical properties have a significant influence on the type of dominant waves
running over their free-surfaces. Figures 2-36 and 2-37 show this dependence versus
the upper Reynolds number (Figure 2-36), and the upper Weber number (Figure 2-37).

Shorter wavelength waves are dominant at lower flow rates for more viscous liquids.
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2.3.5 Maximum Relative Amplitudes

The maximum relative amplitude (MRA) of a measured wave is the maximum amplitude
relative to the average signal drop from the reference signal. In this section we describe
some of the results we processed for the MRA relative to the main parameters of the
flow. The maximum relative amplitude remains constant for lower flow rates of the
upper layer (Figures 2-38, 2-39). For the liquid y = 198 this approximately corresponds
to the range of upper Reynolds numbers Re<100 (Figure 2-39). In terms of the Weber
number of the upper layer, the maximum relative amplitude remains (Figure 2-38)

constant for We<5. MRA increases with higher upper Reynolds or Weber numbers.

We also notice that there is no apparent dependence of MRA on liquid properties
(Figure 2-38). The angle of inclination does not seem to affect the maximum relative
amplitude (Figure 2-39 to 2-41), except in one sets of data for angle 11° of liquid y=198
(Figure 2-39). At position X=9 cm, which is further downstream from all previously
mentioned results, the MRA remains constant past the limit Re=100 (Figure 2-39) to
about Re=150 (Figure 2-40), for liquid y=198. A better comparison of measurements at
different positions X is given in Figure 2-42. It shows maximum relative amplitudes
measured from three positions X=5, 11, and 17 cm from the point of inception. Only
measurements from the position X=5 cm, which is the closest to inception, show an

increase in MRA past Re=100.
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CHAPTER III
THE DEVELOPMENT OF
COMPUTATIONAL METHOD

Time-accurate velocity and pressure distributions in the flow field is essential
information for properly addressing the instability behavior of the flow system
considered in this work. To do this we need to solve the unsteady state governing
equations with adequate boundary conditions based on a grid system.

The existence of the free surface in our flow system creates some difficulties for the
numerical simulation. At every time increment in time-propagation we need to know
the free surface position for the sake of imposing the boundary conditions. However,
this position is actually unknown before we get the velocity field for that time moment.
The free surface as a boundary is one of the unknowns. The deformation of the free
surface continuously alters the shape of the physical domain. Applying boundary fitted
numerical grid generation techniques is one way to resolve this question. The method
maps an irregular physical domain to a rectangular computational domain, on which
finite difference formulations will be applied. The boundary lines become coordinate

lines with one constant coordinate value for each section of the boundary.

Using the governing equations in primary velocity and pressure variables is necessary to
properly describe the free surface and related boundary conditions. These boundary
conditions are dominated by the pressure on the surface, and the alternative vorticity-
streamfunction formulation of the Navier-Stokes equations could not adequately
describe the pressure variable. Most of the available numerical methods for solving the
Navier-Stokes equations in the velocity-pressure formulation are based on staggered

grid systems (Figure 3-1). Such systems do not prescribe the pressure at the boundaries
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of the computational cell. This contributes difficulties and inaccuracies in the
application of the pressure-dependent boundary conditions on the free surface. In
addition to this, the methods based on staggered grid systems are usually plagued by the
so called numerical or false diffusion (Patankar, 1980). This is particularly so in the
simulation of the flows with streamlines that do not closely conform to the grid lines.
Calculation of free surface lines on staggered grids is complicated and inaccurate.

4

——1T —Eﬂ'——éa—

® Velocity O  Velocity
O  Pressure & Pressure
(a) staggered grid (b) non-staggered grid

Figure 3-1 Staggered Grid and non-Staggered Grid

Although the unsteady state Navier-Stokes equations are commonly used in the
simulation of steady state system, the methods used in these cases usually do not give
physically meaningful results for intermediate time intervals before the steady state is

reached, and are not suitable for producing the real physical results of a transient state.
In this chapter the basic method of numerical grid generation will be discussed in detail.

After this, the development of a new computational method, which can give physically
meaningful solutions for all physical time levels, and some test results will be presented.
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3.1 Grid Generation

3.1.1 Boundary-Fitted Coordinate Systems

Boundaries of flow regions that are primarily boundaries between solid and fluid are
generally dominant in determining the character of the solution. So, it is imperative to
accurately represent the boundary conditions in the finite difference formulation. For
problems with regular straight boundaries finite-difference schemes are not a difficult
task. However, for problems with irregular curved boundaries this will be difficult. The
difficulty is that the boundary conditions are usually applied in these cases by
interpolation between the grid points of the rectangular mesh, through which a curved
boundary is passing.

The use of interpolation methods may lead to poor application of the boundary
conditions. Besides, the large number of grid points involved will complicate computer
codes. The situation can be alleviated by using boundary-fitted coordinate systems.
This procedure eliminates the shape of the boundaries as a complicating factor and
allows the problems with arbitrary boundaries to be treated essentially in the same way
as that with simple boundaries. All computation can be done on a rectangular
transformed field with a Square mesh regardless of the shape or configuration of

boundaries in the physical domain.

The technique of boundary-fitted coordinate systems is based on the transformation that
maps the physical Cartesian coordinates to a general curvilinear coordinate system that
has a coordinate line coincident with each boundary of a general multi-connected region
involving any number of arbitrarily shaped boundaries. The transformation can be done
by algebraic transformations, by differential equation transformations, and by conformal

mapping techniques based on complex variables.

Algebraic transformations are difficult to apply if some sections of the physical
boundaries cannot be expressed by algebraic equations. Besides, the smoothness of
grids generated is heavily dependent on the shape of the physical boundaries.
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Conformal mappings based on complex variables are limited to 2-D problems. In
addition, the determination of the mapping function is sometimes a difficult task. The
differential equation methods have better flexibility in their application to arbitrary
boundaries, and yield better smoothness of the grid generated. Differential equation
methods can be classified as parabolic, elliptic, and hyperbolic methods according to the
form of the equations used. For closed boundary domains, elliptic transformations are
usually used.

3.1.2 Basic Concepts
If the Cartesian coordinates in the physical domain are denoted by x and y, and the
general curvilinear coordinates by { and n, then the basic problem of numerical grid

generation is finding the transformation from x and y to { and n.

£=t(x,y) (3-1a)
n=n(xy) (3-1b)

From these two equations we can obtain the following differential expressions:

dt= ﬂdxara—cd (3-2a)

dn= ﬂdx+ﬁdy (3-2b)
ox dy

which are written in a compact form as

o 3

dfl |ax ay|dx

I ¢
ax dy

Reversing the role of independent variables in Equation (3-1), we can write

x=x(¢,m) (3-4a)
y=y(E,n) (3-4b)

Similarly, for the above equations we can have the following differential expressions in a

compact form.
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EEQEE]
dx| (3¢ amfd& )
Idyl"ﬂ a_ydnl (2)
af o

Comparing Equation (3-3) and (3-5), it can be concluded that

a¢ g [ax ox[!
ax ay| |t om

an on|Tjox ox (3-6)
ax dy| [a¢ om

K_loy &__lox

from which 3x T 3y Tom (3-7a)
on__1dy an_19x ]
ox JO{ 9y Jok (3-70)
dxdy 0dx0y
here, J= (3-8)
v 3¢ on om a¢

The Jacobian, J, is interpreted as the ratio of the area ( volume in 3-D ) in the

computational space to that of the physical space.

The desired transformation (3-1) will turn an irregular physical space into a rectangular
computational space. Figure 3-2 is a graphical illustration of the transformation
between the coordinate systems. The physical space bounded by the curve abcda
corresponds to the computational space bounded by ABCDA. The boundary segments
ab, bc, cd, da correspond to the segments AB, BC, CD, and DA, respectively. The grid

point p in physical space corresponds to the grid point P in computational space.
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Figure 3-2  Grid Transformation

In determining the grid points, a few constraints must be imposed. First, the
transformation must be single-valued, i.e. grid lines of the same family must not cross
each other. Secondly, from a numerical point of view, a smooth distribution of grid

points is required.

3.1.3 Elliptic Grid Generation

In this method a system of elliptic equations in the form of a Laplace equation or
Poisson equation is solved for the location of the grid points in the physical space,
whereas the computational domain is a rectangular shape with uniform grid spacing.
For domains where all the physical boundaries are specified, elliptic grid generation
works very well. It is commonly used for 2-D problems and has been extended to 3-D
problems (Hoffmann, 1989).

For a closed domain, the distribution of grid points on the boundaries are specified and a
set of elliptic partial differential equations is solved to locate the coordinates of the

interior grid points.
0> 9
a—xcz- + ﬁ =0 (3-98.)
ek >
é-x-%+a—;‘2-=o (3-9b)
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The above equations can be easily solved by some iterative techniques, such as, Gauss-
Seidel, point Successive Over Relaxation. However, computations must take place in a
rectangular domain with uniform grid spacing. So the dependent and independent
variables in Equation (3-9) have to be interchanged by using Equation (3-7). This leads
to the equations

Px_pgdx  Px_

agzc; Bacan gzn;-o (3-10a)
o35 ~22 aaca'; g;‘zz =0 (3-10b)
X
:::::z
o an on dC
v=(g—2)2 (32)2 3-11¢)

The system of elliptic equations (3-10) is solved in the computational domain ({, 1) in
order to provide the grid point locations in the physical domain (x, y). The equations
are nonlinear. They can be linearized by a simple procedure. Usually, the coefficients

o, B and v are lagged one step, i.e. evaluated at the previous iteration level.

Finite difference equations are simplified by using a uniform grid spacing in the
computational domain. In our calculations A{ = An = 1 is used. Applying a central
finite difference scheme to Equation (3-10) and rearranging the resulting equation we

have

=[o(x. +Xx. )+'y(x

Xij i+Lj i~ -

1]+l 1]—
EB("i+ Lj+1 T =1, -1 S+ L j-1 " Ni-1, e PV 241 (3-129)
Yi,j TG HYim, P YO a1 MY 5=

1
2P0, 1 i o1 Y i, o1 Y i je PV (20@4T)] (-120)

-
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Successive Over Relaxation method is employed in this work to the resulting linear
algebraic equations. In order to accelerate convergence, an over-relaxation factor  is
introduced. The common optimal value, o=1.7, is used in our calculations. Then we

have

k+1l ._ 1 K . -
x T, j=0-w)x "J+m[a(xi+l,j+xi-l,j)+7(xi,j+l+xi,j—1)

L
B 1 i1 -1 R L 1 N DV RN (13)

Y= M-y S jrolaty, | 4y DFY0 gty -

1
2Pt je1 oL jo1 Y ie L jo1 Y im1, e PV O] (-13D)

where, k is the iteration index.

An example of a grid generated by this procedure is shown in Figure 3-3. The top
boundary of the physical domain is specified by
y=1+0.2xsin(27x) (3-14)

y 1 +0.2 sin 2xx)
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Figure 3-3  Grid Generated by Laplace Equation with Grid
Points Evenly Distributed on The All Boundaries

Grid points are equally spaced on the boundaries. The grid generated is very smooth
and more or less is equally spaced over the entire domain. When the grid points are not

equally spaced on the boundaries, the grid generated by this procedure is not smooth
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and has very large changes in the metric coefficients (3-8) and (3-11) near the
boundaries. The large change in the metric coefficients of the grid will cause large

errors in numerical calculation.

Figure 3-4 shows the grid generated by this procedure with unequally spaced boundary
grid points. The physical domain is the same as that in Figure 3-3. The grid distribution
along the left and right boundaries is described by

.=_k£ (j—lz
] log jmax T

...... jmax-1, jmax) (3-15)
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Figure 3-4  Grid Generated by Laplace Equation with Grid
Points Concentrated toward The Top Boundary

It can be seen from Figure 3-4 that the space between grid lines in the field is not greatly
affected by the distribution of the boundary points, except in the close neighborhood of
the boundaries. In applications, flow parameters might change dramatically in certain
regions. In order to catch these changes in detail and get the results in better accuracy,
grid clustering in the region is desired and, sometimes necessary. Use of the Laplace
Equation (3-9) without clustering will not satisfactory.
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3.1.4 Control of Grid Distribution
The control functions, P({,n) and Q({,n) have to be introduced in the right hand side of
Equation (3-9) for better control over grid-points distribution in the interior of the
domain. Poisson's equation will be used

9t L 9%

ax " dy 3 =PECM (3-16a)
gln az;l QE,m) (3-16b)

Using Equation (3-7), they become
32; -2 aZa; ?:5 "2‘( Qf an—) (3-17a)
32'3 % acan”izy ; Qan (3-17b)

Thompson (1980) defined the control functions P and Q in the following form:

n
PEM=- X a;sen(G-gexpl-c;[t-L ]

i=1

_3 b-sgn(c—c.)exp[—d.J(c—c.)2+(n—n.)21 (3-18a)
j=1 J J J J J

Q@M= 3 a;sgn(n-n)expl-c;[n-n]]
1—1

_ - d e i 2 ]
jElbjsgnm nexpl de(c £p%+(m-n )] (3-18b)

They can be used to cluster the grid points towards the line { = {j and n = njj, and
towards a point ({j, ni). In Equation (3-18) ‘a’ and ‘b’ are the amplification factors and
‘¢’ and ‘d’ the decay factors. Coefficients a, b, ¢, d and {j nj are specified. The
determination of these constant values can be achieved by trial and error for a specific
problem. This procedure might be very complicated, or unacceptable in some cases.
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A very efficient method is introduced by Thomas and Middlehoff (1980). They write

Poisson’s equation in the following form:

% % 92 982

> 3-19
'_j'ax +a 7 =0, ﬂ)[( ) ( ) 1 (3-19a)
3211 82 m.2

—);—w; D +(93)21 (3-19b)
x dy

where ¢ and y are direct control parameters. The corresponding form in (§, 1) is

2 x 82x 2x  ax
+6— + =0 3-20
82

3y, oy, . 3%y 3y _
a(’?“"q) C) ZBaca“+Y(an2+wan)-0

(3-20b)

If we demand that the grid lines are orthogonal at the boundaries, the ¢ and y on the
boundaries can be written as

ax 3% x ayazy%axz 3y
(aCac2+acac2) G+ G

ax 3% x ayazy/{axz 3y.2
3-21b
(anan2 anan2) G (an)] on =p (3-21b)

on 1N=m}p (3-21a)

6=

The values of ¢ and y at the interior grid-points can be obtained by a linear
interpolation method along the lines of {= constant and N = constant, respectively.
Equations (3-20) are then solved by the same method mentioned in the section 3.1.3.
The role of ¢ and y is to bring the governing action of the boundary grid points deep
inside the domain. The grid generated by this method has better smoothness and is
orthogonal to the boundary at the boundaries.

Figure 3-5 shows the grid generated by this new method. The same physical domain
and boundary grid points distribution are used. Clearly, it is much smoother than that
generated by Equation (3-9). Good grid clustering in the entire domain can be achieved
by a well designed grid distribution on the boundaries. The function used to define a
grid-points distribution on the boundaries is called the stretching function.
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The commonly used stretching functions are the power functions of order 2, 3, or
higher, exponential and hyperbolic functions. In the domain of computational fluid
mechanics exponential or hyperbolic functions are the best choices. Typical stretching
functions for one-side clustering, two-side clustering, and center clustering can be found
in Cao's work (Cao, 1993). By using these functions one can create any combination of

grid points clustering in a physical domain.

y I +0.2 sin 2xx)

Figure 3-5  Grid Generated by Poisson Equation
with Direct Control Method
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3.2 Description of the Method
3.2.1 Governing Equations

Figure 3-6 Inclined Falling Film Flow

The goveming equations of the flow of an incompressible fluid are the Navier-Stokes

(momentum) equations and continuity equation. For the flow system considered in this

work (Figure 3-6), their dimensionless conservation forms in Cartesian coordinates (x,

y) are

a_u.*._a_ui ﬁ!.{.éﬂ_ 1 (azu+az )+F
dt 9x dy 0x Re ax2 ay?
ﬂ.}.éﬂ.{.gﬁ.*.g_g__l_(azv.pazv).*.[:
dt dx dy dy ReTZ aj- y
du dv

LA FRAAE

dx dy

where, x and y are the dimensionless coordinates of physical domain, u and v are the

velocity components in x and y direction, respectively; p the pressure, Re the Reynolds
number, t the physical dimensionless time, and Fx and Fy other force components in x

and y direction, respectively.

The general curvilinear transformation from the physical domain to a computational

domain can be performed by the transformation:
E=C(x,y,1)
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n=n(x,y,t) (3-23b)

Based on the transformations rule introduced by Vinokur (1974) and Steger (1978), in
terms of the independent variables ({, m), we can rewrite these equations in the

following form.

du 1 dydu dydu,dx ~dxdu dxdu, dy

3 T3 an ot at T anat acan ot
ldyd 2 ., 9dyd 2 ., 9x9d . 0xd
Har 3 WP E 3 (WD SE S-S V)]

_ 1 ?u 32u . _9%u, _du, du
_Re]' (a acz 2Bacan+y-a—-n-2-+‘tsc—+¢g)+r"x (3-24a)

dv 1 dydv dydv.dx dxdv _dxdv.dy
3 1 G anat et GGmar acan ot
19xd 2 . 9x9d 2 dyd . 0y d
J[acaﬂ(v +p) aﬂac(v +p)+anag(uV) acan(llv)]
a2v 82v ov ov
+ +T—+0—)+F (3-24b)
atom Va2 ag am Y

_l_[ay du dy a“_,,ﬂi‘i_a_xﬁ =0
I'9nadf 9L om aLon 9nag

1 \
== (a 3C2 -2

(3-24¢)

A significant difficulty for incompressible flow calculations occurs since the continuity
equation is given not in a time evolution form, but in the form of a divergence-free
constraint. This is one of the major differences with compressible flow calculations.
The pressure, which has no time term, is coupled implicitly with the divergence-free
constraint on the velocity. This prohibits time integration of the incompressible flow

equations in a straightforward manner.

The momentum equations, Equation (3-24a) and Equation (3-24b) will be used directly
to solve the velocity field. In this stage the pressure field will be one step older than the
velocity field. They explicitly involve the time derivative of the velocity components u

and v, and are not difficult to solve. Then, based on the new velocity field, the pressure
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field is updated by employing the pressure Poisson method. This method is introduced
by Harlow and Welch (1965) and has different formulations in this work.
The Pressure Poisson equation is

3%p a*p 3. 3. 2
- < v -
a—xi-s—y-z- D+a F-*a—yF I« — "‘UV) (UV +vYy) (3-25)
au av
where, D= Ix ay

In general curvilinear coordinate system, it becomes

3 oap. Bp,. 9 vYp, Bp
B ant.i T 4§ ttn PO
ac( ' )ﬁ( T 1)
_9ydF, dyodFE dxdF, 9xdF,

"hxxhwwnhx
a1 [( )230 ayayau2+23xayauv

aCJ on” 9 ondf an dldn an
28xayauv dx 9x 9 v? (ax)zavll
onon 9§ dfamdn dn o
_il[(ay) du’ _dy dy ou? +28x8y8uv
mI 3 am g AL &n8§ ol
_,0xdyduv_9dxdxav’ (_a_x) __]
g%acaanabacaanagca aga %nD dxdD d
y y x  0X x y
+ + - 3-26
" Gnat aan ot g an an g au 20
where D= l[ayau ayau+8x3v dx dv
’ J'o9nof d9faom 9Lon 9n L

3.2.2 The Velocity-Solving Process

It is our objective to solve Equation (3-24) accurately in time and space. The standard
Crank-Nicolson approximation is used to discretize the momentum equation with
respect to time. For Equation (3-24a) we have

ot l_un

- +%[REST"+1+ REST"]=0 (3-27)

where At is the physical time increment, REST is a compact notation that represents all

terms but the time derivative term of the Equation (3-24a). Superscripts n and n+l
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refer to the physical time levels. The time difference Equation (3-27) has second-order

accuracy in time. Next, we introduce the intermediate variables as follows

T 0+l =u n+l _

=n+l n+l_vn

v =V
—n+l o+l o

P =p ~P

(3-282a)
(3-28b)
(3-28¢c)

Substituting Equation (3-28) into Equation (3-27), dropping the superscript n and n+1

for convenience, and rearranging the resulted equation, we have

cul-u+cvl-v+cuxl- a—_—+cvx1 £+cuy1 a—u+cvy1 -(?l
5 3C2 o on on
+cxxa—;+cyya—;+UNL=UR
g an
where
cul= l+ [z(uCyﬂ—uﬂyC)+vﬂxC_viTl]

At
cvl— [u Jl:C C

T
cux I=E[(yt -vV) xn —(xt -2u) yn —R—eJ-]

At

cvx l=——ux
2] "M

cuy 1=§—;[(xt -2u) Ye —(y,—v) X —%]
At
27 ¢
_At o

2] ReJ

At vy

B 2IReJ

_at 2, = _ 2
ZJ[yT\(— +P)c yc(' +—) +X§§1—V) - X (W)C
At

UR=AtF -2 -, +
" (cxx uCC cyyurm > Rer C'ﬂ

cvy l=—

;3_
ReJ Cn

)+ 2 (‘cuc+8u )
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At
-T[(yC nY ug)x (xc n—xnuc)yt
*yn(“z"")c"yc(“ + P+ (W) —x, (U ]

Ju ov Ju av
cu2-u+cv2-v+cux2- —+ 2- —+cu 2. —+ 2-—
% 3¢ an
: a7 J°v
+cxx +cyy +VNL=VR
aZ T om?
where
At
cu Z_Z_J[VCyﬂ —vnyc ]

cv2= l+ [2(v xg §x )+uCyTl-uleC]

A

cux2--2—J-vyn
cvx2---—--[()’t 2v)x -(x —u)yn--@]
cu 2=—A—
We=Tr e

At )
cvy 2—;3[(Kt -U))’C =(y,=2v) XC —E] .

_At 2 2
VNL—ZJ[yT‘(ﬁi)§ yC Tv) +xc(— +_:3 X (— +-)C Re] Cﬂ

At 2 At

VR—At-Fy-Z(cxx-vC§+cyy va > Rer CT])+ z(tvc+8v )

At
BN AR AL W KL
*yn(“v)c‘yc‘“v)n’“"g(vz*"’n "n“2+p)c1

Equations (3-29) can be rewritten in the following compact form.

3E _ 9E . 92E _ 3%E
F-E+A-224+B-254p. Q NL=R
Ak oam a2 - amd

where
E=@ v)I NL=(UNL, VNL)I R=UR, VR)T
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cul cvl cuxl cvxl B cuyl cvyl
cu2 cv2 cux2 cvx cuy2 cvy2

cxx O cyy O
4 o ofd o)
cyy
At this point, an idea of Soh & Goodrich(1988) is adopted and a continuous auxiliary
system in pseudo-time is introduced. Equation (3-30) changes its form to

3E dE _ 9E 32E
—+F-E+A-—+B- ——l-P NL=R (3-31)
= T aci ST

where 1 is the pseudo-time whlch is not physlcaL It is clear that the solution of the
system (3-30) is equivalent to the steady state solution of the system (3-31) in the

pseudo-time domain.

Now we apply an Euler implicit finite-difference scheme to the pseudo-time term,

At al-:)m

AE*=E*"' -E*= 5 —[(==)" +(— l:;)k] +0(AT) (3-32)

where, k is the pseudo-time mdex, and At is the pseudo-time step. Substituting
Equation (3-31) into Equation (3-32), rearranging the resulting equation, and denoting

ANLK = NLk+1 - NLK, we will get

At JdAE* _OJAE* _0J°AE* _ 9°AE*
[FAE"+A +B +P +Q +ANL¥]
I:ac k an 2 k acz 2k an
JE d E a E d0°E
A‘c[FE" +A +B— +Q +NL]
oL an agz on’

=AtR (3-33)

AEf+

Dropping the superscript k of EK, NLK, and ANLK terms for simplicity and setting,

T= I+%F
JE JE JE? JE? 1
R'=A1ffR-(FE+A—+B—+P + NL)—-—ANL
AR = (FE+ AT+ B +P o +Q g + L)~ ANL]
o
where, =lo 1

Equation (3-33) will be in the following form:
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2
[T+—(A—a-+Bi+P A

AT @39

Applying the Factored Approximation method to Equation (3-34) as Beam and
Warming (1978) did in their work, and ignoring the error terms, we have

[T+——(A-a—+P 322 )][I+ Sl 9 +T'Q

TR - a“2)]13 E*= (3-35)

Finally, the velocity-solving procedure consists of three steps. They are

[T+—-(A—a-+P o —)JAE =R’ (3-36a)
af o
— l a k . -
[I+ > (T‘Ban-i-T‘Qanz)]AE =AE (3-36b)
E¥! =E* + AE* (3-36¢)

The finite difference approximations of second-order accuracy are used in the

computations. In the computational domain (Figure 3-7) they are

L) b *ilj

Figure 3-7 The Computational Domain

(a—c-),, 0.5(E;,,; —E...;) (3-372)
( an) =0.5(E; ,, —E; ) (3-37b)
(?;c,_ =E,; +E. —2E, (3-37¢)
a;nz =E;ju +E, ., —2E, (3-37d)
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d’E
(3511—)‘ i~ 0. 25(Ei+l.j+l + Ei-—l.j—-l - Ei+l.j-l - Ei—l.jﬂ) (3-37¢)
The partial difference equations (3-36) will be reduced to finite-difference equations
using the finite-difference formulas (3-37). The resulted finite difference equations are
solved line by line, first in {-direction then in n-direction. For each line we end up with
a system of block-tridiagonal linear algebraic equations. For Equation (3-36a) we will
have

AE,
L, M, U, AE, | | R;
L, M, U AE, R,
° . ° ° b
° ° ™ ° = o (3-38a)
Lix, M, Ui, AE«, Rix-2
Lixa My Uk AE| [Rix
AE
foreachof j=2,3, ... LY-2,LY-I;
and for Equation (3-36b)
AEf
L. M. U: AE; AE,
Ls Ms Us A E; A E;
o [ ] [ ] PY ®
' ' ™ ° = o (3-38b)
Liv-2 Muw-2 U= AEY, ,| |AEix-,
Liv-t M- Ui Eix.| (A Eix.
A E:x

foreachofi=2, 3, .. LX-2, LX-1. Each of L,M, U,and L', M’, U'is a 2 by 2 matrix;
and each AE*, AEK, and R* is a the vector of length 2, where

Ax 1
Li = T(P—E A)i,j (3-39&)
M, =(T-AnP),, (3-39b)
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U= %‘-(P-&-%A)U (3-39¢)
(i=2,3, ... LX-1for2<j<LY-1)

L. =%(T“Q—%T“B)u (3-39d)
M =(I-ART'Q), (3-3%)
U =A2!c-(T"Q+-;-T"B)iJ (3-39f)

(G=2,3, ... LY-1for2 <i<LX-1)

Both systems are two equations short of the number of unknown vectors. The velocity

boundary conditions will make up these two equations.

The solution procedure includes two steps at each pseudo-time level. First, Equation
(3-36a), in which only the {-derivative terms are involved, is solved line by line in the {-
direction along the line of every 1 = constant for AE*. Then the Equation. (3-36b), in
which only the n-derivative terms are involved, is solved line by line in n-direction along
the line of every { = constant for AEK. For each step, a block-tridiagonal matrix system
with a 2 by 2 matrix in each block is solved by the efficient method of Direct
Factorization. Equation (3-36¢) will carry the solution into the next pseudo-time step.

This process is repeated until the value of pseudo-time derivative is less than the given
tolerance. A time-accurate solution at a new physical time level is then achieved by
adding this ultimate steady state solution in pseudo-time to the solution at the current

physical time level.

3.2.3 The Pressure-Solving Process
During the velocity-solving process, a pressure field that is one-pseudo-time-step older
is used. Once we get the velocity field at a new pseudo-time level we will use it to

update the current pressure field by employing the pressure Poisson method.
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The pressure Poisson equation in the intermediate variables, 6,Vand P can be easily
obtained by substituting Equation (3-28) into Equation (3-26) and rearranging the
resulting equation. It is

ap Bp YP
; __"lJ ).‘3%]. _TI.___Q.)_

ay JF, gydF, laxaFy ax 9K

an o 3¢ an 9L an an ag
0 1[(3y)2 d(u’+p) dydy d(u’+p) 2ax dy duv
"I am’ 3 oamat 3'1 af on dn
28x dyduv 9x9x d(V’+p) . ( )2 a(v’+p)]
3T\ a’ﬂ BC af an dn an° g
[( ) ,0(u’+p) dyadyd(ul+p) 2ax dy duv
a'nJ o on  anag ac an 9 dg
_,0xdyduv_9xdx a(vz-i-p) ( CLY a(v2+p)]
Y3 an AL am aC ag on
0D o0JyodD dydD.d dxdD dxdD dy

It ot o 9 5L an a3t 3t

a1 [(ay) , 0(@+2ul) Jydy (U’ +2uw)
alJ on a amadf dn
+2axaya(uv+uv+uv) 2axaya(ﬁ-fuv-i-uv)
o an an on on o
dx 9x (¥ +2vV) (ax)23(72+2v7)]
aC m o an o
a1 [(ay) . 0(@’+2ul) dy dy (T +2ut)
onJ d¢ on andf  d¢
+2ax dy J(Uv+uv+uv) 2ax dy J(Uv+ uv+1uv)
on a9 (8 ot at om
_9x9x 8(‘2+2vv) ( ) a("2+2vv)]
R ol ag an

0D 0dyodD 9dydD.dx ,0xdD 9xdD dy
-3 gy 3-40
3t Ton 3 ot am ot ar am an aC’ At (3-40)
where, D=1 1 dy9du dydu 9xdv_dxdv,
"1 9neC afan afan anal

3§

The boundary conditions for the pressure Poisson equation can be easily derived from

the corresponding momentum equations by introducing the vorticity function @ into the
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momentum equations (3-22a) and (3-22b). The pressure Neumann boundary conditions
are:
in the Cartesian coordinate system

2
du duw ,duw dp ldo_p_, (3-41a)

3t 9x 9y 9x Redy
dv duv dv: dp . 1 dw
—t—t—t——-

90 _ = _o 3-41b
ot odx 0dy 9dy Reodx ' ¢ )
du dv

where, @ =—-——
dy dx

and in the general curvilinear coordinate system

du,1 dydu dydu dx, dxdu_dxdudy

at 1 atan omal ot ‘anaf aLon at

l a_)’_a_(u2+p)_ﬂi(uz.;.p)-f--@-ii(uv)—-aii(llv)]

J o d§ g dn dg an on og
1 Jdxdw JxJdw E =0 (3-42a)

__( _.____)_

ReJ dfan anaf X _
dv 1_dydv dydv.dx ,dxdv dxdv dy

E-F}[( 0 dn 9nat )E'*' (sﬁi—iﬁ)¥]+
l a_x_a_ 2 _B_X__a_ ..ali -.a_yi
J[aC a‘g(va+p)a ag 3 (V+p)+ an o (uv) 3 a“(uv)]
U 3y _dyda) . _
"Rl om0 (3-42b)
where, m=1(a_x22_axa“ dy 3V+ay av)

J'ogan onag anag g am

Dropping the terms, ?)—l: and %‘f from the above equations, applying the Equation (3-

28), and rearranging the resulting equations and dropping the superscript, we can get
the pressure Neumann boundary conditions:
BIP_adp_ dW_ 3T V. IV_1dy,d@+2u)
10y dy o(u’+2uu) + 2 dx dy J(UV+ uv+av)
Jofon  on Jon on ag
. 19x 9x 9(V*+2VV) _l(ax 8y+ ox ay)a(i\?+uv+ﬁv)
Jadlan dn Jandg ot om an
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_l(ﬁ)za(vz-i-ZvV)_’_ 1 00
T om 14 Re dn

_.9u du_ 9v_dv 1dy,d(u’+p) 1dydyd(u’+p)

=P ac'*'Pzan Ps aC P4an+J(an) 3 TaCam  om

29dxdy auv+_1_(ax ay+ax ay)auv_'_l(_a_i , 0(V*+p)

Jonon af Jdandf dfan dn Jon  d

19x9x a(v’+p) 1 dw dx._dy. (3-43a)

J3gon on Reon on ’ an *

P ou ou ov dv 10y dy d(@*+2utu)
C P7 aC Ps n Ps aC Ps an Jo¢ an T
1 Q)z o(U*+2un) _ 2 dx dy d(uv+uv+av)

1% am  TagaL _m

_19xdx a(Vz+2vV)+l(ax ay+ax ay)a('u_v-i—uV+ﬁv)
JaC om 2a§ J amadl oL dn an
19x,d(7+2vwW) 1 0@

TS T T TReax

du du dv _ dv 1dyadyd(u’*+p) __l_(_al)2 a(u’+p)

TP P e ™o Tatm L T8 om
L28xay8uv_l(axay+axay)auv+laxaxa(v2+p)
JoLdf o Jamdl dfom o Jafan of
_1.9x a(v2+p)__ 1 do 9x ayF

Q

9p
on

I

Y
1

+ -

Xy IXp-2Y -43
150 T Reax XX (3-43b)
— 1 0xdUW dxdu JdyodvV dyadVv
where, 0 =—( - - + )
J aam dndl odndl df dn
=1(ax8y_ayax)8_y =_l_(ayax_ax8y)g
P =T 3t amat o P2 =T33t g ot an
=l(axay_3y8x)§£ =l(ayax_axay)§
P =T o3t amat an P =T 03t aC ot am
_1@xdy dydx ax _1Qydx 0dx3dy ax
Ps =y onat onat aC Ps=T'3c 3t aC ar’ oC
=l(ax8y_ayax)a_y =l(ayax_axay)8_y
P =T ot anar aC Ps =T33t L ot oL
In simple notation, they are
Bop_adp _ RESTI (3-44a)
Tan T3
Ydp _PJp
Yop_Pdp_ -44
T 5t =REST2 (3-44b)
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If the grid is orthogonal at the boundaries, we will have 8 = 0. Then the above

equations can be used directly. Otherwise, they can be written as
dp _P/J-REST2-y/J-RESTI
aC al/TylJ-@/1)}
dp _o/J-REST2-B/J-REST1
on al/JylI-PB/I)?

(3-45a3)

(3-45b)

The important issue in the discretization of the pressure Poisson equation and its
boundary conditions is consistency. Abdallah (1987) proved that only by consistent
differencing for the pressure Poisson and its boundary conditions, could a solution for
the pressure Poisson equation exist and be smooth. That is to say we have to apply the
Neumann pressure boundary conditions at the position that is a half cell away from the
physical boundaries. Otherwise, the iterative solution of pressure will drift slowly and

endlessly. The computational procedure is shown in Figure 3-8.
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3.3 Test Problem

Computational methods of fluid mechanics are usually tested and compared by applying
them to one or more standard problems. Two test problems (Figure 3-9), the standard
square driven cavity (SSDC) problem and oscillating square driven cavity (OSDC)
problem, are used to test our method.

—>>
A
Y u=0 u=
v=0 v=
u=0 v=0
-
X

Figure 3-9 Test Problems (U = Ug for SSDC,
U = Ugcos(ax) for OSDC)

3.3.1 Standard Square Driven Cavity
For this problem the velocity distribution (in the form of streamn function and vorticity
function) and the pressure distribution inside the cavity are readily available in many

publications for different Reynolds numbers.

For the sake of consistency the Neumann pressure boundary conditions have to be
applied at the position that is on half cell away from the physical boundaries. For
instance, the pressure boundary condition on the top wall will be applied at the point *
(refer to Figure 3-10). The formulations for {-derivative and n~derivative at the point *

will be
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Figure 3-10 Top Wall Boundary

JdE

?‘ =Eiy=Eirya (3-46a)
E

'a_c‘ =0.25(E; s v+ Eioviy-— By — B va) (3-46b)

The results show that immediately after beginning to move the lid, a large vortical
structure appears inside the cavity. The vortex center is located at about x = 0.5 and is
very close to the lid in the beginning. As time advances the vortex center gradually
moves towards the right and the bottom wall, and the flow pattern gradually approaches
the steady state. Figure 3-11 to Figure 3-13 show the steady state results of Re = 100,
Re = 400, and Re = 1000, respectively. The results are very consistent with the results
reported in literature (refer to Tuann and Mervyn, 1977).

The stream function is defined as

_9v __9%¥ ]
u= 3y v= 3 (3-47)
Then, we have
Py Ty _du dv_, (3-48)

x> dy* 9y 9x

The boundary conditions for the stream function are very simple. On all boundaries,
y=0.0. It must be noted that the Equation (3-48) has to be transferred into the general
curvilinear coordinate system first. A point successive over-relaxation method is used in

our calculations for the stream function over the entire domain.
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The dimensionless pressure is presented in the term of a pressure coefficient, which is

defined as

C, =2Re(P-P,)/ U?

where, Py is the reference pressure at the central bottom, and U the top wall velocity.

(3-49)

Table 3-1 The Summery of Standard Driven Cavity Problem
Re Grid At At Steady State Time
100 2l by 21 130 0.75 15.23
400 31 by 31 1/40 0.75 37.57
1000 41 by 41 1/200 0.4 40.70
1000 41 by 41 1/160 04 43.17

In order to address the accuracy of our method the u-velocity along the vertical center

line and the v-velocity along the horizontal center line are illustrated in Figure 3-14 to

Figure 3-16. The scattered data represent the results obtained by Ghia et al. (1982)

using a 129 by 129 grid. Comparing these results and considering the grid used in our

calculation (refer to Table 3-1) we can say that the accuracy of our method is good.
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Flow Pattern in The Square Cavity of Re = 100
(A)  Stream Contour Line

B) Velocity Vectors

(©)  Vorticity Contour

(D)  Pressure Coefficient Contour
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Figure 3-12  Flow Pattern in The Square Cavity of Re =400
(A)  Stream Contour Line
(B) Velocity Vectors
(C)  Vorticity Contour
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Figure 3-14 Central Line Velocity Distributions of Re = 100
(a) u-Velocity along Vertical Central Line
(b) v-Velocity along Horizontal Central Line
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Figure 3-15 Central Line Velocity Distributions of Re = 400
(a) u-Velocity along Vertical Central Line
(b) v-Velocity along Horizontal Central Line
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Figure 3-16  Central Line Velocity Distributions of Re = 1000
(a) u-Velocity along Vertical Central Line
(b) v-Velocity along Horizontal Central Line
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This method has been tested by the standard square driven cavity problem, and is shown
to be very accurate and efficient for the steady state solutions of an incompressible fluid
flow on a general curvilinear non-staggered grid system. As we mentioned before our
aim is to obtain the time-accurate solution of our flow system, including the
intermediate state solution. This method has to be further tested for its accuracy and

efficiency by a transient flow problem before it can be employed to our flow system.

3.3.2 Oscillating Square Driven Cavity
The square driven cavity with a periodically oscillating lid is a good test for testing the
time factor in our procedure. The oscillating lid velocity is given as

ul)= UOcosm t (3-50)

where, o is the frequency, with the period T = 2n/m. In these calculations we will take
UQ = 1.0 and = 1.0. The Reynolds number is 400 based on the maximum lid velocity
UQ. The steady state solution for the standard square driven cavity problem of Re =
400 is taken as the initial velocity field and pressure field. The physical time-step in the
calculation is 21/40, i.e. one period is divided into 40 uniform time intervals. The
pseudo-time boundary condition on the top oscillating wall is

E=U(tn+1)—U(tn) (3-51)

There is no steady state solution for this problem, but after a certain period of time, the
solution tends to a periodic state. That is to say, after certain time the flow pattern
inside the cavity at time t is exactly the same as it is at time T+t, 2T+t, etc. The time
needed to get to the periodic state is about 8 periods, in our calculations. Soh and
Goodrich (1988) reported the same number for this case. The time history of the flow
development is shown in Figure 3-17 to Figure 3-21 by presenting the stream function
contours (top subplot), the vorticity contours (middle subplot), and the pressure
coefficient contours (bottom subplot). The solution at t = 9T and t = 10T are identical
to the solution at t = 8T. So the periodic state is obtained after 8 periods.

132



The solutions for the periodic steady state are presented in Figure 3-22 to Figure 3-26 at
the 11th cycle for 10T <t < 11T. A symmetry consideration leads us to expect that the
flow pattern at times t and t+T/2 are mirror images of each other. Generally, our
calculations support this point. Figure 3-22 to Figure 3-26 are an illustration of flow
patterns inside the cavity for the times 10T and 10T+20At, 10T+4At and 10T+24At,
10T+8At and 10T+28At, 10T+12At and 10T+32At, and 10T+16At and 10T+36At,
respectively.

This numerical computational method based on a non-staggered grid has been tested by
a steady state and transient problem for its efficiency, accuracy and correctness. In this
method a pseudo-time system in the velocity and pressure primitive variables is adopted,
and the pressure Poisson approach is employed in the pseudo-time system for smooth
pressure field. It can provide physically meaningful results for all physical time steps,
and can be used to analyze both steady state and dynamic problems. When our interest
is limited to the steady state solution, the method can be simplified by limiting the

number of iterations in pseudo-time loop.
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Figurc 3-17  Flow Pattern inside The Square Cavity with An
Oscillating Top Wall for (a) t = 1T and (b)t=2T
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Figure 3-18 Flow Pattern inside The Square Cavity with An
Oscillating Top Wall for (a) t =3T and (b) t =4T
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Figure 3-19  Flow Pattern inside The Square Cavity with An
Oscillating Top Wall for (a) t =5T and (b) t =6T
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Figure 3-20  Flow Pattern inside The Square Cavity with An
Oscillating Top Wall for (a) t =7T and (b) t =8T
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Figure 3-21  Flow Pattern inside The Square Cavity with An
Oscillating Top Wall for (@) t=9T and (b) t = 10T
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Figure 3-22  Flow Pattern inside The Square Cavity

with An Oscillating Top Wall for
(a) t = 10T+0At and (b) t = 10T+20At
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Figure 3-23  Flow Pattern inside The Square Cavity
with An Oscillating Top Wall for
(a) t = 10T+4At and (b) t = 10T+24At
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Figure 3-24  Flow Pattern inside The Square Cavity

with An Oscillating Top Wall for
(a) t = 10T+8At and (b) t = 10T+28At
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Figure 3-25  Flow Pattem inside The Square Cavity

with An Oscillating Top Wall for
(a) t = 10T+12At and (b) t = 10T +32At
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Figure 3-26  Flow Pattern inside The Square Cavity

with An Oscillating Top Wall for
(a) t = 10T+16At and (b) t = 10T+36At

143



CHAPTER 1V
NUMERICAL SIMULATION

A new computational scheme was developed in chapter I. Two known dynamic
problems, namely, the standard square driven cavity (SSDC) problem and the oscillating
square driven cavity (OSDC) problem, were used to test the method. The results
suggested that the method is good for both steady and unsteady state fluid dynamic

problems.

In this chapter the method will be used to simulate our flow system of a single layer.
The complete boundary conditions of the flow system are given here. The formulation
and implementation of these boundary conditions, especially the boundary conditions on
the free surface, are addressed in detail. Then, a new approach is introduced to describe

the imposed disturbance. Finally, results of the simulation are presented.

4.1 THE BOUNDARY CONDITIONS
The boundary of this flow system can be divided into three sections; solid bottom wall
boundary, free surface boundary on the top, and inlet/outlet boundaries.

The velocity boundary condition on the solid wall is the no-slip condition.
u=0,v=0 fory=0,0<x<L @é-1)
where L is the dimensionless length of the inclined plane. In pseudo-time domain, it is
u=0,v=0 fory=0,0<x<L 4-2)

The velocity boundary condition at the inlet boundary is given by
u=U)[1+uy, ), v=0 for x=0,0<y<l1 4-3)
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where U(y) is the steady state velocity of the flow system considered, which is in the
form of a parabolic distribution; and udis(t) is the imposed velocity disturbance.

Uy)=2y-y’ (4-4)
u,, (t)=Asin (2xft) 4-5)
Here, A and f are the dimensionless amplitude and frequency of the disturbance.

In the pseudo-time domain the condition becomes

a=U(y) A[sin(2rf(t+At)—sin(2xft)] for x=0,0<y<l1 (4-6a)
v=0 for x=0,0<y<1 (4-6b)
This boundary condition is consistent with the non-slip condition on the solid wall.

The velocity at the outlet is controlled by a condition that assumes continuity of the

same velocity gradient (continuous flow),

d*u
—=0 for x=L, 0<y<l1 (4-7a)
ax

and the continuity equation.
98,9y for x=L, 0<ysl (4-7b)
dx dy

In pseudo-time domain, they are

a’n  d*u
a—iz=——w for x=L, OSySI (4—8&)
a—u+§l=-(ég+i‘i) for x=L, 0<y<l1 (4-8b)

It is noted that these conditions need to be transferred into the general curvilinear
coordinate system, ({, n). The pressure conditions on the solid wall and inlet/outlet

boundaries are the Neumann boundary conditions defined in the Chapter IIL.

At the free surface, there are four unknowns, u, v, p and the free surface position y(x).
Four independent boundary conditions are needed. They are the normal and shear stress

balance conditions, the continuity equation, and the kinematic condition.
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The normal and shear stress balance on the free surface can be found in the work of
Esmail and Hummel (1975). In dimensional form they are
oJu av ov du

2b( ) (- bz)(—i-a—) =0 (4-9a)
8 8 d
by (—i+—83) 2u ﬁ«p— Pot —) 0 (4-9b)
where b =£ll' R =M are the free surface profile and the radius of curvature

dx’ (1+b%)*?
of the free surface; |l and o the viscosity and the surface tension of the fluid,
respectively. pq is the atmospheric pressure. In dimensionless form they are

du du dv 1
-2 bs; 5—+ a—-&-bRB(p po+Ew—') =0 (4-10a)
XA b(a—“ a—-)—bRe(p— p0+——) 0 (4-10b)
dy RW

At the free surface, the continuity equation, Equation (4-7b), must be satisfied. Besides,
the free surface by nature is a streamline. Therefore, the following kinematic condition,

which expresses a mass balance across the liquid film, must be satisfied too.
dy _v
dx u

(4-10c)

In order to impose these four boundary conditions on the free surface we have to
transform them into the general curvilinear coordinate system. The transformations of
Equation (4-7b) and (4-10c) are straightforward. The transformation of Equations (4-
10a) and (4-10b) can be found in Thompson's work (Thompson, 1980). They are

2au ax ay)_ J(ax)zav

'a'Z'(lB “Ton on’on" " on’ o
+EReJa p Y (p- p°+RT) (4-11a)
-EReJagn—(p Pt ) @11b)
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The surface is a boundary defined by 1 = constant, so we can write

dudy 9dvox, 0X, dxdy.dy, _,0x,0dudx dvady
guay Y% %yl P ANS & gr ooz, ovVaoy
G e
on 9Y 12Xy OX0Y\9Yy 9% 1 9Yy _(aB-72X2Y 0%
Ta U(an) +(aﬁ+13n &q)an] 3T [J(an) (0B Jan an)&n]
(4-12a)
dudy dvox.. 0dYy. dxdy.,dx, ,0y, dudx dvdy
gucy_c¥oxyysY —y2X2Y, 9% 2 2Y +
e
an IYry2Xys oX0Yy, 0¥, 99Xy 0¥y _(aB—J2X0Y OX
Ta [J(an) +(aB+Jan an)a'q] aC [J(an) (of Jan &r\)an]
(4-12b)

in which the continuity equation was used to eliminate the pressure term.

Equation (4-12) can be rewritten in the following compact form
dE _OJE
A—+B—=0 (4-13)
on  dg
dy _ dx

“’af""a_c 0
dy _ 9dx

0 tla_c aC
dy ,0dx0x dx ,0xdy
t—+a" " ——) t{—-o" ——
nSD n g

ox dxdy.dy
t.=J(—) + +J]——2y—ZL
! (aa) (oB aa aa )aa
1Yy (o ;2% 3¥)3%
E (an) @p anan’ dan

u
where A= E=
v

—(
B=

In pseudo-time domain Equation (4-13) becomes
dE _0E JdE _JE
A—+B—=-(A—+B—) (4-14)
on o an g

147



Applying the finite difference approximations to Equation (4-14) we will get a system of
block-tridiagonal linear algebraic equations, which is then solved by direct factorization
method for the surface velocities in the pseudo-time domain. The surface pressure in
pseudo-time domain can be obtained from either Equation (4-11a) or Equation (4-11b),

which has to be rewritten in the terms of pseudo-time velocities and pressure.

4.2 TWO APPROACHES TO DISTURBANCE

All disturbances, simple or complex, are described by several components with a single
fundamental frequency. In the previous work mentioned in the Literature Review the
disturbance concerned is said to be the perturbation of the position of the free surface
(i.e. some sort of free surface wave motion) directly, and is described as:

N = A exp [i(ax - ot)] (4-15)
where, M is the displacement of the free surface; A is the initial perturbation amplitude;
o = 2rfd/u() is the dimensionless angular frequency, where f is the wave frequency. This
assumption implies that: at the time t = O~ there is no disturbance and the free surface is
a straight line; and at time t = 0% the disturbance of Equation (4-15) is imposed directly
on the free surface and the whole free surface is waved at once by this disturbance

(Figure 4-1).

1.0 1.0+1

Figure4-1  The Approach to Disturbance in Literature
In practice, disturbances usually originate from flowrate perturbation.  Such

disturbances take some time to reshape the velocity field and to disturb the whole free

surface. That is, the wave motion on the free surface occurs gradually.
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In our work we approach this issue in a different way. Again we use a single
disturbance component. However, the disturbance is imposed at the upstream end in
the form of a velocity perturbation. At the time t = 0~ no disturbance is imposed and the
free surface is a straight line. At the time t = O a minute velocity disturbance is
imposed on the upstream end and the free surface will be gradually “waved” by this
velocity perturbation (Figure 4-2).

t=0 t=0"t
U U+u

=tl >0 t=t2>tl
—— M N~ —————
U+u U+u

Figure 4-2 The New Approach in This Work

4.3 NUMERICAL RESULTS

The numerical techniques described in Chapter III were applied to viscous liquid flows
in thin layers. The initial flow is Nusselt (1916) uniform thickness layer, with a laminar
parabolic velocity distribution. This is the undisturbed wave-free flow. At the initial
moment a disturbance is imposed at the upstream end of the flow region. This
disturbance is in the form of a minute velocity perturbation:

u = UA sin (2nft) (4-16)
where U is the u-velocity at the steady state, A is the relative amplitude of the
disturbance, f is the dimensionless frequency of the disturbance, and t is the
dimensionless time. The initial amplitude of the disturbance is set at A = 0.0001. Flow
systems were considered to be stable if numerical solutions for velocity and pressure

were stable up to a dimensionless time t = 30.0.
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In our work, the following simulation parameters are used (refer to Table).

Table 4-1 Simulation Parameters

Parameter Value
Tolerence 10°
Precision Double
Physical Time Increment, At 0.01
Pseudo Time Increment, AT 0.4
Physical Domain, L/W 30
X Grid Size, Ax 0.2
Y Grid Size, Ay 0.1
Stop Time, T 30.0

The numerical method was also tested for much longer stop-time (T = 70.0), different
physical domains (L/W = 40, 50, and 60), and different physical time increments (At =
0.005 and 0.0025) for its stability and robustness. For each of these test cases, at least 3
combinations of Reynolds number, the properties number of fluid, and the angle of

inclination were simulated.
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4.3.1 Wave Profiles

The unsteady state time-accurate computational model produced stable wavy regimes
for a wide range of flow conditions. Solutions were obtained for different liquid
properties 0.0467 < v < 467, different angles of inclination 0.1° < 8 < 89.9°, and
different Reynolds numbers Re < 30. Computations for vertical flow 8 = 90° always
diverged. However, any shift in angle from 90° produced stable solutions. Calculations

for higher Reynolds numbers consumed increasingly more CPU time.

Figures 4-3 to 4-8 show sets of wave profiles produced for an angle of inclination
0=80°. The profiles shown are graphed for dimensionless distances (with respect to
mean thickness), and dimensionless time (with respect to mean thickness, and surface
velocity). Liquids with lower viscosity (y = 467, Figure 4-3) experienced simple form
stable waves running over their free-surfaces. This is in contrast to the more
complicated forms of waves running over the free-surfaces of more viscous liquids. For
example Figure 4-7 and 4-8 show the waves running over surfaces of a liquid with vy =

0.0467.

The wave developed at a Reynolds number Re=12.5 (Figure 4-8) seems to be
dominated by a longer wavelength than the wave developed at a Reynolds number
Re=4.17 (Figure 4-7). All disturbances (Figure 4-3 to 4-8) seem to die out some
distance (transit distance) downstream. This computational description of the waves is

supported by our experimental observations of Chapter IL

Figures (4-9 to 4-14) show wave profiles computed for an angle of inclination 8=10°.
Figures 4-9 and 4-10 show that the transit distance for the smaller Reynolds Re=12.5 is
much shorter than that for the higher Reynolds number Re=29.2. This underscores in
comparison to Figure 4-3 and 4-4 for 8=80° that the result is independent of the angle
of inclination. Although wave forms and amplitudes are different the general

conclusions for the angle 6=80° (Figure 4-3 to 4-8) apply to the angle 8=10°.
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Figures 4-15 to 4-20 show wave profiles computed for an angle of inclination 8=1°.
The transit distances are appreciably longer for all liquids and Reynolds numbers. In
fact for the liquid y=0.0467 the disturbance persists throughout the entire computational
region (Figures 4-19 and 4-20). These profiles are clearly dominated by a long
wavelength wave. Simple form waves are shown for liquids with lower viscosity y=46.7
and 467 (Figure 4-15 and 4-16). Figure 4-17 shows a case of a solitary wave that can
be predicted by the nonlinear theory (Esmail 1980).

Figures 4-21 and 4-22 show wave profiles for the smallest angle of inclination 8=0.1°.
Figure 4-22 shows a long wavelength disturbance which turns into complex ripples as

time advances.

4.3.2 Wave Speed

In our calculations we monitored the front edge of the imposed disturbance and
followed its development downstream. We established a wave speed reflecting the
speed of disturbance propagation C over the free-surface. This wave speed was made
dimensionless with respect to the steady state surface speed.

Figures 4-23 and 4-24 show the wave speeds C for the liquid with lower viscosity
Y=467. The speed is recorded after a dimensionless time of 1.0, for several angles of
inclination. In Figure 4-23 the dependence on the Reynolds number is shown. Wave
speeds vary with angle of inclination. They generally decrease with the Reynolds
number (Figure 4-23) and the Weber number (Figure 4-24). However, their
dependence on the flow rate shows higher wave speeds for lower angles of inclination
(close to horizontal). Disturbance propagation is approximately 4 to 6 times the
material speed of particles on the surface. In the case of their dependence on the Weber
number which represents surface tension, wave speeds collapse in one relationship for

all angles of inclination (Figure 4-24).
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Figures 4-25 and 4-26 show similar results for a liquid with larger viscosity y=4.67, at a
dimensionless time 2.0. In this set of results a smaller angle of inclination 8=1° show
wave speeds that deviate (Figure 4-26) from the general relationship for all other angles
of inclination. In general for this more viscous liquid wave speeds range from 2 to 5
times the material speed of particles on the surface.

For a rather viscous liquid y=0.0467, and dimensionless time 2.0 wave speeds are shown
in Figures 4-27 and 4-28. At an angle of inclination 6=1°, wave speeds show the same
deviation from the general relationship over the Weber number (Figure 4-26). Wave
speeds for this liquid also range from about S to 2 times the speed of surface particles.

Figure 4-29 shows a comparison of wave speeds over the Reynolds number for a wide
range of liquids. For the same flow rate, wave speeds over the free surface of liquids
with smaller property number are lower than their counterpart for liquids with higher
property numbers. The same trend continued to a dimensionless time of 5.0 in Figure 4-
30. Figures 4-29 and 4-30 are for an almost vertical layer 6=89°. Figure 4-31 to 4-33

show similar results for angles 8=45°, 10°, and 3°.

We compared our results for wave speeds with the experimental results of Chu &
Dukler (1974), and the theoretical results of Benjamin (1957) and Yih (1963). Figure
4-34 shows this comparison. Our results, though lying slightly above the experimental
measurements of Chu & Dukler (1974), are consistent with them. The linear theories of
Benjamin (1957) and Yih (1963), are shown to be a rather rough estimation of actual

wave propagation speeds.
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Figure 4-3 Wave Profile (Re=29.2, 6=80°, y=467)
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Figure 4-10 Wave Profile (Re=12.5, 6=10°, y=46.7)
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CONCLUSIONS AND
RECOMMENDATIONS

CONCLUSIONS

Experiment

e A new method based on optic-electric technique is developed. The wave
information carried by the final recorded signal can be extracted by digital signal
processing techniques. They include signal sampling, noise filtration, mean removal

and normalization, and energy spectral analysis using Fourier transformation.

Single Layer System

e Our measurements for critical Reynolds number that marks the onset of wave
motions on the free surface show higher values than those in previous work, and are
located well above the long-wave prediction of well accepted linear theory (Benjamin
1957, Yih 1963) but just below the inertia driven limiting case of Smith (1990).

e Observation of surface waves led us to record the distance downstream from X=0
(the inception point) at which the wave has completely damped. This distance
normalized to the average film thickness is called the transit distance. Longer transit
distances were observed for larger flow rates, and the fluids with higher property

number.

e The lower limit frequency (LLF) is pretty much constant for all measurement
positions, flow rates, angles of inclination, and liquid properties. The upper limit
frequency (ULF) and the dominant frequency (DF) vary with measurement position,

flow rate, inclination angle, and liquid properties.
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e Larger flow rates and smaller angles of inclination lead to larger upper limit
frequencies. These are ripples which flow over the surface of layers with higher
velocities and smaller gravitational effects. Also, larger upper limit frequencies were
observed for more viscous fluids, and the measurement position that is closer to

inception.

e Surface tension plays an important role in wave formations over the free surface of
thin liquid films, and exerts a stabilizing influence on the laminar flow of a film with
uniform thickness. Increases in the Weber number (i.e. decreases in surface tension),
which is a measure of inertia to surface tension forces, lead to appearance of higher

upper limit frequency disturbances.

e The general conclusions about the upper limit frequency can be also applied to the
dominant frequency representing the wavelength with the highest relative energy in

the spectrum of all wavelengths.

e The fundamental difference with Javdani’s (1976) results is the rise in Javdani’s
highly amplified frequency for smaller N numbers. This range corresponds to smaller
Reynolds numbers. The comparison between our dominant frequency and the
measurement of Brauner & Maron (1982) over the Reynolds number led to a general

agreement in the trend and to some extent the values of frequency behavior.

Double Layer System

o The lower limit frequency (LLF) was pretty much constant for all positions of
measurements, flow rates, and angles of inclination. The upper limit frequency
(ULF) and the dominant frequency (DF) vary with flow rate, inclination angle, and
liquid properties.
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o Increases in the bottom flow rate lead to the appearance of shorter wavelength
disturbances even as the upper flow rate remains constant. However, this effect is
significant only in the region close to the inlet since the interface between the two
fluid films disappears very quickly downstream. The shorter wavelength
disturbances depend more on the inclination angle at lower flow rates in the upper

layer. For higher upper flow rates this dependence seems to disappear.

o Liquid properties have a significant effect on the possibility of higher frequencies in
the spectrum of surface disturbances. This possibility is shifted towards lower flow
rates of the upper layer for more viscous liquids. Surface tension is a stabilizing
factor for short wavelength disturbances, and the increase in surface tension leads to

disturbances with longer wavelengths.

o The maximum relative amplitude (MRA) remains constant for lower flow rates of
the upper layer. MRA increases with higher upper Reynolds or Weber numbers.
There is no apparent dependence of MRA on liquid properties and angle of

inclination.

Simulation

o Qur new numerical method is good for simulating both steady and dynamic flow
problems. This method is based on non-staggered grid system and developed in a
general curvilinear coordinate system. It can handle the flow system with free
surface and is able to produce physical meaningful velocity and pressure distributions

for all physical time levels.
e Viscous liquid flows in thin layers were simulated by our numerical techniques for a

wide range of flow conditions. Solutions were obtained for different liquid

properties 0.0467 < y < 467, different angles of inclination 0.1° < 8 < 89.9°, and

i88



different Reynolds numbers Re < 30. Computations for vertical flow 8 = 90° always
diverged. However, any shift in angle from 90° produced stable solutions.

Wave Profile

e Generally speaking, liquids with lower viscosity experienced simple form stable
waves running over their free-surfaces, and more complicated forms of waves
running over the free-surfaces were found for more viscous liquids. Also, solitary
wave forms predicted by the nonlinear theory (Esmail 1980) was obtained in this

work.

o All disturbances seem to die out some distance downstream. This computational
description of the waves is supported by our experimental observations. Transit
distance is shorter for smaller Reynolds number than that for higher Reynolds

number, and independent of the angle of inclination

Wave Speed

e A dimensionless wave speed (with respect to the steady state surface speed) was
established to describe the speed of disturbance propagation over the free-surface.
Generally speaking, disturbance propagation is approximately 2 to 6 times the
material speed of particles on the surface.

e Wave speeds vary with angle of inclination, Reynolds number, Weber number which
represents surface tension, and the property number of the fluid. Their dependence
on the flow rate shows higher wave speeds for lower angles of inclination. In the
case of their dependence on the Weber number wave speeds collapse in one
relationship for all angles of inclination. Wave speeds over the free surface of liquids
with smaller property number are lower than their counterpart for liquids with higher

property numbers.
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e Although our results for wave speeds are slightly larger than the experimental
measurements of Chu & Dukler (1974), they are in good consistence with one
another. The linear theories of Benjamin (1957) and Yih (1963) are shown to be a
rather rough estimation of actual wave propagation speeds.

RECOMMENDATIONS

Experiment

e The experiments should be extended to cover double layer systems with viscosity and
density stratification.

o The experiments should be extended to cover the behavior of surface waves over the
free-surfaces of non Newtonian liquids.

o The experimental technique should be modified to cover wave formations on the

interface between two layers.
Simulation

e Simulation techniques should be extended to cover double layer flows, and non

Newtonian liquid flows.
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ZhGO0001:

ZhG0002:
ZhG0003:
ZhG0004:
ZhGO0005:
ZhGO0006:
ZhGO0007:
ZhGO0008:
ZhG0009:
ZhG0010:
ZhGO011:
ZhG0012:
ZhG0013:
ZhG0014:
ZhGO0015:
ZhGO016:
ZhGO0017:
ZhG0018:
ZhG0019:
ZhG0020:
ZhGO0021:
ZhG0022:
ZhG0023:
ZhG0024:
ZhG0025:
ZhG0026:
ZhG0027:
ZhGO0028:
ZhG0029:
ZhG0030:
ZhG0031:
ZhG0032:
ZhG0033:
ZhG0034:
ZhG0035:
ZhG0036:
ZhG0037:
ZhG0038:
ZhG0039:
ZhG0040:
ZhG0041:
ZhG0042:
ZhG0043:
ZhG0044:

APPENDIX
FORTRAN PROGRAM CODE

IMPLICIT REAL*8(A-H,0-Z)

CHARACTER BEGTM*24,STPTM*24
PARAMETER(M=2,LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
PARAMETER(LX1=LX-1,LY1=LY-1,LX2=L.X-2,L.Y2=[.Y-2)
PARAMETER(IG1=IG-1,JG1=]G-1)
COMMON/XY/X(IG,JG),YIG,JG)
COMMON/PSFE/PS(G,JG).FE(G,JG)
COMMON/ABG/BJ(IG,JG),A(IG,JG),BAG,JG),GAG.JG)
COMMON/DXY/XI(IG.JG).XJ(G,JG),YI(G,JG),YIIG.JG)
COMMON/DXYT/XT(AG.JG), YT(AG,JG)
COMMON/UVP/U(LX,LY),V(LX,LY),P(LX,LY)
COMMON/UVR/UR(LX,LY),VR(LX,LY)
COMMON/P_R/PR(LX,LY)
COMMON/UVPB/UB(LX,LY),VB(LX,LY),PB(LX,LY)
COMMON/DVELB/DUB(LX.LY),DVB(LX,LY)
COMMON/UV_B/ULFT(LY),URIT(LY),UBOT(LX)

1 ,VLFT(@LY),VRIT(LY),VBOT(LX)
COMMON/UV_C/CUX1(LX,LY),CUY1(LX,LY),CVXI(LX,LY),CVYI(LX,LY)
1 ,CUX2(LX,LY),CUY2(LX,LY),CVX2(LX,LY),CVY2(LX,LY)
2 ,CUILX,LY),CVILX,LY),CU2(LX,LY),CV2(LX,LY)

3 CXXLX.LY),CXY@LX,LY),CYY(LXLY)
COMMON/BLK3/AMX(M,M,LX,2:LY1),BMX(M,M,LX,2:1L.Y1)

1 LCMXMM,LX,2:LY1),AMYM,M,LY,2:LX1)

2 BMYMM,LY,2:LX1),CMY(M,M,LY,2:LX1)
COMMON/DP_C/X12DI(G,JG),XJ2DJ(G,JG), YI2DJ(IG.JG)

1 »,YJ2DJ(G,JG) XIXIDJ(IG,JG),XIYIDJ(IG.IG)

2 XIYIDJ(IG,JG), XJYIDIJAG,JG),XTYIDIAG,JG)

3 ,YIYIDI(G,JG),PLUS(G,JG)

4 ,P1(0G,JG),P2(IG,JG),P3(G,JG),P4(1G,JG)

5 -P51G.JG),P6(G.JG),P7(IG,JG),P8(IG.JG)

COMMON/ABGDJ/ADI(G,JG),BDI(G,JG),GDI(G,JG)
COMMON/DPHY/XIHJ([LX,LY), XJHJ(LX,LY), YIHI(LX,LY), YJHI(LX,LY)
COMMON/BD/XT3(LX, M), XI4(LX, M), YIB(AX,M),YI4([LX,M)

1 XI3M,LY),XJ4M,LY),YJ3(M,LY),YJ4M,LY)
COMMON/COM22/QI(LX.LY),Q2(LX.LY),Q3(LX,LY)
COMMON/FORCE/FX(LX,LY),FY(LX,LY)
COMMON/BLK3_FREE/AFREE(M,M,LX),BFREE(M,M,LX),CFREE(M,M,LX)
COMMON/FREE_UVP/FREEX(M,M,LX),FREEY(M,M,LX,3)

1 JFPI(LX),FP2(LX,3),FP3(LX,3)
COMMON/R_FREE/R_VELM,LX),R_PRE(LX)
COMMON/WAVEP/PERCENT(LX),HILX),AM(LX),PP(LX)
COMMON/F_M/FM(LX,LY),FM_LR(2,LY),FM_BT(LX)

DIMENSION XO(IG,JG),YO(G,JG),PBO(LX,LY),PTIME(10)

1 JUST(LY),VST(LY),PSTLY),U_RIT(LY),V_RITCLY)
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ZhG0069:
ZhG0070:
ZhG0071:
ZhG0072:
ZhG0073:
ZhG0074:
ZhGO0075:
ZhG0076:
ZhG0077:
ZhG0078:
ZhG0079:
ZhGO0080:
ZhGOO081:
ZhGO0082:
ZhGO0083:
ZhG0084:
ZhGO0085:
ZhGO0086:
ZhGO087:
ZhGO088:
ZhG0089:
ZhG0090:
ZhG0091:
ZhG0092:
ZhG0093:
ZhG009%4:
ZhGO0095:
ZhG0096:
ZhG0097:

* ¥ X X XK K X X ¥

CALL UNIX

CALL FDATE(BEGTM)
OPEN(11,FILE=NEWINP.INP",STATUS='0LD")
READ(11,*) N_ORDER

READ(11,*) FLOW,DENS,VISC,TENS,ANGLE
READ(11,*) FAC,DT,DTOLTOL,NPR,ENDTIME
READ(11,*) VEL_UPPER PRE_UFPPER

READ(11,*) (PTIME(D).I=1,5)

READ(11,*) (PFTIME(D),I=6,10)

READ(11,*) AV.FV

CLOSE(11)

IF(N_ORDER.EQ.1) THEN
OPEN(10,FILE='SEE_1.SEE',STATUS="UNKNOWN',ACCESS="APPEND")
OPEN(12,FILE=XY_1.DAT ,STATUS="UNKNOWN',ACCESS="APPEND")
ENDIF

I[F(N_ORDER.EQ.2) THEN
OPEN(10,FILE="SEE_2.SEE'.STATUS="UNKNOWN',ACCESS="APPEND")
OPEN(12,FILE='XY_2.DAT ,STATUS="UNKNOWN', ACCESS="APPEND")
ENDIF

WRITE(10,9955) ANGLE ,FLOW

WRITE(10,9956) DENS,VISC,TENS

WRITE(10,9960) DT,DTOLFAC

WRITE(10,9980) AV, FV

WRITE(10,*)" ***'

* SOME PARAMETERS *

PI=3.1415926535897932384

GRAV=980.665

KK=1

KSTOP=0

NTOI=250

PA=0.0

XLEN=200.0

YLEN=1.0
DPP=GRAV/DENS*(VISC/100.0/TENS)**3.0*VISC/100.0
WRITE(10,*)' Npp ='DPP

YLEN=YLEN/FAC

MIDX=LX1/2+1

ANGLE=ANGLE/180.0*PI

* FLOW — ml/min. Width=4 cm

FLOW=FLOW/240.0

VISC=VISC/DENS/100.0

FV=20*PI*FV

* FILM PARAMETER

* Average u-velocity and Steady-state film thickness

* as Characteristic Velocity and Length

* Fr is dependent on Re for this flow system.

* Re = Den*Flow/Visc Flow -- per unit Width

* Ua = (Visc*gSin(Ang)/3/Den)*(1/3)*Re”(2/3)

* H = (3Visc*2/Den*2/gSin(Ang))*(1/3)*ReA(1/3)

* §S = Den*(3Visc 2*g~2*Sin(Ang)*2/Den*2)A(1/3)*Re”(1/3)
* Fr = (Re Sin Ang/3)"0.5

RE=FLOW/VISC

FR2=RE*DSIN(ANGLE)/3.0
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ZhG0098:
ZhG0099:
ZhGO0100:
ZhGO0101:
ZhG0102:

ZhG0103:
ZbhG0104:
ZhGO0105:
ZhGO0106:

* * * *

ZhGO0107:
ZhGO0108:
ZhG0109:;
ZhGO110:
ZhGO111:

ZhGO0112:
ZhG0113:
ZhG0114:

* *

ZhGO115:
ZhGO116:
ZhGO117:
ZhGO118:
ZhGO119:
ZhG0120:

ZhGO0121:

101

ZhG0122:
ZhG{i23:
ZhG0124:

ZhGO0125:

100

ZhG0126:
ZhGO0127:
ZhGO0128:
ZhG0129:
ZhG0130:
ZhGO131:
ZhG0132:

ZhGO0133:

110

ZhGO0134:
ZhGO135:
ZhGO0136:
ZhGO0137:
ZhGO0138:

ZhGO0139:

113

ZhG0140:
ZhGO0141:
ZhGO0142:
ZhG0143:

ZhG0144:

ZhGO0145

120

UAVE=(VISC*GRAV*DSIN(ANGLE)/3.0)**(1.0/3.0)*RE**(2.0/3.0)
HAVE=(3.0*VISC**2.0/GRAV/DSIN(ANGLE)*RE)**(1.0/3.0)
WE=TENS/DENS/UAVE**2 (/HAVE
WRITE(10,9957) HAVE,UAVE
WRITE(10,9950) RE,WE,FR2
* CALCULATION Re, We, and Fr *
* Surface u-velocity and (f)*Steady-state film thickness
* as Characteristic Velocity and Length
* Surface-u = 1.5%Average-u
USUR=1.5*UAVE
RE=FAC*HAVE*USUR/VISC
WE=TENS/DENS/USUR**2.0/HAVE/FAC
FR2=USUR**2.0/GRAV/HAVE/FAC
WRITE(10,9950) RE,WE,FR2
* BCs ul: no-slip on the bottom
*  u2: no-drag on the free surface
* p:p=Paon the free surface
FXX=DSIN(ANGLEYFR2
FYY=-DCOS(ANGLE)/FR2
YSTEP=HAVE/DFLOAT(LYT1)
DO 100J=1LY
DO 101 I=1,LX
FXOAJ)=FXX
FY(D=FYY
YY=DFLOAT(-1)*YSTEP
UST(N=HAVE-0.5*YY)*YY*GRAV*DSIN(ANGLE)/VISC/USUR
VST(()=0.0
PST(N)=PA+(HAVE-YY)*GRAV*DCOS(ANGLE)/USUR**2.0
TM=0.0
ITM=0
XSTEP=XLEN/DFLOAT(G1)
DO 110 I=1,IG
XX=DFLOAT(-1)*XSTEP
DO 110 I=1JG
X{@N=XX
XO@)=XX
YSTEP=YLEN/DFLOAT(G1)
DO 113 J=1,JG

=DFLOAT(J-1)*YSTEP
DO 113 I=LIG
YID=YY
YOO D=YY
DO 120 I=1,LX
DO 120 J=1,LY
UILN=UST()
VAD=VSTD)
PILN=PST()

: 8080 TM=TM+DT

ZhG0146:
ZhG0147:
ZhGO0148:
ZhG0149:
ZhG0150:

ITM=ITM+1
CALL GRID
CALL DPOSITION
DO 210 I=1,IG

DO 210 J=1,JG
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ZhGO151:
ZhGO0152:
ZhGO0153:
ZhG0154:
ZhGO155:
ZhG0156:
ZhGO0157:
ZhGO0158:
ZhG0159:
ZhGO0160:
ZhGO161:
ZhGO0162:
ZhG0163:
ZhG0164:
ZhGO0165:
ZhG0166:
ZhG0167:;
ZhGO0168:
ZhG0169:
ZhGO0170:
ZhGO0171:
ZhG0172:
ZhGO0173:
ZhG0174:
ZhGO0175:
ZhG0176:
ZhGO0177:
ZhGO0178:;
ZhGO0179:
ZhG0180:
ZhGO0181:
ZhG0182:
ZhGO183:
ZhGO0184:
ZhGO0185:
ZhG0186:
ZhGO0187:
ZhGO0188:
ZhG0189:
ZhGO0190:
ZhGO0191:
ZhG0192:
ZhG0193:
ZhGO0194:
ZhG0195:
ZhG0196:
ZhG0197:
ZhG0198:
ZhG0199:
ZhG0200:
ZhG0201:
ZhG0202:
ZhG0203:

210

263

370

633

XTALN=(X{1,D)-XO1,N)/DT

YTAN=(Y(@))-YO@LJ))/DT

XOMLN=X(LJ)

YO@LD=Y(@LD

CALL CONSTANT(RE,DT,PA,WE)

CALL COEF_MATRIX(DT,DTOI)

CALL BLK3_LU

DO 263 J=2,L.Y

IM1=]-1

J1=2*]M1
U_RITO)=YIAGLIN*(ULX)+ULX1,])-ULX,IM1)-ULX1JM1))
1 -YYIGLIN*(ULX)+ULX,IM1)-U(LX1,])-ULX1,JM1))
V_RITQ)=XJAGLIN*(VLX,)+VIXJM1)-VIXL]))-VI.X1,JMI))
1 -XIAGLIN*(VILXJH+V(IXL)-VILX,JMD)-V(LX1,JMD))
DO 300 I=1,L.X

DO 300 J=1,LY

DUB(I.))=0.0

DVB({,N=0.0

UB(IN=0.0

VB(IJ)=0.0

PB.J)=0.0

PBOQ.1)=0.0

*disE=Eatn+l-Eatn

DO 370 J=1,LY
UB(L,N=USTQ)*AV*(DSINFV*TM)-DSIN(FV*(TM-DT)))
DO 400 ITOI=1,NTOIL

ERRDUVB=0.0

CALL VELB_BLOCK(DT,DTOI)

DO 600 I=2,1L.X1

DO 600 J=2,LY1
Al=DMAXI1(DABS(DUB(.))),DABS(DVB(.J))
IFERRDUVB.LT.A1) ERRDUVB=Al
UB(LJ)=UB(L))+DUB(L))

VB(ILD)=VB@,)+DVB(,))

CALL FREE_VEL

DO 633 J=2,LY

Mi=J-1

JI=2*IM1

UB(LX.J)=(U_RITQ)

1 +YI(AGLIN*(UB(LX1,))-UB(LX,JM1)-UB(LX1,JM1))
1 -YJAG1,IN*(UB@LX,JM1)-UB(LX1,))-UB(LX1,]M1)))
2 I(YJAGLIN-YIAGLID)

VB(LXJ)=(V_RITQ)

1 +XJAGLIN*(VB(LX,JM1)-VB(LX1,J)-VB(LX1,JM1))
1 -XIAG1,JN)*(VB(LX1,)-VB(LX,JM1)-VB(LX1,]M1)))
2 IXIAGLID-XJAGL,ID)

DO 650 1=2,LX1

P1=I+1

Mi1=I-1

UBX=FP1(IP1)*UB(IP1,LY)-FP1(IM1)*UB(IM1,LY)
UBY=3.0*FP2(,1)*UB(I,LY)4.0*FP2(1,2)*UB(I,LY1)

1 +FP2(1,3)*UB(,LY2)
VBY=3.0*FP3(1,1)*VB(,.LY)4.0*FP3(1,2)*VB(I,LLY1)
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ZhG0204:

1 +FP3(1,3)*VB(,LY2)

ZhG0205: 650 PB(LLY)=R_PRE()+0.5*(UBX-UBY-VBY)

ZhG0206:
ZhG0207:
ZhG0208:
ZhG0209:
ZhG0210:
ZhG0211:
ZhG0212:
ZhGO0213:
ZhG0214:
ZhG0215:
ZhG0216:
ZhGO0217:
ZhG0218:
ZhG0219:
ZhG0220:
ZhG0221:
ZhG0222:
ZhG0223:
ZhG0224:
ZhG0225:
ZhG0226:
ZhG0227:
ZhG0228:
ZhG0229:
ZhG0230:
ZhG0231:
ZhG0232:
ZhG0233:
ZhG0234:
ZhG0235:
ZhG0236:
ZhG0237:
Zh(G0238:
ZhG0239:
ZhG0240:
ZhG0241:
ZhG0242:
ZhG0243:
ZhG0244:
ZhG0245:
ZhG0246:
ZhG0247:
Zh(G0248:
ZhG0249:
ZhG0250:
ZhGO0251:
ZhG0252:
ZhG0253:
ZhG0254:
ZhG0255:
ZhG0256:

*

*

700
400

*x
*

8100

750

800

* OTHER PRESSURE BOUNDARY *

CALL PB_NBD(RE)

* CORNER POINTS *

AA=PB(2,3)+PB(2,1)-PB(1,3)-2.0*(PB(2,2)-PB(1,2))

BB=PB(1,2+PB(3,2)-PB(3,1)-2.0%(PB(2,2)-PB(2,1))

PB(1,1)=0.5*(AA+BB)
=PB(LX1,3+PB(LX1,1)-PB(LX,3+2.0*(PB(LX,2)-PB(LX1,2))

BB=PB(LX2,2+PB(LX,2)-PB(LX2,1)-2.0%(PB(LX1,2)-PB(LX1,1))

PB(LX, 1)=0.5*(AA+BB)

PB(1,LY)=PB(2,LY+PB(2,LY2)-PB(1,LY2)

1 -2.0*(PB(2,LY1)-PB(1,LY1))

PBILX,LY)=PBLXI1LYPB(LX1,LY2)-PBAX,LY2)

1 +2.0*(PB(LX,LY1)-PB(LX1,LY1))

CALL PB_INNER(BJ,DT)

ERRDPB=0.0

DO 700 I=1,LX

DO 700 J=1,LY

A2=DABS(PB(1.J)-PBO(L,]))

IF(ERRDPB.LT.A2) ERRDPB=A2

PBO(L.))=PB(1.])

IFEERRDUVB.LT.TOL.AND.ERRDPB.LT.TOL) GOTO 8100

CONTINUE

* Middle point on Bottom as

* the Pressure Reference Point

PBASE=PB(MIDX,1)

DO 750 I=1,L.X

DO 750 J=1,LY

PB(,J)=PB(1,])-PBASE

ERRDUV=0.0

ERRDP=(.0

DO 800 I=1,LX

DO 800 J=1,LY

IF(DABS(UB(1,J)).LT.1.0D-10) UB(LJ)=0.0

IF(DABS(VB({,1)).LT.1.0D-10) VB(,N=0.0

IF(DABS(PB(1,J)).LT.1.0D-10) PB(1,))=0.0

A1l=DMAX1(DABS(UB(.J)),DABS(VB(.))))

A2=DABS(PB(1.)))

IFERRDUV.LT.A1) ERRDUV=A1

IF(ERRDP.LT.A2) ERRDP=A2

ULN=U@.+UBQ))

VAN=VAN+VB({,]))

PLI=P(LI+PB(1.J)

IF(ERRDUV.GT.VEL_UPPER) THEN

WRITE(10,*) ' VELOCITY UNSTABLE ! AT, TM

KSTOP=99

ENDIF

IF(ERRDP.GT.PRE_UPPER) THEN

WRITE(10,*) ' PRESSURE UNSTABLE ! AT, TM

KSTOP=99

ENDIF

DO 900 I=2,L.X
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ZhGO0257: I=2*I-1

ZhGO0258: XX=X(II,JG)-X1-2,JG)

ZhG0259: 900 Y(ILIG)=(YO(ILIGHV(ILLY)*DT+DT*U(LYY/XX*Y(1I-2,JG))
ZhG0260: 2 /(1.0+DT*U(LY)XX)

ZhG0261: DO 910 I=2,1G-1,2

ZhG0262: 910 Y(LIG)=0.5*(Y{I-1,JG+Y(+1,JG))

ZhG0263: IFITM-ITM/NPR*NPR.EQ.0)

ZhG0264: 1 WRITE(10,9930) ITOLLERRDUVB,ERRDPB,TM,ERRDUV,ERRDP
ZhG0265: IF(KSTOP.EQ.99.0R.DABS(TM-PTIME(KK)).LT.DT/2.0) THEN
ZhG0266: WRITE(12,9940) TM

ZhG0267: DO 920 I=1,LX

ZhG0268: I=2*I-1

ZhG0269: PERCENT(D=(Y(LJG)-YLEN)/YLEN*100.0
ZhG0270: 920 WRITE(12,9900),X(I1LJG),Y(LJG),PERCENT()
ZhG0271: CALL WAVE(LL1,LL2)

ZhG0272: WRITE(10,9940) TM

ZhG0273: WRITE(10,9926) (H(I),I=1,LL1)

ZhG0274: DO930I=1,LL2

ZhG0275: 930 WRITE(10,9927) AM(I).,PP(I)

ZhG0276: IF(KSTOP.EQ.99) STOP

ZhG0277: CALL FDATE(STPTM)

ZhG0278: KK=KK+1

ZhG0279: WRITE(10,9935) BEGTM,STPTM

ZhG0280: ENDIF

ZhGO0281: IF(TM.LT.ENDTIME) GOTO 8080

ZhG0282: 9930 FORMAT(1X,13,2(1X,E10.3),2X,F8.3,2(1X,E10.3))
ZhG0283: 9940 FORMAT(1X, Time="F8.3)

ZhG0284: 9950 FORMAT(1X,Re="F8.3,' We ='F8.3,' F12 ='F8.3)
ZhG0285: 9955 FORMAT(1X,'Ang =',F5.1,’ Deg.",’ Q =',F6.1,' mI/min.")
ZhG0286: 9956 FORMAT(1X,'Den =',F7.3," Visc ='F7.3,' Tens =',F7.3)
ZhG0287: 9957 FORMAT(1X, HO ="F74,' cm',' U0 =" F8.4, cm/s")
ZbG0288: 9960 FORMAT(1X,Dt='"F8.3, Dtoi="F8.3,' f ="F4.1)
ZhG0289: 9980 FORMAT(1X,'AV="F84,' FV ='F6.2)

ZhG0290: 9900 FORMAT(1X,F7.3,1X,F10.6,2X,F10.6)

ZhG0291: 9905 FORMAT(1X,2(1X,F5.2,1X,F8.5))

ZhG0292: 9925 FORMAT(1X,3(1X,F10.5))

ZhG0293: 9926 FORMAT(1X,5(F8.5,1X))

ZhG0294: 9927 FORMAT(1X,2(F8.5,1X))

ZhG0295: 9935 FORMAT(1X,A24,2X,A24)

ZhG0296: 8888 STOP

ZhG0297: END

ZhG0298:

ZhG0299: SUBROUTINE UNIX

ZhG0300: IMPLICIT REAL*8 (A-H,0-Z)
ZhGO0301: CALL ABRUPT_UNDERFLOW(Q
ZhG0302: CALL GRADUAL_UNDERFLOW(
ZhGO0303: RETURN

ZhG0304: END

ZhGO0305:

ZhG0306: SUBROUTINE GRID

ZhGO0307: IMPLICIT REAL*8(A-H,0-Z)
ZhGO0308: PARAMETER(LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
ZhGO0309: PARAMETER(11=IG-1,J1=JG-1)
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ZhGO310:
ZhGO0311:
ZhGO0312:
ZhGO0313:
ZhG0314:
ZhG0315:
ZhGO0316:
ZhGO0317:
ZhG0318:
ZhG0319:
ZhG0320:
ZhGO0321:
ZhG0322:
ZhG0323:
ZhG0324:
ZhGO0325:
ZhGO0326:
ZhG0327:
ZhG0328:
ZhG0329:
ZhG0330:
ZhG0331:
ZhG0332:
ZhG0333:
ZhG0334:
ZhG0335:
ZhG0336:
ZhGO0337:
ZhG0338:
ZhG0339:
ZhG0340:
ZhGQ0341:
ZhG0342:
ZhG0343:
ZhG0344:
ZhG0345:
ZhGO0346:
ZhGO0347:
ZhG0348:
ZhG0349:
ZhG0350:
ZhGO0351:
ZhG0352:
ZhG0353:
ZhGO0354:
ZhG0355:
ZhG0356:
ZhG0357:
ZhG0358:
ZhG0359:
ZhG0360:
ZhG0361:
ZhG0362:

30

50

COMMON/XY/X(1G,JG),YAG,JG)
COMMON/PSFE/PS(G,JG),FE(IG,JG)
CALL UNIX
NUMBER=100
OMG=1.7
DO 30 I=1,IG
Mi=I-1
DO 30 J=1,JG
XALND=XAG,H-X(1.1))*DFLOATIM1)/DFLOAT(I1)+X(1,])
YOD=(Y(LJG)-Y(Q,1))*DFLOAT(-1)/DFLLOAT(J1)>+Y({,1)
DO S0 =211
IP1=I+1
Mi=I-1
DO 50 J=1,JG
XX=X(1P1,5)-X(IM1,])
YX=Y@P1,J))-Y(IML))
XXX=XAP1,J)+XOM1,1)-2.0*X{A.J)
YXX=Y@P1,J)+Y(OIM1,D)-2.0*Y(J)
FEQ,D=-2.0** XXX+ YX*Y XX)/(XX*XX+YX*YX)
DO 60 J=2,]1
JP1=J+1
MI1=J-1
DO 60 I=1,1G
XY=X(IJP1)-X(I.JM1)

=Y(.JP1)-Y(I,JM1)
XYY=XIJP1)+X{T,JM1)-2.0*X(L,))
YYY=YQJP1)+Y( JM1)-2.0*Y(L))
PSO=-2.0*(XY*XYY+YY*YYY)/XY*XY+YY*YY)
DO 130 K=1,NUMBER
RSD=0.0
DO 140 1=2,11
IP1=I+1
Mi=I-1
DO 140 J=2]1
JP1=J+1
IM1=]-1
XX=0.5*X(IP1,J)-XAM1.)))
XY=0.5*X(JP1)-X(1,JM1))
YX=0.5*(Y(IP1,))-Y(IM1,]))
YY=05*(Y(1JP1)-Y(IIMD))
XXY=X1P1,JP1)-X(IP1,]M1)-X(IM1,JP1}+X(IM1,JM1)
YXY=Y(P1,JP1)-Y(IP1,JM1)-Y(IM1,JP1 }+ Y(IM1,JM1)
AA=XY*XY+YY*YY
BB=0.5*(XX*XY+YX*YY)
GG=XX*XX+YX*YX
T=AA*FE(J)
D=GG*PS{.J))
DAC=2.0*(AA+GG)
DX=(AA*X(P1,)+X(IM1LNHGG*X1,JP1)+X(1,JM1))
1 -BB*XXY+T*XX+D*XY)/DAC-X(LJ)
DY=(AA*(Y(PLI+Y(IML)H+GG*(Y(L,JP1)+Y(I,JM1))
1 -BB*YXY+T*YX+D*YY)/DAC-Y(L,J)
XI,D=X1,1)xOMG*DX
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ZhG0363: YAD=YLIH+OMG*DY

ZhG0364: E=DMAX1(DABS(DX),DABS(DY))

ZhG0365: 140 IF(RSD.LT.E) RSD=E

ZhG0366: IF(RSD.LT.1.0D-6) GO TO 150

ZhG0367: 130 CONTINUE

ZhGO0368: 150 RETURN

ZhG0369: END

ZhG0370:

ZhGO371: SUBROUTINE DPOSITION

ZhG0372: IMPLICIT REAL*8(A-H,0-Z)

ZhGO0373: PARAMETER(LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
ZhG0374: PARAMETER(11=1G-1,J1=]G-1,12=1G-2,J2=]G-2)
ZhG0375: COMMON/XY/X(IG.JG),YIG.JG)

ZhGO0376: COMMON/DXY/XI(IG,JG).XJAG.JG), YI(IG,JG), YIIG.JG)
ZhGO0377: COMMON/ABG/BJ(G.JG),A(IG.JG),BAG.JG).GAG.JG)
ZhGO0378: CALL UNIX

ZhG0379: DO 200 I=2,11
ZhG0380: IP1=I+1
ZhGO0381: Mli=I-1

ZhG0382: X11,1)=X(1P1,1)-X(IM1,1)

ZhGO0383: YI(,1)=Y(P1,1)-Y(OML,1)

ZhG0384: XJ(I,1)=-3.0*X(1,1)}+4.0¢X{1,2)-X(1,3)
ZhGO0385: YJ(@,1)=-3.0*Y(,1)+4.0*Y(1,2)-Y(L,3)
ZhGO386: XILIG)=X(AP1JG)-X(IM1,JG)

ZhGO0387: YIQJG)=Y(AP1,JG)-Y(IM1,JG)

ZhGO0388: XIIIG)=3.0*X(1,JG)4.0«X (I, J1)+X(1,J2)
ZhG0389: YJA.JG)=3.0*Y(1,JG)-4.0*Y(1,J1)+Y(1.J2)
ZhG0390: DO 200 J=2J1

ZhGO0391: JP1=J+1

ZhG0392: M1=]-1

ZhG0393: XIT))=XAP1.))-X(IM1,J)

ZhGO0394: YI(LD=Y(@P1,))-Y(IML,J)

ZhGO0395: XIAN=X({I,IP1)-XI,IM1)

ZhG0396: 200 YIILD=Y(JP1)-Y(I,JM1)

ZhG0397: DO 220 J=2,J1

ZhG0398: JP1=J+1

ZhG0399: Ml=]-1

ZhG0400: XJ(1,D=X(1,JP1)-X(1,JM1)

ZhG0401: YI(1.J)=Y(1,JP1)-Y(1,JM1)

ZhG0402: XI(1,0)=-3.0*X(1,1)+4.0*X(2,))-X(3.J)
ZhG0403: YI(1,0)=-3.0*Y(1,1)+4.0*Y(2,))- Y(3.))
ZhG0404: XIAG.))=X({G,JP1)-X(IG,JM1)

ZhG0405: YJAG,D=Y(G,JP1)-Y(IG,JM1)

ZhG0406: XIAG,J)=3.0*X(IG.N)4.0*X{1,)+X(12,])
ZhG0407: 220 YIAG,)=3.0*Y(IG,N4.0*Y(11,))+Y(12,))
ZhG0408: XI(1,1)=-3.0*X(1,1)+4.0*X(2,1)-X(3,1)
ZhG0409: YI(1,1)=-3.0*Y(1,1)+4.0*Y(2,1)-Y(3,1)
ZhG0410: XJ(1,1)=-3.0*X(1,1)+4.0*X(1,2)-X(1,3)
ZhG0411: YJ(1,1)=-3.0%Y(1,1}+4.0*Y(1,2)-Y(1,3)
ZhG0412: XI(1,JG)=-3.0*X(1,JGH4.0*X(2,JG)-X(3.JG)
ZhG0413: YI(1,JG)=-3.0*Y(1,JG)+4.0*Y(2,JG)-Y(3,JG)
ZhG0414: XJ(1,JG)=3.0*X(1,JG)-4.0%X(1,J1)+X(1,]2)
ZhG0415: YJI(1,JG)=3.0*Y(1,JG)4.0*Y(1,J1)}+Y(1,J2)
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ZhG0416:
ZhG0417:
ZhG0418:
ZhG0419:
ZhG0420:
ZhG0421:
ZhG0422:
ZhG0423:
ZhG0424:
ZhG0425:
ZhG0426:
ZhG0427:
ZhG0428:
ZhG0429:
ZhG0430:
ZhG0431:
ZhG0432:
ZhG0433:
ZhG0434:
ZhG0435:
ZhG0436:
ZhG0437:
ZhG0438:
ZhG0439:
ZhG0440:
ZhG0441:
ZhG0442:
ZhG0443:
ZhG0444:
ZhG0445:
ZhG0446:
ZhG0447:
ZhG0448:
ZhG0449:
ZhG0450:
ZhG0451:
ZhG0452:
ZhG0453:
ZhG0454:
ZhG0455:
ZhG0456:
ZhG0457:
ZhG0458:
ZhG0459:
ZhG0460:
ZhG0461:
ZhG0462:
ZhG0463:
ZhG0464:
ZhG0465:
ZhG0466:
ZhG0467:
ZhG0468:

230

XI(AG,1)=3.0*X(G,1)-4.0*X{11,1)+X(12,1)
YI(G,1)=3.0*Y(IG,1)4.0*Y(I1,1)+ Y(12,1)
XJ{AG,1)=-3.0*X(1G,1)+4.0*X(G,2)-X(1G,3)
YJAG,1)=-3.0*Y(G,1)+4.0*Y(IG,2)-Y(G,3)
XI(IG,JG)=3.0*X(IGJG)4.0*X (1, JG}+X(12,]G)
YIAG.JG)=3.0*Y(IG,JG)4.0*Y(LIG)+Y(12,JG)
XJAG,JG)=3.0*X(G,JG)4.0*X(AG,J1+X(G,J2)
YJAG,JG)=3.0*Y(IG,JG)4.0*Y(IG,J1+Y(GJ2)
DO 230 I=1,IG

DO 230 J=1JG

A@)=XI1I)**2.0+YI(1,I)**2.0
BAD=XIA))*XJAN+YILI)*YI1LI)
GALN=XIIN**2.0+ YI(L)**2.0
BILN=XIA)*YILD)-XIAN*YIAD)

RETURN

END

SUBROUTINE CONSTANT(RE,DT,PA,WE)
IMPLICIT REAL*8(A-H,0-Z)
PARAMETER(M=2,LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
PARAMETER(LX1=LX-1,LY1=LY-1,LX2=LX-2,LY2=LY-2)
PARAMETER(IG2=IG-2,JG2=]G-2,]G4=]G-4)
COMMON/XY/X(IG,JG),YIG,JG)
COMMON/PSFE/PS(IG,JG),FE(IG,JG)
COMMON/UVP/U(LX,LY),V(LX,LY),P(LX,LY)
COMMON/FORCE/FX(LX,LY),FY(LX,LY)
COMMON/DXY/XI(IG,JG).XJ(IG.JG),YI(G,JG),YIIG,JG)
COMMON/DXYT/XT(G,JG),YTAGJG)
COMMON/ABG/BI(IG,JG),A(IG,JG),B(G,JG),G(IG,JG)
COMMON/UVR/UR(LX,LY},VR(LX,LY)
COMMON/P_R/PR(LX,LY)
COMMON/UV_B/ULFT(LY),URIT(LY),UBTM(LX)
1 »VLFT(LY),VRIT(LY),VBTM(LX)
COMMON/BD/XI3(LX, M), XI4LX,M), YI3(LX,M), YI4LX,M)
1 XI3M,LY).XJ4M,LY),YI3(M,LY),YJ4M,LY)
COMMON/DPHI/XTHJ(LX.LY),XJHJ(LX,LY), YIHJ(LX,LY),YJHI(LX,LY)
COMMON/DP_C/X12DJ(G.JG).XJ2DJ(G,JG), YI2DJAG,JG)
,YI2DJ(IG,JG),XIXIDJ(AG,JG).XIYIDI(IG.JG)
XIYIDJIG,JG).XJYIDJAG,JG), XTYIDJAGJG)
,YIYIDI(IG,JG),PLUS(IG,JG)
P1(G,JG),P2(IG.JG),P3(G.JG),P4(G.JG)
P50G,JG),P6(IG.JG),P7(G.JG).P8(1G.IG)
OMMON/UV_C/CUX1(LX,LY),CUY1(LX,LY),CVX1(LX,LY),CVY1QLX,LY)
CUX2(LX.LY),CUY2(LX,LY),CVX2(LX,LY),CVY2(LX,LY)
,CULLX,LY),CVI(LX,LY),CU2(LX,LY),CV2(LX.LY)
LCXX(LX,LY),CXY(LX,LY),CYY(LX,LY)
COMMON/ABGDIJ/ADIJ(G,JG),BDJ(IG,JG),GDJAG,JG)
COMMON/FREE_UVP/FREEX(M,M,LX),FREEY(M,M,LX,3)
1 JFPILX),FP2(LX,3),FP3(LX,3)
COMMON/R_FREE/R_VELM.,LX),R_PRE(LX)
COMMON/F_M/FM(LX,LY),FM_LR(2,LY),FM_BT(LX)
DIMENSION QI(LX,LY),Q2(LX,LY).Q3(LX,LY),DD@ILX,LY)
1 CURLX),W(LX.LY)
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ZhG04609:
ZhG0470:
ZhG0471:
ZhG0472:
ZhG0473:
ZhG0474:
ZhG0475:
ZhG0476:
ZhG0477:
ZhG0478:
ZhG0479:
ZhG0480:
ZhG0481:
ZhG(482:
ZhG0483:
ZhG(484:
ZhG0485:
ZhG0486:
ZhG0487:
ZhG0488:
ZhG0489:
ZhG0490:
ZhG0491:
ZhG0492:
ZhG0493:
ZhG0494:
ZhG0495:
ZhG0496:
ZhG(497:
ZhG0498:
ZhG0499:
ZhGO0500:
ZhG0501:
ZhG0502:
ZhG0503:
ZhGO0504:
ZhG0505:
ZhGO0506:
ZhGO0507:
ZhG0508:
ZhG0509:
ZhGO0510:
ZhGO511:
ZhG0512:
ZhGO0513:
ZhG0514:
ZhG0515:
ZhGO0516:
ZhGO0517:
ZhGO518:
ZhGO0519:
ZhG0520:
ZhG0521:

10

13

14

15

CALL UNIX

DO 10 I=1,IG

DO 10J)=1,JG

BB=1.0/BJ(ILIY)
XI2DJALI)=XI(IL,}1T)**2.0*BB
XI2DJALIN=XI1,J5)**2.0*BB
YI2DJALID=YIQLID**2.0*BB
YI2DIALIN=YJ(ILJ1)**2.0*BB
XIXIDIMLIN=XI JN*XJ(11,J])*BB
XIYIDJALJD=XIILJN)*YI(O0,J))*BB
XIYIDJALIN=XI(ILIN*Y J(IL1))*BB
XJYIDJALIN=XIALIN*YI(ILI*BB
XJYIDIALIN=XIALIN*YI(IL1))*BB
YIYIDIALIN=YIW IN*YI(,JJ)*BB
PLUSLJN=XTYIDJAL I+ XIYIDIALIY)
P1ALIN=XTYIDIALIN*YTQALID)

1 -YI2DIALJN*XTALIY)
P2ALIN=YIYIDJALJN*XT(ILII)

1 -XIYIDILID*YTILIT)
P3(IJIN=X12DJILJN*YTQALIT)

1 -XJYIDJ(ILJN*XTL)
P4(ILIN=XTYIDJALIN*XT(IL,IJ)

1 -XIXIDJALI*YTALI))
PSALIN=XIXIDIALIN*YTQLI))

1 -XIYIDJ(ALIN*XTIL,J))
P6(LIN=XIYIDJ(ILJN)*XT{LJ))

1 -X2DJALIN*YTALII)
P71 JN=XJYIDJALIN*YT(LI])

1 -YIYIDJALIN*XTLI))
P8(ILIN=Y12DJ(LJN)*XT(ILJ))

1 -XIYIDJALID*YTALJ)
ADJILIN=A{LJN*BB
GDJ(LIN=G{LJ))*BB
BDJ(ILJN)=B({LJ)*BB

L=2*LX1

DO 13 J=2,LY1

JI=2%*]J-1
FM_LR(1,]))=ADJ(2,JN)*GDJ(2,J1)-BDJ(2,J1)**2.0
FM_LR(2,)=ADJ(L JN*GDIJ(L,JN-BDJ(L,IN)**2.0
DO 14 I=2,1.X1

=2*I-1
FM_BT()=ADI(1,2)*GDJ{1,2)-BDJ(1,2)**2.0
DO 15 [=2,1L.X1

[1=2*1-1

[E=II+1

Iw=II-1

DO 15J=2,LY1

J1=2%]-1
FM(I,N=ADIIEIJN+ADJAW,IN+GDJ{LJJ+1)+GDJ(IL,JJ-1)
DO 20J=1,LY

JJ=2%]-1
XJ13(1,D)=1.5*XJ(1,JN/BJ(1,1])
YJ3(1,D)=1.5*YJ(1,J)/BI(1,I1D)
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ZhG0522:
ZhG0523:
ZhG0524:
ZhG0525:
ZhG0526:
ZhG0527:
ZhG0528:
ZhG0529:
ZhG0530:
ZhG0531:
ZhG0532:
ZhGO0533:
ZhG0534:
ZhGO0535:
ZhG0536:
ZhG0537:
ZhG0538:
ZhG0539:
ZhG0540:
ZhG0541:
ZhG0542:
ZhG0543:
ZhG0544:
ZhG0545:
ZhGO546:
ZhGO0547:
ZhG0548:
ZhG0549:
ZhG0550:
ZhGO0551:
ZhG0552:
ZhGO0553:
ZhGO0554:
ZhGO0555:
ZhG0556:
ZhG0557:
ZhG0558:
ZhG0559:
ZhGO560:
ZhGO0561:
ZhG0562:
ZhG0563:
ZhGO564:
ZhG0565:
ZhG0566:
ZhG0567:
ZhGO0568:
ZhG0569:
ZhGO0570:
ZhGOS71:
ZhGO0572:
ZhG0573:
ZhG0574:

20

50

XJ3(2,)=1.5*XJAG,JN/BIAG,J))
YI3(2,)=1.5*YJAG,JN/BIAG,J])
XJ4(1,D)=2.0*XJ(3,JN/BI3.JN
YJ4(1,0)=2.0*YJ(3,J/BX(3,]])
XJ4(2,0)=2.0*XJAG2,J1)/BI(IG2,]1)
YJ4(2,1)=2.0*YI(IG2,JN)/BIAG2.]T)

DO 40 1=1,L.X

I=2*%I-1

XI3(L,1)=1.5*XI(IL,1)/BJ{L,1)
YI3(,1)=1.5*YI(L1)/BJ(1L1)
X13(1,2)=1.5*X1ALIG)/BIALIG)
YI3(1,2)=1.5*YI(II,JG)/BJ(I1,JG)
XI4(1,1)=2.0*XI(I1,3)/BJ(L,3)
YI4(1,1)=2.0*YI(I,3)/BJ(1L3)
X14(1,2)=2.0*X1(I1,JG2)/BX11,JG2)
Y141,2)=2.0*YI(I,JG2)/BJA1JG2)

DO 40J=1,LY

J}=2*J-1

H_J=0.5/BJALI))

XHIAD=XIALIN*H_J

XTHIQLD=XJALIN*H_J

YIHIAD=YILIN)*H_J

YTHIAD=YJAIN*H_J

QLIAN=UN**2.0+P(L,])

Q2AN=U@.DH*V(L))

Q3A.N=V{1.))**2.0+P(.J)

DO 50 I=2,1L.X1

[P1=I+1

M1=I-1

WA, 1=(-XI3(, 1)*UQ, 1)+XI4(1,1)*U(1,2)-XTHI{,3)*U(1,3)
2 -YI3A,D*V(, D+ YA, 1)*V({1,2)- YIHI(I,3)*V(1,3)
4 -XJHI(IP1,1)*UQP1,1)+XJHIOM1,1)*U(IM1,1)

5 -YJHI@P1,1)*V(aP1,1)+ YJTHIOM1,1)*V(IM1,1))
W{A,LY)=

I XI3(,2)*U(,LY)-XT4(1,2)* U, LY 1)+ XTHJ(I,LY2)*U(,LY2)
1 +YI3A,2)*VA,LY)-YI41,2)*VI LY 1)+ YIHIQ,LY2)*V(I,LY2)
4 -XJTHI(IP1,LY)*U(IP1,LY)+XJTHJAMLLY)*U(IM1,LY)
5 -YIHIAP1,LY)*V(P1,LY)+YJHIIM1,LY)*V(IMILLY))
DO 50 J=2,LY1

JP1=J+1

M1=J-1
DD(LN=(YJHIAP1,))*U(PL,))-YJHI(IM1,J)*U(IM1,])

1 -YIHI(JP1)*UJP1)+ YIHIA,JM1)*U(1,]M1)

2 +XMHI{IJP1)*V(JP1)-XTHII,JM1)*V(I,IM1)

3 -XTHI(IP1,D*V(AP1,))+XTHIOM1,1)*V(IML,J))
W(I,)= (XIHJ{,JP1)*U(L,JP1)-XTHJ(IJM 1)*U(,JM1)

1 -XJHIAP1,D)*UdP1,)+XTHIAM1,D)*U(IM1,))

2 -YJHIAP1,)*VAP1L,)+YJHI(IM1,J)*V(IM1,])

3 +YHIT,JP1)*VA,JP1)-YTHIAIJM1)*V(1,]M1))
DO 521=2LY1

JP1=J+1

Mi1=]J-1

Ww(1,D)= (XIHI(1,JP1)*U(1,JP1)-XTHI(1,JM 1)*U(1,JM1)
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ZhGO0575:
ZhGO0576:
ZhGO0577:

2 +YIHI(1,JP1)*V(1,JP1)-YIHJ(1,JM1)*V(1,JM1)
3 +XJ3(1,H)*ULD-XH(1,)*UI+XTHI(3.1)*U(3,))
4 +YJ3(LD*V(LD-YI41,D)*V(2,)+YTHI(3,))*V(3,7))

ZhG0578: 52 WX DN=(XTHJ(LX JP1)*ULX.JP1)-XTHJ(LX,JM1)*U(LX JMI)

ZhGO0579:
ZhGO0580:
ZhGO0581:
ZhG0582:
ZhGO0583:
ZhG0584:
ZhGO58S:
ZhGO0586:
ZhGO0587:
ZhG0588:
ZhGO0589:
ZhG0590:
ZhGO0591:
ZhG0592:
ZhG0593:
ZhG0594:
ZhG0595:
ZhG0596:
ZhG0597:
ZhG0598:
ZhG0599:
ZhG0600:
ZhG0601:
ZhG0602: *
ZhG0603: *
ZhG0604: *
ZhG0605:
ZhG0606:
ZhG0607:
ZhGO0608:
ZhG0609:
ZhG0610:
ZhGOo611:
ZhG0612:
ZhG0613:
ZhG0614:
ZhGO0615:
ZhG0616:
ZhG0617:
ZhGO0618:
ZhG0619:
ZhG0620:
ZhG0621:
ZhG0622:;
ZhG0623:
ZhG0624:
ZhG0625:
ZhG0626:
ZhG0627:

2 +YIHILXJP1*VAX,IP1)-YTHILX,JM1)*V(ILX,JM1)

3 -XT3(2N*UWLXI+XI4(2,0)*ULX1,))-XTHILX2,)*U(LX2,])

4 -YBERD*VLX N+ YHR(2)*V(IX1,))-YTHILX2,)*V(ILX2,J))
w(Q,1)=

1 (-XI3(1,1)*U(1,1D)+XT14(1,1)*U(1,2)-XTHI(1,3)*U(1,3)

2 -YI3(L1)*V(,1D+YT4(1,1)*V(1,2)-YIHI(1,3)*V(1,3)

4 +XJ3(1,1)*U(1,1)-XJ4(1,1)*U(2,1}+XTHI(3,1)*U(3,1)

S +YJ3(LD)*V(1,1)-YI4(1,1)*V(2,1)+YJHI(3,1)*V(3,1))

W(,LY)=

1 (X13(1,2)*U(1,LY)-XI4(1,2)*U(1, LY 1)+ XIHI(1,LY2)*U(1,LY?2)

2 +YI3(1,2)*V(1,LY)-YI4(1,2)*V(1,LY 1)+ YIHI(1,LY2)*V(1,LY?2)
4 +XJ3(1,LY)*U(1,LY)-XJ4(1,LY)*U(2,LY +XJHI3,LY)*UG3,LY)
5+YI3(LLY)*V(1L,LY)-YHM(1,LY)*V(2, LY+ YTHIG,LY)*V(3.LY))
WLX, )=

1 (XBLXD*ULCX, DHXI4(LX, 1)*ULX,2)-XTHI(LX,3)*U(LX,3)
2 -YBLXD*VLX, D+ YHLX, D)*V(ILX,2)- YIHI(LX,3)*V(LX,3)
4 -XJ3(2,1)*UQLX,1)+XJ4(2,1)*ULX1,1)-XTHI[LX2,1)*U(LX2,1)
5 -YIB3(Z,D)*VILX, 1)+ YH4(2,1)*V(LX1,1)-YTHI(LX2,1)*V(LX2,1))
W(ILX,LY)=

1 XBLX2)*UCX,LY)-XK(LX2)*ULX,LY D+XIHI(LX,LY2)*ULX,LY?2)
3+YBELX2*VILX,LY)-YHILX,2)*VILX, LY+ YTHI(LX,.LY2)*V(LX,L Y2)
4 -XJ3QRLY)*ULX.LY)+XJ4(2LY)*ULX1LY)-XTHILX2LY)*U(LX2,LY)
5-YI3ZLY)*VILX,LY+YJ42LY)*V(LX1,LY)-YJHI(LX2,L Y)*V(LX2,LY))
* LEFT (I=1) & RIGHT (I=LX1) *

* XI=X(1P1,))-X@,J)

* YJ=025%(Y( J+1)+Y(APLJ+1)-Y(L,J-1)-Y(APL,J-1))

DO 70 INDEX=1,2

IFANDEX.EQ.1) I=1

IF(INDEX.EQ.2) I=LX1

IP1=I+1

[1=2*1

IP1=II+1

IMi1=II-1

DO 70J=2,LY1

J1=2%]-1

JP1=]+1

MIi=J-1

IP2=11+2

JIM2=]J-2

Ti=FY(LJ)*XIALIN-FXAN*YI(ILIY)
T2=P1(ITIP1,J)*U(IP1,))-PI(IMLIN)*U(L,J)
T3=P2(I1L,1JP2)*(U(P1,JP1+U(,JP1))

1 -P2(LITM2)*(U(IP1,JM1)+U(1JM1))
T4=P3(IP1,J))*V(IP11)-P3AIM1IN*V{,])
T5=P4(I,JIP2)*(V(IP1,JP1}+V(,JP1))

1 -P4(d1LIIM2)*(V(IP1,JM1)+V(,JM1))
T6=YJ2DJ(IIP1,J))*Q1(IP1,J)-YI2DJ(IM1,JN)*Q1(L.J)
T7=YIYIDJILIIP2)*(Q1(IP1,JP1)+Q1(I,JP1))

1 -YIYJDIJ(ILIIM2)*(Q1(AP1,JM1)+Q1(IJM1))
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ZhG0628:
ZhG0629:
ZhG0630:
ZhG0631:
ZhG0632:
ZhG0633:
ZhG0634:
ZhG0635:
ZhG0636:
ZhG0637:
ZhG0638:
ZhG0639:
ZhG0640:
ZhG0641:
ZhG0642:
ZhG0643:
ZhG0644:
ZhG0645:
ZhG0646:
ZhG0647:
ZbG0648:
ZhG0649:
ZhG0650:
ZhG0651:
ZhGO0652:
ZhGO0653:
ZhG0654:
ZhGO0655:
ZhG0656:
ZhGO0657:
ZhGO0658:
ZhG0659:
ZbG0660:
ZhG0661:
ZbG0662:
ZhG0663:
ZhG0664:
ZhG0665:
ZhG0666:
ZhG0667:
ZhG0668:
ZhG0669;
ZhG0670:
ZhGO0671:
ZhG0672:
ZhG0673:
ZhG0674:
ZhG0675:
ZhG0676:
ZhGO0677:
ZhGO0678:
ZhG0679:
ZhG0680:

T8=2.0*XJYIDJIIP1,J1)*Q2(IP1,))

1 -XJYIDJAIML,J5)*Q2(L)))
T9=PLUS(LJJP2)*(Q2(IP1,JP1+Q2(LJP1))

1 -PLUSLIIM2)*(Q2(IP1,]M1+Q2(1.JM1))
T10=X12DJIP1,J7)*Q3(IP1,J)-X12DI(MIM 1,JN*Q3(1.])
T11=XIXJDI(ILIIP2)*(Q3(IP1,JP1 +Q3(I.JP1))

1 -XIXIDJALIIM2)*(Q3(IP1,JM1)+Q3(1.JM1))
TI2=(W(IP1,JP1+W({JP1)-W({P1,JM1)-W(I,JM1))/RE
EE=T1+T2-T4+T6-T8+T10+0.25*(T3-T5-T7+T9-T11-T12)
IFANDEX.EQ.1) ULFT(J)=EE

IFINDEX.EQ.2) URIT(J)=EE
Ti=FY@I)*XIALID-FXAD*YI(LID)
T2=P7(TIP1,J))*U(P1.))-P7(IIM1,1))*U(LJ)
T3=P8(ILJJP2)*(U(IP1,JP1+U(,JP1))

1 -P8ALIIM2)*(UIP1,JM1)+-U(Q,IJM1))
T4=P5(IP1,J0)*V(AP1))-PSAIM1LIN*V({])
T5=P6(ILJIP2)y*(V(IP1,JP1+V(1,JP1))

1 -P6(I1,JIM2)*(V(IP1,JIM1)+V(I,JM1))
T6=YTYIDIJAIP1,IN)*Q1(IP1,J)-YIYIDI(IIM1,J11)*Q1(1,J)
T7=YI2DJ(II,JJP2)*(Q1(IP1,JP1)+Q1(LJP1))

1 -YI2DJ{LJIM2)*(Q1(IP1,M1)}+Q1(1,JM1))
T8=PLUS(IP1,J)*Q2(IP1,))-PLUS(IMLJ1)*Q2(L.))
T9=2.0*(XTYIDI(LJIP2)*(Q2(1P1,JP1)+Q2(1.JP1))

1 -XIYIDJ(ITLJIM2)*(Q2(1P1,JM1)+Q2(1,J]M1)))
T10=XIXJDJAIP1,JD*Q3(P1.1)-XIXIDJ(IIM1,11)*Q3(LJ)
T11=X12DJ(ILJJP2)*(Q3(IP1,JP1)+Q3(LJP1))

1 -XI2DJ(ILJIM2)*(Q3(IP1,JM1)+Q3(I.JM1))
T12=(W(IP1))-W(L))YRE
EE=T1+T2-T4+T6-T8+T10-T12+0.25*(T3-T5-T7+19-T11)
IF(INDEX.EQ.1) VLFT())=EE

[FANDEX.EQ.2) VRIT(J)=EE

* BOTTOM (J=1) *

* XI1=0.25*(X(I+1,0)+X1+1,JP1)-X(1-1,1)-X(I-1,]P1))
* YI=Y(Q,JPD-Y(J)

J=1

JP1=J+1

J1=2%]

JIP1=JJ+1

JIIM1=]J)-1

DO 80 I=2,L.X1

0=2*]-1

IP1=I+1

Mi=I-1

nP2=11+2

IM2=I1-2

TI=FY(L)*XJALID-FXIN*YIALJ)
T2=P1(1IP2,J17)*(U(IP1,JP1)+U(IP1,))

1 -P1(IIM2,J1)*(U(IM1,JP1+U(IML,J))
T3=P2(1JIP1)*UQ JP1)-P2(I1,JIM1)*U(1,J)
T4=P3(IP2,J1)*(V(IP1,JP1+V(IP1,)))

1 -P3(IIM2,J1N)*(V(IMLIP1+V(IMLJ))
T5=P4d1,JIP1)*V(,JP1)-P4(IIIJIM1)*V(1.))
Te=Y2DJMIP2,IN*(Q1(IP1,JP1)+Q1(IP1,]))
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ZhGO0681:
ZhG0682:
ZhG0683:
ZhG0684:
ZhGO0G685:
ZhG0686:
ZhGO0687:
ZhG0688:
ZhG0689:
ZhG0690:
ZhG0691:
ZhG0692:
ZhG0693:
ZhG0694:
ZhG0695:
ZhG0696:
ZhGO0697:
ZhGO0698:
ZhG0699:
ZhG0700:
ZhGO701:
ZhG0702:
ZhG0703:
ZhG0704:
ZhGO0705:
ZhG0706:
ZhG0707:
ZhG0708:
ZhG0709:
ZhGO0710:
ZhGO0711:
ZhGO0712:
ZhG0713:
ZhG0714:
ZhGO0715:
ZhGO716:
ZhGO0717:
ZhGO0718:
ZhGO0719:
ZhG0720:
ZhGO0721:
ZhG0722:
ZhG0723:
ZhG0724:
ZhGO0725:
ZhG0726:
ZhG0727:
ZhG0728:
ZhG0729:
ZhG0730:
ZhGQ731:
ZhGO0732:
ZhG0733:

80

1 -YI2DJAIM2,JN*(Q1(IM1,JP1)+Q1(IM1,)))
T7=YIYIDJILJIP1)*Q1(LJP1)-YIYIDJ(LJIM1)*Q1(J)
T8=2.0*XJYIDJIP2,J))*(Q2(IP1,JP1)+Q2(IP1,]))

1 -XJYJDJI(IM2,J7)*(Q2(IM1,JP1+Q2(IM1.))))
T9=PLUS{LJIP1)*Q2(1JP1)-PLUSOLIIM1)*QX(LJ)
T10=X12DJ(IP2,J1)*(Q3(P1,JP1)+Q3(PL.]))

1 -XJ12DJ(IIM2,J1*(Q3(IM1,JP1)+Q3(IM1.)))
T11=XIXJDJ{IL,JIP1)*Q3(I,JP1)-XIXJDJ(IJIM1)*Q3(1.J)
T12=(W(,JP1)-W(LI)VRE
EE=T1+T3-T5-T7+T9-T11-T124+0.25%(T2-T4+T6-T8+T10)
UBTMQ)=EE

TI=FY(LI*XIALID-FX1,))*YI(IL)))
T2=P7(MIP2,J11)*(UaP1,JP1+U(IP1,]))

1 -P7(IIM2,JN)*(U(IM1,JP1+U(IM1,))
T3=P8(ILJJP1)*U(1,JP1)-PS(IL,JIM1)*U(LJ)
T4=P5(IIP2,J0)*(V(IP1,JP1)+V(P1,]))

1 -PSAIM2,IN*(V(IMLJP1)+V(IML,]))
T5=P6(ILJJP1)*V (1 JP1)-P6(ILIIM1)*V(L.])
T6=YIYIDJWIP2,JN*(Q1(IP1,JP1+QI1(IP1.J))

1 -YTYJDJ(IIM2,J1)*(Q1(IM1,JP1)+Q1(IM1,]))
T7=YI2DI(,JJP1)*Q1(1,JP1)-Y2DJ(LJIM1)*Q1(LJ)
T8=PLUS(IP2,JN)*(Q2(IP1,JP1+Q2(IP1,)))

1 -PLUS(IIM2,J1N*(Q2(IM1,JP1)+Q2(IM1,1))
T9=2.0*(XIYIDJ(IIJIP1)*Q2(1,JP1)

1 -XIYIDJQLIIM1D)*Q2(LJ))
T10=XIXIDIIIP2,11)*(Q3(IP1,JP1+Q3(P1.)))

1 -XIXJIDJAIM2,JN)*(Q3(IM1,JP1+Q3(IML,)))
T11=X12DJ{LJIP1)*Q3(,JP1)-XI2DJ(LJIM1)*Q3(1.J)
T12=(W(P1,JP1)+W({P1,]))-W(IM1,JP1)-W(IM1,))/RE
EE=T1+4+T3-T5-T7+T9-T1140.25*%(T2-T4+T6-T8+T10-T12)
VBTMI)=EE

DO 90 I=2,L.X1

IP1=I+1

Ml=I-1

M=2*%]-1

[E=II+1

wW=II-1

IP2=11+2

M2=I1-2

DO 9%0J=2,LY1

JP1=J+1

JM1=J-1

JI=2%]-1

IN=JJ+1

J18=JJ-1

JIP2=]J+2

JIM2=]J-2

REJ=RE*BI(I1J)**2.0

CXXAN=ALINH/RELS

CXY(,D=0.5*B(1,JJ)/REJJ

CYY(IN)=G(LIN)/REN]

UX=UQJP1.))-UMML,))

UY=U(JP1)-U,JM1)
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ZhG0734:
ZhGO0735:
ZhG0736:
ZhG0737:
ZhG0738:
ZhG0739:
ZhG0740:
ZhG0741:
ZhG0742:
ZhG0743:
ZhG0744:;
ZhG(745:
ZhG0746:
ZhG0747:
ZhG0748:
ZhG0749:
Zh(G0750:
ZhGO751:
ZhG0752:
ZhG0753:
ZhGO0754:
ZhG0755:
ZhG0756:
ZhGO0757:
ZhG0758:
ZhGO0759:
ZhG0760:
ZhGO0761:
ZhG0762:
ZhG0763:
ZhG0764:
ZhGO0765:
ZhGO0766:
ZhG0767:
ZhGO768:
ZhG0769:
ZhG0770:
ZhGO771:
ZhG0772:
ZhG0773:
ZhG0774:
ZhGO775:
ZhGO0776:
ZhG0777:
ZhGO0778:
ZhG0779:
ZhG0780:
ZhG0781:
ZhG0782:
ZhGO0783:
ZhG0784:
ZhG0785:
ZhG0786:

VX=V({P1,J))-V(IM1,J)

VY=V({,JP1)-VIJM1)

C1=XTHI(L,])

C2=XTHI(LJ)

C3=YIHI{,J))

C4=YJHI(J)

XT_U=XT@JIN-ULI)

XT_2U=XT_U-ULJ))

YTI_V=YTALJD-VA.D)

YT _2V=YT_V-V@D
CUX1(I.N=XT_2U*C4-YT_V*C2+0.5*CXXAD*FELIT)
CUYIILN=YT_V*C1-XT_2U*C3+0.5*CYYQA))*PSLIN)
CVX1@,.D)=Uq,J)*C2

CVY1(L)=-Ud.nH*C1
CUIAN=-(2.0*(UX*C4-UY*C3)+VY*C1-VX*C2)
CV1AN=-(UY*C1-UX*C2)

CUX2(ILN)=-V{I,))*C4

CUY2(LI)=V{1,))*C3
CVX2(LD)=XT_U*C4-YT_2V*C2+0.5*CXX( D*FEM.I))
CVY2(ILN=YT_2V*C1-XT_U*C3+0.5*CYY( . D*PS(I1.J])
CU2A.N=-(VX*C4-VY*C3)
CV2AN=-(2.0*(VY*C1-VX*C2)+UX*C4-UY*C3)
A5=2.0%UQ))

B5=2.0*V({.,J))

UI=U@P1LN+UIM1,1)-AS

UNI=UQJP1+UIIMI1)-AS5

VII=VJP1J+V(IM1,))-BS

VII=V(Q,JP1)+V({1,JM1)-BS
U=UP1,JP1+U@MM1,JM1)-UTP1,JM1)-U(IM1,IP1)
VIJ=V({P1,JP1)+V(IM1,JM1)-VAP1,JM1)-V(IM1,JP1)
U2I=Q1(dP1,)-Q1(IM1,])

U2)=Q10d.JP1)-Q1(1.JM1)

UVI=Q2(IP1,J)-Q2(M1,])

UVI=Q2@1,JP1)-Q2(1JM1)

V2I=Q3(1P1,))-Q3(IM1,])

V2J=Q3(.,JP1)-Q3(,JM1)

TTT=CXX D*FE(LJN+2.0%(C4*XT1IN-C2*YT(L,ID)
PPP=CY Y(LD*PS(ILJN+2.0*(C1*YT{LIN-C3*XTLJD)
UR(N=2.0*FXAD+TTT*UX+PPP*UY

1 +CXX(LN*UI-CXY (L D)*U+CYY (I )*uJJ

2 +C3*U2J-C4*U2I-C1*UVI+C2*UVI)
VRAN=2.0* FYAIHTTT*VX+PPP*VY

1 +HCXXIN*VI-CXY(ALD*VI+CYY@,N*VIJ
2 +C3*UVI]-C4*UVI-C1*V2J+C2*V2I)

EE=0.5*(YJ(IP2JN*FX(IP1,))- YJIIM2,J)*FX(IM1,))
1 -YIALJIP2)*FX(1,JP1)-YI(ILJIJM2)*FX(1,JM1)
2 +XIAJIP2*FY(AJPD)-XIALIIM2)*FY (1.]M1)
3 -XJ{IIP2,J1)*FY(IP1,))-XJ(AIM2,11)*FY (IM1,]))
TX1=P1(IE,JN*(U(IPLJ)-ULD)

1 -P1AW JN*(U@.D-UIM1,D))
TX2=P2(IE,J))*(U(IP1,JP1)-U(IP1,JM1)}+UY)

1 -P2AW JN*(UM1,JP1)}-UMM1LIMIHUY)
TX3=P3(EJD*(V({PLN)-V{A.D)
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ZhGO0787:
ZhGO788:
ZhG0789:
ZhG0790:
ZhG0791:
ZhG0792:
ZhG0793:
ZhG0794:
ZhG0795:
ZhGQ796:
ZhGO0797:
ZhGQ798:
ZhG0799:
ZhG0800:
ZhG0801:
ZhG0802:
ZhGO0803:
ZhGO0804:
ZhGO080S:
Zh(G0806:
ZhG0807:
ZhG0808:
ZhGO0809:
ZhG0810:
ZhGO0811:
ZhG0812:
ZhG0813:
ZhG0814:
ZhGO0815:
ZhG0816:
ZhGO0817:
ZhGO0818:
ZhG0819:
ZhG0820:
ZhG0821:
ZhG0822:
ZhG0823:
ZhG0824:
ZhG0825:
ZhG0826:
ZhG0827:
ZhG0828:
ZhG0829:
ZhG0830:
ZhG0831:
ZhG0832:
ZhG0833:
ZhG0834:
ZhGO0835:
ZhG0836:
ZhG0837:
ZhGO0838:
ZhG0839:

90

1 -P3AW,JD*(VILD-VIMLJ))
TX4=P4(IE,J])*(V(IP1,JP1)-V(AP1JMI}XVY)

1 -P4AW,IN*(V(IM1,JP1)-VIM1,JMI}+VY)
TY1=PKILIN)*(V(,JP1)-V(LJ))

1 -PILIS)*(V(LI)-VIIMD))
TY2=P5(ILJN)*(V(IP1,JP1)-V(IM1,JP1)+VX)

1 -PSALJS)*(V(P1,JM1)-VAM1IMI}HVX)
TY3=P8(ILIN)*(U(.JP1)-U(1.J))

1 -P8(ILJS)*(U))-U@IM1))
TY4=P7(ILIN)*(U(IP1,JP1)-U(IM1,JP1)+UX)

1 -P7ALIS)*(U@P1,JM1)-U(IM1,]M1)+UX)
X1=Y12DJ(IE,J)*(Q1(P1,7)-Q1(.D))
1-YR2DIAW,IN*(Q1(L))-Q1(IM1.]))
X2=YIYJDI(E,JN*Q1@P1,JP1)-Q1(P1JM1)+U2J)
2 -YIYIDIQW,IN*(Q1(IM1,JP1)-Q1(IM1,JM1)+U2J)
X3=2.0*(XJYJDI(E.JN*(Q2(dP1.1)-Q2(1.1)

1 -XJYIDIAW,JI*(Q2(1,J)-Q2(IM1,))))
X4=PLUS(IE,IN)*(Q2(IP1,JP1)-Q2(IP1,]M1)+UVJ)
2 -PLUSAW,IN*(Q2(IM1,JP1)-Q2(IM1,JM1)+UV])
X5=X12DJ(IE,JN)*(Q3(IP1,7)-Q3(L)))

1 -XI12DJAW,IN*(Q3(L.))-Q3(IM1.)))
X6=XIXIDJ(IE,J))*(Q3(IP1,JP1)-Q3(IP1,JM1)+V2J)
2 -XIXJDIAW,IN*Q3(IM1,JP1)-Q3(IM1,JM1)+V2J)
Y1=YI2DJ(ILIN)*(Q1(I.JP1)-Q1(LJ))

1 -YRDJALIS)*(Q1{(I.D)-Q1(1,JM1))
Y2=YIYIDJ(ILIN)*(Q1(P1,JP1)-Q1(IM1,JP1)+U2I)
2 -YIYJDIQLIS)*Q1(P1,JM1)-Q1(IM1,IM1)+U2I)
Y3=2.0*(XTYIDJ(LIN)*(Q2(1.JP1)-Q2(1,]))

2 -XIYIDI(ILIS)*(Q2(L))-Q2(1,JM1)))
Y4=PLUS(I,IN)*(Q2(IP1,JP1)-Q2(IM 1, JP1 )+ UVT)
3 -PLUS(LJS)*(Q2(IP1,JM1)-Q2(IM1,JM1)+UVT)
Y5=XI2DJ(II,JN)*(Q3(1,JP1)-Q3(1,D))

1 -XI2DJ(LIS)*(Q3(.NH-Q3(1,.JM1))
Y6=XIXIDI(ILIN)*(Q3(P1,JP1)-Q3(IM1,JP1)+V2I)
2 -XIXIDJ(ILJS)*(Q3(IP1,JM1)-Q3(IM1,JM1)+V2I)
RR=EE+DD(I,J/DT*BI(LJJ)

2 -(TX1-TX3+0.25*(TX2-TX4))

3 -(TY1-TY3+0.25%(TY2-TY4))

4 ~(X1-X3+X5-0.25*(X2-X4+X6))
5 -(Y1-Y3+Y5-0.25%(Y2-Y4+Y6))
PRILN=RR

DO 140 I=1,LX

=2%[-1

T3=ADJ(I1,JG)*(XI(IL,JG+BDIILJG)*YJ(IIJG))
T4=ADIJ(LJG)*(YJ(IL,JG)-BDJ(LJG)*XJ(IL,JG))
A2=ADI(LIG)**2.0
FREEX(1,1,D=-(T3*YJ(I1,JG)+A2*XI(IL,JG)*XI(I1,JG))
FREEX(1,2,D)=T3*XI(I1,JG)-A2*XI(II,JG)*YJALJG)
FREEX(2,1,D)=-(T4*YJ(LJG)+A2*XJ(IJG)*YI(LJG))
FREEX(2,2,)=T4*XJ(ILJG)-A2*YI(ILJG)*YJ(LIG)
FREEY(1,1,I,1)=T3*YI(I1,JG)-T4*XI(I1,JG)
FREEY(2,2,I,1)=FREEY(1,1,,1)

FREEY(1,2,1,1)=0.0
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ZhG0840:
ZhGO841:
ZhG0842:
ZhG0843:
ZhG0844:
ZhG0845:
ZhG0846:
ZhGO0847:
ZhG0848:
ZhG0849:
ZhG0850:
ZhGO0851:
ZhG0852:
ZhGO0853:
ZhG0854:
ZhGO08SS:
ZhGO0856:
ZhGO0857:
ZhGO0858:
ZhG0859:
ZhGO0860:
ZhGO861:
ZhGO0862:
ZhGO0863:
ZhG0864:
ZhGO0865:
ZhG0866:
ZhGO0867:
ZhG0868:
ZhG0869:
ZhGO0870:
ZhGO871:
ZhG0872:
ZhG0873:
ZhG0874:
ZhGO0875:
ZhGO0876:
ZhG0877:
ZhG0878:
ZhG0879:
ZhGO0880:
ZhGO881:
ZhGO0882:
ZhGO883:
ZhG0884:
ZhGO088s:
ZhGO886:
ZhGO887:
ZhGO0888:
ZhG0889:
ZhG0890:
: 160 R_PRE(M)=PA-WE*CUR(M+0.5*(UX3-UY3-VY3)-PALY)

ZhG0891

ZhG0892:

140

FREEY(2,1,1,1)=0.0
T3=ADJ(ILJG2)*(XJ(ILJG2)+BDI(ILIG2)*YJ(I1,JG2))
T4=ADI(I1,JG2)*(YJ(IL,JG2)-BDJ(I1,JG2)*XJ(I1JG2))
FREEY(1,1,1,2)=T3*YI(IL,JG2)-T4*XI1(I.JG2)
FREEY(2,2,],2)=FREEY(1,1,1,2)

FREEY(1,2,1,2)=0.0

FREEY(2,1,1,2)=0.0
T3=ADJ(IIJG4)*(XJ(ILJG4)>+BDJILIG4)*YI(II,JG4))
T4=ADJ1,IG4)*(YI(1,JG4)-BDJ(ALIG4)*XI(I1,JG4))
FREEY(1,1,1,3)=T3*YI(I,JG4)-T4*XI(I1,JG4)
FREEY(2,2,1,3)=FREEY(1,1,1,3)

FREEY(1,2,1,3)=0.0

FREEY(2,1,1,3)=0.0

COM=RE*YI(LJG)

FP1(D=2.0*ADJ(IL,IG)/COM
FP2(1,1)=2.0*(BDJ(LJG)/COM-XJ(ILJG)/(RE*A(IL,JG)))
FP3(1,1)=2.0*XJ(II,JG)**2.0/A(11,JG)/COM
COM=RE*YJ(II,JG2)
FP2(1,2)=2.0%(BDJ(1L,JG2)/COM-XI(II,JG2)/(RE*A(II,JG2)))
FP3(1,2)=2.0*XJ(I1,JG2)**2.0/A(l1,JG2)/COM
COM=RE*YI(I1,JG4)
FP2(1,3)=2.0*(BDJ(I,IG4)/COM-XJ(II,JG4)/(RE* A(I1.JG4)))
FP3(1,3)=2.0*XJ(I1,JG4)**2.0/A(11,JG4)/COM

DO 160 =2,LX1

Pi=I+1

Mi=I-1

O=2*I-1

P2=11+2

IM2=[I-2

XII=2.0*(X(IP2 JG)+X(IIM2,JG)-2.0*X(1JG))
YII=2.0%(Y(IIP2,JG)}+Y(IIM2,]JG)-2.0*Y(1L,JG))
CURMD=XI(ILJG)*YH-YI(ILJG)*XID/G(LJG)**1.5
UX1=FREEX(1,1,IP1)*U(IP1,LY)-FREEX(1,1,IM1)*U(IM1,LY)
VX1=FREEX(1,2,IP1)*V(IP1,LY)-FREEX(1,2,]M1)*V(IM1,LY)
UX2=FREEX(2,1,IP1)*U(IP1,LY)-FREEX(2,1,IM1)*U(IM1,LY)
VX2=FREEX(2,2,IP1)*V(IP1,LY)-FREEX(2,2,IM1)*V(IM1,LY)
UX3=FP1(IP1)*U(IP1,LY)-FP1I(IM1)*U(IM1,LY)
UY1=3.0*FREEY(1,1,L,1)*U(1,LY)-4.0*FREEY(1,1,1,2)*U(,LY1)
1 +FREEY(1,1,1,3)*U(,LY2)
VY1=3.0*FREEY(1,2,[,1)*V(,LY)4.0*FREEY(1,2,1,2)*V(,LY1)
1 +FREEY(1,2,1,3)*V({,LY2)
UY2=3.0*FREEY(2,1,I,1)*U(I,LY)-4.0*FREEY(2,1,1,2)*U(ILY1)
1 +FREEY(2,1,1,3)*U(I,LY2)
VY2=3.0*FREEY(2,2,,1)*V(,LY)4.0*FREEY(2,2,1,2)*V({,LY1)
1 +FREEY(2,2,1,3)*V(I,LY2)
UY3=3.0*FP2(1,1)*U(I,LY)4.0*FP2(1,2)*U(,LY1)

1 +FP2(1,3)*U(,.LY2)
VY3=3.0*FP3(,1)*V(,LY)-4.0*FP3(1,2)*V(I,LY1)

1 +FP3(1,3)*V(,LY2)
R_VEL(1,D)=-(UX1+VX1+UY1+VY1)
R_VEL(2,D)=-(UX2+VX2+UY2+VY2)

RETURN
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ZhG0893:
ZhG089%4:
ZhG0895:
ZhG0896:
ZhGO0897:
ZhG0898:
ZhG0899:
ZhG0900:
ZhG0901:
ZhG0902:
ZhG0903:
ZhG0904:
ZhG0905:
ZhG0906:
ZhG0907:
ZhG0908:
ZhG0909:
ZhG0910:
ZhG0911:
ZhG0912:
ZhG0913:
ZhG0914:
ZhG0915:
ZhG0916:
ZhG0917:
ZhG0918:
ZhG0919:
ZhG0920:
ZhG0921:
ZhG0922:
ZhG(923:
ZhG(924:
ZhG0925:
ZhG0926:
ZhG0927:
ZhG(928:
ZhG0929:
ZhG0930:
ZhG0931:
ZhG(932:
ZhG0933:
ZhG0934:
ZhG0935:
ZhG0936:
ZhG0937:
ZhG0938:
ZhG0939:
ZhG0940:
ZhG09%41:
ZhG0942:
Zh(G0943:
ZhG(944:

261

260

END

SUBROUTINE COEF_MATRIX(DT,DTOI)

IMPLICIT REAL*8(A-H,0-Z)
PARAMETER(M=2,LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
PARAMETER(QLX1=LX-1LY1=LY-1,LX2=[ X-2, Y2=LY-2)
COMMON/UV_C/CUX1(LX,LY),CUY1(LX,LY),CVXI(LX,LY),CVYI(LX,LY)
1 ;CUX2(LX.LY),CUY2LX,LY),CVX2(LX,LY),CVY2(LX,LY)
2 ,CUILX.LY),CVI(LX,LY),CU2(LX,LY),CV2(LX.LY)
3 SCXX(LXLY),CXYILX.LY).CYY(LX,LY)
COMMON/FREE_UVP/FREEX(MM,LX),FREEY(M,M,LX,3)
1 JFP1(LX),FP2(LX,3),FP3(LX,3)
COMMON/BLK3/AMX(M,M,LX,2.LY1),BMX(M,M,LX,2:L.Y1)
1 SCMXMM,LX2:.LY1),AMYMM,LY,2:LX1)

2 BMYMM,LY,2:1.X1),CMYM,M,LY,2:.LX1)
COMMON/BLK3_FREE/AFREE(M,M,LX),BFREE(M,M,LX),CFREE(M,M.LX)
DIMENSION WK1(M,M),WK2(M,M),WK3(M,M),WK4(M,M)
CALL UNIX

DTOI2=0.5*DTOI

DTDTOI2=0.5*DT*DTOI

DTDTOI4=0.25*DT*DTOI

DO 260 J=1.M

DO 260 I=1.M

DO 261 L=2,LY1

DO 261 K=1,LX,1.X1

AMX(,J.K,L)=0.0

BMX(,J,K,L)=0.0

CMX(1.J.K,L)=0.0

DO 260 L=2,1.X1

DO 260 K=1,LY,LY1

AMY(J,K,L)=0.0

BMY(LJ.K,L)=0.0

CMY(L.JK,.L)=0.0

DO 270J=2,LY1

* INNER POINTS WK1 ->T, WK2 -> A, WK3 ->P *

DO 271 I=2,LX1

WK1(1,1)=1.0+DTOI2-DTDTOI4*CU1(L.J)
WK1(1,2)=-DTDTOI4*CV1(1,J)
WK1(2,1)=-DTDTOI4*CU2(1,J)
WK1(2,2)=1.0+DTOL2-DTDTOI4*CV2(1,))
WK2(1,1)=CUX1(,J)

WK2(1,2)=CVX1{L])

WK2(2,1)=CUX2(1,J)

WK2(2,2)=CVX2(LJ)

WK3(1,1)=CXX(1.J))

WK3(1,2)=0.0

WK3(2,1)=0.0

WK3(2,2)=WK3(1,1)

DO 271 I=1,M

DO 271 JJ=1,M
AMX(1,J1,1.N)=-DTDTOI4*(WK3(1,J))-WK2(ILJ)))
BMX(LJJ,L.N)=WKI1{LI))+DTDTOI2*WK3(IL,JI)

ZhG0945: 271 CMX(L,J3,1N)=-DTDTOI4*(WK3(LJN+WK2(ILI)))
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ZhG0946: * * OLD BOUNDARY POINT *

ZhG0947: DO 270 K=1.M

ZhG0948: BMX(KK,1,))>=1.0

ZhG0949: 270 BMX(K.K.LX,)=1.0

ZhG0950: DO 280 I=2,LX1

ZhG0951: * * INNER POINTS WK1 -> I/T, WK2 -> B, WK3 >Q*
ZhG0952: DO 281J=2,LY1

ZhG0953: WK1(1,1)=1.0+DTOI2-DTDTOI4*CU1(1,J)
ZhG0954: WK1(1,2)=-DTDTOI4*CV1I{L])

ZhG0955: WK12,1)=-DTDTOI4*CU2(LJ)

ZhG0956: WK1(2,2)=1.0+DTOI2-DTDTOI4*CV2(L))
ZbG0957: CALL INVERS(WK1)

ZhG0958: WK2(1,1)=CUY1(.))
ZhG0959: WK2(1,2)=CVY1({.))
ZhG0960: WK2(2,1)=CUY2(1,J)
ZhG0961: WK2(2,2)=CVY2(L))

ZhG0962: DO 282 I=1.M
ZhG0963: DO 282 J}=1.M
ZhG0964: WK4(1,J1)=0.0
ZhG0965: DO 282 KK=1.M

ZhG0966: 282 WK4(ILIN=WK4{ILJ)+WKI1(IIKK)*WK2(KK.,J])
ZhG0967: DO 284 [I=1,M

ZhG0968: DO 284 JJ=1.M
ZhG0969: 284 WK2(II,JNN=WK4(l1.J))
ZhG0970: WK3(1,1)=CYY(,))
ZhG0971: WK3(1,2)=0.0
ZhG0972: WK3(2,1)=0.0
ZhG0973: WK3(2,2)=WK3(L,1)
ZhG0974: DO 286 I=1,M
ZhG0975: DO 286 Ji=1.M
ZhG0976: WK4(I1,11)=0.0
ZhG0977: DO 286 KK=1,.M

ZhG0978: 286 WK4(ILJI)=WK4(IJI+WKI1(II,KK)*WK3(KK,J])
ZhG0979: DO 288 II=1,.M

ZhG0980: DO 288 JJ=1.M

ZhG0981: 288 WK3(IIL,JN)=WK4(1.J))

ZhG0982: WK1(1,1)=1.0

ZhG0983: WK1(1,2)=0.0

ZhG0984: WK1(2,1)=0.0

ZhG098S: WK1(2,2)=1.0

ZhG0986: DO 281 I=1,M

ZhG0987: DO 281 JJ=1.M

ZhG0988: AMY(1LJ1,J,D=-DTDTOI4*(WK3(L,J1)-WK2(LJJ))
ZhG0989: BMYLJIID=WKI1{LIN+DTDTOI2*WK3(LJ))

ZhG0990: 281 CMY(I1,JJ,J,D=-DTDTOM*(WK3(LJN)+WK2(1,J)))
ZhG0991: * * OLD BOUNDARY POINT *

ZhG0992: DO 280 K=1,M
ZhG0993: BMY(KK,1,D=1.0
ZhG0994: 280 BMY(K,K,LY,D=1.0
ZhG0995: DO 300 J=1.M
ZhG0996: DO 300 I=1. M
ZhG0997: DO 310 K=1,LX,L.X1
ZhG0998: AFREE(L].K)=0.0
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ZhG0999:

ZhG1000: 310

ZhG1001:
ZhG1002:
ZhG1003:

ZhG1004: 300

ZhG1005:
ZhG1006:
ZhG1007:

*

ZhG1008: 320

ZhG1009:
ZhG1010:
ZhG1011:
ZhG1012:
ZhG1013:
ZhG1014:
ZhG1015:
ZhG1016:
ZhG1017:
ZhG1018:
ZhG1019:
ZhG1020:
ZhG1021:
ZhG1022:
ZhG1023:
ZhG1024:
ZhG1025:
ZhG1026:
ZhG1027:
ZhG1028:
ZhG1029:
ZhG1030:
ZhG1031:
ZhG1032:
ZhG1033:
ZhG1034:
ZhG1035:
ZhG1036:
ZhG1037:
ZhG1038:
ZhG1039:
ZhG1040:
ZhG1041:
ZhG1042:;
ZhG1043:
ZhG1044:
ZhG1045:
ZhG1046:
ZhG1047:
ZhG1048:
ZhG1049:
ZhG1050:
ZhG1051:

110

112

114

116

132
130

134

BFREE(LJK)=0.0
CFREE(J,K)=0.0

DO 300 K=2,L.X1
AFREE(J,K)=-FREEX(I,J.K-1)
BFREE(LJ,K)=3.0*FREEY(1,J.K,1)
CFREE(J,K)=FREEX(1,J,K+1)
* OLD CORNER POINT *

DO 320 K=1,M
BFREE(K.K,1)=1.0
BFREE(K.K,LX)=1.0

RETURN

END

SUBROUTINE BLK3_LU

IMPLICIT REAL*8(A-H,0-Z)
PARAMETER(M=2,LX=1001,LY=11,LX1=LX-1,LY1=LY-1)
COMMON/BLK3/AMX(M.M,LX,2:LY1),BMX(M,M,LX,2:LY1)
1 LCMXMM,LX.2.LY]),AMY(M,M,LY,2:LX1)
2 ,BMYMM,LY,2:LX1),CMY(M,M,LY,2:LX1)
COMMON/BLK3_FREE/AFREE(M,M,LX),BFREE(M,M.LX),CFREE(M,M,LX)
DIMENSION WK(M,M)

CALL UNIX

DO 1000 NUM=2,L.Y1

DO 110 =1, M

DO 110 J=1.M

WK(,1)=BMX(1,J,1, NUM)

CALL INVERS(WK)

DO 112 [=1,M

DO 112 J=1.M

BMX(@J,1,NUM)=WK(J)

DO 114 I=1.M

DO 114 J=1.M

WK(1,J)=0.0

DO 114 K=1, M
WK({I,J)=WK({.J)+BMX({XK,1,NUM)*CMX(K,J,1, NUM)
DO 116 =1 M

DO 116 I=1.M

CMX(1,J,1, NUM)=WK(J)

DO 138 L=2,LX

DO 130 I=1.M

DO 130 J=1.M

XX=0.0

DO 132 K=1,M

XX=XX+AMX(LK,.L NUM)*CMX(K,J,L-1,NUM)
WK(ILN=BMX(J,L,NUM)-XX

CALL INVERS(WK)

DO 134 =1 M

DO 134 J=1.M

BMX(1.J,.LNUM)=WK(.))

IF(L.EQ.LX) GOTO 1000

DO 136 I=1,M

DO 136 J=1.M

WK({1.J)=0.0
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ZhG1052: DO 136 K=1.M

ZhG1053: 136 WK(IJ)=WK({IJ)+BMX(K, L NUM*CMX(K,J.L.NUM)
ZhG1054: DO 138 I=1.M

ZhG1055: DO 138 J=1.M

ZhG1056: 138 CMX(J,L.NUM)=WK(,J)

ZhG1057: 1000 CONTINUE

ZhG1058: DO 2000 NUM=2,LX1

ZhG1059: DO 210 I=1.M

ZhG1060: DO 210 J=1 M

ZhG1061: 210 WK(I,DH)=BMY(.J,1,NUM)

ZhG1062: CALL INVERS(WK)

ZhG1063: DO 212 [=1.M

ZhG1064: DO 212 =1,M

ZhG1065: 212 BMY(J,1,NUM)=WK(.J)

ZhG1066: DO 214 I=1.M

ZhG1067: DO 214 J=1.M

ZhG1068: WK(1.J)=0.0

ZhG1069: DO 214 K=1.M

ZhG1070: 214 WK, )=WKIJ)+BMY(K,] NUM*CMY(KJ,1.NUM)
ZhG1071: DO 216 I=1.M

ZhG1072: DO 216 J=1.M
ZhG1073:216 CMY(J,1,NUM)=WK(,])
ZhG1074: DO 238 L=2,LY
ZhG1075: DO 230 I=1. M

ZhG1076: DO 230 J==1LM

ZhG1077: YY=0.0

ZhG1078: DO 232 K=1.M

ZhG1079: 232 YY=YY+AMY(LK.LNUM)*CMY(KJ,L-1.NUM)
ZhG1080: 230 WK N=BMY{JLNUM)-YY
ZhG1081: CALL INVERS(WK)

ZhG1082: DO 234 I=1.M

ZhG1083: DO 234 J=1.M

ZhG1084: 234 BMY(LJ.L.NUM)=WK(.J)
ZhG1085: IF(L.LEQ.LY) GOTO 2000
ZhG1086: DO 236 I=1.M

ZhG1087: DO 236 J=1.M

ZhG1088: WK{1,1)=0.0

ZhG1089: DO 236 K=1,M

ZhG1090: 236 WK(I,J)=WK(I)+BMY(K,LNUM*CMY(K,J,.L,NUM)
ZhG1091: DO 238 I=1.M

ZhG1092: DO 238 J=1.M
ZhG1093:238 CMY(LJ,L,NUM)=WK(.J)
ZhG1094: 2000 CONTINUE

ZhG1095: DO 310 =1, M

ZhG1096: DO 310 J=1.M

ZhG1097: 310 WK(,J)=BFREE(,J,1)
ZhG1098: CALL INVERS(WK)
ZhG1099: DO 312 I=1.M

ZhG1100: DO 312 J=1.M
ZhG1101:312 BFREE(QJ,1)=WK(,J)
ZhG1102: DO 314 =1 M

ZhG1103: DO 314 J=1.M

ZhG1104: WK({I,J)=0.0
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ZhG1105: DO 314 K=1,M

ZhG1106: 314 WK(LJ))=WK())+BFREE(LK,1)*CFREE(K,J,1)
ZhG1107: DO 316 I=1,M

ZhG1108: DO 316 J=1.M

ZhG1109: 316 CFREE(L],1)=WK(J))
ZhG1110: DO 338 L=2,L.X

ZhG1111: DO 330 I=1,M

ZhG1112: DO 330 J=1.M

ZhG1113: XX=0.0

ZhG1114: DO 332 K=1,M

ZhG1115: 332 XX=XX+AFREE(K,L)*CFREE(K,J,L-1)
ZhG1116: 330 WK J)=BFREE(J,L)-XX
ZhGl1117: CALL INVERS(WK)
ZhG1118: DO 334 I=1.M

ZhG1119: DO 334 J=1.M

ZhG1120: 334 BFREEQJL)=WK(.J)
ZhG1121: [F(L.EQ.LX) GOTO 3000
ZhG1122: DO 336 I=1.M

ZhG1123: DO 336 =1.M

ZhG1124: WK{.D)=0.0

ZhG112s: DO 336 K=1,M

ZhG1126: 336 WKI.J)=WK({,J)+BFREE(K,L)*CFREE(K.J,L)
ZhG1127: DO 338 =L, M

ZhG1128: DO 338 J=1.M

ZhG1129: 338 CFREE(J,L)=WK(,J)
ZhG1130: 3000 RETURN

ZhG1131: END

ZhG1132:

ZhG1133: SUBROUTINE INVERS(X)
ZhG1134: IMPLICIT REAL*8(A-H,0-Z)
ZhG1135: PARAMETER(M=2)
ZhG1136: DIMENSION X(M,M),UM.M),B(M,M).XL(M,M),Z(M)
ZhG1137: CALL UNIX

ZhG1138: DO 200 JI=1.M

ZhG1139: BJ.))=1.0

ZhG1140: XL(J,1)=X({,1)

ZhG1141: 200 UQJ=X(1,7)/X1(1,1)
ZhG1142: DO 500 [=2,M

ZhG1143: U@.D=1.0

ZhG1144: TT=0.0

ZhG1145: DO 400 K=1,I-1

ZhG1146: 400 TT=TT+XL{IK)*U(K,D
ZhG1147: XLAD=X{I,D)-TT
ZhG1148: DO 500 J=I+1.M

ZhG1149: TT=0.0

ZhG1150: DO 600 K=1,I-1

ZhG1151: 600 TT=TT+XL{J,K)*UK.,D
ZhG1152: XL{J,D=(X{J.D-TT)
ZhG1153: TT=0.0

ZhG1154: DO 700 K=1,I-1

ZhG1155: 700 TT=TT+XL{IK)*U(K,))

ZhG1156

ZhG1157:

1500 UAD=(X@NH-TT)/XLA.D
DO 800 Mi=1.M
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ZhG1158: Z(1)=B(1,M1)y/XL(1,1)

ZhG1159: DO 900 [=2,M

ZhG1160: TT=0.0

ZhG1161: DO 1000 K=1,I-1

ZhG1162: 1000 TT=TT+XL{K)*Z(K)

ZhG1163: 900 ZM=BIMI1)-TTVXL(,D

ZhG1164: XMM1)=ZM)

ZhG1165: DO 800 I=M-1,1,-1

ZhG1166: TT=0.0

ZhG1167: DO 1100 K=M,I+1,-1

ZhG1168: 1100 TT=TT+U({,K)*X(K.M1)

ZhG1169: 800 XAM1)=ZM)-TT

ZhG1170: RETURN

ZhG1171: END

ZhG1172:

ZhG1173: SUBROUTINE FREE_VEL

ZhG1174: IMPLICIT REAL*8(A-H,0-Z)

ZhG1175: PARAMETER(M=2,LX=1001,LY=11)

ZhGl17e: PARAMETER(LX1=LX-1,LY1=LY-1LX2=LX-2,L Y2=LY-2)
ZhG1177: COMMON/UVPB/UB(LX,LY),VB(LX,LY),PB(LX,LY)
ZhG1178: COMMON/BLK3_FREE/AFREE(M,M,LX),BFREE(M,M,LX),CFREE(M,M,LX)
ZhG1179: COMMON/FREE_UVP/FREEX(M,M,LX),FREEY(M,M,LX,3)
ZhG1180: 1 JFPI(LX),FP2(LX,3),FP3(LX,3)

ZhG1181: COMMON/R_FREE/R_VELM,LX),R_PRE(LX)

ZhG1182: DIMENSION WK(M),DFR(M,LX)

ZhG1183: CALL UNIX

ZhG1184: DO 450 I=2,L.X1

ZhG1185: UBY=4.0*FREEY(1,1,L,2)*UB(,.LY1)-FREEY(1,1,I.3)*UB(I,LY2)
ZhG1186: VBY=4.0*FREEY(1,2,1.2)*VB(I,LY1)-FREEY(1,2,1,3)*VB(,LY2)
ZhG1187: DFR(1,D=R_VEL(1,D)+UBY+VBY

ZhG1188: UBY=4.0*FREEY(2,1,12)*UB(,.LY1)-FREEY(2,1,1,3)*UB(I,LY?2)
ZhG1189: VBY=4.0*FREEY(2,2,1,2)*VB(I,LY1)-FREEY(2,2,[,3)*VB(,LY2)
ZhG1190: 450 DFR(2,1)=R_VEL(2,)+UBY+VBY

ZhG1191: * * OLD CORNER POINTS *

ZhG1192: DFR(1,1)=UB(1,LY)

ZhG1193: DFR(2,1)=VB(1,LY)

ZhG1194: DFR(1,LX)=UB(LX,LY)

ZhG1195: DFR(2,LX)=VB(LX,LY)

ZhG1196: DO 452 I=1.M

ZhG1197: TT=0.0

ZhG1198: DO 454 K=1.M

ZhG1199: 454 TT=TT+BFREE(K,1)*DFR(,1)

ZhG1200: 452 DFR(,1)=TT

ZhG1201: DO 460 L=2,LX

ZhG1202: DO 462 I=1,M

ZhG1203: TT=0.0

ZhG1204: DO 464 K=1.M

ZhG1205: 464 TT=TT+AFREE(,K,L)*DFR(K,L-1)

ZhG1206: 462 WK({)=DFR(L)-TT

ZhG1207: DO 460 I=1,M

ZhG1208: DFR(,L)=0.0

ZhG1209: DO 460 K=1.M

ZhG1210: 460 DFR(,L)=DFR(,.L#+BFREE(K,.L)*WK(K)
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ZhG1211:
ZhG1212:
ZhG1213:
ZhG1214:

ZhG1215: 472
ZhG1216: 470

ZhG1217:
ZhG1218:

ZhG1219: 400

ZhG1220:
ZhG1221:
ZhG1222:
ZhG1223:
ZhG1224:
ZhG1225:
ZhG1226:
ZhG1227:
ZhG1228:
ZhG1229:
ZhG1230:
ZhG1231:
ZhG1232:
ZhG1233:
ZhG1234:
ZhG1235:
ZhG1236:
ZhG1237:
ZhG1238:

DO 470 L=LX1,1,-1
DO 470 I=1.M

TT=0.0

DO 472 K=1.M
TT=TT+CFREE(L,K,.L)*DFR(K,L+1)
DFR(LL=DFR(L)-TT
DO 400 I=1,L.X
UB(@LY)=DFR(L.))
VB(LLY)=DFR(2,))
RETURN

END

SUBROUTINE VELB_BLOCK(DT,DTOI)

IMPLICIT REAL*8(A-H,0-Z)

PARAMETER(M=2,L.X=1001,LY=11)
PARAMETER(LX1=LX-1,LY1=LY-1,L.X2=1 X-2,LY2=].Y-2)
COMMON/UVPB/UB(LX,LY),VB(LX,LY),PB(LX,LY)
COMMON/DVELB/DUB(LX,LY),DVB(LX,LY)
COMMON/UVR/UR(LX.LY),VR(LX,LY)
COMMON/BLK3/AMX(M,M,LX,2:LY1),BMX(M,M,LX,2:LY1)

1 LCMXMM,LX2:.LY1),AMY(M,M,LY,2:LX1)

2 ,BMYMM,LY,2:LX1),CMY(M,M,LY,2:LX1)
COMMON/UV_C/CUX1(LX,LY),CUY1(LX,.LY),CVXI(LX,LY),CVYI(LX,LY)
1 ,CUX2(LX,LY),CUY2(LX,LY),CVX2(LX.LY),CVY2(LX.LY)

2 ,CUILX,LY),CVI(LX LY),CU2(LX,LY),CV2(LX,LY)

3 LCXX@LXLY).CXYILX.LY),CYYLX.LY)
COMMON/DPHY/XTHJ(LX,LY). XJHI(LX,LY), YIHI(LX,LY),YTHILX,LY)
DIMENSION

DMX(M,LX),DMY(M,LY),WK(M),Q1(LX,LY),Q2(LX,LY),Q3(LX,LY)

ZhG1239:;
ZhG1240:
ZhG1241:
ZhG1242:
ZhG1243:
ZhG1244.
ZhG1245:
ZhG1246:
ZhG1247;
ZhG1248:
ZhG1249:
ZhG1250:
ZhG1251:
ZhG1252:;
ZhG1253:
ZhG1254:
ZhG1255:
ZhG1256:
ZhG1257:
ZhG1258:
ZhG1259:
ZhG1260:
ZhG1261:
ZhG1262:

1 -DQI(LX.LY),DQ2(LX.LY),DQ3(LX.LY)
CALL UNIX

DT2=0.5*DT

DTDTOR=0.5*DT*DTOI
DTDTOI4=0.25*DT*DTOI

DO 300 I=1,LX

DO 300 J=1,LY

QII.N=UB(J)**2.0+PB(L))
Q2(LN=UB(L.N*VB(.J)
Q3AN=VB(LN**2.0+PB(L))
DQ1(.))=DUB(,J)**2.0+2.0*UB(L.))*DUB(LJ)
DQ2(L.J)=DUB(1))*DVB(IJ+DUB(LN*VB(LI+UB(LN*DVB(L.J)
DQ3(.))=DVB(J)**2.0+2.0*VB(L)*DVB(L.J))
** J=CONST. X-SWEEP **

DO 400 J=2,LY1

IP1=]+1

M1=J-1

DO 450 I=2,LX1

P1=I+1

Mi=I-1

XX=XIHIQJ)

XY=XJTHIQL))

YX=YTHJ(L))

YY=YJHI(L))
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ZhG1263: Q2X=Q2(P1.))-Q2(IM1,J)
ZhG1264: Q2Y=Q2(,JP1)-Q2(LIM1)

ZhG1265: UBXY=UB(IP1,JP1}+UB(IM1,JM1)-UB(IP1,]M1)-UB(IM1,JP1)
ZhG1266: VBXY=VB(P1,JP1)+VB(IM1,M1)-VB(IP1,]M1)-VB(IM1,JP1)
ZhG1267: UNL=YY*Q1(IP1,])-Q1(IM1,1))-Y X*(Q1(LIP1)-Q1(I.IM1))
ZhG1268: 1 +XX*Q2Y-XY*Q2X+CXY(LJ)*UBXY

ZhG1269: VNL=YY*Q2X-YX*Q2Y+CXY( J)*VBXY

ZhG1270: 1 +XX*(Q3(JP1)-Q3(LIMI))-XY*(Q3(IP1,])-Q3(IM1,1))

ZhG1271: Q2X=DQ2(IP1,))-DQ2(IM1,])

ZhG1272: Q2Y=DQ2(I,JP1)-DQ2(L.IM1)

ZhG1273: UBXY=DUB(IP1,JP1)}+DUB(IM1,JM1)-DUB(IP1,]M1)-DUB(IM1,JP1)
ZhG1274: VBXY=DVB(P1,JP1}+DVB(M1,]M1)-DVB(P1,]M1)-DVB(IM1,JP1)
ZhG1275: DUNL=YY*(DQ1(P1,))-DQ1(IM1,1))-YX*(DQ1(I,JP1)-DQI1(I,IM1))
ZhG1276: 1 +XX*Q2Y-XY*Q2X+CXY(J)*UBXY

ZhG1277: DVNL=YY*Q2X-YX*Q2Y+CXY(@))*VBXY

ZhG1278: 1 +XX*(DQ3(,JP1)-DQ3(LIMI))-XY*(DQ3(P1.J)-DQ3(M1,]))
ZhG1279: AS=2.0*UB(L,J)

ZhG1280: B5=2.0*VB(LJ)

ZhG1281: UBX=UB(IP1,])-UB(IM1,))
ZhG1282: UBY=UB(,JP1)-UB(I.JM1)
ZhG1283: UBXX=UB(IP1,))+UB(IM1,))-AS

ZhG1284: UBYY=UB(JP1+UB(,JM1)-AS

ZhG128sS: VBX=VB(IP1,])-VB(IM1,J)

ZhG1286: VBY=VB(JP1)-VB(,JM1)

ZhG1287: VBXX=VB(P1,J)+VB(IMLJ)-B5

ZhG1288: VBYY=VB(JPI)+VB({,JM1)-B5

ZhG1289: UXSWP=DTDTOI4*DUNL+DTOI*(UB(1,J)-DT2*(CU1(1,J)*UB(,J)

ZhG1290: 1 +CVIAN*VBILN+CUX1AD*UBX+CVX1(I,J)*VBX
ZhG1291: 2 +CUY1A.NH*UBY+CVY1(LN*VBY+CXX(LN)*UBXX
ZhG1292: 3 +CYY(ILD)*UBYY-UNL))

ZhG1293: VXSWP=DTDTOI4*DVNL+DTOI*(VB(,J)-DT2*(CU2(I,)*UB({,J)
ZhG1294: 1 +CV2(LN*VBILI+CUX2(L))*UBX+CVX2(I,))*VBX
ZhG1295: 2 +CUY2(LN*UBY+CVY2(L.N)*VBY+CXX(1,))*VBXX
ZhG1296: 3 +CYY(L.D*VBYY-VNL))

ZhG1297: DMX(1,)=DTDTOIR*UR(J)-UXSWP

ZhG1298: 450 DMX(2,)=DTDTOI2*VR(.J)-VXSWP
ZhG1299: * * OLD BOUNDARY *
ZhG1300: DO 451 K=1.M

ZhG1301: DMX(,1)=0.0
ZhG1302: 451 DMX(K,LX)=0.0
ZhG1303: DO 452 I=1M

ZhG1304: TT=0.0

ZhG1305: DO 454 K=1.M

ZhG1306: 454 TT=TT+BMX(.K,1,J)*DMX(K.1)
ZhG1307: 452 DMX(LD=TT

ZhG1308: DO 460 L=2,LX
ZhG1309: DO 462 I=s1M
ZhG1310: TT=0.0
ZhG1311: DO 464 K=1.M

ZhG1312: 464 TT=TT+AMX({K,L.J)*DMX(K,L-1)
ZhG1313: 462 WK({DH=DMX(L)-TT

ZhG1314: DO 460 I=1,M

ZhG1315S: DMX(,L)=0.0
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ZhG1316: DO 460 K=1,M
ZhG1317: 460 DMX(LL)=DMX(I,L+BMX(.K,L.J)*WK(K)

ZhG1318: DO 470 L=LX1,1,-1
ZhG1319: DO 470 I=1.M
ZhG1320: TT=0.0

ZhG1321: DO 472 K=1,M

ZhG1322: 472 TT=TT+CMX(IK,L.J)*DMX(K.L+1)
ZhG1323: 470 DMX(,L)=DMX(,L)-TT
ZhG1324: DO 400 I=1,LX

ZhG1325: DUB(IJ)=DMX(1.)
ZbG1326: 400 DVB(.J))=DMX(2,)
ZhG1327: * ** [=CONST. Y-SWEEP **
ZhG1328: DO 500 I=2,L.X1

ZhG1329: DO 510J=2,LY1

ZhG1330: DMY(1,))=DUB(.))
ZhG1331: 510 DMY(2.)=DVB(,J))
ZhG1332: * * OLD BOUNDARY *

ZhG1333: DO SIS K=1,M
ZhG1334: DMY(,1)=0.0
ZhG1335: 51S DMY(K,LY)=0.0
ZhG1336: DO 552 JI=1.M
ZhG1337: TT=0.0
ZhG1338: DO 554 K=1.M

ZhG1339: 554 TI=TT+BMY(K,L.D*DMY(,1)
ZhG1340: 552 DMY(.1)=TT

ZhG1341: DO 560 L=2,LY
ZhG1342: DO 562 I=1.M
ZhG1343: TT=0.0
ZhG1344: DO 564 K=1,M

ZhG1345: 564 TT=TT+AMY(KL.)*DMY(K,L-1)
ZhG1346: 562 WK(@I)=DMY(,L)-TT

ZhG1347: DO 560 J=1.M

ZhG1348: DMY(,L)=0.0

ZhG1349: DO 560 K=1,M

ZhG1350: 560 DMY(J,L)=DMY({J,L+BMY(J,K,L.)*WK(K)
ZhG1351: DO 570 L=LY1,1,-1

ZhG1352: DO 570 J=1.M

ZhG1353: TT=0.0

ZhG1354: DO 572 K=1.M

ZhG1355: 572 TT=TT+CMY(JK.L.)*DMY(K,L+1)
ZhG1356: 570 DMY(Q,L=DMY(L)-TT

ZhG1357: DO 500 J=1,LY

ZhG1358: DUB(.N)=DMY(1,))

ZhG1359: 500 DVB(J)=DMY(2,))

ZhG1360: RETURN

ZhG1361: END

ZhG1362:

ZhG1363: SUBROUTINE PB_NBD(RE)

ZhG1364: IMPLICIT REAL*8(A-H,0-Z)

ZhG1365: PARAMETER(M=2,LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
ZhG1366: PARAMETER(LX1=LX-1,LY1=LY-1,LX2=[.X-2,L Y2=LY-2)
ZhG1367: COMMON/DXY/XI(IG,JG),XJAG,JG),YIAG,JG),YJIG.JG)

ZhG1368: COMMON/UVP/ULX,LY),V(LX,LY),PLX,LY)
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ZhG1369: COMMON/UVPB/UB(LX,LY),VB(LX,LY),PB(LX,LY)

ZhG1370: COMMON/ABGDJ/ADI(G,JG),BDIIG,JG),GDJ(IG,JG)
ZhG1371: COMMON/UV_B/ULFT(LY),URIT(LY),UBOT(LX)
ZhG1372: 1 ,VLFT(LY),VRIT(LY),VBOT(LX)

ZhG1373: COMMON/DP_C/XI2DJ(IG.JG),XJ2DJ(IG,JG), YI2DJ(IG.JG)
ZhG1374: 1 ,YJ2DI(G,JG) XIXIDJ(G,JG) XIYIDJ(IG,JG)
ZhG1375: 2 XIYIDJAGJG)XJYIDIIG,JG), XJYIDIAG,JG)
ZhG1376: 3 ,YIYIDIJ(IG,JG),PLUS(G.JG)

ZhG1377: 4 ,P1IG.JG),P2(0G,JG),P3(G.JG),P4IG.JG)

ZhG1378: S PSAGJG),P6(G,JG),P7(G,JG),PUIG.JG)

ZhG1379: COMMON/BD/XT3(LX M), XI4LX,M), YI3(LX,M), YI4(LX,M)

ZhG1380: 1 XI3MLLY) XJ4M.LY),YI3(M,LY), YJ4M,LY)

ZhG1381: COMMON/DPHY/XTHJ(ILX,LY), XTHILX,LY), YIHJLX,LY), YJHILX,LY)
ZhG1382: COMMON/COM22/QI{LX,LY),Q2(LX,LY),Q3(LX,LY)

ZhG1383: COMMON/F_M/FM(LX,LY),FM_LR(2,LY),FM_BT(LX)

ZhG1384: DIMENSION WB(LX,LY)

ZhG1385: CALL UNIX

ZhG1386: * * VORTICITY *

ZhG1387: DO 10 [=2,LX1,1.X1-2

ZhG1388: IPi=I+1

ZhG1389: IM1=I-1

ZhG1390: DO10J=2,LY1

ZhG1391: JP1=J+1

ZhG1392: IM1=J-1

ZhG1393: 10 WB(IJ)=XTHIQJP1)*UB(,JP1)-XTHJA,JM1)*UB(,.JM1)
ZhG1394: 1 -XJHIAP1,H)*UB(AP1,)+XTHIAM1,))*UB(IM1,))
ZhG1395: 2 -YJHI(AP1,J)*VB(APL)+YJTHIAM1,J)*VB(IM1,))
ZhG1396: 3 +YIHI(Q,JP1)*VB(,JP1)-YIHI(LIM1)*VB(,JM1))
ZhG1397: DO 20 I=2,L.X1

ZhG1398: IP1=[+1

ZhG1399: M1=I-1

ZhG1400: DO 20J=2,LY1,LY1-2

ZhG1401: JP1=J+1

ZhG1402: JM1=J-1

ZhG1403:20 WB(I=(XIHJJP1)*UB{,JP1)-XIHI(I]M1)*UB(LJM1)
ZhG1404: 1 -XTHIAP1,H)*UB(IP1, )+ XJHIOM1,J)*UB(IM1,])
ZhG1405: 2 -YJHI(AP1,J)*VB(IP1 J)+YJTHI(IM1,J)*VB(IM1,))
ZhG1406: 3 +YIHIQ,JP1)*VB(,JP1)-YIHI(,JM1)*VB(I,LJM1))
ZhG1407: DO 30 J=2,LY1

ZhG1408: JP1=J+1

ZhG1409: M1=J-1

ZhG1410: WB(1,J)=(XTHJ(1,JP1)*UB(1,JP1)-XTHI(1,JM1)*UB(1,JM1)
ZhG1411: 2 +YTHI(1,JP1)*VB(1,JP1)-YIHJ(1,IM1)*VB(1,]M1)
ZhG1412:; 3 +XJ3(1,7)*UB(1,))-XJ4(1,7)*UB(2,)+XTHI(3,J)*UB(3.))

ZhG1413: 4 +YJ3(LD)*VB(1.)-YJ4(1,.)*VB(2,))+YJHI(3,))*VB(3.J))
ZhG1414:30 WB(LX,J)=(XTHJ(ILXJP1)*UB(LX.,JP1)-XTHJ(LX,JM1)*UB(LX,JM1)
ZhG1415: 2 +YIHILX,JP1)*VB(LX,JP1)- YIHI(LX,JM1)*VB(LX,IM1)
ZhGl416: 3 -XJ3(2,))*UBLX.)+XJ4(2,))*UB(LX1,0)-XJHI(LX2,J))*UB(LX2,))
ZhG1417: 4 -YI32D*VBALX+YJ4(2)*VB(LXLD)-YTHIILX2,)*VB(LX2,)))

ZhG1418: DO 40 1=2,L.X1

ZhG1419: P1=I+1

ZhG1420: IM1=I-1

ZhG1421: WB(,1)=(-XI3(1,1)*UB(, 1)+XI4(1,1)*UB(,2)-XIHI(I,3)*UB(I,3)
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7ZhG1422:
ZhG1423:
ZhG1424:
ZhG1425:
ZhG1426:
ZhG1427:
ZhG1428:
ZhG1429:
ZhG1430:
ZhGl1431:
ZhG1432:
ZhG1433:
ZhG1434:
ZhG1435:
ZhGl436:
ZhG1437:
ZhG1438:
ZbG1439:
ZhG1440:
ZhG1441:
ZhG1442:
ZhG1443:
ZhG1444:
ZhG1445:
ZhG1446:
ZhG1447:
ZhG1448:
ZhG1449:
ZhG1450:
ZhG1451:
ZhG1452:
ZhG1453:
ZhG1454:
ZhG1455:
ZhG1456:
ZhG1457:
ZhG1458:
ZhG1459:
ZhG1460:
ZhG1461:
ZhG1462:
ZhG1463:
ZhG1464:
ZhG1465:
ZhG1466:
ZhG1467:
ZhG1468:
ZhG1469:
ZhG1470:
ZhG1471:
ZhG1472:
ZhG1473:
ZhG1474:

-YB( 1)*VB(, 1)+ YI(L1)*VB(L,2)- YIHI(,3)*VB(L,3)
-XJHI(IP1,1y*UB(P1,1+XTHIAM1,1)*UB(IM1,1)
-YJHI(P1,1)*VB(IP1,1+YJHI(IML,1)*VB(IM1,1))

+XTHJ([LLY2)*UB(LLY2)+YI3(1,2)*VB(LLY)
-YI4(L,2)*VBALYI)+YIHI(LY2)*VB(I,LY2)

2
4
5
40 WB(LY)=(XI3(1,2)*UB(LLY)-X14(1,2)*UB(LLY1)
1
2
4

* % * La

-XJHI(QP1,LY)*UB(IP1,LY+XJHJ(IM1,LY)*UB(IM1,LY)
S -YJHI(IP1,LY)*VB(P1,LY)+YJHIOIML,LY)*VB(IM1,LY))
WB(1,1)=
1 (-X13(1,1)*UB(1,1)+X14(1,1)*UB(1,2)-XIHI(1,3)*UB(1,3)
2 -YI3(1,1)*VB(1,1)+YI4(1,1)*VB(1,2)- YIHI(1,3)*VB(1,3)
4 +X7J3(1,1)*UB(1,1)-XJ4(1,1)*UB(2, 1)+ XJHJ(3,1)*UB(3,1)
5 +YJ3(1,1)*VB(1,1)-YJ4(1,1)*VB(2, 1)+ YJHI(3,1)*VB(3,1))
WB(1,LY)=
1 X13(1,2)*UB(1,LY)-X14(1,2)*UB(1, LY 1+XIHJ(1,LY2)*UB(1,LY2)
2 +YI3(1,2)*VB(1,LY)-YI4(1,2)*VB(1,LY 1)+ YIHI(1,LY2)*VB(1,LY2)
4 +XJ3(1,LY)*UB(1,LY)-XJ4(1,LY)*UB(2,LY)+XJHI(3,LY)*UB(3,LY)
5+YI3(L,LY)*VB(1,LY)-YJ4(1,LY)*VB(2,LY)+YJHI(3,LY)*VB(3,LY))
WB(X,1)=
1 (-XIB3AX,1)*UB@LX, +XT4(LX, 1)*UB(LX,2)-XIHJ(LX,3)*UB(LX.3)
2 -YI3AX,1)*VBLX, I+ YI4(LX,1)*VB(LX,2)-YIHJ(LX,3)*VB(LX,3)
4 -XJ3(2,1)*UB(LX,1)+XJ4(2,1)*UB(LX1,1)-XJHI(LX2,1)*UB(LX2,1)
5 -YI32,)*VBILX,1)+YJ4(2,1)*VB(LX1,1)-YJTHI(LX2,1)*VB(LX2,1))
WB(ILX.LY)=
1 XBEX,2)*UBLX,LY)-XI4(LX,2)*UB(LX,LY )+XTHJ(LX,LY2)*UB(LX,LY2)
3+YBAX,2)*VB(LX,LY)-YI4(LX,2)*VB(LX,LY 1+ YIHJ(LX,LY2)*VB(LX,LY?2)
4 -XJ3(2LY)*UB(LX,LY)+XJ4(2LY)*UB(LX1,LY)-XJHJ(LX2,LY)*UB(LX2,LY)
5-YI3Q,LY)*VBLX,LY+YM(2LY)*VB(LX1,LY)-YJTHI(LX2,LY)*VB(LX2,LY))
DO 50 I=1,L.X
DO 50J=1LY
Q1I.N=UBN)**2.0+2.0*U(LN*UB())
Q2@ N=UBA.DH*VBAIN+UWN*VBIN+V(ANH*UB(LJ)
Q3ALN=VB(IN**2.0+2.0*V(A,D)*VB(J)
*LEFT (I=1) & RIGHT (I=LX1) *
* XI=X(IP1,)-X(.D)
* YI=025*(YQJ+1)+Y(AP1,J+1)-Y(1,J-1)-Y(AP1,J-1))
DO 100 K=1,2
IFK.EQ.1) I=1
[F(K.EQ.2) I=LX1
IP1=I+1
I=2*1
IP1=[1+1
IM1=II-1
DO 100 J=2,LY1
J1=2%]-1
JP1=J+1
M1=J-1
IIP2=JJ+2
JIM2=]]-2
T2=P1(I1IP1,JN)*UB(PL,))-P10IM1,J))*UB(.J)
T3=P2(11,JJP2)*(UB(IP1,JP1)+UB(,JP1))
1 -PIL,JJIM2)*(UB(IP1,J]M1+UB(L.JM1))
T4=P3(1IP1,JN*VB(P1.J)-P3(IIM1,J1))*VB({,J)
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ZhG1475:
ZhG1476:
ZhG1477:
ZhG1478:
ZhG1479:;
ZhG1480:
ZhG1481:
ZhG1482:
ZhG1483:
ZhG1484:
ZhG1485:
ZhG1486:
ZhG1487:
ZhG1488:
ZhG1489:
ZhG1490:
ZhG1491:
ZhG1492:
ZhG1493:
ZhG1494:
ZhG1495:
ZhG1496:
ZhG1497:
ZhG1498:
ZhG1499:
ZhG1500:
ZhG1501:
ZhG1502:
ZhG1503:
ZhG1504:
ZhG1505:
ZhG1506:
ZhG1507:
ZhG1508:
ZhG1509:
ZhG1510:
ZhGl1511:
ZhG1512:
ZhG1513:
ZhG1514:
ZhG1515:
ZhG1516:
ZhG1517:
ZhG1518:
ZhG1519:
ZhG1520:
ZhG1521:
ZhG1522:
ZhG1523:
ZhG1524:
ZhG1525:
ZhG1526:
ZhG1527:

T5=P4(ILJIP2)*(VB(IP1,JP1)+VB(LIP1))

1 -PA(ILIIM2)*(VB(IP1,]M1+VB(L,JM1))
T6=YIJ2DJAIP1,JN*Q1(P1.1)-YI2DJ(IM1,JN)*Q1(J)
T7=YIYJDIALIIP2)*(Q1(IP1,JP1)+Q1(LJP1))

1 -YIYIDJ(ILJIM2)*(Q1(IP1,]M1)+Q1(1JM1))
T8=2.0%(XJYJDJ(IP1,J))*Q2(IP1,])-XJYIDJ(IM1,JJ)*Q2(L,J))
T9=PLUS(LJIP2)*(Q2(IP1,JP1+Q2(L.TP1))

1 -PLUS(ILJIM2)*(Q2(IP1,JM1)+Q2(I,IM1))
T10=XJ12DJ(I1P1 JN*Q3(IP1.1)-X12DJMIM1,JN*Q3())
T11=XIXJDJ(LJIP2)*(Q3(IP1,JP1)+Q3(1,JP1))

1 -XIXIDJ(ILITM2)*(Q3(IP1,JM1)+Q3(1,JM1))
T12=(WB({IP1,JP1+WB(,JP1)-WB(IP1,JM1)-WB(,JM1))/RE
UL=-T2+T4-T6+T8-T10-0.25*%(T3-T5-T7+T19-T11-T12)
T2=P7(1IP1,J))*UB(AP1D)-P7(AIM1,J))*UB(L))
T3=P8(IL.JJP2)*(UB(IP1,JP1+UB(LJP1))

1 -P8(ILJIM2)*(UB(IP1,JM1)+UB(I,JM1))
T4=P5(1IP1,11)*VB(P1,])-PS(IM1,J1)*VB(1.J)
T5=P6(1,JJP2)*(VB(IP1,JP1)+VB(,JP1))

1 -P6(ILIIM2)*(VB(IP1,JM1)+VB(I,JM1))
T6=YIYIDIJMP1IN)*Q1(IP1LN)-YIYIDJ(IIM1,IJN*QI1(L))
T7=YI2DJ{1 JIP2)*(Q1(IP1,JP1)}+Q1(1,JP1))

1 -YR2DJIILJIM2)*(Q1(IP1,JM1)+-Q1(I,JM1))
T8=PLUS(IIP1,J1)*Q2(IP1,7)-PLUSAIM 1,I1)*Q2(L.Y)
T9=2.0*(XTYIDJ(IL,JJP2)*(Q2(IP1,JP1)+Q2(1,JP1))

1 -XTYIDJ(LJIM2)*(Q2(IP1,JM1)+Q2(1.JM1)))
T10=XIXJDIJAIP1,JN*Q3(P1,))-XIXJDJIIM1,JN*Q3(.J)
T11=XI2DJ(LJIP2)*(Q3(IP1,JP1)+Q3(1,JP1))

1 -XI2DJ(L,1IIM2)*(Q3(IP1,JM1)+Q3(1,JM1))
T12=(WB(IP1,))-WB(L.J))/RE
VL=-T2+T4-T6+T8-T10+T12-0.25*(T3-T5-T7+T9-T11)
IF(K.EQ.1) THEN
PX=(BDIILIN*(VLFT(J)-VL)-GDJIILJI*(ULFT(J))-UL))/FM_LR(1,J)
PB(L1)=PB(IP1,))-PX

ENDIF

IF(K.EQ.2) THEN
PX=(BDIJ(LJN*(VRIT(J)-VL)-GDJILIN*(URIT()-UL))/FM_LR(2,))
PB(IP1,J)=PB(,J)+PX

ENDIF

CONTINUE

* BOTTOM (J=1) *

* XI=0.25%X(I+1,0)+X(1+1,JP1)-X(1-1,))-X(I-1,JP1))
* YI=YQ,JPD-YQD)

J=1

JP1=J+1

JI=2*%]

JIP1=]J+1

JIIM1=JJ-1

DO 200 I=2,L.X1

O=2*I-1

IPl1=I+1

M1=I-1

IP2=11+2

IM2=I1-2
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ZhG1528: T2=P1(IIP2,J7)*(UB(IP1,JP1)+UB(IP1,1))

ZhG1529: 1 -P1QIM2,J0)*(UB(IM1,JP1+UB(IM1,)))

ZhG1530: T3=P2(ILJJP1)*UB(.JP1)-P2(1,JIM1)*UB(.J)

ZunG1531: T4=P3(IIP2,J))*(VB(IPLJP1}+VB(P1.)))

ZhG1532: 1 -P3AIM2,1N*(VB(IM1,JP1)+VB(IM1,J))

ZhG1533: TS=P4(ILJJP1)*VB(1,JP1)-P4(I1,JIM1)*VB(LJ)

ZhG1534: T6=Y12DI(IP2,11)*(Q1(IP1,JP1)+Q1(IP1,)))

ZhG1535: 1 -YI2DJ(IM2,J7)*(Q1(IM1,JP1)+Q1(IM1,)))

ZhG1536: T7=YIYJDJALJIP1)*Q1(1.JP1)-YIYIDJ(ILJIM1)*QI1(LJ)
ZhG1537: T8=2.0*(XJYJDI(IP2,J1)*(Q2(IP1,JP1)+Q2(IP1,1))
ZhG1538: 1 -XJYIDI(IIM2,J3)*(Qz(IM1,JP1)+Q2(IM1,J)))
ZhG1539: T9=PLUSJJP1)*Q2(1,JP1)-PLUS(LJIM1)*Q2(1,J)
ZhG1540: T10=XJ12DJ(IP2,J)*(Q3(1P1,JP1)+Q3(IP1.)))

ZhG1541: 1 -X12DJIIM2,J)*(Q3(IM1,JP1+Q3(IM1.)))

ZhG1542: T11=XIXJDJ(LJIP1)*Q3(L.JP1)-XIXJDJ(LJIM1)*Q3(.J)
ZhG1543: T12=(WB(I,JP1)-WB(,)))RE

ZhG1544: UL=-T3+T5+T7-T9+T11+T12-0.25*%(T2-T4+T6-T8+T10)
ZhG154s: T2=P7(P2,IN*(UB(IP1,JP1)+UB(IP1,]))

ZhG1546: 1 -P7(IIM2,J7)*(UB(IM1,JP1)+UB(IM1,]))

ZhG1547: T3=P8(IL,JJP1)*UB(1.JP1)-P8(I.JIM1)*UB(.J)

ZhG1548: T4=P5(IIP2,1))*(VB(IP1,JP1+VB(IP1,)))

ZhG1549: 1 -PS(IM2,J1)*(VB(IM1,JP1)+VB(IM1,1))

ZhG1550: TS=P6(IL.IIP1)*VB(.JP1)-P6(II,JIM1)*VB(.J)

ZhG1551: T6=YIYJDI(IP2,J))*(Q1(IP1,JP1)+Q1(IP1,D))

ZhG1552: 1 -YIYIDJIM2,J3)*(Q1(IM1,JP1)+Q1(IM1,)))

ZhG1553: T7=Y2DI(ILJJIP1)*Q1(IJP1)- YI2DJ(ILJIM1)*Q1(J)
ZhG1554: T8=PLUSIP2,JN)*(Q2(IP1,JP1+Q2(IP1,)))

ZhG1555: 1 -PLUSIIM2,11)*(Q2(IM1,JP1)+Q2(IM1,)))

ZhG1556: T9=2.0*(XTYIDI(I1,JJP1)*Q2(1,JP1)-XIYIDJ(LJIM1)*Q2(1,]))
ZhG1557: T10=XIXJDJIP2,11)*(Q3(P1,JP1)+Q3(IP1,1))

ZhG1558: 1 -XIXJDJAIM2,J1)*(Q3(IM1,JP1)+Q3(IM1,1))
ZhG1559: T11=X12DJ(II1,JJP1)*Q3(1.JP1)-XI2DJALJIM1)*Q3(L.))
ZhG1560: T12=(WB(IP1,JP1)+WB(P1,])-WB(IM1,JP1)-WB(IM1,))/RE
ZhG1561: VL=-T3+T5+T7-T9+T11-0.25*%(T2-T4+T6-T8+T10-T12)
ZhG1562: PY=(ADJ(ILJN)*(VBOT()-VL)-BDIALIN*(UBOT()-UL))/FM_BT()
ZhG1563: 200 PB(L))=PB{.JP1)-PY

ZhG1564: RETURN

ZhG1565: END

Zh(G1566:

ZhG1567: SUBROUTINE PB_INNER(BJ,DT)

ZhG1568: IMPLICIT REAL*8(A-H,0-Z)

ZhG1569: PARAMETER(M=2,LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
ZhG1570: PARAMETER(LX1=LX-1,LY1=LY-1,LX2=[.X-2LY2=[Y-2)
ZhG1571: COMMON/UVPB/UB(LX,LY),VB(LX,LY),PB(LX,LY)
ZhG1572: COMMON/P_R/PRIX,LY)

ZhG1573: COMMON/DP_C/X12DJ(IG,JG).XJ2DJ(G,JG), YI2DI(G,JG)
ZhG1574: 1 . YI2DJ(G,JG) XIXIDJ(G,JG).XIYIDJIG,IG)
ZhG1575: 2 XIYIDIAG,JG).XIYIDIAG,JG), XTYIDI(AG,JG)
ZhG1576: 3 ,YIYIDI(G,JG),PLUSUG.JG)

ZhG1577: 4 P10G,JG),P2(G,JG),P3(G,JG),P4IG,JG)

ZhG1578: 5 P50AG,JG),P6(G,JG),P7(G,IG),P8(IG,IG)

ZhG1579: COMMON/ABGDJ/ADI(G,JG),BDJ(G.JG),GDI(G.JG)

ZhG1580: COMMON/DPHI/XTHI(LX,LY), XTHJ(LX,LY), YIHI(LX,LY), YJHI(LX,LY)
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ZhG1581:
ZhG1582:
ZhG1583:
ZhG1584:
ZhG1585:
ZhG1586:
ZhG1587:
ZhG1588:
ZhG1589:
ZhG1590:
ZhG1591:
ZhG1592:
ZhG1593:
ZhG1594:
ZhG1595:
ZhG1596:
ZnG1597:
ZhG1598:
ZhG1599:
ZhG1600:
ZhG1601:
ZhG1602:
ZhG1603:
ZhG1604:
ZhG1605:
ZhG1606:
ZhG1607:
ZhG1608:
ZhG1609:
ZhG1610:
ZhG1611:
ZhG1612:
ZhG1613:
ZhG1614:
ZhG1615:
ZhG1616:
ZhG1617:
ZhG1618:
ZhG1619:
ZhG1620:
ZhG1621:
ZhG1622:
ZhG1623:
ZhG1624:
ZhG1625:
ZhG1626:
ZhG1627:
ZhG1628:
ZhG1629:
ZhG1630:
ZhG1631:
ZhG1632:
ZhG1633:

COMMON/COM22/Q1(LX,LY),QALX,LY),Q3(LX,LY)
COMMON/F_M/FM(LX,LY),FM_LR(2,LY),FM_BT(LX)
DIMENSION RILX,LY),DB(LX,LY),BI(IG,JG)

CALL UNIX

NUMBER=100

OMG=1.7

*DB *

DO 1[=2]IX1

IP1=I+1

Mi=I-1

DO1J=2LY1

JP1=J+1

M1=]J-1

DB N=CYJHJ(IP1,J)*UB(P1.J)-YTHI(IM1,))*UB(IML,))
1 -YHIQJP1)*UBQAJP1)+YIHI(ILJM1)*UB(LLJM1)
2 +XTHI(1,JP1)*VB({,JP1)-XHI(A,JM1)*VB({,JM1)
3 -XJHI(P1,J)*VB(P1.N)+XJHIOIM1,J)*VB(IML1,)))
DO 101I=21.X1

IP1=I+1

Ml=I-1

O=2*I-1

[E=II+1

IW=II-1

DO 10J=2,LY1

JP1=J+1

MI1=J-1

JJ=2%]-1

IN=JJ+1

I1S=JJ-1

TX1=P1(IE.J))*(UB(P1,))-UB(L)))

1 -P1(AW,J1N*(UB(L))-UB(IML,J))
COM=UB(,JP1)-UB(I,]M1)
TX2=P2(IE,J))*(UB(IP1,JP1)-UB(IP1,]M1+COM)

1 -P2QW,JNy*(UB(IM1,JP1)-UB(IM1,]M1)+-COM)
TX3=P3(E.JN*(VB(IPL))-VB({.D)

1 -P3AW.JN*(VB(L)-VBIMLJ))
COM=VB(,JP1)-VB(I,JM1)
TX4=P4(IE,J))*(VB(IP1,JP1)-VB(IP1,JMI1)+COM)

1 -P4AW, IT)*(VB(IM1,JP1)-VB(IM1,J]M1+COM)
TY1=P6(ILJN)*(VB(1,JP1)-VB(,]))

1 -P6(ILIS)*(VB(J)-VB(I,JM1))
COM=VB(P1,))-VB(IM1,))
TY2=P5(IIJN)*(VB(IP1,JP1)-VB(IM1,JP1+COM)

1 -P5(1,JS)*(VB(IP1,]M1)-VB(IM1,JM1)+COM)
TY3=PRILIN)*(UB(I,JP1)-UB(LJ))

1 -P8(ILIS)*(UB(L))-UB(,JM1))
COM=UB(P1,])-UB(IM1,D)
TY4=P7(ILJN)*(UB(IP1,JP1)-UB(IM1,JP1)+COM)

1 -P7(LJS)*(UB(IP1,JM1)-UB(IM1,]M1+COM)
X1=YJ2DJ(E,JN*Q1(IP1,N)-Q1(.))

1 -YI2DJAW,JN*(QI(LN-Q1(IMLD)
COM=Q1(1.JP1)-Q1(IJM1)
X2=YIYIDJ(E,J)*Q1(IP1,JP1)-Q1(IP1,JM1)+COM)
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ZhG1634:
ZhG1635;
ZhG1636:
ZhG1637:
ZhG1638:
ZhG1639:
ZhG1640:
ZhG1641:
ZhG1642:
ZhG1643:
ZhG1644:
ZhG1645:
ZhG1646:
ZhG1647:
ZhG1648:
ZhG1649:
ZhG1650:
ZhG1651:
ZhG1652:
ZhG1653:
ZhG1654:
ZhG1655:
ZhG1656:
ZhG1657:
ZhG1658:
ZhG1659:
ZhG1660:
ZhG1661:
ZhG1662:
ZhG1663:
ZhG1664:
ZhG1665:
ZhG1666:
ZhG1667:
ZhG1668:
ZhG1669:
ZhG1670:
ZhG1671:
ZhG1672:
ZhG1673:
ZhG1674:
ZhG1675:
ZhG1676:
ZhG1677:
ZhG1678:
ZhG1679:
ZhG1680:
ZhG1681:
ZhG1682:
ZhG1683:
Zh(G1684:
ZhG1685:
ZhG1686:

10

2 -YIYIDIQW.J)*Q1(IM1,JP1)-Q1(IM1,]M1)+COM)
X3=2.0*XJYIDJ(E,JJ)*(Q2(IP1,))-Q2(L)))

1 -XJYIDJQWJN*Q2(LN-Q2(IML))))
COM=Q2(LJP1)-Q2(1,]M1)
X4=PLUS(IE,J))*(Q2(IP1,JP1)-Q2(IP1,]M1+COM)
2 -PLUSAW JN*(Q2(IM1,JP1)-Q2(IM1,]M1+COM)
X5=XP2DIIEJN*(Q3(IP1,1)-Q3(L))

1 -XJ2DIAW JN*(Q3A.N)-Q3(IML,D)
COM=Q3(L,JP1)-Q3(,JM1)
X6=XIXJDI(IE,J))*(Q3(IP1,JP1)-Q3(IP1,J]M1)+COM)
2 -XIXJDJAW.JN*(Q3(IM1.JP1)-Q3(IM1,JM1IHCOM)
Y1=YI2DJ(LIN)*(Q1(L,JP1)-Q1(.)))

1 -YIR2DJALIS)*(Q1(L.N-Q1{L,JM1))
COM=QI(IP1,5)-Q1(IM1,))
Y2=YIYIDJIN)*(Q1(IP1,JP1)-Q1(IM1,JP1)+COM)
2 -YIYJDJ(I,JS)*(Q1(IP1,JM1)-Q1(IM1,JM1)+COM)
Y3=2.0*XTYIDJALIN)*(Q2(.JP1)-Q2(L)))

2 -XIYIDJLJS)*(Q2(L,))-Q2(1,JM1)))
COM=Q2(IP1,))-Q2(IM1,})
Y4=PLUS(I,IN)*(Q2(IP1,JP1)-Q2(IM1,JP1)+COM)
3 -PLUS(I.JS)*(Q2(IP1,JM1)-Q2(IM1,JM1)+COM)
Y5=XI2DJ(IL,JN)*(Q3(I.JP1)-Q3(1.J))

1 -X12DJ(ALISY*(Q3(L.)-Q3(I.IMD))
COM=Q3(IP1,))-Q3(IM1,])
Y6=XIXJDJ(I,JN)*(Q3(IP1,JP1)-Q3(IM1,JP1)+COM)
2 -XIXIDJ(LJS)*(Q3(IP1,JM1)-Q3(IM1,JM1)+COM)
R@LN=PR(LJ))+DB(.J)/DT*BI(LIJ)

2 -(TX1-TX3+0.25*(TX2-TX4))

3 -(TY1-TY3+0.25%(TY2-TY4))

4 -(X1-X3+X5-0.25*(X2-X4+X6))

5 -(Y1-Y3+Y5-0.25%(Y2-Y4+Y6))

DO 100 K=1,NUMBER

RSD=0.0

DO 75 I=2,LX1

IP1=I+1

Mi=I-1

M=2*I-1

[E=II+1

IW=II-1

DO 75 J=2,LY1

P1=J+1

M1=J-1

JI=2%J-1

IN=JJ+1

IS=JJ-1
T1=ADJ(EJJ)*PB(P1,)+ADJAW,J))*PB(IM1,))
T2=GDJ{I,IJN)*PB(1,JP1)+GDJ(I,JS)*PB(I,JM1)
COM=PB(,JP1)-PB(I,IM1)
T3=(BDIJ(E,J))*(PB(IP1,JP1)-PB(IP1,]M1)+COM)

2 -BDJAW JN*(PB(IM1,JP1)-PB(IM1,]M1)+COM))
COM=PB(IP1,J)-PB(IM1,J)
T4=(BDJ(ILIJN)*(PB(P1,JP1)-PB(IM1,JP1}+COM)

2 -BDJ(11,JS)*(PB(IP1,J]M1)-PB(IM1,]M1)+COM))
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ZhG1687

ZhG1688:

ZhG1689

ZhG1690:
ZhG1691: 75
ZhG1692:

ZhG1693
ZhG169%4

: 100
: 150

ZhG1695:
ZhG1696:
ZhG1697:
ZhG1698:
Zh(G1699:
ZhG1700:
ZhG1701:
ZhG1702:
ZhG1703:
ZhG1704:
ZhG170s:
ZhG1706:
ZhG1707:
ZhG1708:
ZhG1709:
ZhG1710:
ZhG1711:
ZhG1712:
ZhG1713:
ZhG1714:
ZhG1715:
ZhG1716:
ZhG1717:
ZhG1718:
ZhG1719:
ZhG1720:
ZhG1721:
Zh(G1722:
ZhG1723:
ZhG1724:
ZhG1725:
ZhG1726:
ZhG1727:
ZhG1728:

ZhG1729:

10

ZhG1730:
ZhG1731:

RHS=T1+T2-0.25*(T3+T4)-R(L))
DPB=RHS/FM(,J)-PB(L.))
E=DABS(DPB)

IFRSD.LT.E) RSD=E
PB(LN=PB(LI)+OMG*DPB
IFRSD.LT.1.0D-6) GOTO 150
CONTINUE

RETURN

END

SUBROUTINE WAVE(N1,N2)
IMPLICIT REAL*8(A-H,0-Z)
PARAMETER(LX=1001,LY=11,IG=2*LX-1,JG=2*LY-1)
COMMON/XY/X(G,JG),Y(IG,JG)
COMMON/WAVEP/PER(LX),HILX), AM(LX),XX(LX)
CALL UNIX

N1=0

N2=0

R1=PER(1)

R2=PER(2)

X1=X(1,JG)

X2=X(3.JG)

IF(R2.GE.R1) INDEX=1

IF(R2.LT.R1) INDEX=-1

DO 10 I=5,1G,2

K=(I+1)12

R3=PER(K)

X3=X(1JG)

IF((R3/R2).LT.0.0) THEN

N1=N1+1

H(N1)=0.5*(X2+X3)

ENDIF

IF((INDEX.EQ.1 .AND.R3.LT.R2).0R.
1 (INDEX.EQ.-1.AND.R3.GT.R2)) THEN
N2=N2+1

AM(N2)=R2

XX(N2)=X2

INDEX=-INDEX

ENDIF

R1=R2

R2=R3

X1=X2

X2=X3

RETURN

END
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